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Preface 

The high cost and questionable supply of many materials, land and other resources, 
together with the sophisticated analysis and manufacturing methods now available, 
have resulted in the construction of many highly stressed and lightweight machines 
and structures, frequently with high energy sources, which have severe vibration 
problems. Often, these dynamic systems also operate under hostile environmental 
conditions and with minimum maintenance. It is to be expected that even higher 
performance levels will be demanded of all dynamic systems in the future, together 
with increasingly stringent performance requirement parameters such as low noise 
and vibration levels, ideal control system responses and low costs. In addition it is 
widely accepted that low vibration levels are necessary for the smooth and quiet 
running of machines, structures and all dynamic systems. This is a highly desirable 
and sought after feature which enhances any system and increases its perceived quality 
and value, so it is essential that the causes, effects and control of the vibration of 
engineering systems are clearly understood in order that effective analysis, design and 
modification may be carried out. That is, the demands made on many present day 
systems are so severe, that the analysis and assessment of the dynamic performance 
is now an essential and very important part of the design. Dynamic analysis is 
performed so that the system response to the expected excitation can be predicted 
and modifications made as required. This is necessary to control the dynamic response 
parameters such as vibration levels, stresses, fatigue, noise and resonance. It is also 
necessary to be able to analyse existing systems when considering the effects of 
modifications and searching for performance improvement. 

There is therefore a great need for all practising designers, engineers and scientists, 
as well as students, to have a good understanding of the analysis methods used for 
predicting the vibration response of a system, and methods for determining control 
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system performance. It is also essential to be able to understand, and contribute to, 
published and quoted data in this field including the use of, and understanding of, 
computer programs. 

There is great benefit to be gained by studying the analysis of vibrating systems 
and control system dynamics together, and in having this information in a single 
text, since the analyses of the vibration of elastic systems and the dynamics of control 
systems are closely linked. This is because in many cases the same equations of motion 
occur in the analysis of vibrating systems as in control systems, and thus the techniques 
and results developed in the analysis of one system may be applied to the other. It 
is therefore a very efficient way of studying vibration and control. 

This has been successfully demonstrated in my previous books Vibration Analysis 
and Control System Dynamics (1981) and Vibrations and Control Systems (1988). 
Favourable reaction to these books and friendly encouragement from fellow 
academics, co-workers, students and my publisher has led me to write Engineering 
Vibration Analysis with Application to Control Systems. 

Whilst I have adopted a similar approach in this book to that which I used 
previously, I have taken the opportunity to revise, modify, update and expand the 
material and the title reflects this. This new book discusses very comprehensively the 
analysis of the vibration of dynamic systems and then shows how the techniques and 
results obtained in vibration analysis may be applied to the study of control system 
dynamics. There are now 75 worked examples included, which amplify and demon- 
strate the analytical principles and techniques so that the text is at the same time 
more comprehensive and even easier to follow and understand than the earlier books. 
Furthermore, worked solutions and answers to most of the 130 or so problems set 
are included. (I trust that readers will try the problems before looking up the worked 
solutions in order to gain the greatest benefit from this.) 

Excellent advanced specialised texts on engineering vibration analysis and control 
systems are available, and some are referred to in the text and in the bibliography, 
but they require advanced mathematical knowledge and understanding of dynamics, 
and often refer to idealised systems rather than to mathematical models of real systems. 
This book links basic dynamic analysis with these advanced texts, paying particular 
attention to the mathematical modelling and analysis of real systems and the 
interpretation of the results. It therefore gives an introduction to advanced and 
specialised analysis methods, and also describes how system parameters can be 
changed to achieve a desired dynamic performance. 

The book is intended to give practising engineers, and scientists as well as students 
of engineering and science to first degree level, a thorough understanding of the 
principles and techniques involved in the analysis of vibrations and how they can 
also be applied to the analysis of control system dynamics. In addition it provides a 
sound theoretical basis for further study. 

Chris Beards 
January 1995 
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1 
Introduction 

The vibration which occurs in most machines, vehicles, structures, buildings and 
dynamic systems is undesirable, not only because of the resulting unpleasant motions 
and the dynamic stresses which may lead to fatigue and failure of the structure or 
machine, and the energy losses and reduction in performance which accompany 
vibrations, but also because of the noise produced. Noise is generally considered to 
be unwanted sound, and since sound is produced by some source of motion or 
vibration causing pressure changes which propagate through the air or other 
transmitting medium, vibration control is of fundamental importance to sound 
attenuation. Vibration analysis of machines and structures is therefore often a 
necessary prerequisite for controlling not only vibration but also noise. 

Until early this century, machines and structures usually had very high mass and 
damping, because heavy beams, timbers, castings and stonework were used in their 
construction. Since the vibration excitation sources were often small in magnitude, 
the dynamic response of these highly damped machines was low. However, with the 
development of strong lightweight materials, increased knowledge of material 
properties and structural loading, and improved analysis and design techniques, the 
mass of machines and structures built to fulfil a particular function has decreased. 
Furthermore, the efficiency and speed of machinery have increased so that the 
vibration exciting forces are higher, and dynamic systems often contain high energy 
sources which can create intense noise and vibration problems. This process of 
increasing excitation with reducing machine mass and damping has continued at an 
increasing rate to the present day when few, if any, machines can be designed without 
carrying out the necessary vibration analysis, if their dynamic performance is to be 
acceptable. The demands made on machinery, structures, and dynamic systems are 
also increasing, so that the dynamic performance requirements are always rising. 
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There have been very many cases of systems failing or not meeting performance 
targets because of resonance, fatigue, excessive vibration of one component or another, 
or high noise levels. Because of the very serious effects which unwanted vibrations 
can have on dynamic systems, it is essential that vibration analysis be carried out as 
an inherent part of their design, when necessary modifications can most easily be 
made to eliminate vibration, or at least to reduce it as much as possible. However, 
it must also be recognized that it may sometimes be necessary to reduce the vibration 
of an existing machine, either because of inadequate initial design, or by a change in 
function of the machine, or by a change in environmental conditions or performance 
requirements, or by a revision of acceptable noise levels. Therefore techniques for the 
analysis of vibration in dynamic systems should be applicable to existing systems as 
well as those in the design stage; it is the solution to the vibration or noise problem 
which may be different, depending on whether or not the system already exists. 

There are two factors which control the amplitude and frequency of vibration of 
a dynamic system : these are the excitation applied and the dynamic characteristics 
of the system. Changing either the excitation or the dynamic characteristics will 
change the vibration response stimulated in the system. The excitation arises from 
external sources, and these forces or motions may be periodic, harmonic or random 
in nature, or arise from shock or impulsive loadings. 

To summarize, present-day machines and structures often contain high-energy 
sources which create intense vibration excitation problems, and modern construction 
methods result in systems with low mass and low inherent damping. Therefore careful 
design and analysis is necessary to avoid resonance or an undesirable dynamic 
performance. 

The demands made on automatic control systems are also increasing. Systems are 
becoming larger and more complex, whilst improved performance criteria, such as 
reduced response time and error, are demanded. Whatever the duty of the system, from 
the control of factory heating levels to satellite tracking, or from engine fuel control 
to controlling sheet thickness in a steel rolling mill, there is continual effort to improve 
performance whilst making the system cheaper, more efficient, and more compact. 
These developments have been greatly aided in recent years by the wide availability 
of microprocessors. Accurate and relevant analysis of control system dynamics is 
necessary in order to determine the response of new system designs, as well as to predict 
the effects of proposed modifications on the response of an existing system, or to 
determine the modifications necessary to enable a system to give the required response. 

There are two reasons why it is desirable to study vibration analysis and the 
dynamics of control systems together as dynamic analysis. Firstly, because control 
systems can then be considered in relation to mechanical engineering using mechanical 
analogies, rather than as a specialized and isolated aspect of electrical engineering, 
and secondly, because the basic equations governing the behaviour of vibration and 
control systems are the same: different emphasis is placed on the different forms of 
the solution available, but they are all dynamic systems. Each analysis system benefits 
from the techniques developed in the other. 

Dynamic analysis can be carried out most conveniently by adopting the following 
three-stage approach: 
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Stage 
Stage 11. From the model, write the equations of motion. 
Stage 111. Evaluate the system response to relevant specific excitation. 

These stages will now be discussed in greater detail. 

Stage 1. The mathematical model 
Although it may be possible to analyse the complete dynamic system being considered, 
this often leads to a very complicated analysis, and the production of much unwanted 
information. A simplified mathematical model of the system is therefore usually sought 
which will, when analysed, produce the desired information as economically as possible 
and with acceptable accuracy. The derivation of a simple mathematical model to 
represent the dynamics of a real system is not easy, if the model is to give useful and 
realistic information. 

However, to model any real system a number of simplifying assumptions can often 
be made. For example, a distributed mass may be considered as a lumped mass, or 
the effect of damping in the system may be ignored particularly if only resonance 

I. Devise a mathematical or physical model of the system to be analysed. 

Fig. 1.1. Rover 800 front suspension. (By courtesy of Rover Group.) 



4 Introduction [Ch. 1 

frequencies are needed or the dynamic response required at frequencies well away 
from a resonance, or a non-linear spring may be considered linear over a limited 
range of extension, or certain elements and forces may be ignored completely if their 
effect is likely to be small. Furthermore, the directions of motion of the mass elements 
are usually restrained to those of immediate interest to the analyst. 

Thus the model is usually a compromise between a simple representation which 
is easy to analyse but may not be very accurate, and a complicated but more realistic 
model which is difficult to analyse but gives more useful results. Consider for example, 
the analysis of the vibration of the front wheel of a motor car. Fig. 1.1 shows a typical 
suspension system. As the car travels over a rough road surface, the wheel moves up 
and down, following the contours of the road. This movement is transmitted to the 
upper and lower arms, which pivot about their inner mountings, causing the coil 

Fig. 12(a). S i p l a t  model - motion in a 
vertical direction only can be analyseai. 

Fig la). Motion in a vertical dircaion 
only mn be a n a l y d .  

Fig. 1.2(c). Motion in a vertical direction, roll, and pitch can be analysed. 
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spring to compress and extend. The action of the spring isolates the body from the 
movement of the wheel, with the shock absorber or damper absorbing vibration and 
sudden shocks. The tie rod controls longitudinal movement of the suspension unit. 

Fig. 1.2(a) is a very simple model of this same system, which considers translational 
motion in a vertical direction only: this model is not going to give much useful 
information, although it is easy to analyse. The more complicated model shown in 
Fig. 1.2(b) is capable of prc. !wing some meaningful results at the cost of increased 
labour in the analysis, but the analysis is still confined to motion in a vertical direction 
only. A more refined model, shown in Fig. 1.2(c), shows the whole car considered, 
translational and rotational motion of the car body being allowed. 

If the modelling of the car body by a rigid mass is too crude to be acceptable, a 
finite element analysis may prove useful. This technique would allow the body to be 
represented by a number of mass elements. 

The vibration of a machine tool such as a lathe can be analysed by modelling the 
machine structure by the two degree of freedom system shown in Fig. 1.3. In the 
simplest analysis the bed can be considered to be a rigid body with mass and inertia, 
and the headstock and tailstock are each modelled by lumped masses. The bed is 
supported by springs at each end as shown. Such a model would be useful for 
determining the lowest or fundamental natural frequency of vibration. A refinement 
to this model, which may be essential in some designs of machine where the bed 
cannot be considered rigid, is to consider the bed to be a flexible beam with lumped 
masses attached as before. 

Fig. 1.3. Machine tool vibration analysis model. 
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Fig. 1.4. Radio telescope vibration analysis model. 

[Ch. 1 

To analyse the torsional vibration of a radio telescope when in the vertical position 
a five degree of freedom model, as shown in Fig. 1.4, can be used. The mass and 
inertia of the various components may usually be estimated fairly accurately, but the 
calculation of the stiffness parameters at the design stage may be difficult; fortunately 
the natural frequencies are proportional to the square root of the stiffness. If the 
structure, or a similar one, is already built, the stiffness parameters can be measured. 
A further simplification of the model would be to put the turret inertia equal to zero, 
so that a three degree of freedom model is obtained. Such a model would be easy to 
analyse and would predict the lowest natural frequency of torsional vibration with 
fair accuracy, providing the correct inertia and stiffness parameters were used. It 
could not be used for predicting any other modes of vibration because of the coarseness 
of the model. However, in many structures only the lowest natural frequency is 
required, since if the structure can survive the amplitudes and stresses at this frequency 
it will be able to survive other natural frequencies too. 

None of these models include the effect of damping in the structure. Damping in 
most structures is very low so that the difference between the undamped and the 
damped natural frequencies is negligible. It is usually only necessary to include the 
effects of damping in the.mode1 if the response to a specific excitation is sought, 
particularly at frequencies in the region of a resonance. 

A block diagram model is usually used in the analysis of control systems. For 
example, a system used for controlling the rotation and position of a turntable about 
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Fig. 1.5. Turntable position control system. 

a vertical axis is shown in Fig. 1.5. The turntable can be used for mounting a telescope 
or gun, or if it forms part of a machine tool it can be used for mounting a workpiece 
for machining. Fig. 1.6 shows the block diagram used in the analysis. 

Fig. 1.6. Turntable position control system: block diagram model. 

It can be seen that the feedback loop enables the input and output positions to 
be compared, and the error signal, if any, is used to activate the motor and hence 
rotate the turntable until the error signal is zero; that is, the actual position and the 
desired position are the same. 

The model parameters 
Because of the approximate nature of most models, whereby small effects are neglected 
and the environment is made independent of the system motions, it is usually 
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reasonable to assume constant parameters and linear relationships. This means that 
the coefficients in the equations of motion are constant and the equations themselves 
are linear: these are real aids to simplifying the analysis. Distributed masses can often 
be replaced by lumped mass elements to give ordinary rather that partial differential 
equations of motion. Usually the numerical value of the parameters can, substantially, 
be obtained directly from the system being analysed. However, model system 
parameters are sometimes difficult to assess, and then an intuitive estimate is required, 
engineering judgement being of the essence. 

It is not easy to create a relevant mathematical model of the system to be analysed, 
but such a model does have to be produced before Stage I1 of the analysis can be 
started. Most of the material in subsequent chapters is presented to make the reader 
competent to carry out the analyses described in Stages I1 and 111. A full understanding 
of these methods will be found to be of great help in formulating the mathematical 
model referred to above in Stage I. 

Stage ZZ. The equations of motion 
Several methods are available for obtaining the equations of motion from the 
mathematical model, the choice of method often depending on the particular model 
and personal preference. For example, analysis of the free-body diagrams drawn for 
each body of the model usually produces the equations of motion quickly: but it can 
be advantageous in some cases to use an energy method such as the Lagrange equation. 

From the equations of motion the characteristic or frequency equation is obtained, 
yielding data on the natural frequencies, modes of vibration, general response, and 
stability. 

Stage ZZZ. Response to specific excitation 
Although Stage I1 of the analysis gives much useful information on natural frequencies, 
response, and stability, it does not give the actual system response to specific 
excitations. It is necessary to know the actual response in order to determine such 
quantities as dynamic stress, noise, output position, or steady-state error for a range 
of system inputs, either force or motion, including harmonic, step and ramp. This is 
achieved by solving the equations of motion with the excitation function present. 

Remember : 

A few examples have been given above to show how real systems can be modelled, 
and the principles of their analysis. To be competent to analyse system models it is 
first necessary to study the analysis of damped and undamped, free and forced 
vibration of single degree of freedom systems such as those discussed in Chapter 2. 
This not only allows the analysis of a wide range of problems to be carried out, but 
it is also essential background to the analysis of systems with more than one degree 
of freedom, which is considered in Chapter 3. Systems with distributed mass, such 



Sec. 1 . 1 1  Introduction 9 

as beams, are analysed in Chapter 4. Some aspects of automatic control system 
analysis which require special consideration, particularly their stability and system 
frequency response, are discussed in Chapter 5. Each of these chapters includes worked 
examples to aid understanding of the theory and techniques described, whilst Chapter 
6 contains a number of problems for the reader to try. Chapter 7 contains answers 
and worked solutions to most of the problems in Chapter 6. A comprehensive 
bibliography and an index are included. 



The vibrations of systems having one degree of 
freedom 

All real systems consist of an infinite number of elastically connected mass elements 
and therefore have an infinite number of degrees of freedom; and hence an infinite 
number of coordinates are needed to describe their motion. This leads to elaborate 
equations of motion and lengthy analyses. However, the motion of a system is often 
such that only a few coordinates are necessary to describe its motion. This is because 
the displacements of the other coordinates are restrained or not excited, so that they 
are so small that they can be neglected. Now, the analysis of a system with a few 
degrees of freedom is generally easier to carry out than the analysis of a system with 
many degrees of freedom, and therefore only a simple mathematical model of a system 
is desirable from an analysis viewpoint. Although the amount of information that a 
simple model can yield is limited, if it is sufficient then the simple model is adequate 
for the analysis. Often a compromise has to be reached, between a comprehensive 
and elaborate multi-degree of freedom model of a system, which is difficult and costly 
to analyse but yields much detailed and accurate information, and a simple few 
degrees of freedom model that is easy and cheap to analyse but yields less information. 
However, adequate information about the vibration of a system can often be gained 
by analysing a simple model, at least in the first instance. 

The vibration of some dynamic systems can be analysed by considering them as 
a one degree or single degree of freedom system; that is a system where only one 
coordinate is necessary to describe the motion. Other motions may occur, but they 
are assumed to be negligible compared to the coordinate considered. 

A system with one degree of freedom is the simplest case to analyse because only 
one coordinate is necessary to completely describe the motion of the system. Some 
real systems can be modelled in this way, either because the excitation of the system 
is such that the vibration can be described by one coordinate although the system 
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could vibrate in other directions if so excited, or the system really is simple, as for 
example a clock pendulum. It should also be noted that a one degree of freedom 
model of a complicated system can often be constructed where the analysis of a 
particular mode of vibration is to be carried out. To be able to analyse one degree 
of freedom systems is therefore an essential ability in vibration analysis. Furthermore, 
many of the techniques developed in single degree of freedom analysis are applicable 
to more complicated systems. 

2.1. FREE UNDAMPED VIBRATION 

2.1.1 Translation vibration 
In the system shown in Fig. 2.1 a body of mass rn is free to move along a fixed 
horizontal surface. A spring of constant stiffness k which is fixed at one end is attached 
at the other end to the body. Displacing the body to the right (say) from the equilibrium 
position causes a spring force to the left (a restoring force). Upon release this force 
gives the body an acceleration to the left. When the body reaches its equilibrium 
position the spring force is zero, but the body has a velocity which carries it further 
to the left although it is retarded by the spring force which now acts to the right. 
When the body is arrested by the spring the spring force is to the right so that the 
body moves to the right, past its equilibrium position, and hence reaches its initial 
displaced position. In practice this position will not quite be reached because damping 
in the system will have dissipated some of the vibrational energy. However, if the 
damping is small its effect can be neglected. 

Fig. 2.1. Single degree of freedom model - translation vibration. 

If the body is displaced a distance xo to the right and released, the free-body 
diagrams (FBD’s) for a general displacement x are as shown in Figs. 2.2(a) and (b). 

Fig. 2.2. (a) Applied force; (b) effective force. 
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The effective force is always in the direction of positive x .  If the body is being 
retarded x will be calculated to be negative. The mass of the body is assumed constant: 
this is usually so, but not always, as for example in the case of a rocket burning fuel. 
The spring stiffness k is assumed constant: this is usually so within limits; see section 
2.1.3. It is assumed that the mass of the spring is negligible compared to the mass of 
the body; cases where this is not so are considered in section 4.3.1. 

From the free-body diagrams the equation of motion for the system is 

mx = - kx or x + (k/m)x = 0. (2.1) 

This will be recognized as the equation for simple harmonic motion. The solution is 

x = A cos wt + B sin wt, (2.2) 
where A and B are constants which can be found by considering the initial conditions, 
and w is the circular frequency of the motion. Substituting (2.2) into (2.1) we get 

- w2 ( A  cos wt + B sin wt)  + (k /m)  ( A  cos wt + B sin wt) = 0. 

Since ( A  cos wt + B sin wt)#O (otherwise no motion), 

w = J(k/m)  rad/s, 

and 

x = A cos J(k/m)t  + B sin J(k/m)t .  

Now 

x = x o  at t = 0, 

thus 

x o  = A cos 0 + B sin 0, and therefore x,, = A ,  

and 

i = 0 at t = 0, 

thus 

0 = - AJ(k/m)  sin 0 + BJ(k/m) cos 0, and therefore B = 0; 

that is, 

x = xo cos J(k/rn)t. (2.3) 

The system parameters control w and the type of motion but not the amplitude 
xo,  which is found from the initial conditions. The mass of the body is important, its 
weight is not, so that for a given system, w is independent of the local gravitational field. 

The frequency of vibration,f, is given by 
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The motion is as shown in Fig. 2.3. 

Fig. 2.3. Simple harmonic motion. 

The period of the oscillation, T, is the time taken for one complete cycle so that 

1 
T = - = 2nJ(m/k)  seconds. (2.5) f 

The analysis of the vibration of a body supported to vibrate only in the vertical 
or y direction can be carried out in a similar way to that above. Fig. 2.4 shows the 
system. 

Fig. 2.4. Vertical motion. 

The spring extension 6 when the body is fastened to the spring is given by k6 = mg. 
When the body is given an additional displacement y o  and released the FBDs for a 
general displacement y, are as in Fig. 2.5. 

Fig. 2.5. (a) Applied forces; (b) effective force. 
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The equation of motion is 

mj; = mg - k(y + 6) 
= mg - k y  - k6 = - ky,  since mg = k6. 

that is, 

y + (k /m)y  = 0. 

j = A cos J(k/m) t  + B sin J ( k / m ) t .  

(2.6) 
This is similar to equation (2.1), so that the general solution can be written as 

(2.7) 
Note that J ( k f m )  = J(g/S), because mg = k6. That is, if 6 is known, then the frequency 
of vibration can be found. 

For the initial conditions y = yo at t = 0 and j = 0 at t = 0, 

y = y o  cos J(k/m) t .  (2.8) 
Comparing (2.8) with (2.3) shows that for a given system the frequency of vibration 
is the same whether the body vibrates in a horizontal or vertical direction. 

Sometimes more than one spring acts in a vibrating system. The spring, which is 
considered to be an elastic element of constant stiffness, can take many forms in 
practice; for example, it may be a wire coil, rubber block, beam or air bag. Combined 
spring units can be replaced in the analysis by a single spring of equivalent stiffness 
as follows. 

( I )  Springs connected in series 
The three-spring system of Fig. 2.6.(a) can be replaced by the equivalent spring of 
Fig. 2.6(b). 

Fig. 2.6. Spring systems. 

If the deflection at the free end, 6, experienced by applying the force F is to be the 
same in both cases, 

6 = F f k ,  = F f k ,  + F f k ,  + F/k, ,  

that is, 
3 

1 fk ,  = 1 1  fki .  
1 
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In general, the reciprocal of the equivalent stiffness of springs connected in series 
is obtained by summing the reciprocal of the stiffness of each spring. 

( 2 )  Springs connected in parallel 
The three-spring system of Fig. 2.7(a) can be replaced by the equivalent spring of Fig. 
2.7( b). 

Fig. 2.7. Spring systems. 

Since the defection 6 must be the same in both cases, the sum of the forces exerted 
by the springs in parallel must equal the force exerted by the equivalent spring. Thus 

F = k , 6  + k,6 + k36 = k,6, 

that is, 
3 

k ,  = 1 ki.  
i =  1 

In general, the equivalent stiffness of springs connected in parallel is obtained by 
summing the stiffness of each spring. 

2.1.2 Torsional vibration 
Fig. 2.8 shows the model used to study torsional vibration. 

A body with mass moment of inertia I about the axis of rotation is fastened to a 
bar of torsional stiffness k,. If the body is rotated through an angle 8, and released, 
torsional vibration of the body results. The mass moment of inertia of the shaft about 
the axis of rotation is usually negligible compared with I .  

For a general displacement I9 the FBDs are as given in Figs. 2.9(a) and (b). Hence 
the equation of motion is 

l e  = - k,O, 

or 
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Fig. 2.8. Single degree of freedom model - torsional vibration. 

Fig. 2.9. (a) Applied torque; (b) effective torque. 

This is of a similar form to equation (2.1). That is, the motion is simple harmonic 
with frequency 1127~ J(k,/Z) Hz. 

The torsional stiffness of the shaft, k,, is equal to the applied torque divided by 
the angle of twist. 
Hence 

GJ 
1 

k ,  = -, for a circular section shaft, 

where G = modulus of rigidity for shaft material, 
J = second moment of area about the axis of rotation, and 
1 = length of shaft. 

Hence 

0 1  f =  g = % J(GJ/ IO Hz, 

and 

8 = 8, COS J(GJ/Zl)t,  

when 8 = 8, and b = 0 at t = 0. 

If the shaft does not have a constant diameter, it can be replaced analytically by 
an equivalent shaft of different length but with the same stiffness and a constant 
diameter. 
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For example, a circular section shaft comprising a length I ,  of diameter d, and a 
length I ,  of diameter d ,  can be replaced by a length I ,  of diameter d ,  and a length 
1 of diameter d ,  where, for the same stiffness, 

(GJ/hength 1, diameter d ,  = (GJ/I)length lidlameter d, 

that is, for the same shaft material, d;/12 = dI4/l. 
Therefore the equivalent length 1, of the shaft of constant diameter d ,  is given by 

I ,  = I ,  + (d,/dJ412. 

It should be noted that the analysis techniques for translational and torsional 
vibration are very similar, as are the equations of motion. 

The torsional vibration of a geared system 
Consider the system shown in Fig. 2.10. The mass moments of inertia of the shafts 

Fig. 2.10. Geared system. 

and gears about their axes of rotation are considered negligible. The shafts are 
supported in bearings which are not shown, and the gear ratio is N :  1. 

From the FBDs, T2, the torque in shaft 2 is T2 = k, (0 - 4) = - 18 and T,, the 
torqueinshaft l,isT, = k,N4;sinceNT1 = T2,T2 = k,N24and+ = k20/(k, + k,N2). 
Thus the equation of motion becomes 

r B + (  k,k,N2 ) 0 = 0 ,  
k, + k,N2 

and 

Hz. 1 C(~2k,N2)/(k2 + k,N2)1 
f =  -J 271 I 

that is, keq, the equivalent stiffness referred to shaft 2, is (k,k2N2)/(k,N2 + k,), or 
l/keq = l/k2 + l/(k,N2). 
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2.1.3 Non-linear spring elements 
Any spring elements have a force-deflection relationship which is linear only over a 
limited range of deflection. Fig. 2.1 1 shows a typical characteristic. 

[Ch. 2 

Fig. 2.1 1. Non-linear spring characteristic. 

The non-linearities in this characteristic may be caused by physical effects such as 
the contacting of coils in a compressed coil spring, or by excessively straining the 
spring material so that yielding occurs. In some systems the spring elements do not 
act at the same time, as shown in Fig. 2.12(a), or the spring is designed to be non-linear 
as shown in Figs. 2.12(b) and (c). 

Fig. 2.12. Non-linear spring systems. 



Sec. 2.11 Free undamped vibration 19 

Analysis of the motion of the system shown in Fig. 2.12(a) requires analysing the 
motion until the half-clearance a is taken up, and then using the displacement and 
velocity at this point as initial conditions for the ensuing motion when the extra 
springs are operating. Similar analysis is necessary when the body leaves the influence 
of the extra springs. See Example 4. 

2.1.4 Energy methods for analysis 
For undamped free vibration the total energy in the vibrating system is constant 
throughout the cycle. Therefore the maximum potential energy V,,, is equal to the 
maximum kinetic energy T,,, although these maxima occur at different times during 
the cycle of vibration. Furthermore, since the total energy is constant, 

T + V =  constant, 

and thus 

d 
dt 
- (T  + V )  = 0. 

Applying this method to the case, already considered, of a body of mass m fastened 
to a spring of stiffness k, when the body is displaced a distance x from its equilibrium 
position, 

strain energy (SE) in spring = i kx’. 

kinetic energy (KE) of body = + mx’. 

Hence 

V = +kx2,  

and 
1 T= ?mi’. 

Thus 

d 
- (+mi’ + ikx’ )  = 0, 
dt 

that is 

mxk + k i x  = 0, 

or 

x + ( k ) x  = 0, as before, equation (2.1). 

This is a very useful method for certain types of problem in which it is difficult to 

Alternatively, assuming SHM, if x = x,, cos wt, 
apply Newton’s laws of motion. 
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1 2  The maximum SE, V,,, = rkxo 
9 

1 and the maximum KE, T,,, = yn(x,w)2 

Thus, since T,,, = V,,,, 

i kx,  = 7 mxow , 1 2  1 2 2  

or w = J ( k / m )  rad/s. 

Example 1 
A link AB in a mechanism is a rigid bar of uniform section 0.3 m long. It has a mass 
of 10 kg, and a concentrated mass of 7 kg is attached at B. The link is hinged at A 
and is supported in a horizontal position by a spring attached at the mid point of 
the bar. The stiffness of the spring is 2 kN/m. Find the frequency of small free 
oscillations of the system. The system is as shown below. 

For rotation about A the equation of motion is 

I,# = - ka2d, 

that is, 

B + (ka2/ZA)d = 0. 

This is SHM with frequency 

1 -J( ka2/I,)Hz. 
2x 

In this case 

a = 0.15m, 1 = 0.3m, k = 2000N/m, 

and 

I ,  = 7(0.3)2 + $ x 10(0.3)2 = 0.93 kg m2. 
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Hence 

2000 (0.1 5)2 f= I/( o.93 ) = 1.1 Hz. 
2x 

Example 2 
A small turbo-generator has a turbine disc of mass 20 kg and radius of gyration 
0.15 m driving an armature of mass 30 kg and radius of gyration 0.1 m through a steel 
shaft 0.05 m diameter and 0.4 m long. The modulus of rigidity for the shaft steel is 
86 x 109N/m2. Determine the natural frequency of torsional oscillation of the system, 
and the position of the node. The shaft is supported by bearings which are not shown. 

The rotors must twist in opposite directions to each other; that is, along the shaft 
there is a section of zero twist: this is called a node. The frequency of oscillation of 
each rotor is the same, and since there is no twist at the node, 

f ='J("> 2x I,I, =&J(EJ), IBIB 

that is, 

I,I, = I&. 

Now 

I ,  = 2q0.15)' = 0.45 kg m2, and I ,  = 30(0.1)2 = 0.3kg m2. 

Thus 

I ,  = (0.3/0.45)1,. 

Since I ,  + I ,  = 0.4 m, 

that is, the node is 0.16 m from the turbine disc. 

I ,  = 0.16m, 
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Hence 

f =  L J ( 8 6  x l o 9  n(0.05)4) 
= 136 Hz ( = 136 x 60 = 8160 rev/min). 

27~ 0.45 x 0.16 x 32 

If the generator is run near to 8160 rev/min this resonance will be excited causing 
high dynamic stresses and probable fatigue failure of the shaft at the node. 

Example 3 
A uniform cylinder of mass m is rotated through a small angle do from the equilibrium 
position and released. Determine the equation of motion and hence obtain the 
frequency of free vibration. The cylinder rolls without slipping. 

If the axis of the cylinder moves a distance x and turns through an angle 0 so that 
x = re ,  

KE = + m i 2  + + I d 2 ,  where I = + mr2. 

Hence 

KE = $ mr2b2. 
SE = 2 x + x k[ (r  + a)0]’ = k(r + a)’d2 

Now, energy is conserved, so (: mr2d2 + k(r + a)202) is constant, that is, 

d 
- (t rnr2O2 + k(r + a)2e2) = o 
dt 

or 

;mr2288’ + k(r + a)22ed = 0. 

Thus the equation of the motion is 

k(r + a)2d 
= 0. ’+ (3/4)mr2 

Hence the frequency of free vibration is 

2n 
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Example 4 
In the system shown in Fig. 2.12(a) find the period of free vibration of the body if it 
is displaced a distance x o  from the equilibrium position and released, when x o  is 
greater than the half clearance a. Each spring has a stiffness k,  and damping is 
negligible. 

Initially the body moves under the action of four springs so that the equation of 
motion is 

mx = -2kx  - 2k(x - a), 

that is, 

mx + 4kx = 2ka. 

The general solution comprises a complementary function and a particular integral 
such that 

a 
x = A cos wt + B sin wt + -. 

2 

With initial conditions x = x o  at t = 0, and I = 0 at t = 0, the solution is 

= ( x0 - 4) COS wt + -, a where w = /e) rad/s. 
2 

When x = a,  t = t ,  and 

a 
a = (xo - :) cos ut, + -. 

2 

so that 
a 

2(x0 - a/2) ' 
I ,  = /(E) cos- 

This is the time taken for the body to move from x = x o  to x = a .  
If a particular value of xo is chosen, x o  = 2a say, then 

3a U 

2 2 
x =-cos wt + -  and t ,  = 

and when x = a,  

3a 
2 

only, with the initial conditions 

I =  -- w sin wt ,  = - aJ(8k/m).  

For motion from x = a to x = 0 the body moves under the action of two springs 

x , ,=u  and x =  -a/(:)  

The equation of motion is mx + 2kx = 0 for this interval, the general solution to 
which is x = C cos Rt + D sin Rt, where R = J'(2k/m) rad/s. 
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Since xo = a at t = 0, C = a 
and because 

and 

i = -CR sin Rt + DR cos Rt 

That is, then D = - 2a. 

x = a cos Rt - 2a sin Rt. 

1 
When x = 0, t = t ,  and cos Rt, = 2 sin Rt, or tan Rt - -, that is 

, - 2  

Thus the time for a cycle is (tl +t,), and the time for one cycle, that is the period 
of free vibration when xo = 2a is 4(t, + t,) or 

Example 5 
A uniform wheel of radius R can roll without slipping on an inclined plane. Concentric 
with the wheel, and fixed to it, is a drum of radius r around which is wrapped one 
end of a string. The other end of the string is fastened to an anchored spring, of 
stiffness k, as shown. Both spring and string are parallel to the plane. The total mass 
of the wheel/drum assembly is rn and its moment of inertia about the axis through 
the centre of the wheel 0 is I .  If the wheel is displaced a small distance from its 
equilibrium position and released, derive the equation describing the ensuing motion 
and hence calculate the frequency of the oscillations. Damping is negligible. 
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If the wheel is given an anti-clockwise rotation 8 from the equilibrium position, 

The FBDs are 
the spring extension is ( R  + I )  8 so that the restoring spring force is k(R + r)8. 

The rotation is instantaneously about the contact point A so that taking moments 
about A gives the equation of motion as 

I,O= - k(R + I)%. 

(The moment due to the weight cancels with the moment due to the initial spring 
tension.) 

Now I ,  = I + mR’, so 

k(R + r)’ ’ + ( I  + , R ’ )  = O’ 

and the frequency of oscillation is 

I J y  + I)’)HZ. 
27f I + m R 2  

An alternative method for obtaining the frequency of oscillation is to consider the 
energy in the system. 

Now 

SE, V =  $k(R + r)’8’, 

and 

KE, T= $I,O’. 

