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Preface

The purpose of this text is to provide the basis for an upper-level undergraduate
or graduate course over one or two semesters, covering basic concepts and
examples of fluid mechanics with particular applications in the natural environ-
ment. The book is designed to meet a dual purpose, providing an advanced
fundamental background in the fluid mechanics of environmental systems and
also applying fluid mechanics principles to a variety of environmental issues.
Our basic motivation in preparing such a text is to share our experience gained
by teaching courses in fluid mechanics, environmental fluid mechanics, and
surface- and groundwater quality modeling and to provide a textbook that
covers this particular collection of material.

This text presents a contemporary approach to teaching fluid mechanics
in disciplines connected with environmental issues. There are many good fluid
mechanics texts that overlap with various parts of this text, but they do not
directly address themes and applications associated with the environment. On
the other hand, there are also several texts that address water quality modeling,
calculations of transport phenomena, and other issues of environmental engi-
neering. Generally, such texts do not cover the fundamental topics of fluid
mechanics that are relevant when describing fluid motions in the environ-
ment. Besides presenting contemporary environmental fluid mechanics topics,
this text bridges the gap between those limited to fluid mechanics principles
and those addressing the quality of the environment.

The term environmental fluid mechanics covers a broad spectrum of
subjects. We have adopted the principle that this topic incorporates all issues
of small-scale and global fluid flow and contaminant transport in our environ-
ment. We have chosen to consider these topics as divided into two general
areas, one involving fundamental fluid mechanics principles relevant to the
environment and the second concerning various types of applications of these
principles to specific environmental flows and issues of water quality modeling.
This division is reflected in the organization of the text into two main parts.
The intent is to provide flexibility for instructors to choose material best suited
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for a particular curriculum. A full two-semester course could be developed by
following the entire text. However, other options are possible. For example, a
one-semester course could concentrate on the advanced fluid mechanics topics
of the first part, with perhaps some chapters from the second part added to
emphasize the environmental content. The second part by itself can be used in
a course concentrating on environmental applications for students with appro-
priate fluid mechanics backgrounds. Although the book addresses principles
of fluid mechanics relevant to the entire environment, the emphasis is mostly
on water-related issues.

The material is designed for students who have already taken at least
one undergraduate course in fluid mechanics and have an appropriate back-
ground in mathematics. Other courses in numerical modeling and environ-
mental studies would be helpful but are not necessary. Because of the breadth
of material that could be considered, some subjects have necessarily been
omitted or treated only at an introductory level. These topics are left for
continuing studies in the student’s particular discipline, such as oceanography,
meteorology, groundwater hydrology and contaminant transport, surface water
quality modeling, etc. References are provided in each chapter so that students
can easily get started in pursuing a particular subject in greater detail. Example
problems and solutions are included wherever possible, and there is a set of
homework problems at the end of each chapter.

We believe it is very important to introduce students to the proper
use of physical and numerical models and computational approaches in the
framework of analysis and calculation of environmental processes. Therefore,
discussion and examples have been included that refer to scaling procedures
and to various numerical methods that can be applied to obtain solutions
for a given problem. A full discussion of numerical modeling approaches is
included.

Both parts of the text are organized to provide (1) a review of intro-
ductory material and basic principles, (2) improvement and strengthening of
basic knowledge, and (3) presentation of specific topics and applications in
environmental fluid mechanics, along with problem-solving approaches. These
topics have been chosen to introduce the student to the wide variety of issues
addressed within the context of environmental fluid mechanics, regarding fluid
motions on the earth’s surface, underground, and in the oceans and atmosphere.

We believe that the wide scope of topics in environmental fluid
mechanics covered in this text is consistent with present teaching needs
in advanced undergraduate and graduate programs in fluid mechanics
principles and topics related to the environment. These needs are subject to
continuous growth and change due to our increasing interest in the fate of
ecological systems and the need for understanding transport phenomena in
our environment.
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1
Preliminary Concepts

1.1 INTRODUCTION

1.1.1 Historical Perspective

Fluid mechanics and hydraulics have long been major components of civil
engineering works and were probably originally associated with problems
of water supply in ancient civilizations. One of the first well-documented
hydraulic engineers was Archimedes (ca. 287–212 B.C.). His discovery of the
basic principles of buoyancy serves today as one of the fundamental building
blocks in describing fluid behavior. He also designed simple pumps for agri-
cultural applications, and some of his designs are still in use today. Other early
engineers had to deal with moving water over large distances from sources to
cities, as with the Roman aqueducts found in many parts of Europe and the
Middle East (see Fig. 1.1). These designs needed to incorporate basic aspects
of open channel flow, such as finding the proper slope to obtain a desired
flow rate. Remains of water storage and conveyance systems have also been
found from some of the earliest civilizations known, both in the Near East and
in the Far East. Rouse (1957) provides an interesting history of the science
and engineering of hydraulics, which is also summarized by Graf (1971),
particularly as it relates to open channel flow. In a sense, these were the first
kinds of problems that can be associated with the field of environmental fluid
mechanics.

An equally important task for early engineers was to design procedures
for disposing of wastewater. The simplest means of doing this, which was in
use until the relatively recent past, consisted of systems of gutters and drainage
ditches, usually with direct discharge into ponds or streams. Septic tanks, with
associated leeching fields, are another example of a simple wastewater treat-
ment system, though these can handle only relatively small flow rates. Within
the last century the practice of wastewater collection and treatment has evolved
considerably, to enable varying degrees of treatment of a waste stream before
it is discharged back into the natural environment. This development has been
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Figure 1.1 Remains of Roman aqueduct, built in northern Israel.

driven by increased demands (both in quantity and in quality) for treating
municipal sewage, as well as increased needs for treating industrial wastes.
Sanitary engineering, within the general profession of civil engineering, tradi-
tionally dealt with designing water and wastewater collection and treatment
systems. This has evolved into the contemporary field of environmental engi-
neering, which now encompasses the general area of water quality modeling,
for both surface and groundwater systems. This has necessitated the incorpo-
ration of other fields of science, such as chemistry and biology, to address
the wider range of problems now being faced in treating waste streams with
a variety of characteristics and needs.

In addition to treating municipal or industrial wastewater, environmental
engineers currently are involved in solving problems of chemical fate
and transport in natural environmental systems, including subsurface
(groundwater) and surface waters, sediment transport, and atmospheric
systems. A knowledge and understanding of fluid flow and transport processes
is necessary to describe the transport and dispersion of pollutants in the
environment, and chemical and biological processes must be incorporated to
describe source and sink terms for contaminants of interest. Typical kinds
of problems might involve calculating the expected chemical contaminant
concentration at a water supply intake due to an upstream spill, evaluating the
spreading of waste heat discharged from power plant condensers, predicting
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lake or reservoir stratification and associated effects on nutrient and dissolved
oxygen distributions, determining the relative importance of contaminated
sediments as a continuing source of pollutants to a river or lake system,
calculating the expected recovery time of a lake when contaminant loading is
discontinued, or evaluating the effectiveness of different remediation options
for a contaminated groundwater source. All of these kinds of problems require
an understanding of fluid flow phenomena and of biochemical behavior of
materials in the environment.

1.1.2 Objectives and Scope

The primary objective of this text is to provide a basis for teaching upper-level
fluid mechanics and water quality modeling courses dealing with environmen-
tally related issues and to give a compilation of applications of environmental
fluid mechanics seen in contemporary problems. The text also is meant to
serve as a reference for further study in the various subjects covered, so refer-
ences are included for additional reading. It would be impossible to include
an exhaustive discussion of all possible subjects in one text, and inclusion
of these additional references should provide a good starting point for more
in-depth study. Example problems are provided where appropriate, to amplify
the discussion or help reinforce certain concepts, and unsolved problems are
included at the back of each chapter, to provide exercises that might be
included in a course.

Today, the area of environmental fluid mechanics spans a broad range of
issues, including open channel hydraulics, sediment transport, stratified flow
phenomena, transport and mixing processes, and various issues in water quality
and atmospheric modeling. These topics are studied in a variety of ways,
such as by theoretical analyses, physical model experiments, field studies,
and numerical modeling. This text presents material that might traditionally
be included in two separate courses, one in fluid mechanics and the other
in water quality modeling. The emphasis here is on aqueous systems, both in
surface and subsurface flows, though the basic principles are mostly applicable
also for atmospheric studies. A major link between classic hydraulic engi-
neering and water quality studies is in defining the advective and diffusive (or
dispersive) transport terms of a water quality model, which are normally esti-
mated from hydrodynamic calculations. Fluid mechanics deals with the study
of fluid motion, or the response of a fluid to applied forces, and environ-
mental fluid mechanics refers to the application of fluid mechanics principles
to problems involving environmental flows, including purely physical appli-
cations (e.g., open channel flow, groundwater flow, sediment transport) and
problems of water quality modeling. In the following chapters the analytical
bases for the engineering evaluation and solution of these types of problems

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



are developed. Governing equations for fluid motion are derived, as well as
the equation expressing mass balance for a dissolved tracer, otherwise known
as the advection–diffusion equation. Conservation equations for both mechan-
ical and thermal energy also are developed, and these lead to descriptions of
turbulent kinetic energy and temperature, respectively.

The text is divided into two parts. The first part is a discussion of theo-
retical principles used in describing fluid motion and includes the derivation
of the basic mathematical equations governing fluid flow. Chapters 4 through
9 include discussions of potential flow theory, introductions to turbulence and
boundary layer theory, groundwater flow, and large-scale motions where the
rotation of the earth must be incorporated into the equations of motion. The
second part of the text contains material more directly applied to environmental
problems. Fundamental transport processes for contaminants are discussed,
including advection, diffusion, and dispersion, and applications are described
in modeling groundwater flow and contaminant transport, exchange processes
between water surfaces and the atmosphere, stratified flows, jets and plumes,
sediment transport, and remediation issues. Sections in various chapters are
included that discuss associated numerical modeling issues, as we recognize
the important role of numerical solutions in many of the problems faced
in environmental fluid mechanics. Different solution approaches, boundary
conditions, numerical dispersion and scaling considerations are addressed. The
intent is that the material contained herein could serve as the basis for a two-
semester upper level undergraduate or graduate course, with each part of the
text providing a focus for each semester of instruction. Of course, single-
semester courses can be developed, based on individual chapters.

The remainder of the present chapter is devoted to a review of fluid
properties and mathematical preliminaries.

1.2 PROPERTIES OF FLUIDS

1.2.1 General

Most substances are categorized as existing in one of two states: solid or fluid.
Solid elements have a rigid shape that can be modified as a result of stresses.
This shape modification is termed deformation or strain. Different types of
solids are identified by different relationships between the shear stress and
the strain. A strained solid body is in a state of equilibrium with the stresses
applied on that body. When applied stresses vanish, the solid body relaxes to
its original shape.

Solid boundaries (i.e., a container) and interfaces with other fluids deter-
mine the shape of a fluid body. Unlike solids, even an infinitesimal shear force
changes the shape of fluid elements. Differences between different types of
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fluid are identified by different relationships between the shear stress and the
rate of strain. When applied stresses vanish, fluid elements do not return to
their original shape. In addition, fluids usually do not support tensile stresses,
though in many cases they strongly resist normal compressive stresses. In
many cases they can be considered as incompressible materials or materials
subject to incompressible flow, meaning that their density is not a function of
pressure. In general, fluids may be divided into liquids, for which compress-
ibility is generally negligible, and gases, which are compressible fluids. In
other words, the volume of a liquid mass is almost constant, and it occupies
the lowest portion of a container in which it is held. It also has a horizontal
free surface in a stationary container. A gas always expands and occupies
the entire volume of any container. However, gases like air are usually well
described in the atmosphere using incompressible flow theory.

1.2.2 Continuum Assumptions

All materials are composed of individual molecules subject to relative move-
ment. However, in the framework of fluid mechanics we consider the fluid
as a continuum. We are generally interested in the macroscopic behavior of a
fluid material, so that the smallest fluid mass of interest usually consists of a
fluid particle that is much larger than the mean free path of a single molecule.
It is therefore possible to ignore the discrete molecular structure of the matter
and to refer to it as a continuum. The continuum approach is valid if the
characteristic length, or size of the flow system (e.g., the diameter of a solid
sphere submerged in a flowing fluid) is much larger than the mean free path
of the molecules. For example, in a standard atmosphere the molecular free
path is of the order of 10�8 m, but in the upper altitudes of the atmosphere
the molecule mean free path is of the order of 1 m. Therefore, in order to
study the dynamics of a rarefied gas in such heights a kinetic theory approach
would be necessary, rather than the continuum approach.

1.2.3 Review of Fluid Properties

The density � of a fluid is a measure of the concentration of matter and is
expressed in terms of mass per unit volume. The volume and mass of fluid
considered for the calculation of the fluid density should be small, but not so
small that variations on a molecular level would become important. Therefore,
we define

� D lim
υV!υV0

υm

υV
�1.2.1�

where υm is an amount of mass contained in a small volume υV, and υV0 is
the volume of the smallest fluid particle that is still much larger than the mean
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free molecular path. The specific weight � is the force of gravity on the mass
contained in a unit volume of the substance,

� D �g �1.2.2�

The density of water is 1000 kg/m3 (at 4°C) and the acceleration of gravity
g D 9.81 m/s2. Therefore, the nominal specific weight of water is

� D �1000 kg/m3��9.81 m/s2� D 9810 N/m3 �1.2.3�

The diffusive flux of a dissolved constituent in a fluid is expressed by
Fick’s law, which states that the flux is proportional to the constituent concen-
tration gradient (see also Chap. 10). In a one-dimensional domain this law is
expressed as

qm D �km
∂C

∂x
�1.2.4�

where qm is the mass flux (kg m�2 s�1) of the constituent in the x direction,
C is the constituent concentration (kg m�3), and km is the mass diffusivity
(m2 s�1), whose value depends on the fluid and on the constituent. The rela-
tionship represented by Eq. (1.2.4) is based on empirical evidence and is called
a phenomenological law. A similar phenomenological law is Fourier’s law of
heat diffusion, which in a one-dimensional domain can be written as

q D �k ∂T
∂x

�1.2.5�

where q is the heat flux (J m�2 s�1), T is the temperature (°C), and k is the
thermal conductivity (J m�1 s�1 °C�1), whose value depends on the fluid.

Another phenomenological law is the law of Newton, expressing propor-
tionality between the strain rate and the shear stress in so-called Newtonian
fluids. In a one-directional flow with velocity u in the x direction and with the
velocity a function of y, the shear stress � that develops between fluid layers
is expressed as

� D �
∂u

∂y
�1.2.6�

Here the constant of proportionality � (Pa s) is the dynamic viscosity, whose
value depends on the fluid and on temperature. The ratio of dynamic viscosity
to density appears often in the equations describing fluid motion and is called
the kinematic viscosity 	 �m2 s�1�,

	 D �

�
�1.2.7�
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There is some similarity between Eqs. (1.2.4), (1.2.5), and (1.2.6). How-
ever, the mass flux given by Eq. (1.2.4) and heat flux given by Eq. (1.2.5) are
components of flux vectors, whereas the shear stress given by Eq. (1.2.6) is
a component of a tensor. These issues are described further in the following
sections of this chapter.

The interface between two immiscible fluids behaves like a stretched
membrane, in which tension originates from intermolecular attractive (cohe-
sive) forces. Near an interface, say between the fluid and another fluid or
between the fluid and the solid walls of a boundary or container, all the
fluid molecules are trying to pull the molecules on the interface inward. The
magnitude of the tensile force per unit length of a line on the interface is
called surface tension 
 (N m�1), whose value depends on the pair of fluids
and the temperature. If p1 and p2 are the fluid pressures on the two sides of
an interface, then a simple force balance yields


�2�R� D �p1 � p2��R
2

where R is the radius of curvature of the interfacial surface. This result is also
written as


 D �p1 � p2�R

2
�1.2.8�

For a general surface, the radii of curvature along two orthogonal directions R1

and R2 are used to specify the curvature. In this case, the relationship between
surface tension and pressure is


 D �p1 � p2�R1R2

R1 C R2
�1.2.9�

If a fluid and its vapor coexist in equilibrium, the vapor is a saturated
vapor, and the pressure exerted by this saturated vapor is called the vapor
pressure, with symbol pv. The vapor pressure depends on the fluid and the
temperature.

The compressibility of a fluid is defined in terms of the average modulus
of elasticity K (Pa), defined as

K D � dp

dV/V
D dp

d�/�
�1.2.10�

where dV is the change in volume accompanying a change in pressure dp,
and V and � are the original volume and density, respectively. The second
expression in Eq. (1.2.10) refers to density changes, but the negative sign is
dropped since the density changes in the opposite direction to that of volume.
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1.3 MATHEMATICAL PRELIMINARIES

1.3.1 Vectors and Tensors

A point in a three dimensional space is defined by its coordinates,

x1, x2, x3 �1.3.1�

A curve is defined as the totality of points given by the equation

xi D fi�u� �i D 1, 2, 3� �1.3.2�

Here, u is an arbitrary parameter and the fi are three arbitrary functions.
The point given by Eq. (1.3.1) can be represented by a new set of coor-

dinates �x
01, x

02, x
03), where

x
0i D fi�x1, x2, x3� �1.3.3�

The Jacobian of the transformation is

J0 D
∣∣∣∣∣∂x

0i

∂xj

∣∣∣∣∣ �i, j D 1, 2, 3� �1.3.4�

Eq. (1.3.2) also can be represented by another transformation,

xi D gi�x
01, x

02, x
03� �1.3.5�

Differentiation of Eq. (1.3.3) then yields

dx
0i D ∂x

0i

∂xj
dxj �1.3.6�

where index summation convention is used. That is, summation is made with
regard to the repeating superscript j. Such repeated indices are often referred
to as dummy indices. Any such pair may be replaced by any other pair of
repeated indices without changing the value of the expression.

For future reference, we introduce the Kronecker delta, υji , defined as

υji D 1 if i D j

υji D 0 if i 6D j �1.3.7�

It is evident that

∂xi

∂xj
D υij �1.3.8�

Contravariant Vectors and Tensors, Invariants

Consider a point P with coordinates xi and a neighboring point Q with coor-
dinates xi C dxi. These two points define a vector, termed the displacement,
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whose components are dxi. We may still think about the same two points, but
apply a different coordinate system x

0i. In this coordinate system the compo-
nents of the displacement vector are dx

0i. Components of the displacement
tensor in the two systems of coordinates are related by Eq. (1.3.6).

If we keep the point P fixed, but vary Q in the neighborhood of P, the
coefficient ∂x

0i/∂xj remains constant. Under these conditions, Eq. (1.3.6) is a
linear homogeneous (or affine) transformation.

The vector has an absolute meaning, but the numbers describing this
vector depend on the employed coordinate system. The infinitesimal displace-
ments given by Eq. (1.3.6) satisfy the rule of transformation of contravariant
vectors. Later we also will refer to covariant vectors. A contravariant vector
is one in which the vector components comprise a set of quantities Ai asso-
ciated with a point P that transform, on change of coordinates, according to
the equation

A
0i D Aj

∂x
0i

∂xj
�1.3.9�

where the partial derivatives are evaluated at point P. The expression for
the infinitesimal displacements given by Eq. (1.3.6) represents a particular
example of a contravariant vector.

A set of quantities Aij represents components of a contravariant tensor
of the second order if they transform according to the equation

A
0ij D Akm

∂x
0i

∂xk
∂x

0j

∂xm
�1.3.10�

The product Ai ð Bj of two contravariant vectors is a contravariant tensor of
the second order.

Equation (1.3.10) provides a basic format for the definition of contrava-
riant tensors of the third or higher order. We also can conclude that there is
a contravariant tensor of the zero order that is a single component quantity,
transformed according to the identity relation

A0 D A �1.3.11�

Such a quantity is called an invariant, and its value is independent of the
employed coordinate system.

Covariant Vectors and Tensors, Mixed Tensors

If H is an invariant then we may introduce

∂H

∂x0i D ∂H

∂xj
∂xj

∂x0i �1.3.12�
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This transformation is very similar to that of Eq. (1.3.6), but the partial
derivative involving the two sets of coordinates is reversed. Equation (1.3.6)
indicates that the infinitesimal displacement is the prototype of the contra-
variant vector. Equation (1.3.12) shows that the partial derivative of an in-
variant represents a prototype of the general covariant vector. The components
of a covariant vector comprise a set of quantities that transform according to

A0
i D Aj

∂xj

∂x0i �1.3.13�

Suffixes indicating contravariant character are placed as superscripts, and
those indicating covariant character are subscripts. This convention means
that coordinates should be written xi rather than xi, although it is only the
differentials of the coordinates, and not the coordinates themselves, that have
tensor character.

We may extend Eq. (1.3.13) to define higher order covariant tensors.
Following the definitions of contravariant and covariant tensors, mixed tensors
can be defined. As an example, consider a third-order mixed tensor,

A
0i
jk D Amnp

∂x
0i

∂xm
∂xn

∂x0j
∂xp

∂x0k �1.3.14�

It then follows that the Kronecker delta is a second-order mixed tensor repre-
sented by the transformation

υ
0i
j D υmn

∂x
0i

∂xm
∂xn

∂x0j �1.3.15�

The left-hand side of Eq. (1.3.15) is unity if i D j and zero otherwise. Holding
m fixed and summing with respect to n, there is no contribution to the sum
unless n D m. Therefore the right-hand side of Eq. (1.3.15) reduces to

∂x
0i

∂xm
∂xm

∂x0j �1.3.16�

and this expression is equal to υij.

Addition, Multiplication, and Contraction of Tensors

Two tensors of the same order and type can be added together to give another
tensor of the same order and type. For example, we can write

Cijk D Aijk C Bijk �1.3.17�
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A second-order tensor is called a symmetric tensor if its components satisfy
the relationship

Aij D Aji �1.3.18�

A second-order tensor is antisymmetric or skew-symmetric if its components
satisfy

Aij D �Aji �1.3.19�

The definitions given by Eqs. (1.3.18) and (1.3.19) can be extended
to more complicated tensors. A tensor is symmetric with respect to a pair
of suffixes if the value of the components is unchanged on interchanging
these suffixes. A tensor is antisymmetric with respect to a pair of suffixes
if interchanging these suffixes leads to a change of sign with no change of
absolute value.

Any tensor of the second order can be expressed as the sum of a
symmetric and an antisymmetric tensor. As an example, we can write

Aij D 1

2
�Aij C Aji�C 1

2
�Aij � Aji� �1.3.20�

The first term on the right-hand side of Eq. (1.3.20) is a symmetric tensor,
and the second one is an antisymmetric tensor. This property is useful when
discussing stresses in fluid flow (Chap. 2).

Addition or subtraction can be done only with tensors of the same order
and type. In multiplication the only restriction is that we never multiply two
components with the same literal suffix at the same level in each component.
We may take tensors of different types and different literal suffixes. Then the
product is a tensor whose order is equal to the sum of orders of the multiplied
tensors. As an example,

Cmijk D AijB
m
k �1.3.21�

The product exemplified by Eq. (1.3.21) is called an outer product. The inner
product is associated with contraction. It is obtained by multiplication of
tensors with lower suffixes identical to lower ones. An example is

Cmi D AijB
jm �1.3.22�

The process of contraction cannot be applied to suffixes at the same level.
Indices appearing at lower and upper levels represent summation.

The Metric Tensor and the Line Element

Suppose that y1, y2, y3 are rectangular Cartesian coordinates. Then the square
of the distance between adjacent points is

ds2 D �dy1�2 C �dy2�2 C �dy3�2 �1.3.23�
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Any system of curvilinear coordinates is represented by x1, x2, x3 (e.g., cylin-
drical or spherical polar). The yi coordinates are functions of the xi coor-
dinates, and the dyi components of the infinitesimal displacement are linear
homogeneous functions of the dxi components. We introduce the relation-
ships of Eq. (1.3.6) to obtain a homogeneous quadratic expression in the dxi

components, which may be written as

ds2 D gijdx
idxj �1.3.24�

where the coefficients gij are functions of the xi coordinates. As the gij do
not occur separately, but only in the combinations �gij C gji�, there is no loss
of generality in taking gij as a symmetric tensor.

As the distance between two given points is not dependent on the applied
coordinates, the value of ds or ds2 is an invariant. According to Eq. (1.3.6),
dxi is a contravariant vector. Therefore, gij is a second-order covariant tensor.
It is called the metric tensor.

By applying Eqs. (1.3.23) and (1.3.24), we obtain

gij D ∂y1

∂xi
∂y1

∂xj
C ∂y2

∂xi
∂y2

∂xj
C ∂y3

∂xi
∂y3

∂xj
�1.3.25�

As an example, we consider a cylindrical coordinate system in which x1 D r,
x2 D �, x3 D z. The relationships between the yi coordinates and xi coor-
dinates are y1 D x1 cos x2, y2 D x1 sin x2, and y3 D x3. By introducing these
relationships into Eq. (1.3.25), we obtain for the cylindrical coordinate system

gij D 0 for i 6D j

g11 D 1 g22 D r2 g33 D 1 �1.3.26�

The Conjugate Tensor; Lowering and Raising Suffixes

From the covariant metric tensor gij we can obtain a contravariant tensor gij

given by

gij D Cij

g
�1.3.27�

where Cij is the cofactor of gij and g is the determinant of gij. The following
relationships then hold:

gijC
ik D gjiC

ki D υkj �1.3.28�

By multiplying both sides of this expression by Cjm we obtain

gυji g
ik D υkmC

jm �1.3.29�
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If gij D 0 for i 6D j, then

g11 D 1

g11
g22 D 1

g22
g33 D 1

g33

gij D 0 for i 6D j �1.3.30�

The covariant metric tensor and its contravariant conjugate can be used for
lowering and raising of suffixes. As an example,

Uijk D gimV
m
jk �1.3.31�

Now we may refer to a tensor as a geometrical object that has different
representations in different coordinate systems. Until now we could consider
that the tensors Uij and Uij were entirely unrelated; one was contravariant and
the other covariant, and there was no connection between them. At present
we realize that use of the same symbol U for these tensors means that each of
them represents the same geometrical object, and internal products with the
metric tensors give the relationships between their components.

Geodesics and Christoffel Symbols

A geodesic is a curve whose length has a stationary value with respect to
arbitrary small variations of the curve while its end points are kept fixed. By
using some techniques of variational calculus, it is possible to show that the
differential equation of a geodesic is

gij
dpj

ds
C [jk, i]pjpk D 0 �1.3.32�

where s is the arc length along the geodesic and pi D dxi/ds. The expression
given in the square brackets is called the Christoffel symbol of the first kind,
which is defined by

[jk, i] D 1

2

(
∂gij
∂xk

C ∂gik
∂xj

� ∂gjk
∂xi

)
�1.3.33�

The Christoffel of the second kind is defined as
i∑
jk

D gim[jk,m] �1.3.34�

If we multiply Eq. (1.3.32) by gin, we obtain another form for the equation
of a geodesic,

dpi

ds
C

i∑
jk

pjpk D 0 �1.3.35�
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This expression also can be represented by

d2xi

ds2
C

i∑
jk

dxj

ds

dxk

ds
D 0 �1.3.36�

The differential equation of a geodesic in terms of an arbitrary parameter t is
identical to Eq. (1.3.36) in which t replaces s.

Derivatives of Tensors

From Eq. (1.3.12) it is shown that the partial derivative of an invariant with
respect to a coordinate is a covariant vector. However, as discussed and shown
hereinafter, the partial derivative of a tensor is not a tensor.

We refer to a contravariant vector field Ui, defined along a curve xi D
xi�t�. Then the absolute derivative of Ui with regard to t is defined as

υUi

υt
D dUi

dt
C

i∑
jk

Uj
dxk

dt
�1.3.37�

This expression is itself a contravariant vector. If the absolute derivative
expression of Eq. (1.3.37) vanishes, then the vector Ui is said to be prop-
agated parallel along the curve. In the case of a Cartesian coordinate system,
the Christoffel symbols vanish and Eq. (1.3.37) yields dUi/dt D 0. In this
case the vector passes through a sequence of parallel positions.

The absolute derivative of the vector given by Eq. (1.3.37) means that
the vector characteristic is given along a curve. Therefore, Eq. (1.3.37) can be
represented by

υUi

υt
D


∂Ui
∂xk

C
i∑
jk

Uj


 dxk

dt
�1.3.38�

The left-hand side of Eq. (1.3.38) represents a contravariant vector. The term
dxk/dt also is a contravariant vector. Therefore, the expression between paren-
theses of Eq. (1.3.38) is a second-order mixed tensor. We call it the covariant
derivative of a contravariant vector. It is represented as

Ui,k D ∂Ui

∂xk
C

i∑
jk

Uj �1.3.39�

The same method can be applied to obtain the covariant derivative of any
tensor from the absolute derivative. In the following equations we provide
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expressions for the covariant derivative of various types of tensors:

Ui,k D ∂Ui
∂xk

�
j∑
ik

Uj �1.3.40�

Uij,k D ∂Uij

∂xk
C

i∑
mk

Umj C
j∑
mk

Uim �1.3.41�

Uij,k D ∂Uij
∂xk

�
m∑
ik

Umj �
m∑
jk

Uim �1.3.42�

Uij,k D ∂Uij
∂xk

C
i∑
mk

Umj �
m∑
jk

Uim �1.3.43�

Cartesian Tensors

If we refer to two Cartesian coordinate systems zi and z,i, then for a contra-
variant tensor of the second order we may write the following law of trans-
formation:

U
0ij D Umn

∂z
0i

∂zm
∂z

0j

∂zn
�1.3.44�

However, the partial derivatives of Eq. (1.3.44) represent the cosine between
the relevant axes of the two Cartesian coordinate systems. Therefore we may
write

∂z
0i

∂zm
D ∂zm

∂z0i D cos�z
0izm� �1.3.45�

By introducing the relationships of Eq. (1.3.45) into Eq. (1.3.44), we obtain

U
0ij D Umn

∂zm

∂z0i
∂zn

∂z0j �1.3.46�

This expression is identical to the transformation of a covariant tensor. We
may conclude that in every case of Cartesian tensors, the law of transfor-
mation remains unchanged when a subscript is raised or a superscript is
lowered. Therefore, when dealing with Cartesian tensors, it is common to
apply subscripts exclusively. Also, coordinates are represented with subscripts
in such cases. The Kronecker delta is identical to the metric tensor and is
written as υij, which also is identical to the unit matrix.
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The permutation tensor εijk is defined as

εijk D 0 if two of the suffixes are equal
εijk D 1 if the sequence of numbers ijk is the sequence of 1-2-3,

or an even permutation of the sequence
εijk D �1 if the sequence of numbers ijk is an odd permutation of

the sequence 1-2-3

Examples of the application of these rules are

ε123 D ε231 D ε312 D 1 ε132 D ε213 D ε321 D �1 �1.3.47�

Using the permutation tensor, the vector product Ci of two vectors Aj and Bk
is given by

Ci D εijkAjBk �1.3.48�

In addition, the curl operator is given by

Ci D εijkAk,j �1.3.49�

The following useful relation is the epsilon delta relation

εijkεkmn D υimυjn � υinυjm �1.3.50�

Physical Components of Tensors

Consider a vector whose components in a Cartesian coordinate system zi are
represented by Zi. As the coordinate system is a Cartesian one, covariant and
contravariant components are identical. The quantities Zi also are called the
physical components of the vector along the coordinate axes.

If we introduce curvilinear coordinates xj, the definition of contravariant
and covariant components Xj and Xj, respectively, of the vector for the coor-
dinate system xj is given by

Xj D Zi
∂xj

∂zi
Xj D Zi

∂zi
∂xj

�1.3.51�

In connection with these components, we do not use the word physical, since
in general such components have no direct physical meaning. They may even
have physical dimensions different from those of the physical components Zi.

Let xj be a curvilinear coordinate system with metric tensor gij, and let
Xj be contravariant components of a vector. We define the physical compo-
nents of the vector Xj in the direction �j as the invariant

gijX
i�j D Xi�i D Xi�

i �1.3.52�
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If the curvilinear coordinates xj are orthogonal coordinates, then the line
element is given by

ds2 D �h1dx
1�2 C �h2dx

2�2 C �h3dx
3�2 �1.3.53�

where h1, h2, and h3 are the geometrical scales associated with the respective
coordinates. We take a unit vector �i in the direction of x1. Therefore the three
components of �i are

�1 D dx1

ds
�2 D 0 �3 D 0 �1.3.54�

Since �i is a unit vector, we have

gij�
i�j D h2

1��
1�2 �1 D 1

h1
�1.3.55�

By multiplying by the metric tensor, we lower superscripts and obtain

�1 D h1 �2 D �3 D 0 �1.3.56�

Equations (1.3.52)–(1.3.56) imply that the physical components of the vector
Xj along the parametric line of x1 are X1/h1 or h1X1. Considering all geomet-
rical scales of the coordinate system we obtain the following expressions for
the physical components of the vector:

X1

h1

X2

h2

X3

h3
or h1X

1 h2X
2 h3X

3 �1.3.57�

In order to define the physical components of a second order tensor we
apply two unit vectors in the directions of two parametric lines of two coor-
dinates. Such an operation leads to the following expressions for the physical
components of the second order tensor, in terms of its covariant components:

X11

h2
1

X12

h1h2

X13

h1h3

X21

h2h1

X22

h2
2

X23

h2h3

X31

h3h1

X32

h3h2

X33

h2
3

�1.3.58�

In terms of the contravariant components of the second order tensor, the phys-
ical components of Eq. (1.3.58) are given by

X11h2
1 X12h1h2 X13h1h3

X21h2h1 X22h2
2 X23h2h3

X31h3h1 X32h3h2 X33h2
3

�1.3.59�
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As an example, we calculate the relationships between the Cartesian
components of the velocity vector and its contravariant, covariant, and physical
components in spherical polar coordinates. The spherical polar coordinates are
r, �, and �, which are referred to, respectively, as x1, x2, x3. These coordinates
are related to the Cartesian coordinates z1, z2, z3, by

z1 D x1 sin x2 cos x3 z2 D x1 sin x2 sin x3 z3 D x1 cos x2 �1.3.60�

Components of the velocity vector in the Cartesian and spherical coordinate
systems are given, respectively, by

Vi D dzi
dt

vi D dxi

dt
�1.3.61�

The relationships between the contravariant, contravariant spherical coordinate
components and Cartesian components are given by

vi D Vj
∂xi

∂zj
vi D Vj

∂zj
∂xi

�1.3.62�

By applying Eq. (1.3.61), we calculate the partial derivatives required by
Eq. (1.3.62) and define the relationships between the Cartesian and spherical
coordinate components of the velocity vector.

The line element in spherical coordinates is given by

ds2 D dr2 C r2 d�2 C r2 sin2 �d�2 D �dx1�2 C �x1dx2�2 C �x1 sin x2dx3�2

�1.3.63�

This expression indicates that the metric tensor components are

g11 D 1 g22 D r2 g33 D r2 sin2 � gij D 0 for i 6D j �1.3.64�

Equation (1.3.61) specifies the various contravariant components of the
velocity vector. By multiplying the contravariant velocity vector by the metric
tensor we obtain the covariant components of the velocity vector in the
spherical coordinate system. The contravariant and covariant components of
this vector are given, respectively, by

v1 D dr

dt
v2 D d�

dt
v3 D d�

dt

v1 D dr

dt
v2 D r2d�

dt
v3 D r2 sin2 �

d�

dt

�1.3.65�

According to Eq. (1.3.64) the geometric scales of the spherical coordinate
system are

h1 D 1 h2 D r h3 D r sin � �1.3.66�
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By applying Eqs. (1.3.61) and (1.3.65) we obtain the following expressions
for the physical components of the velocity vector in the spherical coordinate
system:

vr D dr

dt
v� D r

d�

dt
v� D r sin �

d�

dt
�1.3.67�

We can identify the principal components of a symmetric tensor, and
its principal axes. The symmetric tensor has only diagonal components in a
coordinate system comprising its principal axes. These components are called
principal components. Basically, the principal components are eigenvalues of
the matrix representing the symmetric tensor. The principal axes are repre-
sented by a set of unit mutually orthogonal vectors called eigenvectors. The
principal components �i of the symmetric tensor Bij satisfy the equation

det jBij � �υijj D 0 �1.3.68�

This expression represents a third-order equation whose solution provides
values of the principal components �1, �2, and �3.

Each of the three eigenvectors is found by solving the following set of
equations:

�Bij � �υij�bj D 0 �1.3.69�

According to Eq. (1.3.69), each of the principal components �k is associated
with three components of the relevant eigenvector bk . If the coordinate system
is rotated to coincide with the eigenvectors, then the second-order symmetric
tensor Bij is transformed to a diagonal matrix with elements �1, �2, and �3.
Available computing libraries that include matrix calculation and linear algebra
usually include programs aimed at the identification of eigenvalues and eigen-
vectors of matrices. Such computer codes can be used to identify the principal
components and axes of symmetric tensors.

1.3.2 Complex Variables

Complex Numbers

A complex number incorporates a real and an imaginary part. The Cartesian
representation of the complex variable z is

z D x C iy �1.3.70�

Here, x is the real part and y is the imaginary part. The symbol i is given by

i D p�1 i2 D �1 �1.3.71�
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Figure 1.2 Representation of a general complex number, z.

The Argand diagram shown in Fig. 1.2 provides a geometric presentation of
complex numbers. The length between the coordinate origin and the point
represented by z is the modulus of the complex variable. It can be represented
by r or jzj. As shown in Fig. 1.2,

jzj D
√
x2 C y2 �1.3.72�

Also, it is seen that x D r cos � and y D r sin �. Therefore the complex variable
z can be given by its trigonometric representation as

z D r�cos � C i sin �� �1.3.73�

Complex variables z1 and z2 are added like vectors, i.e., the real part of z1
is added to the real part of z2, and the imaginary part of z1 is added to the
imaginary part of z2. Thus

z D z1 C z2 D x1 C x2 C i�y1 C y2� �1.3.74�

The factor i is an operator that upon multiplication rotates a complex number
through 90°. Powers of i are as follows:

i2 D �1 i3 D �i i4 D 1 �1.3.75�

Also, the product of two complex variables z1 and z2 is

z1z2 D �x1 C iy1��x2 C iy2� D x1x2 � y1y2 C i�x1y2 C x2y1� �1.3.76�

A complex number also can be expressed in an exponential form. It is based
on an infinite series expansion of the exponential and trigonometric functions.
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For example, the Maclaurin series expansions for ex, sin x, and cos x are given,
respectively, by

ex D 1 C x C x2

2!
C x3

3!
C x4

4!
C Ð Ð Ð �1.3.77�

sin x D x � x3

3!
C x5

5!
� x7

7!
C Ð Ð Ð �1.3.78�

cos x D 1 � x2

2!
C x4

4!
� x6

6!
C Ð Ð Ð �1.3.79�

All these series are convergent for all values of x. Replacing x by i� in
Eq. (1.3.77) and using Eq. (1.3.75), we obtain

ei� D 1 C i� � �2

2!
� i

�3

3!
C �4

4!
C i

�5

5!
� �6

6!
� Ð Ð Ð �1.3.80�

Or, upon rearranging,

ei� D 1 � �2

2!
C �4

4!
� �6

6!
C Ð Ð Ð C i

(
� � �3

3!
C �5

5!
� �7

7!
C Ð Ð Ð

)
�1.3.81�

By applying Eqs. (1.3.78) and (1.3.79), Eq. (1.3.81) becomes

ei� D cos � C i sin � �1.3.82�

All three forms of a complex number are then

z D x C iy D r�cos � C i sin �� D rei� �1.3.83�

Following these definitions, the nth power of a complex number is given by

zn D rnein� D rn�cosn� C i sinn�� �1.3.84�

The product of two complex numbers is

z1z2 D r1r2e
i��1C�2� �1.3.85�

and the division of two complex numbers yields

z1
z2

D r1ei�1

r2ei�2
D r1
r2
ei��1��2� �1.3.86�

Alternatively, the division of two complex variables can be represented by

z1
z2

D x1 C iy1

x2 C iy2
D �x1 C iy1��x2 � iy2�

�x2 C iy2��x2 � iy2�
D x1x2 C y1y2

x2
2 C y2

2

C i
y1x2 � x1y2

x2
2 C y2

2
�1.3.87�
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In order to avoid the presence of imaginary terms in the denominator of
Eq. (1.3.87), its numerator and denominator have been multiplied by the
complex conjugate of z2. The complex conjugate of a complex variable is
defined by replacing i by �i. Finally, the logarithm of a complex number can
be written

ln z D ln�rei�� D ln r C i� D 1

2
ln�x2 C y2�C i tan�1 y

x
�1.3.88�

A function of a complex variable is defined as

w D f�z� D f�x C iy� �1.3.89�

The complex function w can be separated into real and imaginary parts, called
� and  , respectively,

w D ��x, y�C i �x, y� �1.3.90�

where � and  are both real functions of x and y. The function w is called
holomorphic, regular, or analytic in a region, provided that within this region
(1) there is one and only one value of w for each value of z and that value is
finite, and (2) w has a single-valued derivative at each point of the region.

The derivative of f�z� is also a complex function, given by

lim
υz!0

f�z C υz�� f�z�

υz
�1.3.91�

where the infinitesimal value υz is given by

υz D υx C iυy �1.3.92�

There is no limitation on the relationship between υx and υy. We may choose
paths of υz ! 0 in which υx D 0 or υy D 0, for example. These options imply

lim
υx!0; υyD0

f�z C υz�� f�z�

υx C iυy
D lim

υx!0

f�z C υx�� f�z�

υx
D υf

υx
�1.3.93�

lim
υxD0; υy!0

f�z C υz�� f�z�

υx C iυy
D lim

υx!0

f�z C iυy�� f�z�

iυy

D 1

i

∂f

∂y
D �i ∂f

∂y
�1.3.94�

As the derivative of the analytic function does not depend on the path of
υz ! 0, Eqs. (1.3.93) and (1.3.94) imply

∂f

∂x
D �i ∂f

∂y
�1.3.95�
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The derivative of f comprises real and imaginary parts given by

∂f

∂x
D ∂�

∂x
C i

∂ 

∂x

∂f

∂y
D ∂�

∂y
C i

∂ 

∂y
�1.3.96�

Introducing Eqs. (1.3.90) and (1.3.92) into Eq. (1.3.96), we obtain

∂�

∂x
D ∂ 

∂y

∂�

∂y
D �∂ 

∂x
�1.3.97�

These relations are called the Cauchy–Riemann relations.
Differentiating the first of Eq. (1.3.97) with respect to x and the second

with respect to y and adding, and differentiating the first of Eq. (1.3.97) with
respect to y and the second with respect to x and subtracting one from the
other, we obtain, respectively,

∂2�

∂x2
C ∂2�

∂y2
D 0

∂2 

∂x2
C ∂2 

∂y2
D 0 �1.3.98�

These expressions indicate that both functions � and  satisfy the Laplace
equation in two-dimensional Cartesian coordinates.

1.3.3 Partial Differential Equations

All basic processes typical of environmental fluid mechanics can be formu-
lated as partial differential equations (PDEs). Partial differential equations
arise because the functions for which solutions are sought (e.g., concentra-
tions, velocities, temperature, etc.) tend to depend on one or more spatial
coordinates as well as time. As will be seen in subsequent chapters, most
equations of interest contain diffusion processes, which involve second-order
spatial derivatives. The solution of the relevant differential equation(s) subject
to appropriate initial and boundary conditions provides the basis for math-
ematical simulation of the physical problem. In the following paragraphs,
we review the basic types of partial differential equations encountered with
environmental fluid mechanics issues.

Identification of the partial differential equation connected with the parti-
cular problem of interest is of major importance. Different criteria of conver-
gence and stability are typical of each type of partial differential equation,
as described below. The equation provides the basic guideline for the devel-
opment of a mathematical model that can be applied to the solution of that
problem. In cases of numerical simulations, particular rules for the develop-
ment of the numerical scheme are used for the particular differential equation
that is associated with a given problem. Problems of environmental fluid
mechanics can be classified into two general categories: problems of equi-
librium and problems of propagation.
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The general format of a second-order linear PDE in a two dimensional
domain is given by

a
∂2ϕ

∂x2
C b

∂2ϕ

∂x∂y
C c

∂2ϕ

∂y2
D f �1.3.99�

where a, b, and c are constant coefficients and f represents a linear combi-
nation of coefficients multiplied by lower order derivatives of the dependent
variable ϕ.

The method and form of the solution of a PDE subject to initial and
boundary conditions depends on the type of the PDE. It is common to classify
PDEs according to the relationships between the coefficients of Eq. (1.3.99)
as follows:

If b2 � 4ac > 0 then the PDE is hyperbolic �1.3.100a�

If b2 � 4ac D 0 then the PDE is parabolic �1.3.100b�

If b2 � 4ac < 0 then the PDE is elliptic �1.3.100c�

The terms hyperbolic, parabolic, and elliptic chosen to classify partial
differential equations stems from the analogy between the form of the discrim-
inant (b2 � 4ac) for partial differential equations and the form of the discrim-
inant that classifies conic sections. There is no other significance to this
terminology. If the PDE refers to a domain with n dimensions, then the char-
acteristics, if real characteristics exist, are surfaces of (n� 1) dimensions,
along which signals, or information, propagate. If no real characteristics exist,
then there are no preferred paths of information propagation. Therefore the
existence or absence of characteristics has a significant impact on the solution
of the partial differential equation.

First-order partial differential equations refer to advection or convection
of a property ϕ, such as solute concentration or heat. The general form of such
an equation in the (x, t) domain, where x refers to a spatial coordinate and t
refers to time, is given by

∂ϕ

∂t
C u

∂ϕ

∂x
D 0 �1.3.101�

where u is the advection velocity. If ϕ refers to dissolved mass of a solute,
then the second term in Eq. (1.3.101) incorporates the process of solute mass
being carried (advected) by a fluid particle as it moves through the domain.
The location of any fluid particle is related to its velocity u by a simple
relationship representing the differential equation of the particle pathline:

dx

dt
D u �1.3.102�
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Thus the pathline of a fluid particle is given by

x D x0 C
∫ t

t0

u dt �1.3.103�

Along the pathline of the fluid particle the advection equation can be
written as

∂ϕ

∂t
C u

∂ϕ

∂x
D ∂ϕ

∂t
C dx

dt

∂ϕ

∂x
D dϕ

dt
D 0 �1.3.104�

The last part of this equation shows that ϕ is constant along the pathline
of the fluid particle. This pathline is the characteristic path associated with
the advection equation. The first-order differential equation of the form given
by Eq. (1.3.101) is termed a first-order hyperbolic partial differential equation,
and it has a single family of characteristic curves, along which the information
propagates in the domain. A single first-order partial differential equation is
always hyperbolic. In second-order hyperbolic partial differential equations
there are two families of characteristic curves, along which the information
propagates.

Parabolic and hyperbolic differential equations are typical of propagation
problems. The propagation is in time and space. This means that parabolic
and hyperbolic differential equations usually refer to problems of a property
propagating in the domain. The features of the propagation of the property in
cases of parabolic differential equations are different from those of hyperbolic
differential equations. Elliptic partial differential equations generally concern
equilibrium problems, i.e., ones that do not involve time derivatives.

A typical parabolic equation associated with environmental fluid mecha-
nics is the equation of diffusion. In the �x, t� domain, the form of this equation
is given by

∂ϕ

∂t
D ˛

∂2ϕ

∂x2
�1.3.105�

where ˛ is the diffusion coefficient, or diffusivity. In many applications
an advective term is added, forming an advection–diffusion equation (see
Chap. 10).

A typical hyperbolic equation associated with environmental fluid
mechanics is the wave equation. In the �x, t� domain, the form of this equation
is given by

∂2ϕ

∂t2
D c2 ∂

2ϕ

∂x2
�1.3.106�

where c is the propagation speed of the wave.
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A typical elliptic equation, associated with environmental fluid
mechanics is the Laplace equation. In the �x, y� domain, the form of this
equation is given by

∂2ϕ

∂x2
C ∂2ϕ

∂y2
D 0 �1.3.107�

The solution of a parabolic or hyperbolic partial differential equation, of
the types given by Eqs. (1.3.105) and (1.3.106), can be obtained, provided that
adequate initial and boundary conditions are given. Initial conditions refer to
values of the unknown variables and possibly their space derivatives at a time
of reference. Boundary conditions refer to values of the unknown variables
and their space derivatives at the boundaries or other specific locations of
the domain. The solution of an elliptic partial differential equation of the
type given by Eq. (1.3.107) can be obtained, provided that adequate boundary
conditions of the domain are given. For elliptic partial differential equations
there are no initial conditions, since time derivatives are not involved.

There are three types of linear boundary conditions that can be applied
to the solution of partial differential equations:

1. All values of the dependent variable, ϕ, are specified on the bound-
aries of the domain:

ϕ D f�x, y� where �x, y� 2 G �1.3.108�

where G is the surface of the domain. Boundary conditions of this type are
referred to as Dirichlet boundary conditions.

2. All values of the gradient of the dependent variable, ϕ, are specified
on the boundaries of the domain:

∂ϕ

∂n
D f�x, y� where f�x, y� 2 G �1.3.109�

where n represents a coordinate normal to the boundary G. Boundary condi-
tions of this type are referred to as Neumann boundary conditions.

3. A general linear combination of Dirichlet and Neumann boundary
conditions:

aϕ C b
∂ϕ

∂n
D c �1.3.110�

where a, b, and c are functions of �x, y�. This type of boundary condition can
be used to specify total flux, as will be described in later chapters.

It should be noted that besides linear boundary conditions, the domain
may be subject to nonlinear boundary conditions. An example is application of
boundary conditions at a water-free surface, which may be part of the solution
of the problem. Application of such conditions is generally very complicated.
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1.4 DIMENSIONAL REASONING

1.4.1 Uses of Dimensional Analysis

Dimensional analysis provides a powerful tool to evaluate relationships
between various parameters of a problem when the governing equation is
not known from some other source, such as a theoretical result. The basic
premise underlying any dimensional reasoning is that all physically realistic
expressions must be dimensionally consistent. In fact, the Buckingham �
theorem, introduced in the following section, can be seen as a formal statement
of a relationship between variables based simply on their dimensional units.
Following this idea, any physical equation that is dimensionally balanced (that
is, the dimensional units are the same for each of the terms in the equation)
can be written in nondimensional form. The easiest way to see this is to divide
all the terms of the equation by one of the terms. Done properly, this usually
results in equations expressed in terms of common dimensionless parameters.
Since all the terms have the same physical dimensions, the result of this process
is a relationship between these dimensionless variables, which can be used to
evaluate the relative importance of different terms in any given equation.
For example, it would be possible to gain some understanding of the relative
importance of different forces in a particular flow field by looking at the values
of the parameters in dimensionless forms of the momentum equations. This
process sometimes allows simplification of a general governing equation, by
eliminating terms that are seen as being of lesser importance, compared with
others.

A common example of a dimensionless number is the Reynolds number,
defined as

Re D UL

	
�1.4.1�

where U is a characteristic velocity and L is a characteristic length of the
problem being studied, and 	 is kinematic viscosity of the fluid. Re represents
the relative importance of inertia to viscous forces. For example, a high value
of Re indicates that viscous forces are not very important. (As will be seen
later, a high Re is associated with turbulent flow.)

The result of dimensional analysis is a definition of a relationship
between the appropriate dimensionless variables resulting from grouping the
parameters of the problem. The specific form of the relationship is not revealed
using dimensional analysis — physical experiments must be performed to
provide additional information. For example, dimensional analysis can be used
to show that a dimensionless group incorporating the drag on a sphere moving
at constant velocity through a fluid should depend on Re. However, the actual
form of the relationship is determined from experimental results.
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One other important application of dimensional analysis is in providing
a means of scaling the results of a model study to prototype conditions. This
is necessary, for instance, in extrapolating results from laboratory physical
modeling studies to field conditions. In order to do this, conditions of similarity
must be satisfied. There are three kinds of similarity. Intuitively, a model
or experiment should be geometrically similar to the field situation, which
means that the ratio of all length scales is the same between the model and
the prototype. Kinematic similarity incorporates similarity of length and time
quantities. Dynamic similarity also must be satisfied in order to properly scale
results concerning forces and stresses. Kinematic and dynamic similarity are
obtained when appropriate dimensionless parameters are the same in the model
and in the prototype. Dynamic similarity is equivalent to saying the ratios of
relevant forces are the same.

For example, consider an open channel flow, as sketched in Fig. 1.3. For
simplicity, we assume a rectangular cross section of width b and flow depth h.
Geometric similarity implies

Lr D L1

L2
�1.4.2�

where Lr is the length scale ratio and L represents any length for the problem,
in this case either b or h. Subscripts 1 and 2 refer to the two systems (prototype
and model — expressing the ratio in this way avoids very small values for
Lr). Thus h1/h2 D b1/b2 and h1/b1 D h2/b2 (i.e., the flow aspect ratio is the
same in the two systems). In some cases distorted scale models are necessary,

Figure 1.3 Open channel flow in two geometrically similar rectangular channels.
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Figure 1.4 Force diagrams for the two systems shown in Fig. 1.3; Fg is the gravity
force, Ff is friction, and Fr is the resultant force.

such as when a physical model of a large lake is used. In this case, because the
horizontal dimensions are generally much greater than the vertical scale, the
horizontal scale ratio is chosen to be much larger than the vertical ratio. This
is to avoid models with extremely shallow water layers. Scaling is otherwise
similar to that in nondistorted models; one should be careful to maintain
common values of the relevant dimensionless parameters between the model
and prototype.

If we consider a small fluid element in either system and assume that
the important forces for this problem are gravity and friction, the resultant
forces on the fluid element can be calculated, and we obtain force diagrams
like those in Fig. 1.4. The shapes of these force diagrams must be similar for
the two systems if there is dynamic similarity. As shown in the following
section, this condition is satisfied when the corresponding values of properly
defined dimensionless variables are the same.

1.4.2 Dimensionless Parameters

Buckingham � Theorem

The Buckingham � theorem states that a group of physical variables defined
for a given problem may be combined in such a way as to form a non-
dimensional representation of the same problem. Moreover, since the original
variables are functionally related, i.e.,

f�x1, x2, . . . , xn� D 0 �1.4.3�

where the x1, x2, . . . , xn represent the n physical variables of a problem, then
the nondimensional variables also are functionally related. If there are k phys-
ical dimensional units involved with the n variables, then (n-k) dimensionless

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



parameters should be formed, and

f��1, �2, . . . , ��n�k�� D 0 �1.4.4�

where the �1, �2, . . . , ��n�k� are the dimensionless groupings.
Consider the force diagrams indicated in Fig. 1.4. The shapes will be the

same when the ratios of any two of the forces are the same in each system.
The resultant or inertial force is represented by ��8U/t�, where � is the fluid
density, 8 is the volume of a fluid element, U is its velocity, and t is some
appropriate time scale. Here, (U/t) has been used to approximate acceleration,
and t will be estimated as t D L/U, where L is a characteristic length scale. The
viscous force, acting on area A, is approximately ��U/L��A�, where �U/L�
has been used to estimate the velocity gradient. Substituting L3 for 8 and L2

for A, the ratio of inertial to viscous force is then

��L3�U2/L

��U/L�L2
D �LU

�
D Re �1.4.5�

In other words, this is the Reynolds number as defined in Eq. (1.4.1). By going
through a similar procedure for the ratio of inertial to gravity force, where the
force of gravity Fg is approximated by �8g, we obtain

�L2U2

�L3g
D Fr �1.4.6�

which defines Fr as a second dimensionless parameter, the Froude number.
Thus by insuring that the Reynolds numbers and the Froude numbers are

the same for both systems, the shape of the resulting force diagrams will be the
same, and dynamic similarity will be achieved. This type of reasoning may be
applied to problems with a greater number of relevant forces, with the result
that additional dimensionless parameters would need to be defined. Many
different dimensionless parameters have been defined for various problems in
fluid mechanics. Rather than attempting to list them all here, we shall introduce
them as needed within the context of a given problem or derivation.

In order to illustrate the application of the Buckingham � theorem, let us
consider the problem of finding the drag on a smooth sphere fully immersed
and moving at constant velocity through a fluid. It is assumed that the drag
is a function of the velocity and diameter of the sphere, and the density and
viscosity of the fluid. Note that one limitation of the Buckingham � theorem
is that it does not provide specific guidance on which parameters should be
chosen for a given problem. These must be chosen on the basis of experience
and physical intuition, with perhaps some trial and error to be expected in
some cases. Usually, it will be clear when the wrong set of parameters is
chosen, since it will be difficult to perform experimental tests to obtain a clear
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relationship between the dimensionless parameters defined. For the present
problem, a functional relationship is defined by

f�D,U, d, �, �� D 0 �1.4.7�

where D is drag, U is velocity, d is the sphere diameter, and � and � are
fluid density and viscosity, respectively. There are five variables and three
physical dimensional units, mass (M), length (L), and time (T), so two �’s
will be defined. First, a subset of variables is defined, called the basis set,
with the following characteristics:

The number of variables in the basis set is equal to the number of
physical dimensions.

All the dimensions of the problem are represented by the variables, as
simply as possible.

Variables are chosen so that recognizable dimensionless groupings are
found.

The main parameter of interest (the dependent variable) is not chosen
for the basis.

The third of these conditions is not absolutely necessary, but it usually helps
to interpret results, particularly in view of the above interpretation of many
of these dimensionless groups as force ratios. In many cases there is not a
unique basis set, and different basis sets will result in definitions of different
sets of dimensionless numbers. This is acceptable, from a purely dimensional
analysis point of view, but is it preferable to form common dimensionless
groupings whenever possible.

For the current example, U, d, and � are chosen as the basis variables.
These are combined with D and �, in turn, to form two � groups. The first
of these is found from

�1 D D�U�a�d�b���c D
(
ML

T2

)(
L

T

)a
�L�b

(
M

L3

)c

Separate equations are then formed for each of the dimensional units, to find a,
b, and c so that �1 is dimensionless. For mass M, �1 C c D 0� gives c D �1.
The equation for time T is ��2 � a D 0�, or a D �2. The last equation for
length L gives �1 C aC b� 3c D 0�, or �a C b D �4�. Then b D �2 and

�1 D D

�U2d2

This is a dimensionless drag and is commonly referred to as a drag coef-
ficient, CD. Following a similar procedure using �, it is easily shown that
a Reynolds number results for �2. The dimensionless result analogous to
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Eq. (1.4.7) is then

f�CD,Re� D 0 �1.4.8�

and experimental results are needed to describe the specific form of the
functional relationship. It should be noted that an equally valid dimensional
analysis result would be obtained by using one of the �’s raised to some power,
or using the inverse. However, use of common dimensionless parameters is
preferred, as noted above.

1.4.3 Scales of Motion

It is evident from the above discussion that it is necessary to define certain
parameters of a problem in order to carry out dimensional analysis. A similar
requirement is to define certain characteristic scales to represent a problem,
in order to use dimensional reasoning to carry out scaling analyses. The usual
scales of interest for kinematic problems are those for length, velocity, or time,
though other types of parameters are sometimes needed. Often the choices for
these scales are obvious. A simple example is with open channel flow, where
the flow mean velocity is usually chosen as the velocity scale, and depth (or
hydraulic radius) is chosen as the characteristic length scale. The choice for
these scales determines values for the nondimensional variables discussed in
the previous section, so some care must be taken. As shown in Sec. 2.7, one
of the principal applications of scaling analysis is in developing an under-
standing of the relative importance of the various terms of a relationship, with
a view to simplifying the equation whenever possible. In addition to possibly
simplifying the equation, the main advantage of developing nondimensional
forms of equations is that the actual scale becomes secondary — it is only
the dimensionless groups that are important. Nondimensional equations and
parameters apply equally to systems with very different scales (e.g., values of
L and U), as long as the values of the dimensionless groupings are similar.
This idea forms the basis for physical modeling tests and provides the means
for scaling model results to estimate prototype conditions.

PROBLEMS

Solved Problems

Problem 1.1 The material or substantial derivative of the velocity vector
represents the acceleration of the fluid particles. In Cartesian coordinates the
acceleration is expressed by

ai D ∂ui
∂t

C uj
∂ui
∂xj
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where ui are components of the velocity vector. What is the expression for
the acceleration in a general coordinate system? What are the expressions for
the contravariant, covariant, and physical components of the acceleration in a
cylindrical coordinate system?

Solution

The expression for the contravariant acceleration vector is

ai D ∂ui

∂t
C ujui,j

Multiplying this expression by the metric tensor and replacing indices, we
obtain the following expression for the covariant acceleration vector:

ai D ∂ui
∂t

C ujui,j

In a cylindrical coordinate system the physical components of the velocity and
acceleration vectors are given by the following symbols, respectively:

u, v, w (physical components in directions r, �, z, respectively)

ar, a�, az

The line element in a cylindrical coordinate system is given by

ds2 D �dr�2 C �r d��2 C �dz�2

Therefore components of the metric tensor and geometrical scales in the r, �,
and z directions are given by

g11 D 1 g22 D r2 g33 D 1

h1 D 1 h2 D r h3 D 1

By applying Eq. (1.3.57), the following relationships between physical, covari-
ant, and covariant components of the velocity and acceleration vectors are
obtained:

u D u1 D u1 v D u2

r
D ru2 w D u3 D u3

ar D a1 D a1 a� D a1

r
D ra1 az D a3 D a3

By applying the general expressions for Christoffel symbols given by
Eqs. (1.3.33) and (1.3.34), we obtain values of the second symbols of
Christoffel. The only nonzero symbols in a cylindrical coordinate system are

1∑
22

D �r
2∑

12

D
2∑
21

D 1

r

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



We apply the general expression for the contravariant acceleration vector with
these expressions for the second symbols of Christoffel to obtain

a1 D ∂u1

∂t
C u1 ∂u

1

∂r
C u2

(
∂u1

∂�
� ru2

)
C u3 ∂u

1

∂z

a2 D ∂u2

∂t
C u1

(
∂u2

∂r
C u2

r

)
C u2

(
∂u2

∂�
C u1

r

)
C u3 ∂u

2

∂z

a3 D ∂u3

∂t
C u1 ∂u

3

∂r
C u2 ∂u

3

∂�
C u3 ∂u

3

∂z

By introducing the physical components of the velocity and acceleration
vectors into these expressions we obtain

ar D ∂u

∂t
C u

∂u

∂r
C v

r

∂u

∂�
� v2

r
C w

∂u

∂z

a� D ∂v

∂t
C u

∂v

∂r
C v

r

∂v

∂�
C uv

r
C w

∂v

∂z

az D ∂w

∂t
C u

∂w

∂r
C v

r

∂w

∂�
C w

∂w

∂z

Problem 1.2 Develop the expression for div
�!
V in cylindrical coordinates

by applying the contravariant as well as covariant components of the velocity

vector
�!
V .

Solution

The general required expressions for div
�!
V are

r Ð �!
V D ui,i D gijui,j

The expression with contravariant components of the velocity vector is

ui,i D ∂ui

∂xi
C

∑
ji

uj D ∂u1

∂r
C ∂u2

∂�
C u1

r
C ∂u3

∂z
D ∂u

∂r
C 1

r

∂v

∂�
C u

r
C ∂w

∂z

The expression with covariant components of the velocity vector is

gijui,j D gij
∂ui
∂xj

� gij
k∑
ij

uk D ∂u1

∂r
C 1

r2

∂u2

∂�
C u1r

r2
C ∂u3

∂z

D ∂u

∂r
C u

r
C 1

r

∂v

∂�
C ∂w

∂z
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Problem 1.3 Prove the following relationships:

sin x D eix � e�ix

2i
cos x D eix C e�ix

2
sinh ix D i sin x

Solution

We apply the Euler relationships,

eix D cos x C i sin x e�ix D cos x � i sin x

Introducing these expressions into the expressions for sin x and cos x, we
obtain the relationships written above. Introducing the explicit expression for
sinh ix, we obtain the last identity.

Problem 1.4 Find the complex numbers given by

(a) �2 C i��3 � 2i� (b)
1 C 3i

1 � i
(c) ln�3 C 4i�

Solution

(a) �2 C i��3 � 2i� D 6 C 3i� 4iC 2 D 8 � i

(b)
1 C 3i

1 � i
D �1 C 3i��1 C i�

�1 � i��1 C i�
D 1 C 3iC i� 3

1 � iC iC 1
D �2 C 4i

2
D �1 C 2i

(c) ln�3 C 4i� D 1

2
ln�32 C 42�C i tan�1 4

3
D 1.61 C i0.93

Problem 1.5 Separate the following functions of z into their real and imag-
inary parts � and  :

(a)
1

z
(b) ln z2 (c) eiz

Solution

(a)
1

z
D 1

x C iy
D x � iy

�x C iy��x � iy�
D x � iy

x2 C y2
D x

x2 C y2
� i

y

x2 C y2

Therefore

� D x

x2 C y2
;  D y

x2 C y2

(b) ln z2 D ln[�x C iy��x C iy�] D ln�x2 C y2 C i2xy�

D 1

2
ln[�x2 C y2�2 C 4x2y2] C i tan�1 2xy

x2 C y2
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Therefore

� D 1

2
ln[�x2 C y2�2 C 4x2y2]; D tan�1 2xy

x2 C y2

(c) eiz D exp[i�x C iy�] D exp�ix � y� D e�yeix D e�y�cos x C i sin x�

Problem 1.6 Consider the problem of dumping sewage from a barge into a
linearly stratified ocean, as illustrated in Fig. 1.5.

A volume Vs of sludge of density �s is released suddenly from the barge
into water of density �0 and density gradient ��d�a/dz�. Find the maximum
depth of penetration, dmax, the minimum dilution at that depth, and the time
of descent. (Note that the sludge cloud seeks its density equilibrium position,
which also depends on entrainment.)

Solution

First, we define

S D (total sample volume)/(volume of effluent in sample)

P D 1/S D volume fraction of effluent�D relative concentration�

A definition of dilution is

D D 1 � P

P

where D D (volume ambient water in sample)/(volume effluent in sample)D
S� 1.

Figure 1.5 Definition sketch, Problem 1.6.
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The variables of the problem are
dmax 8s g �0 �s �d�a/dz

with corresponding units
�L� �L3� �L/T2� �M/L3� �M/L3� �M/L4�

According to the Buckingham � theorem, with six variables and three dimen-
sional quantities, there should be three dimensionless groupings. However, it
is usually more convenient to work with one or two dimensionless groups, for
ease of analysis. Therefore, define

� D �s � �a

and

Vsg� D submerged weight of sludge

It also will be convenient to combine g and ��d�a/dz�. Then we have for
variables

dmax 8sg� �gd�a/dz �0

the corresponding units
�L� �ML/T2� �M/L3T2� �M/L3�

There are now four variables and three dimensions, so only one dimensionless
grouping ��� is needed. If we now set

� D �dmax�
a�8sg��

b

(
�gd�a

dz

)c
��0�

d

D �L�a
(
ML

T2

)b ( M

L3T2

)c (M
L3

)d

and solve individually for each of the power coefficients,

(M): b D �c� d

(L): aC b� 3c � 3d D 0

(T): b D �c
then we can solve for the power coefficients to define �. However, we have
four power coefficients and only three equations. Therefore it is necessary to
set the value for one of the power coefficients arbitrarily. Anticipating the
desired result, we set c D 1 and solve for the remaining values based on this
assumption. Note that an equally valid result could be obtained starting with
other values for c. Also, from examination of the equations for M and T, it
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is seen that the only solution that can satisfy both is when d D 0; however,
again anticipating the result, we include �o, twice, so that it cancels. This is
because of the desire to develop a solution that has recognizable parameters.
The final result is

� D �dmax�
4

(
� g

�0

d�a

dz

)
(
Vsg

�

�0

)

Note that �0 cancels in the numerator and denominator, so that effectively
d D 0. It is also evident that g cancels, but it, too, is kept because of conven-
tional definitions. For example, the square root of the term in parentheses in
the numerator is called the buoyancy frequency, N, and the term in the denom-
inator is the buoyancy force per unit mass acting on the submerged sludge. If
we further define g0 D g�/�0 D reduced gravity, and note that, since there
is only one � for this problem, then it must equal a constant (say A4), then
the final result is

dmax D A

(8sg0

N2

)1/4

Now, if experiments are done, measuring dmax while varying the other para-
meters in this expression, then a plot of dmax versus �Vsg0/gN2�1/4 should
result in a straight line with slope corresponding to the value for A, such as
is illustrated in Fig. 1.6.

Figure 1.6 Variation of dmax, Problem 1.6.
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From experimental studies, the value of A is found to be approximately
2.66. The remainder of this problem solution is left as an exercise for the
student.

Unsolved Problems

Problem 1.7 The expression for the vorticity �ωij� tensor is

ωij D 1

2
�ui,j � uj,i�

where the ui are components of the velocity vector. Find the components of
the vorticity tensor in cylindrical and spherical coordinates.

Problem 1.8 The divergence of a second-order tensor is a vector
expressed as

�rÐ ³
B�i D Bji,j

Find the expressions for the components of divB in Cartesian, cylindrical, and
spherical coordinates.

Problem 1.9 The stress tensor for a Newtonian incompressible fluid is
given by

�ij D �pgij C ��ui,j C uj,i�

where p is the pressure, � is the fluid viscosity, and the ui are components
of the velocity vector. Find expressions for components of �ij and div � in
Cartesian and cylindrical coordinates.

Problem 1.10 Prove the following expressions by using indicial notation:

�!a ð �
�!
b ð �!c � D ��!a Ð �!c ��!b � ��!a Ð �!

b �

�!
V Ð r�!

V D rjVj2
2

� �!
V ð r ð �!

V

Problem 1.11 Prove the vector identity

r2�⇀
V D �⇀r ��⇀r Ð �⇀

V �� �⇀r ð �
�⇀r ð �⇀

V �

Problem 1.12 How many separate quantities are represented by each of the
following expressions?
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(a) εijk
∂uk
∂xj

(b)
∂uj
∂xj

(c)
∂2ui
∂x2
j

C 1

3

∂2uj
∂xi∂xj

(d)
1

2

(
∂ui
∂xj

C ∂uj
∂xi

)

Problem 1.13 Use the properties of the alternating tensor εijk to prove the
vector identity

�⇀r Ð ��⇀r ð �⇀
V � D 0 for

�⇀
V D any vector

Problem 1.14 Find the complex numbers given by

(a) 5ei C 3e1.5i (b) �1 C i��2 � i��1 C 3i�

(c) ln�i� (d) ln��1�

Problem 1.15 Separate the following functions into their real and imaginary
parts:

(a)
z

Qz where Qz D x � iy (b)
z � Qz
z C Qz

(c) z̃ C 1

z
(d) ln

(
1

z

)
(e) z̃2z

Problem 1.16 Show that Cauchy–Riemann relations in two-dimensional
cylindrical coordinates are

∂�

∂r
D 1

r

∂ 

∂�

1

r

∂�

∂�
D �∂ 

∂r

Problem 1.17 Which of the following functions are analytic functions?:

(a) r cos
�

2
C ir sin

�

2
(b)

p
r cos

�

2
C i

p
r sin

�

2

(c)
1

x2
C i

1

y2
(d)

x2 C y2

x � iy

(e)
x

x2 C y2
� i

y

x2 C y2
(f) x2 � y2 � x C i�2xy � y�

Problem 1.18 Determine the derivatives of the following analytic functions
and separate the derivatives into their real and imaginary parts:
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(a) w D �1 C i� ln z (b) z D lnw

(c) w D i

z
C z (d) w D z2 C iz

(e) w D p
z (f) w D ln z C z

Problem 1.19 Prove the following identities:

(a) cosh ix D cos x

(b) sinh z D sinh x cos y C i sinh x sin y

(c) sin z D sin x cosh y C i cos x sinh y

(d) cos z D cos x cosh y � i sin x sinh y

Problem 1.20 Assuming that the drag �D� experienced by an object moving
through a fluid is a function of its projected area �A� in the direction of motion,
its velocity �V�, and the density ��� and viscosity ��� of the fluid, develop
a dimensionless relationship to show how the drag should be related to the
other variables of the problem.

Problem 1.21 Use dimensional analysis to develop an expression for the
vertical velocity �w� produced in a container of a fluid of depth h, when heated
from below with input power P �D energy input per unit time, ML2/T3�.
Assume that w is a function of h and P, as well as fluid density ��,M/L3�,
thermal expansion coefficient �˛, 1/T�, and specific heat (c, energy per unit
mass, per unit temperature, L2/T2�). To simplify, combine ˛, �, and c as
�˛/�c�.

Problem 1.22 It is desired to formulate an expression to predict the mixing
generated by wind blowing over a stratified water body, as shown in Fig. 1.7.
Specifically, the wind transfers energy into the water by a surface shear stress,
which may be characterized by the friction velocity, uŁ D ��/�0�1/2. Part of
this energy is used to mix fluid across the density interface, resulting in a
deepening of the upper layer. Formulate a nondimensional expression that
could be used to relate the entrainment velocity, ue D dh/dt, to other variables
of the problem (remember to include g). The result should be written in terms
of the bulk Richardson number,

Ri D g0h
u2Ł
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Figure 1.7 Mixed layer structure, Problem 1.22.

Figure 1.8 Definition sketch, Problem 1.23.

Problem 1.23 A 1 : 10 scale model is to be used to test the distance (L)
a sphere of diameter (d) will travel when released at a height (H) in a fluid
stream moving at velocity (U) (see Fig. 1.8). It is assumed that L is a function
of these other variables, as well as the fluid viscosity and specific weight, i.e.,
L D f�H, d,U, �, ��. The model and prototype viscosities are the same, but
the model specific weight is nine times the specific weight of the prototype.

(a) Determine an appropriate set of dimensionless parameters to char-
acterize this problem.
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(b) If the prototype velocity is 50 mph, what should be the model
velocity?

(c) If L is measured for a particular test with the model to be 0.1 m,
what would the corresponding L be for the prototype?
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2
Fundamental Equations

2.1 INTRODUCTION

The basic equations of fluid mechanics are derived by considering conservation
statements (i.e., of mass, momentum, energy, etc.) applied to a finite volume
of fluid continuum which is called a system or material volume and consists
of a collection of infinitesimal fluid particles. Quantities involving space and
time only are associated with the kinematics of the fluid particles. Examples
of variables related to the kinematics of the fluid particles are displacement,
velocity, acceleration, rate of strain, and rotation. Such variables represent
the motion of the fluid particles, in response to applied forces. All variables
connected with these forces involve space, time, and mass dimensions. These
are related to the dynamics of the fluid particles.

In the following sections of this chapter we provide information
concerning the basic representation of kinematic and dynamic variables and
concepts associated with fluid particles and fluid systems.

2.2 FLUID VELOCITY, PATHLINES, STREAMLINES, AND
STREAKLINES

A pathline represents the trajectory of a fluid particle. At a time of reference
t0, consider a fluid particle to be at position Er0. In Cartesian coordinates this
location is represented by (x0, y0, z0). Due to its motion, the fluid particle is
at position Er at time t, and this new position is represented by coordinates (x,
y, z). The functional representation of the pathline is given by

Er D Er�Er0, t� or Ex D Ex�Ex0, t� �2.2.1�

The vector Er0 (or Ex0) represents the label of the particular fluid particle. The
concept of pathline is a basic feature of the Lagrangian approach, which is
explained in greater detail in Sec. 2.4.
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As an example of the pathline concept, consider the following description
of pathlines in a two-dimensional flow field:

x D x0 e
�at y D y0 e

at �2.2.2�

It is possible to eliminate t from these expressions and obtain an equation
describing the shape of the pathline in the x–y plane, as

xy D x0y0 �2.2.3�

This expression shows that pathlines are hyperbolas whose asymptotes are the
coordinate axes.

By differentiating the equation of the pathline with regard to time we
obtain the Lagrangian expressions for the velocity components. By further
differentiating the latter expressions with regard to time, we obtain the
Lagrangian expressions for the acceleration components:

EV D EV�Er0, t� D ∂Er
∂t

Ea D a�Er0, t� D ∂2Er
∂t2

�2.2.4�

For the example pathlines of Eq. (2.2.2), the Lagrangian velocity components
are

u�x0, y0, t� D �ax0 e
�at v�x0, y0, t� D ay0 e

at �2.2.5�

By eliminating x0 and y0 from Eq. (2.2.5), we obtain the Eulerian presentation
(which will be discussed hereinafter) of the velocity components,

u�x, y, t� D �ax v�x, y, t� D ay �2.2.6�

The Eulerian presentation is the most common way of describing a flow field,
where a spatial distribution of velocity values is given (note that velocities
do not depend on an initial position in this presentation). It should be further
noted that the pathline equation given by Eq. (2.2.2) can be obtained by direct
integration of Eq. (2.2.5) or integration of Eq. (2.2.6), while considering that
x D x�x0, y0, t�; y D y�x0, y0, t�.

By differentiation of Eq. (2.2.5) with regard to time, we obtain the
Lagrangian presentation of the acceleration component,

ax�x0, y0, t� D a2x0 e
�at ay�x0, y0, t� D a2y0 e

at �2.2.7�

Again, by eliminating x0 and y0 from Eq. (2.2.7), the Eulerian presentation of
the acceleration components is

ax�x, y, t� D a2x ay�x, y, t� D a2y �2.2.8�

Flow fields are often depicted using streamlines. Streamlines are curves
that are everywhere tangent to the velocity vector, as shown in Fig. 2.1. A
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Figure 2.1 Example of streamline.

streamline is associated with a particular time and may be considered as an
instantaneous “photograph” of the velocity vector directions for the entire flow
field.

As implied in Fig. 2.1 (since the streamlines are tangent to the velocity),
a streamline may be described by

EVð dEr D 0 where EV D EV�Ex, t� �2.2.9�

where
⇀
V is the velocity vector, dEr is an infinitesimal element along the

streamline, and Ex is the coordinate vector. In a Cartesian coordinate system,
Eq. (2.2.9) yields

dx

u
D dy

v
D dz

w
�2.2.10�

where u, v, and w are the velocity components in the x, y, and z directions,
respectively.

According to Eq. (2.2.10), the shape of the streamlines is constant if
the velocity vector can be expressed as a product of a spatial function and a
temporal function. Such a case is represented by either one of the following
conditions:

EV�Ex, t� D EU�Ex�f�t�
EV

j EVj 6D f�t� �2.2.11�

If EV is solely a spatial function [i.e., f�t� is a constant], then the flow field is
subject to steady state conditions and the shape of the streamlines is identical
to that of the pathlines. As an example, consider the velocity vector represented
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Figure 2.2 Four pathlines and a streakline at a chimney.

by Eq. (2.2.6). The differential equation of the streamlines is

� dx

x
D dy

y
�2.2.12�

Direct integration of this equation yields

xy D C �2.2.13�

where C is a constant of the particular streamline. Since Eq. (2.2.6) refers to
steady state conditions, the shape of the streamlines represented by Eq. (2.2.13)
is identical to that of the pathlines, which is given by Eq. (2.2.3).

A streakline is defined as a line connecting a series of fluid particles
with their point source. An example of pathlines and a streakline that might
be produced by smoke particles is presented in Fig. 2.2. In this figure the
pathlines are enumerated. Pathline (1) refers to the first particle that left the
chimney outlet. Pathline (2) refers to the second particle, etc.

2.3 RATE OF STRAIN, VORTICITY, AND CIRCULATION

In this section we discuss variables characterizing the kinematics of the flow
field, which are associated with the velocity vector distribution in the domain.
All such variables originate from the Eulerian presentation of the velocity
vector.

In Fig. 2.3 are described two points in a flow field, A and B. The rates
of change of the coordinate intervals between these points are represented by
the following expressions given in Cartesian indicial format:

d

dt
�xi� D ui D ∂ui

∂xj
dxj �2.3.1�
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Figure 2.3 Rate of change of distance between two points.

Applying this expression, we obtain a second-order tensor that describes the
rate of change of the coordinate intervals per unit length. This second-order
tensor can be separated into symmetric and asymmetric tensors,

∂ui
∂xj

D 1

2

(
∂ui
∂xj

C ∂uj
∂xi

)
C 1

2

(
∂ui
∂xj

� ∂uj
∂xi

)
�2.3.2�

The first tensor on the right-hand side of Eq. (2.3.2) is the symmetric tensor,
called the rate of strain tensor. The second tensor is the asymmetric one, called
the vorticity tensor. Each of these tensors has a distinct physical meaning, as
described below.

The rate of strain tensor is represented by

eij D 1

2

(
∂ui
∂xj

C ∂uj
∂xi

)
�2.3.3�

In Fig. 2.4 the rate of elongation of an elementary fluid volume in a two-
dimensional flow field is illustrated. The rate of elongation per unit length of
that elementary volume in the xi direction is called the linear or normal strain
rate. It is represented by

u1 Cu1 � u1

x1
D �∂u1/∂x1�x1

x1
D ∂u1

∂x1
�2.3.4�
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Figure 2.4 Elongation of an elementary fluid volume.

This expression gives the component e11 of the strain rate tensor. The compo-
nents e22 and e33 represent the linear strain in the x2 and x3 directions. They
are given, respectively, by

e22 D ∂u2

∂x2
e33 D ∂u3

∂x3
�2.3.5�

Thus it is seen that diagonal components of the rate of strain tensor describe
the linear rate of strain. The volumetric strain rate of an elementary volume
is given by the trace of the strain rate tensor, i.e., the sum of the diagonal
components, since

1

x1y1z1

d

dt
�x1y1z1�

D 1

x1

d

dt
�x1�C 1

x2

d

dt
�x2�C 1

x3

d

dt
�x3�

D ∂u1

∂x1
C ∂u2

∂x2
C ∂u3

∂x3
D e11 C e22 C e33 �2.3.6�

With regard to components of the rate of strain tensor that are not on
the diagonal, we consider in Fig. 2.5 the rate of change of the angle of the
elementary rectangle, which is called the shear strain rate. The expression for
the shear strain rate is

u1 Cu1 � u1

x2
C u2 Cu2 � u2

x1

D �∂u1/∂x2�x2

x2
C �∂u2/∂x1�x1

x1
D ∂u1

∂x2
C ∂u2

∂x1
�2.3.7�
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Figure 2.5 Elementary fluid volume subject to shear strain.

This expression is proportional to e12, where

e12 D 1

2

(
∂u1

∂x2
C ∂u2

∂x1

)
�2.3.8�

Components of the strain rate tensor that are off the main diagonal thus represent
deformation of shape. They are equal to half of the corresponding shear rate.

The vorticity tensor is an asymmetric tensor given in Cartesian coordi-
nates by

ωij D
(
∂ui
∂xj

� ∂uj
∂xi

)
�2.3.9�

By considering Fig. 2.5, it is possible to visualize the physical meaning
of the vorticity tensor. In this figure the velocity components that lead to
rotation of an elementary fluid volume in a two-dimensional flow field are
shown. The average angular velocity of that volume in the counterclockwise
direction is given by

1

2

(
u2 Cu2 � u2

x1
� u1 Cu1 � u1

x2

)

D 1

2

(
�∂u2/∂x1�x1

x1
� �∂u1/∂x2�x2

x2

)

D 1

2

(
∂u2

∂x1
� ∂u1

∂x2

)
D ω21 D �ω12 �2.3.10�
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This expression indicates that the vorticity tensor is associated with rotation
of the fluid particles.

In general, a second-order asymmetric tensor has three pairs of nonzero
components. Each pair of components has identical magnitudes but opposite
signs. Such a tensor also can be represented by a vector that has three compo-
nents. Components of the vorticity tensor are proportional to components of
the vorticity vector, which is the curl of the velocity vector,

Eω D r ð EV or ωi D εijk
∂uk
∂xj

�2.3.11�

According to this expression, components of the vorticity vector are given by

ω1 D ∂u3

∂x2
� ∂u2

∂x3
ω2 D ∂u1

∂x3
� ∂u3

∂x1
ω3 D ∂u2

∂x1
� ∂u1

∂x2
�2.3.12�

Irrotational flow is a flow in which all components of the vorticity vector are
equal to zero. In such a flow the velocity vector originates from a potential
function, namely

EV D r or ui D ∂

∂xi
�2.3.13�

Potential flows are discussed in greater detail in Chap. 4.
The circulation is defined as the line integral of the tangential component

of velocity. It is given by

 D
∮
c

EV Ð dEs or  D
∮
c
ui dsi �2.3.14�

By applying the Stokes theorem, the line integral of Eq. (2.3.14) is converted
to an area integral,∮

c

EV Ð dEs D
∫
A
�r ð EV� Ð dEA or

∮
c
ui dsi D

∫
A
εijk

∂uk
∂xj

dAi �2.3.15�

This form of the equation is sometimes more useful.

2.4 LAGRANGIAN AND EULERIAN APPROACHES

2.4.1 General Presentation of the Approaches

Some basic concepts of the Lagrangian and Eulerian approaches have already
been represented in the previous section. In the present section we expand
on those concepts and describe some derivations of the basic conceptual
approaches.
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In the Lagrangian approach interest is directed at fluid particles and
changes of properties of those particles. The Eulerian approach refers to spatial
and temporal distributions of properties in the domain occupied by the fluid.
Whereas the Lagrangian approach represents properties of individual fluid
particles according to their initial location and time, the Eulerian approach
represents the distribution of such properties in the domain with no reference
to the history of the fluid particles. The concept of pathlines originates from
the Lagrangian approach, while the concept of streamlines is associated with
the Eulerian approach.

Every property F of an individual fluid particle can be represented in
the Lagrangian approach by

F D F�Ex0, t� �2.4.1�

where Ex0 is the location of the fluid particle at time t0 and t is the time. The
property F, according to the Eulerian approach, is distributed in the domain
occupied by the fluid. Therefore its functional presentation is given by

F D F�Ex, t� �2.4.2�

where Ex and t are the spatial coordinates and time, respectively.
According to the Lagrangian approach, the rate of change of the property

F of the fluid particle is given by

∂F�Ex0, t�

∂t
�2.4.3�

Therefore the velocity and acceleration of the fluid particle are given by

ui�Ex0, t� D ∂xi�Ex0, t�

∂t
ai�Ex0, t� D ∂ui�Ex0, t�

∂t
D ∂2xi�Ex0, t�

∂t2
�2.4.4�

For example, consider the flow field defined by the pathlines given in
Eq. (2.2.2). The Lagrangian velocity components are given by Eq. (2.2.5),
and the Lagrangian acceleration components are given by Eq. (2.2.7).

The rate of change of the property F of the fluid particles, according
to the Eulerian approach, can be expressed through use of the material or
absolute derivative. This derivative expresses the rate of change of the property
F by an observer moving with the fluid particle. The expression of the material
derivative is given by

DF[Ex�t�, t]
Dt

D ∂F

∂t
C �rF�dEx

dt
D ∂F

∂t
C ∂F

∂xi

dxi
dt

�2.4.5�
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Therefore the velocity and acceleration distributions in the flow field, according
to the Eulerian approach, are given, respectively, by

EV D dEx
dt

Ea D ∂ EV
∂t

C EV Ð rEV

or ui D dxi
dt

ai D ∂ui
∂t

C uk
∂ui
∂xk

�2.4.6�

As an example, consider the Eulerian velocity distribution given by Eq. (2.2.6).
By introducing the expressions of Eq. (2.2.6) into Eq. (2.4.6) we obtain the
Eulerian acceleration distribution given by Eq. (2.2.8).

2.4.2 System and Control Volume

The previous paragraphs refer to individual fluid particles and their properties.
Presently we will refer to aggregates of fluid particles comprising a finite fluid
volume. A finite volume of fluid incorporating a constant quantity of fluid
particles (or matter) is called a system or material volume. A system may
change shape, position, thermal condition, etc., but it always incorporates the
same matter. In contrast, a control volume is an arbitrary volume designated
in space. A control volume may possess a variable shape, but in most cases it
is convenient to consider control volumes of constant shape. Therefore fluid
particles may pass into or out of the fixed control volume across its surface.

Figure 2.6 shows an arbitrary flow field. Several streamlines describing
the flow direction at time t are depicted. The figure shows a system at time
t. A control volume (CV) identical to the system at time t also is shown. At
time t Ct the system has a shape different from its shape at time t, but the
control volume has its original fixed shape from time t. We may identify three
partial volumes, as indicated by Fig. 2.6: volume I represents the portion of the
control volume evacuated by particles of the system during the time interval
t; volume II is the portion of the control volume occupied by particles of
the system at time t Ct; volume III is the space to which particles of the
system have moved during the time interval t. Particles of the system also
convey properties of the flow. In the following paragraphs we consider the
presentation of the rate of change of an arbitrary property � in the system by
reference to a control volume.

2.4.3 Reynolds Transport Theorem

The Reynolds transport theorem represents the use of a control volume to
calculate the rate of change of a property of a material volume. The rate of
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Figure 2.6 System (material volume) and control volume.

change of a property, �, of a material volume is represented by

D

Dt

∫
M.V.

� dU �2.4.7�

where M.V. represents material volume and dU is an elementary volume
element. In Fig. 2.6, the integral of Eq. (2.4.7) incorporates two parts. One part
consists of the control volume, CV, namely volume I and the material volume
of Fig. 2.6, and the second part incorporates volumes I and III. An elementary
volume U of volumes I and III, as shown in Fig. 2.6, is represented by
U D � EV Ð Ends�t, where En is a unit vector normal to the surface of the
control volume (by convention, the direction of this vector is outward of the
control volume) and ds is an elementary surface element. Summation of all
elementary volumes U leads to a surface integral, which is taken over the
surface of the control volume, also known as the control surface (S). Therefore
the rate of change of the material volume property, �, which is expressed by
Eq. (2.4.7), can be given, by reference to the control volume, as

D

Dt

∫
M.V.

� dU D ∂

∂t

∫
U
� dUC

∫
S
�� EV Ð En� ds �2.4.8�

where U is the volume of the control volume. If a fixed control volume is
considered, then the partial derivative of the first term of the RHS of Eq. (2.4.8)
can be moved inside the volume integral of that expression. It should be noted
that the property � can be a scalar as well as a vector quantity. This is illustrated
in the following sections.
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2.5 CONSERVATION OF MASS

2.5.1 The Finite Control Volume Approach

By definition, the total mass of a material volume or system is constant.
Therefore,

D

Dt

∫
M.V.

� dU D 0 �2.5.1�

Comparison of this expression with Eq. (2.4.7) indicates that the property � of
Eq. (2.4.7) was replaced by the density � in Eq. (2.4.8). We may, therefore,
apply the transport theorem of Reynolds, namely Eq. (2.4.8), to obtain

∂

∂t

∫
U
� dUC

∫
S
�� EV Ð En� ds D 0 or

∂

∂t

∫
U
� dUC

∫
S
��uini� ds D 0

�2.5.2�

Here, the first term represents the rate of change of mass included in the control
volume. The second term represents the mass flux flowing through the surface
of the control volume. Equation (2.5.2) represents the integral expression for
the conservation of mass.

If we refer to a fixed control volume, and the density � of the fluid is
constant, then the first term of Eq. (2.5.2) vanishes, and∫

S
� EV Ð En�ds D 0 or

∫
S
uini ds D 0 �2.5.3�

This equation represents the integral expression for continuity. It indicates that
if the fluid density is constant, then the total mass flux entering the control
volume is identical to the total mass flux flowing out of the control volume
(for a fixed volume). When applied to a control volume of a stream tube, as
shown in Fig. 2.7, Eq. (2.5.3) leads to

⇀
V Ð EnA D const �2.5.4�

2.5.2 The Differential Approach

Consider again a fixed control volume. We transform the surface integral of the
second term on the RHS of Eq. (2.5.2) to a volume integral by the divergence
theorem and obtain∫

U

[
∂�

∂t
C r Ð ��⇀V�

]
dU D 0 �2.5.5�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 2.7 The integral continuity expression for a stream tube.

If the control volume is an arbitrarily small elementary volume, then
Eq. (2.5.5) yields

∂�

∂t
C r Ð �� EV� D 0 or

∂�

∂t
C ∂��ui�

∂xi
D 0 or

D�

Dt
C ��r Ð ⇀V� D 0

�2.5.6�

This expression represents the differential equation of mass conservation. If
the density of the fluid is fixed (i.e., D�/Dt D 0), then the flow is called
incompressible flow, and Eq. (2.5.6) gives

r Ð EV D 0 or
∂ui
∂xi

D 0 �2.5.7�

This expression represents the differential continuity equation.

2.5.3 The Stream Function

If the flow field is two dimensional, and a Cartesian coordinate system is
assumed, then Eq. (2.5.7) implies

∂u

∂x
C ∂v

∂y
D 0 �2.5.8�

Then a stream function  may be defined that satisfies Eq. (2.5.8),

u D ∂

∂y
v D ∂

∂x
�2.5.9�
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Then, introducing Eq. (2.5.9) into Eq. (2.2.10), it is seen that streamlines are
defined by

∂

∂x
dx C ∂

∂y
dy D 0 �2.5.10�

This expression indicates that the differential of the stream function vanishes
on the streamlines. Therefore the stream function has a constant value on a
streamline, and the value of the stream function can be used for the identifi-
cation of particular streamlines in the flow field.

Figure 2.8 shows two streamlines, which are identified by A and B.
The discharge per unit width flowing through the stream tube bounded by the
streamlines A and B is given by

q D
∫ B

A
�u dy � vdx� D

∫ B

A

(
∂

∂y
dy C ∂

∂x
dx

)

D
∫ B

A
d D B �A �2.5.11�

Figure 2.8 Illustration of volumetric flux between two streamlines.
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Thus the difference between values of the stream function for two streamlines
represents the discharge flowing between those streamlines.

If the flow field is represented by a cylindrical coordinate system, then
the employment of the covariant derivative and the relevant scale yield the
following expression for the differential continuity equation:

r Ð EV D ∂ur
∂r

C ur
r

C 1

r

∂v�
∂�

C ∂wz
∂z

D 1

r

∂�rur�

∂r
C 1

r

∂v�
∂�

C 1

r

∂�rwz�

∂z
D 0 �2.5.12�

where ur , v� , and wz are physical components of the velocity vector in the r,
�, and z directions, respectively. We may use the concept of stream function
in cylindrical coordinates for two types of flow field. One type is a two-
dimensional flow field expressed by reference to coordinates r and �. The
other type is an axisymmetric flow field expressed by coordinates r and z.

In the case of two-dimensional flow, there is no flow in the z-direction,
and velocity components do not depend on the z coordinate. Therefore the
term referring to z and wz of Eq. (2.5.12) vanishes, and the expressions for ur
and v� are given by the stream function as

ur D 1

r

∂

∂�
v� D �∂

∂r
�2.5.13�

In cases of axisymmetric flow, there is no flow in the �-direction, and velocity
components do not depend on the � coordinate. Then the presentation of ur
and wz by the stream function is given as

ur D 1

r

∂

∂z
wz D �1

r

∂

∂r
�2.5.14�

Note that the stream function of Eq. (2.5.13) has dimensions of discharge per
unit width, whereas the stream function of Eq. (2.5.14) has dimensions of
volumetric discharge.

2.5.4 Stratified Flow

In cases of stratified flow, where the density field is not constant, the differ-
ential equation of mass conservation, namely Eq. (2.5.6), is still

∂�

∂t
C EV Ð r� C �r Ð EV D 0 or

∂�

∂t
C ui

∂�

∂xi
C �

∂ui
∂xi

D 0 �2.5.15�
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(Recall that there were no constraints placed on density in deriving the mass
conservation expression.) In particular, consider the second of these expres-
sions, which is rewritten as

D�

Dt
C �r Ð EV D 0 or

D�

Dt
C �

∂ui
∂xi

D 0 �2.5.16�

This expression indicates that incompressible flow is identified by the
vanishing material derivative of the density. In other words, density is constant,
following a fluid particle. In cases of steady stratified flow, the temporal
derivative of the density is zero. If the flow is also incompressible, namely
r Ð EV D 0 [Eq. (2.5.7)], then according to Eq. (2.5.15), the velocity vector is
perpendicular to the density gradient.

In cases of steady two-dimensional flow, Eq. (2.5.6) yields

∂��u�

∂x
C ∂��v�

∂y
D 0 �2.5.17�

This equation can be identically satisfied by a stream function defined by

�u D ∂

∂y
�v D �∂

∂x
�2.5.18�

This stream function has dimensions of mass flux per unit width.

2.6 CONSERVATION OF MOMENTUM

The property � EV represents the momentum of a unit volume of the fluid. The
rate of change of momentum of a fluid material volume is equal to the sum of
forces acting on that material volume. Using the Reynolds transport theorem,
Eq. (2.4.8) applied to � EV yields

∂

∂t

∫
U
� EVdUC

∫
S
� EV� EV Ð En� ds

D
∫
U
�Eg dU C

∫
S

QS Ð EndsC EFs �2.6.1a�

or
∂

∂t

∫
U
�ui dUC

∫
S
�ui�uknk� ds

D
∫
U
�gi dUC

∫
S
Siknk dsC Fsi �2.6.1b�

where QS is the stress tensor, which refers to forces acting on the fluid surface
of the control volume, and EFs represents forces acting on solid surfaces
comprising portions of the surface of the control volume.

The first RHS term of Eq. (2.6.1) represents body forces originating
from gravity. The gravitational acceleration vector, Eg, is equal to the gravity,
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Figure 2.9 Components of the stress tensor acting on a small rectangle.

g, multiplied by a unit vector in the negative direction of the normal to the
earth’s surface. The second RHS term represents surface forces.

The stress tensor at each point of the surface of the control volume
can be completely defined by the nine components of the stress tensor, QS.
Figure 2.9 shows an infinitesimal rectangular parallelepiped with faces having
normal unit vectors parallel to the coordinate axes. The force per unit area
acting on each face of the parallelepiped is divided into a normal component
and two shear components (shear stresses) that are perpendicular to the normal
component. Figure 2.9 exemplifies the decomposition of the force per unit area
over four different faces. Directions of the stress tensor components shown
in Fig. 2.9 are considered positive, by convention. The first subscript of the
stress component represents the direction of the normal of the particular face
on which the stress acts. The second subscript represents the direction of the
component of the stress.

In Fig. 2.10 are shown components of the shear stress creating torque,
which may lead to rotation of the elementary rectangle around its center of
gravity, G. The total torque is expressed by

Torque D
(
S12 C 1

2

∂S12

∂x1
dx1

)
dx2

dx1

2
C

(
S12 � 1

2

∂S12

∂x1
dx1

)
dx2

dx1

2

�
(
S21 C 1

2

∂S21

∂x2
dx2

)
dx1

dx2

2
�

(
S21 � 1

2

∂S21

∂x2
dx2

)
dx1

dx2

2
�2.6.2�
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Figure 2.10 Torque applied on an elementary rectangle of fluid.

Also the total torque is equal to the moment of inertia multiplied by the angular
acceleration. Therefore, Eq. (2.6.2) yields

�S12 � S21� dx1 dx2 D �

12
dx1 dx2

[
�dx1�

2 C �dx2�
2]˛ �2.6.3�

where ˛ is the angular acceleration.
Upon dividing Eq. (2.6.3) by the area of the elementary rectangle and

allowing dx1 and dx2 to approach zero, the RHS of Eq. (2.6.3) vanishes. This
result indicates that the stress tensor is a symmetric tensor, namely

Sij D Sji �2.6.4�

The stress tensor can be decomposed into two tensors, as

QS D �pQIC Q� or Sij D �pυij C �ij �2.6.5�

where QI is a unit matrix, which also can be represented by υij, p is the pressure,
and Q� is the deviator stress tensor, related to shear stresses (see below).

The first term on the RHS of Eq. (2.6.5) is an isotropic tensor, namely a
tensor that has components only on its diagonal, and all diagonal components
are identical, provided that we apply a Cartesian coordinate system. Compo-
nents of the isotropic tensor are not modified by rotation of the coordinate
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system. The pressure, p, is equal to the negative one-third of the trace of the
stress tensor,

p D �1

3
�S11 C S22 C S33� �2.6.6�

where the trace of a tensor is defined as the sum of its diagonal components.
Note that the trace of the deviator stress tensor is zero. Positive normal stress
means tension. However, fluids can only resist and convey negative normal
stresses. The definition of Eq. (2.6.6) yields a positive value for the pressure.

Incorporating the definitions and expressions developed in the preceding
paragraphs, Eq. (2.6.1) is rewritten to express conservation of momentum in
a fluid material volume:

∂

∂t

∫
U
�ui dU C

∫
s
�ui�uknk� ds

D �
∫
s
pni dsC

∫
s
�iknk ds�

∫
U
�gki dUC FSi �2.6.7�

where ki represents the component of a unit vector perpendicular to the earth,
directed toward the atmosphere. For a fixed control volume, the derivative of
the first term on the LHS of Eq. (2.6.7) can be moved into the integral of that
term.

When Eq. (2.6.7) is applied to an elementary volume of fluid, the last
term vanishes since there are no solid surfaces. Then, using the divergence
theorem to convert surface integrals to volume integrals, we have∫

U

[
∂��ui�

∂t
C ∂��uiuk�

∂xk
C ∂p

∂xi
� ∂�ik
∂xk

C �gki

]
D 0 �2.6.8�

By introducing the conservation of mass, expressed by Eq. (2.5.6), into
Eq. (2.6.8), and considering that U is small but different from zero,

�

[
∂ui
∂t

C uk
∂ui
∂xk

]
D � ∂p

∂xi
C ∂�ik
∂xk

� �gki �2.6.9a�

or �

[
∂ EV
∂t

C � EV Ð r�EV
]

D �r�pC �gZ�C r Ð Q� �2.6.9b�

where Z is the elevation with regard to an arbitrary level of reference.
Equation (2.6.9) is the equation of motion, or the differential equation of
conservation of momentum.

The Bernoulli equation can be derived by direct integration of
Eq. (2.6.9). First, note that the nonlinear term of the LHS of Eq. (2.6.9) can
be expressed as

� EV Ð r�EV D rV
2

2
� EVð �r ð EV� �2.6.10�
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If the velocity vector is derived from a potential function, then shear stresses
also are negligible, and r ð EV D 0. Therefore, in such a case Eqs. (2.6.9) and
(2.6.10) yield

�

[
∂

∂t
�r�C rV

2

2

]
D �r�pC �gZ� �2.6.11�

where  is the potential function, defined in Eq. (2.3.13). For steady state
cases, direct integration of Eq. (2.6.11) and division by the specific weight of
the fluid yield

V2

2g
C p

�
C Z D const �2.6.12�

where � D �g is the specific weight of the fluid. This is called the Bernoulli
equation. The sum of the terms on the LHS of this equation is called the
total head, which incorporates the velocity head, the pressure head, and the
elevation (or elevation head). The sum of pressure head and elevation is called
the piezometric head. According to Eq. (2.6.12) the total head is constant in
a domain of steady potential flow.

In cases of steady flow with negligible effect of the shear stresses,
consider a natural coordinate system that incorporates a coordinate, s, tangen-
tial to the streamline, and a coordinate, n, perpendicular to the streamline. The
velocity vector has only a component tangential to the streamline. Therefore,
Eq. (2.6.9) yields for the tangential direction,

�

[
V
∂V

∂s

]
D � ∂

∂s
�pC �gZ� �2.6.13�

Direct integration of this expression indicates that the total head is constant
along the streamline even if the flow is nonpotential flow, provided that the
effect of shear stresses is negligible.

A moving coordinate system is sometimes applied to calculate
momentum conservation. All basic equations applicable to a stationary
coordinate system also can be applied to cases in which the coordinate system
moves with a constant velocity. It should be noted that the Bernoulli equation,
represented by Eq. (2.6.12), is applicable only in cases of steady state. The
application of a moving coordinate system may sometimes enable use of
Bernoulli’s equation in cases of unsteady state conditions.

A noninertial coordinate system is one that is subject to acceleration.
All momentum quantities in the conservation of momentum equation must be
written with respect to an inertial coordinate system. If a noninertial system
is used, then the acceleration measured by a fixed observer, EaF.O., is given by

EaF.O. D EaM.O. C Eat C 2Eω ð EVM.O C dEω
dt

ð ErM.O. C Eω ð �Eω ð ErM.O.� �2.6.14�
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where subscript F.O. refers to a fixed observer, M.O. refers to an observer
moving with the coordinate system, at is the translational acceleration of the
moving coordinate system, ω is the angular velocity of the moving coordinate
system, VM.O. is the velocity of the fluid particle measured by the moving
observer, and rM.O. is the position of the fluid particle measured by the moving
observer. The momentum conservation Eq. (2.6.7) can be applied, with minor
modification, to cases in which noninertial coordinate systems are used. In
such cases, the integral equation of momentum conservation is given by

∂

∂t

∫
U
� EVdU C

∫
s
� EV� EV Ð En� ds

D �
∫
s
pEndsC

∫
s
E� Ð Ends�

∫
U
�gEk dUC EFs

�
∫
U

[
Eat C 2Eω ð EVC dEω

dt
ð Er C Eω ð �Eω ð Er�

]
� dU �2.6.15�

The following section provides further discussion of coordinate systems
subject to rotational velocity originating from the earth’s rotation. This is also
described in further detail, using a dimensional scaling approach, in Sec. 2.9.3.

2.7 THE EQUATIONS OF MOTION AND CONSTITUTIVE
EQUATIONS

In the preceding section it was shown that the equations of motion represent
the conservation of momentum in an elementary fluid volume. The general
form of the equations of motion is represented by Eq. (2.6.9), which is again
given as

�

[
∂ui
∂t

C uk
∂ui
∂xk

]
D � ∂p

∂xi
C ∂�ik
∂xk

� �gki �2.7.1a�

or �

[
∂

r
V

∂t
C �

r
V Ð r� r

V

]
D �r�pC �gZ�C r Ð Q� �2.7.1b�

Different types of fluids are identified by their constitutive equations,
which provide the relationships between the deviatoric stress tensor, �ij, and
kinematic parameters. For a Newtonian fluid the shear stress is assumed to
be proportional to the rate of strain, and the constitutive equation for such a
fluid is

�ij D �
(
pC 1

3
�
∂uk
∂xk

)
υij C 2�eij �2.7.2�
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where eij is the rate of strain tensor,

eij D 1

2

(
∂ui
∂xj

C ∂uj
∂xi

)
�2.7.3�

By introducing Eq. (2.7.2) into Eq. (2.7.1), the general form of the
Navier–Stokes equations is obtained,

�
Dui
Dt

D � ∂p
∂xi

� �gki C 2�
[
∂eij
∂xj

� 1

3

∂2ui
∂xi∂xj

]

D � ∂p
∂xi

� �gki C �

[
∂2ui
∂x2
j

C 1

3

∂2ui
∂xi∂xj

]
�2.7.4�

For incompressible flow, Eq. (2.7.4) reduces to

�
D EV
Dt

D �r�pC �gZ�C �r2 EV �2.7.5a�

or �
Dui
Dt

D � ∂

∂xi
�pC �gZ�C �

∂2ui
∂x2
j

�2.7.5b�

Non-Newtonian fluids are characterized by constitutive equations different
from Eq. (2.7.2). These types of fluids are not considered here.

The equations of motion given in the preceding paragraphs are valid
in an inertial or fixed frame of reference. In comparatively small hydraulic
systems, it is possible to refer to such equations of motion, while considering
that the frame of reference, namely the earth, is stationary. In geophysical
applications the rotation of the earth must be considered.

Figure 2.11 shows two coordinate systems: coordinate system (X1, X2,
X3), which is stationary, and coordinate system (x1, x2, x3), which rotates at
angular velocity � with regard to the fixed coordinate system. Any vector
associated with the point G has three components in each of the coordi-
nate systems. As an example, the decomposition of the vector Er into three
components of the rotating coordinate system is shown. A general vector ER is
represented in the rotating coordinate system by

ER D R1Ei1 C R2Ei2 C R3Ei3 �2.7.6�

A fixed observer, F.O., observes the rate of change of the vector ER as(
dER
dt

)
F.O.

D d

dt
�R1Ei1 C R2Ei2 C R3Ei3�

D Ei1dR1

dt
C Ei2dR2

dt
C Ei3dR3

dt
C R1

dEi1
dt

C R2
dEi2
dt

C R3
dEi3
dt
�2.7.7�
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Figure 2.11 Coordinate system x1, x2, x3 rotates with angular velocity � with regard
to the stationary coordinate system X1, X2, X3.

The first three terms on the RHS represent the rate of change of the
vector, as observed by an observer, R.O., rotating with the rotating coordi-
nate system. The second group of three terms represents the rate of change
of the vector, originating from rotation of the coordinate system. Therefore
Eq. (2.7.7) can be expressed as(

dER
dt

)
F.O.

D
(
dER
dt

)
R.O.

C R1
dEi1
dt

C R2
dEi2
dt

C R3
dEi3
dt

�2.7.8�

Due to its rotation around the axis, E�, each unit vector Ei traces a cone
as shown in Fig. 2.12. The rate of change of this vector is given by∣∣∣∣∣d

Ei
dt

∣∣∣∣∣ D sin ˇ
(
d�

dt

)
D � sin ˇ �2.7.9�

The direction of the rate of change of the vector Ei is perpendicular to the plane
made by the vectors Ei and E�. Therefore

dEi
dt

D E�ð Ei �2.7.10�
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Figure 2.12 Cone of rotation of a unit vector.

The sum of the last three terms of Eq. (2.7.8) is given by

R1 E�ð Ei1 C R2 E�ð Ei2 C R3 E�ð Ei3 D E�ð ER �2.7.11�

Introducing Eq. (2.7.11) into Eq. (2.7.8), we obtain(
dER
dt

)
F.O.

D
(
dER
dt

)
R.O.

C E�ð ER �2.7.12�

This expression gives the relationship between the velocity vector measured
by the fixed and rotating observers as

EVF.O. D EVR.O. C E�ð Er �2.7.13�

Equation (2.7.12) also implies that acceleration can be expressed as(
dEVF.O.

dt

)
F.O.

D
(
dEVF.O.

dt

)
R.O.

C E�ð EVF.O. �2.7.14�
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By introducing Eq. (2.7.13) into Eq. (2.7.14), we obtain

dEVF.O.

dt
D d

dt
[ EVR.O. C E�ð Er]R.O. C E�ð � EVR.O. C E�ð Er�

D
(
dEVR.O.

dt

)
R.O.

C E�ð
(
dEr
dt

)
R.O.

C E�ð EVR.O. C E�ð � E�ð Er�
�2.7.15�

Thus the relationship between the acceleration in the two coordinate systems is

EaF.O. D EaR.O. C 2 E�ð EVR.O. C E�ð � E�ð Er� �2.7.16�

Upon introducing the vector ER, which is perpendicular to the axis of rotation
represented by the vector E� (also refer to Fig. 2.13), we find

E�ð Er D E�ð ER �2.7.17�

Also, using the vector identity,

E�ð � E�ð ER� D � E� Ð ER� E�� � E� Ð E��ER D �� E� Ð E��ER D ��2 ER �2.7.18�

Figure 2.13 Relationships between vectors r, R and the centripetal acceleration.
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with Eq. (2.7.16), we obtain

EaF.O. D EaC 2 E�ð EV��2 ER �2.7.19�

where EV and Ea are the velocity and acceleration vectors, respectively, in the
rotating coordinate system. The second term on the RHS of this last result
represents the Coriolis acceleration. The last term on the RHS of this equation
represents centripetal acceleration.

The preceding paragraphs indicate that the equations of motion for
geostrophic (or, “earth-turned”) scales should incorporate terms originating
from the rotation of earth. Introducing Eq. (2.7.17) into Eq. (2.7.5) yields

D EV
Dt

D � 1

�
r�pC �gZ�C vr2 EV2 C�2 ER� 2 E�ð EV �2.7.20�

Normally, the centrifugal acceleration term is considered as a minor adjustment
to Newtonian gravity, with the sum of these two terms referred to as effective
gravitational acceleration, Egeff,

Egeff D r��gZ�C�2 ER �2.7.21�

The relationships between the vectors E�, ER, Eg, �2 ER, and Egeff in the northern
hemisphere are shown in Fig. 2.14.

Figure 2.14 Relationships between the vectors �, R, g, �2R, and geff.
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Figure 2.15 Relationships between the vectors �, V, and -�ð V.

In Fig. 2.15 we show the relationships between the vectors E�, EV, and
� E�ð EV. This figure indicates that Coriolis force induces a deflection of
pathlines of the fluid particles to the right of their direction in the Northern
Hemisphere.

The equation of motion represented by Eq. (2.7.20) is applicable in cases
of geostrophic flows, in which the effect of the centrifugal acceleration and
Coriolis force are significant. For small-scale flows, in small hydraulic systems,
such effects are usually negligible. It is usually possible to determine the
relative importance of different terms in the equations of motion by scaling
analysis, as demonstrated in Sec. 2.9.

2.8 CONSERVATION OF ENERGY

Consider the material volume shown in Fig. 2.16. In general, this material
volume may be subject to movement and deformation. The net heat added to
the material volume during a short time period dt is dQ. During that time
interval, the material volume exerts work dW on its surroundings. According
to the first law of thermodynamics,

dE D dQ� dW �2.8.1�
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Figure 2.16 Heat Q added to a material volume and work W done by this volume.

where E is the total energy stored within the material volume. This variable
incorporates the kinetic, potential, and internal energy [see Eq. (2.8.4) below].
Note that the normal convention is used to express work as a positive quantity
when the material volume does work on its surroundings.

The variables Q and W are not point functions, whereas the variable
E is a point function distributed within the material volume. Therefore the
relationship between the rates of change of the variables given in Eq. (2.8.1)
is represented by

DE

Dt
D dQ

dt
� dW

dt
�2.8.2�

By applying the Reynolds transport theorem, written for energy, we obtain

DE

Dt
D ∂

∂t

∫
U
�e dU C

∫
S
�e� EV Ð En� dS �2.8.3�

where e is the stored energy per unit mass, given by

e D V2

2
C gz C u �2.8.4�

The first term on the RHS of this equation represents kinetic energy, the second
term represents potential energy, and the third term represents internal energy.

The workW done by the control volume on its surroundings incorporates
flow work Wf, which is associated with stresses acting at the surface of the
control volume, and shaft work, which is transferred from the control volume,
for instance by turbomachines. The rate of change of the flow work can be
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represented by

dWf

dt
D �

∫
S

QS Ð En Ð EVdS D
∫
S
p EV Ð EndS�

∫
S

Q� Ð En Ð EVdS �2.8.5�

where QS is the stress tensor, p is the pressure, and Q� is the deviator stress
tensor. It should be noted that the product Q� Ð En represents stresses normal
to the control volume surface. The velocity vector of viscous flow vanishes
at solid surfaces, and has no component perpendicular to a solid surface.
Therefore, the last term of Eq. (2.8.5) almost vanishes. The only contribution
of this term is due to diagonal components of the deviator stress tensor at
fluid surfaces subject to flow. In the following development, the last term of
Eq. (2.8.5) is neglected.

Introducing Eqs. (2.8.3)–(2.8.5) into Eq. (2.8.2), we obtain

dQ

dt
� dWs

dt
�

∫
S
p EV Ð EndS

D ∂

∂t

∫
U
�e dUC

∫
S

(
V2

2
C gz C u

)
�� EV Ð EndS� �2.8.6�

Using the divergence theorem to rewrite the last term on the LHS of
Eq. (2.8.6), an integral expression for conservation of energy is obtained as

dQ

dt
� dWs

dt
D ∂

∂t

∫
U
�e dUC

∫
S

(
V2

2
C gzC uC p

�

)
�� EV Ð EndS� �2.8.7�

Application of this equation is illustrated by considering Fig. 2.17, which
shows a control volume with two openings. The fluid enters the control volume
through one of the openings, of cross-sectional area A1, with velocity V1,
pressure p1, and temperature T1. The fluid flows out of the control volume
through the second opening, of cross-sectional area A2, with velocity V2,
pressure p2, and temperature T2.

Referring to this control volume, under steady state conditions Eq. (2.8.7)
yields

dQ

dt
� dWs

dt
D �

[
V2

1

2
C g�zc�1 C h1

]
�1V1A1

C
[
V2

2

2
C g�zc�2 C h2

]
�2V2A2 �2.8.8�

where zc is the elevation of the center of gravity of the cross-sectional area,
and h is the specific enthalpy, which is defined by

h D uC p

�
D CpT D CvTC p

�
�2.8.9�
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Figure 2.17 Energy conservation in a control volume (C.V.) with a single entrance
and a single exit.

where Cp and Cv are the specific heats for constant pressure and constant
volume, respectively.

Due to conservation of mass, �1V1A1 D �2V2A2 D dm/dt, where dm/dt
is the mass flow rate which enters and leaves the control volume of Fig. 2.17.
Dividing Eq. (2.8.8) by the mass flow rate and rearranging terms,[

V2
1

2
C g�zc�1 C h1

]
C dQ/dt

dm/dt
D
[
V2

2

2
C g�zc�2 C h2

]
C dWs/dt

dm/dt
�2.8.10�

The second term on the LHS of this equation represents the ratio between the
heat flux into the control volume and the mass flow rate through the control
volume. It also can be represented by dQ/dm, namely the net heat added to
the control volume per unit mass of flow. The last term of Eq. (2.8.10) can be
represented by dWs/dm, namely the net work done by the control volume per
unit mass of flow through the control volume. In the case of incompressible
fluid, if the control volume is insulated and does not perform work on its
surrounding, then Eq. (2.8.10) indicates[

V2
1

2
C g�zc�1 C p1

�

]
�

[
V2

2

2
C g�zc�2 C p2

�

]
D C�T2 � T1� �2.8.11�

where C is the specific heat of the incompressible fluid. For both Eq. (2.8.10)
and Eq. (2.8.11), terms within the square brackets represent the total head in
the entrance and exit cross sections, respectively.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Equation (2.8.11) indicates that the difference in total head between cross
section 1 and cross section 2, in an insulated control volume, is represented by
a raise in temperature multiplied by the specific heat of the fluid. On the other
hand, if the control volume is kept at constant temperature, namely isothermal
conditions, then Eq. (2.8.10) yields[

V2
1

2
C g�zc�1 C p1

�

]
�

[
V2

2

2
C g�zc�2 C p2

�

]
D �dQ

dm
�2.8.12�

This expression shows that for an isothermal control volume of incompressible
fluid, the head difference between the entrance and exit represents the net
heat per unit mass of flow that is transferred from the control volume into its
surrounding. The heat transferred from the control volume into the surrounding
is created in the control volume due to friction (viscous) forces.

Equations (2.8.11) and (2.8.12) indicate that Bernoulli’s equation is
approximately satisfied if the control volume does not perform any work
on its surrounding and if heat transfer between the control volume and the
surroundings is negligible. These equations also show that the conservation of
energy with some approximation leads to Bernoulli’s equation. Section 2.9.3
extends this discussion with the basic issues of thermal energy sources and
transport in the environment.

2.9 SCALING ANALYSES FOR GOVERNING EQUATIONS

As described in Sec. 1.4, it is possible to apply dimensional reasoning to
the general governing equations in order to simplify them for most ordinary
applications. This process requires that characteristic values for various quan-
tities must be defined (characteristic scales) and that the analysis be based on
developing order-of-magnitude estimates for different terms in the equation.
For now, we define the following characteristic scales for a fluid flow problem:

L D length (for some problems both vertical and horizontal length

scales are needed)

U D velocity

p0 D pressure difference

T D time

�0 D density

�0 D density difference

�0 D temperature difference

C0 D dissolved solids concentration difference

�0 D rotation rate
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These scales will be used in the following discussion to estimate the typical
order of magnitude for various terms in each of the basic equations discussed in
the preceding sections of this chapter. To some extent, the material is parallel
to the previous discussions, though the emphasis here is on relative orders
of magnitude of different terms in the equations. First, we consider the mass
conservation, or continuity equation.

2.9.1 Mass Conservation

The general statement of continuity, or mass conservation, is given by
Eq. (2.5.6),

∂�

∂t
C ⇀
V Ð ⇀r� C �

⇀r Ð ⇀V D 0

or, dividing by �,

1

�

∂�

∂t
C 1

�
⇀
V Ð ⇀r� C ⇀r Ð ⇀V D 0 �2.9.1�

The scaling quantities defined above are then substituted to estimate the rela-
tive magnitudes for each of the terms and, to provide a simpler means of
comparison, we divide all the terms in Eq. (2.9.1) by the divergence term,
so that the first and second terms will be compared with 1. The respective
relative magnitudes for each of the terms are then[

1

T

�0

�0

]
C

[
U

L

�0

�0

]
C

[
U

L

]
³ 0

)
[
L

UT

�0

�0

]
C

[
�0

�0

]
C [1] ³ 0 �2.9.2�

The procedure is then to compare the probable magnitudes of the first two
terms in brackets with [1]. Except in certain cases, where compressible effects
become important, the controlling factor is the possible relative change in
density that may exist in a flow. Thus it is necessary to estimate the expected
changes in density resulting from changes in environmental conditions.

In general, the density of natural water depends on its temperature,
salinity and, to a much lesser extent, pressure. Other dissolved solids may
affect water density, but the largest variations are due to salt. The rate of
change of density with temperature is given by the thermal expansion coeffi-
cient,

˛ D � 1

�

∂�

∂�
�2.9.3�
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where the negative sign indicates that density decreases with increasing
temperature. (It should be noted that this is true only when temperature is
above the temperature of maximum density, which for pure water is 4°C, so
there is the potential that ˛ changes sign for certain problems.) In terms of
the scaling quantities defined above, the magnitude of the relative change in
density is[

�0

�0

]
³ [˛�0] �2.9.4�

In water, ˛ is generally a function of temperature (water density is
a parabolic function of temperature, at least over a range of normal envi-
ronmental temperatures), with magnitude approximately 10�4 °C�1. A typical
large temperature variation might be of order 10°C so, using Eq. (2.9.4), the
expected magnitude of relative density variations is of order 0.001 (0.1%),
which is insignificant compared with 1. Even temperature changes as high
as 30–50°C would produce only a relatively negligible change in density for
water.

As with temperature, a salinity expansion coefficient can be defined by

ˇ D 1

�

∂�

∂C
�2.9.5�

and [
�0

�0

]
³ [ˇC0] �2.9.6�

where C indicates the concentration of dissolved solids, primarily salts. Rela-
tively sophisticated expressions have been developed to calculate density in
the ocean as a function of temperature and salinity, and a typical value for ˇ
is about 8 ð 10�4 ppt�1. Density is approximately linearly related to salinity
except when concentrations start to approach saturation, but that is not a
condition of major interest for most environmental applications. Typical ocean
salinity is approximately 30 ppt (parts per thousand) �C D 0.03�, so the rela-
tive density variation is estimated according to Eq. (2.9.6) as 0.024, or 2.4%.
Hypersaline lakes exist in some parts of the world, where C may be as high
as 200 or 250 ppt. This would result in ��0/�0� being of order 20%, but for
most natural conditions this result is much less than 1 and may be ignored.

The possible effect of pressure is somewhat more complicated. First, we
note that the definition of sonic velocity,

c0 D
√
∂p

∂�
�2.9.7�
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can be rearranged to obtain[
p0

�0c2
0

]
³ 1 )

[
�0

�0

]
³

[
p0

�0c2
0

]
�2.9.8�

The value for c0 is approximately 1,500 m/s in water and with �0 D
1,000 kg/m3, a pressure difference of order 2.25 ð 106 kPa is needed before
�υ�0/�0� becomes of order 1. This is equivalent to the pressure at a depth of
225 km under water, which is clearly unreasonable. This result is, however,
consistent with the assumption of incompressible flow that is normally applied
for water. Further estimates for υp0 or �υ�0/�0� can be obtained under special
conditions by looking at possible balances between terms in scaling analyses
of the momentum equation. Results from such an exercise show that pressure
effects can be neglected for normal environmental conditions in water. In fact,
the only circumstances under which this term becomes important are with high-
speed flows, when U approaches c0, with very high frequency oscillatory flow,
or with large-scale atmospheric motions or temperature changes.

Thus it may be concluded that �υ�0/�0� is small for normal environ-
mental conditions. Also, the factor (LU/T) appears in Eq. (2.9.2), but this
ratio is usually of order 1, and when it is multiplied by �υ�0/�0�, it becomes
very small and may be neglected. Since both the first two terms in Eq. (2.9.2)
are negligibly small, and the right-hand side is zero, the only way to balance
the equation is to have the third term also equal 0, i.e.,

⇀r Ð ⇀V D 0 �2.9.9�

which is the continuity equation for an incompressible fluid, as defined
previously in Eq. (2.5.7). Equivalently, referring back to Eq. (2.9.1), we may
conclude that D�/Dt D 0, i.e., the density “following a fluid particle” remains
constant. This is consistent with the conclusion found in Sec. 2.5.4.

2.9.2 Momentum Conservation

In vector notation, the general momentum equation is (refer to Sec. 2.7)

D
⇀
V

Dt
C 2

⇀
�ð D⇀r

Dt
C D

⇀
�

Dt
ð ⇀r C ⇀

�ð �
⇀
�ð ⇀r �

D ⇀g � 1

�
⇀rpC �

�

[
r2⇀VC 1

3
⇀r Ð �⇀r Ð ⇀V�

]
�2.9.10�

In general, this equation would have a term added to the LHS, D2⇀R/Dt2, to
account for translational acceleration of the coordinate system, but for prob-
lems of practical interest this term can be neglected. The time derivative term
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for position also can be replaced by D⇀r /Dt D ⇀
V, and incompressible fluid will

be assumed, as shown above. With these assumptions, Eq. (2.9.10) reduces to

D
⇀
V

Dt
C 2

⇀
�ð ⇀

VC D
⇀
�

Dt
ð⇀r C ⇀

�ð �
⇀
�ð⇀r � D ⇀g � 1

�
⇀rpC vr2⇀V

�2.9.11�

For problems in environmental fluid mechanics, the frame of reference is
the earth’s surface, so that

⇀
� represents the rotation of the earth. The earth

rotates at a nearly constant rate, so the time derivative term for
⇀
� vanishes.

The resulting equation is then similar to Eq. (2.7.20). We now consider the
remaining terms.

Figure 2.18 shows a cross section of the earth along a north–south
axis, along with the centripetal acceleration vector. The total magnitude of
this term is (�2R cos �), where � is the latitude. The components, normal
(pointing towards the earth’s center) and tangential to the earth’s surface,
are (�2R cos2 �) and (�2R cos � sin �), respectively. Similarly, Fig. 2.19
illustrates the components of the Coriolis term,

⇀
�ð ⇀

V. The normal and

Figure 2.18 Cross section of earth, showing centripetal acceleration term.
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Figure 2.19 Components of Coriolis acceleration, for velocity tangent to surface
(note: Coriolis term is

⇀
�ð ⇀

V).

tangential components of this term are (�
⇀
� cos ��ð ⇀

V) and (�
⇀
� sin ��ð ⇀

V),
respectively.

We first compare the normal components with gravity, using values for�
and R appropriate for rotation of the earth:� D 2��rad/day� ¾D 7 ð 10�5 �s�1�
and R ¾D 6 ð 106 m. The magnitude of the centripetal term is then ��2R� ¾D
0.03 m/s2, which is much less than g �¾D 10 m/s2�. Also, in order for the
normal Coriolis term to be comparable to g, the velocity magnitude would
have to be of order O�105 m/s�, which is obviously too large for practical
consideration.

For the tangential components, first note that the centripetal term is
a constant, while the Coriolis term depends on the magnitude of

⇀
V. The

centripetal term is usually considered as a minor adjustment to gravity,
as previously noted (see Eq. 2.7.21) and as shown in Fig. 2.20 (see also
Fig. 2.14). For now, we retain the Coriolis term and show in the following
discussion under what circumstances it needs to be included. A simplified
version of Eq. (2.9.11) is thus

∂
⇀
V

∂t
C ⇀
V Ð r⇀

V C 2
⇀
�ð ⇀

V D ⇀g � 1

�
⇀rpC vr2⇀V �2.9.12�

Note that this is essentially the same result as Eq. (2.7.20), with Eq. (2.7.21)
substituted for ⇀g eff (note also that ⇀g eff

¾D ⇀g ).

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 2.20 Relative importance of the effect of centripetal acceleration as an adjust-
ment to gravity.

This analysis can be extended by considering the pressure term as
consisting of hydrostatic and dynamic contributions. Referring to Fig. 2.21,
hydrostatic pressure is defined by

pz D pr �
∫ z

zr

�g dz �2.9.13�

where pr is a reference value.
The total pressure is the sum of pz and pd D dynamic pressure, so the pressure
term in Eq. (2.9.12) can be written as

1

�
⇀rp D 1

�
⇀rpr � g

�
⇀r

∫ z

zr

�dz C 1

�
⇀rpd

D 1

�
⇀rpr � g

�

∫ z

zr

⇀r�dz � g
⇀rz C g

�r

�
⇀rzr C 1

�
⇀rpd �2.9.14�

where this last result is obtained using the fact that � D �r at z D zr. Then,
substituting Eq. (2.9.14) into Eq. (2.9.12), we obtain

∂
⇀
V

∂t
C ⇀
V Ð r⇀

V C 2
⇀
�ð ⇀

V

D � 1

�
⇀rpr C g

�

∫ z

zr

⇀r�dh� �r

�
g
⇀rzr � 1

�
⇀rpd C vr2⇀V �2.9.15�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 2.21 Illustration of hydrostatic pressure variations.

If we now let � D �0 C υ�, where �0 is the constant base, or character-
istic value previously defined for density, then

1

�
D 1

�0 C�
D 1

�0


 1

1 C �

�0


 and

�

�0
− 1

(from previous scaling of mass conservation equation), so

1

�
¾D 1

�0
and �r ¾D �0 �2.9.16�

This last result is a statement of the Boussinesq approximation, which says
density variations are negligible except in the buoyancy terms, as will be
shown below. Eq. (2.9.15) is thus written as

∂
⇀
V

∂t
C ⇀
V Ð r⇀

V C 2
⇀
�ð ⇀

V

D � 1

�0

⇀r�pr C pd�C g

�0

∫ Z

Zr

⇀r�dz � g
⇀rzr C vr2⇀V �2.9.17�

The first term on the RHS of Eq. (2.9.17) is the net force due to pressure
gradients, the second term is the effect of density variations (important for
stratified fluids), and the third term is the effect of reference surface gradients
(such as waves).

Using the same characteristic scaling variables as in Sec. 2.9.1, the
magnitudes of the terms in Eq. (2.9.17) may be compared under different
scenarios. Dividing by the convective term �

⇀
V Ð ⇀r⇀

V�, which has characteristic
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magnitude �U2/L�, results in relative magnitudes as[
L

UT

]
C [1] C

[
�0L

U

]
³

[
p0

�0U2

]
C

[
g��/�0�L

U2

]
�

[
gL

U2

]
C

[
v

UL

]
�2.9.18�

where [
U

�0L

]
D Rossby number, Ro[

p0

�0U2

]
D Euler number, Eu[

Up
g��0/�0�L

]
D densimetric Froude number, Frd[

Up
gL

]
D Froude number, Fr[

UL

v

]
D Reynolds number, Re

Thus, for example, if Ro is large, Coriolis effects should be negligible in
the momentum equation. Similarly, pressure effects are small if Eu is small,
density effects are negligible if Frd is very large, changes in surface elevation
may be neglected if Fr is very large, and viscous effects are small when Re
is large.

The time-dependent term [L/UT] is the Strouhal number, and it should
be clear that a problem may be treated as being steady for large times, T ! 1,
when this ratio is small. The values of Ro (order of magnitude) for several
representative situations are listed in Table 2.1 using �0 ³ 10�4s�1, which is
valid for mid-latitudes. It is clear from these examples that the Coriolis effect
is expected to be important only in systems with larger L (estuaries, large
lakes, and ocean currents), depending also on U and �0.

Table 2.1 Estimates of Ro for Different Environmental
Systems

L(m) U(m/s) Ro

Stream 1–10 0.1–1 102 –104

Pond 10–100 0.1 10–102

River 100 0.1–1 10–102

Estuary 103 –104 1 1–10
Large lake 103 –105 0.1 10�2 –1
Ocean current 105 –106 0.01–0.1 10�4 –10�2
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The relative importance of density gradients can be estimated by
assuming Frd ³ 1. This is easily shown to be equivalent to assuming that
the convective term is balanced by the buoyancy term in Eq. (2.9.18), i.e.,

⇀
V Ð ⇀r⇀

V ³ g

�0

∫ z

zr

⇀r� dz ) U ³
[
g
�

�0
L

]1/2

�2.9.19�

Then, for a typical value of �/�0
¾D 10�3 (corresponding to a temperature

difference of about 10°C), and g ¾D 10 m/s2, L D �1–100 m�, gives U ¾D
�0.1–1 m/s�. Thus, at least in the buoyancy term, even a small density
difference can generate an appreciable velocity. The Boussinesq approach of
neglecting density variations does not apply to the buoyancy term, unless very
small characteristic lengths (L) are involved.

As a special case of the general result shown in Eq. (2.9.17), consider
a situation of steady, constant density flow, with � D rzr D 0. Then

⇀
V Ð ⇀r⇀

V D �⇀r
(
p

�0
C gz

)
C vr2⇀V �2.9.20�

where �p/�0� represents dynamic pressure and (gz) is the hydrostatic pressure.
This equation is then multiplied by (i.e., take dot product with)

⇀
V, to obtain

a mechanical energy equation,

⇀
V Ð ⇀r

(
1

2
V2

)
C 1

�0
�
⇀
V Ð ⇀rp�C ⇀

V Ð ⇀r�gz� D v�
⇀rV�2 D �ε �2.9.20�

where ε is the viscous dissipation rate for mechanical energy. If we now define
total head as

H D V2

2g
C p

�0g
C z �2.9.21�

(refer to Eq. 2.8.11), then Eq. (2.9.20) becomes
⇀
V Ð ⇀r�gH� D �ε �2.9.22�

If ε ¾D 0, then this is the Bernoulli equation, also derived in Sec. 2.8.
Note that for steady flow, the left-hand-side of Eq. (2.9.22) is the same

as the material derivative, �gDH/Dt�, and if inviscid conditions are assumed
�ε D 0�, then

DH

Dt
D 0 ) V2

2g
C p

�0g
C z D K �a constant� �2.9.23�

which is the usual form of the Bernoulli equation used in many introductory
textbooks. In general, this result holds along a streamline (i.e., following a
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fluid particle). If, however, the flow is also irrotational �⇀ω D ⇀
0 �, the vector

identity

r2⇀V D ⇀r�⇀r Ð ⇀V�� ⇀r ð �
⇀r ð ⇀

V� �2.9.24�

can be used to show that the Bernoulli result (2.9.23) is valid everywhere in
the flow field. This is because the RHS of Eq. (2.9.24) is 0, due to continuity
for the first term and irrotationality for the second.

It is interesting to note that r2⇀V D 0 for an irrotational flow field, inde-
pendent of the value of Re. However, the value of Re controls the rate at which
vorticity grows outward from solid boundaries, which may be important for
boundary layer analysis (see Chap. 6).

Another special case of interest is when the velocity vanishes, so
Eq. (2.9.17) becomes

⇀
0 D � 1

�0

⇀rpC g
⇀rz ) 0 D � 1

�0

∂p

∂z
� g �2.9.25�

which gives the hydrostatic pressure field (assuming boundary conditions are
known).

One additional case of interest is that of geostrophic flow. For this case,
there is a balance in the momentum equation between the Coriolis and pressure
terms, so

2
⇀
�ð ⇀

V ³ � 1

�0

⇀rp �2.9.26�

This balance has many applications in meteorology and in the oceans. When
this balance occurs, large-scale pressure differences (gradients), for example,
can be related to corresponding characteristic velocities by

p0

L
³ �0�0U �2.9.27�

These flows are discussed further in Chap. 9.

2.9.3 Thermal Energy Equation

The thermal energy equation is derived from the general conservation of
energy equation and may be written as (see Sec. 12.3.1 for further discussion)

D�

Dt
D ∂�

∂t
C ⇀
V Ð ⇀r� D �

�c
r2� � 1

�c
⇀r Ð ⇀ϕ r C 1

�c
��0ε�� ˛c2

0�

c
�
⇀r Ð ⇀V�
�2.9.28�

where � is temperature, c is specific heat, � is thermal conductivity, ϕr is
radiation heat flux, ε is the kinematic viscous dissipation rate of mechanical
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energy, ˛ is the thermal expansion coefficient, and c0 is the sonic velocity. The
terms on the RHS of this equation relate to conduction (diffusion), radiative
heat transfer, viscous heating, and compression or expansion heating, respec-
tively. Following a similar procedure as in the preceding sections, we introduce
characteristic values for this equation to derive

[
υ�0

T

]
C
[
U�0

L

]
³

[
��0

�cL2

]
�
[
ϕ0

�cL

]
C
[ε
c

]
�
[
˛c2

0�0

c

U

L

�0

�0

]
�2.9.29�

where the compression/expansion term is scaled as in Sec. 2.9.1, to substitute
�υ�0/�0� for �

⇀r Ð ⇀V�. To nondimensionalize the equation, each term is divided
by the advection term, so

[
L

UT

]
C [1] ³

[
�/�c

UL

]
�
[

ϕ0

�0cU�0

]
C
[
U2

c�0

]
C
[
˛2c2

0�0

c

1

˛�0

�0

�0

]

�2.9.30�

where ε ³ U3/L has been substituted for the dissipation rate (see Chap. 5).
Typical magnitudes for the terms on the right-hand side are estimated as

follows:

Heat conduction: First, note that a thermal diffusivity may be defined as

kt D �

�c
�2.9.31�

and the conduction term may be rewritten as[
kt
UL

]
D

[
kt
v

] [
v

UL

]
D

(
1

Pr

)(
1

Re

)
�2.9.32�

where Pr is the Prandtl number and signifies the ratio of heat transport to
momentum transport. Re is the Reynolds number as defined previously. In
water, Pr has a value of about 7 (a fixed value), so conductive heat transfer
depends on Re.

