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Preface

The purpose of this text is to provide the basis for an upper-level undergraduate
or graduate course over one or two semesters, covering basic concepts and
examples of fluid mechanics with particular applications in the natural environ-
ment. The book is designed to meet a dual purpose, providing an advanced
fundamental background in the fluid mechanics of environmental systems and
also applying fluid mechanics principles to a variety of environmental issues.
Our basic motivation in preparing such a text is to share our experience gained
by teaching courses in fluid mechanics, environmental fluid mechanics, and
surface- and groundwater quality modeling and to provide a textbook that
covers this particular collection of material.

This text presents a contemporary approach to teaching fluid mechanics
in disciplines connected with environmental issues. There are many good fluid
mechanics texts that overlap with various parts of this text, but they do not
directly address themes and applications associated with the environment. On
the other hand, there are also several texts that address water quality modeling,
calculations of transport phenomena, and other issues of environmental engi-
neering. Generally, such texts do not cover the fundamental topics of fluid
mechanics that are relevant when describing fluid motions in the environ-
ment. Besides presenting contemporary environmental fluid mechanics topics,
this text bridges the gap between those limited to fluid mechanics principles
and those addressing the quality of the environment.

The term environmental fluid mechanics covers a broad spectrum of
subjects. We have adopted the principle that this topic incorporates all issues
of small-scale and global fluid flow and contaminant transport in our environ-
ment. We have chosen to consider these topics as divided into two general
areas, one involving fundamental fluid mechanics principles relevant to the
environment and the second concerning various types of applications of these
principles to specific environmental flows and issues of water quality modeling.
This division is reflected in the organization of the text into two main parts.
The intent is to provide flexibility for instructors to choose material best suited
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for a particular curriculum. A full two-semester course could be developed by
following the entire text. However, other options are possible. For example, a
one-semester course could concentrate on the advanced fluid mechanics topics
of the first part, with perhaps some chapters from the second part added to
emphasize the environmental content. The second part by itself can be used in
a course concentrating on environmental applications for students with appro-
priate fluid mechanics backgrounds. Although the book addresses principles
of fluid mechanics relevant to the entire environment, the emphasis is mostly
on water-related issues.

The material is designed for students who have already taken at least
one undergraduate course in fluid mechanics and have an appropriate back-
ground in mathematics. Other courses in numerical modeling and environ-
mental studies would be helpful but are not necessary. Because of the breadth
of material that could be considered, some subjects have necessarily been
omitted or treated only at an introductory level. These topics are left for
continuing studies in the student’s particular discipline, such as oceanography,
meteorology, groundwater hydrology and contaminant transport, surface water
quality modeling, etc. References are provided in each chapter so that students
can easily get started in pursuing a particular subject in greater detail. Example
problems and solutions are included wherever possible, and there is a set of
homework problems at the end of each chapter.

We believe it is very important to introduce students to the proper
use of physical and numerical models and computational approaches in the
framework of analysis and calculation of environmental processes. Therefore,
discussion and examples have been included that refer to scaling procedures
and to various numerical methods that can be applied to obtain solutions
for a given problem. A full discussion of numerical modeling approaches is
included.

Both parts of the text are organized to provide (1) a review of intro-
ductory material and basic principles, (2) improvement and strengthening of
basic knowledge, and (3) presentation of specific topics and applications in
environmental fluid mechanics, along with problem-solving approaches. These
topics have been chosen to introduce the student to the wide variety of issues
addressed within the context of environmental fluid mechanics, regarding fluid
motions on the earth’s surface, underground, and in the oceans and atmosphere.

We believe that the wide scope of topics in environmental fluid
mechanics covered in this text is consistent with present teaching needs
in advanced undergraduate and graduate programs in fluid mechanics
principles and topics related to the environment. These needs are subject to
continuous growth and change due to our increasing interest in the fate of
ecological systems and the need for understanding transport phenomena in
our environment.
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1

Preliminary Concepts

1.1 INTRODUCTION
1.1.1 Historical Perspective

Fluid mechanics and hydraulics have long been major components of civil
engineering works and were probably originally associated with problems
of water supply in ancient civilizations. One of the first well-documented
hydraulic engineers was Archimedes (ca. 287-212 B.C.). His discovery of the
basic principles of buoyancy serves today as one of the fundamental building
blocks in describing fluid behavior. He also designed simple pumps for agri-
cultural applications, and some of his designs are still in use today. Other early
engineers had to deal with moving water over large distances from sources to
cities, as with the Roman aqueducts found in many parts of Europe and the
Middle East (see Fig. 1.1). These designs needed to incorporate basic aspects
of open channel flow, such as finding the proper slope to obtain a desired
flow rate. Remains of water storage and conveyance systems have also been
found from some of the earliest civilizations known, both in the Near East and
in the Far East. Rouse (1957) provides an interesting history of the science
and engineering of hydraulics, which is also summarized by Graf (1971),
particularly as it relates to open channel flow. In a sense, these were the first
kinds of problems that can be associated with the field of environmental fluid
mechanics.

An equally important task for early engineers was to design procedures
for disposing of wastewater. The simplest means of doing this, which was in
use until the relatively recent past, consisted of systems of gutters and drainage
ditches, usually with direct discharge into ponds or streams. Septic tanks, with
associated leeching fields, are another example of a simple wastewater treat-
ment system, though these can handle only relatively small flow rates. Within
the last century the practice of wastewater collection and treatment has evolved
considerably, to enable varying degrees of treatment of a waste stream before
it is discharged back into the natural environment. This development has been

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 1.1 Remains of Roman aqueduct, built in northern Israel.

driven by increased demands (both in quantity and in quality) for treating
municipal sewage, as well as increased needs for treating industrial wastes.
Sanitary engineering, within the general profession of civil engineering, tradi-
tionally dealt with designing water and wastewater collection and treatment
systems. This has evolved into the contemporary field of environmental engi-
neering, which now encompasses the general area of water quality modeling,
for both surface and groundwater systems. This has necessitated the incorpo-
ration of other fields of science, such as chemistry and biology, to address
the wider range of problems now being faced in treating waste streams with
a variety of characteristics and needs.

In addition to treating municipal or industrial wastewater, environmental
engineers currently are involved in solving problems of chemical fate
and transport in natural environmental systems, including subsurface
(groundwater) and surface waters, sediment transport, and atmospheric
systems. A knowledge and understanding of fluid flow and transport processes
is necessary to describe the transport and dispersion of pollutants in the
environment, and chemical and biological processes must be incorporated to
describe source and sink terms for contaminants of interest. Typical kinds
of problems might involve calculating the expected chemical contaminant
concentration at a water supply intake due to an upstream spill, evaluating the
spreading of waste heat discharged from power plant condensers, predicting

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



lake or reservoir stratification and associated effects on nutrient and dissolved
oxygen distributions, determining the relative importance of contaminated
sediments as a continuing source of pollutants to a river or lake system,
calculating the expected recovery time of a lake when contaminant loading is
discontinued, or evaluating the effectiveness of different remediation options
for a contaminated groundwater source. All of these kinds of problems require
an understanding of fluid flow phenomena and of biochemical behavior of
materials in the environment.

1.1.2 Objectives and Scope

The primary objective of this text is to provide a basis for teaching upper-level
fluid mechanics and water quality modeling courses dealing with environmen-
tally related issues and to give a compilation of applications of environmental
fluid mechanics seen in contemporary problems. The text also is meant to
serve as a reference for further study in the various subjects covered, so refer-
ences are included for additional reading. It would be impossible to include
an exhaustive discussion of all possible subjects in one text, and inclusion
of these additional references should provide a good starting point for more
in-depth study. Example problems are provided where appropriate, to amplify
the discussion or help reinforce certain concepts, and unsolved problems are
included at the back of each chapter, to provide exercises that might be
included in a course.

Today, the area of environmental fluid mechanics spans a broad range of
issues, including open channel hydraulics, sediment transport, stratified flow
phenomena, transport and mixing processes, and various issues in water quality
and atmospheric modeling. These topics are studied in a variety of ways,
such as by theoretical analyses, physical model experiments, field studies,
and numerical modeling. This text presents material that might traditionally
be included in two separate courses, one in fluid mechanics and the other
in water quality modeling. The emphasis here is on aqueous systems, both in
surface and subsurface flows, though the basic principles are mostly applicable
also for atmospheric studies. A major link between classic hydraulic engi-
neering and water quality studies is in defining the advective and diffusive (or
dispersive) transport terms of a water quality model, which are normally esti-
mated from hydrodynamic calculations. Fluid mechanics deals with the study
of fluid motion, or the response of a fluid to applied forces, and environ-
mental fluid mechanics refers to the application of fluid mechanics principles
to problems involving environmental flows, including purely physical appli-
cations (e.g., open channel flow, groundwater flow, sediment transport) and
problems of water quality modeling. In the following chapters the analytical
bases for the engineering evaluation and solution of these types of problems
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are developed. Governing equations for fluid motion are derived, as well as
the equation expressing mass balance for a dissolved tracer, otherwise known
as the advection—diffusion equation. Conservation equations for both mechan-
ical and thermal energy also are developed, and these lead to descriptions of
turbulent kinetic energy and temperature, respectively.

The text is divided into two parts. The first part is a discussion of theo-
retical principles used in describing fluid motion and includes the derivation
of the basic mathematical equations governing fluid flow. Chapters 4 through
9 include discussions of potential flow theory, introductions to turbulence and
boundary layer theory, groundwater flow, and large-scale motions where the
rotation of the earth must be incorporated into the equations of motion. The
second part of the text contains material more directly applied to environmental
problems. Fundamental transport processes for contaminants are discussed,
including advection, diffusion, and dispersion, and applications are described
in modeling groundwater flow and contaminant transport, exchange processes
between water surfaces and the atmosphere, stratified flows, jets and plumes,
sediment transport, and remediation issues. Sections in various chapters are
included that discuss associated numerical modeling issues, as we recognize
the important role of numerical solutions in many of the problems faced
in environmental fluid mechanics. Different solution approaches, boundary
conditions, numerical dispersion and scaling considerations are addressed. The
intent is that the material contained herein could serve as the basis for a two-
semester upper level undergraduate or graduate course, with each part of the
text providing a focus for each semester of instruction. Of course, single-
semester courses can be developed, based on individual chapters.

The remainder of the present chapter is devoted to a review of fluid
properties and mathematical preliminaries.

1.2 PROPERTIES OF FLUIDS
1.2.1 General

Most substances are categorized as existing in one of two states: solid or fluid.
Solid elements have a rigid shape that can be modified as a result of stresses.
This shape modification is termed deformation or strain. Different types of
solids are identified by different relationships between the shear stress and
the strain. A strained solid body is in a state of equilibrium with the stresses
applied on that body. When applied stresses vanish, the solid body relaxes to
its original shape.

Solid boundaries (i.e., a container) and interfaces with other fluids deter-
mine the shape of a fluid body. Unlike solids, even an infinitesimal shear force
changes the shape of fluid elements. Differences between different types of
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fluid are identified by different relationships between the shear stress and the
rate of strain. When applied stresses vanish, fluid elements do not return to
their original shape. In addition, fluids usually do not support tensile stresses,
though in many cases they strongly resist normal compressive stresses. In
many cases they can be considered as incompressible materials or materials
subject to incompressible flow, meaning that their density is not a function of
pressure. In general, fluids may be divided into liquids, for which compress-
ibility is generally negligible, and gases, which are compressible fluids. In
other words, the volume of a liquid mass is almost constant, and it occupies
the lowest portion of a container in which it is held. It also has a horizontal
free surface in a stationary container. A gas always expands and occupies
the entire volume of any container. However, gases like air are usually well
described in the atmosphere using incompressible flow theory.

1.2.2 Continuum Assumptions

All materials are composed of individual molecules subject to relative move-
ment. However, in the framework of fluid mechanics we consider the fluid
as a continuum. We are generally interested in the macroscopic behavior of a
fluid material, so that the smallest fluid mass of interest usually consists of a
fluid particle that is much larger than the mean free path of a single molecule.
It is therefore possible to ignore the discrete molecular structure of the matter
and to refer to it as a continuum. The continuum approach is valid if the
characteristic length, or size of the flow system (e.g., the diameter of a solid
sphere submerged in a flowing fluid) is much larger than the mean free path
of the molecules. For example, in a standard atmosphere the molecular free
path is of the order of 10~8 m, but in the upper altitudes of the atmosphere
the molecule mean free path is of the order of 1 m. Therefore, in order to
study the dynamics of a rarefied gas in such heights a kinetic theory approach
would be necessary, rather than the continuum approach.

1.2.3 Review of Fluid Properties

The density p of a fluid is a measure of the concentration of matter and is
expressed in terms of mass per unit volume. The volume and mass of fluid
considered for the calculation of the fluid density should be small, but not so
small that variations on a molecular level would become important. Therefore,

we define
lim " 1.2.1)
= m — L
p 5VL8V/ 1%

where dm is an amount of mass contained in a small volume 8§V, and 8V’ is
the volume of the smallest fluid particle that is still much larger than the mean
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free molecular path. The specific weight y is the force of gravity on the mass
contained in a unit volume of the substance,

Y =P8 (1.2.2)

The density of water is 1000 kg/m® (at 4°C) and the acceleration of gravity
g = 9.81 m/s%. Therefore, the nominal specific weight of water is

y = (1000 kg/m*)(9.81 m/s?) = 9810 N/m? (1.2.3)

The diffusive flux of a dissolved constituent in a fluid is expressed by
Fick’s law, which states that the flux is proportional to the constituent concen-
tration gradient (see also Chap. 10). In a one-dimensional domain this law is
expressed as

qm = —km§ 1.2.4)

ox

where ¢y, is the mass flux (kg m™2 s~!) of the constituent in the x direction,
C is the constituent concentration (kg m~?), and k,, is the mass diffusivity
(m? s71), whose value depends on the fluid and on the constituent. The rela-
tionship represented by Eq. (1.2.4) is based on empirical evidence and is called
a phenomenological law. A similar phenomenological law is Fourier’s law of
heat diffusion, which in a one-dimensional domain can be written as

oT

q=—k— (1.2.5)

ox
where g is the heat flux (J m™2 s™!), T is the temperature (°C), and k is the
thermal conductivity (J m~! s=! °C~!), whose value depends on the fluid.

Another phenomenological law is the law of Newton, expressing propor-
tionality between the strain rate and the shear stress in so-called Newtonian
fluids. In a one-directional flow with velocity u in the x direction and with the
velocity a function of y, the shear stress t that develops between fluid layers
is expressed as

T=p— (1.2.6)

Here the constant of proportionality u (Pa s) is the dynamic viscosity, whose
value depends on the fluid and on temperature. The ratio of dynamic viscosity
to density appears often in the equations describing fluid motion and is called
the kinematic viscosity v (m?> s™1),

v=H (1.2.7)

0
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There is some similarity between Eqgs. (1.2.4), (1.2.5), and (1.2.6). How-
ever, the mass flux given by Eq. (1.2.4) and heat flux given by Eq. (1.2.5) are
components of flux vectors, whereas the shear stress given by Eq. (1.2.6) is
a component of a tensor. These issues are described further in the following
sections of this chapter.

The interface between two immiscible fluids behaves like a stretched
membrane, in which tension originates from intermolecular attractive (cohe-
sive) forces. Near an interface, say between the fluid and another fluid or
between the fluid and the solid walls of a boundary or container, all the
fluid molecules are trying to pull the molecules on the interface inward. The
magnitude of the tensile force per unit length of a line on the interface is
called surface tension o (N m~!'), whose value depends on the pair of fluids
and the temperature. If p; and p, are the fluid pressures on the two sides of
an interface, then a simple force balance yields

o(2R) = (p1 — p2)nR?

where R is the radius of curvature of the interfacial surface. This result is also
written as

(p1 — p2R
o= —

5 (1.2.8)

For a general surface, the radii of curvature along two orthogonal directions R
and R, are used to specify the curvature. In this case, the relationship between
surface tension and pressure is

(p1 — P2RIR
o=—""_°

1.2.9
R+ Ry ( )

If a fluid and its vapor coexist in equilibrium, the vapor is a saturated
vapor, and the pressure exerted by this saturated vapor is called the vapor
pressure, with symbol py. The vapor pressure depends on the fluid and the
temperature.

The compressibility of a fluid is defined in terms of the average modulus
of elasticity K (Pa), defined as

__dp _ dp

= _dV/V = dn/p (1.2.10)

where dV is the change in volume accompanying a change in pressure d p,
and V and p are the original volume and density, respectively. The second
expression in Eq. (1.2.10) refers to density changes, but the negative sign is
dropped since the density changes in the opposite direction to that of volume.
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1.3 MATHEMATICAL PRELIMINARIES
1.3.1 Vectors and Tensors
A point in a three dimensional space is defined by its coordinates,
x!, x2, X3 (1.3.1)
A curve is defined as the totality of points given by the equation
x=flw) (=1,2,3) (1.3.2)

Here, u is an arbitrary parameter and the f' are three arbitrary functions.
The point given by Eq. (1.3.1) can be represented by a new set of coor-
dinates (x'!, x2, x'3), where

Xl = it 22 1) (1.3.3)
The Jacobian of the transformation is
ax’t
=12 G i=1,23) (1.3.4)
ox/

Eq. (1.3.2) also can be represented by another transformation,
x = g"(x/l,x/z, x/3) (1.3.5)
Differentiation of Eq. (1.3.3) then yields

’

/i 0x i .

dx' = —dx’ (1.3.6)

ax/

where index summation convention is used. That is, summation is made with

regard to the repeating superscript j. Such repeated indices are often referred

to as dummy indices. Any such pair may be replaced by any other pair of
repeated indices without changing the value of the expression.

For future reference, we introduce the Kronecker delta, 8{ , defined as

=1 if i=j

/=0 if  i#j (1.3.7)
It is evident that

o 138

oxi (1.3.8)

Contravariant Vectors and Tensors, Invariants

Consider a point P with coordinates x’ and a neighboring point Q with coor-
dinates x' + dx'. These two points define a vector, termed the displacement,
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whose components are dx’. We may still think about the same two points, but
apply a different coordinate system x'*. In this coordinate system the compo-
nents of the displacement vector are dx'l. Components of the displacement
tensor in the two systems of coordinates are related by Eq. (1.3.6).

If we keep the point P fixed, but vary Q in the neighborhood of P, the
coefficient dx’i /0x/ remains constant. Under these conditions, Eq. (1.3.6) is a
linear homogeneous (or affine) transformation.

The vector has an absolute meaning, but the numbers describing this
vector depend on the employed coordinate system. The infinitesimal displace-
ments given by Eq. (1.3.6) satisfy the rule of transformation of contravariant
vectors. Later we also will refer to covariant vectors. A contravariant vector
is one in which the vector components comprise a set of quantities A’ asso-
ciated with a point P that transform, on change of coordinates, according to
the equation

7.

l
AT = a2 (1.3.9)
ox/
where the partial derivatives are evaluated at point P. The expression for
the infinitesimal displacements given by Eq. (1.3.6) represents a particular
example of a contravariant vector.
A set of quantities A"/ represents components of a contravariant tensor
of the second order if they transform according to the equation
' ax'
AT — pkm ox " ox
axk oxm

(1.3.10)

The product A’ x B/ of two contravariant vectors is a contravariant tensor of
the second order.

Equation (1.3.10) provides a basic format for the definition of contrava-
riant tensors of the third or higher order. We also can conclude that there is
a contravariant tensor of the zero order that is a single component quantity,
transformed according to the identity relation

A=A (1.3.11)

Such a quantity is called an invariant, and its value is independent of the
employed coordinate system.

Covariant Vectors and Tensors, Mixed Tensors

If H is an invariant then we may introduce

o0H _ 9H oxJ

—_— = —— 1.3.12
ax't 9xJ Ox'i ( )
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This transformation is very similar to that of Eq. (1.3.6), but the partial
derivative involving the two sets of coordinates is reversed. Equation (1.3.6)
indicates that the infinitesimal displacement is the prototype of the contra-
variant vector. Equation (1.3.12) shows that the partial derivative of an in-
variant represents a prototype of the general covariant vector. The components
of a covariant vector comprise a set of quantities that transform according to

ox/
Al = I (1.3.13)
Suffixes indicating contravariant character are placed as superscripts, and
those indicating covariant character are subscripts. This convention means
that coordinates should be written x' rather than x;, although it is only the
differentials of the coordinates, and not the coordinates themselves, that have
tensor character.
We may extend Eq. (1.3.13) to define higher order covariant tensors.
Following the definitions of contravariant and covariant tensors, mixed tensors
can be defined. As an example, consider a third-order mixed tensor,

/s ax’ ox" axP
[ m
Ajk _Anp—axm 57 ok (1.3.14)

It then follows that the Kronecker delta is a second-order mixed tensor repre-
sented by the transformation

s ax'l ox"
8l = CSm -
J n ox™ ox’J

(1.3.15)

The left-hand side of Eq. (1.3.15) is unity if i = j and zero otherwise. Holding
m fixed and summing with respect to n, there is no contribution to the sum
unless n = m. Therefore the right-hand side of Eq. (1.3.15) reduces to

9 'i o™
R (1.3.16)
oax™ ox'J

and this expression is equal to 8’]

Addition, Multiplication, and Contraction of Tensors

Two tensors of the same order and type can be added together to give another
tensor of the same order and type. For example, we can write

C'y = Al + By (1.3.17)
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A second-order tensor is called a symmetric tensor if its components satisfy
the relationship

Aij =Aj (1.3.18)
A second-order tensor is antisymmetric or skew-symmetric if its components
satisfy

Aij = —Aji (1.3.19)

The definitions given by Egs. (1.3.18) and (1.3.19) can be extended
to more complicated tensors. A tensor is symmetric with respect to a pair
of suffixes if the value of the components is unchanged on interchanging
these suffixes. A tensor is antisymmetric with respect to a pair of suffixes
if interchanging these suffixes leads to a change of sign with no change of
absolute value.

Any tensor of the second order can be expressed as the sum of a
symmetric and an antisymmetric tensor. As an example, we can write

1 1
Ajj = E(Aij +Aj;)+ E(Aij —Aj) (1.3.20)

The first term on the right-hand side of Eq. (1.3.20) is a symmetric tensor,
and the second one is an antisymmetric tensor. This property is useful when
discussing stresses in fluid flow (Chap. 2).

Addition or subtraction can be done only with tensors of the same order
and type. In multiplication the only restriction is that we never multiply two
components with the same literal suffix at the same level in each component.
We may take tensors of different types and different literal suffixes. Then the
product is a tensor whose order is equal to the sum of orders of the multiplied
tensors. As an example,

T = AiBY (1.3.21)

The product exemplified by Eq. (1.3.21) is called an outer product. The inner
product is associated with contraction. It is obtained by multiplication of
tensors with lower suffixes identical to lower ones. An example is

cr =AijBf’" (1.3.22)

The process of contraction cannot be applied to suffixes at the same level.
Indices appearing at lower and upper levels represent summation.

The Metric Tensor and the Line Element

Suppose that y!, y?, y* are rectangular Cartesian coordinates. Then the square
of the distance between adjacent points is

ds* = (dy')’ + (dy*)* + (dy*)* (1.3.23)
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Any system of curvilinear coordinates is represented by x 2 x3 (eg.,  cylin-
drical or spherical polar) The y' coordinates are funct1ons of the x coor-
dinates, and the dy' components of the infinitesimal displacement are linear
homogeneous functions of the dx’ components. We introduce the relation-
ships of Eq. (1.3.6) to obtain a homogeneous quadratic expression in the dx’
components, which may be written as

ds* = gi;jdx'dx’ (1.3.24)

where the coefficients g;; are functions of the x' coordinates. As the gij do
not occur separately, but only in the combinations (g;; + g;;), there is no loss
of generality in taking g;; as a symmetric tensor.

As the distance between two given points is not dependent on the applied
coordinates, the value of ds or ds? is an invariant. According to Eq. (1.3.6),
dx' is a contravariant vector. Therefore, g; ; is a second-order covariant tensor.
It is called the metric tensor.

By applying Eqgs. (1.3.23) and (1.3.24), we obtain

aytay! 8y ey’ 9y’ 9y’
i ax/ | oxt axd axt ox/

gij = (1.3.25)

As an example, we consider a cylindrical coordinate system in which x' = r,

=0, x= =z The relationships between the y' coordinates and x' coor-

dinates are y! = x!cosx?, y> = x'sinx?, and y* = x3. By introducing these

relationships into Eq. (1.3.25), we obtain for the cylindrical coordinate system
8ij = 0 for i ;é ]
gu=1 gn=r" gu=1 (1.3.26)
The Conjugate Tensor; Lowering and Raising Suffixes

From the covariant metric tensor g;; we can obtain a contravariant tensor g/
given by
. CU
gl = ? (1.3.27)

where C'/ is the cofactor of g;; and g is the determinant of g;;. The following
relationships then hold:

41, = g,CH = ot (1.3.28)
By multiplying both sides of this expression by C/™ we obtain

o8l ght = ot cim (1.3.29)
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If g/ =0 for i # j, then

1 1 1
gl =— 2= P =
811 822 833
g/ =0 for i#]j (1.3.30)

The covariant metric tensor and its contravariant conjugate can be used for
lowering and raising of suffixes. As an example,

Uijk = gimV' (1.3.31)

Now we may refer to a tensor as a geometrical object that has different
representations in different coordinate systems. Until now we could consider
that the tensors U’/ and U; ; were entirely unrelated; one was contravariant and
the other covariant, and there was no connection between them. At present
we realize that use of the same symbol U for these tensors means that each of
them represents the same geometrical object, and internal products with the
metric tensors give the relationships between their components.

Geodesics and Christoffel Symbols

A geodesic is a curve whose length has a stationary value with respect to
arbitrary small variations of the curve while its end points are kept fixed. By
using some techniques of variational calculus, it is possible to show that the
differential equation of a geodesic is

dp/ i
gij—,— + Lk ilp'p* =0 (1.3.32)
ds
where s is the arc length along the geodesic and p’ = dx'/ds. The expression

given in the square brackets is called the Christoffel symbol of the first kind,
which is defined by

oo 1 (0gi;  Ogik  Ogjk
kil = - - - — =L 1.3.33
Lk i1 = 3 <8x" T T (1.3.33)
The Christoffel of the second kind is defined as
> = g™ jk.m] (1.3.34)

Jjk

If we multiply Eq. (1.3.32) by g™, we obtain another form for the equation
of a geodesic,

dpi <~ .
PN pipk =0 (1.3.35)
ds m
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This expression also can be represented by

d?x dx’ dx*
+
ds? ds ds

=0 (1.3.36)

The differential equation of a geodesic in terms of an arbitrary parameter ¢ is
identical to Eq. (1.3.36) in which ¢ replaces s.

Derivatives of Tensors

From Eq. (1.3.12) it is shown that the partial derivative of an invariant with
respect to a coordinate is a covariant vector. However, as discussed and shown
hereinafter, the partial derivative of a tensor is not a tensor.

We refer to a contravariant vector field U’, defined along a curve x' =
x'(t). Then the absolute derivative of U’ with regard to ¢ is defined as

SUT dUT << dxk
— Ui
st dt > dt

(1.3.37)
Jk

This expression is itself a contravariant vector. If the absolute derivative
expression of Eq. (1.3.37) vanishes, then the vector U’ is said to be prop-
agated parallel along the curve. In the case of a Cartesian coordinate system,
the Christoffel symbols vanish and Eq. (1.3.37) yields dU'/dt = 0. In this
case the vector passes through a sequence of parallel positions.

The absolute derivative of the vector given by Eq. (1.3.37) means that
the vector characteristic is given along a curve. Therefore, Eq. (1.3.37) can be
represented by

sU U I~ L\ dxt
— | = Ul =
5t axk + Z dt

(1.3.38)

The left-hand side of Eq. (1.3.38) represents a contravariant vector. The term
dx* /dt also is a contravariant vector. Therefore, the expression between paren-
theses of Eq. (1.3.38) is a second-order mixed tensor. We call it the covariant
derivative of a contravariant vector. It is represented as

Ut
=3 +ZUJ (1.3.39)

The same method can be applied to obtain the covariant derivative of any
tensor from the absolute derivative. In the following equations we provide
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expressions for the covariant derivative of various types of tensors:

Uix = axk ZU (1.3.40)
gooauit L
U’kzﬁ—i—ZU’—i—ZU (1.3.41)
3U," m m
Uiji = 8ka =Y Unj=> Ui (1.3.42)
ik Jjk
‘ wh
k=t Ly ZU (1.3.43)

mk

Cartesian Tensors

If we refer to two Cartesian coordinate systems 7' and 7', then for a contra-
variant tensor of the second order we may write the following law of trans-
formation:

31 07
Yl g 9208 (1.3.44)
az" Bz

However, the partial derivatives of Eq. (1.3.44) represent the cosine between
the relevant axes of the two Cartesian coordinate systems. Therefore we may
write

37 7"

R R o™ 1.3.45
an = 3 — oos@’Th) ( )

By introducing the relationships of Eq. (1.3.45) into Eq. (1.3.44), we obtain

U’ij — ym 9" 97"
az/i az/j

(1.3.46)

This expression is identical to the transformation of a covariant tensor. We
may conclude that in every case of Cartesian tensors, the law of transfor-
mation remains unchanged when a subscript is raised or a superscript is
lowered. Therefore, when dealing with Cartesian tensors, it is common to
apply subscripts exclusively. Also, coordinates are represented with subscripts
in such cases. The Kronecker delta is identical to the metric tensor and is
written as §;;, which also is identical to the unit matrix.
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The permutation tensor &;j; is defined as

&ijx =0 if two of the suffixes are equal

&ijx =1 if the sequence of numbers i jk is the sequence of 1-2-3,
or an even permutation of the sequence

&ijx = —1 if the sequence of numbers 7jk is an odd permutation of
the sequence 1-2-3

Examples of the application of these rules are
€123 = €231 = €312 = 1 €132 = €213 = €321 = —1 (1.3.47)

Using the permutation tensor, the vector product C; of two vectors A; and By
is given by

Ci = ¢ 1A By (1.3.48)
In addition, the curl operator is given by

Ci = &ijkAx.j (1.3.49)
The following useful relation is the epsilon delta relation

Eijk€kmn = 8in18jn - ‘Sinajm (1350)

Physical Components of Tensors

Consider a vector whose components in a Cartesian coordinate system z; are
represented by Z;. As the coordinate system is a Cartesian one, covariant and
contravariant components are identical. The quantities Z; also are called the
physical components of the vector along the coordinate axes.

If we introduce curvilinear coordinates x/, the definition of contravariant
and covariant components X/ and X > respectively, of the vector for the coor-
dinate system x/ is given by

; 8xf 32,'
X' =Z,— Xj=7Zi— (1.3.51)
32,'
In connection with these components, we do not use the word physical, since
in general such components have no direct physical meaning. They may even
have physical dimensions different from those of the physical components Z;.

Let x/ be a curvilinear coordinate system with metric tensor g;;, and let
X/ be contravariant components of a vector. We define the physical compo-
nents of the vector X/ in the direction A/ as the invariant

gini)\‘i =Xi)\.i =Xl')\,i (1352)
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If the curvilinear coordinates x/ are orthogonal coordinates, then the line
element is given by

ds® = (hdx")? + (hadx*)? + (hydx>)? (1.3.53)

where hy, hy, and hs are the geometrical scales associated with the respective
coordinates. We take a unit vector A’ in the direction of x!. Therefore the three
components of A' are

;_ dx! 2 3
A= — AT=0 AT=0 (1.3.54)
ds
Since A is a unit vector, we have
o 1
g MM =moh?r Al = ™ (1.3.55)
1
By multiplying by the metric tensor, we lower superscripts and obtain
A= hy AM=Xx=0 (1.3.56)

Equations (1.3.52)—(1.3.56) imply that the physical components of the vector
X/ along the parametric line of x! are X, /A, or h;X'. Considering all geomet-
rical scales of the coordinate system we obtain the following expressions for
the physical components of the vector:

Xy X, X3
hy hy h3
In order to define the physical components of a second order tensor we
apply two unit vectors in the directions of two parametric lines of two coor-

dinates. Such an operation leads to the following expressions for the physical
components of the second order tensor, in terms of its covariant components:

or X! hyX? h3 X3 (1.3.57)

X1 X2 X3

h hihy hihs

Moo Xn o X (1.3.58)
hoh K2 hahs a
X3 X3 X33

hsh hshy, — h2

In terms of the contravariant components of the second order tensor, the phys-
ical components of Eq. (1.3.58) are given by

X'p? XY2hihy XBhihs
X'y, X?2h3 XBhyhs (1.3.59)
X'hshy  X¥hshy,  XPh3
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As an example, we calculate the relationships between the Cartesian
components of the velocity vector and its contravariant, covariant, and physical
components in spherical polar coordinates. The spherical polar coordinates are
r, 0, and ¢, which are referred to, respectively, as x!, x2, x3. These coordinates
are related to the Cartesian coordinates zy, 22, 23, by

71 = x' sinx? cos x° 7 = x' sinx? sinx’ 73 = x' cosx? (1.3.60)

Components of the velocity vector in the Cartesian and spherical coordinate
systems are given, respectively, by
dz; . dx!
= — o= (1.3.61)
dt dt
The relationships between the contravariant, contravariant spherical coordinate
components and Cartesian components are given by

8xi 3Zj

v = Vi— of
0z;

i =Vi— 1.3.62
i ( )
By applying Eq. (1.3.61), we calculate the partial derivatives required by
Eq. (1.3.62) and define the relationships between the Cartesian and spherical
coordinate components of the velocity vector.
The line element in spherical coordinates is given by

ds®> = dr* 4+ r* d6® + r?sin® 0d¢* = (dx')* + (x'dx*)* + (x' sinx?dx®)?
(1.3.63)

This expression indicates that the metric tensor components are
gn=1 gn=r" gu=r’sin’d g;=0 for i#j (1.3.64)

Equation (1.3.61) specifies the various contravariant components of the
velocity vector. By multiplying the contravariant velocity vector by the metric
tensor we obtain the covariant components of the velocity vector in the
spherical coordinate system. The contravariant and covariant components of
this vector are given, respectively, by

d=l B
dt dt dt (1.3.65)
dr ,do 2 g2 Qdd)
v = — vy =rt— vs=r —
a2 a7 di
According to Eq. (1.3.64) the geometric scales of the spherical coordinate
system are
h=1 hy =r hz = rsin@ (1.3.66)
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By applying Egs. (1.3.61) and (1.3.65) we obtain the following expressions
for the physical components of the velocity vector in the spherical coordinate
system:

_dr do

. ,do
= vy = ra Vy = rsm@E (1.3.67)

(%3

We can identify the principal components of a symmetric tensor, and
its principal axes. The symmetric tensor has only diagonal components in a
coordinate system comprising its principal axes. These components are called
principal components. Basically, the principal components are eigenvalues of
the matrix representing the symmetric tensor. The principal axes are repre-
sented by a set of unit mutually orthogonal vectors called eigenvectors. The
principal components A; of the symmetric tensor B;; satisfy the equation

This expression represents a third-order equation whose solution provides
values of the principal components A, Ay, and A3.

Each of the three eigenvectors is found by solving the following set of
equations:

(Bij — A8i;)b; =0 (1.3.69)

According to Eq. (1.3.69), each of the principal components A; is associated
with three components of the relevant eigenvector b*. If the coordinate system
is rotated to coincide with the eigenvectors, then the second-order symmetric
tensor B;; is transformed to a diagonal matrix with elements A, A, and A3.
Available computing libraries that include matrix calculation and linear algebra
usually include programs aimed at the identification of eigenvalues and eigen-
vectors of matrices. Such computer codes can be used to identify the principal
components and axes of symmetric tensors.

1.3.2 Complex Variables
Complex Numbers

A complex number incorporates a real and an imaginary part. The Cartesian
representation of the complex variable z is

z=x+1iy (1.3.70)
Here, x is the real part and y is the imaginary part. The symbol i is given by

i=g-1 i#=-1 (1.3.71)
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Figure 1.2 Representation of a general complex number, z.

s |

The Argand diagram shown in Fig. 1.2 provides a geometric presentation of
complex numbers. The length between the coordinate origin and the point
represented by z is the modulus of the complex variable. It can be represented
by r or |z|. As shown in Fig. 1.2,

lz| = /22 + 2 (1.3.72)

Also, it is seen that x = rcos 6 and y = r sin 6. Therefore the complex variable
z can be given by its trigonometric representation as

z = r(cos @ + i sin0) (1.3.73)

Complex variables z; and z, are added like vectors, i.e., the real part of z;
is added to the real part of z,, and the imaginary part of z; is added to the
imaginary part of z,. Thus

=21+ =x1+x+i(y1 + ») (1.3.74)

The factor i is an operator that upon multiplication rotates a complex number
through 90°. Powers of i are as follows:

i=-1 P=—i it=1 (1.3.75)
Also, the product of two complex variables z; and z; is
2122 = (X1 + iy +iy2) = x1x — y1y2 +i(x1y2 +x2)1) (1.3.76)

A complex number also can be expressed in an exponential form. It is based
on an infinite series expansion of the exponential and trigonometric functions.
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For example, the Maclaurin series expansions for e*, sinx, and cos x are given,
respectively, by

2 )C3 x4

= lxd ST (1.3.77)
x3 x5 x’

smx—x—y—i-;—?—i- (1.3.78)
x2oxt X

cosx—l—g—%ﬁ—a%- (1.3.79)

All these series are convergent for all values of x. Replacing x by i6 in
Eq. (1.3.77) and using Eq. (1.3.75), we obtain

e e o 6 6
_1+l8_§_l§+4|+§_a_”. (1.3.80)
Or, upon rearranging,

o e A
_1_54_5_5_{_ <9_§+§—?+ ) (1.3.81)

By applying Eqgs. (1.3.78) and (1.3.79), Eq. (1.3.81) becomes

e =cos® +ising (1.3.82)
All three forms of a complex number are then

z=x+1iy=r(cos+isinb) = re’ (1.3.83)
Following these definitions, the n™ power of a complex number is given by

7" = r"e™ = 1" (cos n6 + i sin n6) (1.3.84)

The product of two complex numbers is

2122 = 11 @) (1.3.85)
and the division of two complex numbers yields

"
o ne” e

=—0=—""" (1.3.86)
2 ne n

Alternatively, the division of two complex variables can be represented by

2 xtiye - G Fiy)Ge —iy2) X+ yiy2 | VX2 — X1y

2 mtiy (i) —in) 243 X+ ¥
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In order to avoid the presence of imaginary terms in the denominator of
Eq. (1.3.87), its numerator and denominator have been multiplied by the
complex conjugate of zp. The complex conjugate of a complex variable is
defined by replacing i by —i. Finally, the logarithm of a complex number can
be written

. 1
Inz =In(re”) =Inr+i6 = 3 In(x* + y?) + i tan™! Y (1.3.88)
X

A function of a complex variable is defined as
w=f(@)=fx+iy) (1.3.89)

The complex function w can be separated into real and imaginary parts, called
¢ and i, respectively,

w=p(x, y) + iV, y) (1.3.90)

where ¢ and i are both real functions of x and y. The function w is called

holomorphic, regular, or analytic in a region, provided that within this region

(1) there is one and only one value of w for each value of z and that value is

finite, and (2) w has a single-valued derivative at each point of the region.
The derivative of f(z) is also a complex function, given by

. f@+d8)— f(2)
m 2T T S

1 1.3.91

SZIAO 8z ( )
where the infinitesimal value 8z is given by

87 = 8x + idy (1.3.92)

There is no limitation on the relationship between §x and §y. We may choose
paths of 6z — 0 in which éx = 0 or §y = 0, for example. These options imply

fetd)—f@ _ . fetd)—f) _8f
—_— = lm = =

; = (1.3.93)
8x—0; 8y=0 ox +idy 5x—0 ox ox
fz+382)— f(2) - lim fG@+i8y)— f(2)
8x=0; §y—0 ox + i(Sy Sx—0 i(sy
10 0
= f—f = —i—f (1.3.94)
i dy ay

As the derivative of the analytic function does not depend on the path of
8z — 0, Egs. (1.3.93) and (1.3.94) imply

g = —i% (1.3.95)
ox ay
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The derivative of f comprises real and imaginary parts given by

of _op v of _ v

= i = i (1.3.96)
ox ox ox ay ay ay
Introducing Egs. (1.3.90) and (1.3.92) into Eq. (1.3.96), we obtain
0 0 0 0
o _ 9 oY (1.3.97)

ox 0y dy  ox

These relations are called the Cauchy—Riemann relations.

Differentiating the first of Eq. (1.3.97) with respect to x and the second
with respect to y and adding, and differentiating the first of Eq. (1.3.97) with
respect to y and the second with respect to x and subtracting one from the
other, we obtain, respectively,

¢y 9 Py Py
—+ —=0 —+—=0 1.3.98
ox2 + 9y? a2z 09y? ( )
These expressions indicate that both functions ¢ and Y satisfy the Laplace
equation in two-dimensional Cartesian coordinates.

1.3.3 Partial Differential Equations

All basic processes typical of environmental fluid mechanics can be formu-
lated as partial differential equations (PDEs). Partial differential equations
arise because the functions for which solutions are sought (e.g., concentra-
tions, velocities, temperature, etc.) tend to depend on one or more spatial
coordinates as well as time. As will be seen in subsequent chapters, most
equations of interest contain diffusion processes, which involve second-order
spatial derivatives. The solution of the relevant differential equation(s) subject
to appropriate initial and boundary conditions provides the basis for math-
ematical simulation of the physical problem. In the following paragraphs,
we review the basic types of partial differential equations encountered with
environmental fluid mechanics issues.

Identification of the partial differential equation connected with the parti-
cular problem of interest is of major importance. Different criteria of conver-
gence and stability are typical of each type of partial differential equation,
as described below. The equation provides the basic guideline for the devel-
opment of a mathematical model that can be applied to the solution of that
problem. In cases of numerical simulations, particular rules for the develop-
ment of the numerical scheme are used for the particular differential equation
that is associated with a given problem. Problems of environmental fluid
mechanics can be classified into two general categories: problems of equi-
librium and problems of propagation.
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The general format of a second-order linear PDE in a two dimensional
domain is given by
8% LR LR
— +b— — = 1.3.99
“ox + dxdy Cay2 f ( )
where a, b, and c are constant coefficients and f represents a linear combi-
nation of coefficients multiplied by lower order derivatives of the dependent
variable ¢.
The method and form of the solution of a PDE subject to initial and
boundary conditions depends on the type of the PDE. It is common to classify
PDEs according to the relationships between the coefficients of Eq. (1.3.99)

as follows:
If b* — 4ac > 0 then the PDE is hyperbolic (1.3.100a)
If b — dac =0 then the PDE is parabolic (1.3.100b)
If b* — 4ac < 0 then the PDE is elliptic (1.3.100c)

The terms hyperbolic, parabolic, and elliptic chosen to classify partial
differential equations stems from the analogy between the form of the discrim-
inant (b*> — 4ac) for partial differential equations and the form of the discrim-
inant that classifies conic sections. There is no other significance to this
terminology. If the PDE refers to a domain with n dimensions, then the char-
acteristics, if real characteristics exist, are surfaces of (n — 1) dimensions,
along which signals, or information, propagate. If no real characteristics exist,
then there are no preferred paths of information propagation. Therefore the
existence or absence of characteristics has a significant impact on the solution
of the partial differential equation.

First-order partial differential equations refer to advection or convection
of a property ¢, such as solute concentration or heat. The general form of such
an equation in the (x, f) domain, where x refers to a spatial coordinate and ¢
refers to time, is given by

dp dp
o +u8x =0 (1.3.101)
where u is the advection velocity. If ¢ refers to dissolved mass of a solute,
then the second term in Eq. (1.3.101) incorporates the process of solute mass
being carried (advected) by a fluid particle as it moves through the domain.
The location of any fluid particle is related to its velocity u by a simple
relationship representing the differential equation of the particle pathline:

dx
—=u (1.3.102)
dt
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Thus the pathline of a fluid particle is given by
t
x:xo—l—/ udt (1.3.103)
to

Along the pathline of the fluid particle the advection equation can be
written as

8—(p+u3—(p=3—(p d_x8_<p=d_<p:O (1.3.104)
ot ox ot dtox dt

The last part of this equation shows that ¢ is constant along the pathline
of the fluid particle. This pathline is the characteristic path associated with
the advection equation. The first-order differential equation of the form given
by Eq. (1.3.101) is termed a first-order hyperbolic partial differential equation,
and it has a single family of characteristic curves, along which the information
propagates in the domain. A single first-order partial differential equation is
always hyperbolic. In second-order hyperbolic partial differential equations
there are two families of characteristic curves, along which the information
propagates.

Parabolic and hyperbolic differential equations are typical of propagation
problems. The propagation is in time and space. This means that parabolic
and hyperbolic differential equations usually refer to problems of a property
propagating in the domain. The features of the propagation of the property in
cases of parabolic differential equations are different from those of hyperbolic
differential equations. Elliptic partial differential equations generally concern
equilibrium problems, i.e., ones that do not involve time derivatives.

A typical parabolic equation associated with environmental fluid mecha-
nics is the equation of diffusion. In the (x, r) domain, the form of this equation

is given by
o )
— =a— 1.3.105
o o ( )

where « is the diffusion coefficient, or diffusivity. In many applications
an advective term is added, forming an advection—diffusion equation (see
Chap. 10).