(Weight and initial spring tension effects cancel.) 

and 

So T+ V =  $,OZ + $k(R + r)’8’, 

d 
- (T+ V )  = 41,288’ + $k(R + r)’288 = 0. 
dt 
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Hence 

[Ch. 2 

I , e  + k(R + r)28 = 0, 

which is the equation of motion. 
Or, we can put V,,, = T,,,, and if 8 = 8, sin wt is assumed, 

i k ( R  + r)28i = i I , 028 i ,  

so that 

w = y / (k (R;  'I2) rad/s, 

where 

I ,  = I + mr2 and f =  (w/2n) Hz. 

Example 6 
A uniform building of height 2h and mass rn has a rectangular base a x b which rests 
on an elasic soil. The stiffness of the soil, k, is expressed as the force per unit area 
required to produce unit deflection. 

Find the lowest frequency of free low-amplitude swaying oscillation of the building. 
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The lowest frequency of oscillation about the axis 0-0 through the base of the 

I ,  is the mass moment of inertia of the building about axis 0-0. 
The FBDs are 

building is when the oscillation occurs about the shortest side, length a. 

and the equation of motion for small 0 is given by 

l o g =  mgh9 - M ,  

where M is the restoring moment from the elastic soil. 
For the soil, k = force/(area x deflection), so considering an element of the base 

as shown, the force on element = kb dx x xd, and the moment of this force about 
axis 0-0 = kbdx x xB x x. Thus the total restoring moment M ,  assuming the soil 
acts similarly in tension and compression is 

M = 2j:2kbx29dx 

(a,Q3 - ka3 b 
- -9. 

12 
= 2kb9 ~ 

3 

Thus the equation of motion becomes 

roe + (- ka3b - @)d = 0. 



28 The vibrations of systems having one degree of freedom [Ch. 2 

Motion is therefore simple harmonic, with frequency 

f =  L / ( k a 3 b / 1 2  2 z  IO - mgh )Hz. 

An alternative solution can be obtained by considering the energy in the system. In 
this case, 

T = $loo2, 

and 

rngh8’ 
V =  $2 [ y k b d x  x x8 x x8 - ~ 

2 ’  

where the loss in potential energy of building weight is given by mgh (1 - cos 8) N 

mghO2/2, since cos 8 ‘u 1 - 0 2 / 2  for small values of 8. Thus 

ka3b v =  (4 - 

Assuming simple harmonic motion, and putting T,,, = V,,,, gives 

>¶ 

-.=( ka3b/12 - mgh 
IO 

as before. 
Note that for stable oscillation, o > 0, so that 

(G - m g h ) ,  0. 

That is ka3b > 12mgh. 
This expression gives the minimum value of k, the soil stiffness, for stable oscillation 

of a particular building to occur. If k is less that 12 rngh/a3b the building will fall 
over when disturbed. 

2.2 FREE DAMPED VIBRATION 

All real systems dissipate energy when they vibrate. The energy dissipated is often 
very small, so that an undamped analysis is sometimes realistic; but when the damping 
is significant its effect must be included in the analysis, particularly when the amplitude 
of vibration is required. Energy is dissipated by frictional effects, for example that 
occurring at the connection between elements, internal friction in deformed members, 
and windage. It is often difficult to model damping exactly because many mechanisms 
may be operating in a system. However, each type of damping can be analysed, and 
since in many dynamic systems one form of damping predominates, a reasonably 
accurate analysis is usually possible. 

The most common types of damping are viscous, dry friction and hysteretic. 
Hysteretic damping arises in structural elements due to hysteresis losses in the material. 
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The type and amount of damping in a system has a large effect on the dynamic 
response levels. 

2.2.1 Vibration with viscous damping 
Viscous damping is a common form of damping which is found in many engineering 
systems such as instruments and shock absorbers. The viscous damping force is 
proportional to the first power of the velocity across the damper, and it always 
opposes the motion, so that the damping force is a linear continuous function of the 
velocity. Because the analysis of viscous damping leads to the simplest mathematical 
treatment, analysts sometimes approximate more complex' types of damping to the 
viscous type. 

Consider the single degree of freedom model with viscous damping shown in Fig. 
2.13. 

Fig. 2.13. Single degree of freedom model with viscous damping. 

The only unfamiliar element in the system is the viscous damper with coefficient 
c. This coefficient is such that the damping force required to move the body with a 
velocity i is c i .  

For motion of the body in the direction shown, the free body diagrams are as in 

Fig. 2.14. (a) Applied force; (b) effective force. 

Fig. 2.14(a) and (b). The equation of motion is therefore 

mk + ck + k x  = 0. (2.9) 

This equation of motion pertains to the whole of the cycle: the reader should verify 
that this is so. (Note: displacements to the left of the equilibrium position are negative, 
and velocities and accelerations from right to left are also negative). 
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Equation (2.9) is a second-order differential equation which can be solved by 
assuming a solution of the form x = Xes'. Substituting this solution into equation 
(2.9) gives 

(ms2 + cs + k)Xes' = 0. 

Since Xes' # 0 (otherwise no motion), 

so, = --+ 

ms2 + cs + k = 0, 

c J(c' - 4mk) 
2m- 2m 

Hence 

x = X.,e5tr + X2es2r, 

where X,  and X, are arbitrary constants found from the initial conditions. The 
system response evidently depends on whether c is positive or negative, and on 
whether c2 is greater than, equal to, or less than 4mk. 

The dynamic behaviour of the system depends on the numerical value of the radical, 
so we define critical damping as that value of c(c,) which makes the radical zero: that is, 

c, = 2J(km). 

Hence 

cJ2m = J(k/m) = o, 

c, = 2J(km) = 2mw. 

the undamped natural frequency, and 

The actual damping in a system can be specified in terms of c, by introducing the 
damping ratio i. 

(2.10) 

The response evidently depends on whether c is positive or negative, and on whether 
i is greater than, equal to, or less than unity. Usually c is positive, so we need consider 
only the other possibilities. 

Case 1. i < 1; that is, damping less than critical 
From equation (2.10) 

= - io kjJ(1 - i2)w, where j = J( - l), 
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Fig. 2.15. Vibration decay of system with viscous damping, c < 1. 

The motion of the body is therefore an exponentially decaying harmonic oscillation 
with circular frequency w, = wJ(1 - i2), as shown in Fig. 2.15. 

The frequency of the viscously damped oscillation o,, is given by o, = ox/( 1 - i2), 
that is, the frequency of oscillation is reduced by the damping action. However, in 
many systems this reduction is likely to be small, because very small values of i are 
common; for example in most engineering structures i is rarely greater than 0.02. 
Even if i = 0.2, o, = 0.98 o. This is not true in those cases where 5 is large, for 
example in motor vehicles where i is typically 0.7 for new shock absorbers. 

Case 2. i = 1; that is, critical damping 
Both values of s are - o. However, two constants are required in the solution of 
equation (2.9), thus x = ( A  + Bt)e-"' may be assumed. 

Critical damping represents the limit of periodic motion, hence the displaced body 
is restored to equilibrium in the shortest possible time, and without oscillation or 
overshoot. Many devices, particularly electrical instruments, are critically damped to 
take advantage of this property. 

Case 3. ( > 1; that is, damping greater than critical 
There are two real values of s, so x = XleSl' + X2esi'. 

as shown in Fig. 2.16. 

Logarithmic decrement A 
A convenient way of determining the damping in a system is to measure the rate of 
decay of oscillation. It is usually not satisfactory to measure w, and o, because unless 

The logarithmic decrement, A, is the natural logarithm of the ratio of any two 

Since both values of s are negative the motion is the sum of two exponential decays, 

i > 0.2, o 2: 0,. 

successive amplitudes in the same direction, and so from Fig. 2.17. 
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Fig. 2.16. Disturbance decay of system with viscous damping, < > 1 .  

XI 
Xl l  

A = I n -  

Since 

x = Xe-i"" sin (o,t + 4), 
if 

x, = xe-W, x,, = x e - C W + r , )  

where 7, is the period of the damped oscillation. 

Fig. 2.17. Vibration decay. 
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Thus 

Since 

For small values of i( > 0.25), A 'v 2nC. 
It should be noted that this analysis assumes that the point of maximum 

displacement in a cycle and the point where the envelope of the decay curve Xe-@"' 
touches the decay curve itself, are coincident. This is usually very nearly so, and the 
error in making this assumption is usually negligible, except in those cases where the 
damping is high. 

For low damping it is preferable to measure the amplitude of oscillations many 
cycles apart so that an easily measurable difference exists. 

In this case A =In  

etc. X l  - Xl l  
X l l  XI11 

- 

Example 7 
Consider the transverse vibration of a bridge structure. For the fundamental frequency 
it can be considered as a single degree of freedom system. The bridge is deflected at 
mid-span (by winching the bridge down) and suddenly released. After the initial 
disturbance the vibration was found to decay exponentially from an amplitude of 
10 mm to 5.8 mm in three cycles with a frequency of 1.62 Hz. The test was repeated 
with a vehicle of mass 40 OOO kg at mid-span, and the frequency of free vibration 
was measured to be 1.54 Hz. 

Find the effective mass, the effective stiffness, and the damping ratio of the structure. 

Let m be the effective mass and k the effective stiffness. Then 

f, = 1.62 = L/(:) 2n Hz, 

and 

f2 = 1.54 = - 

if it is assumed that [ is small enough for f, N f: 
1.62 m + 4 0  x lo3 

Thus (154) = m 
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so 

rn = 375 x lo3 kg. 

Since 

k = ( 2 ~ f ~ ) ~ r n ,  

k = 38 850 kN/m. 

Now 

= 0.182. 

Hence 

2XC 
A =  = 0.182, 

JCl - i2) 
and so i = 0.029. (This compares with a value of about 0.002 for cast iron material. 
The additional damping originates mainly in the joints of the structure.) This value 
of i confirms the assumption that f, -1: 

Example 8 
A light rigid rod of length L is pinned at one end 0 and has a body of mass rn 
attached at the other end. A spring and viscous damper connected in parallel are 
fastened to the rod at a distance a from the support. The system is set up in a 
horizontal plane: a plan view is shown. 

Assuming that the damper is adjusted to provide critical damping, obtain the 
motion of the rod as a function of time if it is rotated through a small angle 8, and 
then released. Given that 8, = 2" and the undamped natural frequency of the system 
is 3 rad/s, calculate the displacement 1 s after release. 

Explain the term logarithmic decrement as applied to such a system and calculate 
its value assuming that the damping is reduced to 80% of its critical value. 
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Let the rod turn through an angle 8 from the equilibrium position. 
Note that the system oscillates in the horizontal plane so that the FBDs are: 

Taking moments about the pivot 0 gives 

I,B' = - ca28 - ka20, 

where I ,  = m12, so the equation of motion is 

mL2B' + ca28 + ka28 = 0. 

Now the system is adjusted for critical damping, so that 1: = 1. 
The solution to the equation of motion is therefore of the form 

0 = ( A  + Br)e-"'. 

Now, 8 = 0, when t = 0, and d0/dt = 0 when f = 0. Hence 

0, = A ,  

and 

0 = Be-O' + ( A  + Bt) ( -  w)e-"', 

so that 

B = cow. 
Hence 

8 = e,,( 1 + w)e-"'. 

If o = 3 rad/s, r = 1 s and 8, = 2", 

8 = 2(1 + 3)e-3 = 0.4". 

The logarithmic decrement 
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so that if [ = 0.8, 

5.027 
0.6 

[Ch. 2 

A=- -  - 8.38 

Root bcus study of damping 
It is often convenient to consider how the roots of equation (2.10) vary as 4' increases 
from zero. The roots of this equation are given by 

for 1 > 4' > o S ~ , ~ / W  = - ik j J (1  - 1') 
and 

S ~ , ~ / O  = - i+J(iz - 1) for [ > 1. 

These roots can be conveniently displayed in a plot of imaginary (s/w) against real 
(s/o); since for every value of [ there are two values of (s/o), the roots when plotted 
form two loci as shown in Fig. 2.18. The position of a root in the (s/w) plane indicates 
the frequency of oscillation (Im (s/w) axis) of the system, if any, and the rate of growth 
of decay of oscillation (Re (s/w) axis). 

Because the Re (s/o) is negative on the left of the Im (s/w) axis, all roots which lie 
to the left of the Im (s/o) axis represent a decaying oscillation and therefore a stable 
system. Roots to the right of the Im (s/w) axis represent a growing oscillation and 
an unstable system. 

This root study of damping is a useful design technique, because the effects of 
changing the damping ratio on the response of a system can easily be seen. It also 
has important applications in the study of control system dynamics. Note that the 
damping ratio [ is given by cos 8 in Fig. 2.18. 

Fig. 2.18. Root locus plot. 
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2.2.2 Vibration with Coulomb (dry friction) damping 
Steady friction forces occur in many systems when relative motion takes place between 
adjacent members. These forces are independent of amplitude and frequency; they 
always oppose the motion and their magnitude may, to a first approximation, be 
considered constant. Dry friction can, of course, just be one of the damping 
mechanisms present; however, in some systems it is the main source of damping. In 
these cases the damping can be modelled as in Fig. 2.19 

Fig. 2.19. System with Coulomb damping. 

The constant friction force F ,  always opposes the motion, so that if the body is 
displaced a distance x o  to the right and released from rest we have, for motion from 
right to left only, 

mk = F, - kx 

or mx + kx = F,. (2.1 1) 

The solution to the complementary function is x = A sin wt + B cos wt, and the 
complete solution is 

F d  x = A sin wt + B cos wt + - 
k 

(2.12) 

where w = J ( k / m )  rad/s. 

Note. The particular integral may be found by using the D-operator. Thus equation 
(2.1 1) is 

(D2 + w 2 ) x  = F,/m 

so 

x = (1/w2)[1 + ( D 2 / w 2 ) ] - ' F , / m  

= [l - (D2/w2) + . - - ] F , / m w 2  = F,/k.  

The initial conditions were x = xo at t = 0, and i = 0 at t = 0. Substitution into 
equation (2.12) gives 
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F d  A = O  and B = x  --. 
O k  

Hence 

x = ( x o  - ?) cos W t  + -. F* 
k 

(2.13) 

At the end of the half cycle right to left, or = 7t and 

2 F d  
x( t= , ,w)  = - x o  + - k. 

That is, there is a reduction in amplitude of 2F,/k per half cycle. 
From symmetry, for motion from left to right when the friction force acts in the 

opposite direction to the above, the initial displacement is ( x o  - 2F,/k) and the final 
displacement is therefore (xo - 4 F d k ) ,  that is the reduction in amplitude is 4FJk per 
cycle. This oscillation continues until the amplitude of the motion is so small that 
the maximum spring force is unable to overcome the friction force F,. This can 
happen whenever the amplitude is d k ( F d k ) .  The manner of oscillation decay is 
shown in Fig. 2.20; the motion is sinusoidal for each half cycle, with successive half 
cycles centred on points distant + (F, /k)  and - (F, /k)  from the origin. The oscillation 
ceases with 1 x I < F,/k.  The zone x = f F,jk is called the dead zone. 

To determine the frequency of oscillation we rewrite the equation of motion (2.1 1 )  as 

mx + k(x - (F, /k))  = 0. 

Now if x' = x - ( F d k ) ,  x' = x so that mx' + kx' = 0, from which the frequency of 
oscillation is (1/2n) J ( k / m )  Hz. That is, the frequency of oscillation is not affected by 
Coulomb friction. 

Example 9 
Part of a structure can be modelled as a torsional system comprising a bar of stiffness 
10 kN m/rad and a beam of moment of inertia about the axis of rotation of 
50 kg m2. The bottom guide imposes a friction torque of 10 N m. 

Given that the beam is displaced through 0.05 rad from its equilibrium position 
and released, find the frequency of the oscillation, the number of cycles executed 
before the beam motion ceases, and the position of the beam when this happens. 

Now 

w = /($) = / l o  
= 14.14 rad/s. 

Hence 

14.14 
2Tc 

f =  ~ = 2.25 Hz. 
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4F 4 x 10 
LOSS in amplitude/cycle = = - rad 

k 104 

= 0.004 rad. 

Number of cycles for motion to cease 

0.05 
- o.oo4 - 12;. 

The beam is in the initial (equilibrium) position when motion ceases. The motion 
is shown opposite. 

2.2.3 Vibration with combined viscous and Coulomb damping 
The free vibration of dynamic systems with viscous damping is characterized by an 
exponential decay of the oscillation, whereas systems with Coulomb damping possess 
a linear decay of oscillation. Many real systems have both forms of damping, so that 
their vibration decay is a combination of exponential and linear functions. 

The two damping actions are sometimes amplitude dependent, so that initially the 
decay is exponential, say, and only towards the end of the oscillation does the Coulomb 
effect show. In the analyses of these cases the Coulomb effect can easily be separated 
from the total damping to leave the viscous damping alone. The exponential decay 
with viscous damping can be checked by plotting the amplitudes on logarithmic-linear 
axes when the decay should be seen to be linear. 
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If the Coulomb and viscous effects cannot be separated in this way, a mixture of 
linear and exponential decay functions have to be found by trial and error in order 
to conform with the experimental data. 

2.2.4 Vibration with hysteretic damping 
Experiments on the damping that occurs in solid materials and structures which have 
been subjected to cyclic stressing have shown the damping force to be independent 
of frequency. This internal, or material, damping is referred to as hysteretic damping. 
Since the viscous damping force c i  is dependent on the frequency of oscillation, it 
is not a suitable way of modelling the internal damping of solids and structures. The 
analysis of systems and structures with this form of damping therefore requires the 
damping force c i  to be divided by the frequency of oscillation o. Thus the equation 
of motion becomes m x  + (c/w).t + k x  = 0. 

However, it has been observed from experiments carried out on many materials 
and structures that under harmonic forcing the stress leads the strain by a constant 
angle, 2. 

Thus for an harmonic strain, E = E~ sin vt, where v is the forcing frequency, the 
induced stress is G = o0 sin (vt  + z). Hence 

G = oo cos 2 sin vt + G~ sin x cos vt 
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= a. cos 2 sin vt + 6, sin a sin vt + - . ( 3 
The first component of stress is in phase with the strain E,  whilst the second 

component is in quadrature with E and 4 2  ahead. Putting j = J( - l), 
a = a. cos a sin vt + jao sin 3 sin vt. 

Hence a complex modulus E* can be formulated, where 

a a  . 0 0  E* = - = 0 cos a + j  - sin a 
E eo EO 

= E' + jE" ,  

where E' is the in-phase or storage modulus, and E is the quadrature or loss modulus. 
The loss factor rl, which is a measure of the hysteretic damping in a structure, is 

equal to E"/E', that is, tan a. 
It is not usually possible to separate the stiffness of a structure from its hysteretic 

damping, so that in a mathematical model these quantities have to be considered 
together. The complex stiffness k* is given by k* = k( l  + jq), where k is the static 
stiffness and q the hysteretic damping loss factor. 

The equation of free motion for a single degree of freedom system with hysteretic 
damping is therefore rnx + k*x = 0. Fig. 2.21 shows a single degree of freedom model 
with hysteretic damping of coefficient cH. 

Fig. 2.21. Single degree of freedom model with hysteretic damping. 

The equation of motion is 

m x  + (cH/w)i + k x  = 0. 

Now if x = Xejor, 

Thus the equation of motion becomes 

mk + ( k  + jcH)x = 0. 
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Since 

we can write 

mx + k*x = 0. 

That is, the combined effect of the elastic and hysteretic resistance to motion can be 
represented as a complex stiffness, k*. 

A range of values of q for some common engineering materials is given below. For 
more detailed information on material damping mechanisms and loss factors, see 
Damping of Materials and Members in Structural Mechanics by B. J. Lazan (Pergamon, 
1968). 

Material Loss factor 

Aluminium-pure 
Aluminium alloy-dural 
Steel 
Lead 
Cast iron 
Manganese copper alloy 
Rubber-natural 
Rubber-hard 
Glass 
Concrete 

0.000024.002 
0.0004-0.001 
0.00 14.008 
0.0084.014 
0.003-0.03 
0.054.1 
0.1-0.3 
1 .o 
0.0006-0.002 
0.01-0.06 

2.2.5 Energy dissipated by damping 
The energy dissipated per cycle by the viscous damping force in a single degree of 
freedom vibrating system is approximately 

4 l oxc i  dx. 

if x = X sin w t  is assumed for the complete cycle. The energy dissipated is therefore 

4 jI 2cX2c02 cos cot dt = nccoX2. 

The energy dissipated per cycle by Coulomb damping is 4FdX approximately. Thus 
an equivalent viscous damping coefficient for Coulomb damping cd can be deduced, 
where 

xcdwX2 = 4FdX, 
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that is, 

[Ch. 2 

4Fd 
Cd = - 

l W X ‘  

The energy dissipated per cycle by a force F acting on a system with hysteretic 

For harmonic motion x = X sin wt, 
damping is JF dx, where F = k*x = k(l  + jq)x,  and x is the displacement. 

so 

F = k X  sin wt -t jqkX sin wt 

= k X  sin wt + qkX cos wt. 

Now 

X J ( X ’  - x2) 
X ’  

sin wt = -, therefore cos wt = 
X 

Thus 

F = kx f qk J(X’  - x’). 

This is the equation of an ellipse as shown in Fig. 2.22. The energy dissipated is 
given by the area enclosed by the ellipse. 

Fig. 2.22. Elliptical force4isplacement relationship for a system with hysteretic damping. 

Hence 

b x  = Iox(kx f q k J ( X 2  - x2))dx 

= XX’qk. 
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An equivalent viscous damping coefficient cH is given by 

nc,wX2 = xqkX2,  

that is 

qk 
CH = -, 

0 

Note also that c = c H / o ,  

Example 10 
A single degree of freedom system has viscous damping, with ( = 0.02. Find the energy 
dissipated per cycle as a function of the energy in the system at the start of that cycle. 
Also find the amplitude of the 12th cycle if the amplitude of the 3rd cycle is 1.8 mm. 

i 4 1, so In ( X , / X , )  = 274 = 0.126. 

Thus 

X , / X ,  = eo.126 = 1.134. 

Energy at start of cycle = ;kX12  

Energy at end of cycle = ;kX, ,  

Energy dissipated during cycle 
Energy at start of cycle 

(stored as strain energy in spring) 

;kX: - +kX:  
i k X :  

- - = 1 - ( X 2 / X , ) ,  = 1 - 0.7773 = 0.223. 

that is 22.3% of initial energy is dissipated in one cycle. 
Now 

X , / X 2  = 1.134, X 2 / X ,  = 1.134.. . ( X n -  , ) / X n  = 1.134. 

Therefore 

X , / X , ,  = (1.134)9 = 3.107 

that is 

1.8 
3.107 

x , ,  = ~ = 0.579 mm. 

Example 11 
A gun is designed so that when fired the barrel recoils against a spring. At the end 
of the recoil a viscous damper is engaged which allows the barrel to return to its 
equilibrium position in the minimum time without overshoot. Determine the spring 
constant and damping coefficient for a gun whose barrel has a mass of 500 kg if the 
initial recoil velocity is 30 m/s and the recoil distance is 1.6 m. 
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Find also the time required for the barrel to return to a position 0.1 m from its 

Since the initial kinetic energy of the barrel must equal the maximum strain energy 

initial position. 

in the spring, 

ik1.62 = i500(30)2, 

that is k = 175 kN/m. 
Since critical damping is required, the damping coefficient is 

2J(500 x 175 x lo3) = 18700 Ns/m. 

For critical damping 

x = ( A  + Bt)e-"' 

If x = xo and i = 0 at t = 0, 

x = xo( 1 + wt)e-"? 

Now w = J(175 x 103/500) = 18.7 rad/s and x = 0.1 m, so we require the solution 
to 0.1 = 1.6(1 + 18.7t)e-'8.7'. 

This equation can be solved in many ways, e.g. by trial and error or graphically, 
to give t = 0.24 s. 

2.3 FORCED VIBRATION 

Many real systems are subjected to periodic excitation. This may be due to unbalanced 
rotating parts, reciprocating components, or a shaking foundation. Sometimes large 
motions of the suspended body are desired as in vibratory feeders and compactors, 
but usually we require very low vibration amplitudes over a large range of exciting 
forces and frequencies. Some periodic forces are harmonic, but even if they are not, 
they can be represented as a series of harmonic functions using Fourier analysis 
techniques. Because of this the response of elastically supported bodies to harmonic 
exciting forces and motions must be studied. 

2.3.1 Response of a viscous damped system to a simple harmonic exciting force with 
constant amplitude 
In the system shown in Fig. 2.23, the body of mass m is connected by a spring and 
viscous damper to a fixed support, whilst an harmonic force.of circular frequency Y 
and amplitude F acts upon it, in the line of motion. 
The equation of motion is 

mx + c i  + kx = F sin vt. (2.14) 

The solution to mx + c i  + kx = 0, which has already been studied, is the 
complementary function; it represents the initial vibration which quickly dies away. 
The sustained motion is given by the particular solution. A solution x = X (sin v t  - 4)  
can be assumed, because this represents simple harmonic motion at the frequency of 
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Fig. 2.23. Single degree of freedom model of a forced system with viscous damping. 

the exciting force with a displacement vector which lags the force vector by 4, that 
is the motion occurs after the application of the force. 

Assuming x = X sin(vt - $), 

i = xv  cos (vt - 4) = xv sin (vt - 4 + in), 
and 

.t = - Xvz sin (vt - 4) = XV’ sin (vt - 4 + x). 
The equation of motion (2.14) thus becomes 

mXv’ sin (vf - 4 + IC) + cXv sin (vt - 4 + 7-42) + kX sin (vt - 4) 
= F sin vr. 

A vector diagram of these forces can now be drawn, Fig 2.24. 

’ Fig. 2.24. Force vector diagram. 

From the diagram, 
F Z  = ( k X  - mXv’)’ + (cxv)’, 

or 

X = F / J ( ( k  - mv’)’ + (cv)’), (2.15) 
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and 
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tan 4 = c X v / ( k X  - mXv2) .  

Thus the steady-state solution to equation (2.14) is 

X =  sin (v t  - 4), F 
J((k  - mv2)2 + ( c v ) ~ )  

where 

4 = tan-' ~ 

( k  :mv2)' 

The complete solution includes the transient motion given by the complementary 
function: 

x = Ae-[*' sin (oJ(1 - C2)t + a). 

Fig. 2. 25 shows the combined motion. 

Fig. 2.25. Forced vibration, combined motion. 

Equation (2.15) can be written in a more convenient form if we put 

F 
o = /(;I rad/s and X ,  = -. k 

Then 

X _ -  x s - m 3  (2.16) 
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and 6 = tan-' [ l'i ::;:;.I 
X / X ,  is known as the dynamic magnification factor, because X ,  is the static 

deflection of the system under a steady force F,  and X is the dynamic amplitude. 
By considering different values of the frequency ratio v / o ,  we can plot X / X ,  and 

C#J as functions of frequency for various values of [. Figs. 2.26 and 2.27 show the results. 

Fig. 2.26. Amplitude-frequency response for system of Fig. 2.23. 

Fig. 2.27. Phase-frequency response for system of Fig. 2.23. 
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Fig. 2.28. Forced vibration vector diagrams: (a) v/w << 1 Exciting force approximately equal to spring 
force; (b) v/w = 1 Exciting force equal to damping force, and inertia force equal to spring force; (c) v/w >> 1 

Exciting force nearly equal to inertia force. 

The effect of the frequency ratio on the vector diagram is shown in Fig. 2.28. 
The importance of mechanical vibration arises mainly from the large values of 

X f X ,  experienced in practice when vfw has a value near unity: this means that a 
small harmonic force can produce a large amplitude of vibration. The phenomenon 
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known as resonance occurs when the forcing frequency is equal to the natural 
frequency, that is when v /w  = 1. The maximum value of X/X, actually occurs at 
values of v / w  less than unity: the value can be found by differentiating equation (2.16) 
with respect to v /w.  Hence 

and 

For small values of 1, (X/XJmax ‘v 1/21 which is the value pertaining to v /w  = 1. 
1/21 is a measure of the damping in a system and is referred to as the Q factor. 
Note. An alternative solution to the equation of motion can be obtained by putting 
F sin vt = Im(Fe’”). 

Then mx + c i  + kx = FeJ”, and a solution x = XeJvr can be assumed. 

F 
(k - mv’) + jcv’ 

Thus ( k  - mv2)X + jcvX = F, or X = 

F 
J((k - mv’)’ + (cv)’)’ 

Hence X = as before, equation (2.15). 

Both reciprocating and rotating unbalance in a system produce an exciting force of 
the inertia type and result in the amplitude of the exciting force being proportional 
to the square of the frequency of excitation. 

For an unbalanced body of mass m,, at an effective radius r, rotating at an angular 
speed v, the exciting force is therefore m,rv2. If this force is applied to a single degree 
of freedom system such as that in Fig. 2.23, the component of the force in the direction 
of motion is mrrv2 sin vt, and the amplitude of vibration is 

(2.17) 

(see equation (2.16)). 
The value of v /w  for maximum X found by differentiating equation (2.17) is given by 

that is, the peak of the response curve occurs when v > w. This is shown in Fig. 2.29 

Also, 
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It can be seen that away from the resonance condition ( v / o  = 1) the system response 
is not greatly affected by damping unless this happens to be large. Since in most 
mechanical systems the damping is small (5 < 0.1) it is often permissible to neglect 
the damping when evaluating the frequency for maximum amplitude and also the 
amplitude-frequency response away from the resonance condition. 

Fig. 2.29. Amplitude-frequency response, with rotating unbalance excitation. 

Example 12 
A turbo-charger rotor consists of a steel shaft 10 mm in diameter which is simply 
supported in two self-aligning bearings placed 100 mm apart. A turbine rotor of mass 
0.2 kg is located at the mid-point of the shaft. There is negligible damping. The rotor 
is carefully balanced, the maximum out-of-balance being lo-' kg m. In previous 
applications the turbo-charger has been run successfully at 35 OOO rev/min and 55 OOO 
rev/min. Calculate the amplitude of the deflection of the mid-point of the shaft, and 
its phase with respect to the out-of-balance excitation when it is running at these speeds. 

In a new application it was proposed to run the turbo-charger at 45 OOO rev/min. 
Comment on the implications of this proposal. 

The stiffness, k of the shaft at its mid-point is 48EZ/l3, where E = 2 x 10" N/m2, 
I = ~(0.01)~4/64 m4 and 1 = 0.1 m. Hence 

48 x 2 x 1 0 1 1  [X(y41)41 
k =  = 4.71 x lo6 N/m. 

0.13 

The effective mass, me,, of the system can be taken to be the mass of the rotor plus 
one half of the mass of the shaft. Thus 
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K(0.01)2 
mcff = 0.2 + $ x 7850 x 0.1 ~ - - 0.231 kg. 

4 

The natural frequency of the system is therefore 

which corresponds to 43 100 rev/min. 
The amplitude of shaft deflection is 

F 

k( 1 - (;y) 
where F = mrv2 and v = 27c x 35 OOO/60 = 3663 rad/s. Thus 

v 3663 
F = lo-' x 36632 = 134.2 N, and - = - = 0.811. 

o 4515 

Hence the amplitude at 35 OOO rev/min 

134.2 
4.71 x 106(1 - 0.81l2) 

= 0.083 mm, - - 

and is in phase with the excitation because the excitation is below the resonance 
frequency, and the amplitude is therefore positive. 

At 55 0oO rev/min, the amplitude is 

= -0.112 mm, 
331 

4.71 x 106(1 - 1.272) 

which is out of phase with the excitation. 

the proximity to resonance which occurs at 43 100 rev/min. 
Running the turbo-charger at 45 0oO rev/min is potentially dangerous because of 

It can be seen from Fig. 2.26, 2.28 and 2.29 that the system response at low 
frequencies (<< o) is stiffness-dependant, and that in the region of resonance the 
response is damping-dependant, whereas at high frequencies (>> w)  the response is 
governed by the system mass. It is most important to realize this when attempting 
to reduce the vibration of a system. For example the application of increased damping 
will have little effect if the excitation and response frequencies are in a region well 
away from resonance such as in that controlled by the system mass. 
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Before attempting to reduce the vibration levels in a machine or structure by 
increasing its damping, every effort should be made to reduce the vibration excitation 
at its source. It has to be accepted that many machines and processes generate a 
disturbing force of one sort or another, but the frequency of the disturbing force 
should not be at or near a natural frequency of the structure otherwise resonance 
will occur, with the resulting high amplitudes of vibration and dynamic stresses, and 
noise and fatigue problems. Resonance may also prevent the system fulfilling the 
desired function. 

Some reduction in excitation can often be achieved by changing the machinery 
generating the vibration, but this can usually only be done at the design stage. Resiting 
equipment may also effect some improvement. However, structural vibration caused 
by external excitation sources such as ground vibration, cross winds or turbulence 
from adjacent buildings can only be controlled by damping. 

In some machines vibrations are deliberately excited as part of the process, for 
example, in vibratory conveyors and compactors, and in ultrasonic welding. Naturally, 
nearby machines have to be protected from these vibrations. 

Rotating machinery such as fans, turbines, motors and propellers can generate 
disturbing forces at several different frequencies such as the rotating speed and blade 
passing frequency. Reciprocating machinery such as compressors and engines can 
rarely be perfectly balanced, and an exciting force is produced at the rotating speed 
and at harmonics. Strong vibration excitation in structures can also be caused by 
pressure fluctuation in gases and liquids flowing in pipes; and intermittent loads such 
as those imposed by lifts in buildings. 

There are two basic types of structural vibration; steady-state vibration caused by 
continually running machines such as engines, air-conditioning plants and generators 
either within the structure or situated in a neighbouring structure, and transient 
vibration caused by a short-duration disturbance such as a lorry or train passing 
over an expansion joint in a road or over a bridge. 

Some relief from steady-state vibration excitation can often be gained by moving 
the source of the excitation, since the mass of the vibration generator has some effect 
on the natural frequencies of the supporting structure. For example, in a building it 
may be an advantage to move mechanical equipment to a lower floor, and in a ship 
re-siting propulsion or service machinery may prove effective. The effect of local 
stiffening of the structure may prove to be disappointing, however, because by 
increasing the stiffness the mass is also increased, so that the change in the J(k/rn) 
may prove to be very small. 

Occasionally a change in the vibration generating equipment can reduce vibration 
levels. For example a change in gear ratios is a mechanical drive system, or a change 
from a four-bladed to a three-bladed propeller in a ship propulsion system will alter 
the excitation frequency provided the speed of rotation is not changed. However, in 
many cases the running speeds of motors and engines are closely controlled as in 
electric generator sets, so there is no opportunity for changing the excitation kequency. 

If vibration excitation cannot be reduced to acceptable levels, so that the system 
response is still too large, some measure of vibration isolation may be necessary; see 
section 2.3.2.1 below. 
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23.2 Response of a viscous damped system supported on a foundation subjected to 
harmonic vibration 
The system considered is shown in Fig. 2.30. The foundation is subjected to harmonic 
vibration A sin vt and it is required to determine the response, x, of the body. 

Fig. 2.30. Single degree of freedom model of a vibrated system with viscous damping. 

The equation of motion is 

mx = c ( j  - i) + k(y  - x) .  (2.18) 

If the displacement of the body relative to the foundation, u, is required, we may 
write u = x - y ,  and equation (2.18) becomes 

mu + cu + ku = - my = mv2A sin vt. 