Radiative heating: The prime heating source by radiation is the sun,
and a typical value for ϕ0 in temperate latitudes is about 200–250 W/m2. The
amount of heating that takes place for any given radiative input depends on
the length of time over which the heating takes place and, of course, the depth
(or volume) of the water body under consideration.

Viscous heating: In water the specific heat is c ¾D 1J/g°C. If �U2/c�0�
is to be of order 1 (i.e., the magnitude of the viscous heating term would
be sufficient to require it to be included in the temperature equation), then
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estimates for �0 may be obtained based on U. At the upper range of environ-
mental flow conditions, water velocities may be of order 1–10 m/s. The char-
acteristic temperature change associated with this range of values is 2.5 ð 10�4

to 2.5 ð 10�2°C, which may be ignored under most circumstances.

Compression heating: Because of its dependence on fluid compress-
ibility, this term is generally important only for atmospheric studies, or possibly
in the deep oceans. Otherwise it can be neglected.

Thus the final usual form of the temperature equation is

∂�

∂t
C ⇀
V Ð r� D ktr2� � 1

�c
r Ð ⇀ϕr �2.9.33�

and this is examined further in Chap. 12.

PROBLEMS

Solved Problems

Problem 2.1 A two-dimensional flow field is given by the following velocity
components:

u D V cos�ωt� v D V sin�ωt�

where u and v represent the velocity in the x and y directions, respectively;
V and ω are constant coefficients. Provide expressions for the streamlines and
pathlines.

Solution

As velocity components are time dependent, the flow is unsteady. The differ-
ential equation for the streamlines is

dx

V cos�ωt�
D dy

V sin�ωt�

By rearranging this expression to solve for dy, we obtain

dy D tan�ωt�dx

Direct integration of this expression then gives the equation of the
streamlines as

y D tan�ωt�x CC

where C is an integration constant. This expression indicates that streamlines
are straight lines whose slope is time dependent. The differential equations of
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the streamlines are

dx

dt
D V cos�ωt�

dy

dt
D V sin�ωt�

Direct integration of these expressions, and considering that at time t D 0 the
fluid particle is located at x D x0 and y D y0, yields

x D x0 C V

ω
sin�ωt� y D y0 C V

ω
� V

ω
cos�ωt�

Eliminating time from these expressions, we obtain

�x � x0�
2 C

(
y � y0 � V

ω

)2

D
(
V

ω

)2

This expression indicates that the pathlines are circles with radius V/ω and
that the center of each pathline is located at x D x0 and y D y0 C V/ω.

Problem 2.2 A two-dimensional flow field is given by the following velocity
components:

u D ˛y v D ˛x

where u and v represent the velocity in the x and y directions, respectively,
and ˛ is a constant. Provide expressions for the streamlines and pathlines.

Solution

As velocity components are not time dependent, the flow is steady. Therefore
the shape of the streamlines does not change with time, and that shape is
identical to that of the pathlines. The differential equation for the streamlines is

dx

˛y
D dy

˛x

and upon rearranging,

y dy D x dx

Direct integration of this expression yields the following equation of the
streamlines:

x2 � y2 D C

where C is an integration constant. This equation indicates that streamlines
are hyperbolas whose asymptotes have a slope of 45°. As expected, the shape
of the streamlines does not change with time (since the flow is steady).
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The differential equations of the pathlines are

dx

dt
D ˛y

dy

dt
D ˛x

Differentiating the first expression with regard to time, we obtain

d2x

dt2
D ˛

dy

dt

Introducing the first two expressions into the last one then gives

d2x

dt2
� ˛2x D 0

The solution of this differential equation is

x D C1 exp�˛t�C C2 exp��˛t�
where C1 CC2 D x0.
Introducing this expression into the basic equation of dy/dt D ˛x and inte-
grating, we obtain

y D C1 exp�˛t��C2 exp��˛t�
where C1 �C2 D y0.

We may eliminate time from the expressions of x and y and obtain

x2 � y2 D 4C1C2

This expression indicates that pathlines and streamlines have identical shapes,
as found previously.

Problem 2.3 A two-dimensional flow field is given by the following velocity
components:

u D ˛yt v D ˛xt

where u and v represent the velocity in the x and y directions, respectively; t
is the time and ˛ is a constant. Provide expressions for the streamlines.

Solution

As velocity components are time dependent, the flow is unsteady. However,
the velocity vector can be expressed as a product of a space vector with a
time function. Therefore the shape of the streamlines does not change with
time, and that shape is identical to that of the pathlines, as shown below. The
differential equation for the streamlines is

dx

˛yt
D dy

˛xt
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Upon rearranging, this gives

y dy D x dx

Direct integration of this expression yields the equation of the streamlines as

x2 � y2 D C

where C is an integration constant. This equation indicates that streamlines
are hyperbolas whose asymptotes have a slope of 45°. As previously noted,
the shape of the streamlines does not change with time.

Problem 2.4 For each of the following flow fields, calculate components of
the rate of strain, vorticity tensor and vector, and the circulation on the sides
of a small square with sides of length 2b centered on the origin.

(a) u D ax v D �ay
(b) u D ay v D ax
(c) u D ay v D �ax

Solution

Components of the rate of strain tensor:

(a) e11 D 1

2

(
∂u

∂x
C ∂u

∂x

)
D a e12 D e21 D 1

2

(
∂u

∂y
C ∂v

∂x

)
D 0

e22 D 1

2

(
∂v

∂y
C ∂v

∂y

)
D �a

(b) e11 D 0 e12 D e21 D a e22 D 0
(c) e11 D 0 e12 D e21 D 0 e22 D 0

Components of the vorticity tensor:

(a) �11 D �22 D 0 �12 D ��21 D 1

2

(
∂u

∂y
� ∂v

∂x

)
D 0

(b) �11 D �22 D 0 �12 D ��21 D 1

2

(
∂u

∂y
� ∂v

∂x

)
D 0

(c) �11 D �22 D 0 �12 D ��21 D 1

2

(
∂u

∂y
� ∂v

∂x

)
D a

Components of the vorticity vector: Only case (c) is relevant, as the
flow is two-dimensional [no vorticity for cases (a) or (b)]. Thus

r ð EV D
(
∂v

∂x
� ∂u

∂y

)
Ek D �2aEk

where Ek is a unit vector in the z-direction.
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Note that the component �21 is equal to half of the corresponding vorticity
component.

Circulation values: First, note that the circulation is defined by

 D
∮
c

EV Ð dEl

where C is a closed curve and dl is a line element. As required, the closed
line integral should be performed in the counterclockwise direction along the
four sides of the small square as shown in Fig. 2.22.
For flow fields (a) and (b) the circulation vanishes. In case (c), we obtain

 D
[∫ b

�b
vdy

]
xDb

C
[∫ �b

b
u dx

]
yDb

C
[∫ �b

b
vdy

]
xD�b

C
[∫ b

�b
u dx

]
yD�b

D
∫ b

�b
�ab dy C

∫ �b

b
ab dx C

∫ �b

b
ab dy C

∫ b

�b
�ab dy D 8ab2

Figure 2.22 Line integration around square element, Problem 2.4.
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Problem 2.5 A fluid flow is given by the following pathlines:

x D x0�1 C ˛t� y D y0/�1 C ˛t�

where ˛ is a constant. Calculate the components of the velocity and acceler-
ation vectors by applying the Lagrangian and Eulerian approaches.

Solution

Lagrangian components of velocity:

u D dx

dt
D ˛x0 v D dy

dt
D �˛y0

�1 C ˛t�2

Eulerian components of velocity: These are obtained by the elimina-
tion of x0 and y0 from the Lagrangian expressions. According to the pathline
equations,

x0 D x

1 C ˛t
y0 D y�1 C ˛t�

We introduce these equations into the Lagrangian expressions of the velocity
components to obtain

u D ˛x

1 C ˛t
v D �˛y

1 C ˛t

Lagrangian components of the acceleration:

ax D d2x

dt2
D 0 ay D d2y

dt2
D 2˛2y0

�1 C ˛t�3

Eulerian components of the acceleration: It is possible to introduce
x0 and y0 into the Lagrangian expressions by x, y, t to obtain the Eulerian
expressions of the acceleration components. Alternatively, the accelerations
are obtained by direct application of the substantial derivative, as

ax�x, y, t� D ∂u

∂t
C u

∂u

∂x
C v

∂u

∂y
D �˛2x

�1 C ˛t�2
C ˛2x

�1 C ˛t�2
D 0

ay�x, y, t� D ∂v

∂t
C u

∂v

∂x
C v

∂v

∂y
D ˛2y

�1 C ˛t�2
C ˛2y

�1 C ˛t�2
D 2˛2y

�1 C ˛t�2

Problem 2.6 Derive the differential form of the continuity equation directly
by considering a small fluid element as shown in Fig. 2.23. Density � and
fluid velocity (u, v, w) are defined at the center of the element. Use a Taylor
series expansion to express the densities and velocities on each face in terms
of �, u, v, and w.
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Figure 2.23 Definition sketch, Problem 2.6.

Solution

A general statement of conservation of mass for any control volume is the
rate of change of mass in the volume is equal to the rate at which mass is
transported into the volume across the control surface, minus the rate at which
mass is transported out of the volume, plus or minus the rates at which mass
is either created or destroyed in the volume. When applied to the fluid element
shown in Fig. 2.23 and noting that water is neither created nor destroyed, this
statement is written in mathematical terms as

∂��8�
∂t

D
{[
�u� ∂��u�

∂x

dx

2

]
�

[
�uC ∂��u�

∂x

dx

2

]}
dy dz

C
{[
�v � ∂��v�

∂y

dy

2

]
�

[
�v C ∂��v�

∂y

dy

2

]}
dx dz

C
{[
�w� ∂��w�

∂z

dz

2

]
�

[
�wC ∂��w�

∂z

dz

2

]}
dx dy

where 8 D dx dy dz is the element volume and higher order terms in the Taylor
series expansions have been neglected, with the assumption that dx, dy, and
dz are all small. Each of the terms on the right-hand side of this equation
represents the net transport of fluid mass across the control surface in each
of the three coordinate directions. Nothing that the volume is independent of
time, then by combining terms and simplifying, we have

∂�

∂t
�dx dy dz�D �∂��u�

∂x
�dx dy dz�� ∂��v�

∂y
�dx dy dz�� ∂��w�

∂z
�dx dy dz�

Dividing by the volume, dx dy dz, and bringing all terms to the left-hand
side then leads to Eq. (2.5.6), which is the desired continuity equation.
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Problem 2.7 Figure 2.24 shows a reservoir of volume U, which includes for
time t � 0 pure water with density �0. At time t D 0, effluent with volumetric
discharge 2Q and density �1 starts flowing into the reservoir. The reservoir
volume is kept constant due to infiltration of the reservoir water into the ground
with volumetric discharge Q, and evaporation of pure water (density �0), also
with volumetric discharge rate Q. What is the value of the reservoir fluid
density as a function of time? What is the value of that density as t ! 1?
Assume that the fluid is kept completely mixed in the reservoir.

Solution

The fluid is incompressible, and density is subject to variation due to dissolved
solids, which are assumed to not affect the volume of the water. Therefore,
we may refer to Eq. (2.5.2) with regard to volumetric quantities, namely, the
reservoir volume is kept constant, and volumetric discharge into the reservoir
is identical to the total flow out of the reservoir. Using the integral equation
of mass conservation (2.5.2), we obtain

d�

dt
UC Q�� C �0�� 2Q�1 D 0

Using separation of variables, this expression yields

d�

2�1 � �0 � �
D Q

U
dt

Figure 2.24 Definition sketch, Problem 2.7.
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Direct integration of this expression, while considering that � D �0 at t D t0,
yields

2�1 � �0 � �

2�1 � 2�0
D exp

(
�Q
U
t

)

For t ! 1 the RHS of this expression vanishes. Therefore the asymptotic
limit for the fluid density is

� D 2�1 � �0

Problem 2.8 Figure 2.25 shows a system of two stagnant plates and a plate
that moves downward with velocity V. Due to the movement of the third
plate, the incompressible fluid, which is located between the plates, is subject
to flow. The velocity in the x-direction is distributed uniformly between the
two horizontal plates. Calculate the velocity distribution in the fluid domain
when the gap between the two horizontal plates is h. Find the expression for
the stream function. Is the fluid domain subject to steady flow?

Solution

The velocity u in the x-direction is independent of the y-coordinate. The
integral equation of continuity (2.5.3), applied to the control volume (C.V.)

Figure 2.25 Definition sketch, Problem 2.8.
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shown in the figure yields

� Vx C uh D 0 ) u D V

h
x

Introducing this expression into the differential equation of continuity (2.5.8),
we obtain

∂v

∂y
D �∂u

∂x
D �V

h

Direct integration of this expression yields

v D �V
h
y C f�x, t�

Considering that at y D 0, the velocity component v vanishes, we obtain

v D �V
h
y

According to Eq. (2.5.9), the following relationship for the stream function is
found:

 D
∫
u dy D V

h
xy C f�x�

The derivative of this expression with regard to the y coordinate is

∂

∂x
D V

h
y C f0�x� D �v D V

h
y ) f0�x� D 0 ) f�x� D const

By choosing f�x� D 0, we obtain

 D V

h
xy

The flow is subject to unsteady state, as the value of h is time dependent.

Problem 2.9 An incompressible fluid flows past a corner making an angle
of �3�/4� as shown in Fig. 2.26. It is proposed to describe this flow by a
stream function,

 D 2r4/3 sin
(

4

3
�

)

(a) What is the magnitude of the velocity at any point in the flow field
(as a function of r)?

(b) Show that there is no flow across the solid boundaries shown.
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Figure 2.26 Flow of incompressible fluid past a corner, Problem 2.9.

Solution

(a) From Eq. (2.5.13), the velocity components are

ur D 1

r

∂

∂�
D 8

3
r1/3 cos

(
4

3
�

)

v� D �∂
∂r

D �8

3
r1/3 sin

(
4

3
�

)

The velocity magnitude is the square root of the sum of the squares
of each of the velocity components,

V D 8

3
r1/3

(b) Since both boundaries represent radial arms with respect to the
origin at the corner, it is sufficient for this problem to show simply
that v� D 0 when � D 0 or � D 3�/4. That this is the case is imme-
diately seen when we use the expression for v� from part (a). It
should also be noted that this result shows that the proposed stream
function satisfactorily describes the flow past this corner.

Problem 2.10 Figure 2.27 shows a cylinder, with weight Wc, with a piston
standing on a table. Due to a downward movement of the piston, fluid flows
out of the cylinder through a nozzle located at the bottom of the cylinder. The
cross-sectional area of the cylinder is A1, the cross-sectional area of the nozzle
outlet is A2, and the fluid density is �. Calculate the forces FH and FV, which
are needed to hold the cylinder, when the depth of the fluid volume is h.

Solution

A Cartesian coordinate system (x, y) is added for reference. We start with the
choice of the control volume (C.V.) as shown in Fig. 2.27. It should be noted
that other types of control volumes could be used as well.
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Figure 2.27 Definition sketch, Problem 2.10.

In the x-direction there is no momentum of the control volume. The force
FH is applied by the “solid hand” which is cut by the surface of the control
volume. At the exit of the nozzle, the velocity vector and the normal vector
have identical directions. Due to continuity, the speed of the jet flowing out of
the nozzle is V�A1/A2�. At the nozzle exit the pressure is equal to atmospheric
pressure. Equation (2.6.7) yields for the x-direction:

�

[
V
A1

A2

]2

D FH

In the y-direction there is a negative momentum. Its values at times t and
t Ct are given, respectively, by:

�Momentum�t D ��hA1V �Momentum�tCt D ���h� Vt�A1V

The difference in momentum between times t and t Ct, divided by t,
provides the first RHS term of Eq. (2.6.7), namely,

∂

∂t

∫
U
�Vy dU D limt!0

���h � Vt�A1VC �hA1V

t
D �V2A1
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Two solid surfaces comprise a portion of the surface of the control volume.
Through these surfaces two forces are applied. One of them is FV and the other
one is applied through the shaft of the piston. The force applied through the
shaft of the piston can be calculated using the Bernoulli equation. We consider
that the piston movement is slow, and approximately steady state conditions
prevail in the fluid. Then Bernoulli’s equation applied between point (1) and
point (2) yields

V2

2g
C p1

�
C h D [V�A1/A2�]2

2g
) p1 D �

V2

2

[(
A1

A2

)2

� 1

]
� �gh

Considering equilibrium of the piston, we obtain

p1A1 D Wp C Fp; ) Fp D p1A1 �Wp

D �
V2A1

2

[(
A1

A2

)2

� 1

]
� �ghA1 �Wp

where Wp is the weight of the piston and Fp is the force applied through the
shaft of the piston.

Introducing all the expressions developed in the preceding paragraphs
with regard to the y-direction into Eq. (2.6.7), we obtain

�V2A1 D ��ghA1 �Wc �Wp � Fp C FV

where Wc is the weight of the cylinder. Therefore the force FV is given by

FV D �V2A1 C �ghA1 CWc CWp C �
V2A1

2

[(
A1

A2

)2

� 1

]

� �ghA1 �Wp

D Wc C �
V2A1

2

[(
A1

A2

)2

C 1

]

Problem 2.11 Figure 2.28 shows a small cart moving with velocity Vv due
to the impact of a two-dimensional water jet on a plate oriented at an angle ˛
with respect to the jet direction. The velocity and width of the jet are V1 and
b1, respectively. The water jet is divided into two smaller jets, whose widths
are b1 and b2. The force applied by the water jet on the cart is perpendicular to
the impacted plate. Assuming that the effect of gravitation is negligible when
applying Bernoulli’s equation, calculate (a) The widths b1 and b2 of the two
jets-(b) the vertical and horizontal forces acting on the cart, and (c) the power
transferred to the moving cart.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 2.28 Water jet driving cart motion, Problem 2.11.

Solution

We apply a coordinate system that moves with the cart. In such a coordinate
system the domain is subject to steady state, and Bernoulli’s equation is appli-
cable. The velocity of the jet that hits the cart, in the new coordinate system,
is V1 � Vv. As the effect of gravitation is negligible at the jet division, the
velocities of the two jets created by the jet division are also V1 � Vv. We
apply the control volume with boundaries as shown in the figure. The forces
FH and FV are needed to keep the control volume in its appropriate position.
By applying the equation of momentum conservation (2.6.1) in the horizontal
direction, we obtain

� ��V1 � Vv�
2b1 C ��V1 � Vv�

2�b2 � b3� cos˛ D �FH
Applying the conservation of momentum in the y-direction gives

��V1 � Vv�
2�b2 � b3� sin˛ D FV

As the resultant force is perpendicular to the oblique plate, we obtain

FV

FH
D tan˛

From continuity, we have

b1 D b2 C b3
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The last four equations allow the determination of the four unknown quantities
b2, b3, FH, and FV. The results of the calculation are

b2 D b1

2

(
1 C 1

2 cos˛

)
b3 D b1

2

(
1 � 1

2 cos˛

)

FH D � �V1 � Vv�
2 b1

2
Fv D � �V1 � Vv�

2 b1

2
tan˛

The force that leads to the cart movement is equal to FH and acts in the
positive x direction. The power transferred from the water jet into the cart
is equal to the product of this force with the velocity Vv of the cart in the
horizontal direction. Therefore the power N is given by

N D � �V1 � Vv�
2 b1

2
Vv

Problem 2.12 Figure 2.29 shows a rocket fired from rest in outer space
along a horizontal straight line where air friction is negligible. The mass of
the body of the rocket is M and it carries an original fuel mass Mf which
burns at a mass flow rate ˛. The exhaust cross-sectional area and velocity
relative to the rocket are Ae and Ve, respectively, and the density of the fluid
at the exhaust is �e. The velocity of the rocket relative to a fixed observer is
V. Our objective is to determine the value of V as a function of time.

Solution

We apply Eq. (2.6.15) to solve this problem. The momentum due to the flow
inside the control volume is assumed to be negligible. Therefore the first LHS
term of this equation vanishes. Also, all terms of the RHS of Eq. (2.6.16)
vanish, except for the volume integral associated with the translational accel-
eration. Therefore we obtain

� �eV
2
eAe D ��MCMf � ˛t�

dV

dt

Conservation of mass yields

�eVeAe D ˛

We introduce this relationship into the equation of momentum conservation.
Separation of variables of the resulting expression yields.

dV

˛Ve
D dt

MCMf � ˛t

Direct integration of this expression and assuming that V D 0 at t D 0 yields

V D Ve ln
(

MCMf

MCMf � ˛t

)
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Figure 2.29 Rocket motion, Problem 2.12.

According to this expression, the maximum value of the rocket velocity is
obtained when all the fuel is burnt, namely when t D Mf/˛. At that time the
rocket velocity is given by

V D Ve ln
(
MCMf

M

)

Problem 2.13 Figure 2.30 shows a pump that delivers a water discharge Q
from a tank through a pipe of total length L, which is ended with a nozzle. The
pipe diameter is D1, the nozzle diameter D2. The Darcy–Weissbach friction
coefficient for the pipe flow is f. Water level in the tank is h1 and its value
is given. The exit of the nozzle is located at an elevation h2 above the pump,
which is also given. Calculate the power delivered by the pump into the
flowing water. The system is at constant temperature.
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Figure 2.30 Pumped water jet, Problem 2.13.

Solution

The total head at the exit of the nozzle, at cross section (2), is

H2 D V2
2

2g
C h2 where V2 D 4Q

�D2
2

The total head at the entrance cross section (1) is equal to h1. The power
of the pump is needed to increase the water head from its initial value h1

to its final value at the exit cross section. Part of this power is converted to
heat, which is transferred into the surroundings (so that the system remains
at constant temperature). The head loss between the entrance and exit multi-
plied by the weight discharge is equal to the rate of heat transferred into the
environment. Therefore the power delivered from the pump into the flowing
water is given by

N D �gQ

(
H2 � h1 C f

L

D1

V2
1

2g

)
where V1 D 4Q

�D2
1

Problem 2.14 Considering the flow given in Problem 2.9, find the pressure
at any point in the flow field, relative to p D p0 at the corner. Neglect gravity.

Solution

It is already known that this flow is steady and incompressible. It can also be
shown to be irrotational. In this case, pressures are found using Bernoulli’s
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equation. Since gravity effects are neglected, we have

p0

�
C V2

0

2g
D p

�
C V2

2g

From the velocity components found in Problem 2.9, it is easily seen that
V0 D 0. Then, substituting the general expression for the velocity, we find

p D p0 � 1

2
�V2 D p0 � 32

9
�r2/3

Unsolved Problems

Problem 2.15 A two-dimensional flow field is given by the following
velocity distribution:

u D a�y � b� v D a�x � b�

where a and b are constant coefficients.

(a) Develop the expression for the pathlines in the domain.
(b) Develop the expression for the streamlines. Show that streamlines

and pathlines have the same shape. Provide a schematic of the
streamlines.

Problem 2.16 Using the velocity distribution of Problem 2.15,

(a) Calculate values of components of the rate of strain tensor.
(b) Show that the fluid is subject to irrotational flow and develop the

expression for the potential function.

Problem 2.17 A two-dimensional flow field is given by

u D �a�y � b� v D a�x � b�

where a and b are constant coefficients.

(a) Determine values of components of the rate of strain tensor and
the vorticity tensor.

(b) Calculate the value of the circulation along a circle whose center
is at point (b, b), with radius b.

Problem 2.18 The velocity field for a two-dimensional flow is given by

u1 D U exp
(

�x1

L

)
sec h2

(x2

L

)
and

u2 D Cx2 CU exp
(

�x1

L

)
tanh

(x2

L

)

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Where U, C, and L are constants. Find

(a) Acceleration of a fluid particle
(b) Variation of density of a fluid particle
(c) Components of fluid vorticity
(d) Components of fluid rate of strain

Problem 2.19 For each of the velocity distributions of Problems 2.15 and
2.17,

(a) Calculate the Lagrangian components of the velocity and acceler-
ation.

(b) Calculate the Eulerian components of the velocity and acceleration.

Problem 2.20 Velocity components of the flow and density of a fluid are
given by

u D x�1 C ˛xy� v D �y�1 C ˛xy� � D �0

1 C ˛xy

where ˛ and �0 are constants.

(a) Calculate the components of the acceleration.
(b) Calculate the rate of change of density of the fluid particles,

assuming that ˛ is small and has negligible effect on u and v.

Problem 2.21 Starting with the fluid element shown in Fig. 2.31, demon-
strate graphically that the divergence ( Er Ð EV) must be zero if the fluid is

incompressible. Is it necessary that
∂u

∂x
D ∂v

∂y
D ∂w

∂z
D 0 in order to make the

same conclusion?

Problem 2.22 For each of the velocity distributions of Problems 2.15 and
2.17,

(a) Show that continuity is satisfied for incompressible flow.
(b) Determine the expression for the stream function.
(c) Calculate the flow rate between two streamlines of your choice.

Problem 2.23 For each of the velocity and density distributions of
Problem 2.20,

(a) Show that the equation of mass conservation is satisfied.
(b) Develop the expression for the stream function of the mass flux.
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Figure 2.31 Fluid element, Problem 2.21.

Problem 2.24 Derive an integral statement of the equation expressing
conservation of dissolved mass (concentration C) following the Reynolds
transport theorem approach. Where might such an equation be useful?

Problem 2.25 Figure 2.32 shows a section of a two-dimensional channel
with walls described by

y D š h

2�x C 1�

where h is the width of the channel at its entrance where x D 0. A fluid of
constant density flows through the channel. The velocity component in the
x-direction is solely a function of x. At the channel entrance the velocity in
the x-direction is given by u D u0.

(a) Determine the velocity component in the x-direction.
(b) Determine the velocity component in the y-direction.
(c) Develop the expression for the stream function in the channel. What

are reasonable values of the stream function along the walls of the
channel?

Problem 2.26 Fluid is subject to steady-state flow in an infinite domain.
In every vertical cross section of the domain, the velocity component in the
horizontal x-direction is not a function of y. In every horizontal cross section of
the domain, the velocity component in the vertical y-direction is not a function
of x. At the point (x D 8 m, y D 0) it was found that there is only velocity in
the x-direction, whose value is u D 0.1 m/s. At the point (x D �12 m, y D 0)
it was found that there is also only velocity in the x-direction, with a value of
u D �0.1 m/s.
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Figure 2.32 Two-dimensional converging flow, Problem 2.25.

(a) Apply the integral continuity equation to determine the distribution
of the velocity component in the y-direction.

(b) Apply the differential continuity equation to determine the distri-
bution of the velocity component in the x-direction.

(c) Develop the expression for the stream function. Find stagnation
points, and provide a schematic of the streamlines.

(d) Check whether the flow is a potential flow. If it is a potential flow,
determine the expression for the potential function.

(e) Determine components of the rate of strain tensor.
(f) Determine components of the rate of strain tensor in the entire

domain in the coordinate system (x, y) whose x axis bisects the
angle between the axes x and y.

Problem 2.27 A water reservoir has a volume U D 50,000 m3. At time
t D 0 the density of the water is �0 D 1000 kg/m3. At that time two effluent
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sources start to divert water into the reservoir. Both sources provide an iden-
tical volumetric discharge of Q D 36 m3/s (for each source). The density of
the fluid of the first source is �1 D 1,020 kg/m3. The density of the fluid of
the second source is �2 D 1,010 kg/m3. These sources may be assumed to
be rapidly mixed throughout the reservoir. Fluid percolates into the ground
through the bottom of the reservoir with flow rate Q and with density equal to
that of the reservoir water �. At the reservoir surface water evaporates, with
discharge Q and density �0.

(a) Prove that the reservoir volume is kept constant.
(b) Develop a general equation for the variation of the density of the

reservoir water. What is the value of this density for time t ! 1?
(c) Substitute numerical values of the variables, and find the time at

which the water density becomes 99% of its value at t ! 1.

Problem 2.28 A model is needed to predict the transient response of a
constant volume mixing tank due to a step change in influent concentration
of a conservative substance. The model is to be used to quantify the degree
of mixing and short-circuiting in the tank. Assume that a fraction m of the
total tank volume V is actually well mixed and that only a fraction n of
the inflow Q enters the zone of perfect mixing, while the remaining portion
of the inflow short-circuits directly to the outlet (i.e., it is not mixed at all
inside the tank). The concentration at any time t in the mixed zone is C0.
The material exiting from this zone is mixed with the portion of inflow that is
short-circuited and the mixture leaves the tank at flow rate Q and concentration
C. The initial concentration in the tank is C0 (everywhere). At time t D 0 the
influent concentration Ci is changed suddenly from Ci D C0 to Ci D 0.

(a) Sketch the problem, showing how n and m are incorporated.
(b) Show that, in general, the outflow concentration may be calculated

as C D nC0 C �1 � n�Ci
(c) Write the general mass balance equation for C0 (in the mixed

zone) — include Ci in the formulation.
(d) Substitute the result from part (b) into your result from part (c) and

develop a differential equation that describes the rate of change of
C with time.

(e) Solve the equation to calculate (C/C0) as a function of n, m, and
(t/tŁ), where tŁ D V/Q is the overall tank residence time.

(f) Using the experimental data plotted in Fig. 2.33, estimate the values
for n and m (note that values for C0 are obtained from the middle
of the tank, which is expected to be in the fully mixed region).
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Figure 2.33 Nondimensional concentration data, Problem 2.28.

Problem 2.29 A shallow lake has mean (depth-averaged) horizontal velocity
components U and V, in the x and y coordinate directions, respectively, and
U and V are in general functions of (x, y, t), where t D time (see Fig. 2.34).
Seepage out the bottom of the lake takes place at a rate f, where f is assumed
to be directly proportional to the depth, h, so f D kh, and h is also a function
of (x, y, t). Rain falls at rate i (units of length/time) and i D i�x, y, t�. The lake
bottom may be assumed to be flat and horizontal. Derive the two-dimensional
continuity equation for this problem.

Problem 2.30 Figure 2.35 shows a section of a two-dimensional channel,
with walls that are described by

y D š0.5�h C x�

where h D 1 m is the width of the channel at its entrance, where x D 0. A fluid
of constant density flows through the channel. The velocity component in the
x-direction is solely a function of x. At x D 0, the velocity in the x-direction
is given by u D u0 D 1 m/s.

(a) Determine the velocity component in the x-direction.
(b) Determine the velocity component in the y-direction.
(c) Calculate the discharge per unit width of the channel.

Problem 2.31 Water is subject to unsteady flow in an open channel, as shown
in Fig. 2.36. A discharge per unit area, q, flows into the channel through the
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Figure 2.34 Two-dimensional lake schematic, Problem 2.29.

Figure 2.35 Expanding two-dimensional flow, Problem 2.30.
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free surface. The water depth in the elementary control volume is h. The width
of the channel at the free surface is B.

(a) Refer to the elementary control volume of the open channel shown
in part (a) of Fig. 2.36 and develop the differential equation that
represents the variation of the water depth along the channel.

(b) Part (b) of Fig. 2.36 indicates that at x D x0, the water depth is h0.
The channel has a rectangular cross section, in which B D const.
It is found that the water depth downstream of x0 is represented by
h D h0 C h1 sin�˛x C ωt�, where, h0, h1, ˛, and ω are constants. It

Figure 2.36 Open channel flow, Problem 2.31.
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is also given that q D 0, and Q D Q0 at x0. Find the discharge as
a function of x and t.

Problem 2.32 Figure 2.37 shows two containers that contain fluids. The
volume of container 1 is U1 D 30 m3 and it contains at time t < 0 pure water,
with density �1 D 1,000 kg/m3. The volume of container 2 is U2 D 20 m3 and
it includes for time t < 0 salt water, with density �2 D 1,020 kg/m3. At time
t D 0 two pumps start to circulate water between the two containers. Each
pump delivers a volumetric discharge of Q D 10 m3/s. A mixer is submerged
in each container to insure well-mixed conditions.

(a) What is the final density of the water in both containers?
(b) Develop expressions for the variation of the water density in each

container as functions of t.
(c) Show that the expressions that you developed in part (b) converge

to the result of part (a) when t ! 1.
(d) Calculate the value of the time t at which the density of the water

in container 1 is equal to 99% of the density when t ! 1. What
is the density of the water in container 2? By how many percent is
it larger than the density at t ! 1?

Problem 2.33 Figure 2.38 shows a two-dimensional incompressible flow
between two long plates. Plate (a) is stagnant. Plate (b) rotates around the
origin with constant angular velocity �. The radial flow in the domain is not
a function of the angular coordinate �. At time t D 0, the angle between the
two plates is �.

Figure 2.37 Definition sketch, Problem 2.32.
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Figure 2.38 Definition sketch, Problem 2.33.

(a) Determine the velocity distribution in the flow domain at time t1,
where t1 < �/�.

(b) Determine the expression for the stream function.
(c) Is the value of the stream function at the two plates subject to

variation with time? Explain.

Problem 2.34 Figure 2.39 shows viscous incompressible fluid between three
plates. Plates (a) and (b) are stagnant, while plate (c) moves downward with
constant velocity V. Due to the movement of plate (c), the fluid is subject
to flow. There is a parabolic distribution of the velocity component in the
x-direction, and it vanishes at plates (a) and (c).

(a) Determine the expressions for the velocity components in the flow
domain when the distance between plates (a) and (c) is h.

(b) Determine the expression for the stream function in the domain.
(c) Calculate the variation of the discharge flowing between plates (a)

and (c) as a function of time and x-coordinate.

Problem 2.35 A two-dimensional velocity field (u, v) may be defined in
terms of a stream function, , where

⇀
V D ⇀r ð�Ok�

Calculate
⇀r ð ⇀

V,r2⇀V, and
⇀
V Ð ⇀r⇀

V in terms of .
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Figure 2.39 Definition sketch, Problem 2.34.

Figure 2.40 Definition sketch, Problem 2.36.

Problem 2.36 A fluid two-dimensional jet of width b1 and velocity V1

is directed at a concave plate, which moves with velocity V2, as shown in
Fig. 2.40. Due to the impact with the plate, the fluid jet is divided into two
identical jets, which are oriented with angle ˛ to the longitudinal x-direction
at the edges of the plate. The fluid density is �.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



(a) Calculate the thickness of the two jets created by the impact of the
jet with the concave plate.

(b) Determine the velocity of the two jets at the edges of the plate.
(c) Determine the power delivered from the jet to the plate.
(d) What should be the relationship between V1 and V2 to deliver

maximum power?

Problem 2.37 Repeat Problem 2.36 for jet impact with a convex plate, as
shown in Fig. 2.41.

Problem 2.38 Consider plane Couette flow, with one wall (y D 0) fixed
and a second rigid wall (y D h) moving at constant speed U in its own plane.
Sketch the flow and solve the Navier–Stokes equations for the case of constant
density (also no rotation), to show that a possible flow is Eu D �Uy/h��Oi�. Also
calculate the shear stress on each wall.

Problem 2.39 A line sink (large width-to-height ratio) drains a large water
reservoir by a rectangular conduit as shown in Fig. 2.42. Assuming the flow
is fully developed in the conduit (i.e., at some distance downstream of the
reservoir), calculate the following:

(a) Velocity distribution (neglect side wall effects).
(b) Magnitude of shear stress at upper and lower surfaces and at middle

of conduit.
(c) Considering the entire length (L) as a control volume, verify that there

is zero net force acting on the fluid in the direction along the pipe.

Figure 2.41 Definition sketch, Problem 2.37.
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Figure 2.42 Flow through long rectangular conduit, Problem 2.39.

Problem 2.40 Figure 2.43 shows a hose of diameter D1, which is connected
to a nozzle by a flange. The diameter of the nozzle exit is D2. Water (density
�) flows through the hose and nozzle with discharge Q. FH and FV represent
the horizontal and vertical forces applied by the fireman, to keep the hose and
nozzle in the appropriate position.

(a) Determine the force needed to hold the two parts of the flange
together.

(b) Determine the horizontal, vertical, and total forces applied by the
fireman.

Problem 2.41 Water flows in an open rectangular channel with a constric-
tion, as shown in Fig. 2.44. The water depth and channel width before the

Figure 2.43 Flow around a bend, Problem 2.40.
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Figure 2.44 Open channel flow constriction, Problem 2.41.

constriction are h1 D 1.0 m and b1 D 1.2 m, respectively. At the constriction,
the water depth and channel width are h2 D 0.9 m and b2 D 1.0 m, respec-
tively. The pressure distribution in each vertical cross section is hydrostatic.

(a) Determine the discharge flowing through the channel.
(b) Determine the force applied by the water on the constriction.

Problem 2.42 Water flows through a gate as shown in Fig. 2.45. The channel
has a rectangular cross section and its width is 1 m. The water depth upstream
of the gate is h1 D 0.8 m. The water depth downstream of the gate is h2 D
0.2 m. At that location, the flow velocity is V2 D 3 m/s.

(a) Determine the discharge in the channel.
(b) Determine the force of the water on the gate.

Problem 2.43 A cart carries a container with water. It moves freely on an
inclined area, whose slope is ˛ D 30°, as shown in Fig. 2.46. The width of the
container is b D 2 m, and its length is L D 2 m. The top of the container is
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Figure 2.45 Flow under a sluice gate, Problem 2.42.

Figure 2.46 Water containing cart on a sloping surface, Problem 2.43.

open, and its side walls are very tall. The initial water depth, measured along
the upper wall of the container, is 0.5 m.

(a) Determine the orientation angle between the free surface of the
water with respect to horizontal.

(b) Determine the horizontal and vertical components of the pressure
gradient in the water.

(c) Determine the total force applied on the front wall, back wall, and
bottom of the container.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Problem 2.44 Figure 2.47 shows fluid with density � flowing through a
two-dimensional conduit, whose width and length are b and h, respectively.
At the entrance of the conduit, the velocity is u0 and is uniformly distributed.
The pressure at the entrance is pA. At the exit of the conduit, the velocity
profile is a parabola, given by

u D U

[
1 �

(
2y

b

)2
]

where U is the maximum value of the velocity at the exit cross section and y D
0 represents the centerline. The pressure at the exit cross section is given by

pB D pA � 2.25�
U2

2

(a) Determine the relationship between u0 and U.
(b) Determine the force applied per unit width of the conduit.

Problem 2.45 A jet aircraft flies at a constant speed V. The jet engine
pumps air with volumetric discharge Q0 and density �0. The mixture of fuel
and air has a density almost identical to that of the air. After the burning
of the mixture, it flows out with the volumetric discharge Q1 D �2/3�Q0 and
unknown density �1. The inlet cross section area is A0. The outlet cross section
area is A1 D 0.1A0. The flow velocity through the inlet cross section is identical
to that of the outlet cross section. The volumetric discharges Q0 and Q1 are
independent of the flow velocity V.

(a) Determine the fluid density �1 at the outlet cross section.
(b) Determine the drag force that is overcome by the jet engine.
(c) What is the power of the jet engine?

Figure 2.47 Definition sketch, Problem 2.44.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Problem 2.46 Consider that the length of the equator is 40,000 km, and that
the earth makes a complete rotation in 24 hours.

(a) Calculate the value of the effective gravitational acceleration at
a point on the earth’s surface, whose inclination angle (latitude)
is 30°.

(b) Provide the two equations of motion, based on Eq. (2.7.20), for a
two-dimensional horizontal flow at a point on the ocean with an
inclination angle of 30°.

Problem 2.47 A mass discharge of dry steam with Qm D 1 kg/s flows
through a turbine and delivers a power N D 1,000 W through the shaft of
the turbine. The entrance and exit flow velocities are V1 D 20 m/s and V2 D
10 m/s, respectively. The entrance and exit specific enthalpy values are h1 D
80 m2/s2 and h2 D 100 m2/s2, respectively. The entrance elevation is higher
than that of the exit of the turbine by 1 m.

(a) What are the values of �A (where � is the density and A is the
cross-sectional area) at the entrance and exit of the turbine?

(b) Determine the net heat transferred from the turbine into the envi-
ronment per unit mass of flow.

(c) Determine the rate of heat transferred from the turbine into the
environment.

Problem 2.48 A 3 m diameter tank is filled with water to a depth h D 10 m.
A value on a 30 cm pipe at the bottom of the tank is opened suddenly and
water is allowed to drain as shown in Fig. 2.48. Estimate the time needed for
the tank to drain halfway (until h D 5 m). State all assumptions.

Figure 2.48 Water drainage from tank, Problem 2.48.
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Problem 2.49 The pressure at the water surface of a container is 4 ð 104 Pa.
The water is pumped from the container through a pipe that ends with a
nozzle with exit diameter D D 100 mm. The water flows as a free jet through
the nozzle. As shown in Fig. 2.49, the elevation of the water surface in the
container is higher by 1.5 m than the pump. Also, the exit nozzle is elevated
by 1.5 m above the pump. The free water jet leaves the nozzle with an angle
of 45° and it reaches its maximum elevation 3 m above the nozzle exit. Effects
of friction between the air and the free jet are negligible.

(a) Determine the velocity of the water jet at the exit of the nozzle.
(b) Determine the distance between the exit of the nozzle and the point

at the same elevation, through which the water jet passes.
(c) Assuming that the efficiency of the water pump is 0.8, determine

the power needed to operate the pump.
(d) Draw a schematic of the total and piezometric heads between the

container and the exit of the nozzle.

Problem 2.50 Show that for a steady one-directional flow field (u1 D u)
of an incompressible fluid with no horizontal variations (i.e., in the x1 or x2

directions) of any property, the energy equation can be simplified to

�

(
∂u

∂z

)2

D ∂ϕz
∂z

Figure 2.49 Definition sketch, Problem 2.49.
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(i.e., viscous dissipation is balanced by radiative heating). Note that the result
could be written in terms of ordinary derivatives, since variations occur only
in the x3 D z direction.

Problem 2.51 A horizontal circular pipe 1 m in diameter carries water at
a flow rate of 10 m3/s. Neglecting heat transfer through the walls, find the
temperature increase for the water traveling a length of pipe corresponding
to a pressure drop of 5 atm. (about 500 kPa). Hint: apply the integral energy
equation to a control volume bounded by the pipe walls and sections separated
by the distance indicated above. Use cv D 4200 J/kg-°C.

Problem 2.52
(a) Write the conservation equations in rectangular coordinate form for

mass, momentum, and energy for an incompressible fluid with no
motion and no horizontal variation of any quantity. Also assume
an inertial reference system.

(b) Repeat part (a), but for conditions of steady motion in one hori-
zontal direction (x, or x1) only and, like all other quantities, uniform
in horizontal directions.

Problem 2.53 Show that heat energy changes in a fixed volume d8 are given,
for a temperature change of dT, by ��cvdTd8�. You may assume that ��cv�
is constant. Following the basic procedures in deriving the basic conservation
equations, develop an equation for temperature in a fluid at rest. Although
there is no advective flow, assume that there is an average molecular velocity
U that must be considered in the balance. Also assume there is a source of
heat Q�xi, t� per unit volume, per unit time at each point of the fluid. Your
final result should look like

∂�

∂t
D �r�U��C Q

�cv

Problem 2.54 A rotating table is built for testing a scale model of a large
lake. If the horizontal length scale ratio is 1 : 105, the vertical length scale
ration is 1 : 800 (this is a distorted scale model), and the lake is at latitude 44°

(N), how fast (in rpm) should the table be rotated in order to simulate Coriolis
effects? (Hint: first decide which are the important dimensionless numbers for
this problem, arising from scaling of the momentum equations.)

Problem 2.55 Show that in a natural water body with characteristic hori-
zontal dimension L and vertical dimension H, with H − L, the characteristic
vertical velocity W should be much less than the characteristic horizontal
velocity U.
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3
Viscous Flows

3.1 VARIOUS FORMS OF THE EQUATIONS OF MOTION

Viscous flows are mathematically represented by solutions of the equations
of motion, based on momentum transfer in an elementary fluid volume. The
equations of motion for viscous flows are the Navier–Stokes equations intro-
duced in the previous chapter. For convenience, we repeat these equations
here, for cases in which variations in viscosity are negligible:

∂ EV
∂t

C � EV Ð r�EV D � 1

�
r�pC �gZ�C vr2 EV �3.1.1a�

where V is the velocity, t is time, r is the gradient vector, � is the density, p
is the pressure, g is gravitational acceleration, Z is the elevation with regard
to an arbitrary reference, and v is the kinematic viscosity. In Appendix 1,
tables of Navier–Stokes equations for Cartesian, cylindrical, and spherical
coordinate systems are listed. In Appendix 2, relationships are given between
stress components and velocity components, as implied by the Navier–Stokes
equations.

Using Cartesian tensor notation, Eq. (3.1.1a) is represented as

∂ui
∂t

C uk
∂ui
∂xk

D � 1

�

∂p

∂xi
� g

∂Z

∂xi
C v

∂2ui
∂x2
k

�3.1.1b�

where ui represents components of the velocity vector and xi represents
the coordinates. This equation incorporates four unknown quantities: three
components of the velocity vector and the pressure. Along with the continuity
equation, we thus have a system of four differential equations with four
unknowns. The solution of this system subject to appropriate initial and
boundary conditions provides the required information about the distribution
of the unknown quantities in the domain.

The distributions of velocities and pressure depend on the three space
coordinates, x, y and z, and the time coordinate, t. It should be noted that the
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order of the differential equation (3.1.1) varies with regard to the unknown
quantities, as well as with regard to the various coordinates. The velocity
components contribute terms of first order with regard to time and of both
first and second order with regard to the space coordinates. The pressure
contributes terms of first order with regard to the space coordinates. The order
of the partial derivatives indicates the number of boundary conditions needed
for the solution of this system of partial differential equations. The pressure
should be given at a certain point in the domain during all times. The velocity
distribution at initial conditions should be given for the whole domain. The
velocity at a sufficient number of boundaries should be given for the required
time period of the simulation. There are several typical boundary conditions
for the velocity vector, or its derivatives. The latter are related to shear stresses.
Generally, there are four typical boundary conditions for the velocity and the
shear stresses:

Boundary between the viscous fluid and a solid boundary — fluid
velocity is identical to that of the solid boundary, as the viscous fluid
adheres to the solid boundary.

Boundary between two viscous immiscible fluids — velocity and shear
stress at both sides of the interface are identical.

Boundary between two immiscible fluids with an extremely large differ-
ence of viscosity, e.g., liquid and gas — shear stress vanishes at
the interface between the two fluids. (An exception to this rule is
with wind-driven flows, where boundary shear stress is significant.
Momentum transfer at the air/water interface is discussed in Chap. 12,
and a particular application, in a geophysical context, is discussed in
Chap. 9.)

Finite domain — the velocity has finite value at every point of the
domain.

As viscous fluid flow is basically a rotational flow, the equation of
motion (3.1.1) can be represented as an equation of vorticity transport. The
rotationality of the flow is represented by the distribution and intensity of the
vorticity. The vorticity is a kinematic tensorial characteristic of the flow field.
The tensor of vorticity is a second-order asymmetric tensor. Such a tensor
has three pairs of components. Each pair incorporates two components of
identical absolute value and opposite sign. Therefore the vorticity also can be
represented by a vector with three components. Each component of this vector
represents one pair of components of the vorticity tensor. By the employment
of Cartesian tensor notation, the vorticity vector is defined as

ωj D ∂ui
∂xk

� ∂uk
∂xi

�3.1.2�
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where i, j, k D 1, 2, 3. One half of the vorticity represents the angular rotation
rate of an elementary fluid volume, as previously noted.

By cross differentiation and subtraction of component equations of
Eq. (3.1.1b), the pressure is eliminated from the equation of motion. Then
the expression of Eq. (3.1.2) can be introduced to obtain a vorticity equation,

Dωj
Dt

� ωk
∂uj
∂xk

D v
∂2ωj
∂x2
k

�3.1.3�

where

Dωj
Dt

D ∂ωj
∂t

C uk
∂ωj
∂xk

�3.1.4�

The first term on the LHS of Eq. (3.1.3) represents the total rate of change of
vorticity. The second term represents the deformation of a vortex tube. The
term on the RHS of Eq. (3.1.3) represents the diffusion of vorticity due to the
viscosity of the fluid.

In cases of two-dimensional flow the vorticity vector has a single compo-
nent, and the term representing the deformation of the vortex tube vanishes.
Then, Eq. (3.1.3) yields

∂ω

∂t
C uk

∂ω

∂xk
D v

∂2ω

∂x2
k

�3.1.5�

Also, for two-dimensional flows, it is possible to apply the expression for
the stream function,  . The stream function is related to components of the
velocity vector according to (see Chap. 2)

u D u1 D ∂ 

∂y
v D u2 D �∂ 

∂x
�3.1.6�

By using the stream function, the vorticity in a two-dimensional flow field is
given by

ω D ∂v

∂x
� ∂u

∂y
D �

(
∂2 

∂x2
C ∂2 

∂y2

)
D �r2 D � �3.1.7�

Introducing Eqs. (3.1.6) and (3.1.7) into Eq. (3.1.5), we obtain

∂ 

∂t
C ∂ 

∂y

∂ 

∂x
� ∂ 

∂x

∂ 

∂y
D v �3.1.8�

where  D r4.
In order to obtain the essential parameters governing the physical

phenomena described by the Navier–Stokes equations, we nondimensionalize
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these equations by the employment of characteristic quantities of the flow field
(also see Sec. 2.9). As before, these quantities are

L,U, �, v �3.1.9�

where L is a characteristic length of the domain, U is a characteristic velocity
of the flow, � is the density, and v is the kinematic viscosity of the fluid. The
following dimensionless parameters, symbolized with an asterisk, are then
obtained:

tŁ D tU

L
xŁ
i D xi

L
uŁ
i D ui

U

pŁ D pC �gZ

�U2
ωŁ D ωL

U
 Ł D  

LU

�3.1.10�

By introducing these dimensionless variables into Eqs. (3.1.1), (3.1.5), and
(3.1.8), we obtain, respectively,

∂uŁ
i

∂tŁ
C uŁ

k

∂uŁ
i

∂xŁ
k

D �∂p
Ł

∂xŁ
i

C 1

Re

∂2uŁ
i

∂xŁ2
k

�3.1.11�

∂ωŁ

∂tŁ
C uŁ

k

∂ωŁ

∂xŁ
k

D 1

Re

∂2ωŁ

∂xŁ2
k

�3.1.12�

∂Ł Ł

∂tŁ
C ∂ Ł

∂yŁ
∂Ł Ł

∂xŁ � ∂ Ł

∂xŁ
∂Ł Ł

∂yŁ D 1

Re
ŁŁ Ł �3.1.13�

where Re is the Reynolds number and Ł represents the dimensionless Lapla-
cian operator:

Re D UL

v
Ł D ∂2

∂xŁ2
C ∂2

∂yŁ2
�3.1.14�

The various forms of the equations of motion represented in the
preceding paragraphs are used to classify types of solutions of these
equations in the following sections. Generally, the Navier–Stokes equations
are nonlinear equations with often quite complicated solutions. It is therefore
convenient to make some classifications of families of solutions of these
equations, as shown below.

3.2 ONE-DIRECTIONAL FLOWS

One-directional flows are characterized by parallel streamlines. For conve-
nience, consider that the flow is along the x coordinate direction. Flow variables
may depend on space and time in cases of unsteady flow conditions. They
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depend only on the space coordinates for steady state conditions. Cartesian
coordinate systems are usually applied to describe domains characterized by
one- and two-dimensional flows. By applying cylindrical coordinates, we refer
either to domains with one-directional axisymmetric flows or to domains with
one-directional circulating flows.

3.2.1 Domains Described by Cartesian
Coordinates — Steady-State Conditions

At this stage we refer to a two-dimensional domain in which y is the coordinate
perpendicular to the flow direction. The continuity equation is

∂u

∂x
C ∂v

∂y
D 0 �3.2.1�

where u is the velocity in the x direction, and v is the velocity in the y direction.
According to the definition of one-directional flow, the velocity component,
v, vanishes in the entire domain. Therefore, Eq. (3.2.1) reduces to

v D 0
∂u

∂x
D 0 u D u�y, t� �3.2.2�

We now introduce a quantity called piezometric pressure, defined by

p0 D pC �gZ �3.2.3�

Substituting Eqs. (3.2.2) and (3.2.3) into Eq. (3.1.1), we obtain the general
differential equations representing one-directional flows in a two-dimensional
domain,

∂u

∂t
D � 1

�

∂p0

∂x
C v

∂2u

∂y2
�3.2.4�

0 D ∂p0

∂y
) p0 D p0�x, t� �3.2.5�

For steady-state conditions, the LHS of Eq. (3.2.4) vanishes. Then
Eqs. (3.2.4) and (3.2.5) yield

d2u

dy2
D 1

�

dp0

dx
�3.2.6�

where � is the viscosity (� D �v).
Note that in cases of steady state u D u�y� and p0 D p0�x� only. There-

fore the derivative expressions of Eq. (3.2.6) are not partial derivatives. If a
derivative of a function depending on y is identical to the derivative of a
function depending on x, then both derivatives must be equal to a constant.
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Therefore Eq. (3.2.6) implies that each one of its terms is equal to a constant,
and after integrating twice we find

du

dy
D y

�

dp0

dx
CC1 �3.2.7�

u D y2

2�

dp0

dx
CC1y CC2 �3.2.8�

where C1 and C2 are integration constants determined by the boundary condi-
tions of the flow domain. Thus two boundary conditions with regard to the
velocity field are needed to obtain a complete description of the velocity distri-
bution in the domain. Another set of boundary conditions is needed to obtain
the piezometric pressure gradient and the pressure distribution in the domain.

Multiplying Eq. (3.2.7) by the viscosity, we obtain the expression for
the shear stress distribution. Integrating Eq. (3.2.8) between y1 and y2, which
represent locations of two different streamlines, we obtain the expression
for the discharge per unit width flowing between these two streamlines. The
expressions for the shear stress (�) and the discharge per unit width (q) are
given, respectively, by

� D y
dpŁ

dx
C �C1 �3.2.9�

and

q D 1

6�

dpŁ

dx
�y3

2 � y3
1�C C1

2
�y2

2 � y2
1�C C2�y2 � y1� �3.2.10�

Now, instead of piezometric pressure, we may refer to the following
quantities:

h D p0

�g
J D �dh

dx
�3.2.11�

where h is the piezometric head, and J is the hydraulic gradient. With regard
to pressure distribution in the domain, Eq. (3.2.5) yields

∂p

∂y
C �g

∂Z

∂y
D 0 �3.2.12�

Direct integration of this expression and the use of Eq. (3.2.6) gives

p D p0 � �g�Z� Z0�C �
d2u

dy2
�x � x0� �3.2.13�

where subscript 0 is associated with a point of reference, representing the
boundary condition for pressure.
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In summary, the family of steady-state one-directional flows is well
represented by simple analytical solutions. Differences between solutions, or
members of this family, originate from the different boundary conditions that
determine the values of the integration constants C1 and C2. The special case
of laminar flow between parallel flat plates, called plane Poiseuille flow, is
often used to approximate flow through porous media. Physical models, called
Hele–Shaw models, have been used extensively to simulate flow in aquifers.
Such a model consists of parallel vertical plates, separated by a small gap
within which a viscous liquid flows. Although this is viscous laminar flow,
namely rotational flow, the average velocity in the cross section of the gap
is closely represented as if it originated from a potential function given by
the piezometric head. Such a presentation is consistent with basic modeling
of homogeneous flow through porous media. It also is interesting to note that
flows through fractures in geological formations are usually considered in
terms of flow between parallel flat plates.

3.2.2 Domains Described by Cylindrical
Coordinates — Steady-State Conditions

With regard to cylindrical coordinate systems, two types of flow with parallel
streamlines can be identified. One type incorporates axial flows and the other
incorporates circulating flows. For axial one-directional flow in the x direction,
the Navier–Stokes equations are

∂u

∂t
D � 1

�

∂p0

∂x
C v

1

r

∂

∂r

(
r
∂u

∂r

)
�3.2.14�

0 D � 1

�

∂p0

∂r
�3.2.15�

where x is the axial coordinate, r is the radial coordinate, and u is the axial
flow velocity.

In cases of steady-state conditions, Eq. (3.2.14) simplifies to

d

dr

(
r
du

dr

)
D r

�

dp0

dx
�3.2.16�

The LHS of this equation is a function of r, and the RHS is a function of x.
Therefore each side of this equation must be a constant, and after integrating
twice we find

du

dr
D r

2�

dp0

dx
C C1

r
�3.2.17�

u D r2

4�

dp0

dx
C C1 ln r C C2 �3.2.18�
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where C1 and C2 are integration constants determined by the boundary condi-
tions of the problem.

In the case of viscous pipe flow, termed Poiseuille flow, C1 should
vanish, to allow finite values of the velocity in the entire cross-sectional area
of the pipe (i.e., when r approaches 0), and the value of C2 is determined
by the vanishing value of the velocity at the wall of the pipe. Therefore, for
viscous pipe flow, Eq. (3.2.18) yields

u D � R2

4�

dp0

dx

[
1 �

( r
R

)2
]

�3.2.19�

where R is the pipe radius. Integrating this result over the pipe cross section,
we obtain the discharge flowing through the pipe,

Q D ��R
4

8�

dp0

dx
�3.2.20�

This equation is called the Poiseuille–Hagen law. It was derived by Poiseuille
from experiments with small glass tubes that were designed to simulate blood
flow through blood vessels. Ironically, Poiseuille flow is very different from
real blood flow, which is subject to strong pressure variations (pulsating
flow) and flows through flexible tubes. Nonetheless, experiments of Reynolds,
Stanton, and others have indicated that Eq. (3.2.20) is applicable as long as the
Reynolds number (Re D VD/v) is smaller than about 2000. In addition, flow
through porous media is often simulated as a flow through stochastic bundles
of capillaries. Such a simulation has been shown to provide an adequate char-
acterization of flow and transport processes in porous matrices.

By dividing Eq. (3.2.20) by the cross-sectional area and applying
Eq. (3.2.11), the average velocity is obtained as

V D D2gJ

32v
�3.2.21�

where D is the pipe diameter. This expression can be represented in the form
of the Darcy–Weissbach equation as

J D 64

Re

1

D

V2

2g
�3.2.22�

The term (64/Re) represents the Darcy–Weissbach friction coefficient for
laminar pipe flow.

In the case of annular flow, the velocity vanishes at the inner tube
(where r D r1), as well as at the outer tube (where r D r2). Introducing these
boundary conditions into Eq. (3.2.18), we obtain the following expressions for
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the constants of Eq. (3.2.18):

C1 D r2
2 � r2

1

4� ln�r2/r1�

dpŁ

dx
�3.2.23�

C2 D dpŁ

dx

[
� r

2
2 C r2

1

8�
C r2

2 � r2
1

8�

ln�r2r1�

ln�r2/r1�

]
�3.2.24�

For two-dimensional circulating flow, there is only a single component
of the velocity in the �-direction. The Navier–Stokes equations yield, when
there is no pressure gradient in the flow direction,

�v2

r
D � 1

�

∂p0

∂r
�3.2.25�

0 D �

(
d2v

dr2
C 1

r

dv

dr
� v

r2

)
D �

d

dr

[
1

r

d

dr
�rv�

]
�3.2.26�

0 D �∂p
0

∂z
�3.2.27�

where v is the rotation velocity (velocity in the � direction), r is the radial
coordinate, and z is the vertical coordinate. Equations (3.2.25) and (3.2.27)
indicate that p0 is a function only of r. Integration of Eq. (3.2.26) provides
the velocity distribution,

v D Ar C B

r
�3.2.28�

where A and B are constants that must be determined by the boundary condi-
tions.

If the fluid occupies the space between two coaxial rotating cylinders,
whose angular velocities are �1 and �2, respectively, then the values of A
and B are given by

A D �2r2
2 ��1r2

1

r2
2 � r2

1

�3.2.29�

B D ��1 ��2�r2
1r

2
2

�r2
2 � r2

1�
�3.2.30�

(recall that r1 and r2 are the radii of the inner and outer cylinders, respectively).
In the limiting case of r2 D 1, Eqs. (3.2.28)–(3.2.30) refer to steady

flow in an infinite domain around a rotating cylinder whose radius and angular
velocity are r1 and �1, respectively. In such a case, these equations yield

v D �1r2
1

r
�3.2.31�
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This expression is identical to the velocity distribution in a potential (irrota-
tional) vortex with circulation , given by

 D 2��1r
2
1 �3.2.32�

The solution of the Navier–Stokes equations given by Eq. (3.2.31) is an inter-
esting case in which the potential flow solution is identical to that of the
viscous flow solution.

In the limiting case of �1 D r1 D 0, Eqs. (3.2.28)–(3.2.30) represent
steady flow inside a cylindrical rotating tank, whose radius and angular velocity
are r2 and �2, respectively. In this case, the result is

v D �2r �3.2.33�

This expression represents a rotational vortex.

3.3 CREEPING FLOWS

For very small Reynolds number, namely with small flow velocities and small
size of the body, or with large viscosity of the fluid, the nonlinear inertial terms
of the Navier–Stokes equations are much smaller than the viscous friction
terms. Such flows are called creeping flows. In these flows, the Navier–Stokes
equations can be approximated by the Stokes equations,

�
∂ui
∂t

D �∂p
0

∂xi
C �

∂2ui
∂x2
k

�3.3.1�

These equations (for each component), along with the equation of continuity,
represent the basic equations for creeping flows. Considering a solid body
subject to slow movement in the domain, or slow movement of fluid around
a stationary solid body, the fluid velocity at the body surface is equal to that
of the solid surface. This provides a convenient boundary condition. Also, by
taking the divergence of Eq. (3.3.1), we obtain

∂2p

∂x2
k

D 0 �3.3.2�

This indicates that the pressure is a harmonic function in creeping flows.
In two-dimensional, steady creeping flow, Eq. (3.3.1) becomes

r4 D 0 �3.3.3�

indicating that the stream function is a biharmonic function (for the assumed
conditions).

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Considering a very slow motion of a sphere of radius r0, with velocity
U in the x direction, the pressure function is given by

p D �3

2

�Ur0x

r3
�3.3.4�

where the center of the sphere represents the origin of the coordinate system
and p ! 0 for r ! 1 has been assumed. Incorporating both the net pressure
force implied by Eq. (3.3.4) and skin friction drag, the drag coefficient for the
sphere is

CD D FD

��/2��r2
0U

2
D 24

Re
�3.3.5�

where FD is the total drag force applied to the moving sphere. Equation (3.3.5)
can be used to measure the viscosity of fluids. It is useful with regard to settling
of solid particles in a fluid medium (see Chap. 15).

Experimental results indicate that expression (3.3.5) is accurate for
extremely small values of Reynolds number. However, the velocity distribution
obtained using the Stokes equation (3.3.1) is not usually very accurate,
particularly at larger distances from the sphere. This is because of the
formation of a wake region behind the sphere. The solution of the Stokes
equation yields a velocity distribution that is symmetrical with regard to a
plane perpendicular to the flow direction and passing through the center of the
sphere. In other words, it does not incorporate a wake region. This result is
also seen by considering the orders of magnitude of the inertial and viscous
terms of the Navier–Stokes equations,

�uk
∂ui
∂xk

D O

(
�
U2

r

)
�
∂2ui
∂x2
k

D O

(
�
U

r2

)
�3.3.6�

These expressions indicate that the ratio between the inertial and viscous terms
is proportional to r. Therefore for distances much greater than r0 the viscous
terms become relatively unimportant, and it may be concluded that the solution
of the Stokes equation is not applicable at large distances from the sphere.

An improvement of Stokes’ analysis was provided by Oseen, who consid-
ered the deviation imposed on the uniform flow U by the presence of the
sphere. Therefore he considered a velocity distribution,

u D UC u0 v D v0 w D w0 �3.3.7�

where u0, v0, and w0 are the velocity deviations in the x, y, and z directions,
respectively. By introducing Eq. (3.3.7) into the Navier–Stokes equations and
neglecting the second-order terms with regard to the velocity deviations, Oseen
obtained

∂u0
i

∂t
CU

∂u0
i

∂x
D � 1

�

∂p

∂xi
C v

∂2u0
i

∂x2
k

�3.3.8�
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Here, x represents the direction of the uniform flow U, and xi represents each
of the coordinates. The terms of Eq. (3.3.8) which were added to Eq. (3.3.1)
have been shown to improve the calculation of creeping flow at large distances
from the center of the sphere.

Applying the divergence operation on Eq. (3.3.7), the continuity equation
is written as

∂u0
k

∂xk
D 0 �3.3.9�

(since the uniform flow also must follow continuity). For steady flows, it is
possible to consider that each component of the velocity deviation from the
uniform flow velocity, U consists of two parts, given by

ui D u0
1i C u0

2i �3.3.10�

where u0
1i is a potential flow component, originating from a potential function

�. Therefore

u1i D � ∂�

∂xi

∂2�

∂x2
i

D 0 �3.3.11�

It is considered that u0
1i is associated with the balance of the pressure gradient

term of Eq. (3.3.8), whereas u0
2i is associated with the frictional force. By

applying these assumptions, and introducing Eq. (3.3.11) into Eq. (3.3.8), we
obtain

p D �U
∂�

∂x
�3.3.12�

The components u0
2i are represented by

u2i D ∂W

∂xi
� υiW

U

v
�3.3.13�

where υ1 D 1, and υ2 D υ3 D 0. The function W must satisfy

∂W

∂x
D v

U

∂2W

∂x2
k

�3.3.14�

The appropriate solution of Eqs. (3.3.11) and (3.3.14) represents the essence
of Oseen’s analysis. Such solutions were obtained for a sphere moving at a
uniform speed U. In this case the drag coefficient is

CD D 24

Re

(
1 C 3

16
Re

)
�3.3.15�

Generally, the drag coefficient can be expressed in terms of a series
expansion of the Reynolds number. Equation (3.3.15) represents the first and
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second terms of such a series. Additional terms have been developed in more
recent studies. Stokes’ solution of Eq. (3.3.5) is considered to be applicable
in cases of Reynolds numbers smaller than one. Oseen’s solution given in
Eq. (3.3.15) is applicable up to Reynolds numbers equal to 2. For higher
Reynolds numbers more terms should be added to the power series given by
Eq. (3.3.15). Flow through porous media can be considered as creeping flow
around the solid particles that comprise the porous matrix. When the Reynolds
number of the flow, based on a characteristic size of the matrix particle, is
smaller than unity, then Darcy’s law is useful (see Sec. 4.4), and the gradient
of the piezometric head is proportional to the average interstitial flow velocity,
as well as the specific discharge.

3.4 UNSTEADY FLOWS

There are several exact solutions of the Navier–Stokes equations for unsteady
flows. Examples of such flows in the present section also are used to visualize
the basic concept of the boundary layer.

3.4.1 Quasi-Steady-State Oscillations of a Flat Plate

Consider a flat plate subject to cosinusoidal oscillations. The domain is subject
to a uniform pressure distribution. Therefore the Navier–Stokes equations
(3.1.1) reduce to

∂u

∂t
D v

∂2u

∂y2
p0 D constant �3.4.1�

It should be noted that Eq. (3.4.1) is identical to the diffusion equation,
which is applicable in problems of heat conduction or mass diffusion. The
exact solution of Eq. (3.4.1) given in the following paragraphs is similar to
some particular solutions of heat conduction in solids. Further discussion of
diffusion is presented in Chap. 10.

The differential Eq. (3.4.1) is subject to the boundary conditions,

u D U0 cos�ωt� at y D 0

u D 0 at y ! 1 �3.4.2�

Noting that we are looking for a quasi-steady-state solution, only two spatial
boundary conditions are required to solve this equation. We assume that the
solution is of the form

u D Re[U�y� exp�iωt�] �3.4.3�
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Here, Re represents the real part of the complex quantity. We introduce
Eq. (3.4.3) into Eq. (3.4.1) to obtain

d2U

dy2
� iω

v
U D 0 �3.4.4�

By solving this differential equation and presenting the boundary conditions
for U, which are implied by Eq. (3.4.2), we obtain

U D U0 exp
[
�y

√
ω

2v
�1 C i�

]
�3.4.5�

Finally, introducing Eq. (3.4.5) into Eq. (3.4.3), the complete solution is
obtained,

u D U0 exp
(

�y
√
ω

2v

)
cos

(
ωt � y

√
ω

2v

)
�3.4.6�

Equation (3.4.6) indicates that the amplitude of the velocity oscillations
is subject to exponential decrease with the coordinate y. The practical outcome
of this expression may be evaluated by considering the value of y D υ, where
the amplitude is 1 percent of its value at the flat plate. From Eq. (3.4.6),

υ D
√

v

�f
ln�100� �3.4.7�

where f is the frequency of the plate oscillations (ω D 2�f). For water, with
kinematic viscosity v D 10�6 m2/s, and assuming a frequency f D 1 s�1, we
obtain υ D 2.6 ð 10�3 m. This result indicates that only a very thin layer of
fluid adjacent to the flat plate is subject to oscillations induced by the flat
plate motion. The layer in which the oscillation amplitude is larger than 1
percent of the flat plate amplitude can be termed as a boundary layer. The
phenomena of boundary layers is typical of regions close to solid boundaries
of flow domains occupied by fluid with low viscosity. Boundary layers are
discussed in more detail in Chap. 6.

3.4.2 Unsteady Motion of a Flat Plate

Consider a flat plate at rest at time t � 0 but moving at constant velocity U
for t > 0. The basic differential Eq. (3.4.1) also is applicable in this case, but
the boundary conditions are different. In this case

u D 0 at t � 0 for all values of y

u D U at t > 0 for y D 0 �3.4.8�

u D 0 for y ! 1

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



It is convenient to define a new dimensionless coordinate,

� D y

2
p
vt

�3.4.9�

The modified boundary conditions, in terms of �, are

u D U at � D 0

u D 0 at � ! 1 �3.4.10�

The second boundary condition of Eq. (3.4.10) incorporates both the first and
the third boundary conditions of Eq. (3.4.8).

Using the definition (3.4.9), it is easy to find

∂u

∂y
D du

d�

�

y

∂2u

∂y2
D d2u

d�2

(
�

y

)2 ∂u

∂t
D du

d�

(
� �

2t

)
�3.4.11�

Introducing Eq. (3.4.11) into Eq. (3.4.1), integrating twice, and introducing
the boundary conditions of Eq. (3.4.10), we obtain

u D U

(
1 � 2p

�

∫ �

0
e��2

d�

)
D U�1 � erf���� D U erfc��� �3.4.12�

where erf and erfc are the error and complementary error functions, respec-
tively, and � is a dummy variable of integration. Again referring to water, as
an example, we find that only a thin layer adjacent to the flat plate takes part
in the flow, even up to extremely large times.

3.5 NUMERICAL SIMULATION CONSIDERATIONS

Numerical schemes aiming at the solution of the mass conservation and
Navier–Stokes equations are usually based on finite difference or finite
element methods. By these methods the numerical grid and the basic equations
of mass and momentum conservation are used to create a set of approximately
linear equations, which incorporate the unknown values of various variables at
all grid points. The basic four equations of mass and momentum conservation
incorporate four unknown variables for each grid point. These unknown values,
for the three-dimensional domain, are the three components of the velocity
vector and the pressure. If the domain is two-dimensional, or axisymmetrical,
then the two components of the velocity vector can be replaced by the stream
function.
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As previously noted, the number of boundary conditions needed to solve
a differential equation is determined by its order and the dimensions of the
domain. With regard to the spatial derivatives of the velocity components,
the Navier–Stokes equations are second-order partial differential equations.
Therefore two boundary conditions are needed for each velocity component,
with regard to each relevant coordinate. Velocity components also are subject
to the first derivative in time. Therefore the initial distribution of all velocity
components in the entire domain is needed. The pressure is subject to the
first spatial derivative. Therefore boundary conditions also are required for
the pressure, with regard to each relevant coordinate. If the stream function
is applied, in a two-dimensional or axisymmetrical domain, then the basic set
of four differential equations can be replaced by the fourth-order differen-
tial equation, which is given by Eq. (3.1.8). The solution of this equation
requires four boundary conditions for the stream function with regard to
each relevant coordinate, and initial distribution of the stream function in
the domain.

For numerical simulation of the Navier–Stokes equations, it is common
to consider applying the vorticity tensor, as shown in Eq. (3.1.3), or the
vorticity vector, as given by Eq. (3.1.5). However, boundary conditions for
vorticity are derived from appropriate considerations based on values of the
velocity components.

Typical boundary conditions for the solution of the Navier–Stokes
equations have been considered in Sec. 3.1. However, at this point it is
appropriate to review the various types of boundary conditions, useful for
the numerical solution of the various forms of these equations.

3.5.1 Basic Presentation

The solution of Eq. (3.1.1) is based on the following considerations:

At a solid surface, all velocity components are identical to those of the
solid surface; if the solid surface is at rest then all velocity components
vanish.

At the interface between two immiscible fluids, pressure and components
of the velocity and shear stress are identical at both sides of the
interface; shear stress components are proportional to the gradients of
the velocity components.

At the interface between two immiscible fluids with large differences in
viscosity, e.g., liquid and gas, the shear stress vanishes (except for the
case of wind-driven flows).

At the entrance of the domain and/or exit cross sections the distribution
of the velocity components is prescribed.
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At the entrance or exit cross section of the domain the pressure distri-
bution is prescribed.

The initial distribution of velocity components should be given.

3.5.2 Presentation with the Stream Function

For the solution of Eq. (3.1.8), the following considerations hold:

At a solid surface, spatial derivatives of the stream function are identical
to velocity components of the solid surface; if the solid surface is
at rest, spatial derivatives of the stream function vanish. The solid
boundary represents a streamline at which the stream function has a
constant value.

At the interface between two immiscible fluids, the first and second
gradients of the stream function are identical on both sides of the
interface. The interface represents a streamline, at which the stream
function has a constant value.

At the interface between two immiscible fluids with large viscosity
difference, e.g., liquid and gas (the interface is considered as the
free surface of the liquid), the second gradient of the stream function
vanishes. The free surface of the fluid is a streamline.

The initial distribution of the stream function in the domain should be
given.

It should be noted that interfaces and free surfaces usually represent a
sort of nonlinear boundary condition with regard to the velocity components,
since the position of the boundary itself (where the boundary condition is to
be applied) is part of the solution to the problem. Furthermore, determination
of the exact location of free surfaces is very complicated.

Difficulties in solving the Navier–Stokes equations are very often asso-
ciated with the nonlinear second term of Eq. (3.1.1), or the second and third
terms of Eq. (3.1.8). If the flow is dominated by the nonlinear terms, then
the numerical simulation is extremely complex, and some methods should
be used to obtain a convergent numerical scheme. Furthermore, if boundary
conditions are nonlinear, then the numerical solution may require significant
approximations to assure convergence of the simulation process. The topic of
“computational fluid mechanics” refers to different methods of solving these
differential equations. For the present section, we consider only the numer-
ical solution of creeping flows. In such flows the right-hand side terms of
Eq. (3.1.8) are very small. Therefore the Navier–Stokes equations are approx-
imated by

 D 0
∂4

∂x4
C 2

∂2

∂x2

∂2

∂y2
C ∂4

∂y4
D 0 �3.5.1�
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This is an elliptic differential equation (see Sec. 1.3.3).
As an example, consider a domain bounded on a square, where

 D 0 at x D 0, 1 y D 0, 1
∂

∂n
D 0 at x D 0, 1 y D 0 �3.5.2�

∂

∂n
D 1 at y D 1

and a derivative with regard to n is the normal derivative. We introduce a new
variable w�x, y�, which is defined by

 D ∂2

∂x2
C ∂2

∂y2
D w

w D ∂2w

∂x2
C ∂2w

∂y2
D 0

�3.5.3�

The terms of these expressions can be approximated using the following finite
difference approximations:(

∂�

∂x

)
i,j

³ �iC1/2,j ��i�1/2,j

x
�3.5.4�

(
∂�

∂y

)
i,j

³ �i,jC1/2 ��i,j�1/2

y
�3.5.5�

(
∂2�

∂x2

)
i,j

³ 1

x

[(
∂�

∂x

)
iC1/2,j

�
(
∂�

∂x

)
i�1/2,j

]

³ �iC1/2,j � 2�i,j C�i�1/2,j

�x�2
�3.5.6�

(
∂2�

∂y2

)
i,j

³ 1

y

[(
∂�

∂y

)
,jC1/2

�
(
∂�

∂y

)
i,jC1/2

]

³ �i,jC1/2 � 2�i,j C�i,jC1/2

�y�2
�3.5.7�

where � is a dummy variable representing  or w. Subscripts i, j refer to the
point i, j of the finite difference grid shown in Fig. 3.1.

Since the numerical grid shown in Fig. 3.1 consists of small squares,
for simplicity we assume that x D y D k. Therefore by introducing these
values and Eqs. (3.5.6) and (3.5.7) into Eq. (3.5.3), we obtain

iC1,j Ci�1,j Ci,jC1 Ci,j�1 � 4i,j D k2w

wiC1,j C wi�1,j C wi,jC1 C wi,j�1 � 4wi,j D 0
�3.5.8�
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Figure 3.1 The finite difference grid.

Also, the boundary conditions of Eq. (3.5.2) become

 D 0 on all boundaries

w D ∂2

∂n2
on all boundaries

�3.5.9�

The set of linear equations obtained by considering all grid points and
using Eqs. (3.5.8) and (3.5.9) can be solved by an appropriate iterative proce-
dure. Basically the set of two differential equations given by Eq. (3.5.3)
is solved very similarly to the solution of the Laplace equation, which is
discussed in greater detail in the following chapter.

PROBLEMS

Solved Problems

Problem 3.1 Introduce the expression for the vorticity vector into Eq. (3.1.5),
to obtain an equation of motion based on the velocity components.
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Solution

The vorticity vector in a two-dimensional flow field is given by

ω D ∂v

∂x
� ∂u

∂y

Introducing this expression into Eq. (3.1.5), we obtain

∂2v

∂x∂t
� ∂2u

∂y∂t
C u

(
∂2v

∂x2
� ∂2u

∂y∂x

)
C v

(
∂2v

∂x∂y
� ∂2u

∂y2

)

D v

(
∂3v

∂x3
� ∂3u

∂y∂x2
C ∂3v

∂x∂y2
� ∂3u

∂y3

)

Problem 3.2 Figure 3.2 shows a plate with an orientation angle ˛, on which
a fluid layer with thickness b is subject to flow with a free surface. The
viscosity and density of the fluid are � and �, respectively.

(a) Determine the value of the gradient of the piezometric head in the
x-direction.

(b) Determine the value of the pressure gradient in the y-direction.
What is the value of the pressure at the channel bottom?

(c) Determine the velocity and shear stress distributions.
(d) Determine the discharge per unit width and the average velocity.

Solution

(a) From Fig. 3.2,

∂Z

∂x
D � sin˛ :

∂Z

∂y
D cos˛

The gradient of the piezometric pressure in the x-direction is given by

dpŁ

dx
D ∂p

∂x
C ∂Z

∂x
D ∂p

∂x
� �g sin˛ D ��gJ

Along the streamline representing the free surface of the fluid, the pressure
vanishes. Therefore the pressure gradient in the x-direction is zero along
that streamline, as well as along other streamlines, and the piezometric head
gradient in the x-direction is given by J D sin˛.

(b) According to Eq. (3.2.12) and the value of the partial derivatives of
Z, as given in the previous part of this solution, we obtain

∂p

∂y
C �g cos˛ D 0 ) ∂p

∂y
D ��g cos˛
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Figure 3.2 Definition sketch, Problem 3.2.
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Direct integration of this expression, while considering that the pressure
vanishes at the free surface of the fluid layer (at y D b), results in

p D �g�b� y� cos˛

This expression indicates that the pressure at the fluid layer bottom is �p�yD0 D
�gb cos˛.

(c) Due to the very low viscosity of air, the shear stress vanishes at the
free surface of the fluid layer. Therefore according to Eq. (3.2.9), we obtain

0 D �b�g sin˛C �C1 ) C1 D b�g

�
sin˛ D bg

	
sin˛

At the bottom of the fluid layer (y D 0), the velocity vanishes. Therefore
Eq. (3.2.8) yields C2 D 0. By introducing values of the piezometric head
gradient and those of C1 and C2 into Eqs. (3.2.8) and (3.2.9), we obtain the
following expressions for the velocity and shear stress distributions, respec-
tively:

u D g sin˛

	

(
by � y2

2

)
� D �b� y��g sin˛

(d) While referring to Eq. (3.2.10), we may consider that y1 D 0, and
y2 D b. By introducing values of the piezometric head gradient and those
of C1 and C2 into Eqs. (3.2.10), we obtain the following expression for the
discharge per unit width and the average flow velocity, respectively:

q D gb3 sin˛

3	
V D q

b
D gb2 sin˛

3	

Problem 3.3 A fluid layer flows between two plates, with orientation angle ˛
with respect to horizontal. The thickness of the fluid layer is b. The lower plate
is stationary. The upper plate moves upward with velocity U. The pressure at
the bottom of the fluid layer is given at two points: at x D 0 the pressure is
p0, and at x D L the pressure is pL. The viscosity and density of the fluid are
� and �, respectively.

(a) Determine the value of the gradient of the piezometric head in the
x-direction.

(b) Determine the pressure distribution in the entire domain.
(c) Determine the velocity and shear stress distributions.
(d) Determine the discharge per unit width and the average velocity.
(e) Determine the power per unit area that is needed to move the upper

plate.
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Solution

(a) From geometrical considerations,

∂Z

∂x
D � sin˛ :

∂Z

∂y
D cos˛

The gradient of the piezometric pressure in the x-direction is then given by

dpŁ

dx
D ∂p

∂x
C ∂Z

∂x
D pL � po

L
� �g sin˛ D ��gJ

) J D po � pL
�gL

C sin˛

(b) From part (a),

∂p

∂x
D pL � p0

L
: ) p D p0 C pL � p0

L
x C f�y�

where f�y� is a function of y that vanishes at y D 0. Differentiation of the
last expression yields

∂p

∂y
D f0�y�

According to Eq. (3.2.12) and the value of the partial derivatives of Z, as
given in part (a) of this solution, we obtain

∂p

∂y
C �g cos˛ D 0 ) ∂p

∂y
D ��g cos˛ D f0�y�

Direct integration of this expression yields

f�y� D ��gy cos˛ ) p D p0 C pL � p0

L
x � �gy cos˛

This expression indicates that the pressure at x D 0 at the top of the fluid
layer is

�p�yDb D p0 � �gb cos˛

(c) At the fluid layer bottom (y D 0), the velocity vanishes. Therefore
by using Eq. (3.2.8), we find C2 D 0. At the upper plate the fluid velocity is
identical to that of the moving plate. Therefore Eq. (3.2.8) yields for y D b,

�U D b2

2�

(
pL � p0

L
� �g sin˛

)
C C1b

) C1 D b

2�

(
p0 � pL
L

C �g sin˛
)

� U

b

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



By introducing values of the piezometric pressure gradient and those of C1

and C2 into Eqs. (3.2.8) and (3.2.9), we obtain the following expressions for
the velocity and shear stress distributions, respectively:

u D b

2�

(
p0 � pL
L

C �g sin˛
)
�by � y2�� U

b
y

� D b

2

(
p0 � pL
L

C �g sin˛
)
�b� 2y�� �

U

b

(d) While referring to Eq. (3.2.10) we consider that y1 D 0 and y2 D b.
By introducing values of the piezometric pressure gradient and those of C1 and
C2 into Eqs. (3.2.10), we obtain the following expressions for the discharge
per unit width and the average flow velocity, respectively:

q D b3

12�

(
p0 � pL
L

C �g sin˛
)

� Ub

2

) V D b2

12�

(
p0 � pL
L

C �g sin˛
)

� U

2

(e) The power per unit width that is needed to move the upper plate is
given by

N D ��u�yDb D b2U

2

(
p0 � pL
L

C �g sin˛
)

C U2b

2

Problem 3.4 Determine the settling velocity of a sand particle in water. The
particle may be assumed to be approximately spherical, with a diameter d D
0.2 mm. Its density is �s D 2,400 kg/m3. The density and kinematic viscosity
of the water are �w D 1,000 kg/m3 and 	 D 10�6 m2/s, respectively.

Solution

The settling velocity is found by setting up an equilibrium force balance. First,
the submerged weight of the sand particle is

W D 4

3
�r3

0��s � �w�g D 4

3
��0.1 ð 10�3�3�2,400 � 1,000�

D 5.86 ð 10�9 N

where r0 D d/2 is the radius of the particle. This expression is equal to the drag
force during steady-state settling of the sand particle. According to Eq. (3.3.5),

W D 24	

Ud

�w

2
�r2

0U
2

) U D W

6��w	r0

D 5.86 ð 10�9

6� ð 1,000 ð 10�6 ð 0.1 ð 10�3
D 3.1 ð 10�3 m/s
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However, in order to use this equation, the Reynolds number must be checked.
The value of the Reynolds number is

Re D Ud

	
D 3.1 ð 10�3 ð 0.2 ð 10�3

10�6
D 0.62

which is less than 1. Therefore, use of the Stokes approximation was appro-
priate.

Problem 3.5 A flat plate is subject to oscillatory motions, with velocity
given by

U0 sin�ωt�

On top of the plate there is a semi-infinite fluid domain with uniform
pressure distribution. The density and kinematic viscosity of the fluid are �
and 	, respectively.

(a) Determine the velocity distribution in the domain.
(b) Determine the shear stress distribution. What is the phase lag

between the maximum values of the shear stress and that of the
velocity?

(c) What are the force and power per unit area needed to move the
plate? What are the maximum values of these parameters?

Solution

(a) This problem is represented by the differential Eq. (3.5.1), subject to the
following boundary conditions:

u D U0 sin�ωt� at y D 0

u D 0 at y ! 1

These boundary conditions suggest consideration of the following expression
for the velocity:

u D Im
[
U�y� exp�iωt�

]
Similarly as in Eqs. (3.5.4)–(3.5.6), the velocity distribution is found as

u D U0 exp
(

�y
√
ω

2	

)
sin

(
ωt � y

√
ω

2	

)
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(b) The shear stress is given by

� D �	
∂u

∂y
D ��	

√
ω

2	
U0

[
exp

(
�y

√
ω

2	

)]
[

sin
(
ωt � y

√
ω

2	

)
C cos

(
ωt � y

√
ω

2	

)]

The maximum value of � is obtained when

sin
(
ωt � y

√
ω

2	

)
D 1 ) ωt � y

√
ω

2	
D �

2

The maximum value of � is obtained when

sin
(
ωt � y

√
ω

2	

)
C cos

(
ωt � y

√
ω

2	

)
! max

) ωt � y

√
ω

2	
D �

4

Therefore the phase difference between umax and �max is �/4.
(c) The force per unit area needed to move the plate is equal to the

negative value of the shear stress at y D 0, namely

F

A
D ����yD0 D �

√
ω	

2
U0[sin�ωt�C cos�ωt�]

where F is the force and A is the area of the plate. The power needed to move
the plate is equal to the product of that force with the velocity of the plate, or

N

A
D F

A
�u�yD0 D �

√
ω	

2
U2

0[sin�ωt�][sin�ωt�C cos�ωt�]

The maximum value of this parameter is obtained when fsin�ωt� [sin�ωt�C
cos�ωt�] ! maxg. Differentiation of this expression indicates that the maxi-
mum value of the power is obtained when

ωt D �

2

(
n� 1

4

)
where n D 1, 2 . . .

Unsolved Problems

Problem 3.6 The velocity distribution for flow between two plates is given by

u D U

[
1 �

(
2y

b

)2
]
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Figure 3.3 Flow between two plates, Problem 3.6.

where b is the gap between the two plates, U is the velocity at the centerline
of the fluid layer, and y is the distance from the centerline (see Fig. 3.3).

(a) Show that the flow is a rotational flow. What is the vorticity distri-
bution in the fluid layer?

(b) What boundary conditions are satisfied by the velocity distribution?
(c) Considering that the characteristic length and velocity are the gap

between the plate and the average flow velocity, respectively, what
is the expression for the dimensionless velocity distribution?

(d) What is the expression for the Reynolds number?

Problem 3.7 Water flows on an oblique plate forming a roof, as shown in
Fig. 3.4. The water flows as a fluid layer with thickness b D 10�3 m. The
water density is � D 1,000 kg/m3. Its kinematic viscosity is 	 D 10�6 m2/s.
The slope of the roof is ˛ D 30°. Due to wind gusts, the surface of the flowing

Figure 3.4 Flow along a sloping surface, Problem 3.7.
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water layer is subject to a shear stress � D 2.5 Pa, in the upward direction of
the roof.

(a) What is the water discharge per unit width of the roof?
(b) Prove that the flow is laminar.
(c) What is the shear stress applied on the roof?

Problem 3.8 A gap of thickness b D 5 ð 10�4 m separates two vertical belts
and is occupied by viscous oil, whose density is � D 800 kg/m3, as shown
in Fig. 3.5. The viscosity of the oil is � D 8 ð 10�2 Pa s. One belt moves
upward with a velocity of V1 D 2 m/s. The other belt moves downward. The
gravitational forces and the movement of the belts only affect the flow of the
oil layer. The net discharge of the oil is zero.

(a) What is the velocity of the second belt?
(b) Draw a schematic of the velocity and shear stress distributions in

the oil layer.

Problem 3.9 Figure 3.6 shows a “belt pump”, which diverts oil from a lower
tank to an upper one. The density of the oil is � D 800 kg/m3 and its viscosity
is � D 8 ð 10�2 Pa s. The belt moves with velocity U D 0.2 m/s. The thick-
ness of the oil layer is b D 2 ð 10�3 m. The orientation angle of the belt is
� D 45°. The horizontal distance between the two tanks is L D 5 m.

(a) What is the discharge delivered by the pump?
(b) What is the power needed to operate the pump?

Figure 3.5 Flow of oil between two belts, Problem 3.8.
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Figure 3.6 Belt pump, Problem 3.9.

(c) What is the efficiency of the pump?
(d) What should be the thickness of the fluid layer which maximizes

the discharge?

Problem 3.10 The domain for a flow of oil is defined by the following
stream function:

 D U

(
y � y3

3b2

)

where U D 0.1 m/s and b D 0.05 m. The density of the oil is � D 800 kg/m3,
and its kinematic viscosity is 	 D 8 ð 10�5 m2/s.

(a) Prove that the flow domain is the gap between two parallel plates,
where the size of that gap is 2b.

(b) What are the velocity and shear stress distributions in the flow
domain?

(c) What is the gradient of the piezometric head?
(d) What is the power loss along a unit length of the flow domain?

Problem 3.11 Figure 3.7 shows oil flowing steadily along a vertical wall
in a thin layer of thickness b D 3 ð 10�3 m, with a discharge per unit width
q D 3 ð 10�3 m2/s. The density of the oil is � D 800 kg/m3.

(a) What are the viscosity and kinematic viscosity of the oil?
(b) What is the shear stress applied on the wall by the flowing oil?
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Figure 3.7 Flow of oil along a vertical wall, Problem 3.11.

Problem 3.12 Oil flows due to gravity on an oblique plate in a layer of
thickness b D 3 ð 10�3 m, as shown in Fig. 3.8. The angle of orientation
of the plate is � D 30° with respect to horizontal. The plate moves upward
with velocity V D 0.1 m/s. The kinematic viscosity of the oil is 	 D 8 ð
10�5 m2/s, and its density is � D 800 kg/m3.

(a) Calculate and draw a schematic of the velocity and shear stress
distributions.

(b) What is the direction and value of the discharge per unit width?

Problem 3.13 Oil is located between two flat plates, as shown in Fig. 3.9.
The kinematic viscosity of the oil is 	 D 8 ð 10�5 m2/s, and its density is � D

Figure 3.8 Flow of oil on a sloping surface, Problem 3.12.
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Figure 3.9 Viscous flow between two plates, Problem 3.13.

800 kg/m3. The upper plate moves to the right with a velocity V D 0.5 m/s.
The lower plate is stationary. The gap between the plates has thickness b D
5 ð 10�3 m. The net discharge of the oil is zero.

(a) What is the pressure gradient between the plates?
(b) What is the shear stress at each one of the plates?
(c) Where does the shear stress obtain its maximum and minimum

absolute values?
(d) Draw a schematic of the velocity and shear stress distributions.

Problem 3.14 Oil flows out of a tank, as shown in Fig. 3.10. The oil density
is � D 800 kg/m3 and its viscosity is � D 8 ð 10�2 Pa s. The difference in
elevation between the oil-free surface in the tank and the outlet is h D
12.2 m. The oil flows out through a pipe whose diameter and length are

Figure 3.10 Definition sketch, Problem 3.14.
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D D 6 ð 10�3 m and L D 18.3 m. Piezometric head loss at the pipe entrance
is negligible.

(a) What is the gradient of the piezometric head along the pipe?
(b) What is the oil discharge?
(c) Is the flow laminar? Why or why not?
(d) What is the power loss due to the flow through the pipe?

Problem 3.15 A motor shaft, with diameter D1 D 5 ð 10�2 m, rotates at a
rate of n D 1,200 rpm, inside a bearing, as shown in Fig. 3.11. The internal
diameter of the bearing is D2 D 5.02 ð 10�2 m. Its length is L D 0.1 m. The
viscosity of the oil is � D 10�2 Pa s. It occupies the gap between the bearing
and the shaft. The shaft and the bearing form a system of coaxial cylinders.

(a) What is the shear stress applied on the oil?
(b) What is the power loss in the bearing?

Problem 3.16 Helium flows through a pipe of diameter D. The flow of
helium is different from that of other fluids in that the usual no-slip condition
at a solid boundary does not apply. There is some sliding at the pipe wall,
and the helium has some velocity at that location. The boundary condition at
the pipe wall is

�u3�rDR D
(
K
du

dr

)
rDR

Figure 3.11 Definition sketch, Problem 3.15.
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where r is the radial coordinate, R is the pipe radius, and K is a constant.

(a) Determine the velocity profile of the helium pipe flow.
(b) Determine the shear stress distribution.
(c) Determine the relationship between the discharge and the gradient

of the piezometric pressure.

Problem 3.17 Oil flows from container A to container B through a pipe
of length L D 10 m and diameter d D 10�2 m, as shown in Fig. 3.12. The
kinematic viscosity of the oil is 	 D 2 ð 10�4 m2/s. The diameter of each
container is D D 1 m. When the flow starts, at t D 0, the oil level in container
A is H1 D 1 m, and in container B it is H2 D 0.1 m. Steady flow conditions
may be assumed.

(a) Calculate the initial discharge and average flow velocity. Prove that
the flow is laminar.

(b) Develop the expression for the variation of oil levels in the contai-
ners. Find at what time the oil level in container B is equal to
0.5 m.

Problem 3.18 Figure 3.13 indicates two containers holding oil, with kine-
matic viscosity 	 D 8 ð 10�5 m2/s and density � D 800 kg/m3. The contai-
ners are connected by a pipe with length L D 500 m and diameter d D 5 ð
10�2 m. The oil level in container A is H1 D 55 m, and in container B the
oil level is H2 D 50 m. Assume that oil levels in both containers are kept
constant. Local head losses and the velocity head loss at the pipe exit may be
neglected.

Figure 3.12 Definition sketch, Problem 3.17.
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Figure 3.13 Definition sketch, Problem 3.18.

(a) What are the oil discharge and the average flow velocity?
(b) What is the Reynolds number of the flow?
(c) What is the shear stress at the pipe wall?
(d) What is the power loss due to the oil flow?

Problem 3.19 Figure 3.14 shows a laboratory system similar to an infusion
system. At time t D 0, the fluid level is at point A. The initial fluid volume
in the container is U D 10�3 m3. The container is a top open cylinder, with
initial fluid depth h0 D 0.1 m. The kinematic viscosity of the fluid is 	 D
10�5 m2/s, and its density is � D 1,020 kg/m3. The fluid flows out of the
container through a tube whose length is L D 2 m and whose diameter is d D
10�3 m. At the exit of the pipe the pressure is kept constant, at p D 104 Pa.
The bottom of the container is elevated to a level of H D 1.5 m above the
pipe exit. It may be assumed that the flow is steady, with variable head loss.

(a) What is the initial, maximum fluid discharge (at time t D 0, when
the fluid level is at point A)?

(b) What is the final, minimum discharge (when the fluid level is at
point B)?

(c) How much time is required to empty the container?
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Figure 3.14 Fluid drainage by gravity, Problem 3.19.

Problem 3.20 Two types of fluids occupy the gap between two parallel
horizontal flat plates, as shown in Fig. 3.15. There is no pressure gradient
along the flow direction. The width of the gap between the plates is b D
10�2 m. The lower half is occupied by a fluid whose density and viscosity are
� D 900 kg/m3 and � D 0.1 Pa s, respectively. The upper half of the gap is
occupied by a second fluid, whose density and viscosity are � D 700 kg/m3

Figure 3.15 Flow of two fluids between plates, Problem 3.20.
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and � D 7 ð 10�2 Pa s, respectively. The upper plate moves to the right with
a velocity of V1 D 10�2 m/s. The lower plate moves to the left with a velocity
V2 D 10�2 m/s.

(a) Calculate and draw a schematic of the velocity and shear stress
distributions in the fluid layers.

(b) Calculate the net discharge of each fluid.

Problem 3.21 Figure 3.16 shows oil flowing from container (1) to container
(2) through a tube whose length and diameter are L D 1.2 m and D D 4 ð
10�3 m, respectively. The oil flow is driven by a constant pressure p D 104 Pa,
maintained in the free space of container (1), as well as the difference between
the elevations of the oil free surfaces in both containers. Initially, that differ-
ence of elevation is H0 D 1 m. Container (2) is open to the atmosphere.

Figure 3.16 Definition sketch, Problem 3.21.
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The cross-sectional area of each container is A D 10�2 m2. The density and
viscosity of the oil are � D 900 kg/m3 and � D 0.1 Pa s, respectively.

(a) Determine the general expression representing the relationship
between the discharge Q, which flows from container (1) to
container (2), and the parameters H,p,D, L, �, and �.

(b) Determine the maximum, initial value of the discharge.
(c) Determine the time T, during which H will reduce from H0 D 1 m

to H D 0.5 m.

Problem 3.22 A viscous fluid flows from container A to container B
through an annulus, as shown in Fig. 3.17. The annulus consists of a steel
member, whose diameter is D1 D 0.02 m, and a pipe, whose internal diameter
is D2 D 0.022 m. The difference between fluid levels in containers A and
B is kept constant, at H D 5 m. The length of the annulus is L D 100 m.
The fluid density and viscosity are � D 900 kg/m3 and � D 5 ð 10�3 Pa s,
respectively.

(a) Determine the distributions of the velocity and shear stress in the
annulus cross section.

(b) Determine the discharge, which flows through the annulus.

Figure 3.17 Definition sketch, Problem 3.22.
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Figure 3.18 Definition sketch, Problem 3.23.

Problem 3.23 In Fig. 3.18, fluid flows out of the container through a
horizontal pipe, whose length is L D 0.15 m and inner diameter is D D
4 ð 10�3 m. Inside the pipe a metal member is inserted. The diameter of
the metal member is d D 2 ð 10�3 m, and it is coaxial with the pipe. The
density and viscosity of the fluid are � D 800 kg/m3 and � D 5 ð 10�3 Pa s,
respectively. The difference between the elevation of the free surface of the
container fluid and the pipe exit is h D 0.39 m. A discharge Q flows into
the container, to maintain the free surface of the container fluid at a constant
level.

(a) What is the value of the discharge Q, flowing into the container?
(b) By how much should Q be increased, if the metal member is taken

out of the pipe?
(c) What is the total shear force applied on the metal member?
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4
Inviscid Flows and Potential Flow
Theory

4.1 INTRODUCTION

The vorticity form of the Navier–Stokes Eq. (3.1.3) implies that if the flow of
a fluid with constant density initially has zero vorticity, and the fluid viscosity
is zero, then the flow is always irrotational. Such a flow is called an ideal,
irrotational, or inviscid flow, and it has a nonzero velocity tangential to any
solid surface. A real fluid, with nonzero viscosity, is subject to a no-slip
boundary condition, and its velocity at a solid surface is identical to that of
the solid surface.

As indicated in Sec. 3.4, in fluids with small kinematic viscosity,
viscous effects are confined to thin layers close to solid surfaces. In Chap. 6,
concerning boundary layers in hydrodynamics, viscous layers are shown to be
thin when the Reynolds number of the viscous layer is small. This Reynolds
number is defined using the characteristic velocity, U, of the free flow outside
the viscous layer, and a characteristic length, L, associated with the variation of
the velocity profile in the viscous layer. Therefore the domain can be divided
into two regions: (a) the inner region of viscous rotational flow in which
diffusion of vorticity is important, and (b) the outer region of irrotational flow.
The outer region can be approximately simulated by a modeling approach
ignoring the existence of the thin boundary layer and applying methods of
solution relevant to nonviscous fluids and irrotational flows. Following the
calculation of the outer region of irrotational flow, viscous flow calculations
are used to represent the inner region, with solutions matching the solution of
the outer region. However, in cases of phenomena associated with boundary
layer separation, matching between the inner and outer regions cannot be done
without the aid of experimental data.

The present chapter concerns the motion of inviscid, incompressible, and
irrotational flows. In cases of such flows the velocity vector is derived from a

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



potential function. The vorticity of a vector derived from a potential function
is zero, or

EV D r r ð r D 0 �4.1.1�

This expression indicates that every potential flow is also an irrotational flow.
In the following sections, special attention will be given to two-

dimensional flows, which are the most common situation for analysis using
potential flow theory. There also is some discussion of axisymmetric flows,
and numerical solutions of two- and three-dimensional flows.

4.2 TWO-DIMENSIONAL FLOWS AND THE COMPLEX
POTENTIAL

4.2.1 General Considerations

In cases of potential, incompressible, two-dimensional flows, velocity compo-
nents are derived from the potential function, due to lack of vorticity, as well
as from the stream function, due to the incompressibility of the fluid. Therefore
the velocity components can be represented by

u D ∂

∂x
D ∂

∂y
v D ∂

∂y
D �∂

∂x
�4.2.1�

These relationships between the partial derivatives of the potential and stream
functions are called the Cauchy–Riemann equations.

According to Eq. (4.2.1), the potential function can be determined by
direct integration of the expressions for the velocity components,

 D
∫
u dx C f�y� or  D

∫
vdy C g�x� �4.2.2�

The expression for f�y� can be determined by

v D ∂

∂y

[∫
u dx C f�y�

]
) f0�y� D v � ∂

∂y

[∫
u dx

]
)

f�y� D
∫ {

v � ∂

∂y

[∫
u dx

]}
dy �4.2.3�

By the same approach, the expression for g(x) can be determined by

g�x� D
∫ {

u� ∂

∂x

[∫
vdy

]}
dx �4.2.4�

If the expression for the potential function is given, then the expres-
sion for the stream function can be obtained by applying Eq. (4.2.1). The
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stream function expression also can be obtained by direct integration of the
expressions of the velocity components, using

 D �
∫

vdx C h�y� or  D
∫
u dy C k�x� �4.2.5�

where

h�y� D
∫ {

uC ∂

∂x

[∫
vdy

]}
dy

k�x� D
∫ {

v � ∂

∂x

[∫
u dy

]}
dx

�4.2.6�

According to Eq. (4.1.1) the velocity vector is defined as the gradient of
the function . Therefore the velocity vector is perpendicular to the equipo-
tential contour lines. According to Eq. (2.5.10), contour lines with a constant
value of  are streamlines, namely, lines that are tangential to the velocity
vector. Therefore equipotential lines are perpendicular to the streamlines. A
schematic of several streamlines and equipotential lines, called a flow-net, is
presented in Fig. 4.1. The differences in value between each pair of adjacent
streamlines is . The difference in value between each pair of adjacent

Figure 4.1 Schematics of a flow-net.
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equipotential lines is . Usually, flow-nets are drawn so that  D .
Therefore, if at the point A of an intersection between a streamline and an
equipotential line we adopt a Cartesian coordinate system, in which y0 is
tangential to the streamline and x0 is tangential to the equipotential line, then
according to Eq. (4.2.1), the small rectangle of the flow-net is a square.

By considering the incompressibility of the flow, as given by Eq. (2.5.7)
or Eq. (2.5.8), and applying Eq. (4.1.1) or Eq. (4.2.1) with regard to the poten-
tial function, we obtain

r Ð �r� D 0 ) r2 D 0 ) ∂2

∂x2
C ∂2

∂y2
D 0 �4.2.7�

This expression indicates that the potential function must satisfy the Laplace
equation.

Consider now the irrotational flow condition, which is given by vanishing
values of all components of vorticity, Eω in Eqs. (2.3.11) and (2.3.12), and apply
Eq. (4.2.1) with regard to the stream function, so

∂2

∂x2
C ∂2

∂y2
D 0 �4.2.8�

indicating that the stream function also satisfies the Laplace equation. There-
fore either the stream function or the potential function can be used for the
presentation of the streamlines or equipotential lines.

If polar coordinates are used for the calculation of two-dimensional
potential flow, then we may apply the following form of the Cauchy–Riemann
equations,

ur D ∂

∂r
D 1

r

∂

∂�
v� D 1

r

∂

∂�
D �∂

∂r
�4.2.9�

where ur and v� are components of the velocity vector in the r and � direc-
tions, respectively. The potential and stream functions can be determined if
expressions for the velocity components are given, according to the method
represented by Eqs. (4.2.2)–(4.2.6).

The discussion in the previous paragraphs has indicated that equipoten-
tial lines (lines of constant value of ) are orthogonal to streamlines (lines of
constant value of ). Therefore it is possible to consider the complex function
w, as given by Eq. (1.3.91), which incorporates both functions in the complex
domain. We may consider the plane w, which is depicted by the coordinates 
and , as shown in Fig. 4.2. Equipotential lines and streamlines in the w plane
of that figure represent the schematic of the flow-net. The plane of the complex
variable z is depicted by applying the coordinates x and y. Streamlines and
equipotential lines depicted in the z plane represent the common flow-net.
The transformation of – mapping in the w plane to x–y mapping in the
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Figure 4.2 An example of conformal mapping.

z plane is called conformal mapping. An example of conformal mapping is
represented in Fig. 4.2. Small squares in the w plane are transformed into
small squares in the z plane by this procedure. The function w is called the
complex potential and is represented by

w D C i �4.2.10�
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The major properties of the complex potential and its implications with
regard to  and are presented in Eqs. (1.3.90)–(1.3.99). The complex poten-
tial function is an analytical function, namely, a function of z. Various functions
of z can be useful for the description and depiction of different flow domains,
in terms of equipotential lines and streamlines.

As shown by Eqs. (4.2.7) and (4.2.8), the potential function and stream
function satisfy the Laplace equation. Therefore the complex potential function
also satisfies the Laplace equation, as it represents a linear combination of 
and . Also, the Laplace equation is a linear differential equation. Therefore, if
the complex potential w1 represents a potential flow domain, and w2 represents
another potential flow domain, then any linear combination such as ˛w1 C ˇw2

also represents a potential flow domain.
As shown by Eqs. (1.3.92)–(1.3.97),

dw

dz
D ∂w

∂x
D �i ∂w

∂y
D ∂

∂x
C i

∂

∂x
D u� iv D QV �4.2.11�

This expression indicates that the derivative of w is equal to the conjugate of
the velocity.

One further point to note is that, in a potential flow domain, the Bernoulli
equation is satisfied between any two points of reference, as shown by
Eqs. (2.6.10)–(2.6.12). This provides an important tool for analyzing pressure
distributions in potential flows, as will be seen in the following subsections,
where we review several special cases of two-dimensional potential flows.

4.2.2 Uniform Flow

Consider a flow with constant speed U, parallel to the x coordinate. This
might represent, for example, the flow of air above the earth. Components of
the velocity vector are then given by

u D U v D 0 �4.2.12�

By applying Eqs. (4.2.2)–(4.2.6), we obtain

 D Ux  D Uy w D U�x C iy� D Uz �4.2.13�

These expressions indicate that streamlines are parallel horizontal lines. For
each streamline, the value of the y coordinate is constant. Equipotential lines
are vertical lines. For each equipotential line the value of the x coordinate is
kept constant. Also, according to the Bernoulli equation (2.6.12), the pressure
is constant along horizontal streamlines and varies as hydrostatic pressure in
the vertical direction.
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If the parallel flow streamlines make an angle ˛ with respect to the x
coordinate, then the complex potential is given by

w D Uz e�i˛ �4.2.14�

4.2.3 Flow at a Corner

Consider the flow domain represented by the complex potential function

w D Az2 D A
[
�x2 � y2�C i2xy

]
�4.2.15�

where A is a constant positive coefficient. The conjugate velocity is given by

QV D u� iv D dw

dz
D 2Az D 2A�x C iy� �4.2.16�

Equations (4.2.15) and (4.2.16) imply

 D A�x2 � y2�  D 2Axy u D 2Ax v D �2Ay �4.2.17�

Therefore equipotential lines and streamlines are hyperbolas, as shown
in Fig. 4.3. On the streamlines, small arrows show the flow direction.
They are depicted according to signs of the velocity components implied
by Eq. (4.2.17). This equation indicates that the velocity vanishes at the
coordinate origin. Therefore this point is a singular stagnation point. At
a singular point, the velocity vanishes or becomes infinite. If the velocity
vanishes, the point is a stagnation point. If the velocity has infinite value,
it is a cavitation point. Streamlines or equipotential lines may intersect only
at singular points. Eq. (4.2.17) also indicates that the velocity increases with
distance from the origin. However, there is no particular singular point of
infinite velocity.

By employing the Bernoulli equation, the distribution of pressure along
the x coordinate is

p D p0 � 2�A2x2 �4.2.18�

where p0 is the pressure at the origin. In Fig. 4.3, a parabolic curve shows
the pressure distribution along the x-direction. It indicates that the flow at the
corner cannot persist for large distances from the origin, since according to
Eq. (4.2.18), at some distance from the origin the pressure is too low to afford
the streamline pattern of Eq. (4.2.17).

If the flow takes place at a corner of angle ˛ D �/n, then the complex
potential is given by

w D Azn �4.2.19�
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Figure 4.3 Flow at a 90° corner.

4.2.4 Source Flow

The complex potential function for a source flow is

w D q

2�
ln z D q

2�
ln�r ei�� D q

2�
�ln r C i�� �4.2.20�

Therefore the potential and stream functions are given, respectively, by

 D q

2�
ln r  D q

2�
� �4.2.21�

These expressions indicate that streamlines are straight lines radiating outward
from the origin. For each streamline, the value of  is kept constant. Equipo-
tential lines are concentric circles surrounding the coordinate origin. For each
equipotential line, the value of r is kept constant.
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It is possible to use the expressions for the potential function, the stream
function, or the complex potential function for the calculation of the velocity
components. We exemplify here application of the complex potential function:

QV D u� iv D dw

dz
D q

2�z
D qQz

2�zQz D q

2�

(
x � iy

x2 C y2

)
�4.2.22�

Therefore the complex velocity is given by

V D q

2�

(
x C iy

x2 C y2

)
D q

2�

(
cos � C i sin �

r

)
D q

2�r
ei� �4.2.23�

This result indicates that the absolute velocity is kept constant in a circle
surrounding the origin, i.e., the fluid flows in the radial direction. The velocity
is infinite at the origin and vanishes at a large distance from the origin.

If a circle of radius r is drawn around the coordinate origin, then the
radial flow velocity of the fluid that penetrates the circle is given by

V D ur D q

2�r
�4.2.24�

It should be noted that the complex velocity of Eq. (4.2.23) is different from
the absolute velocity of Eq. (4.2.24). Equation (4.2.24) indicates that the source
strength q represents the total flow rate penetrating the circle surrounding the
origin.

If the flow domain is horizontal, then Bernoulli’s equation yields

p D p1 � �
V2

2
D p1 � �

2

( q

2�

)2 1

r2
�4.2.25�

where p1 is the pressure at an infinite distance from the source point. At
the origin the pressure is infinitely negative. Therefore the origin is a singular
cavitation point.

Figure 4.4 shows the flow-net and pressure distribution along a radial
coordinate of a source flow.

4.2.5 Simple Vortex

We consider the flow domain represented by the complex potential,

w D � i�

2�
ln z D �

2�
�� � i ln r� �4.2.26�

According to this expression,

 D �

2�
�  D � �

2�
ln r �4.2.27�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 4.4 Source of flow.

These relations indicate that equipotential lines are straight radial lines emana-
ting from the coordinate origin, while streamlines are circles surrounding the
origin.

By appropriate differentiation of either of the expressions given by
Eq. (4.2.27), expressions for the velocity components may be obtained as

ur D 0 v� D �

2�r
�4.2.28�

These expressions indicate that the velocity is proportional to the inverse of
the distance from the coordinate origin, its value is constant along circles
surrounding the origin, and its direction is counterclockwise. At the origin,
the velocity is infinite. Therefore this point is a singular cavitation point. The
pressure distribution along a radial coordinate is identical to that given by
Eq. (4.2.25) for the source flow, where � replaces q. Figure 4.5 shows the
flow-net and pressure distribution along a radial coordinate of a simple vortex
flow.
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Figure 4.5 Simple vortex.

If we depict a circle of radius r about the origin and calculate the circu-
lation by the integral of Eq. (2.3.14), we obtain

 D
∮

EV Ð dEs D
∫ 2�

0
v�r d� D

∫ 2�

0

�

2�r
r d� D � �4.2.29�

This expression indicates that � represents the circulation of the vortex,
namely, the vortex strength. According to Eq. (2.3.15), the circulation is zero
for a potential flow domain. However, if in a potential flow domain the closed
curve of the integral of Eq. (2.3.14) surrounds singular points of circulating
flows, then the circulation does not vanish. It represents the strength of the
circulating flow, in the domain surrounding that singular point.

4.2.6 Doublet

Doublet flow is obtained due to the superposition of a positive and a negative
source of equal strength. The distance between the sources is a, the strength of
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each source is q, and the following conditions take place in the flow domain:

a ! 0

q ! 1 �4.2.29�
aq

�
! �

The complex potential function of the doublet is developed as follows:

w D q

2�
ln

[
z C a

z � a

]
D q

2�
ln

[
z2 C 2az C a2

z2 � a2

]

D q

2�
ln

[
1 C �2a/z�

1 � �a/z�2
C a2

z2 � a2

]

w ! q

2�
ln

[(
1 C 2a

z

)(
1 C a2

z2
. . .

)]
! q

2�

2a

z
D �

z

�4.2.30�

The doublet of Eq. (4.2.30) incorporates a positive source, located to the left
of the origin (at x D �a), and a negative source, located to the right of the
origin (at x D a).

According to Eq. (4.2.30), we can find the potential and stream functions
as follows:

w D C i D �

z
D �

r
e�i� D �

r
�cos � � i sin �� �4.2.31�

Therefore

 D � cos �

r
D �x

x2 C y2
 D � �y

x2 C y2
�4.2.32�

The equation of equipotential lines is(
x � �

2

)2

C y2 D
(
�

2

)2

�4.2.33�

This expression indicates that equipotential lines are circles, which pass
through the origin, and have their centers located on the x axis. By applying
the expression for  in Eq. (4.2.32), the equation for the streamlines is

x2 C
(
y C �

2

)2

D
(
�

2

)2

�4.2.34�

This expression indicates that streamlines are circles, passing through the
origin, whose centers are located on the y axis.

The conjugate velocity is obtained by differentiating Eq. (4.2.31) to
obtain

QV D � �

z2
D � �

r2
e�2i� D �

r2
[� cos�2��C i sin�2��] �4.2.35�
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Therefore components of the velocity are given by

u D � �

r2
cos�2�� D � �

x2 C y2

(
x2 � y2

x2 C y2

)
D ��y2 � x2�

�x2 C y2�2

v D � �

r2
sin�2�� D � �

x2 C y2

(
2xy

x2 C y2

)
D � 2�xy

�x2 C y2�2

�4.2.36�

The flow net for a doublet is sketched in Fig. 4.6.

4.2.7 The Image Method

The flow domain given by the potential, stream, and complex potential func-
tions is basically infinite. Considerations of solid boundaries in such a domain
are usually made by assuming that solid boundaries are represented by partic-
ular streamlines (note that there is no flow across a streamline). Representation
of solid boundaries by particular streamlines often requires the superposition
of several simple potential flows. The presentation of flow around a cylinder,

Figure 4.6 Flow associated with a doublet.
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as shown in Sec. 4.5, is obtained by the superposition of a uniform flow and
a doublet flow. Very often, adequate superposition is obtained by trial-and-
error experiments, but in some particular cases the appropriate superposition
is obtained by straightforward calculations.

Figure 4.7 shows a source located at a distance x D a from a solid wall.
There is no flow perpendicular to the wall. Therefore to obtain a velocity
tangential to the wall at point A, a second source must be added, of identical
strength, at x D �a. The complex potential describing the flow created by a
source of strength q, located at a distance a from a wall, is given by

w D q

2�
ln[�z � a��z C a�] �4.2.36�

Figure 4.8 shows a source located at a corner between two solid walls.
The distance of the source from one wall is x D a. The distance from the
other wall is y D b. In this case, to represent the two walls as streamlines,
the superposition should incorporate four sources, as indicated by Fig. 4.8.

Figure 4.7 Source located at a wall.
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Figure 4.8 Source at the corner between two walls.

Therefore the complex potential function is given by

w D q

2�
ln[�z � a� ib��z C a� ib��z C aC ib��z � aC ib�] �4.2.37�

Figure 4.9 shows a source of strength q located at a distance x D a
from an equipotential straight line given by x D 0. Practically, such a case
can be useful for the calculation of groundwater flow at an injection well,
which is located close to a river. Section 4.3 provides details concerning the
application of the potential flow theory to calculations of flow through porous
media. To keep the line x D 0 as an equipotential line, another negative source
of equal strength should be added at x D �a, as shown in Fig. 4.9. Therefore
the complex potential function is given by

w D q

2�
ln

(
z � a

z C a

)
�4.2.38�

Figure 4.10 shows a vortex of circulation �, located at the corner between
two solid walls, given by x D 0 and y D 0. Its distance from one wall is x D a,
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Figure 4.9 Source at an equipotential line.

Figure 4.10 Vortex at the corner between two solid walls.
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and its distance from the other wall is y D b. To represent the lines x D 0 and
y D 0 as streamlines, three vortices of equal circulation should be added, as
shown in Fig. 4.10. Therefore the complex potential function is given by

w D � i�

2�
ln

[
�z � a� ib��z C aC ib�

�z C a� ib��z � aC ib�

]
�4.2.40�

It should be noted that for relevance to real-world problems, positive and
negative sources are kept in a stable position, whereas the vortex of Fig. 4.10
is subject to movement in the domain. The position change of the vortex of
this figure is caused by the flow velocity components of the image vortices.

4.3 FLOW THROUGH POROUS MEDIA

Flow through porous media such as aquifers, alluvial material, sand, small
gravel, etc. is usually laminar flow, associated with very small Reynolds
numbers. The definition of the Reynolds number for flow through porous
media is

Re D qdp
	

�4.3.1�

where q is the specific discharge (with dimensions of LT�1); dp is a charac-
teristic pore size, usually considered as a representative average diameter of
the particles comprising the matrix, or derived from the permeability (another
concept that will be defined later) of the porous matrix, and v is the kinematic
viscosity of the fluid. The specific discharge, called also filtration velocity, is
related to the average interstitial flow velocity by

q D V� �4.3.2�

where � is the porosity of the matrix. In an isotropic material the volumetric
and surface porosity are identical. It should be noted that V represents the
velocity of advection of contaminants migrating with the flowing fluid through
the porous matrix. The quantity q represents the flow rate per unit surface of
the porous matrix.

In most cases of environmental flow through porous media, the value
of the Reynolds number, defined in eq. (4.3.1), is smaller than unity. There-
fore flow through porous media in most cases may be considered as laminar
creeping flow (Section 3.3). However, there are also examples in which the
Reynolds number is higher, as with flows through coarse gravel, flows through
rock fill, wave breakers, etc. The present section refers only to creeping flow
through porous media; other topics in porous media flow are discussed in
Chap. 11.
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In creeping flows, the equations of motion (Navier–Stokes) reduce to

rp0 D �r2 EV �4.3.3�

where p D �g is the piezometric pressure, V is the flow velocity, and � is the
viscosity of the fluid.

4.3.1 Darcy’s Law

The laminar flow through a porous matrix can be visualized as a flow through
many parallel flat plates, or through a bundle of capillaries. With regard to
a single capillary of diameter d and length L, we may apply the solution of
Poiseuille–Hagen to Eq. (4.3.3) to obtain

J D h

L
D 1

�g

pŁ

L
D 32v

gd2
V �4.3.4�

where h is the piezometric head and J is the hydraulic gradient. The capillary
diameter, d, may be considered as a characteristic pore size of the porous
matrix.

Considering that the porosity, �, represents the ratio between the total
area of cross sections of the bundle of capillaries and the cross section of the
porous matrix, Eq. (4.3.4) implies

q D KJ �4.3.5�

where K is the hydraulic conductivity of the porous matrix, given by

K D gd2�

32v
�4.3.6�

This result shows that the hydraulic conductivity depends on properties of the
porous matrix, namely the porosity, the characteristic pore size, and also the
kinematic viscosity of the fluid. The permeability is a parameter associated
with the flow through the porous matrix and depends solely on the matrix
properties. Its definition and relation to the hydraulic conductivity are given as

k D �d2

32
K D gk

v
�4.3.7�

For three-dimensional domains, Eq. (4.3.5) can be generalized as

Eq D �Krh �4.3.8�

This proportionality between the specific discharge and the gradient of the
piezometric head is called Darcy’s law.
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4.3.2 Relevance of Potential Flow Theory

Equation (4.3.8) implies that, in cases of constant hydraulic conductivity, the
specific discharge vector originates from a gradient of a potential function
, which is equal to Kh. In cases of two-dimensional flow, with negligible
compression of the fluid and the solid matrix, it is possible to define a stream
function, , that satisfies continuity and has constant values along the stream-
lines. The relationships between the components of the specific discharge and
the functions  and  are

qx D �∂
∂x

D �∂
∂y

qx D �∂
∂y

D ∂

∂x

�4.3.9�

The negative sign for the derivatives in shows that the flow is in the direction
of decreasing values of . These relations are basically Cauchy–Riemann
equations, as introduced earlier in Sec. 4.2.1. The continuity, represented by
, and the potential function , both satisfy the Laplace equation,

r2 D 0 r2 D 0 r2h D 0 �4.3.10�

Therefore all techniques applicable to the solution of the Laplace equation
can be used for the calculation of incompressible flow through porous media.
The function theory with the employment of complex variables is useful for
the evaluation of practical issues associated with flow through porous media.
In potential fluid flows, the potential function has no physical meaning. In
flow through porous media, the potential function, , is derived from the
piezometric head.

On the basis of Eq. (4.3.9), flow-nets can often be defined to obtain
quick estimates of the intensity of the flow through a limited-size porous
medium. They also can easily provide estimates of uplift forces exerted on
structures. The flow-net incorporates a grid of small squares whose boundaries
are equipotential lines and streamlines, as noted previously. Calculations of
uplift forces and total flow through the domain are based on the number of
small squares in the grid and the hydraulic conductivity of the domain. Flow-
nets can easily be used for the evaluation of seepage underneath a dam, uplift
forces on the dam, the effect of cut-off walls, etc.

4.3.3 Anisotropic Porous Medium

Expressions referring to flow through porous media in the preceding para-
graphs consider the hydraulic conductivity as a scalar parameter and property.
In cases of anisotropy of the domain, the hydraulic conductivity can be repre-
sented as a second-order tensor. As an example, in natural sandy soils, the
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average hydraulic conductivity in a horizontal direction can be from two to
ten times the value for the vertical direction. In cases of anisotropy of the
porous medium, the last part of Eq. (4.3.10) is written as

KH
∂2h

∂x2
CKV

∂2h

∂y2
D 0 �4.3.11�

where KH and KV are the horizontal and vertical hydraulic conductivity,
respectively.

It is convenient to define a new coordinate x1 by

x1 D x

√
KV

KH
�4.3.12�

Introducing Eq. (4.3.12) into Eq. (4.3.11), the piezometric head again satisfies
the Laplace equation. Therefore, a modification in the construction of the flow-
net is necessary to allow consideration of domains with different horizontal and
vertical hydraulic conductivity. This involves drawing the domain of reference
and its boundary conditions with the horizontal dimensions reduced by the
factor

p
KV/KH. Then the flow-net is drawn for the distorted boundaries and

the discharge is computed using the average harmonic hydraulic conductivity,

K D
√
KHKV �4.3.13�

4.3.4 Flow-Nets

Nowadays, quick solutions of the Laplace equation can be obtained by numer-
ical approaches, which will be reviewed in subsequent chapters. However, it
is appropriate to consider at this stage some particular examples of possible
uses of flow-net construction. By these examples, some characteristics of flow
through porous media can be visualized. For example, in the case of percola-
tion under a dam through the porous layer of alluvial material which overlies
an impervious layer, the flow pattern is independent of the upstream and
downstream water levels. The difference, H, in these levels only determines
the scale of the flow, as shown in Fig. 4.11. Since  is constant between
adjacent equipotential lines, the total drop in piezometric head (equal to H) is
divided along any flow line into increments, H. Thus with n unit squares in
each channel of the flow-net, the decrease in piezometric head, or uplift pres-
sure head along the base of the dam, follows from the values of the piezometric
head at the points of intersection of the equipotential lines with the base.

The effectiveness of cutoff walls and sheet piling in various locations and
of upstream and downstream aprons in reducing uplift pressures can be eval-
uated by means of the flow-net. Each of these devices lengthens the seepage
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Figure 4.11 Flow-net under a dam.

paths, with cutoff walls producing a vertical drop in the piezometric head and
aprons decreasing its gradient. Points of high velocity at the downstream end
of the net, where “piping” may occur, can be identified and remedial measures
can be evaluated.

The rate of flow through a unit square of one channel per meter width
of the dam shown in Fig. 4.11 is

Qs D �KAdh
ds

D Kn
H/n

s
D K

H

n
�4.3.14�

where A is the cross-sectional area of a single channel, which is also the height
of the small square of the flow-net, whose value is n. The length of the small
square is s. The value of H is equally divided along the n lengths of the
small squares. For m channels, each carrying an equal flow rate Qs, the total
flow-rate Q is mQs, or

Q D K
m

n
H �4.3.15�

With regard to the total flow rate, the flow-net determines the ratio
m/n. In its construction, the number of channels m is arbitrarily selected. The
number of squares per channel varies with the number of channels, but the
total flow-rate determinations for different values of m should agree with each
other. The construction of the flow-net proceeds upstream and downstream

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 4.12 Possible effect of apron and cutoff wall on piezometric head distribu-
tion: (a) horizontal apron at head of dam; (b) apron at toe of dam; (c) vertical cut off
wall near head of dam; and (d) vertical wall near toe of dam.

Figure 4.13 Flow net for anisotropic porous media.
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from trial locations of the portions of the streamlines in the narrowest region
of the flow path.

Figure 4.12 provides several examples concerning the possible effect of
apron and cutoff wall on the distribution of the piezometric head in the allu-
vial layer. Figure 4.13 exemplifies use of the flow-net for anisotropic porous
material.

4.4 CALCULATION OF FORCES

4.4.1 Force on a Cylinder

Figure 4.14 shows a cylinder of arbitrary cross section in a two-dimensional
flow field. The fluid is assumed to be inviscid. The pressure force acting on
an element of the surface is p ds and it is normal to the surface element ds.
The cylinder width, perpendicular to the paper plane of Fig. 4.14, is unity.
The components of the pressure force in the x and y-directions are

Fx D �pds cos
(
� � �

2

)
D �pds sin � D �pdy

Fy D �pds sin
(
� � �

2

)
D pds cos � D pdx

�4.4.1�

Figure 4.14 Pressure force acting on an elementary surface.
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where � is the angle made by the surface element with the x axis. The total
pressure force components in the x- and y-directions are obtained by inte-
grating over the cylinder surface,

Fx D
∮
c
�pdy Fy D

∮
c
p dx �4.4.2�

4.4.2 Steady Flow Around a Circular Cylinder Without
Circulation

Steady flow around a circular cylinder without circulation can be expressed as
a superposition of uniform flow and a doublet, with velocity potential given by

w D U

(
z C a2

z

)
D U

[
r exp�i��C a2

r
exp��i��

]
�4.4.3�

Following the procedures of Sec. 4.2, this complex potential is separated into
the potential and stream functions,

 D U

(
r C a2

r

)
cos �  D U

(
r � a2

r

)
sin � �4.4.4�

Figure 4.15 represents a schematic description of several streamlines of the
flow around a cylinder without circulation.

Figure 4.15 Steady flow around a cylinder without circulation.
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The complex velocity for this flow field is

dw

dz
D U

(
1 � a2

z2

)
D U

[
1 � a2

r2
exp��i2��

]
�4.4.5�

This expression indicates that there are two stagnation points in the domain,
defined by r D a and � D 0, �. Then, according to Eq. (4.4.4), the stagnation
points are located on the streamline defined by  D 0. This line separates
the fluid associated with the uniform flow from the fluid associated with the
doublet and causes the flow field to behave as if there were a solid surface
coincident with this streamline. According to Eq. (4.4.5), the absolute velocity
along the separating streamline is

V2 D
∣∣∣∣dwdz

∣∣∣∣
2

D U2 [�1 � cos 2��2 C �sin 2��2
] D 4U2 sin2 � �4.4.6�

Figure 4.15 shows the velocity distribution along the y axis above the cylinder.
According to Bernoulli’s equation,

ps

�g
D p

�g
C V2

2g
D p1
�g

C U2

2g
�4.4.7�

where ps is the pressure at the stagnation point and p1 is the pressure far
from the cylinder. We now refer to the surface of the circular cylinder, r D a.
The surface element for this cylinder is ds D a d�. Introducing this quantity,
along with Eqs. (4.4.6) and (4.4.7) into Eq. (4.4.1), the pressure distribution is
obtained along the surface as shown in Fig. 4.16. By integrating the pressure

Figure 4.16 Pressure distribution around a cylinder without circulation.
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distribution over the cylinder surface, it is easy to show that there is zero
resultant force acting on the cylinder. This result indicates that according to
potential flow theory, no drag or lift forces act on a body moving in a domain
of inviscid fluid. This result is called d’Alembert’s paradox. In real fluids there
is always drag force acting on the body. The drag force originates from friction
and separation of the flow from the sides of the body. The flow separation
results in a wake and eddies migrating downstream of points of separation. The
pressure at the wake is approximately equal to the pressure at the separation
point, which is smaller than that predicted by potential flow theory. Therefore
real fluid flow around the cylinder is always associated with drag force. A
schematic description of the pressure distribution around the circular cylinder
with a real fluid is shown in Fig. 4.16.

4.4.3 Steady Flow Around a Circular Cylinder with
Circulation

In this case, a clockwise potential vortex with circulation  is added to the
previous situation of a doublet in a uniform flow. The complex potential is
now given by

w D U

(
z C a2

z

)
C i

2�
ln z �4.4.8�

This expression can be separated to provide expressions for the potential and
stream functions, and differentiated to yield an expression for the complex
velocity, as before,

 D U

(
r C a2

r

)
cos � � 

2�
�;

 D U

(
r � a2

r

)
sin � C 

2�
ln r

�4.4.9�

dw

dz
D U

(
1 � a2

z2

)
C i

2�z
�4.4.10�

The streamline  D /�2�� ln a represents the circular cylinder r D a. There-
fore the complex potential of Eq. (4.4.8) refers to uniform flow around a
circular cylinder. At a large value of z, Eq. (4.4.10) indicates that the velocity
is U. Referring to the surface of the circular cylinder, Eq. (4.4.10) yields the
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value of the absolute velocity,

V D
∣∣∣∣dwdz

∣∣∣∣
rDa

D
∣∣∣∣
[

2U sin � C 

2�

]
�sin � C i cos ��

∣∣∣∣
D

∣∣∣∣2U sin � C 

2�

∣∣∣∣
�4.4.11�

This expression indicates that the velocity vanishes if

sin � D � 

4�aU
�4.4.12�

Results of this expression are schematically represented by Fig. 4.17. There
are two stagnation points if  < 4�aU. If  D 4�aU then there is a single
stagnation point at the cylinder surface. If  > 4�aU then the stagnation point
moves downward into the flow.

Figure 4.17 Flow around a cylinder with circulation.
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The pressure distribution along the cylinder surface is again obtained by
using the Bernoulli equation,

pC 1

2
�V2 D p1 C 1

2
�U2 �4.4.13�

where p1 is the pressure far from the cylinder. Introducing Eq. (4.5.11) into
Eq. (4.5.13), the pressure distribution on the cylinder surface is found to be

prDa D p1 C 1

2
�

[
U2 �

(
2U sin � C 

2�a

)2
]

�4.4.14�

The symmetry of the flow about the y axis indicates that there is no drag
(net pressure force in the x-direction) for this flow field. On the other hand,
the circulation leads to lift force (net pressure force applied on the cylinder in
the y-direction). The calculation of the lift force is obtained by integration of
Eq. (4.4.14),

Fy D �
∫ 2�

0
prDa sin �a d� D �U �4.4.15�

This expression is valid for potential flow around any two-dimensional body
and is known as the Kutta–Zhukhovski lift theorem. This theorem is discussed
further in Sec. 4.4.5.

In flow of real fluids around bodies, circulation is created due to the
viscosity of the fluid. However, the magnitude of the circulation does not
depend on the viscosity. Rather, it depends on the free flow velocity U and
the shape of the body. In terms of potential flow theory, circulation around a
circular cylinder can be created only by rotating the cylinder, around which
fluid flows with a uniform flow velocity U.

4.4.4 The Theorem of Blasius

Equation (4.4.1) can be represented as a complex quantity,

dFx � i dFy D d QF D �pdy � ip dx D �ip dQz �4.4.16�

where the wavy overbar denotes the complex conjugate. By integrating
Eq. (4.4.16) over the entire surface of the cylinder, we obtain

Fx � iFy D QF D �i
∮
c
p dQz �4.4.17�

where c denotes integration over the entire surface of the cylinder in the
counter-clockwise direction.
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By applying the Bernoulli equation between a reference point far from
the cylinder and any other point in the flow domain,

p1 C 1

2
�U2 D pC 1

2
��u2 C v2� D pC 1

2
��u C iv��u � iv� �4.4.18�

Introducing this expression for p into Eq. (4.4.16), we obtain

QF D �i
∮ [

p1 C 1

2
�U2 � 1

2
��u C iv��u � iv�

]
dQz �4.4.19�

The integral of (p1 C �U2/2) vanishes, as this term has a constant value.
With regard to other terms of the integral in Eq. (4.4.19), first note that

uC iv D V exp�i��

�u � iv��u C iv� dQz D �u2 C v2� dQz �4.4.20�

Introducing these expressions into Eq. (4.4.19), we obtain

QF D i
�

2

∮
c

∣∣∣∣dwdz
∣∣∣∣
2

dQz �4.4.21�

This equation is called the Blasius theorem. It expresses the total pressure
force applied on a cylinder of any shape that is submerged in a fluid subject
to potential flow.

The Cauchy integral theorem states that the line integral of a complex
function around any closed curve is zero, provided that no singular point is
present in the region enclosed by the curve. If one or more singular points are
present in that region, then the closed line integral does not vanish. The value
of that integral does not depend on the closed curve chosen for the calculation
of the integral, provided that the number of singular points in the enclosed
region is kept constant. According to the theory of complex variables, the
closed line integral around the singular points is equal to 2�i multiplied by
the sum of the residues of all singular points in the enclosed region.

4.4.5 The Lift Theorem of Kutta–Zhukovski

According to the Blasius and Chauchy integral theorems, we may perform
the integral of Eq. (4.4.21) at a large distance from the center of the cylinder,
which can be represented by a superposition of uniform flow with sources,
sinks, and doublets. From a large distance, all singular points are considered
to be close to the origin. Therefore the complex potential function is given by

w D Uz C q

2�
ln z C i

2�
ln z C �

z
C Ð Ð Ð �4.4.22�
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As the superposition refers to a closed curve representing the cylinder,
the net flux of sources and sinks should be zero. Therefore by introducing
Eq. (4.4.22) into Eq. (4.4.21) we obtain

QF D i
�

2

∮ ∣∣∣∣UC i

2�z
� �

z2
C Ð Ð Ð

∣∣∣∣
2

dz �4.4.23�

The residue of the complex function subject to integration in Eq. (4.4.23)
is the coefficient of the term incorporating 1/z in the power series expansion
of that function. This coefficient is equal to iU/�. Therefore Eq. (4.4.23)
yields

QF D i
�

2

[
2�i

(
i
U

�

)]
D �i�U �4.4.24�

This expression indicates that the potential flow theory predicts that no drag
force is applied on the cylinder, and the lift force is proportional to �, U, and
, as

Fx D 0 Fy D �U �4.4.25�

This result is called the Kutta–Zhukhovski lift theorem, as previously noted.

4.5 NUMERICAL SIMULATION CONSIDERATIONS

Numerical simulations of potential incompressible flows are based on the solu-
tion of the Laplace equation, in terms of the potential or the stream function,

r2 D 0 r2 D 0 �4.5.1�

In a two-dimensional Cartesian coordinate system this equation for  is

∂2

∂x2
C ∂2

∂y2
D 0 �4.5.2�

This expression is a second-order partial differential equation (PDE). As
discussed in Sec. 1.3.3, the order of a PDE is determined by the highest
order derivative in the equation. Furthermore, Eq. (4.5.2) is a linear PDE. In
a linear PDE, the coefficients of the highest order derivatives are constants or
functions of the independent variables x and y.