A typical hyperbolic equation associated with environmental fluid
mechanics is the wave equation. In the (x, t) domain, the form of this equation

is given by
82(/) 282‘.0
— =c"— 1.3.106
ar ~ a2 ( )

where c is the propagation speed of the wave.
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A typical elliptic equation, associated with environmental fluid
mechanics is the Laplace equation. In the (x, y) domain, the form of this
equation is given by

82(p 82(p

w oy =0 (1.3.107)

The solution of a parabolic or hyperbolic partial differential equation, of
the types given by Egs. (1.3.105) and (1.3.106), can be obtained, provided that
adequate initial and boundary conditions are given. Initial conditions refer to
values of the unknown variables and possibly their space derivatives at a time
of reference. Boundary conditions refer to values of the unknown variables
and their space derivatives at the boundaries or other specific locations of
the domain. The solution of an elliptic partial differential equation of the
type given by Eq. (1.3.107) can be obtained, provided that adequate boundary
conditions of the domain are given. For elliptic partial differential equations
there are no initial conditions, since time derivatives are not involved.

There are three types of linear boundary conditions that can be applied
to the solution of partial differential equations:

1. All values of the dependent variable, ¢, are specified on the bound-
aries of the domain:

o= f(xy) where x,yeG (1.3.108)

where G is the surface of the domain. Boundary conditions of this type are
referred to as Dirichlet boundary conditions.

2. All values of the gradient of the dependent variable, ¢, are specified
on the boundaries of the domain:

g—: =f(x, ) where fx,y)eG (1.3.109)

where n represents a coordinate normal to the boundary G. Boundary condi-
tions of this type are referred to as Neumann boundary conditions.

3. A general linear combination of Dirichlet and Neumann boundary
conditions:

3
ap+ b — ¢ (1.3.110)
on

where a, b, and ¢ are functions of (x, y). This type of boundary condition can
be used to specify total flux, as will be described in later chapters.

It should be noted that besides linear boundary conditions, the domain
may be subject to nonlinear boundary conditions. An example is application of
boundary conditions at a water-free surface, which may be part of the solution
of the problem. Application of such conditions is generally very complicated.
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1.4 DIMENSIONAL REASONING
1.4.1 Uses of Dimensional Analysis

Dimensional analysis provides a powerful tool to evaluate relationships
between various parameters of a problem when the governing equation is
not known from some other source, such as a theoretical result. The basic
premise underlying any dimensional reasoning is that all physically realistic
expressions must be dimensionally consistent. In fact, the Buckingham w
theorem, introduced in the following section, can be seen as a formal statement
of a relationship between variables based simply on their dimensional units.
Following this idea, any physical equation that is dimensionally balanced (that
is, the dimensional units are the same for each of the terms in the equation)
can be written in nondimensional form. The easiest way to see this is to divide
all the terms of the equation by one of the terms. Done properly, this usually
results in equations expressed in terms of common dimensionless parameters.
Since all the terms have the same physical dimensions, the result of this process
is a relationship between these dimensionless variables, which can be used to
evaluate the relative importance of different terms in any given equation.
For example, it would be possible to gain some understanding of the relative
importance of different forces in a particular flow field by looking at the values
of the parameters in dimensionless forms of the momentum equations. This
process sometimes allows simplification of a general governing equation, by
eliminating terms that are seen as being of lesser importance, compared with

others.
A common example of a dimensionless number is the Reynolds number,
defined as
UL
Re = — 1.4.1)
%

where U is a characteristic velocity and L is a characteristic length of the
problem being studied, and v is kinematic viscosity of the fluid. Re represents
the relative importance of inertia to viscous forces. For example, a high value
of Re indicates that viscous forces are not very important. (As will be seen
later, a high Re is associated with furbulent flow.)

The result of dimensional analysis is a definition of a relationship
between the appropriate dimensionless variables resulting from grouping the
parameters of the problem. The specific form of the relationship is not revealed
using dimensional analysis — physical experiments must be performed to
provide additional information. For example, dimensional analysis can be used
to show that a dimensionless group incorporating the drag on a sphere moving
at constant velocity through a fluid should depend on Re. However, the actual
form of the relationship is determined from experimental results.
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One other important application of dimensional analysis is in providing
a means of scaling the results of a model study to prototype conditions. This
is necessary, for instance, in extrapolating results from laboratory physical
modeling studies to field conditions. In order to do this, conditions of similarity
must be satisfied. There are three kinds of similarity. Intuitively, a model
or experiment should be geometrically similar to the field situation, which
means that the ratio of all length scales is the same between the model and
the prototype. Kinematic similarity incorporates similarity of length and time
quantities. Dynamic similarity also must be satisfied in order to properly scale
results concerning forces and stresses. Kinematic and dynamic similarity are
obtained when appropriate dimensionless parameters are the same in the model
and in the prototype. Dynamic similarity is equivalent to saying the ratios of
relevant forces are the same.

For example, consider an open channel flow, as sketched in Fig. 1.3. For
simplicity, we assume a rectangular cross section of width b and flow depth 4.
Geometric similarity implies

_0 (1.4.2)

where L; is the length scale ratio and L represents any length for the problem,
in this case either b or 4. Subscripts 1 and 2 refer to the two systems (prototype
and model — expressing the ratio in this way avoids very small values for
L,). Thus hy/hy = b1 /b, and hy/b; = hy /b, (i.e., the flow aspect ratio is the
same in the two systems). In some cases distorted scale models are necessary,

*’I% T
DR

[e—>1

b b

System 1 . System 2

Figure 1.3 Open channel flow in two geometrically similar rectangular channels.
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Fy

Figure 1.4 Force diagrams for the two systems shown in Fig. 1.3; F, is the gravity
force, Fy is friction, and F, is the resultant force.

such as when a physical model of a large lake is used. In this case, because the
horizontal dimensions are generally much greater than the vertical scale, the
horizontal scale ratio is chosen to be much larger than the vertical ratio. This
is to avoid models with extremely shallow water layers. Scaling is otherwise
similar to that in nondistorted models; one should be careful to maintain
common values of the relevant dimensionless parameters between the model
and prototype.

If we consider a small fluid element in either system and assume that
the important forces for this problem are gravity and friction, the resultant
forces on the fluid element can be calculated, and we obtain force diagrams
like those in Fig. 1.4. The shapes of these force diagrams must be similar for
the two systems if there is dynamic similarity. As shown in the following
section, this condition is satisfied when the corresponding values of properly
defined dimensionless variables are the same.

1.4.2 Dimensionless Parameters
Buckingham = Theorem

The Buckingham 7 theorem states that a group of physical variables defined
for a given problem may be combined in such a way as to form a non-
dimensional representation of the same problem. Moreover, since the original
variables are functionally related, i.e.,

f(xl’x21"'7xn)=O (143)

where the xi, x», ..., x, represent the n physical variables of a problem, then
the nondimensional variables also are functionally related. If there are k phys-
ical dimensional units involved with the n variables, then (n-k) dimensionless
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parameters should be formed, and
f(ﬂl,ﬂz,...,ﬂ(n,k))ZO (1.4.4)

where the 7y, 73, ..., T —k) are the dimensionless groupings.

Consider the force diagrams indicated in Fig. 1.4. The shapes will be the
same when the ratios of any two of the forces are the same in each system.
The resultant or inertial force is represented by (pVU/t), where p is the fluid
density, V is the volume of a fluid element, U is its velocity, and ¢ is some
appropriate time scale. Here, (U/f) has been used to approximate acceleration,
and 7 will be estimated as t = L/U, where L is a characteristic length scale. The
viscous force, acting on area A, is approximately (uU/L)(A), where (U/L)
has been used to estimate the velocity gradient. Substituting L3 for V and L?
for A, the ratio of inertial to viscous force is then

p(LHU?/L _ pLU
wU/LL — p

In other words, this is the Reynolds number as defined in Eq. (1.4.1). By going
through a similar procedure for the ratio of inertial to gravity force, where the
force of gravity F is approximated by pVg, we obtain

—Re (1.4.5)

pL*U?
g = Fr (1.4.6)
0.

which defines Fr as a second dimensionless parameter, the Froude number.

Thus by insuring that the Reynolds numbers and the Froude numbers are
the same for both systems, the shape of the resulting force diagrams will be the
same, and dynamic similarity will be achieved. This type of reasoning may be
applied to problems with a greater number of relevant forces, with the result
that additional dimensionless parameters would need to be defined. Many
different dimensionless parameters have been defined for various problems in
fluid mechanics. Rather than attempting to list them all here, we shall introduce
them as needed within the context of a given problem or derivation.

In order to illustrate the application of the Buckingham m theorem, let us
consider the problem of finding the drag on a smooth sphere fully immersed
and moving at constant velocity through a fluid. It is assumed that the drag
is a function of the velocity and diameter of the sphere, and the density and
viscosity of the fluid. Note that one limitation of the Buckingham 7 theorem
is that it does not provide specific guidance on which parameters should be
chosen for a given problem. These must be chosen on the basis of experience
and physical intuition, with perhaps some trial and error to be expected in
some cases. Usually, it will be clear when the wrong set of parameters is
chosen, since it will be difficult to perform experimental tests to obtain a clear
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relationship between the dimensionless parameters defined. For the present
problem, a functional relationship is defined by

f,U,d,p,pn)=0 (1.4.7)

where D is drag, U is velocity, d is the sphere diameter, and p and u are
fluid density and viscosity, respectively. There are five variables and three
physical dimensional units, mass (M), length (L), and time (7), so two 7’s
will be defined. First, a subset of variables is defined, called the basis set,
with the following characteristics:

The number of variables in the basis set is equal to the number of
physical dimensions.

All the dimensions of the problem are represented by the variables, as
simply as possible.

Variables are chosen so that recognizable dimensionless groupings are
found.

The main parameter of interest (the dependent variable) is not chosen
for the basis.

The third of these conditions is not absolutely necessary, but it usually helps
to interpret results, particularly in view of the above interpretation of many
of these dimensionless groups as force ratios. In many cases there is not a
unique basis set, and different basis sets will result in definitions of different
sets of dimensionless numbers. This is acceptable, from a purely dimensional
analysis point of view, but is it preferable to form common dimensionless
groupings whenever possible.

For the current example, U, d, and p are chosen as the basis variables.
These are combined with D and w, in turn, to form two m groups. The first
of these is found from

@ b c ML LN\, (M\°
T =DWU) ) (p) = <F> (;) L) <E>

Separate equations are then formed for each of the dimensional units, to find a,

b, and c so that 7y is dimensionless. For mass M, (1 4+ ¢ = 0) gives ¢ = —1.
The equation for time T is (—2 —a = 0), or a = —2. The last equation for
length L gives (1 +a+ b — 3¢ =0), or (a+ b = —4). Then b = —2 and
D
T = —>—
: oU%d?

This is a dimensionless drag and is commonly referred to as a drag coef-
ficient, Cp. Following a similar procedure using u, it is easily shown that
a Reynolds number results for m,. The dimensionless result analogous to
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Eq. (1.4.7) is then
f(Cp,Re) =0 (1.4.8)

and experimental results are needed to describe the specific form of the
functional relationship. It should be noted that an equally valid dimensional
analysis result would be obtained by using one of the 7’s raised to some power,
or using the inverse. However, use of common dimensionless parameters is
preferred, as noted above.

1.4.3 Scales of Motion

It is evident from the above discussion that it is necessary to define certain
parameters of a problem in order to carry out dimensional analysis. A similar
requirement is to define certain characteristic scales to represent a problem,
in order to use dimensional reasoning to carry out scaling analyses. The usual
scales of interest for kinematic problems are those for length, velocity, or time,
though other types of parameters are sometimes needed. Often the choices for
these scales are obvious. A simple example is with open channel flow, where
the flow mean velocity is usually chosen as the velocity scale, and depth (or
hydraulic radius) is chosen as the characteristic length scale. The choice for
these scales determines values for the nondimensional variables discussed in
the previous section, so some care must be taken. As shown in Sec. 2.7, one
of the principal applications of scaling analysis is in developing an under-
standing of the relative importance of the various terms of a relationship, with
a view to simplifying the equation whenever possible. In addition to possibly
simplifying the equation, the main advantage of developing nondimensional
forms of equations is that the actual scale becomes secondary — it is only
the dimensionless groups that are important. Nondimensional equations and
parameters apply equally to systems with very different scales (e.g., values of
L and U), as long as the values of the dimensionless groupings are similar.
This idea forms the basis for physical modeling tests and provides the means
for scaling model results to estimate prototype conditions.

PROBLEMS
Solved Problems

Problem 1.1 The material or substantial derivative of the velocity vector
represents the acceleration of the fluid particles. In Cartesian coordinates the
acceleration is expressed by

814,‘ 814[

a = Sy, o
oo
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where u; are components of the velocity vector. What is the expression for
the acceleration in a general coordinate system? What are the expressions for
the contravariant, covariant, and physical components of the acceleration in a
cylindrical coordinate system?

Solution
The expression for the contravariant acceleration vector is
. o L
i __ Tl
a =—+uvu;
ot J

Multiplying this expression by the metric tensor and replacing indices, we
obtain the following expression for the covariant acceleration vector:

a; = E—i—ujui,j

In a cylindrical coordinate system the physical components of the velocity and
acceleration vectors are given by the following symbols, respectively:

u, v, w (physical components in directions r, 6, z, respectively)
arﬂ a@ﬂ aZ

The line element in a cylindrical coordinate system is given by
ds® = (dr)* + (rd9)* + (dz)*

Therefore components of the metric tensor and geometrical scales in the r, 6,
and z directions are given by

gn=1 g0 =17 g =1
h1=1 h2=r h3=1

By applying Eq. (1.3.57), the following relationships between physical, covari-
ant, and covariant components of the velocity and acceleration vectors are

obtained:
up
u=u; =u' v=— = ru? w=u =u
r
1 a 1 3
a,=a;=a ag=—=ra a,=a3=a

By applying the general expressions for Christoffel symbols given by
Egs. (1.3.33) and (1.3.34), we obtain values of the second symbols of
Christoffel. The only nonzero symbols in a cylindrical coordinate system are

1 2 2 1
Y-or Y-
22 12 21
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We apply the general expression for the contravariant acceleration vector with
these expressions for the second symbols of Christoffel to obtain

81 1 1
R LY TSR Y
ot or 00 0z
2_8u e 8u2+u2 n ou? +ul n 33u2
TT or W 0 )T
ol ol ol o’
3 _ " 177 277 37"
S T T e T

By introducing the physical components of the velocity and acceleration
vectors into these expressions we obtain

2

ou ou vdu v ou
R RTI™
_8v v vov uv ov
“= ottt TV

ow ow  vow ow
= i e T

Problem 1.2 Develop the expression for div V in cylindrical coordinates
by applying the contravariant as well as covariant components of the velocity

—
vector V.

Solution

The general required expressions for div V are

V.V =i = oy, .
: =U;=8Ujj

The expression with contravariant components of the velocity vector is
o> u' ol

A

ou

or

13U+u+aw
r 09 0z

The expression with covariant components of the velocity vector is

. ou; . ouy 1 Buz uir  ous
ij — i i - a5
£ =8 oxJ & %: T T2 2 9z
_ ou u 1dv ow
o r roe oz
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Problem 1.3 Prove the following relationships:
eix _ e—ix eix + e—ix
siny = —— cosxy = ——— sinhix = i sinx
2i 2
Solution
We apply the Euler relationships,

e =cosx +isinx e ¥ =cosx —isinx

Introducing these expressions into the expressions for sinx and cosx, we
obtain the relationships written above. Introducing the explicit expression for
sinh ix, we obtain the last identity.

Problem 1.4 Find the complex numbers given by

(a 2+B—-2i) (b) % (©) In(3+4i)

Solution
(@ QR+i)B3-20)=6+3i—4i+2=8—1i
1+3i  (1+3)0+i) 1+3i+i-3 -2+4i

b = = = =—142i
®) 1—i (I =D +1) 1—i+i+1 2 +

1 4
() In(3+4i)= 5 In(3> +4%) + itan~! 3= 1.61 +i0.93

Problem 1.5 Separate the following functions of z into their real and imag-
inary parts ¢ and ¥:

1 .
() Z (b) Inz* () €~

Solution
1 1 x—1iy X —1iy by Ly
@ -= o= - N 2. v 2a v Yoo
z  x+iy (+iyx—iy) x*+y> x*+y x4y
Therefore
J— x . —7})
¢_x2+y2’w x2+y2

(b) Inz?=In[(x +iy)(x +iy)] = In(x> + y* + i2xy)

2xy
X2+ y?

1
= In[(x* 4 y*)? 4 4x2y*] + itan~!
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Therefore

1 2 232 227, o1 2xy
¢=§]n[(x +y) +4xy],1//:tan 'm

(c) e =expli(x+iy)] =exp(ix — y) = e Ye* = e Y(cosx +isinx)

Problem 1.6 Consider the problem of dumping sewage from a barge into a
linearly stratified ocean, as illustrated in Fig. 1.5.

A volume V of sludge of density ps is released suddenly from the barge
into water of density py and density gradient (—dp,/dz). Find the maximum
depth of penetration, dy,,, the minimum dilution at that depth, and the time
of descent. (Note that the sludge cloud seeks its density equilibrium position,
which also depends on entrainment.)

Solution

First, we define

S = (total sample volume)/(volume of effluent in sample)
P = 1/§ = volume fraction of effluent(= relative concentration)

A definition of dilution is

g

1-P
D= ——
P
where D = (volume ambient water in sample)/(volume effluent in sample)=
S—1
z A
T1:Iﬁ Po <
TANTTTT @ v, —
|
I
e |
1

Figure 1.5 Definition sketch, Problem 1.6.
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The variables of the problem are
dmax V8 g Po Ps —dp,/dz

with corresponding units
w @ wrH M/ M/ (M/LY)

According to the Buckingham 7 theorem, with six variables and three dimen-
sional quantities, there should be three dimensionless groupings. However, it
is usually more convenient to work with one or two dimensionless groups, for
ease of analysis. Therefore, define

Ap=ps— pa
and
V.gAp = submerged weight of sludge

It also will be convenient to combine g and (—dp,/dz). Then we have for

variables

dmax VsgAp —gdpa/dz Po
the corresponding units

@ MLyTH  M/LTH (ML)

There are now four variables and three dimensions, so only one dimensionless
grouping () is needed. If we now set

dpa\€
7 = (dmax)* (VsgAp)" (—g—dp ) (po)”
Z

(ML [ M N\ M\
-0 (%) (5) (5)

and solve individually for each of the power coefficients,

M): b=—c—d
L) a+b—-3c—-3d=0
(T): b=—c

then we can solve for the power coefficients to define 7. However, we have
four power coefficients and only three equations. Therefore it is necessary to
set the value for one of the power coefficients arbitrarily. Anticipating the
desired result, we set ¢ = 1 and solve for the remaining values based on this
assumption. Note that an equally valid result could be obtained starting with
other values for c. Also, from examination of the equations for M and T, it
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is seen that the only solution that can satisfy both is when d = 0; however,
again anticipating the result, we include p,, twice, so that it cancels. This is
because of the desire to develop a solution that has recognizable parameters.
The final result is

(&%)
7= (dmax)“poidz

Ap
(ng_>
Lo

Note that py cancels in the numerator and denominator, so that effectively
d = 0. It is also evident that g cancels, but it, too, is kept because of conven-
tional definitions. For example, the square root of the term in parentheses in
the numerator is called the buoyancy frequency, N, and the term in the denom-
inator is the buoyancy force per unit mass acting on the submerged sludge. If
we further define ¢’ = gAp/po = reduced gravity, and note that, since there
is only one 7 for this problem, then it must equal a constant (say A*), then
the final result is

veg\
dmax =A ( N2 )

Now, if experiments are done, measuring dmax While varying the other para-
meters in this expression, then a plot of dp. versus (V,g'/gN?)'/* should
result in a straight line with slope corresponding to the value for A, such as
is illustrated in Fig. 1.6.

Amax

Figure 1.6 Variation of d,,x, Problem 1.6.
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From experimental studies, the value of A is found to be approximately
2.66. The remainder of this problem solution is left as an exercise for the
student.

Unsolved Problems

Problem 1.7 The expression for the vorticity (w;;) tensor is
w;j = E(ui,j —uj;)

where the u; are components of the velocity vector. Find the components of
the vorticity tensor in cylindrical and spherical coordinates.

Problem 1.8 The divergence of a second-order tensor is a vector
expressed as

(V-B) =B},

Find the expressions for the components of divB in Cartesian, cylindrical, and
spherical coordinates.

Problem 1.9 The stress tensor for a Newtonian incompressible fluid is
given by

Tij = —p&ij + nuij + uj;)

where p is the pressure, w is the fluid viscosity, and the u; are components
of the velocity vector. Find expressions for components of 7;; and divt in
Cartesian and cylindrical coordinates.

Problem 1.10 Prove the following expressions by using indicial notation:
@ x(bxT)=(a - )b —(a@-b)
74 2
7-V7=V%—7xVx7
Problem 1.11 Prove the vector identity

VYV =V(V- V)=V x(VxV)

Problem 1.12 How many separate quantities are represented by each of the
following expressions?
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ouy, ou ;
.2 b)) —Z
(a) Eijk ij ( ) 8Xj

C —_— — — —_ —_
8x§ 3 0x;0x; 2 \ox; o

Problem 1.13 Use the properties of the alternating tensor &;jx to prove the
vector identity

? . (? X ?) =0 for ? = any vector

Problem 1.14 Find the complex numbers given by

(@) Sl +3e"5  (b) (1+i)2—i)1+3i)
©) InG) d In(—1)

Problem 1.15 Separate the following functions into their real and imaginary

parts:
@ >  where Z=x—iy (b) —
z z2+2
1 1
© zZ+- (@ In <—> (e) 2
Z z

Problem 1.16 Show that Cauchy—Riemann relations in two-dimensional
cylindrical coordinates are

dp 1oy Lop oy

1 roo  or

Problem 1.17 Which of the following functions are analytic functions?:
0 0 0 0
(a) rcosi—l-irsinz (b) \/?cosz —l—iﬁsini

1 1 x2 42
© z+is ()
X y

x—1y
X Y

. 2 2 .
—1 x*—y —x+i(2xy —
JEN L R ® y (2xy —y)

(e)

Problem 1.18 Determine the derivatives of the following analytic functions
and separate the derivatives into their real and imaginary parts:
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@ w={0+i)lnz (b) z=Ilnw

(c)w=£+z d w=z+iz

() w=.z ) w=lnz+z
Problem 1.19 Prove the following identities:

(a) coshix = cosx
(b) sinhz = sinhxcos y + i sinhxsin y
(c¢) sinz = sinxcoshy+icosxsinhy

(d) cosz = cosxcoshy—isinxsinhy

Problem 1.20 Assuming that the drag (D) experienced by an object moving
through a fluid is a function of its projected area (A) in the direction of motion,
its velocity (V), and the density (p) and viscosity (u) of the fluid, develop
a dimensionless relationship to show how the drag should be related to the
other variables of the problem.

Problem 1.21 Use dimensional analysis to develop an expression for the
vertical velocity (w) produced in a container of a fluid of depth 4, when heated
from below with input power P (= energy input per unit time, ML?/T?).
Assume that w is a function of & and P, as well as fluid density (p, M/L?),
thermal expansion coefficient (o, 1/T), and specific heat (c, energy per unit
mass, per unit temperature, L?/T?6). To simplify, combine o, p, and c as

(a/ po).

Problem 1.22 It is desired to formulate an expression to predict the mixing
generated by wind blowing over a stratified water body, as shown in Fig. 1.7.
Specifically, the wind transfers energy into the water by a surface shear stress,
which may be characterized by the friction velocity, ux = (t/pg)'/?. Part of
this energy is used to mix fluid across the density interface, resulting in a
deepening of the upper layer. Formulate a nondimensional expression that
could be used to relate the entrainment velocity, u. = dh/dt, to other variables
of the problem (remember to include g). The result should be written in terms
of the bulk Richardson number,
. gh
Ri = u_i
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Figure 1.7 Mixed layer structure, Problem 1.22.
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Figure 1.8 Definition sketch, Problem 1.23.

Problem 1.23 A 1:10 scale model is to be used to test the distance (L)
a sphere of diameter (d) will travel when released at a height (H) in a fluid
stream moving at velocity (U) (see Fig. 1.8). It is assumed that L is a function
of these other variables, as well as the fluid viscosity and specific weight, i.e.,
L= f(H,d,U,y, ). The model and prototype viscosities are the same, but
the model specific weight is nine times the specific weight of the prototype.

(a) Determine an appropriate set of dimensionless parameters to char-
acterize this problem.
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(b) If the prototype velocity is 50 mph, what should be the model
velocity?

(c) If L is measured for a particular test with the model to be 0.1 m,
what would the corresponding L be for the prototype?
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2

Fundamental Equations

2.1 INTRODUCTION

The basic equations of fluid mechanics are derived by considering conservation
statements (i.e., of mass, momentum, energy, etc.) applied to a finite volume
of fluid continuum which is called a system or material volume and consists
of a collection of infinitesimal fluid particles. Quantities involving space and
time only are associated with the kinematics of the fluid particles. Examples
of variables related to the kinematics of the fluid particles are displacement,
velocity, acceleration, rate of strain, and rotation. Such variables represent
the motion of the fluid particles, in response to applied forces. All variables
connected with these forces involve space, time, and mass dimensions. These
are related to the dynamics of the fluid particles.

In the following sections of this chapter we provide information
concerning the basic representation of kinematic and dynamic variables and
concepts associated with fluid particles and fluid systems.

2.2 FLUID VELOCITY, PATHLINES, STREAMLINES, AND
STREAKLINES

A pathline represents the trajectory of a fluid particle. At a time of reference
to, consider a fluid particle to be at position 7y. In Cartesian coordinates this
location is represented by (xo, Yo, 20)- Due to its motion, the fluid particle is
at position 7 at time ¢, and this new position is represented by coordinates (x,
¥, 2). The functional representation of the pathline is given by

P =70, 1) or  ¥=X(0 1) (2.2.1)

The vector 7y (or Xo) represents the label of the particular fluid particle. The
concept of pathline is a basic feature of the Lagrangian approach, which is
explained in greater detail in Sec. 2.4.
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As an example of the pathline concept, consider the following description
of pathlines in a two-dimensional flow field:
y=ye" (2.2.2)

x=xge “
It is possible to eliminate ¢ from these expressions and obtain an equation
describing the shape of the pathline in the x—y plane, as

Xy = XoYo (2.2.3)

This expression shows that pathlines are hyperbolas whose asymptotes are the
coordinate axes.

By differentiating the equation of the pathline with regard to time we
obtain the Lagrangian expressions for the velocity components. By further
differentiating the latter expressions with regard to time, we obtain the
Lagrangian expressions for the acceleration components:

V =V, 1) v (Fo, 1) il (2.2.4)
= 1o, = — a = alry, = —= oL

0 ot 0 or?
For the example pathlines of Eq. (2.2.2), the Lagrangian velocity components
are

u(xg, yo, 1) = —axge v(xo, Y0, 1) = ayye” (2.2.5)

By eliminating xy and yg from Eq. (2.2.5), we obtain the Eulerian presentation
(which will be discussed hereinafter) of the velocity components,

ulx,y, t)=—ax v, yt)=ay (2.2.6)

The Eulerian presentation is the most common way of describing a flow field,
where a spatial distribution of velocity values is given (note that velocities
do not depend on an initial position in this presentation). It should be further
noted that the pathline equation given by Eq. (2.2.2) can be obtained by direct
integration of Eq. (2.2.5) or integration of Eq. (2.2.6), while considering that
X = x(xo, Y0, 1); ¥y = y(x0, Yo, I)-

By differentiation of Eq. (2.2.5) with regard to time, we obtain the
Lagrangian presentation of the acceleration component,

ac(xo, yo, 1) = a’xge” ay(xo, Yo, 1) = a’yo e (2.2.7)

Again, by eliminating xy and yy from Eq. (2.2.7), the Eulerian presentation of
the acceleration components is

ay(x,y,t) =a’x  ay(x,y, 1) =a’y (2.2.8)

Flow fields are often depicted using streamlines. Streamlines are curves
that are everywhere tangent to the velocity vector, as shown in Fig. 2.1. A
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Figure 2.1 Example of streamline.

streamline is associated with a particular time and may be considered as an
instantaneous “photograph” of the velocity vector directions for the entire flow
field.

As implied in Fig. 2.1 (since the streamlines are tangent to the velocity),
a streamline may be described by

Vxdi=0 where V=V@&1) (2.2.9)

where V is the velocity vector, dr is an infinitesimal element along the
streamline, and X is the coordinate vector. In a Cartesian coordinate system,
Eq. (2.2.9) yields

dx = 4y = dz (2.2.10)

u v w
where u, v, and w are the velocity components in the x, y, and z directions,
respectively.

According to Eq. (2.2.10), the shape of the streamlines is constant if
the velocity vector can be expressed as a product of a spatial function and a
temporal function. Such a case is represented by either one of the following
conditions:

<1

VGE 1) = U®)f() i # f(1) (2.2.11)

If V is solely a spatial function [i.e., f(¢) is a constant], then the flow field is
subject to steady state conditions and the shape of the streamlines is identical
to that of the pathlines. As an example, consider the velocity vector represented

<!
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Figure 2.2 Four pathlines and a streakline at a chimney.

by Eq. (2.2.6). The differential equation of the streamlines is

dx dy
2 (2.2.12)
X Yy
Direct integration of this equation yields
xy=C (2.2.13)

where C is a constant of the particular streamline. Since Eq. (2.2.6) refers to
steady state conditions, the shape of the streamlines represented by Eq. (2.2.13)
is identical to that of the pathlines, which is given by Eq. (2.2.3).

A streakline is defined as a line connecting a series of fluid particles
with their point source. An example of pathlines and a streakline that might
be produced by smoke particles is presented in Fig. 2.2. In this figure the
pathlines are enumerated. Pathline (1) refers to the first particle that left the
chimney outlet. Pathline (2) refers to the second particle, etc.

2.3 BRATE OF STRAIN, VORTICITY, AND CIRCULATION

In this section we discuss variables characterizing the kinematics of the flow
field, which are associated with the velocity vector distribution in the domain.
All such variables originate from the Eulerian presentation of the velocity
vector.

In Fig. 2.3 are described two points in a flow field, A and B. The rates
of change of the coordinate intervals between these points are represented by
the following expressions given in Cartesian indicial format:

L inx) = Au = Mg 2.3.1)
—(Ax;) = Au; = —dx; 3.
dt ' R
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Figure 2.3 Rate of change of distance between two points.

Applying this expression, we obtain a second-order tensor that describes the
rate of change of the coordinate intervals per unit length. This second-order
tensor can be separated into symmetric and asymmetric tensors,

;2\ O 2 \3x; A o

The first tensor on the right-hand side of Eq. (2.3.2) is the symmetric tensor,
called the rate of strain tensor. The second tensor is the asymmetric one, called
the vorticity tensor. Each of these tensors has a distinct physical meaning, as
described below.

The rate of strain tensor is represented by

1 311,' 3u,~
e =~ + & (2.3.3)

ij 8x,~

In Fig. 2.4 the rate of elongation of an elementary fluid volume in a two-
dimensional flow field is illustrated. The rate of elongation per unit length of
that elementary volume in the x; direction is called the linear or normal strain
rate. It is represented by

w + Ay —uy (Ouy/0x1)Axy ouy

= — (2.3.4)
Axl Ax1 8x1
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Figure 2.4 Elongation of an elementary fluid volume.

This expression gives the component e of the strain rate tensor. The compo-
nents ey, and es3 represent the linear strain in the x, and x3 directions. They
are given, respectively, by

3142 3L£3

€33 = — (235)

622 = 3=
3)(3

8)(2
Thus it is seen that diagonal components of the rate of strain tensor describe
the linear rate of strain. The volumetric strain rate of an elementary volume
is given by the trace of the strain rate tensor, i.e., the sum of the diagonal
components, since

1 d
At A A E(AMAMAZO
1 d 1 d 1 d
= HE(AXI) + EE(AXZ) + EE(A)@)
3141 8142 8143

L W el +exn +es3 ( )

With regard to components of the rate of strain tensor that are not on
the diagonal, we consider in Fig. 2.5 the rate of change of the angle of the
elementary rectangle, which is called the shear strain rate. The expression for
the shear strain rate is

u+Aup —uy | up+ Aup —up

AX2 Axl
_ (Ouy/0xp) Axy n (Ouy/0x1) Axy 0wy n ouy
B Axy Ax o A

(2.3.7)
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Figure 2.5 Elementary fluid volume subject to shear strain.
This expression is proportional to e, where
ep==|—+— 3.
272 o, | o

Components of the strain rate tensor that are off the main diagonal thus represent
deformation of shape. They are equal to half of the corresponding shear rate.

The vorticity tensor is an asymmetric tensor given in Cartesian coordi-
nates by

oug o
oy = (“ _ “f> (2.3.9)

0x j 0x, i

By considering Fig. 2.5, it is possible to visualize the physical meaning
of the vorticity tensor. In this figure the velocity components that lead to
rotation of an elementary fluid volume in a two-dimensional flow field are
shown. The average angular velocity of that volume in the counterclockwise
direction is given by

1 <u2+Au2—u2 u1+Au1—u1>

2 Axy Axp
1 [/ (Quyp/0x1)Ax; (Quy /0xp) Axy
2 < Axy - Axs )
1 /0ou,  Ouy
- (8_)61 _ E) — oy = —op» (2.3.10)
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This expression indicates that the vorticity tensor is associated with rotation
of the fluid particles.

In general, a second-order asymmetric tensor has three pairs of nonzero
components. Each pair of components has identical magnitudes but opposite
signs. Such a tensor also can be represented by a vector that has three compo-
nents. Components of the vorticity tensor are proportional to components of
the vorticity vector, which is the curl of the velocity vector,

Buk

®=VxV or  w=&jp— (2.3.11)
ij

According to this expression, components of the vorticity vector are given by

0 0 0 0 0 0
o= _ A 2 M 039
0x,  Oxz 0x3 0x1 0x1 0x7

Irrotational flow is a flow in which all components of the vorticity vector are
equal to zero. In such a flow the velocity vector originates from a potential
function, namely

0P

V=vd or U = —
8)(,'

(2.3.13)

Potential flows are discussed in greater detail in Chap. 4.
The circulation is defined as the line integral of the tangential component
of velocity. It is given by

r=f\7-d§ or F:?{uids,» (2.3.14)

By applying the Stokes theorem, the line integral of Eq. (2.3.14) is converted
to an area integral,

L o a
fv-ds=/(vXV)-dA or fuidsiz/si,kﬂdAi (2.3.15)
. A ¢ A 8)Cj

This form of the equation is sometimes more useful.

2.4 LAGRANGIAN AND EULERIAN APPROACHES
2.4.1 General Presentation of the Approaches

Some basic concepts of the Lagrangian and Eulerian approaches have already
been represented in the previous section. In the present section we expand
on those concepts and describe some derivations of the basic conceptual
approaches.
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In the Lagrangian approach interest is directed at fluid particles and
changes of properties of those particles. The Eulerian approach refers to spatial
and temporal distributions of properties in the domain occupied by the fluid.
Whereas the Lagrangian approach represents properties of individual fluid
particles according to their initial location and time, the Eulerian approach
represents the distribution of such properties in the domain with no reference
to the history of the fluid particles. The concept of pathlines originates from
the Lagrangian approach, while the concept of streamlines is associated with
the Eulerian approach.

Every property F of an individual fluid particle can be represented in
the Lagrangian approach by

F = F(%, 1) 2.4.1)

where X is the location of the fluid particle at time #y and ¢ is the time. The
property F, according to the Eulerian approach, is distributed in the domain
occupied by the fluid. Therefore its functional presentation is given by

F=FG1) (2.4.2)

where X and ¢ are the spatial coordinates and time, respectively.
According to the Lagrangian approach, the rate of change of the property
F of the fluid particle is given by

IF (Xo, 1)

o (2.4.3)

Therefore the velocity and acceleration of the fluid particle are given by

o0 e Bl PG D

ot ot ar? (2.44)

ui(Xo, 1) =
For example, consider the flow field defined by the pathlines given in
Eq. (2.2.2). The Lagrangian velocity components are given by Eq. (2.2.5),
and the Lagrangian acceleration components are given by Eq. (2.2.7).

The rate of change of the property F of the fluid particles, according
to the Eulerian approach, can be expressed through use of the material or
absolute derivative. This derivative expresses the rate of change of the property
F by an observer moving with the fluid particle. The expression of the material
derivative is given by

DF[X(1),1] _ OF N (VF)a'?c _OF N OF dx;
o dr — Ox dt

2.4.5
Dt ot ( )
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Therefore the velocity and acceleration distributions in the flow field, according
to the Eulerian approach, are given, respectively, by

- N |

2.4.6

o dxi Bui + Bui ( )
r U= — ai = — 4+ up—
dt YT o ko

As an example, consider the Eulerian velocity distribution given by Eq. (2.2.6).
By introducing the expressions of Eq. (2.2.6) into Eq. (2.4.6) we obtain the
Eulerian acceleration distribution given by Eq. (2.2.8).

2.4.2 System and Control Volume

The previous paragraphs refer to individual fluid particles and their properties.
Presently we will refer to aggregates of fluid particles comprising a finite fluid
volume. A finite volume of fluid incorporating a constant quantity of fluid
particles (or matter) is called a system or material volume. A system may
change shape, position, thermal condition, etc., but it always incorporates the
same matter. In contrast, a control volume is an arbitrary volume designated
in space. A control volume may possess a variable shape, but in most cases it
is convenient to consider control volumes of constant shape. Therefore fluid
particles may pass into or out of the fixed control volume across its surface.

Figure 2.6 shows an arbitrary flow field. Several streamlines describing
the flow direction at time ¢ are depicted. The figure shows a system at time
t. A control volume (CV) identical to the system at time ¢ also is shown. At
time ¢ + At the system has a shape different from its shape at time ¢, but the
control volume has its original fixed shape from time . We may identify three
partial volumes, as indicated by Fig. 2.6: volume I represents the portion of the
control volume evacuated by particles of the system during the time interval
At; volume II is the portion of the control volume occupied by particles of
the system at time 7 + At; volume III is the space to which particles of the
system have moved during the time interval Ar. Particles of the system also
convey properties of the flow. In the following paragraphs we consider the
presentation of the rate of change of an arbitrary property n in the system by
reference to a control volume.

2.4.3 Reynolds Transport Theorem

The Reynolds transport theorem represents the use of a control volume to
calculate the rate of change of a property of a material volume. The rate of
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Figure 2.6 System (material volume) and control volume.

change of a property, 1, of a material volume is represented by
D

— dU 2.4.7
Dt Jy.y. 1 ¢ )

where M.V. represents material volume and dU is an elementary volume
element. In Fig. 2.6, the integral of Eq. (2.4.7) incorporates two parts. One part
consists of the control volume, CV, namely volume I and the material volume
of Fig. 2.6, and the second part incorporates volumes I and III. An elementary
volume AU of volumes I and III, as shown in Fig. 2.6, is represented by
AU = (\7 -nds)At, where # is a unit vector normal to the surface of the
control volume (by convention, the direction of this vector is outward of the
control volume) and ds is an elementary surface element. Summation of all
elementary volumes AU leads to a surface integral, which is taken over the
surface of the control volume, also known as the control surface (S). Therefore
the rate of change of the material volume property, n, which is expressed by
Eq. (2.4.7), can be given, by reference to the control volume, as

D 9 o
— dU = — dU V-n)d 2.4.8
D M.V‘n at/U” +/Sn( n)ds ( )

where U is the volume of the control volume. If a fixed control volume is
considered, then the partial derivative of the first term of the RHS of Eq. (2.4.8)
can be moved inside the volume integral of that expression. It should be noted
that the property n can be a scalar as well as a vector quantity. This is illustrated
in the following sections.
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2.5 CONSERVATION OF MASS
2.5.1 The Finite Control Volume Approach

By definition, the total mass of a material volume or system is constant.
Therefore,

D
— dU =0 2.5.1
Dt /M.V.p ( )

Comparison of this expression with Eq. (2.4.7) indicates that the property n of
Eq. (2.4.7) was replaced by the density p in Eq. (2.4.8). We may, therefore,
apply the transport theorem of Reynolds, namely Eq. (2.4.8), to obtain

0 -
—/de+/p(V~n)ds=0 or
ot Juy S

0
—/,odU—i-/p(uini)ds:O
ot Jy s

Here, the first term represents the rate of change of mass included in the control
volume. The second term represents the mass flux flowing through the surface
of the control volume. Equation (2.5.2) represents the integral expression for
the conservation of mass.

If we refer to a fixed control volume, and the density p of the fluid is
constant, then the first term of Eq. (2.5.2) vanishes, and

(2.5.2)

/(V/ .i)ds =0 or /uini ds =0 (2.5.3)
N S

This equation represents the integral expression for continuity. It indicates that
if the fluid density is constant, then the total mass flux entering the control
volume is identical to the total mass flux flowing out of the control volume
(for a fixed volume). When applied to a control volume of a stream tube, as
shown in Fig. 2.7, Eq. (2.5.3) leads to

V - iA = const (2.5.4)

2.5.2 The Differential Approach

Consider again a fixed control volume. We transform the surface integral of the
second term on the RHS of Eq. (2.5.2) to a volume integral by the divergence
theorem and obtain

/ [a—” + V. (,0\7)} dU =0 (2.5.5)
vl o
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Figure 2.7 The integral continuity expression for a stream tube.

If the control volume is an arbitrarily small elementary volume, then
Eq. (2.5.5) yields

ap -

— 4+V-(pV)=0

Py (pV) or

dp  9(ou;)

- =0 2.5.6
o T o, o (2.5.6)

Dp+ (V-V)=0
pr P o

This expression represents the differential equation of mass conservation. If
the density of the fluid is fixed (i.e., Dp/Dt = 0), then the flow is called
incompressible flow, and Eq. (2.5.6) gives

= 8u,~

V.-V=0 or =0 2.5.7)

0x, i

This expression represents the differential continuity equation.

2.5.3 The Stream Function

If the flow field is two dimensional, and a Cartesian coordinate system is
assumed, then Eq. (2.5.7) implies

g (2.5.8)
ox  dy o
Then a stream function ¥ may be defined that satisfies Eq. (2.5.8),
v v

= — = — 2.59
. ay v ox ( )
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Then, introducing Eq. (2.5.9) into Eq. (2.2.10), it is seen that streamlines are
defined by

ow v
—dx+—dy=0 (2.5.10)
ox ay

This expression indicates that the differential of the stream function vanishes
on the streamlines. Therefore the stream function has a constant value on a
streamline, and the value of the stream function can be used for the identifi-
cation of particular streamlines in the flow field.

Figure 2.8 shows two streamlines, which are identified by W4 and Wp.
The discharge per unit width flowing through the stream tube bounded by the
streamlines W4 and Wg is given by

B B /v v
q:/(udy—vdx):/ —dy+ —dx
A A 8y ox

B
=/ dV = Wy — W, (2.5.11)
A

y A

3

I

\B
/

VB
YA

Y

Figure 2.8 [Illustration of volumetric flux between two streamlines.
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Thus the difference between values of the stream function for two streamlines
represents the discharge flowing between those streamlines.

If the flow field is represented by a cylindrical coordinate system, then
the employment of the covariant derivative and the relevant scale yield the
following expression for the differential continuity equation:

ou, u, 10dvg ow,

or r r 00 0z
10(ru,) 10vy  10@w;)

T r or + r 00 + ro9z

V.V =

0 (2.5.12)

where u,, vg, and w, are physical components of the velocity vector in the r,
0, and z directions, respectively. We may use the concept of stream function
in cylindrical coordinates for two types of flow field. One type is a two-
dimensional flow field expressed by reference to coordinates r and 6. The
other type is an axisymmetric flow field expressed by coordinates r and z.

In the case of two-dimensional flow, there is no flow in the z-direction,
and velocity components do not depend on the z coordinate. Therefore the
term referring to z and w, of Eq. (2.5.12) vanishes, and the expressions for u,
and vy are given by the stream function as

10 v

Lo _ W 25.13
=T T T ( )

In cases of axisymmetric flow, there is no flow in the 6-direction, and velocity
components do not depend on the 6 coordinate. Then the presentation of u,
and w, by the stream function is given as

1 0v 1 0¥
U = —— W, = ——— (2.5.14)
r 0z r or

Note that the stream function of Eq. (2.5.13) has dimensions of discharge per
unit width, whereas the stream function of Eq. (2.5.14) has dimensions of
volumetric discharge.

2.5.4 Stratified Flow

In cases of stratified flow, where the density field is not constant, the differ-
ential equation of mass conservation, namely Eq. (2.5.6), is still

p - . .
TV -Vo+pV-V=0 or Py, 0 (2515
-
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(Recall that there were no constraints placed on density in deriving the mass
conservation expression.) In particular, consider the second of these expres-
sions, which is rewritten as

LSS Do, ou

_ . — or _ R

pr P Dr Py,
This expression indicates that incompressible flow is identified by the
vanishing material derivative of the density. In other words, density is constant,
following a fluid particle. In cases of steady stratified flow, the temporal
derivative of the density is zero. If the flow is also incompressible, namely
V-V =0 [Eq. (2.5.7)], then according to Eq. (2.5.15), the velocity vector is
perpendicular to the density gradient.