This equation is similar to (2.14) so that the solution may be written directly as 

1 2i(v’0) - (v/w)2 1. sin v t  - tan-’ i A( V I 4  2 

J((1 - ( V / d 2 ) ’  + (2IV/d2) 
U =  

If the absolute motion of the body is required we rewrite equation (2.18) as 

mx + c i  + kx = c j  + k y  

= cAv cos vt + k A  sin v t  

= AJ(k2  + (cv)’) sin (vt + x )  

where 

cv 
x = tan-’-. 

k 

Hence, from the previous result, 

AJ(k2  + (cv)’) 
J ( ( k  - rnv’)’ + (cv)’) 

sin (vt - C#I + x) .  X =  
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The motion transmissibility is defined as the ratio of the amplitude of the absolute 
body vibration to the amplitude of the foundation vibration. Thus, 

X 
motion transmissibility = - 

A 

2.3.2. I Vibration isolation 
The dynamic forces produced by machinery are often very large. However, the force 
transmitted to the foundation or supporting structure can be reduced by using flexible 
mountings with the correct properties; alternatively a machine can be isolated from 
foundation vibration by using the correct flexible mountings. Fig. 2.31 shows a model 
of such a system. 

The force transmitted to the foundation is the sum of the spring force and the 

Fig. 2.31. Single degree of freedom system with foundation. 

damper force. Thus the transmitted force = kx + c i  and F,, the amplitude of the 
transmitted force is given by 

F ,  = J[(kX)’  + (cvX)’] .  

The force transmission ratio or transmissibility, TR, is given by 

F ,  XJ[k’  + ( c v ) ~ ]  T - -=  
R -  F F 

since 
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/ ( I +  (25:>’) 

TR = ~m 
Therefore the force and motion transmissibilities are the same. 

The effect of v/w on TR is shown in Fig. 2.32. It can be seen that for good isolation 
v/w =- 42, hence a low value of w is required which implies a low stiffness; that is, 
a flexible mounting: this may not always be acceptable in practice where a certain 
minimum stiffness is usually necessary to satisfy operating criteria. 

Fig. 2.32. Transmissibility-frequency ratio response. 

It is particularly important to be able to isolate vibration sources because structure 
borne vibration can otherwise be easily transmitted to parts which radiate well, and 
serious noise problems can occur. Theoretically, low stiffness isolators are desirable 
to give a low natural frequency. However, this often results in isolators which are 
too soft and stability problems may arise. The system can be attached rigidly to a 
large block which effectively increases its mass so that stiffer isolators can be used. 
The centre of mass of the combined system is also lowered, giving improved stability. 
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For the best response a mounting system may be designed with snubbers which 
control the large amplitudes while providing little or no damping when the amplitudes 
are small. 

There are four types of spring material commonly used for resilient mountings and 
vibration isolation: air, metal, rubber and cork. Air springs can be used for very 
low-frequency suspensions: resonance frequencies as low as 1 Hz can be achieved 
whereas metal springs can only be used for resonance frequencies greater than about 
1.3 Hz. Metal springs can transmit high frequencies, however, so rubber or felt pads 
are often used to prohibit metal-to-metal contact between the spring and the structure. 
Different forms of spring element can be used such as coil, torsion, cantilever and 
beam. Rubber can be used in shear or compression but rarely in tension. It is important 
to determine the dynamic stiffness of a rubber isolator because this is generally much 
greater than the static stiffness. Also rubber possesses some inherent damping although 
this may be sensitive to amplitude, frequency and temperature. Natural frequencies 
from 5 Hz upwards can be achieved. Cork is one of the oldest materials used for 
vibration isolation. It is usually used in compression and natural frequencies of 25 
Hz upwards are typical. 

It is shown in section 2.3.2 that good vibration isolation, that is low force and 
motion transmissibility, can be achieved by supporting the vibration generator on a 
flexible low-frequency mounting. Thus although disturbing forces are generated, only 
a small proportion of them are transmitted to the supporting structure. However, 
this theory assumes that a mode of vibration is excited by a harmonic force passing 
through the centre of mass of the installation; although this is often a reasonable 
approximation it rarely actually occurs in practice because, due to a lack of symmetry 
of the supported machine, several different mountings may be needed to achieve a 
level installation, and the mass centre is seldom in the same plane as the tops of the 
mountings. 

Thus the mounting which provides good isolation against a vertical exciting force 
may allow excessive horizontal motion, because of a frequency component close to 
the natural frequency of the horizontal mode of vibration. Also a secondary exciting 
force acting eccentrically from the centre of mass can excite large rotation amplitudes 
when the frequency is near to that of a rocking mode of an installation. 

To limit the motion of a machine installation that generates harmonic forces and 
moments the mass and inertia of the installation supported by the mountings may 
have to be increased; that is an inertia block may have to be added to the installation. 
If non-metallic mountings are used the dynamic stiffness at the frequencies of interest 
will have to be found, probably by carrying out further dynamic tests in which the 
mounting is correctly loaded; they may also possess curious damping characteristics 
which may be included in the analysis by using the concept of complex stiffness, as 
discussed in section 2.2.4. 

Air bags or bellows are sometimes used for very low-frequency mountings where 
some swaying of the supported system is acceptable. This is an important consideration 
because if the motion of the inertia block and the machinery is large, pipework and 
other services may be overstressed, which can lead to fatigue failure of these 
components. Approximate analysis shows that the natural frequency of a body 



Sec. 2.31 Forced vibration 59 

supported on bellows filled with air under pressure is inversely proportional to the 
square root of the volume of the bellows, so that a change in natural frequency can 
be effected simply by a change in bellows volume. This can easily be achieved by 
opening or closing valves connecting the bellows to additional receivers, or by adding 
a liquid to the bellows. Natural frequencies of 0.5 Hz, or even less, are obtainable . 
An additional advantage of air suspension is that the system can be made self-levelling, 
when fitted with suitable valves and an air supply. Air pressures of about 5 to 10 
times atmospheric pressure are usual. 

Greater attenuation of the exciting force at high frequencies can be achieved by 
using a two-stage mounting. In this arrangement the machine is set on flexible 
mountings on an inertia block, which is itself supported by flexible mountings. This 
may not be too expensive to install since in many cases an existing sub-frame or 
structure can be used as the inertia block. If a floating floor in a building is used as 
the inertia block, some allowance must be made for the additional stiffness arising 
from the air space below it. This can be found by measuring the dynamic stiffness of 
the floor by means of resonance tests. 

Naturally, techniques used for isolating structures from exciting forces arising in 
machinery and plant can also be used for isolating delicate equipment from vibrations 
in the structure. For example, sensitive electrical equipment in ships can be isolated 
from hull vibration, and operating tables and metrology equipment can be isolated 
from building vibration. 

The above isolation systems are all passioe; an actice isolation system is one in 
which the exciting force or moment is applied by an externally powered force or 
couple. The opposing force or moment can be produced by means such as hydraulic 
rams, out-of-balance rotating bodies or electro-magnetism. Naturally it is essential 
to have accurate phase and amplitude control, to ensure that the opposing force is 
always equal, and opposite, to the exciting force. Although active isolation systems 
can be expensive to install, excellent results are obtainable so that the supporting 
structure is kept almost completely still. However it must be noted that force actuators 
such as hydraulic rams must react on another part of the system 

If, after careful selection and design of machinery and equipment, careful installation 
and commissioning, and carrying out isolation as necessary the vibration levels in 
the system are still too large, then some increase in the damping is necessary. This 
is also the case when excitation occurs from sources beyond the designers' control 
such as cross winds, earthquakes and currents. 

Example 13 
A spring-mounted body moves with a velocity t' along an undulating surface, as shown. 

The body has a mass m and is connected to the wheel by a spring of stiffness k ,  
and a viscous damper whose damping coefficient is c. The undulating surface has a 
wavelength Land an amplitude h. 

Derive an expression for the ratio of amplitudes of the absolute vertical displacement 
of the body to the surface undulations. 
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The system can be considered to be 

2x2 
L 

2nu 2nv 
Hence y = h cos - t = h cos vt, where v = -. L L 

where y = h cos - and z = ut. 

The FBDs are 
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Hence the equation of motion is 

m f  = - k ( x  - y )  - c ( i  - j ) ,  

or 

mx + c i  + kx = c j  + ky .  

Now 

y = h COS vt ,  SO 

mx + c i  + kx = J[k’  + ( c v ) ~ ] ~  sin (v t  + 4). 
Hence, if 

x = X ,  sin (v t  + a), 

h&k’ + (cv)’] 
J [ ( k  - mv’)2 + (cv)’] x, = 

so, 

Example 14 
The vibration on the floor in a building is SHM at a frequency in the range 15430 Hz. 
It is desired to install sensitive equipment in the building which must be insulated 
from floor vibration. The equipment is fastened to a small platform which is supported 
by three similar springs resting on the floor, each carrying an equal load. Only vertical 
motion occurs. The combined mass of the equipment and platform is 40 kg, and the 
equivalent viscous damping ratio of the suspension is 0.2. 

Find the maximum value for the spring stiffness, if the amplitude of transmitted 
vibration is to be less than 10% of the floor vibration over the given frequency range. 

TR = 0.1 with < = 0.2 is required. 

Thus 

[ 1 - (iyy + p . 4  (;)T = loo[ 1 + (0.4 31 
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that is 

2 (iy - 17.84 (i) - 99 = 0. 

Hence 

v 
w 
- = 4.72. 

When 

I? = 1 5 . 2 ~  rad/s, w = 19.97 rad/s. 

Since 

w = J(t) and m = 4 0  kg, 

total k = 15 935 N/m, 

that is, stiffness of each spring = 15 935/3 N/m = 5.3 kN/m. 

above 15 Hz. 
The amplitude of the transmitted vibration will be less than 10% at frequencies 

Example 15 
A machine of mass m generates a disturbing force F sin v f ;  to reduce the force 
transmitted to the supporting structure, the machine is mounted on a spring of stiffness 
k with a damper in parallel. Compare the effectiveness of this isolation system for 
viscous and hysteretic damping. 

Viscous damping. From section 2.3.2.1, 

Hysteretic damping. From section 2.2.5, 

cv V 
Putting 9 = - = 25-, 

k o  
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The effectiveness of these isolators can be compared using these expressions for TR. 
The results are given in the table below. 

It can be seen that the isolation effects are similar for the viscous and hysteretically 
damped isolators, except at high frequency ratios when the hysteretic damping gives 
much better attentuation of TR. At these frequencies it is better to decouple the viscous 
damped isolator by attaching small springs or rubber bushes at each end. 

Viscously damped Hysteretically damped 
isolator isolator 

Value of TR when v = 0' 1 1 
Frequency ratio v / o  for 
resonance 1 1 

Value of TR at resonance 

Value of TR when 
V / W =  J2 1 1 

Frequency ratio v / o  for 
isolation. 

High frequency, v / o  $ 1, 

attenuation of TR 

Example 16 
A single degree of freedom vibrational system of very small viscous damping (1 < 0.1) 
is excited by an harmonic force of frequency v and amplitude F. Show that the Q 
factor of the system is equal to the reciprocal of twice the damping ratio 1. The Q 
factor is equal to (X/Xs)max. 

It is sometimes difficult to measure 1 in this way because the static deflection X, 
of the body under a force F is very small. Another way is to obtain the two frequencies 
p1 and p 2  (one either side of the resonance frequency o) at the half-power points. 

Show that Q = 1/21 = o/(p2 - pl) = w/Aw. 
(The half-power points are those points on the response curve with an amplitude 

I /  J2  times the amplitude at resonance). 

From equation (2.16) above 

X = ( F / k ) /  J((1 - + (XV /O)~ )  
If v = 0, X ,  = F / k ,  and at resonance v = o, 

so 



64 The vibrations of systems having one degree of freedom 

that is 

[Ch. 2 

Q = (XIXstatiJmax = 1/2C* 
If X, cannot be determined, the Q factor can be found by using the half-power point 

method. This method requires very accurate measurement of the vibration amplitude 
for excitation frequencies in the region of resonance. Once XmaX and w have been 
located, the so called half-power points are found when the amplitude is X, = Xm,JJ2 
and the corresponding frequencies either side of w, p1 and p 2  determined. Since the 
energy dissipated per cycle is proportional to X2, the energy dissipated is reduced 
by 50% when the amplitude is reduced by a factor of 1/J2. 

Amplitude-frequency response 

Now 

x=m 
Thus 

= 9 (l small, so x,,, occurs at - 2: 1 , Xmax 21 w " 1  
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Hence 

[ 1 - (:>'I' + [z(b]2 = 8c2, 

and 

(5)' = (1 - 212) 5 2[J(1 - [2). 

That is 

-- P: - P: - 4[J(1 - i2) 5: 4[, if 1 is small. 
w2 

Now 

2 2  T=( P2-P1 P2-P1 )( P 2 + P 1  ) = 2 p $ ) ,  

because (pl + p2)/o = 2. That is, a symmetrical response curve is assumed for small 
i. Thus 

where Ao is the frequency bandwidth at the half-power points. 
Therefore, for light damping, the damping ratio 1, and hence the Q factor, associated 

with any mode of vibration can be found from the amplitude-frequency measurements 
at resonance and the half-power points. Care is needed to ensure that the exciting 
device does not load the system and alter the frequency response and the damping. 
It should be noted that some difficulty is often encountered in measuring XmaX 
accurately. 

In real systems and structures a very high Q at a low frequency, or a very low Q 
at a high frequency, seldom occur, but it can be appreciated from the above that very 
real measuring difficulties can be encountered when trying to measure bandwidths 
of only a few Hz accurately, even if the amplitude of vibration can be determined. 
The table below shows the relationship between Q and Af for different values of 
frequency. 
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Q factor 

Resonance frequency (Hz) 
10 
100 
1000 

500 50 5 

Frequency bandwidth (Hz) 
0.02 0.2 2 
0.2 2 20 
2 20 200 

An improvement in accuracy in determining Q can often be obtained by measuring 
both amplitude and phase of the response for a range of exciting frequencies. Consider 
a single degree of freedom system under forced excitation Fej". The equation of 
motion is 

mx + c i  + kx = Fej"'. 

A solution x = XejVt can be assumed, so that 

- mv2X + jcvX + k X  = F. 

Hence 

1 - X 
F - (k  - mv2) + jcv  
- 

cv - k - my2 
(k - mv2)2 + (cv)' 

- - 
' (k  - mv2)2 + (cv)' 

That is, X/F consists of two vectors, Re(X/F) in phase with the force, and Im(X/F) 
in quadrature with the force. The locus of the end point of vector X/F as v varies is 
shown opposite for a given value of c. This is obtained by calculating real and 
imaginary components of X / F  for a range of frequencies. 
Experimentally this curve can be obtained by plotting the measured amplitude and 
phase of (X/F) for each exciting frequency. 
Since 

k - mv2 
tan 4 = -, 

when 4 = 45" and 135", 

cv 

k - mp: k - mp: I=- and - 1 =-, 
C P  1 C P 2  

Hence 

mp: + cpl  - k = 0 and mp: - cp2 - k = 0. 

Subtracting one equation from the other gives p 2  - p 1  = c/m, or 

1 P 2  - P1 - 
w w = 2c = 3' 
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That is, X I F  at resonance lies along the imaginary axis, and the half-power points 
occur when 4 = 45” and 135”. If experimental results are plotted on these axes a 
smooth curve can be drawn through them so that the half-power points can be 
accurately located. 

The method is also effective when the damping is hysteretic, because in this case 

1 - X 
F - (k - mv2) + jqk’ - 

so that 

- v k  
(k - mv2)2 + (qk)” 

k - mv2 
( k  - VIV’)’ + (qk)’ 

and Im(g) = Re($) = 

Thus 

1 
[Re($)y + [ Im(g)y  = ( k  - mv2)2 + ( ~ k ) ~ ’  

or 

[Re(%)y + [Im($) - &y = (&)’. 
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That is, the locus of ( X I F )  as v increases from zero is part of a circle, centre 
(0, - 1/2qk) and radius 1/2qk, as shown. 

In this case therefore it is particularly easy to draw an accurate locus from a few 
experimental results, and p1 and p 2  are located on the horizontal diameter of the circle. 

This technique is known variously as a frequency locus plot, Kennedy-Pancu 
diagram, or Nyquist diagram. 

It must be realized that the assessment of damping can only be approximate. It is 
difficult to obtain accurate, reliable, experimental data, particularly in the region of 
resonance; the analysis will depend on whether viscous or hysteretic damping is 
assumed, and some non-linearity may occur in a real system. These effects may cause 
the frequency-locus plot to rotate and translate in the Re(X/F), Im(X/F) plane. In 
these cases the resonance frequency can be found from that part of the plot where 
the greatest rate of change of phase with frequency occurs. 

Example 17 
A machine of mass 550 kg is flexibly supported on rubber mountings which provide 
a force proportional to displacement of 210 kN/m, together with a viscous damping 
force. The machine gives an exciting force of the form R v 2  cos vt,  where R is a 
constant. At very high speeds of rotation, the measured amplitude of vibration is 
0.25 mm, and the maximum amplitude recorded as the speed is slowly increased from 
zero is 2 mm. Find the value of R and the damping ratio. 
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Now, 

X = Rv’/(,/(k - mv’)’ + c’v’) 

If v is large, 

X + Rv’/(J(rn’v4)) = R/m. 

Hence 

R = mX = (550 x 0.25)/1000 = 0.1375 kg m. 

For maximum X ,  dX/dv = 0, hence v’ = 2k2/(2mk - c’), and 

so 
tJ(1 - 1’) = R/(2mXm,,) = 0.1375/(2 x 550 x 2 x 

= 0.062, 

that is, 

t = 0.062. 

23.3 Response of a Coulomb damped system to a simple harmonic exciting force 
with constant amplitude 

Fig. 2.33. Single degree of freedom model of a forced system with Coulomb damping. 

In the system shown in Fig. 2.33 the damper relies upon dry friction. 

opposes the motion: 
The equation of motion is non-linear because the constant friction force F ,  always 

mji- + kx f F ,  = F sin vt. 

If F ,  is large compared to F ,  discontinuous motion will occur, but in most systems 
F ,  is usually small so that an approximate continuous solution is valid. The 
approximate solution is obtained by linearizing the equation of motion; this can be 
done by expressing F ,  in terms of an equivalent viscous damping coefficient, c,. From 
section 2.2.5. 
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4Fd 
Cd = - 

nvX’ 

The solution to the linearized equation of motion gives the amplitude X of the 
motion as 

F 
X =  

J [ ( k  - mV2)’ -b (Cdv)’]’ 

Hence 

F 
J ( k  - mv’)’ + (4F&rX)’]’ 

X =  

That is, 

_ -  Jc1 - (4Fd/nF)2) - xs 1 - (v/w)’ . 
This expression is satisfactory for small damping forces, but breaks down if 
4F&F < 1, that is Fd > (7r/4)F. 

At resonance the amplitude is not limited by Coulomb friction. 

23.4 Response of a hysteretically damped system to a simple harmonic exciting force 
with constant amplitude 
In the single degree of freedom model shown in Fig. 2.34 the damping is hysteretic. 

Fig. 2.34. Single degree of freedom model of a forced system with hysteric damping. 

The equation of motion is 

m x  + k*x = F sin vt. 

Since 

k* = k ( l  + jq), 

F sin vc 

(k  - mv’) + jqk’ 
X =  
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and 

1 - - X - 
x, J(C1 - (v/w)212 + 17' 

This result can also be obtained from the analysis of a viscous damped system by 
substituting c = q k / v .  

It should be noted that if c = qk /v ,  at resonance c = q,/(km), that is q = 2 i  = 1/Q. 

2.3.5 Response of  a system to  a suddenly applied force 

Fig. 2.35. Single degree of freedom model with constant exciting force. 

Consider a single degree of freedom undamped system, such as the system shown in 
Fig. 2.35, which has been subjected to a suddenly applied force F.  The equation of 
motion is m x  + k x  = F. The solution to this equation comprises a complementary 
function A sin wt + B cos of, where w = ,/(k/m) rad/s together with a particular 
solution. The particular solution may be found by using the D-operator. Thus the 
equation of motion can be written 

F 
k 

(1 + = -, 

and 

That is, the complete solution to the equation of motion is 

F 
x = A sin wt + B cos cot + -. 

k 

If the initial conditions are such that x = i = 0 at f = 0, then B = - F / k  and A = 0. 
Hence 

F 
k 

x = - (1 - cos or). 
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The motion is shown in Fig. 2.36. It will be seen that the maximum dynamic 
displacement is twice the static displacement occurring under the same load. This is 
an important consideration in systems subjected to suddenly applied loads. 

If the system possesses viscous damping of coefficient c, the solution to the equation 
of motion is x = Xe-<"' sin (o,t + 4) + F/k. 

With the same initial conditions as above, 
e -<"I 

dl i - c2))1 sin o J(1 - i z ) t  + tan-' ( x = -  1 -  : [ J(1 - 1') 
This reduces to the undamped case if i = 0. The response of the damped system is 
shown in Fig. 2.37. 

Fig. 2.36. Displacement-time response for system shown in Fig. 2.35. 

Fig. 2.37. Displacement-time response for single degree of freedom system with viscous damping. 

2.3.6 Shock excitation 
Some systems are subjected to shock or impulse loads arising from suddenly applied, 
non-periodic, short duration exciting forces. 

The impulsive force shown in Fig. 2.38 consists of a force of magnitude Fmax/& 
which has a time duration of E. 

The impulse is equal to 

6"' (+)df. 
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Fig. 2.38. Impulse. 

When F,,, is equal to unity, the force in the limiting case E+O is called either the 
unit impulse or the delta function, and is identified by the symbol h(t - l), where 

j , 6 ( t  - 5)dt = 1.  

Since F dt = m dv, the impulse F,,, acting on a body will result in a sudden change 
in its velocity without an appreciable change in its displacement. Thus the motion 
of a single degree of freedom system excited by an impulse F,,, corresponds to free 
vibration with initial conditions x = 0 and f = vo = F,,,/m at t = 0. 

Once the response g(t) say, to a unit impulse excitation is known, it is possible to 
establish the equation for the response of a system to an arbitrary exciting force F(t) .  
For this the arbitrary pulse in considered to comprise a series of impulses as shown 
in Fig. 2.39. 

Fig. 2.39. Force-time pulse. 
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If one of the impulses is examined which starts at time 5, its magnitude is F(C)At, 
and its contribution to the system response at time t is found by replacing the time 
with the elapsed time ( t  - 5 )  as shown in Fig. 2.40. 

If the system can be assumed to be linear, the principle of superposition can be 
applied, so that 

x ( t )  = F(OS(t  - OdS. sd 
This is known as the Duhamel integral. 

Fig. 2.40. Displacement-time response to impulse 

2.3.7 Harmonic analysis 
A function which is periodic but not harmonic can be represented by the sum of a 
number of terms, each term representing some multiple of the fundamental frequency. 
In a linear system each of these harmonic terms acts as if it alone were exciting the 
system, and the system response is the sum of the excitation of all the harmonics. 

For example, if the periodic forcing function of a single degree of freedom undamped 
system is 

F ,  sin (v i  + a l )  + F ,  sin (2vt + a,) + F ,  sin (3vt + a3) + ... + F ,  sin (nvt + an), 

the steady-state response to F ,  sin ( v t  + a , )  is 

and the response to F ,  sin (2vt + az)  is 
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x2 = F2 sin (2vt + a2), 
k( 1 - (:r) 

and so on, so that 

n 

x =  c F n  sin (nvt + a,). 
, = I  k( 1 - (zr) 

Clearly that harmonic which is closest to the system natural frequency will most 
influence the response. 

A periodic function can be written as the sum of a number of harmonic terms by 
writing a Fourier series for the function. A Fourier series can be written 

X 

a0 F(t) = - + c (a, cos nvt + b, sin nvt), 
2 n = l  

where 

2 T  
a, = ; jo F(t)dt, 

2 I  
a, = ; jo F(t) cos vtdt, and 

b, = 5 jo F(t) sin vtdt. 
2 I  

For example, consider the first four terms of the Fourier series representation of the 
square wave shown in Fig. 2.41 to be required; 7 = 271 so v = 1 rad/s. 

Fig. 2.41. Square wave. 
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QO 

2 

+ b ,  sin v t  + b, sin 2vt + ... 
2 r  

F(t)  = - + a, cos vt + a2 cos 2vt + ... 

F(t)dt = - 1 dt + - - 1 dt = 0. 
ao =; jo ;rc j: ;rc jn2' 

=%Io 
2 K  

5 j~ 
2 "  

a, = - F(t )  COS vtdt 

COS vtdt + - - COS vtdt = 0. 
;rc In2" 

Similarly 

0. a2 = a3 = ... = 

2 r  
b - - F(t)  sin vtdt 

1 - 7 ! ~  

= & jI sin vtdt + - - sin vrdt 

1 1 4 

;rc jn2' 
-- - [- cos vt]; + - [cos vt],'" = -. 

7LV 7CV Z V  

Since v = 1 rad/s, 

4 
b --. 

l - r c  

It is found that b, = 0, b3 = 4/3n and so on. 

1 .  1 .  1 .  Thus F(t)  = - sin t + - sin 3t + - sin 5t + - sin 7t + ... is the series representation 

of the square wave shown. 

steady-state response is given by 

1 rc 4[ 3 5 7 

If this stimulus is applied to a simple undamped system with w = 4 rad/s, say, the 

4 4 4 4 
- sin t - sin 3t - sin 5t - sin 7t 
7L 3rc 5rc 7rc ... x=- + + 
1 - (y + 1 - (a), 1 - (2)* 1 - (y 

that is, x = 1.36 sin t + 0.97 sin 3t - 0.45 sin 5t - 0.09 sin 7t - ... 
Usually three or four terms of the series dominate the predicted response. 
It is worth sketching the components of F( t )  above to show that they produce a 

reasonable square wave, whereas the components of x do not. This is an important 
result. 
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2.3.8 Random vibration 
If the vibration response parameters of a dynamic system are accurately known as 
functions of time, the vibration is said to be deterministic. However, in many systems 
and processes responses cannot be accurately predicted; these are called random 
processes. Examples of a random process are turbulence, fatigue, the meshing of 
imperfect gears, surface irregularities, the motion of a car running along a rough 
road, and building vibration excited by an earthquake. Fig. 2.42 shows a random 
process. 

Fig. 2.42. Example random process variable as f(t). 

A collection of sample functions xl(t), x2(t ) ,  x3(t ) ,  ..., xn(t )  which make up the 
random process x(t) is called an ensemble, as shown in Fig. 2.43. These functions may 
comprise, for example, records of noise, pressure fluctuations or vibration levels, taken 
under the same conditions but at different times. 

Any quantity which cannot be precisely predicted is non-deterministic and is known 
as a random variable or a probabilistic quantity. That is, if a series of tests is conducted 
to find the value of a particular parameter x and that value is found to vary in an 
unpredictable way that is not a function of any other parameter, than x is a random 
variable. 

2.3.8.1 Probability distribution 
If n experimental values of a variable x are xl, x2, x3, . . . , x,, the probability that the 
value of x will be less than x’ is n‘/n, where n’ is the number of x values which are 
less than or equal to x’. That is, 

Prob (x < x’) = n‘/n. 

When n approaches x this expression is the probability distribution function of x. 
denoted by P(x) ,  so that 
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Fig. 2.43. Ensemble of a random process. 

P ( x )  = Lt (n’/n) 
n-m 

The typical variation of P(x)  with x is shown in Fig. 2.44. Since x( t )  denotes a physical 
quantity, 

Prob ( x <  - to) = 0, and Prob ( x <  + to) = 1. 
The probability densityfunction is the derivative of P(x)  with respect to x and this 

is denoted by p(x). That is, 

d P ( x )  
p(X) = - 

4 x 1  

1. P(x + A X )  - P ( x )  
= AX-0 Lt [ Ax 

where P ( x  + Ax)  - P ( x )  is the probability that the value of x(r) will lie between x 
and x + Ax (Fig. 2.44). Now, 

d P ( x )  A x )  = -> dX 



Sec. 2.31 Forced vibration 79 

Fig. 2.44. Probability distribution function as f ( x ) .  

so that 

P(x) = p(x)dx. Sr , 
S:= 

Hence 

P(.c) = p(x)dx = 1, 

so that the area under the probability density function curve is unity. 
A random process is stationary if the joint probability density 

P(X(tl), x(t,), X(t3L. . .) 
depends only on the time differences t ,  - t , ,  t3 - t ,  and so on, and not on the actual 
time instants. That is, the ensemble will look just the same if the time origin is changed. 
A random process is ergodic if every sample function is typical of the entire group. 

The expected value ofAx), which is written 

Emx)] or Ax), is 
X 

J5mx)l =Ax) = 1- r f(X)P(X)dX, 

so that the expected value of a stationary random process x(t) is 
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ECx(t1)I = ECx(t, + t)I 
for any value of t .  

IfAx) = x, the expected value or mean value of x, 

ECxl 

ECxl 

In addition, 

or 2, is 

ifAx) = x2, the mean square value X2 of x is 

The variance of x, a2 is the mean 

a2 = E[(x - 3 2 1  = 

square value of x about the mean, that is, 

X)2p(x)dx = ( 2 2 )  - (X)2. 

a is the standard deviation of x, hence 

variance = (standard deviation), = {mean square - (mean)2} 

different instants of time, then 
If two or more random variables x1 and x,, represent a random process at two 

ELf(XlJ2)I = l5 {= f(x,,x,)p(x,,x,)dx,dx,, 
- 5  - 5  

and if r1 and t ,  are the two instants of time, 

ECx(t1),x(t,)l = R(tlJ2), 
which is the auto-correlation function for the random process (Fig 2.45). 

For random processes which are stationary, 

ECx(t,), 4 2 1 1  = R(t1, t 2 )  = R(t2 - t l)  = R ( 4 ,  
say, since the average depends only on time differences. If the process is also ergodic, 
then 

It is worth noting that 

R(0) = E[x(~)~] = Lt 

which is the average power in a sample function. 

2.3.8.2 Random processes 
The most important random process is the Gaussian, or normal random process. This 
is because a wide range of physically observed random waveforms can be represented 
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Fig. 2.45. Random processes. 

as Gaussian processes, and the process has mathematical features which make analysis 
relatively straightforward. 

The probability density function of a Gaussian process x(t) is 

p(X) = - 1 exp[ - +(““)’I, a 
J(2x)a 

where a is the standard deviation of x, and Z is the mean value of x. 
The values of a and Z may vary with time for a non-stationary process but are 

independant of time if the process is stationary. 
One of the most important features of the Gaussian process is that the response 

of a linear system to this form of excitation is usually another, but still Guassian, 
random process. The only changes are that the magnitude and standard deviation 
of the response may differ from those of the excitation. 

A Gaussian probability density function is shown in Fig. 2.46. It can be seen to 
be symmetric about the mean value E, and the standard deviation a controls the spread. 
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Fig. 2.46. Gaussian probability density function. 

Fig. 2.47. Gaussian probability density function with zero mean. 
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The probability that x( t )  lies between - E.a and + ia, where 2 is a positive number, 
can be found since, if X = 0, 

+ lo 
1 exp ( - A 2 *)x. a2 Lo tioa Prob { - i a  < x ( t )  < + ia )  = 

Fig. 2.47 shows the Gaussian probability density function with zero mean. 
This integral has been calculated for a range of values of A; the results are given 

below. The probability that x( t )  lies outside the range - 2.0 to + ;.a is 1 minus the 
value of the above integral; this probability is also given. 
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2.3.8.3 Spectral density 
The spectral density S(w) of a stationary random process is the Fourier transform of 
the autocorrelation function R(T). It is given by 

[Ch. 2 

S(w) = - R(z)e-j"'d?. 
27l 1 r - m  

s_a; 
.l:m 

The inverse, which also holds true, is 

R(T) = S(w)e-j"'dw 

I f r = O  

R(0) = S(w)dw = E [ x 2 ]  

That is, the mean square value of a stationary random process x is the area under 
the S(w) against frequency curve. A typical spectral density function is shown in Fig. 
2.48. 

Fig. 2.48. Typical spectral density function. 

A random process whose spectral density is constant over a very wide frequency 
range is called white noise. If the spectral density of a process has a significant value 
over a narrower range of frequencies, but one which is nevertheless still wide compared 
with the centre frequency of the band, it is termed a wide-band process (Fig. 2.49). If 
the frequency range is narrow compared with the centre frequency it is termed a 
narrow-band process (Fig. 2.50). Narrow-band processes frequently occur in engin- 
eering practice because real systems often respond strongly to specific exciting 
frequencies and thereby effectively act as a filter. 



Sec. 2.31 Forced vibration 85 

Fig. 2.49. Wide-band process. 

Fig. 2.50. Narrow band process. 
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2.3.9 The measurement of vibration 
The most commonly used device for vibration measurement is the piezoelectric 
accelerometer, which gives an electric signal proportional to the vibration acceleration. 
This signal can readily be amplified, analysed, displayed, recorded, and so on. The 
principles of this device can be studied by referring to Fig. 2.51 which shows a body 
of mass rn supported by an elastic system of stiffness k and effective viscous damping 
of coefficient c. 

This dynamic system is usually enclosed in a case which is fastened to the surface 
whose vibration is to be measured. The body has a pointer fixed to it, which moves 
over a scale fastened to the case: that is it measures u, the motion of the suspended 
body relative to that of the vibrating surface so that u = x - y.  

Now from section 2.3.2, the amplitude of u is 

so that if w is low and v 9 w, 

Fig. 2.51. Vibration measuring device 
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that is, the device measures the input vibration amplitude; when operating in this 
mode it is called a vibrometer, and if w is high so that w&v, then 

that is, the device measures the input vibration acceleration amplitude; when operating 
in this mode it is called an accelerometer. 

By adjusting the system parameters correctly it is possible to make 

have a value close to unity for exciting frequencies v up to about 0.30. Commercial 
accelerometers usually have piezoelectric elements instead of a spring and damper, 
so that the electric signal produced is proportional to the relative motion u, above. 



The vibrations of systems having more than one 
degree of freedom 

Many real systems can be represented by a single degree of freedom model. However, 
most actual systems have several bodies and several restraints and therefore several 
degrees of freedom. The number of degrees of freedom that a system possesses is 
equal to the number of independent coordinates necessary to describe the motion of 
the system. Since no body is completely rigid, and no spring is without mass, every 
real system has more than one degree of freedom, and sometimes it is not sufficiently 
realistic to approximate a system by a single degree of freedom model. Thus, it is 
necessary to study the vibration of systems with more than one degree of freedom. 

Each flexibly connected body in a multi-degree of freedom system can move 
independently of the other bodies, and only under certain conditions will all bodies 
undergo an harmonic motion at the same frequency. Since all bodies move with the 
same frequency, they all attain their amplitudes at the same time even if they do not 
all move in the same direction. When such motion occurs the frequency is called a 
naturalfrequency of the system, and the motion is a principal mode of vibration: the 
number of natural frequencies and principal modes that a system possesses is equal 
to the number of degrees of freedom of that system. The deployment of the system 
at its lowest or first natural frequency is called its first mode, at the next highest or 
second natural frequency it is called the second mode and so on. 