The general format of a second-order linear PDE in a two-dimensional
domain can be written as

a
∂2ϕ

∂x2
C b

∂2ϕ

∂x∂y
C c

∂2ϕ

∂y2
D f �4.5.3�
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where f represents a linear combination of coefficients multiplied by lower
order derivatives of the dependent variable ϕ. The method and form of the
solution of a PDE subject to initial and boundary conditions depend on the type
of the PDE. As discussed in Chap. 1, it is common to classify a PDE according
to the relationships between the coefficients of Eq. (4.5.3), as follows:

If b2 � 4ac > 0 then the PDE is hyperbolic �4.5.4a�

If b2 � 4ac D 0 then the PDE is parabolic �4.5.4b�

If b2 � 4ac < 0 then the PDE is elliptic �4.5.4c�

According to Eq. (4.5.4), the Laplace Eq. (4.5.2) is an elliptic PDE.
For elliptic PDEs there are no initial conditions (note that time does not

appear as an independent variable in Eq. 4.5.2), but only boundary conditions,
which must be expressed in terms of some property of the dependent vari-
able. For the present case, four boundary conditions are needed, two in each
coordinate direction. In Eq. (4.5.2),  is the dependent variable. In the two-
dimensional x–y domain, any time-dependent phenomenon associated with
the value of  is introduced, under unsteady-state conditions, through the
boundary conditions. However, at this point we consider steady-state flows
only. Because Eq. (4.5.2) is a second-order PDE with regard to x as well as
with regard to y, there are three types of linear boundary conditions that can
be applied to its solution (see also Sec. 1.3.3):

(1) All values of are specified on the boundaries of the flow domain, or

 D f�x, y� where �x, y� 2 G �4.5.5�

and G is the surface of the domain. With regard to the surface shown in
Fig. 4.18 we may write

 D f1�x, y1�  D f2�x2, y�;

 D f3�x, y2�  D f4�x1, y�
�4.5.6�

so that the required four boundary conditions are provided. Boundary condi-
tions of the type represented by Eqs. (4.5.5) and (4.5.6) are referred to as
Dirichlet boundary conditions.

(2) All values of the gradient of , i.e., the velocity components, are
specified on the boundaries of the domain, so

∂

∂n
D f�x, y� where �x, y� 2 G �4.5.7�

and n represents a coordinate normal to the boundary G, and pointing away
from it. Boundary conditions of this type are called Neumann boundary condi-
tions.
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Figure 4.18 Example of a domain for an elliptic PDE.

(3) A general linear combination of Dirichlet and Neumann boundary
conditions is written as

aC b
∂

∂n
D c �4.5.8�

where a, b, and c are functions of position (x, y). Again, four such boundary
conditions must be written.

Common linear boundary conditions are represented by solid bound-
aries. As previously noted, a solid boundary may be considered as a stream-
line. Therefore the velocity component perpendicular to the solid boundary
vanishes. Complete analysis and simulation of a flow domain concerns the
determination of the distribution of the velocity components and the pressure.
Determination of the potential function  in the entire domain basically yields
the velocity distribution. Then by using the Bernoulli equation, we obtain the
pressure distribution. However, very often the pressure is the variable speci-
fied on some portions of the domain. As an example, consider the case of free
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surface flow. For this type of flow the free surface is a streamline, on which
the pressure vanishes. The given pressure provides a nonlinear specification
of the velocity at the surface, through the Bernoulli equation. Furthermore,
the location of the free surface may be one of the unknown variables, which
must be determined as part of the overall solution to the problem. If there is
a simultaneous flow of immiscible fluids, then the employment of potential
flow theory can sometimes be considered. In such cases, the interface between
adjacent fluid domains represents a boundary, on both sides of which the pres-
sure and normal flow velocity are identical. Again, this represents a sort of
nonlinear boundary condition, since the position of the interface may not be
known. Topics of nonlinear boundary conditions are beyond the scope of the
present text.

Singular points in a flow domain can sometimes be introduced by simple
means, based on measurable parameters. Typical examples are sources and
sinks. Sometimes combinations of source sheets are used to represent solid
bodies immersed in the flow domain. By such a presentation, the streamline
shape of the immersed body can be simulated with small amounts of computer
resources, and limited requirements for boundary conditions. Vortices cannot
be created in a numerical simulation unless they are artificially introduced.
The common boundary conditions of solid boundaries do not produce singular
points typical of vortices. Therefore numerical simulation with simple Dirichlet
or Neumann boundary conditions cannot simulate lift forces. The introduction
of artificial vortices or vortex sheets is commonly used for the simulation of
lift forces.

In the framework of the present section, we provide a basic presentation
of finite difference solutions of the Laplace equation or the Poisson equation,
which is the nonhomogeneous form of the Laplace equation. Figure 4.19
represents a portion of the domain covered by a finite difference grid. The
grid is made of small squares, with equal spacing x and y in the x-
and y-directions, respectively. For each nodal point, subscript i refers to
the number of the x interval and subscript j refers to the number of the y
interval. The finite central difference (i.e., nodal values are used from both
sides of the node at which the derivative is to be evaluated) approxima-
tions of the first- and second-order derivatives of  for the nodal point (i,
j) are given as(

∂

∂x

)
i,j

³ iC1/2,j �i�1/2,j

x
�4.5.9a�

(
∂

∂y

)
i,j

³ i,jC1/2 �i,j�1/2

y
�4.5.9b�
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Figure 4.19 Portion of the domain covered by the finite difference grid.

(
∂2

∂x2

)
i,j

³ 1

x

[(
∂

∂x

)
iC1/2,j

�
(
∂

∂x

)
i�1/2,j

]

³ iC1,j � 2i,j Ci�1,j

�x�2
�4.5.10a�

(
∂2

∂y2

)
i,j

³ 1

y

[(
∂

∂y

)
i,jC1/2

�
(
∂

∂y

)
i,j�1/2

]

³ i,jC1 � 2i,j Ci,j�1

�y�2
�4.5.10b�

As Eqs. (4.5.9) and (4.5.10) are obtained by a central difference approx-
imation, their truncation error is of second order with respect to the grid
interval. These representations also are valid when sources of strength q are
located at some of the nodal points, in which case the Laplace equation is
modified as the Poisson equation,

iC1,j � 2i,j Ci�1,j

�x�2
C i,jC1 � 2i,j Ci,j�1

�y�2
D qi,j �4.5.11�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



For convenience, since the numerical grid consists of small squares, it is
assumed that x D y D k. Equation (4.5.11) then yields

i�1,j CiC1,j Ci,j�1 Ci,jC1 � 4i,j D k2qi,j �4.5.12a�

i,j D 1

4
�iC1,j Ci�1,j Ci,jC1 Ci,j�1 � k2qi,j� �4.5.12b�

For simplicity, we assume there are no sources present in the domain, so
that qij D 0 (i.e., solutions to the Laplace equation will be determined). Then,
Eq. (4.5.12) indicates that the value of  at the i, j nodal point is the average
of the four nodal points around that point. Each internal nodal point associ-
ated with subscripts i < imax � 1, and j not too close to the bottom and top
boundaries of the domain shown in Fig. 4.5.3, leads to an equation with five
unknown values of , associated with the i, j point and the four nodal points
around that point. Figure 4.20a illustrates a case in which Dirichlet boundary
conditions are used. Figure 4.20b shows a case where Neumann boundary
conditions are used.

Considering the case of Dirichlet boundary conditions, shown in
Fig. 4.20a, grid points with subscript imax are associated with a prescribed
value of  D 1. Therefore there is no need to use Eq. (4.5.12) for the
determination of  at these boundary nodal points. For nodal points with
subscript imax � 1, Eq. (4.5.12) incorporates the known value of imax,j.
Therefore for the Laplace equation, only nodal points located in the proximity
of the boundary have RHS values different from zero. A similar arrangement
should be considered with regard to all other boundaries at which the value
of the potential function is specified.

Considering the case of Neumann boundary conditions, shown in
Fig. 4.20b, at grid points with subscript imax the value of the derivative of
 is given. The finite (central) difference approximation for that derivative
can be represented by(

∂

∂x

)
imax,j

D u1 ³ imaxC1,j �imax�1,j

2x
�4.5.13�

where the subscript imax C 1 represents an artifical extension of the numerical
grid beyond the simulated flow domain. This is rearranged to solve for  at
position imax C 1,

imaxC1,j D imax�1,j C 2u1x �4.5.14�

The linear equation set represented by Eq. (4.5.12) incorporates nodal
points with subscript imax. The RHS of equations associated with these nodal
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Figure 4.20 Numerical representation of boundary conditions: (a) Dirichlet
boundary condition; and (b) Neumann boundary condition.

points is represented by a nonvanishing coefficient, provided that u1 is different
from zero. If u1 D 0, then the line of imax probably represents a solid boundary.
In this case, nonvanishing RHS coefficients are provided at other boundaries of
the domain. Expression similar to Eqs. (4.5.13) and (4.5.14) can be applied to
all other boundaries of the flow domain at which the gradient of the potential
function is specified.

The maximum number of unknown values of  incorporated in each
nodal point in Eq. (4.5.12) is five. Therefore each row of the matrix of
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coefficients of these unknowns includes a maximum number of five nonzero
coefficients. The solution of the set of linear equations represented by
Eq. (4.5.12) can be obtained using a noniterative method such as Gauss
elimination. However, due to the large number of zero-valued coefficients
in each row of the coefficient matrix, an iterative solution is more efficient
than the noniterative approach in this case. The diagonal term in the coefficient
matrix is the dominant term in each row of that matrix. Therefore convergence
of the iterative procedure is guaranteed. In the following paragraphs, we
present several common iterative procedures that can be applied to solve the
set of linear equations represented by Eq. (4.5.12) when qi,j D 0.

According to the iterative method of Jacobi, each new value of i,j, at
iteration nC 1, is obtained by using values of , at nodal points around point
(i, j), which were obtained at iteration n. Therefore, Jacobi’s method implies
that Eq. (4.5.12) should be modified as

�nC1�
i,j D 1

4

[
�n�i�1,j C�n�iC1,j C�n�i,j�1 C�n�i,jC1

]
�4.5.15�

where the superscript (in parentheses) indicates the iteration number at which
the variable is calculated.

The method of Gauss–Seidel uses the latest computed values of , as
they become available during the iteration process. This method is slightly
more efficient than that of Jacobi. The iteration algorithm for the solution of
the Laplace equation by the Gauss–Seidel method is

�nC1�
i,j D 1

4

[
�nC1�
i�1,j C�n�iC1,j C�nC1�

i,j�1 C�n�i,jC1

]
�4.5.16�

The rate of convergence of the Gauss–Seidel method can be improved by using
successive over-relaxation (SOR). According to this method, the provisional
value p of the function  at the nodal point (i, j) and at iteration (nC 1)
is calculated by the Gauss–Seidel algorithm, but this value is modified at the
(nC 1) iteration by means of a relaxation parameter ω,

�nC1�
i,j D �n�i,j C ω

[
p ��n�i,j

]
�4.5.17�

where p is given by Eq. (4.5.16). If ω D 1, then the SOR method is identical
to the method of Gauss–Seidel. Equation (4.5.17) also can be written as

�nC1�
i,j D ω

4

[
�nC1�
i�1,j C�n�iC1,j C�nC1�

i,j�1 C�n�i,jC1

]
C �1 � ω��n�i,j �4.5.18a�

or

�nC1�
i,j D �n�i,j C ω

4

[
�nC1�
i�1,j C�n�iC1,j C�nC1�

i,j�1

C�n�i,jC1 � 4�n�i,j
]

�4.5.18b�
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Finally, it should be noted that the solution of the Laplace or Poisson
equation is based on an iterative solution of a set of linear equations, generally
presented by

[A]fg D fbg �4.5.19�

where [A] is the matrix of coefficients of  values, fg is the vector of 
values, and fbg is the vector of RHS coefficients of all the equations. There are
many different ways to iterate and solve Eq. (4.5.19). The choice of the most
appropriate method of solution depends mainly on convergence properties for
a particular set of conditions.

PROBLEMS

Solved Problems

Problem 4.1 Confirm for each of the following flow fields that incompress-
ible flow is indicated. Which of these represent potential flow? Why?

(a) u D ˛x v D �˛y
(b) u D ˛y v D �˛x
(c) u D ˛y v D ˛x

(d) ur D ˛

r
v D 0

Solution

In a potential (and incompressible) flow, the following relationships should be
satisfied:

r ð EV D 0 r Ð EV D 0

In a Cartesian coordinate system, these expressions imply

∂v

∂x
� ∂u

∂y
D 0

∂u

∂x
C ∂v

∂y
D 0

In a plane polar coordinate system, these expressions yield

1

r

∂�rv��

∂r
� 1

r

∂ur
∂�

D 0
1

r

∂�rur�

∂r
C 1

r

∂v�
∂�

D 0

Upon considering each of the given velocity fields, by substituting into the
above differential equations, we find

(a) Potential incompressible flow
(b) Rotational incompressible flow
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(c) Potential incompressible flow
(d) Potential incompressible flow

Problem 4.2 Find the potential and stream functions, if possible, for each
of the flows given in solved problem (4.1.1).

Solution

We apply Eqs. (4.2.5) and (4.2.6) to determine the expressions for the required
functions:

�a�  D
∫
u dx D

∫
˛x dx D ˛x2

2
C f�y�

∂

∂y
D f0�y� D v D �˛y; ) f�y� D �˛y

2

2
CC; assume C D 0

 D ˛

2
�x2 � y2�

 D
∫
u dy D

∫
˛x dy D ˛xy C f�x�

∂

∂x
D ˛y C f0�x� D �v D ˛y ) f0�x� D 0 ) f�x� D C D 0

 D ˛xy

(b) Using the same approach as above, we obtain

 D ˛

2

(
x2 C y2)

 does not exist, since the flow is rotational

(c)  D ˛xy  D ˛

2
�y2 � x2�

(d)  D ˛ ln r D ˛

2
ln�x2 C y2�  D ˛� D arctan

(y
x

)

Problem 4.3 Determine the flow-net for the flow field created by the super-
position of a uniform flow with speed U and a source of strength q, as shown
in Fig. 4.21.

Solution

The complex potential is given by the sum of the potential functions for
uniform flow and a source,

w D Uz C q

2�
ln z D Ur cos � C q

2�
ln r C i

(
Ur sin � C q

2�
�
)
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Figure 4.21 Superposition of source and uniform flow, Problem 4.3.

Therefore the potential and stream functions are

 D Ur cos � C q

2�
ln r  D Ur sin � C q

2�
�

By differentiation of the complex potential, or either of the stream or potential
functions, we obtain the following components of the velocity vector:

ur D U cos � C q

2�r
v� D �U sin �

These expressions indicate that besides the cavitation singular point at r D 0,
there is another singular stagnation point at � D �, r D q/�2�U�. We introduce
the values of � and r for the stagnation point into the expression of the
stream function, to obtain the value of this function along the streamline,
which separates the region between the uniform flow and the source flow.
The result is

 D q

2

Therefore, the streamline that separates the uniform flow from the source flow
satisfies the following relationships:

r sin � D q

2U

(
1 � �

�

)
or y D q

2U

[
1 � 1

�
arctan

(y
x

)]
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According to this expression, the width of the stream tube occupied by the
source flow approaches the value q/�2U� at a large distance from the origin.

Problem 4.4 If in Fig. 4.3.1, H D 10 m, and K D 1 m/day, provide an
estimate of the seepage flow rate per one meter width of dam.

Solution

The solution to this problem is obtained by direct use of Eq. (4.3.15),

Q D K
m

n
H D 1 ð 4

15
ð 10 D 2.67 m3/�day Ð m� �4.3.16�

Problem 4.5 Water, with kinematic viscosity v D 10�6 m2/s, flows through
sandy soil. The characteristic pore size of the soil is d D 0.1 ð 10�3 m, and
its porosity is � D 0.3.

(a) What are the permeability and hydraulic conductivity of the soil?
(b) Darcy’s law is applicable up to a Reynolds number of one, where

the Reynolds number is based on the characteristic pore size and the
specific discharge. Determine the maximum value of the hydraulic
gradient, for which Darcy’s law can be applied.

Solution

(a) K D gd2�

32v
D 9.81 ð �0.1 ð 10�3�2 ð 0.3

32 ð 10�6

D 9.2 ð 10�4 m/s D 79.5 m/day

(b) Re D qd

v
D 1 ) q D Re

v

d
D 1 ð 10�6

0.1 ð 10�3
D 10�2 m/s

q D KJ ) J D q

K
D 10�2

9.2 ð 10�4
D 10.9

Unsolved Problems

Problem 4.6 Consider the Navier–Stokes equation for the x-direction (hori-
zontal) velocity component (for simplicity, neglect rotation effects):

Du

Dt
D � 1

�

∂p

∂x
C vr2u

where u is the velocity, p is pressure, � is density, and v is kinematic viscosity.
For inviscid flow the viscosity is 0 and pressure is the only force to consider.
Show that the viscous term also drops out, i.e., r2u D 0, for the case of
irrotational flow.
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Problem 4.7 Consider the flow field created by a superposition of a source
with strength q and a simple vortex, whose circulation  has the same magni-
tude as q.

(a) Find the complex potential, potential, and stream functions.
(b) Plot the flow-net.
(c) Find the pressure distribution along a radial coordinate.

Problem 4.8 Consider the flow field created by a superposition of a uniform
flow with speed U, in the positive x-direction, a positive source, of strength
q, located at x D �a, and a negative source (sink), located at x D a.

(a) Find the complex potential, potential, and stream functions.
(b) Find the location and types of singular points.
(c) Plot the flow-net.
(d) Find the pressure distribution along the x axis.

Problem 4.9 A simple vortex, with circulation , is located at x D a, y D b,
which is in a 90° corner between two solid walls. Determine the pathline of
the vortex movement.

Problem 4.10 A flow field is created by two sources at a solid wall, which
is represented by the y axis. One source, of strength q, is located at x D a.
The second source, of strength q/2, is located at x D 2a.

(a) Find the complex potential, potential, and stream functions.
(b) Determine the locations and types of singular points.
(c) Plot the flow-net.
(d) Find the pressure distribution along the x axis.

Problem 4.11 Consider the flow domain represented by

z D a cos�w�

where

z D x C iy w D C i

(a) Find the complex potential, potential, and stream functions.
(b) Determine the locations and types of singular points.
(c) Plot the flow-net.
(d) Find the pressure distribution along the x axis.

Problem 4.12 Wind blowing over a bluff is to be simulated using potential
flow theory. A uniform wind, U D 20 m/s, is combined with a source, having a
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Figure 4.22 Simulation of flow over a buffer, Problem 4.12.

flow rate q D 6,000 m2/s. The resulting flow is sketched in Fig. 4.22 (only the
top half of the bounding streamline is shown). Note that the stream function is

 D Ur sin � C m�

where m is q/�2��.

(a) What is the equation for the bounding streamline?
(b) How high is the bluff (H)?
(c) What is the velocity along the surface of the bluff, directly above

the source?

Problem 4.13 Flow over a hump is to be analyzed using potential flow
theory. The mathematical expression for the flow field is developed by consid-
ering one-half of the field created by superimposing a doublet in a uniform
flow. As shown in Fig. 4.23, the flow far from the hump has velocity U and

Figure 4.23 Definition sketch, Problem 4.13.
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pressure po. The fluid density is � and it is incompressible. The streamline
corresponding with the solid surface has  D 0, and gravity effects may be
neglected.

(a) What are the maximum and minimum pressures for this flow, in
terms of �,U, and po?

(b) Develop the equation for the streamline passing through the point
r D 2a, � D �/2.

Problem 4.14 Consider some possible values of the Rossby number in prac-
tical cases that you may encounter with regard to environmental flows in lakes
and reservoirs. Choose real values for at least three examples.

Problem 4.15 The engineer of a municipality has suggested that a treated
effluent can be disposed of by pumping it into an injection well. The well
should be able to accept a flow of 500 m3/h. It is drilled in an aquifer whose
thickness is 40 m and hydraulic conductivity is 100 m/day. Upstream of the
planned injection well, the municipality pumps its water supply needs from a
pumping well with a capacity of 600 m3/h. The natural flow in the aquifer is
achieved with a gradient of 0.1%.

(a) Consider several hypothetical cases in which the effluent could
possibly arrive at the pumping well. In other words, under what
circumstances could this occur?

(b) Consider several possible values of the distance between the
pumping and injection wells, and provide suggestions to the
municipality on how migration of the effluent into the pumping
well could be avoided.

Problem 4.16 Water flows through a confined aquifer of thickness 20 m.
The hydraulic gradient is 0.1%, the hydraulic conductivity is 50 m/day, and
the porosity is 0.3. The characteristic particle size of the aquifer sediment is
0.1 mm.

(a) Determine the specific discharge.
(b) Find the flow velocity.
(c) What is the Reynolds number of the flow?

Problem 4.17 Consider the schematics of flow under a concrete dam, as
shown in Fig. 4.24. Depict the flow-net and provide an estimate of the total
flow underneath the dam.

Problem 4.18 A function, which in the neighborhood of z D a has an expan-
sion that contains negative powers of �z � a�, is singular at z D a. In this case
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Figure 4.24 Definition sketch, Problem 4.17.

the coefficient of �z � a��1 is called the residue of the function at z D a.
Determine the residue of the following functions:

(a) �z � a�n where n D �1, 1, 2 . . .

(b) A2�z � a�2 C A1�z � a�C A0 C B1

�z � a�
C B2

�z � a�2

Problem 4.19 According to Cauchy’s residue theorem, the integral along a
closed line C of a holomorphic function (a function of z) is given by∮

c
f�z� dz D 2�i�a1 C a2 C a3 C Ð Ð Ð�

where a1, a2, . . . are the residues at the singular points of the area enclosed
by the line C. Find the poles and corresponding residues of the following
functions, as well as the integral of Chauchy’s residue theorem:

�a�
z

z C 1
�b�

z C 2

z2 � 1
�c�

z C z2

z2 C 1
�d�

4z2

z4 � 1

Problem 4.20 A source of strength q is placed at a point (a, 0) outside the
circle jzj D b, as shown in Fig. 4.25.
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Figure 4.25 Definition sketch, Problem 4.20.

Figure 4.26 Bounded flow past a cylinder, Problem 4.21.
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(a) Show that the complex potential describing the flow field is given
by

w D q

2�

[
ln�z � a�C ln

(
z � b2

a

)
� ln z

]

(b) Use the theorem of Blasius to prove that there is no moment about
the center of the circle, and that the circle is urged towards the
source by a force equal to

2�q2b2

�a�a2 � b2�

(c) Find the corresponding result when the source is replaced by a
vortex.

Problem 4.21 Consider the bounded potential flow around a cylinder as
shown in Fig. 4.26. Provide a numerical solution and sketch the flow-net.
Compare your results with the analytical solution for an infinite flow field.
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5
Introduction to Turbulence

5.1 INTRODUCTION

Turbulence results from a breakdown in stability of a fluid flow and is normally
associated with large Reynolds numbers. The instability may be generated by
an infinitesimal disturbance in an otherwise laminar flow, and the stability of
the flow depends on whether the disturbance grows or dies out, as discussed
in Sec. 5.4. Almost all natural flows are turbulent to some extent, and it
is important to understand and be able to represent turbulence effects when
modeling a given system. Turbulence itself is difficult to define, though certain
of its characteristics may be summarized as follows:

Turbulence is generally three-dimensional and is thought of as consisting
of eddies superimposed on the mean flow; these eddies are represented
as fluctuations in the flow field properties.

The eddy motions are irregular and vortical (they have vorticity).
The motions are mostly random in nature and are usually described in

statistical terms.
In fully developed turbulence there is a continuous spectrum of eddy

sizes, with a cascade of energy from larger eddies to successively
smaller ones, until the kinetic energy of the eddies is dissipated by
viscosity into heat by the smallest eddies.

From an environmental point of view, one of the most important effects
of turbulence is to enhance greatly the mixing of fluid properties. This is
accomplished through the action of the eddies, which are much more effec-
tive than molecular motions in redistributing fluid particles within a given
flow field (see Chap. 10 for further discussion of molecular and turbulent
diffusivities). A full analysis of turbulence is made difficult by a number of
factors, primarily because of its random nature and wide range of scales of
motion, from the largest eddies, which scale with the mean flow geometry,
to the smallest eddies, at which viscosity dissipates the kinetic energy of the
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turbulent motions. This means, for instance, that a complete description of a
turbulent flow field at any instant in time requires specification of flow values
at a very fine spatial resolution, to capture the smallest eddies. Thus specifica-
tion of initial conditions for application of the governing equations describing
a velocity field is tedious at best, for any problem of practical interest. Turbu-
lent flows are governed by the same equations of motion as were presented
in Chap. 2, but the usual difficulties in solving the Navier–Stokes equations
are compounded by the introduction of the velocity fluctuation terms, which
add three additional unknowns to be solved for. Thus the basic conservation
equations are no longer sufficient to generate a solution for all the variables
involved, and the problem of closure of the system arises. There has been
considerable effort to investigate ways of developing additional equations for
the fluctuating quantities. A few examples of these methods are described in
Sec. 5.5.

The present chapter is meant to provide an introduction to the analysis
of turbulent motions, to define some of the most common terms involved in
the study of turbulence, and to describe its effect on transport and mixing
in a fluid system. The intent here is to develop a basis for understanding
how to incorporate turbulence in practical modeling applications. The reader
is directed to references listed in the back of the chapter for more in-depth
discussions.

5.2 DEFINITIONS

In the analysis of turbulent flows, it is helpful to think of a time record
for any fluid property of interest (velocity, temperature, pressure, salinity,
etc.) as consisting of a mean, time-averaged component and a fluctuating
component that is a function of time. It is normally assumed that the statistical
properties of the fluctuating component remain constant, or stationary over the
averaging period used to define the mean. Turbulent velocity fluctuations are
illustrated in Fig. 5.1. In this figure is shown a time record of one component
of velocity measured at a point in a flow field. Although the mean flow (U)
is constant, or steady over the time period of measurement shown, there are
random fluctuations superimposed on the mean. These fluctuating values are
denoted by primes (i.e., u0), so that the total velocity at any point in time is

u D UC u0 �5.2.1�

and U is defined as the time average of u,

U D 1

T

∫ T

0
u dt �5.2.2�
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Figure 5.1 Illustration of turbulent velocity record.

where T is the averaging period. By definition, the time average of u0 D 0, so∫ T

0
u0 dt D 0 �5.2.3�

Similarly, the average of u0 multiplied by a constant is also zero.
Turbulent fluctuations are treated as realizations of a random process.

A random process in general is associated with certain temporal and spatial
scales. Consider first the time variability of a random process of interest,
relative to a range of time scales, as sketched in Fig. 5.2. This variability
can be illustrated with a simple example of sunlight intensity. Character-
istic time scales for sunlight intensity consist of one day (diurnal variability)
and several months (seasonal variability). Relative to the daily time scale,
solar intensity variations over periods of a few seconds or a few minutes

Figure 5.2 Illustration of time scale variability of a random process.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



would appear to be approximately constant. In other words, the variability
of the process is very small over this much smaller time period, relative to
a day, and the process could be considered as being approximately steady.
On the other hand, over a period of perhaps several weeks or months, the
solar intensity variation will have completed a number of cycles and would
appear to vary rapidly. In that case, the daily variability would appear as
fluctuations superimposed on the mean value over the period of interest.
Depending on the particular analysis involved, it might be useful to consider
averaged values over this period. As an alternative to the time scales shown
in Fig. 5.2, process variations over a range of frequencies can be evaluated,
where frequency, ω, is related to the inverse of T. Then large T implies small
ω and vice-versa.

An equivalent description can be made in spatial terms. For example,
consider a wavy water surface where the wavelength is � (Fig. 5.3). In other
words, the water surface variations are characterized by a process with length
scale �. Then, over length scales (distances) L much smaller than �, the water
surface would appear to be approximately constant, while for L much greater
than � the water surface appears to be rapidly varying. In this case the waves
represent fluctuations on the mean water surface, and it may make sense to
consider only the average water surface, or perhaps the average wave height.
Just as with temporal variations, we may also consider frequency variations in
space. In this case a spatial frequency or wave number k is defined, propor-
tional to the inverse of L.

Due to the random nature of turbulent motions, it is usually more
convenient to deal with statistical or averaged properties of the flow field.
An ensemble average is defined as the arithmetic average of a number of
measurements of a random process. For example, the ensemble average of a
set of velocity measurements made at a number of locations in a flow field is

Figure 5.3 Characteristic length scale for wavy water surface.
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defined as

ui�Ex, t� D lim
N!1


 1

N

N∑
jD1

ui�Ex, t; j�

 �5.2.4�

where the double overbar indicates a spatial average, the “j” notation indicates
the realization or measurement identification number, andN is the total number
of measurements or tests made.

A process is stationary if the statistics describing the process (i.e., mean,
standard deviation, correlations, etc.) are independent of time. It is common
to assume stationarity for the analysis of turbulent fluctuations. For stationary
processes, the ensemble average is the same as a time average such as is
defined in Eq. (5.2.2). In more general terms, a time average is defined by

ui�Ex, t0� D lim
T!1

{
1

T

∫ t0CT/2

t0�T/2
ui�Ex, t� dt

}
�5.2.5�

where T is the period of measurement (for averaging) and t0 is the point in
time for which the average is calculated. A single overbar in general is used to
denote an averaged quantity, usually a time average. The value of the average
is independent of t0 when the process is stationary.

A process is homogeneous when the statistics are independent of posi-
tion, and isotropic when independent of orientation (i.e. invariant to rotation
about any coordinate axis). For example, if the average square of the fluctu-
ating velocities is a homogeneous process, then

u0
i�Ex0, t�2 D u0

i�Ex0 C Ex0, t�2 �5.2.6�

where Ex0 represents an arbitrary displacement vector. In other words, the value
of the average does not depend on position.

Just as the fluid is considered as a continuum, the turbulent eddies that
are manifested by the velocity fluctuations are thought to occupy the fluid
fully, with smaller eddies embedded in larger ones. The turbulence consists
of a continuous spectrum of eddy sizes and can be represented by Fourier
integrals (Sec. 5.3). The eddies fully interact with each other, exchanging
energy and momentum, and the movement of any one eddy affects the fluid
surrounding it. This implies that the fluctuating velocity at a given point in the
fluid is statistically correlated with that at neighboring points. This correla-
tion decreases with separation, eventually reaching zero at a sufficiently large
distance. When this happens, the corresponding distance may be considered as
an estimate for the size of the largest eddy. A similar argument can be made
with respect to temporal fluctuations, in which case the largest correrlation
time, at which the correlation approaches zero, is considered as an estimate
of the longest time scale associated with an eddy.
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A general covariance function (for velocity fluctuations) is defined by
u0
i�Ex1, t1�u0

j�Ex2, t2�, which is simply the average values of the product of two
values calculated at two locations Ex1 and Ex2 and two times t1 and t2. The
correlation coefficient is

Rij D u0
i�Ex1, t1�u0

j�Ex2, t2�[
u0
i�Ex1, t1�2 Ð u0

j�Ex2, t2�2
]1/2 �5.2.7�

and Rij � 1. A closely related parameter is the autocorrelation coefficient,
which may be defined over time or space. The autocorrelation is calculated on
the basis of the covariance between a value and itself, but displaced in either
time or space. For a series of data measured by a velocity probe at a fixed
location in space, the autocorrelation coefficient is

Rii�t� D u0
j�Ex, t�u0

i�Ex, t Ct�

u0
i�Ex�2

�5.2.8�

where t is the time interval or time lag over which the autocorrelation
is calculated. In other words, the autocovariance function (numerator of
Eq. 5.2.8) is calculated as the average of all values of u0

i multiplied by
itself, but lagged in time by t. This value is then normalized by the mean
square value of u0

i (denominator of Eq. 5.2.8), which is the autocovariance
function for t D 0. Since the correlation of any value with itself is highest
for zero lag, then Rii�t� � 1. In performing the calculation in Eq. (5.2.8),
it is assumed that u0

i is a stationary process. It also should be noted that
Rii D Rij�t� D Rii��t�, and Rii�0� D 1. A typical curve for Rii as a function
of t is illustrated in Fig. 5.4.

Until recently, making temporal measurements at a relatively small
number of locations (maybe only one) has been by far the most common
procedure in fluids experiments, due to the available instrumentation. This
limits statistical calculations to the temporal domain. The point at which Rii
reaches zero may be interpreted in a similar manner as a length autocorrelation,
and the time (�max in Fig. 5.2.4) corresponds to the longest eddies. Assuming
stationarity, temporal scales are converted to length scales by multiplying with
an appropriate velocity scale, often the root-mean-square fluctuating velocity.
In the past decade or so, however, the advent of particle tracking velocimetry
(PTV) and particle image velocimetry (PIV) has provided sufficiently detailed
spatial resolution for velocity data that calculations such as Eq. (5.2.8) can be
performed directly for spatial lags rather than temporal lags (i.e., substituting
Ex for t). For now, we continue the discussion for temporal analysis.

Once Rii is known, the integral time scale is

� D
∫ 1

0
Rii�t� d�t� �5.2.9�
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Figure 5.4 Variation of Rii with time lag, illustrating calculations for temporal inte-
gral and micro scales.

This calculation gives another measure of the time over which statistics of
the process are correlated, and for turbulent velocities, � is considered to be a
representative time scale for the main energy-containing eddies in a turbulent
velocity field. These are known as the integral-scale eddies. For a real data set,
this calculation cannot be computed to the limit of infinity. Instead, the upper
limit is set by the number of measurements made (N). If the time interval
between each measurement is t, the calculation is

� D t
N�1∑
nD0

Rii�nt� �5.2.10�

Better estimates for � are obtained with longer data records, which involve
larger numbers of data for the averaging process. In practice, values for Rii
tend to oscillate around 0 after some time, and the calculation for � normally
includes values for Rii only up to the first zero crossing. It is easily seen that
� is equivalent to the area under the autocorrelation coefficient curve.

An estimate for the turbulence temporal microscale (�t, corresponding
to the smallest eddies expected in the flow field) is found by fitting a parabola
to the autocorrelation coefficient curve at t D 0 (Fig. 5.4),
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�t D


� 2

d2Rii
dt2

∣∣∣∣
tD0




1/2

�5.2.11�

This value also is shown in Fig. 5.4.
The equivalent calculations for spatial scales, based on measurements

taken simultaneously at a set of different locations, leads to a corresponding
spatial microscale called the Taylor microscale. In other words, the autocor-
relation coefficient in space is calculated as

Rii D u0
i�Ex, t�u0

i�Ex CEx, t�
u0
i�t�2

�5.2.12�

where it is assumed that the process is homogeneous, at least over the area
of measurement. Then, equations equivalent to Eqs. (5.2.9) or (5.2.10), and

Figure 5.5 Example of velocity field measurement in a 2-liter mixing jar, obtained
by PIV. (From Cheng et al., 1997.)
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(5.2.11) are used to obtain integral and microlength scales, respectively. If only
temporal data are available, the usual procedure is to apply Taylor’s “frozen
turbulence” hypothesis, which states that temporally varying measurements
obtained at a single location in space may be related to spatial variations
through the mean velocity. In other words, this procedure assumes that the
turbulence properties are changing only very slowly relative to the mean flow
position. In some cases, the velocity probe itself is moved through the fluid,
providing its own mean velocity. The relation between a time step t and
a spatial step x is then x D Ut. This procedure is not always valid,
particularly in situations when U is small.

As already noted, PTV and PIV enable simultaneous measurements of
turbulent velocities at many different points in a flow field. For example,
Fig. 5.5 shows a PIV image result from a flow field inside a 2-liter mixing
jar, similar to those used in studying flocculation processes for water treatment
studies. The fine spatial detail is immediately evident, and these data enable
spatial statistics to be calculated directly. In fact, PIV systems now provide
direct digital images of turbulent eddy motions, as shown in Fig. 5.6. This

Figure 5.6 High-pass velocity field obtained from the data of Figure 5.5, showing
turbulent eddy structures. (From Cheng et al., 1997.)
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latter figure was obtained from the data of Fig. 5.5 through a high-pass filtering
process, which removes the low-frequency (mean) flow and reveals only the
high-(spatial)-frequency turbulence motions. Unfortunately, while these data
have provided interesting results in the lab, with few exceptions PIV has not
yet been widely adapted for field studies.

5.3 FREQUENCY ANALYSIS

As noted previously, the continuous spectrum of eddy size and time scales in a
fully developed turbulence field allows analyis by Fourier integrals. This leads
to calculation of the power spectrum, as described below. The end result is a
determination of the main frequencies of importance in a set of measured flow
data and an indication of the manner in which turbulent energy is transported
from larger scales (lower frequencies) to smaller scales (higher frequencies).
The procedures are based on the concept that a continuous data series may be
represented by a Fourier series, which in general is an infinite sum of sine and
cosine terms. As an example, consider a simple periodic function, as shown
in Fig. 5.7. This function may be represented by

f�t� D a0 C a sin�ωt� �5.3.1�

Figure 5.7 Illustration of simple periodic function of time (sine wave).
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Figure 5.8 Dual periodic function, consisting of two sine waves; a second sine wave,
with half the amplitude and one-third the period of the wave in Fig. 5.7, has been added
to generate the bold-faced curve.

where a0 is a constant, a is the amplitude of the sine term, and ω D 2�/T is
the frequency. Adding a second sine term Fig. 5.8,

f�t� D a0 C a1 sin�ω1t�C a2 sin�ω2t� �5.3.2�

where a1 and a2 are the amplitudes and ω1 D 2�/T1 and ω2 D 2�/T2 are
the frequencies, respectively, of the two sine curves. Equivalent expressions
in terms of spatial frequencies or wave numbers are possible for spatially
varying data.

This idea may be extended to include as many terms as necessary to
represent a given function. In general, both sine and cosine terms are included
in the summation. If a function is measured over either a time period T or
spatial length L (as would be done in a realistic measurement), it is assumed for
Fourier series representation that the length of record is one cycle of a cyclic
process. For example, a function f�x� is shown in Fig. 5.9, where observations
are made only over the interval between x0 and x0 C L. Figure 5.10 shows the
Fourier series representation for f�x�, written as

f�x� D a0 C
1∑
nD1

(
an cos

2�nx

L
C bn sin

2�nx

L

)
�5.3.3�
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Figure 5.9 A function f(x), measured between x0 and x0 C L.

Figure 5.10 Periodic representation of the function f(x) measured as in Fig. 5.9.

where a0 is a constant magnitude function, equal to the long-term mean of
f�x�, and the an and bn are the amplitudes associated with each frequency.
These magnitudes are found from the Fourier transform functions, written as

a0 D 1

L

∫ x0CL

x0

f�x� dx �5.3.4�

an D 2

L

∫ x0CL

x0

f�x� cos
2�nx

L
dx �5.3.5�

bn D 2

L

∫ x0CL

x0

f�x� sin
2�nx

L
dx �5.3.6�
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It is usual to define a wave number, kn D 2�n/L, as a spatial frequency, so
the arguments for the sine and cosine terms may be written simply as (knx). It
also should be noted that a finite sum in Eq. (5.3.3) is an exact representation
of f�x� when f�x� is a true periodic function (of period L).

The statistical representation of a random process Qx (in other words, Qx
represents a set of values measured for a given parameter of interest, such
as velocity, pressure, depth, concentration, etc., and x represents one of the
values in the set) depends largely on the distribution of values as given by the
probability density function, p�x�, where 0 � p�x� � 1, and∫ 1

�1
p�x� dx D 1 �5.3.7�

The cumulative probability distribution function, F�x�, for a given x, is just
the area under the curve of p�x�,

F�x� D
∫ 1

�1
p�x� dx �5.3.8�

This value indicates the percentage of all values in Qx that are less than x.
The expected value or mean of Qx is

E�Qx� D x D
∫ 1

�1
xp�x� dx �5.3.9�

and the variance is


2�Qx� D
∫ 1

�1
�x � x�2p�x� dx D E�Qx2�� [E�Qx�]2 �5.3.10�

As previously noted, it is usual in turbulence analysis to assume that the
processes being measured are stationary. With this assumption, the mean of a
process can be defined in terms of a finite version of Eq. (5.3.9),

E�Qx� D 1

T

∫ T

0
x�t� dt �5.3.11�

where T is the time of measurement. For digital data the mean is simply

E�Qx� D 1

N

N∑
nD1

xn �5.3.12�

where N is the total number of observations and the xn are individual measure-
ments of the process Qx. Similarly, the variance for a stationary process can be
calculated as


2�Qx� D 1

T

∫ T

0
[x�t�� E�Qx�]2dt �5.3.13�
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or, for digital data,


2�Qx� D 1

N� 1

N∑
nD1

[xn � E�Qx�]2 �5.3.14�

Note that the division in Eq. (5.3.14) is carried out by (N� 1), rather than by
N, to obtain an unbiased estimate of the variance. The autocorrelation is

R�t� D 1

T

∫ T

0
x�t�x�t Ct� dt D 1

N0

N0∑
nD1

�xn��xnCm� �5.3.15�

where m is the number of steps (between data points) corresponding to t,
and N0 is the number of terms that can be included in the averaging procedure.
For a fixed record length T, N0 is smaller for larger t. For example, a record
of 10 values (N D 10) can have nine terms in the sum of Eq. (5.3.16) when
m D 1, but only one term when m D 9.

Finally, the power spectrum function, S�ω�, is related to the autocorre-
lation as

S�ω� D
∫ 1

0
R�t� cos�ωt� d�t� �5.3.16�

and

R�t� D 2

�

∫ 1

0
S�ω� cos�ωt� dω �5.3.17�

These last two relationships form the Fourier transform pair. Equation (5.3.16),
in particular, provides a direct means of identifying specific frequencies of
interest in the signal for a given record of observation, since an amplitude
function can be determined by

P�ω� D [ωS�ω�]1/2 �5.3.18�

which gives the amplitude of the function at frequency ω.
Figure 5.11 shows a power spectrum calculated for the longitudinal (i.e.,

in the direction of mean flow) turbulent fluctuating velocity measured along
the centerline of a surface jet. Figure 5.12 shows the corresponding amplitude
function. It is easy to see certain peaks in these figures, which indicate the
frequencies of the most energetic motions. Another example of this approach is
with respect to water surface elevations measured at the mouth of an estuary.
Application of frequency analysis to a set of such data should be able to
provide an indication of the normal tidal period (or frequency), as well as the
dominant wave period.
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Figure 5.11 Power spectrum calculated for longitudinal turbulent velocity fluctua-
tions measured along the centerline of a surface jet in the laboratory.

Figure 5.12 Amplitude function corresponding to the power spectrum from
Fig. 5.11.
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5.4 STABILITY ANALYSIS

The essence of stability theory is to define whether a small disturbance imposed
on a flow will grow or not. In this section we consider linear stability, in which
a stable, steady flow represented by velocities and pressure (ui, p) is subjected
to small disturbances u0

i and p0. Thus

ui D ui C u0
i p D pC p0 �5.4.1�

where ui�i D 1, 2, 3� represents the three velocity components in a Cartesian
coordinate system. Note that this definition for ui appears similar to Eq. (5.2.1),
except here our interest is the initial growth of the disturbances, rather than
the properties of the disturbances once they are fully developed. In general,
expressions similar to Eq. (5.4.1) can be written for other fluid properties such
as density, temperature, or mass concentration (dissolved mass), but for now
we are primarily interested in the velocities and pressure; density variations
are considered only in connection to buoyancy terms, consistent with the
Boussinesq approximation.

We first consider the Navier–Stokes equations for incompressible flow,
assuming a Cartesian coordinate system (refer to Chap. 2),

∂ui
∂xi

D 0 �5.4.2�

∂ui
∂t

C uj
∂ui
∂xj

D � 1

�

∂p

∂xi
� gi C 	r2ui �5.4.3�

where Eq. (5.4.2) expresses continuity and Eq. (5.4.3) expresses momentum
conservation, with i, j D 1, 2, 3, g D gravity, and 	 D kinematic viscosity.
Following normal convention, the Coriolis term is not included here, as it
is not important for a first-order linear stability analysis.

It is assumed that the steady, stable flow (ui, p) satisfies

∂ui
∂xi

D 0 �5.4.4�

and

uj
∂ui
∂xj

D � 1

�

∂p

∂xi
� gi C 	r2ui �5.4.5�

This solution also is assumed to satisfy all relevant boundary conditions
of the problem. For the continuity equation, substitution of Eq. (5.4.1) into
Eq. (5.4.2) gives

∂ui
∂xi

D ∂�ui C u0
i�

∂xi
D ∂ui
∂xi

C ∂u0
i

∂xi
D 0 �5.4.6�
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The time average of this expression is

∂ui
∂xi

C ∂u0
i

∂xi
D ∂ui
∂xi

C ∂u0
i

∂xi
D 0 �5.4.7�

However, because of Eq. (5.4.4) and also because, by definition, the time
average of a fluctuating quantity is 0 (since u0

i is a fluctuating quantity, so is
∂u0
i/∂xi), then

∂u0
i

∂xi
D 0 �5.4.8�

Also, from Eq. (5.4.6), it is seen that the fluctuating part of the velocity field
has zero divergence, i.e.,

∂u0
i

∂xi
D 0 �5.4.9�

For the momentum equations, substitution of Eq. (5.4.1) into Eq. (5.4.3)
results in

∂

∂t
�ui C u0

i�C �uj C u0
j�
∂

∂xj
�ui C u0

i�

D � 1

�0

∂

∂xi
�pC p0�C gi C 	r2�ui C u0

i� �5.4.10�

Then, by subtracting Eq. (5.4.5) and noting that the assumed stable solution
is steady, an equation for the disturbances is obtained as

∂u0
i

∂t
C uj

∂u0
i

∂xj
C u0

j

∂ui
∂xj

D � 1

�

∂p0

∂xi
C 	r2u0

i �5.4.11�

Equations (5.4.9) and (5.4.11) are the governing equations for the disturbances.
The simplest case to consider for the disturbances is that of natural

sinusoidal oscillations of small amplitude. Since Eqs. (5.4.9) and (5.4.11) are
linear in the disturbances and the flow given by (ui, p) is independent of time,
formulations for the disturbances can be written as

u0
i D fi�x1, x2, x3� e

�iot p0 D f0�x1, x2, x3� e
�iot �5.4.12�

where fi and f0 are functions only of position and 
 is a complex function
having units of time�1. From Eq. (5.4.12), the disturbances are seen to grow or
decay with time, depending on whether the imaginary part of 
�
i� is positive
or negative, respectively. Thus the flow is unstable when 
i > 0 and stable
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when 
i < 0. When 
i D 0, a state of neutral stability results, in which the
disturbances neither grow nor decay with time. Substituting Eq. (5.4.12) into
Eqs. (5.4.9) and (5.4.11) gives, respectively,

∂fi
∂xi

D 0 �5.4.13�

and

� i
fi C uj
∂fi
∂xj

C fj
∂ui
∂xj

D � 1

�

∂f0

∂xi
C 	r2fi �5.4.14�

Since the flow field (ui, p) satisfies the boundary conditions of the origi-
nally posed problem, the boundary conditions for Eqs. (5.4.13) and (5.4.14)
must be homogeneous, which also means the boundary conditions for the
fi are homogeneous. A nontrivial solution for these equations then will be
possible for certain values of 
, i.e., an eigenvalue problem results for 

and fi.

The spatial stability problem can be addressed by considering the distur-
bances as an oblique traveling wave. For convenience, the wave is assumed
to travel in the x1 –x3 plane, and functional forms for fi and f0 are written as

fi�x1, x2, x3� D ϕi�x2� e
i�k1x1Ck3x3�

f0�x1, x2, x3� D ��x2� e
i�k1x1Ck3x3�

�5.4.15�

where k1 and k3 are complex wave numbers in the x1 and x3 directions, respec-
tively, with units of length�1. After substituting Eq. (5.4.15) into Eqs. (5.4.13)
and (5.4.14), rearranging and simplifying, we have

∂ϕ2

∂x2
C i�k1ϕ1 C k3ϕ3� D 0 �5.4.16�

i��
 C kuC k3u3�fi C u2
∂ϕi
∂x2

C ϕj
∂ui
∂xj

D � 1

�

∂�

∂xi
υ2i � i

�

�
�k1υ1i C k3υ3i�C 	

[
∂2ϕ

∂x2
2

� �k2
1 C k2

2�ϕi

]
�5.4.17�

where υij is the Kronecker delta. Now, for fixed 
, Eqs. (5.4.16) and (5.4.17)
form an eigenvalue problem for k1 and k3. Similar to the situation with 
, if
either k1 or k3 has a negative imaginary component, the flow will be spatially
unstable.

It is helpful to consider the equations in nondimensional form. Following
the development in Sec. 2.9, this is done by designating characteristic velocity
(U0) and length (L) scales, to define nondimensional variables as
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x D x1

L
y D x

L
z D x3

L
U D u1

U0 V D u2

U0

W D u3

U0 ˛ D Lk1 ˇ D Lk3 � D U0

L
t �5.4.18�

K D �

�U02 � D 
L

U0  i D ϕi
U0 Re D U0L

	

Introducing these into Eqs. (5.4.16) and (5.4.17) then gives

d 2

dy
C i�˛ 1 C ˇ 3� D 0 �5.4.19�

i 1���C ˛UC ˇW�C V
d 1

dy
C  1

∂U

∂x
C  2

∂U

∂y
C  31

∂U

∂z

D �i˛KC 1

Re

[
d2 1

dy2
� �˛2 C ˇ2� 1

]
�5.4.20�

i 2���C ˛UC ˇW�C V
d 2

dy
C  1

∂V

∂x
C  2

∂V

∂y
C  31

∂V

∂z

D �dK
dy

C 1

Re

[
d2 2

dy2
� �˛2 C ˇ2� 2

]
�5.4.21�

i 3���C ˛UC ˇW�C V
d 3

dy
C  1

∂W

∂x
C  2

∂W

∂y
C  3

∂W

∂z

D �iˇKC 1

Re

[
d2 3

dy2
� �˛2 C ˇ2� 3

]
�5.4.22�

5.4.1 Stability of Plane Laminar Flows

In general, the system of equations (5.4.19)–(5.4.22) is very difficult to solve.
However, there are certain simplified cases for which further development is
possible. Consider a flow that consists of parallel streamlines in the x–z plane,
so that y indicates the direction normal to the mean flow direction. This type
of flow might exist between two infinite parallel planes, for example. The
variations of flow properties in the x and z directions are assumed to be very
small relative to the y direction, so that the flow field may be considered
as a function of y only [i.e., U D U�y�, V D V�y�, W D W�y�]. Then, from
the continuity equation (5.4.4), V D 0. For simplicity, it also is assumed that
W D 0 in the following. In other words, a straight flow is considered, where
the coordinate system is aligned so that the x axis points along the direction
of the mean flow. With these assumptions, Eq. (5.4.19) is unchanged, and
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Eqs. (5.4.20)–(5.4.22) become, respectively,

i 1���C ˛U�C  2
∂U

∂y
D�i˛KC 1

Re

[
d2 1

dy2
� �˛2Cˇ2� 1

]
�5.4.23�

i 2���C ˛U� D �dK
dy

C 1

Re

[
d2 2

dy2
� �˛2 C ˇ2� 2

]
�5.4.24�

i 3���C ˛U� D �iˇKC 1

Re

[
d2 3

dy2
� �˛2 C ˇ2� 3

]
�5.4.25�

These equations are combined by first eliminating K between Eqs. (5.4.23)
and (5.4.24) and substituting for  1 from Eq. (5.4.19) to obtain an equation
with  2 and  3. A second equation in  2 and  3 is developed by eliminating
K between Eqs. (5.4.24) and (5.4.25), again using Eq. (5.4.19) to substitute
for  1. The two equations in  2 and  3 are then combined to give

�U� c�

[
d2

dy2
� �˛2 C ˇ2�

]
 2 �  2

d2U

dy2

D � i

˛Re

[
d4

dy4
� 2�˛2 C ˇ2�

d2

dy2
C �˛2 C ˇ2�2

]
 2 �5.4.26�

where

c D �

˛
�5.4.27�

is a complex velocity (nondimensional), called the phase speed of the distur-
bance. The corresponding dimensional complex velocity is the ratio of the
time parameter 
 to the wave number.

We now consider three-dimensional disturbances in the form of an
oblique wave in the x–z plane, with amplitude as a function of y. This is
called a Tollmien–Schlichting wave, and we further assume that the coordinate
system is oriented so that the direction of travel of the wave is along the x-
axis. This implies ˇ D 0. Under this condition, the continuity equation (5.4.19)
simplifies to

d 2

dy
C i˛ 1 D 0 �5.4.28�

A general solution to this equation may be expressed in terms of a function
 �y�, such that

 1 D d 

dy
 2 D �i˛ �5.4.29�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Substituting Eq. (5.4.29) into Eq. (5.4.26) then gives

�U� c�

(
d2

dy2
� ˛2

)
 �  

d2U

dy2

D � i

˛Re

[
d4

dy4
� 2˛2 d

2

dy2
C ˛4

]
 �5.4.30�

This is known as the Orr–Sommerfeld equation. This equation also can be
derived directly from the two-dimensional Navier–Stokes equations, assuming
disturbances of the form  �y� exp[i˛�x � ct�], from which the velocity c may
be interpreted as the velocity of wave propagation.

Solution of the Orr–Sommerfeld equation depends on boundary condi-
tions for a specific problem and is usually accomplished by numerical integra-
tion. Once the solution for  is obtained, the velocity perturbations are found
from

u0 D u0
1

U0 D d 

dy
ei�˛x���� v0 D u0

2

U0 D �i˛ ei�˛x���� �5.4.31�

which can be seen from the definition of  in Eqs. (5.4.28) and (5.4.29). These
perturbations can grow in either time or space, if the imaginary parts of ˛ or
� are negative. In dimensional terms, the perturbations are

u0
1 D U0d 

dy
ei�kx1�
t� u0

2 D �ikLU0 ei�kx1�
t� �5.4.32�

(recall that this solution is for waves traveling in the x-direction, and k is the
corresponding wave number).

As previously mentioned, the solution for ˛ and � (or, in dimensional
terms, k and 
) forms an eigenvalue problem. Consider, for example, the case
of temporal instability. In this case, ˛ is assumed to be real and ˛r (D real
part of ˛) is specified, along with Re and U�y�, which are the main param-
eters of Eq. (5.4.30). Solution of the differential equation then produces one
eigenfunction  and one complex eigenvalue c for each pair of values (˛,
Re). The condition of neutral stability is then of interest, since curves of
neutral stability stable from unstable regions in the parameter space (˛, Re).
A representative curve of neutral stability is shown in Fig. 5.13. The point
on the curve that corresponds to the lowest value for Re gives the critical
value, Rec D critical Reynolds number. For Re < Rec, the disturbances are
stable for all values of ˛r. For larger Re, unstable solutions appear, although
there are still wave numbers for which the solutions are stable, even for
high Re.
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Figure 5.13 Neutral stability curve for wavelike disturbances superimposed on plane
laminar flow.

5.5 TURBULENCE MODELING

As previously mentioned, nearly all natural flows are turbulent. In the previous
few sections we described some of the basic techniques used in describing
turbulent quantities, from a statistical point of view, as well as analysis
that leads to a prediction of conditions under which turbulence will occur.
However, empirical evidence is still commonly used to describe turbulent flow,
either the initial transition to turbulence or properties of the fully turbulent flow
field.

Perhaps the most common example of this is the early observation of
Reynolds that pipe flow becomes turbulent for a Reynolds number of about
2000, where Reynolds number is defined with the pipe diameter and mean
flow velocity. Empirical data also play a role in the analyses described in the
present section, where we present several methods used to obtain closure for
the set of equations describing a turbulent flow. These approaches provide a
basis for modeling such flows.

5.5.1 Reynolds Averaging

The basic governing equations for turbulent flow are the same as those devel-
oped in Chap. 2, except here the fluctuating nature of the various properties
of the system is included explicitly. One of the most important consequences
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of these turbulent fluctuations is their effect on transport, and one of the most
common methods of incorporating turbulent transport for each of the fluid
properties is through definition of a turbulent diffusivity or, as in the case of
the momentum equation, a turbulent eddy viscosity. This is done through the
process of averaging the effects (over time) of the fluctuating components of
the fluid properties. That is, we consider various properties of the fluid system
as consisting of mean and fluctuating parts, as in Eq. (5.2.1),

ui D ui C u0
i � D � C �0 p D pC p0 T D TC T0 �5.5.1�

where the ui are the velocity components, � is density, p is pressure and T is
temperature. An overbar is used to denote the mean, and a primed quantity is
a fluctuating part. These have basically the same meaning as in the previous
section (5.4), although here we take it for granted that the fluctuations are
present. Following the approach in previous sections, statistical properties of
the turbulence are assumed to be stationary.

First consider the continuity equation. Using index notation and
assuming incompressible flow, this equation comes from Eq. (2.5.7) and is
written as

∂ui
∂xi

D ∂�ui C u0
i�

∂xi
D ∂ui
∂xi

C ∂u0
i

∂xi
D 0 �5.5.2�

Taking a time average of this expression gives

∂ui
∂xi

C ∂u0
i

∂xi
D ∂ui
∂xi

C ∂u0
i

∂xi
D 0 �5.5.3�

and the time average of a fluctuating quantity is 0, so

∂u0
i

∂xi
D 0 �5.5.4�

Also, the time average of a mean quantity is just the mean itself. Combining
Eqs. (5.5.3) and (5.5.4) shows that the mean flow field must satisfy the conti-
nuity relation (in fact, this is the steady, stable flow U considered in Sec. 5.4).
Then, from Eq. (5.5.2), we know that

∂u0
i

∂xi
D 0 �5.5.5�

For the general form of the momentum equation, consider Eq. (2.9.17),
rewritten here for convenience as

∂ui
∂t

C uj
∂ui
∂xj

C 2εijk�juk D �

�0
gi � 1

�0

∂p

∂xi
C 	r2ui �5.5.6�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



where gradients in the reference level (hr) have been neglected. Substituting
fluctuating variables for velocity, density, and pressure (Eq. 5.5.1), we obtain

∂

∂t
�ui C u0

i�C �uj C u0
j�
∂

∂xj
�ui C u0

i�C 2εijk�j�uk C u0
k�

D � C �0

�0
gi � 1

�0

∂

∂xi
�pC p0�C 	

∂

∂xj

[
∂

∂xj
�ui C u0

i�

]
�5.5.7�

where the Boussinesq approximation has been used to neglect density varia-
tions except in the buoyancy term. Multiplying the terms and time-averaging
then gives

∂ui
∂t

C uj
∂ui
∂xj

C u0
j
∂u0
i

∂xj
C 2εijk�juk

D �

�0
gi � 1

�0

∂p

∂xi
C 	

∂

∂xj

(
∂ui
∂xj

)
�5.5.8�

Note that although the mean of a fluctuating quantity is zero, the mean
of the product of two fluctuating quantities is not usually zero. Also, the mean
fluctuating term (third term on the left-hand side) can be rewritten using

u0
j
∂u0
i

∂xj
D ∂

∂xj
�u0
iu

0
j�� u0

i

∂u0
j

∂xj
�5.5.9�

where, from Eq. (5.5.5), the last term on the right-hand side of this result is
zero. Thus after substituting Eq. (5.5.9) back into Eq. (5.5.8) and rearranging,
we obtain

∂ui
∂t

C uj
∂ui
∂xj

C 2εijk�juk

D �

�0
gi � 1

�0

∂p

∂xi
C 	

∂2ui
∂xj∂xj

� ∂

∂xj
�ui‘u0

j� �5.5.10�

This is the Reynolds averaged equation for mean momentum transport.
The last term on the right-hand side of Eq. (5.5.10), when multiplied by

�0, represents the Reynolds stresses. This term produces an effect similar to that
of viscous stresses, though it should be kept in mind that the physical basis
for viscous stress is fluid viscosity, while turbulent shear stress (Reynolds
stresses) results from the fluctuating nature of the velocity field. In other
words, the turbulent eddies transport various fluid properties by their random
three-dimensional motions, superimposed on top of the mean flow (advective)
transport. This process is illustrated in Fig. 5.14.
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Figure 5.14 Illustration of turbulent transport by small-scale eddy motions superim-
posed on top of the mean flow field.

The problem now is to find ways to evaluate the Reynolds stresses, since
the equation set at this point only relates these stresses to the mean flow. One
of the simplest approaches is to express the magnitude of the Reynolds stresses
in terms of a gradient formulation, similar to molecular diffusion, that is,

�u0
iu

0
j D 	t�j�

∂ui
∂xj

�5.5.11�

where 	t�j� is defined as a turbulent kinematic eddy viscosity in the j-direction
(note that summation comvention is not used here). This formulation allows
the molecular and Reynolds stresses in Eq. (5.5.10) to be combined, since they
both depend on the gradient of mean velocity. By substituting Eq. (5.5.11) into
Eq. (5.5.10) we obtain

∂ui
∂t

C uj
∂ui
∂xj

C 2εijk�juk

D �

�0
gi � 1

�0

∂p

∂xi
C ∂

∂xj

[
�	 C 	t�j��

∂ui
∂xj

]
�5.5.12�

Then, since turbulent transport is generally much stronger than molecular
transport, 	 − 	t�j�, and the molecular term is usually neglected in writing the
mean momentum equation,

∂ui
∂t

C uj
∂ui
∂xj

C 2εijk�juk D �

�0
gi � 1

�0

∂p

∂xi
C ∂

∂xj

[
	t�j�

∂ui
∂xj

]
�5.5.13�
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Estimates for 	t�j� may be obtained by direct measurements of the
Reynolds stresses and mean velocity gradients, using Eq. (5.5.11). However,
this is normally a difficult and time-consuming procedure, requiring a large
number of measurements in order to obtain reasonable averages. Other
estimates of turbulent viscosities may be made by conducting experiments
where the diffusion of a conservative tracer is observed over time and values
for 	t�j� are chosen so that the equation fits the observations (assuming that at
least the mean flow is well known). This procedure requires using a solution
to the turbulent advection–diffusion equation for dissolved mass, which is
described in Chap. 10, along with the application of the Reynolds analogy,
which is an assumption that the turbulent diffusivities for momentum, mass,
and heat are the same, since they all depend on the same eddies for transport.
Turbulent viscosities also may be estimated as the product of a typical turbulent

velocity scale, such as the root-mean-square velocity fluctuation, u021/2
, and

an appropriate length scale, usually the integral length scale (analogous to
the integral time scale defined in Eq. 5.2.9). This approach is similar to the
mixing length approach used in defining molecular diffusivities, described in
Sec. 10.3.1.

In general, eddy viscosity is dependent on direction, as indicated by the
directional subscript j in Eq. (5.5.11). This is because the eddy viscosity is
directly related to the turbulence structure, as expressed through the fluctu-
ating velocity components, which in general may have different characteristics
(length, frequency, magnitude) in different coordinate directions. For the case
of isotropic turbulence, the eddy viscosity values are the same for the three
coordinate directions, and in the case of homogeneous turbulence, 	t is inde-
pendent of location but may still have directional differences. For this case,
	t can be brought outside of the gradient operator in Eq. (5.5.13).

A more formal estimate for the eddy viscosity can be obtained using a
two-equation model, one for transport of turbulent kinetic energy (K) and one
for the dissipation rate (ε). Both k and ε are per unit mass and are defined
formally in the following section. Based on physical considerations, Prandtl
and others have argued that the eddy viscosity 	t should depend on K. From
dimensional considerations, a length scale for the turbulence (l) also must be
introduced, so that

	t D c1lK
1/2 �5.5.14�

where c1 is a constant. In other words, K1/2 provides the velocity scale referred
to above. The characteristic length l also is related to dissipation, since it may
be argued that ε does not explicitly depend on molecular viscosity, because
the energy of the turbulence is mostly associated with larger eddies. In other
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words, ε can be expressed as (see also Sec. 5.6)

ε D c2K3/2

l
�5.5.15�

where c2 is another constant. Using this result to substitute for l in Eq. (5.5.14)
then gives

	t D c3K2

ε
�5.5.16�

where c3 D c1c2 has been found to have a value of approximately 0.09. This
result applies mainly for isotropic turbulence, since there is no directional asso-
ciation with K, and l has been assumed as an isotropic quantity. Formulation
of the equations for K and ε are described below.

Before continuing with the discussion for turbulence, it is of interest to
examine the effect of turbulent transport for other properties of the system.
Here, we show the temperature equation, though a similar analysis holds for
transport of other properties, such as dissolved mass. Following the same
procedures as above, fluctuating variables are introduced into Eq. (2.9.33).
The result, written in index notation, is

DT

Dt
D � 1

�0c

∂ϕri
∂xi

C ∂

∂xj

[
kT
∂T

∂xj
� T0uj0

]
�5.5.17�

where T is temperature and ϕr is radiation flux. A turbulent thermal diffusivity
can be defined for the turbulent transport term on the right-hand side, similar
to the eddy viscosity defined in Eq. (5.5.11), i.e.,

kT�j� D � uj0T0

∂T/∂xj
�5.5.18�

Turbulent diffusivities may have different magnitudes in different directions,
since they also depend directly on the turbulence structure. Using the Reynolds
analogy, it often is assumed that kT�j� ¾D 	t�j�, i.e., the turbulent Prandlt number
(ratio of momentum diffusivity to thermal diffusivity) is approximately equal
to 1.

5.5.2 Turbulent Kinetic Energy Equation

The Reynolds stresses are directly related to the kinetic energy of the fluctu-
ating components of velocity. When there is a higher kinetic energy level for
the fluctuating velocity components, they are more active in transporting fluid
properties in the flow field. We first develop an equation for the mean kinetic
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energy, by multiplying (dot product) the mean momentum equation (5.5.10)
by ui. This gives

∂

∂t

(
1

2
u2
i

)
C uj

∂

∂xj

(
1

2
u2
i

)
D �

�0
giui � 1

�0

∂

∂xi
�uip�

C v

[
∂

∂xj

(
ui
∂ui
∂xj

)
�

(
∂ui
∂xj

)2
]

� ∂

∂xj
�uiu0

iu
0
j�C u0

iu
0
j
∂ui
∂xj

�5.5.19�

After rearranging, this result may be written as

D

Dt

(
ui2

2

)
D �

�0
giui � ∂

∂xj

(
ui
p

�0
� 	

∂

∂xj

(
u2
i

2

)
C uiui‘u0

j

)

C u0
iuj

0 ∂ui
∂xj

� 	

(
∂ui
∂xj

)2

�5.5.20�

The left-hand side of this equation is the time rate of change of mean kinetic
energy (per unit mass, following a fluid element). The first term on the right-
hand side is gravity, or buoyancy work, the second term is referred to as
the flux divergence term and refers to redistribution and transport of mean
kinetic energy by pressure and shear stresses (both viscous and turbulent), the
third term is the rate of work of the Reynolds stresses to convert mean kinetic
energy to turbulent kinetic energy (TKE), called shear production, and the last
term is dissipation of mean kinetic energy directly into heat. It is interesting
to note that the Coriolis term drops out of the mean kinetic energy equation.
This is because the Coriolis term does no work, since the force is acting at a
right angle to the velocity vector. However, the Coriolis term does affect the
distribution of energy among the different velocity components.

The TKE conservation equation is derived by multiplying the orig-
inal (nonaveraged) momentum equation (5.5.7) by ui, time averaging, and
subtracting the mean kinetic energy equation (5.5.20). After some rearranging,
the result is

DK

Dt
D �0u0

i

�0
gi � ∂

∂xj

(
u0
ip0

�0
� 	

∂K

∂xj
C 1

2
u0
iu

0
iu

0
j

)

� u0
iu

0
j
∂ui
∂xj

� 	

(
∂u0
i

∂xj

)2

�5.5.21�

where K D 1/2u02
i is the turbulent kinetic energy per unit mass. The terms

in Eq. (5.5.21) have analogous interpretations as in Eq. (5.5.20), though the
shear production term has opposite sign. Normally, this is a sink of mean
energy and a source of TKE. Only under certain conditions does this term
change sign (there is some evidence, for instance, that the flow of energy is
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in the opposite direction in rotating flows). Once again, note that the Coriolis
term drops out of the total TKE equation, for the same reason as it did for
the mean kinetic energy equation. Additional averaged fluctuating terms do
not appear because fluctuations in � are not considered. However, as with
the mean flow terms, the Coriolis acceleration does affect the redistribution
of TKE among the various velocity components.

For high Re flows the viscous terms are all usually neglected, except the
dissipation term for TKE, which is the ultimate sink for mechanical energy.
The mean kinetic energy equation is then

D

Dt

(
u2
i

2

)
D �

�0
giui � ∂

∂xj

(
ui
p

�0
C uiu0

iu
0
j

)
C u0

iu
0
j
∂ui
∂xj

�5.5.22�

and the TKE equation is

DK

Dt
D �0u0

i

�0
gi � ∂

∂xj

(
u0
ip0

�0
C 1

2
u0
iu

0
iu

0
j

)
� u0

iu
0
j
∂ui
∂xj

� ε �5.5.23�

where ε is the dissipation of TKE per unit mass and has been substituted for
the last term on the right-hand side of Eq. (5.5.21), i.e.,

ε D 	

(
∂u0
i

∂xj

)2

�5.5.24�

5.5.3 Reynolds Stress Equations

Equations for the Reynolds stresses are developed using procedures similar to
the above for TKE. First, subtract the average momentum equation (5.5.10)
from the full momentum equation (5.5.7), neglecting the Coriolis and gravity
terms, to obtain

∂u0
i

∂t
C uk

∂u0
i

∂xk
C u0

k

∂ui
∂xk

C u0
k

∂u0
i

∂xj

D � 1

�0

∂u0
i

∂xk
C 	

∂2u0
i

∂xk∂xk
C ∂

∂xk
u0
iu

0
k �5.5.25�

where subscript k has been used in place of j for convenience in the following.
Multiplying Eq. (5.5.25) by u0

j gives

∂

∂t
�u0
iu

0
j�� u0

i

∂u0
j

∂t
C uk

[
∂

∂xk
�u0
iu

0
j�� u0
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∂u0
j

∂xk

]
C u0

ju
0
k

∂ui
∂xk

C u0
ju

0
k

∂u0
i

∂xk

D � 1

�0
u0
j

∂p0

∂xi
C u0

j	
∂2u0

i

∂xk∂xk
C u0

j

∂

∂xk
�u0
iu

0
k� �5.5.26�
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Now let us write an equation similar to Eq. (5.5.25) but using subscript j
instead of i and multiplying by u0

i. Adding this equation to Eq. (5.5.26) and
rearranging gives

∂

∂t
�u0
iu

0
j�C uk

∂

∂xk
�u0
iu

0
j�C ∂

∂xk
�u0
iu

0
ju

0
k�C u0

iu
0
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∂uj
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C u0
ju

0
k

∂ui
∂xk

D � 1

�0
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C ∂u0

j

∂xi

)
C ∂
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0�
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∂xk∂xk
� 2	

∂u0
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∂xk

∂u0
j

∂xk
C u0

j

∂

∂xk
�u0
iu

0
k�C u0

i

∂

∂xk
�u0
ju

0
k� �5.5.27�

Taking the time average and letting Rij D u0
iu

0
j, this equation becomes

∂Rij
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C uk
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∂xk

D
{
p0
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� 1
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� ∂

∂xk
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0
ju
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C
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∂xk∂xk

}
C

{
�2	

∂u0
i

∂xk

∂u0
j

∂xk

}
�5.5.28�

This is the transport equation for Reynolds stress. The left-hand side is
the total rate of change of Rij. The terms on the right-hand side are grouped
according to their physical interpretation. The first term is the pressure–strain
correlation, which plays an important role in the distribution of Rij. The
second term is the production of Rij, similar to the production term in the
TKE equation. The third term is turbulent diffusion and redistribution of Rij
by pressure. The fourth term is molecular diffusion, and the fifth term is dissi-
pation, again similar to the TKE equation. Solution of Eq. (5.5.28) provides
values for Rij that can be input directly into Eq. (5.5.10), thus closing the
system of equations.

An alternative to solving the differential equation for Rij is the alge-
braic stress model. This is obtained directly from Eq. (5.5.28). To simplify
the notation, let

Pij D p0

�0

(
∂u0
i

∂xj
C ∂u0

j

∂xi

)
�5.5.29a�

Qij D �
(
Rik
∂ui
∂xk

C Rjk
∂uj
∂xk

)
�5.5.29b�

Fij D � 1

�0
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∂u0
jp0∂xi
C

∂u0
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∂xj

)
� ∂

∂xk
�u0
iu

0
ju

0
k� �5.5.29c�
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dij D Fij C 	
∂2Rij
∂xk∂xk

�5.5.29d�

εij D 2	
∂u0
i

∂xk

∂u0
j

∂xk
�5.5.29e�

With these definitions, Eq. (5.5.28) can be rewritten as

DRij
Dt

D Pij C Qij � εij C dij �5.5.30�

Using these definitions also allows the TKE equation (5.5.21) to be rewritten
as

DK

Dt
D p� εC d �5.5.31�

where P D Pii/2, ε D εii/2, and d D dii/2. Note that, upon contraction of the
indices, Qii D 0. For simplicity, the buoyancy work term also has been omitted
in Eq. (5.5.31).

We now define Tij D Rij/K and substitute into Eq. (5.5.30) to obtain

Tij�P� εC d�CK
DTij
Dt

D Pij C Qij � εij C dij �5.5.32�

The derivatives of Tij are normally small, relative to the other terms in the
equation, and may be neglected. Furthermore, it is assumed that dij D Tijd;
the viscous transport term also is neglected, so that Eq. (5.5.32) becomes

Tij�P� ε� D Pij C Qij � εij �5.5.33�

This provides a direct nondifferential equation to evaluate the Reynolds
stresses. Of course, the other terms in the equation, notably Qij and εij, must
first be obtained. However, algebraic expressions also have been developed
for these terms. The derivations are not presented here, but the final result, as
shown by Warsi (1993), is

Tij D 2

3
υij C �0

PC a0ε

(
Pij � 2

3
Pυij

)
�5.5.34�

where �0 D 1 � 10c2, a0 � 3c1 � 1, c1 D 0.5, and c2 D 0.06.

5.5.4 Dissipation Equation

A formal equation for the rate of change of ε is obtained by differentiating
Eq. (5.5.25) with respect to xj, multiplying by ∂u0

i/∂xj and taking the time
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average. The result is
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�5.5.35�

This can be solved in connection with either the Reynolds stress model or the
K–ε approach.

5.5.5 K –e Model

The basis of the two-equation K–ε model is solving Eqs. (5.5.23) and (5.5.35)
for K and ε, respectively. Once these are known, Eq. (5.5.16) can be used to
obtain 	t, which is then used in Eqs. (5.5.11) and (5.5.10) to solve for the
momentum transport.

5.6 SCALES OF TURBULENT MOTION

One of the main characteristics of turbulence is the presence of a full spectrum
of scales in both length and time in a fully developed flow. As noted in
the previous section (see Eqs. 5.5.21 and 5.5.23), the flow turbulence gains
kinetic energy by the Reynolds stresses acting on the mean velocity gradient,
or by gravity work, in the case of convection-driven flow in which there is
an unstable density gradient. This energy feeds into relatively large eddies,
with a size or length scale that depends on the size of the system in which
the flow occurs. For example, cooling at the top of a column of water that
is initially well mixed will cause water near the surface to become heavier
than the underlying water. This heavier water then drops through the depth
and is replaced by cooler water swept upwards, thus generating a circulation
throughout the depth of the column. This is what happens, for example, during
the fall and spring “overturns” in temperate lakes. Large-scale eddies also are
generated from instabilities in mean flow (mean shear), with a typical size that
depends on the scale of the mean flow.

These large eddies interact with each other and with the boundaries of the
flow, breaking down to produce smaller eddies. These smaller eddies interact
with each other, with the larger eddies, and with the system boundaries to
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Figure 5.15 Example of power spectrum plot for fully developed turbulent flow.

produce even smaller eddies and so on, until the smallest eddies in the system
cannot support their own motions and are dissipated by viscosity. This process
is usually described as a turbulence cascade, where energy continually flows
from larger to smaller eddies and, at the smallest eddy scale, there is an
ultimate sink of energy by viscous dissipation. It can be represented by a
distribution of energy scales on a plot of the power spectrum, as indicated in
Fig. 5.15. The slope of -5/3 for this plot is derived from consideration of the
energy transfer process in the range of the integral length scales.

The range of possible scales of motion in a flow is illustrated in Fig. 5.16.
The mean flow velocity and length scales are denoted by U and L, respec-
tively. These imply a characteristic time scale, T ³ L/U. The largest eddies
in the flow have about the same characteristic time scale, so υ/Ou ³ T, where
υ and Ou are the length and velocity scales, respectively, for the largest eddies.
Typical estimates for the magnitudes of Ou and υ are Ou/U ¾D υ/L ¾D 0.1–0.5.
The scales of the main energy-containing eddies may be estimated from the
integral calculations described in Sec. 5.2 (i.e., leading to the integral length
scale l) and a characteristic velocity, often taken as the root-mean-square value
of the fluctuating velocity,

urms ³ �u02�1/2 �5.6.1�

where the average is taken over either time or space.
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Figure 5.16 Illustration of range of turbulent eddy scales in an open channel flow.

From observations, the magnitude of transport by the Reynolds stresses
is of the same order as the mean flow terms in the mean momentum equation,
i.e.,

∂

∂xj
�u0
iu

0
j� ³ u2

rms

l
³ U2

L
�5.6.2�

Also, considering that an eddy with energy proportional to u2
rms will transfer

its energy to smaller eddies at a rate proportional to 1/T, an estimate for the
dissipation rate is obtained,

ε ³ u2
rms

T
D u2

rms

1/urms
D u3

rms

l
�5.6.3�

This result is similar to the dimensional argument leading to Eq. (5.5.15).
The process of energy transfer from larger to successively smaller eddies

continues until the eddies become so small that viscous effects become
important and the energy is dissipated. This stage is characterized by an
eddy Reynolds number approximately equal to one, where the eddy Reynolds
number is defined using the characteristic length and velocity of the smallest
eddies. This reflects the idea that at these smallest scales of motion, the inertial
strength of the eddy is approximately equal to its viscous transport strength, or
the eddy “viscosity,” is approximately equal to the kinematic viscosity. Thus

	�

	
³ 1 �5.6.4�
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where 	 and � are the velocity and length scales, respectively, for the smallest
eddies. We also know (see Eq. 5.5.24)

ε ³ 	

(
	

�

)2

�5.6.5�

By combining Eqs. (5.6.4) and (5.6.5), we obtain estimates for the smallest
eddies, in terms of the dissipation rate. These are called the Kolmogorov
microscales,

� D 	3/4

ε1/4
	 D �	ε�1/4 �5.6.6�

A micro-time scale, t0, also can be defined as the ratio of � to 	,

t0 D �

	
�5.6.7�

As will be seen in later chapters, the scales of turbulent motion
have strong influences on transport and mixing properties for water quality
modeling. They also control a number of processes of direct interest in
environmental flow modeling, such as particle–particle interactions and
contaminant desorption phenomena. Some of these applications are described
further in Part 2 of this text.

PROBLEMS

Solved Problems

Problem 5.1 Consider a turbulent flow of water with a measured power
spectral density curve as shown and listed in Fig. 5.17.

(a) A common estimate for the turbulent velocity scale (denoted by u
for this problem) is the root-mean-square value of the fluctuations, u D u0

rms D
�u02�1/2, where the u0 are the fluctuating velocities. Calculate u for this flow,
using the fact that the average value for u02 is the autocorrelation for a time
lag of 0.

(b) One specification of the capabilities of a flow-measuring instrument
is its time factor, or frequency response. This value tells how fast the instru-
ment is able to respond to fluctuations in the signal being measured. Suppose
an anemometer were used to measure turbulence in the flow considered here,
but that it could resolve signal frequencies only up to 20 Hz (1 Hz D 1 cps).
What value of u would be calculated using data from this instrument?

Solution

(a) The autocorrelation for zero time lag is simply the area under the power
spectrum curve. For simplicity, the area is estimated here from the tabulated
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Figure 5.17 Data for Problem 5.1.
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data using the average value for S within each frequency range (set of data
points). The results of these calculations are shown in the right-hand side of
the table in Fig. 5.17. The sum of the last column on the right-hand side of the
table is 15.184 (cm2/s2) and the square root of this is u D 3.9 cm/s. (Note,
however, that better averaging schemes could be used to obtain improved
estimates.)

(b) Assuming that the rest of the spectrum remains the same, we esti-
mate the value for S at 20 Hz as 0.075 �cm/s�2 (again, better averaging and
extrapolation procedures could be used here, but we use a simple approach
to illustrate the procedures). Then, using the same procedure as in part (a),
but including the sum only up to w D 20 Hz, we obtain u D 3.8 cm/s. The
difference between this result and that of part (a) is not very large, since most
of the signal is contained in frequencies less than 20 Hz.

Problem 5.2 Using the data from solved problem 5.1, and assuming that
the characteristic length scale for the eddies with velocity u is l D 5 cm,
calculate the microturbulence length and velocity scales (Kolmogorov scales)
for the flow.

Solution

First we need an estimate for the dissipation rate. This is

ε D u3

l
D 3.93

5
D 11.86 cm2/s3

Then, using 10�2cm2/s as the kinematic viscosity for water,

� D 	3/4

ε1/4
D 0.047 cm and v D �	ε�1/4 D 0.59 cm/s

Unsolved Problems

Problem 5.3 Show that the derivative of a time-averaged quantity is the
time average of the derivative of that quantity, i.e.,

∂f

∂x
D ∂f

∂x

Problem 5.4 Consider a turbulent flow, with velocity field and concentration
given by

ui D Ui C u0
i and c D CC c0,

respectively, where capital letters indicate mean (time-averaged) quantities
and primes indicate turbulent fluctuations. Apply the Reynolds averaging
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procedure to derive the advection–diffusion equation for mean transport of
the concentration c, including explicit terms for turbulent diffusive transport.
Describe how you might conduct an experiment to measure the turbulent
diffusivities directly.

Problem 5.5 Isotropic turbulence has been produced in laboratory experi-
ments by placing a grid or screen in a wind or water tunnel. It can be shown
that the initial decay of the turbulence can be described by

d

dt
�u02�1/2 D �C1

u02

L

dL

dt
D C2�u02�1/2

where u0 is the turbulent fluctuating velocity, L is a longitudinal length scale,
and C1 and C2 are constants.

(a) Use the substitution t D x/U, where U is the mean velocity in the
tunnel, to rewrite these equations in terms of derivatives in x.

(b) At the location of the screen, assume x D x0, �u02�
1/2 D [�u02�1/2]0,

and L D C3d, where d is the diameter of the screen wires and C3 is another
constant. Solve the equations developed in part (a), along with these boundary
conditions, to show that[

�u02�1/2
]

0

�u02�1/2
D

[
1 C �C1 C C2�

[�u02�1/2]0

C3U

�x � x0�

d

]C1/�C1CC2�

L

C3d
D

[
1 C �C1 C C2�

[�u02�1/2]0

C3U

�x � x0�

d

]C2/�C1CC2�

Problem 5.6 Develop the Reynolds-averaged equations in a cylindrical coor-
dinate system.

Problem 5.7 At a solid wall, the velocity fluctuations vanish just as the
mean velocity components do. In addition, the gradients of the fluctuations
tangent to the wall vanish. Using the coordinate system of Fig. 5.18, then,

u0 D v0 D w0 D ∂�

∂x
D ∂�

∂z
D 0 at y D 0

Use the continuity equation for the fluctuations to write an expression for the
second derivative of 	0 with respect to y. Then show that the first and second
derivatives of the Reynolds stress (u0v0) with respect to y are both zero.

Problem 5.8 Write the TKE equation for the condition of zero horizontal
gradients. All viscous terms except dissipation may be neglected. Further
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Figure 5.18 Definition sketch, Problem 5.7.

simplify the equation for a steady-state constant-density flow with negligible
flux divergence. What is the physical interpretation of the resulting equation?

Problem 5.9 Estimate the characteristic scales (length, velocity, and time)
for the largest and smallest turbulent eddies created by wind swirling around
the corners of buildings, past doorways, etc. State any assumptions you make.
Assume the kinematic viscosity of air is 1.5 ð 10�5 m2/s.

Figure 5.19 Oscillating grid for generating turbulence, Problem 5.10.
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Problem 5.10 A well-known laboratory experimental setup for studying
turbulent mixing involves using an oscillating grid to generate the turbulence,
as sketched in Fig. 5.19. The grid oscillates with frequency f and stroke s.
The mesh spacing between the grid elements is L and the grid elements have
diameter d. There is no mean flow.

(a) Assuming that a steady state can be reached, what is the basic
balance in the TKE equation? In other words, what are the impor-
tant physical processes to consider?

(b) Estimate the length and velocity scales of the eddies generated at
the grid.

(c) Estimate the rate of transport of TKE away from the grid.
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6
Boundary Layers

6.1 INTRODUCTION

The concept of the boundary layer was introduced in the beginning of the
20th century by Prandtl and Pohlhausen to simplify the analysis and calcula-
tion of flow phenomena and interaction with solid boundaries. This concept
has since been extended for calculations of heat and mass transfer in various
types of domains. Several examples in the previous chapters have already been
introduced that involve the concept of boundary layers, where it was shown
that often, and especially in environmental flows, only a minor portion of the
flow domain is subject to viscous laminar or turbulent flow with significant
velocity gradients and shear stresses. Other portions of the domain are prac-
tically at rest or subject to potential flow. For example, in Chaps. 3 and 4
we considered the flow domain on top of an oscillating plate and the case of
flow around a cylinder, as examples in which the concept of the boundary
layer was applicable. For the present chapter, we cover only several cases
in which the boundary layer concept is applicable for flow calculations in
environmental fluid mechanics, though some consideration of other issues of
transport phenomena also are included.

If fluid with small viscosity, like water or air, flows with high Reynolds
number around a solid body, then even at a very small distance from the solid
body, the effect of the inertial forces is much more significant than the effect of
the viscous forces. Therefore, it is possible to consider that in major portions
of the domain the flow is virtually unaffected by friction. Frictionless flow
is described by potential flow theory (Chap. 4). However, close to the solid
boundary, the effect of the viscous shear stresses is significant and cannot be
ignored.

In order to exemplify the application of the boundary layer concept to
flow phenomena, we first consider the buildup of a boundary layer and the
effect of shear stresses associated with the development of the flow field
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over an infinite horizontal plate. Figure 6.1 shows the various regions of
development of the boundary layer over a horizontal flat plate.

At the leading edge of the flat plate (at x D 0), the fluid is subject to
uniform flow U. Development of the boundary layer begins at this location,
and its thickness increases with x. Inside the boundary layer region, there is
a significant velocity gradient, and effects of shear stresses should be taken
into account. Close to the leading edge of the plate, the flow is laminar. For
larger distance downstream of the leading edge, there is a transition zone,
which is followed by a boundary layer region, which consists of a turbulent
region and a very thin laminar sublayer, as is discussed further below. As
the domain is semi-infinite (0 � y � 1), development of the boundary layer
has a negligible effect on the value of the potential flow velocity outside the
boundary layer, which maintains the value U.

As the boundary layer grows, it becomes less stable to small perturba-
tions. Consider that at some distance L downstream of the leading edge of the
flat plate, the boundary layer flow becomes unstable, and there is a transition
from laminar to turbulent flow. The value of L is defined by the value of a
Reynolds number, Rex,

Rex D ReL D �UL

�
D 5 ð 105 (6.1.1)

where x is the distance from the leading edge. Downstream of x D L, where
the laminar boundary layer flow starts to become unstable, there is a transition
zone, as the structure of the boundary layer adjusts to the turbulent condition.
In the turbulent region, close to the solid flat plate, velocity fluctuations are
small, as the viscous fluid adheres to the solid wall. Furthermore, the presence
of the solid wall limits the size of the turbulent vortices. Therefore the flow
close to the solid wall is considered as laminar flow. This region of laminar
flow comprises the laminar sublayer.

6.2 THE EQUATIONS OF MOTION FOR BOUNDARY
LAYERS

The analysis of boundary layers starts with a scaling analysis of the governing
equations. The steady-state equations of motion in a two-dimensional domain
are (refer to Chap. 2)

u
∂u

∂x
C 	

∂u

∂y
D � 1

�

∂

∂x
�pC �gZ�C 	

(
∂2u

∂x2
C ∂2u

∂y2

)
�6.2.1a�

u
∂	

∂x
C 	

∂	

∂y
D � 1

�

∂

∂y
�pC �gZ�C 	

(
∂2	

∂x2
C ∂2	

∂y2

)
�6.2.1b�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 6.1 Boundary layer development over a horizontal flat plate.
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These equations can be simplified for boundary layer flow by consideration of
the relative magnitudes of the various terms. We let u denote the characteristic
quantity of velocity in the boundary layer and U be the potential flow velocity
that exists outside the boundary layer region. We also define a characteristic
longitudinal length L, over which u is subject to an appreciable change. There-
fore the order of magnitude of the first term of Eq. (6.2.1a), which represents
the inertial terms of the equation of motion, is

u
∂u

∂x
³ U2

L
(6.2.2)

A characteristic length in the y-direction, over which changes in u are
appreciable, is of the order of magnitude of the average thickness of the
boundary layer υ. Therefore the last term of Eq. (6.2.1a), which represents the
effect of shear stress between laminae of the boundary layer, is of order of
magnitude

	
∂2u

∂y2
³ 	U

υ2
(6.2.3)

In the boundary layer, effects of inertia and viscous shear are of the same order
of magnitude, so that the terms in Eqs. (6.2.2) and (6.2.3) are approximately
the same and

υ ³
√
	L

U
(6.2.4)

This result indicates that the boundary layer thickness is of order of magnitudep
	t, where t D L/U is a characteristic time scale for motions in the boundary

layer.
From the continuity equation for the boundary layer flow,

∂u

∂x
C ∂	

∂y
D 0 (6.2.5)

Applying appropriate scaling quantities, this expression implies

U

L
³ 	

υ
) 	 ³ υU

L
(6.2.6)

With L generally much larger than υ, this last result suggests that the velocity
normal to the boundary is much smaller than the velocity along the boundary.
A further approximation used in boundary layer analysis is to assume that
gradients in the normal direction are generally much larger than gradients in
the flow direction, so that

∂

∂y
× ∂

∂x
(6.2.7)
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The pressure gradient is of the same order of magnitude as the inertial
terms in Eq. (6.2.1). Therefore

∂

∂x
�pC �gZ� ³ �u

∂u

∂x
) pC �gZ ³ �U2 (6.2.8)

From an examination of equations (6.2.2)–(6.2.8), the following dimen-
sionless variables are suggested:

xŁ D x

L
yŁ D y

υ

uŁ D u

U
vŁ D vL

υU
pŁ D pC �gZ

�U2

�6.2.9�

where an asterisk indicates a dimensionless quantity. By introducing
Eqs. (6.2.9) and (6.2.4) into Eqs. (6.2.1) and (6.2.5), we obtain nondimensional
forms of the governing equations (in the following, all variables are
dimensionless — the asterisks are omitted for simplicity),

u
∂u

∂x
C v

∂u

∂y
D �∂p

∂x
C 1

Re

∂2u

∂x2
C ∂2u

∂y2
(6.2.10a)

1

Re

(
u
∂v

∂x
C v

∂v

∂y

)
D �∂p

∂y
C 1

Re2

∂2v

∂x2
C 1

Re

∂2v

∂y2
(6.2.10b)

∂u

∂x
C ∂v

∂y
D 0 (6.2.10c)

where Re is the overall Reynolds number,

Re D UL

	
(6.2.11)

In typical boundary layer flow Re is large. Under this condition the terms in
Eq. (6.2.10) that are divided by Re can be neglected, leaving

u
∂u

∂x
C v

∂u

∂y
D �∂p

∂x
C ∂2u

∂y2
(6.2.12a)

0 D �∂p
∂y

(6.2.12b)

∂u

∂x
C ∂v

∂y
D 0 (6.2.12c)

An interesting result is immediately obvious from Eq. (6.2.12b), which
indicates that the pressure (or piezometric pressure) within the boundary layer
is (approximately) equal to its value at the top of the boundary layer. Therefore
the value of the pressure in the boundary layer can be obtained from the
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calculation of the pressure in the potential flow region, outside the boundary
layer.

There are several measures and definitions of the effect of the boundary
layer region on the total flow field. According to the simplest definition, the
top of the boundary layer is located where the boundary layer flow obtains a
value equal to 99% of the potential mean stream flow, or u D 0.99U. Another
measure of the boundary layer, termed the displacement thickness υd, is defined
as the thickness of a layer conveying fluid with velocity U, having volumetric
flow rate identical to the difference between the flow rate of a potential flow
and that of the boundary layer flow. According to this definition,

υd D
∫ 1

0

(
1 � u

U

)
dy (6.2.13)

The displacement thickness represents the outward displacement of the poten-
tial flow streamlines that results from the presence of the viscous boundary
layer. It is useful in defining the thickness by which the actual solid wall or
body should be increased before the potential flow theory may be applied.

A third measure, termed momentum thickness υm, represents the thick-
ness of a layer conveying fluid with velocity U, whose momentum flux is
identical to the difference between the momentum of the potential flow and
that of the boundary layer flow. This definition is expressed by

υm D
∫ 1

0

u

U

(
1 � u

U

)
dy (6.2.14)

This boundary layer definition is sometimes used when determining drag on
an object.

For convenience, we now return to the analysis of boundary layer devel-
opment over a flat plate, as in Sec. 6.1. The velocity profile in the boundary
layer has been shown to be well approximated by a nondimensional similarity
profile,

u

U
D u

U
��� where � D y

υ
(6.2.15)

Outside the boundary layer region, the velocity U of the potential flow is
constant. A dimensionless stream function f��� can be defined by

f��� D 

Uυ
(6.2.16)

where the stream function  is related to the velocity components by (also
see Sec. 2.5.3)

u D ∂

∂y
v D �∂

∂x
(6.2.17)
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As previously noted (Eq. 6.2.7), in most cases of boundary layer flow
the longitudinal pressure gradient is negligible. Making this assumption and
introducing Eq. (6.2.17) into Eq. (6.2.12a) results in

∂

∂y

∂2

∂x∂y
� ∂

∂x

∂2

∂y2
D v

∂3

∂y3
(6.2.18)

This equation is subject to the following boundary conditions of the boundary
layer flow over a flat plate:

∂

∂y
D U at x D 0 (6.2.19a)

∂

∂y
D  D 0 at y D 0 (6.2.19b)

∂

∂y
! U at y ! 1 (6.2.19c)

We now introduce Eq. (6.2.16) to evaluate the various terms of Eq. (6.2.18),

∂

∂x
D U

dυ

dx
�f� f0��

∂2

∂x∂y
D �U�f

00

υ

dυ

dx

∂

∂y
D Uf0 ∂2

∂y2
D Uf00

υ

∂3

∂y3
D Uf000

υ2

�6.2.20�

where f0 D df/d� and f00 D d2f/d�2. Thus, Eq. (6.2.18) becomes

�
(
Uυ

	

dυ

dx

)
ff0 D f000 (6.2.21)

Since f D f��� only, this last expression can be true only if(
Uυ

	

dυ

dx

)
D const (6.2.22)

When this constant is chosen to be 1
2 , a single integration with respect

to x gives

υ D
√
	x

U
(6.2.23)

which is consistent with previous results (Eq. 6.2.4). Introducing this value
into Eq. (6.2.21) results in

1

2
ff00 C f000 D 0 (6.2.24)
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According to Eq. (6.2.19), the differential equation (6.2.24) is subject to the
following boundary conditions:

f0�1� D 1 f�0� D f0�0� D 0 (6.2.25)

Blasius developed a power series solution for Eq. (6.2.24), subject to the
boundary conditions of Eq. (6.2.25). Numerical solution of Eq. (6.2.24) also
can be obtained quite easily using an adequate numerical code. In either case,
the solution shows that

u

U
D 0.99 at y

√
U

	x
D 4.9 (6.2.26)

This gives an indication of the boundary layer thickness according to the
“simplest” definition introduced earlier in this section. By substituting υ for y,

υ D 4.9

√
	x

U
or

υ

x
D 4.9p

Rex
(6.2.27)

where Rex D Ux/	. This expression provides an improved estimate for the
boundary layer thickness, relative to Eq. (6.2.23)

6.3 THE INTEGRAL APPROACH OF VON KARMAN

In principle, Eq. (6.2.24) may be solved to find f��� and its derivatives, from
which values of the shear stress on the flat plate, friction force, and drag
coefficient can be obtained. However, we prefer to present the calculation
of these quantities by the integral method of Von Karman. Results of this
approximate method are very similar to those obtained by solving Eq. (6.2.24)
directly.

The integral approach of Von Karman is applicable to calculations of
laminar as well as turbulent boundary layers. It incorporates several approx-
imations, including steady state, but in many cases its accuracy is suffi-
cient for engineering purposes. According to this approach, at the bottom
of the boundary layer (at y D 0) the velocity vanishes, and at the top of the
boundary layer (at y D υ) the velocity is U (rather than some percentage of U).
Figure 6.2 shows the boundary layer conditions considered for this analysis.

Under steady-state flow, the integral basic conservation theorems are
applied to the control volume of Fig. 6.2, with unit width, length x, and
thickness varying between υ and υCυ, where

υ D dυ

dx
dx (6.3.1)
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Figure 6.2 Application of basic conservation theorems to control volume of the
boundary layer: (a) mass flux; (b) momentum flux; and (c) surface forces.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



First consider mass conservation (Fig. 6.2a). The mass flux through section
AB is(∫ υ

0
�u dy

)∣∣∣∣
x

D
∫ υ

0
�u dy (6.3.2a)

Similarly, the mass flux through section CD is(∫ υCdυ

0
�u dy

)∣∣∣∣
xCdx

D
∫ υ

0
�u dy C d

dx

(∫ υ

0
�u dy

)
dx (6.3.2b)

Therefore the mass flux through BC is the difference between the fluxes
passing through sections AB and CD, given by

d

dx

(∫ υ

0
�u dy

)
dx (6.3.2c)

Figure 6.2b shows the various momentum fluxes that penetrate into the
control volume of the boundary layer. The momentum flux entering the control
volume through AB is(∫ υ

0
�u2dy

)∣∣∣∣
x

D
∫ υ

0
�u2dy (6.3.3a)

and the momentum flux leaving the control volume through CD is(∫ υCdυ

0
�u2dy

)∣∣∣∣
xCdx

D
∫ υ

0
�u2dy C d

dx

(∫ υ

0
�u2dy

)
dx (6.3.3b)

At the top of the boundary layer the flow velocity is U. Therefore the
momentum penetrating into the control volume of the boundary layer through
BC is given by the product of this velocity and the mass flux crossing BC.
Thus the momentum flux through BC is

U
d

dx

(∫ υ

0
�u dy

)
dx (6.3.3c)

Figure 6.2c shows the various surface forces acting on the control volume
of the boundary layer. In order to generalize the calculation beyond the case
of a horizontal flat plate, we refer to the piezometric pressure pŁ rather than
the pressure p. The force acting on AB is in the positive x-direction, and its
value is given by(∫ υ

0
pŁdy

)∣∣∣∣
x

³ pŁυ (6.3.4a)
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The force acting on CD is in the negative x-direction, with magnitude(∫ υCdυ

0
pŁdy

)∣∣∣∣
xCdx

³ pŁυC d

dx
�pŁυ� dx

D pŁυC υ
dpŁ

dx
dx C pŁdυ (6.3.4b)

The force acting on BC is in the positive x-direction and its value is approxi-
mately given by(

pŁ C dpŁ

dx

dx

2

)
dυ ³ pŁdυ (6.3.4c)

The force acting on AD results from wall shear stress and is in the negative
x-direction, given by

�0 dx (6.3.4d)

where �0 is the shear stress exerted by the flat plate on the control volume.
Since the plate is horizontal, there are no body forces to consider in the

x-direction, and the total surface forces acting are given by the sum of the
parts of Eq. (6.3.4),

dF D �
(
υ
dpŁ

dx
C �0

)
dx (6.3.5)

According to the Reynolds transport theorem (Sec. 2.4.3), under steady state
the net force acting on the control volume in the x-direction is equal to the
difference between momentum fluxes leaving the control volume and those
entering the control volume. Therefore

υ
dpŁ

dx
C �0 D U

d

dx

(∫ υ

0
�u dy

)
� d

dx

(∫ υ

0
�u2dy

)
(6.3.6)

This is the basic expression obtained by Von Karman for analysis of boundary
layer flow.

If the boundary layer is not too thick, then the first term on the left-hand
side (LHS) of Eq. (6.3.6) is much smaller than the second term, so that

�0 D d

dx

[
�U2υ

∫ 1

0

(
1 � u

U

)
u

U
d�

]
(6.3.7)

where � D y/υ as before (Eq. 6.2.15). Equation (6.3.7) provides a quantitative
connection between the shear stress on the plate and the velocity profile in the
boundary layer. In other words, the shear stress applied by the flat plate on
the boundary layer can be calculated directly as long as the velocity profile
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is known. This equation also shows that there is a direct connection between
the wall shear stress and the rate of development of the boundary layer along
the plate, which can be seen by rewriting Eq. (6.3.7), noting that x and � are
independent of each other:

�0 D
[
�U2

∫ 1

0

(
1 � u

U

)
u

U
d�

]
dυ

dx
(6.3.8)

Thus �0 depends on dυ/dx.
It is common to assume a similarity profile for the velocity distribution

(as with Eq. 6.2.15), i.e.,

u

U
D f

(y
υ

)
or

u

U
D f��� (6.3.9)

This applies to both laminar and turbulent boundary layers. In fact, it should be
noted that in developing Eq. (6.3.7), no assumption was made about whether
the flow in the boundary layer is laminar or turbulent, so that any of the
results obtained so far apply equally well for either condition. The differences
between laminar and turbulent boundary layers are related to different velocity
profiles and differences between boundary conditions typical of those velocity
profiles, as discussed in the following sections.

6.4 LAMINAR BOUNDARY LAYERS

The boundary layer equations can be solved as long as boundary conditions
are specified. At the plate, the velocity vanishes. Thus

u

U
�0� D 0 (6.4.1)

and at the top of the boundary layer the velocity is assumed to be equal to
that of the potential flow existing outside of the boundary layer, thus

u

U
�1� D 1 (6.4.2)

For laminar flow, shear stress in general is equal to the velocity gradient
multiplied by the fluid viscosity. Therefore, at the flat plate, the shear stress
�0 is equal to the viscosity multiplied by the velocity gradient at � D 0,

�0 D �

(
du

dy

)∣∣∣∣
yD0

D �U

[
d

d�

(
u

U

)(
∂�

∂y

)]∣∣∣∣
�D0

(6.4.3)

At the top of the laminar boundary layer, the velocity profile is tangential to the
uniform potential flow profile located outside the boundary layer. Therefore
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shear stress vanishes and[
d

d�

(
u

U

)]
�D1

D 0 (6.4.4)

Many different velocity profiles may satisfy the boundary conditions of
Eqs. (6.4.1)–(6.4.4). A common approach to deriving the velocity profile is to
consider polynomials or power series of sinusoidal functions. As an example,
consider the second-order polynomial,

u

U
D aC b�C c�2 � D y

υ
(6.4.5)

Due to the boundary conditions of Eqs. (6.4.1)–(6.4.4), a D 0, b D 2, and
c D �1. Therefore

u

U
D 2�� �2 (6.4.6)

Using this expression to evaluate the integral of Eq. (6.3.8) results in∫ 1

0

(
1 � u

U

)
u

U
d� D

∫ 1

0

[(
1 � 2�C �2) (2�� �2)]d� D 2

15
(6.4.7)

Also, introducing Eq. (6.4.6) into Eq. (6.4.3) yields

�0 D 2�
U

υ
(6.4.8)

Substituting Eqs. (6.4.7) and (6.4.8) into Eq. (6.3.8) and rearranging
gives

2

15
�U2 dυ

dx
D 2�

U

υ
) d

dx

(
υ2) D 30�

�U
(6.4.9)

We integrate this expression, assuming that υ D 0 at x D 0, to obtain

υ D 5.48
√
�x

�U
D 5.48

xp
Rex

(6.4.10)

where Rex is the same as defined earlier in Eq. (6.2.27). According to
Eq. (6.4.10), the thickness of the laminar boundary layer is proportional to
the square root of the distance from the leading edge of the flat plate.

By introducing Eq. (6.4.10) into Eq. (6.4.8), the wall shear stress can be
expressed as

�0 D 0.365p
Rex

�U2 (6.4.11)
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The friction drag force applied on the flat plate is obtained by integrating
Eq. (6.4.11) over the entire length L of the plate:

FDf D
∫ L

0
�0 dx D 1.46p

ReL
�
U2

2
L (6.4.12)

where ReL is defined similar to Rex, but with L in place of x. In addition, the
coefficient of friction drag for the plate is defined by

CDf D FDf

�
U2

2
L

D 1.46p
ReL

(6.4.13)

In general, however, this is not the total drag acting on an object in
a flow. For example, recall from Chap. 4 that the total drag force applied
on a cylinder is due to both friction drag and form drag. The latter origi-
nates from pressure forces associated with separation of the boundary layer
from the cylinder. This phenomenon occurs in cases of flow around solid
bodies, expansion of conduits, and other cases in which the flow is associ-
ated with positive pressure gradients. Then it is common to express the total
drag coefficient as a sum of the friction drag coefficient and the form drag
coefficient,

CD D CDf CCDs (6.4.14)

where CDs is the form drag coefficient. However, in the case of flow over a
flat plate, there is no form drag, as there is no positive pressure gradient, and
thereby the boundary layer is not subject to separation and CDs D 0.

6.5 TURBULENT BOUNDARY LAYERS

At sufficient distance (L) and potential flow velocity U, the boundary
layer becomes turbulent (see Eq. 6.1.1). As shown in Fig. 6.1, the turbulent
boundary layer includes a laminar sublayer. In general, the structure of the
turbulent boundary layer is more complicated than that of the laminar boundary
layer. In the turbulent region, the velocity profile is approximately proportional
to the logarithm of the distance from the solid wall, provided that y is not very
large. However, the logarithmic velocity profile is never exactly tangential to
the uniform profile of the potential flow outside the boundary layer (at y D υ),
though this problem is relatively minor and is often neglected in practical
applications. In practice, other velocity profiles have been used to approximate
the velocity distribution in the turbulent boundary layer, such as the 1/7th law
discussed below.
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Again as in Sec. 6.4, we consider here development of a turbulent
boundary layer over a flat plate. As with the laminar boundary layer, a simi-
larity velocity profile is assumed, satisfying the boundary conditions,

u

U
�0� D 0

u

U
�1� D 1 (6.5.1)

Observations have shown that the velocity profile in a turbulent boundary
layer can be closely approximated by

u

uŁ
D 8.74

(yuŁ
	

)1/7
(6.5.2)

where uŁ is the shear velocity

uŁ D
√
�0

�
(6.5.3)

At the top of the boundary layer, Eq. (6.5.2) yields

U

uŁ
D 8.74

(
υuŁ
	

)1/7

(6.5.4)

and by dividing Eq. (6.5.2) by Eq. (6.5.4), we obtain

u

U
D

(y
υ

)1/7 D �1/7 (6.5.5)

which is the 1/7th law referred to earlier.
Performing the integral of Eq. (6.3.8) with the velocity profile of

Eq. (6.5.5) results in∫ 1

0

(
1 � u

U

)
u

U
d� D

∫ 1

0

(
1 � �1/7) �1/7d� D 7

72
(6.5.6)

so that

�0 D 7

72
�U2 dυ

dx
(6.5.7)

This also can be written, using Eq. (6.5.4), as

�0 D �u2
Ł D 0.0225�

(	
υ

)1/4
U7/4 (6.5.8)

By comparing Eq. (6.5.7) with Eq. (6.5.8), it is seen that

7

72
�U2 dυ

dx
D 0.0225�U2

(
	

Uυ

)1/4

(6.5.9)
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The solution of this equation requires a boundary condition to integrate
dυ/dx. Although we know that a laminar boundary develops initially at the
leading edge of the flat plate, this region is usually ignored, since the laminar
boundary layer comprises a relatively minor portion of the entire boundary
layer. Then, assuming that the entire boundary layer is turbulent (so that υ D 0
when x D 0), and integrating Eq. (6.5.9), we obtain

υ D 0.37x
(
	

Ux

)1/5

D 0.37xRe�1/5
x (6.5.10)

According to this expression, the thickness of the turbulent boundary layer is
proportional to x4/5. By comparison, the thickness of the laminar boundary
layer is proportional to x1/2 (Eq. 6.2.27). Thus the turbulent boundary layer
growth is much more significant than that of the laminar boundary layer. This
is due to the action of turbulent vortices spreading momentum away from the
plate more effectively than by viscous stresses alone.

An expression for the wall shear stress is obtained by substituting
Eq. (6.5.10) into Eq. (6.5.8):

�0 D 0.058�
U2

2

(
	

Ux

)1/5

(6.5.11)

By integrating Eq. (6.5.11) over the entire length L of the plate, the total
friction drag is found as

FDf D
∫ L

0
�0 dx D 0.072�

U2

2
L

(
	

UL

)1/5

(6.5.12)

Then, according to this expression, the coefficient of friction drag is given by

CDf D FDf

L��U2/2
� D 0.072Re�1/5

L (6.5.13)

As with the laminar boundary layer, there is no form drag on a flat plate.
It should be noted that the expressions developed in this section are

applicable for values of ReL up to about 107. For higher values of ReL, more
complicated velocity profiles should be considered.

6.6 APPLICATION OF THE BOUNDARY LAYER CONCEPT
TO HEAT AND MASS TRANSFER

The use of the boundary layer approximation as an integral method for
the solution of partial differential equations dates back to Von Karman and
Pohlhausen, who applied this method to phenomena of fluid flow. Since
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then the boundary layer approximation has been useful in a variety of topics
associated with fluid flows, heat, and mass transfer. For the present discussion,
we introduce several examples in which the method is applied to solve
problems of mass transfer, though the basic approach is the same for cases of
heat transfer.

The basic differential equation for mass diffusion in a one-dimensional
domain is (see Sec. 10.3)

∂C

∂t
D km

∂2C

∂y2
(6.6.1)

where C is the mass concentration, km is the mass diffusivity, t is time, and
y is the space coordinate. For a one-dimensional heat conduction problem, C
would represent the temperature and km the heat diffusivity.

Consider the case of diffusion from a flat plate into a semi-infinite
domain. Then the appropriate initial and boundary condition are

C D 0 for 0 � y � 1, t < 0

C D C0 for y D 0, t ½ 0 (6.6.2)

C D 0 for y ! 1, t ½ 0

Following the ideas presented in previous sections of this chapter, it is assumed
that solute concentration above the flat plate is significant in a range of
values for y between the flat plate, where y D 0, and some point y D υ,
which is considered to represent a boundary layer thickness for mass diffusion
(Fig. 6.3). We also assume similarity concentration profiles, so that

C

C0
D f��� � D y

υ
(6.6.3)

Integrating Eq. (6.6.1) with respect to y gives∫ υ

0

∂C

∂t
dy D �

[
km
∂C

∂y

]
yD0

(6.6.4)

where it has been assumed that the concentration gradient vanishes at y D
υ and therefore there is zero flux at that location. The right-hand side of
Eq. (6.6.4) represents the flux of contaminant at the wall that diffuses into the
semi-infinite domain. The LHS represents the rate of change of mass within the
boundary layer control volume. This integral can be evaluated by application
of Leibniz’s rule to obtain

∂

∂t

∫ υ

0
Cdy D

∫ υ

0

∂C

∂t
dy C �C�yDυ

∂υ

∂t
D

∫ υ

0

∂C

∂t
dy (6.6.5)
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Figure 6.3 Contaminant distribution boundary layer.

since C D 0 at y D υ. By introducing Eq. (6.6.3) into Eqs. (6.6.4) and (6.6.5),

dυ

dt

∫ 1

0
fd� D �km

1

υ
f0�0� (6.6.6)

Direct integration of this expression then yields

υ2 D �km
2f0�0�∫ 1
0 fd�

t (6.6.7)

which shows that the thickness of the boundary layer is proportional to t1/2.
The function f��� should satisfy the following boundary conditions:

f��� D 1 at � D 0

f��� D 0 at � D 1 (6.6.8)

f0��� D 0 at � D 1
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A possible form for f��� that satisfies these conditions is

f��� D �1 � ��n (6.6.9)

where n is a power coefficient, which should be chosen to provide a best fit of
the concentration profile to measured values. By introducing Eq. (6.6.9) into
Eq. (6.6.7), we obtain

υ2 D 2n�nC 1�kmt (6.6.10)

The boundary layer method also can be applied in cases of prescribed
contaminant flux at y D 0 (rather than specifying concentration). The extension
of the boundary layer approximation to such cases is done by the top specified
boundary layer approach. According to this method, a “region of interest” is
identified in which the similarity concentration profile (Eq. 6.6.3) is valid. In
this case, however, the value for C0 is obtained as part of the solution and is
generally time dependent.

PROBLEMS

Solved Problems

Problem 6.1 According to Eq. (6.2.9), the equations of motion for boundary
layer flow are given by

u
∂u

∂x
C v

∂u

∂y
D � 1

�

∂p

∂x
C 	

∂2u

∂y2
�1�

0 D � 1

�

∂p

∂y
�2�

∂u

∂x
C ∂v

∂y
D 0 �3�

Using the equation of continuity (3) and direct integration of the equations of
continuity (3) and motion (1), while using Leibniz’s rule, derive Eq. (6.3.7).

Solution

Equation (2) indicates that the pressure depends only on the x coordinate.
However, the effect of the pressure gradient on the structure of the boundary
layer flow is usually negligible. We multiply Eq. (3) by u and add it to Eq. (1),
to obtain

∂u2

∂x
C ∂�uv�

∂y
D 	

∂2u

∂y2
�4�
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According to Leibniz’s rule:

∂

∂˛

∫ g�˛�

f�˛�
w�˛, x� dx D

∫ g�˛�

f�˛�

∂w

∂˛
dx C �w�g�˛�

dg

d˛
� �w�f�˛�

df

d˛

We first use Leibniz’s rule for the integration of the continuity equation. Inte-
grating the first term of Eq. (3) over the thickness of the boundary layer
gives ∫ υ

0

∂u

∂x
dy D ∂

∂x

∫ υ

0
u dy �U

dυ

dx
�5�

where U is the longitudinal velocity at the top of the boundary layer. Inte-
grating the second term of Eq. (3) over the boundary layer thickness gives∫ υ

0

∂v

∂y
dy D �v�yDυ

In summary, by integration of the equation of continuity (3) over the boundary
layer thickness, we have

�v�yDυ D U
dυ

dx
� ∂

∂x

∫ υ

0
u dy �6�

We now multiply Eq. (4) by the density and integrate all terms over the
boundary layer thickness. The first term gives∫ υ

0

∂u2

∂x
dy D ∂

∂x

∫ υ

0
u2dy �U2 dυ

dx
�7�

Integration of the second term of Eq. (4) yields∫ υ

0

∂�uv�

∂x
dy D �uv�yDυ

By introducing Eq. (6) into this expression, we obtain

�uv�yDυ D U

(
U
dυ

dx
� ∂

∂x

∫ υ

0
u dy

)
�8�

Then, by combining this expression (8) with Eq. (7), we find∫ υ

0

[
∂u2

∂x
C ∂�uv�

∂y

]
dy D ∂

∂x

∫ υ

0
[u�u�U�]dy �9�

By integration of the right-hand-side term of Eq. (4) over the thickness of the
boundary layer,∫ υ

0

(
	
∂2u

∂y2

)
dy D

(
	
∂u

∂y

)∣∣∣∣
yDυ

�
(
	
∂u

∂y

)∣∣∣∣
yD0

D � 1

�
�0
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This expression is equal to the expression of Eq. (9). Therefore

�0 D ∂

∂x

{
�U2

∫ υ

0

[
u

U

(
1 � u

U

)]
dy

}
�10�

We consider similar velocity profiles of the boundary layer and introduce a
new coordinate of the boundary layer, defined by

� D y

υ

By introducing this coordinate into Eq. (10), we obtain

�0 D d

dx

{
�U2υ

∫ 1

0

[
u

U

(
1 � u

U

)]
d�

}
D �V2

∫ 1

0

[
u

V

(
1 � u

V

)]
d�
dυ

dx
�11�

which is the desired expression for the bottom shear stress.

Problem 6.2 Assume that the velocity distribution in the laminar boundary
layer over a flat plate is given by

u

U
D sin

(�y
2υ

)
(a) Find the dependence of the boundary layer thickness υ on the velocity

U, the kinematic viscosity of the fluid, and the distance from the leading edge
of the BL.

(b) What is the shear stress along the plate?
(c) What is the coefficient of friction drag?

Solution

We introduce the velocity profile into Eq. (6.4.7) to obtain∫ 1

0

(
1 � u

U

)
u

U
d� D

∫ 1

0

[
1 � sin

(��
2

)]
sin

(��
2

)
d�

D
∫ 1

0

[
sin

(��
2

)
� sin2

(��
2

)]
d�

D
∫ 1

0

[
sin

(��
2

)
C 1

2
cos����� 1

2

]
d�

D
[
� 2

�
cos

(��
2

)
C 1

2�
sin����� �

2

]1

0

D 0.137

Introducing this result into Eqs. (6.3.10) and (6.4.8) gives

�0 D �
�U

2υ

d

dx

(
υ2) D 23	

U
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We integrate this expression, and assume that υ D 0 at x D 0, to obtain

υ D 4.8

√
	x

U
�0 D 0.33�U2 1p

Rex

By integrating the expression for �0 over the length L of the plate, we obtain

FDf D 1.32p
ReL

�
U2

2
L and CDf D 1.32p

ReL

Problem 6.3 Consider the development of the velocity profile along a flat
plate (this was originally discussed in Chap. 3). Develop an expression for the
velocity profile in terms of U D velocity of the plate, kinematic viscosity of
the fluid, and υ D boundary layer thickness, using the boundary layer method.
Assume that the velocity is described by a similarity profile,

u

U
D �1 � ��n where � D y

υ

Solution

The differential equation of the problem is given by Eq. (3.4.1), which is
basically the same as the equation of diffusion, Eq. (6.6.1). This differential
equation is subject to the following initial and boundary conditions:

u D 0 at t � 0 for all values of y

u D U at t > 0 for y D 0

u D 0 for y ! 1
(also see Eq. 3.4.8). We apply a modified set of the following boundary condi-
tions by incorporating the boundary layer thickness directly:

υ D 0 at t D 0

u D U at y D 0
∂u

∂y
D 0 at y D υ

The velocity profile, suggested by the problem, complies with these boundary
and initial conditions. Introducing the velocity profile into the differential
equation and applying Leibnitz’s rule, we obtain

d

dt

[
Uυ

∫
�1 � ��nd� D 	

Un

υ

]
) dυ2

dt
D 2	n�nC 1�

Direct integration of this expression yields

υ2 D 2	tn�nC 1� ) υ D
√

2	tn�nC 1�
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By introducing this result into the expression of the similar velocity profile,
we find that

u

U
D

(
1 � yp

2	tn�nC 1�

)n

Unsolved Problems

Problem 6.4 Assume that the velocity profile for the laminar boundary layer
over a flat plate is given by

u D ˛y C ˇy3

(a) Find appropriate values for ˛ and ˇ.
(b) Determine the rate of growth of υ versus x.
(c) Find the variation of �0 versus x.
(d) Find the friction drag and friction drag coefficient for a plate of

unit width and length L.

Problem 6.5 Consider the following velocity profile for the laminar boundary
layer over a flat plate:

u

U
D

(
1 � y

υ

)n
Determine the difference between values of the coefficients of friction drag
by assuming n D 2 and n D 3.

Problem 6.6 Assume that the velocity distribution in the turbulent boundary
layer over a flat plate is given by

u

uŁ
D 2.5 ln

(yuŁ
	

)
C 5.5

(a) Find the rate of growth of υ versus x.
(b) Find the variation of �0 versus x.
(c) Find the friction drag and friction drag coefficient for a plate of

unit width and length L.

Problem 6.7 Consider a boundary through which a constant mass flux of
solute penetrates into the fluid domain. The mass flux per unit width and
length of the boundary is qm. Assume that the penetrating solute flux is small,
so that the velocity profile is unaffected by the solute, which spreads into the
domain by diffusion only. Also assume that solute concentration in the fluid
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domain may be described using a similarity profile,

C

Cb
D F��� where � D y

υ

where

F D �1 � ��n

where n is equal to 2 or 3, and Cb is the solute concentration at the boundary.
Note that Cb varies with time.

(a) What is the rate of growth of υ versus t?
(b) Find the difference in values of υ between the assumptions of n D 2

and n D 3.
(c) Determine the expression for the variation of Cb versus t.

Problem 6.8 A solute diffuses from a contaminated bank of a river into the
river, which is considered to be wide. The river bank represents a boundary
of constant concentration C0. Assume that the river depth is uniform, and that
the flow velocity V is uniformly distributed. For this case, under steady-state
conditions, the equation of contaminant diffusion–advection is given by (see
Chap. 10 for development of this equation)

V
∂C

∂x
D D

∂2C

∂y2

where C is the solute concentration.

(a) Determine the solute concentration profiles, by applying the method
presented in Sec. 3.4, for unsteady motion of a flat plate.

(b) Determine the solute concentration profiles by applying the simi-
larity profiles of Problem 6.7.

(c) Evaluate the accuracy of the similarity solutions, relative to the
full boundary layer solution obtained in part (a), while considering
n D 2 or n D 3.
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7
Surface Water Flows

7.1 INTRODUCTION

Environmental surface water flows develop as direct runoff, flow in streams
and rivers, transfer of lake water to outlet rivers, circulation in lakes and
ponds, flow in estuaries, and groundwater supply into streams and rivers.
Artificial conduits constructed to transport surface water are common in water
and wastewater management, including canals, irrigation systems, and sewer
systems. The focus of the present chapter is on a review of elements of free
surface flow in open channels, under steady-state and quasi-steady-state condi-
tions. Circulation in lakes and reservoirs is introduced briefly, in Sec. 7.7,
though these flows are generally much more complicated and not amenable
to the types of analyses typical of open channel flow.

7.2 HYDRAULIC CHARACTERISTICS OF OPEN CHANNEL
FLOW

7.2.1 Basic Geometric Parameters of the Channel Cross
Section

A defining characteristic of open channel flow is the presence of a free surface,
open to the atmosphere and at which the pressure is zero (or, equal to atmo-
spheric pressure in absolute pressure terms). As an example, Fig. 7.1 illustrates
two types of common channels: (a) a channel with trapezoidal cross section;
and (b) a channel with circular cross section. Much of the discussion that
follows concerns basic parameters of channel flow in a trapezoidal channel,
since this is the most common shape used for constructed channels and also
provides a reasonable approximation for natural streams.

The cross-sectional area, A, of the channel is the area of the channel
cross section, measured perpendicular to the flow velocity vector. In the case
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Figure 7.1 Parameters of the channel cross section: (a) trapezoidal cross section;
and (b) circular cross section.

of the trapezoidal cross section, shown in Fig. 7.1,

A D �bC my�y D by C my2 �7.2.1�

where y is the depth, b is the base width of the trapezoid, and m is the side
slope. Triangular and rectangular cross sections are particular cases of the
trapezoidal cross section, with b D 0 for a triangular cross section and m D 0
for a rectangular cross section.

The wetted perimeter, P, is the length of the line of contact between
the fluid and the solid wall of the channel. In the case of a trapezoidal cross
section,

P D bC 2y
√
m2 C 1 �7.2.2�

The hydraulic radius, Rh, is defined as the ratio between the cross-sectional
area and the wetted perimeter. For the trapezoidal channel,

Rh D A

P
D by C my2

bC 2y
p
m2 C 1

�7.2.3�

In the case of a wide rectangular channel, m D 0, and y − b. Therefore, a
common approximation is

Rh
¾D y �7.2.4�
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For a channel of circular cross section of diameter D, which is completely full
(Fig. 7.1b), the ratio of area to wetted perimeter gives

Rh D �D2/4

�D
D D

4
�7.2.5�

The surface width, B, is written in terms of the trapezoidal channel section
shown in Fig. 7.1a as

B D bC 2my �7.2.6�

The hydraulic depth, yh, is defined as the cross-sectional area divided by
surface width,

yh D A

B
�7.2.7�

7.2.2 Parameters of Open Channel Flow

The discharge flowing through the channel is Q and the average flow velocity
is V, where

V D Q

A
�7.2.8�

Basic phenomena of open channel flow are characterized by two dimension-
less parameters, the Reynolds number, Re, and the Froude number, Fr. The
Reynolds number represents the ratio between inertial and viscous forces (see
Sec. 1.4.2). The Reynolds number was originally defined for pipe flow, where
the characteristic length scale is the diameter. For open channel flow, the char-
acteristic length is Rh, since it is associated with the friction between flowing
water and the solid walls of the channel. In order to be consistent with the
definition for pipe flow, Eq. (7.2.5) suggests Re should be defined for open
channel flow as

Re D 4VRh

	
�7.2.9�

where 	 is the fluid kinematic viscosity.
As with pipes, the value of Re indicates whether the flow is subject to

laminar or turbulent conditions. Environmental flows of water in open channels
are usually fully turbulent, in which case the effect of variability of Re is of
minor importance.

The Froude number represents the ratio between the inertial and gravi-
tational forces (Sec. 1.4.2). Its value is useful as an index for the development
of free surface waves. Therefore the characteristic length associated with the
definition of the Froude number should represent the freedom of the surface
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to oscillate. Such a length is the hydraulic depth of the channel, so Fr in open
channel flow is defined as

Fr D Vp
gyh

�7.2.10�

where g is gravitational acceleration.
For a rectangular channel, particularly one that is very wide compared

to its width, the flow is often analyzed as a two-dimensional phenomenon. In
this case, the discharge per unit width of the channel is defined as

q D Q

b
D Vy �7.2.11�

By introducing Eq. (7.2.11) into Eq. (7.2.10), Fr for wide rectangular channel
flow is

Fr D q√
gy3

�7.2.12�

7.2.3 The Longitudinal Cross Section of Open Channel Flow

Figure 7.2 shows a longitudinal cross section of an open channel flow. Such
a cross section is usually drawn with a distorted scale, with the horizontal
scale much larger than the vertical scale. Longitudinal distances are measured
in the horizontal direction, though the x coordinate extends along the channel
bed. The channel bed has a slope angle ˛, which is normally assumed to
be relatively small. Thus the elevation, water depth, and velocity head are
written with respect to the vertical direction, which is almost perpendicular
to the channel bed. We consider variations of the channel bed elevation, the
water free surface, and the total head along the channel, as shown in Fig. 7.2.

Figure 7.2 Longitudinal cross section of the channel.
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The channel bed slope is defined by

S0 D �dz
dx

D sin˛ �7.2.13�

where z is the bed elevation, relative to datum.
The slope of the water free surface is

i D � ∂

∂x
�z C y� D S0 � ∂y

∂x
�7.2.14�

The partial derivative of y is used since the water depth may be a space- and
time-dependent variable.

The slope of the total head line (energy line) is called the energy slope
or friction slope and is defined by

Sf D �∂H
∂x

D � ∂

∂x

(
z C y C V2

2g

)
D S0 � ∂E

∂x
�7.2.15�

where E is called the specific energy, which is the total head measured with
respect to the channel bed as a datum. As implied in Eq. (7.2.15), it is defined
by

E D y C V2

2g
�7.2.16�

There are several special cases that simplify the analysis of open channel
flows. First, in the case of steady-state conditions, the local water depth and
velocity are constant with time, namely,

∂y

∂t
D ∂V

∂t
D 0 �7.2.17�

In the case of uniform flow, the water depth and velocity are constant along
the channel,

∂y

∂x
D ∂V

∂x
D 0 �7.2.18�

If the flow is both steady and uniform, then the channel bed, free water surface,
and energy line are all parallel.

7.2.4 The Equation of Open Channel Flow

In Fig. 7.3 a control volume is defined that incorporates a portion of the
channel fluid, subject to steady, uniform flow. The net forces acting on this
control volume are due to gravity and shear stress along the solid boundary.
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Figure 7.3 Forces acting on a control volume of the channel fluid.

There is no net pressure force since the depth is constant. Thus, applying the
concept of momentum conservation,

�PL D �gALS0 �7.2.19�

where � is the shear stress applied along the wetted perimeter and � is the
fluid density. With minor modification, this relationship also is applicable in
nonuniform flow, substituting Sf for S0,

�PL D �gALSf �7.2.20�

Solving for �, we obtain

� D �gRhSf �7.2.21�

Upon dividing both sides of Eq. (7.2.21) by �V2/8, an expression for
the dimensionless Darcy–Weissbach friction coefficient is obtained,

f D 8�

�V2
D 8gRhSf

V2
�7.2.22�

This expression leads to the Darcy–Weissbach equation of motion,

Sf D f

4Rh

V2

2g
or V D

√
8g

f
RhSf �7.2.23�

This gives the energy slope in terms of the friction factor, f, and velocity in
terms of friction slope.

An alternative representation is by the Chezy equation,

V D C
√
RhSf �7.2.24�

where C is the Chezy friction coefficient, which by comparison of Eqs. (7.2.23)
and (7.2.24) is related to the Darcy–Weissbach friction coefficient by

C D
√

8g

f
�7.2.25�
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The various expressions for the equation of motion for open channel flow
can be derived from the relevant expressions developed and used for pipe flow,
with slightly modified coefficients. For commercial pipes, for example, it is
common to apply the Colebrook equation, which has a modified form for open
channels given by

1p
f

D Cp
8g

D �2 log10

(
ε

12Rh
C 2.5

Re
p
f

)
�7.2.26�

where ε is the relative roughness of the channel bed. It is defined by ε D k/l,
where k is the roughness length, characterizing the small projections of mate-
rial from the surface of the channel boundary into the flow, and l is the
characteristic length of the flow, i.e., the hydraulic radius in open channel
flow or the diameter in pipe flow. The dimensionless roughness parameter εC
is usually used to determine the type of turbulent flow (smooth or rough),
and whether some terms of Eq. (7.2.26) can be ignored under certain circum-
stances. This parameter is defined by

εC D kuŁ
	

�7.2.27�

where uŁ is the shear velocity,

uŁ D
√
�

�
�7.2.28�

The following ranges of εC determine the type of turbulent flow in the channel:

�a� Smooth turbulent flow : εC < 5 �7.2.29a�

�b� Transition between smooth and rough turbulent flow :

5 < εC < 80 �7.2.29b�

�c� Rough turbulent flow : εC > 80 �7.2.29c�

Smooth turbulent flow exists when the roughness projections are all submerged
within the laminar sublayer (refer to Chap. 6), and rough flow exists when
the roughness protrudes entirely through the laminar sublayer. In most cases,
environmental open channel flow is characterized as rough turbulent flow. For
this condition, experiments with pipes have led to

f D 0.113
(
ε

Rh

)1/3

�7.2.30�

By introducing this result into Eq. (7.2.25), the Chezy coefficient becomes

C D 26.32
(
Rh
ε

)1/6

�7.2.31�
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This indicates that the Chezy coefficient is directly related to ε. It should also
be kept in mind that the gravitational acceleration value in SI units was applied
to calculate the constant coefficient of the right-hand side of Eq. (7.2.31).

By introducing Eq. (7.2.31) into Eq. (7.2.24), we obtain

V D 1

n
R2/3

h S1/2
f �7.2.32�

which applies for rough turbulent flow in open channels. This is called the
Manning equation, and Manning roughness coefficient, n, is given by

n D 0.038ε1/6 �7.2.33�

It should be noted that Eq. (7.2.32) is not dimensionally consistent (there are
no units of time on the right-hand side, for instance). Since SI units were used
(Eq. 7.2.31), V is in m/s when Rh is in m. When English units are used (V in
ft/s and Rh in ft), Eq. (7.2.32) has an added factor of 1.49 in the numerator.

7.2.5 Uniform Flow in Open Channels

Uniform flow through an open channel or natural stream is most often calcu-
lated using the Manning equation, where V from Eq. (7.2.32) is multiplied by
the cross-sectional area, A,

Q D AR2/3
h

n
S1/2

f �7.2.34�

The Manning equation also is applicable to nonuniform open channel flow.
However, in cases of steady nonuniform flow, only Q and n of Eq. (7.2.34) are
kept constant along the channel. Therefore numerical procedures are usually
needed for the calculation of nonuniform flow. Some further discussion of this
approach is presented in Sec. 7.6.

The channel bed may be subject to erosion if the shear stress applied on
it by the flowing water exceeds a defined critical value. Using the definition for
shear stress, Eq. (7.2.21), with Eq. (7.2.34), then in order to prevent erosion,
the following relationship must hold:

Qn
p
g

uŁc

� AR1/6
h �7.2.35�

where uŁc is the critical shear velocity defined as in Eq. (7.2.28), using �c in
place of �, and �c is the critical shear stress for erosion to occur. This value
depends on characteristics of the bed and the material of the bed. Sedimenta-
tion is discussed further in Chap. 15.
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7.2.6 The Concept of Specific Energy and Critical Depth

From Eq. (7.2.16), the specific energy in open channel flow is defined as

E D y C V2

2g
D y C Q2

2gA2
�7.2.36�

For a rectangular channel, this can be written as

E D y C q2

2gy2
�7.2.37�

where, as before, q is the discharge per unit width. As discussed further in
Sec. 7.3, the concept of specific energy is useful in calculations concerning
transitions in open channels, where energy losses are negligible.

Equations (7.2.36) and (7.2.37) indicate that, for a constant value of Q,
the specific energy is expressed as a sum of two terms, the water depth and the
velocity head. The velocity head decreases with water depth from an infinite
value at y ! 0, to a negligible value as y ! 1. Therefore the sum of two
such terms should have a minimum value for a certain value of y.

Differentiating Eq. (7.2.36) with respect to y, we obtain

dE

dy
D 1 � Q2

gA3

dA

dy
D 1 � V2

g

(
1

A

dA

dy

)
�7.2.38�

To evaluate the derivative on the right-hand side, note from Fig. 7.4 that

dA

dy
D B �7.2.39�

Introducing this result into Eq. (7.2.38) then gives

dE

dy
D 1 � V2

g�A/B�
D 1 � Fr2 �7.2.40�

Figure 7.4 Schematic variation of area with depth.
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For a constant value of Q, Fr decreases when y increases. In the case
of a rectangular channel, the Froude number is inversely proportional to y3/2

(Eq. 7.3.12). Therefore in cases of small values of y, Fr is larger than 1, and
for large values of y, Fr is smaller than 1. Hence the following features of the
curve of E versus y can be deduced:

dE

dy
< 0 if Fr > 1 and y is small �7.2.41a�

dE

dy
D 0 if Fr D 1 and y has a critical value �7.2.41b�

dE

dy
> 0 if Fr < 1 and y is large �7.2.41c�

In addition, from Eq. (7.2.37), there are in general two roots (values of y)
possible for a given specific energy level, E. Figure 7.5 provides a schematic
of the variation of E and its derivative versus y, for a constant value of q.
From this figure, it can be seen that E has two asymptotic limits: (a) the E axis
as y ! 0; and (b) the straight line that passes through the origin with a slope
of 45° (unity slope). When Fr D 1, the specific energy obtains its minimum
value, and the water depth is called critical depth.

For critical conditions in a rectangular channel, Eq. (7.2.12) yields

yc D
(
q2

g

)1/3

�7.2.42�

By introducing Eq. (7.2.42) into Eq. (7.2.37), an expression for the minimum
value of E in a rectangular channel is found as (recall that Fr D 1),

Emin D 3
2yc �7.2.43�

This result indicates that all points of minimum value of E in rectangular
channels comprise a straight line that passes through the origin, having slope
equal to 1.5. For a channel of nonrectangular cross section, under critical flow
conditions,

Emin D yc C 1
2yhc �7.2.44�

where yhc is the hydraulic depth under critical flow conditions.
By rearranging the definition for specific energy, Eq. (7.2.36), the flow

rate is

Q D A
√

2g�E� y� �7.2.45�

The maximum discharge that may flow through the channel is obtained by
differentiating Eq. (7.2.45) with respect to y. Setting the derivative equal to 0
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Figure 7.5 Variation of E and its derivative versus y: (a) E versus y; (b) dE/dh
versus y.

then gives

E D y C 1
2yh �7.2.46�

By comparison with Eq. (7.2.44), it is seen that this condition is satisfied only
under critical conditions. Thus for a given value of the specific energy, the
maximum discharge that can flow through the channel cross section is obtained
under critical flow conditions.

7.2.7 The Concept of the Momentum Function

The concept of the momentum function is associated with the employment
of the conservation of momentum principle for open channel hydraulics.
Figure 7.6 shows a prismatic channel, namely a channel with constant cross-
sectional shape. In the following, we assume steady-state conditions and
calculate the forces acting on a fluid control volume of length L.
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Figure 7.6 Schematics of a fluid control volume.