In cases of steady two-dimensional flow, Eq. (2.5.6) yields

d(pu) + Ipv) _

=0 (2.5.16)

0 2.5.17
ox ay ( )
This equation can be identically satisfied by a stream function defined by
ow ow
pu=— oY= —— (2.5.18)
ay ox

This stream function has dimensions of mass flux per unit width.

2.6 CONSERVATION OF MOMENTUM

The property ,0\7 represents the momentum of a unit volume of the fluid. The
rate of change of momentum of a fluid material volume is equal to the sum of
forces acting on that material volume. Using the Reynolds transport theorem,
Eq. (2.4.8) applied to pV yields

3 _ oo
—/deU+/,0V(V-n)ds
ot Jy s

=/p§dU+/S.ﬁds+ﬁs (2.6.1a)
U s
0
or —/ puidU—i—/pui(uknk)ds
ot Ju s
=/,0g,-dU+/S,-knkds+Fsi (2.6.1b)
U s

where § is the stress tensor, which refers to forces acting on the fluid surface
of the control volume, and F represents forces acting on solid surfaces
comprising portions of the surface of the control volume.

The first RHS term of Eq. (2.6.1) represents body forces originating
from gravity. The gravitational acceleration vector, g, is equal to the gravity,
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Figure 2.9 Components of the stress tensor acting on a small rectangle.

g, multiplied by a unit vector in the negative direction of the normal to the
earth’s surface. The second RHS term represents surface forces.

The stress tensor at each point of the surface of the control volume
can be completely defined by the nine components of the stress tensor, S.
Figure 2.9 shows an infinitesimal rectangular parallelepiped with faces having
normal unit vectors parallel to the coordinate axes. The force per unit area
acting on each face of the parallelepiped is divided into a normal component
and two shear components (shear stresses) that are perpendicular to the normal
component. Figure 2.9 exemplifies the decomposition of the force per unit area
over four different faces. Directions of the stress tensor components shown
in Fig. 2.9 are considered positive, by convention. The first subscript of the
stress component represents the direction of the normal of the particular face
on which the stress acts. The second subscript represents the direction of the
component of the stress.

In Fig. 2.10 are shown components of the shear stress creating torque,
which may lead to rotation of the elementary rectangle around its center of
gravity, G. The total torque is expressed by

108 d 138 d
Torque = <S12 +-—2 dx1> dxz% + (512 -2k dx1> dx, L

2 0x 2 0x 2
1 3521 de 1 3S21 d)CQ
— (S +=—=dxy ) dx;—= — ( Sy — =—=dx, | dx;—
< 21 + 2 o0 xz) X1 ( 2T x2> X1
(2.6.2)
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Figure 2.10 Torque applied on an elementary rectangle of fluid.

Also the total torque is equal to the moment of inertia multiplied by the angular
acceleration. Therefore, Eq. (2.6.2) yields

0
(Si2 = $a1) dxi dxy = - dxy dxy [(dx1)* + (dx2)*] (2.6.3)

where « is the angular acceleration.

Upon dividing Eq. (2.6.3) by the area of the elementary rectangle and
allowing dx; and dx; to approach zero, the RHS of Eq. (2.6.3) vanishes. This
result indicates that the stress tensor is a symmetric tensor, namely

Sij =39S (2.6.4)
The stress tensor can be decomposed into two tensors, as
S=-pl+7% or Sij = —pdij +Tij (2.6.5)

where 1 is a unit matrix, which also can be represented by §;;, p is the pressure,
and 7 is the deviator stress tensor, related to shear stresses (see below).

The first term on the RHS of Eq. (2.6.5) is an isotropic tensor, namely a
tensor that has components only on its diagonal, and all diagonal components
are identical, provided that we apply a Cartesian coordinate system. Compo-
nents of the isotropic tensor are not modified by rotation of the coordinate
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system. The pressure, p, is equal to the negative one-third of the trace of the
stress tensor,

1
p= —5(511 + 822 +833) (2.6.6)

where the trace of a tensor is defined as the sum of its diagonal components.
Note that the trace of the deviator stress tensor is zero. Positive normal stress
means tension. However, fluids can only resist and convey negative normal
stresses. The definition of Eq. (2.6.6) yields a positive value for the pressure.

Incorporating the definitions and expressions developed in the preceding
paragraphs, Eq. (2.6.1) is rewritten to express conservation of momentum in
a fluid material volume:

0
—/PuidU+/,0ui(uknk)dS
ot U s
= —/pnids—l—/tiknkds—/ pgkidU + Fg; (2.6.7)
K s U

where k; represents the component of a unit vector perpendicular to the earth,
directed toward the atmosphere. For a fixed control volume, the derivative of
the first term on the LHS of Eq. (2.6.7) can be moved into the integral of that
term.

When Eq. (2.6.7) is applied to an elementary volume of fluid, the last
term vanishes since there are no solid surfaces. Then, using the divergence
theorem to convert surface integrals to volume integrals, we have

0 i d i d 81’,‘
/ {(pu)_Ir (piu)  9p. _ Ot
AU ot 3Xk 8x,~ Bxk

By introducing the conservation of mass, expressed by Eq. (2.5.6), into
Eq. (2.6.8), and considering that AU is small but different from zero,

Bui Bui d 8‘[,'
P [ + uk} -7 + k_ pgk; (2.6.9a)
ot 0Xy k

-

v +(V-V)V
ot

or p —V(p+pgZ)+ V-1 (2.6.9b)

where Z is the elevation with regard to an arbitrary level of reference.
Equation (2.6.9) is the equation of motion, or the differential equation of
conservation of momentum.

The Bernoulli equation can be derived by direct integration of
Eq. (2.6.9). First, note that the nonlinear term of the LHS of Eq. (2.6.9) can
be expressed as

. . v: oo -
(V-V)V:VT—VX(VX V) (2.6.10)
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If the velocity vector is derived from a potential function, then shear stresses
also are negligible, and V x V = 0. Therefore, in such a case Egs. (2.6.9) and
(2.6.10) yield

9 V2
0 [E(W) + vf} = —V(p+ pgZ) (2.6.11)

where @ is the potential function, defined in Eq. (2.3.13). For steady state
cases, direct integration of Eq. (2.6.11) and division by the specific weight of
the fluid yield

2

v + L + Z = const (2.6.12)

2 vy
where y = pg is the specific weight of the fluid. This is called the Bernoulli
equation. The sum of the terms on the LHS of this equation is called the
total head, which incorporates the velocity head, the pressure head, and the
elevation (or elevation head). The sum of pressure head and elevation is called
the piezometric head. According to Eq. (2.6.12) the total head is constant in
a domain of steady potential flow.

In cases of steady flow with negligible effect of the shear stresses,
consider a natural coordinate system that incorporates a coordinate, s, tangen-
tial to the streamline, and a coordinate, n, perpendicular to the streamline. The
velocity vector has only a component tangential to the streamline. Therefore,
Eq. (2.6.9) yields for the tangential direction,

v oV

g [ as}
Direct integration of this expression indicates that the total head is constant
along the streamline even if the flow is nonpotential flow, provided that the
effect of shear stresses is negligible.

A moving coordinate system is sometimes applied to calculate
momentum conservation. All basic equations applicable to a stationary
coordinate system also can be applied to cases in which the coordinate system
moves with a constant velocity. It should be noted that the Bernoulli equation,
represented by Eq. (2.6.12), is applicable only in cases of steady state. The
application of a moving coordinate system may sometimes enable use of
Bernoulli’s equation in cases of unsteady state conditions.

A noninertial coordinate system is one that is subject to acceleration.
All momentum quantities in the conservation of momentum equation must be
written with respect to an inertial coordinate system. If a noninertial system
is used, then the acceleration measured by a fixed observer, ag o, is given by

- - - L= do

aro. = amo. +a; + 20 X Vo + E

X Fmo. + ® X (@ X Fp.0.) (2.6.14)

d
== (p+pg7) (2.6.13)
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where subscript F.O. refers to a fixed observer, M.O. refers to an observer
moving with the coordinate system, a; is the translational acceleration of the
moving coordinate system, w is the angular velocity of the moving coordinate
system, Vo, is the velocity of the fluid particle measured by the moving
observer, and ryo. is the position of the fluid particle measured by the moving
observer. The momentum conservation Eq. (2.6.7) can be applied, with minor
modification, to cases in which noninertial coordinate systems are used. In
such cases, the integral equation of momentum conservation is given by

9 - N
—/pva'U+/pV(v-n)ds
ot U s

:—/pﬁds—}-/?-ﬁds—/pgl?dU—i—fs
s s U

-

. . = d .- .o
_/ [al—i-Za)XV—l—d—c;)xr—i—a)x(a)xr)}de (2.6.15)
U

The following section provides further discussion of coordinate systems
subject to rotational velocity originating from the earth’s rotation. This is also
described in further detail, using a dimensional scaling approach, in Sec. 2.9.3.

2.7 THE EQUATIONS OF MOTION AND CONSTITUTIVE
EQUATIONS

In the preceding section it was shown that the equations of motion represent
the conservation of momentum in an elementary fluid volume. The general
form of the equations of motion is represented by Eq. (2.6.9), which is again

given as
ou; ou; ap Oty
— oy —| ==+ — pok; 2.7.1a
p [ o ax,j o o PEM @71
v r s .
or p|o +(V-VIVI==V(p+pgZ)+ V-1 (2.7.1b)

Different types of fluids are identified by their constitutive equations,
which provide the relationships between the deviatoric stress tensor, 7;;, and
kinematic parameters. For a Newtonian fluid the shear stress is assumed to
be proportional to the rate of strain, and the constitutive equation for such a
fluid is

1 3uk
i=—|(p+ gﬂgk (Sij + 2ﬂeij (2.7.2)
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where ¢;; is the rate of strain tensor,

| (ou  ou;
eij=2< o “/) 2.7.3)

0x j 0x, i

By introducing Eq. (2.7.2) into Eq. (2.7.1), the general form of the
Navier—Stokes equations is obtained,

Du; ap Beij 1 3214,' :|
=—— —pgki+ 21 - =
Pr = o PN {ij 3 i0x;
. ap K+ 82u,~ n 1 82u,~ (2.7.4)
T xR T 3y "
For incompressible flow, Eq. (2.7.4) reduces to
DV -
'OE = —V(p+ pgZ)+ nuvyv (2.7.5a)
Du; u;
or pp= ——(p+ng)+u ™ 2 (2.7.5b)

Non-Newtonian fluids are characterized by constitutive equations different
from Eq. (2.7.2). These types of fluids are not considered here.

The equations of motion given in the preceding paragraphs are valid
in an inertial or fixed frame of reference. In comparatively small hydraulic
systems, it is possible to refer to such equations of motion, while considering
that the frame of reference, namely the earth, is stationary. In geophysical
applications the rotation of the earth must be considered.

Figure 2.11 shows two coordinate systems: coordinate system (X, X»,
X3), which is stationary, and coordinate system (x;, X, x3), which rotates at
angular velocity 2 with regard to the fixed coordinate system. Any vector
associated with the point G has three components in each of the coordi-
nate systems. As an example, the decomposition of the vector 7 into three
components of the rotating coordinate system is shown. A general vector Ris
represented in the rotating coordinate system by

R = Rii\ + Rai» + Riis (2.7.6)

A fixed observer, F.O., observes the rate of change of the vector R as
dR d(R*'+R*'+R7)
— = —(Ryi i i
di i, g 202 313

- dR, L3 dR, L7 dR; R di, R di, R dis
=ij— ‘i +i3— — —
Var T ar T ar Yar T ar T
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Figure 2.11 Coordinate system xj, x,, x3 rotates with angular velocity Q2 with regard
to the stationary coordinate system X, X,, X3.

The first three terms on the RHS represent the rate of change of the
vector, as observed by an observer, R.O., rotating with the rotating coordi-
nate system. The second group of three terms represents the rate of change
of the vector, originating from rotation of the coordinate system. Therefore
Eq. (2.7.7) can be expressed as

aR L +R di +R diz +R dis 2.7.8)
dr “\dr Yt 2 3 o
F.O. R.O.

Due to its rotation around the axis, 52, each unit vector i traces a cone
as shown in Fig. 2.12. The rate of change of this vector is given by
di

= si ad = Q si 2.1.9
o _smﬂ(—)_ sin B (2.1.9)

dt

The direction of the rate of change of the vector iis perpendicular to the plane
made by the vectors i and 2. Therefore

di_ &3 (2.7.10)
— =Q xi .

dt
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>0\

Figure 2.12 Cone of rotation of a unit vector.

The sum of the last three terms of Eq. (2.7.8) is given by
RIQxi1 +RQxih+R3Q2 xi3=Q xR (2.7.11)
Introducing Eq. (2.7.11) into Eq. (2.7.8), we obtain

dR dR - o
Sl I i G x R 2712
(dt ) (dt ) ok ( )
F.O. R.O.

This expression gives the relationship between the velocity vector measured
by the fixed and rotating observers as

Veo. = Vro. + Q x F (2.7.13)

Equation (2.7.12) also implies that acceleration can be expressed as

dVro, dVro. = -
= QxV 2.7.14
( It ) < T > + Q2 x Vgo. ( )
F.O. R.O.
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By introducing Eq. (2.7.13) into Eq. (2.7.14), we obtain

dVro, d - S S -
= —[Vro + Q2 x7lro. + 2 x (Vro. + Q2 xF)
dt dt
av - (dF 5 . S s
= [ £IRoO. +ox (L) +QxVro+Qx(@x7)
dt RO dt Jro.
o (2.7.15)

Thus the relationship between the acceleration in the two coordinate systems is
Gro = dro +2Q x Vo + 2 x (2 x ) (2.7.16)

Upon introducing the vector R, which is perpendicular to the axis of rotation
represented by the vector 2 (also refer to Fig. 2.13), we find

Qx7F=QxR (2.7.17)
Also, using the vector identity,

QX QxR =(Q RL—(Q-QDR=—(2-QDR=—-0R (2.7.18)

> ol

=¥

—

Figure 2.13 Relationships between vectors r, R and the centripetal acceleration.
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with Eq. (2.7.16), we obtain
Gro. =a+2Q x V — QR (2.7.19)

where V and & are the velocity and acceleration vectors, respectively, in the
rotating coordinate system. The second term on the RHS of this last result
represents the Coriolis acceleration. The last term on the RHS of this equation
represents centripetal acceleration.

The preceding paragraphs indicate that the equations of motion for
geostrophic (or, “earth-turned”) scales should incorporate terms originating
from the rotation of earth. Introducing Eq. (2.7.17) into Eq. (2.7.5) yields

DV 1 2772 2% S o T

E:—;V(p-i—ng)—i—vV VE4+ QR-2QxV (2.7.20)
Normally, the centrifugal acceleration term is considered as a minor adjustment
to Newtonian gravity, with the sum of these two terms referred to as effective
gravitational acceleration, g,

Betr = V(—gZ) + Q°R (2.7.21)

The relationships between the vectors 52, i? g, ine, and g in the northern
hemisphere are shown in Fig. 2.14.

—
€ (north)

> R

Ua,l, =y

Beff

Figure 2.14 Relationships between the vectors @, R, g, 2R, and g.s.
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Figure 2.15 Relationships between the vectors 2, V, and -Q x V.

_ In Fig. 2.15 we show the relationships between the vectors Q, V, and
—Q x V. This figure indicates that Coriolis force induces a deflection of
pathlines of the fluid particles to the right of their direction in the Northern
Hemisphere.

The equation of motion represented by Eq. (2.7.20) is applicable in cases
of geostrophic flows, in which the effect of the centrifugal acceleration and
Coriolis force are significant. For small-scale flows, in small hydraulic systems,
such effects are usually negligible. It is usually possible to determine the
relative importance of different terms in the equations of motion by scaling
analysis, as demonstrated in Sec. 2.9.

2.8 CONSERVATION OF ENERGY

Consider the material volume shown in Fig. 2.16. In general, this material
volume may be subject to movement and deformation. The net heat added to
the material volume during a short time period dt is dQ. During that time
interval, the material volume exerts work dW on its surroundings. According
to the first law of thermodynamics,

dE = dQ — dW (2.8.1)
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System

(material volume)

Figure 2.16 Heat QO added to a material volume and work W done by this volume.

where E is the total energy stored within the material volume. This variable
incorporates the kinetic, potential, and internal energy [see Eq. (2.8.4) below].
Note that the normal convention is used to express work as a positive quantity
when the material volume does work on its surroundings.

The variables Q and W are not point functions, whereas the variable
E is a point function distributed within the material volume. Therefore the
relationship between the rates of change of the variables given in Eq. (2.8.1)
is represented by

DE dQ dw

_— 2.8.2
Dt dt dt ( )

By applying the Reynolds transport theorem, written for energy, we obtain

DE

— = dUu V-i)dsS 2.8.3
Dr o Upe +/Spe( n) ( )

where e is the stored energy per unit mass, given by
V2

e= > +gz+u (2.8.4)
The first term on the RHS of this equation represents kinetic energy, the second
term represents potential energy, and the third term represents internal energy.

The work W done by the control volume on its surroundings incorporates
flow work W¢, which is associated with stresses acting at the surface of the
control volume, and shaft work, which is transferred from the control volume,
for instance by turbomachines. The rate of change of the flow work can be
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represented by

dWs - . o - L L =
A [5.h.Vdas= [ pv.-iids— [7-7i-Vds (2.8.5)
dt s s s

where § is the stress tensor, p is the pressure, and 7 is the deviator stress
tensor. It should be noted that the product T -7 represents stresses normal
to the control volume surface. The velocity vector of viscous flow vanishes
at solid surfaces, and has no component perpendicular to a solid surface.
Therefore, the last term of Eq. (2.8.5) almost vanishes. The only contribution
of this term is due to diagonal components of the deviator stress tensor at
fluid surfaces subject to flow. In the following development, the last term of
Eq. (2.8.5) is neglected.
Introducing Egs. (2.8.3)—(2.8.5) into Eq. (2.8.2), we obtain

d dW -
99 _ —/pV-ndS
s

dt

dt
1% I
——/,oedU—i-/(? +gz+u> (pV -ndS) (2.8.6)

Using the divergence theorem to rewrite the last term on the LHS of

Eq. (2.8.6), an integral expression for conservation of energy is obtained as
dQ dWq
dt dt

——/ edU—i—/( +gztu+ )(pV~ﬁdS)(2.8.7)

Application of this equation is illustrated by considering Fig. 2.17, which
shows a control volume with two openings. The fluid enters the control volume
through one of the openings, of cross-sectional area A;, with velocity V,
pressure pj, and temperature 7'y. The fluid flows out of the control volume
through the second opening, of cross-sectional area A,, with velocity Vs,
pressure p,, and temperature 7.

Referring to this control volume, under steady state conditions Eq. (2.8.7)

yields
dQ dw, V2
== hi| p1ViA
di di > +8(ze)1 +hi | ;VIA
v
+ 7+g(Zc)2+h2 p2V2A2 (2.8.8)

where z. is the elevation of the center of gravity of the cross-sectional area,
and £ is the specific enthalpy, which is defined by

h=u+L=cr=cor+Z% (2.8.9)
p P
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Figure 2.17 Energy conservation in a control volume (C.V.) with a single entrance
and a single exit.

where C, and C, are the specific heats for constant pressure and constant
volume, respectively.

Due to conservation of mass, p;ViA; = pp VA, = dm/dt, where dm/dt
is the mass flow rate which enters and leaves the control volume of Fig. 2.17.
Dividing Eq. (2.8.8) by the mass flow rate and rearranging terms,

dQ/dt
dm/dt

V3
> +8(ze)2 + ha

dW,/dt
dm/dt

V2
71 +g(ze)1 + by |+ + (2.8.10)

The second term on the LHS of this equation represents the ratio between the
heat flux into the control volume and the mass flow rate through the control
volume. It also can be represented by dQ/dm, namely the net heat added to
the control volume per unit mass of flow. The last term of Eq. (2.8.10) can be
represented by dW/dm, namely the net work done by the control volume per
unit mass of flow through the control volume. In the case of incompressible
fluid, if the control volume is insulated and does not perform work on its
surrounding, then Eq. (2.8.10) indicates

1%, |
- +g(Zc)1 + p_
2 Iy

V2
2+ g(ze) + % —C(T>—T)) @8.11)

2

where C is the specific heat of the incompressible fluid. For both Eq. (2.8.10)
and Eq. (2.8.11), terms within the square brackets represent the total head in
the entrance and exit cross sections, respectively.
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Equation (2.8.11) indicates that the difference in total head between cross
section 1 and cross section 2, in an insulated control volume, is represented by
a raise in temperature multiplied by the specific heat of the fluid. On the other
hand, if the control volume is kept at constant temperature, namely isothermal
conditions, then Eq. (2.8.10) yields

V2
-2 +8(zc)2 + P2
2 P

_ 4 (2.8.12)
T dm e

V2
[ ! + 8@ + Pri_
2 P

This expression shows that for an isothermal control volume of incompressible
fluid, the head difference between the entrance and exit represents the net
heat per unit mass of flow that is transferred from the control volume into its
surrounding. The heat transferred from the control volume into the surrounding
is created in the control volume due to friction (viscous) forces.

Equations (2.8.11) and (2.8.12) indicate that Bernoulli’s equation is
approximately satisfied if the control volume does not perform any work
on its surrounding and if heat transfer between the control volume and the
surroundings is negligible. These equations also show that the conservation of
energy with some approximation leads to Bernoulli’s equation. Section 2.9.3
extends this discussion with the basic issues of thermal energy sources and
transport in the environment.

2.9 SCALING ANALYSES FOR GOVERNING EQUATIONS

As described in Sec. 1.4, it is possible to apply dimensional reasoning to
the general governing equations in order to simplify them for most ordinary
applications. This process requires that characteristic values for various quan-
tities must be defined (characteristic scales) and that the analysis be based on
developing order-of-magnitude estimates for different terms in the equation.
For now, we define the following characteristic scales for a fluid flow problem:

L = length (for some problems both vertical and horizontal length
scales are needed)

U = velocity

A py = pressure difference
T = time
po = density

Apo = density difference

ABy = temperature difference

AC( = dissolved solids concentration difference
¢ = rotation rate
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These scales will be used in the following discussion to estimate the typical
order of magnitude for various terms in each of the basic equations discussed in
the preceding sections of this chapter. To some extent, the material is parallel
to the previous discussions, though the emphasis here is on relative orders
of magnitude of different terms in the equations. First, we consider the mass
conservation, or continuity equation.

2.9.1 Mass Conservation

The general statement of continuity, or mass conservation, is given by
Eq. (2.5.6),

00 = = NN
E-FV'V,O-‘F,OV-V:O
or, dividing by p,

lap 1. - = =

-——+-V.Vp4+V-V=0 (2.9.1)

pot  p
The scaling quantities defined above are then substituted to estimate the rela-
tive magnitudes for each of the terms and, to provide a simpler means of
comparison, we divide all the terms in Eq. (2.9.1) by the divergence term,
so that the first and second terms will be compared with 1. The respective
relative magnitudes for each of the terms are then

FaMbraNn
e N RN
[T £0 L po L
L A A
N [_ﬂ] + [_po} +[1]1~0 (2.9.2)
ur po Po

The procedure is then to compare the probable magnitudes of the first two
terms in brackets with [1]. Except in certain cases, where compressible effects
become important, the controlling factor is the possible relative change in
density that may exist in a flow. Thus it is necessary to estimate the expected
changes in density resulting from changes in environmental conditions.

In general, the density of natural water depends on its temperature,
salinity and, to a much lesser extent, pressure. Other dissolved solids may
affect water density, but the largest variations are due to salt. The rate of
change of density with temperature is given by the thermal expansion coeffi-
cient,

1dp
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where the negative sign indicates that density decreases with increasing
temperature. (It should be noted that this is true only when temperature is
above the temperature of maximum density, which for pure water is 4°C, so
there is the potential that o changes sign for certain problems.) In terms of
the scaling quantities defined above, the magnitude of the relative change in
density is

[ﬂ} ~ [aA6y] (2.9.4)
Po

In water, o is generally a function of temperature (water density is
a parabolic function of temperature, at least over a range of normal envi-
ronmental temperatures), with magnitude approximately 10~4°C~!. A typical
large temperature variation might be of order 10°C so, using Eq. (2.9.4), the
expected magnitude of relative density variations is of order 0.001 (0.1%),
which is insignificant compared with 1. Even temperature changes as high
as 30-50°C would produce only a relatively negligible change in density for

water.
As with temperature, a salinity expansion coefficient can be defined by
10
g= -2 (2.9.5)
p oC
and
A
[ﬁ} ~ [BAC,] (2.9.6)
o

where C indicates the concentration of dissolved solids, primarily salts. Rela-
tively sophisticated expressions have been developed to calculate density in
the ocean as a function of temperature and salinity, and a typical value for
is about 8 x 10~* ppt~!. Density is approximately linearly related to salinity
except when concentrations start to approach saturation, but that is not a
condition of major interest for most environmental applications. Typical ocean
salinity is approximately 30 ppt (parts per thousand) (C = 0.03), so the rela-
tive density variation is estimated according to Eq. (2.9.6) as 0.024, or 2.4%.
Hypersaline lakes exist in some parts of the world, where C may be as high
as 200 or 250 ppt. This would result in (A pg/po) being of order 20%, but for
most natural conditions this result is much less than 1 and may be ignored.

The possible effect of pressure is somewhat more complicated. First, we
note that the definition of sonic velocity,

9
co=1/ L (2.9.7)
ap
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can be rearranged to obtain

[ APo } ~ 1= [ﬂ} ~ [ﬂ} 2.9.8)

Apoch P0 pocg

The value for ¢y is approximately 1,500 m/s in water and with py =
1,000 kg/m?, a pressure difference of order 2.25 x 10° kPa is needed before
(8p0/po) becomes of order 1. This is equivalent to the pressure at a depth of
225 km under water, which is clearly unreasonable. This result is, however,
consistent with the assumption of incompressible flow that is normally applied
for water. Further estimates for § pg or (§p9/pp) can be obtained under special
conditions by looking at possible balances between terms in scaling analyses
of the momentum equation. Results from such an exercise show that pressure
effects can be neglected for normal environmental conditions in water. In fact,
the only circumstances under which this term becomes important are with high-
speed flows, when U approaches ¢y, with very high frequency oscillatory flow,
or with large-scale atmospheric motions or temperature changes.

Thus it may be concluded that (§py/p0p) is small for normal environ-
mental conditions. Also, the factor (LU/T) appears in Eq. (2.9.2), but this
ratio is usually of order 1, and when it is multiplied by (§p¢/00), it becomes
very small and may be neglected. Since both the first two terms in Eq. (2.9.2)
are negligibly small, and the right-hand side is zero, the only way to balance
the equation is to have the third term also equal 0, i.e.,

V.-V=0 (2.9.9)

which is the continuity equation for an incompressible fluid, as defined
previously in Eq. (2.5.7). Equivalently, referring back to Eq. (2.9.1), we may
conclude that Dp/Dt = 0, i.e., the density “following a fluid particle” remains
constant. This is consistent with the conclusion found in Sec. 2.5.4.

2.9.2 Momentum Conservation

In vector notation, the general momentum equation is (refer to Sec. 2.7)

DV+2§ br +D?2 THQx @Q@x7)

— X — 4+ — X7 X X T

Dt Dt Dt

=g ——-Vp4+—|VVL+-V.(V.V) (2.9.10)
P P 3

In general, this equation would have a term added to the LHS, D*R/D¢?, to
account for translational acceleration of the coordinate system, but for prob-
lems of practical interest this term can be neglected. The time derivative term
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for position also can be replaced by D7 /Dt = V,and incompressible fluid will

be assumed, as shown above. With these assumptions, Eq. (2.9.10) reduces to
DV . . DQ . o~ o~ 1= .

E+2QXV+EX r+Q><(Q>< r):g——Vp+vVV

P 2.9.11)

For problems in environmental fluid mechanics, the frame of reference is
the earth’s surface, so that Q2 represents the rotation of the earth; The earth
rotates at a nearly constant rate, so the time derivative term for 2 vanishes.
The resulting equation is then similar to Eq. (2.7.20). We now consider the
remaining terms.

Figure 2.18 shows a cross section of the earth along a north—south
axis, along with the centripetal acceleration vector. The total magnitude of
this term is (QZR cos ), where 6 is the latitude. The components, normal
(pointing towards the earth’s center) and tangential to the earth’s surface,
are (Q’R cos?6) and (Q”R cos 0sin6), respectively. Similarly, Fig. 2.19
illustrates the components of the Coriolis term, €2 x V. The normal and

QO’R cos0 sind
(component tangent
to surface)

QR cos’0
(component normal to
surface)

Figure 2.18 Cross section of earth, showing centripetal acceleration term.
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AR Q sin
X .. (normal component)
Q cosb £
tangential component ;
(tang p ) Qsinh x V
(component tangential
to surface)

QcosOx V
(component normal
to surface)
Earth’s surface

Figure 2.19 Components of Coriolis acceleration, for velocity tangent to surface
(note: Coriolis term is 2 x V).

tangential components of this term are ((§ cos 6) x \7) and ((§ sin 0) x 17),
respectively.

We first compare the normal components with gravity, using values for 2
and R appropriate for rotation of the earth: Q = 2w(rad/day) = 7 x 107> (s7!)
and R = 6 x 10° m. The magnitude of the centripetal term is then (Q?R) =
0.03 m/s?, which is much less than g (= 10 m/s?). Also, in order for the
normal Coriolis term to be comparable to g, the velocity magnitude would
have to be of order O(10° m/s), which is obviously too large for practical
consideration.

For the tangential components, first note that the centripetal term is
a constant, while the Coriolis term depends on the magnitude of V. The
centripetal term is usually considered as a minor adjustment to gravity,
as previously noted (see Eq. 2.7.21) and as shown in Fig. 2.20 (see also
Fig. 2.14). For now, we retain the Coriolis term and show in the following
discussion under what circumstances it needs to be included. A simplified
version of Eq. (2.9.11) is thus

W s g .

E%—V-VV—}-ZQxV:g—;Vp—l—vVV (2.9.12)
Note that this is essentially the same result as Eq. (2.7.20), with Eq. (2.7.21)
substituted for g.¢ (note also that g = g).
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effective gravity

(maximum magnitude _—>"
=0.03 m/s”

Earth’s surface

Figure 2.20 Relative importance of the effect of centripetal acceleration as an adjust-
ment to gravity.

This analysis can be extended by considering the pressure term as
consisting of hydrostatic and dynamic contributions. Referring to Fig. 2.21,
hydrostatic pressure is defined by

Dz = Pr —/ pgdz (2.9.13)

where p, is a reference value.
The total pressure is the sum of p, and py = dynamic pressure, so the pressure

term in Eq. (2.9.12) can be written as

= 1

8= [* 1o
;Vp=—Vpr——V pdz+;Vpd

P P .
1. g [F e 1o

=-Vp,— = Vodz —gVz+g—V, +—Vpq (2.9.14)
p P Jz o o

where this last result is obtained using the fact that p = p, at z = z.. Then,
substituting Eq. (2.9.14) into Eq. (2.9.12), we obtain

W
o +V.-VV42QxV
N 8 ps Pr < | N 255
=——Vp,+= Vodh — —gVz, — —Vpq + vVV (2.9.15)
P P Jz P o

T
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P =Pk

7777777777777 77777777777777777 h =0 (datum)

Figure 2.21 [Illustration of hydrostatic pressure variations.

If we now let p = py + 8p, where pg is the constant base, or character-
istic value previously defined for density, then

1 1 1 1

Ap
- = — A and — K1
popotAp po |y 2P Po
Lo

(from previous scaling of mass conservation equation), so

1 1
—= and or = 0o (2.9.16)
P Lo
This last result is a statement of the Boussinesq approximation, which says
density variations are negligible except in the buoyancy terms, as will be
shown below. Eq. (2.9.15) is thus written as
WV
o +V.VV4+2QxV

z
=V 0+ / Vpdz — gVz, +0V°V (2.9.17)
£0 Lo Jz,
The first term on the RHS of Eq. (2.9.17) is the net force due to pressure
gradients, the second term is the effect of density variations (important for
stratified fluids), and the third term is the effect of reference surface gradients
(such as waves).

Using the same characteristic scaling variables as in Sec. 2.9.1, the
magnitudes of the terms in Eq. (2.9.17) may be compared under different
scenarios. Dividing by the convective term (V - VV'), which has characteristic

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



magnitude (U?/L), results in relative magnitudes as

o[22~ [ 2]« [0 2] o

UT U 0oU2 U2 u? UL
(2.9.18)
where U
[— = Rossby number, Ro
QoL |
Apn ]
[ Po = Euler number, Eu
poU? |
U 1 . .
———————— | = densimetric Froude number, Fry
V&(Apo/po)L |
U
——| = Froude number, Fr
L/gL_
UL
{— = Reynolds number, Re
U -

Thus, for example, if Ro is large, Coriolis effects should be negligible in
the momentum equation. Similarly, pressure effects are small if Eu is small,
density effects are negligible if Frq is very large, changes in surface elevation
may be neglected if Fr is very large, and viscous effects are small when Re
is large.

The time-dependent term [L/UT] is the Strouhal number, and it should
be clear that a problem may be treated as being steady for large times, 7 — 00,
when this ratio is small. The values of Ro (order of magnitude) for several
representative situations are listed in Table 2.1 using ¢ ~ 10~*s~!, which is
valid for mid-latitudes. It is clear from these examples that the Coriolis effect
is expected to be important only in systems with larger L (estuaries, large
lakes, and ocean currents), depending also on U and 2.

Table 2.1 Estimates of Ro for Different Environmental

Systems

L(m) U(m/s) Ro
Stream 1-10 0.1-1 102-10*
Pond 10-100 0.1 10-10?
River 100 0.1-1 10-10?
Estuary 10°-10* 1 1-10
Large lake 103-10° 0.1 10721

Ocean current 10°-10° 0.01-0.1 1074-1072
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The relative importance of density gradients can be estimated by
assuming Frq &~ 1. This is easily shown to be equivalent to assuming that
the convective term is balanced by the buoyancy term in Eq. (2.9.18), i.e.,

o g o o 1172
V.VV~ — Vopdz = U= [g—L} (2.9.19)
Lo Jz, o

Then, for a typical value of Ap/py = 107> (corresponding to a temperature
difference of about 10°C), and g = 10 m/s?>, L = (1-100 m), gives U =
(0.1-1 m/s). Thus, at least in the buoyancy term, even a small density
difference can generate an appreciable velocity. The Boussinesq approach of
neglecting density variations does not apply to the buoyancy term, unless very
small characteristic lengths (L) are involved.

As a special case of the general result shown in Eq. (2.9.17), consider
a situation of steady, constant density flow, with Q = Vz, = 0. Then

s

VW= -V (ﬁ n gz) + V2V (2.9.20)
]

V.

where (p/po) represents dynamic pressure and (gz) is the hydrostatic pressure.
This equation is then multiplied by (i.e., take dot product with) V, to obtain
a mechanical energy equation,

-~ = /1 I -~ = N N
V.V <5v2> +—V-Vp)+ V- -V(gz) =v(VV)* = —¢ (2.9.20)
Po
where ¢ is the viscous dissipation rate for mechanical energy. If we now define
total head as
V2
H=—+-2L
28 pog
(refer to Eq. 2.8.11), then Eq. (2.9.20) becomes

+z (2.9.21)

V.-V(gH) = —¢ (2.9.22)

If € = 0, then this is the Bernoulli equation, also derived in Sec. 2.8.
Note that for steady flow, the left-hand-side of Eq. (2.9.22) is the same
as the material derivative, (¢gDH /Dt), and if inviscid conditions are assumed

(¢ =0), then
DH V:  p
— =0= — 4+ — 4+ z =K (a constant) (2.9.23)
Dt 28 pog

which is the usual form of the Bernoulli equation used in many introductory
textbooks. In general, this result holds along a streamline (i.e., following a
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fluid particle). If, however, the flow is also irrotational (@ = 6), the vector
identity

VV=VV-V)-Vx (VxV) (2.9.24)

can be used to show that the Bernoulli result (2.9.23) is valid everywhere in
the flow field. This is because the RHS of Eq. (2.9.24) is 0, due to continuity
for the first term and irrotationality for the second.

It is interesting to note that V2V = 0 for an irrotational flow field, inde-
pendent of the value of Re. However, the value of Re controls the rate at which
vorticity grows outward from solid boundaries, which may be important for
boundary layer analysis (see Chap. 6).

Another special case of interest is when the velocity vanishes, so
Eq. (2.9.17) becomes

1 ap

1~ N
Vp+gVi=0=————g (2.9.25)

0=——
Po po 0z

which gives the hydrostatic pressure field (assuming boundary conditions are
known).

One additional case of interest is that of geostrophic flow. For this case,
there is a balance in the momentum equation between the Coriolis and pressure
terms, so

1
o

This balance has many applications in meteorology and in the oceans. When
this balance occurs, large-scale pressure differences (gradients), for example,
can be related to corresponding characteristic velocities by

A

% ~ poU (2.9.27)

These flows are discussed further in Chap. 9.

2QxVa-——V, (2.9.26)

2.9.3 Thermal Energy Equation

The thermal energy equation is derived from the general conservation of
energy equation and may be written as (see Sec. 12.3.1 for further discussion)

DO 0 - - Kk, 1o 1 ackd —
E=5+VV@:—CVG——CV¢r+7(p08)——(VV)
P P P (2.9.28)

where 0 is temperature, ¢ is specific heat, k is thermal conductivity, ¢; is
radiation heat flux, ¢ is the kinematic viscous dissipation rate of mechanical
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energy, « is the thermal expansion coefficient, and cy is the sonic velocity. The
terms on the RHS of this equation relate to conduction (diffusion), radiative
heat transfer, viscous heating, and compression or expansion heating, respec-
tively. Following a similar procedure as in the preceding sections, we introduce
characteristic values for this equation to derive

390 4 UA@() ~ KAGO (p() T [8} OlC090 U A,OQ
T L ocl?| | pcL c L po
where the compression/expansion term is scaled as in Sec. 2.9.1, to substitute

(8p0/ po) for (V- 17). To nondimensionalize the equation, each term is divided
by the advection term, so

L K/ pc U? 26, 1 A
[ }+[] [/0}_[ ®o }Jr{ }Jr 6o P0
ur UL ,00CUA90 CAQ() C OlAQ() Po

(2.9.30)

(2.9.29)

where ¢ &~ U3 /L has been substituted for the dissipation rate (see Chap. 5).
Typical magnitudes for the terms on the right-hand side are estimated as
follows:

Heat conduction:  First, note that a thermal diffusivity may be defined as

ko= < (2.9.31)
pc

and the conduction term may be rewritten as

o) =[] - () (=) 293

where Pr is the Prandtl number and signifies the ratio of heat transport to
momentum transport. Re is the Reynolds number as defined previously. In
water, Pr has a value of about 7 (a fixed value), so conductive heat transfer
depends on Re.

Radiative heating: The prime heating source by radiation is the sun,
and a typical value for ¢, in temperate latitudes is about 200-250 W/m?. The
amount of heating that takes place for any given radiative input depends on
the length of time over which the heating takes place and, of course, the depth
(or volume) of the water body under consideration.

Viscous heating: In water the specific heat is ¢ = 1J/g°C. If (U?/cA8y)
is to be of order 1 (i.e., the magnitude of the viscous heating term would
be sufficient to require it to be included in the temperature equation), then
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estimates for A9y may be obtained based on U. At the upper range of environ-
mental flow conditions, water velocities may be of order 1-10 m/s. The char-
acteristic temperature change associated with this range of values is 2.5 x 10~
to 2.5 x 1072°C, which may be ignored under most circumstances.

Compression heating: Because of its dependence on fluid compress-
ibility, this term is generally important only for atmospheric studies, or possibly
in the deep oceans. Otherwise it can be neglected.

Thus the final usual form of the temperature equation is

0 ) 1 N
—+V - VO=kVO6—-—V.0p, (2.9.33)
ot pc

and this is examined further in Chap. 12.

PROBLEMS
Solved Problems

Problem 2.1 A two-dimensional flow field is given by the following velocity
components:

u =V cos(wt) v = V sin(wt)

where u and v represent the velocity in the x and y directions, respectively;
V and w are constant coefficients. Provide expressions for the streamlines and
pathlines.

Solution

As velocity components are time dependent, the flow is unsteady. The differ-
ential equation for the streamlines is

dx . dy
Vcos(wt)  Vsin(wt)

By rearranging this expression to solve for dy, we obtain
dy = tan(wt)dx

Direct integration of this expression then gives the equation of the
streamlines as

y = tan(wt)x + C

where C is an integration constant. This expression indicates that streamlines
are straight lines whose slope is time dependent. The differential equations of
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the streamlines are

D eoswn = vsintn)
— = COS(w. —_— = si(w
dt dt

Direct integration of these expressions, and considering that at time ¢ = O the
fluid particle is located at x = xy and y = yy, yields

V. vV Vv
X = xg + — sin(wt) y = yo+ — — —cos(wt)
w 0w

Eliminating time from these expressions, we obtain

5 V? V\?
(x —xo) +<y—y ——) =(—>
w w

This expression indicates that the pathlines are circles with radius V/w and
that the center of each pathline is located at x = xp and y = yp + V/o.

Problem 2.2 A two-dimensional flow field is given by the following velocity
components:

where u and v represent the velocity in the x and y directions, respectively,
and « is a constant. Provide expressions for the streamlines and pathlines.
Solution

As velocity components are not time dependent, the flow is steady. Therefore
the shape of the streamlines does not change with time, and that shape is
identical to that of the pathlines. The differential equation for the streamlines is

dx_@

ay ax
and upon rearranging,
ydy =xdx

Direct integration of this expression yields the following equation of the
streamlines:

xz—y2=C

where C is an integration constant. This equation indicates that streamlines
are hyperbolas whose asymptotes have a slope of 45°. As expected, the shape
of the streamlines does not change with time (since the flow is steady).
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The differential equations of the pathlines are

dx dy
— =y — =oax
dt dt
Differentiating the first expression with regard to time, we obtain
d’x dy
At
dr? dt
Introducing the first two expressions into the last one then gives
d’x )
— —ax=0
dr?

The solution of this differential equation is
x = Cyexp(at) + Crexp(—at)

where C| + C, = xyp.
Introducing this expression into the basic equation of dy/dt = ax and inte-
grating, we obtain

y = Crexp(at) — Crexp(—at)
where C| — C, = yp.

We may eliminate time from the expressions of x and y and obtain
x> — y2 =4C,C,

This expression indicates that pathlines and streamlines have identical shapes,
as found previously.

Problem 2.3 A two-dimensional flow field is given by the following velocity
components:
u=ay v = oaxt

where u and v represent the velocity in the x and y directions, respectively; ¢
is the time and « is a constant. Provide expressions for the streamlines.

Solution

As velocity components are time dependent, the flow is unsteady. However,
the velocity vector can be expressed as a product of a space vector with a
time function. Therefore the shape of the streamlines does not change with
time, and that shape is identical to that of the pathlines, as shown below. The
differential equation for the streamlines is

dx dy

ot_yt_axt
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Upon rearranging, this gives
ydy =xdx

Direct integration of this expression yields the equation of the streamlines as
-y =C

where C is an integration constant. This equation indicates that streamlines
are hyperbolas whose asymptotes have a slope of 45°. As previously noted,
the shape of the streamlines does not change with time.

Problem 2.4  For each of the following flow fields, calculate components of
the rate of strain, vorticity tensor and vector, and the circulation on the sides
of a small square with sides of length 2b centered on the origin.

(a) u=ax v = —ay

(b) u=ay v =ax

(c) u=ay v = —ax
Solution

Components of the rate of strain tensor:
@ 1 [/ ou n ou 1 [ ou n ov 0
a) eg==-(—+—)=a ep=e1==|—+—| =
T\ T =T \Gy e

1 (81} n 811)
en==(—4+—)=-a
27 ay dy

(b) e =0 ep=e1=a en =0
() en=0 ep=e1 =0 en =0

Components of the vorticity tensor:

1 /0 0
(a) @11 = {22 =0 4'12 = —;21 = (M — U> =0

2 dy  ox

1 /ou ov
®) & =8¢n=0 Z12=_§2]:§(3_y_5>=0
(© tn=2¢n= §12_—g2]_§<8_y_£>_a

Components of the vorticity vector: Only case (c) is relevant, as the
flow is two-dimensional [no vorticity for cases (a) or (b)]. Thus

. W ou\ - -
VxV:(—U——u>k=—2ak

where k is a unit vector in the z-direction.
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Note that the component &y is equal to half of the corresponding vorticity
component.

Circulation values: First, note that the circulation is defined by

r=f\7-d7

where C is a closed curve and d/ is a line element. As required, the closed
line integral should be performed in the counterclockwise direction along the
four sides of the small square as shown in Fig. 2.22.