A two degree of freedom system will be considered initially. This is because the 
addition of more degrees of freedom increases the labour of the solution procedure 
but does not introduce any new analytical principles. 

Initially, we will obtain the equations of motion for a two degree of freedom model, 
and from these find the natural frequencies and corresponding mode shapes. 

Some examples of two degree of freedom models of vibrating systems are shown 
in Figs 3.l(aHh). 
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Fig. 3.l(a) Linear undamped system, horizontal motion. Coordinates x,  and x2.  

Fig. 3.l(b) Linear undamped system, vertical motion. Coordinates y l  and y z .  

Fig. 3.l(c) Torsional undamped system. Coordinates 8, and 02.  
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Fig. 3.l(d) Coupled pendula. Coordinates 41 and &. 

Figt. 3.1(e) System with combined translation and rotation. Coordinates x and 0 

[Ch. 3 

Fig. 3.1(f) Shear frame. Coordinates x1 and x2.  
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Fig. 3.2(g) Two degree of freedom model, rotation plus translation. Coordinates y and 8. 

Fig. 3.l(h) Two degree of freedom model, translation vibration. Coordinates x 1  and x2.  
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3.1 

3.1.1 
Of the examples of two degree of freedom models shown in Figs. 3.1(a)-(h), 
consider the system shown in Fig. 3.l(a). If x1 > x2 the FBDs are as shown in 
Figure 3.2. 

[Ch. 3 

THE VIBRATION OF SYSTEMS WITH TWO DEGREES OF FREEDOM 

Free vibration of an undamped system 

Fig. 3.2. (a) Applied forces; (b) effective forces. 

The equations of motion are therefore, 

mlx1 = - k , x ,  - k(xl  - x2) 

m,x2 = k ( x ,  - x,) - k ,x2  

for body 1, (3.1) 

(3.2) 

and 

for body 2. 

The same equations are obtained if x1 < x2 is assumed because the direction of 

Equations (3.1) and (3.2) can be solved for the natural frequencies and corresponding 
the central spring force is then reversed. 

mode shapes by assuming a solution of the form 

x1 = A,sin(wt + $) and x2 = A2sin(wt + 4). 
This assumes that x1 and x2 oscillate with the same frequency w and are either in 
phase or 7c out of phase. This is a sufficient condition to make w a natural frequency. 

-mlA,w2sin(wt + $) = -k,A,sin(wt + $) - k ( A ,  - A,)sin(wt + $) 

Substituting these solutions into the equations of motion gives 

and 

-m2A2w2sin(wt + $) = k ( A ,  - A,)sin(ot + $) - k2A2sin(wt + $). 

Since these solutions are true for all values oft, 

A,(k  + k, - rn1w2) + A , ( - k )  = 0 

A , ( - k )  + A,(k,  + k - m2w2) = 0. 

(3.3) 

(3.4) 

and 
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A, and A, can be eliminated by writing 

k + k ,  - m1w2 
k + k ,  - m2w2 (3.5) 

A J A ,  = ( k ,  + k - m,w2)/k from (3.4) 

Thus 

k/(k + k ,  - mlw2) = (k ,  + k - m,w2)/k 

and 

(k + k ,  - m1w2Xk, + k - m2w2) - k2 = 0. (3.7) 

This result is the frequency equation and could also be obtained by multiplying out 
the above determinant, equation (3.5). 

The solutions to equation (3.7) give the natural frequencies of free vibration for 
the system in Fig. 3.l(a). The corresponding mode shapes are found by substituting 
these frequencies, in turn, into either of equations (3.6). 

Consider the case when k ,  = k ,  = k ,  and m, = m, = m. The frequency equation is 
(2k - mu2),  - k 2  = 0; that is, 

m2w4 - 4mkw2 + 3k2 = 0, or (mw2 - k)(mw2 - 3k) = 0. 

Therefore, either m a 2  - k = 0, or mu2  - 3k = 0. 
Thus 

w ,  = J(k/m)rad/s and w2 = J(3k/m) rad/s. 

If 

0 = J(k/m)rad/s, ( A  1 / A  2 )w = j ( k / m )  = + 1 9  

and if 

= J(3k/m)rad/s, ( A ,  = & Y m )  = - 1. (from 3.6) 

This gives the mode shapes corresponding to the frequencies w1 and w2. Thus, the 
first mode of free vibration occurs at a frequency (1/2n)J(k/m)Hz and (Al /A2) '  = 1, 
that is, the bodies move in phase with each other and with the same amplitude as if 
connected by a rigid link, Fig. 3.3. The second mode of free vibration occurs at a 
frequency (1/2n) J(3klm)Hz and (A1/A2)I1 = - 1, that is, the bodies move exactiy out 
of phase with each other, but with the same amplitude, see Fig. 3.3. 
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Fig. 3.3. Natural frequencies and mode shapes for two degree of freedom translation vibration system. 
Bodies of equal mass and springs of equal stiffness. 

3.1.2 Free motion 
The two modes of vibration can be written 

and 

where the ratio A ,  jA2 is specified for each mode. 
Since each solution satisfies the equation of motion, the general solution is 

where A, ,  A,, t,h1, t,k, are found from the initial conditions. 
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For example, for the system considered above, if one body is displaced a distance 
X and released, 

~ ~ ( 0 )  = X and x,(O) = kl(0) = i2(o) = o 

where x,(O) means the value of x1 when t = 0, and similarly for x,(O), i,(O) and i2(0). 
Remembering that in this system o1 = J(k/m), o2 = J(3k/rn), and 

and ($)u2 = -1, 
= + I  

we can write 

x1 = sin(J(k/m)t + +,) + sin(J(3k/m)t + +,), 
and 

x, = sin(J(k/rn)t + + J  - sin(J(3k/m)t + +,). 
Substituting the initial conditions xl(0) = X and x2(0) = 0 gives 

X = sin + sin + 2 ,  

and 

0 = sin - sin +,, 
that is, 

sin+, = sin+, = X/2. 

The remaining conditions give cos +, = cos +, = 0. 
Hence 

x1 = (X/2) cos J(k/rn)t  + (X/~)COS J(3k/m)t, 

and 

x, = (X/2) cos J(k/rn)t  - (X/2) cos J(3klm)t. 

That is, both natural frequencies are excited and the motion of each body has two 
harmonic components. 
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3.13 Coordinate coupling 
In some systems the motion is such that the coordinates are coupled in the equations 
of motion. Consider the system shown in Fig. 3.l(e); only motion in the plane of the 
figure is considered, horizontal motion being neglected because the lateral stiffness 
of the springs is assumed to be negligble. The coordinates of rotation, 8, and 
translation, x, are coupled as shown in Fig. 3.4. G is the centre of mass of the rigid 
beam of mass m and moment of inertia I about G. 

ICh. 3 

Fig. 3.4. Two degree of freedom model, rotation plus translation. 

The FBDs are shown in Fig. 3.5; since the weight of the beam is supported by the 
springs, both the initial spring forces and the beam weight may be omitted. 

Fig. 3.5. (a) Applied forces. (b) Effective force and moment. 

For small amplitudes of oscillation (so that sin 8 ‘Y 0) the equations of motion are 

mx = - k , ( x  - L,e) - k,(x + L,e) 

ZB’ = k,(x - Lle)r, - k,(x + L,e)L,, 

and 

that is, 

rnk + ( k ,  + k,)x - (k ,L ,  - k,L,)8 = 0 
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and 

I O  - ( k , L ,  - k,L,)x + (k,L: + k2L:)8 = 0. 

It will be noticed that these equations can be uncoupled by making k ,L ,  = k2L2; 
if this is arranged, translation ( x  motion) and rotation (6 motion) can take place 
independently. Otherwise translation and rotation occur simultaneously. 

Assuming x1 = A, sin(wt + $) and 0 = A, sin(wt + $), substituting into the 
equations of motion gives 

-mw2A, + ( k ,  + k,)A, - (k ,L ,  - k2L,)A2 = 0, 

and 

- Iw2A,  - ( k , L ,  - k2L,)A, + (k,L: + k,L:)A, = 0. 

That is, 

A,(k,  + k ,  - mw2) + A , ( - ( k , L ,  - k2L2)) = 0, 

and 

A , ( - ( k , L ,  - k2L2)) + A,(k,L: + k2L: - Iw2) = 0. 

Hence the frequency equation is 

k ,  + k, - m u 2  - (k ,L ,  - k,L,) 
- ( k , L ,  - k,L2) k ,Lf  + k2L: - Iw2 

1 =o .  

For each natural frequency, there is a corresponding mode shape, given by A , / A , .  

Example 18 
A system is modelled as a straight link AB 1 m long of mass lOkg, supported 
horizontally by springs A and B of stiffness k ,  and k ,  respectively. The moment of 
inertia of AB about its centre of mass G is 1 kgm2, and G is located at a distance a 
from A and b from B. 

Find the relationship between k , ,  k, ,  a, and b so that one mode of free vibration 
shall be translational motion only and the other mode rotation only. 

If a = 0.3 m and k ,  = 13 kN/m, find k ,  to give these two modes of vibration and 
calculate the two natural frequencies. 

The frequency equation is (section 3.1.3) 

k ,  + k ,  - m a 2  -(k,a - k,b) 1 =o.  
- ( k l a  - k2b) kla2 + k2b2 - Iw2 

For the modes to be uncoupled k,a = k,b and then 

w1 = J( (k ,  + k,)/m), (bouncing mode) 

and 

w2 = J((k,a2 + k2b2)/Z) (rocking mode). 

Since a = 0.3 m, b = 0.7 m and k ,  = 13 kN/m, 
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k ,  = (13 x 0.3)/0.7 = 5.57 kN/m and then 

o1 = J(18570/10) = 43.1 rad/s; so f, = 6.86Hz. 

w2 = J((13 x 0.3, + 5.57 x 0.7,)103) = 62.45 rad/s; so f, = 9.94 Hz. and 

Example 19 
When transported, a space vehicle is supported in a horizontal position by two 
springs, as shown. The vehicle can be considered to be a rigid body of mass m and 
radius of gyration h about an axis normal to the plane of the figure through the mass 
centre G. The rear support has a stiffness k, and is at a distance a from G while the 
front support has a stiffness k ,  and is at a distance b from G. The only motions 
possible for the vehicle are vertical translation and rotation in the vertical plane. 

Write the equations of small amplitude motion of the vehicle and obtain the 
frequency equation in terms of the given parameters. 

Given that k , a  = k,b, determine the natural frequencies of the free vibrations of 
the vehicle and sketch the corresponding modes of vibration. Also state or sketch 
the modes of vibration if k , a  # k,b. 

The FBDs are as below: 
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The equations of motion are 
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k , ( y  + a6) + k2(y - b e )  = -my,  

and 

k , ( y  + a6)a - k2(y - b6)b = -mh28: 

Assuming 

y = Y sin vt and 6 = 0 sin vt ,  

these give 

Y ( k ,  + k ,  - mv2) + O ( k , a  - k,b) = 0, 

and 

Y ( k , a  - k,b) + O ( k l a 2  + k,b2 - mhzv2) = 0. 

The frequency equation is, therefore, 

( k ,  + k ,  - mv2)(k,a2 + k,b2 - mh2v2) - ( k l a  - k,b),  = 0. 

If k , a  = k,b, motion is uncoupled so 

v 1  = /(Y) kl + k2 radJs 
k ,a2  + k,b2 

v 2  = /( mh2 ) radJs. and 

v 1  is the frequency of a bouncing or translation mode (no rotation): 

v2 is the frequency of a rotation mode (no bounce) 
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If k , a  # k,b, the modes are coupled: 

[Ch. 3 

Example 20 
In a study of earthquakes, a building is idealized as a rigid body of mass M supported 
on two springs, one giving translational stiffness k and the other rotational stiffness 
k,, as shown. 

Given that I, is the mass moment of inertia of the building about its mass centre 
G, write down the equations of motion using coordinates x for the translation from 
the equilibrium position, and 8 for the rotation of the building. 

Hence determine the frequency equation of the motion. 
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The FBDs are as follows. 

Assume small 8 (earthquakes), hence 

m(2 + he) = - kx, 

and 

I,# + m(2 + h@h = - kT8 + mgh0. 

The equations of motion are therefore 

mh#+ m? + kx = 0, 

and 

mhx + (mh2 + IC)# - (mgh - k,)0 = 0. 

If 

8 = A ,  sin ot and x = A ,  sin or, 

- m h o 2 A l  - m o 2 A ,  + kA,  = 0, 

and 

+mhw2A,  + (mh2 + IG)02A, + (mgh - kT)Al = 0. 

The frequency equation is 

-mho2  k - mw2 
(mh’ + I , ) 0 2  + (rngh - k,) mho2 j=o ,  

That is, (mho’), + (k - mw2)[(rnh2 + IG)w2 + (rngh - kT)] = 0, or, 

mlGw4 - w2[mkh2 + IGk - m2gh + mk,] - mghk + kk, = 0. 
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3.1.4 Forced vibration 
Harmonic excitation of vibration in a system may be generated in a number of ways, 
for example by unbalanced rotating or reciprocating machinery, or it may arise from 
periodic excitation containing a troublesome harmonic component. 

A two degree of freedom model of a dynamic system excited by an harmonic force 
F sin vt is shown in Fig. 3.6. Damping is assumed to be negligible. The force has a 
constant amplitude F and a frequency v/2z Hz. 

Fig. 3.6. Two degree of freedom model with forced excitation. 

The equations of motion are 

mlx ,  = - k , x ,  - k(x, - x 2 )  + Fsin vt, 

and 

m2k2 = k(x ,  - x 2 )  - k,x,. 

Since there is zero damping, the motions are either in phase or n out of phase with 
the driving force, so that the following solutions may be assumed: 

x ,  = A ,  sin vt and x2 = A ,  sin vt. 

Substituting these solutions into the equations of motion gives 

A,(k ,  + k - rh,v2) + A, ( -k )  = F, 

and 

A , ( - k )  + A,(k, + k - rnzv2) = 0. 

Thus 

F(k2 + k - m2vZ) 
A 

A ,  = 9 

and 

where 
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A = ( k ,  + k - m,v2)(kl + k - m l v 2 )  - k2,  

A = 0 is the frequency equation. 
and 

Hence the response of the system to the exciting force is determined. 

Example 21 
A two-wheel trailer is drawn over an undulating surface in such a way that the vertical 
motion of the tyre may be regarded as sinusoidal, the pitch of the undulations being 
5 m. The combined stiffness of the tyres is 170 kN/m and that of the main springs is 
60 kN/m; the axle and attached parts have a mass of 400 kg, and the mass of the 
body is 500 kg. Find (a) the critical speeds of the trailer in km/h, and (b) the amplitude 
of the trailer body vibration if the trailer is drawn at 50 km/h, and the amplitude of 
the undulations is 0.1 m. 

The equations of motion are 

m l k l  = - k , ( x ,  - x,), 

and 

m2x2 = k , ( x l  - x2) - k2(x2 - x,). 

Assuming x1 = A ,  sin vt, x, = A ,  sin vt, and x, = A ,  sin vt, 

A l ( k l  - m l v 2 )  + A , ( - k , )  = 0 

and 

A , (  - k l )  + A 2 ( k ,  - k2rn2v2) = k,A, .  
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The frequency equation is 

(k, + k, - m2v2)(k, - mlv2) - k: = 0. 

The critical speeds are those which correspond to the n 
excite resonances. The frequency equation simplifies to 

mlm2v4 - (rn,k, + m,k, + m,k,)v2 + k,k, = 0. 

Hence substituting the given data, 

500 x 400 x v4 - (500 x 60 + 500 x 170 + 400 x 60) 

.Sural frequencies and hence 

03vz + 60 x 170 x lo6 = 0. 

That is 0 . 2 ~ ~  - 139v2 + 10200 = 0, which can be solved by the formula. Thus 
v = 16.3 rad/s or 20.78 rad/s, and f = 2.59 Hz or 3.3 Hz. 

Now if the trailer is drawn at u km/h, or u/3.6m/s, the frequency is uM3.6 x 5)Hz. 
Therefore the critical speeds are 

u1 = 18 x 2.59 = 46.6 km/h, 

and 

u2 = 18 x 3.3 = 59.4 km/h. 

Towing the trailer at either of these speeds will excite a resonance in the system. 
From the equations of motion, 

= {(k, + k, - m,v2)(k, klk2 - mlv2) - k, 2} 

10 200 

At 50 km/h, v = 17.49 rad/s. 

0.075 m. This motion is 7c out of phase with the road undulations. 
Thus A,  = -0.749 A,. Since A ,  = 0.1 m, the amplitude of the trailer vibration is 

3.1.5 The undamped dynamic vibration absorber 
If a single degree of freedom system or mode of a multi-degree of freedom system is 
excited into resonance, large amplitudes of vibration result with accompanying high 
dynamic stresses and noise and fatigue problems. In most mechanical systems this is 
not acceptable. 

If neither the excitation frequency nor the natural frequency can conveniently be 
altered, this resonance condition can often be successfully controlled by adding a 
further single degree of freedom system. Consider the model of the system shown in 
Fig.3.7, where K and M are the effective stiffness and mass of the primary system 
when vibrating in the troublesome mode. 
The absorber is represented by the system with parameters k and m. From section 
3.1.4 it can be seen that the equations of motion are 

MX = - KX - k(X - x) + F sin vt, for the primary system 
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Fig. 3.7. System with undamped vibration absorber. 

and 

mx = k ( X  - x ) ,  

for the vibration absorber. Substituting 

X = X ,  sin vt and x = x o  sin vt 

gives 

Xo(K + k - Mv’) + x0( - k )  = F,  

and 

Xo( - k )  + xo(k - mv’) = 0. 

Thus 

F(k - mv’) 
A ’  

x, = 

and 

Fk 
x o  = - 

A ’  

where 

A = ( k  - mv2NK + k - M v 2 )  - kZ, 

and A = 0 is the frequency equation. 
It can be seen that not only does the system now possess two natural frequencies, 

R, and R, instead of one, but by arranging for k - my2 = 0, X ,  can be made zero. 
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Thus if J(k/m)  = , / ( K I M ) ,  the response of the primary system at its original 
resonance frequency can be made zero. This is the usual tuning arrangement for an 
undamped absorber because the resonance problem in the primary system is only 
severe when v ‘Y J ( K / M )  rad/s. This is shown in Fig. 3.8. 

Fig. 3.8. Amplitude-frequency response for system with and without tuned absorber. 

When X ,  = 0, x, = -F/k ,  so that the force in the absorber spring, kx, is - F ;  
thus the absorber applies a force to the primary system which is equal and opposite 
to the exciting force. Hence the body in the primary system has a net zero exciting 
force acting on it and therefore zero vibration amplitude. 

If an absorber is correctly tuned w2 = KIM = k/m, and if the mass ratio p = m / M ,  
the frequency equation A = 0 is 

(;y - (2 + p)(;y + 1 = 0. 

This is a quadratic equation in ( v / o ) ’ .  Hence 
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( i Y = ( l  +r> .J (p+; ) ,  

"'.=[(1++&+;)]"' w 

and the natural frequencies R, and R2 are found to be 

For a small p, R, and R2 are very close to each other, and near to o; increasing 
p gives better separation between R, and R, as shown in Fig. 3.9. 

Fig. 3.9. Effect of absorber mass ratio on natural frequencies. 

This effect is of great importance in those systems where the excitation frequency 
may vary; if p is small, resonances at R, or R, may be excited. It should be noted 
that since ey = (1 +;) - & +  ;) 
and 

e)2=(1 + g ) + / ( p + g ) ,  Then 

= = (I + f)' - (. + ;) = 1. 
w4 
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That is, 

[Ch. 3 

R, . R, = oz. 

Also 

These relationships are very useful when designing absorbers. If the proximity of 
R, and R, to o is likely to be a hazard, damping can be added in parallel with the 
absorber spring, to limit the response at these frequencies. Unfortunately, if damping 
is added, the response at frequency o will no longer be zero. A design criterion that 
has to be carefully considered is the possible fatigue and failure of the absorber spring: 
this could have severe consequences. In view of this, some damped absorber systems 
dispense with the absorber spring and sacrifice some of the absorber effectiveness. 
This is particularly important in torsional systems, where the device is known as a 
Lanchester damper. 

Example 22 
The figure represents a pump of mass ml which rests on springs having a stiffness 
k,, so that only vertical motion can occur. Given that the damping is negligible and 
the mass m2 is ignored, derive an expression for the frequency of the harmonic 
disturbing force at which the pump will execute vertical oscillations of very 
large-theoretically infinite-amplitude. 

Given that an undamped dynamic absorber of mass m, is then connected to the 
pump by a spring of stiffness k,, as shown, prove that the amplitude of the oscillations 
of the pump is reduced to zero when 

= v2, k, 
m2 

where v is the natural frequency of the free vibrations of the pump in the absence of 
the dynamic vibration absorber. 

The pump has a mass of 130 kg and rotates at a constant speed of 2400 revolutions 
per minute but due to a rotating unbalance very large amplitudes of pump vibration 
on the spring supports result. An undamped vibration absorber is to be fitted so that 
the nearest natural frequency of the system is at least 20 per cent removed from the 
running speed of 2400 revolutions per minute. Find the smallest absorber mass 
necessary and the corresponding spring stiffness. 
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The pump can be modelled as below: 

The equation of motion is 

m l x 1  + k,x, = Fsinvt, 

so that if 

F 
k, - m l v 2 '  x, = X, sin vt, x1 = 
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When 

[Ch. 3 

v = /? , X I  =x. 

That is, resonance occurs when v = o = J ( k , / m , ) .  With a vibration absorber added, 
the system is 

The FBDs are therefore, if x2 > x1 is assumed, 

The equations of motion are thus 
m,x, = - - k 2 ( x 2  - xl), 
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or 

m2x2 + k,x,  - k,x l  = 0, 

and 

m,x l  = k,(x,  - x , )  - k , x ,  + F sin vt,  

or 

m1xl  + ( k ,  + k, )x ,  - k , x ,  = F sin vt .  

Assuming x ,  = X ,  sin vt and x 2  = X ,  sin vt ,  these equations give 

X , [ k ,  + k ,  - m l v 2 ]  + X , [ - k , ]  = F ,  

and 

X , [  - k2]  + X , [ k ,  - mzv2] = 0. 

That is 

F(k,  - m2v2)  
[ ( k ,  + k,) - m l v 2 ] [ k ,  - m2v2]  - k:’ 

x ,  = 

Thus if 

k2 v 2 = - ,  x, =o .  
m2 

Now the frequency equation is 

[ ( k ,  + k, )  - m , v 2 ] [ k ,  - m 2 v 2 ]  - k: = 0. 

If we put 

this becomes 

v4 - V 2 ( @ 2  + 2R2) + R4 = 0, 

or 

(a)’- ($2 + p) + 1 = 0 

so that 

The limiting condition for the smallest absorber mass is ( v l / R )  = 0.8 because then 
(v,/R) = 1.25, which is acceptable. Thus 
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and 

p = 0.2. 

Hence 

m2 = 0.2 x 130 = 26 kg, 

and 

k ,  = (Son), rn = 1642 kN/m. 

Example 23 
A system has a violent resonance at 79 Hz. As a trial remedy a vibration absorber 
is attached which results in a resonance frequency of 65 Hz. How many such absorbers 
are required if no resonance is to occur between 60 and 120 Hz? 

Since 

+ e), = 2 + p, 
and 

R,R, = o2 

in the case of one absorber, with o = 79 Hz and R, = 65 Hz, 

79, 
65 

Q, =- = 96 Hz. 

Also 
2 (;Y+(;) = 2 + p ,  

SO p = 0.154. 
In the case of n absorbers, if 

79, 
2 -  60 

R, = 60 Hz, R - - = 104 HZ (too low). 

So require Q, = 120 Hz and then R, = (79,/120) = 52 Hz. Hence (;T+(=) 120 = 2 + p '  

Thus 
0.74 

0.154 - 4'82' 
p' = 0.74 = n.p and n = - - 

Thus five absorbers are required. 
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Example 24 
A machine tool of mass 3000 kg has a large resonance vibration in the vertical direction 
at 120 Hz. To control this resonance, an undamped vibration absorber of mass 600 kg 
is fitted tuned to 120Hz. Find the frequency range in which the amplitude of the 
machine vibration is less with the absorber fitted than without. 

If (X , )  with absorber = (X , )  without absorber, 

F 
K - M v 2  

- (phase requires - ve sign). 
F(k - mv’) 

( K  + k - Mv2) (k  - mv2)  - k2 
_ -  

Multiplying out and putting p = m / M  gives 

2 ( 3  - (4 + p)(;y + 2 = 0. 

Since 

2 (:) = 7 k +,/(p’ + 8p) = 1.05 0.32. 

Thus 

1’ 

w 
- = 1.17 or 0.855, 

and 

f =  102 Hz or 140 Hz, where v = 27rt 

Thus the required frequency range is 102- 140 Hz. 

3.1.6 System with viscous damping 
If a system possesses damping of a viscous nature, the damping can be modelled 
similarly to that in the system shown in Fig.3.10. 

Fig. 3.10. Two degree of freedom viscous damped model with forced excitation 
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For this system the equations of motion are 

m l z l  + klxl + k2(x1 - x,) + c 1 i 1  + c2(i ,  - i,) =fl, 

and 

m,X, f k,(x, - xl) + k 3 x ,  + c 2 ( i 2  - il) + c3k, =f2. 

Solutions of the form x1 = AleSf and x, = A2esr can be assumed, where the Laplace 
operator s is equal to a + jb, j = J( - l), and a and b are real- that is each solution 
contains an harmonic component of frequency b, and a vibration decay component 
of damping factor a. By substituting these solutions into the equations of motion a 
frequency equation of the form 

s4 + as3 + /Is2 + ys + 6 = 0 

can be deduced, where a, /I, y, and 6 are real coefficients. From this equation four 
roots and thus four values of s can be obtained. In general the roots form two complex 
conjugate pairs such as a ,  & jb,, and a, & jb,. These represent solutions of the form 
x = Re(Xe"'.ejb') = Xe"'cos bt. That is, the motion of the bodies is harmonic, and 
decays exponentially with time. The parameters of the system determine the magnitude 
of the frequency and the decay rate. 

It is often convenient to plot these roots on a complex plane as shown in Fig. 3.1 1. 
This is known as the s-plane. 

Fig. 3.1 1. s-plane. 
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For light damping the damped frequency for each mode is approximately equal 
to the undamped frequency, that is, b ,  

The right-hand side of the s-plane (Re(s) + ve) represents a root with a positive 
exponent, that is, a term which grows with time, so unstable motion may exist. 

The left-hand side contains roots with a negative exponent so stable motion exists. 
See also Fig. 2.20. 

All passive systems have negative real parts and are therefore stable but some 
systems such as rolling wheels and rockets can be become unstable, and thus it is 
important that the stability of a system is considered. This can be conveniently done 
by plotting the roots of the frequency equation on the s-plane, as above. This technique 
has particular application in the study of control system stability. 

o1 and b ,  02. 

3.2 
OF FREEDOM 

THE VIBRATION OF SYSTEMS WITH MORE THAN TWO DEGREES 

The vibration analysis of a dynamic system with three or more degrees of freedom 
can be carried out in the same way as the analysis given above for two degrees of 
freedom. However, the method becomes tedious for many degrees of freedom, and 
numerical methods may have to be used to solve the frequency equation. A computer 
can, of course, be used to solve the frequency equation and determine the corre- 
sponding mode shapes. Although computational and computer techniques are 
extensively used in the analysis of multi-degree of freedom systems, it is essential for 
the analytical and numerical bases of any program used to be understood, to ensure 
its relevance to the problem considered, and that the program does not introduce 
unacceptable approximations and calculation errors. For this reason it is necessary 
to derive the basic theory and equations for multi-degree of freedom systems. 
Computational techniques are essential, and widely used, for the analysis of the 
sophisticated structural models often devised and considered necessary, and computer 
packages are available for routine analyses. However, considerable economies in 
writing the analysis and performing the computations can be achieved, by adopting 
a matrix method for the analysis. Alternatively an energy solution can be obtained 
by using the Lagrange equation, or some simplification in the analysis achieved by 
using the receptance technique. The matrix method will be considered first. 

3.2.1 The matrix method 
The matrix method for analysis is a convenient way of handling several equations 
of motion. Furthermore, specific information about a system, such as its lowest natural 
frequency, can be obtained without carrying out a complete and detailed analysis. 
The matrix method of analysis is particularly important because it forms the basis 
of many computer solutions to vibration problems. The method can best be 
demonstrated by means of an example. For a full description of the matrix method 
see Mechanical Vibrations: Introduction to Matrix Methods, by J. M. Prentis & F. A. 
Leckie (Longmans, 1963). 
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Example 25 
A structure is modelled by the three degree of freedom system shown. Determine the 
highest natural frequency of free vibration and the associated mode shape. 

The equations of motion are 

2 m l ,  + 2kx1  + k ( x ,  - x2) = 0, 

2 m l 2  + k(x2  - x,) + k(x2  - x3) = 0, 

mx3 + k(x3  - x2) = 0. 

and 

If xl, x2 and x3 take the form X sin or and 1. = m o 2 / k ,  these equations can be written 
3 -x 2 1  --x 2 2  = E.Xl, 

- $Xl + X 2  - $ X 3  = 2 X 2 ,  

- X ,  + X ,  =E.X3.  

and 

that is, 

or 

[S]{X} = i . { X )  

where [SI is the system matrix, {X} is a column matrix, and the factor ,i is a scalar 
quantity. 

This matrix equation can be solved by an iteration procedure. This procedure is 
started by assuming a set of deflections for the column matrix {X} and multiplying 
by [SI; this results in a new column matrix. This matrix is normalized by making 
one of the amplitudes unity and dividing each term in the column by the particular 
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amplitude which was put equal to unity. The procedure is repeated until the amplitudes 
stabilize to a definite pattern. Convergence is always to the highest value of i and 
its associated column matrix. Since E. = m o 2 k ,  this means that the highest natural 
frequency is found. Thus to start the iteration a reasonable assumed mode would be 

Now 

Using this new column matrix gives 

1.5 -0.5 1.415 

1:.5 -!.g {-e!:} = { - : : ; :5 }  = 1.83 {-!!:} 
and eventually, by repeating the process the following is obtained: 

FA:: rr' -8'1 { {-: ] 
Hence i. = 2 and o2 = 2k/m. j. is an eigenvalue of [SI, and the associated value of 
{X} is the corresponding eigenvector of [SI. The eigenvector gives the mode shape. 

Thus the highest natural frequency is 1/2n J(2klm)  Hz, and the associated mode 
shape is 1: - 1:l. Thus if X ,  = 1, X ,  = -1 and X ,  = 1 .  

If the lowest natural frequency is required, it can be found from the lowest eigenvalue. 
This can be obtained directly by inverting [SI and premultiplying [S](X} = E.{X} by 
i.- '[SI - '. 
and hence the lowest natural frequency. A reasonable assumed mode for the first 
iteration would be 

Thus [SI {X} = E.- {X}. Iteration of this equation yields the largest value of 

Alternatively, the lowest eigenvalue can be found from the flexibility matrix. The 
flexibility matrix is written in terms of the influence coefficients. The influence 
coefficient cipq of a system is the deflection (or rotation) at the point p due to a unit 
force (or moment) applied at a point q. Thus, since the force each body applies is the 
product of its mass and acceleration. 

X ,  = z,, 2 m X , 0 2  + a l ,  2 m X , 0 2  + a I 3 m X , w 2 ,  

X ,  = 2 m X , 0 2  + ci,, 2 m X , w 2  + a, ,mX,w2,  
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and 

X ,  = x 3 1  2 m X 1 0 2  + 2 m X 2 0 2  + a,,mX3w2 

or 

The influence coefficients are calculated by applying a unit force or moment to 
each body in turn. Since the same unit force acts between the support and its point 
of application, the displacement of the point of application of the force is the sum of 
the extensions of the springs extended. The displacements of all points beyond the 
point of application of the force are the same. 

Thus 

1 
2k 

a l l  = a12  = a13 = a21 = L Y ~ ~  =-, 

1 1 3  
a22 = = uj2 =-+ -= -  

2k k 2k' 

and 

1 1 1 5  
2k k k 2k' 

a,, =- + - +  - =  - 

Iteration causes the eigenvalue k / m o 2  to converge to its highest value, and hence 
the lowest natural frequency is found. The other natural frequencies of the system 
can be found by applying the orthogonality relation between the principal modes of 
vibration. 

3.2.1.1 Orthogonality of the principal modes of vibration 
Consider a linear elastic system that has n degrees of freedom, n natural frequencies, 
and n principal modes. 

The orthogonality relation between the principal modes of vibration for an n degree 
of freedom system is 

n 

miAi(r)Ai(s) = 0, 
i =  1 

where Ai@) are the amplitudes corresponding to the rth mode, and A,(s) are the 
amplitudes corresponding to the sth mode. 

This relationship is used to sweep unwanted modes from the system matrix, as 
illustrated in the following example. 

Example 26 
Consider the three degree of freedom model of a system shown. 
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The equations of motion in terms of the influence coefficients are 

X ,  = 4 c x l , m ~ , w 2  + 2 a , , m X 2 0 2  + a , , m X , w 2 ,  

X ,  = 4 r 2 , m ~ , w 2  + 2 a , , m X 2 0 2  + r , , m X , 0 2 ,  

and 

X ,  = 4 x 3 , m ~ , w 2  + 2 r , , m X 2 0 2  + r , , m X , 0 2 .  

That is, 

Now, 

1 
r l ,  = r12  = r z l  = 31, = X j l  =-  

3 k ’  

4 
r 2 ,  = 3 3 ,  = r 2 ,  =- 

3 k ’  

and 

7 
2 3 3  = - 

3 k ’  

Hence, { I }  4 4  4 2 1  8 {$:}. 
4 8 7  x ,  

To start the iteration a reasonable estimate for the first mode is 

this is inversely proportional to the mass ratio of the bodies. 
Eventually iteration for the first mode gives 
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{ i:;} = 14'43y2 {::a}, 4.0 
4.0 

or w1 = 0.46J(k/m) rad/s. 

first mode from the system matrix: 
To obtain the second principal mode, use the orthogonality relation to remove the 

m,A,A,  + m,B,B,  + m,C,C2 = 0. 

Thus 

4m(l.O)A2 + 2m(3.18)B2 + m(4.0)C2 = 0, 

or A ,  = - 1.59 B ,  - C,, since the first mode is 

{;:%8> 
E;} = [i -b" -!I{!;} 
E;}=$ 4 8 7  ; :I[: -b" - ! ] { E : } ,  

Hence, rounding 1.59 up to 1.6, 

When this sweeping matrix is combined with the original matrix equation, iteration 
makes convergence to the second mode take place because the first mode is swept 
out. Thus, 

-- - 

1.6 3k 

Now estimate the second mode as 

and iterate: 

Hence w2 = J(k/m) rad/s, and the second mode was evidently estimated correctly 

To obtain the third mode, write the orthogonality relation as 
as 1:0: - 1. 
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m,A,A,  + m,B,B, + m,C,C, = 0, 

and 

m , A , A ,  + m,B,B, + m,C,C ,  = 0. 