The equation of momentum conservation with regard to the fluid control
volume is

∂

∂t

∫
U
� EVdU C

∫
S
� EV� EV Ð En� dS D �

∫
S
pEndS�

∫
U
�gEk dU

C
∫
U

Q� Ð EndSC EFS �7.2.47�

where EV is the velocity vector, � is the fluid density, En is a unit normal vector,
Ek is a unit vertical vector, g is gravitational acceleration, Q� is the shear stress
tensor, FS is the sum of forces acting on solid surfaces of the control volume,
U is the volume of the control volume, and S is the surface of the control
volume. Applying the flow and force parameters shown in Fig. 7.6 with regard
to the control volume results in

��QV1 C �QV2 D p1A1 � p2A2 C
∫ L

0
�gAS0 dx

C
∫ L

0
�P dx C FS �7.2.48�

where p1 and p2 are the pressures at the center of gravity of cross sections
1 and 2, respectively. It should be noted that although FS and � in Fig. 7.6
are drawn in the positive x-direction, their real directions should be found by
solution of the appropriate basic equations.

Rearrangement of Eq. (7.2.48) yields

�2 ��1 D
∫ L

0
�gAS0 dx C

∫ L

0
�P dx C Fs �7.2.49�

where

�1 D �QV1 C p1A1 �2 D �QV2 C p2A2 �7.2.50�

and � is called the momentum function. If the control volume does not have
solid surfaces, the length of the control volume is small, and the slope of the
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Figure 7.7 Example of momentum function.

channel is also small, then the momentum function is constant between the
two cross sections of the channel shown. If the channel has a rectangular cross
section, we may define kinematic momentum per unit width, M, by

M D �

�gb
D q2

gy
C y2

2
�7.2.51�

In Fig. 7.7 is shown a schematic description of the momentum function
versus y, for a constant discharge. As indicated by Eq. (7.2.51), the momentum
function comprises two terms. One term is proportional to y2. The other term
is inversely proportional to y. Therefore the sum of these two terms should
have a minimum. The minimum value of M is obtained by differentiating
Eq. (7.2.51) with respect to y:

dM

dh
D y � q2

gh2
D y�1 � Fr2� �7.2.52�

This result indicates that the minimum value of M occurs where Fr D 1 (and
y D yc).

As indicated in Fig. 7.7 and Eq. (7.2.49), variation of the momentum
function between successive cross sections of the channel can be useful for
the calculation of forces acting on objects present in the channel, as well
as hydraulic structures. However, in various cases where energy losses are
significant, the momentum conservation principle can still be applied.

7.3 APPLICATION OF THE ENERGY CONSERVATION
PRINCIPLE

The energy conservation principle is useful for calculations of changes in the
velocity and water depth of the channel flow, provided that such changes
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are associated with negligible energy loss. Examples of such changes of the
flow velocity and water depth can be considered in cases of smooth channel
transitions, lateral outflow, and others.

7.3.1 Transitions in Open Channel Flow

Contraction — Expansion of the Channel Cross Section

Figure 7.8 describes a rectangular channel with a contraction in width. The
transition from cross section 1 to cross section 2 takes place along a short
length of the channel and is made in a manner minimizing local head losses.
Also, it is assumed that the slope of the channel is very small. Therefore,
energy losses between cross sections 1 and 2 are neglected. As the bottom of
the channel is almost horizontal, it may be considered as a datum, so that

dE

dx
D 0 �7.3.1�

Using the definition of specific energy from Eq. (7.2.37), Eq. (7.3.1) implies

dy

dx
� Q2

g�by�3

(
b
dy

dx
C y

db

dx

)
D dy

dx
�1 � Fr2�� Fr2 y

b

db

dx
D 0 �7.3.2�

The transition of the channel shown in Fig. 7.8 is associated with a negative
value of the derivative of b with respect to x. Therefore the derivative of y

Figure 7.8 Transition in the open channel flow due to a variable width: (a) side
view; and (b) top view.
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Figure 7.9 Relationships between y1 and y2 shown on the diagram of (E versus y)
for the transition from wide into a narrow cross section.

with respect to x is negative if Fr is smaller than 1, and the derivative is
positive if Fr is greater than 1. Figure 7.9 shows the relationships between y1

and y2 on the diagram of E versus y.
As a special case, consider the situation where, following the local

constriction of the channel downstream of cross section 2, the channel expands
back to its original width, b1. Equation (7.3.2) indicates that in such a case,
if Fr is smaller than 1, then the minimum value of y occurs when b is at its
minimum value. If Fr is larger than 1, then the maximum value of y occurs
when b is at its minimum value.

If the water depth is known at either cross section 1 or 2, such as shown
in Fig. 7.8, then the other unknown water depth can be calculated by solving
a third-order algebraic equation, based on the constant value of E for the two
cross sections. In the case of rectangular cross sections, the equation is given
by

f�y2� D y3
2 � Ey2

2 C Q2

2gb2
2

D 0 �7.3.3�

If the contraction of the channel width is very significant, then the horizontal
line that crosses the two curves of E in Fig. 7.9 does not cross the curve of
E for cross section 2. Then the channel constriction acts as a choke. Under
such conditions, Fr should be equal to 1 where b obtains its minimum value,
namely, flow at cross section 2 is kept under critical conditions. Critical flow
at cross section 2 and no loss of head between cross sections 1 and 2 dictate
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a rise of the free surface at cross section 1. In such a case, at cross section
1, the flow is always subcritical (Fr < 1), and the water level is often higher
than its original value. The gain of head in cross section 1 is obtained by
reducing the head loss upstream of the choke, due to the lower value of the
flow velocity. Thus we may conclude that the flow downstream of the choke
should be supercritical (with Fr > 1).

Elevation of the Channel Bottom

Figure 7.10 shows a rectangular channel with an elevated bottom (or hump).
We again assume that there is no head loss between cross sections 1 and 2, as
well as between cross sections 2 and 3, and neglect bottom slope. Referring
to a datum at z D 0, which is located at the original elevation of the channel
bottom, the total head at the elevated portion of the channel is

H D z C y C q2

2gy2
�7.3.4�

The negligible head loss along the elevated portion of the channel implies

dH

dx
D 0 D dz

dx
C dy

dx

(
1 � q2

gy3

)
D dz

dx
C dy

dx
�1 � Fr2� �7.3.5�

Figure 7.10 A channel with an elevated bottom: (a) side view; and (b) top view.
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This result indicates that y increases with z if Fr is larger than 1, and it
decreases when z increases if Fr is smaller than 1. Considering Fr > 1, the
free surface of the water is elevated by an amount larger than the elevation of
the channel bottom, since both z and y have positive derivatives with respect
to x. If Fr is smaller than 1, then the derivatives of y and z with regard to x
have opposite signs. Under such conditions, the coefficient of the derivative
of y is smaller than 1, so the decrease of y is larger than the increase of
z. Therefore the elevated bottom causes a depression of the water surface,
provided that Fr < 1.

Equation (7.3.5) indicates that in cross section 3, if Fr is smaller than
1, the minimum value of y occurs where z obtains its maximum value. If
Fr is larger than 1, then the maximum value of y occurs where z obtains its
maximum value.

Figure 7.11 shows the relationships between y1, y2, and z2 due to an
elevated channel bottom. If the water depth is given at either cross section 1
or 2, it is possible to calculate the other water depth by solving a third-order
algebraic equation, based on the constant total head for cross sections 1 and
2. In the case of rectangular cross sections, the equation is

f�y2� D y3
2 � �E1 � z2�y

2
2 C q2

2g
D 0 �7.3.6�

If the elevation of the channel bottom is very significant, then the hori-
zontal line that represents the value of E at cross section 2 in Fig. 7.11 does

Figure 7.11 Relationships between y1 and y2 shown on the diagram of (E versus y)
for the transition due to an elevated channel bottom.
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not cross the E curve. Then the elevation of the channel bottom acts as a
choke. Under such conditions, where z obtains its maximum value, Fr should
be equal to 1, namely, critical flow conditions should prevail in cross section
2. Critical flow conditions at cross section 2 and no loss of head between cross
sections 1 and 2 dictate a rise of the free water surface at cross section 1. In
such a case, at cross section 1 the flow is always subcritical (Fr < 1) and the
water head is often higher than its original value. The gain of head in cross
section 1 is obtained by reducing the head loss upstream of the choke, due
to the lower value of the flow velocity. Thus we may conclude that the flow
downstream of the choke should be supercritical (with Fr > 1), similar to the
channel contraction discussed above.

7.3.2 Lateral Outflow from the Channel

Figure 7.12 shows a channel with a side weir. The discharge over an interval
dx of the weir is given by

dQ D C1

√
2g�y �W�3dx �7.3.7�

where C1 is a coefficient of the weir and W is the weir crest elevation.
If the length L of the weir is small, then it may be assumed that the

specific energy is constant along the weir. Applying Eq. (7.2.36), we obtain

dE

dx
D 0 D dy

dx
C Q

gA

dQ

dx
� Q2B

gA3

dy

dx
�7.3.8�

It should be noted that dQ in Eq. (7.3.8) is the negative value of the weir
discharge given by Eq. (7.3.7). Substituting this value from Eq. (7.3.7) into
Eq. (7.3.8) then gives

dy

dx
D �Q/gA2�C1

√
2g�y �W�3

1 � Fr2 �7.3.9�

Equation (7.3.9) indicates that if Fr < 1, then the water depth increases
along the weir, as shown in Fig. 7.12a. If Fr > 1, then the water depth decrea-
ses along the weir, as shown in Fig. 7.12b. In the general case, Eq. (7.3.9)
should be solved numerically, using an approach such as is discussed later in
Sec. 7.6. In that section the problem of gradually varied flow in nonprismatic
channels is addressed. The same basic approach applicable to nonprismatic
channels can be used for cases of discharge varying along the channel as
represented by Eq. (7.3.9).

If the channel has a rectangular cross section, then the channel flow rate
at any cross section is given by

Q D by
√

2g�E� y� �7.3.10�
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Figure 7.12 Lateral flow out of an open channel by a side weir: (a) case of subcritical
flow; and (b) case of supercritical flow.

Using this expression to represent the Froude number, we have

Fr2 D Q2

gb2y3
D 2

(
E

y
� 1

)
�7.3.11�

Then, introducing Eqs. (7.3.10) and (7.3.11) into Eq. (7.3.9), we find

dx

dy
D b

2C1

√
�E� y��y �W�3

�3y � 2E�
�7.3.12�

Direct integration of Eq. (7.3.12) yields

x D C1

b

[(
2E� 3W

E�W

)√
E� y

y �W
� 3 sin�1

√
E� y

y �W

]
C const �7.3.13�

Employment of this solution may be difficult in cases of subcritical flow,
where calculations of the water depth, as shown in Sec. 7.6, are performed in
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the upstream direction, starting from a control section located at the down-
stream end of the channel reach. However, since the channel discharge down-
stream of the weir is not known prior to the calculation of the lateral flow out of
the weir, trial-and-error calculations may be needed when using Eq. (7.3.13).

7.4 APPLICATION OF THE MOMENTUM CONSERVATION
PRINCIPLE

As shown in Sec. 7.2, the principle of momentum conservation and the concept
of the momentum function are related to the calculation of forces that act on
a control volume of fluid in open channel flow. In cases of the calculation of
transitions in open channels, where energy conservation is applied to calcu-
late the water depth at the transition, the momentum conservation principle
can be applied to calculate the forces acting on the constricted portion of the
channel. However, the momentum conservation principle and the momentum
function also are useful for the calculation of phenomena associated with
significant energy losses. In such cases the energy conservation principle
should follow the employment of the momentum conservation principle. Then,
the momentum principle is used for the calculation of flow conditions at the
entrance and exit of the particular control volume. Following this calculation,
the energy conservation principle is applied to evaluate possible energy losses.

7.4.1 Forces Acting on a Channel Constriction

Fig. 7.13 shows two types of channel constrictions. Figure 7.13a refers to a
rectangular channel, whose width varies from b1 to b2, and Fig. 7.13b refers
to a rectangular channel, whose bottom is elevated by an amount z. In both
cases, a force F is applied by the solid portion of the control volume through
the solid surfaces that bound the control volume. The direction of F is shown
in the (assumed) positive x-direction.

Using the momentum conservation principle, ignoring the effect of �
and assuming zero bottom slope, Eq. (7.2.49) gives

F D �2 ��1 �7.4.1�

The principle of energy conservation provides the value of y2 for a given value
of y1. Then, Eq. (7.4.1) yields

F D �g�b2M2 � b1M1� �7.4.2�

where M is defined in Eq. (7.2.51).
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Figure 7.13 Forces acting on a channel constriction: (a) change in channel width;
and (b) elevation of channel bottom.
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Figure 7.14 Lateral flow into an open channel: (a) channel cross section; and
(b) longitudinal cross section of the channel.

7.4.2 Lateral Flow into an Open Channel

Figure 7.14 shows a schematic of lateral flow into an open channel. Such an
inflow is usually associated with significant energy losses. Therefore even for
a minor portion of the channel, we cannot consider negligible energy loss. On
the other hand, if the lateral inflow takes place along a short section of the
channel, we may ignore the effect of the bottom shear stress in that portion of
the channel. Under this assumption, the momentum function is constant along
that portion of the channel subject to lateral inflow, so that

d�

dx
D 0 �7.4.3�

Using the definition for the momentum function, given by Eq. (7.2.50),
this becomes

dy

dx
D � �2Q/gA

2��dQ/dx�

1 � Fr2 �7.4.4�

Equation (7.4.4) is a nonlinear ordinary differential equation, which can
be solved using an appropriate numerical procedure. Several possible numer-
ical procedures for this purpose are presented in Sec. 7.6.
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7.4.3 The Formation of Surges and the Hydraulic Jump

This topic is presented in Sec. 8.7, as a special case of the formation of positive
waves in an open channel. Both surges and hydraulic jumps are characterized
by an abrupt change in water depth, which is associated with a transition from
supercritical flow to subcritical flow. The surge is a wave subject to movement
in the channel, whereas the hydraulic jump is a stationary wave. However, in
both cases energy losses are significant. The relationship between the water
depths upstream and downstream of the wave can be calculated using the
principle of momentum conservation, as explained in Sec. 8.7.

7.5 VELOCITY DISTRIBUTION IN OPEN CHANNEL FLOW

7.5.1 Use of Navier–Stokes Equations for Unidirectional
Turbulent Flow

The velocity distribution in open channel flow is affected by the shape of the
channel bed. Often, secondary currents develop due to effects originating from
the specific geometry of the channel cross section, side walls, curvature of the
channel course, etc. These situations are complicated and site specific, and in
the present section we consider uniform flow in a wide, straight rectangular
channel.

Calculation of the velocity profile starts with the two-dimensional
Navier–Stokes equations of motion and the equation of continuity (refer to
Chap. 2), with x and z representing the longitudinal and upward vertical direc-
tions, respectively. These equations are given by

∂u

∂t
C u

∂u

∂x
C w

∂u

∂z
D � 1

�

∂p

∂x
C 	

(
∂2u

∂x2
C ∂2u

∂z2

)
�7.5.1a�

∂w

∂t
C u

∂w

∂x
C w

∂w

∂z
D � 1

�

∂p

∂z
C 	

(
∂2w

∂x2
C ∂2w

∂z2

)
� g �7.5.1b�

∂u

∂x
C ∂w

∂z
D 0 �7.5.2�

where u and w are the horizontal and vertical components of the velocity
vector, respectively, t is time, p is piezometric pressure, which is equal to
the piezometric head multiplied by the specific weight of the fluid, � is the
density of the fluid, and 	 is the kinematic viscosity of the fluid.

By multiplying Eq. (7.5.2) by u and combining the resulting expression
with Eq. (7.5.1a), we find

∂u

∂t
C ∂u2

∂x
C ∂�uw�

∂z
D � 1

�

∂p

∂x
C 	

(
∂2u

∂x2
C ∂2u

∂z2

)
�7.5.3a�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Similarly, multiplying Eq. (7.5.2) by v and combining with Eq. (7.5.1b) gives

∂v

∂t
C ∂�wu�

∂x
C ∂w2

∂z
D � 1

�

∂p

∂z
C v

(
∂2w

∂x2
C ∂2w

∂z2

)
� g �7.5.3b�

Since the flow is assumed to be turbulent, the velocity components and pres-
sure in the flow domain can be written as (see Chap. 5)

u D UC u0 w D w0 p D PC p0 �7.5.4�

where U is the average longitudinal flow velocity, u0 and w0 are the velocity
fluctuations in the longitudinal and vertical direction, respectively, P is the
average pressure, and p0 is the pressure fluctuation.

Following similar procedures as outlined in Chap. 5, introducing
Eq. (7.5.4) into Eq. (7.5.2) and averaging the resulting equation shows that

∂U

∂x
D 0 �7.5.5�

Therefore variations of mean flow velocity in the x-direction are negligible.
Also, introducing Eqs. (7.5.4) and (7.5.5) into Eq. (7.5.3) and averaging the
resulting expressions gives, respectively,

∂U

∂t
C ∂�u0w0�av

∂z
D � 1

�

∂P

∂x
C 	

(
∂2U

∂z2

)
�7.5.6a�

0 D � 1

�

∂P

∂z
� g �7.5.6b�

where the subscript “av” refers to the average value.
Mostly, interest is for steady flow conditions. Therefore the first term of

Eq. (7.5.6a) vanishes and

dP

dx
D d

dz

[
�
dU

dz
� ��u0w0�av

]
�7.5.7�

Direct integration of Eq. (7.5.7) yields

y
dP

dx
CC D �

dU

dz
� ��u0w0�av �7.5.8�

where C is an integration constant.
The first term of Eq. (7.5.8) is negligible in comparison to the right-hand

side terms. The first and second terms on the right-hand side of Eq. (7.5.8)
represent the viscous and turbulent shear stresses, respectively. At the bottom
of the channel, the turbulent fluctuations become extremely small and the last
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Figure 7.15 Schematic description of the velocity profile and the mixing length.

term on the right-hand side of Eq. (7.5.8) becomes negligible. Therefore the
constant of integration of Eq. (7.5.8) is equal to the bottom shear stress.

7.5.2 Turbulent Flow in a Smooth Channel

Figure 7.15 shows a schematic description of the velocity profile. At the level
z, the fluid particle fluctuations and turbulent vortices are characterized by a
mixing length, L. If, due to a positive fluctuation w0, the fluid particle jumps
from level z to level z C L, it causes a local negative longitudinal fluctuation
(�u0), as its momentum is lower than the typical momentum of fluid particles
located at level z C L. Due to mass conservation, the absolute values of u0 and
w0 should be close to each other. Also, the fluctuations u0 should be similar to
the difference between longitudinal velocities at levels z C L and z. Therefore

ju0j ³ jw0j ³ L
dU

dz
�7.5.9�

The mixing length value depends on the distance from the solid wall,
namely the channel bottom. For most practical cases of open channel flow,
it is possible to assume that the mixing length is proportional to z, with the
coefficient of proportionality equal to the Von Karman constant, �, with a
nominal value of about 0.4. Introducing this relationship into Eq. (7.5.9) and
then substituting into Eq. (7.5.8), we obtain

�0 D �
dU

dz
C ��2z2

(
dU

dz

)2

�7.5.10�
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Figure 7.16 Schematic description of the laminar sublayer and the turbulent region.

If the channel bottom is very smooth, and Re is not extremely high,
then the velocity profile can be considered to comprise two regions, as shown
in Fig. 7.16. One region is located at the channel bottom and is called the
laminar sublayer. The thickness of this region is υ and its value is of the
order of magnitude 0.1 mm. In the laminar sublayer, the turbulent vortices are
very small and velocity fluctuations are negligible. Therefore in the laminar
sublayer, the last term of Eq. (7.5.10) can be neglected. Overlaying the laminar
sublayer is the turbulent region. In the turbulent region, the effect of viscous
forces is negligible. Therefore, in this region, the first term on the right-hand
side of Eq. (7.5.10) can be neglected.

First consider the laminar sublayer. For this layer, Eq. (7.5.10) can be
written in nondimensional form as (neglecting the turbulence term)

uC D zC �7.5.11�

where

uC D U

uŁ
zC D zuŁ

v
uŁ D

√
�0

�
�7.5.12�

Here, uŁ is the shear velocity, uC is the dimensionless velocity, and zC is
the dimensionless distance from the bottom of the channel. Experimental data
have shown that the dimensionless thickness of the laminar sublayer is

υC D υuŁ
v

D 11.6 �7.5.13�

According to this result, Eq. (7.5.11) is thus applicable for zC values in the
range

0 � zC � 11.6 �7.5.14�
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In the turbulent region, the first term on the right-hand side of Eq.
(7.5.10) is ignored and, in dimensionless form, we have

duC D 1

�

dzC

zC
�7.5.15�

where the dimensionless variables have the same meanings as before. Consid-
ering that � D 0.4, and integrating Eq. (7.5.15), we obtain

uC D 2.5 ln zC CC �7.5.16�

where C is an integration constant.
At the top of the laminar sublayer, where zC D υC D 11.6 (Eq. 7.5.14),

the velocity distributions of Eqs. (7.5.11) and (7.5.16) should match, with
identical values of uC. Therefore the value of the constant C of Eq. (7.5.15)
must be

C D υC � 2.5 ln υC �7.5.17�

By introducing Eqs. (7.5.17) and (7.5.13) into Eq. (7.5.16), we obtain

uC D 2.5 ln zC C 5.5 �7.5.18�

Now, the dimensionless discharge per unit width of the channel is given
by

qC D q

	
D

∫ HC

0
uCdzC �7.5.19�

whereHC is the dimensionless water depth. This equation can be integrated, by
substituting Eq. (7.5.18) for uC. Then the dimensionless average flow velocity
is obtained by dividing qC by HC:

VC D 2.5 ln�HC�C 3 �7.5.20�

Recalling that the hydraulic radius of a wide rectangular channel is equal
to the water depth, Eqs. (7.2.23) and (7.2.21) are rewritten as

Sf D f

4H

V2

2g
�0 D �g�4H�Sf �7.5.21�

where H is the dimensional depth. Substituting in terms of VC then gives

VC D
√

8

f
�7.5.22�
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In addition, the dimensionless water depth can be expressed using the Reynolds
number and the friction coefficient, as

HC D HuŁ
	

D 4HV

	

(
1

4

)(
uŁ
V

)
D Re

√
f

1

8
p

2
�7.5.23�

By introducing Eqs. (7.5.22) and (7.5.23) into Eq. (7.5.20), we obtain

1p
f

D 2.035 log10�Re
√
f�� 1.084 �7.5.24�

However, observations concerning smooth turbulent flow in open channels
lead to a minor adjustment of the constants in this result, to allow closer fits
to observations, giving

1p
f

D 2 log10�Re
√
f�� 0.796 �7.5.25�

This expression is identical to a similar result that has been derived for turbu-
lent pipe flow, except the constant at the end is 0.8 instead of 0.796.

The criterion for smooth turbulent flow in an open channel is that the
roughness of the channel should be smaller than about 43% of the thickness
of the laminar sublayer, or

k

υ
� 0.43 �7.5.26�

Using the definition of the sublayer thickness from Eq. (7.5.13), this criterion
also can be written as

εC � 5 �7.5.27�

7.5.3 Transition and Rough Turbulent Flow in Open
Channels

If the roughness projections at the solid boundary are larger than the laminar
sublayer thickness, the flow is no longer characterized as smooth flow. A
transition regime exists between smooth and rough flow, until the roughness
is larger than about seven times the possible thickness of the laminar sublayer,
at which point the flow is fully rough and all effects of the laminar sublayer
vanish. The flow is then controlled by the roughness of the channel. Equation
(7.2.29) provides the flow definition in terms of εC.

In cases of εC > 5, when the flow is either in a transition state or fully
turbulent, the exact structure of the velocity profile at the channel wetted
perimeter is not known exactly. However, in the turbulent region, due to the
dominant inertial forces, the logarithmic velocity profile is preserved. We may
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apply Eq. (7.5.18) to the free water surface, to obtain a relationship between
UC

0 and HC, where U0 is the velocity at the free water surface. From this
expression we subtract Eq. (7.5.18), to obtain

UC
0 � uC D 2.5 ln

(
H

z

)
�7.5.28�

This is modified by dividing both the numerator and the denominator in the
logarithmic term by k:

UC
0 � uC D 2.5 ln

(
H/k

z/k

)
�7.5.29�

or

uC D UC
0 � 2.5 ln

(
H

k

)
C 2.5 ln

( z
k

)
�7.5.30�

In the transition range between smooth and rough turbulent flows, the
sum of the first and second terms on the right-hand side of Eq. (7.5.30) is
subject to variations with regard to the value of εC. Under conditions of rough
turbulent flow, that sum becomes constant, with an experimentally determined
value of 8.5, so that Eq. (7.5.30) is modified as

uC D 2.5 ln
( z
k

)
C 8.5 �7.5.31�

The average flow velocity is then found by integrating over the depth,

VC D 2.5 ln
(
H

k

)
C 6.0 �7.5.32�

Using Eq. (7.5.21), with minor modifications made in the coefficient values
to comply with empirical observations, Eq. (7.5.32) leads to

1p
f

D 2 log10

(
12Rh

ε

)
�7.5.33�

This expression is quite well correlated with the approximation used by the
Manning equation.

The Colebrook equation for open channel flow gives an expression for
the friction factor and is obtained by combining Eqs. (7.5.25) and (7.5.33):

1p
f

D �2 log10

(
ε

12Rh
C 2.5

Re
p
f

)
�7.5.34�

This result provides an interpolating function between smooth and fully rough
conditions, and is applicable to the entire range of smooth and rough turbulent
flow, as well as for the transition region between these two regimes.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



7.6 GRADUALLY VARIED FLOW

7.6.1 Control Sections

Steady flow in open channels is generally uniform, provided that the relevant
portion of the channel is far from particular sections, where flow condi-
tions are not connected with parameters of the open channel flow along the
major portion of the channel. In those particular cross sections, called control
sections, the water depth is determined either solely by the channel discharge
or by external conditions. As an example, consider the water depth in the
control section just upstream of a waterfall, where the water depth is at its
critical value. Upstream of the waterfall, the channel flow is subcritical. The
particular cross section, at which the water depth is determined only by the
discharge, is a cross section of critical flow, where Fr D 1. Such a cross section
is often called a choke. However, as shown in Fig. 7.17, there are cases of
control sections in which flow is not necessarily critical.

In the portion of the open channel that is close to a control section, the
flow is not uniform, and the water depth is subject to gradual variation. As
shown in the following, calculations of water depth variations always start
with a known water depth at the control section. Such calculations lead to
the hydraulic profile or backwater curve of the flow. The analysis is most
often concerned with steady-state conditions. If the flow is subcritical in the
portion of the channel located upstream of the control, calculations of the
hydraulic profile proceed from the control section in the upstream direction. If
the flow downstream of the control section is supercritical, then the calculation
of the hydraulic profile proceeds from the control section in the downstream
direction.

7.6.2 The Differential Equations of Gradually Varied Flow

In steady, gradually varied flow, due to the gradual variation of the water depth
and flow velocity, the friction slope, Sf, also is subject to gradual variations.
From Eq. (7.2.15), the friction slope is related to parameters of the flow by

Sf D �dH
dx

D � d

dx

(
z C y C V2

2g

)
D S0 � dE

dx
�7.6.1�

Normal differentials are used in Eq. (7.6.1), since the variables are not consid-
ered to be functions of time here.

For a prismatic channel, the rate of change of E with x is

dE

dx
D d

dx

(
y C Q2

2gA2

)
D dy

dx
�1 � Fr2� �7.6.2�
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Figure 7.17 Some examples of control sections in open channel flow.

Thus Eq. (7.6.1) can be rewritten as

dy

dx
D S0 � Sf

1 � Fr2 �7.6.3�

Expressions for S0 and Sf can be obtained using the Manning equation (7.2.34),

Sf D
(
Qn

AR2/3
h

)2

�7.6.4a�

S0 D
(

Qn

AnR
2/3
hn

)2

�7.6.4b�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



where the subscript n refers to normal conditions, or uniform flow. Equation
(7.6.3) then becomes

dy

dx
D S0

1 � �AnR
2/3
hn /AR

2/3�2

1 � Fr2 �7.6.5�

which may be integrated to obtain the hydraulic profile (y as a function of x).
Since the Froude number for critical flow, Frc D 1, we can write

Fr2 D Fr2

Fr2
c

D Q2y/gA3

Q2yc/gA3
c

D A3
cy

A3yc
�7.6.6�

Substituting this into Eq. (7.6.5) then gives an alternative form for the differ-
ential equation of the hydraulic profile,

dy

dx
D S0

1 � �AnR
2/3
hn /AR

2/3�2

1 � �Ac/A�3�y/yc�
D f�x, y� �7.6.7�

In the general case, values of basic geometrical parameters of the channel
cross section are not necessarily constant along the channel. As an example,
consider changes in the width of the channel bottom. In this case, the derivative
of y with respect to x is in general a function of x and y. If geometric variables
of the channel can be expressed as functions of y alone, then the channel is
called a prismatic channel, as previously noted. Equation (7.6.7) indicates
that, in cases of prismatic channels, the derivative of y with respect to x is a
function of y only.

Equation (7.6.5) or (7.6.7) is a first-order nonlinear differential equation.
Such a differential equation represents an initial value problem. It requires a
single boundary condition at x D 0. As noted previously, the calculation of the
hydraulic profile starts at the boundary of a control section, where the water
depth is determined prior to the calculation of the profile. The calculation
itself is commonly carried out using a numerical code, which usually provides
a sufficiently accurate solution and description of the profile.

It should be noted that, in cases of prismatic channels, Eq. (7.6.7) can
be represented as

dx

dy
D f1�y� �7.6.8�

This equation can be integrated numerically to provide

x D
∫ y1

y0

f1 dy �7.6.9�

This provides a sort of inverted approach, where changes in distance
along the channel are calculated as a function of changes in water depth, and
in some applications this may be preferable (see Sec. 7.6.5).
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7.6.3 General Forms of the Differential Equation for a Wide
Rectangular Channel

In order to study the basic types of hydraulic profiles, without losing the
general features of Eq. (7.6.7), we consider a wide rectangular channel. Recall
that q D discharge per unit width is used, rather than the total discharge, and
that the hydraulic radius is taken as the water depth.

Referring to Eqs. (7.6.3)–(7.6.7), the basic differential equation of the
hydraulic profile can be expressed in several different formats for a wide
rectangular channel:

dy

dx
D S0 � Sf

1 � Fr2 �7.6.10a�

dy

dx
D
S0 �

(
qn

y5/3

)2

1 � Fr2 �7.6.10b�

dy

dx
D S0

1 �
(
yn

y

)10/3

1 � Fr2 �7.6.10c�

dy

dx
D S0

1 �
(
yn

y

)10/3

1 �
(
yc

y

)3 �7.6.10d�

Either of the different forms of Eq. (7.6.10) can be used for the basic analysis
of hydraulic profiles.

7.6.4 Various Types of Hydraulic Profiles

The major groups of hydraulic profiles are classified according to slope as
follows:

Mild slope, in which yn > yc (type M profiles)
Steep slope, in which yn < yc (type S profiles)
Horizontal slope, in which S0 D 0 and yn ! 1 (type H profiles)
Critical slope, in which yn D yc (type C profiles)
Adverse slope, in which, S0 < 0 (type A profiles)

Each of these profiles is illustrated in Fig. 7.18 and can be analyzed using Eq.
(7.6.10).

As shown in Fig. 7.18a, there are three types of M profiles. The, type
M1 profile is associated with

y ½ yn �7.6.11�
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Figure 7.18 Illustration of different types of hydraulic profiles: (a) M profiles; (b) S
profiles; (c) H profiles; (d) C profiles; and (e) A profiles.

Equation (7.6.11) indicates that the numerator and denominator of
Eq. (7.6.10d) are positive. Therefore the water depth increases with x. There
are two extreme cases to consider: (1) what happens when values of y approach
the normal depth, and (2) what happens when y approaches infinity. By
applying Eq. (7.6.10d), it can be shown that

dy

dx
! 0 as y ! yn �7.6.12a�
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and

dy

dx
! S0 as y ! 1 �7.6.12b�

Equation (7.6.12a) indicates that the free surface asymptotically approaches
yn, at which point the flow becomes uniform. Equation (7.6.12b) indicates that
the water surface asymptotically approaches a horizontal orientation when y
becomes very large.

The type M2 profile is associated with

yc � y � yn �7.6.13�

This indicates that the numerator of Eq. (7.6.10d) is negative and the denomi-
nator is positive. Therefore the water depth decreases with x. As with type M1,
there are two extreme cases to consider: (1) what happens when y approaches
the normal depth, and (2) what happens when y approaches the critical depth.
Again applying Eq. (7.6.10d), we find

dy

dx
! 0 as y ! yn �7.6.14a�

and

dy

dx
! 1 as y ! yc �7.6.14b�

Equation (7.6.14a) indicates that the free surface asymptotically approaches
yn, at which point the flow becomes uniform. Equation (7.6.14b) indicates
that the water surface becomes vertical where the water depth approaches the
critical depth.

The type M3 profile is associated with

y � yc �7.6.15�

In this case, both the numerator and denominator of Eq. (7.6.10d) are negative.
Therefore the water depth increases with x. There is a single extreme case to
consider here, concerning the behavior as y approaches the critical depth. By
applying Eq. (7.6.10d), we find

dy

dx
! 1 at y ! yc �7.6.16�

Thus the free water surface becomes vertical as y approaches yc.
As shown in Fig. 18b there are three types of S profiles. The type S1

profile is associated with

yc � y �7.6.17�
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In this case both the numerator and denominator of Eq. (7.6.10d) are positive.
Therefore the water depth increases with x. There are two extreme cases to
consider: (1) what happens when y approaches the critical depth, and (2)
what happens when y becomes very large. By applying Eq. (7.6.10d), it can
be shown that

dy

dx
! 1 as y ! yc �7.6.18a�

and

dy

dx
! S0 as y ! 1 �7.6.18b�

The type S2 profile is associated with

yn � y � yc �7.6.19�

Then the numerator of Eq. (7.6.10d) is positive and the denominator is nega-
tive. Therefore the water depth decreases with x. Again, there are two extreme
cases to consider: (1) what happens when y approaches the normal depth,
and (2) what happens when values of y approach the critical depth. From
Eq. (7.6.10d) we find

dy

dx
! 0 at y ! yn �7.6.20a�

and

dy

dx
! 1 at y ! yc �7.6.20b�

Equation (7.6.20a) indicates that the free surface asymptotically approaches
the value of yn, where the flow becomes uniform. Equation (7.6.20b) indicates
that the water surface becomes vertical where the water depth approaches the
critical depth.

The type S3 profile is associated with

y � yn �7.6.21�

This is associated with both the numerator and the denominator of
Eq. (7.6.10d) being negative, so the water depth increases with x. There is a
single extreme case to consider in this case: what happens when y approaches
the normal depth. From Eq. (7.6.10d) we find

dy

dx
! 0 at y ! yn �7.6.22�

This indicates that the free water surface asymptotically approaches yn, and
at that value the flow becomes uniform.
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Calculation of type H profiles should take into account that S0 D 0. In
this case, the numerator of Eq. (7.6.10b) is always negative. As shown in
Fig. 7.18c, there are two types of H profiles.

The type H1 profile is associated with

yc � y �7.6.23�

This result indicates that the denominator of Eq. (7.6.10b) is positive. There-
fore the water depth decreases with x. There is a single extreme case to
consider: what happens when y approaches the critical depth. By applying
Eq. (7.6.10b) we find

dy

dx
! 1 at y ! yc �7.6.24�

Thus when water depth approaches the critical depth, the water surface becomes
vertical.

The type H2 profile is associated with

y � yc �7.6.25�

In this case, the denominator of Eq. (7.6.10b) is negative. Therefore the water
depth increases with x. There is a single extreme case to consider: what
happens when values of y approach the critical depth. Again applying Eq.
(7.6.10b), we find

dy

dx
! 1 at y ! yc �7.6.26�

This indicates that the free water surface approaches a vertical tangent as the
value of y approaches yc.

Calculation of type C profiles should take into account that yc D yn.
Therefore the numerator and denominator of Eq. (7.6.10d) have almost iden-
tical values and, in any case of flow,

dy

dx
³ S0 �7.6.27�

This suggests that the free water surface is almost horizontal, and water depth
increases with x. As shown by Fig. 7.18c there are two types of C profiles:

The type C1 profile is associated with

yc � y �7.6.28�

From Eqs. (7.6.27) and (7.6.28), the water depth is seen to increase with x
until critical-normal water depth is obtained.

The type C2 profile is associated with

y � yc �7.6.29�
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Here, Eqs. (7.6.27) and (7.6.29) indicate that the water depth increases with
x until the downstream end of the channel is reached.

Calculation of type A profiles should take into account that S0 < 0 and
there is no normal depth of flow in a channel with adverse slope. The numer-
ator of Eq. (7.10d) is always negative. As shown in Fig. 7.18e, there are two
types of A profiles.

The type A1 profile is associated with

yc � y �7.6.30�

When this is true, the denominator of Eq. (7.6.10b) is positive. Therefore the
water depth decreases with x. There is a single extreme case to consider:
what characterizes values of y approaching the critical depth. By applying
Eq. (7.6.10b), we obtain

dy

dx
! 1 at y ! yc �7.6.31�

Thus the water surface becomes vertical where the water depth approaches
the critical depth.

The type A2 profile is associated with

y � yc �7.6.32�

In this case, the denominator of Eq. (7.6.10b) is negative. Therefore the water
depth increases with x. There is a single extreme case to consider: what
happens when y approaches the critical depth. Using Eq. (7.6.10b), we find

dy

dx
! 1 at y ! yc �7.6.33�

This indicates that the free water surface becomes vertical as the value of y
approaches yc.

7.6.5 St. Venant Equations

As hinted at in the above discussion, in many problems of open channel
flow it is sufficient to consider the mean flow velocity and depth, i.e., a one-
dimensional (longitudinal) approach can supply the needed information. The
St. Venant equations are commonly used for this purpose. They are based
on continuity and momentum and represent a slight extension of previously
described approaches in that possible changes in flow rate along the longitu-
dinal direction are considered.

Consider a short section of a channel as shown in Fig. 7.19. Variables are
defined at the center of the element asQ D UA D flowrate,U D mean velocity,
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Figure 7.19 Control section used to develop St. Venant equations.

A D BH D area,B D top width, y D depth, q D net inflow per unit length,x D
length of the segment, 8 D volume of the segment, ˛ D channel slope angle
�S0 D bottom slope) and Sf D friction slope, as previously defined. Consid-
ering flows into and out of the section, a water mass balance may be written as

∂8
∂t

D x
∂A

∂t
D

(
Q� ∂Q

∂x

x

2

)
�

(
QC ∂Q

∂x

x

2

)
C qx

which results in

∂A

∂t
D �∂Q

∂x
C q �7.6.34�

However, the rate of change of area can be expressed as

∂A

∂t
D B

∂y

∂t
�7.6.35�

which, when substituted into Eq. (7.6.34), gives

B
∂y

∂t
C ∂Q

∂x
D q �7.6.36�

Using the definition of Q as the product of area and mean velocity, we have

B
∂y

∂t
CUB

∂y

∂x
C A

∂U

∂x
C y

∂B

∂x
D q �7.6.37�

Finally, dividing by B and neglecting the last term on the left-hand side, which
is equivalent to the usual wide channel assumption (y/B − 1),

∂y

∂t
CU

∂y

∂x
C A

B

∂U

∂x
D q

B
�7.6.38�

This is the continuity equation for one-dimensional channel flow.
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The momentum equation is developed using an integral approach that
incorporates pressure forces acting on the side walls in the flow direction.
Viscous effects are neglected. It is also assumed that the area centroid is
approximately at depth y/2. The integral momentum equation for the channel
segment in Fig. 7.19 is then

∑
F D �

2

(
y � ∂y

∂x

x

2

)(
A� ∂A

∂x

x

2

)
� �

2

(
y C ∂y

∂x

x

2

)

ð
(
AC ∂A

∂x

x

2

)
C �H2

2

[(
BC ∂B

∂x

x

2

)
�

(
B� ∂B

∂x

x

2

)]
C �x A sin˛� �x ASf

D ∂

∂t
��Ax U�� �

[(
Q� ∂Q

∂x

x

2

)(
U� ∂U

∂x

x

2

)

�
(
QC ∂Q

∂x

x

2

)(
UC ∂U

∂x

x

2

)]

which, when simplified, becomes

�g
2

(
y
∂A

∂x
CA∂y

∂x
�y2 ∂B

∂x

)
CAg�S0�Sf� D ∂Q

∂t
CQ∂U

∂x
CU

∂Q

∂x
�7.6.39�

Using continuity, we substitute

∂Q

∂t
D U

∂A

∂t
C A

∂U

∂t
D U

(
�∂Q
∂x

C q

)
C A

∂U

∂t
�7.6.40�

so that Eq. (7.6.39) becomes

A
∂U

∂t
C Q

∂U

∂x
CUq D Ag�S0 � Sf�� g

2

(
2A
∂y

∂x

)
�7.6.41�

Finally, dividing by A, we have

∂U

∂t
CU

∂U

∂x
C U

A
q D g

(
S0 � Sf � ∂y

∂x

)
�7.6.42�

which is the desired momentum equation.
Simultaneous solution of Eqs. (7.6.38) and (7.6.42) provides a complete

description of mean velocity, depth, and flow rate for the channel, at least
within the one-dimensional framework. These are generally solved numeri-
cally, since variations in inflow rates and channel geometry can be incorporated
directly (see below).
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7.6.6 Numerical Calculation of the Hydraulic Profiles for
Prismatic Channels

A general formulation of Eq. (7.6.10) for a prismatic channel can be written as

dy

dx
D f�y� �7.6.43�

With minor modification, this can be inverted in a form such as Eq. (7.6.8),

dx

dy
D f1�y� �7.6.44�

where

f1�y� D 1

f�y�
�7.6.45�

Referring back to any of the various forms of Eq. (7.6.10), it is seen that, in
general, f(y) is a nonlinear function of y. Therefore Eq. (7.6.43) is described
as a nonlinear ordinary first-order differential equation. This is thus an initial
value problem, and a single boundary condition (an initial value) is required
to obtain the distribution of y along the channel.

According to the required accuracy of the calculation of y, an appropriate
method for the solution of Eq. (7.6.43) should be adopted. One of the most
common methods is the fourth-order Runge–Kutta method. According to this
method, the value of yiC1, at the grid point xiC1, is determined according to
the value of yi at the grid point xi and an additional term depending on the
grid interval x and several intermediate values of f(y) evaluated between xi
and xiC1,

yiC1 D yi C 1
6 [y1 C 2y2 C 2y3 Cy4] �7.6.46�

where

y1 D xf�yi� y2 D xf

(
yi C y1

2

)
�7.6.47�

y3 D xf

(
yi C y2

2

)
y4 D xf�yi Cy3�

In the case of a prismatic channel, instead of solving Eq. (7.6.43), it is
possible to solve Eq. (7.6.44). The solution of that equation requires a numer-
ical integration. One possible method for accomplishing this is the Simpson
one-third method. According to this method, the value of xiC1 is determined
according to the value of xi and an additional term depending on y and some
intermediate values of f1�y�, as

xiC1 D xi C y

3
[f1�yi�C 4f1�yi Cy�C f1�yi C 2y�] �7.6.48�
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where y is a specified change in water depth, for which the appropriate value
for x is sought. Specifically, it should be noted that at position xi, the water
depth is yi, and at position xiC1, the water depth is yiC1, which is equal to
yi C 2y.

The method of calculation of y versus x by Eq. (7.6.48) is simpler and
more accurate than that of Eq. (7.6.46). Also, it has some particular advantages
with regard to the beginning of the hydraulic profile calculation. The value
of f(y) in Eq. (7.6.45) is infinite when the control section is subject to critical
flow. Thus the calculation must be started at a point located close to the control
section. Alternatively, at a control section of critical flow, f1�y� of Eq. (7.6.48)
is equal to zero, and there is no difficulty in starting the calculation of the
hydraulic profile at the control section itself. However, Eq. (7.6.48) should
be used with care to make sure appropriate values of y are used, to avoid
transition of the calculation from one type of hydraulic profile to another type
of profile. In reality such a phenomenon may not occur in gradually varied
flow.

7.6.7 Numerical Calculation of the Hydraulic Profiles for
Nonprismatic channels

If the basic geometry of the channel cross section varies along the channel
length, then the channel is nonprismatic and the equations of the previous
section do not apply. As an example, we consider a trapezoidal channel with
variable bottom width,

b D b�x� �7.6.49�

The cross-sectional area of a nonprismatic channel is represented as

A D A[x, y�x�] �7.6.50�

Since the basic geometry of the cross section varies along the channel, the
value of yc also varies along the channel, and there is no meaning of the term
normal water depth.

Due to Eq. (7.6.49), the basic relationship of Eq. (7.6.2) is modified as

dE

dx
D dy

dx
C d

dx

(
Q2

2gA2

)
D dy

dx
� Q2

gA3

(
∂A

∂x
C ∂A

∂y

dy

dx

)

D dy

dx

(
1 � Fr2) � Fr2

B

∂A

∂x
�7.6.51�

By combining Eqs. (7.6.1) and (7.6.51), the differential equation describing
the hydraulic profile is obtained as

dy

dx
D S0 � Sf � �Fr2/B��∂A/∂x�

1 � Fr2 D f�x, y� �7.6.52�
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From this result it may be seen that in nonprismatic channels the derivative
of y with respect to x is a function of both x and y. Therefore this equation
cannot be converted to a simple derivative of x with respect to y, although it
can be converted to another differential equation that involves the derivative
of x with respect to y.

The differential equation represented by Eq. (7.6.52) can be solved by
an appropriate numerical procedure, provided that the water depth in a control
section is given and used as an initial value for carrying out the calculation.
The fourth-order Runge–Kutta method, as described in the previous section,
can be used for these calculations. Similar to Eqs. (7.6.46) and (7.6.47), the
general solution for yiC1 is given by

yiC1 D yi C 1
6 [y1 C 2y2 C 2y3 Cy4] �7.6.53�

where

y1 D xf�xi, yi� y2 D xf

(
xi C x

2
, yi C y1

2

)

y3 D xf

(
xi C x

2
, yi C y2

2

)
y4 D xf�xi Cx, yi Cy3�

�7.6.54�

The basic format of Eqs. (7.6.53) and (7.6.54) also can be used for the
solution of the differential equations given by Eqs. (7.3.9) and (7.4.4), namely,
the equations concerning lateral flow out of or into a channel, respectively.

7.7 CIRCULATION IN LAKES AND RESERVOIRS

7.7.1 Introduction

Water motions in lakes and reservoirs are generally more complicated than
in open channel flows. This is due to the much larger scales, both vertically
and horizontally, as well as the greater variety of forces contributing to the
velocity field. In addition to gravity, which is the main driving force in open
channel flow, lakes are subject to wind shear stress, atmospheric pressure
variations, river inflows and outflows, and convectively driven motions (due
to buoyancy changes — see Chap. 13). The lake volume itself is variable,
due to hydrologic factors controlling runoff, precipitation, and evaporation. In
addition, if the lake is sufficiently large, Coriolis effects must be taken into
consideration. Because of these factors, it is difficult or impossible to obtain
analytical solutions to the equations governing the fluid motions, which in
many cases should be written in full three-dimensional form for a complete
description of the system. This necessitates the use of numerical solutions to
model lakes and reservoirs, and previously described methods for solving the
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equations of motion (continuity and Navier–Stokes equations) may be applied,
while accounting for appropriate boundary conditions.

For water quality modeling applications, there is usually interest in simu-
lating the velocity and temperature fields using a hydrodynamic model. Results
from the hydrodynamic model then provide the transport terms for a water
quality model. The temperature field also is of interest since many envi-
ronmental processes are temperature dependent. The hydrodynamic model is
formulated by considering the various features that contribute to development
of the velocity and temperature fields, as illustrated in Fig. 7.20. Wind exerts
shear stress on the surface, which contributes to waves and currents. When the
wind is relatively steady, wind setup and seiche motions may be generated (see
Sec. 12.2), as the pressure distribution in the water body adjusts to balance
the wind shear. Water surface variations also may arise in response to large-
scale atmospheric pressure variations, if the lake has large enough horizontal
extent. River inflows and outflows can strongly affect the local velocity field,
and surface heat exchange can lead to convective motions that reach to the
bottom of even very deep lakes. Ice cover also may be a factor in modeling a
particular lake, as it affects the transfer of heat and momentum at the surface.

Because of the scale of most lakes, it is not practical to model directly the
entire range of motions possible. A model must be chosen with a scale (i.e., a
calculation spatial step) suitable to represent the motions of interest for a given
application, and this must be balanced with available computer resources. For
example, it would not be practical to model the local turbulence, with length
scales on the order of several centimeters or smaller, in a lake that is several

Figure 7.20 Forces contributing to development of the velocity field in a lake.
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tens or hundreds of kilometers long. For any given model scale, it is then
necessary to develop some sort of closure scheme to adequately represent
processes that occur on scales smaller than the model scale. Alternatively, in
many cases it is possible to assume that all flow variables are well mixed
within the space represented by a model grid.

The simplest approach for modeling lakes is the “one-box” model, which
considers the entire lake to be well mixed. In this case, force balances are
applied to the lake as a whole to calculate setup, if required, and surface heat
flux and inflows and outflows provide source and sink terms for whatever
state variables are of interest (i.e., temperature, concentration, etc.). The basic
water mass balance equation for this case is simply

d8
dt

D
∑
�Qin � Qout�C ROC �I� E� F�A �7.7.1�

where 8 is the lake volume, Qin and Qout are river inflow and outflow rates,
respectively, RO is direct runoff volume rate, I is precipitation rate, E is
evaporation rate, F is infiltration, or seepage rate, and A is the surface area of
the lake. Each of the hydrologic variables I, E, and F are in units of length
per time.

Equation (7.7.1) is easily modified to evaluate changes in other state
variables, for example, mass concentration of a contaminant of interest (units
of mass per unit volume). In that case, each of the terms in Eq. (7.7.1) would
be multiplied by the appropriate value of concentration corresponding to that
particular term. With the possible addition of biological/chemical reactions
that may affect the contaminant mass, the equation is transformed into an
expression for contaminant mass balance. This process is discussed further in
Chaps. 10 and 16, with regard to surface water quality modeling and remedi-
ation of surface waters.

7.7.2 Horizontally Averaged Model for Temperature
Distribution

Rather than the one-box model, the next higher level of complexity involves
one-dimensional (vertical) models. These have provided much useful informa-
tion, particularly with regard to reservoir operations, where vertical temper-
ature distributions are of interest. In this case, as with the one-box models,
the general velocity distribution is not of major interest, since all horizontal
gradients are neglected. However, there is interest in the vertical extent of
inflows and outflows, as they may affect the vertical temperature distribution.
This is illustrated in Fig. 7.21, which also shows a discretization scheme that
might be used in a finite difference model.

A one-dimensional temperature equation is obtained from Eq. (2.9.33)
by integrating in the horizontal directions. First we assume, for simplicity,
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Figure 7.21 Side view of idealized one-dimensional (vertical) model, with inflow
and outflow distributions.

that the coordinate system is oriented so that any flows into or out of the
lake are in the x-direction, as shown in Fig. 7.21, and that the flow field is
independent of x or y. This last assumption implies that we are considering
the area-averaged velocity field. In principle, it is possible to account for
variations in u and v, though this adds complexity in the integrations to follow
that is unnecessary for the present discussion. Integrating Eq. (2.9.3) in the
y-direction gives

∂

∂T

∫ W

0
Tdy C u

∂

∂x

∫ W

0
Tdy C vTjW0 C w

∂

∂z

∫ W

0
Tdy D

kT

[
∂2

∂x2

∫ W

0
Tdy C ∂2

∂z2

∫ W

0
Tdy

]
C kT

∂T

∂y

∣∣∣∣
W

0
� 1

�c
r Ð ⇀ϕ r

∫ W

0
dy

�7.7.2�

where W is the width of the lake in the y-direction, c is the specific heat, kT

is the thermal diffusion coefficient (assumed constant), and ϕr is the radiation
flux, which in this case is due to solar radiation (see Chap. 12 for further
discussion). Only the vertical component of this term is relevant here. Now,
the sum of the advective and diffusive fluxes in the y-direction,(

vT� kT
∂T

∂y

)∣∣∣∣
W

0

represents the total fluxes of temperature evaluated at the boundaries in the
y-direction. These fluxes are zero, according to the assumed coordinate system
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orientation. Integrating Eq. (7.7.2) in the x-direction, we obtain

∂

∂t

∫ L

0

∫ W

0
Tdy dx C

(
u
∫ W

0
Tdy

)∣∣∣∣
L

0
C w

∂

∂z

∫ L

0

∫ W

0
Tdy dx D

(
kT
∂

∂x

∫ W

0
Tdy

)∣∣∣∣
L

0
CKT

∂2

∂z2

∫ L

0

∫ W

0
Tdy dx

� 1

�c

∂ϕrz

∂z

∫ L

0

∫ W

0
dy dx �7.7.3�

where ϕrz is the vertical component of ϕr and L is the length of the lake in the
x-direction. Because the integral of T in the y-direction is simply the width-
averaged temperature multiplied by W, the advective and diffusive terms in
the x-direction can be combined as the total fluxes into and out of the lake at
the two limits x D 0 and x D L:[

u
∫ W

0
Tdy � kT

∂

∂x

∫ W

0
Tdy

]∣∣∣∣
L

0
D [�UT�in � �UT�out]W �7.7.4�

where U represents the total inflow or outflow velocity. Also, �UT�out can be
written as UoutTavg, where Tavg is the area-averaged temperature,

Tavg D 1

A

∫ L

0

∫ W

0
Tdy dx �7.7.5�

Substituting Eqs. (7.7.4) and (7.7.5) into Eq. (7.7.3) then gives

∂Tavg

∂t
C w

∂Tavg

∂z
D kT

∂2Tavg

∂z2
C [�UT�in �UoutTavg]

1

L
� 1

�c

∂ϕrz

∂z

C
{
kT

A

(
2
∂A

∂z

∂Tavg

∂z
C Tavg

∂2A

∂z2

)
� wTavg

A

∂A

∂z

}
�7.7.6�

If W is not a function of z, then the term in the curly brackets of Eq. (7.7.6)
becomes

C
{

1

L

(
kT
∂L

∂z

∂Tavg

∂z
� wTavg

∂L

∂z

)}
�7.7.7�

and if A is constant, the term in brackets is eliminated altogether.
The inflow is normally assumed to be centered around the vertical loca-

tion at which the density (temperature) of the inflow is equal to the density
in the lake or reservoir. Outflow is taken as near the surface in a natural lake,
or at the withdrawal depth in a reservoir. Inflows and outflows are discussed
further in Chap. 14.
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7.7.3 Barotropic Models

A further level of complexity is obtained using a two-dimensional vertically
averaged approach. Since variations in the vertical direction are not considered,
this is usually known as a shallow water approach. This type of model may
be used when vertical variations are not significant or not of interest. Because
density variations are not incorporated, these types of models also are known
as barotropic models (see also Chap. 9).

The vertically averaged continuity equation can most easily be developed
by considering a control section as shown in Fig. 7.22, where H is the depth
and U and V are vertically averaged velocities in the x- and y-directions,
respectively:

U D 1

H

∫ H

0
u dz; V D 1

H

∫ H

0
vdz �7.7.8�

Letting U, V, and H be defined at the center of the control section, which has
dimensions dx and dy in the two horizontal directions, a water mass balance
statement is written as

�
∂

∂t
�Hdx dy� D �

(
U� ∂U

∂x

dx

2

)(
H� ∂H

∂x

dx

2

)
dy

� �

(
UC ∂U

∂x

dx

2

)(
HC ∂H

∂x

dx

2

)
dy

C �

(
V� ∂V

∂y

dy

2

)(
H� ∂H

∂y

dy

2

)
dx

� �

(
VC ∂V

∂y

dy

2

)(
HC ∂H

∂y

dy

2

)
dx

C ��I� E� F� dx dy �7.7.9�

Figure 7.22 Control section used to develop vertically averaged model.
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This is simplified and divided by � dx dy to become

∂H

∂t
C ∂�UH�

∂x
C ∂�VH�

∂y
D I� E� F �7.7.10�

This same result can be obtained by integrating the continuity equation in the
z-direction, incorporating the fact that w D ∂H/∂t at z D H, and accounting
for I, E, and F, which may occur independently of U or V. In the case whereH
is constant and there is no precipitation, evaporation, or seepage, Eq. (7.7.10)
reduces to the usual continuity expression,

∂U

∂x
C ∂V

∂y
D 0 �7.7.11�

The momentum equations are obtained in a similar manner, by verti-
cally integrating. For purposes of illustration, we consider here the linearized
versions of the Navier–Stokes equations, in which the advective acceleration
terms are neglected:

∂u

∂t
� fv D � 1

�

∂p

∂x
C vtr2u �7.7.12�

∂v

∂t
C fu D � 1

�

∂p

∂y
C vtr2v �7.7.13�

where f is the Coriolis parameter and vt is the horizontal eddy viscosity.
Integrating Eqs. (7.7.12) and (7.7.13) over the depth H gives, respectively,

∂�UH�

∂t
� fVH D � 1

�

∂

∂x

∫ H

0
pdz C vt

[
r2

h�UH�C ∂u

∂z

∣∣∣∣
H

0

]
�7.7.14�

∂�VH�

∂t
C fUH D � 1

�

∂

∂y

∫ H

0
pdz C vt

[
r2

h�VH�C ∂v

∂z

∣∣∣∣
H

0

]
�7.7.15�

where r2
h is the horizontal Laplacian operator. If approximately hydrostatic

conditions are assumed, then p D �g�H� z�. Also, the last terms on the
right-hand sides of Eqs. (7.7.14) and (7.7.15), when multiplied by �, are the
boundary shear stresses in each direction (at the surface and at the bottom).
Thus

∂�UH�

∂t
� fVH D �gH∂H

∂x
C vtr2

h�UH�C 1

�
��sx � �ox� �7.7.16�

∂�VH�

∂t
C fUH D �gH∂H

∂y
C vtr2

h�VH�C 1

�
��sy � �oy� �7.7.17�

where �s is the surface stress, �o is the bottom stress, and subscripts x and y
indicate in which direction the shear stress acts. For constant depth, both of
these equations may be divided by H.
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Eddy Viscosity

There are a number of models for the horizontal eddy viscosity, vt. Experi-
mental studies, in which the spreading of dye released at a point in the water
body is monitored over time, are probably the most realistic, though also the
most difficult and expensive, ways to obtain values for this parameter. The
simplest analytical approach is to assume a constant value for vt for the lake,
usually as a function of wind stress. This has provided reasonable results for
early lake and reservoir modeling, though it is not directly relevant in cases
where the circulation and mixing are strongly affected by inflows and outflows.
Most models express vt as an increasing function of length.

From dimensional considerations, the eddy viscosity can be expressed as
a product of appropriate length (L) and velocity (v) scales (also see discussion
in Chap. 5). A simple length scale model for vt is developed based on as
assumption credited to Prandtl that the velocity scale should be proportional
to the gradient of mean velocity as

V ³ L
∂U

∂xi
�7.7.18�

where xi represents either y or z, depending on particular flow conditions,
and the velocity gradient is understood to be a positive quantity. The eddy
viscosity is then formulated as

vt D cLL
2 ∂U

∂xi
�7.7.19�

where cL is a constant. A potential drawback to this formulation is in choosing
appropriate values for cL and L. These would often be chosen on the basis of
fitting values of vt to fit observations.

An alternative definition for the velocity scale is the square root of the
turbulent kinetic energy (TKE), K, defined in Chap. 5. Then

vt D ckL
p
K �7.7.20�

where ck is a constant. This result is consistent with Eq. (5.5.14). Still, the
problem of defining L remains and, as before, this may be considered as a
fitting or calibration parameter. Using Eq. (7.7.20) also requires that the TKE
equation (Eq. 5.5.21 or 5.5.23) be solved for K.

Still another approach is based on defining V in terms of the dissipation
rate of TKE (ε) and results in the 4/3 power law for eddy viscosity. Physically,
this means that the inertial subrange eddies are responsible for the mixing. In
this model, the diffusion process is characterized by ε and L D the length scale
of the diffusion process, usually taken as some proportion of the horizontal
scale of the lake or, in the case of a dye release experiment, as distance from
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the dye release point. The velocity scale is defined by �εL�1/3, which when
multiplied by L gives

vt ³ ε1/3L4/3 �7.7.21�

Equation (5.5.35) must be solved to obtain values for ε.
More complicated models have been developed for vt, notably the two-

equation K–ε and Reynolds stress or second-order closure models discussed
in Chap. 5. In particular, models based on solving the Reynolds stress terms
(Eq. 5.5.28) have an advantage in that they can account for nonisotropic
behavior. However, they also require solution of six additional equations, one
for each of the stress components. The K–ε models assume that the length
scale is given, based on dimensional considerations, as

L D K3/2

ε
�7.7.22�

Thus the eddy viscosity is given by

vt D ce
K2

ε
�7.7.23�

which is the same as eq. (5.5.16).
For large lake modeling vt tends to be quite large, of order 100 m2/s, and

in general it will be a function of wind and other forces generating motions in
the water. Also, it is interesting to note that, as in Eq. (7.7.21), vt increases with
increasing length. Physically, this is explained because larger eddies participate
in the diffusive process when larger horizontal extent is considered.

7.7.4 Three-Dimensional Models

As previously noted, three-dimensional models are needed for general appli-
cations. These involve solution of the full (nonaveraged) equations of motion.
The problem of determining eddy viscosities remains, as with the barotropic
models. In addition, vertical mixing must be accounted for, including shear-
induced mixing as well as convectively driven motions. Coriolis terms also
may be important in larger lakes and reservoirs.

Simpler three-dimensional models consider the lake as a series of layers,
as illustrated in Fig. 7.23. At one extreme is the one-layer barotropic case
described in the previous section. This can be generalized slightly to include
two layers, which may be sufficient for cases in which there is a relatively
thin well-defined thermocline that can represent the boundary between the two
layers. Within each layer all fluid properties are vertically mixed, and each
layer can be modeled as if it were a two-dimensional system. Interactions
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Figure 7.23 Layered three-dimensional discretization scheme (note that layers do
not have to be of equal thickness).

between the layers also must be incorporated into the solution. Additional
layers can be added to resolve finer variations in vertical structure, as needed
for a given application. In the limit of a much larger number of layers,
the problem is essentially fully three-dimensional. These problems generally
require some care in designing and implementing an appropriate numerical
solution, particularly since the horizontal scale may be much larger than
the vertical scale. This introduces possible issues of numerical stability, for
example. The reader is encouraged to review references listed at the back of
this chapter for further information.

PROBLEMS

Solved Problems

Problem 7.1 Develop a version of the Manning equation appropriate for
flow in a wide rectangular channel conveying a discharge per unit width q.
Afterwards, use Eq. (7.2.35) for the development of the relationship between
the discharge per unit width and the slope of the stable channel.

Solution

According to Eq. (7.2.4), the hydraulic radius of a wide rectangular channel
is equal to the water depth. Therefore, from Eq. (7.2.34),

Q D qb D byy2/3

n
S1/2

f
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We divide this expression by the channel width to obtain

q D y5/3

n
S1/2

f �1�

Dividing both sides of Eq. (7.2.35) by the channel width also gives

y7/6 D qng1/2

uŁc
�2�

According to Eq. (1),

Sf D q2n2

y10/3
�3�

We introduce the value of y from Eq. (2) into Eq. (3), to obtain

Sf D u20/7
Łc

g10/7q6/7n6/7

This expression indicates that for a constant value of the critical shear stress
and a constant value of Manning roughness coefficient, the slope of the channel
is inversely proportional to the discharge raised to the power of 6/7.

Problem 7.2 Consider a wide rectangular channel of constant slope and
constant Manning roughness coefficient. Develop an expression indicating how
the bottom shear stress varies with the discharge per unit width in the channel.

Solution

Manning’s equation for a wide rectangular channel is

y D q3/5n3/5

S3/10
f

�1�

According to Eq. (7.2.21), for a wide rectangular channel,

� D �gySf �2�

Introducing the value of y from Eq. (1) into Eq. (2),

� D �gq3/5n3/5S7/10
f

This expression indicates that, for constant values of the slope and the rough-
ness coefficient of Manning, the shear stress is proportional to the discharge
per unit width raised to the power 3/5.
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Problem 7.3 Consider a channel with trapezoidal cross section, that is to be
designed to convey a discharge of Q D 10 m3/s and to be free of erosion. The
following geometrical variables are given: b D 2 m, m D 3. The roughness
coefficient of Manning is n D 0.025. The critical shear stress is �c D 10 Pa.
Determine the water depth, the flow velocity, and the longitudinal slope of
the channel.

Solution

In a channel free of erosion, according to Eq. (7.2.35),

AR1/6
h D Qnp

�c/��g�

Substituting the numerical values of the parameters then leads to

AR1/6
h D 10 ð 0.025p

10/9810
D 7.83

AR1/6
h D �by C my2�7/6

�bC 2y
p
m2 C 1�1/6

D �2y C 3y2�7/6

�2 C 2y
p

10�1/6

Or

f�y� D �2y C 3y2�7/6

�2 C 2y
p

10�1/6
� 7.83 D 0

This is solved iteratively to obtain y D 1.35 m. The cross-sectional area,
wetted perimeter, and hydraulic radius are given, respectively, by

A D by C my2 D 2 ð 1.35 C 3 ð 1.352 D 8.17 m2

P D bC 2y
√
m2 C 1 D 2 C 2 ð 1.35

p
10 D 10.54 m

Rh D R

P
D 8.17

10.54
D 0.78 m

The flow velocity and longitudinal slope of the channel are given by

V D Q

A
D 10

8.17
D 1.22 m/s

S0 D
(
Vn

R2/3

)2

D
(

1.22 ð 0.025

0.782/3

)2

D 1.3 ð 10�3

Problem 7.4 Consider a channel with trapezoidal cross section, that should
be designed to convey a discharge of Q D 10 m3/s. It is required that the
average flow velocity in the channel will be V D 1.2 m/s. The following
geometrical variables are given: b D 2 m, m D 3. The roughness coefficient
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of Manning is n D 0.025. Determine the water depth, the longitudinal slope
of the channel, and the bottom shear stress.

Solution

The cross-sectional area of the channel is given by

A D Q

V
D 10

1.2
D 8.33 m2

The general equation of the cross-sectional area is

my2 C by � A D 0

This is a second-order algebraic equation for the determination of y according
to given values of b and A, which indicates that

y D �bC p
b2 C 4mA

2m
D �2 C p

22 C 4 ð 3 ð 8.33

2 ð 3
D 1.37 m

Therefore the wetted perimeter, the hydraulic radius, the channel slope, and
the bottom shear stress are given, respectively, by

P D bC 2y
√
m2 C 1 D 2 C 2 ð 1.37 ð

p
10 D 10.66 m

Rh D A

P
D 8.33

10.66
D 0.78 m

S0 D
(
Vn

R2/3
h

)2

D
(

1.2 ð 0.025

0.782/3

)2

D 1.25 ð 10�3

� D �gRhS0 D 9810 ð 0.78 ð 1.25 ð 10�3 D 9.56 Pa

Problem 7.5 The width of a rectangular channel decreases from b1 to b2.
The Froude number of the flow is smaller than 1. The discharge flowing
through the channel is Q. Determine the minimum value of b2, that does not
cause an increase of the water depth upstream of the channel constriction.

Solution

In cross sections 1 and 2, the specific energy is identical. Its value is given by

E D y1 C Q2

2gb2
1y

2
1

�1�

In cross section 2, the flow is subject to critical flow conditions. Therefore

y2 D 2

3
E Fr2

2 D Q2

gb2
2y

3
2

D 1 �2�
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Equations (1) and (2) are then combined to give

b2 D Q

√
1

g

(
3

2E

)3

Problem 7.6 The width of a rectangular channel decreases from b1 to b2. In
cross section 1, the Froude number is smaller than 1, while for cross section 2,
the Froude number of the flow is equal to 1. The discharge flowing through
the channel is Q. Determine the value of y1.

Solution

In cross section 2, the water depth and specific energy are given, respec-
tively, by

y2 D 3

√
Q2

gb2
2

E D 3

2
y2

The specific energy in cross section 1 is equal to that of cross section 2.
Therefore

E D y1 C Q2

2gb2
1

The calculated value of E leads to the following third-order equation for the
determination of y1:

y3
1 � Ey2

1 C Q2

2gb2
2

D 0

Problem 7.7 The width of a rectangular channel is b. Between two close
cross sections, cross section 1 and cross section, 2, the bottom of the channel
is elevated by the amount z. In cross section 1, the Froude number is smaller
than 1. The discharge flowing through the channel is Q, and the water depth
is y1. Determine the maximum value of z that does not cause any change
of the water depth in cross section 1.

Solution

The discharge per unit width of the channel is given by

q D Q

b
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In cross section 2, the water depth and specific energy are given, respec-
tively, by

y2 D 3

√
q2

g
E2 D 3

2
y2

In cross section 1, the specific energy is given by

E1 D E2 Cz D y1 C q2

2gy2
1

As values of E1 and E2 are determined, the value of z is given by

z D E1 � E2

Problem 7.8 The width of a rectangular channel is b1 and the water depth
is y1. The discharge flowing through the channel is Q. In order to cause a
local depression, y, of the water free surface, it is suggested to change
locally the width of the channel to b2. In cross section 1, where water depth
is y1, the Froude number is smaller than 1. Determine the value of b2. What
is the maximum value of y that can be obtained by using the arrangement
described in this problem? If y obtains its maximum value, what is the value
of b2?

Solution

The specific energy at cross sections 1 (where the channel width is b1) and 2
(where the channel width is b2) is given by

E D y1 C Q2

2gb2
1y

2
1

D y2 C Q2

2gb2
2y

2
2

�1�

We also know that

y2 D y1 �y �2�

Thus

Q2

2gb2
2�y1 �y�2

D E� y1 Cy �3�

This expression yields

b2 D Q

�y1 �y�
p

2g�E� y1 Cy�
�4�
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The maximum value of y is obtained when critical conditions prevail at
cross section 2, i.e.,

y2 D yc D 2
3E �5�

By introducing Eq. (5) into Eqs. (1) and considering that the Froude number
is equal to 1 at cross section 2, we find

ymax D 1

3
y1 � Q2

3gb2
1y

2
1

�6�

and

�b2�ymax D Q√
g[2/3E]3

Problem 7.9 Water flows through a rectangular channel with a discharge q
per unit width. The water depth is y1. In order to cause a local depression,
y, of the water free surface, it is suggested to change locally the elevation of
the channel bottom. In cross section 1, of water depth y1, the Froude number
is smaller than 1. Determine the value of the elevation of the channel bottom.
What is the maximum value of y that can be obtained by using the arrange-
ment described in this problem? If y obtains its maximum value, what is
the elevation of the channel bottom?

Solution

Referring to a datum z D 0, which is defined at the channel bottom at cross
section 1 (where the water depth is y1), the total head in cross sections 1 and
2 (where the bottom is elevated by the amount z) is given by

H D E1 D E2 Cz D y1 C q2

2gy2
1

D y2 C q2

2gy2
2

Cz �1�

According to the particular conditions of the problem,

y2 D y1 �z �y �2�

We introduce Eq. (2) into Eq. (1) to obtain

E1 D y1 �y C q2

2g�y1 �z �y�2
�3�

A different arrangement of this expression yields

z D y1 �y � qp
2g�E1 Cy�

�4�
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The maximum value of y is obtained when critical conditions prevail at cross
section 2. Then

y2 D yc D 3

√
q2

g
�5�

E1 D 3

2
y2 Cz D 3

2
3

√
q2

g
Cz �6�

Therefore

z D �z�ymax D E1 � 3

2
3

√
q2

g
�7�

According to Eqs. (2) and (6), we obtain

E1 D 3

2
�y1 �z �y�Cz �8�

This expression yields

y D �y�max D y1 � 1
3z � 2

3E1 �9�

By introducing Eqs. (1) and (7) into Eq. (9), we obtain

y D �y�max D 1

2
3

√
q2

g
� q2

2gy2
1

This expression indicates that y is equal to the difference in velocity head
between cross sections 1 and 2.

Problem 7.10 In Sec. 8.7 it is proved that the ratio between the water depths
y2 and y1, downstream and upstream of a hydraulic jump, respectively, is
given by

y2

y1
D 1

2

(√
1 C 8Fr2

1 � 1
)

where Fr1 is the Froude number upstream of the jump,

Fr2
1 D q2

gy3
1

Here, q is the discharge per unit width of the channel. Develop an expression
for the ratio between y1 and y2 that depends on the Froude number downstream
of the hydraulic jump.
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Solution

From the definition of the momentum function downstream and upstream of
the jump,

y2
1

2
C q2

gy1
D y2

2

2
C q2

gy2
�1�

Multiplying this equation by 2 and rearranging results in

y2
2 � y2

1 D 2q2

g

(
y1 � y2

y1y2

)
�2�

We disregard the trivial solution that y1 D y2. Therefore we may divide Eq. (2)
by the difference between y2 and y1 to obtain

y2 C y1 D 2q2

gy1y2
�3�

We multiply this expression by y1 and divide it by y2
2 to obtain

(
y1

y2

)2

C
(
y1

y2

)
� 2Fr2

2 D 0 �4�

where

Fr2
2 D q2

gy3
2

�5�

Equation (4) is a second-order algebraic equation with regard to the ratio
between y1 and y2; its solution is

y1

y2
D 1

2

(√
1 C 8Fr2

2 � 1
)

Problem 7.11 Develop an expression for the head loss in a hydraulic jump
in a rectangular channel.

Solution

The head loss in a hydraulic jump is equal to the difference between the
specific energy upstream and downstream of the hydraulic jump,

H D E D
(
y1 C q2

2gy2
1

)
�

(
y2 C q2

2gy2
2

)
�1�
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Rearranging this expression yields

E D q2

2g

(
y2

2 � y2
1

y2
1y

2
2

)
� �y2 � y1�

D �y2 � y1�

[
q2

2gy2
1y

2
2

�y2 C y1�� 1
]

�2�

We introduce Eq. (3) of problem 7.10 into Eq. (2), to obtain

E D �y2 � y1�

[
�y2 C y1�2

4y2
1y

2
2

� 1
]

D �y2 � y1�3

4y2
1y

2
2

This expression shows that the identity of the momentum function between
two cross sections is always associated with energy loss, provided that the
first one is subject to supercritical flow and the second is subject to subcritical
flow.

Problem 7.12 Water flows through a wide rectangular channel. The shear
stress at the bottom of the channel is � D 10 Pa. The water depth is B D 1.5 m.
The channel bed is extremely smooth.

(a) What is the average flow velocity?
(b) What is the discharge per unit width?
(c) What is the maximum flow velocity?
(d) What is the slope of the channel?
(e) What is the thickness of the laminar sublayer?

Solution

(a) According to Eq. (7.5.20),

VC D 2.5 ln�BC�C 3 �1�

where BC is the dimensionless water depth and VC is the dimensionless
average flow velocity. In general, we have

VC D V

uŁ
BC D uŁB

v
uŁ D

√
�

�
�2�

where V is the average flow velocity, uŁ is the shear velocity, B is the water
depth and v is the kinematic viscosity. For the present problem,

uŁ D
√

10

1000
D 0.1 m/s

BC D 0.1 ð 1.5

10�6
D 1.5 ð 105

�3�
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Introducing these values into Eq. (1), we obtain

V

0.1
D 2.5 ln�1.5 ð 105�C 3 D 32.79 �4�

This expression yields

V D 3.28 m/s �5�

(b) From the definition,

q D VB D 3.28 ð 1.5 D 4.92 m/s

(c) According to Eq. (7.5.18) the velocity profile is given by

uC D 2.5 ln zC C 5.5 �6�

where y is the distance from the bottom of the channel. Equations (1), (4),
and (6) indicate that the maximum flow velocity takes place at the water free
surface,

U

0.1
D V

0.1
C 2.5 D 32.79 C 2.5 D 35.29 �7�

This expression yields

U D 3.53 m/s �8�

(d) According to Eq. (7.5.22), the Darcy–Weissbach friction coefficient
is given by

f D 8

�VC�2
D 8

32.792
D 0.0074

According to the Darcy–Weissbach Eq. (7.5.21), the slope of the channel is

Sf D f

4B

V2

2g
D 0.0074

4 ð 1.5
ð 3.282

2 ð 9.81
D 6.76 ð 10�5

(e) From Eq. (7.5.13), the thickness of the laminar sublayer is

υ D 11.6v

uŁ
D 11.6 ð 10�6

0.1
D 1.16 ð 10�4 m

Problem 7.13 Water flows through a wide rectangular channel. The shear
stress at the bottom of the channel is � D 10 Pa. The water depth is B D 1.5 m.
The flow through the channel takes place in the rough turbulent regime. The
channel roughness coefficient of Manning is 0.025.
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(a) What is the average flow velocity? Compare results obtained using
the Manning equation and using a logarithmic velocity distribution.

(b) What is the discharge per unit width?
(c) What is the maximum flow velocity?
(d) What is the slope of the channel?

Solution

(a) According to Eq. (7.5.34),

VC D 2.5 ln
(
B

ε

)
C 6 �1�

where VC is the dimensionless velocity, B is the water depth, and ε is the
roughness of the channel bed. From Eqs. (7.5.12) and (7.2.33),

VC D V

uŁ
n D 0.038ε1/6 uŁ D

√
�

�
�2�

Here, V is the average flow velocity, uŁ is the shear velocity, and n is the
Manning roughness coefficient. For the present conditions,

uŁ D
√

10

1000
D 0.1 m/s

ε D
(

0.025

0.038

)6

D 0.081 m

�3�

Introducing these values into Eq. (1), we obtain

V

0.1
D 2.5 ln

(
1.5

0.081

)
C 6 D 13.30 �4�

This gives

V D 1.33 m/s �5�

(b) According to Eq. (7.2.21),

Sf D �

�gB
D 10

1000 ð 9.81 ð 1.5
D 6.8 ð 10�4

Substituting into the Manning equation,

V D B2/3

n
S1/2

f D 1.52/3

0.025

√
6.8 ð 10�4 D 1.36 m/s

q D VB D 1.33 ð 1.5 D 2.00 m/s

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



(c) According to Eq. (7.5.33) the velocity profile is given by

uC D 2.5 ln
(y
ε

)
C 8.5 �6�

where y is the distance from the bottom of the channel. Equations (1), (4),
and (6) indicate that the maximum flow velocity takes place at the water free
surface,

U

0.1
D V

0.1
C 2.5 D 13.30 C 2.5 D 15.80 �7�

This expression yields

U D 1.58 m/s �8�

(d) According to Eq. (7.5.22), the Darcy–Weissbach friction coefficient is

f D 8

�VC�2
D 8

13.302
D 0.045

Then, from Eq. (7.5.21), the slope of the channel is

Sf D f

4B

V2

2g
D 0.045

4 ð 1.5
ð 1.332

2 ð 9.81
D 6.76 ð 10�4

This value is almost identical to that obtained in part (a) by using the expres-
sion for the shear stress.

Problem 7.14 The velocity distribution in a wide rectangular channel is
given by

u D U

[
1 �

( z
B

)2
]

where U is the velocity at the free surface and B is the water depth. The
coefficient of diffusion D is given, and it has a constant value.

(a) Find the average flow velocity.
(b) Find the profile of u0, namely, the deviation from the average flow

velocity.
(c) Find an expression for C0, namely, the deviation from the average

concentration, in terms of the expected concentration profile, ∂C/∂x.
(d) What is the value of the longitudinal dispersion coefficient?

Solution

(a) The average flow velocity is given by

V D 1

B

∫ B

0
u dz D U

B

[
z � z3

3B2

]B
0

D 2

3
U
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(b) The profile of u0 is

u0 D u� V D U

[
1

3
�

( z
B

)2
]

(c) According to Eq. (7.5.45),

C0�y� D 1

D

∂C

∂x

∫ z

0

∫ z

0
u0 dz dz CC0�0�

D U

D

∂C

∂x

∫ z

0

∫ z

00

[
1

3
�

( z
B

)2
]
dz dz CC0�0�

C0�y� D U

D

∂C

∂x

[
z2

6
� z4

12B2

]
CC0�0�

(d) From Eqs. (7.5.46) and (7.5.47), we have

K D � 1

B∂C/∂x

∫ B

0
u0C0 dz D �U2

BD

∫ B

0

{[
1

3
�

( z
B

)2
][
z2

6
� z4

12B2

]}
dz

D 8

945

U2B2

D
D 0.0085

U2B2

D

Problem 7.15 A very long channel incorporates three long segments, as
shown in Fig. 7.24. It delivers water from a reservoir and ends in an over-
fall. The discharge per unit width is q D 3.6 m2/s. The Manning roughness
coefficient is n D 0.025. The overfall is constructed on a bottom elevation of

Figure 7.24 Flow in variable channel, Problem 7.15.
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z D 1.0 m. The slopes of the different sections of the channel are (Section 1)
S0 D 0.035, (Section 2) S0 D 1.7 ð 10�3, (Section 3) S0 D 0.027.

(a) Determine the value of yc and values of yn for each of the channel
sections.

(b) Explain how the hydraulic profiles shown in Fig. 7.24 are obtained.
How are the locations of the two hydraulic jumps shown in the
figure determined?

(c) What is the water depth at cross sections A, B, C, D, E, F, G, and
H? Which of these sections is a control section? What is the head
loss in each of the hydraulic jumps? What is the elevation h of the
free surface of the reservoir above the channel entrance?

(d) Determine the hydraulic profile of segment 1 of the channel, by
using the Simpson one-third method of integration.

(e) Determine the hydraulic profiles of segment 2 of the channel, by
using the Simpson one-third method of integration for the upstream
portion of the segment and using a fourth-order Runge–Kutta method
for the downstream portion of the channel segment.

(f) Determine the hydraulic profile at the upstream and downstream
portions of segment 3 of the channel. Apply the Simpson and Runge–
Kutta methods to the upstream portion of the segment. Compare the
results obtained by the two methods. Apply the Runge–Kutta method
for the downstream portion of the channel segment.

Solution

(a) As the channel is rectangular, we may apply Eq. (7.2.42) to calculate the
critical water depth,

yc D 3

√
q2

g
D 3

√
3.62

9.81
D 1.10 m �1�

As the channel is wide, its hydraulic radius is equal to the water depth. There-
fore, Manning’s equation is given by (from problem 7.1)

q D y5/3

n
S1/2

f �2�

In the case of uniform flow, Eq. (2) yields

y D
(
qn

S1/2
0

)3/5

�3�
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Equation (3) yields for segments 1, 2, and 3 the following normal water
depths:

�yn�1 D
(
qn

S1/2
0

)3/5

D
(

3.6 ð 0.025

0.0351/2

)3/5

D 0.65 m

�yn�1 D
(
qn

S1/2
0

)3/5

D
(

3.6 ð 0.025p
1.7 ð 10�3

)3/5

D 1.60 m

�yn�3 D
(
qn

S1/2
0

)3/5

D
(

3.6 ð 0.025

0.0271/2

)3/5

D 0.70 m

(b) The hydraulic profile of segment 1 is obtained due to the steep slope
of that segment. The discharge flowing from the reservoir into the channel
is controlled by the capability of cross section A to convey water. Therefore
the water depth in that cross section is the critical depth, and downstream
of that cross section the hydraulic profile is S1. At point B the water depth
is the normal depth of segment 1, provided that the momentum function at
normal depth of segment 1 is larger than that of normal depth of segment 2.
As in segment 2, the normal depth is larger than the critical depth, down-
stream of cross section B, the hydraulic profile is of type M3. This profile
is extended until the momentum function at cross section C is equal to the
momentum function at cross section D. Cross section E represents the border
point between mild and steep slopes. Therefore the water depth at point E
is the critical depth. Upstream of that cross section, the hydraulic profile
is of type M2. Downstream of that cross section, the hydraulic profile is
of type S2. At the overfall, at point I, the water depth is the critical depth.
The type of the control section determines it. At cross sections I and H, the
total head is identical. Upstream of cross section H, the hydraulic profile
is required to be of the S1 type. The location of the hydraulic jump is
determined by the identity of the momentum function at cross sections F
and G.

(c) Cross section A: This cross section controls the flow from the reser-
voir into the channel. Therefore it is a control section. The water depth in this
cross section is the critical depth: yA D yC D 1.1 m.

Cross section B: The water depth at this cross section is the normal
depth of channel segment 1. This cross section is not defined as a control
section. However, calculation of the water depth downstream of point B is
done by considering yB as an initial value. The value of the water depth is
yB D yn D 0.65 m.

Cross section C: In this cross section the flow is supercritical and the
water depth is the alternate depth of the normal depth at point D. Therefore
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we may use the equation of the hydraulic jump to calculate the water depth
at point C:

yC

yD
D 1

2

(√
1 C 8Fr2

D � 1
)

D 1

2



√

1 C 8
q2

gy3
D

� 1




D 1

2



√

1 C 8 ð 3.62

9.81 ð 1.63
� 1


 D 0.446

yC D 0.446yD D 0.446 ð 1.60 D 0.71 m

The head loss through the hydraulic jump located between points C and D is
given by

�H�CD D �yD � yC�3

4yCyD
D �1.60 � 0.71�3

4 ð 1.60 ð 0.71
D 0.155 m

Cross section D: The water depth at this cross section is the normal
depth. Therefore, yD D yn D 1.60 m.

Cross section E: This cross section is located between segments of mild
and steep slopes. Such a section is a control section, and the water depth is
the critical depth: yE D yc D 1.1 m.

Cross section F: The water depth at this cross section is the normal
depth, yF D yn D 0.70 m.

Cross section G: The water depth at this cross section is alternate to the
normal water depth at cross section F. Therefore we apply the hydraulic jump
equation to obtain

yG

yF
D 1

2

(√
1 C 8Fr2

F � 1
)

D 1

2



√

1 C 8
q2

gy3
F

� 1




D 1

2



√

1 C 8 ð 3.62

9.81 ð 0.703
� 1


 D 2.32

yG D 2.32yF D 2.32 ð 0.70 D 1.62 m

The head loss associated with this jump is given by

�H�FG D �yG � yF�3

4yGyF
D �1.62 � 0.70�3

4 ð 1.62 ð 0.70
D 0.172 m
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Cross section H: The total head at cross sections H and I is identical.
Cross section I is a control section, in which the discharge alone determines
the water depth. Therefore at cross section I the water depth is the critical
depth. Thus

HH D EH D EI CZ D 3
2yc Cz D 3

2 ð 1.10 C 1.00 D 2.65 m

where E is the specific energy. By applying the equation for the specific energy
at point H we obtain

EH D yH C q2

2gy2
H

D 2.65

We multiply this expression by the square of yH, giving

y3
H � 2.65y2

H C 3.62

19.62
D y3

H � 2.65y2
H C 0.66 D 0

By trial and error, this results in yH D 2.55 m.
Cross section I: This cross section is a control section, so the water depth

is the critical depth, yI D yc D 1.1 m.
The value of h: Due to the equality of total head at the reservoir water

free surface and cross section A,

h D EA D 3

2
yc D 3

2
ð 1.10 D 1.65 m

(d) We represent the expression for the derivative of x with regard to y
in segment 1, according to Eq. (7.6.10c),

dx

dy
D 1

S0

1 � �yc/y�3

1 � �yn/y�10/3
D 1

0.035
ð 1 � �1.10/y�3

1 � �0.65/y�10/3

D 28.57 ð 1 � �1.10/y�3

1 � �0.65/y�10/3
D f1�y�

The hydraulic profile of type S2 is extended between the water depth at cross
section A, yA D yc D 1.1 m, and the normal water depth yn D 0.65 m. We
choose several intervals of the water depth y. The numerical integration
rule according to Eq. (7.6.38) is given by

xiC1 D xi Cxi D xi C y

3
[f1�yi�C 4f1�yi Cy�C f1�y C 2y�]
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The following table was developed using a spreadsheet for the calculation of
the hydraulic profile between y D 1.10 m and y D 0.652 m:

x y dy f(y) f�y C dy� f�y C 2dy� dx

0 1.1 �0.05 0 �5.36323 �12.4086 0.564358 Row 1
0.564358 1 �0.05 �2.4086 �21.9887 �35.6381 2.266693 Row 2
2.83105 0.9 �0.05 �35.6381 �56.4232 �91.4947 5.880423 Row 3

8.711473 0.8 �0.05 �91.4947 162.293 �375.982 18.6108 Row 4
27.32227 0.7 �0.01 �375.982 �483.014 �661.482 49.49201 Row 5
76.81428 0.68 �0.01 �661.482 �1018.54 �2089.93 113.7591 Row 6
190.5734 0.66 �0.004 �2089.93 �3518.55 �10661.9 447.0997 Row 7
637.6731 0.652 Row 8

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

We work along the row elements. In row 1, column 1 we introduce the
value of x in the control section at point A. In row 1 column 2, we intro-
duce the value of y at that location. The value in column 3 represents y.
Elements of columns 4, 5, and 6 are calculated according to the expressions
for f1�y�, f1�y Cy�, and f1�y C 2y�, respectively. Column 7 is calcu-
lated according to the equation of Simpson’s rule and specifies the value of
x. In row 2, column 1 represents the sum of the elements of row 1, column
1 and row 1, column 7. Column 2 of row 2 is the sum of row 1, column 2 and
two times the element of column 3, row 1. The following row elements are
calculated by the copy–paste procedures of the relevant elements of row 1.
After completing the copying and pasting of elements of row 2, all elements
of row 3 are filled in by applying the copy–paste procedure for all elements
of row 2. As required by the calculation, values of y are changed.

(e) We represent the expression for the derivative of x with regard to y
in the upstream portion of segment 1, according to Eq. (7.6.10c), as

dx

dy
D 1

S0

1 � �yc/y�3

1 � �yn/y�10/3
D 1000

1.7
ð 1 � �1.10/y�3

1 � �1.60/y�10/3

D 588.2 ð 1 � �1.10/y�3

1 � �1.60/y�10/3
D f1�y�

The hydraulic profile of type M3 is extended between the water depth at cross
section B, yB D yn D 0.65 m, and the water depth at point C, yC D 0.71 m.
We choose several intervals of the water depth, y. The numerical integration
rule according to Eq. (7.6.38) gives

xiC1 D xi Cxi D xi C y

3
[f1�yi�C 4f1�yi Cy�C f1�y C 2y�]
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A spreadsheet is again used for the calculation of the hydraulic profile between
y D yn D 0.65 m and y D 0.70 m. The water depth of y D 0.70 m is the
alternate depth of yn D 1.60 m. This water depth takes place at the upstream
side of the hydraulic jump.

x y dy f(y) f(y+dy) f(y+2dy) dx

0 0.65 0.005 118.2226 117.9679 5.716869 0.993018 Row 1
0.993018 0.66 0.005 117.6991 117.416 5.68867 0.98842 Row 2
1.981438 0.67 0.005 117.1185 116.8064 5.65763 0.983336 Row 3
2.964774 0.68 0.005 116.4795 116.1376 5.623679 0.977756 Row 4
3.942529 0.69 0.005 115.7805 115.408 5.58674 0.971665 Row 5
4.914195 0.7 Row 6

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

Work with the spreadsheet is done as was done with the upstream portion
of channel segment 1. However, here the calculation starts with point B and
proceeds in the downstream direction. The downstream end of segment 2
represents a control section of critical depth. As the slope of the channel is
mild, that portion of the segment incorporates an M2 hydraulic profile, as noted
previously. We apply the fourth-order Runge–Kutta method to calculate the
shape of the hydraulic profile, starting our calculation from the control section
in the upstream direction. A spreadsheet is used to perform the calculations
with several values of x. The expression for the derivative of y with respect
to x, according to Eq. (7.6.10d), is given by

dy

dx
D S0

1 � �yn/y�10/3

1 � �yc/y�3
D 1.7 ð 10�3 ð 1 � �1.60/y�10/3

1 � �1.1/y�3
D f�y�

The hydraulic profile of type M2 is extended between the water depth at cross
section E, namely yE D yc D 1.10 m, and the water depth yn D 1.60 m. We
choose several values of the longitudinal interval x. The numerical solution
according to Eq. (7.6.36) gives

yiC1 D yi Cyi D yi C 1
6 [y1 C 2y2 C 2y3 Cy4]

where

y1 D xf�yi� y2 D xf

(
yi C y1

2

)

y3 D xf

(
yi C y2

2

)
y4 D xf�yi Cy3�
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Using a spreadsheet for the calculation of the hydraulic profile between yE D
yc ³ 1.105 m and y ³ yn ³ 1.60 m results in the following table:

x y dx dy1 dy2 dy3 dy4 dy

0 1.105 �1 0.30626 0.006296 0.186486 0.004637 0.116077 Row 1
�1 1.221077 �4 0.03696 0.030292 0.03136 0.026616 0.031147 Row 2
�5 1.252224 �15 0.100018 0.063324 0.074409 0.051445 0.071155 Row 3

�20 1.323378 �30 0.105748 0.06797 0.079603 0.054111 0.075834 Row 4
�50 1.399213 �50 0.093177 0.061041 0.071029 0.04763 0.067491 Row 5

�100 1.466704 �100 0.098904 0.05405 0.072869 0.036642 0.064898 Row 6
�200 1.531601 �200 0.084669 0.02905 0.064263 0.004381 0.045946 Row 7
�400 1.577547 �200 0.024812 0.010786 0.018615 0.004062 0.014613 Row 8
�600 1.59216 �200 0.008375 0.003865 0.006283 0.00164 0.005052 Row 9
�800 1.597211 Row 10

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

We work along the row elements. In row 1, column 1 we introduce the value
of x in the control section, namely at point E. In row 1, column 2, we intro-
duce the value of y at that location. The element of column 3 specifies the
value of x. Elements of columns 4, 5, 6, and 7 of row 1 are then calcu-
lated according to the expressions for y1, y2, y3, and y4, respectively.
Column 8 is calculated according to the fourth-order Runge–Kutta equation.
Row 2, column 1 is the sum of the elements of row 1, columns 1 and 3.
Row 1, column 2 is the sum of the elements of row 1, columns 2 and 8.
The following row elements are calculated by applying the copy-and-paste
procedures. At each row the value of x is changed if a change seems to be
reasonable. The value of x should not be too large, to avoid negative values
of any of the quantities y1, y2, y3, or y4.

(f) We apply first the numerical integration rule of the Simpson one-
third method. With regard to the upstream portion of segment 3, where the
hydraulic profile is of type S2, the expression for the derivative of x with
regard to y in segment 1, according to Eq. (7.6.10c), is

dx

dy
D 1

S0

1 � �yc/y�3

1 � �yn/y�10/3
D 1

0.027
ð 1 � �1.10/y�3

1 � �0.70/y�10/3

D 37.04 ð 1 � �1.10/y�3

1 � �0.70/y�10/3
D f1�y�

The hydraulic profile of type S2 is extended between the water depth at cross
section E, where yE D yc D 1.1 m, and the normal water depth yn D 0.70 m.
We choose several intervals of the water depth y. The numerical integration
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rule according to Eq. (7.6.38) is given by

xiC1 D xi Cxi D xi C y

3
[f1�yi�C 4f1�yi Cy�C f1�y C 2y�]

In the following table are results from a spreadsheet calculation of the hydrau-
lic profile between y D 1.10 m and y D 0.71 m:

x y dy f(y) f�y C dy� f�y C 2dy� dx
0 1.1 �0.05 0 �7.48474 �17.6292 0.792804 Row 1

0.792804 1 �0.05 �17.6292 �32.0379 �53.917 3.328299 Row 2
4.121103 0.9 �0.05 �53.917 �90.7423 �164.929 9.696919 Row 3
13.81802 0.8 �0.01 �164.929 �189.728 �220.751 19.07651 Row 4
32.89453 0.78 �0.01 �220.751 �260.668 �313.922 26.28906 Row 5
59.1836 0.76 �0.01 �313.922 �388.517 �500.456 39.47409 Row 6

98.65769 0.74 �0.01 �500.456 �687.082 �1060.42 71.82009 Row 7
170.4778 0.72 �0.005 �1060.42 �1433.8 �2180.61 149.6042 Row 8
320.082 0.71 Row 9

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7

Work with the spreadsheet is done as it was performed with regard to the
upstream portion of the channel segment 1.

The calculation of the hydraulic profile of the upstream portion of
segment 3, where the S2 hydraulic profile takes place, is done by applying
the fourth-order Runge–Kutta method, in which the expression for f�y� is
given by

dy

dx
D S0

1 � �yn/y�10/3

1 � �yc/y�3
D 0.027 ð 1 � �0.70/y�10/3

1 � �1.1/y�3
D f�y�

The hydraulic profile of type S2 is extended between the water depth at
cross section E, yE D yc D 1.10 m, and the water depth yn D 0.70 m. We
choose several values of the longitudinal interval x. The numerical solution
according to Eq. (7.6.36) yields

yiC1 D yi Cyi D yi C 1

6
[y1 C 2y2 C 2y3 Cy4]

where

y1 D xf�yi� y2 D xf

(
yi C y1

2

)

y3 D xf

(
yi C y2

2

)
y4 D xf�yi Cy3�
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The following table shows results from a spread sheet calculation of the
hydraulic profile between y D yc ³ 1.095 m and yn ³ 0.70 m:

x y dx dy1 dy2 dy3 dy4 dy
0 1.09 0.5 �0.37497 �0.00952 �0.25076 �0.00489 �0.15007 Row 1

0.5 0.93993 1 �0.02802 �0.02419 �0.02468 �0.02168 �0.02457 Row 2
1.5 0.915357 5.5 �0.11934 �0.06445 �0.08586 �0.04817 �0.07802 Row 3

7 0.837334 13 �0.12454 �0.05437 �0.09005 �0.03139 �0.07413 Row 4
20 0.763207 20 �0.0678 �0.02838 �05032 �0.01192 �0.03952 Row 5
40 0.723688 20 �0.02257 �0.01145 �0.01684 �0.00622 �0.01423 Row 6
60 0.709457 20 �0.00866 �0.00464 �0.0065 �0.00266 �0.0056 Row 7
80 0.703857 20 �0.00348 �0.0019 �0.00262 �0.00111 �0.00227 Row 8

100 0.701587 20 �0.00142 �0.00078 �0.00107 �0.00046 �0.00093 Row 9
120 0.700655 Row 10

Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

Work with the spreadsheet is done as before with regard to the downstream
portion of channel segment 2. However, in the present case the calculation
starts with point E and proceeds in the downward direction. Here we start
the calculation with a y value somehow smaller than yc. The Runge–Kutta
method requires an initial depth to be specified that is different from the critical
depth. Values of x also were required to be comparatively small to avoid
positive values of y2 and y4. The predicted length of the hydraulic profile
is somehow different from that predicted by the Simpson method. However,
these differences are not very significant.

For the hydraulic profile of the downstream portion of segment 3, where
the S1 hydraulic profile takes place, the fourth-order Runge–Kutta method is
again applied. The expression for f�y� is given by

dy

dx
D S0

1 � �yn/y�10/3

1 � �yc/y�3
D 0.027 ð 1 � �0.70/y�10/3

1 � �1.1/y�3
D f�y�

The hydraulic profile of type S1 is extended between the water depth at
cross section G, where yG D 1.62 m, and the water depth at section H, where
yn D 2.55 m. The calculation is done from point H moving in the upstream
direction. We choose several values of the longitudinal interval x. The
numerical solution according to Eq. (7.6.36) yields

yiC1 D yi Cyi D yi C 1
6 [y1 C 2y2 C 2y3 Cy4]

where

y1 D xf�yi� y2 D xf

(
yi C y1

2

)

y3 D xf

(
yi C y2

2

)
y4 D xf�yi Cy3�
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The following table shows results of a spreadsheet for the calculation of the
hydraulic profile between yH D 2.55 m and yG D 1.62 m:

x y dx dy1 dy2 dy3 dy4 dy

0 2.55 �5 �0.14481 �0.14576 �0.14576 �0.14686 �0.14579 Row 1
�5 2.404215 �5 �0.14686 �0.14812 �0.14813 �0.14961 �0.14816 Row 2

�10 2.256052 �5 �0.14961 �0.15136 �0.15138 �0.15347 �0.15143 Row 3
�15 2.104626 �5 �0.15347 �0.156 �0.15605 �0.15919 �0.15613 Row 4
�20 1.948499 �5 �0.15919 �0.16315 �0.16326 �0.16845 �0.16341 Row 5
�25 1.785086 �2 �0.06738 �0.06841 �0.06843 �0.0696 �0.06844 Row 6
�27 1.716644 �2 �0.0696 �0.07094 �0.07097 �0.07254 �0.07099 Row 7
�29 1.645652 �0.5 �0.01813 �0.01824 �0.01824 �0.01836 �0.01824 Row 8

�29.5 1.627407 Row 9
Col. 1 Col. 2 Col. 3 Col. 4 Col. 5 Col. 6 Col. 7 Col. 8

Work with spreadsheet was done as with the calculation of the hydraulic profile
taking place at the downstream portion of channel segment 2.

Unsolved Problems

Problem 7.16 A channel of trapezoidal cross section, with bottom width
b D 2 m, side slope m D 3, and Manning roughness coefficient n D 0.025,
conveys a water discharge of Q D 15 m3/s. The average flow velocity is
V D 1.2 m/s.

(a) What is the water depth?
(b) Calculate the wetted perimeter and the hydraulic radius.
(c) Find the longitudinal slope of the channel.
(d) What is the shear stress along the channel bed?
(e) What are the values of the Reynolds and Froude numbers?
(f) What are the values of the specific energy and the momentum

function?

Problem 7.17 A channel of trapezoidal cross section, with bottom width
b D 2 m, side slope m D 3, and Manning roughness coefficient n D 0.025,
conveys a water discharge of Q D 15 m3/s. The shear stress applied to the
channel bed is � D 10 Pa.

(a) What is the water depth?
(b) Find the cross-sectional area, wetted perimeter, and hydraulic radius.
(c) What is the average flow velocity?
(d) Determine the longitudinal slope of the channel.
(e) What are the values of the Reynolds and Froude numbers?
(f) What are the values of the specific energy and the momentum

function?
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Problem 7.18 In a channel of trapezoidal cross section, the side slope is m D
3, the width of the channel bottom is b D 2 m, and the Manning roughness
coefficient is n D 0.025. The shear stress at the channel bed is � D 9.81 Pa,
and the average flow velocity is V D 1.35 m/s.

(a) Find the hydraulic radius of the channel.
(b) Find the longitudinal slope of the channel.
(c) What are the water depth and the cross-sectional area of the flow?
(d) What is the discharge flowing through the channel?

Problem 7.19 A rectangular channel has width b1 D 2 m and water depth
y1 D 1.5 m. The Manning roughness coefficient is n D 0.025 and the discharge
is Q D 3.6 m3/s. In a short section of the channel, the width decreases to b2 D
1.2 m.

(a) What is the hydraulic radius in the main channel section?
(b) What is the longitudinal slope of the channel?
(c) Find the water depth at cross section 2 (where the channel width

is b2).
(d) What is the minimum value of b2, that does not affect the water

depth upstream of the channel constriction?
(e) What is the water depth in cross section 2, under the condition of

part (d)?

Problem 7.20 Figure 7.25 shows a wide rectangular channel in which the
water depth is y D 2 m. The longitudinal slope is S0 D 5 ð 10�4. The Manning
roughness coefficient is n D 0.025. At a minor portion of the channel the free
water surface is subject to a local depression of y D 0.05 m due to a local
elevation of the channel bottom. Head loss may be neglected.

(a) What are the discharge per unit width of the channel and the average
flow velocity?

Figure 7.25 Definition sketch, Problem 7.20.
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(b) What are the values of the Reynolds and Froude numbers upstream
of the water depression?

(c) What is the specific energy upstream of the water depression?
(d) What is the shear stress along the channel bottom upstream of the

water depression?
(e) What is the amount of local elevation of the channel bottom (z)?
(f) What is the critical depth of the water flow?
(g) Consider that the amount of bottom elevation is increased, resulting

in a change of the value of y upstream of the bottom elevation.
Under such conditions, what is the water depth above the elevated
bottom?

Problem 7.21 A rectangular channel, shown in Fig. 7.26, has a width b1 D
2.0 m and delivers a water discharge of Q D 5 m3/s. Initially the water flow
is uniform along the entire length of the channel, with yn D 1.90 m. The
Manning roughness coefficient is n D 0.025. Between points B and C of the
channel, the channel bottom is elevated by Z D 0.5 m, and the width of the
channel is increased to b2, so that the free water surface is not changed.

(a) What is the hydraulic radius of the flow upstream of point A?
(b) What is the longitudinal slope of the channel?
(c) What is the water depth at point B?
(d) What is the width b2?

Figure 7.26 Flow over a hump in open channel flow, Problem 7.21.
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(e) What is the maximum value of Z possible so that the effect of
raising the bottom can be compensated by increasing the width of
the channel?

(f) Provide a schematic description of the curve showing the depen-
dence of the ratio b2/b1 on the value of the ratio Z/y1, under the
condition that the free surface level remains unchanged.

Problem 7.22 Considering the same conditions as in problem 7.19, calculate
the force acting on the channel constriction under all circumstances considered
in the different parts of that problem.

Problem 7.23 Considering the same conditions as in problem 7.20, calculate
the force acting on the channel constriction under all circumstances considered
in the different parts of that problem.

Problem 7.24 Water flows through a rectangular channel. The water depth is
y1 D 1.5 m and the discharge per unit width is q D 3 m2/s. At a minor section
of the channel, the bottom is elevated by z D 0.20 m. Find the resulting
change in free surface level.

Problem 7.25 A rectangular channel of width b D 2.0 m delivers a water
discharge of Q D 5.30 m3/s. Initially, the water flow is uniform along the
entire length of the channel, with water depth yn D 0.75 m. The Manning
roughness coefficient is n D 0.020. Between points B and C of the channel,
a constriction of the channel cross section is constructed and the width of the
channel is reduced, as shown in Fig. 7.27. The channel width has a minimum
value b2 at point C. The constriction of the channel leads to the formation of

Figure 7.27 Definition sketch, Problem 7.25.
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a hydraulic jump between points A and B. The water depth at point A is not
affected by the channel constriction.

(a) What is the hydraulic radius of the flow upstream of point A?
(b) What is the longitudinal slope of the channel?
(c) What is the water depth at point B?
(d) What is the water depth at point C?
(e) What is the head loss between points A and B?
(f) What is the width of the channel at point C?

Problem 7.26 Water flows through a wide rectangular channel with a dis-
charge per unit width of q D 2.5 m2/s. The friction slope is S0 D 10�3 and
the water depth is B D 1.5 m.

(a) What is the Manning roughness coefficient and what is the rough-
ness of the channel?

(b) Develop an expression for the velocity profile in the channel.
(c) What is the maximum flow velocity?
(d) What is the value of the longitudinal dispersion coefficient?

Problem 7.27 Consider uniform free surface flow of water down a slope
at angle ˛ relative to horizontal, as shown in Fig. 7.28. Shear stress at the
surface may be neglected. Set up and solve the equations for the velocity
profile u�y� and verify that the forces acting on a length L of the fluid layer
are in equilibrium.

Problem 7.28 Water flows underneath a sluice gate in a wide rectangular
channel with a water depth of y0 D 0.3 m. This depth is one-third of the
critical depth. Downstream of the sluice gate, the water flow creates a hydraulic

Figure 7.28 Open channel flow on a slope, Problem 7.27.
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profile, which ends in a hydraulic jump. The alternate depth at the downstream
side of the jump is y2 D 1.15 m. The Manning roughness coefficient is n D
0.022. The channel is long and ends at an overfall.

(a) What are the critical depth and the discharge per unit width in the
channel?

(b) What are the normal depth and the longitudinal slope of the channel?
(c) Provide a schematic of the channel, in which you specify the

various hydraulic profiles and their types.
(d) What is the water depth upstream of the hydraulic jump?
(e) What is the head loss associated with the hydraulic jump?
(f) Calculate the shape of the hydraulic profile by applying the Simpson

one-third rule of integration.

Problem 7.29 Figure 7.29 shows water flowing through a wide rectangular
channel under uniform flow conditions. The average velocity is V D 1.4 m/s,
the water depth is y D 1.2 m, and the Manning roughness coefficient is n D
0.025. In a short section of the channel, between points A and C, the bottom
of the channel is elevated as a heap with a maximum elevation at point B.
At point C, which is located at the downstream end of the bottom elevation,
the water depth is yC D 0.30 m. At a certain distance downstream of point C,
between points D and E, a hydraulic jump develops.

(a) What is the discharge per unit width?
(b) What is the longitudinal slope of the channel?
(c) What is the water depth at point D, and what is the head loss of

the hydraulic jump?
(d) What are the water depth and amount of elevation z at point B?
(e) What is the amount of elevation y of the water depth at point A?

Figure 7.29 Definition sketch, Problem 7.29.
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(f) What types of hydraulic profiles are created in the channel? Calcu-
late the shape of the hydraulic profiles, upstream of point A and
downstream of point C, by applying the Simpson one-third rule of
integration.

(g) What is the gain in total head at point A, which is obtained by the
elevated bottom of the channel?

(h) The gain of total head at point A is larger than the head loss of the
hydraulic jump. Where is the head difference between these two
quantities dissipated? Prove your answer using appropriate calcu-
lations.

Problem 7.30 Figure 7.30 shows a wide rectangular channel with two seg-
ments. Both segments are very long. The Manning roughness coefficient of
segment I is n D 0.025. The roughness coefficient of segment II is n D 0.020.
The first segment (segment I) comprises an outlet of a reservoir and its slope
is S0 D 1.7 ð 10�3. The slope of segment II is S0 D 0.025. Segment II ends
at an overfall. However, right before the overfall the bottom of the channel
is elevated by an amount Z. The water depth above that elevation is yF D
0.95 m. Upstream of that elevation, the water depth is yE D 2.50 m. The free
surface of the reservoir water above the bottom of the channel entrance is H.

(a) What is the discharge per unit width of the channel?
(b) What are the normal depths of segments I and II?
(c) What are the water depths at points A and B, and what are the

values of Z and H?
(d) How many hydraulic jumps are in the channel? Where are they and

why do they occur?
(e) What are the water depths upstream and downstream of the hydraulic

jumps? What is the head loss of the hydraulic jump?

Figure 7.30 Definition sketch, Problem 7.30.
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Figure 7.31 Definition sketch, Problem 7.31.

(f) What types of channel segments and hydraulic profiles are present
at each of the channel segments?

(g) Provide a schematic sketch of the channel with the critical and normal
depths labeled, as well as the hydraulic profiles and hydraulic jumps
along the channel.

(h) Using spreadsheets, calculate the hydraulic profiles. Apply appro-
priate vertical and longitudinal geometrical scales, and provide a
graphical description of each hydraulic profile.

Problem 7.31 Figure 7.31 shows a wide rectangular channel incorporating
two segments. Both segments are very long. The Manning roughness coeffi-
cient for both segments is n D 0.020. The first segment (segment I) comprises
an outlet of a reservoir. The reservoir free water surface elevation is H D
1.6 m above the bottom of the channel bottom entrance. The normal water
depth of segment I is yn1 D 0.60 m. Segment II ends with an overfall. The
normal water depth of segment II is yn2 D 1.65 m.

(a) What is the discharge per unit width of the channel?
(b) What are the slopes of segments I and II?
(c) What are the water depths at points A, B and C?
(d) In which channel segment is a hydraulic jump located? Why?
(e) What are the water depths upstream and downstream of the hydraulic

jump? What is the head loss of the hydraulic jump?
(f) What types of hydraulic profiles are present in each of the channel

segments?
(g) Provide a schematic diagram of the channel with the critical and

normal depths labeled, as well as the hydraulic profiles along the
channel.
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(h) Using spreadsheets, calculate the hydraulic profiles. Apply appro-
priate vertical and longitudinal geometrical scales, and provide a
graphical description of each hydraulic profile.

Problem 7.32 Over a one-month period a lake with surface area of 2 ha
experiences an average inflow of 250 m3/s and an average outflow of 220 m3/s.
During the month there are two storms, with a total precipitation of 5 cm.
Average runoff into the lake is estimated as 10 m3/s and seepage is negligible.
What is the average evaporation rate during this month?

Problem 7.33 In a very large lake changes in area with depth are usually
neglected. Under this condition and also assuming there are no inflows or
outflows and no vertical velocities, demonstrate mathematically that under
steady-state conditions the diffusive flux of temperature is exactly balanced
by the radiation flux. If, in addition, a deep ice and snow layer also covers
the lake, so that there is essentially zero radiation flux into the water, what is
the temperature distribution in the water?

Problem 7.34 Simplify Eqs. (7.7.16) and (7.7.17) for the case of constant
depth. Using these equations and also neglecting shear stresses and diffusive
transport, what acceleration would be experienced by a flow initially traveling
at 1 m/s northward (y-direction) at 40°N latitude? Provide a simple sketch of
the flow.
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8
Surface Water Waves

8.1 INTRODUCTION

Mechanical systems may vibrate if their displacement from a state of equi-
librium is subject to a restoring force. Some examples of such vibrations are
represented by water hammer in pipes, sound waves, surface gravity waves,
surface capillary waves, and internal waves. The restoring force in these partic-
ular cases may be the pipe elasticity, fluid compressibility, gravity, surface
tension, or Coriolis force in cases of rotating fluids. In most cases wave
motions decay by viscous shear stresses unless there is a constant supply
of energy to maintain the motion.

Water quality issues of the marine environment, as well as of lakes,
channels, and rivers, are often closely related to topics of wave formation
and propagation. For example, waves carry mechanical energy, which can
lead to the destruction of maritime structures. With regard to environmental
issues, wave energy leads to mixing in the water column and also along the
bottom, causing movement of sediments along coastlines, affecting various
current patterns in a water body and aiding the transport of solutes and floating
materials in the environment.

The present chapter discusses basic features and properties of waves in
such environments, focusing on surface waves. These waves, on a horizontal
water surface of a marine or lake environment, are confined to two-dimensional
propagation in the horizontal plane and are subject to a vertical external gravity
restoring force. An initial presentation of the wave equation is given, along
with a discussion of its application to several specific issues of environmental
fluid mechanics. Special attention also is given to the development and prop-
agation of waves in open channels and rivers. Internal waves are presented in
Sec. 13.2.
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8.2 THE WAVE EQUATION

Neglecting viscous and Coriolis forces, the general governing equations for
fluid motion are the equations of motion and mass conservation as developed
in Chap. 2,

�

(
∂ EV
∂t

C EVÐrEV
)

D �r�pC �gZ� �8.2.1�

∂�

∂t
C EVÐr� C �r Ð EV D 0 �8.2.2�

where V is the velocity, p is pressure, t is time, g is gravitational accelera-
tion, � is fluid density, and Z is the elevation above an arbitrary datum. These
equations are considered to apply to a flow field that represents a small devi-
ation from an initial state of fluid at rest and uniform fluid density, �0. Thus
velocities, pressure variations from hydrostatic values, and density variations
all are assumed to be small, so that any products of these quantities become
even smaller (i.e., in nondimensional terms, these quantities are less than one).
Equations (8.2.1) and (8.2.2) may then be linearized by neglecting all terms
involving products of these small quantities, resulting in

�0
∂ EV
∂t

D �r�pC �0gZ� �8.2.3�

∂�

∂t
D ��0r Ð EV �8.2.4�

The velocity vector may comprise two parts. One part is rotational and
is associated with the vorticity. An equation for vorticity can be obtained by
taking the curl of Eq. (8.2.3). Then, since the curl of the right-hand side of
that equation vanishes, it is seen that the vorticity cannot be a time dependent
variable. Therefore it is noted that linear wave theory (based on the linearized
equations of motion) neglects movements of vortex lines with the fluid. Other
properties may propagate in the domain.

In addition to the rotational part of the velocity, which is independent
of time, the velocity incorporates another, irrotational part that is time depen-
dent. This part can be considered as originating from a potential function .
Therefore we may write (see Sec. 4.2)

EV D r �8.2.5�

This expression implies that the velocity of interest for wave propagation
stems from a potential function. According to linear wave theory, any steady
rotational velocity field does not affect this velocity.
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In the usual case of waves developing on a homogeneous water environ-
ment, we consider a fluid with constant density and apply a coordinate system
in which z is the vertical upward coordinate, with z D 0 corresponding to the
elevation of the free surface, where the value of p vanishes. For such a case,
introducing Eq. (8.2.5) into Eq. (8.2.3) and integrating both sides results in

∂

∂t
C p

�
C gz D 0 �8.2.6�

If the density of the fluid is not constant, then combining Eqs. (8.2.5) and
(8.2.4) produces

∂�

∂t
D ��0r2 �8.2.7�

If there is no change in the fluid density, as with surface water waves, then the
left-hand side of this last equation vanishes and the potential function satisfies
Laplace’s equation.

To summarize the results so far, Eqs. (8.2.1)–(8.2.7) indicate that with
regard to small amplitude wave motion, the equations of motion can be
linearized and the velocity of interest originates from a potential function.
However, the phenomenon of surface water waves is associated with the prop-
agation of surface disturbances. The equations representing the free surface of
the water, as shown below, also can be linearized to represent the boundary
condition of the water free surface by a linear differential equation with regard
to the potential function.

Simple wave motions of small amplitude are described by the wave
equation,

∂2�

∂t2
D c2r2� �8.2.8�

where � is the displacement of the free surface and c is the wave velocity.
This is a linear hyperbolic differential equation in a two-dimensional space.
For the analysis and calculation of many wave phenomena, it is sufficient to
consider a one-dimensional space. For this case, Eq. (8.2.8) collapses to

∂2�

∂t2
D c2 ∂

2�

∂x2
�8.2.9�

where it has been assumed that the wave propagates along the x-direction.
The general form of the solution of Eq. (8.2.9) is given by

� D f�x � ct�C F�x C ct� �8.2.10�

where f and F represent arbitrary functions. Specific forms of these functions
are discussed in the following sections of this chapter.
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8.3 GRAVITY SURFACE WAVES

Surface water waves develop at the water free surface, which is the interface
between the water and air phases. In general, this interface is considered as a
discontinuity in the overall distribution of density in the domain. The state of
stable equilibrium of the system is represented by water occupying the lowest
portions of the domain. Disturbances to the state of equilibrium are represented
by surface gravity waves. Such waves propagate only in the horizontal direc-
tion, while the restoring gravity force acts in the vertical direction. Therefore
there is no preferred horizontal direction of the disturbance propagation, and
the waves are isotropic (they may move equally in any horizontal direction).
However, waves of different wavelengths penetrate to different depths into the
water phase. This phenomenon has an implication with regard to the inertia
of the fluid particles that are directly affected by the waves. Therefore waves
of different wavelengths have different wave speed. The dependence of the
wave speed on the wavelength causes dispersion of the waves.

To develop a solution of the wave equation, we adopt a coordinate
system as in Sec. 8.2, using z as the vertical upward coordinate, with its
origin at the water free surface. We also drop the subscript 0 for �, with the
understanding that water density is constant (not stratified). The undisturbed
absolute pressure, p0 is distributed hydrostatically,

p0 D pa � �gz �8.3.1�

where pa is the atmospheric pressure. The pressure disturbance, pe, originating
from the wave disturbance, is defined by

pe D p� p0 �8.3.2�

The linearized equation of motion, from Eq. (8.2.3), is given by

�
∂ EV
∂t

D �rpe �8.3.3�

where pa has been assumed to be constant, so that its gradient is zero. Due
to the incompressibility of the fluid, the continuity Eq. (8.2.7) collapses to
Laplace’s equation,

r2 D 0 �8.3.4�

Laplace’s equation cannot describe wave propagation in a fluid that is
completely bounded by stationary surfaces, but it can describe wave propaga-
tion by the employment of the boundary condition at the original free water
surface. At the original free water surface, the pressure value is associated
with the wave displacement, namely the disturbed free surface elevation, �,
according to

pe D �g� �8.3.5�
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where

� D ��x, y, t� �8.3.6�

Equation (8.3.5), along with Eqs. (8.3.1) and (8.3.2), indicates that at the
disturbed free water surface, the pressure is identical to the atmospheric pres-
sure.

According to Eqs. (8.2.6) and (8.3.3) for the irrotational part of the
velocity, which is associated with the wave propagation,

pe D ��∂
∂t

�8.3.7�

Therefore at the disturbed free water surface, Eqs. (8.3.5)–(8.3.7) yield the
surface boundary condition,

∂

∂t

∣∣∣∣
zD�

D �g� �8.3.8�

In practice, this represents a very complicated boundary condition, since the
value of � is not known (in fact, it is part of the desired solution). However,
according to linear theory, we may consider that � is a small quantity. There-
fore Eq. (8.3.8) is approximated by

∂

∂t

∣∣∣∣
zD0

D �g� �8.3.9�

According to the mean value theorem, the difference between the values of
the left-hand sides of Eqs. (8.3.8) and (8.3.9) is equal to the product of the
disturbance � with the derivative of the left-hand-side expression with respect
to z, evaluated at a point intermediate to the disturbed and undisturbed water
surfaces. This gives a means of checking the degree to which Eq. (8.3.9)
provides a good approximation to Eq. (8.3.8).

The rate of change of � is equal to the vertical fluid velocity at the
surface, namely,

∂�

∂t
C EVÐr� D ∂

∂z

∣∣∣∣
zD�

�8.3.10�

According to linear theory, this expression is simplified by neglecting the
advective rate of change of �, since it is a product of two small quantities.
Furthermore, the right-hand side of Eq. (8.3.10) is evaluated for z D 0, instead
of z D �. Therefore

∂�

∂t
D ∂

∂z

∣∣∣∣
zD0

�8.3.11�
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By differentiating Eq. (8.3.9) with respect to t and applying Eq. (8.3.11),
we obtain

∂2

∂t2
C g

∂

∂z
D 0 at z D 0 �8.3.12�

The wave propagation in the domain is then fully determined by solving
the Laplace equation (8.3.4), subject to the boundary condition given by
Eq. (8.3.12).

8.4 SINUSOIDAL SURFACE WAVES ON DEEP WATER

8.4.1 The General Wave Propagation Equation

Recall that a general form of the solution for the wave equation was
Eq. (8.2.10), which gives the surface displacement, �, as a function of time
and position. An alternative function to describe wave movement is

F D F��� �8.4.1�

where � D ωt � kx, ω is the angular velocity, or radian frequency, and k is the
wave number. The parameters ω and k are connected with the wave velocity,
c, as

c D ω

k
�8.4.2�

In addition, the wave number is related to the wave length, �, and the angular
velocity is related to the wave period, tp, as

� D 2�

k
; tp D 2�

ω
�8.4.3�

By combining Eqs. (8.4.2) and (8.4.3), it is seen that the wave propagates a
distance of a single wavelength during one period, namely,

� D ctp �8.4.4�

The function F��� of Eq. (8.4.1) has a constant value for a constant
value of the variable �. Therefore this equation represents constant values of
the function F, moving in the positive x-direction. Such a function may refer
to waves propagating in that direction. Differentiating Eq. (8.4.1) twice with
respect to t and twice with respect to x gives

∂2F

∂t2
D ω2F00 ∂2F

∂x2
D k2F00 �8.4.5�
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where the double prime represents differentiation with respect to the variable
�. Using the wave velocity from Eq. (8.4.2) then gives

∂2F

∂t2
D c2 ∂

2F

∂x2
�8.4.6�

This is the same wave equation as was obtained earlier in Eq. (8.2.9).
The potential function (Eq. 8.2.5), which represents motions in the entire

water domain subject to surface water waves, usually consists of a product
of a function similar to that given by Eq. (8.4.1) and another function, which
describes an attenuation of the fluid motion with the water depth. In the case of
periodic surface waves, F��� is usually specified as a sine or cosine function.
Therefore the potential function can be represented using a sine, a cosine, or
the real part of a complex function, such as

 D f�z� sin�ωt � kx� D f�z� sin
[
ω
(
t � x

c

)]
�8.4.7a�

 D f�z� cos�ωt � kx� D f�z� cos
[
ω
(
t � x

c

)]
�8.4.7b�

 D f�z� exp[i�ωt � kx�] D f�z� exp
[
iω

(
t � x

c

)]
�8.4.7c�

where f�z� is a function that represents the variation in the vertical direc-
tion. Since we know that the potential function is governed by the Laplace
equation (8.3.5), it follows that

f00�z�� k2f�z� D 0 �8.4.8�

8.4.2 The Potential Function for Deep Water Waves

The general solution of Eq. (8.4.8) can be obtained by a linear combination of
an exponentially decaying term and an exponentially growing term. However,
if the water depth is very large, then the exponential growing term should
vanish. Therefore a solution of Eq. (8.4.8) that is consistent with a vanishing
value of  with increasing depth (where z ! �1) is given by

f�z� D 0e
kz �8.4.9�

where 0 is a constant equal to the value of f at the surface, and z D 0.
Combining Eqs. (8.4.7a) and (8.4.9), we obtain

∂

∂t
D �ω0e

kz sin�ωt � kc�
∂

∂z
D k

∂2

∂t2
D �ω2 �8.4.10�

Then, using the first part of this result with Eq. (8.3.10), a solution for the
surface displacement is obtained as

� D ω

g
0 sin�ωt � kx� D a sin�ωt � kx� a D ω

g
0 �8.4.11�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



This is the relationship between the wave amplitude �a� and the maximum
amplitude of the potential function.

By introducing Eq. (8.4.10) into Eq. (8.3.13), a relationship between the
frequency and the wave number for gravity waves on a deep-water environ-
ment is found as

ω2 D gk �8.4.12�

This is known as a dispersion relationship, giving the dependence of the
wave propagation on the wavelength (or wave number). Using the defini-
tion for wave speed (Eq. 8.4.2), this last result shows that waves of different
wavelengths propagate with different velocities:

c D ω

k
D

√
g

k
D

√
g�

2�
�8.4.13�

Considering that g D 9.81 m/s2, we apply Eqs. (8.4.13) and (8.4.3) to
obtain

c D 1.25
p
� tp D 0.80

p
� �8.4.14�

where � is measured in meters, tp is measured in seconds, and c in m/s. Then,
considering that the range of typical wavelengths for surface water waves is
between 1 m and 100 m, ranges of typical wave velocity and period are

1.25 m/s � c � 12.5 m/s 0.8 s � tp � 8.0 s �8.4.15�

It should be noted that although Eq. (8.4.15) represents typical values, extreme
cases may exist, with wavelengths as low as 0.1 m or as large as 1000 m. Near
the sea shore the wavelength is generally much less, and the waves should
be described with alternative theories, since the deep-water assumption is no
longer valid.

8.4.3 Pathlines of the Fluid Particles

Velocity components in a wavy flow field are obtained by differentiating the
potential function. For example, taking Eq. (8.4.7b), the velocity components
are found as

u D ∂

∂x
D k0e

kz sin�ωt � kx� �8.4.16�

and

w D ∂

∂z
D k0e

kz cos�ωt � kx� �8.4.17�
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Thus both velocity components vary sinusoidally with time and have the same
amplitude, which decays exponentially with depth. However, it should be
noted that at a fixed position, the horizontal velocity lags the vertical velocity
by 90° (this result holds when using either of the expressions of Eq. (8.4.7) to
describe the potential function). Equations (8.4.16) and (8.4.17) also indicate
that at a fixed position, the velocity vector maintains a constant absolute value
and rotates in the clockwise direction.

Based on this oscillating velocity field, it is seen that over a long period
of time, there is no net movement of a fluid particle. If it is assumed that
the deviations of a fluid particle from an initial position �x0, z0� are relatively
small, then the differential equations of the fluid particle pathline are given
approximately by

dx

dt
D u ¾D k0e

kz0 sin�ωt � kx0� �8.4.18�

and

dz

dt
D w ¾D k0e

kz0 cos�ωt � kx0� �8.4.19�

Direct integration of these results gives an approximation for the instantaneous
position of the fluid particle,

x D k

ω
0e

kz0 cos�ωt � kx0�C C1 �8.4.20a�

z D k

ω
0e

kz0 sin�ωt � kx0�C C2 �8.4.20b�

where C1 and C2 are constants for each particular fluid particle.
By eliminating time from Eqs. (8.4.20a) and (8.4.20b), we obtain

�x � C1�
2 C �z �C2�

2 D
(
k

ω
0e

kz0

)2

�8.4.21�

Figure 8.1 Schematic description of pathlines and instantaneous positions of fluid
particles subject to motion due to sinusoidal surface wave on deep water.
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This result shows that the fluid particles move in circular pathlines, which
also is evident from the previous conclusion that the velocity components
have equal amplitudes (Eqs. 8.4.16 and 8.4.17). The radius of the pathline
decays exponentially with water depth and does not depend on the horizontal
coordinate. According to Eqs. (8.4.20) and (8.4.21), the phase of the fluid
particle location does not depend on the z coordinate. Figure 8.1 provides a
schematic description of various pathlines of different fluid particles and their
instantaneous positions.

8.4.4 The Shape of the Streamlines

The shape of the streamlines is calculated by considering the following rela-
tionships between the stream function and the real parts of the velocity compo-
nents given by Eqs. (8.4.15) and (8.4.16):

∂

∂z
D u D k0e

kz sin�ωt � kx� �8.4.22�

∂

∂x
D �w D �k0e

kz cos�ωt � kx� �8.4.23�

Direct integration of these expressions yields

 D 0e
kz sin�ωt � kx�C C �8.4.24�

where C is an arbitrary constant. This shows that streamlines, like the prop-
agating surface waves, are sinusoidal and the amplitude of the streamlines
decays exponentially with the water depth.

8.4.5 The Wave Energy

The excess energy in surface water waves is divided between kinetic and
potential energy. The excess potential wave energy incorporated in a surface
area of unit width, with length equal to one wavelength, and where the water
depth, h, is large but finite, is

WEp D
∫ �

0

[∫ �

�h
�gz dz �

∫ 0

�h
�gz dz

]
dx

D
∫ �

0

[
1

2
�g��2 � h2�C 1

2
�gh2

]
dx D 1

2
�g

∫ �

0
�2 dx �8.4.25�

It should be noted that wave displacements above the level z D 0, as well
as below z D 0, carry positive potential energy. The raised free surface adds
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potential energy by adding fluid above the level z D 0, while the depressed
free surface adds potential energy by the removal of fluid from below the level
z D 0.

The kinetic energy due to the wave motion can be obtained by a volu-
metric integral performed over a volume of a prism incorporating the entire
water depth and a water surface area of unit width and a single wavelength
in the longitudinal direction,

WEk D
∫

1

2
��r�2dU �8.4.26�

where dU is an elementary volume. Considering that Laplace’s equation, given
by Eq. (8.3.4), is satisfied, and applying the divergence theorem, Eq. (8.4.26)
can be modified as

WEk D
∫

1

2
�rÐ�r� dU D

∫
1

2
�

(

∂

∂n

)
dS �8.4.27�

where dS is an elementary surface area and n is an outward unit normal to
the surface of the prism.

There is no contribution of kinetic energy from the bottom of the water
environment, where the derivative of  normal to the bottom vanishes. Contri-
butions of kinetic energy at the left and right side walls of the prism cancel
each other. Therefore the only surface of the prism that should be considered
for the calculation of Ek is at the water surface. Therefore Eq. (8.4.27) can be
replaced with

WEk D
∫ �

0

1

2

[

∂

∂z

]
zD0

dx �8.4.28�

This result is further modified by introducing an expression for the
velocity potential. From Eq. (8.4.10),

 D 1

k

∂

∂z
�8.4.29�

Substituting Eqs. (8.4.29) and (8.3.12) into Eq. (8.4.28), we obtain

WEk D
∫ �

0

1

2k
�

(
∂�

∂t

)2

dx �8.4.30�

The appearance of the wave number k in this result is related to the fact
that there is a layer, with thickness proportional to the wavelength, though
much smaller, which is subject to motion due to the surface wave movement
upwards and downwards.
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By rearranging Eq. (8.4.12) and substituting into Eq. (8.4.11), we obtain

� D k

ω
0 sin�ωt � kx� D a sin�ωt � kx� �8.4.31�

Thus

∂�

∂t
D k0 cos�ωt � kx� D ωa cos�ωt � kx� �8.4.32�

This result is then substituted into Eqs. (8.4.25) and (8.4.30), also using
Eqs. (8.4.31) and (8.4.12). After dividing by the wave length, �, to obtain
the total wave energy per unit area of the water surface, the total energy is

E D Ep C Ek D 1
2�ga

2 �8.4.33�

Note that this result refers to energies per unit area, whereas previous equations
refer to the energies per an area of unit width and a single wavelength in length.

Equation (8.4.33) indicates that although the amount of potential and
kinetic energies per unit surface area of the water varies from point to point,
the total sum of potential and kinetic energies per unit water surface is constant
over the entire water surface.

8.5 SINUSOIDAL SURFACE WAVES FOR SHALLOW
WATER DEPTH

8.5.1 The Potential Function of Shallow Water Waves

Waves in deep water were considered in the previous section. In practice, deep
water is defined when depth is greater than the wavelength, �. If the water
depth is uniform, but smaller than �, then the water environment is considered
to be shallow and the solution of the differential Eq. (8.4.8) should satisfy the
condition of zero normal velocity at the bottom, or

∂

∂z
D 0 at z D �h �8.5.1�

Therefore it is necessary to use the more general form of solution,

f�z� D C1e
kz CC2e

�kz �8.5.2�

(recall that in Sec. 8.4.2 the second term was unnecessary for deep water
conditions — see Eq. 8.4.9). As the function f�z� must vanish when z D �h,
it follows that

C1e
�kh D �C2e

kh D 1
20 �8.5.3�
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where 0 is a constant. Then Eq. (8.5.2) becomes

f�z� D 0 cosh[k�z C h�] �8.5.4�

where cosh(x) is the hyperbolic cosine function and

cosh x D 1

2
�ex C e�x� sinh x D d

dx
cosh x D 1

2
�ex � e�x� �8.5.5�

It should be noted that at z D �h, the derivative of f�z� vanishes, so that the
condition of zero normal velocity at the bottom is satisfied.

Using Eq. (8.5.4) in Eq. (8.4.7a), we find

∂

∂z
D f0

f

∣∣∣∣
zD0
 D [k tanh�kh�] �8.5.6�

Where tanh�x� D sinh�x�/ cosh�x� is the hyperbolic tangent function.
Equations (8.3.12) and (8.5.6) then give

ω2 D gk tanh�kh� �8.5.7�

which is the dispersion relation for shallow-water waves.

8.5.2 The Wave Velocity of Propagation

Wave velocity is given by Eq. (8.4.2), which, when used with Eq. (8.5.7),
gives

c D ω

k
D

√
g

k
tanh�kh� �8.5.8�

In order to illustrate the effect of the wavelength on the velocity of wave
propagation in a water layer of constant depth, Fig. 8.2 demonstrates several
curves showing the variation of the hyperbolic functions. Using the relation-
ships of Eq. (8.4.2), an expression relating wave velocity of propagation to
the wavelength is obtained:

c D
√
g�

2�
tanh

(
2�h

�

)
�8.5.9�

This expression and Fig. 8.2 indicate that for large values of �, the wave
velocity is represented by the square root of a product of a very large term
and a very small term. The limit of this product for a very large value of �
can be obtained by a series expansion of tanh(x), for small values of x. For
small values of x, using only to the first term of the series expansion,

tanh�x� ���! x if x ! 0 �8.5.10�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 8.2 Graphs of cosh(x), sinh(x), and tanh(x).

Using this relation in Eq. (8.5.10) gives

c D
√
gh if � ! 1 �8.5.11�

For waves on deep water, the value of the tanh term of Eq. (8.5.9) is approx-
imately unity (see Eq. 8.4.12). Figure 8.3 shows the variability of the wave
velocity as a function of the relationship between the wavelength and the
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Figure 8.3 The wave speed versus the wavelength for water environment of constant
depth.

depth of the water environment. This figure provides some guidance about the
possible definition for deep and shallow water, as well as for long waves.

Using Eqs. (8.4.2), (8.5.7), and (8.5.9), it can be shown that

cω

g
D tanh

(
ωh

c

)
�8.5.12�

This result is useful for the evaluation of the variability of the wave velocity
of propagation due to gradual decrease of the water depth, for a constant
frequency. This is shown in Fig. 8.4, where Eq. (8.5.12) is applied to depict
the variability of the wave velocity versus water depth, for constant wave
frequency. Sinusoidal waves approaching the coastline pass through water of
gradually decreasing depth, while their frequency is kept unchanged. Therefore
the number of wave crests reaching the beach per unit time is equal to the
number approaching the coastline. Figure 8.4 shows how the wave speed of
such waves gradually decreases with the water depth. In addition, wavelength
decreases and, in fact, is much more significant than the decrease of the wave
velocity.

In general, the original wave crests approach the coastline with some
orientation angle. Due to the decrease of the water depth, such wave crests tend
to align with the coastline, and their orientation angle decreases. Figure 8.5
illustrates this phenomenon, which is associated with the decrease of the wave
velocity in the region of shallow water. In other words, as a wave approaches
the shore at some angle, the portion of the wave closest to the shoreline
experiences a decrease in velocity sooner than portions further away. This
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Figure 8.4 Wave speed as a function of water depth.

Figure 8.5 Alignment of wave crest approaching the coastline.

causes the wave crest to effectively change its alignment with respect to the
shoreline.