For flow fields (a) and (b) the circulation vanishes. In case (c), we obtain

NIRRT

b —b —b b
=/ —abdy+/ abdx~|—/ abdy—l—/ —abdy = 8ab®
—b b b —b

Yy A

= Y

-b b

Figure 2.22 Line integration around square element, Problem 2.4.
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Problem 2.5 A fluid flow is given by the following pathlines:
x=xo(l+ar)  y=y/(1l+ar)

where « is a constant. Calculate the components of the velocity and acceler-
ation vectors by applying the Lagrangian and Eulerian approaches.

Solution
Lagrangian components of velocity:

dx dy —ap
U= — = ax V= - = ——
dt dt (14 ar)?
Eulerian components of velocity: These are obtained by the elimina-
tion of xo and y, from the Lagrangian expressions. According to the pathline
equations,

X0 Yo = y(1 + ar)

- 1+ at

We introduce these equations into the Lagrangian expressions of the velocity
components to obtain

ax —ay
u= v =
14 ot I+ ot
Lagrangian components of the acceleration:

— d2X 0 d2 y 2052 Yo

= — = ay——JF— = ———
dr? YA (14 ar)d
Eulerian components of the acceleration: 1t is possible to introduce
xo and yy into the Lagrangian expressions by x, y, ¢ to obtain the Eulerian
expressions of the acceleration components. Alternatively, the accelerations
are obtained by direct application of the substantial derivative, as

Qx

( ) ou n ou n ou —a%x n o?x
a,(x, )= —+u—+v— = =
Y o o Ty T At T (I +arp
ov ov ov o? o? 202
ay(x, y,t) = —+u—+ ) Y Y

v— = =
ot ax dy (A+4+at)?  (A+4+ar)? (1+ar)?

Problem 2.6 Derive the differential form of the continuity equation directly
by considering a small fluid element as shown in Fig. 2.23. Density p and
fluid velocity (u, v, w) are defined at the center of the element. Use a Taylor
series expansion to express the densities and velocities on each face in terms
of p, u, v, and w.
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@, v, w, p)

dz

W dx
Figure 2.23 Definition sketch, Problem 2.6.

Solution

A general statement of conservation of mass for any control volume is the
rate of change of mass in the volume is equal to the rate at which mass is
transported into the volume across the control surface, minus the rate at which
mass is transported out of the volume, plus or minus the rates at which mass
is either created or destroyed in the volume. When applied to the fluid element
shown in Fig. 2.23 and noting that water is neither created nor destroyed, this
statement is written in mathematical terms as

IpY) _ { [pu_ a(pu)d_X} _ {pH B(pu)ﬁ}} dydz

ot ox 2 ox 2
d(pv) dy d(pv)dy
+ { {pv oy 2 pU + by 2 dxdz
o(pw) dz d(pw) dz

where V = dx dy dz is the element volume and higher order terms in the Taylor
series expansions have been neglected, with the assumption that dx, dy, and
dz are all small. Each of the terms on the right-hand side of this equation
represents the net transport of fluid mass across the control surface in each
of the three coordinate directions. Nothing that the volume is independent of
time, then by combining terms and simplifying, we have

3 9 3 3
% axdydz) = -2 v aydz — 22 axayaz) — 22 axayaz)
ot ox ay 0z

Dividing by the volume, dxdydz, and bringing all terms to the left-hand
side then leads to Eq. (2.5.6), which is the desired continuity equation.
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Problem 2.7 Figure 2.24 shows a reservoir of volume U, which includes for
time ¢ < 0 pure water with density pg. At time ¢ = 0, effluent with volumetric
discharge 2Q and density p; starts flowing into the reservoir. The reservoir
volume is kept constant due to infiltration of the reservoir water into the ground
with volumetric discharge Q, and evaporation of pure water (density pg), also
with volumetric discharge rate Q. What is the value of the reservoir fluid
density as a function of time? What is the value of that density as t — oo?
Assume that the fluid is kept completely mixed in the reservoir.

Solution

The fluid is incompressible, and density is subject to variation due to dissolved
solids, which are assumed to not affect the volume of the water. Therefore,
we may refer to Eq. (2.5.2) with regard to volumetric quantities, namely, the
reservoir volume is kept constant, and volumetric discharge into the reservoir
is identical to the total flow out of the reservoir. Using the integral equation
of mass conservation (2.5.2), we obtain

dp

dtU+Q(p+po)—2Qp1=0

Using separation of variables, this expression yields

d
p :gdt

2pp=po—p U

evaporation

effluent i

. volumetric discharge
discharge 2Q Sensity o ge Q
density p; o

\ reservoir volume U
density p, att=0

by

infiltration volumetric
discharge Q density p

Figure 2.24 Definition sketch, Problem 2.7.
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Direct integration of this expression, while considering that p = pg at t = 1,
yields

201 —po—p — exp (_gt>
2p1 —2po U

For t+ — oo the RHS of this expression vanishes. Therefore the asymptotic
limit for the fluid density is

p=2p1— po

Problem 2.8 Figure 2.25 shows a system of two stagnant plates and a plate
that moves downward with velocity V. Due to the movement of the third
plate, the incompressible fluid, which is located between the plates, is subject
to flow. The velocity in the x-direction is distributed uniformly between the
two horizontal plates. Calculate the velocity distribution in the fluid domain
when the gap between the two horizontal plates is 4. Find the expression for
the stream function. Is the fluid domain subject to steady flow?

Solution

The velocity u# in the x-direction is independent of the y-coordinate. The
integral equation of continuity (2.5.3), applied to the control volume (C.V.)

boundaries of C.V.

moving plate

: —_— uniform
| > / velocity, u h
1
1

_______________ e \
- — ——’

™

stationary
plates

Figure 2.25 Definition sketch, Problem 2.8.
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shown in the figure yields
Vv
—Vx+uh=0=>u=zx

Introducing this expression into the differential equation of continuity (2.5.8),
we obtain

ov ou \%

ay  ox  h
Direct integration of this expression yields

v:—%y—l—f(x, 1)

Considering that at y = 0, the velocity component v vanishes, we obtain

1%
v=——
h
According to Eq. (2.5.9), the following relationship for the stream function is
found:

\D:/udy:%xy—i—f(x)

The derivative of this expression with regard to the y coordinate is

v Vv , 1% ,
—=—y+f)=—v=—y= f(x) =0= f(x) = const
ox h h

By choosing f(x) = 0, we obtain

- |%
= —x
hy

The flow is subject to unsteady state, as the value of % is time dependent.

Problem 2.9 An incompressible fluid flows past a corner making an angle
of (37/4) as shown in Fig. 2.26. It is proposed to describe this flow by a
stream function,

4
W =23 gin <§9>

(a) What is the magnitude of the velocity at any point in the flow field
(as a function of r)?
(b) Show that there is no flow across the solid boundaries shown.
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Figure 2.26 Flow of incompressible fluid past a corner, Problem 2.9.

Solution

(a) From Eq. (2.5.13), the velocity components are

1o 8 13 4
U =—-——=—-r'’cos| =0
r 00 3 3

owv 8 4
vp=——=—=r"sin( =0
or 3 3

The velocity magnitude is the square root of the sum of the squares
of each of the velocity components,

3

(b) Since both boundaries represent radial arms with respect to the
origin at the corner, it is sufficient for this problem to show simply
that vy = 0 when 6 = 0 or & = 3/4. That this is the case is imme-
diately seen when we use the expression for vy from part (a). It
should also be noted that this result shows that the proposed stream
function satisfactorily describes the flow past this corner.

Problem 2.10 Figure 2.27 shows a cylinder, with weight W, with a piston
standing on a table. Due to a downward movement of the piston, fluid flows
out of the cylinder through a nozzle located at the bottom of the cylinder. The
cross-sectional area of the cylinder is Ay, the cross-sectional area of the nozzle
outlet is A;, and the fluid density is p. Calculate the forces F'y and Fy, which
are needed to hold the cylinder, when the depth of the fluid volume is A.

Solution

A Cartesian coordinate system (x, y) is added for reference. We start with the
choice of the control volume (C.V.) as shown in Fig. 2.27. It should be noted
that other types of control volumes could be used as well.
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Surface
“of C.V.

Figure 2.27 Definition sketch, Problem 2.10.

In the x-direction there is no momentum of the control volume. The force
Fpy is applied by the “solid hand” which is cut by the surface of the control
volume. At the exit of the nozzle, the velocity vector and the normal vector
have identical directions. Due to continuity, the speed of the jet flowing out of
the nozzle is V(A /A;). At the nozzle exit the pressure is equal to atmospheric
pressure. Equation (2.6.7) yields for the x-direction:
A7
_} .

\%
p[Az

In the y-direction there is a negative momentum. Its values at times ¢ and
t + At are given, respectively, by:
(Momentum), = —phA,V (Momentum);; o; = —p(h — VAHAV

The difference in momentum between times ¢ and r 4 At, divided by At,
provides the first RHS term of Eq. (2.6.7), namely,

—p(h — VADAV + phAV
At

d
*/,OVV dU = limp;o = pV?4A,
ot Juy .
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Two solid surfaces comprise a portion of the surface of the control volume.
Through these surfaces two forces are applied. One of them is Fy and the other
one is applied through the shaft of the piston. The force applied through the
shaft of the piston can be calculated using the Bernoulli equation. We consider
that the piston movement is slow, and approximately steady state conditions
prevail in the fluid. Then Bernoulli’s equation applied between point (1) and
point (2) yields

2 [V(A1/A2)P VZIAN?
—+—+h=——"T"—=pi=p—||—] —1| —pgh

% v 2 m=r; (Az) &
Considering equilibrium of the piston, we obtain

PAl=W,+F, = F,=pA - W,
V2A, | (A2
1 (_1> - l‘| - pghAl - Wp
Ay

2
where W, is the weight of the piston and F, is the force applied through the
shaft of the piston.
Introducing all the expressions developed in the preceding paragraphs
with regard to the y-direction into Eq. (2.6.7), we obtain

=p

pV?A| = —pghA; — W — W, — F, + Fy
where W, is the weight of the cylinder. Therefore the force Fy is given by

V2A, | (A

2
Fy = pV?A; + pghA; + W + Wp+'oT l(;) — 1]
2

_pghAl_Wp
W V2A, | (A 2+1
=WceTp ) A

Problem 2.11  Figure 2.28 shows a small cart moving with velocity V due
to the impact of a two-dimensional water jet on a plate oriented at an angle o
with respect to the jet direction. The velocity and width of the jet are V| and
b1, respectively. The water jet is divided into two smaller jets, whose widths
are by and b,. The force applied by the water jet on the cart is perpendicular to
the impacted plate. Assuming that the effect of gravitation is negligible when
applying Bernoulli’s equation, calculate (a) The widths b; and b, of the two
jets-(b) the vertical and horizontal forces acting on the cart, and (c) the power
transferred to the moving cart.
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Figure 2.28 Water jet driving cart motion, Problem 2.11.

Solution

We apply a coordinate system that moves with the cart. In such a coordinate
system the domain is subject to steady state, and Bernoulli’s equation is appli-
cable. The velocity of the jet that hits the cart, in the new coordinate system,
is V| — V,. As the effect of gravitation is negligible at the jet division, the
velocities of the two jets created by the jet division are also V| — V,. We
apply the control volume with boundaries as shown in the figure. The forces
Fy and Fy are needed to keep the control volume in its appropriate position.
By applying the equation of momentum conservation (2.6.1) in the horizontal
direction, we obtain

= p(Vi = Vol’bi+ p(Vi = V,)* (b2 = bs) cosa = —Fy
Applying the conservation of momentum in the y-direction gives
p(Vi = VoY (by = by)sina = Fy
As the resultant force is perpendicular to the oblique plate, we obtain

Fy
— =tanu
H

From continuity, we have

by =by+ b3
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The last four equations allow the determination of the four unknown quantities
by, b3, Fy, and Fy. The results of the calculation are

bl 1 b1 1
by=—1[1 by=—|[(1-
) ( +2cosot> T < 2COSOt)

2 by 2 by
Fa=pVi-=Vy) E Fy=pVi—-Vy) Etana

The force that leads to the cart movement is equal to Fy and acts in the
positive x direction. The power transferred from the water jet into the cart
is equal to the product of this force with the velocity V. of the cart in the
horizontal direction. Therefore the power N is given by

2 b
N=pWV, -V, ?VV

Problem 2.12 Figure 2.29 shows a rocket fired from rest in outer space
along a horizontal straight line where air friction is negligible. The mass of
the body of the rocket is M and it carries an original fuel mass My which
burns at a mass flow rate o. The exhaust cross-sectional area and velocity
relative to the rocket are A, and V., respectively, and the density of the fluid
at the exhaust is p.. The velocity of the rocket relative to a fixed observer is
V. Our objective is to determine the value of V as a function of time.

Solution

We apply Eq. (2.6.15) to solve this problem. The momentum due to the flow
inside the control volume is assumed to be negligible. Therefore the first LHS
term of this equation vanishes. Also, all terms of the RHS of Eq. (2.6.16)
vanish, except for the volume integral associated with the translational accel-
eration. Therefore we obtain

5 dav
—pV,Ae=—M+Myp —at)—
dt
Conservation of mass yields
PVeA, =0

We introduce this relationship into the equation of momentum conservation.
Separation of variables of the resulting expression yields.

dv dt

aV, M+M;—at

Direct integration of this expression and assuming that V = 0 at r = 0 yields

M—}-Mf )

Vv=V,In| ———
M+Mf —at

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



N
oo Y I 24
I
AP Ve .
- v - = = g = X
- > Moving
Z A : Observer
I
B i i i s e e e ) i M 5 0 i 1)
Y
Fixed X
Observer

Figure 2.29 Rocket motion, Problem 2.12.

According to this expression, the maximum value of the rocket velocity is
obtained when all the fuel is burnt, namely when t = M ¢ /a. At that time the
rocket velocity is given by

M+M
V=V,In <+f)
M

Problem 2.13 Figure 2.30 shows a pump that delivers a water discharge Q
from a tank through a pipe of total length L, which is ended with a nozzle. The
pipe diameter is D, the nozzle diameter D,. The Darcy—Weissbach friction
coefficient for the pipe flow is f. Water level in the tank is /4; and its value
is given. The exit of the nozzle is located at an elevation A, above the pump,
which is also given. Calculate the power delivered by the pump into the
flowing water. The system is at constant temperature.
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Figure 2.30 Pumped water jet, Problem 2.13.

Solution

The total head at the exit of the nozzle, at cross section (2), is

2

H2=&+h2 where V2=47Q2

2g wD;
The total head at the entrance cross section (1) is equal to h;. The power
of the pump is needed to increase the water head from its initial value A
to its final value at the exit cross section. Part of this power is converted to
heat, which is transferred into the surroundings (so that the system remains
at constant temperature). The head loss between the entrance and exit multi-
plied by the weight discharge is equal to the rate of heat transferred into the
environment. Therefore the power delivered from the pump into the flowing
water is given by

2

LYV
N = pgQ <H2 —h + fl> where Vi
Dl 2g

40

D3

Problem 2.14 Considering the flow given in Problem 2.9, find the pressure
at any point in the flow field, relative to p = py at the corner. Neglect gravity.

Solution

It is already known that this flow is steady and incompressible. It can also be
shown to be irrotational. In this case, pressures are found using Bernoulli’s
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equation. Since gravity effects are neglected, we have

po, Ve p, V2

y 2 v 2

From the velocity components found in Problem 2.9, it is easily seen that
Vo = 0. Then, substituting the general expression for the velocity, we find

1

32
= —_— V2 = _— 2
P=Po 2,0 Po 9 por

/3

Unsolved Problems

Problem 2.15 A two-dimensional flow field is given by the following
velocity distribution:

u=a(y—>b) v=a(x —b)
where a and b are constant coefficients.

(a) Develop the expression for the pathlines in the domain.

(b) Develop the expression for the streamlines. Show that streamlines
and pathlines have the same shape. Provide a schematic of the
streamlines.

Problem 2.16 Using the velocity distribution of Problem 2.15,

(a) Calculate values of components of the rate of strain tensor.
(b) Show that the fluid is subject to irrotational flow and develop the
expression for the potential function.

Problem 2.17 A two-dimensional flow field is given by
u=—a(y—>b) v=a(x—b)
where a and b are constant coefficients.

(a) Determine values of components of the rate of strain tensor and
the vorticity tensor.

(b) Calculate the value of the circulation along a circle whose center
is at point (b, b), with radius b.

Problem 2.18 The velocity field for a two-dimensional flow is given by
uy = Uexp (—ﬂ> sec h? ()2> and

up = Cxp + Uexp (—%) tanh (%)
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Where U, C, and L are constants. Find

(a) Acceleration of a fluid particle

(b) Variation of density of a fluid particle
(c) Components of fluid vorticity

(d) Components of fluid rate of strain

Problem 2.19 For each of the velocity distributions of Problems 2.15 and
2.17,

(a) Calculate the Lagrangian components of the velocity and acceler-
ation.
(b) Calculate the Eulerian components of the velocity and acceleration.

Problem 2.20 Velocity components of the flow and density of a fluid are
given by

_ £0
14 axy

u=x(1+ axy) v=—y(1+ axy) P

where o and pg are constants.

(a) Calculate the components of the acceleration.
(b) Calculate the rate of change of density of the fluid particles,
assuming that « is small and has negligible effect on u and wv.

Problem 2.21 Starting with the fluid element shown in Fig. 2.31, demon-

strate graphically that the divergence (%- \7) must be zero if the fluid is

. . . ou Jdv  ow i

incompressible. Is it necessary that — = — = — = 0 in order to make the
ox  dy 0z

same conclusion?

Problem 2.22 For each of the velocity distributions of Problems 2.15 and
2.17,

(a) Show that continuity is satisfied for incompressible flow.
(b) Determine the expression for the stream function.
(c) Calculate the flow rate between two streamlines of your choice.

Problem 2.23 For each of the velocity and density distributions of
Problem 2.20,

(a) Show that the equation of mass conservation is satisfied.
(b) Develop the expression for the stream function of the mass flux.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



w dx

Figure 2.31 Fluid element, Problem 2.21.

Problem 2.24 Derive an integral statement of the equation expressing
conservation of dissolved mass (concentration C) following the Reynolds
transport theorem approach. Where might such an equation be useful?

Problem 2.25 Figure 2.32 shows a section of a two-dimensional channel
with walls described by

h
4+
2(x+ 1)
where & is the width of the channel at its entrance where x = 0. A fluid of
constant density flows through the channel. The velocity component in the

x-direction is solely a function of x. At the channel entrance the velocity in
the x-direction is given by u = ug.

y:

(a) Determine the velocity component in the x-direction.

(b) Determine the velocity component in the y-direction.

(c) Develop the expression for the stream function in the channel. What
are reasonable values of the stream function along the walls of the
channel?

Problem 2.26 Fluid is subject to steady-state flow in an infinite domain.
In every vertical cross section of the domain, the velocity component in the
horizontal x-direction is not a function of y. In every horizontal cross section of
the domain, the velocity component in the vertical y-direction is not a function
of x. At the point (x = 8 m, y = 0) it was found that there is only velocity in
the x-direction, whose value is u = 0.1 m/s. At the point (x = —12 m, y = 0)
it was found that there is also only velocity in the x-direction, with a value of
u=—0.1 m/s.
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Figure 2.32 Two-dimensional converging flow, Problem 2.25.

(a)
(b)
(©
(d)
(e)

Apply the integral continuity equation to determine the distribution
of the velocity component in the y-direction.

Apply the differential continuity equation to determine the distri-
bution of the velocity component in the x-direction.

Develop the expression for the stream function. Find stagnation
points, and provide a schematic of the streamlines.

Check whether the flow is a potential flow. If it is a potential flow,
determine the expression for the potential function.

Determine components of the rate of strain tensor.

Determine components of the rate of strain tensor in the entire
domain in the coordinate system (X,y) whose X axis bisects the
angle between the axes x and y.

Problem 2.27 A water reservoir has a volume U = 50,000 m>. At time
¢ = 0 the density of the water is py = 1000 kg/m>. At that time two effluent
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sources start to divert water into the reservoir. Both sources provide an iden-
tical volumetric discharge of Q = 36 m?/s (for each source). The density of
the fluid of the first source is p; = 1,020 kg/m>. The density of the fluid of
the second source is p, = 1,010 kg/m®. These sources may be assumed to
be rapidly mixed throughout the reservoir. Fluid percolates into the ground
through the bottom of the reservoir with flow rate Q and with density equal to
that of the reservoir water p. At the reservoir surface water evaporates, with
discharge Q and density pg.

(a) Prove that the reservoir volume is kept constant.

(b) Develop a general equation for the variation of the density of the
reservoir water. What is the value of this density for time ¢ — 00?

(c) Substitute numerical values of the variables, and find the time at
which the water density becomes 99% of its value at t — oo.

Problem 2.28 A model is needed to predict the transient response of a
constant volume mixing tank due to a step change in influent concentration
of a conservative substance. The model is to be used to quantify the degree
of mixing and short-circuiting in the tank. Assume that a fraction m of the
total tank volume V is actually well mixed and that only a fraction n of
the inflow Q enters the zone of perfect mixing, while the remaining portion
of the inflow short-circuits directly to the outlet (i.e., it is not mixed at all
inside the tank). The concentration at any time ¢ in the mixed zone is C'.
The material exiting from this zone is mixed with the portion of inflow that is
short-circuited and the mixture leaves the tank at flow rate Q and concentration
C. The initial concentration in the tank is Cy (everywhere). At time ¢ = O the
influent concentration C; is changed suddenly from C; = Cy to C; = 0.

(a) Sketch the problem, showing how n and m are incorporated.

(b) Show that, in general, the outflow concentration may be calculated
as C =nC' + (1 —n)C;

(c) Write the general mass balance equation for C’ (in the mixed
zone) — include C; in the formulation.

(d) Substitute the result from part (b) into your result from part (c) and
develop a differential equation that describes the rate of change of
C with time.

(e) Solve the equation to calculate (C/Cy) as a function of n, m, and
(t/t"), where t* = V /Q is the overall tank residence time.

(f) Using the experimental data plotted in Fig. 2.33, estimate the values
for n and m (note that values for C’ are obtained from the middle
of the tank, which is expected to be in the fully mixed region).
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Figure 2.33 Nondimensional concentration data, Problem 2.28.

Problem 2.29 A shallow lake has mean (depth-averaged) horizontal velocity
components U and V, in the x and y coordinate directions, respectively, and
U and V are in general functions of (x, y, ), where ¢ = time (see Fig. 2.34).
Seepage out the bottom of the lake takes place at a rate f, where f is assumed
to be directly proportional to the depth, &, so f = kh, and & is also a function
of (x, y, #). Rain falls at rate i (units of length/time) and i = i(x, y, t). The lake
bottom may be assumed to be flat and horizontal. Derive the two-dimensional
continuity equation for this problem.

Problem 2.30 Figure 2.35 shows a section of a two-dimensional channel,
with walls that are described by

y=20.5h+x)

where & = 1 m is the width of the channel at its entrance, where x = 0. A fluid
of constant density flows through the channel. The velocity component in the
x-direction is solely a function of x. At x = 0, the velocity in the x-direction
is given by u = up = 1 m/s.

(a) Determine the velocity component in the x-direction.
(b) Determine the velocity component in the y-direction.
(c) Calculate the discharge per unit width of the channel.

Problem2.31 Water is subject to unsteady flow in an open channel, as shown
in Fig. 2.36. A discharge per unit area, g, flows into the channel through the
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Figure 2.34 Two-dimensional lake schematic, Problem 2.29.
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Figure 2.35 Expanding two-dimensional flow, Problem 2.30.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



free surface. The water depth in the elementary control volume is /4. The width
of the channel at the free surface is B.

(a) Refer to the elementary control volume of the open channel shown
in part (a) of Fig. 2.36 and develop the differential equation that
represents the variation of the water depth along the channel.

(b) Part (b) of Fig. 2.36 indicates that at x = xp, the water depth is hqg.
The channel has a rectangular cross section, in which B = const.
It is found that the water depth downstream of xj is represented by
h = hy + hy sin(ax + wt), where, hg, hy, o, and w are constants. It

Boundary of C.V.

L,

1 I =
Q 1 i Q-I— aQ dx
— h — 0X
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X

Figure 2.36 Open channel flow, Problem 2.31.
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is also given that ¢ = 0, and Q = Qg at xy. Find the discharge as
a function of x and ¢.

Problem 2.32 Figure 2.37 shows two containers that contain fluids. The
volume of container 1 is U; = 30 m? and it contains at time ¢ < 0 pure water,
with density p; = 1,000 kg/m>. The volume of container 2 is U, = 20 m?® and
it includes for time # < 0 salt water, with density p, = 1,020 kg/m®. At time
t =0 two pumps start to circulate water between the two containers. Each
pump delivers a volumetric discharge of Q = 10 m?®/s. A mixer is submerged
in each container to insure well-mixed conditions.

(a) What is the final density of the water in both containers?

(b) Develop expressions for the variation of the water density in each
container as functions of ¢.

(c) Show that the expressions that you developed in part (b) converge
to the result of part (a) when t — oo.

(d) Calculate the value of the time ¢ at which the density of the water
in container 1 is equal to 99% of the density when t — oco. What
is the density of the water in container 2? By how many percent is
it larger than the density at t — oo?

Problem 2.33 Figure 2.38 shows a two-dimensional incompressible flow
between two long plates. Plate (a) is stagnant. Plate (b) rotates around the
origin with constant angular velocity €2. The radial flow in the domain is not
a function of the angular coordinate 6. At time ¢t = 0, the angle between the
two plates is .

Mixer Mixer
z z
2,
oo C
Container 1 Q Container 2
-~
A Q= f
\ _/ ]
U; =30m? Uy =20m3
p=p att=0 p=p att=0
1 2

Figure 2.37 Definition sketch, Problem 2.32.
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Plate (b)

Plate (a)

Figure 2.38 Definition sketch, Problem 2.33.

(a) Determine the velocity distribution in the flow domain at time ¢,
where 1| < /.

(b) Determine the expression for the stream function.

(c) Is the value of the stream function at the two plates subject to
variation with time? Explain.

Problem 2.34 Figure 2.39 shows viscous incompressible fluid between three
plates. Plates (a) and (b) are stagnant, while plate (c) moves downward with
constant velocity V. Due to the movement of plate (c), the fluid is subject
to flow. There is a parabolic distribution of the velocity component in the
x-direction, and it vanishes at plates (a) and (c).

(a) Determine the expressions for the velocity components in the flow
domain when the distance between plates (a) and (c) is A.

(b) Determine the expression for the stream function in the domain.

(c) Calculate the variation of the discharge flowing between plates (a)
and (c) as a function of time and x-coordinate.

Problem 2.35 A two-dimensional velocity field (4, v) may be defined in
terms of a stream function, W, where

V=V x Uk)

Calculate V x \7, V2\7, and V - VV in terms of .
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Figure 2.39 Definition sketch, Problem 2.34.

Figure 2.40 Definition sketch, Problem 2.36.

Problem 2.36 A fluid two-dimensional jet of width b; and velocity V;
is directed at a concave plate, which moves with velocity V;, as shown in
Fig. 2.40. Due to the impact with the plate, the fluid jet is divided into two
identical jets, which are oriented with angle « to the longitudinal x-direction
at the edges of the plate. The fluid density is p.
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(a) Calculate the thickness of the two jets created by the impact of the
jet with the concave plate.

(b) Determine the velocity of the two jets at the edges of the plate.

(c) Determine the power delivered from the jet to the plate.

(d) What should be the relationship between V| and V, to deliver
maximum power?

Problem 2.37 Repeat Problem 2.36 for jet impact with a convex plate, as
shown in Fig. 2.41.

Problem 2.38 Consider plane Couette flow, with one wall (y = 0) fixed
and a second rigid wall (y = &) moving at constant speed U in its own plane.
Sketch the flow and solve the Navier—Stokes equations for the case of constant
density (also no rotation), to show that a possible flow is i = (Uy/h)(i). Also
calculate the shear stress on each wall.

Problem 2.39 A line sink (large width-to-height ratio) drains a large water
reservoir by a rectangular conduit as shown in Fig. 2.42. Assuming the flow
is fully developed in the conduit (i.e., at some distance downstream of the
reservoir), calculate the following:

(a) Velocity distribution (neglect side wall effects).

(b) Magnitude of shear stress at upper and lower surfaces and at middle
of conduit.

(c) Considering the entire length (L) as a control volume, verify that there
is zero net force acting on the fluid in the direction along the pipe.

TN
)

o

Figure 2.41 Definition sketch, Problem 2.37.
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Figure 2.42 Flow through long rectangular conduit, Problem 2.39.

h

Problem 2.40 Figure 2.43 shows a hose of diameter D;, which is connected
to a nozzle by a flange. The diameter of the nozzle exit is D,. Water (density
p) flows through the hose and nozzle with discharge Q. Fy and F'y represent
the horizontal and vertical forces applied by the fireman, to keep the hose and
nozzle in the appropriate position.

(a) Determine the force needed to hold the two parts of the flange
together.

(b) Determine the horizontal, vertical, and total forces applied by the
fireman.

Problem 2.41 Water flows in an open rectangular channel with a constric-
tion, as shown in Fig. 2.44. The water depth and channel width before the

”F

n-v
\ 4 w D
FH . >
== p L7
)
Flange
D

Figure 2.43 Flow around a bend, Problem 2.40.
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Figure 2.44 Open channel flow constriction, Problem 2.41.

constriction are ) = 1.0 m and b; = 1.2 m, respectively. At the constriction,
the water depth and channel width are 4, = 0.9 m and b, = 1.0 m, respec-
tively. The pressure distribution in each vertical cross section is hydrostatic.

(a) Determine the discharge flowing through the channel.
(b) Determine the force applied by the water on the constriction.

Problem 2.42 Water flows through a gate as shown in Fig. 2.45. The channel
has a rectangular cross section and its width is 1 m. The water depth upstream
of the gate is h; = 0.8 m. The water depth downstream of the gate is h; =
0.2 m. At that location, the flow velocity is V, = 3 m/s.

(a) Determine the discharge in the channel.
(b) Determine the force of the water on the gate.

Problem 2.43 A cart carries a container with water. It moves freely on an
inclined area, whose slope is @ = 30°, as shown in Fig. 2.46. The width of the
container is b = 2 m, and its length is L =2 m. The top of the container is
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Figure 2.45 Flow under a sluice gate, Problem 2.42.

Initial water surface

Figure 2.46 Water containing cart on a sloping surface, Problem 2.43.

open, and its side walls are very tall. The initial water depth, measured along
the upper wall of the container, is 0.5 m.

(a) Determine the orientation angle between the free surface of the
water with respect to horizontal.

(b) Determine the horizontal and vertical components of the pressure
gradient in the water.

(c) Determine the total force applied on the front wall, back wall, and
bottom of the container.
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Problem 2.44  Figure 2.47 shows fluid with density p flowing through a
two-dimensional conduit, whose width and length are b and A, respectively.
At the entrance of the conduit, the velocity is ug and is uniformly distributed.
The pressure at the entrance is pa. At the exit of the conduit, the velocity
profile is a parabola, given by

2 2
1— (2

b
where U is the maximum value of the velocity at the exit cross section and y =
0 represents the centerline. The pressure at the exit cross section is given by

u=U

U2
PB = PA — 2-25'07

(a) Determine the relationship between uy and U.
(b) Determine the force applied per unit width of the conduit.

Problem 2.45 A jet aircraft flies at a constant speed V. The jet engine
pumps air with volumetric discharge Q¢ and density pg. The mixture of fuel
and air has a density almost identical to that of the air. After the burning
of the mixture, it flows out with the volumetric discharge Q; = (2/3)Qy and
unknown density p;. The inlet cross section area is Ag. The outlet cross section
areais A; = 0.1A¢. The flow velocity through the inlet cross section is identical
to that of the outlet cross section. The volumetric discharges Qo and Q; are
independent of the flow velocity V.

(a) Determine the fluid density p; at the outlet cross section.
(b) Determine the drag force that is overcome by the jet engine.
(c) What is the power of the jet engine?

ug /u
I Can ry -

B

1 1
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Figure 2.47 Definition sketch, Problem 2.44.
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Problem 2.46 Consider that the length of the equator is 40,000 km, and that
the earth makes a complete rotation in 24 hours.

(a) Calculate the value of the effective gravitational acceleration at
a point on the earth’s surface, whose inclination angle (latitude)
is 30°.

(b) Provide the two equations of motion, based on Eq. (2.7.20), for a
two-dimensional horizontal flow at a point on the ocean with an
inclination angle of 30°.

Problem 2.47 A mass discharge of dry steam with Oy, = 1 kg/s flows
through a turbine and delivers a power N = 1,000 W through the shaft of
the turbine. The entrance and exit flow velocities are V; = 20 m/s and V, =
10 m/s, respectively. The entrance and exit specific enthalpy values are h; =
80 m?/s? and h, = 100 m?/s?, respectively. The entrance elevation is higher
than that of the exit of the turbine by 1 m.

(a) What are the values of pA (where p is the density and A is the
cross-sectional area) at the entrance and exit of the turbine?

(b) Determine the net heat transferred from the turbine into the envi-
ronment per unit mass of flow.

(c) Determine the rate of heat transferred from the turbine into the
environment.

Problem 2.48 A 3 m diameter tank is filled with water to a depth 4~ = 10 m.
A value on a 30 cm pipe at the bottom of the tank is opened suddenly and

water is allowed to drain as shown in Fig. 2.48. Estimate the time needed for
the tank to drain halfway (until # = 5 m). State all assumptions.

i
>

J

Figure 2.48 Water drainage from tank, Problem 2.48.
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Problem 2.49 The pressure at the water surface of a container is 4 x 10* Pa.
The water is pumped from the container through a pipe that ends with a
nozzle with exit diameter D = 100 mm. The water flows as a free jet through
the nozzle. As shown in Fig. 2.49, the elevation of the water surface in the
container is higher by 1.5 m than the pump. Also, the exit nozzle is elevated
by 1.5 m above the pump. The free water jet leaves the nozzle with an angle
of 45° and it reaches its maximum elevation 3 m above the nozzle exit. Effects
of friction between the air and the free jet are negligible.

(a)
(b)

(©)
(d)

Determine the velocity of the water jet at the exit of the nozzle.
Determine the distance between the exit of the nozzle and the point
at the same elevation, through which the water jet passes.
Assuming that the efficiency of the water pump is 0.8, determine
the power needed to operate the pump.

Draw a schematic of the total and piezometric heads between the
container and the exit of the nozzle.

Problem 2.50 Show that for a steady one-directional flow field (u; = u)
of an incompressible fluid with no horizontal variations (i.e., in the x; or x;
directions) of any property, the energy equation can be simplified to

ou 2_8g0z
H ¥z) oz

p=4Pa

1

1.5m

Pump

Figure 2.49 Definition sketch, Problem 2.49.
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(i.e., viscous dissipation is balanced by radiative heating). Note that the result
could be written in terms of ordinary derivatives, since variations occur only
in the x3 = z direction.

Problem 2.51 A horizontal circular pipe 1 m in diameter carries water at
a flow rate of 10 m?/s. Neglecting heat transfer through the walls, find the
temperature increase for the water traveling a length of pipe corresponding
to a pressure drop of 5 atm. (about 500 kPa). Hint: apply the integral energy
equation to a control volume bounded by the pipe walls and sections separated
by the distance indicated above. Use ¢, = 4200 J/kg-°C.

Problem 2.52

(a) Write the conservation equations in rectangular coordinate form for
mass, momentum, and energy for an incompressible fluid with no
motion and no horizontal variation of any quantity. Also assume
an inertial reference system.

(b) Repeat part (a), but for conditions of steady motion in one hori-
zontal direction (x, or x;) only and, like all other quantities, uniform
in horizontal directions.

Problem2.53 Show that heat energy changes in a fixed volume dV are given,
for a temperature change of d7T, by (oc,dTdV). You may assume that (pc,)
is constant. Following the basic procedures in deriving the basic conservation
equations, develop an equation for temperature in a fluid at rest. Although
there is no advective flow, assume that there is an average molecular velocity
U that must be considered in the balance. Also assume there is a source of
heat Q(x;, ) per unit volume, per unit time at each point of the fluid. Your
final result should look like
0

0
— = -VUb) + —
ot o)+ 0Cy

Problem 2.54 A rotating table is built for testing a scale model of a large
lake. If the horizontal length scale ratio is 1 : 10°, the vertical length scale
ration is 1 : 800 (this is a distorted scale model), and the lake is at latitude 44°
(N), how fast (in rpm) should the table be rotated in order to simulate Coriolis
effects? (Hint: first decide which are the important dimensionless numbers for
this problem, arising from scaling of the momentum equations.)

Problem 2.55 Show that in a natural water body with characteristic hori-
zontal dimension L and vertical dimension H, with H <« L, the characteristic
vertical velocity W should be much less than the characteristic horizontal
velocity U.
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3

Viscous Flows

3.1 VARIOUS FORMS OF THE EQUATIONS OF MOTION

Viscous flows are mathematically represented by solutions of the equations
of motion, based on momentum transfer in an elementary fluid volume. The
equations of motion for viscous flows are the Navier—Stokes equations intro-
duced in the previous chapter. For convenience, we repeat these equations
here, for cases in which variations in viscosity are negligible:

v
ot

where V is the velocity, ¢ is time, V is the gradient vector, p is the density, p
is the pressure, g is gravitational acceleration, Z is the elevation with regard
to an arbitrary reference, and v is the kinematic viscosity. In Appendix 1,
tables of Navier—Stokes equations for Cartesian, cylindrical, and spherical
coordinate systems are listed. In Appendix 2, relationships are given between
stress components and velocity components, as implied by the Navier—Stokes

o - 1 -
+(V-V)V = —V(p + pgZ) + vV*V (3.1.1a)
P

equations.
Using Cartesian tensor notation, Eq. (3.1.1a) is represented as
ou; ou; 1dp 0Z u;

E—'_uk@xk = o, ga—Xi —H}@ (3.1.1b)
where u; represents components of the velocity vector and x; represents
the coordinates. This equation incorporates four unknown quantities: three
components of the velocity vector and the pressure. Along with the continuity
equation, we thus have a system of four differential equations with four
unknowns. The solution of this system subject to appropriate initial and
boundary conditions provides the required information about the distribution
of the unknown quantities in the domain.

The distributions of velocities and pressure depend on the three space
coordinates, x, y and z, and the time coordinate, ¢. It should be noted that the
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order of the differential equation (3.1.1) varies with regard to the unknown
quantities, as well as with regard to the various coordinates. The velocity
components contribute terms of first order with regard to time and of both
first and second order with regard to the space coordinates. The pressure
contributes terms of first order with regard to the space coordinates. The order
of the partial derivatives indicates the number of boundary conditions needed
for the solution of this system of partial differential equations. The pressure
should be given at a certain point in the domain during all times. The velocity
distribution at initial conditions should be given for the whole domain. The
velocity at a sufficient number of boundaries should be given for the required
time period of the simulation. There are several typical boundary conditions
for the velocity vector, or its derivatives. The latter are related to shear stresses.
Generally, there are four typical boundary conditions for the velocity and the
shear stresses:

Boundary between the viscous fluid and a solid boundary — fluid
velocity is identical to that of the solid boundary, as the viscous fluid
adheres to the solid boundary.

Boundary between two viscous immiscible fluids — velocity and shear
stress at both sides of the interface are identical.

Boundary between two immiscible fluids with an extremely large differ-
ence of viscosity, e.g., liquid and gas — shear stress vanishes at
the interface between the two fluids. (An exception to this rule is
with wind-driven flows, where boundary shear stress is significant.
Momentum transfer at the air/water interface is discussed in Chap. 12,
and a particular application, in a geophysical context, is discussed in
Chap. 9.)

Finite domain — the velocity has finite value at every point of the
domain.

As viscous fluid flow is basically a rotational flow, the equation of
motion (3.1.1) can be represented as an equation of vorticity transport. The
rotationality of the flow is represented by the distribution and intensity of the
vorticity. The vorticity is a kinematic tensorial characteristic of the flow field.
The tensor of vorticity is a second-order asymmetric tensor. Such a tensor
has three pairs of components. Each pair incorporates two components of
identical absolute value and opposite sign. Therefore the vorticity also can be
represented by a vector with three components. Each component of this vector
represents one pair of components of the vorticity tensor. By the employment
of Cartesian tensor notation, the vorticity vector is defined as

ou;  ouy

= — - — 3.1.2
@i ox,  ox; ( )
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where i, j, k = 1, 2, 3. One half of the vorticity represents the angular rotation
rate of an elementary fluid volume, as previously noted.

By cross differentiation and subtraction of component equations of
Eq. (3.1.1b), the pressure is eliminated from the equation of motion. Then
the expression of Eq. (3.1.2) can be introduced to obtain a vorticity equation,

Dw: . 2w
Doj 2 _ 0@ (3.13)
Dt 0xy, Bx,%

where
Da)j 86()]' Bwj
— =4y 3.14
Dt ot o, (3.1.4)

The first term on the LHS of Eq. (3.1.3) represents the total rate of change of
vorticity. The second term represents the deformation of a vortex tube. The
term on the RHS of Eq. (3.1.3) represents the diffusion of vorticity due to the
viscosity of the fluid.

In cases of two-dimensional flow the vorticity vector has a single compo-
nent, and the term representing the deformation of the vortex tube vanishes.
Then, Eq. (3.1.3) yields

dw dw 9w

T2 =Y 3.15
o " ox, T Vo G-12)

Also, for two-dimensional flows, it is possible to apply the expression for
the stream function, ¥. The stream function is related to components of the
velocity vector according to (see Chap. 2)

Y Y

== —— 3.1.6
oy V= ™ ( )

u=u =

By using the stream function, the vorticity in a two-dimensional flow field is
given by

v ou Py 3y
W= = - +
ax  dy

_ 3 8—y2> = -V =—Ay (3.1.7)

Introducing Eqgs. (3.1.6) and (3.1.7) into Eq. (3.1.5), we obtain

IAY I IAY B IA
Ay [ WIAY  WOAY _ Ay (3.1.8)
ot ay 0x ax dy

where AA = V4,
In order to obtain the essential parameters governing the physical
phenomena described by the Navier—Stokes equations, we nondimensionalize
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these equations by the employment of characteristic quantities of the flow field
(also see Sec. 2.9). As before, these quantities are

L U, p,v 3.1.9)

where L is a characteristic length of the domain, U is a characteristic velocity
of the flow, p is the density, and v is the kinematic viscosity of the fluid. The
following dimensionless parameters, symbolized with an asterisk, are then

obtained:
t*:% x?:% uf:%
3.1.10
_pEez el v G110
P oU? U LU

By introducing these dimensionless variables into Egs. (3.1.1), (3.1.5), and
(3.1.8), we obtain, respectively,

o’ Lot 8p L b 1 u; G111
Lt = .
o Foxp ax;  Re dx;?
dow* 8a) 1 32 * 3.1.12)
o ko ~ Re ot o
AA*Y* Yt OA*YF Ut dARYH 1
v yTanTY Ld v = —A*A*YF (3.1.13)

ot dy*  axr  ox* 9y Re
where Re is the Reynolds number and A* represents the dimensionless Lapla-

cian operator:

UL ., @
Re="" A=+ 9y (3.1.14)

The various forms of the equations of motion represented in the
preceding paragraphs are used to classify types of solutions of these
equations in the following sections. Generally, the Navier—Stokes equations
are nonlinear equations with often quite complicated solutions. It is therefore
convenient to make some classifications of families of solutions of these
equations, as shown below.

3.2 ONE-DIRECTIONAL FLOWS
One-directional flows are characterized by parallel streamlines. For conve-

nience, consider that the flow is along the x coordinate direction. Flow variables
may depend on space and time in cases of unsteady flow conditions. They
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depend only on the space coordinates for steady state conditions. Cartesian
coordinate systems are usually applied to describe domains characterized by
one- and two-dimensional flows. By applying cylindrical coordinates, we refer
either to domains with one-directional axisymmetric flows or to domains with
one-directional circulating flows.

3.2.1 Domains Described by Cartesian
Coordinates — Steady-State Conditions

At this stage we refer to a two-dimensional domain in which y is the coordinate
perpendicular to the flow direction. The continuity equation is

ou v

—+—=0 3.2.1

ox  dy ( )
where u is the velocity in the x direction, and v is the velocity in the y direction.

According to the definition of one-directional flow, the velocity component,
v, vanishes in the entire domain. Therefore, Eq. (3.2.1) reduces to

a
B0 u=uOnn (3.22)
ox

We now introduce a quantity called piezometric pressure, defined by

v=0

P =p+pgZ (3.2.3)

Substituting Egs. (3.2.2) and (3.2.3) into Eq. (3.1.1), we obtain the general
differential equations representing one-directional flows in a two-dimensional

domain,
ou 1ap 0%u
ou_ _lop ou (3.2.4)
ot o Ox 9y?
a /
0= al =p =pxn (3.2.5)
y

For steady-state conditions, the LHS of Eq. (3.2.4) vanishes. Then
Egs. (3.2.4) and (3.2.5) yield
d’u  1dp
2222 (3.2.6)
dy? u dx
where p is the viscosity (u = pv).
Note that in cases of steady state © = u(y) and p’ = p’(x) only. There-
fore the derivative expressions of Eq. (3.2.6) are not partial derivatives. If a
derivative of a function depending on y is identical to the derivative of a
function depending on x, then both derivatives must be equal to a constant.
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Therefore Eq. (3.2.6) implies that each one of its terms is equal to a constant,
and after integrating twice we find

du ydp

— == C 3.2.7

dy ndx TG ( )
2al ’

u=222 L ciy+c, (3.2.8)
2u dx

where C; and C, are integration constants determined by the boundary condi-
tions of the flow domain. Thus two boundary conditions with regard to the
velocity field are needed to obtain a complete description of the velocity distri-
bution in the domain. Another set of boundary conditions is needed to obtain
the piezometric pressure gradient and the pressure distribution in the domain.