Substitute 

A ,  = 1.0, B ,  = 3.18, C ,  = 4.0, 

and 

A ,  = 1.0, B ,  = 0, C ,  = -1.0, 

as found above. Hence E;} = [i i -;:;:I {g. 
When this sweeping matrix is combined with the equation for the second mode 

the second mode is removed, so that it yields the third mode on iteration: 

0 2 m  
3k 

- -- 

or 

An estimate for the third mode shape now has to be made and the iteration 
procedure carried out once more. In this way the third mode eigenvector is found to be 

{ -;;i’}, 
and o3 = 1.32 J(k /m)  rad/s. 

The convergence for higher modes becomes more critical if impurities and 
rounding-off errors are introduced by using the sweeping matrices. It is well to check 
the highest mode by the inversion of the original matrix equation, which should be 
equal to the equation formulated in terms of the stiffness influence coefficients. 

3.2.2 The Lagrange equation 
Consideration of the energy in a dynamic system together with the use of the Lagrange 
equation is a very powerful method of analysis for certain physically complex systems. 
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It is an energy method which allows the equations of motion to be written in terms 
of any set of generalized coordinates. Generalized coordinates are a set of independent 
parameters which completely specify the system location and which are independent 
of any constraints. The fundamental form of Lagrange’s equation can be written in 
terms of the generalized coordinates qi as follows: 

where T is the total kinetic energy of the system, Vis the total potential energy of 
the system, DE is the energy dissipation function when the damping linear (it is half 
the rate at which energy is dissipated so that for viscous damping DE = &i2), Qi is 
a generalized external force (or non-linear damping force) acting on the system, and 
qi is a generalized coordinate that describes the position of the system. 

The subscript i denotes n equations for an n degree of freedom system, so that the 
Lagrange equation yields as many equations of motion as there are degrees of freedom. 

For a free conservative system Qi and DE are both zero, so that 

- d (m) ~ -- W) +,-=O. d(V) 
dt 2qi 2qi cqi 

The full derivation of the Lagrange equation can be found in Vibration Theory 
and Applications by W.T. Thomson (Allen & Unwin, 1989). 

Example 27 
A solid cylinder has a mass M and radius R .  Pinned to the axis of the cylinder is an 
arm of length 1 which carries a bob of mass m. Obtain the natural frequency of free 
vibration of the bob. The cylinder is free to roll on the fixed horizontal surface shown. 

The generalized coordinates are x 1  and x 2 .  They completely specify the position 
of the system and are independent of any constraints. 

T = + M i :  + $:MR2)o2 + + m i ;  

= ; M i ;  + $ $ M i ; )  + Zmi,. 1 2  

V = mgl(1 - cos 4) = (mg1/2)4’ = (mg/2&x2 - x ~ ) ~ ,  

for small values of 4. Apply the Lagrange equation with qi = x l :  

(d/dt)(dT/ai,) = MXl + +MXl 

dT//dx, = (mg/21X-2x2 + 2 x 1 ) .  

Hence $MXl + (mg/l)(x,  - x.,) = 0 is an equation of motion. 
Apply the Lagrange equation with qi = x.,: 

(d/dt)(dT/di2) = mx., 

dv/ldx2 = (mg/21X2x2 - 2x1) .  

Hence 
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mx,  + (mg/&xz - xl) = 0 is an equation of motion. 

These equations of motion can be solved by assuming that x1 = X ,  sinot and 
x ,  = X ,  sinot. Then 

X,((msll) - ( 3 M / 2 ) 4  + X,(--mg/l) = 0, 

and 

The frequency equation is therefore 

X I (  -mg/I) + X,((mg/l) - mu2)  = 0. 

(3M/2)04 - (g/[)oZ(m + (3M/2))  = 0. 

Thus either o = 0, or o = J((1 + 2m/3M)g/I) rad/s, and X , / X ,  = -2m/3M 

Example 28 
Find the equations of motion for free vibration of the triple pendulum shown overleaf. 

T = im,L%: + $m,L?t?: + $m,L‘t?: 

V = m , g y l  - COS 0,) + m,gy l  - COS e,) + m,gy l  - COS e,) 
+ +k,(a sin e, - a sin e$ + &a sin e, - a sin e,), 

Hence, by applying the Lagrange equation with qi = e,, e,, 8, in turn, the equations 
of motion are obtained. Assume 0 is small so that sin 6 N 8, and cos 8 ‘v 1 - 02/2. 



124 The vibrations of systems having more than one degree of freedom [Ch. 3 

Example 29 
To isolate a structure from the vibration generated by a machine, the machine is 
mounted on a large block. The block is supported on springs as shown. Find the 
equations which describe the motion of the block in the plane of the figure. 
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The coordinates used to describe the motion are q l ,  q 2 ,  and q 3 .  These are generalized 
coordinates because they completely specify the position of the system and arc 
independent of any constraints. If the mass of the block and machine is M ,  and the 
total mass moment of inertia about G is I,, then 

Now apply the Lagrange equation with q i  = q 1  

ST _ -  - 0. 
Zq 1 

and 

Thus the first equation of motion is 

Mij1 + 2kIq1 + kl (b  - d)q3 = 0. 

Similarly by putting q i  = q2 and q i  = q 3 ,  the other equations of motion are obtained as 

Mij2 + 2k1q2 - 2ak2q3 = 0, 

and 

lGq3 + k , ( b  - d ) q ,  - 2ak2q2 + ( (b2 + d 2 ) k l  + 2a2k2)q3 = 0. 

The system therefore has three coordinate-coupled equations of motion. The natural 
frequencies can be found by substituting q i  = A i  sin wt, and solving the resulting 
frequency equation. It is usually desirable to have all natural frequencies low so that 
the transmissibility is small throughout the range of frequencies excited. 

3.2.3 Receptances 
Some simplification in the analysis of multi-degree of freedom undamped dynamic 
systems can often be gained by using receptances, particularly if only the natural 
frequencies are required. If an harmonic force F sin v t  acts at some point in a system 
so that the system responds at frequency $1, and the point of application of the force 
has a displacement x = X sin vf, then if the equations of motion are linear, 
x = r F  sin vt, where 2, which is a function of the system parameters and v but not 
a function of F ,  is known as the direct receptance at x. If the displacement is determined 
at some point other than that at which the force is applied, a is known as the transfer 
or cross receptance. 
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It can be seen that the frequency at which a receptance becomes infinite is a natural 
frequency of the system. Receptances can be written for rotational and translational 
coordinates in a system, that is the slope and deflection at a point. 

Thus, if a body of mass m is subjected to a force F sin vt and the response of the 
body is x = X sin vt,  

F sin vt = mx = m ( - X v 2  sin v t )  = -mv’x. 

Thus 
1 

mv 
x = -2 F sin vt,  

and 

1 
m v 2 .  

5 ( =  -- 

This is the direct receptance of a rigid body. 
For a spring, a = l / k .  This is the direct receptance of a spring. 
In an undamped single degree of freedom model of a system, the equation of motion 

is 

mx + kx = F sin vt,  

If x = X sin vt,  a = l / ( k  - mv’). This is the direct receptance of a single degree of 
freedom system. 

In more complicated systems, it is necessary to be able to distinguish between 
direct and cross receptances and to specify the points at which the receptances are 
calculated. This is done by using subscripts. The first subscript indicates the coordinate 
at which the response is measured, and the second indicates that at which the force 
is applied. Thus apq, which is a cross receptance, is the response at p divided by the 
harmonic force applied at q, and app and aqq are direct receptances at p and q 
respectively. 

Consider the two degree of freedom system shown in Fig. 3.12 

Fig. 3.12. Two degree of freedom system with forced excitation. 

The equations of motion are 
m l x l  + ( k ,  + k,)xl  - k’x, =fl, 

and 
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m,x2 + ( k ,  + k,)x,  - k 2 x ,  = 0. 

Let f, = F ,  sin vt, and assume that x 1  = X ,  sin vt and x2 = X, sin vt .  
Substituting into the equations of motion gives 

( k ,  + k ,  - m , v 2 ) X ,  + ( - k 2 ) X 2  = F , ,  

and 

( - k , ) X ,  + ( k ,  + k ,  - m , v 2 ) X ,  = 0. 

Thus 

X ,  - k ,  + k ,  - m2v2 

Fl A 
CYll = - - 9 

where 

A = ( k ,  + k ,  - m,v2)(k ,  + k ,  - m 2 v 2 )  - k: .  

z l l  is a direct receptance, and A = 0 is the frequency equation. 
Also the cross receptance 

This system has two more receptances, the responses due tof2 applied to the second 
body. Thus x12  and x 2 ,  may be found. It is a fundamental property that x , ,  = CY,, 

(principle of reciprocity) so that symmetrical matrices result. 
A general statement of the system response is 

x, = a , , F ,  + x , , F , ,  

x2 = X 2 l F l  + r22F2 

and 

That is, 

{::} = [E:: E::] Fl}. F2 

Some simplification in the analysis of complex systems can be achieved by 
considering the complex system to be a number of simple systems (whose receptances 
are known) linked together by using conditions of compatibility and equilibrium. The 
method is to break the complex system down into subsystems and analyse each 
subsystem separately. Find each subsystem receptance at the point where it is 
connected to the adjacent subsystem, and ‘join’ all subsystems together, using the 
conditions of compatibility and equilibrium. 

For example, to find the direct receptance ‘ i l l  of a dynamic system C at a single 
coordinate x1 the system is considered as two subsystems A and B, as shown in 
Fig. 3.13. 
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Fig. 3.13. Dynamic systems. 

By definition 

Xl Xa xb 

Fl Fa and B11 = E '  ? , I  =-) X l l  =- 

Because the systems are connected. 

Xa = X, = X,, (compatibility) 

and 

F, = Fa + F,, (equilibrium). 

Hence 

1 1 1  
-- --+--, 
711  X l l  B l l  

that is, the system receptance y can be found from the receptances of the subsystems. 
In a simple spring-body system, subsystems A and B are the spring and body 

respectively. Hence x l l  = l/k and #?,, = - l/mv2 and l / y l l  = k - my2. as above. 
The frequency equation is sill + p l l  = 0, because this condition makes y, ,  = co. 

Consider the undamped dynamic vibration absorber application shown in Fig. 3.14. 
The system is split into subsystems A and B. 

Fig. 3.14. Absorber sub systems. 
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For subsystem A, 

f, = MX, + Kx,;  hence a = 1/(K - Mv’). 

For subsystem B, 

f B -  - k(xB - yB) = m j ,  = -mv2YB; hence /I = - ( k  - mv2)/kmv2. 

Thus the frequency equation a + p = O gives 

Mmv4 - ( m K  + M k  + mk)v2 + K k  = 0. 

It is often convenient to solve the frequency equation a + p = 0, or a = -p, by a 
graphical method. In the case of the absorber, both a and - p  can be plotted as a 
function of v, and the intersections give the natural frequencies R, and R, (Fig. 3.15). 

It can be seen that the effect of adding different absorbers to the primary system 
can readily be determined without re-analysing the whole system. It is merely necessary 
to sketch the receptance of each absorber on Fig.3.15 to find R, and R, for the 
complete system. 

The receptance technique is particularly useful when it is required to investigate 
the effects of adding a dynamic system to an existing system, for example an extra 
floor, or an air-conditioning plant to a building. Once the receptance of the original 
system is known, it is only necessary to analyse the additional system, and then to 
include this in the original analysis. Furthermore, sometimes the receptances of 
dynamic systems are measured, and available only in graphical form. Example 30. 
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Fig. 3.15. Vibration absorber receptance. 

Some subsystems, such as those shown in Fig. 3.16, are linked by two coordinates, 
for example deflection and slope at the common point. 

Fig. 3.16. Applied forces and system responses. 

Now in this case, 

X a ,  = ‘11Fa1  + d 1 2 F a 2 ,  

X a 2  = ~ 2 1 F a 1  + a 2 2 F a 2 7  

xb l  = P 1 l F b l  + P 1 2 F b 2 ,  

and 
xb2 = P 2 1 F b 1  + f i22Fb2’  
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The applied forces or moments are F, sin v t  and F2 sin v t  where 

F, = Fa, + F,,, 

and 

Since the subsystems are linked 

and 

x2 = xa2 = Xb2. 

Hence if excitation is applied at  xI only, F2 = 0 and 

X l  - % l ( P l l P 2 2  - 8 1 2 2 )  + B 1 1 ( % 1 2 2 2  - % 2 2 )  

A 7 1 1  =--  
F l  

, 

where 

A = ( 2 1 1  + P l l X 2 2 2  + B 2 2 )  - ( a 1 2  + 8 1 2 2 ) ,  

and 

*, - - _  x 2  - 2 1 2 ( 8 1 1 P 2 2  - 2 1 2 8 1 2 )  - 8 1 2 ( 2 1 1 2 2 2  - 3 1 2 8 1 2 )  

F, A 1 2 1  - 

If 

F, = 0, 

x 2  - 2 2 2 ( 8 1 1 8 2 2  - 8 1 2 7  - 8 2 2 ( 2 1 1 2 2 2  - r 1 z 2 )  

j'22 = F, - A 

Since A = 0 is the frequency equation, the natural frequencies of the system C are 
given by I x 1  1 + P I  1 2 1 2  + 8 1 2  1 = 0, 

2 2 1  + B 2 1  2 2 2  + P 2 2  

This is an extremely useful method for finding the frequency equation of a system 
because only the receptances of the subsystems are required. The receptances of many 
dynamic systems have been published in The Mechanics of Vibration by R. E. D. 
Bishop & D. C. Johnson (CUP 1960/1979). By repeated application of this method, 
a system can be considered to consist of any number of subsystems. This technique 
is, therefore, ideally suited to a computer solution. 

It should be appreciated that although the receptance technique is useful for writing 
the frequency equation, it does not simplify the solution of this equation. 
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Example 30 
An engine with a flywheel is shown. The engine is to drive a propeller of inertia I 
through a shaft of torsional stiffness k as indicated. The receptance for torsional 

[Ch. 3 

oscillation of the engine-flywheel system has been measured at point A over a limited 
frequency range which does not include any internal resonances of the system. The 
figure shows the receptance at A as a function of (frequency)2. 

Calculate the lowest non-zero natural frequency for the engine, flywheel and 
propeller system if I = 0.9 kg m2 and k = 300 kN m/rad. 
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The engine-propeller system can be considered to be two subsystems, A and B: 

The frequency equation is c l l l  + f i l l  = 0, where a l l  is given in graphical form and 
f l , ,  is found as follows. For the propeller system, 

Now 

tB = k(6, - &B) = 14, = -I@,,v' sin vt, 

so 

k(@B - @B) = -I@Bv2 

and 

@B = @B -- Z @BY2 = @B (" ~ y2). k 

Thus 
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QB k - Iv2 1 f i l l  = - = -a+) ~ 

TB @,,lv2 

= -(%). 
If r l l  and -fill.are plotted as functions of (frequency)2, the intersection gives the 

value of the frequency which is a solution of r l l  + f i l l  = 0, that is, the natural 
frequency of free vibration is found. The table below can be calculated for -P l l  
because k = 300 x lo3 Nm/rad, and I = 0.9 kg m2. 

$12 I v2  k - Iv2  k l v 2  -P11 

0.3 x lo6 0.27 x lo6 0.03 x lo6 0.081 x IO” -0.37 x l o p 6  
0.4 x lo6 0.36 x lo6 0.06 x lo6 0.108 x 10l2 -0.55 x 1O-6 
0.5 x lo6 0.45 x IO6 0.15 x lo6 0.135 x 1OI2 -1.11 x 10-6 

The receptance P l 1  can now be plotted against (frequency)2 as below: 

The intersection occurs at (frequency)2 = 0.39 x lo6 (rad/s)2, that is, a frequency of 
624 rad/s or 99.4 Hz. This is the natural frequency of the combined engine - propeller 
system. It can be seen that the effect of using different propellers with different k and 
I values is easily found, without having to re-analyse the whole engine-propeller 
system. 
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3.2.4 Impedance and Mobility 
Impedance and mobility analysis techniques are frequently applied to systems and 
structures with many degrees of freedom. However, the method is best introduced 
by considering simple systems initially. 

The impedance of a body is the ratio of the amplitude of the harmonic exciting 
force applied, to the amplitude of the resulting velocity. The mobility is the reciprocal 
of the impedance. It will be appreciated, therefore, that impedance and mobility 
analysis techniques are similar to those used in the receptance analysis of dynamic 
systems. 

For a body of mass m subjected to an harmonic exciting force represented by FeJ"' 
the resulting motion is x = Xej", Thus 

Febt = mk = --,,2 
9 

and the receptance of the body, 

1 - - -~ 
X 
F mv2 ' 
- 

Now 
FejVt = -mv2 Xejvt 

= mjv(jvXejvt) = mjv u, 

where u is the velocity of the body, and u = Vej''. 
Thus the impedance of a body of mass m is Z, ,  where 

t. 
Z ,  = - = jmv, 

V 

and the mobility of a body of mass m is M,,  where 

Putting s = j v  so that x = Xes' gives 

Z ,  = ms, 

and 

v = s x .  

For a spring of stiffness k, Fej"' = kXej" and thus Z ,  = F / V =  kls and M ,  = s/k, 
whereas for a viscous damper of coefficient c, Z ,  = c and M ,  = l/c. 

If these elements of a dynamic system are combined so that the velocity is common 
to all elements, then the impedances may be added to give the system impedance, 
whereas if the force is common to all elements the mobilities may be added. This is 
demonstrated below by considering a spring - mass single degree of freedom system 
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Fig. 3.17. Single degree of freedom system with elements connected in parallel. 

with viscous damping, as shown in Fig. 3.17. 

the sum of the forces required for each element. The system impedance, 
The velocity of the body is common to all elements, so that the force applied is 

F 
V V 

F ,  + Fk + Fc z=-= 

k 
Z = ms + - + c. 

S 

That is 

F = (ms2 + cs + k ) X ,  

or 

F = (k  - my2 + j cv )X .  

Hence 

F 
J [ ( k  - mv2)2 + (cv)’] ‘ 

X =  

Thus when system elements are connected in parallel their impedances are added 
to give the system impedance. 

In the system shown in Fig. 3.18, however, the force is common to all elements. 
In this case the force on the body is common to all elements so that the velocity at 
the driving point is the sum of the individual velocities. The system mobility, 
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Fig. 3.18. Single degree of freedom system with elements connected in series 

= M ,  + M ,  + M,, 

1 s 1  
- + - + -  
ms k c 

-- 

Thus when system elements are connected in series their mobilities are added to give 
the system mobility. 

In the system shown in Fig. 3.19, the system comprises a spring and damper 
connected in series with a body connected in parallel. 

Fig. 3.19. Single degree of freedom system and impedance analysis model. 

Thus the spring and damper mobilities can be added or the reciprocal of their 
impedances can be added. Hence the system driving point impedance Z is given by 
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Z = Z , +  -+ -  , [1, ;I-' 
= ms + [$ + ;] 1 

m a 2  + mks + kc 
cs + k 

- - 

Consider the system shown in Fig. 3.20. The spring k ,  and the body m ,  are connected 

Thus the driving point impedance Z is 
in parallel with each other and are connected in series with the damper c , .  

Fig. 3.20. Dynamic system. 

where 

1 z --, 
' - M ,  
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Hence 

m,m2s4 + (m,c2 + mzcl  + mlc1)s3 + (rnlk, + m,k2 + clc2)s2 + 
(c,k,  + c2k1 + c lkl )s  + klk2 

s(m1s2 + cls + k , )  
Z =  

The frequency equation is given when the impedance is made equal to zero or 
when the mobility is infinite. Thus the natural frequencies of the system can be found 
by putting s = jo in the numerator above and setting it equal to zero. 

To summarize, the mobility and impedance of individual elements in a dynamic 
system are calculated on the basis that the velocity is the relative velocity of the two 
ends of a spring or a damper, but the absolute velocity of the body. Individual 
impedances are added for elements or subsystems connected in parallel, and individual 
mobilities are added for elements or subsystems connected in series. 

Example 31 
Find the driving point impedance of the system shown in Fig. 3.6, and hence obtain 
the frequency equation. 

The system of Fig. 3.6 can be redrawn as shown. 
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The driving point impedance is therefore 

1 
1 1 '  

z = Zm1 + Z k l  + 
- +  
' k  'm2 + ' k 2  

- +  
kls  m,s + k,ls 

- ( m , s 2  + k l ) (m, s2  + k + k,)  + (mzs2  + k,)k 
s(m,s2 + k + k 2 )  

- 

The frequency equation is obtained by putting Z = 0 and s = jm, thus: 

( k ,  - m,w2j (k  + k ,  - m 2 m 2 )  + k(k ,  - m2m2)  = 0. 

[Ch. 3 



The vibration of systems with distributed mass 
and elasticity 

Continuous systems such as beams, rods, cables and strings can be modelled by 
discrete mass and stiffness parameters and analysed as multi degree of freedom systems, 
but such a model is not sufficiently accurate for most purposes. Furthermore, mass 
and elasticity cannot always be separated in models of real systems. Thus mass and 
elasticity have to be considered as distributed parameters. 

For the analysis of systems with distributed mass and elasticity it is necessary to 
assume an homogeneous, isotropic material which follows Hooke’s law. 

Generally free vibration is the sum of the principal modes. However, in the unlikely 
event of the elastic curve of the body in which motion is excited coinciding exactly 
with one of the principal modes, only that mode will be excited. In most continuous 
systems the rapid damping out of high-frequency modes often leads to the fundamental 
mode predominating. 

4.1 WAVE MOTION 

4.1.1 
Consider a vibrating flexible string of mass p per unit length and stretched under a 
tension Tas  shown in Fig. 4.1. 

The FBDs of an element of length dx of the string assuming small deflections and 
slopes are given in Fig. 4.2. If the lateral deflection y is assumed to be small, the 
change in tension with deflection is negligible, and sin 6 N 6. 

Transverse vibration of a string 

The equation for motion in the y direction is 

d2y  
- T B = p d x - - ,  

d t 2  
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Fig. 4.1. Vibrating string. 

Fig. 4.2. (a) Applied forces; (b) effective force. 

so 

P a2Y a l a x  = T %. 

Since 

e = ayjax. 

a z y  1 a2y 
-Q = c' (p), where c = J(T1P) (4.1) 

This is the waue equation, the solution of which is given in section 4.1.4. The velocity 
of propagation of waves along the string is c. 

4.1.2 
Consider the longitudinal vibration of a thin uniform bar of cross-sectional area S,  
density p and modulus E under an axial force P, as shown in Fig. 4.3. 

Longitudinal vibration of a thin uniform bar 
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Fig. 4.3. Longitudinal beam vibration 

From Fig. 4.3, 

dP S2U 
- dx = p S dx - 
SX 2t2 . 

Now strain Su/Sx = P/SE,  so 

SPISx = SE(S2u/Sx2). 

Thus 

S2uISt2 = (E,/p)(S2 u/Sx2), 

or 

S2uJSx2 = (1/c2)(S2u/St2), where c = J ( E / p ) .  (4.2) 

This is the wave equation. The velocity of propagation of the displacement or stress 
wave in the bar is c. 

4.1.3 Torsional vibration of a uniform shaft 
In the uniform shaft shown in Fig. 4.4 the modulus of rigidity in torsion is G, the 
material density is p ,  and the polar second moment of area about the axis of twist is J .  
From Fig. 4.4, 

? T  s 2 e  
- dx = p J dx 7 
Sx et2 ' 

The elastic equation is 
SO 

T = G J , .  
c x 

Thus 

P O  G 228 _ -  
St2  - (7)(@)> 
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Fig. 4.4. Torsional vibration. 

or 

a 2 e  1 a2e 
Q = (-&J where c = J(G/P) .  (4.3) 

ax2 = (.)(P) 

This is the wave equation. The velocity of propagation of the shear stress wave in 
the shaft is c. 

4.1.4 Solution of the wave equation 
The wave equation 

d2y 1 d2y 

can be solved by the method of separation of variables and assuming a solution of 
the form 

Y ( X ,  t )  = F(x)G(t). 

Substituting this solution into the wave equation gives 

d Z F ( x )  1 a2G(t) 
dX2 c at2 G( t )  = 7 - F(xL 

that is, 

1 d2F(x)  1 1 d’G(t) 
F(x)  L?x2 c2 G(t) d t 2  ’ 

~ ~ - - ~ ~  - 

The LHS is a function of x only, and the RHS is a function of t only, so partial 
derivatives are no longer required. Each side must be a constant, - (O /C)~  say. (This 
quantity is chosen for convenience of solution.) Then 
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and 

+ w2G(t) = 0. 
d2G(t) 

dt2 

Hence 

and 

G(t) = C sin ot + D cos wt. 

The constants A and B depend on the boundary conditions, and C and D on the 
initial conditions. The complete solution to the wave equation is therefore 

C sin wt + D cos wt (4.4) 

Example 32 
Find the natural frequencies and mode shapes of longitudinal vibrations for a 
free - free beam with initial displacement zero. 

Since the beam has free ends, du/?x = 0 at x = 0 and x = 1. Now 

2 2X = (A(: )  cos( :) x - B (5) sin( :)x) (c sin wt + D cos wt 

Hence 

= A(:) (C sin wt + D cos wr) = 0, so that A = 0, 

and 

Csin cot + D C O S W ~  

Thus sin(wl/c) = 0, since B # 0, and therefore 

That is 
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where o = clwavelength. These are the natural frequencies. 
If the initial displacement is zero, D = 0 and 

where B' = B x C .  Hence the mode shape is determined. 

Example 33 
A uniform vertical rod of length 1 and cross-section S is fixed at the upper end and 
is loaded with a body of mass M on the other. Show that the natural frequencies of 
longitudinal vibration are determined by 

01 J(p/E) tan 01 J(p/E) = Spl/M 

At 

x = 0, u = 0, and at x = I ,  F = SE (aulax). 

Also 

F = SE (aulax) = -M(azU/at2). 

The general solution is 

u = ( A  sin(o/c)x + B cos(o/c)x)(C sin ot + D cos ut). 
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Now, 

ux=o = 0, so B = 0 ,  

thus 

u = ( A  sin(w/c)x)(C sin wt + D cos at), 

(du/dx),=, = (A(w/c) cos(wl/c))(C sin wt + D cos wt), 

and 

(d2u/dt2),=, = ( -Aw2 sin(wl/c))(C sin or + D cos of), 

so 

F = S E A  (@IC) cos(wl/c)(C sin ut + D cos or) 

= M A w 2  sin(wl/c)(C sin of + D cos wt). 

Hence (wllc) tan(wl/c) = SlE/Mc2,  and 

wlJ(p/E) tan o l J ( p / E )  = S p l / M ,  since c2 = E / p .  

4.2 TRANSVERSE VIBRATION 

4.2.1 
The transverse or lateral vibration of a thin uniform beam is another vibration 
problem in which both elasticity and mass are distributed. Consider the moments 
and forces acting on the element of the beam shown in Fig. 4.5. The beam has a 
cross-sectional area A,  flexural rigidity EZ, and material of density p. 

Transverse vibration of a uniform beam 

Fig. 4.5. Transverse beam vibration. 
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Then for the element, neglecting rotary inertia and shear of the element, taking 
moments about 0 gives 

dx dx aQ dx aM 
2 2 dx 2 ax 

M + Q - + Q - + - dx - = M + - dx. 

That is, 

Q = aM/ax. 

Summing forces in the y direction gives 

aQ d2Y 
ax a t 2  
- dx = P A  dx -. 

Hence 

Now EI is a constant for a prismatical beam, so 

a2 M d4Y 
dX2 = - E I  - a2Y 

d X 2  ax4 ' 
M =  - E I -  and - 

Thus 

a4y p~ a Z y  

ax4 ( E I )  a t 2  
-+ - - z o o .  

(4.5) 

This is the general equation for the 
When a beam performs a normal 

the beam varies harmonically with time, and can be written 

transverse vibration of a uniform beam. 
mode of vibration the deflection at any point of 

y = X ( B ,  sin wf + B,  cos ut), 

where X is a function of x which defines the beam shape of the normal mode of 
vibration. Hence 

d4X -- dX4 - (g) w 2 x  = i4x, (4.7) 

where 

i4 = p A w 2 / E I .  This is the beam equation. 

The general solution to the beam equation (4.7) is 

X = C, cos Ax + C, sin Ax + C, cosh Ax + C, sinh Ax, 

where the constants C1,2,3,4 are determined from the boundary conditions. 
For example, consider the transverse vibration of a thin prismatical beam of length I ,  

simply supported at each end. The deflection and bending moment are therefore zero 
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at each end, so that the boundary conditions are X = 0 and d2X/dx2 = 0 at x = 0 
and x = 1. 

Substituting these boundary conditions into the general solution above gives at 

x = 0, X = 0; thus 0 = C, + C,, 

and at 

That is, 

C, = C, = 0 and X = C, sin i.x + C, sinh ix. 

Now at 

.y = I ,  X = 0 so that 0 = C, sin 2.1 + C, sinh i l ,  

and at 

- 0, x = l ,  -- so that 0 = C, sin i l  - C, sinh i.1. 
d2X 
dx2 

That is, 

C, sin i.1 = C, sinh i.1 = 0. 

Since 

i.1 # 0, sinh i l  # 0 and therefore C, = 0. 

Also C, sin i.1 = 0. Since C, # 0, otherwise X = 0 for all x, then sin 1.1 = 0. Hence 
X = C, sin i.x, and the solutions to sin A = 0 give the natural frequencies. These are 

. n 2n 3lT 
1. = 0, - - 

1 ’ 1 ’ 1  

so that 

i. = 0, w = 0 is a trivial solution because the beam is at rest. The lowest or first 
natural frequency is therefore w1 = (n/l)’J(EZ/Ap) rad/s, and the corresponding mode 
shape is X = C, sin nx/l. This is the first mode. w, = (2n/l)’,/(EI/Ap) rad/s is the 
second natural frequency, and the second mode is X = C, sin 2~x11, and so on. The 
mode shapes are drawn in Fig. 4.6. 

These sinusoidal vibrations can be superimposed so that any initial conditions can 
be represented. Other end conditions give frequency equations with the solution 

where the values of 2 are given in Table 4.1. 
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1st mode shape, one half-wave: 

y = C ,  sin n (;)(Bl sin colt + B,  cos colt); w1 = (:>'/(E) rad/s. 

2nd mode shape, two half-waves: 

y = C ,  sin 2n (;)B1 sin o,t + B,  cos w,t); 0, = (?>'/(E) rad/s. 

3rd mode shape, three half-waves: 

y = C,  sin 3n (;)(Bl sin co3r + B ,  cos w3t);  w3  = (:)'/(E) rad/s. 

Fig. 4.6. Transverse beam vibration mode shapes and frequencies. 
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Table 4.1 

End conditions Frequency equation 1st mode 2nd mode 3rd mode 4th mode 5th mode 

Clamped-free cos R Z  cosh i.l.= - 1 3.52 22.4 61.7 121.0 199.9 
Pinned-pinned sin 1.1 = 0 9.87 39.5 88.9 157.9 246.8 
Clamped- 

pinned tan i,l = tan 2.1 15.4 50.0 104.0 178.3 272.0 
Clamped- 

clamped or 
Free-free COS 2.1 cosh i.1 = 1 22.4 61.7 121.0 199.9 298.6 

The natural frequencies and mode shapes of a wide range of beams and structures 
are given in Formulas for Natural Frequency and Mode Shape by R. D. Blevins (Van 
Nostrand, 1979). 

4.2.2 The whirling of shafts 
An important application of the theory for transverse beam vibration is to the whirling 
of shafts. If the speed of rotation of a shaft is increased, certain speeds will be reached 
at which violent instability occurs. These are the critical speeds of whirling. Since the 
loading on the shaft is due to centrifugal effects the equation of motion is exactly the 
same as for transverse beam vibration. The centrifugal effects occur because it is 
impossible to make the centre of mass of any section coincide exactly with the axis 
of rotation, because of a lack of homogeneity in the material and other practical 
difficulties. 

Example 34 
A uniform steel shaft which is carried in long bearings at each end has an effective 
unsupported length of 3 m. Calculate the first two whirling speeds. 

Take Z/A = 0.1 x 10-3m2, E = 200 GN/m2, and p = 8000 kg/m3. 

Since the shaft is supported in long bearings, it can be considered to be ‘built in’ 
at each end so that, from Table 4.1, 

o = /(E) rad/s, 

where x1  = 22.4 and x 2  = 61.7. For the shaft, 

so that the first two whirling speeds are: 

22.4 
9 

o1 =- 50 = 124.4 rad/s, 

so 
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o 124.4 
2x 2x 

f --’=-- - 19.8 cycle/s, and N ,  = 1188 rev/min, 
1 -  

and 

61.7 
N - - 1188 = 3272 rev/min. 

- 22.4 

Rotating this shaft at speeds at or near to the above will excite severe resonance 
vibration. 

4.2.3 Rotary inertia and shear effects 
When a beam is subjected to lateral vibration so that the depth of the beam is a 
significant proportion of the distance between two adjacent nodes, rotary inertia of 
beam elements and transverse shear deformation arising from the severe contortions 
of the beam during vibration make significant contributions to the lateral deflection. 
Therefore rotary inertia and shear effects must be taken into account in the analysis 
of high-frequency vibration of all beams, and in all analyses of deep beams. 

The moment equation can be modified to take into account rotary inertia by 
adding a term p l  d3y/(2x Zt2),  so that the beam equation becomes 

24y d3y d2y 
E l  - - p l ~  + pA - = 0. 

ax4 ax a t 2  atz 

Shear deformation effects can be included by adding a term 

E l p  Z4y 
k g  dx2 dt2’  
_____ 

where k is a constant whose value depends on the cross-section of the beam. Generally, 
k is about 0.85. The beam equation then becomes 

Z4y E l p  d4y d2Y E l - - - -  + pA - = 0. 
2x4 kg ax2 d t 2  d t 2  

Solutions to these equations are available, which generally lead to a frequency a 
few percent more accurate than the solution to the simple beam equation. However, 
in most cases the modelling errors exceed this. In general, the correction due to shear 
is larger than the correction due to rotary inertia. 

4.2.4 The effect of axial loading 
Beams are often subjected to an axial load, and this can have a significant effect on 
the lateral vibration of the beam. If an axial tension Texists, which is assumed to be 
constant for small amplitude beam vibrations, the moment equation can be modified 
by including a term Td2y /2x2 ,  so that the beam equation becomes 

Z4y d2y Z2Y 
(?X4 GX d t 2  

E l  -- T ,  + pA - = O .  
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Tension in a beam will increase its stiffness and therefore increase its natural 
frequencies; compression will reduce these quantities. 

Example 35 
Find the first three natural frequencies of a steel bar 3 cm in diameter, which is simply 
supported at each end, and has a length of 1.5 m. Take p = 7780 kg/m3 and 
E = 208 GN/m2. 

For the bar, 

m/s2 = 38.8 m/s2. 
208 x 109.1r(0.03)4/64 

l~(0.03/2)’ 7780 

Thus 

lC2 

1.5’ 
w ,  = - 38.8 170.2 rad/s and f, = 27.1 Hz. 

Hence 

f, = 27.1 x 4 = 108.4 Hz, 

and 

f3 = 27.1 x 9 = 243.8 Hz. 

If the beam is subjected to an axial tension 7; the modified equation of motion 
leads to the following expression for the natural frequencies: 

0; = (!!), 2 + (!q E. 
For the case when T =  1000 the correction to w: is wf, where 

= 795 (rad/s)’. 