8.5.3 Pathlines of the Fluid Particles

Following the same approach as in Sec. 8.4.3, expressions for the velocity
components of fluid particles are obtained by differentiating the potential
function Eq. (8.4.7b), using Eq. (8.5.4) for the depth variation, giving

u D ∂

∂x
D fk0 cosh[k�z C h�]g sin�ωt � kx� �8.5.13a�
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and

w D ∂

∂z
D fk0 sinh[k�z C h�]g cos�ωt � kx� �8.5.13b�

Using Eq. (8.3.12), w is found from Eq. (8.5.13) for z D 0, and the resulting
expression is integrated over time to obtain the relationship between the poten-
tial function amplitude and the wave amplitude,

� D k0

ω
cosh�kh� sin�ωt � kx� D a sin�ωt � kx� a D k0

ω
cosh�kh�

�8.5.14�
Using this definition for the amplitude a allows alternative expressions

for the velocity components, by substituting into Eq. (8.5.13):

u D dx

dt
D aω

cosh�kh�
cosh[k�z C h�] sin�ωt � kx� �8.5.15a�

w D dz

dt
D aω

cosh�kh�
sinh[k�z C h�] cos�ωt � kx� �8.5.15a�

In contrast to the situation for waves on deep water, in the case of
water of finite depth, the amplitude of the fluid particle horizontal velocity is
different from that in the vertical direction. As shown in Fig. 8.2, for waves
on finite water depth the amplitude of the horizontal velocity is larger than
that of the vertical velocity, but they become almost identical for large water
depth.

Using the same approach as was used for deep water waves (i.e., inte-
grating Eq. 8.5.15 over time), the following expressions for the pathlines of
the fluid particles can be obtained:

x D �acosh[k�z0 C h�]

cosh�kh�
cos�ωt � kx0�C C1 �8.5.16a�

z D a
sinh[k�z0 C h�]

cosh�kh�
sin�ωt � kx0�CC2 �8.5.16b�

where C1 and C2 are constants connected with the initial location of the fluid
particle.

We eliminate the time-dependent expression from the two parts of
Eq. (8.5.16) to obtain the expression for the curve representing the particle
pathline,

�x � C1�2{
a

cosh[k�z0 C h�]

cosh�kh�

}2 C �z � C2�2{
a

sinh[k�z0 C h�]

cosh�kh�

}2 D 1 �8.5.17�
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Figure 8.6 Pathlines of fluid particles in a sinusoidal wave on water with finite depth.

This indicates that particle pathlines are ellipses, as shown in Fig. 8.6. The
major and minor axes of the elliptical pathlines are represented by the terms of
the denominators of Eq. (8.5.17). In deeper water the pathlines tend to be more
circular since, except near the bottom, the cosh and sinh terms of Eq. (8.5.17)
become practically identical, as was the result found in Eq. (8.4.21). In very
shallow water, the pathlines are flattened, as the minor axis of the elliptical
pathlines decreases.

With regard to the calculation of the streamlines, we follow a similar
procedure as before, to find

∂

∂z
D u D aω

cosh�kh�
cosh[k�z C h�] sin�ωt � kx� �8.5.18a�

∂

∂x
D �w D � aω

cosh�kh�
sinh[k�z C h�] cos�ωt � kx� �8.5.18b�

By direct integration of Eq. (8.5.18), the stream function is found as

 D aω

k cosh�kh�
sinh[k�z C h�] sin�ωt � kx� �8.5.19�

This result indicates that the streamlines, namely lines of constant value of ,
have the shape of a sinusoidal wave whose amplitude decays with depth as
sinh. At the bottom of the water environment z D �h, so it is represented by
the streamline with  D 0.

The excess potential energy of the waves on water of uniform finite
depth takes the same form as for waves on deep water, given by Eq. (8.4.25).
The expression for the kinetic energy of the wave also is identical to that of
waves on deep water, given by Eqs. (8.4.28)–(8.4.30), with Eq. (8.5.6) used
to specify the vertical gradient of the potential function (i.e., in Eq. 8.4.29).
However, the total energy per unit area of the water surface has the same
relationship typical of waves on deep water, namely Eq. (8.4.33).

8.6 THE GROUP VELOCITY

Previous sections of the present chapter refer to sinusoidal waves on deep
water, as well as water of finite depth. A variety of properties of surface
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water waves were introduced and analyzed while assuming that the surface
water waves are sinusoidal. It should be noted that the initial reference to
sinusoidal surface water waves is justified for two main reasons: (1) surface
waves are most commonly observed to be roughly sinusoidal, and (2) waves of
more complicated shape can be analyzed by Fourier analysis, in which waves
are considered as a linear combination of different sinusoidal disturbances.
Due to the linearity of Laplace’s equation and the linear boundary condition
at the water surface as given by Eq. (8.3.12), a linear combination of various
potential functions describing different sinusoidal waves can also be a potential
function for a more general wave field.

When surface waves are represented as a linear combination of
sinusoidal waves, it is important to keep in mind the dispersive property
characterizing waves of different wavelengths. As shown previously, waves
of different wavelengths have different wave speeds (refer to Eqs. 8.4.13 and
8.5.9). Therefore if a disturbance at the water surface is created at one location
of the water environment, then at a later time different sinusoidal components
of the water surface disturbance will be found at other locations, due to the
original disturbance. For example, consider large disturbances created by a
storm. In general, this causes the boundary conditions to be complicated and
nonlinear, so that at the time and place of the storm, linear wave theory may
not be appropriate. However, storm waves are reduced to groups of smaller
size waves, which obtain energy from the high waves due to wave dispersion
and are called swell. These reduced size waves can be analyzed by use of
linear wave theory. Consider a small group of waves whose wave speed is c.
After a time interval, t, this group of waves will be found at a distance Ut
from the origin of the disturbance, where U is called the group velocity and is
defined below (Eq. 8.6.10). In deep water, the group velocity is approximately
equal to half of the wave speed. Also, it can be shown that the wave energy
propagates at the group velocity.

Consider that the wavelength gradually varies from one wave to the next
in the group of waves. A local phase, ˛, can be defined, and the value of ˛ at
every wave crest can be expressed as an even multiple of �, namely,

˛ D 2�n �8.6.1�

where n is an integer. The value of n increases by one for each successive
wave crest that passes a particular point. Between the wave crests, the value
of ˛ varies smoothly. In the wave troughs, the value of ˛ is an odd multiple
of �. The rate of change of ˛ with time is given in radians per second by

∂˛

∂t
D 2�f D ω �8.6.2�

The phase also is a function of the longitudinal distance between succes-
sive wave crests. At a given time, the value of ˛ decreases with x, at a rate
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equal to the wavenumber k in radians per meter,

∂˛

∂x
D �k �8.6.3�

Equations (8.6.2) and (8.6.3) imply that the water surface displacement,
�, can be represented as a wave of slowly variable amplitude �1, by either

� D �1�x, t� exp[i˛�x, t�] �8.6.4a�

or

� D �1�x, t� cos[˛�x, t�] �8.6.4b�

Around a particular location x0, and particular time t0, the value of ˛ can be
expressed by a Taylor series, from which the following linear combination is
considered:

˛�x, t� D ˛�x0, t0�� k0�x � x0�C ω�t � t0� �8.6.5�

Then, differentiating Eq. (8.6.2) with respect to x and Eq. (8.6.3) with respect
to t and subtracting one from the other, we obtain

∂k

∂t
C ∂ω

∂x
D 0 �8.6.7�

We consider that ω is a function of k, as implied by Eq. (8.4.2), namely,

ω D ω�k� �8.6.8�

Introducing this relationship into Eq. (8.6.7) gives

∂k

∂t
CU

∂k

∂x
D 0 �8.6.9�

where U is the group velocity, defined as

U D U�k� D dω

dk
�8.6.10�

Equation (8.6.9) indicates that k is constant along paths in the �x–t�
plane, which satisfy the condition that

x �Ut D const �8.6.11�

In the case of waves on deep water, we introduce Eq. (8.6.11) into Eq. (8.6.10)
and use Eq. (8.4.2) to obtain

U D d

dk
�
√
gk� D 1

2

√
g

k
D 1

2

ω

k
D 1

2
c �8.6.12�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



This result indicates that, in the case of waves on deep water, the group
velocity is equal to one-half of the wave speed.

In the case of waves on water of finite uniform depth, differentiation of
Eq. (8.5.7) gives

2ω
dω

dk
D g

[
tanh�kh�C kh

cosh2�kh�

]
�8.6.13�

By introducing Eq. (8.6.13) and Eq. (8.5.8) into Eq. (8.6.10), we obtain

U D c
k

ω

dω

dk
D c

1

2

[
1 C 2kh

sinh�2kh�

]
�8.6.14�

For large values of h this result converges to that of Eq. (8.6.12). For very
small values of h, Eq. (8.6.14) indicates that the group velocity approaches c.
Such a result is typical of nondispersive waves, whose wave speed is indepen-
dent of k. In the case of nondispersive waves, the wave speed and the group
velocity are identical. As an example of nondispersive waves we may consider
long water waves, whose wave speed is given by Eq. (8.5.11). In this case
the frequency ω is a multiple of a constant, namely the wave speed, and the
wave number, k.

In order to demonstrate the group velocity concept, consider a sinusoidal
wave represented by either of the following expressions:

� D a exp[i�ωt � kx�] �8.6.15�

� D a cos�ωt � kx� �8.6.16�

Equation (8.6.15) represents a sum of a real and an imaginary value. Each part
has the form of a sinusoidal wave, but there is a phase lag of 90° between these
two waves. Therefore it is possible to consider the sinusoidal wave represented
by Eq. (8.4.31) or by Eq. (8.6.16). For the present example, we consider two
waves with the format of Eq. (8.6.16), having the same amplitude and with
wave numbers that are almost identical. The superposition of such waves is
given by

a cos�ω1t � k1x�C a cos�ω2t � k2x�

D {
2a cos

[ 1
2 �ω2 � ω1�t � 1

2 �k2 � k1�x
]}

ð cos
[ 1

2 �ω2 C ω1�t � 1
2 �k2 C k1�x

]
�8.6.17�

This expression incorporates a slowly varying amplitude, represented by
the term in the curly brackets. This term varies with a small wave number,
equal to half of the difference between the wave numbers of the two waves.
This slowly variable amplitude applies to a term oscillating with a much larger
wave number equal to the average wave number of the superposed waves. The
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Figure 8.7 The linear combination of two sinusoidal waves.

combination of the two waves takes the form (shown in Fig. 8.7) of a series
of wave packets traveling with the group velocity, U. Provided that k2 and k1

are close in magnitude, U is represented by

U D ω2 � ω1

k2 � k1
D dω

dk
�8.6.18�

8.7 WAVES IN OPEN CHANNELS

8.7.1 General Aspects

Previous sections of this chapter refer to the development of sinusoidal waves
on the water surface. It was considered that the wave motion can be described
as originating from a potential function, under specific conditions that approx-
imately take place at the water surface. The topics presented in those previous
sections are relevant to the marine environment, as well as to open chan-
nels, but open channels usually represent a shallow water environment where
flow, as well as wave propagation, are unidirectional phenomena. The present
section considers a variety of nonsinusoidal types of surface waves that may
develop in open channels.

Equation (8.5.11) provides the value of the sinusoidal wave speed in
a shallow environment. As shown below, this expression is applicable with
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Figure 8.8 Propagation of a small disturbance on the channel water surface:
(a) stagnant coordinate system; and (b) coordinate system moving with the disturbance
speed c.

regard to any small disturbance developed on the surface of the channel water.
Figure 8.8 shows the development of a small disturbance y on the water
surface, assuming the channel water is stagnant. As shown in Fig. 8.8a, the
disturbance propagates from left to right with a wave speed, c. It is assumed
that the disturbance is small and its propagation is associated with negligible
energy loss. Using a coordinate system moving with the speed of the small
disturbance, the domain is subject to steady state, as indicated in Fig. 8.8.

Owing to the steady-state conditions and no energy loss, Bernoulli’s
equation may be applied between cross section 1 and cross section 2 in
Fig. 8.8. Along with conservation of mass, basic equations for this flow
situation can be written as

cy D V2�y Cy� �8.7.1a�

y C c2

2g
D y Cy C V2

2

2g
�8.7.1b�

where y is the water depth in regions unaffected by the disturbance and V2 is
the velocity at the location of the small disturbance, measured by an observer
moving with the disturbance propagation speed.
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Introducing Eq. (8.7.1a) into Eq. (8.7.1b) and rearranging, we obtain

c2 D 2gy

[1 � �y/y Cy�2]
D 2gy

[1 � 1/1 C 2y/y C �y/y�2]

³ 2gy

1 � �1 � 2y/y�
D gy �8.7.2�

This result indicates that if the water level at the downstream end of the channel
gradually decreases, a series of small disturbances with decreasing propagation
speed is created and propagates in the upstream direction, causing an oblique
shape of the channel water surface. On the other hand, if the water surface
increases at the downstream end of the channel, a series of small disturbances
with increasing propagation speed is created and forms a surge.

Calculations of wave propagation in open channels are based on conser-
vation of mass and the equation of motion. Referring to Fig. 8.9, the conser-
vation of mass principle leads to (see also section 7.6.5)

∂Q

∂x
C B

∂y

∂t
D 0 �8.7.3�

where Q is the channel discharge and B is the width of the channel surface.
For a rectangular channel, this simplifies to

∂q

∂x
C ∂y

∂t
D 0 �8.7.4�

where q is the channel discharge per unit width (applicable for rectangular
channels — see Chap. 7). The discharge per unit width is calculated as the

Figure 8.9 Definition sketch for the equation of mass conservation in open channel
flow.
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Figure 8.10 Definition sketch for the equation of motion in open channel flow.

product of mean channel velocity and depth,

q D Vy �8.7.5�

Therefore Eq. (8.7.4) can be written as

∂y

∂t
C ∂

∂x
�Vy� D 0 �8.7.6�

This is a first-order partial differential equation, similar to the advection
equation, and is a first-order hyperbolic partial differential equation.

As shown in Fig. 8.10, the forces acting on an elementary volume of
the channel water are due to pressure and shear stress,∑

F D � ∂

∂x
��ycA�x � ∂z

∂x
��A�x � �0Px �8.7.7�

where � D �g is the specific weight of the water, � is the water density, yc

is the depth of the center of gravity of the cross-sectional area of the channel
from the water surface, z is the elevation of the channel bed with regard
to an arbitrary datum, A is the cross-sectional area of the channel, P is the
wetted perimeter, and �0 is the shear stress along the wetted perimeter. From
conservation of momentum, this sum of forces is equal to the rate of change
of momentum of the volume,∑

F D �x

[
∂Q

∂t
C ∂�QV�

∂x

]
�8.7.8�

Combining Eqs. (8.7.7) and (8.7.8) yields

�

[
∂Q

∂t
C ∂

∂x
�QV�

]
D ��A∂h

∂x
� �0P �8.7.9�

where h is the elevation of the water surface, given by

h D z C y �8.7.10�
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For a wide rectangular channel, P is approximately equal to the width,
and Eq. (8.7.9) may be divided by the channel width to obtain

�

[
∂�yV�

∂t
C ∂

∂x

(
yV2 C g

y2

2

)]
D �yS0 � �0 �8.7.11�

where S0 is the slope of the channel bed,

S0 D �dz
dx

�8.7.12�

We subtract the continuity result, Eq. (8.7.6), from Eq. (8.7.11) and divide the
result by the water depth and the specific weight of the water, to obtain

1

g

(
∂V

∂t

)
C ∂

∂x

(
V2

2g
C y C z

)
D � �0

�y
�8.7.13�

This also can be represented in another form, as

∂H

∂x
C 1

g

∂V

∂t
C �0

�y
D 0 �8.7.14�

where H is the water head,

H D hC V2

2g
�8.7.15�

The last term on the left-hand side of Eq. (8.7.14) represents friction losses
for the flow. This term is usually referred to as the friction slope, introduced
earlier as Eq. (7.2.21),

Sf D �0

�y
�8.7.16�

By introducing Eq. (8.7.2) into Eq. (8.7.13), it can be shown that

2c
∂c

∂x
C V

∂V

∂x
C ∂V

∂t
D g�S0 � Sf� �8.7.17�

Also, introducing Eq. (8.7.2) into Eq. (8.7.6), we obtain

2V
∂c

∂x
C c

∂V

∂x
C 2

∂c

∂t
D 0 �8.7.18�

Adding Eqs. (8.7.17) and (8.7.18) results in

∂�VC 2c�

∂t
C �VC c�

∂�VC 2c�

∂x
D g�S0 � Sf� �8.7.19�
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and subtracting them gives

∂�V� 2c�

∂t
C �V� c�

∂�V� 2c�

∂x
D g�S0 � Sf� �8.7.20�

Equations (8.7.19) and (8.7.20) are two first-order hyperbolic partial
differential equations. We may refer to the �x–t� plane and identify the
characteristics of each of these equations. The family of characteristics of
Eqs. (8.7.19) and (8.7.20) are given, respectively, by

dx

dt
D VC c

dx

dt
D V� c �8.7.21�

If the terms on the right-hand sides of Eqs. (8.7.19) and (8.7.20) are small,
then Eq. (8.7.19) indicates that an observer moving with velocity �VC c�
observes a constant fluid property �VC 2c�. This property incorporates a given
relationship between the flow velocity and the water depth, which is seen from
Eq. (8.7.2),

VC c D VC p
gy �8.7.22�

With regard to Eq. (8.7.20), vanishing values of the terms on the right-hand
side indicate that an observer moving with velocity �V� c� observes a constant
fluid property �V� c�, and

V� c D V� p
gy �8.7.23�

The paths of the moving observers can be traced on the �x–t� plane, as shown
in Fig. 8.11.

The first family of characteristics shown in Fig. 8.11, referring to the
observer moving with velocity �VC c�, has an inverse slope �VC c� in the
�x–t� plane. A second family of characteristics refers to the observer moving
with velocity �V� c�. The particular case represented in Fig. 8.11 is associated
with the first characteristic family, given as straight lines. If the right-hand
side of Eqs. (8.7.19) and (8.7.20) vanishes, and a straight line represents a
particular characteristic in the �x–t� plane, then all characteristics of the same
type are straight lines. This can be shown by considering two characteristics
of the first type, namely curves AB and DE, and two characteristics of the
second type, namely AD and BE. Since DE is a straight line, both quantities,
�VC c� and �VC 2c�, are constant along that line. Therefore their difference
(c) must be constant and V also should be constant. By referring to the second
type of characteristics the following relationships may be obtained:

cD D cE VD D VE �8.7.24a�

VA � 2cA D VD � 2cD �8.7.24b�

VB � 2cB D VE � 2cE �8.7.24c�

VA � 2cA D VB � 2cB �8.7.24d�
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Figure 8.11 Characteristic curves for two types of moving observers.

Since AB is a characteristic of the first type, we also find

VA C 2cA D VB C 2cB �8.7.24e�

The various expressions of Eq. (8.7.24) can be satisfied only if

VA D VB cA D cB �8.7.25�

This indicates that the curve AB is a straight line, and therefore all character-
istic curves of Fig. 8.11 are straight lines. Along each of these characteristics,
values of V and c, and thereby y, are constant.

8.7.2 The Simple Negative Wave Problem

The set of Eqs. (8.7.19) and (8.7.20) has an analytical solution in the case of
the simple negative wave problem. This problem is represented by the require-
ment to calculate the variation of flow velocity and water depth upstream of
a very long river mouth, where the water depth is subject to a given rate of
decrease. We may consider that Fig. 8.11 shows a set of characteristics of the
first type issued from the river mouth, which is located at x D 0. The line OF,
which is the first characteristic of the first type, has a constant inverse slope,
�V0 C c0�. It is the line of separation between the “zone of quiet” and the
domain of propagating disturbances. Because the line OF is a straight line, all
characteristics of the first type, shown in Fig. 8.11, are straight lines. If values
of the velocity (V and c) and the water depth y are given at x D 0, we may
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consider any arbitrary point G with coordinates x D 0 and an arbitrary t value
on the x–t plane. The characteristic of the first type issued from G has the
following inverse slope:

dx

dt
D V�t�C c�t� �8.7.26�

We also consider the characteristic of second type which is issued from
G. This characteristic is shown by the dashed line between G and K. Owing
to Eq. (8.7.20),

V�t�� 2c�t� D V0 � 2c0 �8.7.27�

We introduce the value of c�t� or V�t� into Eq. (8.7.26), to obtain

dx

dt
D 3

2
V�t�� 1

2
V0 C c0 �8.7.28a�

dx

dt
D 3c�t�C V0 � 2c0 �8.7.28b�

According to this last result, values of V and c can be obtained for any point
in the �x–t� plane.

As an example, consider a channel of rectangular cross section, through
which water flows with velocity V0 D 1 m/s and uniform depth y0 D 2 m. The
channel slope and friction loss are neglected during the calculation of changes
of the water flow velocity and depth due to the decrease of the water depth at
the downstream end of the channel. The rate of decrease of the water depth at
the downstream end of the channel is assumed to be uniform, with a value of
0.2 m/h. We calculate the time required for the channel level to fall by 0.6 m
at a section located 2 km upstream from the end cross section of the channel.

The positive x direction is assumed in the upstream direction, measured
from the end cross section of the channel. Therefore

V0 D �1 m/s c0 D p
gy0 D p

9.81 ð 2 D 4.43 m/s

V0 C c0 D 3.43 m/s

At the end cross section of the channel, the water depth falls by 0.6 m, at
t D 3h D 10,800 s. At that time and location,

�c�tD10800
xD0 D p

gy D p
9.81 ð 1.4 D 3.71 m/s

According to Eq. (8.7.27b), the inverse slope of the first characteristic
issued from the end cross section, at t D 10800 s, is given by

dx

dt
D V�t�C c�t� D 3c�t�C V0 � 2c0

D 3 ð 3.71 � 1 � 2 ð 4.43 D 1.27 m/s
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Hence the time interval between the appearance of 1.4 m water depth at the
end cross section and at the point located 2 km upstream from that point is
given by

t D L

VC c
D 2000

1.27
D 1575 s

Therefore the water depth of 1.4 m is measured at a point located at a distance
of 2 km upstream from the end cross section 12375 s D 3.44 h after the water
depth starts falling at the end cross section of the channel.

8.7.3 Positive Waves and Surge Formation

If the water depth at the end cross section of the channel, as referred to in
the previous section, is subject to an increasing water depth, then each new
small disturbance propagating in the upstream direction moves with a greater
speed than the previous disturbance. Therefore there is an accumulation of
disturbances, which moves as a finite wave on the water surface. Such a wave
is called a surge or a bore. Under specific upstream and downstream condi-
tions, the surge may be stationary, in which case it is called a hydraulic jump.
The movement of the surge, as well as the formation of the hydraulic jump,
are analyzed using conservation of momentum, as presented by Eq. (8.7.10),
neglecting the right-hand side of that equation. It also should be noted that,
when analyzing the hydraulic jump, use of the momentum equation is prefer-
able because of large energy losses associated with the jump.

Figure 8.12 shows a schematic of the formation of a hydraulic jump in
a rectangular channel. Neglecting the right-hand side of Eq. (8.7.11), we have

q2

gy1
C y2

1

2
D q2

gy2
C y2

2

2
�8.7.29�

Figure 8.12 Hydraulic jump in a rectangular channel.
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Rearrangement of this expression gives

q2

g

(
y2 � y1

y1y2

)
D 1

2
�y2

2 � y2
1� �8.7.30�

Assuming that y1 and y2 are not equal, this is rewritten as

q2

gy3
1

D Fr2
1 D 1

2

(
y2

y1

)(
y2

y1
C 1

)
�8.7.31�

where Fr1 is the Froude number of the cross section located just upstream
of the jump. Writing Eq. (8.7.31) as a second-order equation with regard to
�y2/y1� results in

y2

y1
D 1

2

(√
1 C 8Fr2

1 � 1
)

�8.7.32�

It is also possible to arrange Eq. (8.7.30) to represent the ratio between y1 and
y2 as a function of Froude number of the cross section located downstream of
the jump �Fr2�, giving

y1

y2
D 1

2

(√
1 C 8Fr2

2 � 1
)

�8.7.33�

Equations (8.7.32) and (8.7.33) determine the relationships between y1

and y2 that lead to the formation of a stationary surge, or hydraulic jump.
However, if y1 is different from y2 according to either Eq. (8.7.31) or (8.7.33),
then a propagating surge is developed. Conservation of momentum also is
employed in the case of a propagating surge. For this case, consider a surge
propagating with velocity Vs, as shown in Fig. 8.13. By referring to a coor-
dinate system moving with the surge velocity, we obtain a domain subject
to steady-state conditions. Employment of momentum conservation in such a
domain gives the result, analogous to Eq. (8.7.31),

�Vs C V1�2

gy1
D 1

2

(
y2

y1

)(
y2

y1
C 1

)
�8.7.34�

The continuity equation yields

�Vs C V1�y1 D �Vs C V2�y2 �8.7.35�

Equations (8.7.34) and (8.7.35) determine the relationships between the surge
velocity and the water flow velocities and water depths upstream and down-
stream of the surge. Thus the total number of variables is five. Of these
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Figure 8.13 Surge propagating in a rectangular channel: (a) stationary coordinate
system; and (b) coordinate system moving with the velocity Vs.

variables, three should be given and then, by applying Eqs. (8.7.34) and
(8.7.35), the other two unknowns can be determined.

The term �Vs C V1� represents the velocity of the surge relative to the
water upstream of the surge. Considering that y2 is larger than y1, Eq. (8.7.35)
indicates that

�Vs C V1� >
p
gy1 if y2 > y1 �8.7.36a�

and

�Vs C V1� ���! p
gy1 if y2 ! y1 �8.7.36b�

Equation (8.7.36a) shows that the surge moves with a velocity greater than
that of small disturbances that develop on the water surface. Therefore such
disturbances are absorbed by the propagating surge.

8.7.4 The Kinematic Wave

The concept of the kinematic wave is associated with estimates of phenomena
connected with flood wave propagation in rivers and channels. A flood wave is
a positive wave, namely, a rise of the water depth that propagates downstream.
Since the rise of the water depth is only moderate, it is possible to consider
that the channel bed slope and the friction slope of the channel flow are almost
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identical, and effects of friction on the wave propagation cannot be neglected.
Therefore the channel discharge, Q, is solely a function of the water depth, y,
and the features of the propagating wave are determined only by the equation
of mass conservation. From Eq. (8.7.3), this is written as

∂Q

∂x
C B

∂y

∂t
D 0 �8.7.37�

Since the channel discharge depends only on the water depth, this can be
rewritten as

∂y

∂t
C

(
1

B

)
dQ

dy

∂y

∂x
D 0 �8.7.38�

This equation represents an advection of the water depth, y, with the propa-
gation velocity of the kinematic wave, given by

Vk D 1

B

dQ

dy
�8.7.39�

According to Eqs. (8.7.38) and (8.7.39), the kinematic wave is featured
with a single characteristic on the �x–t� plane. For a wide rectangular channel,
the result is

Vk D d

dy
�Vy� D VC y

dV

dy
�8.7.40�

The equation of motion is identical to that of steady state flow in a
channel. We may assume that the Chezy friction coefficient is constant during
the propagation of the kinematic wave. Therefore (see Eq. 7.2.24),

V D Cc

√
yS0 �8.7.41�

where Cc is the Chezy friction coefficient. Introducing this result into
Eq. (8.7.40) gives

Vk D 3
2V �8.7.42�

Though the kinematic wave theory cannot be applied to the description of all
wave phenomena associated with flood propagation in a channel, the speed
of the main flood wave may be expected to be approximately that of the
kinematic wave.

8.8 NUMERICAL ASPECTS

Previous sections of this chapter refer to several typical cases of environmental
water waves. The basic concepts are based on the appropriate employment
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of the equations of mass and momentum conservation. Using each of these
conservation principles leads to an advection equation, which is a first-order
hyperbolic differential equation. Since two basic equations are used, two first-
order hyperbolic equations should be solved simultaneously to provide the
solution to the wave problem. In the particular case where only the principle
of mass conservation is used, such as the kinematic wave, a single first-order
partial differential equation is needed.

In general, problems of wave propagation on the water surface incor-
porate two unknown variables in two simultaneous first-order differential
equations. The unknown variables are the flow velocity and the water depth.
In cases of the marine environment or lakes, potential flow theory may be
applied. Then the two unknown variables are the potential function and the
wave height.

Here we present two general categories of methods of numerical simu-
lations that can be applied to provide numerical solutions for problems of
wave propagation on the water surface: (1) methods of characteristics, and
(2) finite difference methods. It should be noted that usually the physical
problem is formulated in conjunction with some possible boundary conditions.
Wave propagation problems may refer to infinite domains. However, in many
cases, major interest is in effects associated with the presence of specific types
of boundary conditions in the domain. Therefore the simultaneous numerical
solution of the two basic differential equations should satisfy the initial and
boundary conditions specified for the domain. In some cases, implementation
of the boundary conditions may be quite complicated.

8.8.1 The Method of Characteristics

A common category of methods is the method of characteristics. Discussion of
the two types of characteristics typical of wave propagation in open channels
was presented in Sec. 8.7. Use of the characteristics originates from the prop-
erty that, in the solution domain, along the characteristics, linear combinations
of the governing equations become total differential equations, called compat-
ibility equations. The characteristics therefore can be used directly to solve
the partial differential equations by numerically constructing the character-
istic curves. According to the method of characteristics, the partial differential
equations are replaced by the equivalent set of the corresponding characteristic
equations and the compatibility equations.

The numerical simulation process starts with the identification of the
characteristic equations. There are two, or in some particular cases, single
families of characteristic equations. The compatibility equations are applied
to the calculation of the unknown quantities in the �x — t� plane at some
points of the two different types of characteristics. Essentially, the method of
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characteristics is involved with transforming the partial differential equations
from the physical coordinates to the characteristic coordinates, and calculation
of the unknown variables along the characteristic curves.

It should be noted that a second-order hyperbolic equation can be repre-
sented by a set of two first-order advection equations. Each advection equation
has a single characteristic. Therefore the characteristics of the two advection
equations can be applied to solve the problem of wave propagation.

Simulation methods based on using the characteristics of the hyper-
bolic partial differential equation are usually stable and have good conver-
gence. However, they require complicated programming, and calculation of the
domain variables at points that are not necessarily of major interest. Therefore
often it is more practical to use finite difference approximations.

8.8.2 Finite Difference Solutions

Finite difference methods are based on the replacement of the time and space
derivatives by finite difference approximations on a fixed finite difference grid.
The basic procedure for doing this is discussed in Sec. 3.5. The characteristics
of the differential equation, however, determine the allowable step size in time
and determine the allowable boundary conditions. Stability and convergence
of the finite difference scheme used to solve the differential equation should
be evaluated before its adoption.

PROBLEMS

Solved Problems

Problem 8.1 Simple unidirectional motion of small-amplitude surface water
waves obeys the wave equation, which is a hyperbolic partial differential
equation,

∂2�

∂t2
D c2 ∂

2�

∂x2
�1�

where � is the elevation of the free surface of the water above z D 0. The
general solution of Eq. (1) can be represented by the following so-called
D’Alembert’s solution:

� D f�x � ct�C F�x C ct� �2�

The first term on the right-hand side of Eq. (2) describes a wave propagating
in the positive x-direction with velocity c. The second term describes a wave
propagating in the negative x-direction with velocity c.
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The substantial derivative of the free surface elevation is approximately
equal to the vertical velocity at z D 0,[

∂�

∂t
C EV Ð r�

]
zD0

³
(
∂�

∂t

)
zD0

³
(
∂

∂z

)
zD0

�3�

where  is the potential function. Basically, the boundary represented by
Eq. (3) is a nonlinear boundary in the sense that � itself is an unknown.
However, the nonlinear terms are small, and this boundary is usually approx-
imated by linear expressions.

(a) What is the complete set of boundary conditions for the function
, which is associated with surface water waves?

(b) How are the free surface boundary conditions represented by a
differential equation for ?

(c) What type of differential equation represents the surface boundary?

Solution

(a) One boundary condition is represented by Eq. (3). For a fluid with constant
density,

p� p0 D �g� �4�

where p0 is the hydrostatic pressure. We introduce this relationship into
Eq. (8.2.6), to obtain(

∂

∂t

)
zD0

D �g� �5�

If the water depth is h, then at z D �h the vertical velocity vanishes. Therefore(
∂

∂z

)
zD�h

D 0 �6�

Equations (3), (5), and (6) represent the set of boundary conditions that should
be satisfied by the wave potential function.

(b) We differentiate Eq. (5) with regard to time and apply Eq. (3), to
obtain

∂2

∂t2
C g

∂

∂z
D 0 �7�

(c) Equation (7) indicates that the water free surface boundary is repre-
sented by a parabolic differential equation.

Problem 8.2 What are the ranges of values of c, ω, k and tp for waves of
wavelength between � D 1 m and � D 100 m?
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Solution

According to Eq. (8.4.12),

c D
√
g�

2�
D

√
9.81

2 ð 3.14
ð

p
� D 1.25

p
�

Considering the given range of wavelengths, we obtain

1.25 m/s � c � 12.5 m/s

According to Eq. (8.4.2),

k D 2�

�
D 6.28

�

This leads to

0.0628 m�1 � k � 6.28

For frequency, Eq. (8.4.5) is

ω D ck

which then gives

0.785 m/s � ω � 7.85 m/s

Finally, from Eq. (8.4.6),

tp D �

c
D 0.8

p
�

Therefore

0.8 s � tp � 8 s

Problem 8.3 Calculate the average power per unit width that is transported
by a sinusoidal wave on deep water.

Solution

The average power per unit width transported by the waves is given by

N D 1

tp

∫ tp

0

∫ 0

�h
pu dz D 1

tp

∫ tp

0

∫ 0

�1

{
��∂

∂t
u� �gu

}
dz dt

ð 1

tp

∫ tp

0

∫ 0

�h

{
��∂

∂t
u

}
dz dt
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We apply Eqs. (8.4.7) and (8.4.15), to obtain

N D 1

tp

∫ tp

0

∫ 0

�1
�ωk2

0e
2kz sin2�ωt � kx� dz dt

Letting x D 0 and performing the time and space integrations gives

N D �
ω2

0

4
D

[
1

2
�ga2

]
c

2

This expression indicates that the wave energy propagates with the group
velocity.

Problem 8.4 A standing wave in a lake of depth h is obtained by the super-
position of two propagating waves of the same amplitude and wavelength, but
moving in opposite directions. The resulting surface displacement is given by

� D a sin�ωt C kx�� a sin�ωt � kx� D 2a sin�kx� cos�ωt�

Standing waves may be found in a limited water body, like a lake, due to
reflection from its sides.

(a) What is the relevant potential function of the standing wave?
(b) Develop the expressions for the velocity components.
(c) Develop the expression for the stream function.
(d) Assuming that the standing waves develop in a one-dimensional

lake of length L, develop expressions for possible values of �
and ω.

Solution

(a) According to Eq. (8.3.9), the potential functions of the waves produced by
superposition are given by

��zD0 D �2ga sin�kx�
∫

cos�ωt� dt D �2
ga

ω
sin�kx� sin�ωt�

According to Eq. (8.5.14), the amplitude of the propagating wave is associated
with the potential function amplitude by

a D k0

ω
cosh�kh�

Therefore the potential function of the standing wave is given by

 D �20 cosh[k�z C h�] sin�kx� sin�ωt�
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(b) From the potential function, we obtain

u D ∂

∂x
D �2k0 cosh[k�z C h�][cos�kx� sin�ωt�]

w D ∂

∂z
D �2k0 sinh[k�z C h�][sin�kx� sin�ωt�]

(c) The velocity components and the stream function are related by

∂

∂z
D u D �2k0 cosh[k�z C h�][cos�kx� sin�ωt�]

∂

∂x
D �w D 2k0 sinh[k�z C h�][sin�kx� sin�ωt�]

By direct integration of these expressions, we obtain

 D �20 sinh[k�z C h�] cos�kx� sin�ωt�

(d) Assuming that the walls are located at x D �L/2 and x D L/2, the
condition of no flow through these walls implies that

kL

2
D �2nC 1�

�

2
n D 0, 1, 2, . . .

This expression leads to

k D �2nC 1��

L

� D 2�

k
D 2L

2nC 1

From this last expression, it is seen that the longest wavelength is � D 2L. By
applying Eqs. (8.5.8) and (8.5.9), the wave frequency is obtained as

ω D
√
�g�2nC 1�

L
tanh

[
�2nC 1��h

L

]

Unsolved Problems

Problem 8.5 Find the progressive wave equations, whose superposition
leads to the following standing wave equations:

(a) 2a cos�kx� cos�ωt�
(b) 2a cos�kx� sin�ωt�
(c) 2a sin�kx� sin�ωt�

Problem 8.6 For each of the cases of standing waves given by problem
(8.5.1), let the water depth be h. Determine the potential function and the
stream function for each case.
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Problem 8.7 For each case of standing waves, represented in problems
(8.5.1) and (8.5.2), consider that the standing waves develop in a lake of
width L. Where is the coordinate origin located in each case?

Problem 8.8 Develop the expression for the energy flux (power delivery by
the waves) through x D 0, in the case of waves in a shallow water environment
of depth h, and show that the wave energy propagates with the group velocity.

Problem 8.9 Analyze and describe the rate of propagation of a small wave,
originating from a rock that falls into the centerline of a wide rectangular
channel, through which water flows with velocity V. Consider cases of
(a) subcritical flow, (b) critical flow, and (c) supercritical flow.
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9
Geophysical Fluid Motions

9.1 INTRODUCTION

Geophysical fluid mechanics generally deals with flows of large spatial extent.
There are many subjects that fall within this category, including ocean currents,
tides, estuaries, coastal flows, and others. In the present chapter we focus on
motions for which the rotation of the earth, in particular the Coriolis term, is
important in the equations of motion. This condition arises in problems with
large spatial scales, which result in Rossby numbers approaching one or less.

Recall from Chap. 2 that the Rossby number is defined as the ratio
of characteristic velocity to the product of characteristic length and rotation
rate. This is derived from the ratio of the relative magnitude of the nonlinear
acceleration terms to the Coriolis terms in the equations of motion, as shown
in Sec. 2.9. Here we modify this definition slightly to be more consistent with
the literature in this field, using

Ro D U

fL
�9.1.1�

where Ro D Rossby number, U D characteristic velocity, L D characteristic
length, and f D Coriolis parameter, or planetary vorticity D 2�0 sin ,
where �0 is the angular rotation rate of the earth and  is the latitude. The
magnitude of f varies between 1.45 ð 10�4 s�1 at the poles to zero at the
equator. Referring back to Table 2.1, Rossby numbers that are sufficiently
small that rotation effects become important are associated with large lakes,
estuaries, coastal regions, and oceanic currents. Atmospheric motions also
are subject to Coriolis effects, but the present discussion focuses on aqueous
systems.

In addition to the inclusion of the Coriolis terms, an interesting feature
of the analysis of fluid motions in very large systems is the relative unim-
portance of solid boundaries. This sometimes poses difficulties in specifying
boundary conditions, since the location of the boundaries is not well-defined.
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The only clear boundary in the deep oceans, for instance, is the air/water inter-
face. Boundaries do become important, however, in developing descriptions
of general circulation.

9.2 GENERAL CONCEPTS

The general equations of motion for geophysical flows consist of the continuity
and Navier–Stokes equations for incompressible flow introduced in Chap. 2.
For convenience, these are repeated here:

⇀r Ð ⇀V D ∂u

∂x
C ∂v

∂y
C ∂w

∂z
D 0 �9.2.1�

∂
⇀
V

∂t
C ⇀
V Ð r⇀

V C 2
⇀
�ð ⇀

V D ⇀g � 1

�0

⇀rpC 	r2⇀V �9.2.2�

where
⇀
V D �u, v, w� is the velocity vector,

⇀
� is the rotation rate of the earth, g

is gravity, p is pressure, �0 is a reference density, and 	 is kinematic viscosity.
Usually the main concern is with horizontal or two-dimensional motions, so
that w will usually be assumed to be zero for the present discussion. With
w D 0, Eq. (9.2.2) in component form appears as

∂u

∂t
C u

∂u

∂x
C v

∂u

∂y
C w

∂u

∂z
� fv D � 1

�0

∂p

∂x
C 	r2u �9.2.3�

∂v

∂t
C u

∂v

∂x
C v

∂v

∂y
C w

∂v

∂z
C fu D � 1

�0

∂p

∂y
C 	r2v �9.2.4�

0 D �g� 1

�0

∂p

∂z
�9.2.5�

In the following, the viscous stress term will be replaced with a turbulent stress,
with a possibly nonhomogeneous and nonisotropic turbulent eddy diffusivity
(see Chap. 5). However, this does not change the basic form of the equation.

9.2.1 Geostrophic Balance

Geostrophic flow, as introduced in Eq. (2.9.26), involves a balance between
the pressure and Coriolis terms in the equations of motion, that is,

�fv D � 1

�0

∂p

∂x
�9.2.6a�

fu D � 1

�0

∂p

∂y
�9.2.6b�

This result is obtained by assuming steady conditions and neglecting the
nonlinear acceleration and friction terms in the equations of motion. Models
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that neglect the nonlinear accelerations are sometimes referred to as Ekman
models. They are mostly appropriate for relatively small values of Ro, which
as noted previously expresses the ratio of the magnitudes of the acceleration
and Coriolis terms. It should be noted that the geostrophic balance is not
valid near the equator, within a latitude of about š3°, where f becomes very
small.

An interesting result of Eq. (9.2.6) is that the flow direction is perpen-
dicular to the pressure gradient. Therefore, on a weather map, isobars are
approximately the same as streamlines of the flow, and the streamlines are
lines of constant pressure. Also, the quantity p/�f�0� can be regarded as
a stream function. Figure 9.1 shows a schematic description of flow along
an isobar in the northern hemisphere, around centers of high and low pres-
sure. The Coriolis force and the pressure gradient are colinear, with opposite
directions. The velocity vector is perpendicular to those vectors and creates a
counterclockwise angle of 90° with the Coriolis force. In the southern hemi-
sphere, the velocity acts 90° to the left of the Coriolis force, due to the opposite
sense of rotation.

Figure 9.1 Relationship between isobars and streamlines in atmospheric flows (nor-
thern hemisphere).
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Figure 9.2 Surface tilt as a result of geostrophic balance (flow is into the page).

Another way of looking at the geostrophic balance is to consider a
homogeneous fluid with a surface at an angle � to the horizontal direction, as
shown in Fig. 9.2. The pressure along the surface is the atmospheric pressure,
pa. The acceleration generated as a result of this angle is

ax D �g tan � �9.2.7�

where the negative sign arises because x is positive to the right. If the fluid
is moving at velocity U into the plane of Fig. 9.2, there will be a horizontal
component of the Coriolis acceleration with magnitude fU in the positive x
direction (northern hemishere). If these two accelerations are in balance, then

g tan � D fU ) U D g tan �

f
�9.2.8�

This gives the expected geostrophic velocity, for a given surface slope or,
conversely, the expected surface slope for a given flow velocity. Note that
the flow is in a direction normal to the pressure gradient, as was shown in
Eq. (9.2.6). Recall that in order for the balance that leads to Eq. (9.2.8) to
exist, the flow must be uniform and in a straight direction, since no other
accelerations are assumed than the pressure gradient and Coriolis terms.

It is somewhat surprising to consider the magnitude of the sea surface
tilt angle that corresponds to expected velocities in the ocean. For example,
if U D 1 m/s, and we assume a latitude of 45°, then tan � ¾D 10�5, or about
1 cm/km. This is much too small to be measureable. However, measurements
in a stratified ocean are much easier.

There is almost always some density stratification in the oceans, due
to temperature or salinity variations or both. Issues related to stratification
are discussed in Chap. 13, but for now consider that the stratification can be
idealized as a two-layer system as sketched in Fig. 9.3, which shows a fluid
of density �1 flowing over a stagnant layer of density �2. Since fluid 2 is at
rest, its free surface must be horizontal, while the free surface of fluid 1 is
tilted due to its motion, making an angle � with the horizontal direction, as
previously described. Consider that the interface between the two fluids lies
at some angle �i, as shown in the figure.
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Figure 9.3 Surface and interface tilt for geostrophic flow in a two-layer ocean.

Along any horizontal line drawn in fluid 2, the pressure must be constant.
For such a line drawn at depth h, the pressure is given by the hydrostatic
relation

ph D pa C �2gh �9.2.9�

Now, with x drawn so that x D 0 at the point at which the interface between
the two fluids meets the surface, the pressure along the line drawn at depth h
can be written as

ph D pa C gf�1�tan � � tan �i�x C �2�h C x tan �i�g �9.2.10�

Equating Eqs. (9.2.9) and (9.2.10) then results in

tan �i D � tan �
�1

�2 � �1
�9.2.11�

This shows that the slope of the interface can have a much greater magnitude
than the surface slope, depending on the relative values of �1 and �2. For
example, if fresh water (specific gravity D 1) flows over sea water (specific
gravity D 1.025), then the interface slope is approximately 40 times as great
as the surface slope. In most cases the density difference is less than this, so
that the interface slope would likely be even greater.

When surfaces of constant density are parallel to surfaces of constant
pressure, the system is said to be in a barotropic state. When these surfaces
intersect, the field is baroclinic. It is possible for a barotropic system to be
statically stable, but in a baroclinic system there must be motion. The two-
layer ocean considered above is an example of a baroclinic field, since motion
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was required to generate the Coriolis force to oppose the pressure gradient
force.

The geostrophic flow that results from a horizontal density gradient is
also called a thermal wind. This terminology stems from the usual situation
in which the density differences are generated as a result of temperature vari-
ations. When there is a horizontal density gradient, the geostrophic flow also
develops a vertical shear. This can be seen by considering the system shown
in Fig. 9.4, which shows several contours of constant density and contours of
contant pressure. Assuming that ∂�/∂x < 0, then the density along section 1
is greater than that along section 2. In order to maintain hydrostatic equilib-
rium, the weight of columns υz1 and υz2 must be equal. Therefore the interval
between the two isobars increases with x, or υz1 < υz2. The isobars, as shown
in Fig. 9.4, then must be consistent with ∂p/∂x > 0, and their slope increases
with increasing z. Following the same arguments as before (coming from the
geostrophic balance), the thermal wind is thus seen to be into the plane of
Fig. 9.4, and its magnitude increases with z.

This phenomenon is clearly demonstrated using Eq. (9.2.6), along with
the hydrostatic balance equation in the z-direction. Differentiating equation

Figure 9.4 Baroclinic field, showing several contours of constant density and pres-
sure.
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(9.2.6a) with respect to z and using Eq. (9.2.5) to substitute for the vertical
pressure gradient, we obtain

∂v

∂z
D � g

�0f

∂�

∂x
�9.2.12a�

Performing a similar operation by differentiating Eq. (9.2.6b) with respect to
z gives

∂u

∂z
D g

�0f

∂�

∂y
�9.2.12b�

These equations are called the thermal wind equations. They provide the
vertical variation of velocities from measurements of the horizontal tempera-
ture (density) gradients. The thermal wind, as indicated in Fig. 9.4, is associ-
ated with systems in which surfaces of constant pressure and constant density
intersect, i.e., the baroclinic case.

9.2.2 Potential Vorticity

Another concept useful in the study of large-scale flows is that of conservation of
potential vorticity. This is demonstrated by first writing the momentum equations
for horizontal motion, neglecting the friction terms. From Eq. (9.2.3),

Du

Dt
D ∂u

∂t
C u

∂u

∂x
C v

∂u

∂y
D fv � 1

�0

∂p

∂x
�9.2.13�

and from Eq. (9.2.4),

Dv

Dt
D ∂v

∂t
C u

∂v

∂x
C v

∂v

∂y
D �fu� 1

�0

∂p

∂y
�9.2.14�

where (D/Dt) is taken here as the two-dimensional or horizontal material
derivative operator. We now differentiate Eq. (9.2.13) with respect to y and
subtract the result from the derivative of Eq. (9.2.14) with respect to x, giving

D

Dt

(
∂v

∂x
� ∂u

∂y

)
D

(
∂v

∂x
� ∂u

∂y
� f

)(
∂u

∂x
C ∂v

∂y

)
� u

∂f

∂x
� v

∂f

∂y
�9.2.15�

where horizontal density variations have been neglected. Now, f is not a
function of time or longitude (x), so the last term on the right-hand side of
Eq. (9.2.15) may be rewritten as

v
∂f

∂y
D Df

Dt
�9.2.16�
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Substituting Eq. (9.2.16), and rearranging the terms of Eq. (9.2.15) then
leads to

D

Dt

[(
∂v

∂x
� ∂u

∂y

)
C f

]
D �

(
∂u

∂x
C ∂v

∂y

)[(
∂v

∂x
� ∂u

∂y

)
C f

]
�9.2.17�

Recall that the vertical component of vorticity, relative to the chosen
coordinate system, is defined by Eq. (2.3.12),

� D ωz D ∂v

∂x
� ∂u

∂y
�9.2.18�

Also, if the flow satisfies the two-dimensional continuity equation, then the first
term on the right-hand side of Eq. (9.2.17) (in parentheses) is zero, resulting in

D

Dt
�� C f� D 0 �9.2.19�

The sum of the relative vorticity ��� and the planetary vorticity �f� is called
the absolute vorticity. Equation (9.2.19) states that the absolute vorticity is
conserved, following a fluid particle along its path line.

If the flow field is required to satisfy the full continuity constraint, then
Eq. (9.2.1) gives

∂u

∂x
C ∂v

∂y
D �∂w

∂z
�9.2.20�

The right-hand side of this equation can be related to the rate of stretching of
a column of fluid of thickness H, by

∂w

∂z
D 1

H

DH

Dt
�9.2.21�

Introducing this result into Eq. (9.2.17) then gives

D

Dt
�� C f� D 1

H

DH

Dt
�� C f� �9.2.22�

Dividing both sides by H, we obtain

1

H

D

Dt
�� C f�� 1

H2

DH

Dt
�� C f� D D

Dt

(
� C f

H

)
D 0 �9.2.23�

where the quantity �� C f�/H is called the potential vorticity. This last result
shows that, for frictionless incompressible flow, potential vorticity is conserved
following a fluid particle. For steady flows the particle paths are the same as
the streamlines, so potential vorticity is thus conserved along streamlines. Use
of this concept, along with geostrophic flow assumptions and other results
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such as the Bernoulli equation (Chap. 2) has formed the basis for a number
of theoretical models of ocean currents.

9.3 THE TAYLOR–PROUDMAN THEOREM

A number of laboratory experiments have been performed, usually using
rotating tables, to simulate different aspects of low-Rossby-number flows.
One of the more interesting experiments of this type involves simulation of
geostrophic flow of a homogeneous fluid and produces direct observations of
Taylor columns, as explained below. This experiment involves a tank of fluid
that is rotated at a steady angular speed �. The rotation speed is sufficiently
high that the Coriolis force is much larger than the acceleration terms, and
conditions of geostrophic equilibrium may be assumed.

In regions that are not affected by the friction induced by the bound-
aries, the equations for geostrophic equilibrium in the horizontal directions,
and hydrostatic conditions in the vertical direction, are given by Eqs. (9.2.6a),
(9.2.6b), and (9.2.5), respectively. Note, however, that f D 2� for the condi-
tions of the experiment. By differentiating Eq. (9.2.6a) with respect to y and
Eq. (9.2.6b) with respect to x and subtracting, we find

2�
(
∂u

∂x
C ∂v

∂y

)
D 0 �9.3.1�

Using Eq. (9.2.20), and since � 6D 0, Eq. (9.3.1) implies

∂w

∂z
D 0 �9.3.2�

Also, by differentiating each of Eqs. (9.2.6a) and (9.2.6b) with respect to z
and substituting Eq. (9.2.5) for the vertical pressure gradient results in

∂u

∂z
D ∂v

∂z
D 0 �9.3.3�

Since there is no vertical motion, the angular velocity vector is oriented
in the z-direction. Equations (9.3.2) and (9.3.3) indicate that the velocity vector
does not vary with z, so we may conclude that steady, slow motions in a
rotating, homogeneous, inviscid fluid are two-dimensional. This result is called
the Taylor–Proudman theorem. It was obtained theoretically by Proudman in
1916. Soon afterwards, Taylor proved this theorem using an experimental setup
as sketched in Fig. 9.5. A tank full of fluid was rotating as a solid body. A
small cylinder was slowly dragged along the bottom of the tank and dye was
released at point A, above the cylinder and slightly ahead of it. The thread
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Figure 9.5 Schematic diagram of Taylor’s experiment.

of dye divided at the point S, while appearing to belong to a column of fluid
extending over the depth of the cylinder. This column of fluid is called a
Taylor column. Taylor’s experiment indicated that bodies moving slowly in
a strongly rotating system of homogeneous fluid carry along their motion in
a two-dimensional column of fluid.
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9.4 WIND-DRIVEN CURRENTS (EKMAN LAYER)

We have already considered the special case of geostrophic flow, resulting
from a balance between the Coriolis and pressure terms in the momentum
equation. In that case, it was shown that the velocity vector is perpendicular
to the pressure gradient, so that the velocity follows the isobars. This balance
can only exist in situations where other factors such as the acceleration and
friction terms are negligible, and therefore these flows generally occur in the
upper atmosphere or deep oceans.

Another interesting effect of rotation can be seen on wind-driven cur-
rents, where the velocity field is formed into the so-called Ekman spiral.
Consider a flow far from any boundaries, with a wind stress acting on the
surface and with negligible pressure gradients. Here we again consider steady
horizontal flow, in a system with z D 0 at the surface and increasing down-
ward. Neglecting also the acceleration terms (i.e., the Ekman model assump-
tion) and assuming that the only friction effect is from vertical shear stresses,
the momentum equations for the two horizontal velocity components are

�fv D A
∂2u

∂z2
�9.4.1�

and

fu D A
∂2v

∂z2
�9.4.2�

where A is a horizontal eddy diffusivity, which is assumed to be constant. By
combining the constants into one term, we define

�2 D f

A
�9.4.3�

Note that � has units of length�1. Using Eq. (9.4.3), Eqs. (9.4.1) and (9.4.2)
are rewritten as

i2�2v D d2u

dz2
�9.4.4�

and

i�2u D i
d2v

dz2
�9.4.5�

where i D p�1 and ordinary derivatives are substituted for the partial deriva-
tives, since the velocities are considered to be functions of z only. Now, define
� D uC iv, so that by adding Eqs. (9.4.4) and (9.4.5), we obtain

d2�

dz2
D i�2� �9.4.6�
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This equation has a solution,

� D K1 exp��
p
iz�CK2 exp���p

iz� �9.4.7�

where K1 and K2 are complex constants given by

K1 D C1 exp�iC1�, K2 D C2 exp��iC2� �9.4.8�

where C1 and C2 are constants that must be determined from known boundary
conditions.

By separating the real and imaginary parts (according to the definition
of �), the velocity components are found from

u D C1 exp
(
�zp

2

)
cos

(
�zp

2
C C3

)

C C2 exp
(

� �zp
2

)
cos

(
�zp

2
CC4

)
�9.4.9�

and

v D C1 exp
(
�zp

2

)
sin

(
�zp

2
CC3

)

CC2 exp
(

� �zp
2

)
sin

(
�zp

2
CC4

)
�9.4.10�

where C3 and C4 are constant phase shifts. For illustration, it is assumed that
the x–y plane is oriented so that wind blows in the positive y direction. The
boundary conditions include vanishing velocities when z becomes very large
�z ! 1�, shear stress in the x-direction is zero at the surface, i.e., �x D 0, at
z D 0, and shear stress in the y-direction at the surface is given by

�y0 D �yjzD0 D �
(
�A
dv

dz

)∣∣∣∣
zD0

�9.4.11�

Note that �x D 0 implies that �du/dx� D 0 at z D 0, since A is constant and
A 6D 0.

Since both velocities vanish for large z, we conclude that C1 D 0. Then,
by differentiating Eqs. (9.4.9) and (9.4.10) with respect to z, using the shear
boundary conditions, we obtain

du

dz

∣∣∣∣
zD0

D �C2
�p
2
�sinC4 C cosC4� D 0 ) C4 D ��

4
�9.4.12�

and

dv

dz

∣∣∣∣
zD0

D �C2
�p
2

(
cos

�

4
C sin

�

4

)
D ��y

A
) C2 D �y

A�
�9.4.13�
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To simplify the notation, define a length scale L, so that

L D �
p

2

�
D �

(
2A

f

)1/2

�9.4.14�

Using this definition, the final results for the velocity components are written
by substituting for C2 and C4 into Eqs. (9.4.9) and (9.4.10), respectively,
giving

u D V0 exp
(

��
L
z
)

cos
(�

4
� �

L
z
)

�9.4.15�

and

v D V0 exp
(

��
L
z
)

sin
(�

4
� �

L
z
)

�9.4.16�

where V0 is the magnitude of the surface drift current (at z D 0). It is
obtained by differentiating Eq. (9.4.16) with respect to z and substituting into
Eq. (9.4.11), to obtain

dv

dz

∣∣∣∣
zD0

D ��y0

�A
D �V0

�
p

2

L
) V0 D �y0L

�A�
p

2
D �y0

�A�
�9.4.17�

From this solution, it may be noted that at the surface, u2 C v2 D V2
0, but

the surface velocity is oriented at an angle 45° from the mean wind direction,
as shown in Fig. 9.6. When z D L, the velocities are

u D V0e
�� cos

(
�3�

4

)
, v D V0e

�� sin
(

�3�

4

)
�9.4.18�

and the velocity magnitude is V D �u2 C v2�1/2 D V0e��, or about �1/23�V0.
Also, the direction of the velocity at this depth is exactly opposite that of
the surface velocity. For intermediate depths, the magnitude of the velocity
decreases exponentially with increasing depth and its direction turns clockwise,
according to Eqs. (9.4.15) and (9.4.16). Figure 9.6 illustrates this result, which
is known as the Ekman spiral. The depth L is considered to represent the layer
depth for which frictional force driven by surface wind shear has an influence
on the motions. It is called the Ekman depth. As defined in Eq. (9.4.14), L is
not a function of surface shear, but it does depend on latitude, approaching
1 at the equator (where f D 0). This presents a problem, for instance, in
defining V0. However, Coriolis effects are not important at the equator, so
this is not an issue of practical interest (i.e., the above derivation is not valid
at the equator).

One further observation of interest concerns the mean mass transport
associated with the wind-driven drift currents. The mass flux is calculated as
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Figure 9.6 Ekman spiral; V0 is the surface velocity, with other lines showing veloc-
ities at successively greater depths, ending with V ¾D 0 and pointed in the opposite
direction to V0 at z D L.

the product of velocity and density. Therefore we multiply Eqs. (9.4.15) and
(9.4.16) by �, assuming constant �, and integrate from z D 0 to z D 1, so
that the total mass transport rates in the x and y directions are, respectively,

Mx D
∫ 1

0
�u dz D �

V0L

�
p

2
�9.4.19�

and

My D
∫ 1

0
�	 dz D 0 �9.4.20�
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The mass flux in the x-direction also can be written using Eq. (9.4.17) for V0,
giving

Mx D �y0

f
�9.4.21�

Thus, curiously, there is zero net mass transport in the direction of the wind,
and all of the transport is at 90° to the right of the wind direction. This Ekman
transport process is of interest for a number of problems in physical and
coastal oceanography.

Although mathematically sound, verificatioin of the Ekman spiral and
transport calculations is difficult in practice, primarily because it is difficult to
find a set of measured field conditions that matches all the required simplifica-
tions and assumptions used in the derivation. There have been observations of
iceberg drift in directions normal to the wind direction, which is at least some
verification of the mass flux calculations of Eqs. (9.4.20) and (9.4.21). One
of the most difficult problems in checking Ekman spiral predictions is with
the values for � and A, which are usually not well known. Also, the ocean is
usually stratified, so density gradients act to restrict the vertical transport of
momentum. Observations have shown there is little deviation from the above
results for the case of continuous stratification, but strong density interfaces
such as might be found at the base of the upper mixed layer (see Chap. 13)
tend to limit the vertical extent of the wind effect. Under this condition, the
velocities do not necessarily vanish at the interface. Instead, a zero shear (zero
gradient) boundary condition is usually used, and it can be shown that the
deflection angle increases for small depths, relative to the infinitely deep layer.

For a layer of finite depth H, the boundary condition is modified so that
u, v ! 0 for z D H. For this case, the deflection angle depends on H/L, and
for sufficiently small H/L, the drift is nearly parallel to the wind, increasing
to 45° only when H/L is greater than about 0.5.

It should also be noted that the above theory assumes no boundaries
and no horizontal pressure gradients. In the real ocean, eventually the flow
should encounter a boundary, where water would build up to create a pressure
gradient opposing the flow. Alternatively, a wind blowing from the north
along the western coast of a land mass in the northern hemisphere would
cause transport of water mass westward, and this could result in upwelling of
deeper waters along the coast. For a southerly wind, the flow may be turned
in the direction of the wind stress and a geostrophic balance may be obtained.

9.5 VERTICALLY INTEGRATED EQUATIONS OF MOTION

Because of the complexity of motions possible in large lakes and the seas,
involving a wide range of interacting scales, mathematical formulation of the
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problem often leads to complicated systems of equations that can be solved
only after certain simplifying assumptions have been made. The geostrophic
assumption is one such approach, and in this section we introduce a more
formal approach to studying systems in which the motions are primarily hori-
zontal. In fact, this assumption has been made in the previous sections of this
chapter, but here we derive more complete equations by vertically integrating
the governing equations. This is similar to the development in Sec. 7.7.3,
except here we consider deep water, incorporate eddy viscosities, and consider
only steady solutions.

The steady Ekman-type model for horizontal velocity components is

�fv D � 1

�

∂p

∂x
C ∂

∂x

(
Ax
∂u

∂x

)
C ∂

∂y

(
Ay
∂u

∂y

)
C ∂

∂z

(
Az
∂u

∂z

)
�9.5.1�

and

fu D � 1

�

∂p

∂y
C ∂

∂x

(
Ax
∂v

∂x

)
C ∂

∂y

(
Ay
∂v

∂y

)
C ∂

∂z

(
Az
∂v

∂z

)
�9.5.2�

From Chap. 2, these can be rewritten in terms of shear stresses as

�f�v D �∂p
∂x

C ∂�xx
∂x

C ∂�xy
∂y

C ∂�xz
∂z

�9.5.3�

and

f�u D �∂p
∂y

C ∂�yx
∂x

C ∂�yy
∂y

C ∂�yz
∂z

�9.5.4�

Integrating each of Eqs. (9.5.3) and (9.5.4) vertically from z D 0 to z D L
(Ekman layer depth) gives

�fMy D �∂P
∂x

C ∂Txx
∂x

C ∂Txy
∂y

C �xz

∣∣∣∣
zD0

�9.5.6�

and

fMx D �∂P
∂y

C ∂Tyx
∂x

C ∂Tyy
∂y

C �yz

∣∣∣∣
zD0

�9.5.7�

where Mx and My are the mass transport rates in the x- and y-directions,
respectively, P represents the integral of pressure between 0 and L, and T is
the integrated shear stress between 0 and L. Note that the shear stresses (�xz
and �yz) disappear at z D L. Equation (9.5.6) is now differentiated with respect
to y and the result is subtracted from the derivative of Eq. (9.5.7) with respect
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to x, resulting in

f

(
∂Mx

∂x
C ∂My

∂y

)
CMy

∂f

∂y
D

[
∂

∂x
��yzjzD0�� ∂

∂y
��xzjzD0�

]

C
(
∂2Tyx
∂x2

� ∂2Txy
∂y2

)
C

(
∂2Tyy
∂x∂y

� ∂2Txx
∂y∂x

)
�9.5.8�

where the derivative of f with respect to x has been set to zero.
Equation (9.5.8) is the vertically integrated vorticity equation. Consistent

with continuity, the first term on the left-hand side is normally zero, unless the
model allows some vertical flow into the layer. The second term on the left-
hand side is sometimes referred to as the planetary vorticity tendency and is a
measure of the torque imposed upon the water column as it moves to regions
of different f. The rate of change of f with latitude is usually written as

∂f

∂y
D ˇ �9.5.9�

and models that consider constant values of ˇ are called beta-plane models.
The first term on the right-hand side of Eq. (9.5.8) is the vertical compo-
nent of the curl of the wind stress vector and gives a measure of the torque
exerted about a vertical axis by surface wind. The remaining two terms are
contributions to torque by the action of viscous and turbulent stresses within
the water column. There are a number of ways of dealing with these terms,
from neglecting them completely to making detailed formulations for eddy
viscosities, usually as functions of velocities. In any case, formulation of
the two-dimensional vertically integrated problem has led to some important
results in understanding general circulation in the oceans.

PROBLEMS

Solved Problems

Problem 9.1 (Demonstration of nondimensional formulation of Ekman-type
model.) The so-called Ekman model was developed as a simplification of
the general momentum equations, in which the horizontal diffusivities are
neglected, as well as the nonlinear acceleration terms. In addition, a large
width-to-depth ratio is assumed, with small Rossby number, Ro D U/fL,
where U and L are the characteristic velocity and length scales, respectively.
Hydrostatic pressure in the vertical direction is then justified and the horizontal
momentum equation (x-direction) has the form

∂u

∂t
¾D � 1

�

∂p

∂x
C fv �1�
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A characteristic time scale is also defined as T D L/U. Then, writing each
term in Eq. (1) in nondimensional form, using u0 D u/U, x0 D x/L, t0 D t/T
(primes indicate nondimensional quantities), we have

U2

L

∂u0

∂t0
¾D � 1

�L

∂p

∂x0 C fUv0 ) ∂u0

∂t0
¾D � 1

�U2

∂p

∂x0 C fL

U
v0 �2�

Thus it is seen that the behavior of this model is still at least partly controlled
by Ro, which appears in the last term on the right-hand side (note that it is
actually the inverse of Ro that appears; since Ro is assumed to be small, this
term is large). One of the great advantages of models such as this is the neglect
of the nonlinear terms, which greatly simplifies the solution for Eq. (2).

Problem 9.2 Express the dependence of the Coriolis parameter f on the
latitude angle �, and provide a table of f values versus �, at intervals of 10°.

Solution

As defined in Eq. (9.1.1),

f D 2� sin �

where � is the angular velocity of the earth,

� D 2�

24 ð 3600
D 7.27 ð 10�5 s�1

By applying this value, we obtain the following table:

� 10° 20° 30° 40° 50° 60° 70° 80° 90°

fð 104 0.252 0.497 0.727 0.935 1.114 1.259 1.366 1.432 1.454

Unsolved Problems

Problem 9.3 The usual equation used to estimate geostrophic velocities in
ocean currents or in the atmosphere is

1

�

υp

υn
D fc

where υp is the pressure difference measured along a line in the n direction
and c is the geostrophic velocity. Explain how this equation is related to
Eqs. (9.2.6) and describe the relative directions of orientation of n and c, in
(a) the northern hemisphere and (b) the southern hemisphere.
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Problem 9.4 Consider the general equations of motion for an incompressible
Newtonian fluid,

r Ð ⇀V D 0

and

D
⇀
V

Dt
C 2

⇀
�ð ⇀

V D � 1

�
rp� ⇀g C vr2⇀V

where
⇀
V D �u, v, w� is the velocity vector,

⇀
� is the background rotation

rate, � D density, p D pressure, g D gravity, 	 D kinematic viscosity, r is the
vector gradient operator, and r2 is the Laplacian operator.

(a) Describe the physical meaning of each of the five terms in the
momentum equation.

(b) Consider a system such as a large but relatively shallow lake,
which has primarily two-dimensional horizontal motions (i.e., w D
vertical velocity component can be neglected). Write the equations
of motion for this situation in component form, i.e., for each of the
three coordinate directions.

(c) Rewrite the equations from part (b) by making the additional assump-
tions of steady state and negligible viscous effects, and also neglect
the nonlinear acceleration terms. This should result in the geostrophic
balance equations.

(d) Consider the situation sketched in Fig. 9.7, which shows the water
surface tilted at an angle � to the horizontal, in the positive x-
direction. Is this a physically possible situation? If not, why not?
If so, explain what else must be happening to allow the surface to
remain tilted. (Note: there is no wind.)

Problem 9.5 Find the horizontal pressure gradient across the surface of the
Gulf Stream, where the current is 100 km wide and the difference in water
surface elevation is 1.0 m (higher on the right than on the left, looking in the

Figure 9.7 Definition sketch, Problem 9.4.
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direction of motion). Assuming a latitude of 42°N, what is the corresponding
geostrophic velocity?

Problem 9.6 Cyclostrophic motion develops from a balance between the
pressure gradient and centrifugal force terms in the equations of motion (i.e.,
it is independent of the earth’s rotation) and produces small-scale disturbances
such as tornados and whirlpools.

(a) Show that the mathematical equation that expresses a balance
between pressure gradient and centrifugal acceleration can be
written as

1

�0

dp

dr
D ω2r

where r is radial distance and ω is angular velocity.
(b) Sketch the general corresponding flow patterns for positive and

negative pressure gradients.

Problem 9.7 Derive an equation for potential vorticity in which friction
along the bottom cannot be neglected.

Problem 9.8 Why, in Taylor’s experiment, was it important to move the
cylinder very slowly across the bottom?

Problem 9.9 Describe the methods and instrumentation you might use in an
attempt to observe directly the Ekman spiral in the deep ocean.

Problem 9.10 Upwelling is a process in which deeper water is brought to
the surface, usually near a coastline, as a result of surface water being driven
offshore. If upwelling is driven by wind, in what direction must the wind be
blowing for the upwelling to occur on the western coast of the United States?

Problem 9.11
(a) If the depth of significant wind-driven flow in the ocean at latitude

45°N is found to be 100 m, what is the average value of the vertical
diffusivity?

(b) If the magnitude of the surface velocity is 1 m/s, what is the magni-
tude of the surface wind shear stress?

(c) What is the total mass flux rate induced by the wind and in what
direction is it, relative to the wind direction?

Problem 9.12 Explain why it is reasonable to set the derivative of f with
respect to x equal to zero in Eq. (9.5.8). Also, why do the shear stresses vanish
at z D L?
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Problem 9.13 Calculate different values of ˇ that would be applicable over
different ranges of latitudes, from the equator to the poles.

Problem 9.14 Formulate a finite difference expression that could be used to
solve Eq. (9.5.8). Assume the first term on the left-hand side is zero and that
ˇ is constant. Suggest the approach you would use to solve this expression.
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10
Environmental Transport Processes

10.1 INTRODUCTION

The field of environmental fluid mechanics spans a broad range of topics.
Though based primarily on fluid mechanics and hydraulics concepts, as descri-
bed in Part 1 of this text, the area has grown in the past few decades to
encompass many applications in water quality modeling. A major connection
between this latter field and pure fluid mechanics lies in the determination of
terms needed to specify the transport and mixing rates for a given parameter
of interest. This will be seen in the present chapter, in which the classic advec-
tion–diffusion equation is derived to express a mass balance statement for a
dissolved chemical species distributed in a fluid flow field. In later chapters
this idea is expanded to include transport of suspended sediment particles,
and several important classes of environmental flows are discussed. Typical
parameters of interest might include concentrations of dissolved gases (partic-
ularly oxygen), nutrients such as phosphorus or nitrogen, various chemical
contaminants, both organic and inorganic, salinity, suspended solids, temper-
ature, biological species, and others. In order to fully describe the fate and
transport of a particular species, a knowledge of specific source and sink terms,
including interactions with other species, must be incorporated in the general
conservation equation. The present text, with several exceptions, generally
does not deal directly with these terms, but rather concentrates on the physical
transport mechanisms.

10.1.1 Water, Heat, and Solute Transport

Earlier we saw that certain quantities control the rate at which different prop-
erties of a flow are transported, either by mean motions or by diffusion. For
example, kinematic viscosity may be thought of as a molecular diffusivity for
momentum. Thermal diffusivity represents a similar transport term for heat
energy, and solute diffusivity represents a corresponding transport mechanism
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for a dissolved species. Mean motions generally carry all properties of a flow at
the same rate, but molecular diffusivities can vary widely. For instance, kine-
matic viscosity of water is about 10�2 cm2/s, thermal diffusivity is of order
10�3 cm2/s, and salt diffusivity is of order 10�5 cm2/s. These differences are
associated with molecular activity, as shown below, and can be related by
values of the Prandtl and Schmidt numbers,

Pr D 	/k� Sc D 	/k �10.1.1�

where 	 is kinematic viscosity, k� is thermal diffusivity, and k is molec-
ular diffusivity of a dissolved material. Given the above values, Pr for water
is around 10 and Sc is around 103. However, when turbulent diffusion is
considered, it is normally assumed that the eddies responsible for transporting
the properties of the flow are effective in transporting all properties at about
the same rate (this is generally referred to as the Reynolds analogy — see
Chap. 5). Of course, the net transport depends on mean gradients, as described
previously, but the diffusion coefficients or diffusivities are the same. This
implies that the turbulent Prandtl and Schmidt numbers (defined similar to
Eqn. 10.1.1, but using turbulent or eddy diffusivities) are both around 1, which
is a basic result of the Reynolds analogy.

Another transport term of interest is that of dispersion. Many authors
have used the terms diffusion and dispersion interchangeably, since the net
results of these processes are similar in causing spreading or mixing of material
fluid properties. In fact, both terms are often represented mathematically in the
same way in the conservation equations. However, dispersion arises from a
completely different process than diffusion, as described hereinafter. The effect
of dispersion on transport of different properties of a flow is similar to that
of turbulent diffusion, in the sense that dispersion causes mixing of a fluid
property about a mean position, and dispersion coefficients for momentum,
heat and mass all tend to be similar.

Various transport processes of interest may be summarized as follows:
Advection. These motions are associated with mean flow or currents,

such as rivers, streams, or tidal motions. They are normally driven by gravity
or pressure forces and are usually thought of as primarily horizontal motions.

Convection. This term usually refers to vertical motions induced by
hydrostatic instability, i.e., they are buoyancy driven. Examples of this type
of motion include heating a pot of water on a stove, or fall and spring lake
overturns occurring when the surface temperature on a lake passes through
4°C (temperature of maximum density).

Molecular diffusion. Molecules of a fluid are naturally in random motion,
relative to other molecules (Brownian motion), and this leads to a mixing or
spreading of fluid properties, consistent with the second law of thermody-
namics.
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Turbulent diffusion. This is a type of mixing similar to molecular diffu-
sion but with a much stronger effect. Mixing in this case derives from the
larger scale movement of packets of fluid (rather than individual molecules)
by turbulent eddies.

Shear. Shear exists when there is a variation of advection (mean flow
velocity) at different locations in a flow field, so that a gradient exists for
flow velocity. This produces a variation in the rate of advective transport of a
fluid property, with associated spreading of the average concentration of that
property, as illustrated in Fig. 10.1.

Dispersion. This is spreading of a fluid property by the combined effects
of shear and transverse diffusion.

The main distinction between advection (or convection) and diffusion or
dispersion is that advection represents a net movement of the center of mass
of a packet of fluid or fluid property, while diffusion and dispersion represent
a spreading about the center of mass. This is illustrated in Fig. 10.2. As will
be seen later, dispersion is normally included in the conservation equations in
a similar manner as diffusion, but the effects of dispersion are normally much
greater than those of diffusion. In this text the term mixing will refer to either
diffusion or dispersion.

Figure 10.1 Effect of shear on spreading of mean (here, depth-averaged)
concentration.
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Figure 10.2 Illustration of advective and diffusive transport; advection moves the
center of mass while diffusion spreads mass relative to the center, whether it is moving
or not.

10.2 BASIC DEFINITIONS, ADVECTIVE TRANSPORT

The basic balance equation for dissolved mass may be derived following
procedures similar to those used in the derivations for water mass, momentum,
and energy balances from Chap. 2. However, it will first be important to define
the various transport properties involved, especially diffusion, and this will
lead to a derivation of the classic advection–diffusion equation.

It will be important to keep in mind the definition of a flux, which is
the transport of a given property across a surface, per unit time and per unit
area of that surface, and the definition of mass concentration, or density, C
or �1 (see below), which is the amount of mass of dissolved solids per unit
volume of fluid. In the following discussion, it is also helpful to define a pure
concentration, CŁ, which is a dimensionless ratio of dissolved solid mass in
a given volume of fluid to total mass in that volume. C is related to CŁ by

C D �CŁ �10.2.1�

where � is the total density of the solution. CŁ also is referred to as mass
fraction or relative concentration. Concentrations are often listed in units of
ppm (parts per million), referring to CŁ, or as mg/L (milligrams per liter),
referring to C or �1. In aqueous systems, the numerical values for both
CŁ

1 and �1 turn out to be the same, since the density of water is typically
�2

¾D 1 gm/cm3 D 106 mg/L. Thus for chemical concentrations on the order
of 1 mg/L, both CŁ

1 and �1 would have values of about 10�6 (1 mg/L or
1 ppm).

In addition, we will be concerned primarily with binary systems, i.e.,
water plus one other component (the extension to conditions with more than
one additional component is straightforward). Thus let �1 D mass of species
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1 per unit volume of solution and �2 D mass of species 2 per unit volume of
solution. The total density of the solution is � D �1 C �2. Normally there is a
relatively small amount of one species compared with the other, such as with
a pollutant dissolved in water. If species 2 is water, then �2 × �1 and � ¾D �2.
In other words, the addition of the pollutant, or tracer, does not significantly
affect the water (solution) density. The (nondimensional) concentration of
species 1 is

CŁ
1 D �1

�
�10.2.2�

and in binary systems, CŁ
1 C CŁ

2 D 1.
The advective flux of species 1, for a velocity field

⇀
V D �u, v, w� is

defined as
⇀
A D �1

⇀
V �10.2.3�

Thus the advective fluxes in each Cartesian coordinate direction are Ax D u�1,
Ay D 	�1, and Az D w�1.

10.3 DIFFUSION

10.3.1 Molecular Diffusion, Fick’s Law

The basic form of diffusion is molecular diffusion, which is due to the random
motions all molecules undergo (Brownian motion). From considerations of
nonequilibrium thermodynamics, the simplest assumption about diffusion of
mass that is consistent with the second law of thermodynamics (increasing
entropy), is that this diffusion is proportional to the gradient of the chemical
potential of the system (�c). This statement is analogous to Fourier’s law for
heat conduction and can be written as

⇀
F1 D �k⇀r�c �10.3.1�

where
⇀
F1 is the diffusive flux of species 1, k is a constant, and the negative

sign indicates the flux is in the opposite direction to the gradient of �c. Now,
�c is generally a function of system properties, mostly temperature (�), mass
density (�1), and pressure (p). Then (in one dimension for simplicity),

F1x D �k
[(
∂�c
∂�

∂�

∂x

)
C

(
∂�c
∂�1

∂�1

∂x

)
C

(
∂�c
∂p

∂p

∂x

)]
�10.3.2�

The main contribution to the flux is the middle term on the right-hand
side. The first term is called the Soret effect and indicates the possible diffusion
of mass due to a temperature gradient. This term may become important
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under some circumstances, usually involving high salinity concentrations, but
is ignored in most applications. Not much is known about the third term, but it
is assumed to be negligible. Considering only the density gradient term, then,

F1x D �
(
k
∂�c
∂�1

)
∂�1

∂x
D �k1

∂�1

∂x
�10.3.3�

where k1 is defined as the molecular diffusivity for species 1. This result,
extended to all three directions, becomes

⇀
F1 D �k1

⇀r�1 �10.3.4�

which is known as Fick’s law or Fickean diffusion.
The concept of diffusivity can also be derived using mixing length

theory, illustrated in Fig. 10.3 for a simple one-dimensional stratification (z
direction) of species 1. On the left-hand plot is shown a general density profile
for species 1, while the right-hand plot is a magnified view of a small part of
the profile. The average velocity of molecules in the z-direction, due to inherent
Brownian motion, is w1, and lm is the mixing length, which is assumed to be
related to the average distance the molecules travel before colliding with other
molecules (molecular free path). Considering a small “window” in the fluid,
perpendicular to the z axis, the flux of species 1 through the window in the
positive z-direction is ��1w1�1, and in the negative z-direction it is ���1w1�2,
where the subscripts outside the parentheses indicate the levels at which the
flux terms are evaluated. If w1 is assumed constant, the net flux across this
window is

Fz1 D [��1�1 � ��1�2]w1 �10.3.5�

For small lm, the density gradient is approximately constant, so

��1�1 � ��1�2 ¾D �lm ∂�1

∂z
�10.3.6�

Figure 10.3 Mixing length concept.
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where the minus sign is used since (∂�1/∂z) is negative. Substituting Eq. (10.3.6)
into Eq. (10.3.5),

Fz1 D �w1lm
∂�1

∂z
�10.3.7�

The product of mean molecular velocity and mean free path (w1lm)
is a property of the system and is given the symbol k1 and defined as the
diffusivity for species 1, similar to the term in Eq. (10.3.3). Similar analyses
may be applied for the x and y directions, to arrive at the same result as before
(Eq. 10.3.4). In general, k1 is a function of temperature and density (�1), and
possibly pressure. It is interesting to note that k1 is defined here as the product
of a characteristic length and a characteristic velocity scale — this idea also
is applied when discussing turbulent diffusion, though of course the velocity
and length scales are different.

10.3.2 Turbulent Diffusion

The concept of turbulent diffusive transport is analogous to the turbulent trans-
port of momentum, discussed in Chap. 5. In particular, the Reynolds transport
terms are derived in exactly the same way as the Reynolds transport terms for
momentum, (i.e., Eqs. 5.4.7 and 5.4.8).

Here, however, fluctuations of concentration are used instead of a second
velocity component. In other words, the turbulent or Reynolds transport of
dissolved mass in the i direction is

�u0
ic0 D Ei

∂C
Ł

∂xi
�10.3.8�

where, as before, the overbar indicates a time-averaged quantity and the primes
denote fluctuating terms. This equation serves to define the turbulent diffu-
sivity, Ei, which in general is anisotropic and inhomogeneous. That is, in a
general sense, turbulent diffusivity may depend on orientation and on location
(as will be seen later, it is a function of stratification, for instance), so that
Ex, Ey , and Ez could all have different values (anisotropic) and they might
all be functions of (x, y, z) (inhomogeneous). Often turbulent diffusivities are
not very well known and must be estimated, unless direct measurements of
the terms in Eq. (10.3.8) are available. Instrumentation must be capable of
measuring the fluctuating quantities making up the Reynolds transport term
(left-hand side), and mean concentration gradient must be measured. In many
cases, the turbulent diffusivities are treated as fitting parameters, chosen to
optimize the results of a particular model, compared to observations.
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10.3.3 Statistical Theory of Diffusion

One example of the use of observations to estimate diffusive-type spreading
characteristics is illustrated by the use of dye release experiments in a natural
system. This approach is based on the observation that average dye concen-
tration distributions are often closely approximated by Gaussian profiles (i.e.,
they are normally distributed). Figure 10.4 shows a conceptual sketch of the
outer extent of spreading of dye in the surface layer of a lake, following
a concentrated “instantaneous” release over a small area. The dye patch is
shown at three different times after this release. For simplicity, mean velocity
is assumed to be in the x-direction. Figure 10.5 shows corresponding concen-
tration profiles measured across the patch at one of these times. The ensemble
average profile is approximately normally distributed. At earlier times it would
be more peaked, and at later times it would be more flattened. In other words,
the variance of the distribution increases with time.

Assuming the Gaussian distribution is appropriate, the concentration
can be described in terms of the variances in each of the three coordinate

Figure 10.4 Spreading of a dye patch at three times: t3 > t2 > t1.

Figure 10.5 Measurements of concentration across the patch at one time, with en-
semble average.
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directions as

CŁ D Me�Kt

��2��3/2
x
y
z
exp

{
� �x �Ut�2

2
2
x

� y2

2
2
y

� z2

2
2
z

}
�10.3.9�

where M is the mass of dye released, 
x, 
y , and 
z are the standard deviations
(square roots of variances) in each of the coordinate directions, � is density,
K is a first-order decay rate (see Sec. 10.4), and t is time following the dye
release. The exponential term with K incorporates any loss of the original
mass M due to physical, biological, or chemical processes. In general, the
mass remaining in the patch at any time t is given by

�Me�Kt� D �
∫∫∫

CŁdx dy dz �10.3.10�

The variances are measures of the degree of spreading along each of the
coordinate directions. For example, variance in the x-direction is calculated
from


2
x D �

Me�Kt

∫∫∫
�x �Ut�2c dx dy dz �10.3.11�

and similar expressions may be defined for the y and z directions. It will be
shown later how the variances are related to the turbulent diffusivities.

10.4 THE ADVECTION–DIFFUSION EQUATION

Having developed the basic transport terms, we are now in position to write
a conservation equation for dissolved mass of a tracer in an aqueous system.
First, a total flux of dissolved mass of species 1 is defined as the sum of the
advective (Eq. 10.2.2) and diffusive terms (Eq. 10.3.4),

⇀
N1 D �1

⇀
VC ⇀

F1 D �1
⇀
V� k1

⇀r�1 �10.4.1�

where
⇀
N1 is the total flux of mass of species 1. For now, a molecular diffu-

sion term is used (recall that k1 is molecular diffusivity), though the following
development holds equally well for turbulent diffusion, by substituting a turbu-
lent diffusivity for k1.

Sometimes it is convenient to define a representative velocity for species
1, ⇀q 1, such that the total flux may be written as

⇀
N1 D �1

⇀q 1 �10.4.2�
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Although this velocity cannot be measured directly, it is defined by equating
Eqs. (10.4.1) and (10.4.2). If ⇀q 2 is a representative velocity for species 2, then
the total momentum per unit volume is

�⇀q D �1
⇀q 1 C �2

⇀q 2 �10.4.3�

where ⇀q is the bulk velocity, or total momentum per unit mass,

⇀q D �1
⇀q 1 C �2

⇀q 2

�
D

⇀
N1 C ⇀

N2

�
D ⇀
V �10.4.4�

Note that this result indicates that diffusion does not contribute to the total
momentum (both Eqs. (10.4.4) and (10.4.1) can be satisfied together only
when

⇀
F1 D ⇀

F2 D ⇀
0), which is consistent with the idea that diffusion causes

spreading about the center of mass and not net transport of the center of mass.
The mass balance for species 1 may be formulated in several ways, but

the most direct way is to consider a differential fluid element and incorporate
the transport of mass of species 1 across the boundaries of the element. The
approach is similar to the development leading to the continuity equation
(conservation of fluid mass — see Chap. 2), except diffusive flux must also
be included here. A general statement of dissolved mass conservation for the
fluid element (volume 8) sketched in Fig. 10.6 is

[rate of change of mass in 8 per unit time] D
[rate at which mass moves across the boundaries by net flux]

š [rate at which mass is produced �C� or consumed ��� by

chemical and biological reactions]

For simplicity, only the fluxes in the x-direction are shown in Fig. 10.6,
but similar fluxes may be defined for the y- and z-directions. Using a truncated

Figure 10.6 Fluid element, showing fluxes of species 1 in the x-direction.
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Taylor series to evaluate differences in flux values across dx, dy, and dz, the
general statement above is expressed mathematically by

∂

∂t
��1dx dy dz� D �

[
∂

∂x
�N1�xdx

]
�dy dz��

[
∂

∂y
�N1�ydy

]
�dx dz�

�
[
∂

∂z
�N1�zdz

]
�dx dy�C R1�dx dy dz� �10.4.5�

where R1 is a rate constant, giving the net production rate of species 1 per
unit volume. Then, dividing by the fluid element volume, 8 D dx dy dz,

∂�1

∂t
D �∂�N1�x

∂x
� ∂�N1�y

∂y
� ∂�N1�z

∂z
C R1

or

∂�1

∂t
C ⇀r Ð ⇀N1 D R1 �10.4.6�

A similar development for species 2 results in

∂�2

∂t
C ⇀r Ð ⇀N2 D R2 �10.4.7�

where each term has analogous meanings for species 2 as previously defined
terms for species 1. Since the present development is for binary systems, any
change in either of the species must correspond with an exact opposite change
in the other species, so R1 D �R2. Adding Eqs. (10.4.6) and (10.4.7),

∂��1 C �2�

∂t
C ⇀r Ð �⇀N1 C ⇀

N2� D 0 H) ∂�

∂t
C ⇀r Ð ��⇀V� D 0 �10.4.8�

which is the continuity equation. In other words, the mass balance statements
for the binary system are consistent with an overall statement of conservation
of mass.

A more common form of Eq. (10.4.6) can be derived by substituting
Eq. (10.4.1) for total flux and dividing by total density (assuming � D
constant),

∂CŁ
1

∂t
C 1

�
⇀r Ð ��1

⇀
V� k1

⇀r�1� D ∂CŁ
1

∂t
C ⇀r Ð �CŁ

1 � k1
⇀r ÐCŁ

1� D R1

�

H) ∂CŁ
1

∂t
CCŁ

1�
⇀r Ð ⇀V�C ⇀

V Ð ⇀rCŁ
1 D ⇀r Ð �k1

⇀rCŁ
1�C R1

�
�10.4.9�

This result is equally valid in terms of C1, simply by not dividing by �. For
incompressible flow �

⇀r Ð ⇀V� D 0 and, if k1 D constant, Eq. (10.4.9) becomes

∂CŁ
1

∂t
C ⇀
V Ð ⇀rCŁ

1 D ∂CŁ
1

∂t
C u

∂CŁ
1

∂x
C v

∂CŁ
1

∂y
C w

∂CŁ
1

∂z

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



D k1r2CŁ
1 C R1

�
�10.4.10�

which is commonly known as the advection–diffusion equation for incom-
pressible, dilute (and laminar) flow. As noted earlier, turbulent transport can
be incorporated by defining a turbulent diffusivity as appropriate. If

⇀
V D ⇀

0
and R1 D 0 (in which case the material is known as a conservative substance),
Eq. (10.4.10) reduces to

∂CŁ
1

∂t
D k1r2CŁ

1 �10.4.11�

This result is a simple diffusion equation and is known as Fick’s second law.
It is analogous to Fourier’s law of heat conduction.

For some problems it is useful to apply the advection–diffusion equation
in cylindrical coordinates. The development of this equation is not presented
here, since it follows the same general procedure as described above, but the
final result is

∂CŁ
1

∂t
C vr

∂CŁ
1

∂r
C 1

r
vt
∂CŁ

1

∂˛
C vz

∂CŁ
1

∂z

D k

[
1

r

∂

∂r

(
r
∂CŁ

1

∂r

)
C 1

r2

∂2CŁ
1

∂˛
C ∂2CŁ

1

∂z2

]
C R1

�
�10.4.12�

where subscript t indicates a tangential component and ˛ is the angular coor-
dinate.

10.4.1 Source and Sink Reaction Terms

Reactions leading to increases or decreases in species 1 are classified into two
categories, depending on whether those reactions occur uniformly throughout
the volume or at specific locations within the system, usually at a boundary.
The former are called homogeneous reactions and are usually incorporated in
the governing equation through the source/sink term R1. The latter are called
heterogeneous reactions; these are more appropriately included as boundary
conditions. In some cases, usually depending on the number of physical
dimensions being modeled, reactions that might appear as homogeneous in
one situation may appear as an internal or boundary source in another. For
example, gas transfer across an air/water interface is normally incorporated as
a boundary condition when gas concentrations in the vertical direction are of
interest, such as in lakes. In this case the advection–diffusion equation would
be solved explicitly for the vertical direction (horizontal directions might also
be modeled), and the air/water interface would represent a boundary along
that direction. However, when considering gas modeling in a river, a common

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



approach (see Chap. 12) is to use a one-dimensional (longitudinal) model, in
which case any flux across the air/water surface would be considered to be
instantaneously mixed over the entire depth. In other words, the model would
have no capability for simulating a vertical distribution of concentration, and
therefore the air/water surface has no meaning as a boundary condition. In
this case, fluxes across the surface would be considered as an internal source
term for the model.

Internal (homogeneous) reactions may be specified in a number of ways,
and a full description of all possibilities, for all potential parameters of interest,
would require a separate text. It is worthwhile to note here, at least, two
common classes of reaction terms. In general, reaction terms may be grouped
according to the assumed dependence of the reaction on concentration of
the chemical species of interest. The most common reaction terms are either
zero order or first order. A zero-order source/sink term does not depend on
concentration at all but would be a constant (possibly time-varying) term
added to the right-hand side of Eq. (10.4.10). An example of this type of
reaction is a municipal waste stream discharging into a river. The loading
of a contaminant of interest to the river through this waste stream would
not depend on concentrations in the river, and would depend only on the
characteristics of the discharge. A first-order reaction is one that depends
linearly on concentration. In this case, a first-order reaction rate K would be
defined so that

R1

�
D �š�KC1 �10.4.13�

where either plus (C) or minus (�) is used depending on whether concentration
is growing or decaying. This form of reaction term is useful for many natural
processes and also allows analytical solutions for the advection–diffusion
equation, as discussed further in Section 10.7.

10.4.2 Boundary and Initial Conditions

Both boundary conditions and initial conditions are needed to obtain solutions
to any differential equation, and the advection–diffusion equation is no excep-
tion. Boundary conditions apply to specific locations in the modeled physical
domain, as noted above, and are usually specified in one of three ways (see
also Sec. 4.6):

1. Specify concentration (e.g., C D C0 at x D 0), possibly time-depen-
dent; in combination with velocity, this gives advective flux.

2. Specify gradient (also possibly time-dependent), which, in combi-
nation with the diffusivity, gives diffusive flux — this is useful,
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for example, at impermeable surfaces, where velocities go to zero;
zero gradient implies a “perfectly insulating surface” (using heat
conduction analogy).

3. Specify total flux, as a (linear) combination of both diffusive and
advective fluxes.

Boundary conditions play an important role in determining the behavior
of a particular solution, and care must be taken in specifying the correct
conditions for any given problem. This is particularly true when solutions
are desired near one of the boundaries of the system domain. In some cases,
where numerical solutions are applied, it is useful to define additional grids or
nodes outside of the actual system being modeled, and to apply the boundary
conditions at the limits of these additional grids. That way, the boundary
condition itself does not directly affect as strongly the solution at the point of
interest. This and other considerations for numerical solutions are discussed
in more detail in Sec. 10.8.

Initial conditions also are needed for time-dependent problems (i.e.,
∂C/∂t 6D 0). These are usually specified by setting all values of C throughout
the domain to known values for t D 0. A useful function for specifying initial
conditions, which allows analytical solutions, is the Dirac delta function, υ,
used to indicate an instantaneous input of mass at a point, along a line or across
a surface (corresponding to a three-dimensional, two-dimensional, or one-
dimensional problem, respectively). For example, for a planar source parallel
to the y–z plane and passing through x D x1, the initial concentration can be
described by C�xi, 0�dx D Mυ�x � x1�, where M D input mass per unit area,
dx is the thickness of the source and

υ�x � x1� D 0 if x 6D x1

υ�x � x1� D 1 if x D x1∫∫∫
8

υ�x � x1�d8 D 1 �10.4.14�

Application of this function to solve a simple example problem shows
how it can be used. For this example, consider an infinitely long cylinder filled
with quiescent water, as shown in Fig. 10.7. At time t D 0, an infinitely thin
cylinder of dye with mass M is introduced at x D 0. The problem is then to
calculate the concentration at any x and any t > 0. For this problem, note that
C is constant across any cross section, so there is no diffusion in the radial
(y–z) plane. The initial concentration distribution is shown in Fig. 10.8, along
with several distributions at later times. Note that C ! 1 at x D 0, since
a finite amount of mass (M) is injected into an infinitely small volume (if
dx ! 0).
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Figure 10.7 Infinite cylinder with initial injection of dye at x D 0.

The full advection–diffusion equation is given by Eq. (10.4.9) (the sub-
script 1 is dropped here and in most of the text to follow, since it will be
understood that species 1 is being analyzed). Since the water is quiescent,
u D v D w D 0, and CŁ is a function of x only. The dye also is assumed
to be conservative (R D 0), so the governing equation is the simple diffusion
equation (10.4.11). The initial condition (t D 0) states that CŁ D 0 when x 6D 0
and CŁ ! 1 when x D 0 (i.e., υ�x D 0� would be used to specify the initial
injection of mass). The boundary conditions are CŁ ! 0 when x is very large,
i.e., x ! š1. The general solution is

CŁ D Bp
t

exp
{

� x2

4kt

}
�10.4.15�

where B is a constant. The value for B is determined by relating it to the total
mass M, using the fact that M is constant (no decay) and using

M D
∫ C1

�1
�CŁAdx D �A

∫ C1

�1
CŁdx �10.4.16�

Substituting for CŁ from Eq. (10.4.15),

M D �A
∫ C1

�1

Bp
t

exp
{

� x2

4kt

}
dx D �A

Bp
t
�2

p
�kt�

D 2�AB
p
�k �10.4.17�

Note that M is independent of time, as it should be for a conservative dye.
Rearranging this last result to solve for B, and substituting into Eq. (10.4.15),
the final solution is

C D M

2�A
p
�kt

exp
{

� x2

4kt

}
�10.4.18�
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Figure 10.8 Concentration distributions at three different times �t1 < t2�.

This solution is sketched schematically in Fig. 10.8 for two times, t > 0. Note
that the solution is in the form of a normal distribution, symmetric and centered
around the dye center of mass at x D 0. This is consistent with the statistical
approach to diffusion as discussed previously in Sec. 10.3.3.

10.5 DISPERSION

The term dispersion is often used interchangeably with the term diffusion,
since both terms refer to processes that tend to spread a fluid property relative
to mean transport (i.e., advective transport). Dispersion also is often character-
ized similarly as a diffusion-like term in the mass balance advection–diffusion
equation, at least in surface water modeling. However, diffusion and dispersion
really refer to two different processes. Diffusion results from temporal aver-
aging of velocity and other property fluctuations, as used in defining turbulent
diffusivities, for example. Dispersion, however, results from spatial averaging.
In many ways, the idea of dispersion is analogous to that of turbulent diffusion.
For instance, it would not be necessary to define turbulent closure schemes
(Chap. 5) if models were solved with time and spatial steps small enough to
resolve directly the turbulent fluctuations. In most applications this is imprac-
tical, so that turbulent diffusivities, or eddy viscosities, in the case of the
momentum equations, are defined to account for processes occurring on time
scales much less than the model time step.

Similarly, simplifications in spatial representation require that smaller-
scale processes be represented in some way. The most common application
of dispersion is when the spatial domain, particularly for the velocity field, is
simplified by integrating (averaging) over one or more coordinate directions.
For example, one-dimensional river models are by definition averaged over
depth and width, and thus require a longitudinal dispersion term to account
for variations or processes occurring in those directions, which are not directly
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included in the model formulation. Dispersion is often included in such models
using a Fickean diffusion term, i.e., dispersive transport may be defined by
the product of a dispersion coefficient, or dispersivity, with a mean gradient.
This dispersion coefficient is in most cases much larger than the turbulent
diffusivity, so that diffusion terms are often neglected when dispersion is
included. In many applications dispersion is used as a sort of bulk adjustment
to the model, to account for any processes (known or unknown) which are
not directly represented. In fact, the advection–diffusion equation might be
more aptly called the advection–dispersion equation in these cases. As long as
the dispersion coefficient can be estimated, this usually allows for significant
simplifications in model approach and structure, by reducing the number of
spatial dimensions that must be considered.

10.5.1 Taylor analysis

Dispersion was originally formulated by Taylor in the context of one-dimensio-
nal transport in a tube (Fig. 10.9). For this analysis an instantaneous injection
of a dye, uniformly over a cross section, is assumed at time t D 0 and at
location x D 0. The tube has constant diameter and there is a steady turbulent
flow in the positive x-direction. In general, the concentration is a function
of x, t, and r D radial position, so CŁ D CŁ�x, r, t�. The dependence on r
arises because the velocity is a function of r. The governing equation for
this problem is a two-dimensional (radially symmetric) advection–diffusion
equation, written in cylindrical coordinates as

∂CŁ

∂t
C u�r�

∂CŁ

∂x
D 1

r

∂

∂r

[
rEr�r�

∂CŁ

∂r

]
C Ex�r�

∂2CŁ

∂x2
� kCŁ �10.5.1�

where u�r� D longitudinal velocity, Er�r� D radial diffusivity, Ex�r� D longi-
tudinal diffusivity, and k D first-order decay rate. It is assumed that steady,
fully developed flow exists in the tube, so that u, Er , and Ex are not func-
tions of x.

Figure 10.9 Problem definition for Taylor analysis of dispersion in a tube.
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Although the velocity distribution is not necessarily known, it is assumed
that the Reynolds analogy holds, and Er is the same as the eddy viscosity in
the radial direction, so

Er�r� D � �

�∂u/∂r
�10.5.2�

where � D shear stress, given by

� D �0
r

R
�10.5.3�

and �0 D wall shear stress and R D tube radius. Further substituting uŁ D
��0/��1/2 D friction velocity, Eq. (10.5.2) is rewritten as

Er�r� D � r

R

u2
Ł

�∂u/∂r�
�10.5.4�

Also, following Taylor, the longitudinal diffusion term is neglected (this should
be valid after a sufficient time has elapsed following the injection).

In principle, once u(r) and Er�r� are specified, the original
equation (10.5.1) may be integrated directly to obtain a solution. However,
this information is not always available, and the integration may be difficult,
possibly requiring a numerical solution. A simpler alternative approach was
suggested by Taylor, involving use of a one-dimensional transport equation,

∂CŁ

∂t
CU

∂CŁ

∂x
D EL

∂2CŁ

∂x2
� kCŁ �10.5.5�

where CŁ D CŁ�x, t� is the cross-sectional average concentration, U D Q/A
is the mean velocity, Q D flow rate, A D cross-sectional area, and EL is a
longitudinal dispersion coefficient. Note that both CŁ and U are no longer
functions of r. The solution to this problem is already known; it is the same
as Eq. (10.3.9), rewritten here in terms of the present variables,

CŁ D M

2�A
p
�ELt

exp
{

� �x �Ut�2

4ELt
� kt

}
�10.5.6�

where M is the original mass of dye injected. Taylor showed that this solution
was a good approximation to the exact solution, using

EL D 10.1RuŁ �10.5.7�

This value may be compared with the radial or longitudinal diffusivities,
estimated from

Er ¾D Ex ¾D 0.07RuŁ �10.5.8�

which are several orders of magnitude smaller.
The different effects of diffusion and dispersion are illustrated in

Fig. 10.10, for an instantaneous injection of dye at time t D 0 and x D 0.
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Figure 10.10 Effect of velocity shear on the spreading of dye, with a longitudinal
dispersion approach: (a) spreading due to diffusion only; (b) spreading due to diffusion
and velocity shear; and (c) resulting cross-sectional average concentration profiles,
according to the dispersion model.

For purposes of demonstration, the dye is assumed to be conservative. In
Fig. 10.10a a uniform velocity is assumed, so that only longitudinal diffusion
occurs (because there are no gradients in the radial direction, radial diffusion
is not important). In this case the dye spreads symmetrically upstream and
downstream about the center of mass being advected downstream at velocity
U. Figure 10.10b shows a more realistic situation that accounts for the no-slip
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conditions at the tube wall, although the mean velocity is unchanged. The
variations in velocity cause a stretching of the dye distribution, effectively
spreading the concentration more quickly than by diffusion alone, as shown
in Fig. 10.10c. In this case, radial diffusion will occur because this stretching
creates radial gradients. For the longitudinal dispersion approach, the same
velocity field as in part (a) is assumed (i.e., uniform), but EL is defined to
account for the effects of nonuniform velocity, so that a better fit with the
cross-sectional average concentration (CŁ) is obtained, as seen in Fig. 10.10c.
Although not shown here, this produces a response similar to that shown in
part (a), but with a faster spreading rate.

10.5.2 Longitudinal Dispersion in Rivers

As previously noted, dispersion is commonly used when a model is simplified
in the number of spatial dimensions or coordinate directions that it includes
explicitly. In general, since almost all real processes are three-dimensional in
nature, this implies that any model that does not solve for all three coordinate
directions should include a dispersion term to account for those processes not
directly included. In order to illustrate this procedure, and also to show how a
dispersion coefficient may be estimated, the problem of two-dimensional open
channel flow is considered here for modeling in a one-dimensional (longitu-
dinal) framework. Two-dimensional flow is a common assumption for open
channel modeling (see Chap. 7) and in principle should include a dispersion
term to account for the fact that any processes occurring in the lateral direction
(the y-direction, in the following discussion) are already averaged. The focus
here is on the further simplifying step of going to a one-dimensional model.

A two-dimensional flow and concentration profile for a tracer, assumed
to be conservative for simplicity of discussion, are shown in Fig. 10.11, where
arbitrary distributions are assumed. The important point to note is the decom-
position of both velocity u and concentration c into mean and fluctuating

Figure 10.11 Two-dimensional velocity and concentration profiles, with depth-ave-
raged values and spatial deviations shown.
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components, i.e.,

u D UC u00�z� c D CC c00�z� �10.5.9�

(note that a lower case c is used to denote a local value, while the upper case
indicates an average, as defined below; also, the discussion here applies equally
to a dimensional and a nondimensional concentration). The decomposition in
Eq. (10.5.9) is similar to the Reynolds decomposition discussed in Sec. 5.3,
except that the means and fluctuations here are defined over space instead of
time, so

U D 1

h

∫ h

0
u dz and C D 1

h

∫ h

0
c dz �10.5.10�

and by definition,∫ h

0
u00 dz D

∫ h

0
c00 dz D 0 �10.5.11�

In general, u and c also may be functions of x and/or time t. For the present
discussion it is assumed that the profiles are already averaged over a time
period for which a dispersion coefficient value is desired. Similar calcula-
tions as shown below could be performed for other time periods or for other
longitudinal positions, as needed.

The governing equation for transport of a conservative tracer in two-
dimensional flow is

∂c

∂t
C u

∂c

∂x
D ∂

∂x

(
Ex
∂c

∂x

)
C ∂

∂z

(
Ez
∂c

∂z

)
�10.5.12�

where Ex and Ez are diffusivities in the x and z directions, respectively.
Following the same approach as in Taylor’s analysis of dispersion in a tube, the
diffusive transport in the x-direction is assumed to be negligible. Substituting
Eq. (10.5.9) into Eq. (10.5.12),

∂

∂t
�CC c00�C �U C u00�

∂

∂x
�CC c00� ¾D ∂

∂z

[
Ez
∂

∂z
�CC c00�

]
�10.5.13�

Again following a procedure similar to Reynolds averaging, these terms are
depth-averaged to obtain

∂C

∂t
CU

∂C

∂x
C u00 ∂c

00

∂x
D 1

h

(
Ez
∂C

∂z

)∣∣∣∣
h

0
�10.5.14�

where the double overbar indicates a spatial average and Eq. (10.5.11) has
been used to set the average of any single fluctuating term to zero. The
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right-hand side (RHS) of Eq. (10.5.14) is the difference between the vertical
transport at the upper and lower boundaries and, as long as there is no loss
or gain of material at these boundaries (i.e., zero-flux boundary conditions),
both of these transport rates are zero.

The third term on the left-hand side (LHS) of Eq. (10.5.14) is similar to
a Reynolds stress term. It is rewritten as

u00 ∂c
00

∂x
D ∂

∂x
�u00c00�� c00 ∂u

00

∂x
D ∂

∂x
u00c00 �10.5.15�

where the last result is due to continuity, since the fluctuating velocity field
must satisfy the continuity equation just as the mean field does. Making this
last substitution, the result is

∂C

∂t
CU

∂C

∂x
D � ∂

∂x
u00c00 �10.5.16�

This last expression may be written using a dispersion term, by defining the
dispersion coefficient as

EL D �u00c00

∂C/∂x
�10.5.17�

so that

∂C

∂t
CU

∂C

∂x
D EL

∂2C

∂x2
�10.5.18�

This result is the (one-dimensional) advection–dispersion equation for this
flow. The equation is mathematically much simpler to solve than the original
two-dimensional equation (10.5.12) and provides adequate calculations for the
average concentration C.

While it is possible to calculate terms such as u00c00 directly, as long as
sufficient data are available, an alternate approach may be used that relies only
on velocity data and an estimate for Ez. For this approach, the original two-
dimensional equation, neglecting longitudinal diffusion, is used as a starting
point,

∂c

∂t
C u

∂c

∂x
D ∂

∂z

(
Ez
∂c

∂z

)
�10.5.19�

The coordinate system is then transformed by considering a new coordinate
�, which is moving with mean velocity U, so

� D x �Ut
∂�

∂t
D �U ∂c

∂t

∣∣∣∣
�

D ∂c

∂t

∣∣∣∣
x

CU
∂c

∂�

∂c

∂x
D ∂c

∂�
�10.5.20�
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Then

∂c

∂t
�U

∂c

∂�
C u

∂c

∂�
D ∂

∂z

(
Ez
∂c

∂z

)

H) ∂c

∂t
C u00 ∂c

∂�
D ∂

∂z

(
Ez
∂c

∂z

)
(10.5.21)

This equation may be simplified for the case of steady state, also assuming
c00 − C and noting that C is not a function of z,

u00 ∂C
∂�

D ∂

∂z

(
Ez
∂c00

∂z

)
�10.5.22�

Then, integrating with respect to z, we have (z0 and z00 are dummy integration
variables in the following)∫ z

0
u00 ∂C
∂�

dz0 D
∫ z

0

∂

∂z0

(
Ez
∂c00

∂z0

)
dz0

H) ∂C

∂�

∫ z

0
u00 dz0 D Ez

∂c00

∂z
H) ∂c00

∂z
D

[
1

Ez

∫ z

0
u00 dz0

]
∂C

∂�

where a zero-flux boundary at z D 0 has been assumed in the first integration
step. Integrating once again,∫ z

0

∂c00

∂z00
dz00 D c00�z�� c00 �0� D ∂C

∂�

∫ z

0

[
1

Ez

∫ z

0
u00dz0

]
dz00

This last result is multiplied by u00, and the resulting product is depth-averaged,
to obtain

u00c00 D u00 ∂C
∂�

∫ z

0

[
1

Ez

∫ z

0
u00 dz0

]
dz00 C u00c00 �0�

H) u00c00 D 1

h

∫ h

0
u00c00dz D 1

h

∫ h

0

{
u00 ∂C
∂�

∫ z

0

[
1

Ez

∫ z

0
u00dz0

]
dz00

}
dz

C 1

h

∫ h

0
u00c00 �0� dz

Or, since the last term on the right-hand side is zero because c00 (0) is treated
like a constant, the final result is

u00c00 D 1

h

∫ h

0

{
u00 ∂C
∂�

∫ z

0

[
1

Ez

∫ z

0
u00dz0

]
dz00

}
dz �10.5.23�

This gives an explicit expression for the dispersive transport term, which
may be calculated as long as the velocity and diffusion profiles are known. This
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may be taken one step further, to develop an expression for the longitudinal
dispersivity, by substituting Eq. (10.5.17),

EL D �1

h

∫ h

0

{
u00

∫ z

0

[
1

Ez

∫ z

0
u00dz0

]
dz00

}
dz �10.5.24�

Consistent with the idea that the dispersive transport is related to the spatial
fluctuations in velocity, this last result shows that EL is larger when the velocity
fluctuations u00 are larger. Estimates for open channel flow reported by Fischer
et al. (1979) show that EL is two to four orders of magnitude larger than longi-
tudinal turbulent diffusivity, Ex, and may be approximated by EL

¾D 20.2 huŁ.
For practical applications, EL is normally chosen as a fitting parameter, since
it is difficult to know its precise value without detailed velocity profile infor-
mation, which normally is not available. Statistical approaches can be used, as
discussed previously in the context of turbulent diffusivities, or values can be
chosen to allow the best fit of a particular model. The final value also can take
into account numerical dispersion resulting from the solution procedure used to
solve the partial differential equation of mass transport (advection–dispersion
equation), as discussed further in Sec. 10.8.1.

10.6 DISPERSION IN POROUS MEDIA

Experiments of solute diffusion in the stagnant fluid phase that saturates sedi-
ments have indicated that the molecular diffusive transport in such a domain
is subject to attenuation due to several factors, including electrical effects and
tortuosity. Electrical effects originate from the gradients of other ions, which
may be present in the solution or sorbed onto the particles. However, the
electric effects are usually much smaller than the effect of tortuosity.

Tortuosity is associated with the ratio of the actual path of ions as they
move around sediment particles to the straight distance of that path. Basically,
it may be assumed that the tortuosity should depend on the porosity of the
porous medium and a characteristic length of the sediment particles. It is
common to define the tortuosity, �, by

D0 D Dm
�2

�10.6.1�

where Dm is the coefficient of molecular diffusion of the contaminant in free
solution and D0 is the diffusion coefficient in the fluid phase which saturates
the porous medium. In the case of lake sediments of similar characteristic
particle size, the tortuosity can be expressed as a function of the porosity,
and experiments have indicated that the following approximation can often be
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useful:

D0 D �2Dm �10.6.2�

where � is the porosity (see Sec. 4.3). In the case of a heterogeneous porous
medium with an axis of symmetry, the tortuosity may be considered as a
second-order tensor depending on the vector, which indicates the direction of
preferred diffusion. Then the diffusion coefficient also should be represented
by a tensor.

Generally, the fluid phase that saturates the porous medium is subject
to flow. Then the solute, advected by the flowing fluid particles, follows the
curved paths of the fluid particles, and some mixing between flow lines is
inevitable, even though the general macroscale fluid motion occurs along
straight lines. Again, the difference between straight-line advection and advec-
tion in curved lines through the porous medium is associated with the tortousity
of the porous medium. Section 4.4 shows how the laminar flow through porous
media can be represented by a model of flow through small capillaries. Then,
the average flow rate per unit area, namely the specific discharge, which is a
macroscale (scale much larger than the characteristic pore size) parameter, is
shown to be proportional to the hydraulic gradient. Therefore, though the flow
is basically laminar, its macroscale characteristics can be modeled and simu-
lated by methods applied to inviscid flows. Hence, the specific discharge is
shown to originate from a potential function that is proportional to the piezo-
metric head. The macroscale average interstitial velocity through the porous
medium is equal to the specific discharge divided by the porosity of the porous
medium. However, contaminant advection in the domain is accomplished by
the microscale flow of the fluid particles. The microscale flow velocity can be
expressed, in Eulerian terms, by

⇀
V D EVC ⇀

V0 �10.6.3�

where EV is the average macroscale local flow velocity, which originates from
the gradient of the potential function, and EV0 is the local deviation of the
microscale velocity, relative to the macroscale local flow velocity. The expres-
sion given by Eq. (10.6.3) is very similar to the expression represented by
Eq. (5.2.1), with regard to turbulent flow. However, in turbulent flow, under
steady-state conditions, the value of the local velocity deviation from the
average value is still a time-dependent quantity. With regard to flow through
porous media, under steady-state conditions, the local deviation from the
macroscale velocity is a space-dependent variable. This, then, is more consis-
tent with the definition of a dispersive transport, as defined in the previous
section. It should be noted that by the employment of the Lagrangian approach,
the deviation of the fluid particle velocity from the local macroscale velocity
is always a time-dependent variable.
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As with the discussion of dispersion in open channel flow in the previous
section, the deviation of the microscale velocity from the macroscale velocity
is associated with the dispersion of contaminant in the porous medium domain.
On the other hand, the macroscale velocity is considered as the only parameter
leading to contaminant advection in the domain. In addition, there are two
major differences between dispersion in surface waters and dispersion in flow
through porous media: (a) dispersion in free turbulent flow often tends to be
nearly isotropic, while dispersion in flow through a porous medium, even in
an homogeneous and isotropic porous medium, is a nonisotropic phenomenon,
provided that the Peclet number is high (the definition of Peclet number is
given hereinafter); and (b) for large-size domains the dispersion coefficients of
flow through a porous medium are larger than for smaller size domains — in
large domains, there is likely to be a greater degree of inhomogeneity in the
properties of the porous medium, which intensifies the effect of contaminant
dispersion, as discussed below.

The dispersion in flow through a porous medium depends on the prop-
erties of the porous medium and on the magnitude of the flow velocity. For
larger macroscale velocity, the deviations of the microscale velocities from
the macroscale velocity also become larger. Therefore the dispersion coef-
ficient value increases with an increase of the macroscale velocity. If the
fluid that saturates the porous medium is flowing, and the porous medium
is isotropic, then dispersion coefficients are larger in the direction of the
macroscale velocity vector.

Assuming that the porous medium is isotropic, the dispersion coefficient
should depend on scalar properties of the porous medium, as well as the
velocity vector and its invariant, namely, its absolute value or magnitude.
Therefore the dispersion coefficient should be a second-rank tensor, which
can be represented using a series approximation,

Dij D D0υij C a1Vυij C a2
ViVj
V

C a3V
2υij C a4ViVj �10.6.4�

where D0 is the molecular diffusivity affected by the tortuosity of the domain,
ai�i D 1 . . . 4� are coefficients with constant values, V is the absolute value
of the velocity, Vi is the ith component of the velocity vector, and υij is the
Kronecker delta.

The coefficients ai of Eq. (10.6.4) depend on the structure of the porous
medium, which can be represented by a characteristic advection length. In
most cases, not all terms of the series given by Eq. (10.6.4) are considered in
studies of contaminant dispersion in a porous medium. Basically, the number
of significant terms of Eq. (10.6.4) depends on Peclet number, defined as

Pe D Vd

Dm
�10.6.5�
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where V is the large-scale interstitial flow velocity, d is the mean grain size
or any other characteristic length of contaminant advection in the domain, and
Dm is molecular diffusivity of the contaminant in the fluid phase. The Peclet
number, in this case, represents the ratio between contaminant advection and
molecular diffusion.

If Pe is extremely small, then only the first term on the right-hand side of
Eq. (10.6.4) should be considered. If Pe is of order O(1), then the first three
terms should be taken into account. In most cases relevant to contaminant
transport in aquifers, Pe is quite high. Then the first and two last right-hand-
side terms of Eq. (10.6.4) can be neglected, and an approximate relation is
obtained,

Dij D aTVυij C �aL � aT�
ViVj
V

�10.6.6�

where aT is called the transverse dispersivity, and aL is called the longitudinal
dispersivity. The longitudinal dispersivity is normally about 20 times larger
than the transverse dispersivity.

As indicated by Eq. (10.6.6), the principal directions of the disper-
sion tensor are parallel and perpendicular to the macroscale flow direction.
Therefore by adopting a coordinate system with a coordinate parallel to the
macroscale velocity, we obtain a matrix of dispersion coefficients whose
entries are zero, except for those occupying the major diagonal. The values of
the major diagonal dispersion coefficients are given by

DL D aLV DT D aTV �10.6.7�

where DL is the dispersion coefficient in the longitudinal direction (the direc-
tion parallel to the velocity vector) and DT is the dispersion coefficient in an
arbitrary direction perpendicular to the velocity vector.

It was noted previously that in large domains dispersion is usually more
significant than in smaller domains. This phenomenon is commonly referred
to as the scale effect. It is generally connected with some heterogeneity that
characterizes common large-size porous domains. To exemplify the possible
effect of the domain heterogeneity, consider the conceptual model shown in
Fig. 10.12. The large-size domain shown in this figure incorporates porous
blocks, which are permeable. In these blocks, two sets of equidistant fractures
are embedded. There is laminar flow through the small-aperture fractures.
Therefore these fractures may be considered as another type of porous medium.
Through the large-size domain of Fig. 10.12, two types of flow are avail-
able for contaminant advection, the porous block flow and the fracture flow.
Contaminant disposed at a certain point of the domain is subject to advection
by both of these flows. However, the flow through the fractures is usually
much quicker than that through the porous blocks. Therefore the fracture
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Figure 10.12 A conceptual model of a fractured permeable medium: (a) porous
blocks embedding small aperture fractures; (b) mixing in the elementary fracture
volume.

flow conveys contaminant into regions in which the porous block flow is not
contaminated. Furthermore, there is mixing between the porous block flow and
the fracture flow. The incorporation of contaminant advection in the blocks and
the fractures and the mixing between the fracture flow and the porous block
flow can be represented as advection and dispersion, respectively, in a homo-
geneous domain. However, the presentation of the domain of Fig. 10.12 as a
homogeneous continuum porous matrix requires consideration of a sufficiently
large volume of the blocks with the embedded fractures. Such a volume can be
termed a representative elementary volume (REV) with regard to contaminant
transport in the domain.

In Fig. 10.12b a schematic description of the mixing between the porous
block flow and the fracture flow is given under steady-state flow. The mixing is
assumed to take place in the elementary volume of the fracture. As an example,
consider the case when there is complete mixing between the fracture flow and
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porous block flow in the elementary fracture volume, shown in Fig. 10.12b.
By referring to the Figure we obtain

Qf
∂Cf

∂x
C qb tan �

(
Cf C 1

2

∂Cf

∂x
dx � Cb

)
D 0 �10.6.8�

where Qf is the fracture flow-rate, Cf is the contaminant concentration of the
fracture flow, qb is the specific discharge of the porous block flow, Cb is the
contaminant concentration of the porous block flow that enters the fracture
elementary volume, and � is the orientation angle of the fractures.

As shown in the figure, initially (at t D 0), the value of Cb is zero
for the entire domain, and the value of Cf is C0 at the entrance of the first
fracture segment (at x D 0). Therefore direct integration of Eq. (10.6.8) yields
the initial distribution of Cf as

Cf D C0 exp
(

�qb tan �

Qf
x

)
�10.6.9�

Equation (10.6.9) indicates that, due to the mixing between the fracture
flow and the porous block flow, the contaminant distribution in the domain
is subject to variations. The contaminant distribution in the porous blocks is
not uniform downstream of the fracture segment. Therefore, in the segment
following, the mixing between the porous block flow and the fracture flow
produces another type of distribution of contaminant in the domain. By numer-
ical experiments, it is possible to show that contaminant transport in the
domain of Fig. 10.12 can be simulated as a combination of advection and
dispersion in a domain composed of a continuum porous medium, provided
that the simulated domain is sufficiently large.

10.7 ANALYTICAL SOLUTIONS TO THE
ADVECTION–DIFFUSION EQUATION

In this section we consider analytical solutions for the advection–diffusion
equation that have been developed for certain simplified conditions. These
solutions can be applied directly to predict the behavior of a system under
the stated conditions, and they are often useful for checking the results of a
numerical solution that might be developed for more complicated situations.
In other words, numerical model solutions are often used for simulations of
more realistic conditions than are usually assumed for the analytical solutions
presented here. In many cases the problems introduced in real applications are
associated with the specification of initial and/or boundary conditions. The
numerical model might be run under simplified conditions to compare with
an analytical solution, as a verification that the model is properly formulated.
Numerical modeling considerations are discussed further in Sec. 10.8.
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Consider first the general three-dimensional form of the advection–diffu-
sion equation, with first-order reaction,

∂C

∂t
C u

∂C

∂x
C v

∂C

∂y
C w

∂C

∂z
D ∂

∂x

(
Ex
∂C

∂x

)
C ∂

∂y

(
Ey
∂C

∂y

)

C ∂

∂z

(
Ez
∂C

∂z

)
�KC �10.7.1�

where, as before, C is concentration (CŁ could be used just as well), (x,
y, z) are the three spatial coordinates, (u, v, w) are the three corresponding
velocity components, (Ex, Ey , Ez) are the corresponding diffusion coefficients,
and K is the first-order decay constant. Specific solutions to Eq. (10.7.1) are
outlined below for different domains, boundary conditions, and source condi-
tions, which are commonly introduced through the boundary conditions.

10.7.1 Point Sources

Instantaneous Point Source

The instantaneous point source is perhaps the most fundamental situation to
consider, since it forms a basis for most of the other solutions presented in
this section. An instantaneous point source is one where a finite amount of
mass is injected instantaneously at an infinitesimally small point. A solution is
obtained first for the following conditions: (1) infinitely large domain with a
source located at (x1, y1, z1) — see Fig. 10.13; (2) homogeneous, anisotropic
turbulence, constant in time; and (3) uniform and steady velocity field in the
x-direction only.

The governing equation is Eq. (10.7.1), without the advection terms for
v and w. A change of variables is used to eliminate the advection and decay
terms, by defining

C D ϕe�Kt �10.7.2�

and

x D � CUt �10.7.3�

This transforms the problem into one as viewed in a frame of reference moving
with the mean velocity U (recall discussion in Sec. 10.5.2). By substituting
for C and x into Eq. (10.7.1), with v D w D 0, the resulting equation is

∂ϕ

∂t
D Ex

∂2ϕ

∂x2
C Ey

∂2ϕ

∂y2
C Ez

∂2ϕ

∂z2
�10.7.4�

The initial condition is assumed to be C D 0 everywhere and the boundary
conditions are C ! 0 at large distances from the source, i.e., for �x, y, z� !
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Figure 10.13 Instantaneous point sources in an infinite domain.

š1. The solution, in terms of the original variables, is

C D M exp��ˇ�
�4�t�3/2�ExEyEz�1/2

�10.7.5�

where M is the injected mass and

ˇ D [x � x1 �Ut]2

4Ext
C �y � y1�2

4Eyt
C �z � z1�2

4Ezt
CKt �10.7.6�

It should be noted that this solution is invalid at t D 0, where C is infinite.
Also, the maximum concentration at any time t occurs for y D y1, z D z1, and
�x � x1� D �Ut�. This is the position of the (moving) center of the injected
mass. This maximum concentration is proportional to t�3/2, which is a faster
rate of decrease than for the line and plane sources, as will be seen below.

The solution given by Eqs. (10.7.5) and (10.7.6) can be generalized to
consider a shear flow, with velocities

u D u0�t�C ∂u

∂y
y C ∂u

∂z
z D u0�t�C �yy C �zz and 	 D w D 0 �10.7.7�

For simplicity in notation, a parameter ϕ also is defined as

ϕ2 D 1

12

(
�2
y

Ey
Ex

C �2
z

Ez
Ex

)
�10.7.8�

The inverse of ϕ is thought of as a time scale for the importance of velocity
shear in causing mixing of concentration. The general solution under these
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conditions is

C D M exp��ˇ�
�4�t�3/2�ExEyEz�1/2 �1 C ϕ2t2�1/2

�10.7.9�

where M is again the mass injected, but ˇ is defined here as

ˇ D

[
x � x1 �

∫ t

0
u0 dt � 1

2
��yy C �zz�t

]2

4Ext�1 C ϕ2t2�
C �y � y1�2

4Eyt

C �z � z1�2

4Ezt
CKt �10.7.10�

This solution simplifies to Eqs. (10.7.5) and (10.7.6) for a steady, uni-
form velocity field (where �y D �z D ϕ D 0). This simplified velocity field will
be assumed for most of the solutions derived below. Numerical approaches
may be used to calculate the integral in the numerator of Eq. (10.7.10) in
cases where analytical results are not possible. It is interesting to note that
when ϕt × 1, the maximum concentration decreases with t�5/2, considerably
faster than the t�3/2 behavior determined for the uniform velocity field. This
results from the additional effect of shear-induced mixing and implies that
some adjustments would have to be made in the dispersion coefficients if a
model using the simplified velocity field were to be used (also recall the earlier
discussion of dispersion).

Continuous Point Source

In general, to develop solutions for continuous sources, the basic procedure is
to integrate the corresponding instantaneous source solution over time. That
is, a continuous source is considered to be a series of instantaneous sources
acting over a given time interval. As will be seen, for continuous sources the
concept of the steady state becomes of interest, when the source is acting over
a very long time.

For a continuous point source the same basic assumptions are used as
for the instantaneous source, except in this case the source occurs over a time
interval t1. The velocity field is steady and uniform and in the x-direction only,
and the source is located at position (x1, y1, z1), as before. Each instantaneous
source (with solution given by Eq. 10.7.5) is associated with an amount of
mass (q dt), where q D dM/dt D mass injection rate. The total concentration
response is then obtained by integrating over time t1,

C D d
p
�

2
p
a

fe2
p
ab[erf�F1 C F2�� erf�F3 C F4�]

C e�2
p
ab[erf�F1 � F2�� erf�F3 � F4�]g �10.7.11�
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where

a D �x � x1�2

4Ex
C �y � y1�2

4Ey
C �z � z1�2

4Ez
�10.7.12�

b D U2

4Ex
CK �10.7.13�

d D q exp
[
�x � x1�/2Ex

]
�4��3/2�ExEyEz�1/2

�10.7.14�

and

F1 D
(

a

t � t1

)1/2

F2 D [b�t � t1�]
1/2 erf��� D 2p

�

∫ �

0
e��2

d�

F3 D
(a
t

)1/2
F4 D �bt�1/2 �10.7.15�

and erf is the error function. Values of the error function can be found in
various statistic texts or from various web sites. A useful calculator may be
found at http://ourworld.compuserve.com/homepages/MTE/gerr�e.htm.

For a continuous injection, the actual time is set equal to the injection
time, t D t1. In this case it should be noted that F1 becomes unbounded
(approaches 1), but F2 D 0 and the error function is still defined. For a
steady-state solution, we let t ! 1, and Eq. (10.7.11) becomes

C D d
p
�p
a

exp��2
p
ab� �10.7.16�

An approximate solution for the steady state is also obtained using a disk diffu-
sion approach, where advective transport is assumed to outweigh the effects
of diffusion in the x-direction. The word “disk” refers to the fact that under
this assumption the concentration spreads radially with respect to the x axis
(assuming the source and the velocity field are aligned along the x axis) and
that transport in the x-direction is dominated by advection, with diffusive trans-
port neglected. This assumption is sometimes referred to as a boundary layer
approximation, since longitudinal gradients are often neglected in boundary
layer analyses, relative to transverse gradients. Figure 10.14 illustrates this
situation, and the solution (for a source at x1 D y1 D z1 D 0) is

C D q

4��EyEz�1/2x
exp

(
� y2U

4xEy
� z2U

4xEz
� Kx

U

)
�10.7.17�
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Figure 10.14 Illustration of the disk diffusion assumption; diffusion in the x-direction
is neglected, relative to advective transport.

10.7.2 Line Sources

Instantaneous Line Source

An instantaneous line source is similar to an instantaneous point source,
except the mass is injected evenly over a line (Fig. 10.15). Otherwise, the
domain is again assumed to be infinite in all three coordinate directions. For
now, a solution is developed for an infinitely long source, parallel to the
z axis and passing through the coordinates (x1, y1). The result of this last
assumption, along with the idea that the mass is evenly distributed over the
source line, is that there is no gradient of concentration in the z-direction,
and thus there is no transport in the z-direction (diffusion acts only to reduce
gradients and does not generate them). With this conclusion in mind, it is
easy to see that the solution developed here will apply equally well to a
domain bounded in the z-direction, as long as the source stretches across the
entire width (in the z-direction). Other assumptions used in the following are
a homogeneous, anisotropic, and steady turbulence field; a steady velocity
in the x-direction only (component U); the initial condition C D 0 every-
where; and boundary conditions C D 0 at large distances from the source,
�x, y, z� ! 1.

For these conditions the governing equation (10.7.1) becomes

∂C

∂t
CU

∂C

∂x
D Ex

∂2C

∂x2
C Ey

∂2C

∂y2
�KC �10.7.18�

There are several ways of obtaining a solution, but perhaps the simplest way
is to integrate the solution for an instantaneous point source (10.7.5) along
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Figure 10.15 Infinite line source parallel to the z axis.

the source length. In other words, the line source is considered to consist of
an infinitely long distribution of instantaneous point sources. This integration
is similar to the approach used to obtain the solution for a continuous point
source from the instantaneous source solution, except here the integration
is performed over space rather than time. Each point source contributes an
amount of mass (M0 dz), where M0 is the mass injected per unit length (this
is known as the source strength). The resulting concentration due to one of
these sources is denoted by C’. Making these substitutions in Eq. (10.7.5) and
integrating over z D š1, we find

C D M0

4��ExEy�1/2t
exp

{
� [�x � x1��Ut]2

4Ext
� �y � y1�2

4Eyt
�Kt

}
�10.7.19�

If the source has a finite length of 2Z (i.e., the source is bounded between
z D šZ), and x1 D y1 D 0, the solution becomes

C D M0

4��ExEy�1/2t
exp

{
� �x �Ut�2

4Ext
� y2

4Eyt
�Kt

}

�
[

erf
(

z C Z

�4Ezt�1/2

)
� erf

(
z � Z

�4Ezt�1/2

)]
�10.7.20�
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This last solution is obtained by integrating the point source solution between
z D šZ, instead of z D š1. In comparison to the instantaneous point source
solution, the maximum concentration for a line source decays with the inverse
of time (t�1). This is slower than for the point source solution because there
is one less direction available for diffusion.

Continuous Line Source

The solution for this situation uses the same basic assumptions as for the
instantaneous line source. For the following, we assume x1 D y1 D 0, for
simplicity. The solution is obtained either by integrating the continuous point
source solution over space, which is similar to the procedure used to generate
an instantaneous line source solution from the instantaneous point source solu-
tion, or by integrating the instantaneous line source solution over time, which
is similar to the approach used to obtain the continuous point source solution.
In either case, the result is (for t ½ t1)

C D q0 exp�xU/2Ex�

4��ExEy�1/2

{∫ �U2t/4ExCKt�

0

1

�1
exp

(
��1 � ˇ2

2

�1

)
d�1

}
�10.7.21�

where

�1 D
(
U2

4Ex
CK

)
�t � t1� �10.7.22�

ˇ2 D [�Eyx2 C Exy2��U2Ey C 4ExEyK�]1/2

4ExEy
�10.7.23�

and q0 is the injection rate (per unit length). The steady-state solution is

C D q0 exp�xU/2Ex�

2��ExEy�1/2
�o �2ˇ2� �10.7.24�

where

�0��� ¾D
(
�

2�

)1/2

e�� for � > 1 �10.7.25�

10.7.3 Plane Source

Instantaneous Plane Source

Next we consider an extension of the line source to a plane source. This
follows a similar development to that for the extension of the point source to
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the line source. Here, we consider an infinite domain, or one bounded in the
y- and z-directions, with a planar source parallel to the y–z plane and passing
through a point x1 (Fig. 10.16). The injected mass is assumed to be uniformly
distributed over the area of the plane, so that there are no gradients in the y-
or z-directions (this is why it does not matter whether the source is infinite or
bounded in the y- and z-directions; in either case the transport in both these
directions is zero). A constant Ex is assumed, as well as constant velocity
U in the x-direction only. The initial mass distribution is M00 (mass per unit
area), over the area of the source, with C D 0 everywhere else initially. As
before, the boundary conditions are C ! 0 for x ! š1 (note that boundary
conditions do not apply for the y- and z-directions).

For these conditions the governing equation (10.7.1) becomes

∂C

∂t
CU

∂C

∂x
D Ex

∂2C

∂x2
�KC �10.7.26�

It should be noted that the diffusion terms in the y- and z-directions do not
appear. The solution is obtained by integrating the line source solution in
the y-direction. In other words, the plane source is considered as an infinite
distribution of line sources. The injected mass per unit area for the source

Figure 10.16 Instantaneous plane source parallel to the y–z plane and passing
through point x1.
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is M00�D source strength�, and the corresponding source for each of the line
sources is M0 D M00 dy, with resulting concentration response dc given by
Eq. (10.7.19). Upon integrating, we find

C D M00

�4�Ext�1/2
exp

{
� [�x � x1��Ut]2

4Ext
�Kt

}
�10.7.27�

Again, with the reduction in the number of directions allowed for diffusion,
there is a further reduction in the rate of decrease of maximum concentration
with time, relative to the point or line sources. Here, the maximum concen-
tration decreases with t�1/2, which is considerably slower than for the point
source, for instance.

Continuous Plane Source

The development for a continuous plane source solution follows similar proce-
dures as used previously. With the same assumptions as for the instantaneous
plane source, along with x1 D 0, the general solution is (for t ½ t1)

C D q00 exp�xU/2Ex�

2�
f[erf�G1�� erf�G2�] exp�G3�

� [erf�G4�� erf�G5�] exp��G3�g �10.7.28�

where

G1 D x C �tp
4Ext

�10.7.29�

G2 D x C ��t � t1�p
4Ex�t � t1�

�10.7.30�

G3 D x�

2Ex
�10.7.31�

G4 D x � �tp
4Ext

�10.7.32�

G5 D x � ��t � t1�p
4Ex�t � t1�

�10.7.33�

� D �U2 C 4KEx�
1/2 �10.7.34�

and q00 is the rate of mass injection per unit area. For a continuous injection,
t D t1, and the solution becomes

C D q00 exp�xU/2Ex�

2�
f[erf�G1�Ý 1] exp�G3�� [erf�G4�Ý 1] exp��G3�g

�10.7.35�

where the � sign is used for x > 0 and the C sign is used for x < 0.
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The steady-state solution is found as before by letting t ! 1:

C D q00

�
exp

[
x

2Ex
�UÝ ��

]
�10.7.36�

where the � and C signs are used as above. If C0 is the steady-state concen-
tration at the source (x D 0), then C0 D q00/U, and an approximate solution is
given by

C

C0
D exp

(
xU

Ex

)
for x < 0 �10.7.37�

and

C

C0
D exp

(
�xK
U

)
for x > 0 �10.7.38�

These results also are sketched in Fig. 10.17. They come from an anal-
ysis of the term �. For example, from the definition (10.7.34), and using the
binomial theorem,

� D U

(
1 C 4KEx

U2

)1/2
¾D U

[
1 C 1

2

(
4KEx
U2

)]
�10.7.39�

where it has been assumed that �4KEx/U2� − 1. Thus for x < 0 it is assumed
that decay plays a minor role in the region close to the source, and substitution
of Eq. (10.7.39) into Eq. (10.7.36) results in Eq. (10.7.37), where the second
term in brackets in (10.7.39) is neglected compared with 1. For x > 0 this same
assumption is used when substituting for � in the denominator of Eq. (10.7.36),

Figure 10.17 Approximate continuous plane source solutions, for a source located
at x D 0.
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but in the exponential the only term left after subtracting is (�xK/U), as shown
in Eq. (10.7.38). These results suggest that the extent of spreading upstream
is governed primarily by a balance between advective downstream transport
and diffusive transport upstream, with decay playing a relatively minor role in
this region close to the source. On the other hand, for locations downstream
(x > 0), the diffusive transport is neglected in comparison with advection,
and both decay and advection are important. In the case of a conservative
substance, Eq. (10.7.38) shows that the downstream concentration would be
constant and equal to the source value.