Multiplying Eq. (3.2.7) by the viscosity, we obtain the expression for
the shear stress distribution. Integrating Eq. (3.2.8) between y; and y,, which
represent locations of two different streamlines, we obtain the expression
for the discharge per unit width flowing between these two streamlines. The
expressions for the shear stress (t) and the discharge per unit width (g) are
given, respectively, by

*

r=y2P 4 uc, (3.2.9)
dx
and
Ldp* 5 5 Ci 5
- — —(y: — C — 3.2.10
1= 6u dx 02 =)+ 507 =) + C202 = ) ( )
Now, instead of piezometric pressure, we may refer to the following
quantities:
/ dh
[ N (3.2.11)
08 dx

where & is the piezometric head, and J is the hydraulic gradient. With regard
to pressure distribution in the domain, Eq. (3.2.5) yields

ap oz
— +pg—=0 (3.2.12)
ay ay
Direct integration of this expression and the use of Eq. (3.2.6) gives
2u
p= po—pg(Z—Zo)Jrud—yz(x—xo) (3.2.13)

where subscript 0 is associated with a point of reference, representing the
boundary condition for pressure.
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In summary, the family of steady-state one-directional flows is well
represented by simple analytical solutions. Differences between solutions, or
members of this family, originate from the different boundary conditions that
determine the values of the integration constants C; and C,. The special case
of laminar flow between parallel flat plates, called plane Poiseuille flow, is
often used to approximate flow through porous media. Physical models, called
Hele—Shaw models, have been used extensively to simulate flow in aquifers.
Such a model consists of parallel vertical plates, separated by a small gap
within which a viscous liquid flows. Although this is viscous laminar flow,
namely rotational flow, the average velocity in the cross section of the gap
is closely represented as if it originated from a potential function given by
the piezometric head. Such a presentation is consistent with basic modeling
of homogeneous flow through porous media. It also is interesting to note that
flows through fractures in geological formations are usually considered in
terms of flow between parallel flat plates.

3.2.2 Domains Described by Cylindrical
Coordinates — Steady-State Conditions

With regard to cylindrical coordinate systems, two types of flow with parallel
streamlines can be identified. One type incorporates axial flows and the other
incorporates circulating flows. For axial one-directional flow in the x direction,
the Navier—Stokes equations are

ou 10p n 10 ( 8u> (3.2.14)
— =t | r— 2.
ot p ox ror \ or
10p
0=—-F (3.2.15)
p or

where x is the axial coordinate, r is the radial coordinate, and u is the axial
flow velocity.
In cases of steady-state conditions, Eq. (3.2.14) simplifies to

d [ du rdp
—|r— ) =— (3.2.16)
dr \ dr uw dx

The LHS of this equation is a function of r, and the RHS is a function of x.
Therefore each side of this equation must be a constant, and after integrating
twice we find

du_Ldp/_i_Q

— = (3.2.17)
dr 2w dx r
r*dp
u=— +Cilnr+C, (3.2.18)
4 dx
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where C; and C, are integration constants determined by the boundary condi-
tions of the problem.

In the case of viscous pipe flow, termed Poiseuille flow, C| should
vanish, to allow finite values of the velocity in the entire cross-sectional area
of the pipe (i.e., when r approaches 0), and the value of C, is determined
by the vanishing value of the velocity at the wall of the pipe. Therefore, for
viscous pipe flow, Eq. (3.2.18) yields

R>dp ry\2
=—— 1—(= 2.1
! 4 dx [ (R) } (3.2.19)

where R is the pipe radius. Integrating this result over the pipe cross section,
we obtain the discharge flowing through the pipe,
TR*dp'
8u dx

0= (3.2.20)
This equation is called the Poiseuille—Hagen law. It was derived by Poiseuille
from experiments with small glass tubes that were designed to simulate blood
flow through blood vessels. Ironically, Poiseuille flow is very different from
real blood flow, which is subject to strong pressure variations (pulsating
flow) and flows through flexible tubes. Nonetheless, experiments of Reynolds,
Stanton, and others have indicated that Eq. (3.2.20) is applicable as long as the
Reynolds number (Re = VD/v) is smaller than about 2000. In addition, flow
through porous media is often simulated as a flow through stochastic bundles
of capillaries. Such a simulation has been shown to provide an adequate char-
acterization of flow and transport processes in porous matrices.

By dividing Eq. (3.2.20) by the cross-sectional area and applying
Eq. (3.2.11), the average velocity is obtained as

D?gJ

V= 3.2.21
32v ( )

where D is the pipe diameter. This expression can be represented in the form
of the Darcy—Weissbach equation as

64 1 V2

The term (64/Re) represents the Darcy—Weissbach friction coefficient for
laminar pipe flow.

In the case of annular flow, the velocity vanishes at the inner tube
(where r = ry), as well as at the outer tube (where r = r;). Introducing these
boundary conditions into Eq. (3.2.18), we obtain the following expressions for
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the constants of Eq. (3.2.18):
22

— dn*
= _n27h 4P (3.2.23)
4uln(ry/ry) dx
dp* 2 2 2 _ .2 1
c, =P |t n o Intan) (3.2.24)
dx 81 8u  In(ra/r1)

For two-dimensional circulating flow, there is only a single component
of the velocity in the 6-direction. The Navier—Stokes equations yield, when
there is no pressure gradient in the flow direction,

2 19 /
o 2% (3.2.25)
r p or
0 d2v+1dv v d ld( ) (3.2.26)
= — = | =u— |0 2.
M\ar T rar 2 Rar |var
a /
0=_2 (3.2.27)
0z

where v is the rotation velocity (velocity in the 6 direction), r is the radial
coordinate, and z is the vertical coordinate. Equations (3.2.25) and (3.2.27)
indicate that p’ is a function only of r. Integration of Eq. (3.2.26) provides
the velocity distribution,

B
r

where A and B are constants that must be determined by the boundary condi-
tions.

If the fluid occupies the space between two coaxial rotating cylinders,
whose angular velocities are €2; and €2,, respectively, then the values of A
and B are given by

Q12 — Qr?
A=227 00 (3.2.29)
ry —
(1 — Q)i

3.2.30
(r% — r12) ( )

(recall that r; and r; are the radii of the inner and outer cylinders, respectively).
In the limiting case of r, = oo, Egs. (3.2.28)—(3.2.30) refer to steady

flow in an infinite domain around a rotating cylinder whose radius and angular

velocity are r; and €2, respectively. In such a case, these equations yield

2
_erl
v =

r

(3.2.31)
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This expression is identical to the velocity distribution in a potential (irrota-
tional) vortex with circulation I', given by

[ =27Qr? (3.2.32)

The solution of the Navier—Stokes equations given by Eq. (3.2.31) is an inter-
esting case in which the potential flow solution is identical to that of the
viscous flow solution.

In the limiting case of 2; = r; =0, Egs. (3.2.28)—(3.2.30) represent
steady flow inside a cylindrical rotating tank, whose radius and angular velocity
are r, and 2, respectively. In this case, the result is

v = Qr (3.2.33)

This expression represents a rotational vortex.

3.3 CREEPING FLOWS

For very small Reynolds number, namely with small flow velocities and small
size of the body, or with large viscosity of the fluid, the nonlinear inertial terms
of the Navier—Stokes equations are much smaller than the viscous friction
terms. Such flows are called creeping flows. In these flows, the Navier—Stokes
equations can be approximated by the Stokes equations,

ou; ap’ 9%u;

e 3.3.1
Pa = T MR 63D

These equations (for each component), along with the equation of continuity,
represent the basic equations for creeping flows. Considering a solid body
subject to slow movement in the domain, or slow movement of fluid around
a stationary solid body, the fluid velocity at the body surface is equal to that
of the solid surface. This provides a convenient boundary condition. Also, by
taking the divergence of Eq. (3.3.1), we obtain

82p
— =0 3.3.2
e (3.3.2)

This indicates that the pressure is a harmonic function in creeping flows.
In two-dimensional, steady creeping flow, Eq. (3.3.1) becomes
Vi =0 (3.3.3)

indicating that the stream function is a biharmonic function (for the assumed
conditions).
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Considering a very slow motion of a sphere of radius ry, with velocity

U in the x direction, the pressure function is given by
3 uUrpx

P=75"73 (3.3.4)
where the center of the sphere represents the origin of the coordinate system
and p — 0 for r — oo has been assumed. Incorporating both the net pressure
force implied by Eq. (3.3.4) and skin friction drag, the drag coefficient for the
sphere is

Fp 24
== — (3.3.5)
(p/2)mrgU?  Re
where Fp is the total drag force applied to the moving sphere. Equation (3.3.5)
can be used to measure the viscosity of fluids. It is useful with regard to settling
of solid particles in a fluid medium (see Chap. 15).

Experimental results indicate that expression (3.3.5) is accurate for
extremely small values of Reynolds number. However, the velocity distribution
obtained using the Stokes equation (3.3.1) is not usually very accurate,
particularly at larger distances from the sphere. This is because of the
formation of a wake region behind the sphere. The solution of the Stokes
equation yields a velocity distribution that is symmetrical with regard to a
plane perpendicular to the flow direction and passing through the center of the
sphere. In other words, it does not incorporate a wake region. This result is
also seen by considering the orders of magnitude of the inertial and viscous
terms of the Navier—Stokes equations,

ou; U? 92u; ( U)
— =0 p— =0(pu—= 3.3.6
puy o, (p " > M o m3 ( )

These expressions indicate that the ratio between the inertial and viscous terms
is proportional to r. Therefore for distances much greater than ry the viscous
terms become relatively unimportant, and it may be concluded that the solution
of the Stokes equation is not applicable at large distances from the sphere.

An improvement of Stokes’ analysis was provided by Oseen, who consid-
ered the deviation imposed on the uniform flow U by the presence of the
sphere. Therefore he considered a velocity distribution,

u=U+u v=1 w=w (3.3.7)

Cp

where u’, v/, and w' are the velocity deviations in the x, y, and z directions,
respectively. By introducing Eq. (3.3.7) into the Navier—Stokes equations and
neglecting the second-order terms with regard to the velocity deviations, Oseen
obtained

o, n Uau’. 1dp &u,

Wiy _ _19p 3.3.8
o U pan ! and G:3:8)
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Here, x represents the direction of the uniform flow U, and x; represents each
of the coordinates. The terms of Eq. (3.3.8) which were added to Eq. (3.3.1)
have been shown to improve the calculation of creeping flow at large distances
from the center of the sphere.
Applying the divergence operation on Eq. (3.3.7), the continuity equation
is written as
oy,
— =0 (3.3.9)
Bxk
(since the uniform flow also must follow continuity). For steady flows, it is
possible to consider that each component of the velocity deviation from the
uniform flow velocity, U consists of two parts, given by

up = uy; + u; (3.3.10)
where u); is a potential flow component, originating from a potential function
¢. Therefore
(3.3.11)

It is considered that u}; is associated with the balance of the pressure gradient
term of Eq. (3.3.8), whereas u); is associated with the frictional force. By
applying these assumptions, and introducing Eq. (3.3.11) into Eq. (3.3.8), we

obtain
¢
p=pU— (3.3.12)
ox
The components u); are represented by
ow U
8)Ci v
where §; = 1, and §, = §3 = 0. The function W must satisfy
114 W
w_v . (3.3.14)
ox U ox;

The appropriate solution of Egs. (3.3.11) and (3.3.14) represents the essence
of Oseen’s analysis. Such solutions were obtained for a sphere moving at a
uniform speed U. In this case the drag coefficient is

o= (1+3r (3.3.15)
= — —RC .
P~ Re 16

Generally, the drag coefficient can be expressed in terms of a series
expansion of the Reynolds number. Equation (3.3.15) represents the first and
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second terms of such a series. Additional terms have been developed in more
recent studies. Stokes’ solution of Eq. (3.3.5) is considered to be applicable
in cases of Reynolds numbers smaller than one. Oseen’s solution given in
Eq. (3.3.15) is applicable up to Reynolds numbers equal to 2. For higher
Reynolds numbers more terms should be added to the power series given by
Eq. (3.3.15). Flow through porous media can be considered as creeping flow
around the solid particles that comprise the porous matrix. When the Reynolds
number of the flow, based on a characteristic size of the matrix particle, is
smaller than unity, then Darcy’s law is useful (see Sec. 4.4), and the gradient
of the piezometric head is proportional to the average interstitial flow velocity,
as well as the specific discharge.

3.4 UNSTEADY FLOWS

There are several exact solutions of the Navier—Stokes equations for unsteady
flows. Examples of such flows in the present section also are used to visualize
the basic concept of the boundary layer.

3.4.1 Quasi-Steady-State Oscillations of a Flat Plate

Consider a flat plate subject to cosinusoidal oscillations. The domain is subject
to a uniform pressure distribution. Therefore the Navier—Stokes equations
(3.1.1) reduce to

ou u

P va—yz p’ = constant (3.4.1)

It should be noted that Eq. (3.4.1) is identical to the diffusion equation,
which is applicable in problems of heat conduction or mass diffusion. The
exact solution of Eq. (3.4.1) given in the following paragraphs is similar to
some particular solutions of heat conduction in solids. Further discussion of
diffusion is presented in Chap. 10.

The differential Eq. (3.4.1) is subject to the boundary conditions,

u = Uy cos(wt) at y=0
u=0 at y — 00 (3.4.2)

Noting that we are looking for a quasi-steady-state solution, only two spatial
boundary conditions are required to solve this equation. We assume that the
solution is of the form

u = Re[U(y) exp(iwt)] (3.4.3)
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Here, Re represents the real part of the complex quantity. We introduce
Eq. (3.4.3) into Eq. (3.4.1) to obtain

d’U o

— - —U=0 344

FTE I ( )
By solving this differential equation and presenting the boundary conditions
for U, which are implied by Eq. (3.4.2), we obtain

U = Ugexp [—y\/g(l + i)} (3.4.5)

Finally, introducing Eq. (3.4.5) into Eq. (3.4.3), the complete solution is
obtained,

u= Upexp (—y\/g> cos <wt — y\/%) (3.4.6)

Equation (3.4.6) indicates that the amplitude of the velocity oscillations
is subject to exponential decrease with the coordinate y. The practical outcome
of this expression may be evaluated by considering the value of y = §, where
the amplitude is 1 percent of its value at the flat plate. From Eq. (3.4.6),

5=/ In(100) (3.4.7)
Tf

where f is the frequency of the plate oscillations (w = 27 f). For water, with
kinematic viscosity v = 107% m?/s, and assuming a frequency f = 1 s™!, we
obtain § = 2.6 x 1073 m. This result indicates that only a very thin layer of
fluid adjacent to the flat plate is subject to oscillations induced by the flat
plate motion. The layer in which the oscillation amplitude is larger than 1
percent of the flat plate amplitude can be termed as a boundary layer. The
phenomena of boundary layers is typical of regions close to solid boundaries
of flow domains occupied by fluid with low viscosity. Boundary layers are
discussed in more detail in Chap. 6.

3.4.2 Unsteady Motion of a Flat Plate

Consider a flat plate at rest at time ¢ < 0 but moving at constant velocity U
for t > 0. The basic differential Eq. (3.4.1) also is applicable in this case, but
the boundary conditions are different. In this case

u=20 at <0 for all values of y
u=U at t>0 for y=20 (3.4.8)
u=20 for y > oo
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It is convenient to define a new dimensionless coordinate,

y
= 3.4.9
n= N ( )
The modified boundary conditions, in terms of 1, are
u="U at n=~0
(3.4.10)

u=20 at n— o0

The second boundary condition of Eq. (3.4.10) incorporates both the first and
the third boundary conditions of Eq. (3.4.8).
Using the definition (3.4.9), it is easy to find
w d Pu  d? > w d
u_duy  Fu_dwnyt o m_du ny g
dy dny 0y dn* \y o dn \ 2t
Introducing Eq. (3.4.11) into Eq. (3.4.1), integrating twice, and introducing
the boundary conditions of Eq. (3.4.10), we obtain

u="U (1 2 "e—¥2dg> — U(l —erf(n)) = U erfc(nn)  (3.4.12)
V7 Jo

where erf and erfc are the error and complementary error functions, respec-
tively, and £ is a dummy variable of integration. Again referring to water, as
an example, we find that only a thin layer adjacent to the flat plate takes part
in the flow, even up to extremely large times.

3.5 NUMERICAL SIMULATION CONSIDERATIONS

Numerical schemes aiming at the solution of the mass conservation and
Navier—Stokes equations are usually based on finite difference or finite
element methods. By these methods the numerical grid and the basic equations
of mass and momentum conservation are used to create a set of approximately
linear equations, which incorporate the unknown values of various variables at
all grid points. The basic four equations of mass and momentum conservation
incorporate four unknown variables for each grid point. These unknown values,
for the three-dimensional domain, are the three components of the velocity
vector and the pressure. If the domain is two-dimensional, or axisymmetrical,
then the two components of the velocity vector can be replaced by the stream
function.
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As previously noted, the number of boundary conditions needed to solve
a differential equation is determined by its order and the dimensions of the
domain. With regard to the spatial derivatives of the velocity components,
the Navier—Stokes equations are second-order partial differential equations.
Therefore two boundary conditions are needed for each velocity component,
with regard to each relevant coordinate. Velocity components also are subject
to the first derivative in time. Therefore the initial distribution of all velocity
components in the entire domain is needed. The pressure is subject to the
first spatial derivative. Therefore boundary conditions also are required for
the pressure, with regard to each relevant coordinate. If the stream function
is applied, in a two-dimensional or axisymmetrical domain, then the basic set
of four differential equations can be replaced by the fourth-order differen-
tial equation, which is given by Eq. (3.1.8). The solution of this equation
requires four boundary conditions for the stream function with regard to
each relevant coordinate, and initial distribution of the stream function in
the domain.

For numerical simulation of the Navier—Stokes equations, it is common
to consider applying the vorticity tensor, as shown in Eq. (3.1.3), or the
vorticity vector, as given by Eq. (3.1.5). However, boundary conditions for
vorticity are derived from appropriate considerations based on values of the
velocity components.

Typical boundary conditions for the solution of the Navier—Stokes
equations have been considered in Sec. 3.1. However, at this point it is
appropriate to review the various types of boundary conditions, useful for
the numerical solution of the various forms of these equations.

3.5.1 Basic Presentation

The solution of Eq. (3.1.1) is based on the following considerations:

At a solid surface, all velocity components are identical to those of the
solid surface; if the solid surface is at rest then all velocity components
vanish.

At the interface between two immiscible fluids, pressure and components
of the velocity and shear stress are identical at both sides of the
interface; shear stress components are proportional to the gradients of
the velocity components.

At the interface between two immiscible fluids with large differences in
viscosity, e.g., liquid and gas, the shear stress vanishes (except for the
case of wind-driven flows).

At the entrance of the domain and/or exit cross sections the distribution
of the velocity components is prescribed.
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At the entrance or exit cross section of the domain the pressure distri-
bution is prescribed.
The initial distribution of velocity components should be given.

3.5.2 Presentation with the Stream Function
For the solution of Eq. (3.1.8), the following considerations hold:

At a solid surface, spatial derivatives of the stream function are identical
to velocity components of the solid surface; if the solid surface is
at rest, spatial derivatives of the stream function vanish. The solid
boundary represents a streamline at which the stream function has a
constant value.

At the interface between two immiscible fluids, the first and second
gradients of the stream function are identical on both sides of the
interface. The interface represents a streamline, at which the stream
function has a constant value.

At the interface between two immiscible fluids with large viscosity
difference, e.g., liquid and gas (the interface is considered as the
free surface of the liquid), the second gradient of the stream function
vanishes. The free surface of the fluid is a streamline.

The initial distribution of the stream function in the domain should be
given.

It should be noted that interfaces and free surfaces usually represent a
sort of nonlinear boundary condition with regard to the velocity components,
since the position of the boundary itself (where the boundary condition is to
be applied) is part of the solution to the problem. Furthermore, determination
of the exact location of free surfaces is very complicated.

Difficulties in solving the Navier—Stokes equations are very often asso-
ciated with the nonlinear second term of Eq. (3.1.1), or the second and third
terms of Eq. (3.1.8). If the flow is dominated by the nonlinear terms, then
the numerical simulation is extremely complex, and some methods should
be used to obtain a convergent numerical scheme. Furthermore, if boundary
conditions are nonlinear, then the numerical solution may require significant
approximations to assure convergence of the simulation process. The topic of
“computational fluid mechanics” refers to different methods of solving these
differential equations. For the present section, we consider only the numer-
ical solution of creeping flows. In such flows the right-hand side terms of
Eq. (3.1.8) are very small. Therefore the Navier—Stokes equations are approx-
imated by
RV 1A\ L A

4

AAYV =0 — +2——4+ —=0 3.5.1
X + ax2 9y? + oyt ( )
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This is an elliptic differential equation (see Sec. 1.3.3).
As an example, consider a domain bounded on a square, where

W=0 a x=01 y=01

o

— =0 at x=0,1 y=0 (3.5.2)
on

o

on a Y

and a derivative with regard to n is the normal derivative. We introduce a new
variable w(x, y), which is defined by

Aw 32\11+32\1/
= — — = W
ox2 9y? 353
Pw 9w 3-5-3)
Aw=—+—=0
YT e + dy?

The terms of these expressions can be approximated using the following finite
difference approximations:

(@) ~ Qit1/2,; — Qic1p2,) (3.5.4)
/g Ax
(@) o S = Qi (3.5.5)
3y /i Ay
2\ 1 [[e0 3R
<8x2>,»,j ~ A7)6 <3x)i+1/2,j B <ax)il/2,j1
o Qi1 =29+ Qicip, (3.5.6)
(Ax)?
20 1 o2 02
<B—yz>i’j ~ Ay (@)’j+]/2 - (3_Y>i,j+1/2]
o SQijrip =28+ Qi1 (3.5.7)

(Ay)?

where Q2 is a dummy variable representing W or w. Subscripts i, j refer to the
point i, j of the finite difference grid shown in Fig. 3.1.

Since the numerical grid shown in Fig. 3.1 consists of small squares,
for simplicity we assume that Ax = Ay = k. Therefore by introducing these
values and Egs. (3.5.6) and (3.5.7) into Eq. (3.5.3), we obtain

Wit + Wisrj+ Wi + Wi — 4 = kKw

(3.5.8)
Wit j Wit +Wijp1 + w1 —4w; ;=0
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Figure 3.1 The finite difference grid.
Also, the boundary conditions of Eq. (3.5.2) become
=0 on all boundaries
/) (3.5.9)
w = —— on all boundaries
on?

The set of linear equations obtained by considering all grid points and
using Eqgs. (3.5.8) and (3.5.9) can be solved by an appropriate iterative proce-
dure. Basically the set of two differential equations given by Eq. (3.5.3)
is solved very similarly to the solution of the Laplace equation, which is
discussed in greater detail in the following chapter.

PROBLEMS
Solved Problems

Problem 3.1 Introduce the expression for the vorticity vector into Eq. (3.1.5),
to obtain an equation of motion based on the velocity components.
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Solution
The vorticity vector in a two-dimensional flow field is given by

. v Ou

w =
ox  dy
Introducing this expression into Eq. (3.1.5), we obtain
0%v 0%u n 0%v 0%u n 0%v 0%u
I T v _ -~
oaxdr  dyot ox2  dyox oxdy  0y?
(831) u n v 83u)
= — — ——= —_— = —
ox3  9yax2  axdy?r 9y’

Problem 3.2 Figure 3.2 shows a plate with an orientation angle «, on which
a fluid layer with thickness b is subject to flow with a free surface. The
viscosity and density of the fluid are p and p, respectively.

(a) Determine the value of the gradient of the piezometric head in the
x-direction.

(b) Determine the value of the pressure gradient in the y-direction.
What is the value of the pressure at the channel bottom?

(c) Determine the velocity and shear stress distributions.

(d) Determine the discharge per unit width and the average velocity.

Solution

(a) From Fig. 3.2,
0Z .
— = —sina: — =cos«
ox

The gradient of the piezometric pressure in the x-direction is given by

dp* 0p n oZ dp . 7
= — _— = — = SiInoe = —
dx ox ox ox pgsIne P&

Along the streamline representing the free surface of the fluid, the pressure
vanishes. Therefore the pressure gradient in the x-direction is zero along
that streamline, as well as along other streamlines, and the piezometric head
gradient in the x-direction is given by J = sina.
(b) According to Eq. (3.2.12) and the value of the partial derivatives of
Z, as given in the previous part of this solution, we obtain
8—p—i-pgcosozzo = a—pz—pgcosoz
dy dy
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Figure 3.2 Definition sketch, Problem 3.2.
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Direct integration of this expression, while considering that the pressure
vanishes at the free surface of the fluid layer (at y = b), results in

p=pg—y)cosa

This expression indicates that the pressure at the fluid layer bottom is (p),—o =
pgb cos a.

(c) Due to the very low viscosity of air, the shear stress vanishes at the
free surface of the fluid layer. Therefore according to Eq. (3.2.9), we obtain

b b
0= —bpgsina + uC, = Clzﬁsinaz—gsina
n v

At the bottom of the fluid layer (y = 0), the velocity vanishes. Therefore
Eq. (3.2.8) yields C, = 0. By introducing values of the piezometric head
gradient and those of C;| and C, into Eqgs. (3.2.8) and (3.2.9), we obtain the
following expressions for the velocity and shear stress distributions, respec-
tively:

; 2
uzgsmoe (by—%) T=(b— ypgsina
v

(d) While referring to Eq. (3.2.10), we may consider that y; = 0, and
v, = b. By introducing values of the piezometric head gradient and those
of C; and C, into Egs. (3.2.10), we obtain the following expression for the
discharge per unit width and the average flow velocity, respectively:
gh’sina g gb*sina
q = — V = — _—
3v b 3v

Problem 3.3 A fluid layer flows between two plates, with orientation angle «
with respect to horizontal. The thickness of the fluid layer is . The lower plate
is stationary. The upper plate moves upward with velocity U. The pressure at
the bottom of the fluid layer is given at two points: at x = 0 the pressure is
Po, and at x = L the pressure is p;. The viscosity and density of the fluid are
u and p, respectively.

(a) Determine the value of the gradient of the piezometric head in the
x-direction.

(b) Determine the pressure distribution in the entire domain.

(c) Determine the velocity and shear stress distributions.

(d) Determine the discharge per unit width and the average velocity.

(e) Determine the power per unit area that is needed to move the upper
plate.
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Solution

(a) From geometrical considerations,

Z ) Z

— = —sinae: — =cosw

ox ay

The gradient of the piezometric pressure in the x-direction is then given by

dp* _9p  9Z _ pL— po

— pgsina = —pgJ

dx  ox | ox L
N J=PoTPL | Gng
pgL
(b) From part (a),
op _ pL—po
w - I = p=po+? L PP+ £ ()

where f(y) is a function of y that vanishes at y = (. Differentiation of the
last expression yields

0
l—f()

According to Eq. (3.2.12) and the value of the partial derivatives of Z, as
given in part (a) of this solution, we obtain

ad a
£+pgcosa=0 = —pz—pgcosazf’(y)

dy dy
Direct integration of this expression yields
PL — Po
f(y) = —pgycosa = P=pot — X~ pgycosa
This expression indicates that the pressure at x = 0 at the top of the fluid
layer is

(P)y=b = po — pgbcosa

(c) At the fluid layer bottom (y = 0), the velocity vanishes. Therefore
by using Eq. (3.2.8), we find C, = 0. At the upper plate the fluid velocity is
identical to that of the moving plate. Therefore Eq. (3.2.8) yields for y = b,

b? —
-U = <pr—pgsinoe)+C1b

2[L L
b (po—pL
2u L

. U
= C, = —l—,ogsma)—z
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By introducing values of the piezometric pressure gradient and those of C,
and C, into Egs. (3.2.8) and (3.2.9), we obtain the following expressions for
the velocity and shear stress distributions, respectively:

b — U

u= ﬂ (% +pgsina> (by — y*) — Ey
b — U
=3 (po L‘DL +pgsina> (b—2y)—,uz

(d) While referring to Eq. (3.2.10) we consider that y; = 0 and y, = b.
By introducing values of the piezometric pressure gradient and those of C| and
C, into Egs. (3.2.10), we obtain the following expressions for the discharge
per unit width and the average flow velocity, respectively:

P (n—p + pgsin ub
= — o _——
=0\ L rg 2
b* (po—pL U
V=— i - —
= 12u< L +pgsm“) 2
(e) The power per unit width that is needed to move the upper plate is
given by
U - U?b
N = (tu)y—p = — (Po 7 PL +pgsina> + —

Problem 3.4 Determine the settling velocity of a sand particle in water. The
particle may be assumed to be approximately spherical, with a diameter d =
0.2 mm. Its density is p; = 2,400 kg/m?>. The density and kinematic viscosity
of the water are py, = 1,000 kg/m? and v = 10~ m?/s, respectively.

Solution

The settling velocity is found by setting up an equilibrium force balance. First,
the submerged weight of the sand particle is
4_ 3 4 —343
W= gnro(,oS — pw)g = 571(0.1 x 1077)7(2,400 — 1,000)
=5.86x 107" N

where rg = d /2 is the radius of the particle. This expression is equal to the drag
force during steady-state settling of the sand particle. According to Eq. (3.3.5),

24v py,
= —v'o—y'rrgU2
Ud 2
w
= U= ——
67T Py VT
5.86 x 107?

= =3.1x1073 m/s
6m x 1,000 x 1076 x 0.1 x 103
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However, in order to use this equation, the Reynolds number must be checked.
The value of the Reynolds number is

Ax1073%x02x 1073
Rer_d=3 x 107 x 0.2 x 10 —0.62
v 10-6

which is less than 1. Therefore, use of the Stokes approximation was appro-
priate.

Problem 3.5 A flat plate is subject to oscillatory motions, with velocity
given by

Uy sin(wt)

On top of the plate there is a semi-infinite fluid domain with uniform
pressure distribution. The density and kinematic viscosity of the fluid are p
and v, respectively.

(a) Determine the velocity distribution in the domain.

(b) Determine the shear stress distribution. What is the phase lag
between the maximum values of the shear stress and that of the
velocity?

(c) What are the force and power per unit area needed to move the
plate? What are the maximum values of these parameters?

Solution
(a) This problem is represented by the differential Eq. (3.5.1), subject to the
following boundary conditions:

u = Uy sin(wt) at y=20

u=20 at y— 00

These boundary conditions suggest consideration of the following expression
for the velocity:

u = Im [U(y) exp(iwt)]

Similarly as in Egs. (3.5.4)—(3.5.6), the velocity distribution is found as

[o\ . [ w
u:UgeXp<—y 5>sm<wt—y Z)
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(b) The shear stress is given by
ou o U w
T=pVv— = —pVy/ — exp | —yi/ —
o dy p o0 p y o
. ; [ w n , [
sin — — cos — —
wrmy 2v ey 2v

The maximum value of y is obtained when
w

. w T
sm(wt—y 5):1 = wt —y 5=5

The maximum value of 7 is obtained when

. [ w [ w
sin | wf — yy/ — | +cos|wt —yy/— | > max
( 21}) < 2v>
= t @ il
wt — — = —
Waw T s

Therefore the phase difference between up,x and Tyax is /4.
(c) The force per unit area needed to move the plate is equal to the
negative value of the shear stress at y = 0, namely

F _ _ va .
1= —(T)y=0 = p4/ > o[sin(wt) 4 cos(wt)]

where F is the force and A is the area of the plate. The power needed to move
the plate is equal to the product of that force with the velocity of the plate, or

N_! _! ()y= A/ _21) 2[ in(wt)][sin(w?) (wr)]
= —0 = Sin Sin cos
U)y=0 = P Uy [0) wt) + w
The maximum value of this parameter is obtained when {sin(wt) [sin(wt)+

cos(wt)] — max}. Differentiation of this expression indicates that the maxi-
mum value of the power is obtained when

1
wt=n<n—4> where n=12...

Unsolved Problems
Problem 3.6 The velocity distribution for flow between two plates is given by

()

u=U
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YA

Velocity distribution

Figure 3.3 Flow between two plates, Problem 3.6.

where b is the gap between the two plates, U is the velocity at the centerline
of the fluid layer, and y is the distance from the centerline (see Fig. 3.3).

(a) Show that the flow is a rotational flow. What is the vorticity distri-
bution in the fluid layer?

(b) What boundary conditions are satisfied by the velocity distribution?

(c) Considering that the characteristic length and velocity are the gap
between the plate and the average flow velocity, respectively, what
is the expression for the dimensionless velocity distribution?

(d) What is the expression for the Reynolds number?

Problem 3.7 Water flows on an oblique plate forming a roof, as shown in
Fig. 3.4. The water flows as a fluid layer with thickness » = 1073 m. The
water density is p = 1,000 kg/m?3. Its kinematic viscosity is v = 107¢ m?/s.
The slope of the roof is & = 30°. Due to wind gusts, the surface of the flowing

Flowing water layer

Figure 3.4 Flow along a sloping surface, Problem 3.7.
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water layer is subject to a shear stress 7 = 2.5 Pa, in the upward direction of
the roof.

(a) What is the water discharge per unit width of the roof?
(b) Prove that the flow is laminar.
(c) What is the shear stress applied on the roof?

Problem 3.8 A gap of thickness » = 5 x 10~* m separates two vertical belts
and is occupied by viscous oil, whose density is p = 800 kg/m?, as shown
in Fig. 3.5. The viscosity of the oil is u = 8 x 1072 Pa s. One belt moves
upward with a velocity of V| =2 m/s. The other belt moves downward. The
gravitational forces and the movement of the belts only affect the flow of the
oil layer. The net discharge of the oil is zero.

(a) What is the velocity of the second belt?
(b) Draw a schematic of the velocity and shear stress distributions in
the oil layer.

Problem 3.9 Figure 3.6 shows a “belt pump”, which diverts oil from a lower
tank to an upper one. The density of the oil is p = 800 kg/m? and its viscosity
is 1t = 8 x 1072 Pa s. The belt moves with velocity U = 0.2 m/s. The thick-
ness of the oil layer is » =2 x 1072 m. The orientation angle of the belt is
6 = 45°. The horizontal distance between the two tanks is L = 5 m.

(a) What is the discharge delivered by the pump?
(b) What is the power needed to operate the pump?

Atmospheric pressure

Oil

Belt Belt

Atmospheric pressure

Figure 3.5 Flow of oil between two belts, Problem 3.8.
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Figure 3.6 Belt pump, Problem 3.9.

(c) What is the efficiency of the pump?
(d) What should be the thickness of the fluid layer which maximizes
the discharge?

Problem 3.10 The domain for a flow of oil is defined by the following
stream function:

3
5
v=v(s-35)

where U = 0.1 m/s and b = 0.05 m. The density of the oil is p = 800 kg/m?,
and its kinematic viscosity is v = 8 x 107> m?/s.

(a) Prove that the flow domain is the gap between two parallel plates,
where the size of that gap is 2b.

(b) What are the velocity and shear stress distributions in the flow
domain?

(c) What is the gradient of the piezometric head?

(d) What is the power loss along a unit length of the flow domain?

Problem 3.11 Figure 3.7 shows oil flowing steadily along a vertical wall
in a thin layer of thickness b = 3 x 107> m, with a discharge per unit width
g =3 x 1073 m?/s. The density of the oil is p = 800 kg/m>.

(a) What are the viscosity and kinematic viscosity of the 0il?
(b) What is the shear stress applied on the wall by the flowing 0il?
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b=3x10-3m

Wal

l

Direction of flow

Figure 3.7 Flow of oil along a vertical wall, Problem 3.11.

Problem 3.12 Qil flows due to gravity on an oblique plate in a layer of
thickness b =3 x 10~ m, as shown in Fig. 3.8. The angle of orientation
of the plate is 6 = 30° with respect to horizontal. The plate moves upward
with velocity V = 0.1 m/s. The kinematic viscosity of the oil is v =8 x
107> m?/s, and its density is p = 800 kg/m?>.

(a) Calculate and draw a schematic of the velocity and shear stress

distributions.
(b) What is the direction and value of the discharge per unit width?

Problem 3.13 Oil is located between two flat plates, as shown in Fig. 3.9.
The kinematic viscosity of the oil is v = 8 x 107> m?/s, and its density is p =

/

V=0.1m/s

\9:300

Figure 3.8 Flow of oil on a sloping surface, Problem 3.12.
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V=0.5m/s

Figure 3.9 Viscous flow between two plates, Problem 3.13.

800 kg/m>. The upper plate moves to the right with a velocity V = 0.5 m/s.
The lower plate is stationary. The gap between the plates has thickness b =
5 x 1073 m. The net discharge of the oil is zero.

(a)
(b)
(©)

(d)

What is the pressure gradient between the plates?

What is the shear stress at each one of the plates?

Where does the shear stress obtain its maximum and minimum
absolute values?

Draw a schematic of the velocity and shear stress distributions.

Problem 3.14  Qil flows out of a tank, as shown in Fig. 3.10. The oil density
is p = 800 kg/m? and its viscosity is u = 8 x 1072 Pa s. The difference in
elevation between the oil-free surface in the tank and the outlet is Ak =
12.2 m. The oil flows out through a pipe whose diameter and length are

i1

Ah=122m

Figure 3.10 Definition sketch, Problem 3.14.
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D =6x 107 m and L = 18.3 m. Piezometric head loss at the pipe entrance
is negligible.

(a) What is the gradient of the piezometric head along the pipe?
(b) What is the oil discharge?

(c) Is the flow laminar? Why or why not?

(d) What is the power loss due to the flow through the pipe?

Problem 3.15 A motor shaft, with diameter D; = 5 x 10~2 m, rotates at a
rate of n = 1,200 rpm, inside a bearing, as shown in Fig. 3.11. The internal
diameter of the bearing is D> = 5.02 x 102 m. Its length is L = 0.1 m. The
viscosity of the oil is & = 1072 Pa s. It occupies the gap between the bearing
and the shaft. The shaft and the bearing form a system of coaxial cylinders.

(a) What is the shear stress applied on the 0il?
(b) What is the power loss in the bearing?

Problem 3.16 Helium flows through a pipe of diameter D. The flow of
helium is different from that of other fluids in that the usual no-slip condition
at a solid boundary does not apply. There is some sliding at the pipe wall,
and the helium has some velocity at that location. The boundary condition at
the pipe wall is

= (2)
o=k = dV r=R

Bearing

h = 1200 rpm

Shaft

D, =5.02x102 m

- -
= i

Figure 3.11 Definition sketch, Problem 3.15.
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where r is the radial coordinate, R is the pipe radius, and K is a constant.

(a) Determine the velocity profile of the helium pipe flow.

(b) Determine the shear stress distribution.

(c) Determine the relationship between the discharge and the gradient
of the piezometric pressure.

Problem 3.17 Oil flows from container A to container B through a pipe
of length L = 10 m and diameter d = 1072 m, as shown in Fig. 3.12. The
kinematic viscosity of the oil is v =2 x 107* m?/s. The diameter of each
container is D = 1 m. When the flow starts, at r = 0, the oil level in container
Ais H; = 1 m, and in container B it is H, = 0.1 m. Steady flow conditions
may be assumed.

(a) Calculate the initial discharge and average flow velocity. Prove that
the flow is laminar.

(b) Develop the expression for the variation of oil levels in the contai-
ners. Find at what time the oil level in container B is equal to
0.5 m.

Problem 3.18 Figure 3.13 indicates two containers holding oil, with kine-
matic viscosity v =8 x 107> m?/s and density p = 800 kg/m>. The contai-
ners are connected by a pipe with length L = 500 m and diameter d = 5 x
10~2 m. The oil level in container A is H 1 =55 m, and in container B the
oil level is H, = 50 m. Assume that oil levels in both containers are kept
constant. Local head losses and the velocity head loss at the pipe exit may be
neglected.

Hy=1m

K

¢d=10‘2m

?

Figure 3.12 Definition sketch, Problem 3.17.

IH2=0.] m

L=10m

Y

-3
-
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Figure 3.13 Definition sketch, Problem 3.18.

(a) What are the oil discharge and the average flow velocity?
(b) What is the Reynolds number of the flow?

(c) What is the shear stress at the pipe wall?

(d) What is the power loss due to the oil flow?

Problem 3.19 Figure 3.14 shows a laboratory system similar to an infusion
system. At time ¢t = 0, the fluid level is at point A. The initial fluid volume
in the container is U = 10~3 m>. The container is a top open cylinder, with
initial fluid depth hy = 0.1 m. The kinematic viscosity of the fluid is v =
107> m?/s, and its density is p = 1,020 kg/m>. The fluid flows out of the
container through a tube whose length is L = 2 m and whose diameter is d =
1073 m. At the exit of the pipe the pressure is kept constant, at p = 10* Pa.
The bottom of the container is elevated to a level of H = 1.5 m above the
pipe exit. It may be assumed that the flow is steady, with variable head loss.

(a) What is the initial, maximum fluid discharge (at time ¢ = 0, when
the fluid level is at point A)?

(b) What is the final, minimum discharge (when the fluid level is at
point B)?

(c) How much time is required to empty the container?
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P=104Pa

Figure 3.14 Fluid drainage by gravity, Problem 3.19.

Problem 3.20 Two types of fluids occupy the gap between two parallel
horizontal flat plates, as shown in Fig. 3.15. There is no pressure gradient
along the flow direction. The width of the gap between the plates is b =
1072 m. The lower half is occupied by a fluid whose density and viscosity are
p =900 kg/m> and p = 0.1 Pa s, respectively. The upper half of the gap is
occupied by a second fluid, whose density and viscosity are p = 700 kg/m?

V=102 mss
%

3

b=102m|b2 pu=7x102Pas p=700kg/m3

b2 p=01Pas p =900 kg/m?
-
V=102 m/s

Figure 3.15 Flow of two fluids between plates, Problem 3.20.
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and u =7 x 1072 Pa s, respectively. The upper plate moves to the right with
a velocity of V| = 1072 m/s. The lower plate moves to the left with a velocity
Vy=10"2 m/s.

(a) Calculate and draw a schematic of the velocity and shear stress
distributions in the fluid layers.
(b) Calculate the net discharge of each fluid.

Problem 3.21 Figure 3.16 shows oil flowing from container (1) to container
(2) through a tube whose length and diameter are L = 1.2 m and D =4 x
1073 m, respectively. The oil flow is driven by a constant pressure p = 10* Pa,
maintained in the free space of container (1), as well as the difference between
the elevations of the oil free surfaces in both containers. Initially, that differ-
ence of elevation is Hyp = 1 m. Container (2) is open to the atmosphere.

Cross section area

/A=10'2m2

P=104Pa
¥4
T [
)]
D = 4x10-3m
Ho =Im
L=12m

2 k

(2)

Figure 3.16 Definition sketch, Problem 3.21.
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The cross-sectional area of each container is A = 1072 m?. The density and
viscosity of the oil are p = 900 kg/m?* and p = 0.1 Pa s, respectively.

(a) Determine the general expression representing the relationship
between the discharge @, which flows from container (1) to
container (2), and the parameters H, p, D, L, p, and u.

(b) Determine the maximum, initial value of the discharge.

(c) Determine the time 7, during which H will reduce from Hy = 1 m
to H =0.5m.

Problem 3.22 A viscous fluid flows from container A to container B
through an annulus, as shown in Fig. 3.17. The annulus consists of a steel
member, whose diameter is D; = 0.02 m, and a pipe, whose internal diameter
is D, = 0.022 m. The difference between fluid levels in containers A and
B is kept constant, at H =5 m. The length of the annulus is L = 100 m.
The fluid density and viscosity are p = 900 kg/m? and u =5 x 1073 Pa s,
respectively.

(a) Determine the distributions of the velocity and shear stress in the
annulus cross section.
(b) Determine the discharge, which flows through the annulus.

K]

Figure 3.17 Definition sketch, Problem 3.22.
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Ah=0.39m

D = 4x10-3m d=2x10-3m

| |
1 |

L=0.15m

A
Y

Figure 3.18 Definition sketch, Problem 3.23.

Problem 3.23 1In Fig. 3.18, fluid flows out of the container through a
horizontal pipe, whose length is L = 0.15 m and inner diameter is D =
4 x 1073 m. Inside the pipe a metal member is inserted. The diameter of
the metal member is d =2 x 1072 m, and it is coaxial with the pipe. The
density and viscosity of the fluid are p = 800 kg/m> and u = 5 x 1073 Pa s,
respectively. The difference between the elevation of the free surface of the
container fluid and the pipe exit is AsZ = 0.39 m. A discharge QO flows into
the container, to maintain the free surface of the container fluid at a constant
level.

(a) What is the value of the discharge Q, flowing into the container?

(b) By how much should Q be increased, if the metal member is taken
out of the pipe?