That is,f, = 4.5 Hz. Hencef, = J(4.5’ + 27.1’) = 27.5 Hz. 

4.2.5 Transverse vibration of a beam with discrete bodies 
In those cases where it is required to find the lowest frequency of transverse vibration 
of a beam which carries discrete bodies, Dunkerley’s method may be used. This is a 
simple analytical technique which enables a wide range of vibration problems to be 
solved using a hand calculator. Dunkerley ’s method uses the following equation : 

1 1  1 1 1 
- N -  ,+x+y+y+ ..., 
0; - P ,  P ,  P ,  P,  

where w ,  is the lowest natural frequency of a system and P,,  P , ,  P , ,  . . . are the 
frequencies of each body acting alone. 

This equation may be obtained for a two degree freedom system by writing the 
equations of motion in terms of the influence coefficients as follows: 
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Y l  = "l lmlo2Y, + a12"202Y29 

Y2 = a21m1w2y1 + a2zm20ZY2. 

a11m102 - 1 a12m2w2 

and 

The frequency equation is given by 

a22m202 - 1 1=0. I az1m102 

By expanding this determinant, and solving the resulting quadratic equation, it is 
found that 

2 -  (allml + a22m2) * JC(a11m1 + a22m2)2 - 4(alla22 - a21a12)I 
0 1 . 2  - 

2(a11a22 - az1%2) 

Hence it can be shown that 

1 1  
7 + 7 = allml + a22m2. 
0 1  0 2  

Now P, is the natural frequency of body 1 acting alone, hence 

k 1 

m1 a1 1m1 

p 1 2 = 1 = - ,  

Similarly 

1 

a22m2 
p 2 2  = -, 

Thus 

1 1 1 1 
2+2=7+7. 
0 1  0 2  PI p2 

A similar relationship can be derived for systems with more than two degrees of 

If w2 %- o l ,  the left-hand side is approximately l/w;, hence 
freedom. 

Example 36 
A steel shaft (p = 8000 kg/m3, E = 210 GN/m2) 0.055 m diameter, running in self- 
aligning bearings 1.25 m apart, carries a rotor of mass 70 kg, 0.4 m from one bearing. 
Estimate the lowest critical speed. 

For the shaft alone 

P, = (n/1)2,,/(EI/Ap) rad/s = 141 rad/s = 1350 rev/min. 
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This is the lowest critical speed for the shaft without the rotor. For the rotor alone, 
neglecting the mass of the shaft, 

P ,  = J ( k / m )  rad/s 

k = 3E11/(x2(1 - x)’) 

where x = 0.4 m and I = 1.25 m. 
Thus 

k = 3.07 MN/m 

and 

P,  = 209 rad/s = 2000 rev/min. 

Now 

1/NI2 = 1/13502 + 1/2O0O2, hence N ,  = 1135 rev/min 

4.26 Receptance analysis 
Many dynamic systems can be considered to consist of a number of beams fastened 
together. Thus if the receptances of each beam are known, the frequency equation 
of the system can easily be found by carrying out a subsystem analysis (Section 3.2.3). 
The required receptances can be found by inserting the appropriate boundary 
conditions in the general solution to the beam equation. 

It will be appreciated that this method of analysis is ideal for computer solutions 
because of its repetitive nature. 

For example, consider a beam which is pinned at one end (x = 0) and free at the 
other end (x = I ) .  This type of beam is not commonly used in practice, but it is useful 
for analysis purposes. With an harmonic moment of amplitude M applied to the 
pinned end, 

at .Y = 0, X = 0 (zero deflection) and 

d2X M 
--- - (bending moment M )  
d.u2 E l  

and at .Y = I ,  

d2X 
__ = 0 
dx2 

(zero bending moment) 

and 

- = 0 
d3X 
dx3 

Now, in general, 

(zero shear force). 

X = C ,  cos i x  + C ,  sin i.x + C ,  cosh Rx + C ,  sinh i x .  

Thus applying these boundary conditions, 
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Also 

0 = -C, i2  cos A1 - C2A2 sin I1 + C,A2 cosh 21 + C,Az sinh 21. 

and 

0 = C,A3 sin i l  - C2A3 cos A1 + C,13 sinh i l  + C,A3 cosh 21. 

By solving these four equations C,,,,,,, can be found and substituted into the 
general solution. It is found that the receptance moments/slope at the pinned end is 

(1 +cos A1 cosh I n  
Eli. (cos E.1 sinh i l  - sin i l  cosh 21). 

and at the free end is 

2 cos I1 cosh I1 
EIE. (cos 21 sinh A1 - sin 21 cosh 21)' 

The frequency equation is given by 

cos E.1 sinh 21 - sin 1.1 cosh E.1 = 0. 

That is, tan i l  = tanh 21. 
Moment/deflection receptances can also be found. 
By inserting the appropriate boundary conditions into the general solution, the 

receptance due to an harmonic moment applied at the free end, and harmonic forces 
applied to either end, can be deduced. Receptances for beams with all end conditions 
are tabulated in 7he Mechanics of Ebration by R. E. D. Bishop & D. C .  Johnson 
(CUP, 1960/79), thereby greatly increasing the ease of applying this technique. 

Example 37 
A hinged beam structure is modelled by the array shown below: 

The hinges are pivots with torsional stiffness k, and their mass is negligible. All 

It is required to find the natural frequencies of free vibration of the array, so that 
hinges and beams are the same. 

the excitation of these frequencies, and therefore resonance, can be avoided. 
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Since all the beams are identical, the receptance technique is relevant for finding 
the frequency equation. This is because the receptances of each subsystem are the 
same, which leads to some simplification in the analysis. 

(i) to split the array into subsystems comprising torsional springs and beams, or 
(ii) to split the array into subsystems comprising spring-beam assemblies. 

This approach results in a smaller number of subsystems. 

subsystems could be either 

There are two approaches: 

Considering the first approach, and only the first element of the array, the 

For (a) the frequency equation is r l l  + Bll = 0, whereas for (b) the frequency 
equation is 

1Zl1 + 811 312 + 8 1 2  1 = 0, 
321 + 821 322 + 8 2 2  

where r l  is the moment/slope receptance for A, p1 is the moment/slope receptance 
for B, Pl2 is the moment/deflection receptance for B, pz2 is the force/deflection 
receptance for B, and so on. 

For (a), either calculating the beam receptances as above, or obtaining them from 
tables, the frequency equation is 

1 cos i.1 cosh ELI + 1 - +  = O  
k, Eli.(cos E.1 sinh i.1 - sin i.1 cosh i.1) 

where 

For (b), the frequency equation is 
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1 cos i l  sinh i.1 + sin i.1 cosh E.1 -sin i.1 sinh A - +  
k ,  E~~.(cos  i.1 cash i.1 - 1) E l i . 2 ( ~ ~ ~  i.1 cash i l  - 1) 

-sin i l  sinh i.1 
Eli2(cos i l  cosh i.1 - 1) 

-(cos i.1 sinh i.1 - sin 21 cosh 21) 
EZi.3(cos E.! cosh i.1 - 1) 

= o  
which reduces to the equation given by method (a). 

The frequency equation has to be solved after inserting the structural parameters, 
to yield the natural frequencies of the structure. 

For the whole array it is preferable to use approach (ii), because this results in a 
smaller number of subsystems than (i), with a consequent simplification of the 
frequency equation. However, it will be necessary to calculate the receptances of the 
spring pinned - free beam if approach (ii) is adopted. 

The analysis of structures such as frameworks can also be accomplished by the 
receptance technique, by dividing the framework to be analysed into beam substruc- 
tures. For example, if the in-plane natural frequencies of a portal frame are required, 
it can be divided into three substructures coupled by the conditions of compatibility 

Fig. 4.7. Portal frame substructure analysis. 

and equilibrium, as shown in Fig. 4.7. 
Substructures A and C are cantilever beams undergoing transverse vibration, 

whereas B is a free-free beam undergoing transverse vibration. Beam B is assumed 
rigid in the horizontal direction, and the longitudinal deflection of beams A and C 
is assumed to be negligible. 

Because the horizontal member B has no coupling between its horizontal and 
flexural motion / jI2 = /jI4 = p23 = /?34 = 0, so that the frequency equation becomes 
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2 1 1  + 8 1 1  “12 8 1 3  0 

8 3  1 0 7 3 3  + 8 3 3  8 3 4  

0 b 4 2  1143 Y44 + 844 

= 0. 2 2  1 3 2 2  + 8 2 2  0 8 2 4  

4.3 
ENERGY METHOD 

THE ANALYSIS OF CONTINUOUS SYSTEMS BY RAYLEIGH’S 

Energy methods can be used in the analysis of continuous systems if the mode shape 
of the system is known; this is necessary for evaluating the kinetic and potential 
energies. It has been shown by Rayleigh that the lowest natural frequency of such 
systems can be fairly accurately found by assuming any reasonable deflection curve 
for the shape of the first mode. Naturally the curve must be compatible with the end 
conditions of the system, and since any deviation from the true mode shape puts 
additional constraints on the system, the frequency determined by Rayleigh’s method 
is never less than the exact frequency. Generally the static deflection curve of the 
system gives a frequency within a few per cent of the exact value. The frequency of 
vibration is found by considering the conservation of energy in the system; the natural 
frequency is determined by dividing the expression for potential energy in the system 
by the expression for kinetic energy. 

4.3.1 
The mass of the spring elements can have a considerable effect on the frequency of 
vibration of those systems in which relatively heavy springs are used, such as in valve 
mechanisms and in some rotational systems. 

Consider the translational system shown in Fig. 4.8, where a rigid body of mass 
M is connected to a fixed frame by a spring of mass m, length I ,  and stiffness k. The 
body moves in the x direction only. If the dynamic deflected shape of the spring is 
assumed to be the same as the static shape under an applied axial force, the velocity 
of the spring element is j. = (y//) jr ,  and the mass of the element is (rn/l)dy. 

The vibration of systems with heavy springs 

Fig. 4.8. Single degree of freedom system with heavy spring. 
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Thus 

and 

V = $kx2. 

free vibration as 
Assuming simple harmonic motion anL putting Tmax = V,,, gives i.,e frequency of 

k 

That is, if the system is to be modelled with a massless spring, one third of the actual 
spring mass must be added to the mass of the body in the frequency calculation. 

Alternatively, - (T + V) = 0 can be used for finding the frequency of oscillation. 
d 
dt 

4.3.2 Transverse vibration of a beam 
For the beam shown in Fig. 4.9, if m is the massflength and y is the amplitude of the 
assumed deflection curve, then 

max = 1  2 s  j 2  max dm = +w2 S Y 2  dm, 

where w is the natural circular frequency of the beam. 

elastic energy. If the bending moment is M and the slope of the elastic curve is 8, 
The strain energy of the beam is the work done on the beam which is stored as 

V = $  Md8.  s 
Usually the deflection of beams is small so that the following relationships can be 

assumed to hold: 

dY 
dx 

8 = -  - and R dO=dx, 

thus 

1 d8 d2y 
R - d x - d x 2 ’  
_ -  

From beam theory, MI1 = E/R, where R is the radius of curvature and E1 is the 
flexural rigidity. Thus 

I/ = 1; dx = + dx. 
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Fig. 4.9. Beam deflection. 

Since 

L a x  = ‘,ax; 

1 E1($)2 dx 

j‘ J” dm 
0 2  = 

This expression gives the lowest natural frequency of transverse vibration of a beam. 
It can be seen that to analyse the transverse vibration of a particular beam by this 
method requires y to be known as a function of x. For this the static deflected shape 
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or a part sinusoid can be assumed, provided the shape is compatible with the beam 
boundary Copditions. 

Example 38 
A simply supported beam of length 1 and mass m2 carries a body of mass m, at its 
mid-point. Find the lowest natural frequency of transverse vibration. 

The boundary conditions are y = 0 and d2y/dx2 = 0 at x = 0 and x = 1. These 
conditions are satisfied by assuming that the shape of the vibrating beam can be 
represented by a half sine wave. A polynomial expression can be derived for the 
deflected shape, but the sinusoid is usually easier to manipulate. 

y = yo sin(nxl1) is a convenient expression for the beam shape, which agrees with 
the boundary conditions. Now 

and j = j o  sin - ~ d2y = -yo (t)’ sin(?). (3 dx’ 

Hence 

j: E I ( S ) 2  dx = 1; Ely; (yr sin’(?) dx 

= EZyO2 (;) j ,  
4 1  

and 

[y2 dm = [: yo2 sin2 (5) y dx + yi  m, 

= y o m, +- . Thus .( T) 
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E l  n4 E l  
If m2 = 0, 03 = - - - - 48.7 - 

2 13m, m,13. 

The exact solution is 48 El/m,13, so the Rayleigh method solution is 1.4% high. 

Alternatively the Dunkerley method can be used. Here, 

48 E l  , E l  n4 
P, =- and P, =- 

m,1 3 m213. 

Thus 

Hence 

which is very close to the value determined by the Rayleigh method. 

Example 39 
Find the lowest natural frequency of transverse vibration of a cantilever of mass m, 
which has rigid body of mass M attached at its free end. 

The static deflection curve is y = (yO/2l3)(31x2 - x3). Alternatively 
y = y,(l - cos nx/21) could be assumed. Hence 

and 
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= j: 5 ( 3 1 ~ ~  - x ~ ) ~  dx + y o 2  M ,  

Thus 

[Ch. 4 

Example 40 
A pin-ended strut of length 1 has a vertical axial load P applied. Determine the 
frequency of free transverse vibration of the strut, and the maximum value of P for 
stability. The strut has a mass m and a second moment of area I ,  and is made from 
material with modulus of elasticity E .  

The deflected shape can be expressed by 

y = y o  sin n (;), 
since this function satisfies the boundary conditions of zero deflection and bending 
moment at x = 0 and x = 1. Now 
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where 

A 2 { E I ( 2 ) i  dx = i j: E I ( : y  yo2 sin2 n(;) dx 

and 

z = {: (/[ 1 + (gy] - 1) dx, 

= {: yo2 (:I cos2 7c (?) dx, 
2 

Thus 

Vmax = (7 $ - ; ;) y;. 

Now, 

T max = -  { y 2 d m = -  y2 ' dx, 
2 1 

m 2  yo2 sin2 n - - dx = - yo . x m  
1 1  4 

1 

= 

Thus 

and 
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For stabilityf> 0, hence EI(n/l)’ > P .  That is, P,,, = EI(n/l)’. E1n2/12 is known as 
the Euler buckling load. 

Example 41 
Part of an industrial plant incorporates a horizontal length of uniform pipe, which 
is rigidly embedded at one end and is effectively free at the other. Considering the 
pipe as a cantilever, derive an expression for the frequency of the first mode of 
transverse vibration using Rayleigh’s method. 

Calculate this frequency, given the following data for the pipe: 
Modulus elasticity 200 GN/m2 
Second moment of area about bending axis 
Mass 6 x lo4 kg 
Length 30m 
Outside diameter l m  

0.02 m4 

For a cantilever, assume 

This is compatible with zero deflection and slope when x = 0, and zero shear force 
and bending moment when x = 1. Thus 

Ttx 
dx2 

Now 

Ttx 
cos2 - dx 1; EI($)2 dx = E l  J: y;  (5) 21 

4 1  

and 
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= y :  m ( i  - :). 
Hence, assuming the structure to be conservative, that is the total energy remains 
constant throughout the vibration cycle, 

-- - E' 13.4 
m13 

Thus 

rad/s and f =  

In this case 

~ E I  200 x 109 x 0.021 
S2. - 

m13 - 6 x lo4 x 303 

Hence 

o = 5.75 rad/s and f =  0.92 Hz. 

4.3.3 Wind or current excited oscillation 
A structure exposed to a fluid stream is subjected to an harmonically varying force 
in a direction perpendicular to the stream. This is because of eddy or vortex shedding 
on alternate sides of the structure on the leeward side. Tall structures such as masts, 
bridges, and chimneys are susceptible to excitation from steady winds blowing across 
them. The Strouhal number relates the excitation frequencyf,, to the velocity of fluid 
flow u(m/s) and the hydraulic mean diameter D (m) of the structure as follows: 

f , D  Strouhal number = -. 
t' 

If the frequencyf, is close to the natural frequency of the structure, resonance may 
occur. 

For a structure, 

4 x area of cross-section 
circumference 

D =  

so that for a chimney of circular cross-section and diameter d,  
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= d ,  4 (z /4)  d 2  D =  
zd 

and for a building of rectangular cross-section a x b, 

2ab -- 4ab D=------- 
2(a + b)  - (a  + b)  ’ 

Experimental evidence suggests a value of 0.2-0.24 for the Strouhal number for 
most flow rates and wind speeds encountered. This value is valid for Reynolds numbers 
in the range 3 x lo5 - 3.5 x lo6. 

Example 42 
For constructing a tanker terminal in a river estuary a number of cylindrical concrete 
piles were sunk into the river bed and left free standing. Each pile was 1 m diameter 
and protruded 20 m out of the river bed. The density of the concrete was 2400 kg/m3 
and the modulus of elasticity 14 x lo6 kN/m2. Estimate the velocity of the water 
flowing past a pile which will cause it to vibrate transversely to the direction of the 
current, assuming a pile to be a cantilever and taking a value for the Strouhal number 

f , D  - = 0.22, 
0 

wheref, is the frequency of flexural vibrations of a pile, D is the diameter, and u is 
the velocity of the current. 

Consider the pile to be a cantilever of mass rn, diameter D, and length I; then the 
deflection y at a distance x from the root can be taken to be, y = y,(l - cos 7cx/21), 
where y ,  is the deflection at the free end. 
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Thus 

dX2  d2Y = Y,(E)’ cost+) 

j: E I ( 2 ) ’  dx = E I j :  y12 (t)’ cos2(:) dx 

=EIy?($) 4 1  2 

j y 2  dm = j: y:( 1 - cos(:))’(:) dx 

Hence 

Substituting numerical values gives o = 5.53 rad/s, that is, f =  0.88 Hz. When 
f, = 0.88 Hz resonance occurs; that is, when 

- m/s. 
f , D  0.88 0 = - = - - 4  
0.22 0.22 

4.4 

If a system is to vibrate about an equilibrium position, it must be stable about that 
position. That is, if the system is disturbed when in an equilibrium position, the elastic 
forces must be such that the system vibrates about the equilibrium position. Thus 
the expression for o2 must be positive if a real value of the frequency of vibration 
about the equilibrium position is to exist, and hence the potential energy of a stable 
system must also be positive. 

The principle of minimum potential energy can be used to test the stability of 
systems which are conservative. Thus a system will be stable at an equilibrium position 
if the potential energy of the system is a minimum at that position. This requires that 

THE STABILITY OF VIBRATING SYSTEMS 

dV d2 V - = o  and - > 0, 
dq dq2 

where q is an independent or generalized coordinate. Hence the necessary conditions 
for vibration to take place are found, and the position about which the vibration 
occurs is determined. 
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4.5 THE FINITE ELEMENT METHOD 

Many structures, such as a ship hull or engine crankcase, are too complicated to be 
analysed by classical techniques, so that an approximate method has to be used. It 
can be seen from the receptance analysis of complicated structures that breaking a 
dynamic structure down into a large number of substructures is a useful analytical 
technique, provided that sufficient computational facilities are available to solve the 
resulting equations. The finite element method of analysis extends this method to the 
consideration of continuous structures as a number of elements, connected to each 
other by conditions of compatibility and equilibrium. Complicated structures can 
thus be modelled as the aggregate of simpler structures. 

The principal advantage of the finite element method is its generality; it can be 
used to calculate the natural frequencies and mode shapes of any linear elastic system. 
However, it is a numerical technique which requires a fairly large computer, and care 
has to be taken over the sensitivity of the computer output to small changes in input. 

For beam type systems the finite element method is similar to the lumped mass 
method, because the system is considered to be a number of rigid mass elements of 
finite size connected by massless springs. The infinite number of degrees of freedom 
associated with a continuous system can thereby be reduced to a finite number of 
degrees of freedom, which can be examined individually. 

The finite element method therefore consists of dividing the dynamic system into 
a series of elements by imaginary lines, and connecting the elements only at the 
intersections of these lines. These intersections are called nodes. It is unfortunate that 
the word node has been widely accepted for these intersections; this meaning should 
not be confused with the zero vibration regions referred to in vibration analysis. The 
stresses and strains in each element are then defined in terms of the displacements 
and forces at the nodes, and the mass of the elements is lumped at the nodes. A series 
of equations are thus produced for the displacement of the nodes and hence the 
system. By solving these equations the stresses, strains, natural frequencies, and mode 
shapes of the system can be determined. The accuracy of the finite element method 
is greatest in the lower modes, and increases as the number of elements in the model 
increases. The finite element method of analysis is considered in Techniques of Finite 
Elements by B. Irons & S .  Ahmad (Ellis Horwood, 1980). 



Automatic control systems 

Automatic control systems, wherein a variable quantity is made to conform to a 
predetermined level, have been in use for several centuries; but, as with much 
technological development, the most rapid advances have taken place during recent 
years. Feedforward, or open loop systems, merely control the input, such as in the 
case of a machine tool cutter which simply follows a given guide or pattern. An early 
example of an open loop system is the Jacquard loom of 1801, in which a set of 
punched cards programmed the patterns to be woven by the loom, and no information 
from the process or results was used to correct the loom operation. Feedback, or 
closed loop, systems feed back information from the process to control the operation 
of the machine. One of the earliest closed loop systems was that used by the Romans 
to maintain water levels in their aqueducts by means of floating valves. Later, windmills 
were the spawning ground of several control systems, for example the sails were 
automatically kept into the wind by means of a fantail (1745), centrifugal governors 
were used to control the speed of the millstones (1783), and the speed of rotation of 
the sails was automatically controlled by roller reefing (1789). In the late eighteenth 
century centrifugal governors were also being used to control the speed of steam 
engines by regulating the steam supply. These devices provided much closer control 
than manual systems could, and they were cheaper to operate, so that the overall 
efficiency of the machine increased. This led to demands for even better control 
systems which operated within narrower margins so that the efficiency was further 
increased. 

In principle, many variables can be controlled by humans, but in practice this may 
be impossible, difficult, costly, or undesirable because of the need for continuous 
operation regardless of environment, large forces, and a fast response. The human 
reaction time of about 0.3 seconds is too slow for many applications. Further examples 
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of control systems are liquid level control by ball valve, temperature control by 
thermostat, and surface control such as a ship’s rudder or aircraft flaps by hydraulic 
servo. However, all types of control system can be modelled for analysis purposes, 
irrespective of the operating mechanism. The first theoretical analysis of a control 
system was published by Maxwell in the nineteenth century: this theory was soon 
generalized and followed by a large number of contributions to explain and improve 
the operation of control systems. In the early twentieth century the rapid development 
of automatic control systems took place because of the need to position guns and 
ships quickly and accurately, which led to the development of servomechanisms in 
the mid-1930s. In the 1950s the potential of multiple loop systems was investigated, 
and the introduction of computers opened the way for much greater complexity in 
control systems. Computer control is usually applied to industrial problems in one 
of three ways: supervisory control which continually adjusts the plant to optimum 
operation conditions, direct digital control, and hierarchy control which integrates 
the plants operation at every level from management decisions through to valve 
settings. For example, the new Waterloo rail terminal has a building management 
system which monitors and controls air conditioning, lighting, escalators and 
travelaters. 

Computer control is aided by the ability to measure and convert into electrical 
signals a wide range of system parameters such as temperature, pressure, speed, level, 
weight, flow, conductivity, and thickness. A fast rate of progress has been maintained 
to the present day, particularly since the introduction of microprocessors, so that 
only an introduction to automatic control systems can be attempted in a text of this 
length. 

The essential feature of an automatic control system is the existence of a feedback 
loop to give good performance. This is a closed loop system; if the measured output 
is not compared with the input the loop is open. Usually it is required to apply a 
specific input to a system and for some other part of the system to respond in the 
desired way. The error between the actual response and the ideal response is detected 
and fed back to the input to modify it so that the error is reduced, as shown in Fig. 
5.1. The output of a device represented by a block in a block diagram cannot affect 
the input to that device unless a specific feedback loop is provided. 

Fig. 5.1. Control system block diagram. 
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In general both input and output vary with time, and the control system can be 
mechanical, pneumatic, hydraulic and electrical in operation, or any combination of 
these or other power sources. The system should be absolutely stable so that if excited 
it will settle to some steady value, and it should be accurate in the steady state. 

This concept can be illustrated by considering a simple dynamic system of the type 
previously considered, as shown in Fig. 5.2. 

Fig. 5.2. Dynamic system. 

The system comprises a body of mass m connected to an input controlled platform 
by a spring and viscous damper. A specific input x,(r) is applied to this platform, and, 
as a control system, the response of the body or output x,(t) should be identical to 
the input. 

Considering the forces acting on the body, the equation of motion is 

mx, = k(xi - x,) + c(ii  - io). (5.1) 

Equations of motion of this type have been solved for an harmonic input (equation 
2.18). For a general solution irrespective of input it is convenient to use the D-operator. 
Thus (5.1) becomes 

mD2x0 = k(xi - xo) + cD(xi - x,) = ( k  + cD)(xi - xo). 

It should be noted that although using the D-operator is a neat and compact form 
of writing the equation it does not help with the solution of the response problem. 

Now the force F on the body is mD2x,, so F = mD2xo, or 

The transferfunction of a system is the function by which the input is multiplied to 
give the output, so that since F is the input to the body and x, the output, (l/mD2) 
is the transfer function (TF) of the body. 
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This is shown in block diagram form in Fig. 5.3. 

Fig. 5.3. Rigid body block diagram. 

For the spring/damper unit F = (k + cD)(x, - x,) as shown in Fig. 5.4. 

Fig. 5.4. Spring/damper block diagram. 

Because the input to the spring/damper unit is (xi - x,) and the output is F, the T F  
is (k + cD). These systems can be combined as shown in Fig 5.5. 

Fig. 5.5. Block diagram. 

Fig. 5.6. System block diagram. 

Fig. 5.6 is the conventional unity feedback loop form. Essentially, the spring/damper 
acts as an error-sensing device and generates a restoring force related to that error. 
Since 

(Xi - X , ) ( S )  =x,, 
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x, = ( cD + k )xi, 

- ”.=( c D + k  ). 
mD’ + cD + k 

or 

xi m D 2 + c D + k  

This is the TF of the dynamic system with feedback, that is, it is the closed loop TF. 
The system response, or output for a sustained harmonic input motion 

xi = X i  cos vt, has already been discussed, see section 2.3.2. If the output x, is assumed 
to be X ,  cos (vt - 4), then substitution into the closed loop transfer function (x,/xi) 
gives 

- mv2X,  cos (vt - 4) - cvX,  sin (vt - 4) + k X ,  cos (vt - 4) 
= - C V X ,  sin vt + k X ,  cos vt. 

This equation can be solved by using the phasor technique (Fig. 5.7). 

Fig. 5.7. Phasor diagram. 

From the phasor diagram, 

(kXi)’ + (cvx,)’  = ( k X ,  - mv’X,)’ + (cvX,)’. 

Hence 

X i J ( k 2  + (cv)’) = X,J((k - mv’)’ + (cv)’). 

This equation gives the amplitude of the sustained oscillation. However, there is 
also an initial transient vibration which is given by the complementary function; 
although this is a damped oscillation which dies away with time, it is often important 
in control systems, particularly if accurate positioning is required in a short time. 
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In the study of control system dynamics, the response of the system to a range of 
types of input must be considered; for example the impulse, step, and Tamp shown 
in Fig. 5.8. Impulse excitation has been discussed in section 2.3.6. 

Fig. 5.8. System inputs. 

For the system considered, if the input xi is given a step change so that xi = X ,  

x o = (  m D  f c f C D  + c D + k  )xi 

= (1 + i D  + : Dz)-'( 1 + 4 D)X 

= (1 - i D + ...)(.) 
= x. 

That is, in the steady state x, = X ,  so that there is no error between the input and 
the output. However, the complementary function is given by (mD2 + cD + k)x, = 0, 
so x, = Ae-<@' sin (oJ(1 - iz) t  + 4). 

That is, x, may also contain an initial damped oscillation, so that the system 
response to a step input would be as shown in Fig. 5.9. 
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Fig. 5.9. Step input response. 

The amount by which x, exceeds xi on the first oscillation is called the first ouershoot. 
In a stable system, that is one in which the transient dies away, this will be the 
maximum overshoot. 

If the input is a ramp, xi = pt, 

so that 

x = 1 - -  D + . . .  1 + - D  ( p t )  
O (  f )( f )  
= (1 -; D + . . - ) ( p t  + f p)  

c c 
= pt + i p - - p = pt. k 

That is, there is no steady-state error. However, the initial transient exists, so that 
the system output response is as shown in Fig. 5.10. 

Fig. 5.10. Ramp input response. 
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There are many needs and applications for systems that will move a remote device 
to some prescribed position in an acceptable and controlled way. The input for this 
movement may be a manual action such as turning a knob or moving a lever, or it 
may come from the motion or signal from some other device. Some systems have 
relatively low power at the input in comparison with that dissipated at the output; 
essentially, therefore, they are error-actuated power amplifiers, and they are usually 
referred to as servomechanisms, or just servos. 

5.1 THE SIMPLE HYDRAULIC SERVO 

Hydraulic remote position control (RPC) systems are used extensively; they generally 
rely on some form of supply control valve feeding actuators, pumps, and hydraulic 
motors. The type of control valve used can vary, but the most common is the spool 
valve which is shown diagrammatically in Fig. 5.11. 

Fig. 5.1 1. Simple spool valve. 

The input' position of the spool may be controlled by direct mechanical linkage, 
or by electrical means. When the spool is centrally situated, as shown, both ports are 
closed and channels A and B are cut off. When the spool is moved to the right, B is 
connected to the high-pressure supply and when the spool is moved to the left, A is 
connected to the high-pressure supply. For small valve openings, it is usually assumed 
that the rate of flow of fluid is proportional to the valve opening, and that the fluid 
is incompressible. Some improvement in performance can be obtained by using the 
three-seal spool valve shown in Fig. 5.12. 

5.1.1 Open loop hydraulic servo 
Fig. 5.13 shows an open loop hydraulic servo. The input controls the position of the 
spool valve which directs fluid under pressure through a port to one end of the 
working cylinder. The working piston is connected to the controlled element so that 
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Fig. 5.12. Three-seal spool valve. 

its position may be considered to be the output. 

Fig. 5.13. Open loop hydraulic servo. 

If the area of the piston is A and the port coefficient is b, the flow equation gives 

Q = ADx, = b ~ ,  

where Q is the rate of fluid flow. 
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Thus, X ,  = 2 5 x i ,  (”( 1 ) 
that is, the system integrates the input. 
If a step input is applied, 

at t < 0, x i  = x ,  = 0, 

and at t 2 0, 

Thus when t 2 0, 

xi  = X .  

x ,  =(;)(;)x = (;)x4 

so that the output increases with the time - as shown in Fig. 5.14. 

Fig. 5.14. Servo output. 

This type of response is usually undesirable in a control system, so the system is 
improved by applying feedback to close the control loop. 

5.1.2 Closed loop hydraulic servo 
Because of the limitations of the open loop servo performance, feedback of the 

output is usually added, as shown in Fig. 5.15. As the output reaches the desired 
value it acts to move the spool valve and thereby close the port. 

For the spool valve displacement y, from the figure, 

xi + x ,  xi - y 
l + m  I ’  

-=- 

so that 

y = xi  - (l /( l  + m))(x, + xi) .  

The flow equation gives by = A D x , .  Thus if y is eliminated, 

A D x ,  = - (bl/(l + m))x, + (bm/(l + m))x,. 
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Fig. 5.15. Closed loop hydraulic servo. 

that is, 

[l + ( ( I  + m)/bl)ADlx, = (m/Oxi, 

[l + TD]x, = (m/l)xi. 

or 

(5.2) 
where T =  ( ( I  + m)/bl)A and has dimensions of time. 

Tis  known as the time constant of the system. Equation (5.2) is the equation of 
motion, and it relates the output to the input. It is sometimes convenient to consider 
the error E between input and output where E = xi - x,. 

Thus from (5.2), (1 + TD)x, = (rn/N& + xo), or 

X ,  = (1 - (m/O + TD)-'(m/l)&. 

Hence a block diagram can be drawn to represent the system, as shown in Fig. 5.16. 

Fig. 5.16. Servo block diagram. 
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It should be noted that in the idealized hydraulic servo considered, many factors 
have been neglected such as friction, slackness in connections, non-linearity in the 
spool valve, pressure losses, compressibility of the fluid, and flexibility of the metal 
parts. In a real system some of these factors may have to be taken into account if 
they have a significant effect on the system response. 

Response to a step input 
A step input is when x i  is suddenly increased to a value, say X ,  and when t < 0 
xi = 0, and when t 2 0, xi = X .  

From equation (5.2), for the output x, the P.I. = (rn/l)X and C.F. = Be-'lT. Thus 

x, = (rn/l)X + Be-"T. 

Since x, = 0 when t = 0, B = - (m/l)X, hence 

x, = (m/ l ) x [1  - e-''T]. 

That is, x, increases exponentially with time to a value (rn/l)X; the system time 
constant Thas considerable effect on this response (see Fig. 5.17). 

Fig. 5.17. Step input response. 

After time 1; the time constant of the servo, 

x, = (y)X(l - e-') = - X(0.632), (3 
that is, the output reaches 63.2% of its final value at time T. It can also be shown 
that the output reaches 86.5% of its final after a time 21; and 95% after a time 3T. 
The factor (rn/l) amplifies or attenuates X to give the final x, value reached. This may 
be compared with the servo without feedback when x, = (b/A)Xr,  and the output 
steadily increases with time. 
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Response to a ramp input 
A ramp input is an input which increases uniformly with time. Thus xi = fit is a ramp 
input, where fi is a constant. 

From equation (5.2), for the output x,, 

P.I. = (m/l)fit - (rn/l)v and C.F. = Be-t1T. 

Thus 

x, = Be-"= + (m/l)fit - ( m / l ) v .  

If x, = 0 when t = 0, B = (rn/Z)v. Hence 

x, = (rn/l)v(e-''= - 1) + (m/l)fit. 

For the case when m = I ,  

x, = v(e-'IT - 1) + fit. 
Thus x, increases exponentially with time towards a value fit ( = xi). The error 

Even when f = x, this error is - v. This is known as a steady-state error because 
between the output and the input is v(e-'IT - 1). 

it persists after steady conditions have been attained (see Fig. 5.18). 

Fig. 5.1 8. Ramp input response. 

Response to a sinusoidal input 
For a sinusoidal input xi = Xi cos vt. 
For x, the C.F. is an exponential decay, and this can usually be neglected. A P.I. can 
be assumed, x, = X ,  cos (vt - 4). 

Substituting this solution into equation (5.2) gives 

X ,  cos (vt - 4)  - v7X,  sin (vt - 4)  = (rn/r)Xi cos vt. 

This equation can be solved by drawing a phasor diagram as shown in Fig. 5.19. 
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Fig. 5.19. Sinusoidal input response. 