10.7.4 Instantaneous Volume Source

The next logical extension of these procedures is to consider an instantaneous
volume source, consisting of a continuous distribution of instantaneous plane
sources. The volume source is often useful in solving problems involving
the concentration response to a spill occurring over a relatively short period
of time. For this development we consider steady open channel flow (one-
dimensional). The concentration response due to a distribution of instantaneous
plane sources is found from integrating Eq. (10.7.27) over a coordinate in the
x-direction,

C D
1∫

�1

Ci��i�

�4�ELt�1/2
exp

{
� [�x � �i��Ut]2

4ELt
�Kt

}
d�i �10.7.40�

where EL is the longitudinal dispersion coefficient, replacing Ex, �i is a
dummy variable indicating distance in the x-direction, and Ci is the initial
concentration distribution for the source. Note that although the integration
in Eq. (10.7.40) is over (š1), the only regions contributing mass are those
where Ci 6D 0. As a special case, suppose that Ci is a constant for a source
region located between �i D L1 and �i D L2 (Fig. 10.18). The dummy variable
is seen to have a real physical interpretation, with d�i equal to the thickness
of one of the plane sources and �i equal to the distance from that source to
the point at which C is being calculated. The total concentration C given in
Eq. (10.7.40) is then just the sum of responses due to the distribution of plane
sources.

The initial concentration for this simplified case is the mass injected,
divided by the volume, or

Ci D M

A�L2 � L1�
�10.7.41�
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Figure 10.18 Distribution of plane sources along the x axis.

(an equivalent expression is easily written for the case where Ci is variable
in x). Integration of Eq. (10.7.40) then gives

C

Ci
D e�Kt

2

{
erf

[
x � L1 �Utp

4ELt

]
� erf

[
x � L2 �Utp

4ELt

]}
�10.7.42�

This solution may be used, for example, to check the accuracy of a finite differ-
ence solution (see Sec. 10.8), for a source centered about x D 0, with L1 D �a
and L2 D a, and with the finite difference grid size, x D 2a. Another special
case is one in which there is a semi-infinite initial injection of a conservative
substance, between L1 D �1 and L2 D 0. The solution is similar to the one
in Eq. (10.7.42), except that one of the integration limits is (�1),

C

Ci
D 1

2
erfc

[
x �Utp

4ELt

]
�10.7.43�

where erfc��� D 1 � erf��� is the complementary error function.
One of the interesting qualities of the volume source solutions is that,

unlike other forms of sources considered previously, concentration is defined
at t D 0. This means the initial condition can be prescribed by concentration
instead of by amount of mass injected. This is sometimes more convenient in
obtaining solutions for these problems.

10.7.5 Effect of Finite Domain

Although appealing, the solutions developed in the foregoing sections are
restricted to infinite domains or, for the case of line and plane source solu-
tions, at least to domains bounded in direction(s) normal to the source. One
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possibility for dealing with finite boundaries is to use the method of images,
first introduced in Chap. 4 to develop potential flow solutions for problems
involving solid walls. This method is illustrated here using the example of a
point source, though image solutions can be applied for any of the sources
discussed previously.

The method is first illustrated using the case of a contained spill of a
tracer at the surface of a deep ocean. The ocean may be considered as a
semi-infinite domain, with a boundary at z D 0, and the spill will be treated
as an instantaneous point source (Fig. 10.19). Assuming the tracer does not
volatilize, the ocean surface represents a no-flux boundary for the tracer. Flow
in the water could be considered either as uniform or as shear flow, but it is
assumed to be in the x-direction only, as before. The previous instantaneous
point source solution (10.7.5) would allow diffusion above the air/water inter-
face, effectively “losing” half the initial mass of the source to the atmosphere.
In order to add back the mass that is lost, a second image source is super-
imposed on top of the original source (actually, the original source may be
thought of as being just slightly below the surface and the image source just
slightly above). This image source is identical to the original and, just like the
original, half its mass diffuses into the atmosphere. However, half of the mass
also diffuses downward into the water, thus replacing the mass that was lost
by the original source. Although the solution produces atmospheric concentra-
tions, these are ignored, since the primary interest is with the water domain.
In this case, since the position and strength of the image are identical to the

Figure 10.19 Point source at the edge of a semi-infinite domain.
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original source, the solution is simply double the solution for one source,

C D 2M exp��ˇ�
�4�t�3/2�ExEyEz�1/2 �1 C ϕ2t2�1/2

�10.7.44�

where ˇ is given by Eq. (10.7.6). A similar result would hold for a continuous
source (i.e., double the solution for a single source).

The problem is slightly more complicated when the source is at some
distance from the impermeable boundary. As an extension to the above example,
consider a spill occurring at some depth H below the surface. In this case the
mass diffuses for some distance before it might cross the air/water boundary,
when it would be lost from the water. Following the same logic as before, this
problem can be solved by positioning an image source so that it would add
mass back to the water column to balance exactly the mass flux coming out
of the water. This is done by adding an image source, with exactly the same
strength as the original source, at exactly the same distance from the boundary,
as shown in Fig. 10.20. Again, concentrations in the air are simply neglected,
as they are not of interest for the present problem. Assuming an instantaneous
point source, with uniform flow field (U), the solution is the superposition of
the solutions for the two sources, taking into account their different positions
(from Eq. 10.7.5),

C D M

��4�t�3/2�ExEyEz�1/2

{
exp

[
� �x �Ut�2

4Ext
� y2

4Eyt
� �z �H�2

4Ezt
�Kt

]

C exp
[
� �x �Ut�2

4Ext
� y2

4Eyt
� �z CH�2

4Ezt
�Kt

]}
�10.7.45�

Figure 10.20 Source and image arranged to account for an impermeable boundary
at some distance H from the original source.
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Figure 10.21 Point source and images in a system with two impermeable boundaries.

This same procedure can be generalized again to account for more than
one boundary, for example, in a wide open channel flow of constant depth H,
with impermeable boundaries at the bottom and surface. In this case, image
sources must be added both above and below the respective surfaces. As
shown in Fig. 10.21, a point source is located in a wide channel at a distance
h below the surface. Two image sources, one at distance h above the surface
and one at distance (H-h) below the bottom are added to account for the
no-flux boundaries at the top and bottom, respectively. In fact, additional
image sources may be needed to account for mass from the first set of image
sources lost through the boundaries. This process of adding image sources
could, conceivably, continue until a large number of sources have been added.
However, in practice, only one or two sets of images are needed, since the
effect of additional sources becomes vanishingly small as distance from the
boundary increases. This is particularly true when decay is a factor. It should
also be noted that lateral boundaries may be treated in a similar fashion to
the upper and lower boundaries. Of course, when the flow is bounded on four
sides, it is probably simpler to use a plane or volume source solution.

10.8 NUMERICAL SOLUTIONS TO THE
ADVECTION–DIFFUSION EQUATION

Many authors have written about the basic methodology used in numerical
approaches for solving the advection–diffusion equation. Both finite difference
and finite element models are possible, though finite difference representations
for the derivatives are a much more common practice for this equation. Finite
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differences also are more directly related to bulk segmentation, or box models,
common in water quality and mass balance modeling for contaminants in
surface water systems. This approach has been used, for example, in recent
large-scale mass balance modeling for Green Bay and Lake Michigan. The
present discussion focuses on this class of solutions.

Finite difference methods are broadly classified as either explicit or
implicit. Explicit methods express all derivatives in terms of known values
(of concentration), while implicit methods use some of the unknown values
(i.e., concentrations at a new time step), leading to the need for solving simul-
taneous equations, as will be evident in the following discussion. The finite
difference time and space steps are denoted by t and x, respectively, as
indicated in Fig. 10.22.

In an explicit method, the new function values (at time iC 1) are all
calculated on the basis of values from the previous time step (time i), which
are known. Initial conditions must be specified (for i D 0) in order to start the
process. Programming for explicit methods is generally straightforward, but

Figure 10.22 Finite difference computational grid for a problem with time and one
dimension in space dependency; k is an index for spatial position, with corresponding
spatial grid step size x; i is a similar parameter, but for time (temporal grid step size
is t�;�ik is any function evaluated at position k and time i.
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these methods tend to have stability problems. Fully implicit methods generally
avoid stability problems but may require longer running times. They are based
on a simultaneous calculation of function values at the new time step.

In addition to implicit and explicit considerations, there are a number
of possibilities for expressing the derivatives, depending on the degree of
accuracy desired. These issues are described in many textbooks on numerical
methods for solving partial differential equations and were introduced earlier
in Chap. 1. In general, the degree of accuracy depends on the number of
terms included in a Taylor series expansion of the function to be integrated.
For example, if it is assumed that the arbitrary (but continuous) function �
depends only on x (for simplicity), then it can be expanded about some point
x0 as

��x0 C h� D ��x0�C h
d�

dx

∣∣∣∣
x0

C h2

2

d2�

dx2

∣∣∣∣
x0

C Ð Ð Ð �10.8.1�

where h is the distance between x0 and the new location where � is to be
evaluated. This is an infinite series, and the degree of accuracy of this expan-
sion depends on the number of terms included. Substituting the nomenclature
of Fig. 10.22, this expression is equivalent to

�iC1 D �i Cx
d�i
dx

C x2

2

d2�i
dx2

C Ð Ð Ð �10.8.2�

A simple approximation for the first derivative of � is then obtained by rear-
ranging;

d�i
dx

¾D �iC1 � �i
x

�10.8.3�

This is known as a forward difference approximation for evaluating the deriva-
tive of � at position i. It is a first-order approximation, meaning that the error
term, which is the first term in the series that is neglected, is first order in
the spacing x (i.e., in rearranging the equation, dividing by x makes this
neglected term linearly proportional to x).

As an example, consider a general finite difference formulation for the
solution to the one-dimensional advection–diffusion equation, Eq. (10.7.26),
assuming a conservative substance (no reactions) and constant U and EL,
using a forward difference for the time derivative:

CiC1
k �Cik
t

C U

x
f�1 � ω�[˛�CiC1

kC1 � CiC1
k �C �1 � ˛��CiC1

k � CiC1
k�1�]

C ω[˛�CikC1 � Cik�] C �1 � ˛��Cik �Cik�1�g D EL
x2

f�1 � ω�

ð �CiC1
kC1 � 2CiC1

k C CiC1
k�1�C ω�CikC1 � 2Cik C Cik�1�g �10.8.4�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



where ω is a weighting factor that allows different weighting for implicit
and explicit terms, and ˛ is a weighting factor for the first spatial derivative
(advection term), indicating whether a forward, backward, or central differ-
ence is being used. With ω D 1 the method is fully explicit, and all values for
C appearing in Eq. (10.8.4) correspond to time i, except in the time derivative.
For ω D 0 the method is fully implicit, and all concentration values correspond
to time (iC 1), again except for one of the values in the time derivative. When
˛ D 1 a forward difference is indicated, as in Eq. (10.8.3). A backward differ-
ence results when ˛ D 0, and ˛ D 1/2 refers to a central difference expression.
A special case is when ˛ D ω D 1/2, which is called the Crank–Nicholson
scheme and represents a simple average between the approximations for the
derivatives evaluated at the current and previous time steps. Both this and fully
implicit methods have the advantage of much better stability characteristics,
but they require solving a potentially large number of simultaneous equations.
Fortunately, the coefficient matrices for these equations tend to be banded, so
that banded matrix solvers can be used to save on memory requirements and
run times.

The numerical solutions become more complicated when additional spa-
tial dimensions are considered, but they are generally extensions of results
such as in Eq. (10.8.4). A popular method for two-dimensional problems is
the alternating direction implicit (ADI) method. In this approach the equation
is solved using an implicit technique for the derivatives in one of the spatial
directions, advancing the solution one-half of a time step. These new values
are then used to apply the method in the remaining direction, to complete
calculations for the full time step.

For water quality modeling applications, emphasis is usually placed on
the reaction terms in the advection–diffusion equation. These terms result
from internal reactions or interactions (for example, with suspended parti-
cles — see Chap. 15) that affect the concentration of the substance being
modeled. Because of the degree of complexity involved in representing these
processes, it is usually difficult also to include a large degree of complexity
with regard to spatial or temporal resolution. Many water quality models are in
fact formulated as “box”- or “segment”-type models, especially when applied
to large systems or for long-term simulations (see, for example, Bierman et al.,
1992; DePinto et al., 1995). On the other hand, hydrodynamic models are
usually applied with smaller time and spatial steps, i.e., achieving better reso-
lution while not modeling as many processes. This poses problems when it
is desired to link these two types of models. For example, a hydrodynamic
model might be run to generate the flow and dispersion fields for input to the
water quality model, and output from the model must be converted in some
way to produce appropriate values for input to a water quality model.
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10.8.1 Numerical Dispersion

Most finite difference methods induce some additional spreading, referred to
as numerical diffusion or numerical dispersion. Since the present discussion
refers to one-dimensional models, we will use the term dispersion, consistent
with earlier discussion (Sec. 10.5). The total dispersion actually present in the
solution of any finite difference method is the sum of the input dispersivity,
Ein, and the numerical dispersion, EN, introduced by the numerical technique,
i.e.,

ET D Ein C EN �D EL� �10.8.5�

On this basis, as long as EN can be accurately predicted, then the value of
Ein for the model may be modified accordingly. Many studies have shown
that the advective term is the primary source of numerical dispersion in finite
difference solutions to the advective–dispersion equation.

Numerical dispersion depends on the numerical discretization scheme
used to approximate the partial derivatives in the transport equation. It results
in an artificial spreading of material, much like a true, physical dispersion.
To illustrate this process, consider the one-dimensional advection–diffusion
equation, as before, without any source/sink terms. For purposes of illustration,
an explicit central difference representation of the derivatives is used, although
analogous results apply for other formulations. Then, with ω D 1 and ˛ D 1/2,
Eq. (10.8.4) becomes

CiC1
k

t
D Cik�1

{
U

2x
C EL

x2

}
CCik

{
1

t
� 2

EL

x2

}

CCikC1

{
� U

2x
C EL

x2

}
�10.8.6�

The solution is then obtained for arbitrary boundary conditions (for this exam-
ple we consider the calculations only over several time steps, away from any
boundaries), assuming an initial concentration distribution with C D 0 every-
where except for some value CK D C0 (Fig. 10.23a). The parameter EL is
supposed to represent any spreading of the concentration about the centroid of
the distribution. However, it is interesting to see what happens in the numer-
ical solution after only one time step, with EL D 0, i.e., even when we expect
there to be no spreading.

In this case the width of the distribution should remain constant at x.
However, it is easy to verify that the concentrations at positions �K� 1�, �K�,
and (KC 1) are all nonzero, by substituting k D �K� 1�, �K�, or (KC 1) in
Eq. (10.8.6). The solution in fact produces negative concentrations, shown in
Fig. 10.23b, an obviously undesirable result. Further calculations show that
concentrations at other locations also may become negative at certain time
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Figure 10.23 (a) Initial concentration distribution; (b) distribution after one time
step, calculated from Eq. (10.8.6).

steps, and there are several places where the calculations oscillate between
positive and negative values. Oscillations of this type are well known in
advection-dominated problems. Overall mass is conserved, since the concen-
tration CK D C0 is unchanged, while CK�1 < 0 and CKC1 > 0, with equal
magnitudes. This result is shown in Fig. 10.23b, where the magnitudes have
values of �Ut/2x�C0. Thus the width of the distribution has increased to
3x, which is considerably greater than the expected result. This is direct
evidence of numerical dispersion.

In general, the relative effect of numerical dispersion can be character-
ized by looking at the ratio of the two terms in brackets, multiplying CK�1

and CKC1, in Eq. (10.8.6). This gives

U/2x

EL/x2
D Ux

2EL
D 1

2
Pec �10.8.7�

where Pec is called a cell Peclet number. This parameter plays a major role
in determining the stability of explicit finite difference schemes, with Pec < 2
being a common stability criterion. In the context of Eq. (10.8.7), this means
that the relative effect of advective transport is no greater than the effect of
dispersive transport in any given time step, and the step size must be chosen
sufficiently small to insure that this criterion is satisfied. When Pe is large,
numerical dispersion also will be large. It can be shown that the numerical
dispersion for an arbitrary spatial differencing scheme, with forward explicit
time differencing (i.e., as in Eq. 10.8.6), can be expressed as

EN D Ux

[
�˛� 0.5��

(
Ut

2x

)
�ω � 0.5�

]
�10.8.8�
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where the weighting ratio, ˛, depends on the solution technique used (as
above). This result is obtained by reintroducing the second-order terms in
the Taylor series expansions for the first derivatives directly into the finite
difference representation of the original differential equation.

Three dimensionless numbers may be defined when discussing
the constraints of stability, solution positivity, and numerical disper-
sion in finite difference methods. These are (1) cell Peclet number,
defined in Eq. (10.8.7); (2) dispersion number, � D ELt/x2; and (3)
Courant number, � D Ut/x. The input value for dispersivity, Ein, is under-
stood to be EL. Depending on the specific technique used, different constraints
are placed on the values of these three parameters which allow stable positive
solutions and estimates of EN. In terms of these parameters, Eq. (10.8.8) can
be rewritten in dimensionless form as

EN

EL
D Pe

2
[�2˛� 1�� ��ω � 0.5�] �10.8.9�

To insure positivity and stability in an explicit scheme, the traditional criteria
are given by Pe < 2 and � < 0.5, which limit the time step that can be used for
a given spatial step. An additional constraint, particularly for upwind or back-
ward differencing schemes (for the advective term), is � < 1. This prevents
the mean flow from moving more than one grid space in one time step.

From Eq. (10.8.9), use of smaller Pe can help alleviate the problem of
numerical dispersion and it is clear that numerical dispersion would be zero
if there were no advection (Pe = 0). It also is worthwhile noting that the
numerical dispersion for the Crank–Nicholson scheme is 0 (where ˛ D ω D
0.5). Other solution techniques such as upwinding or higher order schemes
can be used to reduce the problem further, depending on the approach used.

An alternative procedure that is capable of modeling the advection term
more accurately, without introducing associated numerical dispersion, involves
a semi-Lagrangian approach, in which the advection term is calculated with
a simple routing scheme. In this approach the mean velocity, time, and spatial
steps must be related by x D Ut, so that each parcel of mass (contained
in a numerical grid segment) moves exactly one grid space in one time step.
The solution approach is then to separate the calculations for the advection
and diffusion terms, using the routing calculation for the advection term and
the normal finite difference solution for the diffusion term. This procedure is
referred to as a split-operator approach and is illustrated for a one-dimensional
calculation in Fig. 10.24. It is very effective in preventing numerical dispersion
due to the advective term, but unfortunately the general application of this
approach for two- or three-dimensional problems is more difficult, except for
some simple cases with constant or unidirectional flow fields. Ultimately, the
user must weigh a number of factors in choosing a numerical solution for any
given problem.
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Figure 10.24 Illustration of “split-operator” approach for semi-Lagrangian model;
(a) initial condition; (b) distribution after the advection term is calculated; (c) distri-
bution after the diffusion term is calculated.

Figure 10.25 General solution, Problem 10.1.

PROBLEMS

Solved Problems

Problem 10.1 In some cases of calculating the spread of a chemical
concentration it is possible to use a boundary layer–type solution (see also
Section 3.4.2). For the present example, we review the problem of diffusion
of momentum from a plate that suddenly starts moving in a fluid that is
initially at rest. The problem is sketched in Fig. 10.25, which shows a flat
plate along y D 0, which starts moving at speed U in the x-direction for time

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



t > 0 (also refer to Sec. 3.4). The problem is treated as two-dimensional flow,
for simplicity. Calculate the resulting velocity profile.

Solution

The governing equations for this problem are the two-dimensional continuity
and momentum equations for incompressible flow, from Chap. 2,

∂u

∂x
C ∂v

∂y
D 0

∂u

∂t
C u

∂u

∂x
C v

∂u

∂y
D � 1

�

∂p

∂x
C v

(
∂2u

∂x2
C ∂2u

∂y2

)
∂u

∂t
C u

∂u

∂x
C v

∂u

∂y
D � 1

�

∂p

∂x
� gy C v

(
∂2u

∂x2
C ∂2u

∂y2

)

where gy is the y component of gravity. For this problem it is possible to use a
boundary layer approach, since the vertical velocity can be neglected, as well
as any gradients in the x-direction, relative to gradients in the y-direction.
In fact, since v D 0, then the velocity gradient in the x-direction is exactly
zero by the continuity equation. The momentum equation in the y-direction is
not of further interest, and the x-momentum equation is written in simplified
terms as

∂u

∂t
D v

∂2u

∂y2

This is a simple diffusion equation and is the same as Eq. (3.4.1), where v
is seen as the diffusion coefficient for momentum. The initial and boundary
conditions are

u D 0 at t D 0

u D U at y D 0

u ���! 0 for y ! 1
By substituting a dimensionless variable,

� D y

2
p
vt

and rewriting the derivatives in terms of �, the diffusion equation becomes

d2u

d�2
C 2�

du

d�
D 0

with boundary conditions u D U for � D 0 and u ! 0 for � ! 1. The solu-
tion to this problem is

u D U�1 � erf �� D Uerfc �
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This solution is sketched in Fig. 10.25. Note that this solution allows an esti-
mate of the length of time it should take for the velocity at a certain distance
y to reach a given fraction of U. A similar formulation can be developed for
diffusion of concentration.

Problem 10.2 A river passes through a region of heavy industry. Each
industry has its own (constant) waste stream discharging into the river, and it
is desired to model the concentration response (C) in the river for a particular
chemical species. The chemical is expected to be in each of the discharges,
though at possibly different concentrations. The flow rates for the discharges
are negligible compared with the river flow rate.

(a) Provide a simple sketch of this problem and label any appropriate
points. In order to evaluate the distribution C in the river, would you treat this
as a steady or an unsteady problem? Explain why.

(b) Assuming this to be treated as a one-dimensional (longitudinal)
problem, how would you incorporate the waste discharges into your model
(i.e., as initial condition, boundary condition, internal reaction or source, or
other)?

(c) What processes should be considered for inclusion as a source or
sink term for C?

Solution

(a) A general sketch of the problem is shown in Fig. 10.26 (for n industries).
The cross sections indicate an initial or boundary location upstream of the
industrial region (cross section 0), sections immediately downstream of each
industrial discharge point, and a section at some point downstream, where

Figure 10.26 Definition sketch, Problem 10.2.
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there is interest in knowing the concentration response (C) in the river. A
one-dimensional approach is assumed, so that each discharge is fully mixed
over the river cross section at each discharge point. Since the discharges are
constant, with (assumed) constant concentrations Ci, then as long as the river
flow (Q) is steady and any decay processes occur at constant rates, then the
problem can be considered as steady.

(b) Since the discharges are assumed to be completely mixed, and also
because they occur at locations along the river, and not at one of the boundaries
(note that the only boundaries of concern in this one-dimensional, longitudinal,
approach are at cross sections 0 and m), then the best way to incorporate them
is as internal sources. It might be possible to consider these discharges as
boundary conditions if the river were to be modeled as a series of connected
reaches, starting at each of the cross sections identified in the sketch. In
that case, a simple dilution calculation would have to be performed at each
discharge point to obtain the boundary condition for the model for the associ-
ated river segment. Since from part (a) the problem is being treated as one of
steady state, initial conditions are irrelevant and this is not an option in terms
of incorporating the discharges.

(c) Possible processes that might be considered as source or sink terms
include biological or chemical reactions (probably decay terms), adsorption of
the chemical to sediment particles and subsequent settling of those particles
(again, another sink term), volatilization across the air/water interface, degra-
dation or transformation by sunlight, and possible secondary sources such as
nonpoint sources (e.g., leaching from groundwater into the stream).

(d) The general governing equation for steady-state one-dimensional
transport with constant flow rate is

U
∂C

∂x
D 1

A

∂

∂x

(
AE
∂C

∂x

)
� kC

where a first-order single decay coefficient is used to represent the various
possible internal sources and sinks. Note that the area A is assumed to possibly
vary with x in this equation, although the flow rate Q remains constant. Since
the equation is for steady state, there are no initial conditions. Boundary
conditions must be specified at the upstream and downstream cross sections.
Upstream, at cross section 0, the usual boundary condition would be of the
Dirichlet type, so that C0 should be specified. The downstream boundary
condition is somewhat more difficult. In order not to overly constrain the
model, the best condition is one of zero gradient. However, cross section m
must be chosen to be far enough downstream so that this condition is likely
to be realistic.
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Unsolved Problems

Problem 10.3 For a delta function input at x D 0 into an infinite cylinder
filled with a fluid, the mean square displacement (i.e., the variance) of the
concentration can be defined as


2
x D

∫ 1

�1
x2c�x, t� dx∫ 1

�1
c�x, t� dx

Find the root-mean-square (rms) displacement as a function of time and diffu-
sion coefficient E. Note that this relationship shows how you would calculate
E based on an experiment in which the spreading of a dye was measured.

Problem 10.4 It is desired to evaluate changes in salt concentration (salinity)
in a quiescent tank of water 10 m deep in which a salinity gradient has been
established in the vertical direction. The tank is not stirred and is completely
sealed from its surroundings (no water or salt is added or taken away).

(a) What is the governing equation you would use for this problem? Use
z as the vertical coordinate.

(b) Based on your answer to part (a) (or using any other way you can
think of), estimate the time required for the gradient to be smoothed by molec-
ular diffusion (molecular diffusivity for salt in water is 10�5 cm2/s). Does the
magnitude of the initial gradient make any difference?

Problem 10.5 The turbulent spread of a conservative tracer in a diffusion
experiment in the ocean (measured in terms of a standard deviation of the
concentration distribution) is observed to be proportional to t3/2 (t D time).
What can you say about the variation of turbulent diffusion coefficient as a
function of time? (Hint: compare Eqs. 10.3.9 and 10.7.5). What is a possible
physical reason for the diffusivity to increase with time?

Problem 10.6 Concentration measurements of a conservative tracer are
made in a pipe flow with water (� D 1 g/cm3). At a particular cross section
at a distance x downstream, the concentration is observed to increase from 3
ppm to 13 ppm over a 10 minute period. The mean velocity in the pipe is 10
cm/s and the diffusion coefficient is 10 cm2/s. The cross-sectional area of the
pipe is 5 cm2.

(a) Demonstrate (graphically is sufficient) that the following kinematic
transformation may be applied:

∂C

∂t

∣∣∣∣
x

D �U ∂C

∂x

∣∣∣∣
x
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(b) What is the total mass transport rate (in mg/s) across the section at
x, at a time half way through the observation period? List any assumptions
necessary.

Problem 10.7 Using an appropriately defined elemental volume, derive the
equation used in part (d) of problem 10.2, for steady one-dimensional open
channel transport of a dissolved chemical that is undergoing first-order decay.
Note that the flow rate in the channel is constant, but that natural variations
in the cross section lead to variations in area and thus velocity.

Problem 10.8 Figure 10.27 shows a shallow lake of depth H and large
horizontal extent, which is initially quiescent (no motions). At time t D 0 a
constant wind starts, generating a velocity U at the surface of the lake. There
is some concern about resuspending contaminated sediments at the bottom
of the lake. For this problem, it is desired to estimate the length of time the
wind would have to blow (i.e., at a constant speed and direction) before water
motion would be transferred down to the bottom and, assuming the wind acts
for a sufficiently long time, the maximum shear stress expected at the bottom.

(a) List the governing equation and initial and boundary conditions for
the problem. Assume a constant viscosity v.

(b) From problem 10.1, a boundary layer solution (in terms of error
function) was presented for the problem of finding the velocity profile in a
fluid where a flat plate was moving at constant velocity U. Can this solution
be used here? Why or why not? Under what conditions might it be valid?

(c) Assuming it is valid, use the boundary layer solution to estimate the
time required before motions would be seen in the vicinity of the bottom.
Suppose H D 10 m, v D 10�2 m2/s, U D 1 m/s, and � D 1000 kg/m3. How
much time is needed?

Figure 10.27 Definition sketch, Problem 10.8.
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Figure 10.28 Definition sketch, Problem 10.9.

(d) What is the steady-state solution to this problem [i.e., the problem
formulated in part (a)]? What is the maximum shear stress expected at the
bottom [using parameter values from part (c)]?

Problem 10.9 Consider a small river, with average width W and depth H,
passing by a large agricultural field as shown in Fig. 10.28. For simplicity,
assume W and H are constants. During rain storms there is direct runoff
(flow rate = q, per unit length along the stream) from the field into the
stream, carrying a concentration of some parameter of interest (say, a pesti-
cide) with concentration Cr0 . Upstream of this field the concentration is zero.
This contaminant tends to adsorb strongly onto sediment particles, so that
settling of particles in the stream represents a loss (sink) of the contaminant
from the stream. Assume that particles settle at a rate us, so that the settling
flux of the contaminant is usC. In addition, assume that there is an overall
decay of the chemical due to biological activity, which may be modeled using
a first-order reaction with rate constant k.

(a) Show that the rate of change of stream flow is given by

∂Q

∂x
D q

(b) Develop a one-dimensional time-dependent advection–diffusion
model, including initial and boundary conditions, to simulate concentration
C in the stream from x D 0 to x D L.

(c) List at least one factor that makes this problem difficult (maybe
impossible) to solve using an analytical solution.

Problem 10.10 In a certain treatment process water flows from a large reser-
voir into a thin and wide channel or duct as shown in Fig. 10.29. After some
distance into the duct, boundary layer development is complete and a stable
velocity profile is reached, with U D Umax/�2by � y2�/b2. A contaminant of
concentration C is transported with the water flow, and the walls of the duct are
such that they completely remove any contaminant that comes into contact with
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Figure 10.29 Definition sketch, Problem 10.10.

the wall, i.e., C D 0 at y D 0, 2b. The concentration profile may be assumed
to have a similar shape as the velocity profile, C D Cmax �2by � y2�/b2. If
b D 10 cm, Umax D 0.1 m/s, and Cmax D 100 mg/L at x D 0, at what value
of x will Cmax fall to 1 mg/L? Assume the diffusion/dispersion coefficient is
10 cm2/s.

Problem 10.11 A cooling “pond” is designed to provide cooling for the
condensers of a power plant, as sketched in Fig.10.30. Water is taken from
the canal at flow rate Qin and passed through the heat exchangers of the plant,
where it undergoes a temperature rise T and is returned to the canal, where
there is a general circulation flow rate of Q0 (note: Qin < Q0). There are
two common designs for the return flow: (1) surface discharge with minimal
mixing, and (2) submerged discharge, with (assumed) full mixing. Considering
heat engine efficiency, it is desired to maintain the lowest possible condenser
temperature, and a major design consideration is to be able to predict these
intake temperatures.

(a) In general, would you treat this as a steady or unsteady problem?
Why?

(b) For each of the two discharge designs, describe the modeling app-
roach you would use, including governing equation(s) and initial and boundary
conditions (as appropriate).

(c) Comment briefly on any advantages or disadvantages you see with
the two designs. Which one would you choose?

Problem 10.12 An estuary is defined as that portion of a river that is affected
by the salinity and tidal motions of the ocean into which it discharges. With x

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 10.30 Definition sketch, Problem 10.11.

defined as the longitudinal coordinate, so that x D 0 at the boundary between
the estuary and the ocean, x is negative moving upstream into the estuary, a
possible governing equation has been proposed as

0 D �Uds
dx

C E
d2s

dx2

where U is the mean (tidal average) velocity, E is the dispersion coefficient,
and s is salinity. The associated boundary conditions for this model are s D 0
for x ! �1 and s D s0 at x D 0. List all assumptions that have been made
in writing this as the governing equation and develop a solution for s as a
function of x.

Problem 10.13 An experiment is conducted to measure the longitudinal
dispersion coefficient in a river. The river is relatively wide and shallow, so
that the flow may be approximated as two-dimensional. A line source is used
to inject a conservative dye evenly and nearly instantaneously over the depth,
near the middle of the river.

Velocity measurements in the river show that the velocity distribution
can be described by a 1/7th law, which also describes the vertical distribution
of dye concentration C, i.e.,

u

us
D

( z
h

)1/7
and

C

Cs
D

( z
h

)1/7
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Figure 10.31 Definition sketch, Problem 10.13.

where z D height above bottom, h D total depth, and subscript s indicates the
surface value (see Figure 10.31). Several measurements are made of the decay
in mean (cross-sectional average) concentration with distance downstream to
reveal

∂C

∂x
¾D �0.1

Cs

h
where C D 1

h

∫ h

0
Cdz

where the double overbar indicates a spatial average; u is defined similarly.
Using this information, along with the formal definition, estimate a value for
the dispersion coefficient in this river, in terms of us and h.

Problem 10.14 An experiment is conducted to evaluate mixing in a 60
km long section of a river. The river is 50 m wide, 3 m deep, and has a
mean velocity of 1.0 m/s. In the experiment, a conservative dye is injected
continuously at the upstream end of the river reach over a sufficiently long
period of time. The dye is injected at a rate so that, if it is assumed that the dye
is instantaneously mixed over the river cross section, the initial concentration
would be C0. At the downstream end of the reach (at x D 60 km), the area-
averaged concentration is measured, producing the data plotted in Fig. 10.32
(note that t is time after starting the injection).

(a) List the governing equation you would use to solve this problem,
including any assumptions made. Also list initial and boundary conditions
you would use.

(b) Use the data shown in Fig. 10.32 to estimate the average longitudinal
dispersion coefficient for the river.

Problem 10.15 An experiment is carried out to determine the longitudinal
dispersion coefficient in a river. The experiment is started by injecting a
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Figure 10.32 Data for river transport experiment, Problem 10.14.

conservative dye into the river at a certain point in such a way that full
mixing across the width and depth is achieved quickly, resulting in an initial
concentration C0. The dye is added continuously over a period of 24 hours.
This period of time is considered to be sufficiently long that a continuous
plane source solution may be used (actually, an instantaneous volume source
solution also is valid, and easier to work with). The proposed solution is

C

C0
D 1

2

[
erfc

(
x �Ut

2
p
ELt

)]

where erfc is the complimentary error function. At a point x D 25 km down-
stream, the cross-sectional average dye concentration is measured as a function
of time, resulting in the plot shown in Fig. 10.33

(a) What is the governing equation for this problem? List all assumptions
and any initial and boundary conditions. Is the above solution consistent with
these conditions?

(b) What is the mean river velocity (U)?
(c) Estimate the longitudinal dispersion coefficient EL.

Problem 10.16 A cargo boat accidentally spills a hazardous waste into a
river. There is a water supply intake a distance L downstream of the spill.
Between the spill and the intake the stream depth H is approximately constant,
but the stream widens at a rate that can be approximated with an exponential
function, B D B0eax, where B0 is the width at x D 0, x is distance downstream,
and a is a constant. The stream flow rate Q is constant and steady, and the

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 10.33 Data for river transport experiment, Problem 10.15.

mass of waste spilled is M. The waste decays with first-order rate constant K.
The problem is then to evaluate the chemical concentration at the intake.

(a) What is the governing equation for this problem? This equation
should be written in a form that directly incorporates the widening of the
stream. List any assumptions used.

(b) What are the initial and boundary conditions?
(c) Is the concept of dispersion applicable for this problem? Why or

why not?

Problem 10.17 Consider an aquifer in which fresh water of depth h flows
over a salt water layer, as sketched in Fig. 10.34. The salt water layer is
stagnant and has salinity S0, while the inflowing freshwater has initial salinity
S D 0. The freshwater flow is driven by a mean gradient of 10�3, and the
aquifer has hydraulic conductivity 50 m/day and porosity 0.2. The vertical
dispersivity is 2 cm. Except near the entrance, horizontal dispersion may be
neglected. Under steady state, calculate the isohaline lines corresponding to
S/S0 D 0.25, 0.5, and 0.75. Assume that h is large. (Note: this type of problem
is developed further in Chap. 11.)

Problem 10.18 Emissions from the smokestack of a coal-fired power plant
contain sulfur dioxide concentrations of 100 ppm at a constant discharge rate
of 10,000 ft3/s. The smokestack is 150’ above ground level (ground is assumed
to be flat). Average wind velocity (in the x-direction) is 10 mph, Ex D Ey D
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Figure 10.34 Definition sketch, Problem 10.17.

10 ft2/s, and Ez D 3 ft2/s (z is the vertical direction). The decay rate (first
order) is K.

(a) Show that, as long as x is greater than about 250’, diffusion in the
x-direction can be neglected.

(b) What are the governing equation and initial and/or boundary condi-
tions for this problem?

(c) A possible analytical solution for this problem is proposed as

C D q

4���EyEz�1/2x
exp

(
� y2U

4xEy
� z2U

4xEz
� Kx

U

)

where q is the rate of mass injection. Is this solution consistent with your
answer to part (b)? Why or why not? State specific assumptions needed in
using this solution.

(d) Assuming K D 0, using the solution from part (c), what is the
maximum concentration expected at ground level (z D 0)?

(e) If SO2 undergoes the following reaction (leading to acid rain),

SO2 C H2O ���! H2SO3

H2SO3 C 1
2 O2 ���! H2SO4

SO2 C H2O C 1
2 O2 ���! H2SO4

and the reaction is first order with respect to SO2, with K D 1, 000 day�1, what
is the maximum ground-level concentration? Use the solution from part (c).

Problem 10.19 A truck travels along a long, straight road at 35 mph. The
exhaust pipe discharges a smoke with a particular constituent having an initial
concentration of 500 ppm. The pipe exhaust is 12 ft above ground level and
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the discharge is 10 cfs. Neglecting decay and buoyancy effects, estimate
the maximum ground level concentration and the time at which it occurs
(measured from the time at which the truck passes a given point). List the
governing equation and any assumptions used in your solution. Air density
is 0.002 slug/ft3 and there is no wind. Assume homogeneous, anisotropic
diffusion with Ex D Ey D 10 ft2/s and Ez D 3 ft2/s, where z is the vertical
coordinate.

Problem 10.20 A conservative pollutant is discharged through a multiport
diffuser evenly across the bottom of a river that is 25’ (8 m) wide. Assume
constant uniform velocity U and homogeneous isotropic diffusion. Use U D 2
ft/s (0.6 m/s), depth = 10’ (3 m), E D 0.1 ft2/s(0.03 m2/s), source flow q D 10
cfs (0.3 cms) and source concentration C0 D 100 ppm.

(a) Use a line source solution to calculate the downstream concentration
response.

(b) Repeat part (a), but using a plane source solution. At what distance
downstream does the plane source solution become valid?

(c) Compare the results from each of the solutions from parts (a) and
(b) and comment on the relative advantages and disadvantages of these two
approaches.

Problem 10.21 Consider an infinite cylinder with dyed water of concentra-
tion C0 enclosed between 2 partitions at x D šL, as shown in Fig. 10.35. The
rest of the cylinder is filled with clear water (C D 0). Write the governing
equation and initial and boundary conditions for this problem. If at time t D 0
the partitions are instantaneously removed, find the dye concentration at an
arbitrary point x�x ½ L� as a function of time.

Hint: Consider the source to be composed of a number of infinitesimal
sources of thickness dx, and combine the responses for each of these sources.
The solution will be expressed in terms of the error function.

Figure 10.35 Initial dye distribution, Problem 10.21.
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Problem 10.22 A city of 500,000 people is discharging sewage into the
ocean from a submerged multiport diffuser as shown in Fig. 10.36. It is
assumed that an initial dilution of 100 is achieved at the point where the
discharge reaches the surface (i.e., at x D 0 the sewage concentration is 1/100
of its discharge value). Under certain wind conditions an on-shore current of
0.1 m/s is observed in this region, and there is concern for coliform concentra-
tions at the beach, 3000 m away. The production of coliforms is estimated to
be 400 ð 109 coliforms per person per day for a sewage flow rate of 600 liters
per person per day. The diffusivity corresponding to the initial plume width
of b0 D 100 m is estimated to be E0 D 0.1 m2/s, and it is assumed to increase
with the 4/3 power of width, i.e., �E/E0� ³ �b/b0�4/3, where b D plume width
and subscript zero indicates the initial value (at x D 0). Coliforms are assumed
to decay with a first-order decay rate of K D 10 per day.

(a) Calculate the flow rate and concentration of coliforms at the discharge
point and also at x D 0 (after initial dilution).

(b) Estimate the thickness of the discharge plume under the given flow
condition, assuming an initial width of 100 m (note that this thickness does
not change significantly with x, due to inhibition of vertical spreading by
buoyancy).

(c) Assuming a steady state and neglecting diffusion in the longitudinal
and vertical directions, what is the governing equation for this problem?

Figure 10.36 Definition sketch, Problem 10.22.
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(d) A solution is proposed, given by

Cmax

C0
D e

�
kx

U erf

{[
3/2

�1 C 8xEy/Ub2
0�

3 � 1

]1/2
}

Using this solution, what is the maximum concentration expected at the beach?
Is this solution consistent with the governing equation you used in part (c)?
Why or why not? Provide a qualitative plot of the shape of the concentration
distribution resulting from this solution (show several plots at different values
of x).
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11
Groundwater Flow and Quality
Modeling

11.1 INTRODUCTION

In Sec. 4.4 it was shown how laminar flow through porous media can be
represented by a model of flow through small capillaries. Then the average
flow rate per unit area, namely the specific discharge, is proportional to the
hydraulic gradient. Therefore, though the flow is basically laminar, it can
be modeled and simulated by methods applied to inviscid flows, where the
specific discharge originates from a potential function. In the present chapter
we explore some further applications of fluid mechanics principles with regard
to groundwater flow, its contamination, and its preservation.

Groundwater is always associated with the concept of an aquifer. An
aquifer comprises a layer of soil that may store and convey groundwater.
Therefore an aquifer is a layer of soil whose effective porosity and permeability
(or hydraulic conductivity) are comparatively high. There are various types of
aquifers, as illustrated in Fig. 11.1: (1) the confined aquifer, (2) the phreatic
aquifer, and (3) the leaky aquifer. It should be noted that in addition to this
classification, there are other properties of aquifers that are of interest, such
as the presence and effects of fractures, etc. However, regarding the aquifers
shown in Fig. 11.1, a confined aquifer is an aquifer whose top and bottom
consist of impermeable layers. A phreatic aquifer has an impermeable bottom
and a free surface, and a leaky aquifer is an aquifer whose boundaries are
leaky, i.e., there is flow across its boundaries. Figure 11.1c shows a leaky
phreatic aquifer, for example.

Considering length scales of aquifer flows, the thickness of the aquifer
is usually quite small, of the order of several tens of meters, whereas the
horizontal extent is of the order of kilometers. Therefore it can be assumed
that in many cases the groundwater flow is approximately in the horizontal
direction. Such an assumption leads to the Dupuit approximation, introduced
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Figure 11.1 Typical aquifers: (a) confined aquifer; (b) phreatic aquifer; and (c) leaky
phreatic aquifer.

in Chap. 4. The essence of this type of approximation is represented in the
following section.

11.2 THE APPROXIMATION OF DUPUIT

The Dupuit approximation is based on several simplifying assumptions,
which are generally quite well satisfied in groundwater systems. The major
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assumption is that streamlines in groundwater flows are almost horizontal.
Such an assumption with regard to a free surface (phreatic) aquifer greatly
simplifies the boundary condition at the free surface. The free surface of the
phreatic aquifer, by definition, represents a streamline on which the pressure
is equal to atmospheric pressure. A boundary condition of prescribed pressure,
according to Bernoulli’s equation, is a nonlinear boundary for the calculation
of the potential function. Also, the exact location of the streamline of the free
surface is not known prior to the performance of the calculations. Both of these
difficulties are resolved by the employment of the Dupuit approximation.

Figure 11.2 shows the basic differences between the presentation of the
groundwater flow according to potential flow theory and the modification of
that presentation by the employment of the Dupuit approximation.

Basically, the Dupuit approximation does not consider the exact shape
of the streamlines. The conservation of mass is considered with no reference
to the stream function. The vertical component of the specific discharge is
ignored, but the horizontal component of the specific discharge varies along the
longitudinal x coordinate. It is assumed that due to the small curvature of the
streamlines, the elevation of the free surface represents the piezometric head,
which is constant along vertical lines, instead of along lines perpendicular to
the free surface of the groundwater. Therefore the specific discharge vector is
approximated as

jqj ³ qx D ∂

∂x
³ �K∂h

∂x
�11.2.1�

where K is the hydraulic conductivity of the porous medium, q is the specific
discharge,  is the potential function, and h is the elevation of the free surface,
with regard to an arbitrary datum. In the particular case of Fig. 11.2, the bottom
of the aquifer is horizontal. Therefore the thickness of the flowing water layer
is adopted to represent the value of h. As shown in the following paragraph,
such an adoption of h for Fig. 11.2 may provide a complete linearization of
the equation of flow and the surface boundary condition.

The assumption of vertical lines of constant piezometric head implies
that the specific discharge is uniformly distributed in a vertical cross section
of the aquifer. Therefore the total discharge per unit width flowing through
any vertical cross section of the aquifer, shown in Fig. 11.2b, is given by

Q D �Kh∂h
∂x

D �K
2

∂

∂x
�h2� �11.2.2�

If there are no sources of water in the domain of Fig. 11.2, and the
domain of this figure is subject to steady-state conditions, then due to the
conservation of mass, the value of Q is constant for all vertical cross sections
shown in Fig. 11.2. Under such conditions, the value of h varies only with
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Figure 11.2 Differences between the potential flow theory and the Dupuit approxi-
mation: (a) the potential flow presentation; and (b) the Dupuit approximation.

the x coordinate, and the solution of Eq. (11.2.2) is given by

Qx D �K
2
h2 C C �11.2.3�

where C is a constant of integration.
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By applying two measured values of h at two arbitrary points, we can
identify the value of the two constant coefficients of Eq. (11.2.3), namely Q
and C. Consider that the measured value of h at x D 0 is h0, and at x D L the
value of h is hL . Introducing these values into Eq. (11.2.3), we obtain

Q D K
h2

0 � h2
L

2L
�11.2.4�

As previously noted, the Dupuit approximation basically neglects the
component of the specific discharge in the vertical direction. Therefore, in the
most general case, that approximation allows two horizontal components of
the specific discharge, namely,

qx D �K∂h
∂x

qy D �K∂h
∂y

�11.2.5�

If the domain is subject to steady-state conditions, then by applying the proce-
dure of Eq. (11.2.2), we obtain

Qx D �Kh∂h
∂x

Qy D �Kh∂h
∂y

�11.2.6�

By considering the conservation of mass under steady-state conditions,
Eq. (11.2.6) yields

∂

∂x

(
Kh
∂h

∂x

)
C ∂

∂y

(
Kh
∂h

∂y

)
D 0 �11.2.7�

This expression may look similar to Laplace’s equation, but it refers only
to steady-state conditions. In the case of a phreatic aquifer, some quantities
of percolating runoff, called accretion, penetrate into the aquifer through its
free surface. Under such conditions, the free surface of the aquifer is not a
streamline. However, this case also can be completely linearized by the Dupuit
approximation.

In cases of flow through a confined aquifer, the boundary conditions of
the domain are linear, but their shape may lead to some difficulties in solving
Laplace’s equation. In such cases, the Dupuit approximation simplifies the
calculations, as it leads to an assumption of unidirectional flow.

If the domain of Fig. 11.2 is subject to unsteady conditions, then the
groundwater free surface is subject to variations, as shown in Fig. 11.3. Then,
consideration of Eq. (11.2.2) and the mass conservation for the elementary
volume of unit width shown in Fig. 11.3 yields

∂

∂x

(
Kh
∂h

∂x

)
D �

∂h

∂t
�11.2.8�
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Figure 11.3 Variation of groundwater surface in a phreatic aquifer.

In the most general case of applying the Dupuit approximation, instead of
Eq. (11.2.8), we obtain

r Ð �Khrh� D �
∂h

∂t
�11.2.9�

where � is the portion of the porosity which takes part in the water flow,
namely the effective porosity of the aquifer; and the gradient vector refers
only to the horizontal directions.

If the aquifer is confined, then the Dupuit approximation is useful to
simplify the equations based on Darcy’s law and mass conservation. In the
case of a confined aquifer, the parameter h in Eq. (11.2.9) is still considered
as the piezometric head with regard to calculation of the specific discharge,
but it is replaced by the thickness, B, of the confined aquifer, with regard to
the calculation of the flow rate per unit width of the aquifer, as indicated in
Eq. (11.2.6). In a confined aquifer, contrary to a phreatic aquifer, the thick-
ness of the region of flowing groundwater is kept almost constant. However,
variations of flow in the aquifer are accompanied by some compression of
the water phase, as well as restructuring of the solid skeleton and porosity of
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the porous medium. Such changes are characterized by the strativity or coef-
ficient of storage, S. Therefore in the case of a confined aquifer, Eq. (11.2.9)
is modified to yield

r Ð �Trh� D S
∂h

∂t
�11.2.10�

where T is the transmissivity of the aquifer. Its value is given by

T D KB �11.2.11�

A common approach is to linearize Eq. (11.2.9) by considering that also
in the case of a phreatic aquifer, the transmissivity can be defined by

T D Khav �11.2.12�

where hav is an average value of the aquifer thickness. By introducing
Eq. (11.2.12) into Eq. (11.2.9), we obtain

r Ð �Trh� D �
∂h

∂t
�11.2.13�

Equations (11.2.10) and (11.2.13) are basically identical. Differences are
between values of S and �, where S D O�10�2� and � D O�10�1�; and T
of Eq. (11.2.13) results from the approximation given in Eq. (11.2.12).

Characterization of aquifers is usually obtained by the analysis of various
types of field tests by reference to Eqs. (11.2.10) and (11.2.13). A common
procedure is the use of pumping tests, or sludge tests. Laboratory tests of
permeability of core samples can provide information with regard to the type
of the soil but cannot be useful for the prediction of the response of the large-
scale aquifer to various types of flow conditions. With regard to confined
and phreatic aquifers, the analysis of field tests yields the storativity and
transmissivity of the aquifer. Contemporary methods are sometimes used to
characterize phreatic aquifers by reference to more sophisticated parametric
analysis. Sometimes such approaches are needed, mainly in cases of large
variations of the phreatic aquifer thickness. With regard to leaky aquifers, an
additional parameter, the leakage factor, is required for the complete para-
metric presentation of the aquifer characteristics. Other types of aquifers, like
fractured aquifers, require definitions of some other characteristic quantities.
However, the topic of well hydraulics is based on practical uses of the Dupuit
approximation, as exemplified by Eqs. (11.2.10) and (11.2.13), to characterize
the capability of aquifers to supply required quantities of water to water supply
systems.

The Dupuit approximation is very useful in obtaining simplified approx-
imate solutions of groundwater flow problems. It simplifies problems of flow
between impermeable layers, like confined aquifers, by simplifying the format
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of space-dependent coefficients. In cases of free surface flows, it linearizes
the nonlinear surface boundary condition. In cases of immiscible fluid flows,
it linearizes the nonlinear boundary of the interface between the immiscible
fluids. In coastal aquifers, it is common to assume that the sea saltwater and
freshwater of the aquifer are immiscible fluids. Then the Dupuit approxima-
tion can be useful for the calculation of the movement and location of the
interface between salt and fresh waters.

It will be shown in the following sections of this chapter that the Dupuit
approximation can often be useful for the solution of environmental problems
associated with groundwater contamination and reclamation. Such topics are
often defined as “contaminant hydrology.” Such a definition is suggested to
separate topics of pure hydraulics, which refer only to flow through porous
media, from topics related to the quality of groundwater.

11.3 CONTAMINANT TRANSPORT

11.3.1 General Introduction

The basic equations of contaminant transport in any fluid system were
introduced in Chap. 10. The same general approach, using elementary or
finite control volumes, is applicable for modeling transport in porous media.
However, in the case of a porous medium, we need to consider that a portion
of the control volume is occupied by the solid matrix, and another portion
incorporates the fluid or fluids. The elementary volume of reference in a
porous medium system also must be much larger than the characteristic
pore size. Such a representative elementary volume (REV) is much larger
than is usually required, according to continuum mechanics of single-phase
materials. In single-phase materials, continuum mechanics requires reference
to an elementary volume significantly larger than the molecular size. In
Chap. 10, we discussed some topics of dispersion in porous media. In the
present section, we present the basic modeling approach to the analysis and
calculation of contaminant transport in porous media.

11.3.2 Basic Equation of Contaminant Transport

Consider a constituent distributed in small concentrations in the water phase.
The constituent concentration represents the mass of the constituent per unit
volume of the water phase, consistent with the definition of mass concentra-
tion in Chap. 10. Also as in Chap. 10, a binary mass system of water and the
constituent is assumed here. The total mass of the constituent is assumed to
be very small in comparison to the quantity of water. Therefore the introduc-
tion of the minute quantity of constituent into the water phase does not affect
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the original volume of that water phase. The constituent may be present as a
dissolved material in the water phase, it can be present as a material adsorbed
to the solid skeleton of the porous medium, and it can be added, or taken away,
in different forms to and from the control volume of the porous medium. Refer-
ring to an elementary representative volume of the porous medium, the basic
equation of mass conservation of the dissolved constituent in the groundwater
can be obtained as

∂

∂t
��C�

�1�

C r Ð �EqC�
�2�

D r Ð �� QDrC�
�3�

�fC �

�4�

�

�5�

�PCC
�6�

RCR

�7�
�11.3.1�

It should be noted that this equation is valid for a porous medium saturated
with water. In the unsaturated zone the porosity, �, should be replaced by
the water saturation. Each of the terms included in Eq. (11.3.1) requires some
consideration, as presented in the following paragraphs, where the number of
the paragraph corresponds to the number of the term in the equation.

(1) This term represents the rate of change of constituent mass per unit
volume in the elementary control volume of the porous medium. It is usually
assumed that variations of the porosity, �, may be neglected.

(2) This term represents the difference between advective fluxes of
contaminant leaving and entering the elementary control volume of the porous
medium through its surfaces; q is the specific discharge of the flowing water
phase.

(3) This term represents the effects of molecular diffusion and hydrody-
namic dispersion on fluxes of contaminant entering and leaving the elementary
control volume through its surfaces. Fluxes of diffusion and dispersion are
proportional to the gradient of the constituent concentration. D is a second-
order hydrodynamic dispersion tensor, which is represented by a matrix of
the nine coefficients of dispersion. The values of the dispersion coefficients
depend on the type of the porous medium, its isotropy and homogeneity, and
its Peclet number. The Peclet number is defined by

Pe D VL

Dd
�11.3.2�

where V is the interstitial average flow velocity, which is also the specific
discharge divided by the porosity; L is a characteristic length of the pores,
and Dd is the coefficient of molecular diffusion of the constituent in the
water phase. Appropriate expressions for the hydrodynamic dispersion tensor
are well presented in the scientific literature for cases of homogeneous and
isotropic porous media. For an isotropic porous medium, i.e., one in which the
permeability is identical in all directions, if Pe − 1, then the hydrodynamic
dispersion tensor is an isotropic tensor, whose main diagonal components are
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smaller than the molecular diffusion coefficient. If 0.4 < Pe < 5, then some
anisotropy characterizes the hydrodynamic dispersion tensor, and it becomes
a symmetric second-order tensor. The principal directions of this tensor are
parallel and perpendicular to the velocity vector. If Pe > 5, then the effect of
molecular diffusion is minor, and the dispersion tensor can be represented by

Dij D aTjVj C �aL � aT�
ViVj
jVj �11.3.3�

where aT and aL are the transverse and longitudinal dispersivity, respectively.
Studies report that the longitudinal dispersivity is between 5 to even 100
times larger than the transverse dispersivity. The common ratio between the
longitudinal and transverse dispersivity is considered to be between 20 and 40.

(4) This term represents phenomena of sorption–desorption. A positive
value of f indicates larger quantities of the constituent adsorbed to the solid
skeleton of the porous medium than those desorbed from the solid skeleton. It
is common to analyze phenomena of sorption–desorption using linear isotherm
models, such as developed by Langmuir or Freundlich. These models provide
approximate linear relationships between the concentration of the constituent
dissolved in the water phase and its mass quantity adsorbed to the solid
skeleton of the porous medium. Such a presentation of the adsorption process
leads to incorporation of the fourth term of Eq. (11.3.1) with the first term as

∂C

∂t
C f D R

∂C

∂t
�11.3.4�

where R is called the retardation factor.
(5) This term refers to the constituent added to the water phase, as a

result of chemical reactions inside the elementary control volume. It incor-
porates the decay of the constituent mass and possible microbial uptake. The
value of this term represents the mass of the constituent added (or taken away)
by the internal chemical reactions per unit time, per unit volume of the porous
medium.

(6) This term represents the artificial removal of the constituent, which
may consume water with the constituent. The consumed water leaves the
system with the current concentration level of the constituent.

(7) This term represents the artificial recharge of the constituent, which
supplies water with constituent. The constituent concentration of the recharged
water is CR.

11.3.3 Various Issues of Interest

Solutions of Eq. (11.3.1) can be developed, provided that the appropriate forms
for each of the terms (4) through (7) are known, values of dispersivities are
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given, initial conditions are defined, and boundary conditions of the system are
well presented. Various issues of contaminant transport in groundwater are then
quantified by the appropriate solution of Eq. (11.3.1), depending on the relative
magnitudes of each of these terms. Often, initial and boundary conditions of the
saturated porous system are not very well defined. In these cases, it is common
to study the sensitivity of the system to a set of different initial and boundary
conditions. After performing a set of such simulations, it is usually possible to
choose a set of initial and boundary conditions in such a way that conservative
results can be assured. Time scales of the different phenomena represented in
Eq. (11.3.1) are often very different. Therefore considering different time scale
phenomena may allow significant simplification of Eq. (11.3.1), since some
terms may be neglected.

Also, it is common to use a conservative approach for the quantifi-
cation of contaminant transport, by considering transport of a conservative
contaminant. With this assumption, terms (4) through (7) can be neglected
in most portions of the domain. Then contaminant migration in the domain
is affected only by advection and dispersion, and Eq. (11.3.1) becomes an
advection–diffusion equation similar to the mass balance equation derived in
the previous chapter,

∂C

∂t
C EV Ð rC D r Ð � QDrC� �11.3.5�

At this point, it is important to consider the difference between the time
scale of processes associated with pumping of water for water supply purposes,
and the time scale of contaminant transport in groundwater. Pumping tests
usually require several days of pumping. During that time period, changes
in groundwater table or piezometric head are measured and evaluated. The
effect of pumping on the groundwater table is quick, and it depends on the
availability of water in the aquifer. With regard to contaminant transport in the
aquifer, processes are determined by the advection of the contaminant, which
also is associated with the contaminant dispersion. Regarding natural flow in
an aquifer, the magnitude of the hydraulic gradient is usually of order 10�3,
the hydraulic conductivity is of order 10 m/d, and the porosity is of order
0.2. Therefore the interstitial flow velocity, or the advection velocity, is of
order 5 cm/d. Under such conditions, a pollutant discharged into the aquifer
is advected a distance of less than 20 m in a year. Therefore contamination in
aquifers can persist for many years before there is any indication about such a
process. Close to a pumping well, the hydraulic gradient is large. Therefore a
contaminant that for many years may have spread only a comparatively small
distance in the aquifer by natural flow is subject to relatively quick advection
after its penetration into the region of influence of the well.

Some important solutions of the advection–diffusion equation can be
applied to determine basic characteristics of contaminant transport through
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porous media. As an example, we consider here the Ogata and Banks solution
named after the scientists who developed it. This problem refers to contaminant
transport in a semi-infinite column, through which the water flows with a
constant velocity V. The value of this velocity is, as previously defined, equal
to the specific discharge divided by the porosity of the porous medium. At time
t � 0, there is no contaminant in the flowing water phase. At t > 0, at one end
of the column, where x D 0, the contaminant concentration is kept constant,
at C D C0. This may be the case, for example, when the semi-infinite column
is connected to a large reservoir, in which the contaminant distribution is kept
uniform due to mixing. Under these conditions, if the dispersion coefficient is
constant, the differential equation (11.3.5) reduces to

∂C

∂t
C V

∂C

∂x
D D

∂2C

∂x2
�11.3.6�

The initial and boundary conditions of the problem are given as:

C D 0 at t � 0, x ½ 0 �11.3.7a�

C D C0 at t > 0, x D 0 �11.3.7b�

C D 0 at t > 0, x D 1 �11.3.7c�

The Laplace transform of Eqs. (11.3.6), (11.3.7b), and (11.3.7c), respectively,
yields

∂2C

∂x2
� V

D

∂C

∂x
� pC D 0 where C D C�x, p� �11.3.8�

C D C0

p
at x D 0 �11.3.9a�

C D 0 at x D 1 �11.3.9b�

where p is the Laplace transform variable; and the Laplace transform of C is
defined by

C�x, p� D
∫ 1

0
C exp��pt� dt �11.3.10�

The solution of the differential Eq. (11.3.8), subject to the boundary
conditions (11.3.9), is

C D C0

p
exp


x


 V

2D
�

√(
V2

4D
C p

D

)


 �11.3.11�

By returning to the x, t coordinates, Eq. (11.3.11) yields

C�x, t� D 1

2
C0

{
erfc

x � Vt

2
p
Dt

C exp
[
Vx

D

]
erfc

x C Vt

2
p
Dt

}
�11.3.12�
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where erfc is the complementary error function, defined by

erfc��� D 1 � erf��� D 1 � 2p
�

∫ �

0
exp���2�d� �11.3.13�

This solution was developed by Ogata and Banks in 1961, and it is
very useful for the identification of the dispersion coefficient, as explained
in the following paragraphs. If Pe is high, then the dispersion coefficient in
Eq. (11.3.12) is the longitudinal dispersion, which, according to Eq. (11.3.3),
is given by

D D DL D aLV �11.3.14�

Introducing this expression into Eq. (11.3.12), we obtain

C�x, t� D 1

2
C0

{
erfc

x � Vt

2
p
aLVt

C exp
[
x

aL

]
erfc

x C Vt

2
p
aLVt

}
�11.3.15�

If x/aL is sufficiently large, the second term of this expression can be neglected
and Eq. (11.3.15) reduces to

C�x, t� D 1

2
C0

{
erfc

x � Vt

2
p
aLVt

}
�11.3.16�

A breakthrough curve is obtained by continuously measuring contami-
nant concentration at a point x D x0, and plotting the results on the C, t plane.
An example of a set of breakthrough curves is shown in Fig. 11.4, where
each curve is associated with measurements made at several different loca-
tions along the column. Breakthrough curves similar to these can be obtained
in field tests, where a tracer is injected into a strip of wells, and contam-
inant concentration measurements are performed at different points located
downstream of the injection.

By applying Leibniz’s theorem, we may obtain the rate of change of C
at time t1/2, which is the time at which the contaminant concentration at the
measurement point is half of C0. Thus

S1/2 D
(
∂C

∂t

)
tDt1/2

D C0V

2
√
�Dt1/2

�11.3.17�

where S1/2 is the slope of the breakthrough curve at t D t1/2. Therefore, by
measuring S1/2, the value of the longitudinal dispersion coefficient and disper-
sivity can be calculated, using Eqs. (11.3.14) and (11.3.17),

DL D C2
0V

2

4�t0.5S2
aL D DL

V
�11.3.18�
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Figure 11.4 Breakthrough curves.

11.3.4 Application of the Boundary Layer Approximations

The boundary layer approach can be useful in obtaining approximate solutions
of Eq. (11.3.5). For example, consider the one-dimensional contaminant trans-
port problem represented by Eq. (11.3.6), subject to the boundary conditions
given by Eq. (11.3.7). By adopting a moving longitudinal coordinate,

x1 D x � Vt �11.3.19�

Equation (11.3.6) becomes

∂C

∂t
D D

∂2C

∂x2
1

�11.3.20�

Now, referring to the C, x plane shown in Fig. 11.5, consider the buildup
of two boundary layers at the moving front of the advected contaminant. In
this figure, it is assumed that advection in the x-direction is the dominant
transport mechanism, so that contaminant dispersion is basically a second-
order phenomenon, leading to the development of front and rear boundary
layers. We assume that both boundary layers have an identical shape. Therefore

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 11.5 Boundary layers developed at the moving contaminant front.

the contaminant distribution at the moving front of the contaminant is given by

C D 0.5�1 � ��n � D x1

υ
at 0 � x1 � υ �11.3.22a�

C D 1–0.5�1 C ��n � D x1

υ
at � υ � x1 � 0 �11.3.22b�

where n is a power coefficient. The front of the contaminant is represented by

C D 1

2
at x1 D 0 �11.3.21�

As the front and rear boundary layers are symmetrical with regard to
x1 D 0, we proceed with calculating the development of the front boundary
layer. By introducing Eq. (11.3.22a) into Eq. (11.3.20), applying Leibnitz’s
theorem, and integrating the expressions over the boundary layer,

d

dt

[
υ
∫ 1

0
�1 � ��nd�

]
D nD

υ
�11.3.23�

where υ is the boundary layer thickness. After another integration with respect
to time,

υ2 D 2Dn�nC 1�t �11.3.23�
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As indicated in Fig. 11.5, the calculation, based on using the boundary layer
approximation, can be applied provided that

Vt > 2
√

2Dn�nC 1�t �11.3.24�

By rearranging Eq. (11.3.24), it can be seen that the boundary layer approxima-
tion can be applied, provided that the point of 50% contaminant concentration
is located at

x1/2 >
8Dn�nC 1�

V
�11.3.25�

The solution obtained by the boundary layer approach also may be
applied to the determination of the dispersion coefficient. It leads to results
identical to those of Eqs. (11.3.17) and (11.3.18), provided that n D 2.05.

As a further example of the application of the boundary layer approx-
imation to different problems of contaminant hydrology, consider a quick
evaluation of the migration of a NAPL (nonaqueous phase liquid — NAPLs
in groundwater are discussed in more detail in Sec. 11.5). NAPL can be either
lighter or denser than water (in the latter case it is referred to as a DNAPL,
a dense nonaqueous phase liquid), but here we consider light NAPLs. NAPL
migration arises due to the dissolution of the NAPL lens, which is created
when a NAPL is released into the aquifer. Figure 11.6 shows how a NAPL

Figure 11.6 NAPL lens floating on top of the groundwater table.
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released at the soil surface arrives at the groundwater table and creates a lens,
which floats on top of the groundwater table. Due to the contact between the
NAPL lens and the flowing groundwater, a region adjacent to the NAPL lens
is contaminated by a dissolved or solubilized NAPL. Although a NAPL is
considered as being immiscible in water, there is a small but finite miscibility,
on the order of 0.1%. The advection velocity in the aquifer, V, is uniformly
distributed, and the flow is only in the x-direction. Therefore Eq. (11.3.6) may
be written as

∂C

∂t
C V

∂C

∂x
D Dx

∂2C

∂x2
C Dy

∂2C

∂y2
�11.3.26�

Although Dx is usually much larger than Dy , the first right-hand-side
term in Eq. (11.3.26) is much smaller than the second one and may be
neglected, due to the large gradient of the concentration profile in the y-
direction. Furthermore, the contaminant distributions in vertical cross sections
are similar, i.e.,

C D C0 �1 � ��n � D y

υ
�11.3.27�

where n is a power coefficient, υ is the boundary layer thickness, which
represents the region of significant penetration of the dissolved NAPL, and
C0 is the dissolved NAPL concentration at the NAPL lens. We may consider
that C0 is the concentration of equilibrium.

Equation (11.3.27) complies with the following boundary conditions:

C D C0 at y D 0 �11.3.28a�

C D 0 at y D υ �11.3.28b�
∂C

∂y
D 0 at y D υ �11.3.29c�

An additional boundary condition should be provided with regard to the x
coordinate. This is usually done using a boundary condition for υ rather than
for C, as

υ D 0 at x D 0 �11.3.30�

In general, an initial condition may be specified as

υ D 0 at t D 0 �11.3.31�

However, in the framework of this presentation, a steady state will be assumed,
so that initial conditions are not needed.

Under steady-state conditions, and neglecting the first right-hand-side
term of Eq. (11.3.26), we introduce Eq. (11.3.27) into Eq. (11.3.26), apply
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Leibniz’s theorem, and integrate over the boundary layer thickness to obtain

d

dx

[
Vυ

∫ 1

0
�1 � ��nd�

]
D Dyn

υ
�11.3.32�

After performing the integral of Eq. (11.3.32), using separation of variables
and integrating again, using Eq. (11.3.39), we obtain

υ2 D 2
Dy
V
n�nC 1�x (11.3.33)

As an example, consider n D 2, a NAPL lens with length 1000 m, a
flow velocity in the aquifer of 10 cm/d, and transverse dispersivity of 1 cm.
Then the transverse dispersion coefficient and the thickness of the region
contaminated by dissolved NAPL are given by

Dy D aTV D 1 cm ð 10 cm/s D 10 cm2/s (11.3.34a)

and

�υ�xD1000 m D p
2 ð 0.01 m ð 2 ð 3 ð 1000 m ³ 11 m

11.4 SALTWATER INTRUSION INTO AQUIFERS

Saltwater intrusion into coastal aquifers is a problem of interest in many
places around the world. It can be quantified and analyzed by various methods.
Some methods are based on the assumption that saltwater and freshwater are
immiscible fluids, and there is a sharp interface that separates the two fluids.
Such an approach allows a solution to be obtained simply by solving the
equations of flow in the two portions of the domain. However, saltwater and
freshwater do in fact mix, and several approaches have been developed that
take into account the effect of salt diffusion and dispersion as a perturbation
to the advective transport of the salt. Other approaches consider the domain
saturated with groundwater, in which salinity is nonuniformly distributed. The
effect of the salt on the density of the water is taken into account. These
approaches require the simultaneous solution of the equations of flow and salt
transport.

It should be noted that saltwater intrusion is not only typical of coastal
aquifers. It represents an acute issue in many inland aquifers, whose partially
permeable bottom may convey brine from deep formations into the overlying
freshwater aquifer, due to natural or artificial causes.

11.4.1 The Sharp Interface Approximation

The sharp interface approximation considers that saltwater and freshwater are
immiscible fluids. The sharp interface represents a streamline and a nonlinear
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boundary (since its position is not well known before solving the problem)
with regard to the velocity vector. Such a boundary is similar to the free
surface of a phreatic aquifer. As shown hereinafter, by using the Dupuit
approximation, the equation of flow is completely linearized under steady-
state conditions. Figure 11.7 shows two-dimensional steady-state freshwater
flow in a phreatic coastal aquifer. According to the Dupuit approximation,
lines of constant potential are vertical. Therefore the elevation of a point of
the groundwater table represents the piezometric head of the freshwater in
the vertical cross section that incorporates that point. Considering the small
control volume of the freshwater portion of the aquifer, we obtain

dQ

dx
D K

d

dx

[
�hf C B�

dhf

dx

]
�N �11.4.1�

where Q is the discharge per unit width of the freshwater aquifer, K is the
hydraulic conductivity of the aquifer to freshwater, hf is the elevation of
the groundwater table above the sea level — also the piezometric head, B
is the depth of the interface below the sea level, N is the rate of accretion per
unit width of the aquifer, and x is the longitudinal coordinate.

Both sides of the interface are subject to the same pressure. Therefore,
according to Fig. 11.7,

B�s D �hf C B��f �11.4.2�

where �f and �s are the specific weights of freshwater and saltwater, respec-
tively. Rearrangement of Eq. (11.4.2) yields

B D
(

�f

�s � �f

)
hf �11.4.3�

Introducing Eq. (11.4.3) into Eq. (11.4.1), and performing a single integration
with respect to x, we find

Q D K

(
�s

�s � �f

)
hf
dhf

dx
C

∫
Ndx �11.4.4�

Equation (11.4.4) is subject to two boundary conditions. According to
the boundary condition at the seashore,

hf D 0 at x D 0 �11.4.5�

Another boundary condition can be given by a measured value of hf at a
distance x D L from the seashore, or

hf D hL at x D L �11.4.6�

In the particular case of no accretion, the aquifer discharge per unit width is
kept constant in the domain of Fig. 11.7.
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Figure 11.7 Saltwater intrusion into a coastal aquifer.

Equation (11.4.4) is a linear ordinary differential equation with respect
to h2

f . If there is no accretion, then direct integration yields

Qx D K

2

(
�s

�s � �f

)
h2

h C C �11.4.7�

where C is an integration constant. The boundary condition of Eq. (11.4.5)
indicates that C D 0. By applying the boundary condition of Eq. (11.4.6),

Q D K

2L

(
�s

�s � �f

)
h2
L �11.4.8�

Also, according to Eqs. (11.4.7) and (11.4.8),

hf D hL

√
x

L
�11.4.9�
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The results of the preceding paragraphs show that by a small number of
piezometric head measurements, it is possible to obtain an estimate of the
freshwater discharge of the aquifer and the location of the interface between
the freshwater and the saltwater.

In order to obtain some quantitative information about coastal aquifers,
we consider the following approximate values:

�s D 1025 kg/m3 �f D 1000 kg/m3 �11.4.10�

where �f and �s are the density of fresh and saltwater, respectively. Introducing
Eq. (11.4.10) into Eq. (11.4.3),

B D 40hf �11.4.11�

This result is called the Ghyben–Herzberg relationship after the scientists
who first developed this expression in the beginning of the 20th century by
considering hydrostatic pressure distribution in the coastal aquifer.

As an example, consider a coastal aquifer with an impervious bottom
located at an elevation of 40 m below sea level. Then, according to
Eq. (11.4.11), the toe of the interface is located where hf D 1 m. If the
hydraulic conductivity of that aquifer is 40 m/d, and the toe of the interface is
located at a distance of 1 km from the seashore, then, according to Eq. (11.4.8),
the aquifer discharge per unit width is

Q D K

2L

(
�s

�s � �f

)
h2
L D 40

2 ð 1000

(
1025

1025–1000

)
ð 12 D 0.82 m2/d

�11.4.12�

Under unsteady conditions, the interface is subject to movement, and
additional terms representing the variation of the groundwater table and the
displacement of the interface should be added to the differential Eq. (11.4.1).
This renders the equation nonlinear. Therefore problems of saltwater intrusion
into a coastal aquifer, in which the interface is subject to movement, are
usually solved by numerical simulation.

11.4.2 Salinity Transport

The sharp interface assumption is often used, at least as a first approxima-
tion for the evaluation of saltwater intrusion into coastal aquifers. It also is
used for the evaluation of saltwater intrusion into inland aquifers. However,
as previously noted, freshwater and saltwater are miscible fluids. The main
difference between the two fluids is simply the difference in salt concentra-
tions. Therefore, logically, the appropriate method of simulation of saltwater
intrusion into an aquifer should focus on the water flow associated with advec-
tion and dispersion of salt in the domain. Such an approach requires that the
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flow equation and salt transport equation must be solved simultaneously, as
the increase of the salt concentration increases the density of the water phase.

There are various numerical models, some of them in the public domain,
that can adequately provide such solutions. However, a simplified approach
may apply the sharp interface approximation incorporating the assumption that
the transition zone between freshwater and saltwater can be represented as a
boundary layer. Using this approach, it is assumed that the interface repre-
sents a boundary of constant salt concentration, as shown in Fig. 11.8. The
transition zone develops along that boundary, and it is similar to a boundary
layer. Assuming that the curvature of the interface is small, we adopt a two-
dimensional coordinate system x, y, where x is the longitudinal coordinate
extended along the interface and y is perpendicular to the interface. Due to the
small curvature of the interface, the equation of salt transport in the proximity
of the interface is given by

∂C

∂t
C V

∂C

∂x
D Dy

∂2C

∂y2
�11.4.13�

For steady-state conditions, we apply the following approximations (refer to
Eqs. 11.3.14 and 11.3.27):

Dy D aTV (11.4.14a)

C D C0�1 � ��n � D y

υ
(11.4.14b)

where υ is now the thickness of the transition zone, C0 is salt concentration
of the saltwater, and n is a power coefficient. We introduce Eq. (11.4.14) into
Eq. (11.4.13) and integrate over the transition zone to obtain

dυ2

dt
D 2aTn�nC 1� �11.4.15�

Figure 11.8 Development of the transition zone at the sharp interface.
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By direct integration of Eq. (11.4.15), and assuming that υ D 0 at x D 0,

υ2 D 2aTn�nC 1�x �11.4.16�

11.5 NON-AQUEOUS PHASE LIQUID (NAPL) IN
GROUNDWATER

Due to the development and use of products originating from the oil industry,
such as fuels, oil distillates, and other oil products, there have been many cases
of groundwater contamination by such products. Such fluids are considered
to be immiscible in water, and they are termed nonaqueous phase liquids, or
NAPLs. When a NAPL arrives at an aquifer, small quantities may dissolve
in groundwater and have a significant effect on the taste and odor of the
water. Humans are sensitive to the presence of fuel in water, even when
its concentration is smaller than 1 mg/L. Some of the hydrocarbon fractions
in the fuel are poisonous at specific threshold levels. Various organic liquid
compounds, many including chlorine, are suspected to be carcinogens.

Figure 11.6 describes a typical case of groundwater contamination by
NAPL. NAPL quantities that are released at the ground surface percolate
almost vertically through the unsaturated zone. Some quantities of the NAPL
are entrapped in that zone. If the released NAPL amount is large, or the
groundwater table is close to the soil surface, then the NAPL spill may arrive
at the capillary fringe, where it migrates horizontally. If the density of the
NAPL is smaller than that of water, it is called LNAPL (light NAPL), and a
NAPL lens floating on top of the groundwater is created, as shown in Fig. 11.6.
Such a NAPL lens is subject to gradual release of dissolved NAPL into the
flowing groundwater. It also provides NAPL vapors into the gaseous phase.

Analysis of NAPL migration in the porous medium may be subject
to various stages. In the first stage, possible simultaneous flow of NAPL,
water, and air may be considered. Numerical models for such multiphase flow
were developed by oil companies some time ago. In the 1980s such models
were simplified and adopted for environmental flows. However, the stage of
multiphase flow in porous media is relatively short and concerns minor issues
of groundwater contamination and possible reclamation. Usually, even in cases
of very significant NAPL spills, the volume of the NAPL released into the
environment is small, compared to the volume of water contaminated by the
NAPL. After a relatively short time the NAPL reaches a state of equilibrium,
in which it is entrapped within the porous medium. The NAPL lens shown
in Fig. 11.6 is almost stagnant. However, it is subject to oscillations in the
upward and downward directions with the groundwater table. Such oscillations
originate from natural as well as artificial reasons with seasonal and annual
time scales. As a result of such oscillations, the NAPL may be trapped within
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the aquifer, usually in the form of ganglia (blobs), which are surrounded by
the water phase. Figure 11.9 shows some typical shapes of entrapped NAPL
blobs. Under such conditions, the flowing groundwater gradually dissolves the
entrapped NAPL.

Figure 11.9 Typical shapes of entrapped NAPL blobs. (a) Singlet formed by
“snap-off” in pore with high pore body-to-throat size ratio; and (b) blob formed by
“bypassing” in course sand lens. (1) Singlets; (2) doublets; (3) fingers; (4) large sphere;
and (5) cylinder.
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The rate of mass transfer of the NAPL from the continuous entrapped
NAPL phase into the flowing water phase is given by

F D kfab�Cs �C� �11.5.1�

where F is the rate of mass transfer between the NAPL and water phases,
kf is the effective mass transfer coefficient, ab is the specific interfacial area
of contact between the NAPL blob and the mobile water phase, C is the
concentration of dissolved NAPL in the water phase, and Cs is the equilib-
rium concentration of the dissolved NAPL in the water phase. The specific
interfacial area of contact between the NAPL blob and the mobile water is
given by

ab D Sn

(
A

V

)
b
f �11.5.2�

where Sn is the NAPL saturation, namely the portion of pores saturated by
NAPL, �A/V�b is the ratio between the surface area and volume of the NAPL
blob, and f is the fraction of the blob surface area exposed to contact with
the mobile water.

Figure 11.6 and a quantitative example connected with that figure
provide an approximate description of groundwater contamination originating
from a NAPL lens floating on top of the flowing groundwater. In the following
paragraph, we consider how groundwater is contaminated by dissolved NAPL,
which originates from the dissolution of entrapped NAPL blobs. This is
done assuming one-dimensional flow of groundwater through a portion of the
aquifer contaminated by entrapped NAPL. The equation of dissolved NAPL
transport in the domain is thus given as

∂C

∂t
C V

∂C

∂x
D Dx

∂2C

∂x2
C kfab �Cs �C�

�Sw
�11.5.3�

where Dx is the longitudinal dispersion coefficient, � is the porosity, and Sw is
the water saturation. The longitudinal dispersion coefficient is again assumed
to be given by Eq. (11.3.14), or

Dx D aLV �11.5.4�

where aL is the longitudinal dispersivity, as before.
The flow of groundwater through the site contaminated by entrapped

NAPL leads to a gradual increase of the dissolved NAPL concentration in the
water phase. It also decreases the saturation of the entrapped NAPL. However,
there are two different time scales for these two phenomena. For the calculation
of the increase of the dissolved NAPL concentration along the x coordinate,
quasi-steady-state conditions may be assumed, with constant NAPL saturation.
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Therefore, Eq. (11.5.3) is simplified as

dC

dx
D aL

d2C

dx2
CKf�Cs � C� �11.5.5�

where

Kf D kfab

�swV
�11.5.6�

The denominator of Eq. (11.5.6) represents the specific discharge of the
groundwater.

Equation (11.5.5) is an ordinary second-order differential equation
subject to a single important boundary condition,

C D 0 at x D 0 �11.5.7�

We may adopt another boundary condition, that is not necessarily material-
ized, as

C D Cs at x ! 1 �11.5.8�

If the coefficient of effective mass transfer is large, or the portion of the
aquifer contaminated by entrapped NAPL is large, then the boundary condi-
tion of Eq. (11.5.8) is materialized. Otherwise, downstream of that portion of
the aquifer, the dissolved NAPL concentration is smaller than its equilibrium
value.

The solution of Eq. (11.5.5), subject to the boundary conditions of
Eqs. (11.5.7) and (11.5.8), is

C D Cs � Cs exp
{
x

2aL

[
1 �

√
1 C 4aLKf

]}
�11.5.9�

In most cases, the effect of dispersion on the NAPL dissolution process is
very minor. Therefore Eq. (11.5.5) can usually be approximated by

dC

dx
D Kf�Cs �C� �11.5.10�

Direct integration of Eq. (11.5.10), and use of the boundary condition given
by Eq. (11.5.7), give

C D Cs
[
1 � exp��Kfx�

]
�11.5.11�

This result also satisfies the boundary condition of Eq. (11.5.8).
Further discussion concerning NAPL in groundwater is provided in

Chap. 16, which concerns the remediation of contaminated environments.
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11.6 NUMERICAL MODELING ASPECTS

11.6.1 The Equations of Flow

Groundwater flow simulation by the employment of adequate numerical
models is nowadays a common practice of hydrologists and engineers. Public
domain computer programs, as well as commercial programs, are available to
cover all aspects of groundwater hydrology. The oldest numerical method is
the method of finite differences. Other approaches that are commonly used
are the finite element method, boundary elements, and analytical elements.

Employment of the Dupuit approximation indicates that the basic aquifer
flow equations, represented by Eqs. (11.2.1)–(11.2.12), originate from the
basic differential equation

S
∂h

∂t
D ∂

∂x

(
T
∂h

∂x

)
C ∂

∂y

(
T
∂h

∂y

)
C q �11.6.1�

where S is the storage coefficient, h is the piezometric head, T is the trans-
missivity, x and y are two horizontal coordinates, and q represents a source
of groundwater. This equation indicates that simulation of steady-state flow
in an aquifer is basically providing the solution to an elliptic partial differen-
tial equation. If the transmissivity is constant, then Eq. (11.6.1) reduces under
steady-state conditions to the Laplace or Poisson equation. The numerical
solution of these equations is discussed in Chap. 4.

Considering the common finite difference approach, the domain is repre-
sented by a finite difference grid. Each nodal point of that grid provides a linear
equation, which incorporates several unknown values of the piezometric head
(or potential function) at that particular point, and several other grid points in
its proximity. The boundary conditions of the domain are introduced into that
set of equations. Later, the set of linear equations is solved by an iterative
method, like the successive over-relaxation method (SOR). As the coefficient
matrix incorporates many zero elements, an iterative solution method is more
efficient for steady-state cases than an elimination method. Common boundary
conditions of the domain are either of the Dirichlet type, where the piezo-
metric head is given at the boundary, or the Neumann type, where the spatial
derivatives of the piezometric head are given at the boundary, or the mixed
boundary condition incorporating both Dirichlet and Neumann expressions. If
Eq. (11.6.1) is applied under steady-state conditions to a phreatic aquifer, then
the transmissivity depends on the elevation of the groundwater table. Under
such conditions, if the bottom of the aquifer is flat, Eq. (11.6.1) reduces to
Eq. (11.2.7) with sources, which is a linear partial differential equation with
regard to h2. With such an equation, a solution for values of h2 at the nodal
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points of the finite difference grid has a better convergence than the solution
for values of h. The latter solution should incorporate an artificial linearization
of the differential equation.

Under unsteady-state conditions, Eq. (11.6.1) is a parabolic partial differ-
ential equation, which is basically similar to the diffusion equation. Such an
equation can be solved by explicit or implicit methods. If calculations refer to
a confined aquifer, then Eq. (11.6.1) is a linear partial differential equation. If
calculations refer to a phreatic aquifer, then Eq. (11.6.1) is a nonlinear partial
differential equation, as the transmissivity depends on the elevation of the
groundwater table, namely the piezometric head. The transmissivity can be
proportional to the piezometric head, provided that the impervious bottom of
the aquifer is flat. Therefore, in cases of a phreatic aquifer, Eq. (11.6.1) is
nonlinear, and linearization methods should be applied during the numerical
simulation process.

In general, two categories of numerical schemes can be developed for
the solution of Eq. (11.6.1): (a) explicit schemes and (b) implicit schemes.
As previously described (Chaps. 1, 4, and 10), an explicit scheme calculates
values of the piezometric head at the time step mC 1, at each individual
nodal point of the finite difference grid, by applying values of the piezometric
head and the transmissivity at the time step m. An implicit numerical scheme
creates a set of linear algebraic equations, in which values of the piezometric
head, at the time step mC 1, at all nodal points of the finite difference grid,
are the unknown variables. When forming the set of linear equations, the
numerical scheme requires known values of the piezometric head at time step
m (these are part of the right-hand sides of the equations). If the aquifer is a
phreatic aquifer, then implicit methods are often associated with some iterative
calculations, needed to determine the aquifer transmissivity at an intermediate
time step, between times m and m C 1, before the values of the piezometric
heads at time step m C 1 can be obtained.

There are various types of explicit numerical schemes, but as a basic
illustration of the procedure, consider the finite difference approximations of
the terms in Eq. (11.6.1),

S
∂h

∂t
³ Smi,j

hmC1
i,j � hmi,j
t

(11.6.2a)

∂

∂x

(
T
∂h

∂x

)
³ 1

x

[(
T
∂h

∂x

)m
iC1/2,j

�
(
T
∂h

∂x

)m
i�1/2,j

]

D 1

�x�2
[TmiC1/2,j�h

m
iC1,j � hmi,j�� Tmi�1/2,j�h

m
i,j � hmi�1/2,j�]

(11.6.2b)
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∂

∂y

(
T
∂h

∂y

)
³ 1

�y�2
[Tmi,jC1/2�h

m
i,jC1/2 � hmi,j�� Tmi,j�1/2�h

m
i,j � hmi,j�1/2�]

(11.6.2c)

where i and j are the subscripts for the x and y locations, respectively, of the
grid nodal point, m is a superscript referring to the number of the time step,
and x and y are increments in the x- and y-directions, respectively. By
introducing these approximations into Eq. (11.6.1), we obtain the following
explicit scheme for the calculation of values of the piezometric head at each
individual nodal point of the finite difference grid:

hmC1
i,j D hmi,j C t

Si,j�x�2
[TmiC1/2,j�h

m
iC1,j � hmi,j�

�Tmi�1/2,j�h
m
i,j � hmi�1/2,j�] C t

Si,j�y�2
[Tmi,jC1/2�h

m
i,jC1 � hmi,j�

�Tmi,j�1/2�h
m
i,j � hmi,j�1/2�] C t

Si,j
qmi,j �11.6.3�

It should be noted that T varies with time only in a phreatic aquifer. In
a confined aquifer, it is common to assume that T has the same value for
significant portions of the aquifer. Usually, T and S do not vary substantially
in an aquifer.

Explicit schemes are subject to convergence and stability limitations.
Such limitations are associated with the maximum value of the time step that
can be used during the simulation. Usually, a safe time step is proportional to
the square of the space increments. If in Eq. (11.6.1) the values of T and S
are constant in time and space, then the criterion for convergence and stability
of the numerical scheme of Eq. (11.6.3) is given by

Tt

S[�x�2 C �y�2]
� 1

2
�11.6.4�

Due to this criterion, fine numerical grid resolution requires very small time
steps. Therefore it is often more economical, from the point of view of using
computer resources, to apply an implicit finite difference numerical scheme to
solve Eq. (11.6.1).

Still assuming a one-dimensional flow in the aquifer, a fully implicit
scheme to approximate the various terms of Eq. (11.6.1) is written as

S
∂h

∂t
³ Smi

hmC1
i � hmi
t

(11.6.5a)

∂

∂x

(
T
∂h

∂x

)
³ 1

x



[
Tm

(
∂h

∂x

)mC1
]
iC1/2

�
[
Tm

(
∂h

∂x

)mC1
]
i�1/2



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D 1

�x�2
[TmiC1/2�h

mC1
iC1 � hmC1

i �� Tmi�1/2�h
mC1
i � hmC1

i�1/2�]

(11.6.5b)

By introducing Eq. (11.6.5) into Eq. (11.6.1), a set of linear equations
is obtained as

�hmC1
i�1

t

Smi �x�2
Tmi�1 C hmC1

i

[
1 C t

Smi �x�2
�Tmi�1 C TmiC1�

]

�hmC1
iC1

t

Smi �x�2
TmiC1 D hmi C t

Smi
qmi �11.6.6�

The coefficients of this set of linear equations form a tridiagonal matrix. By
definition, all elements of a tridiagonal matrix are zeros, except for those of
the major diagonal and the upper and lower diagonals on either side of the
main diagonal. If the coefficients of a set of linear equations form a tridiagonal
matrix, then the solution of these equations can be very rapidly obtained by
the employment of the Thomas algorithm found in many introductory texts
on numerical solutions of sets of simultaneous equations. This algorithm uses
three vectors, one for each of the main diagonals, to solve the problem, rather
than a full matrix, thus providing considerable savings in computer memory
requirements.

For a two-dimensional flow, a common approach is to apply an alter-
nating direction implicit (ADI) numerical scheme. According to the ADI
scheme, the calculation of the piezometric heads at the time step mC 1 is
performed by an implicit scheme for the spatial derivatives in one of the coor-
dinate directions, say the x-direction. The piezometric heads at the following
time step, m C 2, are then calculated by an implicit scheme with regard to the
y-direction. To start the process, the implicit equations defined in Eq. (11.6.5)
are used (along with an additional equation for the y-direction) to calculate
the piezometric heads at time step m C 1,

S
∂h

∂t
³ Smi,j

hmC1
i,j � hmi,j
t

(11.6.7a)

∂

∂x

(
T
∂h

∂x

)
³ 1

x



[
Tm

(
∂h

∂x

)mC1
]
iC1/2,j

�
[
Tm

(
∂h

∂x

)mC1
]
i�1/2,j




D 1

�x�2
[TmiC1/2,j�h

mC1
iC1,j� hmC1

i,j �

� Tmi�1/2,j�h
mC1
i,j � hmC1

i�1/2,j�] (11.6.7b)
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)
³ 1

y

{[
T

(
∂h

∂y

)]m
i,jC1/2

�
[
T

(
∂h

∂y

)]m
i,j�1/2

}

D 1

�y�2
[Ti,jC1/2�hi,jC1/2 � hi,j�

�Ti�1/2,j�hi,j � hi,j�1/2�]
m (11.6.7c)

These equations are introduced into Eq. (11.6.1) to obtain a set of linear
equations for each point of the finite difference grid:

�hmC1
i�1,j

t

Smi,j�x�2
Tmi�1/2,j C hmC1

i,j

[
1 C t

Smi,j�x�2
�Tmi�1/2,j C TmiC1/2,j�

]

�hmC1
iC1,j

t

Smi,j�x�2
TmiC1/2,j D hmi,j C t

Smi,j
qmi,j C t

Smi �y�2

ð [Ti,jC1/2�hi,jC1 � hi,j�� Ti,j�1/2�hi,j � hi,j�1�]
m �11.6.8�

The coefficients of this set of equations again form a tridiagonal matrix. As
just described, the resulting set of equations can be solved using the Thomas
algorithm to provide the distribution of piezometric heads in the domain at
the mC 1 time step.

Following a similar procedure, implicit finite difference approximations
are written for the calculation of the piezometric heads at time step m C 2,

S
∂h

∂t
³ SmC1

i,j

hmC2
i,j � hmC1

i,j

t
(11.6.9a)
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�x�2
[TiC1/2,j�hiC1,j � hi,j��Ti�1/2,j�hi,j � hi�1/2,j�]
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(11.6.9b)
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(11.6.9c)
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Introducing these into Eq. (11.6.1), a second set of linear equations is obtained
for the m C 2 time step,

�hmC2
i,j�1

t

SmC1
i,j �y�2

TmC1
i,j�1/2 C hmC2

i,j

[
1 C t

SmC1
i,j �y�2

�TmC1
i,j�1/2 C TmC1

i,jC1/2�

]

�hmC2
i,jC1

t

SmC1
i,j �y�2

TmC1
i,jC1/2 D hmC1

i,j C t

SmC1
i,j

qmC1
i,j C t

SmC1
i,j �x�2

ð [TiC1/2,j�hiC1,j � hi,j�� Ti�1/2,j�hi,j � hi�1,j�]
mC1 �11.6.10�

Again, the coefficients of this set of equations form a tridiagonal matrix,
and the Thomas algorithm can be used to provide the distribution of piezo-
metric heads in the domain, at the m C 2 time step. In successive simula-
tion time steps, the calculations continue to alternate between Eqs. (11.6.8)
and (11.6.10).

As long as estimates are needed for quantities of water that can be
pumped out of an aquifer, employment of the Dupuit approximation is usually
satisfactory. However, if estimates of flow velocity distribution are needed
for the evaluation of contaminant advection in the aquifer, then the approx-
imate two-dimensional models originating from Eq. (11.6.1) may need to be
replaced by a completely three-dimensional modeling approach. Although flow
velocity in the aquifer may be dominated by the horizontal flow, the small
vertical velocity, as well as the heterogeneity of the aquifer in the vertical
direction, may contribute to the migration of the contaminant in the aquifer.
However, if the vertical component of the velocity is extremely small, then
transverse dispersion of the contaminant may be the mechanism leading to the
contaminant penetration into the entire thickness of the aquifer. Sometimes the
aquifer can be considered as a combination of several subaquifers. Then it is
common to apply the Dupuit approximation to each subaquifer and to take into
account the transfer of water between adjacent subaquifers or aquifer layers.
Such models can be termed as quasi-three-dimensional models. Complete
three-dimensional models are usually formulated to solve for the distribution
of piezometric heads without use of the Dupuit approximation. Sometimes
such models suffer from difficulties associated with boundary conditions. A
common example, noted previously, is the free surface of the phreatic aquifer,
whose location is not known prior to the performance of the numerical simu-
lation. Such a boundary is nonlinear with regard to the determination of the
potential function and the velocity components.

11.6.2 The Equation of Contaminant Transport

Calculations of contaminant transport in an aquifer should follow the deter-
mination of velocity components at each nodal point of the finite difference
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grid, as explained in the previous section. In some cases, the contaminant
concentration varies considerably in the domain, and it may also affect the
density of the water, as in cases of salinity intrusion into the aquifer. In such
cases, the flow equation and contaminant transport equation must be solved
simultaneously.

The general partial differential equation that is applied to determine the
transport of contaminants in an aquifer is given by Eq. (11.3.1). Basic transport
features of this equation are determined by the advection [term (2)] and diffu-
sion–dispersion [term (3)] terms. If contaminant diffusion is negligible, then
Eq. (11.3.1) can be approximated, in the case of a one-dimensional domain,
by the advection equation,

∂C

∂t
C u

∂C

∂x
D 0 �11.6.11�

A finite difference approximation for this equation was suggested by Lax-
Wendroff,

CmC1
i D Cmi � ut

x
�CmiC1 � Cmi�1�C

(
ut

x

)2

�CniC1 � 2Cmi C Cmi�1�

�11.6.12�

This expression is second order accurate in the time step, i.e., the accuracy is
of order O�t�2. This scheme is stable, provided that

ut

x
� 1 �11.6.13�

Alternative numerical schemes have been proposed for the solution of
the advection equation. One such scheme, using a combination of explicit and
implicit terms that is relatively common, is

CmC1
i

(
1 C umC1

i

t

x

)
D Cmi C CmC1

i�1

(
umC1
i

t

x

)
�11.6.14�

where values of the flow velocity are obtained from the flow equation prior to
the calculation of the contaminant distribution. This scheme is unconditionally
stable, but its accuracy is considerably less than that of the Lax-Wendroff
scheme.

If effects of contaminant diffusion in the domain are significant, then all
terms of the advection–diffusion equation should be taken into account. For
example, in a one-dimensional domain, the advection–diffusion equation is
given by

∂C

∂t
C u

∂C

∂x
D D

∂2C

∂x2
�11.6.15�
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The numerical solution of Eq. (11.6.15) can be based on a combination of
a numerical scheme to solve the advection equation and another numerical
scheme for simulation of the diffusion equation. This is known as a split-
operator approach. As an example, an implicit numerical scheme based on the
combination of the advection scheme given by Eq. (11.6.14) and a diffusion
scheme similar to that of Eq. (11.6.6) can be written as

�CmC1
i�1

[
umC1
i

t

x
C t

�x�2
DmC1
i

]
CCmC1

i

[
1 C umC1

i

t

x
C 2t

�x�2
DmC1
i

]

�CmC1
iC1

[
t

�x�2
DmC1
i

]
D Cmi �11.6.16�

where values of the flow velocity and the dispersion coefficient, which may
depend on the flow velocity, are determined by using the flow equation simula-
tion prior to calculating concentrations. Equation (11.6.16) represents a set of
linear algebraic equations, whose coefficients again form a tridiagonal matrix
that can be solved using the Thomas algorithm.

PROBLEMS

Solved Problems

Problem 11.1 Water flows in the x-direction through a confined aquifer of
thickness B, as shown in Fig. 11.10. The length of the aquifer is L and the
hydraulic conductivity is K. The bottom of the aquifer is impermeable, while
the top of the aquifer consists of a semipermeable layer of thickness b and
hydraulic conductivity ˛. At the left boundary of the aquifer the piezometric
head is h1. At the right boundary of the aquifer the piezometric head is h2.
The piezometric head in the overlying free surface (phreatic) aquifer is h0.
Apply the Dupuit approximation to derive the expression for the calculation
of the piezometric head and flow rate distribution in the aquifer.

Solution

The aquifer flow rate, Q, is given by

Q D qB D �KBdh
dx

�1�

where h is the piezometric head of the confined aquifer. The seepage flow
from the confined aquifer into the overlying phreatic aquifer is

qv D ˛
h � h0

b
�2�
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Figure 11.10 Definition sketch, Problem 11.1.

Considering the water flux in the elementary volume of the aquifer bounded
by the dashed lines in Fig. 11.10, a mass balance statement can be written as

dQC qv dx D 0 �3�

where

dQ D dQ

dx
D �KBd

2h

dx2
qv D ˛

h � h0

b
�4�

Introducing Eqs. (1), (2), and (4) into Eq. (3), we obtain

BK
d2h

dx2
� ˛

h � h0

b
D 0 �5�

Rearranging this result then yields

d2h

dx2
� ˇ2h D �ˇ2h0 �6�

where

ˇ D
√

˛

bBK
�7�

The solution of Eq. (6) is given by

h D C1e
�ˇx C C2e

ˇx C h0 �8�
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where

C1 D h1 � h2 � �h1 � h0��1 � eˇL�

1 � eˇL

C2 D h1 � h0 � C1 �9�

By applying Eqs. (1) and (8), we obtain the desired flow rate,

Q D qB D �KBdh
dx

D �KBˇ��C1e
�ˇx C C2e

ˇx�

Problem 11.2 Flow occurs through a phreatic aquifer in the x-direction as
shown in Fig. 11.11. The length of the aquifer is L and the hydraulic conduc-
tivity is K. The bottom of the aquifer is semipermeable, and it separates the
aquifer from a deeper confined aquifer with constant head h0. The thickness
of the semipermeable bottom layer is b and its hydraulic conductivity is ˛.
At the left boundary of the phreatic aquifer the piezometric head is h1. At the
right boundary of the aquifer the piezometric head is h2. Apply the Dupuit
approximation to derive the differential equation for the calculation of the
piezometric head and in the aquifer.

Solution

The aquifer flow rate, Q, is given by

Q D qh D �Khdh
dx

�1�

Figure 11.11 Definition sketch, Problem 11.2.
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where h is the piezometric head of the phreatic aquifer. The seepage flow
from the phreatic aquifer into the underlying confined aquifer is given by

qv D ˛
h � h0

b
�2�

Considering the water flux in the elementary volume of the aquifer bounded
by the dashed lines in Fig. 11.11, we obtain a mass balance statement as

dQC qvdx D 0 �3�

where

dQ D dQ

dx
D �K d

dx

(
h
dh

dx

)
qv D ˛

h� h0

b
�4�

Introducing Eqs. (1), (2), and (4) into Eq. (3), we obtain

K
d

dx

(
h
dh

dx

)
� ˛

h � h0

b
D 0 �5�

Rearranging this result then leads to

d

dx

(
h
dh

dx

)
�

( ˛

Kb

)
�h � h0� D 0 �6�

This is a one-dimensional nonlinear boundary value problem, subject to the
boundary conditions

h D h1 at x D 0

h D h2 at x D L

This type of problem usually requires a numerical method incorporating some
sort of linearization.

Problem 11.3 Develop the differential equation and a finite difference
numerical implicit scheme for the calculation of piezometric head distribution
and flow in a phreatic aquifer. Initially the aquifer flow is subject to the
boundary conditions h D h1 at x D 0 and h D h2 at x D L. The hydraulic
conductivity of the aquifer is K. At time t D 0, a series of pumping wells
started pumping a discharge Qp per unit width of the aquifer at x D L/2.

Solution

The problem is sketched in Fig. 11.12. A mass balance statement is first
written for the elementary volume bounded by the dashed lines in Fig. 11.12,
resulting in

�
∂h

∂t
C dQC qvdx D 0 �1�
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Figure 11.12 Definition sketch, Problem 11.3.

where � is the effective porosity of the aquifer, qv is the discharge per unit
width and unit length pumped out of the aquifer, and dQ is

dQ D ∂Q

∂x
D �K ∂

∂x

(
h
∂h

∂x

)
�2�

We introduce Eq. (2) into Eq. (1) to obtain

�
∂h

∂t
D K

∂

∂x

(
h
∂h

∂x

)
� qv �5�

This is the desired differential equation for the piezometric head distribution.
The first-order derivatives of the piezometric head and its gradient may be
represented by the following finite difference approximations:

∂h

∂x
D hiC1/2 � hi�1/2

x

∂h

∂t
D hnC1

i � hni
t

∂

∂

(
h
∂h

∂x

)
D

[
h�∂h/∂x�

]
iC1/2 � [

h�∂h/∂x�
]
i�1/2

x

D hiC1/2�hiC1 � hi�� hi�1/2�hi � hi�1�

�x�2

where subscripts refer to nodal points and superscripts refer to time steps. All
of the spatial gradients are understood to be evaluated at time �nC 1�, since
the problem specifies that an implicit method is to be used. However, in order
to deal with the nonlinearities associated with the aquifer transmissivity, the
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values for h [on the right-hand side of Eq. (5)] are taken at time n. After
introducing the finite difference approximations into Eq. (5), the result is

�
hnC1
i � hni
t

D K

�x�2
[hniC1/2�h

nC1
iC1 � hnC1

i �� hni�1/2�h
nC1
i � hnC1

i�1 �] � qv

This is rearranged to group all like terms in the h values,

�hnC1
i�1

Khni�1/2t

��x�2
C hnC1

i

[
1 C KhniC1/2t

��x�2
C Khni�1/2t

��x�2

]

�hnC1
iC1

KhniC1/2t

��x�2
D hni � qvi

t

�

This expression represents a set of linear algebraic equations with a tridiagonal
coefficient matrix. Thus the piezometric heads at each nodal point may be
evaluated at each time step using the Thomas algorithm. It should be noted
that at all nodal points the value of qv is zero, except for the nodal point
representing x D L/2. At that particular point, the value of qv is given by

�qv�xDL/2 D Qp

�x�2

For the given initial conditions, the piezometric head values are specified at
each boundary and, since qv D 0 everywhere for t < 0, then under steady state,
Eq. (5) and its boundary conditions are written, respectively, as

d

dx

(
Kh
dh

dx

)
D 0

h D h1 at x D 0

h D h2 at x D L

Integrating once provides

K

2

dh2

dx
D C1

where C1 is an integration constant. A second integration yields

h2 D 2C1

K
x C C2

where C2 is another integration constant. By applying the boundary conditions,
the constants are determined as

C1 D � �h
2
1 � h2

2�K

2L
C2 D h2

1

Thus the initial distribution of piezometric head is specified.

Problem 11.4 Consider the steady-state transport of contaminant through a
barrier that separates a contaminated area from a freshwater aquifer. Assume
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that the barrier thickness is L, its width is B, its porosity is �, and its hydraulic
conductivity is K. The molecular diffusivity is � and the Peclet number of the
flow through the barrier is small. The two boundaries of the barrier are subject
to the following conditions:

At x D 0, h D h0 C D C0

At x D L, h D hE C D 0

where h is the piezometric head and C is the contaminant concentration. Along
the barrier a continuous minor discharge qv per unit area is pumped out of the
barrier.

(a) Develop the differential equations that should be solved to determine
the contaminant distribution in the barrier.

(b) Derive the approximate analytical solution of the differential
equations for a small value of qv.

(c) Derive the analytical solution for negligible value of qv.

Solution

(a) Two differential equations should be considered, the flow equation and the
contaminant transport equation. These equations are given, respectively, by

KB
d2h

dx2
� qv D 0 �1�

V
dC

dx
D �

d2C

dx2
� qv

B
C �2�

where V is the local flow velocity through the barrier.
(b) By integrating the equation of motion (1) twice, we obtain

h D h1 � h1 � hE

L
x � qvx

2KB
�L � x� �3�

The flow velocity through the barrier is given by

V D �K
�

dh

dx
D K

�L
�h1 � hE�� qv

2�B
�L � 2x� �4�

Rearrangement of the equation of contaminant transport yields

d2C

dx2
� V

�

dC

dx
� qv

B�
C D 0 �5�

This expression represents a boundary value problem. Equation (5) can be
solved very easily by the employment of a numerical scheme. On the other
hand, the analytical solution of Eq. (5) is quite complicated due to the depen-
dence of V on x, as indicated by Eq. (4). However, simplified cases can be
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solved by simple analytical expressions. Simplification of Eq. (5) depends on
the value of the dimensionless quantity,

qvL2

2KB�h1 � hE�
�6�

If this parameter is very small, then the contribution of qv to the value of V is
minor, and V can be considered as a constant quantity, given approximately
by the first term of Eq. (4). Under such conditions, the solution of Eq. (5) is
given by

C D Ae˛x C Beˇx �7�

where A and B are constant coefficients, and ˛ and ˇ are given by

˛ D V

2�
C

√(
V

2�

)2

C qv

BK
�8a�

and

ˇ D V

2�
�

√(
V

2�

)2

C qv

BK
�8b�

By applying the boundary condition of C D C0 at x D 0, and C D 0 at x D L,
we obtain

A D C0

[
eˇL

eˇL � e˛L

]
B D C0

[
e˛L

e˛L � eˇL

]
�9�

(c) If the value of qv is negligible, then Eq. (1) reduces to

�

V

d2C

dx2
D dC

dx
�10�

By integrating this expression, we obtain

�

V

dC

dx
D CC A �11�

where A is an integration constant. By integrating Eq. (11), we obtain

ln
[
CC A

B

]
D V

�
x �12�

where B is an integration constant. By applying the boundary conditions, we
obtain

A D C0


 1

exp
(

�V
�
L

)
� 1



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B D C0




exp
(

�V
�
L

)

exp
(

�V
�
L

)
� 1


 �13�

By introducing Eq. (13) into Eq. (12) then gives

C D C0




exp
[
�V
�
�L � x�

]
� 1

exp
(

�V
�
L

)
� 1




which is the desired concentration distribution.

Unsolved Problems

Problem 11.5 For the conditions of problem 11.1, assume h1 D 40 m, h2 D
30 m, L D 5, 000 m, h0 D 25 m, K D 40 m/d, ˛ D 0.01 m/d, B D 25 m, and
b D 5 m.

(a) Using a spreadsheet, solve for and draw the curves describing the
variation of the piezometric head and aquifer discharge along the aquifer.

(b) Draw several curves, describing the ratio between h and h1 along
the aquifer for various values of h0/h1.

(c) Draw several curves describing the ratio between the aquifer
discharge and the transmissivity KB for various values of ˛/K.

Problem 11.6 For the conditions of problem 11.2, assume h1 D 40 m, h2 D
30 m, L D 5, 000 m, h0 D 25 m, K D 40 m/d, ˛ D 0.01 m/d, and b D 5 m.

(a) Develop a numerical scheme incorporating linearization of the basic
differential equation and an iterative procedure for the calculation of the piezo-
metric head distribution in the aquifer. As an alternative, apply a perturbation
approach with another iterative scheme. In your solution, state clearly which
approach you are using.

(b) Apply your numerical scheme and solve the nonlinear boundary value
problem for the distribution of piezometric head in the aquifer, as well as the
variation of the aquifer flow rate and the rate of seepage along the aquifer.

Problem 11.7 For the conditions of problem 11.3, assume h1 D 40 m, h2 D
30 m, L D 5, 000 m, K D 40 m/d, and Qp D 2 m2/d.

(a) Calculate the distribution of the piezometric head in the aquifer after
two days of pumping.

(b) Calculate the piezometric head distribution under the new steady-
state conditions.
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Problem 11.8 Referring to problem 11.4, develop the numerical finite differ-
ence scheme for the solution of Eq. (5). Consider that K D 10�8 m/s, L D
2 m, B D 10 m, h1 D 25 m, hE D 24 m, C0 D 0.1 kg/m3, � D 0.15, and qv D
10�8 m/s.

Problem 11.9 Refer to problem 11.4. Assume that flow through the barrier
is subject to steady-state conditions and develop a numerical finite difference
implicit scheme for the calculation of the buildup of the contaminant concen-
tration profile in the barrier. Use quantitative values of physical parameters as
given in problem 11.8. Initially the barrier is free of contaminant.

Problem 11.10 Consider cases of very low hydraulic conductivity in the
barrier using the program developed in problem 11.9. Compare your simula-
tion results with the analytical solution given by Eq. (11.3.12).

Problem 11.11 Referring to problem 11.8, assume that the barrier is very
thick, L ! 1, and all other physical parameters are the same as previously
defined. Apply the numerical program developed in problem 11.9 and compare
the simulation results with those obtained by using the analytical expressions
given by Eqs. (11.3.12), (11.3.15), and (11.3.16). For the latter two equations,
assume aL D 0.1 cm.

Problem 11.12 Consider an aquifer subject to uniform flow with velocity
V D 0.1 m/d. The transverse dispersivity is at D 2 cm. At the bottom of
the freshwater aquifer the salinity is kept constant with salt concentration
C D 40 g/l. Assume that the aquifer is very thick. Develop a finite difference
implicit numerical scheme for the solution of Eq. (11.4.13) and describe
the buildup of the transition zone between fresh and saltwater. Compare
your results with the boundary layer approximation, which is given by
Eq. (11.4.16). (You could also compare your results here with results obtained
in problem 10.34.2)

Problem 11.13 Develop a finite difference numerical scheme for the solu-
tion of Eq. (11.5.3). This solution should take into account the conservation of
mass principle with regard to the NAPL entrapped within the porous medium.

Problem 11.14 Apply your computer program, developed in problem 11.13,
to an aquifer of length L D 60 m, contaminated by entrapped NAPL. The
porosity � D 0.3, initial saturation of the entrapped NAPL Sn D 0.2, flow
velocity V D 1 m/d, dispersivity aL D 0.3 m, and kfab D 0.5 m2/d. The equi-
librium concentration of dissolved NAPL is Cs D 0.8 g/l. Simulate the recla-
mation process and determine how long it should take to achieve a practical
reclamation of the aquifer.
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12
Exchange Processes at the
Air/Water Interface

12.1 INTRODUCTION

One of the major boundaries in most natural surface water bodies is the inter-
face with the atmosphere. In order to describe the distribution of various
properties of the water body it is necessary to specify boundary conditions for
the transport equations for those properties at this (as well as other) boundaries.
The usual kinds of boundary conditions are applicable here, i.e., specifica-
tion of either the values for the property of interest or its gradients. For the
air/water interface it is more common to prescribe fluxes or transport rates
for the property of interest. A significant feature of this transport is the wind,
which strongly affects property fluxes. Because of limited fetch, wind effects in
open channel flows are less significant than in lakes and reservoirs, which have
much larger surface areas. In this chapter we consider transport of momentum,
heat, gases, and volatile organic chemicals across the air/water interface.

12.2 MOMENTUM TRANSPORT

The main driving force for momentum is shear stress exerted as a result of
velocity gradients across the air/water interface. The main effects are genera-
tion of surface drift currents, waves, setup and seiche motions, as illustrated in
Fig. 12.1. In lakes and reservoirs wind is a primary driving force for general
circulation.

Shear stress at the air/water interface is exerted as a result of differences
between the wind speed and direction, and the water surface velocity. Part
of this stress works to develop the wave field and part is used for generation
of surface drift currents. In the present section the focus is on generation of
drift currents and circulation — see Chap. 8 for a discussion of surface water
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Figure 12.1 Illustration of setup and circulation (side view, top) and horizontal circu-
lation (plan view, bottom) generated by wind over a lake.

waves. For the present discussion, it is assumed that a steady wind is blowing
over a water surface and that a fully developed wave field is present, i.e.,
wind/wave interactions are in equilibrium and there is no further partitioning
of the surface stress into wave development.

Figure 12.2 illustrates a possible velocity profile for wind and water,
where Wz is the wind speed measured at position z above the water surface
and ud is the surface drift velocity in the water. The mean surface level is
at z D 0, and z increases upwards (it is convenient to work with z increasing
upwards when describing the wind velocity profile; however, when the main
concern is with properties of the water body, it may be more convenient
to work with z increasing downwards from the surface — see the following
section, for example). The shear stress at the surface is given by

�s D cz�a�Wz � ud�
2 ¾D cz�aW

2
z �12.2.1�

where cz is a drag coefficient and �a is air density. The approximation of the
second part of this equation results from the assumption that ud/Wz − 1. The
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Figure 12.2 Velocity profiles for wind over a water surface.

shear stress also is defined in terms of a friction velocity,

�s D �au
2
Ła �12.2.2�

where uŁa is the friction velocity for the wind profile.
It is commonly assumed that the wind velocity distribution follows a

boundary layer logarithmic profile,

Wz D uŁa

�
ln

(
z

z0

)
�12.2.3�

where � is the von Karman constant, equal to about 0.4, and z0 is the virtual
origin of the profile (note that Wz ! 0 for z ! z0). In order for this assump-
tion to be valid, the measurement height (z) must be chosen so that the
logarithmic profile is valid. According to Wu (1971), this is satisfied when

z D



10 cm, Re < 5 ð 107

7.35 Re2/3 ð 10�5 cm, 5 ð 107 < Re < 5 ð 1010

10 m, Re > 5 ð 1010
�12.24�

where Re D WzL/	 is a fetch Reynolds number, with L D fetch D distance
over which wind has blown over the surface of the water and 	 D
kinematic viscosity. When Eq. (12.1.4) is satisfied, z is greater than the
significant wave amplitude and less than about four-tenths of the total boundary
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layer thickness, so it is well within the range where the logarithmic profile
should be valid.

The magnitude of z0 depends on the roughness of the surface and is
assumed to be a linear function of roughness, similar to a turbulent boundary
layer in pipe or open channel flow. In a fully developed wave field, the dynamic
roughness length scale is estimated by (u2

Ła/g), so

z0 D ˛c
u2

Ła

g
�12.2.5�

where ˛c is known as the Charnock coefficient and has a value between 0.011
and 0.035, with most reported values falling in the range 0.011 to 0.016. Upon
substituting Eqs. (12.2.1), (12.2.2), and (12.2.5) into (12.2.3), an expression
for cz is obtained,

1p
cz

D 1

�
ln

(
gz

˛cczW2
z

)
�12.2.6�

which must be solved iteratively since cz is found in different terms on both
sides of the equation. Normally, cz has a value on the order of 10�3. Once cz
is found, the surface shear stress is calculated from Eq. (12.2.1).

For drift current, again assuming a fully developed wave field, it is
assumed that the surface shear stress in the water is the same as that in the
air, �0

¾D �s, where

�0 D �wu
2
Ł �12.2.7�

and �w is water density at the surface. (Note that �0 < �s when the wave field
is not fully developed, since part of the surface shear is used in developing
the waves.) By combining Eqs. (12.2.2) and (12.2.7), we find

uŁ D uŁa

√
�a

�w
�12.2.8�

Then, assuming that the general shapes of the velocity profiles in air and water
are similar (see Fig. 12.2, where the profile in water is inverted and reversed
but has the same general shape), it follows that the drag coefficient should be
the same on both sides of the air/water interface. This gives

�0 D cz�wu
2
d D cz�aW

2
z �12.2.9�

from which it is found that

ud D Wz

√
�a

�w
�12.2.10�

The ratio of air to water density is approximately 10�3, so this last
result implies that surface drift velocity is about 3% of wind speed, which
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may be used as a rough rule of thumb. Also, if cz is estimated as being about
10�3, then from Eqs. (12.2.1) and (12.2.2), uŁa

¾D 0.03Wz, and, combined with
Eqs. (12.2.8) and (12.2.10), we find uŁ ¾D 0.03ud. This gives an alternative
relation that may be used to estimate the velocities, at least for the conditions
of steady wind, long fetch, and fully developed wave field. A more realistic
relationship for lakes and reservoirs, with limited fetch, is �u Ł /ud� ¾D 0.1–1.

Finally, the kinetic energy flux across the surface is

KEF D ud�s D C�wu
3
Ł �12.2.11�

where the coefficient C incorporates various assumptions noted above,
including the relationship between ud and uŁ. This last expression is needed
to calculate possible mixing induced by wind (see Sec. 13.5).

12.2.1 Seiches

When fetch is limited, the possibility of wind-generated seiche motions must
be considered. These are in essence wavelike motions with a half-wave length
given by the fetch L. Seiche motions are primarily of interest when winds
are relatively constant in speed and direction over a long period of time, as
sketched in Fig. 12.3. The surface shear stress exerted by the wind causes the
water surface to tilt, establishing a pressure gradient to balance this stress.
The tilted water surface position is given by ��x�, and the difference between
the tilted surface and the horizontal equilibrium position is referred to as
the wind setup. If the lake is large enough that the dynamics are affected
by the Earth’s rotation, then the position of maximum setup moves in the
counterclockwise direction (northern hemisphere). For the present discussion
we neglect this effect. If the wind suddenly stops, the tilted water surface
moves back towards a level condition. As the water reaches this condition,
however, it still has momentum and overshoots, resulting in a setup on the

Figure 12.3 Wind-generated seiche motion.
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opposite side of the lake. This motion is eventually arrested as the kinetic
energy of the moving water is transferred to the potential energy of the setup.
The flow then reverses and the surface “rocks” back towards the original setup
condition. This oscillatory motion continues until eventually viscous effects
cause it to die out. Depending on the lake geometry and relative wind direction,
seiche motions can be quite substantial. The frequency of the oscillations is
known as the natural or inertial frequency of the lake.

The tilted water surface profile is found by considering a force balance
on a small control volume, as shown in Fig. 12.4. Due to circulation of water
resulting from the surface shear, there is some motion along the bottom, which
is estimated to generate an additional shear stress approximately equal to 10%
of �s. Under steady-state conditions, the momentum fluxes into and out of the
control volume are equal, and a force balance in the horizontal direction (per
unit width) gives

1.1�s dx D 1

2
�

[(
h C ∂h

∂x
dx

)2

� h2

]
�12.2.12�

where hydrostatic pressure is assumed for the two sides, h is depth, and � D
��g� is specific gravity. In general, the wind shear acts at an angle to the
horizontal, once the water surface tilts. However, this angle is very small, and
its cosine is assumed to be approximately 1. Also neglecting the second-order

Figure 12.4 Control volume for analysis of water surface profile.
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term in dx, the term in brackets in Eq. (12.2.12) is simplified as

∂h

∂x
D ∂�

∂x
D 1.1�s

�h
�12.2.13�

If �s is assumed constant, or at least is known as a function of x, this equation
can be integrated, along with a boundary condition such as h�0�[or��0�], to
calculate the water surface profile ��x�. A simple approximation for the water
surface is a linear profile, using mean water depth H:

� ¾D 1.1�s

�H

(
x � L

2

)
�12.2.14�

12.3 SOLAR RADIATION AND SURFACE HEAT TRANSFER

12.3.1 Temperature Equation

Before discussing surface heat transfer, it is helpful to review formally the
derivation of the temperature equation. This is directly related to the thermal
energy equation, which was introduced in Sec. 2.9.3. The temperature equation
is derived from the general conservation of energy statement, Eq. (2.8.7),
which is repeated here for convenience:

dQ

dt
� dWs

dt
D ∂

∂t

∫
U
�e dUC

∫
S

(
V2

2
C gz C uC p

�

)
��
⇀
V Ð ⇀n dS�

�12.3.1�

where Q D heat added, W D work done by the fluid on its surroundings,
e D energy per unit mass, the first integral on the right-hand side is the rate of
change of energy in the control volume, and the second integral is the net rate
at which energy is transported across the control surface. Note that thermo-
dynamic convention is followed here in writing the work term as a positive
quantity when the fluid does work on its surroundings.

The heat added can be represented as a surface integral of heat flux, ⇀ϕ
(energy transport per unit time and per unit area), which in turn is the sum of
radiation �⇀ϕ r� and conduction �⇀ϕ c� terms,

dQ

dt
D �

∫
S

⇀ϕ Ð ⇀n dS D �
∫
S
�⇀ϕ r C ⇀ϕ c� Ð ⇀n dS

D �
∫

8
r Ð �⇀ϕ r C ⇀ϕ c� d8 �12.3.2�

where S indicates the control surface, dS is an elemental area of the control
surface, ⇀n is a unit normal vector pointing out of the control volume (refer to
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Chap. 2 for further discussion), and the divergence theorem has been used to
write the surface integral as a volume integral in the last part of Eq. (12.3.2).
The negative sign is added since the flux, by convention, is defined as being
positive when directed outwards from the control volume.

The work rate term is considered to consist of gravity work and surface
work. The gravity work rate is given by a volume integral,∫

8
�⇀g Ð ⇀Vd8

and the surface work rate, from Eq. (2.8.5), is∫
S
p
⇀
V Ð ⇀n dS�

∫
S

Q� Ð ⇀n Ð ⇀VdS D
∫
S

QS Ð ⇀n Ð ⇀VdS

where Q� is the deviatoric stress tensor and QS is the full stress tensor, as intro-
duced in Chap. 2. Rewriting the surface integrals as a volume integral, again
using the divergence theorem, the total work rate is

�dW
dt

D
∫

8

[
�⇀g Ð ⇀VC r Ð � QS Ð ⇀V�

]
d8

D
∫

8

[
��⇀g C r Ð QS� Ð ⇀VC � QS Ð r� Ð ⇀V

]
d8 �12.3.3�

The first term in the last expression in Eq. (12.3.3) may be rewritten using the
momentum equation (2.7.1),

�⇀g C r Ð QS D �
D
⇀
V

Dt
�12.3.4�

Then, noting also that

D
⇀
V

Dt
Ð ⇀V D D

Dt

(
V2

2

)
�12.3.5�

we substitute Eqs. (12.3.2) and (12.3.3) into Eq. (12.3.1), rewriting the surface
integral in Eq. (12.3.1) as a volume integral, and combine all volume integrals
to obtain

∂

∂t

[
�

(
V2

2
C u

)]
D �r Ð ⇀ϕ C �

D

Dt

(
V2

2

)
C � QS Ð r� Ð ⇀V

� r Ð
[
�

(
V2

2
C u

)
⇀
V

]
�12.3.6�

where u is internal energy, from Eq. (2.8.4).
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This last result is further simplified using the continuity equation (2.5.6)
and noting that the terms in (V2/2) cancel, so that

�
Du

Dt
D �r Ð ⇀ϕ C � QS Ð r� Ð ⇀V �12.3.7�

The left-hand side of Eq. (12.3.7) is the time rate of change in internal energy
of a fluid element, and the right-hand side expresses the heat flux and work
done by stresses. Usually the contribution of stresses is negligible in affecting
temperature, as shown by the scaling arguments for viscous heating discussed
in Sec. 2.9.4. Internal energy in liquids is assumed to be a function of temper-
ature only, i.e., u D u�T�, where T D temperature, and from the definition
of specific heat (Eq. 2.8.9), a change in energy is related to a change in
temperature by

du D c dT �12.3.8�

where c D cp D cv since in liquids the specific heats for constant pressure and
constant volume are nearly equal. Again considering the heat flux term to
consist of conduction and radiation terms, the conduction term is expressed
using Fourier’s law of heat conduction, which states that the conductive heat
flux is proportional to the temperature gradient,

⇀ϕ c D ��TrT �12.3.9�

where �T is thermal conductivity.
Making the foregoing simplifications and substitutions, Eq. (12.3.7)

becomes

�c
DT

Dt
D �c

(
∂T

∂t
C ⇀
V Ð rT

)
D r Ð ��TrT�� r Ð ⇀ϕ r �12.3.10�

where constant c has been assumed. This is the temperature equation, which
has the general form of an advection–diffusion equation expressing conserva-
tion of thermal energy, with a main source term due to radiative heat flux. If
�T is constant, this equation becomes

∂T

∂t
C ⇀
V Ð ⇀rT D kTr2T� 1

�c
r Ð ⇀ϕ r �12.3.11�

where kT D �T/�c is thermal diffusivity. This result is similar to Eq. (2.9.28),
but without the viscous or compression heating terms, which have been
neglected here.

In order to solve Eq. (12.3.11), initial and boundary conditions are
needed, and possible source terms for radiation must be specified. For natural
water bodies, the primary considerations are the heat transfer rate at the
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air/water interface (which is normally specified as a boundary condition) and
the solar heating rate due to absorption of solar radiation (an internal source
term). We examine this latter term first.

12.3.2 Solar Radiation Absorption

Solar radiation consists of a large range of wavelengths, that have different
absorption properties in water. For light of a given frequency, Beer’s law states
that the radiation intensity decreases exponentially with depth (z is assumed
positive downwards in the following):

0
s�ω, z� D sn�ω�e

��s�ω,z�z �12.3.12�

where 0
s�ω, z� is the solar radiation intensity at depth z for frequency ω,

sn�ω� is the net (after reflection) radiation intensity at the water surface
for frequency ω, and �s�ω, z� is the extinction, or absorption coefficient, as a
function of ω and z. The total radiation intensity at any depth z is then the sum
of 0

s�ω, z� over all ω. However, in practice insufficient data are available to
evaluate such an integral. A simpler approach has been found to give adequate
results, in which the range of light frequencies is divided into one or more
subranges, with surface radiation intensity and extinction coefficient values
defined for each subrange, rather than for each individual frequency. The total
is then the sum over all subranges,

0
s�z� D

n∑
iD1

�i�sne
��siz �12.3.13�

where n is the number of subranges.
Longer wave radiation (infrared range) tends to be absorbed strongly

in water, relative to shorter wave radiation, and has correspondingly higher
values for �s. Thus when a small number of terms is used in the summation
of Eq. (12.3.13), an adjustment must be made to account for this stronger
absorption near the surface and to provide a better fit for the exponential
model. This is usually done by defining a fraction, ˇs, of the surface radiation
as that portion of the radiation intensity with relatively high extinction coef-
ficients, absorbing nearly completely within a shallow depth near the surface.
In general, different values of ˇs should be defined for each of the subranges
used in Eq. (12.3.13), but a simple common approach is to use a single term
in the summation. In that case, a single value is needed, as well as a single
value for the extinction coefficient (�s), to calculate the exponential decay of
the remaining fraction of radiation that is not absorbed near the surface. The
resulting equation for a one-term model (n D 1) is

0
s�z�

so
D �1 � ˇs�e

��sz �12.3.14�
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Figure 12.5 Variation of solar radiation intensity with depth, compared with model
approximation (Eq. 12.3.14).

where so is now the total radiation intensity at the surface, including all
frequencies. This model is sketched in Fig. 12.5, where it can be seen that
predictions very close to the surface are not very good. This region is typically
only 5 or 10 cm deep at most, and the problem is usually not significant when
modeling large water bodies, where variations within this region close to the
surface are not of major concern. Also note that the horizontal axis in this
figure is a log scale, so the magnitude of the slope of the model curve is given
by �s. The offset at the top (at z D 0) is the fraction assumed to be absorbed
near the surface (ˇs).

In general, �s is a function of z in Eq. (12.3.14) and may be affected by
turbidity gradients in the water, though it is often considered a constant for
a particular water body. It is related to the secchi depth, which is a simple
measurement used to describe water clarity. The secchi disk is circular, with
alternating black and white sections painted on top. The disk is lowered
into the water until it is no longer visible, and the depth at which that
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occurs is the secchi depth. Larger secchi depths correspond with greater water
clarity. Typical values for the parameters in Eq. (12.3.4) are ˇs

¾D 0.5 and
�s

¾D 0.5 m�1 (higher values correspond with higher turbidity).

12.3.3 Surface Heat Exchange

In addition to solar radiation absorption, surface heat transfer represents a
major source or sink of heat in determining the thermal structure of a water
body. It is incorporated as a boundary condition in models formulated to solve
for vertical temperature distribution, or as an internal source for vertically
averaged models. The basic elements of surface heat transfer include solar radi-
ation (s), atmospheric radiation (a), back radiation from the water surface
(b), evaporation (e), and conduction (c). These elements are sketched in
Fig. 12.6 and discussed in each of the subsections below.

Solar Radiation

Ideally, solar radiation intensity is measured directly at a particular
site of interest. It consists of direct and diffuse radiation components,
usually measured with a pyrheliometer or pyrenometer. Unfortunately, direct
measurements are not very common. At many weather stations only the
“percent possible sunshine” or some other measure of sunlight is reported.
Solar radiation at the edge of the earth’s atmosphere is, however, well known,
and values of solar radiation intensity have been tabulated as a function of
location and time of year (see, for example, Kreith and Kreider, 1979). These
values must be modified according to pollution or water vapor content (clouds,
fog, smog, etc.) of the air. Another measure of possible sunshine is the percent
of cloud cover Cc, and if the clear-sky radiation intensity is known, the net

Figure 12.6 Components of surface radiative heat transfer.
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solar radiation can be estimated from

s D sc�1–0.65C2
c� �12.3.15�

where sc is the clear-sky value and Cc is expressed in decimal units.
The reflected solar radiation, sr, depends on angle of incidence and on

water surface roughness (a smooth surface will reflect a higher proportion).
The reflected radiation ranges between about 3 and 10% of the incident radia-
tion, and an average of 6% is reasonable. Thus the total net radiation passing
into the water surface is estimated as

sn D so
¾D 0.94sc �1–0.65C2� �12.3.16�

where sn denotes net solar radiation, defined in the previous section for
calculating radiation intensity in the water column.

Atmospheric Radiation

Atmospheric radiation consists of long wave black body–type radiation,
emitted mostly from water vapor and ozone. It is calculated from the
Stefan–Boltzmann law,

a D ε
T4
aŁ �12.3.17�

where ε is emissivity (with values ranging between about 0.7 for clear sky and
close to 1 for heavily overcast skies), 
 is the Stefan–Boltzmann constant, and
TaŁ is air temperature, on an absolute scale. The Swinbank formula suggests
that emissivity for a clear sky is proportional to T2

aŁ and is written as (incor-
porating the value for 
)

ac D 1.2 ð 10�13�Ta C 460�6 �Btu/ft2-day� �12.3.18a�

whereac is the clear-sky value for atmospheric radiation and Ta is air temper-
ature in °F, measured 2 m above ground level. In SI units,

ac D 5.35 ð 10�13�Ta C 273�6 �W/m2� �12.3.18b�

where Ta here is in °C.
Similar to the formulation for solar radiation, a cloud cover correction

is usually added,

a D ac�1 CKC2� �12.3.19�

where K has a value between 0.04 and 0.25, with an average around 0.17.
Reflected atmospheric radiation is approximately 3% of incident, so the net
atmospheric radiation is

an D 0.97�1.2 ð 10�13��Ta C 460�6�1 CKC2�

�Btu/ft2-day� �12.3.20a�
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or

an D 0.97�5.35 ð 10�13��Ta C 273�6 �1 CKC2� �W/m2� �12.3.20b�

where, as before, Ta is in °F in Eq. (12.3.20a) and in °C in Eq. (12.3.20b).

Back Radiation

Back radiation is longwave radiation from the water surface to the atmosphere.
It represents a loss of heat from the water body. The intensity is calculated in a
manner similar to atmospheric radiation, with an emissivity of about 0.97, so

b D 0.97
T4
sŁ �12.3.21�

where TsŁ is the absolute water surface temperature. Substituting for 
,

b
¾D 4 ð 10�8T4

sŁ �Btu/ft2 � day� �12.3.22a�

or

b
¾D 1.4 ð 10�8T4

sŁ �W/m2� �12.3.22b�

where TsŁ is in °R in Eq. (12.3.22a) and in °K for Eq. (12.3.22b).

Evaporation

Evaporation is driven by several transport mechanisms, both molecular and
turbulent. First, it should be noted that evaporation refers to the transfer of
water molecules from the liquid to the gaseous phase, so mass transfer is the
primary consideration. Heat transfer occurs due to the latent heat of vapor-
ization associated with this phase change. Molecular diffusive-type transport
represents a limiting rate, while free and forced convection usually play a
much more significant role in determining evaporative fluxes. Free convection
is due to buoyancy effects related to a heated water surface (relative to the air
temperature), and forced convection is related to wind. Both of these transport
mechanisms are turbulent in nature.

Evaporative mass transfer is proportional to the difference between satu-
rated vapor pressure (as a function of temperature) and the actual atmospheric
vapor pressure and may be expressed as

E D �vf
0�W��es � ea� �12.3.23�

where E is mass flux, �v is vapor density, es is saturated vapor pressure, ea is
atmospheric vapor pressure, and f0�W� is a function of wind speed that must
take into account the effects of both free and forced convection. The effect
of wind or buoyant (free) convection is to introduce turbulence, which moves
vapor away from the interface, thus maintaining a higher difference between
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Figure 12.7 Illustration of forced and free convection effects on evaporation.

vapor pressures, with a corresponding increase in evaporation, as illustrated
in Fig. 12.7 The evaporation rate driven by wind is highest near the shore,
where the vapor boundary layer thickness is smallest, with a correspondingly
higher vapor pressure gradient. In this case, the evaporation rate is a function
of fetch, L. Free convection, on the other hand, does not depend on L, since it
is a function of heating of the water surface, relative to the air. The resulting
buoyant convective motions serve to transport vapor away from the interfacial
region and increase the gradient driving E.

The heat flux associated with E is

e D LvE D f�W��es � ea� �12.3.24�

where Lv is the latent heat of vaporization and f�W� is a wind speed function
that incorporates �v and Lv into f’(W). Many forms of the wind speed function
have been proposed, usually as a simple constant or first- or second-order
polynomial in W. An example of a first-order function of W is the Lake
Hefner formula,

f�W� D 17W2 �12.3.25�

where W2 is the wind speed in mph, measured at a height 2 m above the water
surface. This formula was developed to predict evaporation over a medium-
size lake and was found to give reasonable estimates for wind speeds between
about 3 and 20 mph. This formula, however, does not account for free convec-
tion effects.