(c) What is the total shear force applied on the metal member?
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4

Inviscid Flows and Potential Flow
Theory

4.1 INTRODUCTION

The vorticity form of the Navier—Stokes Eq. (3.1.3) implies that if the flow of
a fluid with constant density initially has zero vorticity, and the fluid viscosity
is zero, then the flow is always irrotational. Such a flow is called an ideal,
irrotational, or inviscid flow, and it has a nonzero velocity tangential to any
solid surface. A real fluid, with nonzero viscosity, is subject to a no-slip
boundary condition, and its velocity at a solid surface is identical to that of
the solid surface.

As indicated in Sec. 3.4, in fluids with small kinematic viscosity,
viscous effects are confined to thin layers close to solid surfaces. In Chap. 6,
concerning boundary layers in hydrodynamics, viscous layers are shown to be
thin when the Reynolds number of the viscous layer is small. This Reynolds
number is defined using the characteristic velocity, U, of the free flow outside
the viscous layer, and a characteristic length, L, associated with the variation of
the velocity profile in the viscous layer. Therefore the domain can be divided
into two regions: (a) the inner region of viscous rotational flow in which
diffusion of vorticity is important, and (b) the outer region of irrotational flow.
The outer region can be approximately simulated by a modeling approach
ignoring the existence of the thin boundary layer and applying methods of
solution relevant to nonviscous fluids and irrotational flows. Following the
calculation of the outer region of irrotational flow, viscous flow calculations
are used to represent the inner region, with solutions matching the solution of
the outer region. However, in cases of phenomena associated with boundary
layer separation, matching between the inner and outer regions cannot be done
without the aid of experimental data.

The present chapter concerns the motion of inviscid, incompressible, and
irrotational flows. In cases of such flows the velocity vector is derived from a
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potential function. The vorticity of a vector derived from a potential function
is zero, or

V=Vd VxVd=0 4.1.1)

This expression indicates that every potential flow is also an irrotational flow.

In the following sections, special attention will be given to two-
dimensional flows, which are the most common situation for analysis using
potential flow theory. There also is some discussion of axisymmetric flows,
and numerical solutions of two- and three-dimensional flows.

4.2 TWO-DIMENSIONAL FLOWS AND THE COMPLEX
POTENTIAL

4.2.1 General Considerations

In cases of potential, incompressible, two-dimensional flows, velocity compo-
nents are derived from the potential function, due to lack of vorticity, as well
as from the stream function, due to the incompressibility of the fluid. Therefore
the velocity components can be represented by

_ 00 v 00 0w

U= — = — V= — = —— 4.2.1)
ox ay dy ox

These relationships between the partial derivatives of the potential and stream
functions are called the Cauchy—Riemann equations.

According to Eq. (4.2.1), the potential function can be determined by
direct integration of the expressions for the velocity components,

d =/udx+f(y) or o = /vdy+g(x) 4.2.2)

The expression for f(y) can be determined by

a s _i
v:a—y{/ua’x—i-f(y)}: ffymy=v ay{/udx]:

f(y):/{v_{)ay {/udx}}dy 4.2.3)

By the same approach, the expression for g(x) can be determined by

0
glx) = / {u— = [/vdy}}dx “4.2.4)

If the expression for the potential function is given, then the expres-
sion for the stream function can be obtained by applying Eq. (4.2.1). The
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stream function expression also can be obtained by direct integration of the
expressions of the velocity components, using

\Ilz—/vdx-i-h(y) or \Ilz/udy+k(x) 4.2.5)

where

h(y):/{u—l—% {/vdy}}a’y
- [ & o

According to Eq. (4.1.1) the velocity vector is defined as the gradient of
the function ®. Therefore the velocity vector is perpendicular to the equipo-
tential contour lines. According to Eq. (2.5.10), contour lines with a constant
value of W are streamlines, namely, lines that are tangential to the velocity
vector. Therefore equipotential lines are perpendicular to the streamlines. A
schematic of several streamlines and equipotential lines, called a flow-net, is
presented in Fig. 4.1. The differences in value between each pair of adjacent
streamlines is AW. The difference in value between each pair of adjacent

4.2.6)

Y=y + Ay

0 = ¢, +Ad

Ad = Ay
X

Figure 4.1 Schematics of a flow-net.
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equipotential lines is A®. Usually, flow-nets are drawn so that AWV = A .
Therefore, if at the point A of an intersection between a streamline and an
equipotential line we adopt a Cartesian coordinate system, in which y’ is
tangential to the streamline and x’ is tangential to the equipotential line, then
according to Eq. (4.2.1), the small rectangle of the flow-net is a square.

By considering the incompressibility of the flow, as given by Eq. (2.5.7)
or Eq. (2.5.8), and applying Eq. (4.1.1) or Eq. (4.2.1) with regard to the poten-
tial function, we obtain

) Fo PP
V- (V®)=0= Vo =0= — + -5 =0 4.2.7)
oz 9y?
This expression indicates that the potential function must satisfy the Laplace
equation.

Consider now the irrotational flow condition, which is given by vanishing
values of all components of vorticity, @ in Egs. (2.3.11) and (2.3.12), and apply
Eq. (4.2.1) with regard to the stream function, so

Py PV

w Ty T 0 4.2.8)

indicating that the stream function also satisfies the Laplace equation. There-
fore either the stream function or the potential function can be used for the
presentation of the streamlines or equipotential lines.

If polar coordinates are used for the calculation of two-dimensional
potential flow, then we may apply the following form of the Cauchy—Riemann
equations,

b 1ov 100 ow
YT T e r 0 o
where u, and vy are components of the velocity vector in the r and 6 direc-
tions, respectively. The potential and stream functions can be determined if
expressions for the velocity components are given, according to the method
represented by Egs. (4.2.2)—(4.2.6).

The discussion in the previous paragraphs has indicated that equipoten-
tial lines (lines of constant value of ®) are orthogonal to streamlines (lines of
constant value of W). Therefore it is possible to consider the complex function
w, as given by Eq. (1.3.91), which incorporates both functions in the complex
domain. We may consider the plane w, which is depicted by the coordinates
and W, as shown in Fig. 4.2. Equipotential lines and streamlines in the w plane
of that figure represent the schematic of the flow-net. The plane of the complex
variable z is depicted by applying the coordinates x and y. Streamlines and
equipotential lines depicted in the z plane represent the common flow-net.
The transformation of ®—W mapping in the w plane to x—y mapping in the

Vg 4.2.9)
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Plane W

v, ¥, v,
yu 't|]4
b,
2
—~ ‘ > Plane Z
>(¢ 0,

1

Figure 4.2 An example of conformal mapping.

z plane is called conformal mapping. An example of conformal mapping is
represented in Fig. 4.2. Small squares in the w plane are transformed into

small squares in the z plane by this procedure. The function w is called the
complex potential and is represented by

w=®+ W (4.2.10)
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The major properties of the complex potential and its implications with
regard to W and & are presented in Eqs. (1.3.90)—(1.3.99). The complex poten-
tial function is an analytical function, namely, a function of z. Various functions
of z can be useful for the description and depiction of different flow domains,
in terms of equipotential lines and streamlines.

As shown by Egs. (4.2.7) and (4.2.8), the potential function and stream
function satisfy the Laplace equation. Therefore the complex potential function
also satisfies the Laplace equation, as it represents a linear combination of &
and W. Also, the Laplace equation is a linear differential equation. Therefore, if
the complex potential w; represents a potential flow domain, and w, represents
another potential flow domain, then any linear combination such as aw; + Sw,
also represents a potential flow domain.

As shown by Egs. (1.3.92)—(1.3.97),

dw 8w_ ,BW_BCD _B\IJ_

dw _ow _ _ow 9% W 42.11
dz o oy o ey M “.2.11)

This expression indicates that the derivative of w is equal to the conjugate of
the velocity.

One further point to note is that, in a potential flow domain, the Bernoulli
equation is satisfied between any two points of reference, as shown by
Egs. (2.6.10)—(2.6.12). This provides an important tool for analyzing pressure
distributions in potential flows, as will be seen in the following subsections,
where we review several special cases of two-dimensional potential flows.

4.2.2 Uniform Flow

Consider a flow with constant speed U, parallel to the x coordinate. This
might represent, for example, the flow of air above the earth. Components of
the velocity vector are then given by

u="U v=0 (4.2.12)
By applying Egs. (4.2.2)—(4.2.6), we obtain
® =Ux v ="Uy w=Ux+1iy)=Uz 4.2.13)

These expressions indicate that streamlines are parallel horizontal lines. For
each streamline, the value of the y coordinate is constant. Equipotential lines
are vertical lines. For each equipotential line the value of the x coordinate is
kept constant. Also, according to the Bernoulli equation (2.6.12), the pressure
is constant along horizontal streamlines and varies as hydrostatic pressure in
the vertical direction.
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If the parallel flow streamlines make an angle o with respect to the x
coordinate, then the complex potential is given by

w=Uze ™ (4.2.14)

4.2.3 Flow at a Corner

Consider the flow domain represented by the complex potential function
w=Az =A[(x* — y*) + i2xy] (4.2.15)
where A is a constant positive coefficient. The conjugate velocity is given by

_ d
Veu—iv= d—w — 247 = 2A(x + iy) (4.2.16)
Z

Equations (4.2.15) and (4.2.16) imply
®=AKx>—y") W=2Axy u=2Ax ov=-24y (42.17)

Therefore equipotential lines and streamlines are hyperbolas, as shown
in Fig. 43. On the streamlines, small arrows show the flow direction.
They are depicted according to signs of the velocity components implied
by Eq. (4.2.17). This equation indicates that the velocity vanishes at the
coordinate origin. Therefore this point is a singular stagnation point. At
a singular point, the velocity vanishes or becomes infinite. If the velocity
vanishes, the point is a stagnation point. If the velocity has infinite value,
it is a cavitation point. Streamlines or equipotential lines may intersect only
at singular points. Eq. (4.2.17) also indicates that the velocity increases with
distance from the origin. However, there is no particular singular point of
infinite velocity.

By employing the Bernoulli equation, the distribution of pressure along
the x coordinate is

p = po— 2pA%x* (4.2.18)

where pg is the pressure at the origin. In Fig. 4.3, a parabolic curve shows
the pressure distribution along the x-direction. It indicates that the flow at the
corner cannot persist for large distances from the origin, since according to
Eq. (4.2.18), at some distance from the origin the pressure is too low to afford
the streamline pattern of Eq. (4.2.17).

If the flow takes place at a corner of angle o = m/n, then the complex
potential is given by

w=AZ" (4.2.19)
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Equipotential lines

OLLTRKS
"00 Q&’. Streamlines

X
Pressure distribution
along the x - coordinate
Figure 4.3 Flow at a 90° corner.
4.2.4 Source Flow
The complex potential function for a source flow is
w=Limz=Linee = Lnr+i6) (4.2.20)
2 2 2
Therefore the potential and stream functions are given, respectively, by
d=TLm, w=1g 4.2.21)
2w 2w

These expressions indicate that streamlines are straight lines radiating outward
from the origin. For each streamline, the value of W is kept constant. Equipo-
tential lines are concentric circles surrounding the coordinate origin. For each
equipotential line, the value of r is kept constant.
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It is possible to use the expressions for the potential function, the stream
function, or the complex potential function for the calculation of the velocity
components. We exemplify here application of the complex potential function:

- d Z —1
V:u—iv:wzqzqﬂzq(" ’y> 4.2.22)
dz 2mz  2mzz 2w \x24 2
Therefore the complex velocity is given by
_ 4 (xEivy_ g (cosOFisin0) g (4.2.23)
2 \x2 + y? 2 r 2mr

This result indicates that the absolute velocity is kept constant in a circle
surrounding the origin, i.e., the fluid flows in the radial direction. The velocity
is infinite at the origin and vanishes at a large distance from the origin.

If a circle of radius r is drawn around the coordinate origin, then the
radial flow velocity of the fluid that penetrates the circle is given by

V=u=_— (4.2.24)
2rr
It should be noted that the complex velocity of Eq. (4.2.23) is different from
the absolute velocity of Eq. (4.2.24). Equation (4.2.24) indicates that the source
strength g represents the total flow rate penetrating the circle surrounding the
origin.
If the flow domain is horizontal, then Bernoulli’s equation yields
V2 0 ( q )2 1

P=Poo =P 5 = Poo— 5 ) 2 (4.2.25)

2 2

where p, is the pressure at an infinite distance from the source point. At
the origin the pressure is infinitely negative. Therefore the origin is a singular
cavitation point.

Figure 4.4 shows the flow-net and pressure distribution along a radial
coordinate of a source flow.

4.2.5 Simple Vortex
We consider the flow domain represented by the complex potential,
iK K
w=——Inz=—@—ilnr) (4.2.26)
2 2
According to this expression,

K K
d=—0 VV=——Inr 4.2.27)
21 21

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



e

P

Pressure distribution

Figure 4.4 Source of flow.

These relations indicate that equipotential lines are straight radial lines emana-
ting from the coordinate origin, while streamlines are circles surrounding the
origin.

By appropriate differentiation of either of the expressions given by
Eq. (4.2.27), expressions for the velocity components may be obtained as

U =0 up=— (4.2.28)
2ntr

These expressions indicate that the velocity is proportional to the inverse of
the distance from the coordinate origin, its value is constant along circles
surrounding the origin, and its direction is counterclockwise. At the origin,
the velocity is infinite. Therefore this point is a singular cavitation point. The
pressure distribution along a radial coordinate is identical to that given by
Eq. (4.2.25) for the source flow, where « replaces g. Figure 4.5 shows the
flow-net and pressure distribution along a radial coordinate of a simple vortex
flow.
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Pressure
distribution

X

Figure 4.5 Simple vortex.

If we depict a circle of radius r about the origin and calculate the circu-
lation by the integral of Eq. (2.3.14), we obtain

R 2w 2 K
r= fv.dfz/ ver db =/ —rdd =« (4.2.29)
0 0

2nr

This expression indicates that x represents the circulation of the vortex,
namely, the vortex strength. According to Eq. (2.3.15), the circulation is zero
for a potential flow domain. However, if in a potential flow domain the closed
curve of the integral of Eq. (2.3.14) surrounds singular points of circulating
flows, then the circulation does not vanish. It represents the strength of the
circulating flow, in the domain surrounding that singular point.

4.2.6 Doublet

Doublet flow is obtained due to the superposition of a positive and a negative
source of equal strength. The distance between the sources is a, the strength of
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each source is ¢, and the following conditions take place in the flow domain:
a—0
g — 00 (4.2.29)

ﬂ—)k
b4

The complex potential function of the doublet is developed as follows:

e 4 [z+a] _ 9, [z2+2az+a2]
T 2n z—al| 27 72 —a?
2
_ 4, |Gy a (4.2.30)
27 1—(a/z)? 72 —a?

2 2 2 A
w— iln[(l—l——a> (1+a—...>} —>i—a:_
27 z z2 2 7 2

The doublet of Eq. (4.2.30) incorporates a positive source, located to the left
of the origin (at x = —a), and a negative source, located to the right of the
origin (at x = a).

According to Eq. (4.2.30), we can find the potential and stream functions

as follows:
. AA Ly A o
w=>0+iV=—=—¢"=—(cosf —isinb) 4.2.31)
Z r r
Therefore
o0 _ M M (4.2.32)
r X2+ y2 X2+ y2
The equation of equipotential lines is
AN\, A\2
(x — 2¢> +y = (2d>> (4.2.33)

This expression indicates that equipotential lines are circles, which pass
through the origin, and have their centers located on the x axis. By applying
the expression for W in Eq. (4.2.32), the equation for the streamlines is

5 2 \? A \?
E <y+2\p> - <w> (4234)

This expression indicates that streamlines are circles, passing through the
origin, whose centers are located on the y axis.

The conjugate velocity is obtained by differentiating Eq. (4.2.31) to
obtain

- A A
V=-—"=——

A
- > e = —[—cos(20) + i sin(20)] (4.2.35)
Z r I
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Therefore components of the velocity are given by

A (xz — y2> . A(y* —x?)

A
u=-— cos(20) =
r

) 2 2 2] T 2 212
x24+y? \x*+y x4+ y%) (4.2.36)
A 20) A 2xy ) 20xy
v = —— sin = — =7
2 X242 \ a2+ 2 2 + y2)2

The flow net for a doublet is sketched in Fig. 4.6.

4.2.7 The Image Method

The flow domain given by the potential, stream, and complex potential func-
tions is basically infinite. Considerations of solid boundaries in such a domain
are usually made by assuming that solid boundaries are represented by partic-
ular streamlines (note that there is no flow across a streamline). Representation
of solid boundaries by particular streamlines often requires the superposition
of several simple potential flows. The presentation of flow around a cylinder,

Equipotential lines

Streamlines

Figure 4.6 Flow associated with a doublet.
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as shown in Sec. 4.5, is obtained by the superposition of a uniform flow and
a doublet flow. Very often, adequate superposition is obtained by trial-and-
error experiments, but in some particular cases the appropriate superposition
is obtained by straightforward calculations.

Figure 4.7 shows a source located at a distance x = a from a solid wall.
There is no flow perpendicular to the wall. Therefore to obtain a velocity
tangential to the wall at point A, a second source must be added, of identical
strength, at x = —a. The complex potential describing the flow created by a
source of strength g, located at a distance a from a wall, is given by

w= LG -a)i+a)] (4.2.36)
2

Figure 4.8 shows a source located at a corner between two solid walls.
The distance of the source from one wall is x = a. The distance from the
other wall is y = b. In this case, to represent the two walls as streamlines,
the superposition should incorporate four sources, as indicated by Fig. 4.8.

Image source 2 Source 1

"\ Solid wall
(Streamline)

Figure 4.7 Source located at a wall.
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Figure 4.8 Source at the corner between two walls.

Therefore the complex potential function is given by

w= % In[(z—a—ib)(z+a—ib)(z+a+ib)(z—a+ib)] (4.2.37)

Figure 4.9 shows a source of strength g located at a distance x =a
from an equipotential straight line given by x = 0. Practically, such a case
can be useful for the calculation of groundwater flow at an injection well,
which is located close to a river. Section 4.3 provides details concerning the
application of the potential flow theory to calculations of flow through porous
media. To keep the line x = 0 as an equipotential line, another negative source
of equal strength should be added at x = —a, as shown in Fig. 4.9. Therefore
the complex potential function is given by

w= L In (Z - a) (4.2.38)
27 Z+a

Figure 4.10 shows a vortex of circulation «, located at the corner between
two solid walls, given by x = 0 and y = 0. Its distance from one wall is x = q,
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Figure 4.9 Source at an equipotential line.
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Figure 4.10 Vortex at the corner between two solid walls.
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and its distance from the other wall is y = b. To represent the lines x = 0 and
y = 0 as streamlines, three vortices of equal circulation should be added, as
shown in Fig. 4.10. Therefore the complex potential function is given by

iK . (z—a—ib)(z+a+ib)
——1In

27 (z+a—ib)(z—a+ib)

= (4.2.40)
It should be noted that for relevance to real-world problems, positive and
negative sources are kept in a stable position, whereas the vortex of Fig. 4.10
is subject to movement in the domain. The position change of the vortex of
this figure is caused by the flow velocity components of the image vortices.

4.3 FLOW THROUGH POROUS MEDIA

Flow through porous media such as aquifers, alluvial material, sand, small
gravel, etc. is usually laminar flow, associated with very small Reynolds
numbers. The definition of the Reynolds number for flow through porous
media is

4.3.1)

where ¢ is the specific discharge (with dimensions of LT™!); d, is a charac-
teristic pore size, usually considered as a representative average diameter of
the particles comprising the matrix, or derived from the permeability (another
concept that will be defined later) of the porous matrix, and v is the kinematic
viscosity of the fluid. The specific discharge, called also filtration velocity, is
related to the average interstitial flow velocity by

g=Vé 4.3.2)

where ¢ is the porosity of the matrix. In an isotropic material the volumetric
and surface porosity are identical. It should be noted that V represents the
velocity of advection of contaminants migrating with the flowing fluid through
the porous matrix. The quantity ¢ represents the flow rate per unit surface of
the porous matrix.

In most cases of environmental flow through porous media, the value
of the Reynolds number, defined in eq. (4.3.1), is smaller than unity. There-
fore flow through porous media in most cases may be considered as laminar
creeping flow (Section 3.3). However, there are also examples in which the
Reynolds number is higher, as with flows through coarse gravel, flows through
rock fill, wave breakers, etc. The present section refers only to creeping flow
through porous media; other topics in porous media flow are discussed in
Chap. 11.
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In creeping flows, the equations of motion (Navier—Stokes) reduce to
Vp = uViv (4.3.3)

where p = pg is the piezometric pressure, V is the flow velocity, and p is the
viscosity of the fluid.

4.3.1 Darcy’s Law

The laminar flow through a porous matrix can be visualized as a flow through
many parallel flat plates, or through a bundle of capillaries. With regard to
a single capillary of diameter d and length L, we may apply the solution of
Poiseuille—Hagen to Eq. (4.3.3) to obtain

AR 1 Ap* 3w
L pg L gd?

4.3.4)

where & is the piezometric head and J is the hydraulic gradient. The capillary
diameter, d, may be considered as a characteristic pore size of the porous
matrix.

Considering that the porosity, ¢, represents the ratio between the total
area of cross sections of the bundle of capillaries and the cross section of the
porous matrix, Eq. (4.3.4) implies

q=KJ (4.3.5)
where K is the hydraulic conductivity of the porous matrix, given by

gd’¢
K = 370 (4.3.6)
This result shows that the hydraulic conductivity depends on properties of the
porous matrix, namely the porosity, the characteristic pore size, and also the
kinematic viscosity of the fluid. The permeability is a parameter associated
with the flow through the porous matrix and depends solely on the matrix
properties. Its definition and relation to the hydraulic conductivity are given as

> k
P
32 v

For three-dimensional domains, Eq. (4.3.5) can be generalized as

4.3.7)

G=—KVh (4.3.8)

This proportionality between the specific discharge and the gradient of the
piezometric head is called Darcy’s law.
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4.3.2 Relevance of Potential Flow Theory

Equation (4.3.8) implies that, in cases of constant hydraulic conductivity, the
specific discharge vector originates from a gradient of a potential function
®, which is equal to Kh. In cases of two-dimensional flow, with negligible
compression of the fluid and the solid matrix, it is possible to define a stream
function, W, that satisfies continuity and has constant values along the stream-
lines. The relationships between the components of the specific discharge and
the functions & and W are

od o
9 = — (- = —
ox dy
e o 4.3.9)
4= dy  ox

The negative sign for the derivatives in @ shows that the flow is in the direction
of decreasing values of ®. These relations are basically Cauchy—Riemann
equations, as introduced earlier in Sec. 4.2.1. The continuity, represented by
W, and the potential function ®, both satisfy the Laplace equation,

Ve=0 VU=0 Vh=0 (4.3.10)

Therefore all techniques applicable to the solution of the Laplace equation
can be used for the calculation of incompressible flow through porous media.
The function theory with the employment of complex variables is useful for
the evaluation of practical issues associated with flow through porous media.
In potential fluid flows, the potential function has no physical meaning. In
flow through porous media, the potential function, ®, is derived from the
piezometric head.

On the basis of Eq. (4.3.9), flow-nets can often be defined to obtain
quick estimates of the intensity of the flow through a limited-size porous
medium. They also can easily provide estimates of uplift forces exerted on
structures. The flow-net incorporates a grid of small squares whose boundaries
are equipotential lines and streamlines, as noted previously. Calculations of
uplift forces and total flow through the domain are based on the number of
small squares in the grid and the hydraulic conductivity of the domain. Flow-
nets can easily be used for the evaluation of seepage underneath a dam, uplift
forces on the dam, the effect of cut-off walls, etc.

4.3.3 Anisotropic Porous Medium

Expressions referring to flow through porous media in the preceding para-
graphs consider the hydraulic conductivity as a scalar parameter and property.
In cases of anisotropy of the domain, the hydraulic conductivity can be repre-
sented as a second-order tensor. As an example, in natural sandy soils, the
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average hydraulic conductivity in a horizontal direction can be from two to
ten times the value for the vertical direction. In cases of anisotropy of the
porous medium, the last part of Eq. (4.3.10) is written as

3%h 0%h

Ky + K

axz Va—y2 =0 (43]1)

where Ky and Ky are the horizontal and vertical hydraulic conductivity,
respectively.
It is convenient to define a new coordinate x; by

[Kv
_ 4.3.12
X =x K ( )

Introducing Eq. (4.3.12) into Eq. (4.3.11), the piezometric head again satisfies
the Laplace equation. Therefore, a modification in the construction of the flow-
net is necessary to allow consideration of domains with different horizontal and
vertical hydraulic conductivity. This involves drawing the domain of reference
and its boundary conditions with the horizontal dimensions reduced by the
factor /Kv/Ky. Then the flow-net is drawn for the distorted boundaries and
the discharge is computed using the average harmonic hydraulic conductivity,

K = /KnKvy 4.3.13)

4.3.4 Flow-Nets

Nowadays, quick solutions of the Laplace equation can be obtained by numer-
ical approaches, which will be reviewed in subsequent chapters. However, it
is appropriate to consider at this stage some particular examples of possible
uses of flow-net construction. By these examples, some characteristics of flow
through porous media can be visualized. For example, in the case of percola-
tion under a dam through the porous layer of alluvial material which overlies
an impervious layer, the flow pattern is independent of the upstream and
downstream water levels. The difference, H, in these levels only determines
the scale of the flow, as shown in Fig. 4.11. Since A® is constant between
adjacent equipotential lines, the total drop in piezometric head (equal to H) is
divided along any flow line into increments, AH. Thus with n unit squares in
each channel of the flow-net, the decrease in piezometric head, or uplift pres-
sure head along the base of the dam, follows from the values of the piezometric
head at the points of intersection of the equipotential lines with the base.
The effectiveness of cutoff walls and sheet piling in various locations and
of upstream and downstream aprons in reducing uplift pressures can be eval-
vated by means of the flow-net. Each of these devices lengthens the seepage
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Figure 4.11 Flow-net under a dam.

paths, with cutoff walls producing a vertical drop in the piezometric head and
aprons decreasing its gradient. Points of high velocity at the downstream end
of the net, where “piping” may occur, can be identified and remedial measures
can be evaluated.
The rate of flow through a unit square of one channel per meter width
of the dam shown in Fig. 4.11 is
dh H/n H

Qi =—KA - =KAn— ==K (4.3.14)

where A is the cross-sectional area of a single channel, which is also the height
of the small square of the flow-net, whose value is An. The length of the small
square is As. The value of H is equally divided along the n lengths of the
small squares. For m channels, each carrying an equal flow rate Qy, the total
flow-rate Q is mQy, or

Q:K%H (4.3.15)

With regard to the total flow rate, the flow-net determines the ratio
m/n. In its construction, the number of channels m is arbitrarily selected. The
number of squares per channel varies with the number of channels, but the
total flow-rate determinations for different values of m should agree with each
other. The construction of the flow-net proceeds upstream and downstream
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Figure 4.12 Possible effect of apron and cutoff wall on piezometric head distribu-
tion: (a) horizontal apron at head of dam; (b) apron at toe of dam; (c) vertical cut off
wall near head of dam; and (d) vertical wall near toe of dam.

Figure 4.13 Flow net for anisotropic porous media.
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from trial locations of the portions of the streamlines in the narrowest region
of the flow path.

Figure 4.12 provides several examples concerning the possible effect of
apron and cutoff wall on the distribution of the piezometric head in the allu-
vial layer. Figure 4.13 exemplifies use of the flow-net for anisotropic porous
material.

4.4 CALCULATION OF FORCES
4.4.1 Force on a Cylinder

Figure 4.14 shows a cylinder of arbitrary cross section in a two-dimensional
flow field. The fluid is assumed to be inviscid. The pressure force acting on
an element of the surface is p ds and it is normal to the surface element ds.
The cylinder width, perpendicular to the paper plane of Fig. 4.14, is unity.
The components of the pressure force in the x and y-directions are

F, = —pdscos (9_1) = —pdssind =—pdy
2 4.4.1
2 4.4.1)
F,=—pdssin (0— 5> = pdscosf = pdx

{0
wF

Figure 4.14 Pressure force acting on an elementary surface.
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where 6 is the angle made by the surface element with the x axis. The total
pressure force components in the x- and y-directions are obtained by inte-
grating over the cylinder surface,

F, = %—pdy F,= %pdx 4.4.2)

4.4.2 Steady Flow Around a Circular Cylinder Without
Circulation

Steady flow around a circular cylinder without circulation can be expressed as
a superposition of uniform flow and a doublet, with velocity potential given by

a’ a’
w=U (Z + —> =U {r exp(if) + - exp(—i@)] (4.4.3)
z

Following the procedures of Sec. 4.2, this complex potential is separated into
the potential and stream functions,

a? a’
d=U <r—|— ) cos 6 v=U <r — ) sin “4.4.4)
r r

Figure 4.15 represents a schematic description of several streamlines of the
flow around a cylinder without circulation.

y
4 U
//_ S 20
U Y=
y=0 yv=0
> - s > o > X

Figure 4.15 Steady flow around a cylinder without circulation.
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The complex velocity for this flow field is

dw a2 a2 .

—=U(l1—- =) =U|1—- — exp(—i20) 4.4.5)
dz ( z? ) { r

This expression indicates that there are two stagnation points in the domain,
defined by r = a and 6 = 0, &. Then, according to Eq. (4.4.4), the stagnation
points are located on the streamline defined by W = 0. This line separates
the fluid associated with the uniform flow from the fluid associated with the
doublet and causes the flow field to behave as if there were a solid surface
coincident with this streamline. According to Eq. (4.4.5), the absolute velocity
along the separating streamline is

2

d
il I 2 [(1 — cos20)* + (sin20)?] = 4U*sin’ 0 (4.4.6)

Vi=|—
dz

Figure 4.15 shows the velocity distribution along the y axis above the cylinder.
According to Bernoulli’s equation,

rg  pg 28 pg 28

where pg is the pressure at the stagnation point and p., is the pressure far
from the cylinder. We now refer to the surface of the circular cylinder, r = a.
The surface element for this cylinder is ds = a d6. Introducing this quantity,
along with Egs. (4.4.6) and (4.4.7) into Eq. (4.4.1), the pressure distribution is
obtained along the surface as shown in Fig. 4.16. By integrating the pressure

V2 U?
L _ P = Loy (4.4.7)

P-Pn
Y, pUf

irrational

0 90°

Figure 4.16 Pressure distribution around a cylinder without circulation.
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distribution over the cylinder surface, it is easy to show that there is zero
resultant force acting on the cylinder. This result indicates that according to
potential flow theory, no drag or lift forces act on a body moving in a domain
of inviscid fluid. This result is called d’Alembert’s paradox. In real fluids there
is always drag force acting on the body. The drag force originates from friction
and separation of the flow from the sides of the body. The flow separation
results in a wake and eddies migrating downstream of points of separation. The
pressure at the wake is approximately equal to the pressure at the separation
point, which is smaller than that predicted by potential flow theory. Therefore
real fluid flow around the cylinder is always associated with drag force. A
schematic description of the pressure distribution around the circular cylinder
with a real fluid is shown in Fig. 4.16.

4.4.3 Steady Flow Around a Circular Cylinder with
Circulation

In this case, a clockwise potential vortex with circulation I' is added to the
previous situation of a doublet in a uniform flow. The complex potential is
now given by

a? ir
w=U|z4+— |+ —Inz 4.4.8)
Z 21

This expression can be separated to provide expressions for the potential and
stream functions, and differentiated to yield an expression for the complex
velocity, as before,

a* r
db=U\(r+— 0030—2—9;
i g (4.4.9)
a . r
\IJ=U<r——> sind + —Inr
r 2
dW—U<l f>+ir (4.4.10)
dz z2 21z o

The streamline W = I'/(27) In a represents the circular cylinder r = a. There-
fore the complex potential of Eq. (4.4.8) refers to uniform flow around a
circular cylinder. At a large value of z, Eq. (4.4.10) indicates that the velocity
is U. Referring to the surface of the circular cylinder, Eq. (4.4.10) yields the
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value of the absolute velocity,

dw . ri . .
V= A = 2Usm9+2— (sinf + i cos 0)

¢ lr=a F” 4.4.11)

= ‘2U sinf + —

2

This expression indicates that the velocity vanishes if
) r
sinf = — 4.4.12)
4malU

Results of this expression are schematically represented by Fig. 4.17. There
are two stagnation points if I' < 4maU. If ' = 4waU then there is a single
stagnation point at the cylinder surface. If I' > 47aU then the stagnation point
moves downward into the flow.

I'=4mall

[ >dnmal

Figure 4.17 Flow around a cylinder with circulation.
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The pressure distribution along the cylinder surface is again obtained by
using the Bernoulli equation,

1 I
p+ Epv2 = poo + E’OU2 (4.4.13)

where po, is the pressure far from the cylinder. Introducing Eq. (4.5.11) into
Eq. (4.5.13), the pressure distribution on the cylinder surface is found to be

r 2
U? — <2U sin6 + 2) ] (4.4.14)
wa

1
Dr=a = Poc T 2:0
The symmetry of the flow about the y axis indicates that there is no drag
(net pressure force in the x-direction) for this flow field. On the other hand,
the circulation leads to lift force (net pressure force applied on the cylinder in
the y-direction). The calculation of the lift force is obtained by integration of
Eq. (4.4.14),

2
F, = —/ Pr=q Sinfadf = pUT 4.4.15)
0

This expression is valid for potential flow around any two-dimensional body
and is known as the Kutta—Zhukhovski lift theorem. This theorem is discussed
further in Sec. 4.4.5.

In flow of real fluids around bodies, circulation is created due to the
viscosity of the fluid. However, the magnitude of the circulation does not
depend on the viscosity. Rather, it depends on the free flow velocity U and
the shape of the body. In terms of potential flow theory, circulation around a
circular cylinder can be created only by rotating the cylinder, around which
fluid flows with a uniform flow velocity U.

4.4.4 The Theorem of Blasius

Equation (4.4.1) can be represented as a complex quantity,
dF, —idF,=dF = —pdy —ipdx = —ipdz (4.4.16)

where the wavy overbar denotes the complex conjugate. By integrating
Eq. (4.4.16) over the entire surface of the cylinder, we obtain

Fx—iFyzﬁ’:—ifpdz (4.4.17)
c

where ¢ denotes integration over the entire surface of the cylinder in the
counter-clockwise direction.
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By applying the Bernoulli equation between a reference point far from
the cylinder and any other point in the flow domain,

1 1 1
Poo + EpU2 =p+ E,o(u2 +)=p+ Ep(u +iv)u —iv)  (4.4.18)

Introducing this expression for p into Eq. (4.4.16), we obtain

3 1 1
F= —i?{ [poo + E,oU2 = 5P+ i) — iv)| dZ (4.4.19)

The integral of (ps, + pU?/2) vanishes, as this term has a constant value.
With regard to other terms of the integral in Eq. (4.4.19), first note that

u+ iv = Vexp(if)

- s o (4.4.20)
(u—iv)(u+iv)ydz = w +v°)dz
Introducing these expressions into Eq. (4.4.19), we obtain
- o [law|* .
F= z—f —| dz (4.4.21)
2 J.ldz

This equation is called the Blasius theorem. It expresses the total pressure
force applied on a cylinder of any shape that is submerged in a fluid subject
to potential flow.

The Cauchy integral theorem states that the line integral of a complex
function around any closed curve is zero, provided that no singular point is
present in the region enclosed by the curve. If one or more singular points are
present in that region, then the closed line integral does not vanish. The value
of that integral does not depend on the closed curve chosen for the calculation
of the integral, provided that the number of singular points in the enclosed
region is kept constant. According to the theory of complex variables, the
closed line integral around the singular points is equal to 2w multiplied by
the sum of the residues of all singular points in the enclosed region.

4.4.5 The Lift Theorem of Kutta-Zhukovski

According to the Blasius and Chauchy integral theorems, we may perform
the integral of Eq. (4.4.21) at a large distance from the center of the cylinder,
which can be represented by a superposition of uniform flow with sources,
sinks, and doublets. From a large distance, all singular points are considered
to be close to the origin. Therefore the complex potential function is given by

q ir X
w=Uz+ —Inz+ —Inz4+=+--- (4.4.22)
2w 2w Z

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



As the superposition refers to a closed curve representing the cylinder,
the net flux of sources and sinks should be zero. Therefore by introducing
Eq. (4.4.22) into Eq. (4.4.21) we obtain

= P irx
F=iC U+ _— -2 4.
12%' +271z Z2+

2
dz (4.4.23)

The residue of the complex function subject to integration in Eq. (4.4.23)
is the coefficient of the term incorporating 1/z in the power series expansion
of that function. This coefficient is equal to iI'U/m. Therefore Eq. (4.4.23)
yields

_ ru
F= ig [Zm' <z—)] — —ipUT (4.4.24)
T

This expression indicates that the potential flow theory predicts that no drag
force is applied on the cylinder, and the lift force is proportional to p, U, and
I, as

F,=0 F,=pUT (4.4.25)

This result is called the Kutta—Zhukhovski lift theorem, as previously noted.

4.5 NUMERICAL SIMULATION CONSIDERATIONS

Numerical simulations of potential incompressible flows are based on the solu-
tion of the Laplace equation, in terms of the potential or the stream function,

Vo =0 VW=0 4.5.1)
In a two-dimensional Cartesian coordinate system this equation for @ is

PP 9P
e + Fe =0 (4.5.2)

This expression is a second-order partial differential equation (PDE). As
discussed in Sec. 1.3.3, the order of a PDE is determined by the highest
order derivative in the equation. Furthermore, Eq. (4.5.2) is a linear PDE. In
a linear PDE, the coefficients of the highest order derivatives are constants or
functions of the independent variables x and y.

The general format of a second-order linear PDE in a two-dimensional
domain can be written as

0% LR LR

99 00 e _ 453
Cox? + 8x8y+63y2 ! ( )
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where f represents a linear combination of coefficients multiplied by lower
order derivatives of the dependent variable ¢. The method and form of the
solution of a PDE subject to initial and boundary conditions depend on the type
of the PDE. As discussed in Chap. 1, it is common to classify a PDE according
to the relationships between the coefficients of Eq. (4.5.3), as follows:

If b* — 4ac > 0 then the PDE is hyperbolic (4.5.42)
If b*> — 4ac = 0 then the PDE is parabolic (4.5.4b)
If b* — 4ac < 0 then the PDE is elliptic (4.5.4¢)

According to Eq. (4.5.4), the Laplace Eq. (4.5.2) is an elliptic PDE.

For elliptic PDEs there are no initial conditions (note that time does not
appear as an independent variable in Eq. 4.5.2), but only boundary conditions,
which must be expressed in terms of some property of the dependent vari-
able. For the present case, four boundary conditions are needed, two in each
coordinate direction. In Eq. (4.5.2), ® is the dependent variable. In the two-
dimensional x—y domain, any time-dependent phenomenon associated with
the value of @ is introduced, under unsteady-state conditions, through the
boundary conditions. However, at this point we consider steady-state flows
only. Because Eq. (4.5.2) is a second-order PDE with regard to x as well as
with regard to y, there are three types of linear boundary conditions that can
be applied to its solution (see also Sec. 1.3.3):

(1) All values of ® are specified on the boundaries of the flow domain, or

®=f(x,y) where x, y)eG 4.5.5)

and G is the surface of the domain. With regard to the surface shown in
Fig. 4.18 we may write

® = fi(x, y1) ® = fo(x, y);
® = f3(x, ) D = fulx1,y)

so that the required four boundary conditions are provided. Boundary condi-
tions of the type represented by Egs. (4.5.5) and (4.5.6) are referred to as
Dirichlet boundary conditions.

(2) All values of the gradient of @, i.e., the velocity components, are
specified on the boundaries of the domain, so

od

P fxy) where x,y)eG 4.5.7)

(4.5.6)

and n represents a coordinate normal to the boundary G, and pointing away
from it. Boundary conditions of this type are called Neumann boundary condi-
tions.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



j+2
j+1
#M
; LS
J Ax
j-1
y i-1 i i+1 i+2

Figure 4.18 Example of a domain for an elliptic PDE.

(3) A general linear combination of Dirichlet and Neumann boundary
conditions is written as

ad
a®+b—=c (4.5.8)
on
where a, b, and ¢ are functions of position (x, y). Again, four such boundary
conditions must be written.

Common linear boundary conditions are represented by solid bound-
aries. As previously noted, a solid boundary may be considered as a stream-
line. Therefore the velocity component perpendicular to the solid boundary
vanishes. Complete analysis and simulation of a flow domain concerns the
determination of the distribution of the velocity components and the pressure.
Determination of the potential function & in the entire domain basically yields
the velocity distribution. Then by using the Bernoulli equation, we obtain the
pressure distribution. However, very often the pressure is the variable speci-
fied on some portions of the domain. As an example, consider the case of free
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surface flow. For this type of flow the free surface is a streamline, on which
the pressure vanishes. The given pressure provides a nonlinear specification
of the velocity at the surface, through the Bernoulli equation. Furthermore,
the location of the free surface may be one of the unknown variables, which
must be determined as part of the overall solution to the problem. If there is
a simultaneous flow of immiscible fluids, then the employment of potential
flow theory can sometimes be considered. In such cases, the interface between
adjacent fluid domains represents a boundary, on both sides of which the pres-
sure and normal flow velocity are identical. Again, this represents a sort of
nonlinear boundary condition, since the position of the interface may not be
known. Topics of nonlinear boundary conditions are beyond the scope of the
present text.

Singular points in a flow domain can sometimes be introduced by simple
means, based on measurable parameters. Typical examples are sources and
sinks. Sometimes combinations of source sheets are used to represent solid
bodies immersed in the flow domain. By such a presentation, the streamline
shape of the immersed body can be simulated with small amounts of computer
resources, and limited requirements for boundary conditions. Vortices cannot
be created in a numerical simulation unless they are artificially introduced.
The common boundary conditions of solid boundaries do not produce singular
points typical of vortices. Therefore numerical simulation with simple Dirichlet
or Neumann boundary conditions cannot simulate lift forces. The introduction
of artificial vortices or vortex sheets is commonly used for the simulation of
lift forces.

In the framework of the present section, we provide a basic presentation
of finite difference solutions of the Laplace equation or the Poisson equation,
which is the nonhomogeneous form of the Laplace equation. Figure 4.19
represents a portion of the domain covered by a finite difference grid. The
grid is made of small squares, with equal spacing Ax and Ay in the x-
and y-directions, respectively. For each nodal point, subscript i refers to
the number of the x interval and subscript j refers to the number of the y
interval. The finite central difference (i.e., nodal values are used from both
sides of the node at which the derivative is to be evaluated) approxima-
tions of the first- and second-order derivatives of & for the nodal point (i,
J) are given as

82 ~ Dir12,j— Dic1pa, (4.5.9a)
8x ij Ax -
(82) ~ D jr12— Qij-12 (4.5.9b)

8y ij Ay
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Figure 4.19 Portion of the domain covered by the finite difference grid.

<32q>) 1 <8<I>> (BCD)
2 ), Ax W /i1, CPARVY,

J
o Qit1j =2+ @iy

(D) (4.5.10a)
RR) - 1 0d P
(W)i,j T Ay <8y>i,j+l/2 B <3J’)i,j1/2‘|
n Pii1 = 20i + P (4.5.10b)

(Ay)?

As Egs. (4.5.9) and (4.5.10) are obtained by a central difference approx-
imation, their truncation error is of second order with respect to the grid
interval. These representations also are valid when sources of strength ¢ are
located at some of the nodal points, in which case the Laplace equation is
modified as the Poisson equation,

D1, =20, + Dy D1 — 2P+ Dy
(Ax)? (Ay)?

={qi,j (4511)
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For convenience, since the numerical grid consists of small squares, it is
assumed that Ax = Ay = k. Equation (4.5.11) then yields

i+ Pigrj+ Pt + Dt — 4D = kg (4.5.12a)

1
b, ;= Z(cDiJrl,j + @i+ D+ Pijo — kg ) (4.5.12b)

For simplicity, we assume there are no sources present in the domain, so
that g;; = 0 (i.e., solutions to the Laplace equation will be determined). Then,
Eq. (4.5.12) indicates that the value of ® at the i, j nodal point is the average
of the four nodal points around that point. Each internal nodal point associ-
ated with subscripts i < imax — 1, and j not too close to the bottom and top
boundaries of the domain shown in Fig. 4.5.3, leads to an equation with five
unknown values of ®, associated with the 7, j point and the four nodal points
around that point. Figure 4.20a illustrates a case in which Dirichlet boundary
conditions are used. Figure 4.20b shows a case where Neumann boundary
conditions are used.

Considering the case of Dirichlet boundary conditions, shown in
Fig. 4.20a, grid points with subscript in,,x are associated with a prescribed
value of ® = ®,. Therefore there is no need to use Eq. (4.5.12) for the
determination of & at these boundary nodal points. For nodal points with
subscript imax — 1, Eq. (4.5.12) incorporates the known value of @y ;.
Therefore for the Laplace equation, only nodal points located in the proximity
of the boundary have RHS values different from zero. A similar arrangement
should be considered with regard to all other boundaries at which the value
of the potential function is specified.