Thus 

(m/ryX; = (1 + v2TZ)XZ 

X,/Xi = (m/l)/J(l + v2Tz) and 4 = tan-'vT. (5.3) 

or 

It is often desirable to show graphically how the steady-state response to a sinusoidal 
input varies with frequency. There are several methods of doing this; one is to draw 
a Bode diagram. The Bode diagram is a plot of gain (XJX,) against frequency. The 
magnitude of (XJX,) is plotted on a log scale, usually dB. 

Fig. 5.20. Bode diagram. 
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The gain (or attenuation) in dB = 20 log,, (Xo/Xi), so for equation (5.3) 

Gain (dB) = 20 log,,(rn/r) - lOlog,,[l + v2T2]. 
Further discussion of the Bode analysis technique is given in section 5.7.2. 
An alternative diagram is the harmonic response locus which can be drawn by 

Fig. 5.20 shows the diagram for the case rn = 1. 

plotting gain and phase as a polar diagram. Since 

xi = (I/rn)X,J(l + v2T2) = [(lx,,,h~)~ + (lX,~T/rn)~]”~. 
the locus is as shown in Fig. 5.21. 

Fig. 5.21. Harmonic response locus. 

5.2 

5.2.1. Derivative control 
An intelligent human controller would take account not only of the instantaneous 
value of the input but also its rate of change, or the rate of change of error. This 
would help to avoid overshooting and would improve the system response. The simple 
servo can be modified to act in a similar way, as shown in Fin. 5.22. 

From the control rod geometry, 
the valve displacement 

MODIFICATIONS TO THE SIMPLE HYDRAULIC SERVO 

y = (Xi - u)/2. 

The flow equation gives 

by = ADx, 

and force balance gives 

k(rx, - u) - CDU = 0. 

It is required to eliminate u and y and to give x, asAxi). From (5.6), 

u = (kr / (k  + cD))x,. 

Substitute in (5.4): 

Y = (xi/2) - (kr / (k  + cD)Xxo/2) 
and in (5.5) 

(5.4) 

(5 .5 )  

(5.6) 
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Fig. 5.22. Hydraulic servo with derivative control. 

A D x ,  = bxi /2  - (b/2)(kr/(k + cD))x,, 

that is 

(2AcD2 + 2kAD + bkr)xo = (bk + bcD)xi 

or 

( (2Ac/bkr)D2 + (2A/br)D + l ) x ,  = ( 1  + c/kD)xi /r .  (5.7) 

Comparing equation (5.7) with equation (5.2) which was derived for a similar system 
without a velocity element, it can be seen that both sides of the equation of motion 
have gone up by one order. Thus when xi  is changed the valve setting y is not reduced 
by the full value corresponding to the change in xo, because the faster x i  and x ,  
change, the less y is reduced. 

From equation (5.7), 

so for a step input, xi  = X ,  

The C.F. of x ,  is a damped oscillation or decay, so the response to the step input is 
as shown in Fig. 5.23. 
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Fig. 5.23. Step input response. 

For a ramp input, xi = fit, hence, 

x = l - - D - . . .  
0 ( Y ) (S+2)  
- -+- - -  Bt C B  2AB - 

r kr br r’ 
so that a steady-state error exists. The initial oscillation is given by the C.F. as above. 

The steady-state response to a sinusoidal input can be found by drawing a phasor 
diagram. If xi = Xi cos vt, x, = X o  cos (vi - d), then from Fig. 5.24. 

JCl + (Cv/k)2) x, = 
J ( ( r  - ( 2 A ~ / b k ) v ~ ) ~  + (2Avlb) l )  xi. 

Fig. 5.24. Phasor diagram. 
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At low frequencies v = 0, so X ,  -, Xi/r 
At high frequencies v N 00, so X ,  -, 0 
A detailed comparison of the simple system performance with that for a system 

with derivative control added depends on the system parameters; but, in general 
derivate control allows a faster transient response, with overshoot if too fast. 

and $I -, 0. 
and $I -, 4 2 .  

5.2.2 Integral control 
Both the simple system and that with derivative control will give steady-state errors 
when the input is a ramp, xi = Pt. Real systems, in which fewer assumptions are made 
than here, can give steady-state errors with other kinds of input. To eliminate these 
errors a correction can be added to the system which is proportional to the time 
integral of the error: such a system is shown in Fig. 5.25. It can be seen that compared 
to the system with derivation action, Fig. 5.22, k and c have been interchanged. 

Fig. 5.25. Hydraulic servo with integral control. 

Equations (5.4) and (5.5) apply, but force balance gives cD(rx, - u) - kv = 0 and 
thus 

2Ac bc bk 
D x =  

(l + 2Ak + bcr ) (2Ak + bcr + 2Ak + bcr 

Comparing equation (5.8) with equation (5.2) shows an extra term proportional to 
the integral of xi. The response to a step or sinusoidal input can be found from 
equation (5.8). 
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Example 43 
A servomechanism incorporating an hydraulic relay with displacement feedback 
through a dashpot and spring assembly is shown below. 

The velocity of the output ram (Dx,)  is equal to K times the movement of the pilot 
valve from its neutral position. Given that the inertia of all parts and the effect of 
friction (other than at the dashpot c) may be neglected, determine the equation of 
motion of the system. 

For the control rod, 

where u is the spring displacement and y is the movement of the spool valve. 

Thus 

y - v  x i - v  
L L + m '  

--- - 

and 

y =  - 
( L  ," m)xi - (e)'. 
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Force balance for the spring and dashpot gives 

ku = eD( ( L ) x 0  r + s  - u) ,  

so that ( k  + cD)u = - 

The flow equation gives Dxo = Ky. 
Substituting for y and u gives 

( r  1 s)c~xo.  

Dxo = K[(&)Xi - (&)(k)(&)xo]7 

[D2+D( i '+  c (L+ Kmr m)(r + s) )Ix0= (E)(F)xi. 
which can be rearranged to give the equation of motion as 

Example 44 
The figure opposite shows an hydraulic servo, in which it can be assumed that 

(a) all friction (except that intended to be present in the dashpot which has a viscous 
damping coefficient c) is negligible, 

(b) the oil is incompressible, 
(c) the inertia forces are negligible, and 
(d) the volume flow per unit time through either port in the valve is b times the 

Derive the transfer function relating the output displacement z to the input 
displacement x, this being measured from the position corresponding to zero oil flow. 
Find the value of z as a function of time following a sudden change in x of magnitude X .  

The flow equation gives by = ADZ, where y is the displacement of the spool valve. 
If the spring extension is p ,  

displacement of the valve spool from its neutral position. 

2(Y + P) = (x + P) 
so 

X - P  y = -  
2 

Thus 

b??) = ADZ 

For equilibrium, 

k p  = CD(W - p )  



Sec. 5.21 Modifications to the simple hydraulic servo 191 

where 

l + m  
I '  

n = -  

Since 

2A 
b 

p = x - -Dz, 

2Ac 2kA 
b b 

cnDz - cDx + -D2z = kx - -Dz, 

so 

1 .=[ k + cD 
cnD + (2Ak/b)D + (2Ac/b)D2 x' 

or the transfer function 

1 '=[ b(k + cD) 
x D(cnb + 2Ak + 2AcD) 

If x changes by a step X, 
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bk 
P.I. is ((cnb + 2Ak)D(1 + ...) >. = (cnb b:ZAk)Xty  

C.F. is P + Q exp [ - (“nbA‘41Ak)t]. 

so 

cnb + 2Ak bk 
= + Qexp[ - ( 2Ac ) I t  + (cnb + 2 A k b t ‘  

Now when t = 0, z = 0, 
Thus 

so P + Q = 0. And when t = 0, p = 0, so D z  = (b/2A)X. 

bk x bX cnb + 2Ak 
2A ( 2Ac ) + (cnb + 2Ak)  
- = D Z  = 0 + P 

so 

k - ‘)x cnb + 2Ak 
- ‘( 2Ac ) = b( cnb + 2Ak 2A 

or 

b2c2nX 
(cnb + 2Ak)’ 

P =  

Thus, 

b2c2nX cnb + 2Ak 
= (cnbb:XZAk)’ + (cnb + 2Ak)2 {l - - ( 2Ac 

Example 45 
In the hydraulic position control servo shown, the desired input position is converted 
to a voltage and compared with the output position voltage V,. Any error is applied 
to a power amplifier and position transducer to move the spool valve controlling the 
oil flow. The oil is delivered to the cylinder so that the piston acts on the load as 
required; a position transducer generates the signal V,  as shown. 

With the parameters given in the figure, find the relationship between the output 
position and the input position, 

x, 
Xi 

If an input of 5 cm/s is applied, find the error between the input and output after 
2 s; neglect transient effects. Also calculate the required coefficient of the output 
displacement transducer for this error to be a minimum, and the size of this minimum. 



Sec. 5.21 Modifications to the simple hydraulic servo 193 

1 
100 

Spool valve opening = (r/; - V,) 400 - mm. 

Oil flow 

= 20 DX, cm3 

= 5 ( ~  - ~ 3 4  cm3. 

But 

V,  = 5X, and y = Xi, 

so 

20 DX, = 5(Xi - 5X0)4 

or 

x, - 0.2 
- - 
Xi 1 + 0.20 

Input is 5 cm/s, so Xi = 5t cm. 

In the steady state 

xO = (1 :i2D)xi 

= 0.2[1 - 0.2D + . . . I  5t 

= t - 0.2. 
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Hence steady-state error = Xi - X, 

= 5t - ( t  - 0.2) 

= 4t  + 0.2. 

After 2s, ss error = + 8.2cm. 
For minimum error, let output position coefficient be a V/cm. 

Then 

v, = xx, 
and 

20 DX, = 5(Xi - xX,)4. 

Hence 

DX, = Xi - rX,. 

Thus 

and steady-state output X, = 

5 5  
t - t. - -  - 

z r  

When t = 2, the steady-state error is 

... 

x X L  

for minimum E,  deldr = 0. 

That is, 

10 10 
deldx= 0 = - - -, 

u2 x 3  

so r = 1. 
Therefore minimum steady-state error = 10 - 10 + 5 = + 5 cm. 

[Ch. 5 

5.3 THE ELECTRIC POSITION SERVOMECHANISM 
Electric position servos are widely used in control systems; an example of turntable 
position control has already been considered in Chapter 1. 

Open loop systems are available, but in practice the operator often has to act as 
the feedback to ensure correct positioning. Usually, therefore, only the closed loop 
servo is considered. 
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5.3.1 
The elements of the basic closed loop position servo are shown in block diagram 
form in Fig. 5.26. The position of the load is compared to the desired position, thereby 
creating an error signal. The amplifier and motor respond to the error signal and 
act on the load position. 

The basic closed loop servo 

Fig. 5.26. Closed loop position servo. 

The error signal 0 is the difference between the desired position (e,) and the actual 
position (e,) that is, t3 = 0, - 8,. The amplifier and motor are such that the torque 7 
produced by the motor is KO. For the load, 

T= (JD2 + cD)O,, 

since it is considered to comprise an inertia load with viscous damping. Thus 

K(ei - e,) = ( J D ~  + cD)e, 

or 

(JD' + CD + K)B, = KO,. 

This is the same equation of motion as found for forced damped vibration, and 
therefore the solution is the same for a given input. 

Response of servo to a step input 8, = X. 
For e,, C.F. = Ae-io' sin (o J(l  - C2)t + 4), 
where i = c/c, and o = J(K/J) rad/s, and 

P.I. = [l + (c/K)D + (J/K)D2]-'X 

= [l - (c/K)D + . . . I  X 

= x. 
Thus 

e, = Aecot sin (oJ(1 - i2)t + 4)  + X. (5.9) 
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The response is shown in Fig. 5.27. 

Fig. 5.27. Step input response. 

Clearly the fastest response is when the damping is low. Unfortunately this is 
accompanied by a large first overshoot and a poor transient response, that is, the 
oscillations take a long time to die away. Increasing the damping slows the response 
but reduces the overshoot and improves the transient. Critical damping gives the 
quickest response without overshoot. 

To find the overshoot, d8Jdt is found and made zero and hence the times to 
overshoot are obtained. Substituting these times into (5.9) gives 8,. See Example 46. 
There is no steady state error. 

Response of servo to a ramp input 8, = Bt 
For e,, C.F. as above (same system), but 

P.I. = (1 + (c/K)D + (J/K)D2)-'Bt = Bt - (c/K)B 

= e, - ( c / ~ ) p .  
Hence there is a steady-state error (c/K)B. 
Thus high damping to achieve a good transient response also results in a large 

steady-state error to a ramp input. 

Response of servo to an harmonic input Bi = A sin vt  
The analysis is exactly as for the forced damped vibration system, so 

K A  
sin (vt  - Cp), where Cp = tan- ' ~ 

8, = J ( ( K  - J v ~ ) ~  + c2v2) (K f;-v2)' 
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Hence there are gain and phase errors which are functions of the system parameters 
and the frequency of excitation. 

Because of the shortcomings of the basic system, it is often modified to provide an 
improved response. 

Example 46 
In the closed loop system shown in Fig. 5.26 the input is given a step increase Oi. 
Find the output, e,, as a function of time, assuming that both 0, and dO,/dt are zero 
at t = 0. Hence find the time to the first overshoot and the corresponding magnitude 
of e,. 

From equation (5.9), 

8, = e,+ e-@"[A sin wJ(1 - i2)t  + B cos wJ(1 - i2)t]. 
Now, when 8, = 0, t = 0, so Oi = - B, and when dd,/dt = 0, t = 0, so 

and 

0 = - [COB + wJ(1 - i 2 ) A  

4 A = -  
J( i  - i2)ei- 

Hence 

that is, 

where 

4 

Now at overshoot, time is given by d0Jdr = 0. 

That is, 
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or wJ(1 - i2)r = 0, n, 27c... 

so that the time to the first overshoot is 

x 
wJ(1 - 1‘)’ 

This is one half of the period of the damped oscillation. 
At this time, 

Thus 

Now if in a given servo, w = 5 rad/s, i = 0.1 and Bi = 10 deg. 

Time to first overshoot is 

n 
= 0.63 s 

SJ(1 - 0.1’) 

and 

Increasing i reduces 8, but increases the time to the first overshoot. 

Example 47 
The angular position 0, of a turntable is controlled by a closed loop servomechanism 
which is critically damped by viscous friction. The moment of inertia of the turntable 
is 400 kg m’, and the motor torque is 3.6 kNm/rad of misalignment between 8, and 
the desired position Oi. Given that bi = 10 rev/min, find the steady-state position error. 

The equation of motion is 

(JD’ + cD + K)O, = KOi 

so that 



Sec. 5.31 The electric position servomechanism 199 

e o =  I + - D + - D ~  ei. 

If e, = pt, e, = pt - ( c / ~ ) p ,  

[ :  K J I-‘ 
C 

so the steady-state error is - p. 

Now (c,’K)p = 2J(J/K)P, since damping is critical and c, = 2,/(JK). 

Hence 

K 

400 2x10 180 
OSS = 2 / ( E ) ( T ) ( ; ; )  = 40”. 

Response of servo to sudden loads 
Servomechanisms are sometimes subjected to sudden loads due to shocks and 
impulses, such as those arising from gust loads and impacts. Fig. 5.28 shows a servo 
with a sudden load TL applied. 

Fig. 5.28. Servo with external load, TL. 

In this system, 

so that 
K(8 ,  - 0,) + TL = (JD’ + cD)O0, 

(JD’ + CD + K)0 ,  = q. + KO,. 

Fig. 5.29. Servo response to sudden load. 
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If the input Bi is zero, the response to the sudden load TL gives a steady-state error TJK. 
The complementary function gives the transient response so that the output position 

is as shown in Fig. 5.29. 

Example 48 
In a simple servo mechanism, J = 0.1 kg mz, K = 20 N m/rad error, and c = +cc. 
Given that a step input is applied, 
(i) find the frequency of the transient oscillation of the output, and the time to rise 

(ii) find the position lag if an output of 10 rev/min is applied; and 
(iii) calculate the steady state error when a load of 1 Nm is applied. 

to the first maximum; 

and 

[ = 0.5 

so 

o,= oJ(1 - [') = 14.1J[1 - (OS)'] = 12.3 rad/s, 

and frequency of oscillation,f= 12.3/2x = 1.95 Hz. 

The time to the first maximum = (+)(1/1) = 0.256 s. 

C 
Steady-state error = - B 

K 
(ii) 

2x10 
60 x 14.1 

- - = 0.074 rad = 4.2" 

F 1  
K 20 (iii) Steady-state error = - = - = 0.05 rad = 2.9" 

Example 49 
The block diagram of a satellite tracking system is shown 
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The transfer functions of the amplifier plus motor, tracking device and sensor are 
as shown, The system is subjected to the desired position input, and also an external 
torque TL which is due to wind loads acting on the structure. 

(i) When TL = 0, find the closed loop transfer function, 00/8i, 
(ii) Find K ,  and K ,  if 

(a) there is to be no steady-state error with a step position input, and 
(b) when a ramp position input of 2 rad/s is applied the steady-state error is to 

(iii) A sudden steady wind can be approximated to a suddenly applied torque 
TL = 2 N m. Find the magnitude of the sustained displacement. 

be 0.056 rad. 

(i) When TL = 0, the equation of motion is 

(ei - Kzeo)( 1 + d 2 D ) (  DZ + 8D + 100 = eo, 
loo 1 

so 

1. ( ( D 2  + 8D + 100)(1 + 0.2D) (ei - K,8,) = 8, 
100Kl 

and 

1. 
1 
1 

(Dz + 8D + 100)(1 + 0.2D) + 100K,Kz ( 1 OOK , e, = e, 

Hence CLTF (closed loop transfer function), 

".=( 100Kl 
Oi (D2 + 8D + 100x1 + 0.2D) + 100KIK, 

lWK, 
= (100 + 100K,Kz + 28D + 2.6D2 + 0.2D3 ' 
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(ii) With a step input ei = X ,  

(1 - . . . D . . . ) X  100K, e, = 
100 + 100K,K, 

so that the steady-state error 8, is given by 

100K, eS = x( 
100 + 100K1K2 

For to be zero, K ,  = 1 + K , K , .  

With a ramp input Oi = pt, 

eo = K1 (1-  28D . . . D2. .)8t 
1 + K,K, 100 + 100K,K, 

Kl  28 - - 
1 + K , K ,  

NOW K ,  = 1 + K,K,, SO 

28 
100K, e, = pt - - 8. 

When /? = 2 rad/s, require 8, to be 0.056 rad. 

That is 

= 0.056, 28 x 2 
100 x K ,  

so that 

K ,  = 10 and hence K ,  = 0.9 

(iii) With a sudden load TL applied the equation of motion is 

[ - Kzeo( 1 + d 2 D )  + TL][D2 + 8D + 100 = e,. 
loo 1 

That is 

K 1 K 2  ) = TL. 
1 + 0.2D + 

NOW K,K, = 9, SO 

+ E+ loo 

= TL, 
(D2 + 8D + lOO)(l + 0.2D) + 900 

lOO(1 + 0.2D) 

or 
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lOO(1 + 0.2D) 

100 28 
= +l + 0.2DH1 - - 

lo00 lo00 

" = (lo00 + 28D + 2.6D2 + 0.2D3))TL 

D ...) TL. 

When TL = 2, the sustained displacement is (100/1OOO) x 2 = 0.2 rad. 

5.3.2 Servo with negative output velocity feedback 
If viscous damping is not great enough, the damping effect can be simulated by 
providing a signal proportional to De,. This is shown in Fig. 5.30. 

Fig. 5.30. Servo with output velocity feedback. 

For this system 

K(8, - 8, - C,D8,) = (JD2 + cD)B,, 

that is 

(JD' + (C + KC,)D + K)8, = KO,. 

Thus the value of C ,  can control the total damping, and the step and transient 
responses can be improved at the expense of the steady-state error with a ramp input. 

However, if C,DB, is added to 8 instead of subtracted, the opposite is true, but 
there is a danger of negative damping occurring with the associated unstable response 

Example 50 
A certain servomechanism is required to control the angular position 8, of a rotatable 
load of moment of inertia J .  The rotation of the load is subject to a viscous friction 
torque c per unit angular velocity. The mechanism has velocity feed back such that 
the motor torque is 

K E - - , -  ( :) 
where E is the error between the desired angular position input 8, and the output 
position e,, and K and C, are constants. 
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(i) Draw a block diagram of the system and establish the equation of motion. 
(ii) Find the steady-state positional error when the input signal has constant velocity 

given by 

do, 
dt 
- = p. 

(iii) When a step input is applied the response overshoot must not exceed 10%. Find 
the minimum value of the damping ratio required, and express this ratio in terms 
of the given parameters. 

(i) The block diagram is as below: 

Thus 

[Oi - 8, - ClD8,]K = [JD’ + cD.]~,, 

and the equation of motion is 

JD’8, + (C + KCl)D8, + KO, = KOi. 

(ii) Input Oi = pt. 

e o = [ , + (  c + K K C ,  ) o + $ ] - l p t  

- - fit - (c + KC1)p. 
K 

steady-state positional error = r +KKc‘)B. 
‘c’ c + K C ,  

(iii) Damping ratio [ = - = 

At first overshoot, 

c, 2 J W J ) ’  

71 
t =  and 0, = l . l& 

oJ(1 - i2) 
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Thus 

0.1 = exp[- [n/J( l  - i2)l, 
so that 

b 2.3 = 
JCl - i2) 

Hence 

c + K C ,  
2J(KJ) ’ 

i = 0.59 = 

Example 51 
A linear remote position control system with negative output feedback consists of a 
potentiometer giving 8 V/rad error to an amplifier, and a motor which applies a 
torque of 3 N m/V to the load. The load has an inertia of 6 kg m2 and viscous friction 
of 12 N m s/rad. 

(i) Draw a block diagram for the system and derive its equation of motion. 
(ii) Calculate the maximum overshoot in the output response to a step input of 

2 rad, and 
(iii) Given that a tachogenerator is employed to provide negative output velocity 

feedback, derive the new equation of motion and calculate the velocity feedback 
coefficient needed to give critical damping. 

(i) The block diagram for the system is 

Now (ei - B,)KG = (JD2 + cD)B,, 

So the equation of motion is 

(JD’ + CD + KG)B, = KGO,. 

where 
K = 8 V/rad error, 
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G = 3 Nm/V, 

J = 6 kg m2, and 

c = 12 N m +ad, 

(ii) With a step input, overshoot is Bie -;"v(' - ;'), 

where 

1 
2J(KGJ) - 2J(8 x 3 x 6) - 2' 

e-1'2d,'[1 -(l'2)*1 = e - 1 . 8 1 3  = 0.163 rad 

and overshoot = 2 x 0.163 rad = 0.326 rad, for a 2 rad input. 

- _  12 - C ( =  

Thus 

(iii) With output velocity feedback, the block diagram is 

So that 

[ei - 8, - c,DB,]KG = [JD2 + cD]~ ,  

and the equation of motion is 

[JD' + (c  + clKG)D + KG]8, = KGOi. 

For critical damping 

c + c1KG = ZJ(KGJ), 

that is 

12 + ( c ,  x 8 x 3) = 2J(8 x 3 x 6). 

Hence 

c1 = 0.5 (N m s/rad)/(Nm/rad), 

or 

C ,  = 0.5 S .  
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5.3.3 Servo with derivative of error control 
An alternative modification to the simple feedback servo is to add derivative of error 
control in which the signal is fed forward. 

This system is shown in Fig. 5.31. 

Fig. 5.31. Servo with derivative of error control. 

For this system 

K(Oi - 8, + C2D(Bi - e,)) = (JD2 + cD)8,, 

that is 

(JD’ + ( e  + KC,)D + K)8,  = K(l  + C2D)Bi. 

Because the damping term is increased the transient response dies away more quickly. 
For the response to a ramp input Bi = pt, 

K(l  + C2D)gr 
P.I. = 

K (  1 + (c /K + C,)D + . . . ) 
= (1 - ( c / K  + C2)D + ...)( pt + C&, 

= pr - ( c / K ) b ;  

that is, ( c /K)B  is the steady-state error due to the damping; this has not been affected 
by derivative control. Thus derivative control is a method for temporarily increasing 
the total damping term and hence the rate of convergence of the transient response, 
without increasing the physical damping or the steady-state error. 

5.3.4 Servo with integral of error control 
A further alternative is to feed forward an integral of the error signal as shown in 
Fig. 5.32. 

For this system 

K(Bi - 8, + (K,/D(Oi- 8,)) = (JD’ + cD)8, 

that is, 

(JD2 + CD + K + KK,/D)B,  = K(l  + K,/D)Bi 
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Fig. 5.32. Servo with integral of error control. 

or 

(JD3 + cD2 + KD + KK,)8,  = K(D + K1)8,. 

For the response to a ramp input Oi = p t ,  

P.I. = K(D + K1) 
K ( K ,  + D + ...) pt = (1 + D/K, + ...)-’( K , p t  + p ) / K ,  = pt, 

that is, there is no steady-state error. Although this is a very desirable quality, it is 
possible for this system to become unstable. This can be demonstrated by considering 
the response to an harmonic input. 

The left-hand-side of the equation of motion is third order, but the response to a 
sinusoidal input can be found by the phasor technique. 

If Oi = A cos vt and 8, = B cos (v t  - 4)  in the steady state, then the equation of 
motion can be represented by Fig. 5.33. 

Fig. 5.33. Phasor diagram. 

A J ( ( W 2  + (KKJ2) cos(vt - 4). Thus 8, = 
J ( ( K v  - J v ~ ) ~  + ( K K ,  - cv’)’) 

If the denominator is zero, B is infinite and the system is unstable. For the 
denominator to be zero, 
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Kv = Jv3 and K K  1 = CY'. 

Thus 

c = J K ,  and v 2  = K / J .  

This is a critical relationship for a stable response. 

Table 5.1 overleaf. 

Example 52 
In the position control servo shown in block diagram form below, the amplifier 
voltage gain is 100 and the error detector produces 2 V per degree of error. 

The performance of the main forms of the electric position servo are compared in 

The motor produces a torque of 0.1 N m per 100 V applied. The inertia of the 
load is 0.1 kg m2, and the viscous damping is 10 N m s/rad. Find the damping ratio 
of the system. 

Given that the input speed is 5 rad/s find the steady state error. 

Motor torque = 0.1/100 x 2 x 57.3 x 100 Nm/rad error 

= 11.46 Nm/rad error. 

Torque applied to load = 250 x 11.46 = 2865 Nm/rad error. 

For damping ratio, 

i = c/c, = 10/2J(2865 x 0.1) = 0.295. 

For Bi = 5 rad/s, 

steady-state error = 10/2865 x 5 x 57.3" = 1". 

Example 53 
An engine drives a load of constant inertia which is subjected to external moments 
which vary unpredictably. To limit the speed changes resulting from load changes, 
a governor is fitted. This measures the engine speed and changes the moment exerted 
by the engine to try to keep the speed constant. The changes are related by the equation 

(1 + TD)m = - ks, 

where T is a time constant, 
rn is the change in engine moment from an initial steady value, 
k is a constant, and 
s is the change in speed from an initial steady value. 
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Given that the load moment increases by a step function of magnitude m ,  and then 
remains constant, derive an expression for the consequent speed change as a function 
of time. If the inertia of the engine and load is 4.0 kg m2, T is 0.35 s, and k is such 
that the damping of the closed loop is 0.6 of critical, find the final drop in speed 
following an increase of load, m,, of 11 N m. 

Since s is the change in speed, 

m - m, = JDs. 

Now 

(1 + T D ) m  = - ks. 

so 

- ks 
1 + T D  

m = - -  - JDs + mL. 

For a step change in load mL, D m ,  = 0, hence 

J T D ' s  + J D s  + ks = - m,. 

Solution comprises P.I. - mJk and C.F., so 

s = - 2 + e-:"t(A sin wt + B cos wt). 
m 
k 

Substituting initial conditions s = 0 and S = 0 at t = 0, gives 

and B = %  
k k '  

A = >  i m  

thus 

m 
k 

s = 2 [- 1 + e-:w* (i sin wt + cos wt)].  

mL The steady-state error is - -. 
k 

From the equation of motion, c, = J(kJT),  so 

c = l . Z J ( k J T )  = J ,  
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hence 

= 7.936 kg m2/s, 
4 - J k = -  

1.44T - 1.44 x 0.35 

11 
7.936 

Thus steady-state error = - - = - 1.386 rad/s. 

Example 54 
A linear servomechanism consists of a proportional controller which supplies a torque 
equal to K times the error between the input and output positions, and drives a 
rotational load of mass moment of inertia J and viscous damping coefficient (less 
than critical) c. 

Draw a block diagram for the mechanism and write down its equation of motion. 
During tests on a mechanism for which J = 5 kg m2 it was found that 

(i) an external torque of 100 Nm applied to the output shaft gave a steady-state error 
of 0.2 rad, and 

(ii) a constant velocity input of 3 rad/s produced a steady state error of 0.3 rad. 
Given that a step displacement of 10" is applied to the mechanism when it is at 
rest, find the magnitude of the first overshoot. 

The equation of motion is 

JD'O, + cDO, + KO, = KB,. 

100 
0.2 (i) K = - = 500 Nm/rad. 

C 
(ii) 0.3 = - x 3, so c = 50 N m s/rad. 500 

Since c, = 2J(kJ) = 2J(500 x 5) = 100 N m s/rad, 

C i = -=0.5. 
cc 
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At first overshoot, from Example 46, 

8, = X [ 1 + exp (- $: PJ]. 

Now, 

0 . 5 ~  
J ( 1  - 12) 0.866 

---- - 1.82 and e-1.82 - - 0.162. h - 
- - 

Thus 8, = 10[1.162] = 11.62”, so the magnitude of the first overshoot is 1.6”. 

Example 55 
The angular position 8, of a turntable is controlled by a servomechanism which has 
positive acceleration feedback. The moment of inertia of the turntable about its axis 
of rotation is 5 kg m2 and the effective viscous damping coefficient is 10 N m s/rad. 

The motor torque is 2 0 ( ~  + kg,) N m, where E is the error, in radians, between the 
position of the input, Oi, and the turntable position, e,, and k e’, is the feedback signal 
proportional to the acceleration of the turntable. 

(i) Draw a block diagram for the servomechanism and derive its equation of motion. 
(ii) If a step input is applied, determine the steady-state error and the value of k 

required for the maximum output overshoot to be 5% of the steady state value. 
(iii) Determine the steady-state position error if an external torque of 5 N m is 

suddenly applied to the turntable. 

(i) The equation of motion is given by 

Kl(di - 8, + kD’8,) = (JD’ + cD)8,. 

Rearranging gives 

(JDZ + CD - ~ K , D Z  + K,)e,  = K,ei 

[ ( J  - ~ K , ) D ’  + CD + KJB, = K,ei.  

That is, 
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(ii) A step input is applied, so let ei = X 
Then P.I. is 

e, = [(-)w J - k K ,  + - C D + 1]-lx 

1 
Kl  Kl 

C 
= [ I  -% D +...  X = X ,  

That is, since 0, = Oi, steady-state error is zero 
For a step input, the complete solution is the C.F. and the P.I. Thus 

At the first overshoot, De, = 0, so 

i sin (@,/(I - i z ) t  + 4) = J(1 - 1’) cos (oJ(1 - i2)t + 4) 
or 

tan (wJ(1 - c2)t + 4) = tan 4, 
so that 

oJ( 1 - i 2 ) t  = 0 ~ ; .  . 
and 

... Tc 
t = 0, 

oJ(1 - 12)’  . 
Now at the first overshoot 

Tc r =  and 8, = 1.050 
oJ(1 - i2) 

so 
0.05 = e- ix/,/(1 - i’) 

Thus 

3 = inIJ(1 - 12), 
and hence i = 0.69. 

From the equation of motion 

4 = - =  C 

c, ZJCKAJ - kK,)I’ 
where c = 10 N m s/rad, 
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K ,  = 20 N m/rad, 

and J = 5 kg m2. 

The electric position servomechanism 21 5 

Thus 

10 
2J[20(5 - 20K)] 

0.69 = 

and 

k = 0.1 19 s2/rad. 

(iii) With a steady external torque TL applied the equation of motion is 

Kl(Bi - 8, + kD20,) + TL = (JD2 + cD)8,. 

When Oi = 0, 

[ ( J  - kKl)D2 + CD + Kl]8, = T,, 

TL 
K l '  

- _  - so 'Osteady state 

With TL = 5 N m and K ,  = 20 N m/rad, 

5 
= - = 0.25 rad. 

',steady state 20 

Example 56 
A linear servomechanism consists of a proportional controller which supplies a torque 
equal to K ,  times the error between the input and output positions of the rotational 
load. The load has a mass moment of inertia J and viscous damping coefficient (less 
than critical) c. For the given mechanism J = 0.5 kg m2, c = 1 N m s/rad and 
K ,  = 32 N m/rad error. 

(i) Draw a block diagram for the mechanism and write down its equation of motion. 
(ii) Derive the closed loop transfer function and calculate the steady-state error if 

the input is increased at a constant rate of 2 rad/s. 
(iii) Given that a derivative of error controller, with a gain constant K ,  is added in 

parallel with K, ,  sketch the new block diagram, calculate the steady-state error 
with a ramp input of 2 rad/s, explain the effect on the transient response, and 
define the value of K ,  which will give critical damping. 

(iv) When an integral of error controller, with a gain constant K i  is added in parallel 
with K ,  and K,, show that the steady-state error is zero with a ramp input, and 
find the range of values Ki  can have if the mechanism is to have a stable response. 
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(i) 

The equation of motion is given by 

Kp(Bi - e,) = (JD’ + cD)B,, 

that is 

(JD’ + cD + Kp)8, = KpB, 

(ii) CLTF = -= 00 KP 
8, JD2 + cD + K ,  

The system is given a ramp input of Oi = Bt where B = 2 rad/s, so 

e,= I + - D  +- DZ e,, [ ip Kp J I - l  

1 =[I  -, C D + . . .  Pt 

C 
= Pt - -p. 

KP 

C 
Hence steady-state error is a lag - 8, that is a lag of (A) x 2 = & rad. 

K ,  

(iii) 

Equation of motion is given by 

(e, - e,)(Kp + K,D) = (JD’ + cD)O0, 
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that is 

(JD' + (C + K,)D + Kp)8, = (kp + KDD)6,, 

With a ramp input 6,= f i r ,  

6,= [ 1 +  (c~:D)D+$D2]-1[1 ~ 

+?]fir 

c + K D  D +  ... P t + - f l  
=[l-(,) I[ :: 1 
=pt +--p- K D  ( y ) P  ~ 

KP 

KP 

C =-pr - --p. 

C 
Hence steady-state error is unchanged at - /? = & rad, but transient dies 

away more quickly because damping term increased from c to (c + K D ) .  
K P  

For critical damping, require 

C + K D  = 2J(K,J), 

so 

1 + K, = 2J(32 x i) = 8 

or 

K ,  = 7 N m s/rad. 

(19 
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Equation of motion is given by 

that is, 

[JD3 + (C + KD)D2 + KpD + KJeo = [KDD2 + KpD + Kiloi, 

With a ramp input 19~ = pt, 

KP KP 
Ki Ki 

= -p -t pt - -pt = pt. 

Since 8, = Bi, there is no steady-state error. 
For stable response limit substitute D = j o  in the frequency equation 

JD3  + (c + KD)D2 + KpD + K ,  = 0. 