To develop an expression for free convection, consider first a heated
flat plate, held at temperature Ts, which is assumed to be greater than the
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Figure 12.8 Convective heat transfer above a heated flat plate.

air temperature Ta (Fig. 12.8). Due to heating from the plate, the air near the
plate is warmed, becomes unstable, and begins to rise (see Chap. 13 for further
discussion of convective instability). As the heated air rises, it is replaced by
cooler air, thus maintaining a relatively high temperature gradient near the
plate surface. The convective motions are turbulent, and the heat transfer rate
is assumed to be proportional to the temperature difference (Ts � Ta),

H D Kh�Ts � Ta���vcp� �12.3.26�

where H is heat flux and Kh is a heat transfer coefficient (with units of
velocity). From flat plate heat transfer theory, this coefficient is given by

Kh D 0.14
[
gˇk2

T�Ts � Ta�

	

]1/3

�12.3.27�

where ˇ is the thermal expansion coefficient and 	 is kinematic viscosity, as
before.

These results may be used to estimate water vapor mass transfer,
assuming that the vapor is transported at the same rate as heat (i.e., Reynolds’
analogy applies, so that the heat transfer coefficient is the same as a mass
transfer coefficient). Similar to the previous development for wind-induced
evaporation (Eq. 12.3.13), the mass flux due to convection is written as a
function of the difference between saturated vapor density (�vs) and the actual
vapor density in the air (�v),

E D Km��vs � �v� �12.3.28�
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where Km is a mass transfer coefficient equal to Kh. This equation can be
written in terms of vapor pressure by introducing the perfect gas law,

ea D �vRvTŁ D �v
R

Mv
TŁ �12.3.29�

where Rv is the specific gas constant, R is the universal gas constant, and Mv

is the molecular weight of the vapor. Substituting Eqs. (12.3.27) and (12.3.29)
into Eq. (12.3.28) and multiplying by latent heat of vaporization to convert
mass transport to heat transport, we have

e D 0.14LvMv

RTŁ

[
gˇk2

T�Ts � Ta�

v

]1/3

�es � ea�

D �Ts � Ta�
1/3�es � ea� �12.3.30�

where  incorporates all the constants listed in the first half of the equation.
Note that the vapor pressure difference is still important for evaporation, as
it was before heating was considered, but now an additional factor is present,
which is the buoyancy driving force given by the temperature difference.

One further modification is obtained by using virtual temperatures, Tv,
rather than the actual temperatures. The virtual temperature is defined as the
temperature of dry air having the same density as the actual moist air. This
provides a more realistic driving force for the convection. The virtual temper-
ature is related to actual temperature by

TvŁ D TŁ
(

1–0.378
ea

p

)
�12.3.31�

where p is pressure. Using the virtual temperature difference in Eq. (12.3.30),

e D �Tsv � Tav�
1/3�es � ea� �12.3.22�

and �Tsv � Tav�1/3 takes the place of f�W� (compare with Eq. 12.3.14).
As noted previously, there are many forms for f(W) suggested in the

literature. Other than modeling natural water bodies, a specific engineering
application for these calculations is in the design of cooling ponds for disposal
of waste heat from power plants. There the effects of free convection are
much more important than for a natural water body, and research has focused
more on developing expressions for buoyancy effects. For any application, the
choice of f�W� depends on the relative importance of forced and free convec-
tion effects. Ryan and Harleman (1973) suggested a formula that incorporates
both effects,

f�W� D 22.4�Tsv � Tav�
1/3 C 14W2 �12.3.33�
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Figure 12.9 Qualitative comparison of Lake Hefner formula and Eq. (12.3.33) (for
different temperature differences); the vertical dashed line distinguishes approximately
between regions where free convection (low W) and forced convection (high W)
dominate the evaporation flux.

where W2 has the same meaning as in the Lake Hefner formula and temper-
atures are in °F. A qualitative comparison of formulas for f�W� is shown in
Fig. 12.9. For small W it is expected that free convection effects are relatively
more important, while for large W, forced convection dominates. A formula
such as the Lake Hefner formula performs better for higher W but may under-
predict evaporation at low W. Formulas such as Eq. (12.3.33), which depend
on temperature, are better able to simulate fluxes for low to medium W but
may underpredict evaporation for large W.

Conduction

Conduction is driven by temperature differences between the water and the
atmosphere. It can be either a source or a sink of heat for the water body,
depending on the relative magnitudes of Ta and Ts. Conduction also is rela-
tively small, compared with the turbulent convection effects associated with
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evaporation, or the radiative transfer rates from solar, atmospheric, and back
radiation. The approach for estimating convective heat flux is similar to that
for evaporation, except here the driving force is temperature difference rather
than vapor pressure difference,

c D fŁ�W��Ts � Ta� �12.3.34�

where fŁ�W� is a wind function for conduction. Conduction is usually related
to evaporation. By taking the ratio of conductive to evaporative heat flux,

c

e
D fŁ�W��Ts � Ta�

f�W��es � ea�
�12.3.35�

Based on the Reynolds analogy (again), heat transfer and mass transfer are
accomplished by the same turbulent motions. Thus it may be assumed that
fŁ�W� is proportional to f�W�,

fŁ�W� D cbf�W� �12.3.36�

where cb is known as the Bowen constant, with a value of 0.255 mm Hg/°F.
The product of cb and the ratio of temperature difference to vapor pressure
difference is known as the Bowen ratio,

Rb D cb
�Ts � Ta�

�es � ea�
�12.3.37�

so that, substituting into Eq. (12.3.35),

c D Rbe D cbf�W��Ts � Ta� �12.3.38�

Total Heat Flux, Linearized Approach

The total net heat flux is the sum of each of the above processes (as illustrated
in Fig. 12.6),

n D sn Can �b �e �c �12.3.39�

where n is positive when the water body is being heated. The first two
terms on the right-hand side represent sources of heat and are functions
of meteorology only. Back radiation and evaporation represent losses and
are functions of both meteorology and surface water temperature. Conduc-
tion may be positive or negative, depending on temperatures. The sum in
Eq. (12.3.39) represents the boundary condition for a thermal energy calcula-
tion for a water body.

In some studies it may be preferable to use a linearized approach, in
which n is expressed as a linear function of temperature,

n D �Kn�Ts � Te� �12.3.40�
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Figure 12.10 Linear approach for calculating n.

where Kn is a net heat exchange coefficient (in general, a function of Ts � Te)
and Te is the equilibrium temperature, i.e., the water surface temperature at
which n D 0 (Fig. 12.10). In other words, for a given Te, Kn is the rate of
change of heat flux rate with temperature,

Kn D �dn

dTs
�12.3.41�

This is a useful concept for some analytical solutions but is not of great
interest when using numerical modeling approaches in which the various heat
flux terms can be calculated directly (otherwise, Kn must be calculated from
Eq. (12.3.41), which requires evaluation of the various terms in n, anyway).
On the other hand, Eq. (12.3.40) may be used for quick estimates even in
numerical studies, as long as a reasonable value for Kn is known.

12.4 EXCHANGE OF GASES

Historically, most of the work done on surface gas transfer has involved
oxygen, and the present text also will focus on this parameter. Other gases
could be treated similarly as in the following development. In fact, as
discussed in this and the following sections, bulk mass transfer coefficients
are usually assumed to be independent of properties of the specific gas under
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consideration — they are more a function of physical driving mechanisms
such as wind speed. The emphasis on oxygen transport is primarily due to the
role dissolved oxygen (DO) plays as a water quality parameter. DO levels are
critical in determining the general health of a system, the diversity of species,
and the number of organisms that can be supported. For example, most fish
require a concentration of at least 4 to 5 ppm (or mg/L) DO for survival. A
major factor in modeling DO in surface waters is in defining the reaeration
rate, or the rate at which oxygen is transported across the air/water interface,
since the atmosphere is the primary source of oxygen. A large number of DO
models have been developed, with perhaps the best known due to Streeter and
Phelps (1925), as described briefly later in this chapter.

In this section it will be convenient to define gas concentrations in terms
of mass densities (i.e., mass per unit volume). The oxygen mass flux across the
air/water interface is assumed to be proportional to the DO deficit in the water
body, which is defined as the difference between saturated DO concentration,
as a function of temperature, and the actual concentration,

J D KL�Cs � C� �12.4.1�

where J is oxygen mass flux, C is DO concentration, Cs is saturated DO
concentration, and KL is a bulk mass transfer coefficient. The value for Cs

is temperature dependent, decreasing from 16.4 ppm at T D 10°C to 7.8 ppm
at T D 30°C. It represents the concentration in water that is in equilibrium
with the partial pressure of the gas in the atmosphere. This equilibrium rela-
tionship may be expressed by the Henry’s law constant, defined either in
dimensional form,

KH D RTŁ
Csg

Cs
D Pg

Cs
�12.4.2�

or in dimensionless form,

KH
0 D KH

RTŁ
D Csg

Cs
�12.4.3�

where Csg is the equilibrium concentration in the gas phase and pg is the partial
pressure of the gas. KH is generally a function of temperature, meaning that
different equilibrium relationships exist between the liquid and gaseous phases
for different temperatures. This may have significant consequences for global
transport of some materials (Sec. 12.5.1). Thus it may be important to model
temperature whenever DO or any other gas is being modeled.

For a well-mixed water body of average depth H, the rate of change of
DO due to atmospheric flux is

dC

dt
D JA

8 D KL
A

8 �Cs � C� �12.4.4�
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where A is water surface area and 8 is volume of the water body. Since
8 D AH, this last result is often written in terms of a bulk reaeration coefficient,
K2, where

K2 D KL
A

8 D KL

H
�12.4.5�

A large number of models have been developed to estimate KL or K2, some
purely empirical and some based on conceptual models. However, nearly all
are calibrated and reported in terms of mean hydraulic quantities such as depth,
velocity, or friction slope. Many of these models are developed for rivers and
are based on the assumption of complete vertical mixing over the depth H.
This approach is useful for many river applications but is not appropriate for
lakes or stratified rivers or estuaries. In these latter cases it is necessary to
calculate flux directly (as in Eq. 12.4.1), as a boundary condition for a DO
model that incorporates vertical gradients.

The most common conceptual model for gas mass transfer across the
air/water interface is the two-film theory developed by Lewis and Whitman
in the earlier part of this century. In this approach it is assumed that there are
two laminar films, one on either side of the interface, sandwiched between
bulk liquid and gas layers, which are assumed to be turbulent (Fig. 12.11).

Figure 12.11 Definition sketch for two-film model.
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Since the films are laminar, transport is governed by Fickean diffusion acting
on the gradients in each film layer (see Sec. 10.2). Across the liquid layer, the
flux (Eq. 12.4.1) must be equal to the diffusive flux,

J D Dm
dC

dz
¾D Dm

(
Cs � C

υl

)
�12.4.6�

where the gradient has been approximated as being constant over the film
thickness υ1, and Dm is the molecular diffusivity of the gas in water. For
steady transport, this must be equal to the flux across the gas film layer,

J D Kg�Cg � Csg� ¾D Dmg

(
Cg �Csg

υg

)
�12.4.7�

where Kg is a bulk mass transfer coefficient for the gas layer, Dmg is the
molecular diffusivity for the gas phase, Cg is the gas phase concentration, and
υg is the gas film thickness (Fig. 12.11).

Using Eqs. (12.4.6) and (12.4.7), and the definition of Henry’s constant
[here it is convenient to use the dimensionless form, Eq. (12.4.3)], Cs and Csg

may be eliminated to obtain

J D �Cg �K0
HC�

(
1

Kg
C K0

H

KL

)�1

D
(
Cg

K0
H

� C

)(
1

KL
C 1

K0
HKg

)�1

�12.4.8�

or,

J D �g�Cg �K0
HC� D �L

(
Cg

K0
H

�C

)
�12.4.9�

where

1

�g
D 1

Kg
C K0

H

KL

1

�L
D 1

KL
C 1

K0
HKg

�12.4.10�

The values defined in this last equation represent resistances to mass trans-
port across the gas and liquid film layers, respectively. The total resistance
is expressed in terms of either one of these quantities and depends on the
exchange constants of the individual phases and on K0

H. Table 12.1 summa-
rizes mass transfer coefficients and Henry’s law constants for a number of
common gases crossing the air/sea interface. Except for SO2, each of these
gases is assumed to be nonreactive, and the relatively large value for KL for
this gas is related to possible reactions for SO2 that must be considered in the
transport process.
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Table 12.1 Mass Transfer Coefficients and
Henry’s Law Constants for Some Common Gases
for the Air/Sea Interface

Gas Kg (cm/hr) KL (cm/h) KH

SO2 1,600 34,420 0.038
N2O 1,900 20 1.6
CO 2,400 20 50
CH4 3,180 20 42
CCl4 1,030 10.7 1.08
CCl3F 1,085 11.3 5

Source: Adapted from Liss and Slater (1974).

Because oxygen is only slightly soluble in water, molecular diffusion
in the gas film is greater than in the liquid film. Also, the film thickness is
likely to be smaller for the gas layer than for the water layer, creating a larger
gradient. Therefore diffusive transport through the liquid film is normally
considered to represent the limiting process for oxygen mass transport to the
bulk water layer, and much of the focus on oxygen transport has been on an
evaluation of KL or K2. Upon comparing Eqs. (12.4.6) and (12.4.1), it is seen
that KL D Dm/υl. Although the film approach for describing oxygen transport
across the air/water interface is effectively reduced to a one-film model, the
difficulty remains to determine υl, though several possible approaches are
presented below.

Other conceptual models for surface gas transport include the penetration
theory of Higbie (1935), the surface renewal theory of Danckwerts (1951),
and the film penetration theory of Dobbins (1956), which combines certain
aspects of penetration and surface renewal. Just as with the two-film theory,
each of these approaches has its own limitations. For example, the renewal
rate must be determined for application of surface renewal theory, and expo-
sure time must be found for penetration theory. A detailed comparison of a
number of models with a very large data set was reported by Wilson and
Macleod (1974), who demonstrated that there was considerable variability in
the estimates for K2 or KL. They concluded that the best overall calcula-
tion was provided by an empirical relationship developed by Parkhurst and
Pomeroy (1972),

KL D 2�1 C 0.17 Fr2��SU�0.375 �12.4.11�

where KL is in units of (ft/h), S is energy slope, U is mean velocity (ft/s),
and Fr is the Froude number. Another formula that performed well was that
of O’Connor and Dobbins (1956), which related the surface renewal rate to
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basic hydraulic properties of the stream:

KL D D1/2
m �Sg�1/4

�1/2H1/4
�12.4.12�

where � is the von Karman turbulence constant. The problem with both these
expressions is their dependence on mean hydraulic properties, as noted above.

A more conceptually based approach to surface gas transfer can be devel-
oped, based on the film layer approach, by specifying the film thickness υl.
Since turbulence controls transport when z > υl, it is necessary to find the
location at which turbulence starts to become important, in other words, to
define the lower boundary of this film layer. Two possible approaches may be
considered, one based on a comparison of molecular and turbulent diffusivities
and the other based on an estimate for the smallest turbulence length scale
expected in the bulk layer.

First, the vertical profile of turbulent diffusivity may be estimated using
the assumption of linear variation of shear stress in open channel flow,

� D �vt
du

dz
D �0

z

H
�12.4.13�

where vt is the turbulent eddy viscosity and �0 is the bottom shear stress. If a
logarithmic velocity profile also is assumed (other profiles could be assumed,
leading to modifications in the results presented here),

u� u0

uŁ
D 1

�
ln

(
H� z

z0

)
�12.4.14�

where u0 is the velocity when z D H� z0 (i.e., at the origin of the profile; u0

is often taken as 0, as was implicitly done in Eq. 12.2.3), and uŁ is the friction
velocity. Differentiating u with respect to z, and substituting into Eq. (12.4.13),
an expression for vt is obtained,

vt D �zuŁ
(

1 � z

H

)
�12.4.15�

This value must be compared with the molecular viscosity v and, by setting
vt D v, we obtain

υl
¾D z D C1

v

�uŁ
�12.4.16�

where C1 is a proportionality constant and �z/H� has been neglected, rela-
tive to 1. This result is consistent with turbulent boundary layer theory,
which defines (v/uŁ) as the characteristic length scale for determining laminar
sublayer thickness. Gulliver and Stefan (1984) reported on a number of flume
experiments that suggested υl

¾D 10�v/uŁ�, implying a value of C1
¾D 4.
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The second approach for estimating υl is based on the assumption that
υl is related to (proportional to) the smallest eddies in the flow, i.e., the
Kolmogorov microscale. As developed in Chap. 5, the microlength scale is
given by

� D v3/4

ε1/4
�12.4.17�

where ε D u03/l0 is the kinematic turbulent kinetic energy dissipation rate
and u0 and l0 are characteristic velocity and length scales, respectively, for
the turbulent eddies. The problem with this approach is that the character-
istic scales must be related to more easily measured quantities, such as mean
flow values. For example, if it is assumed that u0/U D l0/H D C0 (C0 has
typical values between 0.1 and 0.5), and υ D C00�, where C00 is an order 1
coefficient, then

υl
¾D C2

(
v3H

U3

)1/4

�12.4.18�

where C2 D C00/C001/2.
Substitution of either Eq. (12.4.16) or Eq. (12.4.18) into Eq. (12.4.5),

along with the relation that KL D Dm/υl, gives alternative relationships for
K2 or KL, which have been shown to provide results that are very close to
the other models noted above when compared under similar conditions for
U and H. Application of these procedures to lakes is, however, difficult, due
to the underlying assumptions regarding velocity profiles and distribution of
turbulent diffusivities. Most formulas for lake reaerations are empirical, based
on wind speed rather than mixing in the water (see also Sec. 12.5).

12.4.1 Dissolved Oxygen in Open Channel Flow

Open channel flow water quality problems are often solved using a one-
or two-dimensional framework. In the case of DO modeling in rivers, the
classic analysis involves variations in the longitudinal direction only, assuming
well-mixed conditions at any cross section. The general transport equation
is the one-dimensional advection–dispersion model, which is obtained from
Eq. (10.4.10). After multiplying by � to write the equation in terms of mass
concentration, we obtain

∂C

∂t
CU

∂C

∂x
D ∂

∂x

(
EL
∂C

∂x

)
C RCM �12.4.19�

where C is the cross-sectional average concentration, U is the cross-sectional
average velocity D Q/A, Q is the flow rate, A is cross-sectional area, EL is
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the longitudinal dispersion coefficient, which in general may be a function of
x and possibly also of time t, R represents the gain or loss of concentration
by internal sources and sinks, due to chemical and biological reactions, and
M represents the gain or loss of concentration by mass transfer at boundaries
of the cross section. Note that this last term, although representing processes
occurring at boundaries, appears as a source/sink term in this one-dimensional
approach, since all processes over the cross section are averaged. Examples of
processes that might be included in this last term, for a DO model, are surface
reaeration and benthic or sediment oxygen demand. The primary term included
in R is normally biochemical oxygen demand (BOD), which represents the
potential for oxygen depletion by biological and chemical processes (e.g.,
decay of organic wastes). Because BOD may change as DO is used up, any
time-dependent model for DO generally requires solution of a coupled set of
equations, one for BOD and one for DO.

The various source and sink terms in Eq. (12.4.19) are usually evaluated
using first-order kinetics. For example, if M represents reaeration, we may
write (see Eq. 12.4.4)

M D K2�Cs � C� �12.4.20�

where Cs is the saturated concentration, based on the cross-sectional average
temperature. Also, the decay of BOD due to oxygen uptake is

∂CBOD

∂t
D �K1CBOD �12.4.21�

where CBOD is the cross-sectional average BOD concentration and K1 is the
first-order rate constant, which also applies to the rate of depletion of DO.
The solution to Eq. (12.4.21) is

CBOD D CBOD0e
�K1t �12.4.22�

where �CBOD�0 is the initial value. This is the same as the steady-state solu-
tion for CBOD, if dispersion is neglected and time t is replaced with travel
time (x/U). In other words, for a steady-state problem in which dispersion is
negligible, the governing equation is

U
∂CBOD

∂x
D �K1CBOD �12.4.23�

which has an exponential solution,

CBOD D CBOD0 exp
(

�K1x

U

)
�12.4.24�

where �CBOD�0 here is a boundary value.
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A well-known solution for the one-dimensional DO problem in
open channel flow was developed by Streeter and Phelps in 1925. They
considered steady-state and plug-flow conditions (i.e., dispersive transport
is neglected — see the following discussion for criteria to decide the
appropriateness of these assumptions). A source stream enters a river at x D 0,
as shown in Fig. 12.12. The upstream flow is Qr , BOD is �CBOD�r , and the
oxygen deficit (D D Cs � C) is Dr . The corresponding source stream values
are Qi, �CBOD�i, and Di, respectively. The source stream and river waters are
assumed to mix instantaneously at x D 0, resulting in initial values (at x D 0),

Q0 D Qr C Qi

CBOD0 D QrCBODr C QiCBODi
Q0

D0 D QrDr C QiDi
Q0

The solution for BOD is Eq. (12.4.24). For DO, the governing equation for
these conditions is

U
∂C

∂x
D �K1CBOD CK2D �12.4.25�

Now, assuming Cs is constant in x, D is substituted for C to obtain

�U∂D
∂x

D �K1CBOD CK2D �12.4.26�

Figure 12.12 Source flow into a river and initial conditions for DO calculation.
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Upon substituting Eq. (12.4.24) for CBOD and applying the above boundary
conditions, the solution is

D D K1CBOD0

K2 �K1

[
exp

(
�K1x

U

)
� exp

(
�K2x

U

)]

C D0 exp
(

�K2x

U

)
�12.4.27�

which is known as the Streeter–Phelps equation.
This solution produces the well-known dissolved oxygen sag curve,

sketched schematically in Fig. 12.13. The critical region of this curve is where
D is largest (corresponding to lowest DO values). The location of the highest
D is found by differentiating Eq. (12.4.27) with respect to x and setting the
derivative equal to 0. The result is (for D0 D 0)

xcrit D U
ln�K2/K1�

K2 �K1
�12.4.28�

and the corresponding maximum D is

Dmax D CBOD0

K1

K2
exp

[
� K1

K2 �K1
ln

(
K2

K1

)]
�12.4.29�

This last result shows the dependence of Dmax on the relative magnitudes of
K1 and K2. Figure 12.14 shows the relationship between Dmax and (K1/K2),
where L’Hopital’s rule has been used for the case K1 D K2.

One further note on this solution concerns the possibility that calculated
values for D might exceed Cs, which is physically impossible, since it would

Figure 12.13 DO sag curve (in terms of DO deficit, D).
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Figure 12.14 Variation of maximum DO deficit with (K1/K2).

imply C < 0. Whenever applying this solution, care should be taken to limit
the maximum value of D to Cs. Typical values for K1 and K2 range between
about 0.1 and 1 day�1, and with typical river velocities in the range of 0.25
to 1 m/s, values for xcrit (location of minimum DO) are found in the range of
several tens of kilometers.

Time Scale Analysis

The assumptions of a steady state and nondispersive plug flow can be checked
using a time scale analysis. This is done using a nondimensional form of the
governing equation (12.4.13). Also, for simplicity, a single first-order reaction
rate constant K is used to represent the net effects of all sources and sinks
as discussed above, and time scales are defined for the various processes
of interest. This approach in general follows the scaling analysis procedures
presented in Sec. 2–9.

First, define TK D 1/K D reaction time scale, where K is the net rate
constant; TE D L2/EL D dispersive time scale, related to the time required for
mass to be dispersed over a distance L, where L is a characteristic length; Ta D
L/U D advection time scale; and Td D discharge time scale (see Fig. 12.15;
Td approaches infinity for a steady discharge). Defining nondimensional
parameters, t0 D t/Td and x0 D x/L, and assuming constant EL, the governing
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Figure 12.15 Illustration of two possible definitions for discharge time scale Td, a
periodic discharge, and a single constant discharge of limited duration.

equation is found by substitution into Eq. (12.4.19),

1

Td

∂C

∂t0
C U

L

∂C

∂x0 D EL
L2

∂2C

∂x02 CKC �12.4.30�

Using the definitions for time scales, Eq. (12.4.30) is rewritten as

1

Td

∂C

∂t0
C 1

Ta

∂C

∂x0 D 1

TE

∂2C

∂x02 C 1

TK
C �12.4.31�

Now, if Td is very large, the first term on the left-hand side may be neglected
and the problem may be treated as steady state. The relative importance of
advection to dispersion is evaluated by comparing the ratio of TE to Ta, which
gives TE/Ta D LU/EL, which has the form of a Peclet number, Pe D TE/Ta.
In other words, a large TE, relative to Ta, indicates that advection occurs much
more quickly than dispersion, so that dispersion is negligible at least over time
Ta. For a nonconservative substance, the length scale is often estimated as
L ¾D UTK, so Pe D U2/KEL. For typical riverine conditions, Pe is of order
102, indicating that the assumption of plug flow is often justified. The usual
value used to distinguish plug flow is Pe > 10. Dispersive flow (i.e., neglecting
the advective term in the governing equation) is assumed when Pe < 1, and
an advective–dispersive regime is defined for intermediate values.
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For a conservative material, K ¾D 0 and TK ! 1. The scaled equation
may then be written as(

Ta

Td

)
∂C

∂t0
C �1�

∂C

∂x0 D
(
Ta

TE

)
∂2C

∂x02 �12.4.32�

which facilitates evaluation of the relative importance of the remaining terms.
In this case L must be specified by other considerations of the problem
(since K D 0). The relative importance of the unsteady and dispersive terms
is TE/Td D L2/ELTd, which is determined for site-specific conditions. When
TE/Td − 1, the problem may be approximated as being steady, while for
TE/Td × 1, dispersion may be neglected. Either of these approximations
introduces considerable simplification in solving the governing equation, and
use of scaling analyses such as this is very helpful in justifying simplified
approaches.

12.5 MEASUREMENT OF GAS MASS TRANSFER
COEFFICIENTS

There are several methods available for measuring the air/water exchange
of gases. Interest is usually directed at finding appropriate values for the
mass transfer coefficients (i.e., KL or Kg). These methods include labora-
tory experiments and field studies. Although it is possible to maintain more
controlled conditions in the laboratory, it is impossible realistically to repro-
duce field conditions necessary for accurate evaluation of transport properties.
The problem is related mostly to the limited fetch available for wind and
development of the boundary layers at the air/water interface. Nonetheless, as
noted below, laboratory experiments can be useful for reasonable estimates of
the transfer coefficients.

In the field, a method of measurement that has seen increased use in
the past decade or so, particularly for lake applications, involves the use
of sulphur hexafluoride (SF6), a weakly soluble inert (nonreactive) gas that
can be detected at very low concentrations in the environment. In addition,
background atmospheric concentrations are extremely low, so that experi-
mental concentrations are easily distinguishable. These conditions make it
possible to measure purely physical transport properties. The measured trans-
port coefficients presumably account for variations in film thickness, water
surface roughness, wave breaking and spray formation, water and atmospheric
turbulence, and any other processes that might affect gas transfer. The main
assumption is that these same physical processes apply to other gases, with
minor modifications needed for the bulk mass transfer coefficients. These
minor modifications are normally made on the basis of the gas Schmidt number
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(see below), which accounts for differences in both temperature and molecular
diffusivity.

The basic approach is rather straightforward. A known quantity of SF6 is
distributed evenly in the lake (either throughout the epilimnion or throughout
the entire depth if the lake is shallow and well mixed), and aqueous and
atmospheric concentration measurements are made over time. The analysis is
based on an equation similar to Eq. (12.4.1),

JSF6 D kSF6�Cw �C0� �12.5.1�

where JSF6 is the flux of SF6, kSF6 is its bulk mass transfer coefficient, Cw
is the concentration in the water immediately below the air/water interface,
and C0 is the gas concentration in water in equilibrium with the atmospheric
concentration (i.e., this is equivalent to Cs defined for DO calculations). The
rate of change of mass of SF6 in the lake, based on average concentration
measurements, is

dM

dt
D JSF6A �12.5.2�

where A is the lake surface area. For SF6 distributed over a depth H (either the
mean total lake depth or the depth of the epilimnion), Eq. (12.5.2) is written
equivalently in terms of concentration as

dCw
dt

D JSF6

H
�12.5.3�

If it is assumed that C0 is much smaller than Cw [according to Gerrard, 1980,
C0 is of order 10�16mol/kg, which is several orders of magnitude smaller
than concentrations that might be used in a typical test (Upstill-Goddard et al.,
1990)], and that JSF6 is approximately constant over a time interval t, then
Eq. (12.5.3) can be rearranged and integrated to obtain

kSF6 D H

t
ln
Ci
Cf

�12.5.4�

where Ci and Cf are the initial and final concentrations, respectively, over
time t.

Values of kSF6 are related to transfer coefficients for other gases by taking
into account differences in molecular diffusivities (recall the earlier discussion
on the relationship between transfer coefficient and diffusivity) and temper-
atures. This is usually done using a function of respective Schmidt numbers
(Sc), which accounts for both temperature and diffusivity. The Schmidt number
is the ratio of kinematic viscosity of a particular gas to its diffusivity, both
of which are functions of temperature. The introduction of viscosity is appro-
priate because of its relationship with film layer thickness, as was assumed
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Figure 12.16 Mass transfer coefficients (kSF6), adjusted to 20°C value, as a function
of wind speed at 10 m, from measurements at two well-mixed lakes reported by
Upstill-Goddard et al. (1990).

to derive Eq. (12.4.16), for example. Following Upstill-Goddard et al. (1990),
the appropriate function is

kSF6

kg
D

(
ScSF6

Scg

)�1/2

�12.5.5�

where the subscript g indicates any other gas of interest. Their results for
transfer coefficient, normalized to a 20°C value, are plotted in Fig. 12.16 as
a function of wind speed, W10, measured at 10 m above the water surface.
Although there is some scatter in these data, there is a clear dependence on
wind speed, with higher values corresponding to higher W10.

12.5.1 Exchange of Volatile Organic Chemicals

Vapor exchange of organic compounds across the air/water interface is an
important process in understanding their fate and transport in the environment.
A particular problem is the cyclical transport of these compounds between
air and gas phases, due in large part to changes in the value of KH as a
function of temperature and other atmospheric conditions, which contributes
to spreading far beyond the original source region of these materials. For
example, in warmer climates KH is generally larger, indicating greater parti-
tioning to the gas phase (see Eq. 12.4.2 or 12.4.3). However, in cooler climates
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KH is smaller, with a corresponding tendency for the material to enter the
liquid phase. Thus chemicals produced in countries in warmer climates enter
the gas phase and are transported widely through the atmosphere but reenter
the water phase in cooler regions. This is a problem of special interest for the
Laurentian Great Lakes in North America, which have a very large surface
area for gas transport. Organic chemicals no longer produced or even used in
this region may be transported to the lakes through this mechanism (a process
known as cold deposition).

There is particular concern for the transport of various organic chemi-
cals, owing to detrimental environmental and health effects. Polychlorinated
biphenyls (PCBs), for instance, degrade only slowly in the environment and
tend to bioaccumulate, interfering with bird and mammal reproduction and
causing developmental disorders in humans. Some PCBs, as well as other
organic compounds, also are suspected carcinogens. Many of these compounds
have relatively high values of KH, and volatilization may be an important
environmental transport pathway, as noted above.

The usual approach for calculating volatilization or mass transfer rates
is the two-layer model discussed in Sec. 12.4. Equation (12.4.9) is used to
calculate the fluxes, with the overall mass transfer coefficients defined in
Eq. (12.4.10). The critical variables in this calculation are Henry’s law constant
KH and the transport rates for each of the two films, KL and Kg. Values for
KH can be obtained from solubility and vapor-pressure data or directly from
gas-stripping experiments, while Kg and KL must be measured in laboratory
or field experiments. Field experiments based on the use of SF6 injections
were described in the previous section. Laboratory experiments are generally
conducted using large wind-wave tanks, with a fetch length of at least several
meters so that reasonable boundary layers can be developed, leading to results
more representative of field conditions. Experiments conducted by Mackay
and Yeun (1983), for instance, utilized a 6 m tank, and results confirmed the
validity of the two-layer model for high KH compounds. However, they also
found that experimentally determined values were likely to be higher than
field values, based on different surface stress values for a given wind speed
(also related to the limited fetch in a laboratory experiment, compared with the
field). For environmental conditions, they suggested the following correlations
for the mass transfer coefficients:

KL D 34.1 ð 10�6�6.1 C 0.63W10�
.5W10Sc�.5

L �m/s� �12.5.6�

and

Kg D 46.2 ð 10�5�6.1 C 0.63W10�
.5W10Sc�.67

g �m/s� �12.5.7�

where W10 is wind speed in m/s, measured at 10 m height, and ScL and Scg

are the Schmidt numbers for the compound in water and air, respectively.
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These correlations are averaged values based on data from eleven
different organic compounds, not including PCBs. The flux of PCBs also
is calculated on the basis of the two-film model. For example, Hornbuckle
et al. (1994) looked at the flux of PCBs across the air/water interface in Lake
Superior, particularly as a function of seasonal-average conditions. Values for
KL were found to be approximately 0.05 m/day for winter conditions and
0.2 m/day for summer, while Kg values were around 0.01–0.05 m/day and
0.04–0.18 m/day for winter and summer conditions, respectively. The clear
difference between winter and summer values is predominantly temperature
related and is consistent with the earlier discussion of the dependence of KH

on temperature.

PROBLEMS

Solved Problem

Problem 12.1 Formally derive Eq. (12.4.19) by writing a mass balance for
dissolved oxygen concentration, referring to the control volume shown in
Fig. 12.17.

Solution

First, let the mean depth be H and note that the cross-hatched area at the top of
the control section represents the area over which reaeration takes place. The
concept of oxygen mass balance, applied to the control volume shown, may be
stated as: (1) [rate of change of mass in the control volume] is equal to (2) [net
rate at which mass is transported across the boundaries of the volume] plus

Figure 12.17 Control volume definition, Problem 12.1.
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(3) [rate at which mass grows or decays by biochemical processes]. The mass
in the control volume is equal to the product of concentration and volume, so
the first term is simply

∂�8C�
∂t

�1�

where C is the cross-sectional average concentration and 8 is the volume.
Transfer of oxygen mass across the boundaries occurs by advection and disper-
sion (on the left and right faces of the control volume) and by transport
across the air/water interface. Dispersion is used instead of diffusion, since
the problem is stated in one-dimensional terms and primary interest is in the
cross-sectional average concentration. The advective and dispersive transport
terms on the left side are(

UC� EL
∂C

∂x

)
A �2�

where A is the cross-sectional area on the left side. The advective and disper-
sive terms on the right side are written using linear Taylor series expansions,[(

UCC ∂�UC�

∂x
dx

)
� EL

∂C

∂x
� ∂

∂x

(
EL
∂C

∂x

)
dx

](
AC ∂A

∂x
dx

)
�3�

Following the discussion in Sec. 12.4.1, the main boundary transfer other than
advection and dispersion is reaeration. The flux (mass transfer per unit area
per unit time) is given as J in Eq. (12.4.1). The rate of change of mass is then
the flux multiplied by the surface area,

JWdx �4�

The final term is the internal source/sink term, and this is written simply as
R0 D rate of mass produced or decayed by biochemical processes per unit time.

We now write the mass balance statement using each of (1) through (4),
along with R0, noting that (2) is added while (3) is subtracted. This results in

∂�8C�
∂t

D Adx

[
�∂�UC�

∂x
C ∂

∂x

(
EL
∂C

∂x

)]

C ∂A

∂x
dx2

[
�∂�UC�

∂x
C ∂

∂x

(
EL
∂C

∂x

)]
C JWdx C R0

We then neglect the nonlinear terms in dx (dx is assumed to be small) and note
that 8 D Adx is constant and can be divided on both sides of the equation.
Finally, let M D JWdx/8 (D JW/H, where H is the mean depth) be the
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rate of change of mass per unit volume per unit time due to reaeration, and
R D R0/8 be the rate of production or decay of mass per unit volume and
time. Making these substitutions and rearranging then leads to Eq. (12.4.19).

Unsolved Problems

Problem 12.2 In order to evaluate the possible mixing effect of wind
blowing over water it is first necessary to calculate the surface shear stress.
Using the data below, with h D distance above water surface and W D
wind speed, estimate the surface shear stress. State any assumptions made.

h (m) 0.5 1.0 3.0 5.0 7.0 10.0

W (m/s) 3.6 5.2 7.7 8.8 9.6 10.4

Problem 12.3 In a lake with an average fetch length of 10 km, reform
Eq. (12.2.4) in terms of a range of wind speeds, instead of a range of Re.
Use 	 D 10�2 cm2/s. According to this equation, what is the minimum height
at which wind measurements should be taken in this lake for a wind speed of
3 m/s?

Problem 12.4
(a) If the wind speed measured at a height of 10 m above a lake is

7.5 m/s, what is the expected shear stress at the water surface? Use ˛c D 0.013
and �a D 1.9 kg/m3.

(b) What are the friction velocities in air and water? Assume �w D
1000 kg/m3.

(c) Assuming a logarithmic profile, calculate the expected wind speed
at z D 2m above the water surface.

(d) What are the surface drift velocity and rate of kinetic energy transfer
across the surface?

Problem 12.5 As shown in Fig. 12.18, the depth profile (side view) of a
lake is described approximately by a parabola,

h D 20–3.2x2 �1�

where h is the depth in m and x is the distance from the middle of the lake
in km.

(a) What are the length and average depth of this lake?
(b) Assuming a constant surface shear stress of 0.2 Pa, use Eq. (12.2.14)

to calculate the surface profile [note that x in this equation is defined differently
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Figure 12.18 Definition sketch, Problem 12.5.

from x in Eq. (1)]. How far from the undisturbed shoreline does the water
recede on the upwind end of the lake?

(c) Using the same boundary condition as found in part (b) at the upwind
end of the lake, calculate the surface profile according to Eq. (12.2.13). This
is a nonlinear equation and may require some iterative solution scheme.
Comment on the degree to which the result compares with the result from
part (b).

Problem 12.6 Recall that equilibrium temperature Te is defined as the water
temperature at which there is zero net surface heat flux (i.e., �n D 0 when Ts D
Te). For this condition, and assuming there is no motion in the water, derive
an expression for the steady state vertical temperature distribution. Would
you expect this distribution to exist in nature? Why or why not? Under what
conditions might this profile not be valid? The vertical diffusion coefficient is
kt. Assume an exponential decay in solar radiation intensity. Use z D 0 at the
surface and positive downwards.

Problem 12.7 It is desired to characterize the clarity of a water body in
terms of the extinction (absorption) coefficient value that would be used in
an exponential decay solar radiation model. If it is assumed that 50% of the
net solar radiation is absorbed very close to the surface, use the data below to
estimate the extinction coefficient. State any assumptions made.

z (depth, m) 0 0.02 0.5 1.0 2.5 5.0 10.0

ϕ0
s�W/m2� 250 125 93 70 28 6 0.3

Problem 12.8 Water clarity, or turbidity, is often measured using a Secchi
disk, which is a round, flat disk painted in alternating white and black sections
that is lowered into the water. The point at which the disk is just no longer
discernible to the eye is called the Secchi depth. There are various opinions
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concerning the relationship between the Secchi depth and the amount of light
penetration, but in the Finger Lakes region of upstate New York the Secchi
depth has been found to be approximately 1/5 to 1/2 of the depth at which
the light intensity reaches 1% of the surface value. If the Secchi depth is
measured as 2 m and it is assumed that half the solar intensity is absorbed
near the surface, calculate the possible range of extinction coefficient values
that would be expected.

Problem 12.9 The average solar radiation intensity reaching the outer
earth’s atmosphere is approximately 2 cal/cm2 � min. If, on average, the
earth’s surface emits 0.25 cal/cm2 � min (as longwave radiation), why is it
that the atmosphere does not experience a steady accumulation of heat of
about 1.75 cal/cm2 � min?

Problem 12.10 It has been reported that the average annual evaporation of
the oceans is about 1 m. How much energy is used to produce this evaporation?
Assume that sea water has the same latent heat of vaporization as pure water
and express your answer in units of W/m2.

Problem 12.11 Estimate representative seasonal values (fall, winter, spring,
summer) for each of the surface heat flux terms, sn, an, b, e, and c for
a lake at a site of your choice. Clear sky solar radiation values can usually be
found in solar engineering handbooks. Clearly state all assumptions you make.

Problem 12.12 An experiment is conducted to evaluate the reaeration coef-
ficient under a known mixing condition. In the experiment a closed tank of
water initially has zero dissolved oxygen. At time t D 0, the cover is removed
and the surface is exposed to the atmosphere, while the tank is stirred contin-
uously and completely. The tank is cylindrical, with a height of 1 m and a
diameter of 0.75 m. If the saturated oxygen concentration is 10 mg/L and the
following data are collected for concentration as a function of time, estimate
the bulk reaeration coefficient (K2) value.

t (min) 0 5 10 20 60 120 240 480 1440

C (mg/l) 0 0.12 0.25 0.49 1.39 2.59 4.51 6.99 9.73

At t D 240 min, what is the mass flux of oxygen into the tank?

Problem 12.13 Compare values of the bulk transfer coefficient (KL) calcu-
lated according to Eqs. (12.4.11) and (12.4.12), for a river with a bed slope of
1:6000 and a discharge per unit width of 2.8m2/s. Plot the results for a range
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of depths from 1 m to 5 m, for constant discharge. Assume the diffusivity of
oxygen in water is 10�5cm2/s.

Problem 12.14 Compare values for υl calculated from Eqs. (12.4.16) and
(12.4.18), using 	 D 10�2cm2/s, uŁ D 3cm/s, H D 2m, and U D 0.7m/s. Use
C1 D 4 and find the value for C2 so that the two equations give the same
result. Does this seem like a reasonable value for C2?

Problem 12.15 Rewrite Eq. (12.4.19) by substituting expressions for M and
R in terms of appropriate rate constants, where M represents reaeration and R
represents decay of DO due to BOD. Show that, under the assumptions used
by Streeter and Phelps, this equation reduces to Eq. (12.4.25).

Problem 12.16 In a river the mean velocity is 0.5 m/s, the saturated DO
concentration is 9.6 mg/L, K1 D 0.2 day�1, andK2 D 0.35 day�1. An industry
discharges an oxygen-consuming waste into the river, with a resulting initial
CBOD of 5 mg/L in the river after the waste has been mixed in. If the initial
oxygen deficit is zero, calculate the minimum DO concentration and the loca-
tion at which the minimum concentration should be found, relative to the
discharge location. Repeat the calculations for an initial DO deficit of 1 mg/L.
Dispersion can be neglected.

Problem 12.17 An industry discharges a waste into a river following a “one
hour on, one hour off” schedule. That is, the waste is discharged at a steady
rate for one hour, then there is zero discharge, followed by another hour of
steady discharge, and so on. There is a water supply intake 50 km downstream
of the discharge point. The mean velocity in the river is 0.4 m/s and the
longitudinal dispersion coefficient is 100 m2/s. If the waste is conservative,
evaluate whether the concentration response at the intake may be treated as a
steady-state problem, or whether the problem can be treated as plug flow or
not. If the waste were nonconservative, how large would the decay rate have
to be before the assumption of plug flow would not be valid?
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13
Topics in Stratified Flow

13.1 BUOYANCY AND STABILITY CONSIDERATIONS

Nearly all natural surface water bodies are stratified at least part of the time.
This means there are density variations, usually in the vertical direction.
Horizontal variations also may exist, but not in steady state unless there are
other forces such as Coriolis effects present to balance the resulting pressure
differences (see Chap. 9). Density variations exist most commonly because
of temperature and/or salinity gradients. Salinity is the main contributor to
density in the oceans and in some inland lakes such as the Great Salt Lake
in Utah or the Dead Sea in Israel, though these water bodies also may have
temperature gradients. In freshwater lakes, temperature stratification is most
important. In fact, from a water quality point of view, there is usually great
interest in modeling the temperature structure of water bodies. Most biological
and chemical reactions depend on temperature, and fish choose habitats based
partly on this parameter. As discussed in Chap. 12, gas transfer across the
air/water interface also depends on temperature.

A closely related parameter to density is buoyancy, defined as

b D g
�0 � �

�0
D g0 �13.1.1�

where � is the density of a fluid parcel and �0 is the reference density. Buoy-
ancy is also known as reduced gravity, g0, and is defined so that a fluid parcel
tends to rise when its buoyancy is positive (i.e., its density is less than the
reference value) and a particle with higher buoyancy has a greater tendency to
rise. Buoyancy may be treated like other state variables, such as temperature
or concentration, and a conservation equation can be defined,

∂b

∂t
C ⇀
V Ð ⇀rb D ⇀r Ð kb

⇀rbC �source/sink� �13.1.2�
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where kb is diffusivity for buoyancy and the source/sink terms are defined
depending on which component is contributing to the buoyancy. For example,
a solar heating term might generate buoyancy in a temperature-stratified system
(Sect. 12.2), while evaporation might cause (negative) buoyancy at the surface,
due either to cooling (heat loss due to evaporation) or to increased salinity in
the case of saline water. Usually, an equation of state linking density or buoy-
ancy to these other properties is needed in addition to the general equations
of motion in order to define these systems.

13.1.1 Equation of State

Density is related to temperature and salinity and possibly other properties of
a particular system through an equation of state. A well-known example of
such an equation is the perfect gas law, which relates density, pressure, and
temperature through the gas constant. Similarly, a general equation of state
may be formulated for water systems as

� D ��T,C, p� �13.1.3�

where T D temperature, C D concentration of dissolved species, and p D
pressure. Since the main stratifying agent for most natural systems, in terms
of dissolved species, is salinity S, this will be used in place of C. Also, except
in the deep oceans or the atmosphere, the incompressible assumption implies
that density should not be a function of pressure. Thus

� D ��T, S� �13.1.4�

A number of expressions have been proposed to define this relationship,
usually based on high-order polynomial fits to tabulated values of density as a
function of T and S. Relations have been proposed for simple sodium chloride
solutions and also to actual seawater solutions. In general the dependence on
temperature has been found to be approximately parabolic, with a maximum at
4°C (Fig. 13.1). However, the temperature of the density maximum changes
with increasing salinity, decreasing to about 0°C for highly saline systems.
To a first-order approximation, density is linearly dependent on salinity over
much of the normal range of interest.

The dependence of density on T and S is expressed through values of
the thermal and saline expansion coefficients, ˛ and ˇ, respectively, where

˛ D � 1

�0

∂�

∂T
�13.1.5�

and

ˇ D 1

�0

∂�

∂S
�13.1.6�
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Figure 13.1 Variation of freshwater density with temperature.

The negative sign in the definition for ˛ is meant so that, at least for T > 4°C,
the coefficient has a positive value. Note that ˛ changes sign for temperatures
less than the temperature of the density maximum. In general, both ˛ and ˇ
are functions of T and S, but approximate values are ˛ ¾D 2 ð 10�4 °C�1 and
ˇ ¾D 7.5 ð 10�3S�1, where S is in weight percent. It is clear from these values
that salinity has a much greater effect on density than does temperature.

The equation of state is written to express density in terms of ˛ and ˇ,
and deviations of T and S from standard or reference values as

� D �0�1 � ˛TC ˇS� �13.1.7�

where T D T� T0, S D S� S0, � D �0 when T D T0 and S D S0, and
T0 and S0 are the reference values for temperature and salinity, respectively.
Normally, T0 D 4°C and S0 D 0 (%). Note that S is usually expressed in
units of weight percent, parts per thousand, or mg/L. Typical seawater has
S ¾D 3.5%, 35 ppt (o/oo), or 35,000 ppm. When ˛ and ˇ are taken as constants,
the resulting equation is called a linear equation of state. A constant value for
ˇ is usually a good approximation, but in order to account for the parabolic
nature of the temperature dependence, ˛ should be a function of T. A simple
expression that gives reasonable results over much of the range of normally
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occurring values for T and S (except near freezing) is

� D �0[1 � 0.00663�T� 4�2 C 7.615S] �13.1.8�

where T is in °C and S is in weight percent. For freshwater bodies, with S D 0,
this equation is reasonable even near freezing. When S is high, however,
greater than about 5%, higher order equations should be used to estimate �.

13.1.2 Gravitational Stability

When density differences exist in a fluid system, an important considera-
tion is that of stability. In Chap. 10 the concept of convective transport was
introduced, where it was noted that convection is the result of a gravitation-
ally unstable condition. This is simply saying that lighter, more buoyant fluid
should tend to rise and that the system would be stable only when heavier fluid
underlies lighter fluid. Buoyancy instabilities give rise to convective motions,
which tend to mix the fluid system vertically. This is demonstrated mathemat-
ically by applying a perturbation analysis to a system in which there is no
motion initially (u D v D w D 0), with a density stratification ��z�, as illus-
trated in Fig. 13.2. A fluid particle is considered with initial position at z D 0,
which is an arbitrary point within the fluid.

Figure 13.2 Fluid particle at z D 0, in fluid with ambient stratification given by
��z� D �r (reference distribution).
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The governing equation for this problem is

⇀
0 D � 1

�
r Ð pC ⇀g ) ∂p

∂z
D ��g �13.1.9�

This is simply the momentum equation for the vertical direction, which reduces
to the hydrostatic result for the case of zero flow. The reference density, �r,
must satisfy this equation. An equation of state also should be considered
to relate density to other properties of the system, as noted above. The fluid
is assumed to be incompressible (note that an incompressible fluid does not
have to have the same density everywhere). If the fluid particle of Fig. 13.2 is
displaced vertically from its equilibrium location by an amount z, there will
be a buoyancy force acting on the particle due to the difference in density
between the particle and its new surroundings. The resulting force acting on
the particle, per unit volume, is [�g��p � �r�], where �p is the fluid particle
density. Applying Newton’s law,

⇀
F D m⇀a ) F

8 D m

8 a ) g��r � �p� D �pRz �13.1.10�

where m is the mass of the fluid particle, 8 is its volume, and the vector
notation is dropped with the understanding that the force balance is in the
vertical (z) direction. The double dots over z in the last part of this equation
indicate a second derivative with time (i.e., acceleration).

Taylor series expansions are now defined for �r and �p, in terms of a
reference value �0:

�r D �0 C z
d�r

dz
C [O�z2�] �13.1.11�

�p D �0 C z
d�p

dz
C [O�z2�] �13.1.12�

where the last term in both of these expressions indicates that the neglected or
truncated terms in the series approximations are of order O�z2� (i.e., second
order). These terms will be neglected in the following. Assuming there is
no heat transfer, the relationship between pressure and density is given by
the adiabatic relationship, dp D c2 d�, where c D sonic velocity. Making
these substitutions, along with the hydrostatic pressure result (13.1.9), into
Eq. (13.1.10), we have

d�p

dz
¾D d�0

dz
D 1

c2

dp

dz
D ��0g

c2
�13.1.13�

and

�pRz D g

(
�0 C z

d�r

dz
� �0 C z

�0g

c2

)
[CO�z2�] D gz

(
�0g

c2
C d�r

dz

)
�13.1.14�
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The Brunt–Vaisala or buoyancy frequency, N, is defined in terms of the
square root of the negative of the term in parentheses in this last expression.
Note that the density gradient is assumed to be negative, as it must be for
a gravitationally stable water column; N is undefined for an unstable density
distribution. However, the sonic velocity c is normally large, and the first term
in parentheses on the right-hand side of Eq. (13.1.4) can be neglected under
most conditions. This is equivalent to neglecting the small compressibility of
the fluid parcel (resulting in a small change in density) due to the change in
ambient pressure at the perturbed location. In general, N is defined for most
applications by

N2 D � g

�0

d�r

dz
�13.1.15�

and Eq. (13.1.14) then becomes

�pRz D �N2z�p �13.1.16�

where it has been assumed that �p
¾D �0. The final differential equation is

Rz CN2z D 0 �13.1.17�

which is an equation of simple harmonic motion.
Equation (13.1.17) has solutions of the form

z / eiNt N2 > 0 �13.1.18a�

z / ejNjt N2 < 0 �13.1.18b�

z / e0 N2 D 0 �13.1.18c�

These three solutions correspond to stable, unstable, and neutral conditions,
respectively. In other words, N2 > 0 implies a gravitationally stable condi-
tion, with density increasing with depth. When N2 < 0, heavier fluid overlays
lighter fluid, which is an unstable condition leading to convection (in fact, N is
undefined in this situation, as noted above). A neutrally stable condition is one
where there is no acceleration since there is no net gravitational force acting
on the fluid particle when it is displaced from its original equilibrium position,
and particle position remains constant. For the stable situation, substituting the
Euler formula,

eši� D cos� š i sin� �13.1.19�

it is seen that oscillatory motions are expected, with amplitude depending
on the magnitude of the original displacement of the fluid particle. These
oscillations decay over time due to viscous effects, which have not been
considered here but could be included in the equation of motion for the fluid
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particle, Eq. (13.1.17), if desired. For the unstable case, the particle position
grows exponentially with time. Thus any perturbation of particle position in
an unstable environment will lead to large-scale convective motions.

13.2 INTERNAL WAVES

We now consider wave motions that are possible in a stratified fluid. Internal
waves can propagate along the interface between fluid layers of different densi-
ties (note that surface waves, as discussed in Chap. 8, propagate along the
air/water interface, which is an extreme example of fluids of two different
densities) or, more generally, at an angle to the horizontal through a density
stratified fluid, with N2 > 0.

Consider a stratified fluid with density and pressure fields given by

��⇀x , t� D �0 C �0�z�C �00�x, y, t� �13.2.1�

p�⇀x , t� D p0 C p0�z�C p00�x, y, t� �13.2.2�

where x and y are the horizontal coordinates, subscript 0 indicates a reference
value, a single prime denotes a function of z only (vertical position) and the
double prime indicates a function of horizontal position and time. Normally, it
can be assumed that the magnitude of �0 is much greater than the magnitude
of �0, which in turn is much greater than the magnitude of �00 (one or two
orders of magnitude difference between each component). Since we are dealing
primarily with water, incompressibility dictates that the density following a
fluid particle is constant, or

D�

Dt
D ∂�

∂t
C ⇀u Ð r� D 0 �13.2.3�

As shown in Chap. 2, this leads to the usual continuity equation for an incom-
pressible fluid,

r Ð ⇀u D ∂uj
∂xj

D 0 �13.2.4�

The general momentum equation is (neglecting Coriolis terms),

Duk
Dt

D ∂uk
∂t

C uj
∂uk
∂xj

D � 1

�

∂p

∂xk
C gk C 	r2uk �13.2.5�

For the analysis of stratified fluids it is convenient to consider a reference state
of zero motion. The reference density is �r D ��0 C �0�z�� (see Fig. 13.2). The
pressure is given similarly as pr D p0 C p0�z�. Substituting this definition for
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�r into Eq. (13.2.3) results in

D�

Dt
D D�r

Dt
C D�00

Dt
D ∂�r

∂t
C uj

∂�r

∂xj
C D�00

Dt
D 0

) D�00

Dt
D �wd�r

dz
�13.2.6�

since �r is a function of z only. The momentum equation for the reference
state is simply the hydrostatic result,

0 D �∂pr

∂xk
C �rgk �13.2.7�

Subtracting Eq. (13.2.7) from Eq. (13.2.5) results in

�
Duk
Dt

D �∂�p� pr�

∂xk
C �� � �r�gk C �r2uk �13.2.8�

Then, using the definitions for pr and �r, along with the approximation that
�1/�� ¾D �1/�0� (this is the Boussinesq approximation discussed in Sect. 2–7),

Duk
Dt

D � 1

�0

∂p00

∂xk
C �00

�0
gk C 	r2uk �13.2.9�

This is the governing equation for momentum, though in the following we
also will neglect viscous effects (high Reynolds number assumption).

A wave equation is derived by writing the momentum equations sepa-
rately for the horizontal and vertical directions:

∂uh

∂t
C 1

�0

∂p00

∂xh
D �uj ∂uh

∂xj
�13.2.10�

∂w

∂t
C �00

�0
g D �uj ∂w

∂xj
�13.2.11�

where uh denotes a horizontal velocity component, i.e., h takes values of 1
or 2, for the x or y direction, respectively. The fact that p00 6D f�z� has also
been taken into account in writing Eq. (13.2.11). Taking the derivative of
Eq. (13.2.10) with respect to z and subtracting the derivative of Eq. (13.2.11)
with respect to xh gives

∂

∂t

(
∂uh

∂z
� ∂w

∂xh

)
� ∂

∂xh

(
�00

�0
g

)
D ∂

∂xh

(
uj
∂w

∂xj

)
� ∂

∂z

(
uj
∂uh

∂xj

)
�13.2.12�
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This last result is then differentiated with respect to t and the two component
equations (for h D 1 or 2) are then

∂2

∂t2

(
∂u

∂z
� ∂w

∂x

)
� ∂2

∂t ∂x

(
�00

�0
g

)
D ∂2

∂t ∂x

(
uj
∂w

∂xj

)
� ∂2

∂t ∂z

(
uj
∂u

∂xj

)
�13.2.13�

∂2

∂t2

(
∂	

∂z
� ∂w

∂y

)
� ∂2

∂t ∂y

(
�00

�0
g

)
D ∂2

∂t ∂y

(
uj
∂w

∂xj

)
� ∂2

∂t ∂z

(
uj
∂	

∂xj

)
�13.2.14�

Differentiating the first of these with respect to x and differentiating the second
with respect to y and adding the results gives

∂2

∂t2

(
∂2u

∂x ∂z
C ∂2v

∂y ∂z
� ∂2w

∂x2
� ∂2w

∂y2

)
� g

�0

[
∂

∂t
�r2

h�
00�
]

D ∂

∂t

[
r2

h

(
uj
∂w

∂xj

)]
� ∂3

∂t ∂xh∂z

(
uj
∂uh

∂xj

)
�13.2.15�

where

r2
h D ∂2

∂x2
C ∂2

∂y2
�13.2.16�

is a two-dimensional horizontal Laplacian operator and index notation is used
for subscript h. The first term on the left-hand side is simplified using the
continuity Eq. (13.2.4):

∂u

∂x
C ∂v

∂y
D �∂w

∂z
) ∂2u

∂x ∂z
C ∂2v

∂y ∂z
D �∂

2w

∂z2
�13.2.17�

The second term on the left-hand side also is rewritten using Eq. (13.2.6):

g

�0

[
∂

∂t
�r2

h�
00�
]

D g

�0
r2

h

(
∂�00

∂t

)
D g

�0
r2

h

(
D�00

Dt
� uj

∂�00

∂xj

)

D g

�0
r2

h

(
�w∂�r

∂z
� uj

∂�00

∂xj

)

D g

�0

[
�∂�r

∂z
r2

hw� r2
h

(
uj
∂�00

∂xj

)]
�13.2.18�

Substituting these last two results into Eq. (13.2.15), rearranging, and using
the definition of the buoyancy frequency (13.1.15) gives

∂2

∂t2
�r2w�CN2�r2

hw� D � ∂3

∂t ∂xh∂z

(
uj
∂uh

∂xj

)

�r2
h

[
g

�0
uj
∂�00

∂xj
C ∂

∂t

(
uj
∂w

∂xj

)]
�13.2.19�
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The right-hand side is generally negligible compared with the other terms
in the equation, since it involves all nonlinear terms. A possible exception to
this is when there is strong mean shear, in which case the velocity gradients
may be important. The simplified final equation is

∂2

∂t2
�r2w�CN2�r2

hw� ¾D 0 �13.2.20�

which is a wave equation similar to Eq. (13.1.17).
It is beyond the scope of the present text to provide a full discussion

of the solutions to this equation (or the more general Eq. 13.2.19) and the
resulting behavior of the fluid motions that it describes. There are many books
that cover this material in depth, and the present analysis is restricted to a
discussion of some properties of linear internal waves and their relationship to
surface waves. First, however, we consider the lowest mode solutions, which
correspond to horizontal propagation.

13.2.1 Lowest Mode Solutions

By assuming wavelike disturbances,

w D W�z� exp[i�k1x C k2y � 
t�] �13.2.21�

where k1 and k2 are wave numbers for the x and y directions, respectively,
and 
 is frequency, Eq. (13.2.20) becomes

d2W

dz2
C

(
N2 � 
2


2

)
k2

hW D 0 �13.2.22�

where k2
h D k2

1 C k2
2 . This is a wave equation for W, which expresses wave

propagation in the horizontal direction. Boundary conditions must be applied
at the surface and at the bottom.

The free surface is defined by ��x, y, t�, as sketched in Fig. 13.3. At the
surface, z D �, the dynamic boundary condition is

pr���C p00�xh, �, t� D patm�D 0� �13.2.23�

and the kinematic boundary condition is

D�

Dt
D w �13.2.24�

However, application of boundary conditions is problematic at z D �, since
� itself is an unknown, obtained as part of the solution. For a first-order
solution, it is more convenient to write the surface boundary conditions at
z D � D 0 and to account for variations between this level and the actual

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 13.3 Definition sketch for surface level.

surface through linear Taylor series expansions of Eqs. (13.2.23) and (13.2.24),
assuming approximately hydrostatic pressure variations and small �. Then, for
z D 0, the dynamic condition is

pr�0�C p00�xh, 0, t�� �0g� D patm �13.2.25�

and the kinematic condition is approximated as

∂�

∂t
D w�xh, 0, t� �13.2.26�

Then, differentiating Eq. (13.2.25) with respect to t and substituting
Eq. (13.2.26) gives

∂p00

∂t
� �0gw D 0 �13.2.27�

Taking the time derivative of the linearized vertical momentum equation
(from Eq. 13.2.11), we obtain

∂2w

∂t2
C g

�0

∂p00

∂t
D � 1

�0

∂2p00

∂t∂z
�13.2.28�

and the linearized mass conservation equation (from Eq. 13.2.6) is

∂p00

∂t
D �wd�r

dz
�13.2.29�
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Substituting this last result into Eq. (13.2.28), along with the boundary condi-
tion (13.2.27), gives(

∂2

∂t2
CN2

)
w D � 1

�0

∂2p00

∂t ∂z
D �g∂w

∂z
�13.2.30�

Then, assuming the same wavelike disturbances as before (Eq. 13.2.21), this
last result becomes


2dW

dz
� gk2

hW D 0 �13.2.31�

which is the boundary condition applied at z D 0. At the bottom (z D �H),
w D 0. Thus, for a given frequency 
, an eigenvalue problem is defined for k
and W.

From examination of the governing Eq. (13.2.22), if N2 < 
2, then W
is monotonic in z�W / exp�j�jz�, where �2 D �N2 � 
2�/
2 < 0 — recall the
earlier discussion of gravitational stability in Sec. 13.1). In this case, the
magnitude of the motions decays exponentially with depth, as z becomes
more negative. A limiting case is when N D 0 (no stratification), where only
surface waves can exist. In fact, surface waves are thus seen as a special
case of the general internal wave solution. If 
 < Nmax, where Nmax is the
maximum value of the buoyancy frequency in the water column, then there
is a range of z over which W and (d2W/dz2) must have opposite signs, in
order that Eq. (13.2.22) can be satisfied. This is a characteristic of oscillating
functions, and it may be concluded that W is oscillating in this region (i.e.,
wave motions exist in this range of z). Then, for a given 
 < Nmax, there
are many possible values for kh. The lowest value (lowest mode) corresponds
with surface waves, and higher modes correspond with internal waves. For the
lowest internal wave mode, the entire thermocline (or pycnocline) moves up
and down in unison. As the mode increases, corresponding to larger kh, there
is a shortening of the vertical scale of motions, with more zero-crossings. The
vertical scale of these motions is estimated by

Lz ³
(
Wd2W

dz2

)1/2

�13.2.32�

and the horizontal scale is simply the inverse of the wave number, LH ³ k�1
h ,

so, using Eq. (13.2.22),

LH

Lz
¾D

∣∣∣∣N2 � 
2


2

∣∣∣∣
1/2

�13.2.33�

For 
 approaching 0, LH is very large compared with Lz, and the scaling
analysis suggests a horizontal drift, uniform in x and y. At the other extreme,
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for 
 ¾D N, Lz × LH, and variations in the vertical flow field are small; this is
the case for the lowest mode of internal wave.

For this lowest internal mode, consider the situation where the density
stratification approaches a step function, as in the two-layer stratification
illustrated in Fig. 13.4. Here, N D 0 everywhere except at the density
interface at z D �h, where it is large. The interface has thickness υ, which
is small compared with h. In the uniform regions, the governing wave
equation (13.2.22) reduces to

d2W

dz2
� k2

hW D 0 �13.2.34�

and the boundary conditions are W D 0 at z D 0 and at z D �H. The bottom
condition is exact, but the surface condition is a first-order approximation, as
noted previously. This equation can be integrated within each uniform region,
using these boundary conditions, with the constraint that the values for W at
the interface (or, just above and just below the interface) must match. In other
words,

WjzDhC D WjzDh� �13.2.35�

Figure 13.4 Distribution of density and buoyancy frequency in a two-layer stratified
system.
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The full equation (13.2.22), integrated over the interfacial thickness υ, gives

dW

dz

∣∣∣∣
zD�hC

�dW
dz

∣∣∣∣
zD�h�

D k2
hWjzD�h

[
υ� g


2

�

�0

]
�13.2.36�

where � is the density difference over the interface. These last two results
(for W and dW/dz) at the interface provide matching conditions that must be
satisfied in the overall solution for W.

The solution of (13.2.34), with the stated boundary conditions, is

W�z� D
{
C1 sinh�khz�, 0 > z > �h
C2 sinh[kh�z C h�], �h > z > �H �13.2.37�

and from Eq. (13.2.35),

C1

C2
D � sinh[kh�H� h�]

sinh�khh�
�13.2.38�

while Eq. (13.2.36) implies


2 D gkh
�

�0
fkhυC coth�khh�C coth[kh�H� h�]g�1 �13.2.39�

This last result is known as a dispersion relationship, which relates kh and

. If the interface is relatively thick, or �khυ� ! 1, the wavelengths of the
disturbance are short compared with υ, and


2 ¾D g

υ

�

�0
�13.2.40�

For the other extreme, �khυ� − 1, which is more commonly the case, and


2 ¾D gkh
�

�0
fcoth�khh�C coth[kh�H� h�]g�1 �13.2.41�

Finally, in the deep ocean, with large H�H × h�, the dispersion relation can
be approximated by


2 ¾D �

�0

gkh

coth�khh�
�13.2.42�

Surface Manifestation of Lowest Internal Wave Mode

One of the most important effects of the lowest internal wave mode is its
relationship to surface waves. This results from the pressure field created by
the internal wave. Consider a wave function describing the motions at the
interface, given by

� D A exp[i�k1x C k2y � 
t�] �13.2.43�
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where A is the amplitude of the motions. Using a similar approach as in
describing the boundary condition at z D � (see text following Eq. 13.2.24),
the vertical velocity at the interface is

D�

Dt
D wjzD�h �13.2.44�

Neglecting nonlinear terms and using the same assumption for w as before
(Eq. 13.2.21),

wjzD�h ¾D ∂�

∂t
) WjzD�h D �iA
 �13.2.45�

Now, assuming that the motion outside the interfacial region is irrotational, a
velocity potential ϕ can be defined so that

r2ϕ D 0
∂ϕ

∂z
D w �13.2.46�

Given the assumed form for w, ϕ is assumed as

ϕ D �z� exp[i�k1x C k2y � 
t�] �13.2.47�

Then, using Eq. (13.2.37) for the region above the interface,

d

dz
D W D C1 sinh�khz� ) �C1 sinh�khh�

D �iA
 ) C1 D iA


sinh�khh�
�13.2.48�

so that

 D iA


kh sinh�khh�
cosh�khz� �13.2.49�

At the surface, the linearized horizontal momentum equation is (from
Eq. 13.2.9, without the viscous term)

1

�0

∂p00

∂x
D �∂u

∂t
D � ∂2ϕ

∂t∂x
�13.2.50�

which is evaluated at z D 0. Carrying out the differentiation on the right-hand
side of this last result and then integrating, we find the pressure perturbation
at the surface is

p00jzD0 D i�0
 exp[i�k1x C k2y � 
t�] D �0g� �13.2.51�

This, combined with Eq. (13.2.49), gives an expression for surface displace-
ment,

� D � A
2

gkh sinh�khh�
exp[i�k1x C k2y � 
t�] �13.2.52�
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Upon comparing this result with Eq. (13.2.43), the magnitude of � relative to
� is seen to be of order ��/�0� ¾D 10�3 (using Eq. 13.2.41 for 
2), which
suggests that the surface “signature” of the internal wave is relatively small,
compared with the amplitude of the internal wave itself.

The phase speed of the waves is defined as the ratio of wavelength to
period,

c D L

T
�13.2.53�

where L D 2�/kh is the wavelength and T D 2�/
 is the period of the waves.
Then, using the dispersion relation (13.2.39), the phase speed is written as

c D
[
g

kh

(
�

�0

)]1/2

fcoth�khh�C coth[kh�H� h�]g�1/2 �13.2.54�

which describes the velocity at which the waves propagate.

13.2.2 Small-Scale Internal Waves

The preceding discussion focused on the lowest internal wave mode and its
relationship with surface waves. The analysis is now generalized to consider
higher mode internal waves, but with the assumption that the vertical scale
of motion is small relative to the scale over which N varies, so that at least
locally, it may be assumed that N is approximately constant. The equation
describing vertical velocity is Eq. (13.2.20), with solutions assumed to be of a
form similar to Eq. (13.2.21) but generalized to include a vertical component
of the wave number vector,

w / exp[i�k1x C k2y C k3z � 
t�] �13.2.55�

Upon substituting this into Eq. (13.2.20), a dispersion relation is obtained,


2 D N2�k2
1 C k2

2�

�k2
1 C k2

2 C k2
3�

) 
 D šN cos � �13.2.56�

where � is the angle between the horizontal and the total wave number vector,
as shown in Fig. 13.5, and cos � D kh/k�k2 D k2

1 C k2
2 C k2

3�. This is the angle
of wave propagation, relative to horizontal.

From Eq. (13.2.56), the maximum value for 
 occurs when � D 0, and
j
maxj D N, which corresponds with horizontal wave propagation (kh D k).
Vertically propagating waves result for 
 D 0�kh D 0�. It also is of interest to
note that, in general, the velocity field can be represented by

⇀u D ⇀
U exp[i�

⇀
k Ð ⇀x � 
t�] �13.2.57�
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Figure 13.5 Definition sketch for wave propagation angle �.

(refer to Eq. 13.2.55). For incompressible fluid, the divergence of the velocity
is 0, so

r Ð ⇀u D 0 ) i
⇀
k Ð ⇀U D 0 �13.2.58�

which implies that the wave number vector and the velocity vector are
perpendicular to each other. This is in contrast to surface waves, where the
velocity and wave number vectors are in the same direction. A further result
of Eq. (13.2.58) is

⇀u Ð r⇀u D ⇀
0 �13.2.59�

which shows that the linearized solution is an exact solution to the governing
equations, since the neglected nonlinear terms in the linearized solution are in
fact zero.

13.3 MIXING

13.3.1 Linear Stability Theory

One of the consequences of internal wave propagation is the transport of
energy, and under certain circumstances waves may break and release energy
that can be used for mixing, which is a topic of considerable interest in
stratified flow modeling. One of the more well-known modes of this type
of mixing is a process known as Kelvin–Helmholtz instability, which refers
to instability and breaking of an interfacial wave. First, however, consider
the general stability problem for a system with a steady, two-dimensional,
inviscid, mean shear flow U�z�. Hydrostatic pressure is assumed, and the mean
velocity field, ⇀u D [U�z�, 0, 0] satisfies the exact (nonlinear) two-dimensional
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governing equations. Perturbations to this mean velocity field are assumed as
⇀u D �U C u0, w0� p D p0 C p0 � D �0 C �0 �13.3.1�

where primes indicate perturbation quantities and p0 and �0 are the pressure
and density, respectively, of the unperturbed system; these are both functions
of z only.

The continuity equation is

∂u

∂x
C ∂w

∂z
D 0 D ∂�U C u0�

∂x
C ∂w0

∂z

and since the mean flow satisfies continuity, so must the perturbations,

∂u0

∂x
C ∂w0

∂z
D 0 �13.3.2�

This is similar to the behavior of the turbulent velocity fluctuations described
in Chap. 5. The momentum equations are (neglecting viscous effects)

��0 C �0�
[
∂u0

∂t
C �U C u0�

∂�U C u0�
∂x

C w0 ∂�UC u0�
∂z

]

D �∂�p0 C p0�
∂x

D �∂p
0

∂x
�13.3.3�

and

��0 C �0�
[
∂w0

∂t
C �U C u0�

∂�w0�
∂x

C w0 ∂�w
0�

∂z

]

D �∂�p0 C p0�
∂z

� g��0 C �0� �13.3.4�

Upon carrying out the multiplications on the right-hand sides and linearizing
with respect to the perturbation quantities, we obtain

�0
∂u0

∂t
C �0U

∂u0

∂x
C �0w

0dU
dz

¾D �∂p
0

∂x
�13.3.5�

and

�0
∂w0

∂t
C �0U

∂w0

∂x
¾D �∂p

0

∂z
� g��0 C �0� �13.3.6�

Subtracting the derivative of Eq. (13.3.5) with respect to z from the derivative
of Eq. (13.3.6) with respect to x eliminates the pressure terms, and

�0

{
∂2w0

∂x ∂t
CU

∂2w0

∂x2
� ∂2u0

∂z ∂t
� dU

dz

∂u0

∂x
�U

∂2u0

∂x ∂z
� ∂w0

∂z

dU

dz
� w0d

2U

dz2

}

� d�0

dz

(
∂u0

∂t
CU

∂u0

∂x
C w0dU

dz

)
D �g∂�

0

∂x
�13.3.7�
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A solution is found by assuming wavelike expressions,

�0�x, z, t� D O��z� exp[ik�x � ct�] �13.3.8�

where � denotes any of the perturbation quantities, k is the wave number for
the disturbances in the x-direction, and c is the phase speed. The “hat” indicates
a function of z only. On substitution into Eq. (13.3.7) and rearranging, the
result is

�0

{
�k2�U � c� Ow� d Ow

dz

dU

dz
� Owd

2U

dz2

}
� d�0

dz
OwdU
dz

� �ik�

{
�0�U� c�

dOu
dz

C �0 OudU
dz

C �U� c�
d�0

dz
Ou� g O�

}
D 0 �13.3.9�

Now, from continuity (Eq. 13.3.2),

∂w0

∂z
D �∂u

0

∂x
) d Ow

dz
D ��ik�Ou, d

2 Ow
dz2

D ��ik�dOu
dz

�13.3.10�

Substituting this into Eq. (13.3.9) and rearranging, we obtain the
Taylor–Goldstein equation,

d

dz

[
�0�U� c�

d Ow
dz

]
� d

dz

(
�0
dU

dz
Ow
)

�
[

g

�U � c�

d�0

dz
C �0k

2�U � c�

]
Ow D 0 �13.3.11�

Applying the Boussinesq approximation, this result may be rewritten as

�U� c�2
d2 Ow
dz2

C
[
N2 � �U� c�

d2U

dz2
� �U � c�2k2

]
Ow D 0 �13.3.12�

and for the case N D 0, this is known as the Rayleigh equation. This last
result forms an eigenvalue problem for c. If the imaginary part of c is greater
than 0, the perturbations will grow exponentially and the flow is dynamically
unstable.

To develop the result for Kelvin–Helmholtz instability, consider a two-
layer system, with z D 0 defined at the interface between the two layers
and with densities and velocities �1 and U1, and �2 and U2, in the upper
and lower layers, respectively (Fig. 13.6). Following the preceding analysis,
vertical velocity w0 is assumed to be described by an equation of the form
of Eq. (13.3.8). Within each layer, N D 0 and U is constant, so Eq. (13.3.12)
reduces to

d2 Ow
dz2

� k2 Ow D 0 �13.3.13�
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Figure 13.6 Definition sketch for stability analysis of two-layer system.

(note the similarity of this result to Eq. 13.2.34). The solution is an exponen-
tial, and in order to keep the velocities bounded as z ! š1, we have

Ow D
{
C1e�kz z > 0
C2ekz z < 0

�13.3.14�

The boundary conditions are

D�0

Dt
D ∂�0

∂t
CU1

∂�0

∂x
D w0

1jzD0C �13.3.15a�

and
D�0

Dt
D ∂�0

∂t
CU2

∂�0

∂x
D w0

2jzD0� �13.3.15b�

where �0 is the perturbed position of the interface (Fig. 13.6), which is also
assumed to be given by a wave equation similar to the velocity. The differential
operator on the left-hand side of Eq. (13.3.15) may be written as(

∂

∂t
CU

∂

∂x

)
D ik�U � c� �13.3.16�

Then, combining Eqs. (13.3.14) and (13.3.15) gives

Ow1jzD0C D ik�U1 � c�O� D C1 �13.3.17a�
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Ow2jzD0� D ik�U2 � c�O� D C2 �13.3.17b�

Since these must be equal, a relationship between C1 and C2 is obtained,

C2 D C1
�U2 � c�

�U1 � c�
�13.3.18�

A second matching condition is derived by setting the pressures just
above and below the interface equal to each other. Using Taylor series expan-
sions,

�p01 C p1
0�C ∂�p01 C p1

0�
∂z

�0 ¾D �p02 C p2
0�C ∂�p02 C p2

0�
∂z

�0 �13.3.19�

Noting that p0 is the same in the upper and lower layers, and using a hydro-
static approximation, this result is rewritten as

p1
0 � p2

0 ¾D ��1 � �2�g�
0 �13.3.20�

Differentiating with respect to x,

∂

∂x
�p1

0 � p2
0� D ��1 � �2�g

∂�0

∂x
�13.3.21�

Substituting for the pressure derivatives from the momentum equations for the
upper and lower layers, this becomes

��1

(
∂

∂t
CU1

∂

∂x

)
u1

0 C �2

(
∂

∂t
CU2

∂

∂x

)
u2

0 D ��1 � �2�g�ik�O�
�13.3.22�

This result may be written, using Eq. (13.3.16) as

��1ik�U1 � c�u1
0 C �2ik�U2 � c�u2

0 D ��1 � �2�g�ik�O� �13.3.23�

Using Eq. (13.3.10), along with Eq. (13.3.14) to evaluate dw0/dz at the inter-
face (z D 0), we find

u1
0 D i

k

dw1
0

dz
D �iC1 u2

0 D i

k

dw1
0

dz
D iC2 �13.3.24�

Substituting these expressions for u1
0 and u2

0 into Eq. (13.3.23), along with
Eq. (13.3.17), assuming C1 6D 0 and rearranging, we obtain

��1 C �2�c
2 � 2��1U1 C �2U2�c C ��1U

2
1 C �2U

2
2�� ��2 � �1�

g

k
D 0

�13.3.25�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



This last result is a simple quadratic equation for c, which when solved
provides a dispersion relationship,

c D �1U1 C �2U2

�1 C �2
š

[
g

k

(
�2 � �1

�1 C �2

)
� �1�2

��1 C �2�2
�U1 �U2�

2
]1/2

�13.3.26�

For the special case of no motion, U1 D U2 D 0, this reduces to

c D š
[
g

k

(
�2 � �1

�1 C �2

)]1/2

�13.3.27�

which is a real-valued function. On the other hand, if U D �U1 �U2� is
large enough that the term under the radical sign in Eq. (13.3.26) is negative,
then c is imaginary and the perturbations are unstable. This last condition may
be written as

�U�2 >
g

k

��1 C �2���2 � �1�

�1�2

¾D 2
g

k

�

�2
�13.3.28�

where it has been assumed that � D �2 � �1 is small relative to either �1

or �2.
The stability condition is usually written in terms of an interfacial

Richardson number,

Rii D g

k�2

�

�U�2
�13.3.29�

so that when Rii < 0.5, the system is unstable. In other words, for a given
U, there exists a k large enough that instability occurs, as an exponen-
tially growing wave. If � D 0, any perturbation is always unstable, since
Eq. (13.3.28) will be satisfied for any U.

A generalized stability condition was derived by Rayleigh, based on a
variation of the Taylor–Goldstein equation (13.3.11),

d

dz

[
�0
d Ow
dz

]
�

{
d

dz

(
�0
dU

dz

)
�U � c��1

��0N
2�U � c��2 C �0k

2
}

Ow D 0 �13.3.30�

Let  represent the left-hand side of this equation. Then, by taking the differ-
ence, ( OwŁ �  Ł Ow), where an asterisk indicates the complex conjugate, and
integrating between two positions z1 and z2, the result is

ci

z2∫
z1

j Owj2
�U� cr�2 C c2

i

{
d

dz

(
�0
dU

dz

) [
�U � cr�

2 C c2
i

]

�2�0N
2�U � cr�

}
dz D 0 �13.3.31�
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where c D cr C ici has been substituted. If ci > 0 (i.e., the system is unstable),
then in order for this last result to apply, the term in brackets in the integrand
must change sign at least once in the region between z1 and z2 (note that the
term preceding the brackets is always positive). This will occur if the velocity
profile has a point of inflection, where d2U/dz2 D 0, and Rayleigh’s result
may be stated as a necessary condition for instability, that is, U(z) must have
an inflection point. This condition also is known as the Synge theorem.

To go one step further, a sufficient condition for stability can be devel-
oped directly from Eq. (13.3.11). Letting U0 D �U� c� and Ow D FU0, where
F is a function of z, the Taylor–Goldstein equation may be written as

d

dz

[
�0U

0
(
U0dF

Ł

dz
C dU0

dz
F

)]

� d

dz

(
�0U

0dU
0

dz
F

)
C �0�N

2 � k2U02�F D 0 �13.3.32�

It can be shown that this equation reduces to

d

dz

[
�0U

02dF
dz

]
C �0�N

2 � k2U02�F D 0 �13.3.33�

Now assume that U0 6D 0 and that F is an unstable solution. For convenience,
define another function G, so that G D FU01/2, so Eq. (13.3.33) becomes

d

dz

[
�0U

0dG
dz

]
�

[
1

2

d

dz

(
�0
dU0
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)

C�0k
2U0 C �0

U0

(
1

4

(
dU
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)2

�N2

)]
G D 0 �13.3.34�

This equation is then multiplied by GŁ and the resulting product is integrated
over the region z1 to z2. Both the real and the imaginary parts of the result
must be zero. In particular, when the imaginary part is zero,

ci

z2∫
z1

�0

{[∣∣∣∣dGdz
∣∣∣∣
2

C k2jGj2
]

C
∣∣∣∣ GU0

∣∣∣∣
2
[
N2 � 1

4

(
dU

dz

)2
]}

dz D 0

�13.3.35�

Thus, if ci > 0 (unstable), then (N2 � 1.4�dU/dz�2) must be less than 0 for
some range of z between z1 and z2. Miles’ theorem then states that a sufficient
condition for stability is

Rig ½ 1

4
�13.3.36�

where Rig D N2/�dU/dz�2 is a gradient Richardson number.
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13.3.2 Convection

Mixing may be generated as a result of instabilities in the flow system,
as predicted by the analysis of the foregoing section. Mixing also may be
produced by buoyancy instabilities, resulting in convection. This process was
introduced briefly in Chap. 12, in connection with surface heat transfer. The
stability analysis of Sec. 13.1 showed when convection might occur, but here
we discuss what happens when convection does take place. Heat transfer and
temperature differences are the usual cause of these motions. First, recall that
either free (buoyancy-driven) or forced (flow-driven) convection can occur. An
example of free convection is a wall being heated, generating vertical motions
as illustrated in Fig. 13.7. A pan of water heated on a stove also exhibits free
convection as the water on the bottom becomes heated and rises. An example
of forced convection is wind-driven evaporation, as discussed in Sec. 12.3.3.

The analysis of convective motions begins with the general Boussi-
nesq equations (the equations for continuity and momentum, Eqs. (13.2.4)
and (13.2.8), respectively, are repeated here for convenience), with an equation
for temperature and an equation of state added to complete the mathematical
description of the system:

∂uj
∂xj

D 0 �13.3.37�

Figure 13.7 Example of free convection, produced by heating a vertical wall
(Twall > Ta = ambient temperature).
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∂ui
∂t

C uj
∂ui
∂xj

D � 1

�0

∂p

∂xi
� � � �0

�0
gi C 	r2ui �13.3.38�

∂T

∂t
C uj

∂T

∂xj
D kTr2T �13.3.39�

� D �0�1 � ˛T0� �13.3.40�

where gi is taken as a positive quantity (for downward acceleration of gravity),
heat sources are neglected for the present analysis, and ˛ is the thermal
expansion coefficient defined in Eq. (13.1.5). By introducing typical scaling
quantities U for velocity, L for length, p0 for pressure variation, T0 for
temperature variation, and �0 for density variation, a nondimensional version
of the momentum equation is obtained by normalizing all terms with respect
to the advective acceleration term,[

L

Ut

]
C [1] ³ �

[
p0

�0U2

]
C

[
˛T0gL

U2

]
C

[
	

UL

]
�13.3.41�

Nothing that (˛T0 D ��/�0), the second term on the right-hand side is
seen as a variation of the Richardson number defined in Eq. (13.3.29). This
term is designated as Ri and represents a ratio of the relative effects of stability,
expressed by the buoyancy difference, compared with destabilizing effects of
shear. In general, a system with larger Ri is more stable, consistent with
previous results (e.g., Eqs. 13.3.29 and 13.3.36). Also, if Ri − 1, it may be
concluded that buoyancy effects are negligible, compared with inertia, and
motions are not significantly affected by temperature (buoyancy) variations.
However, when the magnitude of Ri is large, but Ri < 0, buoyancy will supply
most or all of the energy for convective motions.

In addition to Ri, another parameter of interest is the Reynolds number,
Re, which is the inverse of the last term on the right-hand side of Eq. (13.3.41).
When Re is large, there is generally forced convection. The nondimensional
pressure term is called either a Cauchy number or an Euler number, but this
term is generally not of major interest in the analysis of convection. One
further dimensionless number arising from a nondimensional representation
of the temperature equation (13.3.39) is the Prandtl number, Pr D v/kT. This
gives the relative importance of momentum diffusion, compared with heat
diffusion. Including the nondimensional temporal term, a simple dimensional
analysis suggests solutions of the form

ui
U

D f1

(
xi
L
,
Ut

L
,Re, Pr, Ri

)
�13.3.42a�

and

T

T0
D f2

(
xi
L
,
Ut

L
,Re, Pr, Ri

)
�13.3.43b�
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whereT is a temperature variation, relative to a background level. For forced
convection problems, Ri is small and can be neglected.

For free convection problems, it is convenient to define a buoyancy
parameter that does not depend on an imposed external velocity scale, since
velocity is not a driving force and in fact is one of the parameters for which
a solution is sought. This buoyancy parameter is obtained by combining Ri,
Re, and Pr as a Rayleigh number,

Ra D Ri Re2 Pr D g˛TL3

vkT
�13.3.43�

This parameter encompasses a balance between the buoyancy forces tending to
drive the motion and the two diffusive processes that tend to dampen motion;
it may be thought of as the product of the ratios of advective to diffusive
transport rates for momentum and heat, and suggests a buoyancy velocity
scale,

ub D �g˛T0L�
1/2 �13.3.44�

Using this instead of U, and substituting Ra for Ri and Re, Eq. (13.3.42)
becomes

ui

ub
D f1

(
xi
L
,
ubt

L
,Ra, Pr

)
�13.3.45a�

and
T

T0
D f2

(
xi
L
,
ubt

L
,Ra, Pr

)
�13.3.45b�

These solutions take different forms for different types of problems, depending
on geometry, initial and boundary conditions.

Rayleigh–Benard Convection

One of the classical analyses for free convection is based on a perturbation
analysis, similar to that described in Sec. 13.1.2, due originally to Benard and
extended by Rayleigh. Consider a fluid layer with infinite horizontal dimen-
sions, thickness h, no motion, and a linear (unstable) temperature gradient, as
sketched in Fig. 13.8. As the magnitude of the temperature gradient increases,
convection will eventually begin as the layer becomes unstable. The convective
motions are initially in the form of semistable two-dimensional rolls, which
break down into fully turbulent convective motions as Ra is increased. The
governing equations are Eqs. (13.3.37)–(13.3.40), with additional perturbation
equations,

T D T0 � T

h
z C T0 �13.3.46�
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Figure 13.8 System definition sketch for analysis of free convection.

p D ps C p0 �13.3.47�
∂ps

∂z
D �g�0

(
1 C ˛T

h
z

)
�13.3.48�

where ps is hydrostatic pressure and primes indicate perturbation quantities
(i.e., small variations from the initial condition). The temperature
equation (13.3.39), upon substituting from Eq. (13.3.46), becomes

∂T0

∂t
C uj

∂T0

∂xj
� w

T

h
D kTr2T0 �13.3.49�

where w D u3 is the vertical velocity component. Note that the initial, mean
velocity field is one of no motion, so that all velocity components refer to
fluctuating terms (primes are omitted for simplicity of notation).

The equations are written in nondimensional form by introducing char-
acteristic scales: h for length, (h2/kT) for time, (vkT/˛gh3) for temperature,
and (k2

T�0p0/h2) for pressure. A time scale also is defined as the ratio between
the length and velocity scales. The resulting nondimensional equations are (for
simplicity, the same notation is used as before, but it should be kept in mind
that all variables in the following are dimensionless)

∂uj

∂xj
D 0 �13.3.50�

∂ui

∂t
C uj

∂ui

∂xj
D �∂p

0

∂xi
C PrT0�ki�C Prr2ui �13.3.51�

∂T0

∂t
C uj

∂T0

∂xj
D r2T0 C Raw �13.3.52�
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where ki D �0, 0, 1� is the vertical unit vector. Following similar procedures
as in past derivations (neglect non linear terms in the perturbation quantities,
eliminate pressures by cross-differentiating and subtracting the equations for
the different momentum components, introduce continuity), a simplified set of
equations may be derived as

1

Pr
r2

(
∂w

∂t

)
D r2

hT
0 C r4w �13.3.53�

∂T0

∂t
D r2T0 C Raw �13.3.54�

where r2
h is the horizontal Laplacian operator defined in Eq. (13.2.16).

Boundary conditions are now needed in order to solve this set of equations.
For free boundaries, w D T0 D 0 (i.e., vertical velocity kept at 0, temper-

ature maintained constant), while for rigid boundaries, w D ∂w/∂z D 0 (no
vertical velocity or momentum transport). Considering free boundary condi-
tions, we use separation of variables and assume solutions of the form

w D f1�t� cos�k1x C k2y� sin��z� �13.3.55a�

T0 D f2�t� cos�k1x C k2y� sin��z� �13.3.55b�

where k1 and k2 are horizontal wave number components, k1 D Acosϕ and
k2 D A sin ϕ, and A is the wave number of the disturbance. Note that these
solutions satisfy the above free boundary conditions, since sin 0 D sin� D 0
(i.e., free boundaries at z D 0 or 1). Substituting these expressions for w and
T0 into Eqs. (13.3.53) and (13.3.54) and combining to eliminate f2�t�, we
obtain

1

Pr
�A2 C �2�

d2f1

dt2
C

(
1 C 1

Pr

)
�A2 C �2�2

df1

dt

C [
�A2 C �2�3 � RaA2]f1 D 0 �13.3.56�

This last result is of the form of a forced, damped oscillator. The stability of
the system depends on the sign of the term in brackets (multiplying f1). If this
term is negative, the system is unstable, and this defines a critical value for
Ra, Rac, indicating the condition at which instability occurs. In general, Ra is
a function of A, and Rac can be calculated by first setting the bracketed term
equal to zero. Let Ra0 be the value for Ra when this condition is satisfied,
so that

�A2 C �2�3 � Ra0A
2 D 0 ) Ra0 D �A2 C �2�3

A2
�13.3.57�
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Figure 13.9 Unstable and stable values for Ra0; the curve denotes the marginal
stability condition.

Then, by differentiating Ra0 with respect to A and setting the result equal to
0, the critical value is

Ac D �p
2

¾D 2.22 ) Rac D 27�4

4
¾D 658 �13.3.57�

This result is illustrated in Fig. 13.9. When Ra < Rac, the system is stable,
and convection does not occur. When Ra > Rac, the system is unstable. The
condition when Ra D Rac is one of marginal or neutral stability, and wave
motions with wave number Ac are set up but do not grow. A similar analysis
for rigid boundary conditions gives Ac

¾D 3.12 and Rac D 1, 708. When one
boundary is free and the other rigid, Ac

¾D 2.68 and Rac
¾D 1, 101.

13.4 DOUBLE-DIFFUSIVE CONVECTION

A special case of convective motion occurs when a system is stratified in two
components, usually temperature and salinity for environmental applications,
and where one of the components is stably stratified and the other component
is unstable. Furthermore, the two components must have different diffusivities
(note that the diffusivity for temperature is about two orders of magnitude
greater than that for salinity). A common example is the upper layer of the
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ocean, which may be warmer due to solar radiation, and slightly saltier due
to evaporation. Thus temperature would provide a stable density stratifica-
tion, while the density due to the salinity distribution would be unstable. The
opposite case, where temperature is unstable and salinity is stable, may occur
in shallow saline lakes. This provides a sort of natural solar heat collection
system, which was investigated in the 1970s and 1980s for possible commer-
cial use through the use of so-called salt gradient solar ponds. These two
types of stratification are illustrated in Fig. 13.10. An essential feature of these
systems is that instability and convection may occur even when the overall
density gradient is stable.

The form of convection resulting from instability depends on which of
the components provides the destabilizing force. In Fig. 13.10a, both temper-
ature and salinity decrease with depth, so that temperature (higher diffusivity
component) provides the stabilizing contribution to the density gradient. In
this case, the instability takes the form of long, thin convection cells known
as salt fingers. Stommel et al. (1956) were the first to describe the possibility
of salt fingering in the oceans and this is now recognized as an important
transport process, with transport rates increased substantially over normal
diffusive fluxes. To understand how the fingers are generated, imagine that
a fluid particle is displaced downwards from its equilibrium position, where it
is in a new environment where both the temperature and the salinity are less.
Because of the relatively fast diffusivity of temperature, the particle adjusts
quickly to the new temperature, while maintaining its excess salinity, relative
to its surroundings. Thus it will experience a net gravitational force and will

Figure 13.10 Illustration of two types of stratification found in thermohaline
double-diffusive systems; in both cases the overall density is stable, although one
of the components is unstable.
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continue to move downwards. This leads to the development of a “salt foun-
tain,” with vertical motion and transport driven essentially by the different
diffusivities of the two components. A similar argument applies if the particle
is originally displaced upwards, in which case it will continue to rise.

The stratification shown in Fig. 13.10b is known as the diffusive or
oscillatory regime. In this case, instabilities are in the form of overstable oscil-
lations. One of the more interesting features observed in experiments is that
when a system with a stable salinity gradient is heated from below, a series of
well-mixed layers will form, separated by relatively thin interfaces. In other
words, unlike a homogeneous system, which would experience convection
over the full depth, the stable salinity gradient controls the region over which
the convective motions occur. The mechanism for this behavior is again related
to the different diffusivities for salt and heat. Basically, while both heat and salt
diffuse across an interface, heat diffuses so much more quickly that the diffu-
sive boundary layer becomes unstable and begins to convect. A well-mixed
layer then forms, with another interfacial diffusive boundary layer growing
ahead of it. With time, these layers have been observed to merge, when the
buoyancy difference across adjoining interfaces becomes small. Layer forma-
tion also has been observed in fingering systems, where relatively thin salt
finger interfaces separate well-mixed layers. In both cases the double-diffusive
convective motions provide a much more efficient transport mechanism than
molecular diffusion, and as noted before it should be emphasized that these
motions occur even though convection would not normally be expected, since
the overall density stratification is still stable.

Stability Analysis

The stability of a double-diffusive system can be evaluated using a perturba-
tion analysis that extends the linear stability analysis for Benard convection
presented in Sec. 13.3.1, by considering the salinity stratification. Consid-
ering stratification by salinity and temperature, the problem is known as the
thermohaline Rayleigh–Jeffreys problem. The analysis assumes a fluid layer
of depth h, bounded above and below by infinite horizontal planes, and with
temperature and salinity steps, T and S, respectively, across the layer, with
constant gradients. The assumptions of infinite horizontal dimensions implies
that horizontal gradients may be neglected. It is easily shown that there are
four main nondimensional parameters that describe the system. These are the
Rayleigh (Eq. 13.3.43) and Prandtl numbers, as well as a diffusivity ratio, �,
and a stability ratio, R�, defined as

� D kS

kT
�13.4.1�
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where kS is the diffusivity for dissolved salt, and

R� D ˇS

˛T
�13.4.2�

where ˛ and ˇ are the thermal and saline expansion coefficients defined in
Eqs. (13.1.5) and (13.1.6), respectively. In addition to Ra, we will define an
equivalent saline Rayleigh number, RaS D R�Ra. It will also be convenient to
introduce the Schmidt number, Sc D �/kS.

The governing equations for this problem are the same as for the Benard
convection problem, with the addition of a salinity balance equation,

∂S

∂t
C uj

∂S

∂xj
D kSr2S �13.4.3�

Also, the equation of state is modified to include salinity effects,

� D �0�1 � ˛T0 C ˇS0� �13.4.4�

An initial quiescent (ui D 0) steady state is assumed, with linear temperature
and salinity distributions, as noted previously. This system is then subjected to
infinitesimal perturbations ui0, T0, S0, p0 and �0 (see Eqs. 13.3.46–13.3.48). An
equation similar to Eq. (13.3.46) is written for salinity, which when introduced
into Eq. (13.4.3) results in

∂S0

∂t
C uj

∂S0

∂xj
� w

S

h
D kSr2S0 �13.4.5�

which is analogous to Eq. (13.3.49) for the temperature distribution. As in the
preceding section, primes are dropped from the velocity terms for simplicity
of notation, and it is understood that the mean velocities are zero.

The linearized equations for the fluctuations are developed from
Eqs. (13.3.37)–(13.3.39), along with Eqs. (13.3.49) and (13.4.5),

∂uj
∂xj

D 0 �13.4.6�

∂u

∂t
D � 1

�0

∂p0

∂x
C 	r2u �13.4.7�

∂v

∂t
D � 1

�0

∂p0

∂y
C 	r2v �13.4.8�

∂w

∂t
D � 1

�0

∂p0

∂z
� �0

�0
gC 	r2w �13.4.9�

∂T0

∂t
� w

T

h
D kTr2T0 �13.4.10�
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∂S0

∂t
� w

S

h
D kSr2S0 �13.4.11�

where (u, v, w) has been substituted for (u1, u2, u3). We now take the derivative
of Eq. (13.4.7) with respect to z and subtract the derivative of Eq. (13.4.9) with
respect to x. A second equation is obtained by subtracting the derivative of
Eq. (13.4.9) with respect to y from the derivative of Eq. (13.4.8) with respect
to z. Upon adding the derivative of the first equation with respect to x to the
derivative of the second equation with respect to y, we obtain

∂

∂t

(
∂2u

∂x ∂z
� ∂2w

∂x2
C ∂2v

∂y ∂z
� ∂2w

∂y2

)
D g

�0

(
∂2�0

∂x2
C ∂2�0

∂y2

)

C 	r2
(
∂2u

∂x ∂z
� ∂2w

∂x2
C ∂2v

∂y ∂z
� ∂2w

∂y2

)
�13.4.12�

Making a substitution as in Eq. (13.2.17) for the velocity gradients, this
becomes(

∂

∂t
� 	r2

)
r2w D �gr2

h��˛T0 C ˇS0� �13.4.13�

where Eq. (13.4.4) has been used to substitute for density.
Nondimensional equations are developed by introducing scaling quan-

tities into Eqs. (13.4.3), (13.4.10), and (13.4.11): h for length, h2/	 for time,
kT/h for velocity, T for temperature, and S for salinity. The resulting
non-dimensional equations are(

∂

∂t
� r2

)
r2w D Rar2

hT
0 � 1

�
RaSr2

hS
0 �13.4.14�(

Pr
∂

∂t
� r2

)
T0 D w �13.4.15�(

Sc
∂

∂t
� r2

)
S0 D w �13.4.16�

Using a similar approach as for the Benard convection problem, by
assuming wavelike solutions, it can be shown that for free, conducting bound-
aries, the equations representing marginal stability for the system are

Ra � 1

�S
RaS � 27

4
�4 �13.4.17�

and

Sc2Ra

�Pr + Sc��Sc C 1�
� 1

�

Pr2RaS

�Pr + Sc��Pr C 1�
� 27

4
�4 �13.4.18�
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This result is analogous to Eq. (13.3.58) for a temperature-stratified system. In
fact, when there is no salinity stratification, RaS D 0 and Eq. (13.4.21) reduces
to Eq. (13.3.58). As before, the factor (27�4/4) arises from consideration of
the fastest growing (most unstable) mode.

It is convenient to rewrite (13.4.18) in terms of an “effective” Rayleigh
number,

Rae D Ra � �Pr C ��

�Pr C 1�
RaS � 27

4
�4

[
�� C 1�

(
1 C �

Pr

)]
�13.4.19�

This parameter plays the same role in double-diffusive convection that Ra
does in thermal convection. Equations (13.4.17) and (13.4.19) are plotted in
Fig. 13.11, along with the line for static gravitational stability, where Ra D RaS

(i.e., density is constant). The shaded areas represent parameter ranges where
the system is gravitationally stable but subject to double-diffusive instabilities.

Figure 13.11 Thermohaline stability diagram; lines for marginal stability are plotted
along with line of neutral stratification (with Ra D RaS).
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13.5 MIXED-LAYER MODELING

13.5.1 Introduction

A problem of particular interest in water quality modeling is in the mixing of
a stratified water body due to the action of surface wind stress, and possibly
buoyant convection. Vertical mixing plays an important role in determining the
distribution of various water quality parameters, such as temperature, dissolved
oxygen, nutrients, and contaminants. Early attempts at modeling wind-induced
mixing involved specification of a depth-dependent diffusivity as a function
of surface shear stress. Several approaches are possible for estimating these
diffusivities, such as the wave orbital velocities model, where the wind-induced
surface wave field (see Chap. 8) is needed as input. Convective motions driven
by an unstable surface buoyancy flux also may generate mixing. None of these
approaches has proved to be totally satisfactory, due to large data requirements
for calibration, or to other assumptions needed for their application.

Starting several decades ago, the mixed layer approach has been devel-
oped as an alternative to the variable diffusivity approach. This approach is
based primarily on the observation that the near-surface water in lakes and
oceans tends to be well mixed and bounded below by a well-defined ther-
mocline (or halocline, in the case of salinity stratification), where the density
gradient becomes very steep, as illustrated in Fig. 13.12. Also shown in this

Figure 13.12 Typical density structure in lake or ocean under stratified conditions,
along with mixed layer representation.
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figure is the density structure assumed in the mixed layer approximation, with
a completely mixed upper layer bounded by a sharp density step at its base.
The main advantage of this approach is that it is not necessary to specify diffu-
sivities in the upper layer, since there are no gradients on which a diffusivity
might act. The problem is in specifying conditions at the upper and lower
boundaries of the layer and in determining the mixed layer depth, h. The
layer grows by the process of entrainment of water from below the interface.

13.5.2 Analysis

In the application of mixed layer models it is usually assumed that the hori-
zontal extent of the system is very large, and that horizontal gradients are
small and can be neglected. The analysis then centers on vertical processes.
The rate of change of temperature for the upper mixed layer can be calcu-
lated from an integrated form of the one-dimensional (vertical) temperature
equation, written here to include the solar heating term (Chap. 12),∫ h

0

{
∂T

∂t
C w

∂T

∂z

}
dz D

∫ h

0

{
∂

∂z

(
kT
∂T

∂z

)
C �s

so

�c
�1 � ˇs�e

��sz

}
dz

�13.5.1�

where c is the specific heat. In carrying out this integration, we assume w D 0
at the surface (z D 0) and w D we D dh/dt (this is known as the entrainment
velocity) at z D h. After integration, Eq. (13.5.1) becomes

h
dT

dt
C Twe C �wT�jh � �wT�j0 D

(
kT
∂T

∂z

)∣∣∣∣
h

�
(
kT
∂T

∂z

)∣∣∣∣
0

�
[
so

�c
�1 � ˇs�e

�sz
]∣∣∣∣
h

0
�13.5.2�

where the overbar indicates depth averaging. Note that the sum of the first
two terms on the left-hand side, when multiplied by (�c), is the time rate
of change of heat for the upper mixed layer. The last term on the left-hand
side is zero because of the boundary condition for w. The advective term
at z D h is equal to -weT00, where T00 is the temperature immediately below
the thermocline and the negative sign indicates that the relative movement of
water at this temperature is upwards (i.e., in the negative z-direction) into the
mixed layer as entrainment occurs. The first term on the right-hand side is
the diffusive flux of heat across the interface — this term is usually negligible
when entrainment is active. The second term is the heat flux at the surface
and is equal to the net heat flux as calculated in Sec. 12.3. The third term
gives the difference between solar radiation intensity at the surface and at
the thermocline, this difference being absorbed within the layer and serving
as a source heating term. Making substitutions and rearranging, Eq. (13.5.2)
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becomes

h
dT

dt
D

(
kT
∂T

∂z

)∣∣∣∣
h

C 1

�c
fn Cso[1 � �1 � ˇs�e

��sh]g � we�T� T00�

�13.5.3�

From this result we see that the upper layer temperature may grow
according to several different processes: (1) net positive surface heat flux,
(2) absorption of solar radiation, and (3) diffusion and entrainment of warmer
water from below, if there is a positive temperature step at the base of the layer.
However, the temperature step is usually negative, which leads to a lowering
of mixed layer temperature due to transport across the interface. The diffusive
term is kept for completeness, though it is usually negligible compared with
the entrainment flux. This term also is difficult to calculate directly because
the interface thickness is not known. Furthermore, the interface thickness is
assumed to be vanishingly thin in the mixed layer idealization, so interfacial
heat flux would normally be calculated using a bulk transfer coefficient similar
to the entrainment term. Diffusion may be thought of as a limiting condi-
tion for interfacial heat flux, with the main contribution normally due to the
entrainment term. Our main interest here is with this last term in Eq. (13.5.3).

A simple entrainment model is obtained by considering the change in
potential energy of the upper layer associated with a change in layer depth,
dh, that occurs for a given amount of turbulent kinetic energy (TKE) supplied
(Fig. 13.13). Possible sources of mixing energy include wind and an unstable

Figure 13.13 Change in mixed layer structure due to entrainment (mixed layer
deepens by amount dh);  is density gradient below interface, assumed constant.
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surface buoyancy flux, leading to penetrative convection. The input energy
flux due to wind is given in Sec. 12.2 as

dKE

dt
D Aud�s D CA�0u

3
Ł �wind� �13.5.4�

where A is surface area, C is a coefficient incorporating a number of propor-
tionality constants, and �0 is the surface layer density. For buoyant-induced
mixing (penetrative convection), the surface heat flux gives rise to a buoyancy
flux equal to

BF D ˛gn

�c
�13.5.5�

When n is negative, corresponding to surface cooling, particles of fluid
near the surface become accelerated downward due to loss of buoyancy. If it is
assumed that the vertical acceleration, az, is approximately constant and equal
to g0 D g��/�0�, where� is the density difference between the fluid particle
and �o, and fluid particles are assumed to start from rest, then the velocity at
distance h is approximated by wŁ ³ azt0, where t0 is the time required to reach
depth h, and is estimated by t0 ³ h/wŁ. Making the appropriate substitutions,
it is then easy to see that the velocity scale for penetrative convection can be
estimated as

wŁ ¾D ��BFh�
1/3 �13.5.6�

Note that wŁ is relevant only when BF is negative. Alternatively, ��Bfh��D
wŁ3� is the kinematic rate at which kinetic energy is added to the upper layer,
and some portion of this energy will be available for mixing. A velocity scale
for turbulent mixing in the upper layer can then be defined as a combination
of the velocity scales relevant for each of these sources. Based on the energy
supply rates, a possible scale is


 D �w3
Ł C C3

vu
3
Ł�

1/3 �13.5.7�

where Cv is a proportionality coefficient.
The total rate at which kinetic energy is added to the upper layer is then

dKE

dt
D A�0


3 �13.5.8�

When an amount of fluid of thickness dh is entrained from below the interface
and mixed into the upper layer, the resulting change in potential energy of the
upper layer is

dPE D 1

2
gA��h dh C hh2� �13.5.9�
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where the density below the interface is given by � D �0 C� C �z � h�
and  is the density gradient in the fluid below the interface (Fig. 13.12).
Since dh is assumed to be small, the quadratic term in dh is neglected, and
the rate at which potential energy changes is approximately

dPE

dt
¾D 1

2
gA�h

dh

dt
D 1

2
gA�hwe �13.5.10�

The ratio of change in potential energy to input kinetic energy is known as
a flux Richardson number and is obtained from the ratio of Eqs. (13.5.10)
and (13.5.8),

Rf D dPE

dKE
D 1

2
gwe

�

�0

h


3
�13.5.11�

This is simplified by introducing the bulk Richardson number, similar to
Eq. (13.3.29),

Ri
 D g
�

�0

h


2
D g0 h


2
�13.5.12�

so that

Rf D 1

2

we



Ri
 �13.5.13�

The flux Richardson number is an indication of the efficiency of mixing;
a value less than one indicates that some input kinetic energy must be used;
either it increases the overall kinetic energy of the upper layer or it is dissi-
pated. As long as the entrainment function, we/
, can be evaluated, this
efficiency can be calculated. On the other hand, a simple assumption (common
in early mixed layer approaches) is that Rf is a constant. This leads to a simple
entrainment law,

E D we



/ Ri�1


 �13.5.14�

where E is the nondimensional entrainment rate. If the mixing is perfectly
efficient, where all of the input kinetic energy is converted to potential energy
by entrainment, Rf D 1 and E D 2Ri


�1. Several early mixed layer models
used this relation to calculate mixing of the upper layer. However, there are
other sinks for the input energy, which must be taken into account in order
to evaluate E more accurately. This can be done through an evaluation or
parameterization of the TKE budget for the upper layer.

In addition to entrainment, kinetic energy that is added to the layer may
increase the kinetic energy level in the layer, it may be dissipated within the
layer, and it may generate internal waves. These waves may propagate along
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the interface and eventually break or, in the case of a stratified lower layer,
the waves may radiate away from the interface, thus representing a leakage
of energy from the layer. Each of these processes causes Rf to be less than
one. Assuming that viscous transport is negligible, and also neglecting all
horizontal gradients, the TKE budget is (see Chap. 5)

∂K

∂t
D � g

�0
w0�0 � ∂

∂z

(
w0p0

�0
C w0K

)
� u0w0 ∂U

∂z
� ε �13.5.15�

where K D 1/2ui02 is the TKE per unit mass, overbars denote mean (time-
averaged) quantities, and U is the time-averaged velocity in the upper layer.
The left-hand side of this equation is the time rate of change of TKE, the first
term on the right-hand side is gravity work due to entrainment, the second
term is the flux divergence, the third term is the mechanical production of
TKE by the working of the Reynolds stresses on the mean shear, and the
last term is the viscous dissipation rate of TKE per unit mass. The relative
magnitudes for each of these terms must be determined in order to relate we

to the parameters describing the turbulence.
Since the upper layer is considered to be mixed, it is more convenient

to work with an averaged form of Eq. (13.5.15), by integrating over the upper
layer depth, h. By doing this, vertical gradients disappear, except as they
describe transport at the upper and lower boundaries of the layer. For example,
the flux divergence term provides the main source of energy due to surface
wind stress or penetrative convection. It also incorporates the net effects of
shear production at the lower boundary (representing a source for K in the
layer) and loss of energy due to internal wave production (i.e., energy is used
to generate waves). Zeman and Tennekes (1977) and Sherman et al. (1977)
developed parameterizations for the averaged TKE budget, in order to eval-
uate the entrainment rate. This parameterization process is similar to treating
the equation through dimensional analysis, in order to estimate the relative
importance of each term.

First, the time-dependent term is parameterized as

∂K

∂t
³ Ct


2we

h
�13.5.16�

where the double overbar indicates a layer-averaged quantity and Ct is a
proportionality coefficient. This equation results from the observation that the
mean TKE should be proportional to 
2 and that the time scale of interest
is approximately (h/we). The buoyancy term is written as the buoyancy flux
across the interface,

� g

�0
w0�0 ³ weg�˛T� �13.5.17�
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The integrated flux divergence term represents the main source of TKE (at the
boundaries) and is proportional to 
3/h. The mean viscous dissipation also
is proportional to this quantity (see Chap. 5). As noted previously, another
form of energy loss is that due to internal waves that might radiate energy
away from the interface, when  6D 0. This flux will depend on the amplitude
and period of the generated waves, which in turn depends on the stratification
(Brunt–Vaisala frequency N — see Eq. 13.1.15). The amplitude a can be esti-
mated by equating the kinetic energy of an eddy impinging on the interface
with the potential energy associated with the maximum displacement of the
interface. Referring to Fig. 13.12, when  is small, a may be approximated
as a / �0
2/g�. However, if � is small, then a / 
/N. The energy in the
waves is proportional to �aN�2, and this energy propagates at a rate N, so
that the “leakage” rate of energy is proportional to a2N3. Following Sherman
et al. (1977) in defining a using an interpolating function between the two
limits noted above, the total energy loss rate due to internal wave radiation is

ε0 ³ Cd

2N

(
�0
N

�0
NC g�

)2

�13.5.18�

The net result of the flux divergence source and viscous dissipation and internal
wave losses is written as

� ∂

∂z

(
w0p0

�0
C w0K

)
� ε ³ Cf


3

h
� ε0 �13.5.19�

where Cf is a constant. The shear production term is written in a form similar
to the temporal term, but with U instead of 
,

� u0w0 ∂U
∂z

³ CsU
2we

h
�13.5.20�

where Cs is another constant.
Substituting the parameterized terms into the averaged TKE budget

(13.5.15) and rearranging, an expression for we is obtained,

we



D

Cf � ε0 h

3

Ct C Ri
 � Cs

(
U




)2 �13.5.21�

Coefficient values are determined from idealized experiments, and ranges of
values found are reported in Table 13.1. Equation (13.5.21) can then be used
in a mixed layer formulation to model the growth of the upper layer.

It is interesting to note that a simplified version of Eq. (13.5.21) is
the inverse Richardson number relation discussed previously (Eq. 13.5.14).

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 13.14 Nondimensional entrainment rate as a function of Richardson number
(log scales); the straight lines indicate curves with constant slope, corresponding to
the exponent used in an inverse Richardson number relationship.

Table 13.1 Coefficient Values
for Entrainment Relation

Coefficient Range

Cv 1.0–2.2
Cf 0.2–1.0
Cd 0–0.04
Ct 0–3.6
Cs 0–1.0

Source: Adapted from Sherman et al.,
1978; Zeman and Tennekes, 1977.

Most entrainment relations, in fact, have been expressed in terms of an
inverse Richardson number dependency, with the exponent varying between
roughly �1/2 and �3/2, as illustrated in Fig. 13.14. Christodoulou (1987)
explained the different ranges (and corresponding exponents) in terms of the
relative importance of different mixing mechanisms, and Atkinson (1987)
suggested that in the limit of very high Ri
 , entrainment should eventually
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cease and interfacial fluxes would be controlled by diffusion. Figure 13.14
shows qualitatively the variation of E with Ri
 , as observed in a number of
experiments reported in the literature.

PROBLEMS

Unsolved Problems

Problem 13.1 Calculate the buoyancy of a fluid particle with zero salinity,
at a temperature of 15°C, relative to a reference density of �0 D 1000 kg/m3.

Problem 13.2 What is the relative error in calculating the density of fresh-
water at 20°C, using a constant value of ˛ D 2 ð 10�4 °C�1, compared with
density calculated according to Eq. (13.1.8)?

Problem 13.3 If the sonic velocity in water is 1500 m/s, what is the
maximum adverse density gradient (i.e., with density increasing upwards)
possible so that the water column will not be unstable?

Problem 13.4 How would you include viscous effects directly in the anal-
ysis of gravitational stability? Develop the form of the equation similar to
Eq. (13.1.4). It is not necessary to solve the equation.

Problem 13.5 Consider a water column with uniform density.
(a) Find a general solution for the vertical component w, assuming wave-

like disturbances as in Eq. (13.2.21) [(in other words, solve for W(z)]). Assume
deep water and that the waves propagate in the x-direction only.

(b) Using the approximate boundary condition Eq. (13.2.31), show that
the dispersion relationship for this problem is 
2 D gkh.

Problem 13.6 Assuming a relatively thin density interface in a deep ocean
that is otherwise well mixed, calculate and plot the relationship between
frequency and wave number for an interfacial thickness of 2 m. Use �/�0 D
0.005 and assume the interface is centered at a location 10 m below the surface.
What is the maximum value for kh you would use so that the interface would
still be considered “thin”? What is the wavelength that corresponds to this
maximum value for kh?

Problem 13.7 Plot the variation of phase speed for a small-scale internal
wave as a function of kh, in an environment where N D 0.1 s�1. Choose
several values of kh/k between 0 and 1 for your plot.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Problem 13.8 Below Eq. (13.2.59) it is stated that “the linearized solution
is an exact solution to the governing equations.” What are the governing
equations for which Eq. (13.2.57) is a solution? What boundary conditions
are applicable? Where, in fact, was the linearization assumption made in the
derivation?

Problem 13.9 Derive Eq. (13.3.28). Physically, what mechanisms are repre-
sented by the interfacial Richardson number defined in Eq. (13.3.29)? What
is the effect of a density difference across the interface on the development
of instabilities?

Problem 13.10 Estimate the magnitude of the temperature gradient associ-
ated with the critical Richardson number defined in Eq. (13.3.57). Compare
this result with the gravitational stability criterion developed in Sec. 13.1 (also
see problem 13.3). Comment on differences or similarities in the results.

Problem 13.11 Recall that the turbulent kinetic energy (TKE) budget may
be written as

∂K

∂t
D �g

�
w0�0 � ∂

∂z
�w0KC w0p0/��� u0w0 ∂u

∂z
� ε

where K D TKE per unit mass. For application to the upper layer in a wind-
mixed layer model, a possible parameterization of these terms can be written as

[temporal change] ³ CTwe

2

l
[shear production] ³ Cs


2 u

l

[flux divergence - dissipation] ³ CF

3

l
[buoyancy] ³ CBueg

�

�0

where we is the entrainment velocity, 
 and l are turbulent velocity and length
scales, respectively, and CT,CS,CT, and CB are coefficients. Substitute these
parameterizations (watch signs) to develop a nondimensional entrainment law
for (we/
). Compare this with the “simple” model derived in Eq. (13.5.13),

we

uŁ
D 2

Rf

Ri

�you may assume 
 D uŁ�

In other words, under what conditions do these models have the same general
form with respect to Ri
?
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14
Dynamics of Effluents

14.1 JETS AND PLUMES

There are many problems in both natural and engineered systems that involve
flows with large sources of momentum and/or bouyancy. A common example
is the outflow of a river or estuary into a large lake or coastal region. The
river flow may have significant velocity and thus momentum, and also may
be buoyant relative to the receiving water. Estuary flow normally is buoyant
due to lower salt content, compared with the ocean or sea into which it flows.
Similarly, rivers flowing into lakes or reservoirs may be warmer (positively
buoyant) or colder (negatively buoyant) than the lake water. In addition to
such surface discharges and dense undercurrents, interflows are also possible;
when the receiving water body is stratified the inflow will “find” its density
equilibrium level. These three possibilities are illustrated in Fig. 14.1. Similar
examples for engineered systems include heated discharge from a power plant
(condenser water discharge), which may be mixed with the receiving water
or discharged at the surface, and sewage treatment plant effluent discharged
into the ocean or other large receiving water body, consisting of a buoyant
(less saline) fluid which is commonly discharged through submerged multiport
diffusers, as illustrated in Fig. 14.2.

All of the above examples involve situations in which both momentum
and buoyancy may be important in describing the dynamics of the flow.
Whether momentum or buoyancy is more important in driving the flow deter-
mines whether it is called a jet or a plume, respectively. Traditionally, a jet
has its primary source of kinetic energy and momentum flux due to a pres-
sure drop through an orifice, while a plume derives its main driving force
from buoyancy. In natural systems the relative importance of momentum is
often characterized by the value of the source Froude number or in terms of
certain length scales, as discussed further below. In particular, when there are
density differences between the discharge and the receiving water, a densi-
metric Froude number, Frd, is defined, using reduced gravity g0 in place of g,
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Figure 14.1 Illustration of three flow situations, depending on the density of inflow,
relative to the density structure of the receiving water body: surface discharge occurs
when the inflow has a density less than or equal to the surface density; underflow
occurs when the inflow density is greater than or equal to the bottom density; and
interflow occurs when the inflow density is at an intermediate value.

Figure 14.2 Multiport diffuser used to discharge wastewater into the ocean; there is
usually intense local mixing near the nozzles of the diffuser, after which the mixed
fluid rises as a buoyant plume.
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i.e.,

Frd D U

�g0h�1/2
�14.1.1�

This parameter is similar to the inverse square of the bulk Richardson number,
introduced in Chap. 13. Flows where both momentum and buoyancy are
important are called buoyant jets or forced plumes, and “large” Frd indicates
more jetlike behavior, while “low” values indicate more plumelike behavior.

14.1.1 Jets

Before discussing natural discharges, it is helpful first to define basic param-
eters using the example of a pure (nonbuoyant) axisymmetric jet, as shown
in Fig. 14.3. The jet discharges with flow rate Q0, initial velocity U0, and
diameter D0 into otherwise quiescent fluid. As the flow moves forward along
the x-direction it expands due to turbulent entrainment of the receiving water,
with b�x� denoting the radius of the jet at downstream locations. The rate of
entrainment decreases as the jet momentum becomes more dilute, but the flow
rate increases even as the forward mean velocity diminishes. Normal (Gaus-
sian) distributions about the jet centerline are usually assumed to describe the
variation of jet properties such as mean velocity, turbulence intensity, shear
stress, or concentration. This suggests the idea of self-similarity for the jet
profiles, i.e., when properly scaled, all profiles have the same basic shape,
independent of position along the centerline. In fact, observations indicate

Figure 14.3 Neutral axisymmetric jet discharge; the x axis corresponds with the jet
centerline.
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this is true only after some distance downstream, when the jet has reached a
condition of turbulent stress equilibrium. This state is reached for x greater
than about 40 jet diameters downstream (i.e., x > 40D0). For x less than about
6D0, there is large-scale vortex generation and entrainment as these vortices
engulf the surrounding fluid. As the jet progresses further out, these vortices
interact with each other and break down into smaller turbulent eddies.

The near-field region of the jet is defined as the region within about
(6–10)D0 of the discharge point. An intermediate region then develops,
followed by the far-field, self-similar region. In this far-field region, with
turbulent stress equilibrium, experiments have shown that the average relative
turbulence intensity in the streamwise direction (x) reaches a constant value,√

u02

Um

¾D 0.28–0.29 �14.1.2�

where Um is the maximum (centerline) velocity. The average relative turbu-
lence intensities in the y- and z-directions, also normalized by Um, are slightly
less, approximately 0.23–0.25. The distributions of these intensities follow a
Gaussian profile, as does mean (time-averaged) axial velocity. For example,
the mean axial velocity can be written as

U D Um exp

[
�

(
r

bu

)2
]

�14.1.3�

where r is radial position and bu is the radial distance from the centerline
at which the mean velocity is 37% of the local centerline velocity. In other
words, e�1 D 0.37 when r D bu.

By integrating the time-averaged axial momentum equation over the
cross section of the jet, the specific momentum flux is defined as

M D
∫ b�x�

0

(
U2 C u02 C p� p1

�0

)
2�r dr �14.1.4�

where p is pressure and p1 is the ambient pressure at some large distance
from the jet. This quantity determines to a large extent the basic properties of
the jet and its development in the receiving fluid. The integral in Eq. (14.1.4)
has been estimated using

M ¾D �

2
b2

uU
2
m�1 C υu � υp� �14.1.5�

where υu is the contribution to M due to turbulence and υp is the contribution
due to pressure. Typical values found for these parameters are υu

¾D 0.15 and
υp

¾D 0.10. Thus most of the contribution to M comes from the mean flow U,
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and M is often approximated simply by

M ¾D QU �14.1.6�

Also, if shear stresses are neglected (i.e., frictionless flow), then M remains
constant with x and

M D M0 D Q0U0 D A0U
2
0 �14.1.7�

where A0 is the discharge cross-sectional area. Thus, although the velocity
decays, M remains constant because of a corresponding increase in flow rate
due to entrainment.

Furthermore, from experimental observations it has been found that bu

may be expressed as a linear function of x, so that bu D c1x C c2, where c1

and c2 are constants. Then, by combining Eqs. (14.1.5) and (14.1.7), we find

Um

U0
D 1

c1

2

�

1

1 C υu � υp

p
A0

x C c1/c2
D K

p
A0

x C c1/c2
�14.1.8�

where K ¾D 7.46 if υu and υp are ignored. This gives a convenient means
of calculating the decay of the jet centerline velocity as it spreads into the
receiving fluid.

Measurements of a tracer in the jet also are found to be described by
similarity profiles,

C D Cm exp

[
�

(
r

b�

)2
]

�14.1.9�

where C is the concentration of any tracer, the overbar indicates a time-
averaged value, and Cm is the maximum (centerline) value. The similarity
of this profile to the velocity profile (Eq. 14.1.3) is obvious from inspec-
tion. Following a similar procedure as with momentum, the total flux of the
tracer in the x-direction can be calculated by integrating the time-averaged
advection–diffusion equation (Chap. 10) over the cross-sectional area. Again
assuming that the contributions to the transport due to turbulence are relatively
small compared with the mean flow, and neglecting any sources or sinks of
the tracer, an expression analogous to Eq. (14.1.6) results,

CF D QC �14.1.10�

where CF is the specific flux of the tracer. A special case of interest is the
specific buoyancy flux, B, which for a jet may be defined as

B D Qb �14.1.11�

where b�D g0� is the buoyancy or reduced gravity defined previously. As will
be shown below, B is defined differently for a plume, in which the motions
are driven by buoyancy rather than momentum.
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With entrainment, the flow rate of the jet increases with distance down-
stream. This enters directly into any conservation equation applied to the jet.
For example, considering the jet control volume of Fig. 14.4, a simple state-
ment of mass balance says the sum of the rate of transport of mass into the
control volume across the left-hand face plus the rate of mass transport across
the radial boundary by entrainment must equal the rate of mass transport
across the right-hand face (assuming no accumulation within the volume).
Mathematically, this is written as∫ b�x�

0
U2�r drCve2�

(
bC 1

2

∂b

∂x
dx

)
dxD

∫ b�xCdx�

0
U2�r dr �14.1.12�

where ve is the entrainment velocity, assumed to be equal to the negative of the
velocity V at position r D b. This definition means that ve is positive inwards
to the jet. Using a Taylor series expansion, the two transport rates in the axial
direction can be related by∫ b�xCdx�

0
U2�r drD

∫ b�x�

0
U2�r dr C ∂

∂x

[∫ b�x�

0
U2�r dr

]
dx �14.1.13�

Figure 14.4 Control volume used to define the entrainment function.
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Then, substituting Eq. (14.1.13) into Eq. (14.1.12) and rearranging, we
have

ve2�
(
bC 1

2

∂b

∂x
dx

)
¾D ve2�b D ∂

∂x

[∫ b�x�

0
U2�r dr

]
�14.1.14�

This is known as the entrainment function.
For simplicity of notation, let � represent the integral in Eq. (14.1.14).

Following Taylor, the entrainment is assumed to be proportional to the center-
line velocity, and bu is used to define b, so that Eq. (14.1.14) can be rewritten
as

∂�

∂x
���! d�

dx
D 2�˛ebuUm �14.1.15�

where ˛e is the entrainment coefficient. By comparing Eqs. (14.1.14) and
(14.1.15) it is seen that the entrainment velocity is estimated as ve D ˛eUm.
Alternatively, the entrainment can be specified as a function of M, since M is
thought to be the primary controlling parameter for all jet properties. In this
case, using the definition in Eq. (14.1.5) and neglecting υu and υp,

d�

dx
D 2�˛e

(
2M

�

)1/2

D ˛e

p
8�M �14.1.16�

Since M is constant, the entrainment also is constant. Integrating Eq. (14.1.16)
from zero to some arbitrary x, we find

� D ˛e

p
8�Mx �14.1.17�

From experiments, the entrainment coefficient has been found to be ˛e
¾D 0.05,

so that Eq. (14.1.17) can be written as

� D 0.25
p
M x �14.1.18�

A local length scale can be defined for the jet as

� D �

m1/2
�14.1.19�

where m is the local momentum flux, which is equal to M under the no stress
assumption. Considering Eq. (14.1.17), this scale is directly proportional to x,
which is consistent with the observation that, if viscous forces are negligible,
x is the only overall length scale available for the problem. This was implicitly
assumed earlier when defining bu as a function of x (before Eq. 14.1.8). The
ratio of �/x is a measure of the spreading angle of the jet, which for m D M
is evaluated by substituting Eq. (14.1.17) into Eq. (14.1.19):

�

x
D �

xM1/2
D ˛e

p
8�Mx

xM1/2
D ˛e

p
8� �14.1.20�
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This shows that all (round) jets should spread at a constant angle, as long as
˛e is constant.

A local velocity scale also can be defined:

v D m

�
�14.1.21�

where again, m D M for the zero shear stress assumption. Based on this defi-
nition and the length scale �, a local jet Reynolds number is

Re D �v

	
D m1/2

	
�14.1.22�

where 	 is kinematic viscosity. Since m�D M� is a constant, Re also is constant.
Again, recall that this result applies to a round, neutrally buoyant jet, as illus-
trated in Fig. 14.3.

14.1.2 Plumes

As previously noted, plumes derive their motion mainly from body forces.
Normally, we consider thermal plumes, where buoyancy is due primarily to
heat flux. However, saline plumes also are possible. Plumes may be either
positively or negatively buoyant, indicating their tendency to rise or sink,
respectively, in the receiving fluid. A positively buoyant plume is illustrated
in Fig. 14.5. Instead of momentum flux, plumes are described using the value

Figure 14.5 Development of a buoyant plume.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



of the specific buoyancy flux, which is defined (for a thermal plume) as

B D ˛gH

�cp
�14.1.23�

where ˛ is the thermal expansion coefficient (not to be confused with the
entrainment coefficient ˛e), H is the heat supply rate, and cp is specific heat
at constant pressure. For plumes, B takes the place of M in determining the
general behavior of the flow. The corresponding definition of buoyancy flux
for a saline plume is

B D ˇgFS

�
�14.1.24�

where ˇ is the saline expansion coefficient and FS is the salinity supply rate.
Alternatively, if the flux comes from a discharge of magnitude Q, the buoyancy
flux is defined by

B D g
�a � �0

�0
Q D g0Q �14.1.25�

which is the same as Eq. (14.1.11). Here, �a is the ambient (receiving fluid)
density and �0 is the density of the plume discharge. Equilibrium turbulence
intensities tend to be somewhat larger in plumes than in jets, due to buoyancy
production terms (refer to Chap. 5).

From dimensional considerations, the local momentum flux is related to
the buoyancy flux by

M D kmB
2/3x4/3 �14.1.26�

where km is a constant. This result is different from that in jets, since M
increases with x, whereas in jets M was assumed to remain approximately
constant. As with the jet, the entrainment function is proportional to M1/2

(refer to Eq. 14.1.16):

d�

dx
D keM

1/2 �14.1.27�

where ke is a constant with measured values in the range 0.25–0.34. This is
similar to the constant value in Eqs. (14.1.16) and (14.1.17), where the constant
multiplying M1/2 is about 0.25. Also, with M proportional to (b2U2

m) and b
proportional to x (same assumptions as for jets), combined with Eq. (14.1.26),
the maximum centerline velocity is then

Um /
(
B

x

)1/3

�14.1.28�
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14.1.3 Turbulent Buoyant Jets

As defined previously, turbulent buoyant jets are discharges that have char-
acteristics intermediate between the limits of a pure jet and a pure plume.
In addition to the densimetric Froude number Frd, various length scales are
used to describe the characteristics of these flows. This can be seen through
a simple dimensional analysis, as follows. In general, combining the possible
effects of momentum (jetlike behavior) and buoyancy (plumelike behavior)
and considering the results already presented, properties of the discharge such
as centerline velocity may be assumed to be functions of x, M, and B, i.e.,

Um D f�x,M, B� �14.1.29�

Using standard dimensional analysis (Chap. 1), two dimensionless groupings
of variables should result from these parameters, and these are written as

Umx

M1/2
D f

(
xB1/2

M3/4

)
�14.1.30�

A buoyancy length scale is thus defined by

L D M3/4

B1/2
�round or three-dimensional discharge� �14.1.31�

or

L D M

B2/3
�slot or two-dimensional discharge� �14.1.32�

where M is defined by Eq. (14.1.6) and B by Eq. (14.1.25) in the case of
a three-dimensional discharge. For two-dimensional or slot-type discharges,
the two-dimensional flow rate q is substituted for Q. The two-dimensional
approach is helpful for analysis of many open channel flow situations and also
is useful in the analysis of discharges from multiport diffusers used to distribute
wastewater in the environment (see Sec. 14.2). As usual, q is simply the total
flow rate divided by the width of the slot, q D Q/W, where W D width.

The usefulness of L is in determining the region over which the flow
exhibits more jetlike properties, relative to plumelike behavior. Large values
of L characterize jetlike flows, while more plumelike flows have smaller L.
A pure plume has L D 0. The relative magnitude of x and L thus determines
the type of behavior for the discharge, which is easily seen by substituting
Eq. (14.1.31) into Eq. (14.1.30):

Um D
[
f
( x
L

)] M1/2

x
�14.1.33�
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For largeM, L is also large and (x/L) approaches zero. In this case, Eq. (14.1.8)
implies Um should be approximately proportional to (1/x), which, along with
the observation of approximately constant M for jets (large L), requires that
the function in brackets in Eq. (14.1.33) must approach a constant value for
small (x/L). For small M (large x/L), the flow behaves like a plume, and Um

is given by Eq. (14.1.27). This requires that the function in Eq. (14.1.33) must
be related to �x/L�2/3. To summarize,

f
( x
L

)
���!




const
x

L
! 0( x

L

)2/3 x

L
! 1

�14.1.34�

Again, it should be kept in mind that the small (x/L) result is consistent with
jet behavior and the large (x/L) result applies to plumes. For intermediate
values of (x/L) the flow is affected by both momentum and buoyancy.

When there is significant discharge strength, a discharge length scale
also may be defined,

LQ D Q

M1/2
D

√
A0 �14.1.35�

For a two-dimensional discharge, the corresponding discharge length is

Lq D q2

M
D D �14.1.37�

where D is the flow thickness. The ratio of LQ (or Lq) to L gives the relative
effect of discharge buoyancy and momentum fluxes in the flow. In other words,
dividing Eq. (14.1.35) by Eq. (14.1.31) gives

LQ
L

D QB1/2

M5/4
D

(�
4

)1/4
{
g0b
U2

}1/2

�14.1.38�

where the quantity in brackets on the right-hand side is known as the jet
Richardson number and represents the ratio of buoyancy force to momentum
force. In calculating the ratio in Eq. (14.1.38), the initial discharge values are
usually used, though calculations based on local values also may be performed.

14.2 SUBMERGED DISCHARGES AND MULTIPORT
DIFFUSER DESIGN

Submerged discharges are often used for disposal of treated sewage and also
for dispersal of waste heat generated by power plants. The wastewater is
typically buoyant with respect to the fluid into which it is discharged, because
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it is either warmer or less saline (or both), and one of the main engineering
considerations is to achieve a rapid dilution and dispersion of the discharge.
As a general rule, the desired dilution for wastewater discharges is on the
order of 100 (i.e., the concentrations in the discharge are reduced at least
100-fold). Further reductions in concentrations are expected as a result of
natural biological decay. Discharges with rapid dilution are most commonly
designed using multiport diffusers, which provide an initial dispersion of the
injected wastewater. In the following, we discuss the design for outfalls in an
ocean environment, which is the most common situation, and this will serve
to exemplify the general characteristics of such discharges.

Figure 14.6 shows the general behavior of sewage discharged through a
diffuser on the ocean floor. The discharge is usually directed horizontally or at
a small angle through round ports along both sides of the diffuser. If possible,
the discharge is oriented into the ambient flow, causing additional mixing and
dilution. There is a wide variety of designs used, in terms of port diameter
and spacing, with port diameters typically between several inches and about
a foot (or, between about 10 and 30 cm) and spacings from several feet up to
several tens of feet (approximately 1 to 10 m). The ports may be simple holes
cut into the distribution pipe or they may be nozzles at the tips of risers that
direct the flow from the pipe.

Figure 14.6 Discharge through a diffuser into an ocean environment: (a) uniform
ambient density; (b) linearly stratified ambient.
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Diffusers are generally located in relatively deep water, to maximize
the dilution as the plume spreads upwards. Depending on local conditions,
particularly ambient flow direction and strength, diffusers may be located
several kilometers offshore, in water that is usually at least 50 m deep. The
individual jets usually merge rapidly, so that the diffuser may be considered
as a line source (see Chap. 10). There is a near field region in which strong
mixing takes place, due to the turbulence of the jets themselves and also due to
their relative buoyancy. The fluid initially rises, though its relative buoyancy
decreases because of entrainment and mixing. In a stratified ambient receiving
water, such as is illustrated in Fig. 14.6b, it is possible that a level will be
reached at which the density of the rising plume matches the ambient density.
In that case, the discharge ceases to rise and spreads laterally at the neutral
buoyancy level. Otherwise, the plume rises to the surface and then spreads
laterally, as in Fig. 14.6a. In either situation, the far field is defined when the
plume stops rising and starts to spread laterally. In this region the waste field is
transported by ambient currents and mixed by background oceanic turbulence.
(Note that ambient currents and turbulence also work on the discharge in the
near field, but the dynamics of the flow are much more strongly controlled by
the mixing and buoyancy of the discharge in that region.)