Considering the case of Neumann boundary conditions, shown in
Fig. 4.20b, at grid points with subscript iy.x the value of the derivative of
® is given. The finite (central) difference approximation for that derivative
can be represented by

9D D =D
<> =u ~ max+1,J max— 1, J (4513)
ox ) i 2Ax

where the subscript i« + 1 represents an artifical extension of the numerical
grid beyond the simulated flow domain. This is rearranged to solve for ¢ at
position i,y + 1,

Dt = i1,/ + 2u1 Ax (4.5.14)

The linear equation set represented by Eq. (4.5.12) incorporates nodal
points with subscript ip,,x. The RHS of equations associated with these nodal
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Figure 4.20 Numerical representation of boundary conditions: (a) Dirichlet
boundary condition; and (b) Neumann boundary condition.

points is represented by a nonvanishing coefficient, provided that u; is different
from zero. If u; = 0, then the line of i;;x probably represents a solid boundary.
In this case, nonvanishing RHS coefficients are provided at other boundaries of
the domain. Expression similar to Egs. (4.5.13) and (4.5.14) can be applied to
all other boundaries of the flow domain at which the gradient of the potential
function is specified.

The maximum number of unknown values of @ incorporated in each
nodal point in Eq. (4.5.12) is five. Therefore each row of the matrix of
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coefficients of these unknowns includes a maximum number of five nonzero
coefficients. The solution of the set of linear equations represented by
Eq. (4.5.12) can be obtained using a noniterative method such as Gauss
elimination. However, due to the large number of zero-valued coefficients
in each row of the coefficient matrix, an iterative solution is more efficient
than the noniterative approach in this case. The diagonal term in the coefficient
matrix is the dominant term in each row of that matrix. Therefore convergence
of the iterative procedure is guaranteed. In the following paragraphs, we
present several common iterative procedures that can be applied to solve the
set of linear equations represented by Eq. (4.5.12) when ¢; ; = 0.

According to the iterative method of Jacobi, each new value of ®; ;, at
iteration n + 1, is obtained by using values of @, at nodal points around point
(i, j), which were obtained at iteration n. Therefore, Jacobi’s method implies
that Eq. (4.5.12) should be modified as

(n+1) _ o™ (n) (n) (n)
cbl,ﬂl - 4 |: lnl J + (blil J + cbln] 1 + cbln]+l (45]5)

where the superscript (in parentheses) indicates the iteration number at which
the variable is calculated.

The method of Gauss—Seidel uses the latest computed values of @, as
they become available during the iteration process. This method is slightly
more efficient than that of Jacobi. The iteration algorithm for the solution of
the Laplace equation by the Gauss—Seidel method is

1
(n+1) (n+1) (n) (n+1) (n)
o = 2 [cpl el ol + ol JH] (4.5.16)

The rate of convergence of the Gauss—Seidel method can be improved by using
successive over-relaxation (SOR). According to this method, the provisional
value @, of the function ® at the nodal point (i, j) and at iteration (n + 1)
is calculated by the Gauss—Seidel algorithm, but this value is modified at the
(n 4 1) iteration by means of a relaxation parameter w,

P = ¢<n>+w[¢ _<D<n>} (4.5.17)

where @, is given by Eq. (4.5.16). If = 1, then the SOR method is identical
to the method of Gauss—Seidel. Equation (4.5.17) also can be written as

Pt — [cD(n—H) + o™ + H+D + o™
L] 4

i—1,j itl,j ij—1 ij+1
+(1 - w)cpl?fj) (4.5.18a)
or
q)(rz]+1> <n>+ [ ,("le)‘i‘q’fi)u‘i'q’,(ZHf
+ c1>f"j+1 - 4c1>§j'j>} (4.5.18b)
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Finally, it should be noted that the solution of the Laplace or Poisson
equation is based on an iterative solution of a set of linear equations, generally
presented by

[Al{®} = {b} (4.5.19)

where [A] is the matrix of coefficients of ® values, {®} is the vector of &
values, and {b} is the vector of RHS coefficients of all the equations. There are
many different ways to iterate and solve Eq. (4.5.19). The choice of the most
appropriate method of solution depends mainly on convergence properties for
a particular set of conditions.

PROBLEMS
Solved Problems

Problem 4.1 Confirm for each of the following flow fields that incompress-
ible flow is indicated. Which of these represent potential flow? Why?

(@) u=ax v=—ay
®) u=oay V= —ox
©) u=ay v =ox
@ w=>  v=0
r
Solution

In a potential (and incompressible) flow, the following relationships should be
satisfied:

VxV=0 V-V=0
In a Cartesian coordinate system, these expressions imply

ov  du ou 0v

ox  dy S 5 N
In a plane polar coordinate system, these expressions yield

10(rvg) 1 0u, 0 10(ru,) 1 0vg

r or roo r or +r8<9_

Upon considering each of the given velocity fields, by substituting into the
above differential equations, we find

(a) Potential incompressible flow
(b) Rotational incompressible flow
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(c) Potential incompressible flow
(d) Potential incompressible flow

Problem 4.2 Find the potential and stream functions, if possible, for each
of the flows given in solved problem (4.1.1).

Solution

We apply Egs. (4.2.5) and (4.2.6) to determine the expressions for the required
functions:

2
(a) @:/udx:/axdx=%+f(y)

0P , Oly2
8—=f(y)=v=—0ly; if(y)=—T+C; assume C = 0
y

o =20y

W:/udy:/oexdy:axy—i—f(x)

v
o =ay+f=-v=ay= f0)=0=f0)=C=0

¥ = axy
(b) Using the same approach as above, we obtain

W= (24 )?)
2
& does not exist, since the flow is rotational
o

) ®=axy W= E(y2 —x?)

d ®=aoalnr= d In(x*> + y?) ¥ = af = arctan <X>
2 X

Problem 4.3 Determine the flow-net for the flow field created by the super-
position of a uniform flow with speed U and a source of strength ¢, as shown
in Fig. 4.21.

Solution

The complex potential is given by the sum of the potential functions for
uniform flow and a source,

w=Uz+ %lnz: Urcosf + %lnr—i—i (Ursin9+ %9)
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Figure 4.21 Superposition of source and uniform flow, Problem 4.3.

Therefore the potential and stream functions are
q . q
® =Urcosf@+ —Inr W =Ursin6 + —0
2 2

By differentiation of the complex potential, or either of the stream or potential
functions, we obtain the following components of the velocity vector:

u,:UcosG+i vg = —U sinf
2mr

These expressions indicate that besides the cavitation singular point at » = 0,
there is another singular stagnation point at 6 = m, r = g/ (2w U). We introduce
the values of 6 and r for the stagnation point into the expression of the
stream function, to obtain the value of this function along the streamline,
which separates the region between the uniform flow and the source flow.
The result is

v=1
2

Therefore, the streamline that separates the uniform flow from the source flow
satisfies the following relationships:

. q 0 9 1 y
rsinf=— 11— — or y= — |1 — — arctan (—)
2U b4 2U b4 by
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According to this expression, the width of the stream tube occupied by the
source flow approaches the value ¢/(2U) at a large distance from the origin.

Problem 4.4 1If in Fig. 4.3.1, H =10 m, and K = 1 m/day, provide an
estimate of the seepage flow rate per one meter width of dam.

Solution

The solution to this problem is obtained by direct use of Eq. (4.3.15),

4
0=k"H=1x 5 x10=267 m°/(day - m) (4.3.16)
n

Problem 4.5 Water, with kinematic viscosity v = 107% m?/s, flows through
sandy soil. The characteristic pore size of the soil is d = 0.1 x 1073 m, and
its porosity is ¢ = 0.3.

(a) What are the permeability and hydraulic conductivity of the soil?

(b) Darcy’s law is applicable up to a Reynolds number of one, where
the Reynolds number is based on the characteristic pore size and the
specific discharge. Determine the maximum value of the hydraulic
gradient, for which Darcy’s law can be applied.

Solution
gd’¢  9.81 x (0.1 x 1073)2 x 0.3
@ K= =
32v 32 x 10-6
=9.2 x 107* m/s = 79.5 m/day
qd v 10°° )
b) Re= " =1 =Re-=1x - =102 m/
®) Re="r=l=q=Re, =lx 10 s
_kios =2 197 0
1= TK T 92x10%

Unsolved Problems

Problem 4.6 Consider the Navier—Stokes equation for the x-direction (hori-
zontal) velocity component (for simplicity, neglect rotation effects):

Du 10dp

Dt pox
where u is the velocity, p is pressure, p is density, and v is kinematic viscosity.
For inviscid flow the viscosity is 0 and pressure is the only force to consider.

Show that the viscous term also drops out, i.e., VZu = 0, for the case of
irrotational flow.
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Problem 4.7 Consider the flow field created by a superposition of a source
with strength ¢ and a simple vortex, whose circulation I" has the same magni-
tude as g.

(a) Find the complex potential, potential, and stream functions.
(b) Plot the flow-net.
(c) Find the pressure distribution along a radial coordinate.

Problem 4.8 Consider the flow field created by a superposition of a uniform
flow with speed U, in the positive x-direction, a positive source, of strength
q, located at x = —a, and a negative source (sink), located at x = a.

(a) Find the complex potential, potential, and stream functions.
(b) Find the location and types of singular points.

(c) Plot the flow-net.

(d) Find the pressure distribution along the x axis.

Problem 4.9 A simple vortex, with circulation T, is located at x = a, y = b,
which is in a 90° corner between two solid walls. Determine the pathline of
the vortex movement.

Problem 4.10 A flow field is created by two sources at a solid wall, which
is represented by the y axis. One source, of strength ¢, is located at x = a.
The second source, of strength ¢/2, is located at x = 2a.

(a) Find the complex potential, potential, and stream functions.
(b) Determine the locations and types of singular points.

(c) Plot the flow-net.

(d) Find the pressure distribution along the x axis.

Problem 4.11 Consider the flow domain represented by
z = acos(w)
where
Z=x+1iy w=®o4 iV

(a) Find the complex potential, potential, and stream functions.
(b) Determine the locations and types of singular points.

(c) Plot the flow-net.

(d) Find the pressure distribution along the x axis.

Problem 4.12 Wind blowing over a bluff is to be simulated using potential
flow theory. A uniform wind, U = 20 m/s, is combined with a source, having a
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Figure 4.22 Simulation of flow over a buffer, Problem 4.12.

flow rate ¢ = 6,000 m?/s. The resulting flow is sketched in Fig. 4.22 (only the
top half of the bounding streamline is shown). Note that the stream function is

W = Ursin6 + mb

where m is q/(2m).

(a) What is the equation for the bounding streamline?

(b) How high is the bluff (H)?

(c) What is the velocity along the surface of the bluff, directly above
the source?

Problem 4.13 Flow over a hump is to be analyzed using potential flow
theory. The mathematical expression for the flow field is developed by consid-
ering one-half of the field created by superimposing a doublet in a uniform
flow. As shown in Fig. 4.23, the flow far from the hump has velocity U and

%
Ups ——— 2

E—

A S

Figure 4.23 Definition sketch, Problem 4.13.
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pressure p,. The fluid density is p and it is incompressible. The streamline
corresponding with the solid surface has W = 0, and gravity effects may be
neglected.

(a) What are the maximum and minimum pressures for this flow, in
terms of p, U, and p,?

(b) Develop the equation for the streamline passing through the point
r=2a,0=m/2

Problem 4.14 Consider some possible values of the Rossby number in prac-
tical cases that you may encounter with regard to environmental flows in lakes
and reservoirs. Choose real values for at least three examples.

Problem 4.15 The engineer of a municipality has suggested that a treated
effluent can be disposed of by pumping it into an injection well. The well
should be able to accept a flow of 500 m?/h. It is drilled in an aquifer whose
thickness is 40 m and hydraulic conductivity is 100 m/day. Upstream of the
planned injection well, the municipality pumps its water supply needs from a
pumping well with a capacity of 600 m?/h. The natural flow in the aquifer is
achieved with a gradient of 0.1%.

(a) Consider several hypothetical cases in which the effluent could
possibly arrive at the pumping well. In other words, under what
circumstances could this occur?

(b) Consider several possible values of the distance between the
pumping and injection wells, and provide suggestions to the
municipality on how migration of the effluent into the pumping
well could be avoided.

Problem 4.16 Water flows through a confined aquifer of thickness 20 m.
The hydraulic gradient is 0.1%, the hydraulic conductivity is 50 m/day, and
the porosity is 0.3. The characteristic particle size of the aquifer sediment is
0.1 mm.

(a) Determine the specific discharge.
(b) Find the flow velocity.
(c) What is the Reynolds number of the flow?

Problem 4.17 Consider the schematics of flow under a concrete dam, as
shown in Fig. 4.24. Depict the flow-net and provide an estimate of the total

flow underneath the dam.

Problem 4.18 A function, which in the neighborhood of z = a has an expan-
sion that contains negative powers of (z — a), is singular at z = a. In this case
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Figure 4.24 Definition sketch, Problem 4.17.

the coefficient of (z —a)~' is called the residue of the function at z = a.
Determine the residue of the following functions:
@ —ar where n=-1,1,2...

B) As(z—a) + A1z — @)+ Ag + —2 B,
0 (z—a) (z—a)?

Problem 4.19 According to Cauchy’s residue theorem, the integral along a
closed line C of a holomorphic function (a function of z) is given by

%f(z)dz =2mi(a +ar +az +---)
where ay, ap, ... are the residues at the singular points of the area enclosed

by the line C. Find the poles and corresponding residues of the following
functions, as well as the integral of Chauchy’s residue theorem:

(a)

z 7242 7472 47?
b d
z+1 ()12—1 (C)zz—i—l ()z“—l

Problem 4.20 A source of strength ¢ is placed at a point (a, 0) outside the
circle |z| = b, as shown in Fig. 4.25.
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Figure 4.26 Bounded flow past a cylinder, Problem 4.21.
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(a) Show that the complex potential describing the flow field is given
by

b2
w= 9 [In(z—a)—i-ln (z— ) —lnz}
21 a

(b) Use the theorem of Blasius to prove that there is no moment about
the center of the circle, and that the circle is urged towards the
source by a force equal to

20q*b*
ma(a? — b?)

(c) Find the corresponding result when the source is replaced by a
vortex.

Problem 4.21 Consider the bounded potential flow around a cylinder as
shown in Fig. 4.26. Provide a numerical solution and sketch the flow-net.
Compare your results with the analytical solution for an infinite flow field.

SUPPLEMENTAL READING

Milne-Thomson, L. M., 1966. Theoretical Aerodynamics, Macmillan, London.
(Contains a thorough coverage of all aspects of inviscid flow theory and
applications.)

Wendt, J. F., ed. 1996. Computational Fluid Dynamics, Springer-Verlag, Berlin,
Germany. (Includes a review of various approaches of numerical simulation
of potential flows.)
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Introduction to Turbulence

5.1 INTRODUCTION

Turbulence results from a breakdown in stability of a fluid flow and is normally
associated with large Reynolds numbers. The instability may be generated by
an infinitesimal disturbance in an otherwise laminar flow, and the stability of
the flow depends on whether the disturbance grows or dies out, as discussed
in Sec. 5.4. Almost all natural flows are turbulent to some extent, and it
is important to understand and be able to represent turbulence effects when
modeling a given system. Turbulence itself is difficult to define, though certain
of its characteristics may be summarized as follows:

Turbulence is generally three-dimensional and is thought of as consisting
of eddies superimposed on the mean flow; these eddies are represented
as fluctuations in the flow field properties.

The eddy motions are irregular and vortical (they have vorticity).

The motions are mostly random in nature and are usually described in
statistical terms.

In fully developed turbulence there is a continuous spectrum of eddy
sizes, with a cascade of energy from larger eddies to successively
smaller ones, until the kinetic energy of the eddies is dissipated by
viscosity into heat by the smallest eddies.

From an environmental point of view, one of the most important effects
of turbulence is to enhance greatly the mixing of fluid properties. This is
accomplished through the action of the eddies, which are much more effec-
tive than molecular motions in redistributing fluid particles within a given
flow field (see Chap. 10 for further discussion of molecular and turbulent
diffusivities). A full analysis of turbulence is made difficult by a number of
factors, primarily because of its random nature and wide range of scales of
motion, from the largest eddies, which scale with the mean flow geometry,
to the smallest eddies, at which viscosity dissipates the kinetic energy of the

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



turbulent motions. This means, for instance, that a complete description of a
turbulent flow field at any instant in time requires specification of flow values
at a very fine spatial resolution, to capture the smallest eddies. Thus specifica-
tion of initial conditions for application of the governing equations describing
a velocity field is tedious at best, for any problem of practical interest. Turbu-
lent flows are governed by the same equations of motion as were presented
in Chap. 2, but the usual difficulties in solving the Navier—Stokes equations
are compounded by the introduction of the velocity fluctuation terms, which
add three additional unknowns to be solved for. Thus the basic conservation
equations are no longer sufficient to generate a solution for all the variables
involved, and the problem of closure of the system arises. There has been
considerable effort to investigate ways of developing additional equations for
the fluctuating quantities. A few examples of these methods are described in
Sec. 5.5.

The present chapter is meant to provide an introduction to the analysis
of turbulent motions, to define some of the most common terms involved in
the study of turbulence, and to describe its effect on transport and mixing
in a fluid system. The intent here is to develop a basis for understanding
how to incorporate turbulence in practical modeling applications. The reader
is directed to references listed in the back of the chapter for more in-depth
discussions.

5.2 DEFINITIONS

In the analysis of turbulent flows, it is helpful to think of a time record
for any fluid property of interest (velocity, temperature, pressure, salinity,
etc.) as consisting of a mean, time-averaged component and a fluctuating
component that is a function of time. It is normally assumed that the statistical
properties of the fluctuating component remain constant, or stationary over the
averaging period used to define the mean. Turbulent velocity fluctuations are
illustrated in Fig. 5.1. In this figure is shown a time record of one component
of velocity measured at a point in a flow field. Although the mean flow (U)
is constant, or steady over the time period of measurement shown, there are
random fluctuations superimposed on the mean. These fluctuating values are
denoted by primes (i.e., u’), so that the total velocity at any point in time is

u=U+u (5.2.1)

and U is defined as the time average of u,

1 T
U= —/ udt (5.2.2)
T Jo
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Figure 5.1 [Illustration of turbulent velocity record.

where T is the averaging period. By definition, the time average of u’ = 0, so

T
/ u'dt=0 (5.2.3)
0

Similarly, the average of «' multiplied by a constant is also zero.

Turbulent fluctuations are treated as realizations of a random process.
A random process in general is associated with certain temporal and spatial
scales. Consider first the time variability of a random process of interest,
relative to a range of time scales, as sketched in Fig. 5.2. This variability
can be illustrated with a simple example of sunlight intensity. Character-
istic time scales for sunlight intensity consist of one day (diurnal variability)
and several months (seasonal variability). Relative to the daily time scale,
solar intensity variations over periods of a few seconds or a few minutes

I
T
I
- € > >
I
Small T: Range of scales I Large T
process appears to characteristic of the Process appears to
vary only slowly physical process vary rapidly
under consideration

Figure 5.2 Illustration of time scale variability of a random process.
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would appear to be approximately constant. In other words, the variability
of the process is very small over this much smaller time period, relative to
a day, and the process could be considered as being approximately steady.
On the other hand, over a period of perhaps several weeks or months, the
solar intensity variation will have completed a number of cycles and would
appear to vary rapidly. In that case, the daily variability would appear as
fluctuations superimposed on the mean value over the period of interest.
Depending on the particular analysis involved, it might be useful to consider
averaged values over this period. As an alternative to the time scales shown
in Fig. 5.2, process variations over a range of frequencies can be evaluated,
where frequency, w, is related to the inverse of 7. Then large T implies small
w and vice-versa.

An equivalent description can be made in spatial terms. For example,
consider a wavy water surface where the wavelength is A (Fig. 5.3). In other
words, the water surface variations are characterized by a process with length
scale A. Then, over length scales (distances) L much smaller than A, the water
surface would appear to be approximately constant, while for L much greater
than A the water surface appears to be rapidly varying. In this case the waves
represent fluctuations on the mean water surface, and it may make sense to
consider only the average water surface, or perhaps the average wave height.
Just as with temporal variations, we may also consider frequency variations in
space. In this case a spatial frequency or wave number k is defined, propor-
tional to the inverse of L.

Due to the random nature of turbulent motions, it is usually more
convenient to deal with statistical or averaged properties of the flow field.
An ensemble average is defined as the arithmetic average of a number of
measurements of a random process. For example, the ensemble average of a
set of velocity measurements made at a number of locations in a flow field is

Figure 5.3 Characteristic length scale for wavy water surface.
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defined as
wi(¥, 1) = lim ¢ 2 wi (X, t; j) (5.2.4)
J=

where the double overbar indicates a spatial average, the ““;”’ notation indicates
the realization or measurement identification number, and N is the total number
of measurements or tests made.

A process is stationary if the statistics describing the process (i.e., mean,
standard deviation, correlations, etc.) are independent of time. It is common
to assume stationarity for the analysis of turbulent fluctuations. For stationary
processes, the ensemble average is the same as a time average such as is
defined in Eq. (5.2.2). In more general terms, a time average is defined by

1 to+T/2

u;(x, to) = lim {—/ u;(x, 1) dt} (5.2.5)
T=oo \ T Jiy-1/2

where T is the period of measurement (for averaging) and ¢ is the point in

time for which the average is calculated. A single overbar in general is used to

denote an averaged quantity, usually a time average. The value of the average

is independent of #; when the process is stationary.

A process is homogeneous when the statistics are independent of posi-
tion, and isotropic when independent of orientation (i.e. invariant to rotation
about any coordinate axis). For example, if the average square of the fluctu-
ating velocities is a homogeneous process, then

uj(Xo, 1> = uj(Xo + X', 1)? (5.2.6)

where X’ represents an arbitrary displacement vector. In other words, the value
of the average does not depend on position.

Just as the fluid is considered as a continuum, the turbulent eddies that
are manifested by the velocity fluctuations are thought to occupy the fluid
fully, with smaller eddies embedded in larger ones. The turbulence consists
of a continuous spectrum of eddy sizes and can be represented by Fourier
integrals (Sec. 5.3). The eddies fully interact with each other, exchanging
energy and momentum, and the movement of any one eddy affects the fluid
surrounding it. This implies that the fluctuating velocity at a given point in the
fluid is statistically correlated with that at neighboring points. This correla-
tion decreases with separation, eventually reaching zero at a sufficiently large
distance. When this happens, the corresponding distance may be considered as
an estimate for the size of the largest eddy. A similar argument can be made
with respect to temporal fluctuations, in which case the largest correrlation
time, at which the correlation approaches zero, is considered as an estimate
of the longest time scale associated with an eddy.
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A general covariance function (for velocity fluctuations) is defined by
ul(xy, tu (X2, t2), which is simply the average values of the product of two
values calculated at two locations ¥; and X, and two times #; and f,. The
correlation coefficient is

u; (X1, t)u;(x2, 1)

Rij = - - 12
wp (X1, )% - (%2, tz)z}

(5.2.7)

and R;; < 1. A closely related parameter is the autocorrelation coefficient,
which may be defined over time or space. The autocorrelation is calculated on
the basis of the covariance between a value and itself, but displaced in either
time or space. For a series of data measured by a velocity probe at a fixed
location in space, the autocorrelation coefficient is

(%, i (X, t + Ar)
u; (X)?
where Ar is the time interval or time lag over which the autocorrelation
is calculated. In other words, the autocovariance function (numerator of
Eq. 5.2.8) is calculated as the average of all values of u; multiplied by
itself, but lagged in time by Ar. This value is then normalized by the mean
square value of u; (denominator of Eq. 5.2.8), which is the autocovariance
function for Ar = 0. Since the correlation of any value with itself is highest
for zero lag, then R;;(Af) < 1. In performing the calculation in Eq. (5.2.8),
it is assumed that u; is a stationary process. It also should be noted that
Rii = R;j(At) = R;;(—At), and R;;(0) = 1. A typical curve for R;; as a function

of At is illustrated in Fig. 5.4.

Until recently, making temporal measurements at a relatively small
number of locations (maybe only one) has been by far the most common
procedure in fluids experiments, due to the available instrumentation. This
limits statistical calculations to the temporal domain. The point at which R;;
reaches zero may be interpreted in a similar manner as a length autocorrelation,
and the time (T« in Fig. 5.2.4) corresponds to the longest eddies. Assuming
stationarity, temporal scales are converted to length scales by multiplying with
an appropriate velocity scale, often the root-mean-square fluctuating velocity.
In the past decade or so, however, the advent of particle tracking velocimetry
(PTV) and particle image velocimetry (PIV) has provided sufficiently detailed
spatial resolution for velocity data that calculations such as Eq. (5.2.8) can be
performed directly for spatial lags rather than temporal lags (i.e., substituting
AX for At). For now, we continue the discussion for temporal analysis.

Once R;; is known, the integral time scale is

R;i(At) =

(5.2.8)

T = / ” Ri(AD) d(AD) (5.2.9)
0
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Figure 5.4 Variation of R;; with time lag, illustrating calculations for temporal inte-
gral and micro scales.

This calculation gives another measure of the time over which statistics of
the process are correlated, and for turbulent velocities, t is considered to be a
representative time scale for the main energy-containing eddies in a turbulent
velocity field. These are known as the integral-scale eddies. For a real data set,
this calculation cannot be computed to the limit of infinity. Instead, the upper
limit is set by the number of measurements made (N). If the time interval
between each measurement is Af, the calculation is

N—1
T=AtY Rii(n Ar) (5.2.10)
n=0

Better estimates for t are obtained with longer data records, which involve
larger numbers of data for the averaging process. In practice, values for R;;
tend to oscillate around O after some time, and the calculation for t normally
includes values for R;; only up to the first zero crossing. It is easily seen that
T is equivalent to the area under the autocorrelation coefficient curve.

An estimate for the furbulence temporal microscale (X;, corresponding
to the smallest eddies expected in the flow field) is found by fitting a parabola
to the autocorrelation coefficient curve at At = 0 (Fig. 5.4),
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12
2
d’R;;
dr? Ar=0

A= (5.2.11)

This value also is shown in Fig. 5.4.

The equivalent calculations for spatial scales, based on measurements
taken simultaneously at a set of different locations, leads to a corresponding
spatial microscale called the Taylor microscale. In other words, the autocor-
relation coefficient in space is calculated as

ui (X, DUl (X + AX, 1)

uj(t)?

R, — (5.2.12)

where it is assumed that the process is homogeneous, at least over the area
of measurement. Then, equations equivalent to Egs. (5.2.9) or (5.2.10), and
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Figure 5.5 Example of velocity field measurement in a 2-liter mixing jar, obtained
by PIV. (From Cheng et al., 1997.)
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(5.2.11) are used to obtain integral and microlength scales, respectively. If only
temporal data are available, the usual procedure is to apply Taylor’s “frozen
turbulence” hypothesis, which states that temporally varying measurements
obtained at a single location in space may be related to spatial variations
through the mean velocity. In other words, this procedure assumes that the
turbulence properties are changing only very slowly relative to the mean flow
position. In some cases, the velocity probe itself is moved through the fluid,
providing its own mean velocity. The relation between a time step A¢ and
a spatial step Ax is then Ax = UAt. This procedure is not always valid,
particularly in situations when U is small.

As already noted, PTV and PIV enable simultaneous measurements of
turbulent velocities at many different points in a flow field. For example,
Fig. 5.5 shows a PIV image result from a flow field inside a 2-liter mixing
jar, similar to those used in studying flocculation processes for water treatment
studies. The fine spatial detail is immediately evident, and these data enable
spatial statistics to be calculated directly. In fact, PIV systems now provide
direct digital images of turbulent eddy motions, as shown in Fig. 5.6. This
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Figure 5.6 High-pass velocity field obtained from the data of Figure 5.5, showing
turbulent eddy structures. (From Cheng et al., 1997.)
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latter figure was obtained from the data of Fig. 5.5 through a high-pass filtering
process, which removes the low-frequency (mean) flow and reveals only the
high-(spatial)-frequency turbulence motions. Unfortunately, while these data
have provided interesting results in the lab, with few exceptions PIV has not
yet been widely adapted for field studies.

5.3 FREQUENCY ANALYSIS

As noted previously, the continuous spectrum of eddy size and time scales in a
fully developed turbulence field allows analyis by Fourier integrals. This leads
to calculation of the power spectrum, as described below. The end result is a
determination of the main frequencies of importance in a set of measured flow
data and an indication of the manner in which turbulent energy is transported
from larger scales (lower frequencies) to smaller scales (higher frequencies).
The procedures are based on the concept that a continuous data series may be
represented by a Fourier series, which in general is an infinite sum of sine and
cosine terms. As an example, consider a simple periodic function, as shown
in Fig. 5.7. This function may be represented by

f(t) = ap + a sin(wr) (5.3.1)

| T (period) E

a

ay

i

0 12

t

Figure 5.7 Illustration of simple periodic function of time (sine wave).
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Figure 5.8 Dual periodic function, consisting of two sine waves; a second sine wave,
with half the amplitude and one-third the period of the wave in Fig. 5.7, has been added
to generate the bold-faced curve.

where ag is a constant, a is the amplitude of the sine term, and @ = 27/T is
the frequency. Adding a second sine term Fig. 5.8,

f(@) = ay + a; sin(w;t) + ap sin(w;t) (5.3.2)

where a; and a, are the amplitudes and w; = 27/T| and w, = 27 /T, are
the frequencies, respectively, of the two sine curves. Equivalent expressions
in terms of spatial frequencies or wave numbers are possible for spatially
varying data.

This idea may be extended to include as many terms as necessary to
represent a given function. In general, both sine and cosine terms are included
in the summation. If a function is measured over either a time period 7T or
spatial length L (as would be done in a realistic measurement), it is assumed for
Fourier series representation that the length of record is one cycle of a cyclic
process. For example, a function f (x) is shown in Fig. 5.9, where observations
are made only over the interval between xy and xy + L. Figure 5.10 shows the
Fourier series representation for f(x), written as

27n 2nwnx
fx)=ap+ Z (a,, cos —— + b, sin —— 7 > (5.3.3)
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Figure 5.9 A function f{x), measured between xy and xy + L.

f(x)

X

Figure 5.10 Periodic representation of the function f{x) measured as in Fig. 5.9.

where a( is a constant magnitude function, equal to the long-term mean of
f(x), and the a, and b, are the amplitudes associated with each frequency.
These magnitudes are found from the Fourier transform functions, written as

1 xo+L

G =~ / Fx)dx (5.3.4)
L/,
2 X+l 2mnx

ap = Z/xo f () cos = dx (5.3.5)
2 xo+L 2

b= /XO £(x)sin ”L”x dx (5.3.6)
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It is usual to define a wave number, k, = 2nn/L, as a spatial frequency, so
the arguments for the sine and cosine terms may be written simply as (k,x). It
also should be noted that a finite sum in Eq. (5.3.3) is an exact representation
of f(x) when f(x) is a true periodic function (of period L).

The statistical representation of a random process x (in other words, X
represents a set of values measured for a given parameter of interest, such
as velocity, pressure, depth, concentration, etc., and x represents one of the
values in the set) depends largely on the distribution of values as given by the
probability density function, p(x), where 0 < p(x) <1, and

/oo px)dx =1 (5.3.7)

The cumulative probability distribution function, F(x), for a given x, is just
the area under the curve of p(x),

F(x) = /oo px)dx (5.3.8)

This value indicates the percentage of all values in X that are less than x.
The expected value or mean of X is

E(Xx)=x= /oo xp(x)dx (5.3.9)
and the variance is
o2(X) = /oo (x —X)?p(x)dx = EX*) — [E®)]? (5.3.10)

As previously noted, it is usual in turbulence analysis to assume that the
processes being measured are stationary. With this assumption, the mean of a
process can be defined in terms of a finite version of Eq. (5.3.9),

1 T
EXx) = —/ x(t)dt (5.3.11)
T Jo
where T is the time of measurement. For digital data the mean is simply
1N
EX)=—=> x, 5.3.12
® =~ ; (5.3.12)

where N is the total number of observations and the x,, are individual measure-
ments of the process X. Similarly, the variance for a stationary process can be
calculated as

T
o2(%) = l/ [x(t) — E)2dt (5.3.13)
T Jo

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



or, for digital data,

1 N

2 My ~\12

@) = o D [ — E®)] (5.3.14)
n=1

Note that the division in Eq. (5.3.14) is carried out by (N — 1), rather than by

N, to obtain an unbiased estimate of the variance. The autocorrelation is

17 1 Y
R(AD) = T/o X(Ox(t + Ayt = < 3 06) Gt (5.3.15)

n=l1

where m is the number of steps (between data points) corresponding to Af,
and N’ is the number of terms that can be included in the averaging procedure.
For a fixed record length 7, N’ is smaller for larger At. For example, a record
of 10 values (N = 10) can have nine terms in the sum of Eq. (5.3.16) when
m = 1, but only one term when m = 9.

Finally, the power spectrum function, S(w), is related to the autocorre-

lation as

S(w) = /000 R(A1) cos(w At)d(A1) (5.3.16)
and

R(AL) = % /0oc S(w) cos(w Af) dw (5.3.17)

These last two relationships form the Fourier transform pair. Equation (5.3.16),
in particular, provides a direct means of identifying specific frequencies of
interest in the signal for a given record of observation, since an amplitude
function can be determined by

P(w) = [wS(w)]'/? (5.3.18)

which gives the amplitude of the function at frequency w.

Figure 5.11 shows a power spectrum calculated for the longitudinal (i.e.,
in the direction of mean flow) turbulent fluctuating velocity measured along
the centerline of a surface jet. Figure 5.12 shows the corresponding amplitude
function. It is easy to see certain peaks in these figures, which indicate the
frequencies of the most energetic motions. Another example of this approach is
with respect to water surface elevations measured at the mouth of an estuary.
Application of frequency analysis to a set of such data should be able to
provide an indication of the normal tidal period (or frequency), as well as the
dominant wave period.
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Figure 5.11 Power spectrum calculated for longitudinal turbulent velocity fluctua-
tions measured along the centerline of a surface jet in the laboratory.
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Figure 5.12 Amplitude function corresponding to the power spectrum from
Fig. 5.11.
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5.4 STABILITY ANALYSIS

The essence of stability theory is to define whether a small disturbance imposed
on a flow will grow or not. In this section we consider linear stability, in which
a stable, steady flow represented by velocities and pressure (i;, p) is subjected
to small disturbances u; and p’. Thus

up = u; +u. p=p+7p (5.4.1)

where u;(i = 1, 2, 3) represents the three velocity components in a Cartesian
coordinate system. Note that this definition for u; appears similar to Eq. (5.2.1),
except here our interest is the initial growth of the disturbances, rather than
the properties of the disturbances once they are fully developed. In general,
expressions similar to Eq. (5.4.1) can be written for other fluid properties such
as density, temperature, or mass concentration (dissolved mass), but for now
we are primarily interested in the velocities and pressure; density variations
are considered only in connection to buoyancy terms, consistent with the
Boussinesq approximation.

We first consider the Navier—Stokes equations for incompressible flow,
assuming a Cartesian coordinate system (refer to Chap. 2),

au,‘
i _ o (5.4.2)
Bxi
ou; ou; 1 ap 2
P, Vu; 543
ot + “i ij 1% 3)6,‘ & Vi ( )

where Eq. (5.4.2) expresses continuity and Eq. (5.4.3) expresses momentum
conservation, with i, j =1, 2,3, g = gravity, and v = kinematic viscosity.
Following normal convention, the Coriolis term is not included here, as it
is not important for a first-order linear stability analysis.

It is assumed that the steady, stable flow (u;, p) satisfies

ou;
10 (5.4.4)
8)65
and
_ ou; 1 op o
L =L g Vu; 5.4.5
7§ o, o, gi +vVu ( )

This solution also is assumed to satisfy all relevant boundary conditions
of the problem. For the continuity equation, substitution of Eq. (5.4.1) into
Eq. (5.4.2) gives

%: au; + u}) =@+8_144

i_ (5.4.6)
axi 8)(?,‘ 8x,» 8)(?,‘
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The time average of this expression is

o au;_ﬁﬁiJra_u;_O 5.47)

8x,~ 3)6,' o 8x,~ 8x,~ a o
However, because of Eq. (5.4.4) and also because, by definition, the time
average of a fluctuating quantity is O (since u; is a fluctuating quantity, so is
du;/dx;), then

—1 =0 (5.4.8)

8x,»
Also, from Eq. (5.4.6), it is seen that the fluctuating part of the velocity field
has zero divergence, i.e.,

o’

Mo (5.4.9)

8)(,'

For the momentum equations, substitution of Eq. (5.4.1) into Eq. (5.4.3)
results in

3(ﬁ +up) + (@ + u‘)i(n +u))
a A T
19 — / 2 — /
=———@+p)+g+vVWw+u) (5.4.10)
00 0x;
Then, by subtracting Eq. (5.4.5) and noting that the assumed stable solution
is steady, an equation for the disturbances is obtained as
ou; _ ou; ,0u; 1ap

i et} [ V2u 5.4.11
ot “i 0x; T ox; o Ox; TV ( )

Equations (5.4.9) and (5.4.11) are the governing equations for the disturbances.

The simplest case to consider for the disturbances is that of natural
sinusoidal oscillations of small amplitude. Since Egs. (5.4.9) and (5.4.11) are
linear in the disturbances and the flow given by (%;, p) is independent of time,
formulations for the disturbances can be written as

W= filu, v, x) e p = G 1) e (5.4.12)
where f; and f’ are functions only of position and o is a complex function
having units of time~!. From Eq. (5.4.12), the disturbances are seen to grow or
decay with time, depending on whether the imaginary part of o(0;) is positive
or negative, respectively. Thus the flow is unstable when o; > 0 and stable
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when 0; < 0. When o; = 0, a state of neutral stability results, in which the
disturbances neither grow nor decay with time. Substituting Eq. (5.4.12) into
Egs. (5.4.9) and (5.4.11) gives, respectively,

afi
8)65

=0 (5.4.13)

and

Afi

ou, 18 !
—iof;+ l+f, Mi_ f
/ ox;

+ V2 f; (5.4.14)
P 0x;

Since the flow field (u;, p) satisfies the boundary conditions of the origi-
nally posed problem, the boundary conditions for Egs. (5.4.13) and (5.4.14)
must be homogeneous, which also means the boundary conditions for the
fi are homogeneous. A nontrivial solution for these equations then will be
possible for certain values of o, i.e., an eigenvalue problem results for o
and f,‘.

The spatial stability problem can be addressed by considering the distur-
bances as an oblique traveling wave. For convenience, the wave is assumed
to travel in the x| —x3 plane, and functional forms for f; and f’ are written as

Fixi, X2, x3) = @;(xz) e F11Hhsxs)

. (5.4.15)
F(x1, x2, %3) = L(xp) €/ Frothans)

where k; and k3 are complex wave numbers in the x; and x3 directions, respec-
tively, with units of length~!. After substituting Eq. (5.4.15) into Egs. (5.4.13)
and (5.4.14), rearranging and simplifying, we have

3¢»
2+ ifkign + kagz) = 0 (5.4.16)
2 %)
0p; ou;
i(—o + ki + ksiiz) fi + o — + ¢ —
0x7 ox;
10 L)
=———§821—lé.(k181,+k383,)+v a2 — (K 4+ k)i | (5.4.17)
p 0x; ox.

where §;; is the Kronecker delta. Now, for fixed o, Egs. (5.4.16) and (5.4.17)
form an eigenvalue problem for k; and k3. Similar to the situation with o, if
either k| or k3 has a negative imaginary component, the flow will be spatially
unstable.

It is helpful to consider the equations in nondimensional form. Following
the development in Sec. 2.9, this is done by designating characteristic velocity
(U’ and length (L) scales, to define nondimensional variables as
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X1 X X3 U up

X = — y = — = — U = — V = —
L L L U U’
i3 U’

W = U o =Lk, ﬂ:Lk3 T= ft (5.4.18)

L ; U'L
= é‘/2 Q= 0_/ I/fi = g/ Re =

pU U U v

Introducing these into Egs. (5.4.16) and (5.4.17) then gives

% F il + Bs) =0 (5.4.19)
A, U U
i (— Q+01U+/3W)+V—+1/f1 +Yr—— + Y31 ——
dy oy 0z
= —iaK + i {d " (@ 24 B )w} (5.4.20)
diyr 1%
i (— Q+aU+ﬂW)+VT+W1*+W2 +1ﬁ318*
__d_K L de_ 2 2
=0 * e [dyz @+ B )wz] (5.4.21)
iV (— sz+aU+ﬁW)+vdiy3+w1—+wz— %—
1 Y3
— _ifK +§[dy (@ +,3)¢} (5.4.22)

5.4.1 Stability of Plane Laminar Flows

In general, the system of equations (5.4.19)—(5.4.22) is very difficult to solve.
However, there are certain simplified cases for which further development is
possible. Consider a flow that consists of parallel streamlines in the x—z plane,
so that y indicates the direction normal to the mean flow direction. This type
of flow might exist between two infinite parallel planes, for example. The
variations of flow properties in the x and z directions are assumed to be very
small relative to the y direction, so that the flow field may be considered
as a function of y only [i.e., U =U(y), V=V(y), W = W(y)]. Then, from
the continuity equation (5.4.4), V = 0. For simplicity, it also is assumed that
W = 0 in the following. In other words, a straight flow is considered, where
the coordinate system is aligned so that the x axis points along the direction
of the mean flow. With these assumptions, Eq. (5.4.19) is unchanged, and
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Egs. (5.4.20)-(5.4.22) become, respectively,

. ou . 1 [d*y,

i1 (—Q+aU) + Y — = —iaK + — [ — (P+p )wl} (5.4.23)
ay Re

2

i (—Q+alU) = —LZTK L [d sz — (& + ﬂ2)¢2} (5.4.24)
y d

(-9 + aU) = ~ifK + o [ V@ 1 v } (5.4.25)

e | dy?

These equations are combined by first eliminating K between Egs. (5.4.23)
and (5.4.24) and substituting for ¥, from Eq. (5.4.19) to obtain an equation
with i, and 3. A second equation in ¥, and 3 is developed by eliminating
K between Egs. (5.4.24) and (5.4.25), again using Eq. (5.4.19) to substitute
for ;. The two equations in ¥, and 3 are then combined to give

pe 22U
(U—C){ — (@ +/3)} K/fz—lﬂz—
__;'{‘ﬁ — 2 + ) +( + B (5.4.26)
= Re a2 B v .
where
Q
c=" (5.4.27)
o

is a complex velocity (nondimensional), called the phase speed of the distur-
bance. The corresponding dimensional complex velocity is the ratio of the
time parameter o to the wave number.

We now consider three-dimensional disturbances in the form of an
oblique wave in the x—z plane, with amplitude as a function of y. This is
called a Tollmien—Schlichting wave, and we further assume that the coordinate
system is oriented so that the direction of travel of the wave is along the x-
axis. This implies 8 = 0. Under this condition, the continuity equation (5.4.19)
simplifies to

dyn

ot ioay; =0 (5.4.28)

A general solution to this equation may be expressed in terms of a function
¥(y), such that

dyr .
Y = Ty Yo = —iay (5.4.29)
y
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Substituting Eq. (5.4.29) into Eq. (5.4.26) then gives

(U—c)<dz—a2>w—wdzu
dy? dy?
_ b {d_4_2azd_2 +a4} v (5.4.30)
aRe |dy* dy? o

This is known as the Orr—Sommerfeld equation. This equation also can be
derived directly from the two-dimensional Navier—Stokes equations, assuming
disturbances of the form yr(y) explic(x — ct)], from which the velocity ¢ may
be interpreted as the velocity of wave propagation.

Solution of the Orr—Sommerfeld equation depends on boundary condi-
tions for a specific problem and is usually accomplished by numerical integra-
tion. Once the solution for i is obtained, the velocity perturbations are found
from

U dyr . Ul .

’ 1o _wel(axfﬂr) ’U/ — 2 — —l()llﬁ ez(afor) (5431)

U dy U

which can be seen from the definition of v in Egs. (5.4.28) and (5.4.29). These

perturbations can grow in either time or space, if the imaginary parts of o or
2 are negative. In dimensional terms, the perturbations are

dy .
W, = v 2V giten—on iy = —ikLU' &1 (5.4.32)
dy

(recall that this solution is for waves traveling in the x-direction, and k is the
corresponding wave number).

As previously mentioned, the solution for « and €2 (or, in dimensional
terms, k and o) forms an eigenvalue problem. Consider, for example, the case
of temporal instability. In this case, « is assumed to be real and o, (= real
part of «) is specified, along with Re and U(y), which are the main param-
eters of Eq. (5.4.30). Solution of the differential equation then produces one
eigenfunction ¥ and one complex eigenvalue ¢ for each pair of values («,
Re). The condition of neutral stability is then of interest, since curves of
neutral stability stable from unstable regions in the parameter space (¢, Re).
A representative curve of neutral stability is shown in Fig. 5.13. The point
on the curve that corresponds to the lowest value for Re gives the critical
value, Re, = critical Reynolds number. For Re < Re,, the disturbances are
stable for all values of «;. For larger Re, unstable solutions appear, although
there are still wave numbers for which the solutions are stable, even for
high Re.
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Figure 5.13 Neutral stability curve for wavelike disturbances superimposed on plane
laminar flow.