Because of different flow dynamics, different modeling approaches are
used in the near and far fields. In the near field the important properties to
model are the rise height, the initial dilution, the thickness and width of the
plume, and the distribution of concentration in the plume. These values are all
needed in order to couple the near field to a far field model, which depends
primarily on the ambient flow field and the remaining relative buoyancy of
the spreading plume. Properties of the diffuser that most closely control the
near field characteristics are the jet discharge velocity from each port, the
port diameter and spacing, and the buoyancy difference between the discharge
and the ambient sea water. In addition, it is necessary to know the conditions
in the receiving water, including flow direction and amplitude, and ambient
density stratification. Modeling the near field flow is generally difficult due to
the complex interactions of these various features. The far field models are
somewhat simpler to conceptualize, since they do not include the complicated
initial interactions between the discharge and the ambient currents.

The design of the diffuser is accomplished in an iterative fashion, and
often physical models are used to evaluate different designs. The diffuser
must be located so that the desired level of initial dilution is achieved, and to
avoid the transport of wastewater back to shore areas. There should also be an
approximately uniform distribution of discharge among the diffuser ports, and
all velocities should be sufficiently high that deposition of solids is prevented.

To illustrate the calculation of near field dilution, consider a plane plume
in a uniform receiving water, as in Fig. 14.6a. A small control volume is drawn

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 14.7 Control volume for calculation of dilution in vertically rising
two-dimensional plume (Be is the entrainment buoyancy flux).

in Fig. 14.7, showing the transport of water and buoyancy into and out of the
control volume. Since we are considering a plane plume, it is sufficient to
look at the two-dimensional, side view. For a steady state, there is zero net
transport of mass across the surfaces of the control volume, or

q C qe �
(
q C dq

dz
dz

)
D 0 �14.2.1�

where qe is the entrainment flow rate. From the previous discussion, qe depends
on the entrainment velocity, which is proportional to the maximum or center-
line velocity of the plume. Also, from Eq. (14.1.28), the maximum velocity
is proportional to �B�1/3 [the x in the denominator of Eq. (14.1.28) does not
appear for a two-dimensional plume, where B is defined using q instead of
Q]. Therefore

dq

dz
¾D B1/3 �14.2.2�

In general, B should be the local value of buoyancy flux. However, it is much
simpler for design purposes to express a final relation in terms of quantities
that are better known, so the initial value is used for B. Then, integrating
Eq. (14.2.2) over z to evaluate q, and using the definition for dilution, S, as
being the local volume flux divided by the initial discharge, we have

S ¾D c
B1/3z

q0
�14.2.2�
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where q0 is the initial discharge and the constant c has been found from
experiments to have a value of approximately 0.38.

For stratified environments, the calculations are somewhat more compli-
cated, because the buoyancy of the plume changes due to both entrainment
and the changing ambient density as the plume rises. In particular, as noted
previously, it is possible that the plume reaches a point at which there is no
further acceleration due to buoyancy. This maximum rise height, zm, may be
calculated in the case of a linearly stratified receiving water from

zm D 3.6B1/3
(

� g

�0

d�a

dz

)�1/2

�14.2.3�

where �0 is the initial density of the discharge and d�a/dz is the ambient
density gradient, which is negative for a stable stratification. If zm is calculated
to be greater than the water depth, then the plume reaches the surface. The
corresponding (minimum) dilution at height zm is

S D 0.24
B1/3zm
q0

�14.2.4�

A typical value for the discharge q0 is 0.01m2/s. The total discharge then
depends on the length of the distribution pipe. In order to maintain a relatively
uniform distribution of flow for each of the ports, either the port diameters
or the pipe size is changed along the length, while port spacing is usually
kept constant. Generally, the design starts by assuming a discharge for the
most downstream port (equal to the discharges for all the ports). A diameter
is also chosen, and the pressure in the pipe required to maintain the desired
discharge is calculated. A diameter for the first section of pipe upstream of the
last port is then chosen, and the change in head is calculated in that section,
using a standard Bernoulli-type equation. The pressure at the next port is then
known, and the port diameter can be calculated to give the desired discharge.
This process then continues until the last (first) port is accounted for and the
required pressure at the end of the supply pipe is known. This procedure is
generally done in an iterative fashion, until a satisfactory set of pipe and/or
port diameters is found.

14.3 SURFACE BUOYANT DISCHARGES

There are a number of different aspects of jet discharges that are of interest for
environmental applications. In this section we describe one of the more impor-
tant types of discharges, that of a buoyant flow that might occur, for example,
when a river or estuary discharges to a coastal environment or large lake. For
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many natural flows the discharge velocity is relatively small, and buoyancy
effects are prominent, especially for discharges in ocean environments, where
salinity differences generate large buoyancy. There are cases, however, where
the flow is more strongly driven by momentum flux. An example of this latter
case is the Niagara River flow into Lake Ontario (Fig. 14.8), where tempera-
ture differences generate buoyancy. Because Lake Erie, which drains into the
Niagara River, is relatively shallow, it tends to heat up much more quickly
than the water in Lake Ontario, so that the Niagara River is bouyant for about
six months of the year. It also carries a very large flow rate, suggesting that
momentum flux is also important. When analyzing flows of this type, it is of
interest to be able to describe the spreading behavior of the discharge and the
extent of its attachment to the bottom, before buoyancy causes it to lift off
and spread over the receiving fluid.

14.3.1 Arrested Wedge Analysis

A particular problem of interest is the description of the density stratifica-
tion or interface position between the discharge and the receiving water. The

Figure 14.8 Satellite view of Niagara River discharge in Lake Ontario; gray shades
indicate different temperatures. The flow typically turns to the right, in response to
Coriolis effects and prevailing westerly winds. (Photo courtesy of A. Masse.)
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Figure 14.9 Arrested density wedge definition sketch.

analysis considers two-dimensional, steady buoyant flow into a more dense
environment (�2 > �1), as sketched in Fig. 14.9. At a point sufficiently far
upstream, the flow is in contact with the bottom of the channel, which has
depth h0 at that point. The flow velocity is U0 and the initial value of the
densimetric Froude number Frd is assumed to be less than one, where Frd is
defined as in Eq. (14.1.1). Reduced gravity is defined by g0 D g��2 � �1�/�2,
and �i is defined as interfacial shear stress. The assumption of Frd < 1 is
discussed further later in this section.

Downstream of this point, the receiving water has sufficient density
that it intrudes upstream, as a “wedge,” as shown in Fig. 14.9. Neglecting
tidal effects, this wedge is “arrested” at an equilibrium position determined
by a balance between hydrostatic pressure differences due to the inequality
of densities (�1 6D �2) and interfacial shear stress. For this initial analysis,
entrainment across the interface is neglected, and therefore there is no flow in
the lower (wedge) layer.

Figure 14.10 shows a control section of the wedge, where Ss D
surface slope, Si D interface slope, and Sb D bottom slope. With h1 and h2

denoting the upper and lower layer thicknesses, respectively, geometrical
considerations show that

dh1

dx
D Si � Ss �14.3.1�

and

dh2

dx
D Sb � Si �14.3.2�

where x D 0 at the position of the farthest upstream extent of the wedge.
For the upper layer, which is labeled as layer 1, note that the (two-

dimensional) flow rate, q1 D U1h1, where U1 is the mean velocity in the upper
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Figure 14.10 Control section of wedge for momentum analysis.

layer, is constant, since there is no entrainment across the interface. Consistent
with the two-dimensional approach, forces per unit width are considered in
writing a momentum balance applied for the upper layer, in the direction
parallel to the bottom. This results in

�1g
h2

1

2
� �1g

2

(
h1 C dh

dx
dx

)2

�
[
�1g

(
h1 C dh

dx
dx

)
C �2g

2
�Sb � Si� dx

]
�Sb � Si� dx

C �1gh1Sbdx � �i dx D �1q

[(
U1 C dU1

dx
dx

)
�U1

]
�14.3.3�

The first two terms on the left-hand side account for pressure forces, the third
term is the body force component, and the last term on the left-hand side is the
interfacial friction. The right-hand side is the change in momentum between
positions x and (x C dx). Although interfacial shear acts in the direction given
by Si, rather than Sb, this adjustment to direction is considered negligible,
since cos[tan�1�Si�] ¾D cos[tan�1�Sb�] ¾D 1.
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After carrying out the multiplication of the terms in Eq. (14.3.3), if we
neglect second- and higher order terms in dx and divide by dx, the result is

��1gh1

[
dh1

dx
C �Sb � Si�

]
C �1gh1Sb � �i D �1h1U1

dU1

dx

H) Ss � �i

�1gh1
D U1

g

dU1

dx
�14.3.4�

where Eq. (14.3.1) has been used to substitute for (dh1/dx). Also, by adding
Eqs. (14.3.1) and (14.3.2), we find

dh1

dx
C dh2

dx
D Sb � Ss �14.3.5�

which when substituted into Eq. (14.3.4) gives

U1

g

dU1

dx
C �i

�1gh1
C d

dx
�h1 C h2�� Sb D 0 �14.3.6�

This is the equation of motion for the upper layer.
The analysis for the lower layer is similar but simplified because of the

no-flow assumption. A momentum balance, again in the direction parallel to
the bottom, gives(

�1gh1 C 1

2
�2gh2

)
C �1gh1�Sb � Si� dx

�
{
�1g

(
h1 C dh1

dx
dx

)
C �2g

2

(
h2 C dh2

dx
dx

)}(
h2 C dh2

dx
dx

)
C �i dx C �2gh2Sb dx D 0 �14.3.7�

where each of the terms has a similar interpretation as for the upper layer
equation (14.3.3). Following a similar procedure as before, this equation can
be rewritten as

�1g

[
�h1

dh2

dx
C h1�Sb � Si�� h2

dh1

dx

]
C �2g

(
�h2

dh2

dx

)
C �i

C �2gh2Sb D 0 H) ��1

�2

dh1

dx
� dh2

dx
C �i

�2gh2
C Sb D 0 (14.3.8)

This is further simplified by using

�1

�2
D 1 � �2 � �1

�2
D 1 � �

�2
�14.3.9�
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so that Eq. (14.3.8) becomes(
1 � �

�2

)
dh1

dx
C dh2

dx
� �i

�2gh2
� Sb D 0 �14.3.10�

Equations (14.3.6) and (14.3.10) are the basic momentum balances for
the upper and lower layers, respectively. They were originally derived by
Schijf and Schonfeld in 1953, and there have been a number of modifications
and improvements since, notably the introduction of entrainment across the
interface. This leads to a nonconstant flow rate in the upper layer and flow
in the lower layer, so that bottom friction must be addressed. For the present
text, however, the simplified analysis will be continued for one last step,
which is to derive the equation describing the interfacial position. This is
done by first subtracting the lower layer equation (14.3.10) from the upper
layer equation (14.3.6). This gives

U1

g

dU1

dx
C �i

g

(
1

�1h1
C 1

�2h2

)
C �

�2

dh1

dx
D 0 �14.3.11�

Then, using the definition of g0, with Fr1 D Frd, based on upper layer proper-
ties, and noting that U1�dU1/dx� D 1/2d�U2

1�/dx, Eq. (14.3.11) is rearranged
to obtain

dh1

dx
D � 1

2g0
dU2

1

dx
� �i

g0

(
1

�1h1
C 1

�2h2

)
�14.3.12�

The derivative on the right-hand side is rewritten using the concept of
constant q,

dU2
1

dx
D q2 d

dx

(
1

h2
1

)
D �2

q2

h3
1

dh1

dx
D �2

U2
1

h1

dh1

dx
�14.3.13�

The interfacial shear is also written in terms of an interfacial friction factor,
fi, as

�i D fi

8
�1U

2
1 �14.3.14�

Upon substituting these last two expressions into Eq. (14.3.12) and rear-
ranging, we obtain

dh1

dx
D �

fi

8
Fr2

1

(
1 C �1h1

�2h2

)
1 � Fr2

1

�14.3.15�

which can be used to calculate the interface position.
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In general, Eq. (14.3.15) must be integrated numerically to obtain the
interfacial profile, using a known boundary condition, usually stated as a
known value for h1 at some x. There are two possible boundary conditions,
either h1 D h0 at the upstream edge of the wedge, or h1 is specified at the
discharge location and Eq. (14.3.15) is integrated in the upstream direction.
The problem with the former approach is that it is not well defined, since
the upstream extent of the wedge is not known a priori. At the downstream
location, however, a critical condition exists where Fr1 is close to one (note
that this is a singularity point in the solution). This condition provides an
effective hydraulic control on the flow and is a natural starting point for
the integration. In other words, using an assumed flow rate, q, the initial
value for h1 is chosen as the critical depth. Numerically, a Fr1 of slightly
less than one must be used in Eq. (14.3.15) to calculate the initial value
of (dh1/dx). Then, choosing a dx (or x), a value for dh1 (h1) is calcu-
lated. Since the integration is in the upstream direction, x < 0 and h1 > 0.
After the new value for h1 is found, a corresponding value for U1 is calcu-
lated based on q, resulting in a new value for Fr1, which is used again in
Eq. (14.3.15) to find the next h1. This process is continued until h1 is
the same as h0, keeping in mind any changes in total depth, depending on
channel slope.

An example of this kind of calculation is shown in Fig. 14.11, in which
h2 is plotted as a function of distance upstream from the mouth of the
discharge. For these calculations, the total channel depth is taken as 20 m,
fi is 0.02, the salinity difference is 1% by weight, and h1 at the mouth of
the discharge is 5 m. The initial value for Fr1 is taken as 0.95, resulting in
a velocity at that point of 0.6 m/s. According to this calculation, the wedge
would extend about 6.5 km upstream. Different wedges would, of course,
result from different assumed conditions.

The predicted wedge has singularities at both ends. At the mouth, Fr1
¾D

1 as noted above, and at the upstream end h2 approaches 0, which again is
undefined in the calculation. However, the “nose” shape at the upstream end
is characteristic of this type of flow, and the procedure outlined above allows
calculations to proceed to a point sufficiently close to h2 D 0 for reasonable
estimates of the wedge length to be made. It also should be noted that the
general shape of the profile appears to be reasonable, at least as long as Fr1 < 1
(recall that this assumption was made at the beginning of this analysis). If
Fr1 < 1, then dh1/dx < 0 according to Eq. (14.3.15). Or, since the positive x-
direction has been switched in the integration procedure, dh1/dx > 0, which
corresponds with dh2/dx < 0 as shown in Fig. 14.11. As h1 increases, U1

must decrease to maintain constant q, resulting in a decreasing value of Fr1

with increasing distance upstream. In other words, a subcritical flow (Fr1 < 1)
is needed in order for the wedge to appear.
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Figure 14.11 Example calculation of interface height for arrested density wedge.

As the flow progresses downstream, starting from the upstream end of
the wedge intrusion, Fr1 increases until it reaches the critical value of one at
the mouth. Once past the mouth, the flow is free to spread laterally, and the
two-dimensional approach is no longer valid. For supercritical flows, Fr1 > 1,
and Eq. (14.3.15) suggests that h1 should increase with increasing distance
downstream. This is just the opposite of the above results. When Fr1 > 1, there
should thus be no upstream intrusion of a wedge, and the flow will remain
attached to the bottom at least as far as the mouth. Experiments have shown
that the critical value of Fr1, at which there is no intrusion, is somewhat higher
than 1, between 1.5 and 2.5. Differences between experimentally observed
values and the theoretical value are probably due to friction and other nonideal
effects.

14.3.2 Flow on the Slope

When Fr1 > 1, the flow remains attached to the bottom for some distance
offshore from the mouth, as shown in Fig. 14.12. As the depth increases, the
discharge flow expands to fill the space available, as long as there is sufficient
energy and momentum. At high Fr1, the jet has relatively high momentum, but
as depth increases, the flow velocity decreases and Fr1 decreases. Entrainment
occurs from the sides but is prevented at the bottom in this region. Eventually,
Fr1 drops below 1, and the flow cannot remain attached to the bottom as the
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depth increases further. The point at which the flow ceases to remain in contact
with the bottom is called the detachment point. A number of experiments
have been performed to evaluate the position of this point, which is generally
expressed as a function of the Froude number, either locally (at the detachment
point) or at the mouth. In general, flows with higher discharge Froude numbers
remain attached to the bottom for greater distances off-shore.

The detachment point location is of interest for a number of reasons.
First, it locates approximately the transition point from more jetlike flow to
more plumelike spreading. Direct interaction between the flow and the sedi-
ments also is limited to the attached region. A vertically mixed approach is
possible for describing the flow in this area, but a stratified model should be
used after the detachment point. In the following discussion, a near field region
is defined for the flow before it detaches and a far field region applies when
the flow is spreading mostly by buoyancy. An intermediate field is defined by
the transition region between these two extremes (see Fig. 14.12). An approxi-
mate expression for the position of the detachment point is obtained by simple
scaling analysis, as follows.

Consider the steady-state longitudinal momentum equation,

u
∂u

∂x
� f	 D � 1

�

∂p

∂x
C Eh

(
∂2u

∂x2
C ∂2u

∂y2

)
C Ez

∂2u

∂z2
�14.3.16�

where f is the Coriolis parameter, Eh is horizontal eddy viscosity (x and
y-directions) and Ez is the vertical viscosity. We need to assign typical magni-
tudes for the various terms in order to estimate their relative importance. In

Figure 14.12 Buoyant discharge on a slope, with Fr1 > 1.
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the near field there is little velocity in the y-direction, so the Coriolis term is
neglected. In addition, the flow is assumed to be well mixed vertically in this
region. Thus pressure variations are approximately hydrostatic. The velocity
is represented by the mean, vertically averaged velocity U. The gradients are
evaluated over a distance Ln D near field length or distance over which the
flow remains attached. Thus gradients in the x-direction are represented by
(1/Ln). Horizontal diffusion (viscosity) is neglected in the near field, relative
to advection. This is equivalent to saying that the Peclet number for the flow
is large, where Peclet number is defined as Pe D LU/E. this assumption also
applies for the condition of a quiescent receiving water body. Ambient cross
flows, for example, would introduce significant horizontal shear. Finally, the
vertical viscosity term is interpreted as the vertical gradient of shear stress
(i.e., � D �Ez dU/dz), so the last term on the right-hand side of Eq. (14.3.16)
is approximated as

Ez
∂2u

∂z2
¾D ∂

∂z

(
�

�

)
¾D �0

�H
�14.3.17�

where �0 is bottom shear stress and H is depth. It is further assumed that
�0 can be written in terms of a bottom drag coefficient, �0 D CD�U2. Under
these assumptions the momentum equation becomes

U2

Ln

¾D 1

�

��g0H�
Ln

C CDU2

H
�14.3.18�

where the difference in densities between the discharge and receiving waters
has been taken into account in evaluating the horizontal pressure gradient.
Solving for Ln,

Ln D H

CD

(
1 � 1

Fr2
d

)
�14.3.19�

This is consistent with our earlier result, that Frd must be greater than one
in order for there to be any bottom attachment at all (Frd < 1 would result
in Ln < 0, which is clearly not physically reasonable). Also, larger Frd gives
larger Ln, i.e., the flow remains attached longer with higher Frd.

In the intermediate region the bottom friction term drops out as the flow
detaches. If lateral velocities are still not too strong, the Coriolis term can still
be neglected. The parameterized momentum equation is then the same as in
Eq. (14.3.18), but without the drag term. This is easily rearranged to show
that Frd

¾D 1, which relates the speed of propagation of the buoyant layer to
the relative buoyancy and depth of the layer. From this result it is expected
that the local value for Frd should be approximately 1 near the detachment
point.
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For the far field analysis, there is no bottom friction, density differ-
ences are still important, so the pressure term must be considered, momentum
is relatively small, so the nonlinear advective terms can be neglected, and
the Coriolis term must now be included. Under these conditions the flow
field is approximately geostrophic (Chap. 9), and a parameterized momentum
equation is

fU ¾D g0H
Lf

�14.3.20�

where Lf is the far field horizontal length scale. Using the general definition of
Rossby number, Ro D U/Lf, this last result may be rewritten as Fr2

d
¾D Ro or

Lf
¾D ri

Frd
�14.3.21�

where ri D �g0H�1/2/f is the internal Rossby radius of deformation, which is
normally interpreted as a lateral distance over which Coriolis and gravity forces
(due to deformation of a horizontal surface such as the air water interface) are
in balance. Thus the far field length scale is directly related to ri. It also should
be noted that, for constant U and H, increasing buoyancy increases ri and
decreases Frd, resulting in larger Lf. As with most scaling analyses, however,
the above results should be interpreted as giving first-order estimates only, or
guidance for the interpretation of direct observations, or as first steps towards
more detailed analyses.

PROBLEMS

Unsolved Problems

Problem 14.1 Assuming a uniform density ocean, what is the minimum
depth required to achieve a dilution of 100 for a waste discharge of 0.02m2/s,
with �/� D 0.02?

Problem 14.2 Use a spreadsheet to calculate the interface position of an
arrested salinity wedge in an estuary where the mean salinity difference
between the freshwater flow and the receiving water is 1% by weight,
the interfacial friction factor is 0.015, the total channel depth is 10 m, the
freshwater discharge rate (two-dimensional) is 20 m2/s, and the flow in the
bottom layer can be neglected.

Problem 14.3 Under the conditions of problem 14.2, what would be the
minimum channel depth required to produce a discharge that would not have
an arrested wedge at all?
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Problem 14.4 A flow of depth 2.5 m and flow rate 50 m2/s discharges into
an environment where the density is 10 kg/m3 greater. The bottom slope is
0.005 on the shelf. If CD is taken as 0.001, estimate the distance along the
shelf at which the detachment point should be found.
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15
Sediment Transport

15.1 INTRODUCTION

There are a number of problems of hydraulic and environmental interest related
to sediment transport. Erosion of solids from hillslopes in overland flow, bed
load and suspended load in rivers, and siltation of reservoirs and harbors all
are problems that involve movement of solid materials and for which there is
considerable engineering interest. It also should be noted that, strictly speaking,
any analysis of natural flows, open channel flow for example, should include
considerations of sediment transport. For the analyses for open channel flow
discussed in Chap. 7 it was implicitly assumed that the channel bed was fixed.
In real flows this is not necessarily the case, since sediment material may move
along the bed, having an impact on boundary conditions used to derive flow
parameters such as shear stress and velocity distribution.

Solids loading to a river or reservoir, with related effects on turbidity,
is a water quality parameter of interest in its own right. In addition, many
pollutants of interest, particularly those with hydrophobic character, tend to
sorb onto the surfaces of particles. This is particularly important for smaller
particles, which have a higher ratio of surface area to volume, and for particles
with higher organic carbon content, such as might be produced as a result of
biological processes.

Although intensively studied for many years, the investigation of sedi-
ment transport is still far from complete. Unlike pure water flow, which by
itself has a multitude of variables to consider, sediment transport introduces a
number of additional features, including settling and resuspension character-
istics, drag and lift considerations, and possible interparticle cohesive forces,
particularly for smaller particles. Examples of problems in which sediment
transport plays a significant role include reservoir and harbor sedimentation,
navigation and dredging, channel stability, control of alluvial rivers, and delta
formation. These processes all have significant economic impacts, even before
pollutants are considered. In-place pollutants (i.e., pollutants buried in bottom
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sediments of rivers and lakes) also pose a serious and continuing potential
threat to water quality in many areas.

Solids transported by water can vary significantly in size, from dissolved
material such as salt (essentially molecular-size particles), to small pebbles
and gravel. In extreme cases much larger material may be moved by a flow,
but those cases will not be considered here. Dissolved solids also will not
be considered further here, since they are already discussed in Chap. 10. In
addition, transport of colloidal material, which is defined as suspended solids
that do not settle and have typical sizes less than one micron, will not be
considered in the present discussion since it is assumed that transport of such
material can be treated similarly to dissolved solids. The main concern here
is with solid particles having a characteristic size ranging from approximately
several microns (clays) to several millimeters (large sand). Table 15.1 provides
a listing of normal particle sizes of interest for natural flows.

These particles may be transported as part of the suspended load, where
turbulence in the water maintains particle positions well above the bottom, or
as part of the bed load, where particles roll or slide along the bed. In between
these two processes is the saltation load, where particles “bounce” along the
bed, sometimes appearing as part of the suspended load and sometimes as part
of the bed load. Figure 15.1 illustrates these different modes of transport.

Often it is difficult to distinguish completely between the different modes
of transport, and a complete sediment transport equation should include all in
the same function. However, attempts to do this have so far been mostly
unsuccessful. Usually, separate equations are applied for each mode of trans-
port. This is often more convenient for many problems, where only one of the
modes is of particular interest. For instance, bed load is of interest mainly for
relatively fast moving streams and rivers, while suspended load is the main
concern in slow moving rivers and in lakes and reservoirs (however, note
that bed load into a reservoir is a problem of considerable interest). Also, for
contaminant transport, suspended load is usually of greater interest, because of
the larger relative surface area of smaller particles. Often, the type of transport
mode is related to particle size, with larger particles moving closer to the bed,
and smaller sizes more likely to be part of the suspended load.

Table 15.1 Particle Sizes in Sediment
Transport

Particle type Approximate size range

Clays, algae 1–10 µm
Silts 10–100 µm
Sand 100–1,000 µm
Gravel, pebbles >1,000 µm
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Figure 15.1 Different modes of sediment transport.

15.2 HYDRAULIC PROPERTIES OF SEDIMENTS

As noted above, sediments can be either cohesive or noncohesive. Much of the
classic literature on sediment transport has been concerned with noncohesive
material, usually sand and other granular material, since these are the materials
of interest for most beds and banks of natural streams. In addition, these mate-
rials constitute the bulk of the mass in the bed load, which is usually the main
component of the total solid mass transport. Cohesive sediments generally
consist of smaller particles (clays and silts) and are more likely to be found in
the suspended load. The analysis of cohesive sedimentation is complicated by
interparticle bonding forces causing smaller particles to stick together and form
larger aggregates, with relatively small bulk density. A problem of particular
concern in sediment transport calculations is that of determining the bottom
shear stress necessary to cause erosion of the bottom and resuspension of
deposited materials. This is generally a site-specific problem, particularly for
cohesive sediments, since the cohesive forces are usually not well known. A
full analysis requires on-site experimentation to determine values for critical
shear stress and other parameters controlling sediment transport.

Perhaps the most basic hydraulic property of sediment is particle size.
For noncohesive sediments the size can be measured in several ways:

Equivalent diameter : the diameter of a sphere having the same volume
as the particle
Sieve diameter: the minimum seive size opening that passes the
particle
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Sedimentation diameter: the diameter of a solid sphere having the
same density and fall velocity
Surface diameter: the diameter of a sphere having the same surface
area.

Of these different measures, seive diameter is the simplest one to measure
experimentally, though the equivalent diameter is often used in developing
conceptual models of particle and chemical interactions (see below).

Another hydraulic property of interest is the shape of the particle. There
are several ways of characterizing this value. Traditionally, the particle shape
has been defined in terms either of sphericity, which is the ratio of surface
area of a sphere of equal volume to that of the particle, or of roundness, which
is the ratio of the average radius of curvature of the edges of the particle to
the radius of the largest circle that can be inscribed within the particle cross
section.

In recent years the particle fractal dimension also has been used to
describe particle geometry, especially for aggregates. The fractal dimension,
Df, is defined by

8 D CLDf �15.2.1�

where 8 is the particle (or aggregate) volume, C is a constant with dimensions
of L3�D3 , and L is a characteristic length, either an equivalent diameter as
defined above, or, more often, the maximum length of a particle (Fig. 15.2).
For planar objects, a similar relationship can be defined in terms of area, rather
than volume. In contrast to Euclidean geometry, which has integer values for
Df (i.e., one-, two- or three-dimensional shapes), in fractal geometry Df can
take noninteger values. For planar shapes Df is generally between 1 and 2,
while for three-dimensional shapes it is usually between 2 and 3. A lower value
indicates a longer or more spread-out object, and a higher number corresponds
with more compact and denser shapes. This can be seen from the images
shown in Fig. 15.2. A larger value for L, for a given volume (or area, as
pictured here), corresponds with a smaller value needed for Df in order that
Eq. (15.2.1) be valid. Conversely, smaller L requires larger Df.

It is thought that fractal dimension plays a role in particle interactions and
chemical sorption characteristics. For example, for a given mixing condition,
particles with smaller Df are more likely to come into contact with other
particles than they would if they had the same mass (or volume) but with
larger Df. Particles, or aggregates, with smaller Df also tend to be less dense,
meaning that they have greater surface area for chemical sorption and other
reactions. This is illustrated in Fig. 15.3a, which is a fractal image generated
by a process known as diffusion limited aggregation (DLA). Experiments with
images such as these have shown that they can be described with a fractal
dimension (i.e., they are true fractal shapes). These objects clearly are rather
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Figure 15.2 Examples of two particles having the same volume (or area, in two
dimensions), but different L and thus different Df. The particle on the left has larger
Df than the one on the right.

diffuse and have large relative surface areas, compared with a more compact,
spherical object. It is also evident, looking at Fig. 15.3b, which is an image of
a real aggregate, that images produced with the DLA model are a reasonable
representation of true particles.

The specific gravity or average density of a particle also is impor-
tant in determining its hydraulic characteristics. Specific gravity is defined
as the ratio of the solid weight of a particle to the weight of an equal
volume of water under standard conditions. Quartz or silicon-based parti-
cles such as sands have a specific gravity of around 2.65, but aggregates
of smaller materials typically have much lower specific gravities, sometimes
approaching 1.0.

One of the most important hydraulic properties of particles is the fall
velocity or settling velocity, ws. This is defined as the terminal velocity at
which a single particle would move in an unbounded fluid (usually water) that
is otherwise still. In terms of equivalent diameter, d, equilibrium between the
particle submerged weight (i.e., taking buoyancy into account) and fluid drag
forces can be written as

��s � ��
�

6
d3 D �

8
CD�d

2w2
s �15.2.2�

where � is the specific weight of the water, �s is specific weight of the solid
particle, � is the water density, and CD is a dimensionless drag coefficient.
In general, CD depends on the Reynolds number, Re D dws/	, where 	 is
the kinematic viscosity of the fluid, and particle shape. The Reynolds number
determines whether the relative motion of the fluid past the particle is laminar
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(a)

(b)

Figure 15.3 (a) Fractal image produced using diffusion limited aggregation model
(using the Fractint program), as a representation of real aggregates. (b) Image of real
aggregates of smaller clay particles. (Courtesy of R. Chakraborti.)
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or turbulent, and a critical value for distinguishing between these two regimes
has been found to be approximately 0.1.

Solving for ws from Eq. (15.2.2), we obtain

ws D
[

4

3

d

�CD
��s � ��

]1/2

D
[

4

3

d

CD
g�S� 1�

]1/2

�15.2.3�

where S is the specific gravity of the particle. For small Re (laminar flow),
the Stokes formula is often used. This is obtained using the formula for drag
coefficient for a sphere in laminar flow, CD D 24/Re (Eq. 3.3.5), which when
substituted into Eq. (15.2.3) gives

ws D gd2

18	
�S� 1� �15.2.4�

For turbulent flow, the drag coefficient must be determined as a function of
Re and particle shape. From experimental evidence, the value for CD has been
found to range from about 0.5 for spheres up to about 3.0 for relatively flat or
elongated particles (with small fractal dimension). Sand particles are usually
considered to be spherical, but in general direct observations are needed to
determine values for CD. It should also be pointed out that the fall velocity
decreases when the particle concentration is very high, due to interparticle
effects, such as direct collisions or wake interference. This effect is typically
important only for very high concentrations, greater than around 5–10% by
dry weight.

15.3 BED LOAD CALCULATIONS

15.3.1 duBoys’ Analysis

As previously noted, bed load calculations are primarily concerned with larger,
noncohesive sediments. The analysis of sediment in the bed was first described
by duBoys in the late 1800s. In this approach, the bed is visualized as a series
of layers sliding over each other and with a velocity distribution decreasing
linearly with depth. There are n layers and each layer has the same thickness,
z. If the velocity at the top of the bed layer is V, and the velocity in the
first, bottommost layer is 0, then the velocity gradient is V/�n� 1�z and the
average velocity of movement in the bed is V/2�n� 1�. This also implies a
velocity difference across each layer,

	 D V

n� 1
�15.3.1�
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As described in Chap. 7, for uniform open channel flow, a balance between
gravitational forces and bottom shear stress leads to

�0 D � RhS0
¾D � HS0 �15.3.2�

where �0 is bottom or bed shear stress, Rh is hydraulic radius, S0 is bottom
slope, and H is depth. The approximation that H ¾D Rh applies for wide, open
channel flow. This last expression also may be written in terms of the shear
velocity,

uŁ D
(
�0

�

)1/2

D �gHS0�
1/2 �15.3.3�

The distribution of shear stress in the bed is such that the assumed linear
velocity gradient results. Considering the moving bed (of n layers), overall
equilibrium requires that the shear force at the surface, due to �0, must be
balanced by frictional resistance at the bottom, or, per unit area,

�0 D Cf��s � ��nz �15.3.4�

where Cf is a friction coefficient and the remainder of the right-hand side is
the submerged weight of sediment per unit area. The critical shear stress, �c,
is the value at which bed motion just begins. It is defined by setting n D 1 in
Eq. (15.3.4),

�c D Cf��s � ��z �15.3.5�

Values for �c have been determined from experimental observations to range
from about 0.01 lb/ft2 (5 dyn/cm2) for fine sand, with mean diameter around
0.1 mm, to about 0.1 lb/ft2 (50dyn/cm2) or higher for coarse sand or gravel,
with mean diameter around 5 mm. Comparing Eqs. (15.3.4) and (15.3.5),
we find

n D �0

�c
�15.3.6�

so that the total depth of the moving bed is a function of applied shear stress
and can be calculated once z is prescribed. When Eq. (15.3.6) results in a
noninteger ratio, the closest integer should be taken for n.

The transport of sediment mass, per unit width, passing a given point is
a function of the mean velocity of the bed, Vs D V/2. It can be expressed as

js D �sVs�nz� D �s�nz�V

2
D �s�nz�	

2
�n� 1� �15.3.7�

By substituting from Eq. (15.3.6), this also can be written as

js D �sz	

2

(
�0

�c

)(
�0 � �c

�c

)
�15.3.8�
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As long as the bed shear stress exceeds the critical value, this is an increasing
function of �0. This equation is normally applicable to bed load calcula-
tions in relatively wide and shallow alluvial rivers, where side effects may
be neglected. Under these conditions, the Manning formula can be used to
estimate the depth for a given discharge, so that �0 can be calculated. Total
bed load is then the product of js and channel width, B,

Js D Bjs �15.3.9�

When the cross section is such that the two-dimensional assumption
is no longer valid, the following approach can be used. We first define the
minimum depth required to initiate bed motion, Hc D �c/�S0 (see Eq. 15.3.2).
Then, bed load is assumed to occur only for that part of the channel with water
depth greater than or equal to this value (Fig. 15.4). This range of the channel
is then divided into smaller increments, each of width dx, and the above result
(Eq. 15.3.8) is applied within each of these sections. The total bed load is
then the sum of the load calculated for each of these subsections, multiplied
by dx, i.e.,

Js D dx
∑
i

jsi D dx
∑
i

[
�sz	i

2

(
�0i

�c

)(
�0i � �c

�c

)]
�15.3.10�

where jsi is the load, per unit width, in subsection i, and subscript i for
the other variables refers to values defined for that particular subsection (see
Fig. 15.4). Note that Eq. (15.3.10) assumes there is a single value for the
critical shear stress, though varying values (for each subsection) could just as
easily be defined.

Figure 15.4 Cross section of stream, showing region of bed movement (where H
exceeds Hc).
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15.3.2 Other Bed Load Formulas

Many other formulas have been developed to calculate bed load, most based
on a more detailed analysis of velocity distributions (including turbulent
velocity fluctuations) and drag forces exerted on individual particles on the
bed. Sheilds’ formula, for instance, follows this approach and can be written as

js D
[

10�2V

d��s � ��

]
HS0

(
HS0 � �c

�

)
�15.3.11�

where V is the average water velocity in the channel. This formula has
been shown to provide a reasonable correlation of data from numerous
laboratory experiments and has the apparent advantage, not included in
duBoys’ approach, of incorporating the channel velocity directly. This formula
is usually used in a form obtained by substituting the Manning equation and
neglecting the critical shear stress term, which is assumed to be small relative
to actual shear, so

js D
[

10�2

d��s � ��

] (nm

1.5

)3/5
S17/10

0 q8/5 �15.3.12�

where nm is the Manning roughness coefficient and q is the channel discharge
per unit width.

Perhaps the most difficult parameter to measure is the critical shear stress
for initiation of particle movement on the bed. Most data for this parameter
have been obtained from flume experiments. Figure 15.5 shows the drag and
gravity forces acting on a particle. Lift force also may be included and would
be an adjustment to the submerged weight. For simplicity the bed is assumed
to be horizontal, though a bed slope is easily incorporated. The particle has
equivalent diameter d and submerged weight W D ��/6�d3��s � ��. The drag
force is FD, which is evaluated by considering the moments exerted about
the point of contact by the two forces. The resultant force passes through a
point of support (P) at angle ϕ as shown. Assuming that the point P is at a
distance d/2 from the center of gravity of the particle, the moment arm for W
is (d/2 sin ϕ) and for FD it is (d/2 cos ϕ). Then, equating moments, we find

FD D �

6
d3��s � �� tan ϕ �15.3.13�

It is usually assumed that the angle ϕ represents the angle of repose for
the particle. It is further assumed that the critical shear stress for initiation of
bed movement is FD, divided by effective bed shear area. This last parameter
is defined as the horizontal area of the single particle, divided by the ratio of
the number of particles actually about to move, to the total number of particles
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Figure 15.5 Forces acting on a particle on the bed; the velocity distribution is not
known exactly but is assumed to have a virtual origin at a location within the bed.

on the bed. This ratio is denoted by p. The critical shear stress is then

�c D ��/6�d3��s � �� tan ϕ

��d2/4�/p
D 2

3
pd��s � �� tan ϕ �15.3.14�

Values for p have been estimated to be around 0.25–0.35 (see White, 1940,
for example, who found the product (2/3)p to be ¾D0.18). Then for sand, with
specific gravity 2.65 and assuming tanϕ D 1, the critical shear is �c

¾D 24d
(lb/ft2, when d is in ft and � is in lb/ft3).

In fact, significant variations in bed shear stress are expected, related to
turbulent velocity fluctuations. Shields observed the random nature of grain
movements on the bed and Einstein (1942) first developed a transport relation
based on statistical concepts, followed shortly afterwards by Kalinske in 1947.
Rouse (1955) later developed a semiempirical formula based on Kalinske’s
data, in a form similar to Shields’ Eq. (15.3.12). Estimates as low as �c

¾D 4d
have been made for very turbulent flows, where �c represents the mean (time-
averaged) critical shear stress. In other words, with a mean value of around
4d, sufficiently large turbulent velocity fluctuations can exist so that the shear
reaches 24d. The random nature of these fluctuations makes it very difficult
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to determine a specific critical condition for the initiation of grain movement
on the bed.

Critical shear stress often is calculated from the Shields diagram, which
is a nondimensional version of Eq. (15.3.14). By assuming that the initiation
of motion depends on �c, ��s � ��, d, fluid density, �, and viscosity, �, it can
be shown from dimensional analysis that

�c

d��s � ��
D f

(
UŁcd

	

)
�15.3.15�

where 	 is kinematic viscosity. The left-hand side is a dimensionless critical
shear stress, and the independent variable on the right-hand side has the form
of a Reynolds number, based on the particle size and critical shear velocity.
On comparing this last result with Eq. (15.3.14), it may be concluded that the
function on the right-hand side must incorporate the effects of p and tan ϕ.
This function was evaluated by Shields on the basis of data compiled from a
large set of experiments using sand and other materials of similar size, with a
range of specific weights. Shields’ curve is shown in Fig. 15.6.

Figure 15.6 Shields’ diagram for critical shear stress as a function of grain Reynolds
number.
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15.4 SUSPENDED SEDIMENT CALCULATIONS

Suspended sediment transport is generally calculated using a slightly modified
form of the advection–diffusion equation developed in Chap. 10,

∂m

∂t
C u

∂m

∂x
C 	

∂m

∂y
C �w � ws�

∂m

∂z

D ∂

∂x

(
εx
∂m

∂x

)
C ∂

∂y

(
εy
∂m

∂y

)
C ∂

∂z

(
εz
∂m

∂z

)
�šsource/sink terms� �15.4.1�

where u, v, and w are the fluid velocities in the x-, y-, and z-directions,
respectively, z is the vertical coordinate, directed upwards, and εx, εy , and εz
are the diffusivities for sediment in the respective coordinate directions. The
main difference between this equation and the dissolved mass balance equation
from Chap. 10 is the inclusion here of the settling term. The source/sink terms
are generally important only when primary production (growth) or predation
affects the solids concentration. Deposition and resuspension at the bottom are
either incorporated through the bottom boundary condition or, for vertically
averaged models, they appear as source/sink terms. Equation (15.4.1) is written
in very general form and is usually simplified for most practical applications.
Since relatively small particles are normally under consideration (sand and
other larger particles are not normally transported as part of the suspended
load), it is usually assumed that the same turbulent eddies responsible for
transport of momentum also are responsible for transport of the particles.
Furthermore, diffusivities often are assumed to be spatially homogeneous, and
advective motions are usually considered in one direction only.

The diffusivity is found by assuming that it is the same as for momentum
transport (Reynolds analogy for turbulent flows). For open channel flow,
assuming a linear variation of shear stress with depth and the usual von Karman
logarithmic velocity profile, the variation of turbulent diffusivity is

ε D �uŁz
(

1 � z

H

)
�15.4.2�

where � is the von Karman turbulence constant. The average vertical diffu-
sivity has been shown to be well represented by

ε D 0.067�uŁH �15.4.3�

and the average transverse diffusivity is given approximately by

εt D 0.15�uŁH �15.4.4�

The nominal value for � is 0.4, but some observations have indicated that it
decreases in the presence of suspended sediment.
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As a specific example, consider transport of sediment in a river, with
the x-direction defined along the bed. If the problem is considered as one-
dimensional (in the x-direction), then any mass loss by deposition or gain
by resuspension at the bed is considered as an internal source or sink, since
concentration is averaged over the channel cross-sectional area. Assuming
that deposition and resuspension are the only source or sink terms, and that
diffusivity is spatially constant, Eq. (15.4.1) simplifies to

∂m

∂t
C u

∂m

∂x
D εx

∂2m

∂x2
� ws

H
mC R

H
�15.4.5�

where the overbar here indicates a cross-sectional average value, H is depth,
and R is the net resuspension rate, in mass per unit time per unit area, which
may in general be a function of x and t (Fig. 15.7). For sandy beds, relations
such as those developed in the previous section could be used for R. However,
for smaller sediments, resuspension is usually determined empirically as a
function of shear stress (or, more directly, as a function of excess shear stress
above a critical value for initiation of bed material).

It also should be noted that in writing Eq. (15.4.1) or (15.4.5), it is
implied that either one sediment size is being considered, or that ws is an
appropriately defined average settling velocity for a range of sediment sizes
and densities. Similarly, R represents either one sediment type or an average. In
general, when there is a range of particle sizes, possible interparticle reactions

Figure 15.7 One-dimensional sediment transport in open channel flow, with settling
(deposition) and resuspension terms.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



should be considered (see Sec. 15.5), and separate equations should be written
for different size classes, including transformation of particles between classes.

In general, the sediment load passing a given point in the stream is
calculated from

Js D
∫∫
A

um dy dz �15.4.6�

where u is the velocity, as a possible function of depth and lateral position.
A similar relation for two-dimensional flow may be written, with the integra-
tion performed only over the depth H. An equivalent calculation for Js can
be obtained from the product of cross-sectional average values for velocity
and concentration. Assuming two-dimensional flow, a common calculation
for depth-average velocity is to take the average of velocity readings at 0.2H
and 0.8H. Similarly, measurements have shown that an average suspended
sediment concentration in river flow can be estimated by the sum of concen-
tration measured at 0.8H, weighted by a factor of 3/8, and the concentration
measured at 0.2H, weighted by a factor of 5/8, i.e.,

Js
¾D ( 1

2u0.2H C 1
2u0.8H

) ( 5
8m0.2H C 3

8m0.8H
)

�15.4.7�

In the vertical direction, the balance between settling and diffusion deter-
mines sedimentation behavior. If these terms exactly equal each other, then

� ws
∂m

∂z
D ∂

∂z

(
εz
∂m

∂z

)
�15.4.8�

From Eq. (15.4.1), it can be seen that this case results for one-dimensional
(vertical) transport, steady state, and without any sources or sinks. Integrating
once, with ws assumed to be constant, we obtain

�wsm D εz
∂m

∂z
�15.4.9�

where the integration constant is zero because of zero-flux boundary condi-
tions (see below). Thus an equilibrium is established in which the flux due to
gravitational settling is balanced by the flux due to turbulent diffusion. This
equation can be integrated once more, assuming constant εz, (equal to the
average value), to write the suspended sediment concentration at any location
z, in terms of a known value ma at z D a,

m D mae
��ws/εz��z�a� �15.4.10�

This is the profile resulting from an exact balance between settling and diffu-
sion and is known as the equilibrium profile (it is also sometimes known as
the Rouse profile, after Rouse, who originally derived this result in 1938).
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15.4.1 Boundary Conditions

For a complete solution to Eq. (15.4.1), initial and boundary conditions must
be specified. Initial conditions consist of values for m (or m) as a function of
location, at time t D 0. Since the equation is second-order in x, y, or z, two
boundary conditions are needed for each coordinate direction considered. If
only the x-direction appears in the equation, for example, boundary conditions
are needed at the upstream and downstream limits of the model domain in
that direction, in terms of either known concentration or known gradient. The
choice of specific boundary conditions depends on the particular situation,
and general guidelines are similar as for the advection–diffusion equation
discussed in Chap. 10.

The boundary conditions in the vertical direction require special atten-
tion, however, since they are complicated by the presence of the settling
term in the governing equation. For convenience, the following discussion
considers a model for the vertical direction only. Also assuming no bulk
vertical fluid motion, constant vertical diffusivity and settling velocity, and
defining qm D internal source strength (sediment mass produced, per unit
volume per unit time), the governing Eq. (15.4.1) becomes

∂m

∂t
� ws

∂m

∂z
D εz

∂2m

∂z2
C qm �15.4.11�

At the surface, z D H, there should be zero net flux of sediment, which
is obtained by balancing the downward flux due to settling with any upward
flux due to diffusion, or

wsm D �εz ∂m
∂z

H) wsm C εz
∂m

∂z
D 0 �z D H� �15.4.12�

It may be noted that this boundary condition results from the same assumptions
as were used in deriving the equilibrium profile of Eq. (15.4.10). It implies that
the concentration gradient at the surface must be negative (i.e., concentration
decreasing upward) or zero, since

∂m

∂z
D �ws

εz
m �15.4.13�

If the concentration is zero, then the concentration gradient also is zero,

∂m

∂z
D 0 �15.4.14�

This last result is consistent with the idea of zero diffusive flux across the
surface, which also is a possible boundary condition by itself. However, it
must be applied with care, since it does not restrict the value of m, and there
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is a possibility (in a numerical solution, for example) of an artificial settling
flux through the surface unless ws also is set to zero there.

In fact, from a physical point of view, both settling and diffusion stop at
the surface, and it is appropriate to set both the settling and diffusion fluxes
equal to zero. The settling flux should be set to zero by fixing ws D 0, as noted
above, and the diffusive flux should be set to zero by fixing the concentration
gradient to zero, as in Eq. (15.4.14). Thus Eq. (15.4.12) is still satisfied.

The bottom boundary condition is somewhat more complicated, since
there is the possibility that particles settle out of the water column onto the
sediment bed or, in the case of resuspension, there is a flux of particles from
the bed into the water column. As a first approach, consider a well-mixed
water column with a region very close to the bottom in which diffusive-type
motions die out and there is settling only, as shown in Fig. 15.8. The net flux
of particles at the bottom is then equal to (�wsm), where m is the depth-
averaged concentration. With no gradient or local source terms, integration of
Eq. (15.4.11) over the depth yields

H
∂m

∂t
� �wsm�jH0 D

(
εz
∂m

∂z

)∣∣∣∣
H

0

or

H
∂m

∂t
D

(
εz
∂m

∂z
C wsm

)∣∣∣∣
H

0
�15.4.15�

Figure 15.8 Application of bottom boundary condition, used in developing
Eq. (15.4.17).
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The quantity in brackets on the right-hand side of Eq. (15.4.15) is the total
flux, which is evaluated at the surface and at the bottom. At the surface,
Eq. (15.4.12) indicates that the total flux is zero, and we have already stated
that the total flux at the bottom is just the settling term, (�wsm), so that
Eq. (15.4.15) can be written as

∂m

∂t
D � 1

H
wsm �15.4.16�

The solution is given by

m D m0 exp
(

�ws

H
t
)

�15.4.17�

where m0 is the initial average concentration. This solution is equivalent to a
first-order decay process, with decay rate equal to (�ws/H).

It should be noted that the solution given by Eq. (15.4.17) applies only
under rather restrictive conditions and is not valid, for example, when the
water column is not well mixed. Another way to consider this is to look at
the total flux expression, evaluated at the bottom. If the total flux is equal to
the settling term, then the gradient must be zero, since there is no diffusive
contribution to the flux, or

wsm C εz
∂m

∂z
D wsm H) ∂m

∂z
D 0 �15.4.18�

In other words, if the total bottom flux is equal to the settling, based on
bottom concentration, then the concentration gradient also must disappear at
the bottom. Under conditions of deposition, this is not generally observed (see
Sec. 15.4.2).

If the concentration gradient is negative, then clearly the net deposition
rate must be less than the rate given by (wsm). Letting p represent the fraction
of (wsm) that is deposited, then the total flux at the bottom is(

wsmC εz
∂m

∂z

)
D pwsm

or

εz
∂m

∂z
C �1 � p�wsm D 0 �15.4.19�

The parameter p can be thought of as a probability of deposition. It represents
the percentage of particles coming into contact with the bottom that actually
become deposited. A fully absorbing boundary has p D 1 and a fully reflecting
boundary has p D 0. In general, the value for p is not well known, and it
should be considered as a fitting parameter for a given application.
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It also should be noted that application of the bottom boundary condition
is difficult because the concentration is not well defined right at the boundary.
It may be helpful to think of the boundary condition being applied at a loca-
tion just slightly above the boundary, at z D υ (Fig. 15.8). This is in fact the
assumption already used in developing Eq. (15.4.17).

When resuspension occurs, there is generally strong mixing near the
bottom. Usually the resuspension flux is specified externally, so that the total
flux expression is set equal to the desired resuspension rate,

�
(
wsm C εz

∂m

∂z

)
D R �15.4.20�

where R is the resuspension rate in terms of mass resuspended per unit area per
unit time. This condition may be established by an appropriate choice for the
gradient (recall that the gradient is negative, to produce an upward flux). An
upward resuspension-type flux also may be established by fixing the bottom
concentration at a value higher than in the water just above the bottom, and
then letting diffusion move the excess mass upward. Thus

C D Cb �z D 0� �15.4.21�

where Cb is the fixed concentration at the bottom. The maximum value for this
concentration is the concentration of solids in the bed and would depend on
bed porosity. However, it is more realistic to consider the maximum value for
Cb to depend on the mixing energy available in the water column, so that Cb

decreases with lesser mixing energy available. One advantage of the boundary
condition of Eq. (15.4.21) is that it is simple to incorporate. However, it does
not provide a well-controlled flux, since the movement of particles upwards
depends on the gradient.

One further cautionary note should be considered when deciding on
the appropriate boundary conditions for a given problem. Numerical solu-
tions to Eq. (15.4.11) often have problems with maintaining a strict mass
balance, when using either fixed gradient or fixed concentration boundary
conditions. The problem is more acute at the bottom because the concentra-
tions are generally higher than at the surface. An alternative approach, within
a finite difference context, is to write a separate mass balance equation for
the numerical grid adjacent to the top and bottom boundaries. For example,
Fig. 15.9 shows several finite difference grids near the bottom of a computa-
tional domain used to solve the vertical sediment transport equation. A mass
balance for grid 1 can be written as

dm1

dt
D 1

z

[
wsm2 C εz

(
m2 � m1

z

)]
C q1 �15.4.22�

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Figure 15.9 Application of no-flux bottom boundary condition, in finite difference
approach.

where z is the grid spacing, subscript 1 refers to values for the first or
bottommost grid, and subscript 2 refers to the next grid above. This equation
directly incorporates the fact that both settling and diffusive fluxes are zero at
the bottom. The source/sink term q1 then must be chosen to represent losses
due to deposition and sources due to resuspension.

15.4.2 Lake and Reservoir Modeling — Benthic
Nepheloid Layer

A particular application of modeling vertical distributions of particulate matter
is with large, deep lakes, which often exhibit the formation of a region
of higher concentrations near the bottom. This region, called the benthic
nepheloid layer, may extend several tens of meters above the bottom and
have suspended sediment concentrations five to ten times higher than in the
overlying water column. These layers were originally observed in marine envi-
ronments and have also been observed in large freshwater lakes. Nepheloid
layers were discovered in the Great Lakes of North America only in the early
1980s. For example, Fig. 15.10 displays vertical profiles recorded at a deep
location in the southern part of Lake Michigan in August, 1966. The tempera-
ture distribution reflects the formation of a thermocline, with an upper mixed
layer. The light transmittance is inversely related to particle concentration. It
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Figure 15.10 Example vertical profiles measured in Lake Michigan.

shows a small peak just below the thermocline, due to primary algal produc-
tion, and also a decrease near the bottom, indicating a buildup of particulates
with increasing depth.

The specific mechanisms leading to formation and maintenance of these
layers are not well understood. In deeper parts of the lake, where bottom
shears and mixing rates are low, the most probable source of material for
the layer is due to primary production closer to the surface (as in Fig. 15.10)
and subsequent settling of detritus. These particles tend to be small (<10 µm)
and have specific gravity between about 1.03 and 1.1. Their natural Stokes
settling velocity is only about 1 m/day, though they tend to move towards
the bottom much more quickly than that, due to slow convective motions in
the lake. If quasi-steady conditions are assumed, a solution to the vertical
sediment transport equation, with zero-flux boundary conditions, is given by
Eq. (15.4.10). It is interesting to note that in this case, the governing equation
and both boundary conditions are identical. In other words, there is zero net
vertical flux at any location in the water column (due to the balance between
settling and diffusion), and the only parameter that needs to be specified is
the bottom concentration (i.e., a D 0 in Eq. 15.4.10).
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A simple estimate for the thickness of the layer is obtained using
Eq. (15.4.10) and finding the location at which the concentration drops to
a given fraction of the bottom value. For example, if we take m to be 1% of
the bottom value, with a typical settling velocity of 1 m/day (0.001 cm/s) and
a diffusivity of 0.5 cm2/s, then

m D moe
��ws/εz�z H) z D � εz

ws
ln

(
m

mo

)
¾D 23 m �15.4.23�

which is in reasonable qualitative agreement with the thickness indicated in
Fig. 15.10. The actual nepheloid layer is of course subject to unsteady condi-
tions, and this calculation should be considered as a rough estimate only.

Other mechanisms that may play a part in nepheloid layer formation
include local resuspension due to shear generated from upwelling and down-
welling motions and density currents along the bottom, and transport of resus-
pended material downslope from shallower regions, where particles are resus-
pended by waves, seiche motion, or other near-shore processes. These mech-
anisms probably are more important for benthic nepheloid layers in shallower
regions of deeper lakes, where such motions would be more common than in
deeper parts. Also, it should be noted that the shape of the concentration distri-
bution profile would be different in this case. Due to strong mixing and resus-
pension flux at the bottom, the concentration should be either uniform near
z D 0, or exhibit a convex shape, rather than the concave form of the expo-
nential curve. The conditions leading to the previous solution (Eq. 15.4.10)
are not valid in this case, due to this strong mixing at the bottom.

Aside from scientific interest concerning formation of benthic nepheloid
layers, they also are important in the transport of certain contaminants. In the
Great Lakes, for example, there is concern for hydrophobic organic chemicals
that tend to sorb onto the surfaces of suspended particles, particularly ones
with high organic carbon content. Therefore current large-scale research efforts
to examine water quality in the Great Lakes are concerned not only with the
possible presence of these layers but also with their effects on the transport and
distribution of organic chemical pollutants. Relationships between sediment
and contaminant transport are discussed further in Sec. 15.6.

15.5 PARTICLE INTERACTIONS

15.5.1 Size Distribution

As previously noted, there is a wide variety of particle sizes in natural waters.
Since particles can freely interact with each other only in a suspended state,
the present section deals with smaller particles. In general, there is a range
of sizes present in any suspension, and one of the most important physical
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characteristics of a polydispersed suspension is the size distribution. Size, for
example, is a critical parameter in determining settling rates, which must be
known for proper design of sedimentation basins in water and wastewater
treatment plants. Size also directly influences possible methods of detection,
as needed for scientific study of particle interactions and for engineering
design of treatment processes. For example, optical microscopes cannot be
used to detect particles smaller than the wavelength of visible light (less than
about 0.5 µm). The sedimentation rate also is dependent on the square of
particle size (Stokes settling — see Eq. 15.2.4), and the total surface area
per unit mass depends on particle size, which determines the potential for
chemical adsorption (see below). This information is essential for analyzing
raw-water particulates, optimizing chemical dosages, measuring particulates in
filter effluent and determining filter efficiency, and evaluating particle/pollutant
transport mechanisms, among other applications.

It is usually convenient to consider a suspension containing many parti-
cles of various sizes as having a continuous size distribution. For continuously
distributed particles, three common particle size distribution functions are

dN

dv
D nv�v� �number/cm3/µm3� �15.5.1a�

dN

ds
D ns�s� �number/cm3/µm2� �15.5.1b�

dN

d�dp�
D nd�dp� �number/cm3/µm� �15.5.1c�

whereN is the cumulative size distribution function (number/cm3), v is particle
volume, s is particle surface area and dp is diameter (subscript “p” is added
here to distinguish particle diameter from the differential operator). The total
volume of the particle suspension is

8 D
∫ 1

0
vnv�v� dv �15.5.2a�

Similarly, total surface area is

Sp D
∫ 1

0
sns�s� ds �15.5.2b�

Combining these with the three parts of Eq. (15.5.1) yields, respectively,

d8
d�log dp�

D 2.3�

6
d4

p
N

dp
�15.5.3�

dSp
d�log dp�

D 2.3�d3
p
N

dp
�15.5.4�
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Figure 15.11 Example of particle size distribution, as relative frequency of particle
numbers falling in different diameter ranges.

dN

d�log dp�
D 2.3dp

N

dp
�15.5.5�

Thus, once �N/dp� is known, data can be reported in number, surface, or
volume concentrations, depending on the desired application and instrumen-
tation available. This is equivalent to developing a histogram chart of number
distribution, as illustrated in Fig. 15.11.

15.5.2 Particle Aggregation — Smoluchowski Model

There are many ways to model aggregation processes, and these can be cate-
gorized either as microscale or as macroscale models. Microscale models
describe aggregation at a particle–particle level, considering interaction forces
when particles are at close distances. In general, three types of forces are
important: (1) hydrodynamic interaction, which prevents particle collisions;
(2) van der Waals attractive forces, which promote particle collisions; and
(3) electrostatic repulsion, which inhibits particle collision. Once these forces
are considered, along with other forces such as gravity and fluid shear stress,
the equation of motion of individual particles in a suspension may be solved
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to predict steady-state or time-dependent positions of every particle in the
dispersion. In addition, the interaction of these forces determines the trajectory
of particles approaching each other and, eventually, the aggregate geometry.
Diffusion Limited Aggregation (DLA) theory, though not considering details
of the forces involved, also is an example of a microscale approach. These
models have the disadvantage of requiring calculations for every particle in
the system, which becomes cumbersome for large numbers of particles.

At the macroscopic level, Eulerian methods have been used to describe
the system properties in terms of particle concentrations in space and time,
either for steady-state conditions or to reveal time-dependent behavior. Smolu-
chowski’s approach (see below), which describes changes of particle concen-
tration of different sizes in a reactor, best represents macroscale models.

Aggregates form when interparticle cohesive forces become important,
as is particularly true with clays and other smaller materials. In general, it
is of interest to keep track of the amount of suspended sediment mass in
different size classes. In other words, although size distributions are consid-
ered to be continuous, it is convenient to model a smaller number of discrete
size classes. In order for aggregation to occur, dispersed particles must be
brought into contact with one another. In general, this can occur through any
of three different transport processes: (1) Brownian diffusion, driven by the
thermal energy of the fluid; (2) fluid shear, which causes velocity differences
or gradients in either laminar or turbulent flow fields; and (3) differential
settling, driven by gravity such that collisions occur due to differences in
settling velocity. Once particles are brought very close to or in contact with
each other, particle interactions determine whether they become attached,
forming a larger aggregate, or remain in a dispersed state. This interaction
may be attractive (e.g., van der Waals attraction) or repulsive (e.g., electrical
repulsion), depending on the nature of the particle surfaces and on the solu-
tion chemistry. In addition, aggregates also may break apart under high shear
conditions, generating two or more smaller aggregates.

Transport and attachment can be considered to occur at different scales.
This is because direct particle interactions are important only over very short
ranges, usually much less than the particle size, so that particles must be
very close to each other before there is any significant direct interaction. On
the other hand, bulk transport mechanisms may bring particles together from
comparatively large distances, to a point where the separation distance is
sufficiently small that interaction can take place. For example, in a turbulent
flow, particles are largely distributed by the eddies in the integral length scale
range. Eddies near the microscale range (but still larger than the particle size)
generate the local shear between particles, and finally, attachment is decided
by the interactions occurring at distances much smaller than the particle sizes.
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Figure 15.12 Role of eddy size, relative to particle size, in causing particle colli-
sions: (a) eddies are much larger than the particles and tend to transport them all at
similar rates, so that collisions are not promoted; (b) eddies and particles are similar in
size and collision rate is enhanced; and (c) eddies are much smaller than the particles
and do not affect their transport significantly.

The eddies closest in size to the particles or aggregates are the most effec-
tive in bringing particles into contact with each other. Much larger eddies
transport groups of particles in a sort of bulk or advective-type flow (i.e., rela-
tive to the particle size, the eddy motion appears as advective flow and does
not contribute to smaller scale mixing), while eddies much smaller than the
particles are not effective in moving particles around and can only affect trans-
port conditions between the surface of the particle and the surrounding water.
Figure 15.12 illustrates these various cases. There is significant interest in
promoting the formation of larger aggregates in treatment plants, for instance,
so it is important to understand the mechanisms contributing to good mixing
efficiency.

The modern study of aggregation kinetics started with the work of
Smoluchowski in the early 1900s. The original Smoluchowski theory accounts
for collisions induced by Brownian motion. Generally, Brownian movements
are caused by thermal energy and are random in nature. Smoluchowski consid-
ered one particle to be a stationary collector and calculated the diffusion
rate, caused by Brownian motion, of other particles to this collector. Because
particles become attached to the collector and are therefore removed from
suspension, a concentration gradient is formed radially from the collector.
This gradient can be determined by applying Fick’s second law for a spherical
collector,

∂ni
∂t

D 1

r2

∂

∂r

(
r2Di

∂ni
∂r

)
�15.5.6�
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where ni is the particle number concentration (of size i) in the fluid around
the collector, r is the radial distance from the center of the collector, and Di
is the diffusion coefficient for the particles.

An estimate for the steady state distribution of particles of size ni is
obtained by integrating Eq. (15.5.6) and applying the boundary conditions:
(1) ni D 0 at the surface of the collector, where r D Rij D sum of the radii
of the collector, of size j, and an attached particle, of size i, and (2) ni D
nio at r ! 1, implying that at great distances the particle concentration is
unaffected by the presence of the collector. A first integration, with the left-
hand side set to 0 (i.e., steady state conditions), gives

r2Di
dni
dr

D C �15.5.7�

where C is a constant. By separating variables and integrating again, using
the specified boundary conditions for ni, we have

ni

∣∣∣∣
1

Rij

D C

Di

(
�1

r

)∣∣∣∣
1

Rij

) nio D C

DiRij
�15.5.8�

Substituting this last result in terms of C into Eq. (15.5.7) and integrating
from Rij to some arbitrary point r, we obtain

dni
dr

D nioRij
r2

ni
nio

D 1 � Rij
r

�15.5.9�

which is the steady-state distribution for ni.
In addition, the rate at which particles diffuse to the stationary collector

may be calculated by Fick’s first law,

Ji D 4�R2
ijDi

dni
dr

�15.5.10�

where Ji is the transport rate of particles (number per unit time per collector)
moving to a collector of surface area 4�R2

ij. Note that a spherical collector has
been assumed — this is a major simplifying assumption in the development
of the Smoluchowski model. By considering that the collector also is subject
to diffusion, with diffusivity Dj, then the total effective diffusivity causing
particles of sizes ni and nj to collide is Dij D Di C Dj. Then, with nj collec-
tors, the total rate of growth of aggregates formed by joining particles i and
j is

Jij D 4�R2
ijDijninj �15.5.11�

For aggregate k D iC j (i.e., a particle of size class k, formed by the
joining of particles from size classes i and j), the basic Smoluchowski equation
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may be written as

dnk
dt

D 1

2

∑
iCjDk

4�R2
ijDijninj � nk

1∑
iD1

4�R2
ikDikni �15.5.12�

where the first term on the right-hand side represents the production of k
particles by the collision of i and j particles, and the second term represents
a sink for particle k, as it joins other particles to form larger aggregates. The
one-half coefficient in the first term is to avoid counting the same particle
twice, i.e., iC j D jC i.

Equation (15.5.12) forms the basis of the Smoluchowski approach for
aggregation studies. It should be noted that in this basic form, it is assumed
that each collision results in an attachment (aggregation). However, sometimes
attachment does not occur, due to particle interaction forces or other factors,
and a collision efficiency factor needs to be added (see below). Particles also
may break apart, or disaggregate, forming smaller aggregates, but this is not
considered in Eq. (15.5.12). In addition, Dij is not limited only to Brownian
diffusion. For shear or turbulent flows an appropriate Dij can be calculated
according to specific mixing conditions, though the functional form of the
equation remains the same.

Equation (15.5.12) has been applied in many studies involving particle
aggregation. Usually, as shown above, the most common mechanisms included
in these models are gain (aggregation), i.e., iC j D k, and loss of particles
of class k from its collision with all classes of particles. However, in addi-
tion to aggregation, mechanisms affecting particle number and size include
settling (loss) and production terms, and noncohesive collisions, when particles
collide but do not stick together to form larger aggregates. Also, disaggrega-
tion following a collision, or in response to high fluid shear, is not included
in Eq. (15.5.12).

With these other features in mind, a more general form of Smolu-
chowski’s equation is

dnk
dt

D 1

2

∑
iCjDk

˛ijˇijninj � nk

1∑
jD1

˛jkˇjknj � Bknk C
1∑

jDkC1

�ijBjnj

� nk

1∑
jD1

Cjkˇjknj šWk � 1

ts
nk �15.5.13�

where ˛ij and ˇij are the collision efficiency and frequency, respectively, B is
the break-up coefficient, �ij is the probability that particle k is formed after the
disaggregation of a particle of class j, Cij is the probability of disaggregation
of particle k after collision with particle i, W is a production/destruction term,
and ts is the settling time scale, which is the ratio between the depth of the
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water and the settling velocity. The first two terms on the right-hand side
correspond directly with the terms on the right-hand side of Eq. (15.5.12). In
Eq. (15.5.13), however, collision efficiency has been added, which expresses
the probability that aggregation occurs following a collision, and collision
frequency has been used. It is easily seen that collision frequency is directly
related to particle size and diffusivities. The third term on the right is loss due
to the breakup of particle k due to fluid shear, the fourth term is the production
of particle k by the breakup of larger particles, the fifth term is the loss of
particle k resulting from a collision with another aggregate, the sixth term
is an internal source or sink, and the final term represents loss by settling.
In many cases, not all of the terms in Eq. (15.5.13) are important. However,
collision frequency and efficiency are of interest in almost all applications.

Collision Frequency

As previously noted, there are three general mechanisms that bring particles
into contact with each other, including shear (orthokinetic interactions), Brow-
nian motion (perikinetic motion), and differential settling. The simplest case of
orthokinetic aggregation considers particle collisions in a uniform shear flow.
Neglecting interaction forces introduced as particles approach each other, recti-
linear particle trajectories may be assumed. By considering the total flux of
particles approaching each other, the collision rate ˇ between two particles of
size (radius) Ri and Rj can be expressed as

ˇij D 4

3
G�Ri C Rj�

3 �15.5.14�

where G is the mean velocity gradient, which is normally defined in terms
of the total power used to generate mixing (this can be the input power to a
mixer in a stirred tank, for example) and fluid viscosity,

G D
√
P

�
�15.5.15�

where P is input power and � is viscosity. For Brownian motion and differ-
ential settling, collision frequency is described, respectively, by

ˇij D 2KT

3�

�Ri C Rj�2

RiRj
�15.5.16�

and

ˇij D
(

2�g

9�

)
��s � ���Ri C Rj�

3�Ri � Rj� �15.5.17�
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where K is the Boltzmann constant and T is absolute temperature. The overall
collision frequency is a combination of these three mechanisms and is usually
calculated as a geometric sum of equations (15.5.14), (15.5.16), and (15.5.17).

Collision Efficiency

Collision efficiency ˛ represents the probability that particles will aggregate
after they collide. It is a function of both chemical and physical conditions. In
general, there are three types of phenomena that become important when parti-
cles come into close proximity. First, water in between the particles must be
moved out of the way. This process is called hydrodynamic interaction and it
tends to prevent particle collision. Second, van der Waals attractive forces exist
between any two particles and become significant at small separation distances;
these forces tend to promote particle collisions and attachment. Third, if the
particles have charged surfaces, electrostatic repulsion also inhibits particle
collision. It is difficult to evaluate these mechanisms for all possible cases,
and although significant research has been conducted, the best we can say at
this time is that the value for ˛ usually lies somewhere between 10�4 and
10�1 for fresh waters (Weilemann et al., 1989). There is some evidence to
suggest its values are higher in salt water by a factor of two to three. Given
this wide range, it is difficult to choose a value a priori for ˛ for any given
application.

For two particles with the same surface charge in an electrolyte, repul-
sion force becomes important as they approach each other. For a negatively
charged surface submersed in a neutral solution, a high concentration of posi-
tive charges forms at the surface and is called the Stern layer. Beyond this
layer, but before the bulk solution, another layer is formed in which the posi-
tive charges gradually diffuse as radial distance increases. This is the source of
repulsion potential. On the other hand, there is an attraction force (potential)
due to van der Waals forces, which also becomes important when particles are
very close to each other. By considering both repulsion and attraction forces,
the interparticle potential may be calculated as the net sum of the attraction
and repulsion potentials.

15.6 PARTICLE-ASSOCIATED CONTAMINANT
TRANSPORT

Many contaminants of interest tend to sorb strongly onto particles, so that a
knowledge of the fate and transport of suspended sediments provides much
of the story for describing the fate and transport of the pollutant. Interest here
is primarily with smaller particles, which have higher surface area (per unit
mass), are more likely to be suspended, and also may have relatively high
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organic carbon content. Heavy metals and hydrophobic organic compounds
(HOCs) such as PCBs are two classes of contaminants of particular interest
in environmental engineering problems.

The fate of HOCs in aquatic environments is highly dependent on sorp-
tive behavior. Partitioning models, in which equilibrium between the water
phase (dissolved) and solid phase (particulate) concentrations is assumed, are
often adequate to describe transport phenomena when solid–water contact
times are relatively long. For HOCs having equilibrium water phase concen-
trations less than 10�5 M or one-half of the species water solubility, sorption
relationships (called isotherms) to natural sediments are linear, so that the
concentrations in the two phases can be related as

r D KpCd �15.6.1�

where r D concentration in the solid phase (mass compound per unit mass
of solid), Cd D concentration in the water phase (mass compound per unit
volume of solution), and Kp D equilibrium partition coefficient. This parti-
tioning process has been shown to be reversible and independent of sorbent
concentration.

Numerous sorption studies for soils and sediments have shown that
the partitioning process occurs primarily between the water phase and the
organic carbon of the solid phase. The partition coefficient is therefore often
expressed as

Kp D Kocfoc �15.6.2�

where foc D organic carbon content of the solids and Koc quantifies the parti-
tioning tendency of the compound to organic carbon. This relationship is valid
provided the organic carbon content exceeds about 0.1%. Various studies also
have found Koc to be a function of the octanol–water partition coefficient,
Kow, of the same compound, having the form

log Koc D a log Kow C b �15.6.3�

in which a and b are data-fitted constants. The advantage of this result is that
the octanol–water partition coefficient value is known for many compounds.
This formulation is easily incorporated into transport and fate models and is
valid provided the equilibrium assumption (Eq. 15.6.1) holds.

There are many instances, however, for which the flow retention time
scales are similar to or less than those for sorption/desorption transfer, there-
fore invalidating the equilibrium assumption. A common example of this
is with the resuspension of contaminated sediments due to storm runoff or
other resuspension events. In other words, sorbed contaminants on bottom
sediments are usually assumed to be in equilibrium with pore water concen-
trations, following relationships similar to Eq. (15.6.1). When these sediments
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are eroded from the bottom and mixed into the overlying water column, they
are placed in an environment where the dissolved concentration is presumably
much less than the equilibrium value. In these cases the particles are subject
to lateral and vertical transport (by advection/diffusion processes), and we can
estimate an average resuspension time simply as the height above the bottom to
which the particles are raised (h), divided by the net mean settling velocity (vs),

tr D h

	s
�15.6.4�

In many cases vs can be approximated by ws, the Stokes settling velocity.
However, turbulence and probable high particle concentrations in the water
column, along with the bottom boundary condition (for deposition), may affect
the net settling rate. While in suspension, the chemical undergoes kinetic
desorption, at a rate given by the inverse of a time scale to reach equilibrium
partitioning, te. The ratio (tr/te) indicates the degree to which the equilibrium
partitioning assumption would be valid. When this ratio is large, the equi-
librium assumption is reasonable, but when it is small, a kinetic desorption
calculation should be performed.

Results from studies in a variety of soil/sediment–water systems have
shown that sorption of HOCs onto soils and sediments consists of a rapid initial
uptake followed by a slow final approach to equilibration. Similarly, desorp-
tion consists of a rapid initial release followed by slow equilibration. This is
referred to as a two-step sorption process, and several modeling approaches
have been developed to incorporate this phenomenon. The one that seems to
relate most closely to the physics of the process, and also is relatively easy to
implement, is based on defining two first-order rate constants. It is assumed
that the initial release of chemical involves material primarily near the surface
of the particles, and therefore is more easily accessible, while the later stage is
related to the release of chemical from within the pore spaces of the particle.
Results presented by Wu and Gschwend (1986) imply that kinetic effects are
particularly acute for compounds having large Kow and small molecular diffu-
sivities. Sorbed PCBs, having Kow D 105 to 108, would therefore require long
times to equilibrate in response to changes in water phase concentrations, and
equilibration times of up to 280 days have been estimated for typical sedi-
ments. This is considerably longer than anticipated resuspension times, which
may be on the order of several hours to several days at most.

Often, from a management point of view, it is of interest to deter-
mine the rate of natural loss of in-place contaminants (in bottom sediments)
from a region by modeling sediment transport processes. In particular, when
contaminated sediment is entrained during a high flow event, the question is
to what extent the particles are transported downstream and to what extent the
contaminant is desorbed while the particles are in suspension. An equilibrium
assumption may suggest that more contaminant is lost than would be the case
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under more realistic kinetic desorption assumptions. In other words, under
the equilibrium assumption a greater amount of contaminant would enter the
dissolved phase before the particles resettle and would be transported away
from the region of interest.

15.6.1 Partitioning

Equilibrium Approach

Total concentration of a contaminant is written as the sum of the particulate
(i.e., attached to particles) and the dissolved phase concentrations,

Ct D Cp C Cd �15.6.5�

where all values are in units of mass contaminant per unit volume of water; Cp

is the particulate phase concentration, and Cd is the dissolved phase concen-
tration. The equilibrium partitioning coefficient is defined as in Eq. (15.6.1),

Kp D r

Cd
�15.6.6�

As previously noted, this is the ratio of particulate and dissolved phase concen-
trations that would exist when the two phases are in equilibrium. If m is
the sediment concentration (mass sediment per unit volume of water), then
Cp D mr, so that the partition coefficient also may be defined as

Kp D Cp

mCd
�15.6.7�

From these expressions, relations between the two phases can be obtained as

Cd D Ct
1 C mKp

�15.6.8�

and

Cp D CtmKp

1 C mKp
�15.6.9�

Thus the distribution of dissolved and sorbed concentrations is known, as long
as the total concentration, sediment concentration, and partition coefficient
values are specified.

Kinetic Approach

Several models have been developed to simulate sorption/desorption kinetics,
primarily for HOCs and metals. Early works treated sorption as a simple
first-order chemical reaction. Unfortunately, these formulations include rate
constants and other parameters that must be determined experimentally for
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each sediment–pollutant combination. More recent efforts have attempted
to develop mechanistically based models that predict sorption kinetics from
known or easily measurable properties of the sediments and pollutants. Often
these models are based on the assumption that the aggregates are spherical
(recall the earlier discussion of the Smoluchowski equation). Most models
assume that natural aggregates are made up of fine mineral grains and organic
matter. With these assumptions, it has been shown that a single effective
diffusivity parameter could be used to quantify sorption kinetics in a diffusion-
limited model, where the effective diffusivity is a function of the molecular
diffusivity, partition coefficient, intra-aggregate porosity, and solid density.
Other models have been based on the idea that partitioning occurs between
the water phase and the natural organic matter that coats the soil particles,
consistent with the earlier discussion of the influence of organic carbon on
the particles (see Eq. 15.6.2). This approach includes diffusion of the sorbate
from the bulk liquid through an aqueous diffusion layer, partitioning at the
water–organic interface, and diffusion into the organic coating of the soil.
Both of these models replicate the rapid uptake/release and subsequent slow
equilibration observed in sorption experiments, as previously noted.

These models generally assume that the particles making up sediments
can be viewed as porous spherical aggregates of finer grains in which the
macroscopic sorption of chemicals occurs microscopically by either sorption
to the natural organic matter on the solid matrices or diffusion into the
intraparticle pore water. The radial diffusion of HOCs into or out of the
aggregate is retarded by local equilibrium partitioning between intraparticle
pore water and organic matter associated with the solids. For a spherical
aggregate of radius R, the mathematical expression of these transport processes
can be stated as

∂

∂t
f[�1 � n��sKp C n]Cag D 1

r3

∂

∂r

(
r3DmT

∂Ca

∂r

)
�15.6.10�

where Ca D local volumetric water phase concentration in the aggregate, r D
radial distance, t D time, n D interaggregate porosity, �s D mass density of
the solid particles comprising the aggregate, T D interaggregate tortuosity,
and Dm D molecular diffusivity of sorbate molecules in water. This equation
is valid for 0 < r < R.

When fluid turbulence is of low intensity, an exterior boundary layer of
thickness L limits sorptive exchange between the bulk water phase and the
sediment aggregate. Transport through this layer is by radial diffusion alone
and is governed by

∂Cbl

∂t
D 1

r2

∂

∂r

(
r2Dm

∂Cbl

∂r

)
�15.6.11�
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where Cbl is the dissolved phase concentration in the boundary layer. This
equation applies for R < r < RC L.

Boundary conditions associated with Eqs. (15.6.10) and (15.6.11)
include zero flux at the center of the aggregate and the specification of
concentration at the diffusion layer–bulk water interface, i.e.,

∂C

∂t
�0, t� D 0 �15.6.12�

and

C�RC L, t� D Cd �15.6.13�

where Cd is the bulk water phase concentration. At the aggregate–diffusion
layer interface, mass conservation requires that there be no accumulation of
the diffusing substance. This requirement is expressed as

Cbl D Ca �15.6.14�

and

nDmT
∂Ca

∂r
D Dm

∂CD

∂r
�15.6.15�

at r D R.
As noted previously, two-phase partitioning behavior also is modeled

directly by considering two separate pools of material, one being relatively
easily desorbed and the other diffusing or desorbing more slowly. The simplest
approach is then to define separate sets of sorbing and desorbing rates for the
two pools, using simple first-order expressions. For example, the desorption
flux for one of the components is

∂Cp1

∂t
D K1d�Cd�Cp1� �15.6.16�

where subscript “1” refers to either the quickly or the slowly desorbing pool,
and K1d is the desorption rate or bulk mass transfer coefficient for compo-
nent 1. A similar equation can be written for component 2. Equations also
can be written for the adsorbtion process. For either component, noting that
the desorption flux is primarily proportional to KdCp, and adsorption flux
is proportional to KsCd, where Ks is a sorption mass transfer coefficient, at
steady state (i.e., equilibrium) these fluxes must exactly balance, so

KdCp ³ KsCd H) mKp D Ks

Kd
�15.6.17�

This demonstrates the relationship between the partitioning coefficient and
the two process rates (at steady state) and provides an extra constraint when
formulating these models.
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PROBLEMS

Solved Problems

Problem 15.1 Show that the duBoys formula, Eq. (15.3.8), can be written as

js D  HS0

(
HS0 � �c

�

)
�1�

where H is the water depth, g is the specific weight of the water, and

 D �szv

2

(
�

�c

)2

�2�

is called a sediment characteristic.

Solution

Starting with Eq. (15.3.8), insert Eq. (15.3.2) for the case of wide flow to
substitute for �0. This results in

js D �szv

2

[(
�HS0

�c

)2

�
(
�HS0

�c

)]

D �szv

2

(
�

�c

)2 [
�HS0�

2 �HS0
�c

�

]

Using Eq. (2) for  and rearranging then gives the result of Eq. (1). Values
for  have been tabulated for different kinds of sediment, most commonly in
English units. Since  is a sediment characteristic, it has been found to be a
function of sediment size.

Problem 15.2 It can be shown, for cases of flows in which the two-
dimensional assumption cannot be applied, that the total bed load transport
rate may be written as

Js D  S2
0A�2z CHc� �1�

where  is defined in problem 15.1, Hc is the minimum depth required for bed
load movement, A is the area of the channel below depth Hc, and z is the depth,
relative to Hc, to the centroid of A, as sketched in Fig. 15.13. Use Eq. (1) to
calculate the bed load in a river with an approximately parabolic cross section
and a bed slope of 1 : 8000. The river width is 200 m when the flow depth
is 3 m. The mean effective bed particle diameter is 2.0 mm. The total water
depth is H D 5 m. Use �c D 2.48 Pa and  D 10.4 ð 106 N/�m3-s�.
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Figure 15.13 Definition sketch, Problem 15.2.

Solution

The derivation of Eq. (1) is left as an exercise for the student. It involves
dividing the river cross section, below depth Hi, into small area elements dA
and applying an integral form of Eq. (15.3.10). To solve the present problem,
we need to first find Hc. This is done using Eq. (15.3.2), with the given value
for �c:

Hc D �c

�S0
D 2.48�8000�

9810
D 2.02 m

Then, from geometry, the distance between depth Hc and the centroid of the
area below Hc is (2/5) �H�Hc� D 0.4�2.98� D 1.19 m. Next we need to find
the area below Hc. This is done using the general expression for a parabola,
in terms of the width B,

B D cH1/2

where c is a constant that is determined by the given information that B D
200 m when H D 3 m, c D 200/3�1/2� D 115.5�m1/2�. The width at depth Hc

is then Bc D 115.5�2.98�1/2 D 194.4 m. The area of the parabola below Hc

is then

A D 2
3 �2.98��194.8� D 396.1 m2

Finally, using Eq. (1),

Js D  S2
0A�2z CHc� D �10.4 ð 106�

(
1

8000

)2

�396.1��2.38 C 2.02� D 283 N/s

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Problem 15.3 Consider the vertical distribution of suspended sediments in
a lake. Assume that the particle settling velocity ws is constant. There is no
mean fluid motion, but turbulent mixing is incorporated through a diffusivity
ε, which also can be assumed constant.

(a) Write the governing equation describing the distribution of sedi-
ments in the water column. Assume that there are no sources or
sinks.

(b) What boundary condition would you use at the surface, to express
the fact that there is no movement of particles across that boundary?

(c) Suppose that at the bottom the concentration is m0. Solve for the
steady-state concentration distribution, in terms of m0.

Solution

(a) From Eq. (15.4.1), simplifying for the conditions of constant
settling speed and diffusivity, no horizontal gradients and no fluid motions
and no sources or sinks, we have

∂m

∂t
� ws

∂m

∂z
D ε

∂2m

∂z2
�1�

(b) Equation (15.4.12) expresses the condition of zero net flux across
the surface:

wsm C ε
∂m

∂z
D 0

(c) For the steady state, the equation reduces to a second-order ordinary
differential equation which, when integrated once, gives

wsm C ε
∂m

∂z
D C

where C is a constant. From the boundary condition of part (b), C D 0. Inte-
grating once again, using the boundary condition that m D m0 at z D 0, gives

m

m0
D exp

(
�wsz

ε

)
Thus the steady-state distribution is an exponential decay with increasing
height above the bottom. Note that this result is the same as Eq. (15.4.10),
with a D 0.

Unsolved Problems

Problem 15.4 For each of the following particles, calculate the Stokes
settling speed and check to see whether the Stokes law is in fact valid:

(a) Sand, with specific gravity 2.65 and equivalent diameter 1 mm
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Figure 15.14 Two arrangements of particles in an aggregate, Problem 15.5.

(b) Clay, with specific gravity 2.5 and equivalent diameter 10 µm
(c) Algae, with specific gravity 1.03 and equivalent diameter 6 µm

Problem 15.5 A two-dimensional version of Eq. (15.2.1) can be defined in
terms of area and a two-dimensional fractal dimension, D2,

A D CAL
D2

where CA is a constant having units of L2�D2 . Compare the values of D2

calculated for two different shapes formed by an equal number n of circles of
diameter d, as shown in Fig. 15.14. Use L as the longest length for each case
[i.e., L D nd for case (a) and L D �2n�1/2d/2 for case (b)].

Problem 15.6 Consider that an arbitrary particle aggregate can be
approximated by a number n of smaller spheres of diameter d, as shown
in Fig. 15.15. Assuming that the surface area of the aggregate also can be
approximated by the sum of the surface areas of the spheres, what is the
relationship between the equivalent diameter De and the surface diameter Ds,
in terms of n?

Problem 15.7 Calculate the bed load in a wide river with bed slope 1 : 6000
and a normal uniform depth of 4.5 m. The effective particle size is 0.5 mm,
critical shear stress is 2.03 Pa (0.0215 psf), and sediment characteristic
(Problem 15.1) is 29.4 ð 106 N/�m3-s�[187,000 lb/�ft3-s�].

Problem 15.8 Derive Eq. (1) in problem 15.2 by first writing an expression
for the contribution dJs to the total load, that occurs in area dA (see
Fig. 15.13).

Problem 15.9 Calculate the bed load for a river with the same sediment
characteristics as in problem 15.7, but the river cross section is approximately
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Figure 15.15 Definition sketch, Problem 15.6.

parabolic. The normal uniform depth is 6 m, the river width is 100 m at a
depth of 1 m, and the bed slope is 1 : 8000.

Problem 15.10 A river has an initial suspended sediment concentration mo,
at location x D 0, where x is the longitudinal coordinate. The river mean
velocity is 0.7 m/s. Assuming that there is no resuspension and that the
particles have an average settling speed of 10 m/day, calculate the distance
downstream at which the average suspended concentration is one-half of mo.
Compare the result when longitudinal dispersion is neglected and when it takes
a value of 200 m2/s. In both cases it may be assumed that the particles are
well mixed in the vertical direction.

Problem 15.11 Considering again the conditions specified in problem 15.10,
recalculate the distances for the two assumed values for longitudinal disper-
sivity when there is no vertical mixing.

Problem 15.12 How would the boundary condition of Eq. (15.4.22) be
written so that it directly incorporates a probability of deposition p? Assume
that resuspension is not taking place.

Problem 15.13 Write an implicit finite difference numerical solution to
Eq. (15.4.11). Use a zero-flux boundary condition at the top and a probability
of deposition at the bottom, as developed in problem 15.12. Assuming a water
column of depth 20 m and with an initial uniform concentration of 10 mg/L,
use the solution to calculate the times needed for half of the suspended mass
to settle when p D 0.2, 0.5, and 0.8.
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Problem 15.14 Using Eqs. (15.5.9) and (15.5.10), show that the flux of
particles towards a stationary spherical collector is independent of r under
steady conditions.

Problem 15.15 In a lake the equilibrium partitioning coefficient for a certain
hydrophobic chemical is determined to be 10�5 L/mg. The suspended solids
concentration is 10 mg/L and the solid phase contaminant concentration is
0.5 µg/g. What is the total concentration of chemical in the lake? What
percentage of the total concentration is in each of the dissolved and particulate
phases?

Problem 15.16 In a lake the equilibrium partitioning coefficient for a certain
chemical is found to be 10�4 L/mg. The total concentration is 1 µg/L and
the suspended sediment concentration is 7 mg/L. Find the distribution of the
chemical between the dissolved and particulate phases.

Problem 15.17 Using the equation for the boundary layer around an aggre-
gate, Eq. (15.6.11), calculate the steady-state concentration distribution for a
constant value of the diffusivity Dm, in terms of the parameters defined in
Sec. 5.6.1.

Problem 15.18 Consider a chemical sorbed onto a particle that is initially
settled onto the bed of a river but becomes resuspended into the water column
during a storm event. The chemical dissolved and particulate phases are in
equilibrium in the bed environment, but the water column has virtually zero
dissolved concentration, so the chemical tends to desorb from the particle
once it has been suspended. Formulate an expression for the ratio of chemical
desorbed, using a nonequilibrium approach, to the amount desorbed using an
equilibrium approach, in terms of the parameters defined in Sec. 15.6.1. For
simplicity, assume only one component of desorbing concentration, with one
associated desorption coefficient, and also assume that sorption is negligible.

SUPPLEMENTAL READING
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16
Remediation Issues

16.1 INTRODUCTION

As awareness of environmental problems has evolved over the years, there
has been an increasing focus not only on reducing ongoing sources of pollu-
tion but also on remediation of sites that are already contaminated. A clear
example of this is with the so-called Superfund program set up in the United
States during the 1980s to clean up large hazardous waste sites causing serious
contamination of groundwater resources. Another example is with efforts in
the Great Lakes basin of North America to reverse the trend of eutrophica-
tion that had been growing steadily in the middle part of the last century.
Reduction of nutrient loadings such as phosphorus and nitrogen have reduced
drastically the productivity in the lakes, and now the concern is with cleaning
residual sites of contamination, in large part associated with contaminated
sediments.

In general, the initial phase of remediation involves controlling contam-
inant disposal into the particular environment under consideration. This may
mean complete cessation of all source loadings or at least reduction of loads
to a suitable level to allow recovery of the system, either by natural or by
engineered processes. According to the type of environment and the time
and length scales of the problem, the remediation may include containment
and treatment. Most phases of environmental remediation require an under-
standing of fluid flow and transport phenomena by advection and diffusion,
as discussed in previous chapters of this text. Remediation strategies also
may incorporate the use of chemical agents and biodegradation of contami-
nants. Methodologies that have been developed and used for many decades
for water and wastewater treatment can often be adapted for environmental
remediation.
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16.2 SOIL AND AQUIFER REMEDIATION

16.2.1 General Aspects

In cases of soil and aquifer contamination, the source of contaminant is usually
located above ground, or in a shallow depth below the ground surface. The
contaminant penetrates first to the vadose zone, and later it reaches the ground-
water. Therefore the issue of aquifer and groundwater contamination is usually
associated with site contamination. On the other hand, if the contaminant pene-
tration is limited to the vadose zone, then site contamination is not necessarily
accompanied with aquifer and groundwater contamination. Figure 16.1 shows
a schematic description of site contamination, which originates from a typical
landfill.

In addition to landfills, other sources of groundwater contamination
include spills of soluble substances, which become completely sorbed in the
vadose zone and then are gradually released by percolating runoff water.
An important category of potentially spilled materials includes a variety of
hydrocarbons, such as oils and fuels, and these are collectively known as
nonaqueous phase liquids (NAPLs). When a NAPL has a density less than
that of water, it is referred to as a light nonaqueous phase liquid, or LNAPL.
When NAPL is denser than water, it is called dense nonaqueous phase liquid
(DNAPL). When LNAPLs are released at the soil surface, they percolate
through the vadose zone and eventually float on top of the groundwater table
and the capillary zone, while gradually releasing dissolved hydrocarbon into
the flowing groundwater. DNAPLs sink through the water layer and rest on
the bottom of the aquifer, except for material that may be adsorbed onto soils,

Figure 16.1 A typical site contamination originating from a landfill.
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either in the vadose zone or in the water layer itself. LNAPLs also may sorb
onto soils.

Assuming that any ongoing source of contamination can be removed,
there are different alternatives to consider in deciding how to remediate a
given site. Sometimes removal of the contaminated vadose zone is desir-
able and feasible. In cases of relatively small oil spills it is quite common
to excavate the soil contaminated by the spill, to avoid contact between the
oil spill and groundwater. However, removal of the contaminated soil intro-
duces an additional problem of disposal of the removed soil. If the amount
of contaminated soil is not too large, then incineration may be appropriate.
For large quantities of contaminated soil, a more common reclamation method
involves soil excavation and deposition in a bioreactor, where biodegradation
of the contaminant can be achieved in a comparatively short time period. This
requires controlling the appropriate supply of moisture, oxygen, and nutrients
for the enhancement of the microorganism development and growth.

16.2.2 Containment of the Contaminated Site

If the contaminated site cannot be excavated economically or technically,
then it may be appropriate to contain it and to apply technologies of in-situ
remediation. Containment of the contaminated site is obtained by surrounding
the contaminated site by cutoff walls, or vertical barriers, as shown in Fig. 16.2.

For the analysis of the vertical barrier performance, it is possible to
adopt a one-dimensional conceptual model as shown in Fig. 16.3. The barrier
consists of a porous medium with very low permeability and it separates the

Figure 16.2 Containment of the contaminated site by vertical barriers.
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Figure 16.3 Conceptual model of flow with a vertical barrier.

contaminated groundwater from fresh groundwater. According to Eq. (11.3.1),
the one-dimensional differential equation of contaminant transport through the
barrier is

R
∂C

∂t
C v

∂C

∂x
D D

∂2C

∂x2
� �C �16.2.1�

where R is the retardation factor, C is the contaminant concentration, t is the
time, v is the interstitial fluid velocity, x is the horizontal coordinate, D is the
dispersion coefficient, and � is the decay coefficient for the contaminant.

The contaminant is transported by advection and diffusion through the
barrier. At the upstream boundary, namely at x D 0, the contaminant concen-
tration is assumed to be Cen, which may be time dependent. For example,
Cen may gradually decrease if the contained area is subject to remediation
treatment. However, for a conservative calculation, we may assume that Cen

is constant. At a downstream cross section the contaminant concentration is
Cex. The value of Cex increases with time due to the contaminant flux through
the barrier. The increasing value of Cex has no effect on the advective contam-
inant flux through the barrier, but it may lead to a decreasing diffusive flux,
due to a smaller concentration gradient. Therefore, again for a conservative
calculation, we consider that Cex D 0, and its value is kept constant. Such
an assumption has no effect on the advective contaminant flux through the
barrier, but it maintains the maximum possible diffusive flux of the contami-
nant. The instantaneous contaminant flux F, at any cross section of the barrier,
is given by

F D �vC� �D
∂C

∂x
�16.2.2�

where � is the porosity, v is the interstitial flow velocity, C is the contaminant
concentration, D is the dispersion coefficient (including molecular diffusion
and mechanical dispersion), and x is the longitudinal coordinate.

We may refer to differences between values of F at the entrance cross
section, where x D 0, and values of F at the exit cross section, where x D
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L. At the entrance cross section, the contaminant is subject to advection,
represented by the first term on the right-hand side of Eq. (16.2.2), as well
as dispersion, which is represented by the second term on the right-hand side
of Eq. (16.2.2). At the exit cross section, due to the assumption of Cex D 0,
the advective contaminant flux vanishes, and the contaminant is transported
solely by dispersion.

Even under unsteady-state conditions, the advective flux is assumed to
be kept constant at the entrance cross section of the barrier. On the other hand,
the dispersive flux gradually decreases, as noted above. Initially it is very large,
when the contaminant concentration gradient is large. On the other hand, at
the exit cross section the dispersive flux gradually increases from an initial
value of zero. Therefore calculation of steady-state conditions may provide an
estimate of the maximum contaminant flux that can be expected at the exit
cross section of the barrier. Of course, from a practical view point, it is also
appropriate to provide an estimate of the time period needed to develop the
maximum steady-state flux. For a conservative contaminant, under steady state
conditions the flux F is constant at every cross section of the barrier. Under
such conditions, Eq. (16.2.2) is obtained by direct integration of Eq. (16.2.1).
A further integration of Eq. (16.2.2) then gives

ln
[
K

(
F

�v
�C

)]
D vx

D
�16.2.3�

where K is an integration constant. Applying the boundary conditions of C D
Cen at x D 0, and C D 0 at x D L, then shows that

K D 1

F/�v �Cen
F D �vCen

1 � exp��vL/D�
�16.2.4�

The Peclet number of the barrier is defined by

Peb D vL

D
�16.2.5�

If Peb is high, then Eq. (16.2.4) can be approximated by

F ³ �vCen �16.2.6�

If Peb is very small, then Eq. (16.2.4) can be approximated by

F ³ �D
Cen

L
�16.2.7�

By introducing the expressions of K and F (Eq. 16.2.4) into Eq. (16.2.3),
the contaminant distribution in the barrier is found as

C D Cen

{
1 � exp[��v/D��L � x�]

1 � exp��Peb�

}
�16.2.8�
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For large values of Peb, this expression reduces to

C D Cen

{
1 � exp

[
�Peb

(
1 � L

x

)]}
�16.2.9�

For small values of Peb, we use the series expansion of the exponential terms
of Eq. (16.2.8) to obtain

C D Cen

(
1 � x

L

)
�16.2.10�

Also, if Peb is large, then steady-state conditions of contaminant transport
through the barrier are established after an approximate time period of

T ³ L

v
�16.2.11�

If Peb is small, then the time period required for the establishment of steady-
state conditions can be estimated using analytical solutions of the diffusion
equation.

16.2.3 Pump-and-Treat of Contaminated Groundwater

Following containment of a contaminated site, appropriate treatment tech-
nologies are generally needed to bring the site to full reclamation. Ground-
water of the contaminated site can be pumped into a treatment plant and
later reinjected into the aquifer. Sometimes the treated groundwater can be
used directly, mainly for irrigation purposes. A variety of treatment methods
are classified as in-situ treatment methods. These can sometimes be applied
without physical barriers. A common approach is to apply hydrodynamic
isolation approaches, rather than physical barriers, to contain the contami-
nated portion of the aquifer. Hydrodynamic isolation applies various types
of injection and extraction well combinations that do not allow the migra-
tion of groundwater from the contaminated site to neighboring aquifers. In
Fig. 16.4, schematics of two common options of hydrodynamic isolation are
shown.

Calculation of flow conditions in the two examples of Fig. 16.4 can be
done using potential flow theory and well hydraulics, as detailed in Chap. 11.
Each of these examples is associated with the separation of the aquifer flow
into two regions. One region incorporates mainly the fresh groundwater. The
other region incorporates a comparatively small portion of the fresh ground-
water flow and also the flow of contaminated groundwater. A well-defined
line of separation represents the interface between these two regions. The
schematic of Fig. 16.4 shows two examples of pumping of contaminated
groundwater for its possible treatment by conventional methods of waste
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Figure 16.4 Hydrodynamic isolation of a contaminated site: (a) isolation by a single
pumping well; and (b) isolation by a combination of a pumping well and an injection
well.
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treatment. Such an approach is called pump-and-treat. Hydrodynamic isola-
tion, incorporated with pump-and-treat, can be a comparatively inexpensive
method, which leads to gradual reclamation of the contaminated portion of
the aquifer.

To obtain high efficiency of the systems shown in Fig. 16.4, it is impor-
tant to avoid conditions of significant dispersion and mixing between the fresh
and contaminated groundwater. However, problems arise if contamination of
the aquifer is associated with significant sorption–desorption capacity onto the
soil of the aquifer. For example, in cases of soil contaminated with LNAPL,
then in the case described by Fig. 16.4a, groundwater is continuously contam-
inated by the residual adsorbed or entrapped material. It should be noted that
in cases of NAPL entrapment, different agents to enhance the remediation,
such as surfactants and nutrients for microbial activity, can be added to the
water injected into the aquifer. However, such materials should be chosen so
as not to cause other types of aquifer pollution.

If the contaminated site of Fig. 16.4b is rich with adsorbed or
entrapped contaminant, then injected water is subject to contamination
prior to its pumping by the pumping well. Figure 16.5 shows a schematic
of a pump-and-treat system, in which the aquifer is contaminated by
NAPL. Figure 16.5a illustrates a problem of contamination by LNAPL
where, due to seasonal and annual fluctuations of the groundwater, some
quantities of the LNAPL are entrapped within the top layers of the
aquifer. The flow induced by the pump-and-treat system is associated
with dissolution and solubilization of the entrapped NAPL, as well as
with penetration of the dissolved constituents into the deeper portions of
the aquifer. In the case described by Fig. 16.5b, DNAPL is entrapped
throughout the entire thickness of the aquifer. Induced groundwater flow
of the pump-and-treat system is associated with the dissolution of the
entrapped DNAPL.

Calculations of the performance of the pump-and-treat system shown
in Fig. 16.5 can be done using a conceptual one-dimensional flow model.
Under such conditions, the process of NAPL dissolution and mass transfer
from the entrapped NAPL ganglia to the flowing aqueous phase can be calcu-
lated using the approach presented in Sec. 11.5. The pump-and-treat system
of Fig. 16.5a then appears to be inefficient, as most of the induced ground-
water flow cannot be in contact with the entrapped LNAPL. Furthermore,
the induced groundwater flow enhances transverse dispersion, which leads to
penetration of dissolved constituents into deeper layers of the aquifer.

As an alternative, the pump-and-treat system of Fig. 16.6 is based on the
use of a single pumping well. The discharge of the well causes a drawdown
of the groundwater table and an associated cone of depression. The cone of
depression contains the lens of LNAPL and avoids the uncontrolled migration
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Figure 16.5 Examples of pump-and-treat systems: (a) aquifer contamination by
LNAPL; and (b) aquifer contamination by DNAPL.

of NAPL. The floating lens of LNAPL flows towards the pumping well in the
region of the cone of depression. Various techniques can then be applied to
collect the floating LNAPL in that region, by various types of membranes and
floating pumps.

Following the pumping of the contaminated groundwater, it must be
treated. The appropriate treatment of the extracted groundwater depends on
the type of contaminant. In cases of inorganic contaminants, precipitation is an
attractive treatment method. Precipitation is governed by the pH value, which
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Figure 16.6 Containment of the LNAPL lens by a single pumping well.

may be adjusted by adding lime to the treatment stream. Sometimes aeration of
metals creates salts with faster precipitation. Dissolved organic materials can
be removed by air stripping. Organic compounds, which have low volatility,
cannot be removed efficiently by air stripping. Instead, they can be sorbed
onto activated carbon. Other compounds can be treated by biological methods
similar to the treatment of domestic wastes.

16.2.4 In-Situ Remediation

In various cases, remediation by pump-and-treat is not feasible or is not the
optimal method. For example, when a volatile organic compound is spilled
into the unsaturated zone, it partitions between the liquid and vapor state. The
vapors may migrate through the vadose zone and accumulate in underground
structures like basements, where they pose a threat of fire or explosion. In such
cases soil-vapor extraction (SVE) methods can provide an appropriate measure
of in-situ remediation. According to these methods, wells are installed in the
vadose zone and are used to pump air and vapor. Other SVE systems may
incorporate air injection wells and air-vapor extracting wells. Such systems
can also be used if the contaminant volatility is comparatively low. In such
cases the injected humid air enhances the bioactivity and in-situ bioreme-
diation. These kinds of systems are sometimes referred to as air-sparging
systems.
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16.3 BIOREMEDIATION

As indicated in the previous sections, biological activity may comprise a signif-
icant part of the remediation procedure. On-site bioremediation is based on
excavation of the contaminated soil, and its placement in bioreactors, into
which air, water, and nutrients are injected to promote the biological activity.
Many engineers and practitioners claim that in most cases the best approach
for bioremediation is to enhance the development of the local indigenous
microorganism population. Others claim that specially acclimated microor-
ganisms may produce better results. As indicated in the previous section,
biological activity can enhance the pump-and-treat approach if the injection
wells provide water rich in air and nutrients, in addition to possible surfactants
(emulsifiers), which enhance the solubilization and dissolution of entrapped
NAPL. Biological activity also can play a significant role in air sparging and
other soil vapor extraction procedures.

16.3.1 Basic Concepts and Definitions

Bioremediation is based on the biochemical reactions leading to degradation
of the contaminant. Usually, bioremediation is considered for application in
cases of degradation of entrapped NAPL, since removal of the NAPL is very
difficult. In general, the organic compound is subject to an oxidation reaction,
in which it loses electrons. An electron acceptor, which is subject to a reduction
reaction, participates in the oxidation reaction and it gains electrons. If the
electron acceptor is oxygen, then the oxidation of an organic compound is
called aerobic heterotrophic respiration. If oxygen is not available (anoxic, or
anaerobic conditions), then anaerobic microorganisms use an alternate electron
acceptor.

Several definitions are useful for the classification of microorganisms
involved in bioremediation. With regard to concentration of organic carbon
in the environment, obligotrophic organisms are most active in cases of low
concentration of organic carbon. Eutrophic organisms are active in cases of
high concentration of organic carbon. Regarding the particular nutritional basis
of the organisms, chemotrophic organisms capture energy from the oxidation
of organic or inorganic materials, autotrophic organisms synthesize their cell
carbon from CO2, and heterotrophic organisms require a source of organic
carbon.

The organic compound subject to degradation may be a primary
substrate for the microorganism, provided that it is a source of energy
and carbon. In cases where the compound to be degraded is not a primary
substrate, provision of a primary substrate may be needed. Then, the degrading
compound may be considered as a secondary substrate. A secondary substrate
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usually cannot provide sufficient energy for sustaining the microorganisms,
but its degradation, in the presence of the primary substrate, can provide some
important compounds for microorganism growth.

Biodegradation of a contaminant organic compound can be feasible,
provided that the following six basic requirements are satisfied:

1. Presence of the appropriate organisms. In general, enhancement
and development of indigenous microorganisms that are capable
of degrading the organic contaminant is recommended, although
specialized microorganisms acclimated to a particular contaminant
or environmental condition may be required.

2. Primary substrate. This is the energy source for the microorganisms.
The organic contaminant can be either the primary or secondary
substrate. The primary substrate is transformed into inorganic
carbon, energy, and electrons.

3. Carbon source. About 50% of the microorganism dry weight is
composed of carbon. Organic chemicals serve as sources of energy
and carbon.

4. Electron acceptor. For the oxidation–reduction process, an electron
acceptor is required. Typical electron acceptors are oxygen, nitrate,
and sulfate.

5. Nutrients. Nutrients required for the growth of the microorganisms
include nitrogen, phosphorous, calcium, magnesium, iron, and trace
elements. These elements are needed for growth of the microor-
ganism cell.

6. Acceptable environmental conditions. Such conditions include
humidity, temperature, pH, salinity, hydrostatic pressure, radiation,
and absence of toxic materials.

16.3.2 Kinetics of Biodegradation

The simplest model usually used for the general expression of rate of growth
of any population is

dx

dt
D �x �16.3.1�

where x is the size of the population and � is the growth rate coefficient for
the population. The growth of microorganisms in a limited environment such
as an aquifer is schematically shown in Fig. 16.7. This figure indicates that the
rate of growth in such an environment is subject to changes with the size of the
population. One of the most useful models used to describe microorganism
population growth in a closed environment is the logistic model, which is
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Figure 16.7 Growth curve for microorganisms in a limited environment.

given by

dx

dt
D �maxx

(
1 � x

xf

)
�16.3.2�

where �max is the maximum growth rate and xf is the maximum popula-
tion size.

Phases of Microorganism Population Growth

According to Fig. 16.7 and Eq. (16.3.2), the following phases of population
growth can be defined in a limited environment:

1. Lag phase. In this phase the microorganism population size
is extremely small and there is no discernible increase in
population size.
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2. Acceleration phase. This phase shows the beginning of a gradual
increase in the population rate of growth.

3. Exponential phase. In this phase the rate of growth obtains its
maximum value. According to Eq. (16.3.1), the microorganism
population size is significantly smaller than its maximum value, and
the population size is subject to exponential growth.

4. Retardation growth. In this phase the rate of growth of the population
starts to decline, as the maximum population is approached.

5. Maximum population phase. In this phase the microorganism popula-
tion is metabolically active, but the population size is kept constant.
For this phase, x D xf.

6. Death phase. In this phase the population size decreases due to
lack of substrate, the accumulation of toxins, or other phenomena.
It should be noted that the logistic model of Eq. (16.3.2) cannot
describe the death phase, as it considers only effects of the size of
the population on its rate of growth.

Various types of kinetic expressions may be useful for the prediction of
rates of biodegradation of organic contaminants in aquifers. Such expressions
refer to the effect of substrate availability, as well as other limiting factors, on
the rate of growth of the microorganisms. A common approach is the Monod,
or Michaelis–Menton kinetic expression,

� D �max
Cs

Ks C Cs
�16.3.3�

where Cs is the concentration of the growth-limiting substrate. The coefficient
Kc is called the half-saturation constant and is defined as the growth-
limiting substrate concentration that allows the microorganisms to grow
at half the maximum specific growth rate. A low value of Kc indicates
that the microorganism is capable of growing rapidly in an environment
with low concentration of the growth-limiting substrate. If several growth-
limiting substrates should be considered, then the concentrations and half-
saturation constants of all growth-limiting substrates should be incorporated
in Eq. (16.3.3) by products of terms similar to that of Eq. (16.3.3). Usually,
besides the organic substrate, it is appropriate at least to consider oxygen as
another growth-limiting substrate.

In the limiting case of Cs × Kc, Eq. (16.3.3) yields

� D �max �16.3.4�

When this occurs, the reaction is called a zero-order reaction. Alternatively,
in the limiting case of Cs − Kc, Eq. (16.3.3) yields

� D �max

Kc
Cs �16.3.5�
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This is called a first-order reaction, with the first-order rate constant given by
�max/Kc.

If we let M represent the microbial mass per unit of groundwater volume
and Y the amount of organism mass formed for each unit of substrate mass
utilized (this is called the yield coefficient), then the change in substrate
concentration can be expressed as

dCs

dt
D �maxMCs

Y�Kc C Cs�
�16.3.6�

The ratio between �max and Y represents the maximum contaminant utilization
rate per unit mass of microorganisms.

Equation (16.3.6) should be accompanied by the equation of biological
mass transport, growth and decay,

dM

dt
D �maxMY

Cs

Kc CCs
� bM �16.3.7�

where b is a first-order decay coefficient, representing cell death.

16.3.3 Modeling of Biodegradation

The foregoing relations give expressions for the effect of organisms on the
decrease of the organic substrate concentration and the effect of the decrease of
the substrate mass on the growth of the microorganism mass, under conditions
of no limiting supply for all nutrients. However, in a real aquifer, there is
usually a limiting supply of at least one of the growth nutrients, and the organic
substrate, as well as the limiting growth nutrient and microorganisms also, are
subject to transport by advection and dispersion. Using the expressions for
Monod kinetics, all of these effects may be combined as

Rc
∂C

∂t
C r Ð �vC� D r Ð �DrC�� Mt�max

Y

C

Kc CC

G

KG CG
�16.3.8�

∂G

∂t
C r Ð �vG� D r Ð �DrG�� Mt�max

Y
F

C

Kc CC

G

KG CG
�16.3.9�

Rm
∂Ms

∂t
C r Ð �vMs� D r Ð �DrMs��Mt�maxRmY

C

Kc CC

ð G

KG CG
CKcYCO � bRmMs �16.3.10�

where C is the contaminant concentration, G is the concentration of the
limiting growth nutrient (usually oxygen), D is the dispersion coefficient, v is
the interstitial groundwater velocity, Rc is the retardation coefficient for the
contaminant, Ms is the concentration of microorganisms in solution, Mt is the

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



total concentration of microorganisms, Rm is the microbial retardation factor
(Mt D RmMs), Y is the microbial yield coefficient, Kc is the half-saturation
constant, KG is the half-saturation constant of the limiting growth nutrient, CO

is the concentration of the natural organic carbon, F is the ratio of limiting
growth nutrient to hydrocarbon consumed, and b is the microbial decay rate.

The set of Eqs. (16.3.8)–(16.3.10) considers that the organic
contaminant and oxygen are the growth-limiting substrates. Prior to using
these three differential equations, flow conditions in the domain should
be evaluated using the appropriate flow equations. The solution of the
set of Eqs. (16.3.9)–(16.3.11) requires a complicated numerical scheme.
Furthermore, in various cases it is sufficient to use kinetics models simpler
than the Monod expressions. For example, the first-order kinetics model is
seen as a simplification of Monod kinetics and results in an exponential decay
rate. With this model, the concentration of the organic contaminant is given by

C D Cin exp��kt� �16.3.11�

where Cin is the initial concentration of the contaminant and k is the rate of
decrease of the contaminant concentration.

Another simplified model is the instantaneous reaction model, which
assumes that microbial biodegradation kinetics are very fast in comparison
with transport of oxygen. Thus all biochemical reactions of biodegradation,
such as growth of microorganisms, utilization of oxygen, and utilization of the
organic contaminant, are considered as reactions between the organic contam-
inant and oxygen. The basic assumption of the instantaneous model implies
that the rate of utilization of the organic contaminant and oxygen by the
microorganisms is very high, and the time period required to mineralize the
contaminant is very small. For this case, biodegradation can be calculated
according to

CR D �G
F

�16.3.12�

where CR is the change in contaminant concentration owing to the biodegra-
dation process, G is the concentration of oxygen, and F is the ratio of oxygen
to consumed organic contaminant.

Numerical models currently in use usually apply either some form of
the Monod kinetics, or a form of a simplified kinetics. However, besides the
basic model given by the set of differential equations above (16.3.8–16.3.10),
some additional conceptual models have been applied to describe the process
of degradation of an organic contaminant by microbial activity. Two such
conceptual models are discussed below; (a) the biofilm model and (b) the
microcolony model.
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16.3.4 The Biofilm Model

Figure 16.8 represents a schematic of the idealized conceptual biofilm model.
This model assumes the development of a biofilm, comprising a homogeneous
matrix of bacteria, whose extracellular polymers bind them together and to the
solid surface. The biofilm is of uniform cell density Xf and locally uniform
thickness Lf. Groundwater, flowing in the x-direction, carries the substrates.
Substrates are transported from the water to the biofilm in the z-direction
through a mass diffusion layer of thickness L.

Following the arrival of the substrates to the biofilm, they are subject to
(a) molecular diffusion through the biofilm and (b) utilization by the bacteria
according to some relation, such as Monod kinetics. If steady-state conditions
are established in the domain shown in Fig. 16.8, then

Df
d2Cf

dz2
D kXfCf

Ks C Cf
�16.3.13�

Figure 16.8 Schematic of the biofilm model.
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where Cf is the concentration of the growth rate limiting substrate at a point
within the biofilm, Df is the molecular diffusivity of the substrate within
the biofilm, k is the maximum specific rate of substrate utilization by the
microorganisms, Ks is the Monod half maximum rate concentration, and z is
the coordinate normal to the biofilm surface.

Under steady-state conditions, the substrate flux arriving at the biofilm
surface is given by

J D �DdCs

dz
D D

Cs � Csurf

L
�16.3.15�

where J is the flux of the growth rate limiting substrate crossing the diffusion
layer, D is the diffusivity of the diffusion layer, and Csurf is the substrate
concentration at the surface of the biofilm.

The processes described by Eqs. (16.3.13) and (16.3.14) should be
matched at the biofilm surface. Figure 16.9 shows the profile of the substrate
distribution in the diffusion layer and in the biofilm. Depending on the
thickness of the biofilm, it is possible that layers of the biofilm close to the
solid surface are subject to a very low supply of the substrate.

16.3.5 Microcolony Modeling

According to the microcolony model, the microorganisms develop in micro-
colonies, represented as disks of uniform radius and thickness, which attach
to the solid surfaces of the porous medium. Through a diffusion layer which
surrounds the colony, the substrate and oxygen are transported to the colony.

Figure 16.9 Distribution of the substrate in the diffusion layer and in the biofilm.
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Microcolony modeling for two and three-dimensional domains have been
developed. However, presently, most commercial computer codes apply some
simplified approaches, which require smaller resources of computation.

16.4 REMEDIATION OF SURFACE WATERS

Remediation of surface waters involves some of the same issues as for ground-
water. For instance, the first step in cleaning up a contaminated site is to deter-
mine whether there is a continuing source of contamination. This is sometimes
not easy to do, especially in cases where sediments are contaminated. Unlike
groundwater, surface waters usually are able to recover naturally on shorter
time scales, particularly when there is a significant flow of water through
the system. Because surface waters are usually (hydraulically) connected with
other water bodies, and because there may be multiple uses for a particular
water body of concern, remediation alternatives must be carefully thought
out before any action is taken. It is normal to use water quality modeling to
evaluate the effects of different remediation options when making manage-
ment decisions. Models that attempt to simulate entire ecosystems also have
been used. These models range in complexity, both in terms of spatial and
temporal resolution and also in terms of the sophistication of their chemical
and/or biological components. However, they all incorporate some description
of transport (i.e., the advection–diffusion equation introduced in Chap. 10)
and chemical and biological reactions that control the distribution of specific
state variables of interest.

The usual remediation options for surface waters include cessation or
limitation of one or more sources, artificially altering the physical or chem-
ical environment, and physically removing in-place sources of contaminants.
Contaminants may enter a system through both point and nonpoint sources.
A point source is one that occurs at a specific location, such as a sewage
treatment plant outfall, while a nonpoint source is distributed. An example of
a nonpoint source is direct runoff into a river from an agricultural field that
may have been treated with pesticides. Examples of remediation by altering
the environment include adding lime to lakes that have become highly acidic
due to acid rain, and mixing the water column to eliminate stratification.
This latter approach has been followed, for instance, in the Charles River of
Boston, Massachusetts, where bubblers inject air at the bottom of the river
to mix the benthic waters upward and also to add oxygen and prevent anaer-
obic conditions from developing. In-place contaminants are usually associated
with bottom sediments, which have collected pollutants during many years of
industrial activity and disposal into surface waters. Even after direct discharges
have been stopped, contaminated sediments may continue to act as a source
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of pollution for the overlying water for many years, introducing contaminants
each time resuspension occurs. This is a significant problem in the Great
Lakes basin of North America, and choices must be made to decide whether
it is better to leave the sediments as they are, to be eventually covered over
by “clean” material by natural sedimentation, or to remove the contaminated
solids by dredging. When dredging is used, other problems must be addressed,
concerning proper handling and disposal of the dredged material.

As a simple example of application of a water quality model to address a
remediation question, consider a lake with one inlet and one outlet, as sketched
in Fig. 16.10. An industry just upstream of the inlet discharges a waste stream
into the river, so that the inflow concentration of a particular chemical of
concern is Cin. For this example, the lake is considered to be fully mixed,
with initial concentration C0. The chemical decays with first-order decay rate
k, and it is assumed that it does not settle or volatilize. The differential equation
describing the concentration of the chemical in the lake is

dC

dt
D Q

8 �Cin �C�� kC �16.4.1�

where Q is the flow rate (inflow and outflow rates are assumed to be equal, so
that the volume remains constant) and 8 is the volume of the lake. The ratio
of Q/8 is called the retention rate, and its inverse is called the retention time,

tr D 8
Q

�16.4.2�

This is a measure of the average length of time a parcel of fluid remains within
the lake.

Now suppose that it is desired to examine the response of the lake
concentration to a step change in inflow concentration. In particular, suppose
it is desired to know how long it would take for the concentration to fall
to a level C1, if Cin is reduced to zero. Setting Cin D 0 in Eq. (16.4.1) and

Figure 16.10 Schematic for problem in which a lake has one inlet and one outlet.
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integrating, along with the initial condition that C D C0 at t D 0, gives

C D C0 exp
[
�

(
Q

8 C k

)
t

]
�16.4.3�

Or, setting C D C1 and solving for t, we have

t D �
(
Q

8 C k

)�1

ln
C1

C0
�16.4.4�

As should be expected, the required time is shortened for faster reaction rates
and for higher through-flow rates (smaller tr), which increases the rate of
dilution.

The above problem is an example of a one-box or fully mixed reactor
model, since only the mean concentration in the lake was considered. A slightly
more complicated example may be imagined in which there is interaction
between a particular water body of concern and another water body, as shown
in Fig. 16.11. This figure shows a bay in a large lake or coastal region. There

Figure 16.11 Schematic for problem set up for chemical interactions between a bay
and a large lake or coastal area.
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is a river discharging to the bay, and there may also be groundwater and
direct runoff sources. The boundary between the bay and the rest of the lake
is relatively long, and the flow patterns along it may be quite complicated.
For a steady state, of course, there must be a net flow out of the bay, equal
to the river flow and any distributed inflows. However, along the boundary
with the rest of the lake there could be regions where there is flow into the
bay, and other areas where flow is outward. Even if there were no inflow to
the bay from point or non-point sources, this complicated flow pattern at the
boundary results in some transport of materials between the bay and the rest
of the lake.

In keeping with a box-type approach, one concentration is used to
describe the chemical of concern in the bay. Without solving a detailed hydro-
dynamic model to specify the flow field exactly, all of the transport across
the boundary with the rest of the lake that is not associated with advective
flows is lumped into a dispersion-type term. As in Chap. 10, dispersion flux is
written in terms of the product of a dispersion coefficient and the concentration
gradient, or

Fd D �EdC
dx

¾D �EC� C1
L

�16.4.5�

where Fd is the flux due to dispersion, E is the dispersion coefficient, C is
the concentration in the bay, C1 is the concentration in the lake, and L is
a characteristic distance between the regions where the concentration is C
and where it is C1 (see Fig. 16.11). A reasonable estimate for L is half the
distance across the bay, in the offshore direction. The equation describing
changes in concentration in the bay may then be written as

dC

dt
D 1

8
[(∑

QinCin �C
∑

Qin

)
� Eb�C�C1�

]
� kC �16.4.6�

where the summations are taken over all point and nonpoint sources of flow
into the bay (along the shoreline), k is again a first-order decay rate, and
Eb D EA/L, where A is the area of the boundary between the bay and the rest
of the lake. The parameter Eb is sometimes called the dispersivity, although
it should be noted that it does not have the same units as the dispersion
coefficient. Often, Eb is calibrated to site data and it may be considered as a
fitting parameter.

Most water quality models of large water bodies use box-type or
segment-type approaches as illustrated in the foregoing examples, rather than
solving the advection–diffusion equation directly. This is partly because of
computer resources and the desire for computational speed and also because
more detailed spatial and temporal resolution is rarely justified in the model,
since data are generally sparse at best. In other words, there may be only a
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few measurements available to characterize a large body of water, so that it
is difficult fully to calibrate a given model, and it is not very meaningful to
generate model output for spatial and time resolutions that cannot be checked
with data. Water quality models also may involve a relatively large number of
reaction equations, to describe the evolution of a number of chemical and/or
biological species in the system, and they may be run for very long simulation
times, perhaps as much as 50 to 100 years. Thus the choice is usually made
to sacrifice some temporal and spatial resolution, in order to incorporate more
chemical and biological features and to enable calculations to be performed
for reasonable run times.

For smaller systems such as a river reach, it may be possible to develop
models based on direct solutions to the advection–diffusion equation, although
again, the question of data availability should be considered. For any system,
development of a water quality model should be undertaken while considering
the management questions that are being asked, as well as the data availability
and the characteristics of the system itself. Equations (16.4.1) and (16.4.6) are
simple examples of models that might be used to evaluate remediation options,
and they can serve as the starting point for more involved models. In addition
to a simple first-order reaction, interactions with sediments may be considered
(Sec. 15.6), as well as reactions at the air water interface (Secs. 12.4 and 12.5).
The level of detail in the hydrodynamic description of the system also may be
increased significantly, including both the velocity field and the temperature
distribution, with associated effects of stratification (Chap. 13).

No matter what level of detail is used, it is clear that development of
models necessary for evaluation of remediation options involves application of
many of the ideas and principles described in this text. The specific problem to
be addressed will dictate which material needs to be incorporated. Because of
the complexity of most systems, computer models will continue to be used for
the foreseeable future, and it is expected that successively more detailed and
inclusive models will be developed, until eventually we will be able to model
entire ecosystems. With advances in computer technologies, the main limita-
tion for such development will most likely be appropriate data acquisition, for
both model development (process representation) and calibration/verification.

PROBLEMS

Solved Problems

Problem 16.1 Consider a barrier of length L, hydraulic conductivity K,
diffusion–dispersion coefficient D, retardation factor R, and porosity �. The
barrier separates a freshwater aquifer from a portion of the aquifer contami-
nated by a radioactive material with a decay coefficient �. Initially the barrier is
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saturated with freshwater. The head difference between the entrance and exit
of the barrier is h. Develop a finite difference implicit numerical scheme
for the solution of Eq. (16.2.1), by which the migration of the radioactive
contaminant through the barrier can be simulated.

Solution

The aquifer flow velocity, V, is given by

V D �K
�

dh

dx
D K

�
h �1�

where h is the local piezometric head of the barrier and x is the longitudinal
direction. We apply a backward finite difference approximation for the advec-
tion term and a central difference for the diffusion term of Eq. (16.2.1) to
obtain

R
CnC1
i �Cni
t

C V
CnC1
i � CnC1

i�1

x

D D
CnC1
iC1 � 2CnC1

i C CnC1
i�1

�x�2
� �CnC1

i �2�

Rearranging to group similar terms for the concentration values then gives

� CnC1
i�1

[
Dt

�x�2
C Vt

x

]
C CnC1

i

[
RC �t C 2Dt

�x�2
C Vt

x

]

�CnC1
iC1

[
2Dt

�x�2

]
D RCni �3�

The numerical scheme represented by Eq. (3) is unconditionally stable.
Equation (3) represents a set of linear algebraic equations, whose coefficients
form a tridiagonal matrix. The solution of these equations can be performed
using the Thomas algorithm.

Problem 16.2 Consider an aquifer contaminated by entrapped benzene. At a
given location, downstream of the benzene entrapment, the dissolved benzene
concentration is 11 mg/L. Biodegradation takes place in the aquifer, and it
is assumed that 9 mg/L of oxygen is available for utilization by the micro-
organisms, over a time period of 12 days.

(a) Assuming that 3 mg/L of oxygen is required to biodegrade 1 mg/L
of the contaminant, apply the instantaneous reaction expression to provide an
estimate of anticipated reduction in benzene concentration due to the presence
of 9 mg/L of oxygen.

(b) Repeat the calculation of (a), but apply the Monod kinetic expression,
while assuming an oxygen half-saturation constant of 0.1 mg/L, a benzene half
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saturation constant of 22.6 mg/L, a maximum utilization rate of 9.3/day-mg,
and a microorganism population of 0.05 mg/L.

(c) Repeat the calculation of part (a), but apply a first-order decay expres-
sion, while assuming a half-life for benzene of 5 days.

Solution

(a) Since 9 mg/L of oxygen is available, and 3 mg/L are used for every 1 mg/L
degraded, the reduction in benzene, RB, is given by

RB D 9

3
D 3 mg/L

and the resulting benzene concentration is

CF D 11 � 3 D 8 mg/L

(b) According to Monod kinetics, Eq. (16.3.3), the benzene reduction is

RB D 9.3 ð 11

11 C 22.6
ð 9

9 C 0.1
ð 0.052 ð 12 D 1.83 mg/L

The resulting benzene concentration is

CF D 11 � 1.83 D 9.17 mg/L

(c) For a first-order decay expression, we first need to find the decay
coefficient of benzene. This is done using the given information for the half-
life, as follows:

dC

dt
D �kt H) C

C0
D e�kt

where k is the first-order decay rate. Knowing that C/C0 D 0.5 when t D
5 days then allows a solution for k, as

k D � ln�0.5�

5
D 0.693

5
D 0.1386 day�1

The resulting benzene concentration is then found by substituting back into
the first-order decay equation, for t D 12 days:

CF D 11 exp��1.66� D 2.08 mg/L

Thus relatively different predictions are obtained using these three different
models.

Problem 16.3 Consider a small lake with one inflow and one outflow, as
sketched in Fig. 16.10. The inflow and outflow rates are not necessarily equal,
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nor are they constant. The average inflow and outflow rates on a monthly
basis, along with the average monthly inflow concentration of a contaminant
of interest, are shown in the first three columns of the spreadsheet below.
Values for Q are in m3/s and C is in mg/L. If the contaminant decays with
rate 0.05 day�1 and the concentration in the lake is 35 mg/L on January 1,
calculate the concentration at the end of the year. The lake volume on January
1 is 108 m3. Assume fully mixed conditions and no other sources or sinks.

Solution

First, it should be noted that Eq. (16.4.1) cannot be used directly, since inflow
and outflow rates are not equal, nor are they constant. Instead, we write a
modified version of this equation that still expresses a basic mass balance
statement for the contaminant that can be applied for each month, during
which the flow rates and inflow concentrations are assumed to be constant.
Setting the rate of change of contaminant mass equal to the difference between
what flows in and what flows out, and accounting for decay, we have

dCi

dt
D 1

8i
[�QinCin�i � QiCi] � kCi �1�

where the subscript i indicates the time period (month). Since the concentration
changes throughout the month, it is not clear which value should be used for
the outflow and decay terms on the right-hand side of Eq. (1). However,
a reasonable value is the average at the beginning and end of the month.
Of course, the value at the end of the month is unknown, so this must be
calculated in an iterative manner. The same idea holds also for the volume,
except that the volume in each time period is known, so that the average can
be used directly.

There are a number of ways to solve this problem; here, we use a
spreadsheet, as shown below. It is convenient to rearrange Eq. (1) as

Ci D ti

{
�QinCin�i

8i
�Ci

(
Qout

8 � k

)
i

}
�2�

where 8i is the average volume in period i and Ci is the average concentration.
Note that t also has a subscript, to account for the different numbers of days
in different months. In the spreadsheet table below, “Del V” is the change
in volume during the month, which is calculated from the difference between
inflow and outflow rates. Avg. V is the average volume, taken as the volume
at the beginning of the month plus half of Del V. Ctry is the guessed value for
the new average concentration, which is input and must be iterated until there
is convergence for the final value for C. dC1 is the change in concentration
calculated according to Eq. (2), and C1 is the final concentration, which is
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the sum of the value of C from the previous time step and dC1. Cavg is the
average of C1 from the previous and the present time steps and should be
equal to Ctry. Basically, values of Ctry are varied until Cavg is equal to Ctry,
at which point the iterations are completed and the calculation moves to the
next time step. The final answers are then in the C1 column.

Qin Qout Cin Del V Avg. V Ctry dC1 C1 Cavg

Jan. 200 195 15 13392000 106696000 12.4699 �5.06051 9.939489 12.46974
Feb. 180 178 10 4838400 109115200 8.1382 �3.60256 6.33693 8.13821
Mar. 350 345 25 13392000 115811200 18.652 24.63048 30.96741 18.65217
April 500 480 35 51840000 141731200 31.1099 0.28534 31.25275 31.11008
May 350 362 32 �32140800 125660800 26.7382 �9.02969 22.22306 26.73791
June 170 175 50 �12960000 119180800 31.1125 19.77962 42.00268 32.11287
July 100 110 45 �26784000 105788800 31.245 �21.5151 20.48763 31.24515
Aug. 25 35 30 �26784000 92396800 13.7396 �13.4953 6.992327 13.73998
Sept. 40 40 45 0 92396800 13.951 13.9141 20.90643 13.94938
Oct. 100 98 40 5356800 95075200 24.4815 7.150793 28.05722 24.48183
Nov. 140 136 27 10368000 100259200 21.9268 �12.2607 15.79655 21.92689
Dec. 155 153 18 5356800 102937600 13.8345 �3.92389 11.87266 13.83461

Unsolved Problems

Problem 16.4 Consider the steady-state distribution of a radioactive contam-
inant in a barrier. Assume that at the barrier entrance the contaminant concen-
tration is C0. At the exit of the barrier, the contaminant distribution vanishes.
The retardation factor is R, the flow velocity is V, the dispersion coefficient
is D, and the decay rate is �.

(a) Derive the analytical solution of Eq. (16.2.1) for steady-state condi-
tions.

(b) Use the solution from part (a) to determine the contaminant distri-
bution along the barrier.

(c) Determine the conditions needed to assure that there is zero contam-
inant flux across the exit of the barrier.

Problem 16.5 For the conditions specified in problem 16.4, assume R D
1.5, h D 1 m, L D 3 m, K D 10�3 m/d, D D 10�8 m2/s, and the half-life of
the radioactive contaminant is t1/2 D 10 yr. Also assume that at the barrier
entrance the contaminant concentration is C0 D 2 ppm. At the exit of the
barrier, as before, the contaminant concentration vanishes.

(a) Apply the numerical scheme of problem 16.1 to simulate the buildup
of the contaminant concentration profile, until steady-state conditions are
established. Plot several distributions showing the approach to the steady state.
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(b) Determine the length of the barrier that is required to avoid any
contaminant flux at the barrier exit. Compare your result with the analytical
solution obtained in problem 16.4.

Problem 16.6 Consider an infinite aquifer with uniform flow velocity U and
porosity �. A portion of the aquifer with width, b, measured in the direction
perpendicular to the aquifer flow, is contaminated by entrapped NAPL. Apply
the potential flow superposition of a uniform flow and a negative source, to
suggest an appropriate location for a pumping well that collects the contam-
inated flowing groundwater. Consider the pumping well discharge versus the
distance between the pumping well and the contaminated region. Provide an
estimated time interval, over which the pumping well still supplies freshwater.

Problem 16.7 Consider the same situation as described in problem 16.6,
except that two wells are used, an injection well and a pumping well. Again,
apply potential flow theory to suggest possible locations for the wells and
estimate the time over which the pumping well still supplies fresh water.

Problem 16.8 In problem 16.3 a spreadsheet approach was demonstrated
for solving the problem of calculating the time variation of concentration in a
lake with variable inflow and outflow conditions. However, it may be noticed
that in March, the concentration at the end of the month is calculated to be
greater than either the concentration at the beginning of the month or the
inflow concentration. What is the problem? Develop a modified approach that
resolves this problem.

Problem 16.9 Consider a small lake with one stream flowing in and one
stream flowing out, as sketched in Fig. 16.10. The inflow concentration of a
contaminant of interest and flow rate records, along the with the outflows, are
shown in the table. Concentrations are in mg/L and flow rates are in m3/s. If
the initial lake volume is 5 ð 107 m3 and the concentration on January 1 is
10 mg/L, calculate the concentration at the end of the year. The contaminant
decays with first-order rate 0.02 day�1.

Jan. Feb. Mar. April May June July Aug. Sept. Oct. Nov. Dec.

Cin 10 8 15 22 20 23 18 15 12 8 7 8
Qin 105 110 135 140 120 88 55 32 47 73 86 98
Qout 103 109 128 133 128 96 63 38 45 67 84 95

Problem 16.10 Consider a lake with one inlet and one outlet and no other
significant sources or sinks of flow or of contaminant. The annual average
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inflow and outflow rates are 500 m3/s, and the annual average lake volume is
1010 m3.

(a) What is the mean retention time in the lake, in days?
(b) If the contaminant concentration in the inflow is 100 mg/L and the

first-order decay rate is 0.5 day�1, what is the steady-state concentration in
the lake? Assume well-mixed conditions.

(c) Assuming that the lake is at steady state with regard to the chemical
concentration, calculate the time required for the lake to reach 10% of the
steady-state concentration if the inflow concentration is reduced to zero.

(d) How long would it take for the lake to reach a new steady-state
condition if, starting at the original steady-state condition of part (b), the inflow
concentration is reduced to 10% of the original steady-state concentration?

Problem 16.11 It is proposed to decrease the turbidity of a small pond by
filtering the very fine sediment that is causing the turbidity (the sediment is
sufficiently fine that it has a negligible settling velocity). It is assumed that
the pond water is well mixed. The water is to be pumped out, passed through
a filter, and returned to the pond. With each pass through the filter, 80% of
the sediment is removed. Calculate the times required to reduce the sediment
concentration to 25% of the initial value using pumping rates corresponding
to retention times of (a) 1 day, (b) 2 days, (c) 5 days, and (d) 10 days.

Problem 16.12 In Eq. (16.4.6), explain the implication of taking the second
summation over all the inflows to the bay. In other words, what is the implicit
assumption that has been used?

Problem 16.13 Under steady-state conditions of a well-mixed bay in a large
lake or coastal area, with no inflows to the bay and no net flow across the
bay/lake interface, what can you say about the relative magnitudes of concen-
tration of any tracer, in the bay and outside the bay?
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