5.5 TURBULENCE MODELING

As previously mentioned, nearly all natural flows are turbulent. In the previous
few sections we described some of the basic techniques used in describing
turbulent quantities, from a statistical point of view, as well as analysis
that leads to a prediction of conditions under which turbulence will occur.
However, empirical evidence is still commonly used to describe turbulent flow,
either the initial transition to turbulence or properties of the fully turbulent flow
field.

Perhaps the most common example of this is the early observation of
Reynolds that pipe flow becomes turbulent for a Reynolds number of about
2000, where Reynolds number is defined with the pipe diameter and mean
flow velocity. Empirical data also play a role in the analyses described in the
present section, where we present several methods used to obtain closure for
the set of equations describing a turbulent flow. These approaches provide a
basis for modeling such flows.

5.5.1 Reynolds Averaging

The basic governing equations for turbulent flow are the same as those devel-
oped in Chap. 2, except here the fluctuating nature of the various properties
of the system is included explicitly. One of the most important consequences
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of these turbulent fluctuations is their effect on transport, and one of the most
common methods of incorporating turbulent transport for each of the fluid
properties is through definition of a turbulent diffusivity or, as in the case of
the momentum equation, a turbulent eddy viscosity. This is done through the
process of averaging the effects (over time) of the fluctuating components of
the fluid properties. That is, we consider various properties of the fluid system
as consisting of mean and fluctuating parts, as in Eq. (5.2.1),

uj = u; + u p=p+p p=p+7p T=T+T (5.1

where the u; are the velocity components, p is density, p is pressure and 7T is
temperature. An overbar is used to denote the mean, and a primed quantity is
a fluctuating part. These have basically the same meaning as in the previous
section (5.4), although here we take it for granted that the fluctuations are
present. Following the approach in previous sections, statistical properties of
the turbulence are assumed to be stationary.

First consider the continuity equation. Using index notation and
assuming incompressible flow, this equation comes from Eq. (2.5.7) and is

written as
dup _ D ) _ 0 (5.5.2)
Bxi Bxi Bxi Bxi

Taking a time average of this expression gives
om;  ou,  om  dul
R R (5.5.3)
8x,~ 3)6,' 8x,~ 8x,~
and the time average of a fluctuating quantity is 0, so

i (5.5.4)
8)(,'
Also, the time average of a mean quantity is just the mean itself. Combining
Egs. (5.5.3) and (5.5.4) shows that the mean flow field must satisfy the conti-
nuity relation (in fact, this is the steady, stable flow U considered in Sec. 5.4).

Then, from Eq. (5.5.2), we know that
ou;
8x,~ a

(5.5.5)

For the general form of the momentum equation, consider Eq. (2.9.17),
rewritten here for convenience as
ou; ou; P 1 ap

e Q= Lo — — 2 4 WV 5.5.6
o uj 8xj + 26182 juy pog, 0 O, + vViuy; ( )
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where gradients in the reference level (4;) have been neglected. Substituting
fluctuating variables for velocity, density, and pressure (Eq. 5.5.1), we obtain

0 0
&(ﬁi + u:) + @+ M/j)g(ﬁ, + u:) + 2¢; 182 (U + u;{)
J
o400 1 0 0 0
=2 pgi_ ——@P+P)+v— | —@ +u) (5.5.7)
£0 £o 8x,~ 3)Cj ij

where the Boussinesq approximation has been used to neglect density varia-
tions except in the buoyancy term. Multiplying the terms and time-averaging

then gives
E)ﬁ,»_i_f 3ﬁi+ /814;_'_2 Q.G
Uy T T PR
o " ox; " g L YRV
0 1 0p d [ ou;
=L 22y, T (2 (5.5.8)
£0 £0 ox; ax]' 3)Cj

Note that although the mean of a fluctuating quantity is zero, the mean
of the product of two fluctuating quantities is not usually zero. Also, the mean
fluctuating term (third term on the left-hand side) can be rewritten using

(5.5.9)

where, from Eq. (5.5.5), the last term on the right-hand side of this result is
zero. Thus after substituting Eq. (5.5.9) back into Eq. (5.5.8) and rearranging,

we obtain
Bﬁi+_ Bﬁi+2€ Q.
7. 2 QT
or | oy, RN
0 1 op 027, 0 ——
=L =Ly T %) (5.5.10)

£0 ! £0 ox; 3)Cj 8)Cj ax]

This is the Reynolds averaged equation for mean momentum transport.

The last term on the right-hand side of Eq. (5.5.10), when multiplied by
po, represents the Reynolds stresses. This term produces an effect similar to that
of viscous stresses, though it should be kept in mind that the physical basis
for viscous stress is fluid viscosity, while turbulent shear stress (Reynolds
stresses) results from the fluctuating nature of the velocity field. In other
words, the turbulent eddies transport various fluid properties by their random
three-dimensional motions, superimposed on top of the mean flow (advective)
transport. This process is illustrated in Fig. 5.14.
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Figure 5.14 Illustration of turbulent transport by small-scale eddy motions superim-
posed on top of the mean flow field.

The problem now is to find ways to evaluate the Reynolds stresses, since
the equation set at this point only relates these stresses to the mean flow. One
of the simplest approaches is to express the magnitude of the Reynolds stresses
in terms of a gradient formulation, similar to molecular diffusion, that is,
ou;

Il kit
_uiuj = l)t(]) axj (5511)

where vy ;) is defined as a turbulent kinematic eddy viscosity in the j-direction
(note that summation comvention is not used here). This formulation allows
the molecular and Reynolds stresses in Eq. (5.5.10) to be combined, since they
both depend on the gradient of mean velocity. By substituting Eq. (5.5.11) into
Eq. (5.5.10) we obtain

ou; _ 0u; _
E Mjgj —l—28,~ijjuk
7 1op 9 %;
=L 24 = ) 5.5.12
,Oog oo O, + o, v+ Vt(]))axj ( )

Then, since turbulent transport is generally much stronger than molecular
transport, v < vy ), and the molecular term is usually neglected in writing the
mean momentum equation,
M, T e = 2 + Ml (553
o J 8)(3/' ijknajlUk 8i t(/)axj
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Estimates for vy, may be obtained by direct measurements of the
Reynolds stresses and mean velocity gradients, using Eq. (5.5.11). However,
this is normally a difficult and time-consuming procedure, requiring a large
number of measurements in order to obtain reasonable averages. Other
estimates of turbulent viscosities may be made by conducting experiments
where the diffusion of a conservative tracer is observed over time and values
for vy(jy are chosen so that the equation fits the observations (assuming that at
least the mean flow is well known). This procedure requires using a solution
to the turbulent advection—diffusion equation for dissolved mass, which is
described in Chap. 10, along with the application of the Reynolds analogy,
which is an assumption that the turbulent diffusivities for momentum, mass,
and heat are the same, since they all depend on the same eddies for transport.
Turbulent viscosities also may be estimated as the product of a typical turbulent

velocity scale, such as the root-mean-square velocity fluctuation, ﬁm, and
an appropriate length scale, usually the integral length scale (analogous to
the integral time scale defined in Eq. 5.2.9). This approach is similar to the
mixing length approach used in defining molecular diffusivities, described in
Sec. 10.3.1.

In general, eddy viscosity is dependent on direction, as indicated by the
directional subscript j in Eq. (5.5.11). This is because the eddy viscosity is
directly related to the turbulence structure, as expressed through the fluctu-
ating velocity components, which in general may have different characteristics
(length, frequency, magnitude) in different coordinate directions. For the case
of isotropic turbulence, the eddy viscosity values are the same for the three
coordinate directions, and in the case of homogeneous turbulence, v is inde-
pendent of location but may still have directional differences. For this case,
v can be brought outside of the gradient operator in Eq. (5.5.13).

A more formal estimate for the eddy viscosity can be obtained using a
two-equation model, one for transport of turbulent kinetic energy (K) and one
for the dissipation rate (g). Both k and ¢ are per unit mass and are defined
formally in the following section. Based on physical considerations, Prandtl
and others have argued that the eddy viscosity v, should depend on K. From
dimensional considerations, a length scale for the turbulence (/) also must be
introduced, so that

v = c1lKY? (5.5.14)

where c; is a constant. In other words, K'/2 provides the velocity scale referred
to above. The characteristic length [ also is related to dissipation, since it may
be argued that ¢ does not explicitly depend on molecular viscosity, because
the energy of the turbulence is mostly associated with larger eddies. In other
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words, ¢ can be expressed as (see also Sec. 5.6)

K3/2
=2 1 (5.5.15)
where c; is another constant. Using this result to substitute for / in Eq. (5.5.14)
then gives
K2
po= 2 (5.5.16)
3

where ¢3 = cjc; has been found to have a value of approximately 0.09. This
result applies mainly for isotropic turbulence, since there is no directional asso-
ciation with K, and / has been assumed as an isotropic quantity. Formulation
of the equations for K and ¢ are described below.

Before continuing with the discussion for turbulence, it is of interest to
examine the effect of turbulent transport for other properties of the system.
Here, we show the temperature equation, though a similar analysis holds for
transport of other properties, such as dissolved mass. Following the same
procedures as above, fluctuating variables are introduced into Eq. (2.9.33).
The result, written in index notation, is
DT _ 1 dgn , [kTg —ﬂ,]

0x j

(5.5.17)

Dt PoC 0X; 8_x]

where T is temperature and ¢, is radiation flux. A turbulent thermal diffusivity
can be defined for the turbulent transport term on the right-hand side, similar
to the eddy viscosity defined in Eq. (5.5.11), i.e.,

Nl
upT

oT / ox;

kr(j) = — (5.5.18)

Turbulent diffusivities may have different magnitudes in different directions,
since they also depend directly on the turbulence structure. Using the Reynolds
analogy, it often is assumed that kz(jy = vy), i.e., the turbulent Prandlt number
(ratio of momentum diffusivity to thermal diffusivity) is approximately equal
to 1.

5.5.2 Turbulent Kinetic Energy Equation

The Reynolds stresses are directly related to the kinetic energy of the fluctu-
ating components of velocity. When there is a higher kinetic energy level for
the fluctuating velocity components, they are more active in transporting fluid
properties in the flow field. We first develop an equation for the mean kinetic
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energy, by multiplying (dot product) the mean momentum equation (5.5.10)
by u;. This gives

0 <12>+ 0 <12) o _ 10 @)
— | = ui— | zu; | = —giwi — ——@;
o \ 2" Tox, \2") T po¥™ T py P
3 [_u; au; \ 2 9 (_,_,)Jrﬁau,- (5519
— (=) - — — — @) + uiu’,— 5.
8xj 8)(3/' 8)6‘,' 8)Cj P ! /8x‘,-
After rearranging, this result may be written as
D(w\_p _ (B (G, _—
— |\ = )=—gu— — \ui— —v— | — | +uiu; u;
Dt \ 2 00 ox; 00 ox; \ 2 /

puy (2 2 (5.5.20)
" axj 8)Cj

+v

The left-hand side of this equation is the time rate of change of mean kinetic
energy (per unit mass, following a fluid element). The first term on the right-
hand side is gravity, or buoyancy work, the second term is referred to as
the flux divergence term and refers to redistribution and transport of mean
kinetic energy by pressure and shear stresses (both viscous and turbulent), the
third term is the rate of work of the Reynolds stresses to convert mean kinetic
energy to turbulent kinetic energy (TKE), called shear production, and the last
term is dissipation of mean kinetic energy directly into heat. It is interesting
to note that the Coriolis term drops out of the mean kinetic energy equation.
This is because the Coriolis term does no work, since the force is acting at a
right angle to the velocity vector. However, the Coriolis term does affect the
distribution of energy among the different velocity components.

The TKE conservation equation is derived by multiplying the orig-
inal (nonaveraged) momentum equation (5.5.7) by u;, time averaging, and
subtracting the mean kinetic energy equation (5.5.20). After some rearranging,
the result is

DK 'ul o (up oK 1
P tgi— — tP —v— + —uuu;
Dt £0 BXj £0 3)Cj 2 J

7 i\ 2
B P _V<i> (5.5.21)
jax]' E)xj

where K = 1/2u? is the turbulent kinetic energy per unit mass. The terms
in Eq. (5.5.21) have analogous interpretations as in Eq. (5.5.20), though the
shear production term has opposite sign. Normally, this is a sink of mean
energy and a source of TKE. Only under certain conditions does this term
change sign (there is some evidence, for instance, that the flow of energy is
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in the opposite direction in rotating flows). Once again, note that the Coriolis
term drops out of the total TKE equation, for the same reason as it did for
the mean kinetic energy equation. Additional averaged fluctuating terms do
not appear because fluctuations in 2 are not considered. However, as with
the mean flow terms, the Coriolis acceleration does affect the redistribution
of TKE among the various velocity components.

For high Re flows the viscous terms are all usually neglected, except the
dissipation term for TKE, which is the ultimate sink for mechanical energy.
The mean kinetic energy equation is then

D [u? 0 a D i
el 0 =£gzu_i——< P +uuu>+ulu i (5.5.22)
Dt \ 2 00 0x; 00 J 0x

and the TKE equation is
DK  ou 9 'y 1 —— 0uf;
A LA il I (5.5.23)
Dt £0 3)Cj £0 2 J J 8x.~

where ¢ is the dissipation of TKE per unit mass and has been substituted for
the last term on the right-hand side of Eq. (5.5.21), i.e.,

0
£= u(a”") (5.5.24)

a)Cj

5.5.3 Reynolds Stress Equations

Equations for the Reynolds stresses are developed using procedures similar to
the above for TKE. First, subtract the average momentum equation (5.5.10)
from the full momentum equation (5.5.7), neglecting the Coriolis and gravity
terms, to obtain

/ / 77 /
ou; _ ou; , ou; , ou;

— 4 _’+ _ _1!
o o T Moy T "an

1 ou; 82142 0 —
=———+4v —ujuy, (5.5.25)
Po Bxk Bxkaxk Bxk

where subscript k£ has been used in place of j for convenience in the following.
Multiplying Eq. (5.5.25) by u; gives

/

', 9 ! , ou; o,
/! / J — / j 1 7o
i R Pt o R T ™
1 ,9p , U a
- —%u] ox; + ”/”axkaxk tu Ja —— (i) (5.5.26)
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Now let us write an equation similar to Eq. (5.5.25) but using subscript j
instead of i and multiplying by u}. Adding this equation to Eq. (5.5.26) and
rearranging gives

, 0l

k axk

E(u’u’») + ﬂki(u’-u’) + i(u/-u/u’ )+ U, ou; +uu
ar g T g TR Tk gy T

1 / 8”: + au/] ‘I‘ 8 ( / /) ‘I‘ a ( / /)
= —— [ = —(u. —(U.
£0o P ax]' 3)6,' 8x,~ jp 8)Cj iP
(', ou, ou'; 9 — 9
(i) B Wi R Wy —(uiw) + u;— W) (5.5.27)
Bxkaxk Bxk 3)Ck Bxk Bxk

Taking the time average and letting R;; = uju’j, this equation becomes

E)Rij 7 8R,~j p/ 814; " 31/]) i R auj R ou;
u =q— (= —Rix— — Rjk—

ot k 0xy £0 3)Cj ox; k oxy, 7 Xy
1 ou'.p u.n 0 —
po \ Ox; ox; oxy

82Rl~ j 8u; au/j
+ {vaxki)xk} + { 2v8xk o, } (5.5.28)
This is the transport equation for Reynolds stress. The left-hand side is
the total rate of change of R;;. The terms on the right-hand side are grouped
according to their physical interpretation. The first term is the pressure—strain
correlation, which plays an important role in the distribution of R;;. The
second term is the production of R;;, similar to the production term in the
TKE equation. The third term is turbulent diffusion and redistribution of R;;
by pressure. The fourth term is molecular diffusion, and the fifth term is dissi-
pation, again similar to the TKE equation. Solution of Eq. (5.5.28) provides
values for R;; that can be input directly into Eq. (5.5.10), thus closing the
system of equations.
An alternative to solving the differential equation for R;; is the alge-
braic stress model. This is obtained directly from Eq. (5.5.28). To simplify
the notation, let

P (B 3“3’)

p.=2 (=4 5.5.29

Y 00 <8xj 0x; ( 2)
0ii=—(R 0 | g, (5.5.29b)

v ik 8xk ik Bxk o

1 [ 0u;p'ox; ou p’ 0
— J :

Fi =" (Ta— = g (0 (53290
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R

d;i = F;; 5.5.29d
/ / + vaxkaxk ( )
ou’ ou'.
g =20+ 5.5.29
Y Vaxk Bxk ( )
With these definitions, Eq. (5.5.28) can be rewritten as
DR;;
Di =P,‘j+Qij—8ij+d,'j (5530)
Using these definitions also allows the TKE equation (5.5.21) to be rewritten
as
DK +d (5.5.31)
= — & .
b F

where P = P;;/2, e = ¢;;/2, and d = d;;/2. Note that, upon contraction of the
indices, Q;; = 0. For simplicity, the buoyancy work term also has been omitted
in Eq. (5.5.31).

We now define T;; = R;;/K and substitute into Eq. (5.5.30) to obtain

DT
T;j(P—e+d)+K Dr =P +0i;—¢j+d (5.5.32)

The derivatives of T;; are normally small, relative to the other terms in the
equation, and may be neglected. Furthermore, it is assumed that d;; = T;d;
the viscous transport term also is neglected, so that Eq. (5.5.32) becomes

T;;(P—¢e)=P;j+0ij —¢ij (5.5.33)

This provides a direct nondifferential equation to evaluate the Reynolds
stresses. Of course, the other terms in the equation, notably Q;; and ¢;;, must
first be obtained. However, algebraic expressions also have been developed
for these terms. The derivations are not presented here, but the final result, as
shown by Warsi (1993), is

Tii= 25+ -2 (p,, - 2ps (5.5.34)
0= 3% T P e U T30 >

where yp = 1 — 10c;, ap — 3c; — 1, ¢; = 0.5, and ¢, = 0.06.

5.5.4 Dissipation Equation

A formal equation for the rate of change of ¢ is obtained by differentiating
Eq. (5.5.25) with respect to x;, multiplying by du;/dx; and taking the time
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average. The result is

— 72 e
De_ )1 @ <8u;€3p’> 19 ,<au;.) | 0

Dt~ ) po i \ ax g 200 | owe A, dx; 0x;
—2v azﬁj u/% _}.% a_uia_l't//‘+a_u;3_1'{:
0x; 0xy, k 0x; 0x; | ox; ox; ox; oxy
Bzu’j g 9%e
5.5.35
Y axkaxl + vaxkaxk ( )

This can be solved in connection with either the Reynolds stress model or the
K —¢ approach.

5.5.5 K-¢Model

The basis of the two-equation K —& model is solving Egs. (5.5.23) and (5.5.35)
for K and ¢, respectively. Once these are known, Eq. (5.5.16) can be used to
obtain v, which is then used in Egs. (5.5.11) and (5.5.10) to solve for the
momentum transport.

5.6 SCALES OF TURBULENT MOTION

One of the main characteristics of turbulence is the presence of a full spectrum
of scales in both length and time in a fully developed flow. As noted in
the previous section (see Egs. 5.5.21 and 5.5.23), the flow turbulence gains
kinetic energy by the Reynolds stresses acting on the mean velocity gradient,
or by gravity work, in the case of convection-driven flow in which there is
an unstable density gradient. This energy feeds into relatively large eddies,
with a size or length scale that depends on the size of the system in which
the flow occurs. For example, cooling at the top of a column of water that
is initially well mixed will cause water near the surface to become heavier
than the underlying water. This heavier water then drops through the depth
and is replaced by cooler water swept upwards, thus generating a circulation
throughout the depth of the column. This is what happens, for example, during
the fall and spring “overturns” in temperate lakes. Large-scale eddies also are
generated from instabilities in mean flow (mean shear), with a typical size that
depends on the scale of the mean flow.

These large eddies interact with each other and with the boundaries of the
flow, breaking down to produce smaller eddies. These smaller eddies interact
with each other, with the larger eddies, and with the system boundaries to
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Figure 5.15 Example of power spectrum plot for fully developed turbulent flow.

produce even smaller eddies and so on, until the smallest eddies in the system
cannot support their own motions and are dissipated by viscosity. This process
is usually described as a turbulence cascade, where energy continually flows
from larger to smaller eddies and, at the smallest eddy scale, there is an
ultimate sink of energy by viscous dissipation. It can be represented by a
distribution of energy scales on a plot of the power spectrum, as indicated in
Fig. 5.15. The slope of -5/3 for this plot is derived from consideration of the
energy transfer process in the range of the integral length scales.

The range of possible scales of motion in a flow is illustrated in Fig. 5.16.
The mean flow velocity and length scales are denoted by U and L, respec-
tively. These imply a characteristic time scale, T & L/U. The largest eddies
in the flow have about the same characteristic time scale, so 8/u ~ T, where
8 and & are the length and velocity scales, respectively, for the largest eddies.
Typical estimates for the magnitudes of & and § are u/U = §/L = 0.1-0.5.
The scales of the main energy-containing eddies may be estimated from the
integral calculations described in Sec. 5.2 (i.e., leading to the integral length
scale /) and a characteristic velocity, often taken as the root-mean-square value
of the fluctuating velocity,

Uems A (u2)'/2 (5.6.1)

where the average is taken over either time or space.
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Figure 5.16 Illustration of range of turbulent eddy scales in an open channel flow.

From observations, the magnitude of transport by the Reynolds stresses
is of the same order as the mean flow terms in the mean momentum equation,

i.e.,
0 —— u? U?

Also, considering that an eddy with energy proportional to u2 . will transfer

its energy to smaller eddies at a rate proportional to 1/7, an estimate for the
dissipation rate is obtained,

A IS S TS (5.6.3)

This result is similar to the dimensional argument leading to Eq. (5.5.15).
The process of energy transfer from larger to successively smaller eddies
continues until the eddies become so small that viscous effects become
important and the energy is dissipated. This stage is characterized by an
eddy Reynolds number approximately equal to one, where the eddy Reynolds
number is defined using the characteristic length and velocity of the smallest
eddies. This reflects the idea that at these smallest scales of motion, the inertial
strength of the eddy is approximately equal to its viscous transport strength, or
the eddy “viscosity,” is approximately equal to the kinematic viscosity. Thus
vn

L (5.6.4)
Vv
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where v and 7 are the velocity and length scales, respectively, for the smallest
eddies. We also know (see Eq. 5.5.24)

v 2
szu(—) (5.6.5)
n

By combining Egs. (5.6.4) and (5.6.5), we obtain estimates for the smallest
eddies, in terms of the dissipation rate. These are called the Kolmogorov

microscales,
v/ 1/4
n= g v = (ve)/ (5.6.6)

A micro-time scale, ¢, also can be defined as the ratio of 1 to v,
== (5.6.7)

As will be seen in later chapters, the scales of turbulent motion
have strong influences on transport and mixing properties for water quality
modeling. They also control a number of processes of direct interest in
environmental flow modeling, such as particle—particle interactions and
contaminant desorption phenomena. Some of these applications are described
further in Part 2 of this text.

PROBLEMS
Solved Problems

Problem 5.1 Consider a turbulent flow of water with a measured power
spectral density curve as shown and listed in Fig. 5.17.
(a) A common estimate for the turbulent velocity scale (denoted by u

for this problem) is the root-mean-square value of the fluctuations, u = u/_. =

rms
()2, where the i’ are the fluctuating velocities. Calculate u for this flow,
using the fact that the average value for ' is the autocorrelation for a time
lag of 0.

(b) One specification of the capabilities of a flow-measuring instrument
is its time factor, or frequency response. This value tells how fast the instru-
ment is able to respond to fluctuations in the signal being measured. Suppose
an anemometer were used to measure turbulence in the flow considered here,
but that it could resolve signal frequencies only up to 20 Hz (1 Hz = 1 cps).
What value of u would be calculated using data from this instrument?

Solution

(a) The autocorrelation for zero time lag is simply the area under the power
spectrum curve. For simplicity, the area is estimated here from the tabulated
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Figure 5.17 Data for Problem 5.1.
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data using the average value for S within each frequency range (set of data
points). The results of these calculations are shown in the right-hand side of
the table in Fig. 5.17. The sum of the last column on the right-hand side of the
table is 15.184 (cm?/s?) and the square root of this is u = 3.9 cm/s. (Note,
however, that better averaging schemes could be used to obtain improved
estimates.)

(b) Assuming that the rest of the spectrum remains the same, we esti-
mate the value for S at 20 Hz as 0.075 (cm/s)? (again, better averaging and
extrapolation procedures could be used here, but we use a simple approach
to illustrate the procedures). Then, using the same procedure as in part (a),
but including the sum only up to w = 20 Hz, we obtain u = 3.8 cm/s. The
difference between this result and that of part (a) is not very large, since most
of the signal is contained in frequencies less than 20 Hz.

Problem 5.2 Using the data from solved problem 5.1, and assuming that
the characteristic length scale for the eddies with velocity u is I =5 cm,
calculate the microturbulence length and velocity scales (Kolmogorov scales)
for the flow.

Solution

First we need an estimate for the dissipation rate. This is

339
e=" =27 _11.86 cm?/s®
l 5
Then, using 10~2cm?/s as the kinematic viscosity for water,
V34
n= 5 =0047cm and  wv=(ve)* =059 cm/s
e

Unsolved Problems

Problem 5.3 Show that the derivative of a time-averaged quantity is the
time average of the derivative of that quantity, i.e.,

af _af
ox  ox

Problem 5.4 Consider a turbulent flow, with velocity field and concentration
given by

u=U;+u and c=C+c,

respectively, where capital letters indicate mean (time-averaged) quantities
and primes indicate turbulent fluctuations. Apply the Reynolds averaging
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procedure to derive the advection—diffusion equation for mean transport of
the concentration ¢, including explicit terms for turbulent diffusive transport.
Describe how you might conduct an experiment to measure the turbulent
diffusivities directly.

Problem 5.5 Isotropic turbulence has been produced in laboratory experi-
ments by placing a grid or screen in a wind or water tunnel. It can be shown
that the initial decay of the turbulence can be described by

d — w?  dL —

ZwH\?r = —c,— = Cy(u2 1/2

dt( ) 17 o 2(u'%)
where ' is the turbulent fluctuating velocity, L is a longitudinal length scale,
and C; and C, are constants.

(a) Use the substitution ¢ = x/U, where U is the mean velocity in the
tunnel, to rewrite these equations in terms of derivatives in x.

(b) At the location of the screen, assume x = X, ml/z = [W?)"?]p,
and L = C3d, where d is the diameter of the screen wires and C3 is another
constant. Solve the equations developed in part (a), along with these boundary
conditions, to show that

T 2N\1/2 — C1/(C1+C>)
[(“2) ! }o 1+ +c )[(u’z)l/z]o (x — xo) ’
(w?2)1/2 : SN d
— C2/(C1+C2)
(@) 2] (x — x0)
— = |1 C C
Csd T+ ) C3U d

Problem 5.6 Develop the Reynolds-averaged equations in a cylindrical coor-
dinate system.

Problem 5.7 At a solid wall, the velocity fluctuations vanish just as the

mean velocity components do. In addition, the gradients of the fluctuations

tangent to the wall vanish. Using the coordinate system of Fig. 5.18, then,
oA

_—— = = 0
ox 0z

/ / /

Uw=v=w at y=20

Use the continuity equation for the fluctuations to write an expression for the
second derivative of v’ with respect to y. Then show that the first and second

derivatives of the Reynolds stress (#'v') with respect to y are both zero.

Problem 5.8 Write the TKE equation for the condition of zero horizontal
gradients. All viscous terms except dissipation may be neglected. Further
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Y

Figure 5.18 Definition sketch, Problem 5.7.

simplify the equation for a steady-state constant-density flow with negligible
flux divergence. What is the physical interpretation of the resulting equation?

Problem 5.9 Estimate the characteristic scales (length, velocity, and time)
for the largest and smallest turbulent eddies created by wind swirling around
the corners of buildings, past doorways, etc. State any assumptions you make.
Assume the kinematic viscosity of air is 1.5 x 107 m?/s.

2
———— e

—¢ W%’/ %r/ —=
[e—>

L

Figure 5.19 Oscillating grid for generating turbulence, Problem 5.10.
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Problem 5.10 A well-known laboratory experimental setup for studying
turbulent mixing involves using an oscillating grid to generate the turbulence,
as sketched in Fig. 5.19. The grid oscillates with frequency f and stroke s.
The mesh spacing between the grid elements is L and the grid elements have
diameter d. There is no mean flow.

(a) Assuming that a steady state can be reached, what is the basic
balance in the TKE equation? In other words, what are the impor-
tant physical processes to consider?

(b) Estimate the length and velocity scales of the eddies generated at
the grid.

(c) Estimate the rate of transport of TKE away from the grid.
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6

Boundary Layers

6.1 INTRODUCTION

The concept of the boundary layer was introduced in the beginning of the
20" century by Prandtl and Pohlhausen to simplify the analysis and calcula-
tion of flow phenomena and interaction with solid boundaries. This concept
has since been extended for calculations of heat and mass transfer in various
types of domains. Several examples in the previous chapters have already been
introduced that involve the concept of boundary layers, where it was shown
that often, and especially in environmental flows, only a minor portion of the
flow domain is subject to viscous laminar or turbulent flow with significant
velocity gradients and shear stresses. Other portions of the domain are prac-
tically at rest or subject to potential flow. For example, in Chaps. 3 and 4
we considered the flow domain on top of an oscillating plate and the case of
flow around a cylinder, as examples in which the concept of the boundary
layer was applicable. For the present chapter, we cover only several cases
in which the boundary layer concept is applicable for flow calculations in
environmental fluid mechanics, though some consideration of other issues of
transport phenomena also are included.

If fluid with small viscosity, like water or air, flows with high Reynolds
number around a solid body, then even at a very small distance from the solid
body, the effect of the inertial forces is much more significant than the effect of
the viscous forces. Therefore, it is possible to consider that in major portions
of the domain the flow is virtually unaffected by friction. Frictionless flow
is described by potential flow theory (Chap. 4). However, close to the solid
boundary, the effect of the viscous shear stresses is significant and cannot be
ignored.

In order to exemplify the application of the boundary layer concept to
flow phenomena, we first consider the buildup of a boundary layer and the
effect of shear stresses associated with the development of the flow field
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over an infinite horizontal plate. Figure 6.1 shows the various regions of
development of the boundary layer over a horizontal flat plate.

At the leading edge of the flat plate (at x = 0), the fluid is subject to
uniform flow U. Development of the boundary layer begins at this location,
and its thickness increases with x. Inside the boundary layer region, there is
a significant velocity gradient, and effects of shear stresses should be taken
into account. Close to the leading edge of the plate, the flow is laminar. For
larger distance downstream of the leading edge, there is a transition zone,
which is followed by a boundary layer region, which consists of a turbulent
region and a very thin laminar sublayer, as is discussed further below. As
the domain is semi-infinite (0 < y < 00), development of the boundary layer
has a negligible effect on the value of the potential flow velocity outside the
boundary layer, which maintains the value U.

As the boundary layer grows, it becomes less stable to small perturba-
tions. Consider that at some distance L downstream of the leading edge of the
flat plate, the boundary layer flow becomes unstable, and there is a transition
from laminar to turbulent flow. The value of L is defined by the value of a
Reynolds number, Re,,

UL
Re, = Re, = 222 = 5 % 10° 6.1.1)

I
where x is the distance from the leading edge. Downstream of x = L, where
the laminar boundary layer flow starts to become unstable, there is a transition
Zone, as the structure of the boundary layer adjusts to the turbulent condition.
In the turbulent region, close to the solid flat plate, velocity fluctuations are
small, as the viscous fluid adheres to the solid wall. Furthermore, the presence
of the solid wall limits the size of the turbulent vortices. Therefore the flow
close to the solid wall is considered as laminar flow. This region of laminar
flow comprises the laminar sublayer.

6.2 THE EQUATIONS OF MOTION FOR BOUNDARY
LAYERS

The analysis of boundary layers starts with a scaling analysis of the governing
equations. The steady-state equations of motion in a two-dimensional domain
are (refer to Chap. 2)

ou  u 19 Pu u

R A S SRS ST il 6.2.1
uax v8y o (p+pgZ)+v (8)(2 8y2) ( a)
8v+ B 1 a( + o)+ a2v+82v 6.2.1b)
U— +v— = ——— V| — + — 2.

ox dy oy P re ox2  9y?
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Figure 6.1 Boundary layer development over a horizontal flat plate.
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These equations can be simplified for boundary layer flow by consideration of
the relative magnitudes of the various terms. We let u denote the characteristic
quantity of velocity in the boundary layer and U be the potential flow velocity
that exists outside the boundary layer region. We also define a characteristic
longitudinal length L, over which u is subject to an appreciable change. There-
fore the order of magnitude of the first term of Eq. (6.2.1a), which represents
the inertial terms of the equation of motion, is
ou  U?
U— ~ — (6.2.2)
ax L
A characteristic length in the y-direction, over which changes in u are
appreciable, is of the order of magnitude of the average thickness of the
boundary layer §. Therefore the last term of Eq. (6.2.1a), which represents the
effect of shear stress between laminae of the boundary layer, is of order of

magnitude
Pu U
va—y2 ~ = (6.2.3)

In the boundary layer, effects of inertia and viscous shear are of the same order
of magnitude, so that the terms in Eqs. (6.2.2) and (6.2.3) are approximately
the same and
vL
S~ — 6.2.4
i ( )
This result indicates that the boundary layer thickness is of order of magnitude
J/vt, where t = L/U is a characteristic time scale for motions in the boundary

layer.
From the continuity equation for the boundary layer flow,
ou dv
2420 6.2.5
P PR (6.2.5)

Applying appropriate scaling quantities, this expression implies

Uu v sU

75 = VA 2 (6.2.6)
With L generally much larger than §, this last result suggests that the velocity
normal to the boundary is much smaller than the velocity along the boundary.
A further approximation used in boundary layer analysis is to assume that
gradients in the normal direction are generally much larger than gradients in
the flow direction, so that

d 0

— > — 6.2.7
5 > o ( )
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The pressure gradient is of the same order of magnitude as the inertial
terms in Eq. (6.2.1). Therefore

0 ou
—(p+ pgZ) ~ pu— = P+ pgZ ~ pU? (6.2.8)
0x ox

From an examination of equations (6.2.2)—(6.2.8), the following dimen-
sionless variables are suggested:

x* = f y* = X
=7 =3
U sU oU?

where an asterisk indicates a dimensionless quantity. By introducing

Egs. (6.2.9) and (6.2.4) into Eqgs. (6.2.1) and (6.2.5), we obtain nondimensional

forms of the governing equations (in the following, all variables are

dimensionless — the asterisks are omitted for simplicity),
ou ou op 1 ?u  u

By 22, 0, 00 6.2.10a
" TV T Tox " Reox? | 9y2 ( )

1 dv n ov ap n 1 v n 1 8% (6.2.10b)
—|ve—F+r— )| =+ S+ —— 2.
Re \ ax 3y dy  Re?>dx2  Redy?

ou v
— 4+ =0 (6.2.10c)
dx  dy

where Re is the overall Reynolds number,
UL
Re = — (6.2.11)
%

In typical boundary layer flow Re is large. Under this condition the terms in
Eq. (6.2.10) that are divided by Re can be neglected, leaving

du du 9 92u
n _dp

w9 Ou 6.2.12

“ox U{)y ox  09y? ( %)
3

0=-_2 (6.2.12b)
dy

u 9

ML (6.2.12¢)

ox  dy

An interesting result is immediately obvious from Eq. (6.2.12b), which
indicates that the pressure (or piezometric pressure) within the boundary layer
is (approximately) equal to its value at the top of the boundary layer. Therefore
the value of the pressure in the boundary layer can be obtained from the
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calculation of the pressure in the potential flow region, outside the boundary
layer.

There are several measures and definitions of the effect of the boundary
layer region on the total flow field. According to the simplest definition, the
top of the boundary layer is located where the boundary layer flow obtains a
value equal to 99% of the potential mean stream flow, or u = 0.99U. Another
measure of the boundary layer, termed the displacement thickness 34, is defined
as the thickness of a layer conveying fluid with velocity U, having volumetric
flow rate identical to the difference between the flow rate of a potential flow
and that of the boundary layer flow. According to this definition,

o u
(Sd:/o <I—E> dy (6.2.13)

The displacement thickness represents the outward displacement of the poten-
tial flow streamlines that results from the presence of the viscous boundary
layer. It is useful in defining the thickness by which the actual solid wall or
body should be increased before the potential flow theory may be applied.

A third measure, termed momentum thickness d.,, represents the thick-
ness of a layer conveying fluid with velocity U, whose momentum flux is
identical to the difference between the momentum of the potential flow and
that of the boundary layer flow. This definition is expressed by

5—/00” 11— L) (6.2.14)
"=k o\ "u)?¥ -
This boundary layer definition is sometimes used when determining drag on
an object.

For convenience, we now return to the analysis of boundary layer devel-
opment over a flat plate, as in Sec. 6.1. The velocity profile in the boundary
layer has been shown to be well approximated by a nondimensional similarity
profile,

u u y

—=— h == 6.2.15

U U(n) where n=3 ( )
Outside the boundary layer region, the velocity U of the potential flow is
constant. A dimensionless stream function f(n) can be defined by

_ v 6.2.16
f(”)_% (6.2.16)

where the stream function W is related to the velocity components by (also
see Sec. 2.5.3)
oV

o
== _
dy

ox

(6.2.17)
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As previously noted (Eq. 6.2.7), in most cases of boundary layer flow
the longitudinal pressure gradient is negligible. Making this assumption and
introducing Eq. (6.2.17) into Eq. (6.2.12a) results in

LR LAV 1\ (R ] Pw

=—v— 6.2.18
dy axdy  ox 9y? v 0y? ( )

This equation is subject to the following boundary conditions of the boundary
layer flow over a flat plate:

o

—=U at x=0 (6.2.19a)
dy

ow

dy

ow

™ - U at y — 00 (6.2.19¢)
y

We now introduce Eq. (6.2.16) to evaluate the various terms of Eq. (6.2.18),

v ds *w Unf” dé

BBy TP DD

ox dx oxdy 8 dx 6.2.2
BN Pv  Uf” Pv  Uf” (6220
—_— = Uf/ _— — —_— =

dy 9y? b dy? 82

where f' =df/dn and f” = d’f/dn?. Thus, Eq. (6.2.18) becomes

Usdé
_ <__) Ff = 6.2.21)
v dx
Since f = f(n) only, this last expression can be true only if
Usdé
—— | = const (6.2.22)
v dx

When this constant is chosen to be %, a single integration with respect
to x gives

vx
§=4/— 6.2.23
U ( )

which is consistent with previous results (Eq. 6.2.4). Introducing this value
into Eq. (6.2.21) results in

% FF 4 =0 (6.2.24)
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According to Eq. (6.2.19), the differential equation (6.2.24) is subject to the
following boundary conditions:

flle)=1  f(0)=f'0)=0 (6.2.25)

Blasius developed a power series solution for Eq. (6.2.24), subject to the
boundary conditions of Eq. (6.2.25). Numerical solution of Eq. (6.2.24) also
can be obtained quite easily using an adequate numerical code. In either case,
the solution shows that

u U
— =0.99 at vy — =49 (6.2.26)
U VX

This gives an indication of the boundary layer thickness according to the
“simplest” definition introduced earlier in this section. By substituting § for y,

5=49,/2 5 _ 49 (6.2.27)
= . —_— or - = Lo
U x  +/Re;

where Re, = Ux/v. This expression provides an improved estimate for the
boundary layer thickness, relative to Eq. (6.2.23)

6.3 THE INTEGRAL APPROACH OF VON KARMAN

In principle, Eq. (6.2.24) may be solved to find f () and its derivatives, from
which values of the shear stress on the flat plate, friction force, and drag
coefficient can be obtained. However, we prefer to present the calculation
of these quantities by the integral method of Von Karman. Results of this
approximate method are very similar to those obtained by solving Eq. (6.2.24)
directly.

The integral approach of Von Karman is applicable to calculations of
laminar as well as turbulent boundary layers. It incorporates several approx-
imations, including steady state, but in many cases its accuracy is suffi-
cient for engineering purposes. According to this approach, at the bottom
of the boundary layer (at y = 0) the velocity vanishes, and at the top of the
boundary layer (at y = §) the velocity is U (rather than some percentage of U).
Figure 6.2 shows the boundary layer conditions considered for this analysis.

Under steady-state flow, the integral basic conservation theorems are
applied to the control volume of Fig. 6.2, with unit width, length Ax, and
thickness varying between § and § + Ad, where

dé
AS = —dx (6.3.1)
dx
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Figure 6.2 Application of basic conservation theorems to control volume of the
boundary layer: (a) mass flux; (b) momentum flux; and (c) surface forces.
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First consider mass conservation (Fig. 6.2a). The mass flux through section

AB is
s
([ me)
0

Similarly, the mass flux through section CD is

S+ds B d 5
(/ pudy) :/ pudy + — (/ pudy) dx (6.3.2b)
0 wdx Jo dx \Jo

Therefore the mass flux through BC is the difference between the fluxes
passing through sections AB and CD, given by

d 8
T (/0 ,oudy) dx (6.3.2¢)

Figure 6.2b shows the various momentum fluxes that penetrate into the
control volume of the boundary layer. The momentum flux entering the control
volume through AB is

(f o)

and the momentum flux leaving the control volume through CD is

8+ds s d 8
(/ ,ou2dy) = / ouldy + — (/ ,ouzdy> dx (6.3.3b)
0 dx Jo dx \Jo

At the top of the boundary layer the flow velocity is U. Therefore the
momentum penetrating into the control volume of the boundary layer through
BC is given by the product of this velocity and the mass flux crossing BC.
Thus the momentum flux through BC is

d $
U— (/ pudy) dx (6.3.3¢)
dx 0

Figure 6.2c shows the various surface forces acting on the control volume
of the boundary layer. In order to generalize the calculation beyond the case
of a horizontal flat plate, we refer to the piezometric pressure p* rather than
the pressure p. The force acting on AB is in the positive x-direction, and its
value is given by

(7o)

s
=/ pudy (6.3.2a)
0

X

S
= / pudy (6.3.3a)
0

X

~ p*s (6.3.42)

X
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The force acting on CD is in the negative x-direction, with magnitude

8+dé
U re)
0

The force acting on BC is in the positive x-direction and its value is approxi-
mately given by

d
~ p*S+ —(p*8)dx
dx

x+dx
dp*
=p"S+46

po+ dx

dx + p*ds (6.3.4b)

dp*d
(p* + %7’() ds ~ p*ds (6.3.4¢)

The force acting on AD results from wall shear stress and is in the negative
x-direction, given by

Todx (6.3.4d)

where 7 is the shear stress exerted by the flat plate on the control volume.

Since the plate is horizontal, there are no body forces to consider in the
x-direction, and the total surface forces acting are given by the sum of the
parts of Eq. (6.3.4),

X

d *
dF = — (3 dp 4 ro) dx (6.3.5)

According to the Reynolds transport theorem (Sec. 2.4.3), under steady state
the net force acting on the control volume in the x-direction is equal to the
difference between momentum fluxes leaving the control volume and those
entering the control volume. Therefore

dp* d s d o
8 =U— dy | — — d 6.3.6
dx+ro dx(/opu y) dx(/opu y) ( )
This is the basic expression obtained by Von Karman for analysis of boundary
layer flow.

If the boundary layer is not too thick, then the first term on the left-hand
side (LHS) of Eq. (6.3.6) is much smaller than the second term, so that

d 1 u\ u
= — |pU? 1—— ) —d 6.3.7
= [p /0 ( U) U n} ( )

where n = y/§ as before (Eq. 6.2.15). Equation (6.3.7) provides a quantitative
connection between the shear stress on the plate and the velocity profile in the
boundary layer. In other words, the shear stress applied by the flat plate on
the boundary layer can be calculated directly as long as the velocity profile
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is known. This equation also shows that there is a direct connection between
the wall shear stress and the rate of development of the boundary layer along
the plate, which can be seen by rewriting Eq. (6.3.7), noting that x and » are
independent of each other:

U2/1 LA M L (6.3.8)
— )= - 3.
N u) v ax
Thus 79 depends on dé/dx.
It is common to assume a similarity profile for the velocity distribution
(as with Eq. 6.2.15), i.e.,
—=r(2) — = f (6.3.9)
= - or — = .
U 5 v
This applies to both laminar and turbulent boundary layers. In fact, it should be
noted that in developing Eq. (6.3.7), no assumption was made about whether
the flow in the boundary layer is laminar or turbulent, so that any of the
results obtained so far apply equally well for either condition. The differences
between laminar and turbulent boundary layers are related to different velocity
profiles and differences between boundary conditions typical of those velocity
profiles, as discussed in the following sections.

6.4 LAMINAR BOUNDARY LAYERS

The boundary layer equations can be solved as long as boundary conditions
are specified. At the plate, the velocity vanishes. Thus

%(0) =0 (6.4.1)

and at the top of the boundary layer the velocity is assumed to be equal to
that of the potential flow existing outside of the boundary layer, thus

%(1) =1 (6.4.2)

For laminar flow, shear stress in general is equal to the velocity gradient
multiplied by the fluid viscosity. Therefore, at the flat plate, the shear stress
Ty is equal to the viscosity multiplied by the velocity gradient at n = 0,

o () ()G

At the top of the laminar boundary layer, the velocity profile is tangential to t