Hence 

- Jjw3 - (c + KD)w2 + Kpjw + Ki  = 0. 

Equating the real parts gives 

and equating the imaginary parts gives 

KP - Jo3 + Kpw = 0 i.e. w = 0 or w2 = -. 
J 

Thus either Ki  = 0 (w = 0) 

or 

Hence the stability limits are given by Ki = 0 and 

K i  = (%)32 = 512, 

so that for a stable response 512 > K i  > 0. 
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Example 57 
A tension control device such as those used in the paper industry is shown below. 
It is desired to maintain a constant tension in the paper as it is wound up. To increase 
the tension F in the paper, the tension control level is lowered: this increases the 
torque T, applied by the motor to the wind-up roll. The change in torque provided 
by the motor is t ,  where 

t ,  = ~ 

1 + TD 
KmZ 

where K ,  is the motor constant, Z is the movement of the tension control lever at 
its mid-point, and T is a time constant. 

If the tension control lever is given a small downward step movement X at its free 
end, derive an expression for the resulting change in paper tension and sketch this 
tension as a function of time. 

Obtain the steady-state value of this change and evaluate this quantity if 
k = 20 kN/m, R = 0.4m, K ,  = 10 kN and X = 10 mm. 

For the tension control lever, 
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x + y = 2(z + y),  

X - Y  

2 .  
s o z = -  

For the wind-up roll, T, = FR, and iff is the change in paper tension, t ,  = Rfi 
For the tension control spring ky = 2f, so y = 2Jk. 
The change in motor torque t ,  following a movement x is 

so 

f R =  ~ - 
( 1  ::D)(. 2 ’)’ 

= (”)(. -9 x j. 1 
1 + r D  

That is, 

= X  

or 

f =  [ 2kR(1 + rD) + 2 K ,  

For a step change x = X ,  

C.F. is [2kR(1 + rD) + 2K, l f=  0 

or 

f [ l + ( K , + k R  kR )rD] = 0. 

Thus 

P.I. is 

kK,I2(K, + kR) 
[ ( l  + 2kRrD/2(Km +kR) ]x ’  

= [ I  - ...D]( k K r n  ). 
2(kR + K,) 
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= (2(kR kKm + K,)) x. 
The complete solution is therefore 

f=Aexp[-t,/( K ,  kRt + kR )I+( 2(kR k K m  + K,) >.. 

Now, if t = 0, f = 0, 

f = (2(kR k K m  + K, ) )  x [ 1-exp  [ - ' / (kR:"' . . ) l l .  

(m::J x 

Thus steady state f is 
L 

[ kKm ].. 
2(kR + K,) 

Substituting the given data gives 

0.0 1 N, I 20 x 103 x io x 103 
f , ~  = [ 2[(20 x 103 x 0.4) + ( IO x 103)l 

= 55.6 N. 

5.4 THE LAPLACE TRANSFORMATION 

In the solution of differential equations of motion describing the dynamic behaviour 
of mechanical systems, d/dt is commonly represented by the D operator, as above. 
However, in general control system analysis the Laplace transformation has tended 
to replace other forms of differential equation representation. This is because with 
time-dependent functions, it is often very convenient to represent transfer functions 
in terms of the Laplace transform, which is a linear transformation from a 
time-dependent function to a frequency-dependent function. The basic harmonic 
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nature of the response of dynamic systems means that a frequency representation is 
often much simpler than the equivalent time-dependent form. The Laplace transform 
is defined as 

YLf(t)] = F(s)  = Lt f(t)e-" dt, 
1-x s.' 

where F(s)  is the Laplace transform, 
A t )  is the time function, and 
s is a complex variable. 

The use of different notations does not usually cause any confusion, because the 
initial conditions are assumed to be zero, so that the differential equation is 
transformed into the Laplace domain by replacing dldt by s, d2/dt2 by s2, and so 
on. s is the Laplace operator a + jb, where s is a complex variable, a and b are real 
variables, and j = ,/ - 1. 

Some common Laplace transforms used in control system analysis are given in the 
table below. 

For a full description of the Laplace transformation, see for example, Engineering 
Science Data Unit Item No. 69025, Solution of ordinary linear diferential equations 
by the Laplace transform method, or any advanced engineering mathematics text. 

Time function f ( r )  Laplace transform F(s)  

Unit impulse 

Delayed impulse 

Unit step 

Delayed step 

Rectangular pulse 

Unit ramp 

Polynomial 

Exponential 

Sine wave 

h(t) 

h(t - T )  

u(t) or 1 

~ ( t  - T )  

u(t) - u(r - 

t 

t" 

e-" 

sin wt 

1 
e - Ts 

1 - 
S 

- ,-Ts 

S 

1 
- (1 - e-Ts) 

1 
S2 

n! 

S 

- 

- 
sn + 1 

1 
S + %  

w 

s2 + w2 
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Sine wave 

Cosine wave 

Damped sine wave 

Damped cosine wave 

s sin 4 + w COS 4 
s2 + w2 

sin (or + 4) 

cos wt 

e-" sin ut 

e-"' cos wt 

S 

s2 + w 2  

(s + r)2 + w2 

(s + r)2 + w2 

W 

S + X  

Analysing the hydraulic closed loop servo by the Laplace transformation method 
gives the equation of motion, from equation (5.2), as 

m 
1 

( 1  + Ts)x, = - xi. 

X 
x. = -, 

I s  
For a step input X, 

so 

so that 

e- '  7, 
as before. 

The j n u l  d u e  theorem (FVT), which states that 

Lt f ( r )  = Lt [S x F(s)] 
1 - 1  s-0  

can be used to determine the steady-state error, so that for a ramp input fit, if m/l = 1, 

P and x, = P .y. = - 
I s2 s2(1 + E)' 

so that the error, 

- ~ T s  
.Yo - xi = 

s2(i + Tsj 

The steady-state error = (x, - x i ) t - r  
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= Lt s ( - B E  )=  Lt (*T). 
s-o s2(l + Ts) s-o 1 + E 

= -p? ;  
as before, see section 5.3.3. 

from section 5.5.2, 
In the case of the electric closed loop position servo, the equation of motion is, 

(Js’ + cs + K)B, = KO,, 

so that if a ramp input Bt is applied, 

) c 
-s2 + --s + 1 e, = e,. ( J  K K  

B 
’ s2 

8. =-  and 

Hence the error, 

J C _ -  s 2 - -  s 

e, - ei = ei (;;+;:+) 
and the FV Theorem gives, for e,, 

c 
s 2 - -  s 

- s 2 + - s + l  

J -- 
e,=(e, - e,),,, = Lt si ( 1: K ~ K ) 

s - r o  s2 

C - - -KB’ 

as before. 

5.5 SYSTEM TRANSFER FUNCTIONS 

The block diagram of any linear closed loop system incorporating negative feedback 
and having one input and one output variable can be reduced to the form shown in 
Fig. 5.34. 

Fig. 5.34. Closed loop system block diagram. 
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The input and output variables have Laplace transforms 6,(s) and 6,(s) respectively, 
and the forward path of the system has a transfer function (TF) Q0(s). This is the 
open loop transfer function (OLTF) since it describes the behaviour of the system 
with the feedback loop open. 

When the loop is closed, the input to @&) is the error signal e,(s) - O0(s) and thus 

eo( s )  = @o(s)(ei(s) - e o ( s ) )  

that is 

eo(s)/ei(s) = @o(s)/('  + @o(s) ) .  

This equation determines the overall behaviour of the system when the loop is 
closed and @,(s)/( 1 + @,(s)) is accordingly known as the closed loop transfer function 
(CLTF) denoted by QC(s). 

Example 58 
Find the CLTF for the system shown below in block form. 

The signal leaving the first junction is 

ei - Q6eo. 

[ei - @6e0i(@)l + m) - ~ 5 e 0 / @ 4 .  

The signal leaving the second junction is 

Thus [(e, - @600)(@I + a2) - @)560/@4]@3@4 = 6,. 

Hence the CLTF, 

5 -  - (@I + @2)@3@4 

81 1 + @3@5 + @3@4@6(@1 + @2). 
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For an electric position servo used for controlling the angular position of a turntable 
the block diagram model is as shown in Fig. 5.35. 

Fig. 5.35. Electric position servo. 

This block diagram can be simplified as shown in Fig. 5.36. 

Fig. 5.36. Block diagram. 

From Fig. 5.36, 

6, = (K,O, - K36,)(GK,/(JS2 + C S ) ) .  (5.10) 

If the OLTF and CLTF are to be determined the block diagram is required in the 
form of Fig. 5.34. The OLTF, 

@,(S) = OJ(4 - 6,) 

aqS) = e,/e,. 
and CLTF, 

From equation (5.10), 

((Js' + cs)/(GK,) + K3)6, = K,Oi. 

Hence 

G K I K ,  
@'(') = Js2 + cs + GK,K3'  
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and 

GKlK2  
@’(’) = Js2 + cs + GK,K,  - GK,K,’ 

It can be seen from the expression for QC(s) that the frequency equation is 

Js2 + cs + G K 2 K 3  = 0 

or 

S’ + cs/J + GK2K,/J = 0, 

since the values of s which satisfy this equation make cDc(s) = E. These values can 
be denoted by p 1  and p 2  where 

(s - PlXS - P 2 )  = 0, 

p1 = a + j b  and p 2  = a - jb. 

Now 

s = - c/2J k j J (GK2K3/J  - (c/2J)’) 

so 

a = -c/2J and b= J ( G K 2 K 3 / J  - (c/2J)’). 

These roots can be plotted on the s-plane as shown in Fig. 5.37, as G increases from 
zero. 

For an oscillatory response b > 0, that is, 

c2 
45 

GK2K3 > -. 

Fig. 5.37. s-plane. 
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The frequency equation of a system governs its response to a stimulus because its 
roots are the same as the roots of the complementary function. If the roots lie on the 
left-hand side of the s-plane the response dies away with time and the system is stable. 
If the roots lie on the right-hand side of the s-plane the response grows with time 
and the system is unstable. 

If general any transfer function @(s) has the form 

K(s“ + zlsm- + z 2 P  + . . . 2,) 
(s” + / j1sn-1  + / j 2 s n - 2  + .../j,) @(s) = and n 2 m 

with a set of roots sl, s,, s3 ,..., s,. Thus 

where the values of s = plrp2,. . . ,p,, are those which make @(s) = ,cc and are called 
poles, and the values of s = zl,z2,. . . ,z, are those which make @(s) = 0 and are called 
zeros. Hence the poles of O,(s) are the natural frequencies of the system. 

5.6 ROOT LOCUS 
In most systems instability is intolerable. In dynamic systems a degree of damping 
is usually desired for safety, while in control systems a considerable margin of stability 
is essential, preferably with little or no oscillation. However, excessive damping is 
wasteful of energy. 

Consider the diagram of the s-plane Figs 3.11 and 5.37; the right-hand side is a 
completely unstable region, the imaginary axis is neutral equilibrium, and the left-hand 
side is stable. In both dynamic and control systems, therefore, it is important to know 
where the roots of the frequency, or characteristic equation lie on this plane, and if 
necessary how to adjust the system to move them. 

The idea of the root locus technique is to use a diagram such as the s-plane 
to see how the roots of the frequency equation vary as various system parameters 
are changed. 

Consider the problem of wheel shimmy. This is an unstable oscillation of a castored 
wheel about the axis of the support pin. A plan view of a wheel which has its axle 
supported in a carrier is shown opposite in Fig. 5.38; the carrier is pinned so that it 
can rotate in a direction normal to the wheel axis, and lateral motion is resisted by 
a spring of stiffness k .  The wheel moves with a speed Vas shown. 

If the mass of the wheel and carrier is m, and the moment of inertia of the wheel 
and carrier about an axis through G is I , ,  then for small displacements x and 4 the 
equation of motions are: 

(ZF,) 
and 

( X M G )  

Also, for no side slip of the wheel, 

m(x + 1 2 $ )  + k x  + F = 0 

kx l ,  - F l ,  = IG$.  
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Fig. 5.38. Wheel shimmy model. 

i + L$ + v i  = 0. 

Now F can be eliminated, and if it is assumed that 

x = Xes' and 4 = @es', 

where s is the Laplace operator a + jb, then 

x s  + q v +  Ls) = 0 

X(l,ms2 + k4 + @( - I,s2 + mll12s2) = 0. 

and 

Hence the frequency equation is 

s3 +?( llmV )+.( kL2 ) +  ( uv ) = o .  
I ,  + mlf I ,  + ml: I ,  + ml: 

This equation has three roots; they are functions of the system parameters I, ,  m, 
I ,  ,I , ,  L, and k,  and also of the speed K Thus the roots of the frequency equation can 
be plotted on the s-plane for a given system as Vchanges, as shown in Fig. 5.39. One 
root lies on the real axis whilst the other two are a complex conjugate pair. 

Since the system becomes unstable when roots of the frequency equation appear 
on the right-hand side of the s-plane, it can be seen from Fig. 5.39 (overleaf) that a 
critical speed exists. For speeds in excess of I/Eri, unstable oscillation results from a 
system disturbance. This phenomenon is known as wheel shimmy. 

Considerable labour is required to obtain the frequency equation of a dynamic 
system and to solve it repeatedly for a range of values of a certain parameter such 
as the speed V above, particularly if the frequency equation is of a high order. 
Although some relief can be obtained by using a computer, it is usually only necessary 
to sketch the locus of the roots of the frequency equation, so that a curve sketching 
technique has been developed. 
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Fig. 5.39. Roots of frequency equation. 

Consider the system shown in Fig. 5.34, 

QLs) = 8,/4 = Qo(s)/(l + Qo(4). 
Instead of writing Q&) = cc for the condition of resonance it is more convenient 

to put 1 + Qo(s) = 0: this is the frequency equation. For a system to be stable all 
roots of the frequency equation must lie on the left-hand side of the imaginary axis 
when plotted on the s-plane. 

If Qo(s) = KQb(s) where 

(s - zl)(s - z2) . . . (s - zm) 

(s - PlM - P A  . ' .  (s - PA'  
a&) = 

the root locus can be sketched as K increases from zero to infinity and the conditions 
for instability determined. K is the overall system gain constant. 

Techniques for the construction of a root locus for a known control system have 
been developed and can be summarized as a set of rules. 

It is important to realize that the roots of the frequency equation are the same as 
the roots of the complementary function. Now, since the complementary function 
governs the system transient response to a disturbance, a stable response can be 
achieved only if the roots of the complementary function, and therefore also the roots 
of the frequency equation, lie on the left-hand side of the s-plane. This is why the 
roots of the frequency equation are so important in control system response and 
stability. 

5.6.1 Rules for constructing root loci 

Rule 1 Number of loci 
The number of loci is equal to the degree of the characteristic equation. 

Proof The number of characteristic roots is equal to the degree of the characteristic 
equation, and each root has its own locus. 
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Rule 2 Symmetry of loci 
The root loci for a real characteristic equation are symmetrical with respect to the 
real axis. 

Proof The complex roots of a real characteristic equation occur in conjugate pairs. 

Rule 3 Poles of @A(s) 
The poles of @A(s) lie on the root loci and correspond to K = 0. 

Proof Since 1 + @,(s) = 0 and 
Thus if K = 0, and 
roots of the characteristic equation are the poles of a&). 
Rule 4 Zeros of @:(s) 
The zeros of @,’(s) lie on the root loci and correspond to K = k x. 
Proof Since l/K + @Js) = 0 as K -+ k x, @&) -+ 0; that is, (s - zlXs - z 2 ) . . .  = 0. 

Rule 5 Asymptotes of root loci 
If @A(s) has r more poles than zeros, the root loci are asymptotic to r straight lines 
making angles (2N  + l)Tc/r with the real axis ( N  = 0, 1, 2, . . . , r - l), and also to r 
straight lines making angles 2Nn/r  with the real axis. The root loci approach the 
former asymptotes when K-+ + x and the latter when K-+ - m. 

@,(s) = K@A(s), then @A(s) = - 1/K. 
(s - plKs - p 2 ) . . .  = 0; that is, when K = 0 the @A(s) = x 

Since 

1 + K@A(s) = 0, if r = n - m > 0 

l/Q0’(s) = s’ + (p1 - r 1 ) s r - ’ . . .  = - K, 

that is, IK(l-+x when IsI-+x. Furthermore, since the first two terms dominate the 
expression for l/@,’(s) when [ S I - +  x, this equation is approximately 

- - IKleJ(2M+l)n f or K > O  
( S  - a,)’ = - K 

= IKleJZVn for K < O  

where a, = - (/I1 - x l ) j r  and N is any integer. 
Each of these equations has r distinct solutions given by 

IKjlreJ(z”+l)nr for K > O  

for K < 0, ’ - ‘ a , =  1 r  J z Y ~ ~  1K1 e 

where N = 0, 1, 2 , .  . . , r - 1. Putting s = a + jb and equating real and imaginary 
parts yields: 

} K > O  
a - a, = IKI’ cos(2N + l )n / r  

b = 1K1’ ‘ sin(2N + l)n/r 

and 
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} K < O  
a - a, = IKll'' cos 2 N 4 r  

b = IKJ1/' sin 2 N 4 r  

By division 

(a - a,) tan (2N + 1)7c/r 
(a - a,) tan 2Nnlr 

K > 0 b =. 
K < 0. 

These are the equations of the asymptotes of the root loci. Each of these equations 
represents a family of r straight lines in the s-plane. The angular inclinations of these 
lines with the real axis are (2N + 1)7c/r and 2N7r/r when K > 0 and K < 0 respectively. 

Rule 6 Point of intersection of asymptotes 
Both sets of asymptotes intersect on the real axis at a point with abscissa 

where pi and zi are the poles and zeros respectively of a,+). 
Proof From Rule 5 proof, in both cases, when b = 0, a = a, = -(B1 + aJ/r for all 
values of K .  All the asymptotes therefore intersect on the real axis at the point (a,, 0). 
The abscissa a, has the value quoted above since it can be deduced from the expression 

for e,'(s) given that a1 = - 1 zi Bl = - 1 pi (algebraic rule of roots of 
m n 

and 
equations). 1 1 

Rule 7 
If @,'(s) has at least one real pole or zero, the whole of the real axis is occupied by 
root-loci: a segment of the real axis corresponds to positive or negative values of K 
according to whether an odd or even number of poles and zeros of cP,'(s) lie to its right. 

Proof The arguments of the complex numbers represented by the vectors drawn 
from the conjugate complex poles or zeros of O,'(s) to a point on the real axis cancel 
out in pairs. 

The argument of a vector drawnfrom a real pole or zero lying to the left of a point 
on the real axis is zero, whilst the corresponding quantity for a real pole or zero 
lying to the right is 7 ~ .  

Root loci on the real axis 

Now 

(s- Zl)@ - z2) ... (s - zm) 

(s - Pi Ws - ~ 2 )  '. . (s - P,) 
Q0'(s) = 

and 

K@,'(s) = - 1 = ej(2N+1)n for K > 0, 

so 

arg K@,'(s) = (2N + 1)7c for K > 0. 

Thus 
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n (2N + 1)n for K > 0 
2 N n  for K < 0 

m 

C arg(s - zi) - C arg(s -pi) = 
1 1 

It follows that the first of these equations will be satisfied on the real axis only at 
those points having an odd number of poles and zeros to their right, and that the 
second equation will be satisfied only when this number is even. Zero is regarded as 
an even number. 

Rule 8 Breakaway points 
Breakaway points indicate the existence of multiple characteristic roots and occur at 
those values of s which satisfy dKlds = 0. 

Consider a characteristic equation which has a root of multiplicity q( 2 2) at s = so 
when K = KO. In the root locus for such an equation q loci will converge on the 
point s = so as K increases towards KO, and will then break away from this common 
point as K increases beyond KO. Typical breakaway points are shown in Fig. 5.40. 

Fig. 5.40. Breakaway points. 

A and B each represents two equal real roots, C and D each represents two equal 
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complex roots, and E represents two equal real roots. 

Proof The characteristic equation can be written 

As,K) = P(s)  + KQ(s) = 0. 

Thus 

dflds = 2 f l 2 ~  + 2flZK x dKlds = 0 

and consequently 

dK Zfl2s _ -  -- - 
ds Q(s) ' 

Clearly 

dfl2K = Q(s). 

and since 

f (SA,) = (s - So)'9(S) 

at a breakaway point s = so, where g(s) is some function such that g(so) # 0, it is 
evident that 

2j(~,K,)/Zs = q ( S  - so)'- 'g(S) + (S - S,)'g'(S) 

= 0 at s = so. 

Hence 

(d Klds), = so = 0, if Q(so) # 0. 

Rule 9 Intersections of root loci with the imaginary axis 
The intersections of root loci with the imaginary axis can be found by calculating 
the values of K which result in the existence of imaginary characteristic roots. These 
values of K together with the corresponding imaginary roots can be found by writing 
s = j w  in the characteristic equation and equating the real and imaginary parts. 

For example let 

F(s)  = s3 + 2s' + 3s + K + 2 = 0 

Putting s = j w  gives 

-Jo3 - 2w2 + 3jw + K + 2 = 0. 

Equate real parts: 

- 20' + K + 2 = 0, SO K = 20' - 2. 

Equate imaginary parts: 

- 0 3 + 3 w = 0 ,  sow=O or w 2 = 3 .  

Hence w2 = 3 and K = 4 at the intersection of the loci with the imaginary axis. 
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Rule 10 
The slope of a root locus at a complex pole or zero of cDo’(s) can be found by applying 
the equations 

Slopes of root-loci at the complex poles and zeros of cD,’(s) 

n ( 2 N  + 1)7t for K > 0 1 arg(s - zi) - 1 arg(s - pi) = 
1 1 2N7t for K < 0 

m 

to a point in the neighbourhood of the pole or zero. 

unknown slope of the locus at P,. 
For example, consider the complex pole P, shown in Fig. 5.41. where y is the 

Fig. 5.41. s-plane 

The arguments of the complex numbers represented by the vectors drawn from 
the other poles P,, P, and P, and the zero Z ,  to a point on the root locus near P, 
can be considered to be the angles &, &, b4 and 8,. 

If the first of the above equations is applied to a point in the neighbourhood of 
P, for which K > 0, 

8, - 4, - b3 - 6, - y = (2N + 1)7t 

where N is an integer. Hence y. 
The second equation may be applied to a point near P, for which K < 0. 

Rule 11 
The absolute magnitude of the value of K corresponding to any point s, on a root 
locus can be found by measuring the lengths of the vectors drawn to s, from the poles 
and zeros of m0’(s) and evaluating 

Calculation of K on the root loci 

(Sr - PlXSr - ~ 2 ) .  ’ .  
(s, - ZJS, - z2)... Kl = 
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Summary 
The rules for constructing root loci can be summarized as follows: 

Poles are plotted as an ‘x’, zeros as an ‘0’. It is not usually necessary to use all 
the rules for a root locus sketch. 

Example 59 
Sketch the root locus for a closed-loop control system with open loop transfer function 
given by 

K 

1. 
2. 
3. 

4. 
5. 

6. 

I .  
8. 

s(s + l)(s2 + s + 1) 

as K increases from - co to + co. Hence determine the range of values K can have 
and the system be stable. 

The rules are applied as follows: 
4 loci. 
Loci are symmetrical about the real axis for real K. 
Poles given by s(s + l )(s2 + s + 1) = 0 that is, s = 0, - 1, - f k j J3/2. Root loci 
pass through poles when K = 0. 
No zeros. 
r = 4. Thus inclination of asymptotes are 

n 3 n  57c In  
4’ 4 ’  4 ’  4 

- for K +  + a, and _ _ _  

2 n  4n 6n 
4 ’  4 ’  4 

0, - - - for K- .  - co. 

Asymptotes intersect at 

4 

Whole of real axis occupied. 
dK/ds = 0 gives 4s3 + 6s2 + 4s + 1 = 0. 
Breakaway Doints are -$, -+ 
When s = - :, K = A, and when s = - 4 f j i ,  K = 5. 

j:. (-+ found by trial and error). 
1 
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9. Since 1 + m0(s) = 0, 

s(s + l)(s2 +s + 1) + K = 0. Thus 

in s4 + 2s3 + 2s2 + s + K = 0 

w4 - 2jw3 - 2w2 + j w  + K = 0. 

put s = jw, to give 

Equate real part: 

and imaginary part : - 2w3 + w = 0, 

that is, o = 0 and K = 0, 

or w2 = + and K = z.  

This is sufficient information to sketch the root locus, as shown in the diagram below. 

w4 - 2w2 + K = 0. 

3 

As K increases from + x, to zero the four roots move along the 0, 4 2 ,  n and 3n/2 
asymptotes to the poles ( K  = 0). As K increases from zero the loci on the real axis 
meet at a breakaway point ( K  = &) and move to meet the other two loci at the other 
breakaway points ( K  = i). As K increases further the four loci move off towards the 
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4 4 ,  3x14, 5x14, and 7x14 asymptotes. The loci cross the imaginary axis when K = :. 
Therefore the range of values K can have for the system to be stable is > 0 and < $. 

It can be seen that as K increases from $ to $, the frequency of oscillation of the 
response increases slightly and the rate of decay of oscillation decreases. 

For practical reasons, root loci are often only drawn for positive values of the 
system gain K .  

Example 60 
Sketch the root loci of the equation 

s4 + 5s3 + 8s' + (6 + K)s  + 2K = 0 

if K can have positive real values. 

K ( s  + 2) 
+ s(s + 3)(s' + 2s + 2) = O7 

Rewrite equation as: 

so 

s + 2  
rn0'(s) = 

s(s + 3)(s2 + 2s + 2)' 

To draw the root loci apply the rules: 
1. Four loci 
2. Loci are symmetrical about the real axis for real K .  
3. Poles are given by s(s + 3)(sz + 2s + 2) = 0; 

4. Zeros given by s + 2 = 0, that is, s = - 2. 

5. r = 3. Thus inclination of asymptotes are n/3, n, 5x13 for K-co. 
6. Asymptotes intersect at 

that is s = 0, - 3, - 1 qj. Root loci pass through poles when K = 0. 

Root loci pass through zeros when K = to. 

( 0 - 3 -  1 + j -  l - j ) - ( - 2 )  - _  - 1. 
3 

7. Real axis occupied as below: 

8. No breakaway points because two loci on real axis and only two other loci which 
are symmetrical with respect to the real axis. 
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9. In s4 + 5s3 + 8s2 + (6 + K ) s  + 2K = 0 put s = jo. 
Hence K = 5J13 - 11 = 7. 

10. The slope, 7, of the tangent to locus at the pole - 1 + j is given by 

45" - 30" - 90" - 135" - 7 = ( 2 N  + 1)180". 

Hence 7 = - 30". 
The root locus is as shown in the diagram below. 

Example 61 
An electric position servo is designed to move a load on a production line. When 
the load is in the correct position an electric limit switch applies a step input to the 
servo. All the components of the servo are standard items, so that the only variable 
parameter in the system is the gain constant K .  From an analysis of the servo the 
transfer function has been found and the root locus plotted: the figure shows part of 
the result. 

It is required that the positioning operation be completed in two seconds; determine 
a suitable value of K ,  and sketch the form of the servo response to be expected from 
a step input. 
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Because there are four loci and therefore four roots to the frequency equation, the 
response is the sum of four exponential decays. When K = 2, two are given by e-', 
the other two roots decay at approximately e-6t and e-" which are fast and stable 
responses. Thus it is the e-' response which limits the performance. After two seconds, 
the position is only 87% of the input step because e-' is 0.13: this is not good enough, 
so that K must be increased to a value which gives a faster decay. However, the 
response will then be oscillatory. For example, if K = 40, the root locus plot indicates 
the decay to be e-'.'' and the frequency of oscillation to be 5.5 rad/s. When t = 2, 
e-3.4 = 0.03 so that the position is 97% of the input step, and further, the oscillation 
assists the positioning because cos 5.5t is 0.004 when t = 2. That is, the output is 
nearly 99% of the input when t = 2s. These responses are shown below: they should 
be compared with those for other values of K .  
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Damping ratio determination 
It is worth noting that for a frequency equation 

s2 + 2!30s + w2 = 0. 

s = - i w f j w J ( 1  - 12) .  
These roots can be plotted on the s-plane as shown in Fig. 5.42. 

Fig. 5.42. s-plane. 
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0 e a, 
R ,  a5 a4 a3 

So that OA = o, and cos BOA = [. 
That is, the damping ratio pertaining to a particular root can be obtained from 

the RL diagram, by finding the cosine of the angle between the real axis and the line 
joining the origin to the root. 

0 0 0 0 0 ... 
a. 0 0 0 0 ... 
a2 a, .ao 0 0 . . .  

5.6.2 The Routh-Hunvitz criterion 
The Routh-Hurwitz (RH) criterion is a method for determining whether or not the 
frequency equation of a dynamic system has any roots containing positive real parts. 
If positive real parts exist in any root the system will be unstable, because any 
disturbance will produce a response which grows with time. 

The frequency equation of a dynamic system can be written as 

urnsrn + am-,srn- l  + arn-2srn-2 + ... + a2s2 + a,s + a, = 0. 

For there to be no roots with positive real parts and thus the system be stable two 
conditions must be fulfilled: 
1. All of the coefficients of the frequency equation must have the same sign, and 
2. Each member of the sequence of determinants R,R,, . . .R,- , defined below must 

be positive: 

R ,  = a ,  

a1 a0 0 
R,  = a3 a2 I a5 a4 :t I . . . etc. 

Note. This arrangement of coefficients can be remembered as follows: 

l 
a, a6 a5 a4 a, a2 a, a, ... . . . . . . . . . . . . . . . . . . .  

When a,,-, first appears in the diagonal the process is stopped, and the array is 
completed by putting zeros in any spaces. The last determinant is thus always (rn - 1) 
square. Any coefficient absent in a particular frequency equation is replaced by a zero. 

Example 62 
A system has the following frequency equation, 

7s4 + 3s3 + 8s2 + 5s  + 9 = 0. 

Use the RH criterion to determine whether the system is stable or not. 
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Since all the coefficients of s are positive, condition (1) is satisfied. 
The determinants for condition (2) are 

R , =  + 5  

Since R ,  and R ,  are positive and R ,  is negative, condition (2) fails and the system 
is unstable. 

Note that this is the only information about the system obtained from the RH 
criterion. However, it is quick and easy to apply this criterion, at least in the first 
instance before carrying out a root locus analysis if this result is satisfactory. 

Example 63 
Apply the RH criterion to the system considered in Example 59 and determine the 
maximum value of K for stability 

From Example 59, 

K 
OLTF = 

s(s + l)(? + s + 1)’ 

s4 + zs3 + 2 s ~  + s + K = 0. 

so that the frequency equation is 

Applying the RH criterion, condition (1) is satisfied provided that K > 0. 
The determinants from condition (2) are 

R , =  + 1  

1 K  
R , = 1 2  I = 2 - 2 K  

R 3 =  2 2 1 = 3 - 4 K  I:, r I 
Thus R ,  is positive, but for R ,  to be positive, K < 1, and for R ,  to be positive K < $. 
Therefore the range of values K can have for the system to be stable is between 0 
and i. This result was also obtained by applying Rule 9 of the root locus analysis. 
Example 59. 

Example 64 
A control system with overall gain K has an open loop transfer function 

K 
(s + l)(s + 3)(s + 6)’ 
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(i) Draw the root locus diagram as K increases to infinity. 
(ii) Find the range of values K can have for the system to be stable, and the 

corresponding frequencies of oscillation. 
(iii) Confirm this range of values of K by using the Routh-Hurwitz criterion, and 
(iv) If K is adjusted to be 100, find the damping ratio of the system response. 

(1) To draw the root locus diagram, apply the rules. 
1. There are three loci 
2. The locus is symmetrical with respect to the real axis. 
3. There are poles at s = - 1, s = - 3 and s = -6. 

4. There are no zeros. 
5. r = 3, so the inclinations of the asymptotes are 

These points correspond to K = 0. 

n 3n 5n 
3’ 3 3 ) ‘ ‘  

K + + m  _ _ _  

6. The asymptotes intersect at the point given by 

7. For the real axis, 

K > O  K t O  K > O  I K < O  

-1 .. I ,. ,. 

-6 -3 

dK 
ds 

8. The breakaway points are when - = 0. 

Now 

- K = (S + l ) ( ~  + 3 ) ( ~  + 6) 

= s3 + 10s’ + 27s + 18 

So putting dK/ds = 0 

Hence s = - 

gives 3s’ + 20s + 27 = 0 

20fJ(400 - 27 x 4 x 3) 
6 

= - 4.75 or - 1.85. 

The corresponding values of K are - 8 and + 4.1 respectively. 
9. The intersection with the imaginary axis is when s = jw. That is 

- j o 3  - low’ + 27jw + 18 + K = 0. 

Equating the real parts gives - 100’ + 18 + K + 0 and equating the imaginary 
When w = 0, K = - 18 parts gives -w3 + 270 = 0. That is, w = 0 or w 2  = 27. 
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and when w’ = 27, K = 252. The root locus may now be drawn: 

(ii) From the diagram, or by rule 9, for a stable system 252 > K > - 18. Each root 
then lies on the left-hand side of the s-plane. 
When K = 252, w = 4 2 7  = 5.2 radJs, and when K = - 18, w = 0. 

(iii) For Routh-Hurwitz, the equation is 

Rule 1 is satisfied if K > - 18. 
For rule 2, 

R ,  = 27, 

s3 + 10s’ + 27s + 18 + K = 0. 

27 18 + K 
R 2 = 1  1 10 1 

= 270 - (18 + K ) .  
R, is positive provided K < 252. 
Hence 252 > K > - 18, as before 

(iv) If K = 100, the frequency equation is 
s3 + 10s’ + 27s + 118 = 0. 

By trail and error, s ‘5 - 8.5 (must be less than - 6).  This root represents a 
non-oscillatory exponential decay. Dividing the frequency equation by (s + 8.5) 
gives 

S’ + 1.5s + 14.25 = 0. 

Hence s = - 0.75 k 3.7j. 
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These roots are oscillatory with 
frequency 3.7 rad/s. 

Damping ratio i = cos 8 = 
0.75 

J(0.752 + 3.72) 
= 0.2 

Example 65 
In a simple unity feedback control system the elements have individual functions as 
given in the figure. 

(i) Sketch the root locus diagram of this system for all positive values of the amplifier 
gain K, and determine the range of values for K for stability. 

(ii) Confirm this range of values by applying the Routh-Hurwitz criterion, and 
(iii) Find the damping ratio of the system response when K = 0.3 

K(s2 - 2s + 5 )  
(i) OLTF = 

To sketch the root locus diagram, apply the rules 
1. There are two loci. 
2.  The locus is symmetrical with respect to the real axis. 
3. There are poles at s = - 2 and s = 0.5. 

( S  + 2 ) ( ~  - 0.5) 

These points correspond to K = 0. 

4. There are zeros at s = 

These points correspond to K = f x. 

Now 

2 f J(4 - 20) 
= 1 f 2j. 

2 

8. The breakaway points are when dKlds = 0. 

( S  + 2 ) ( ~  - 0.5) K = -  
(s2 - 2s + 5 )  ’ 

- 0 gives 
dK 
ds 

so -- 
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( s2  + 1.5s - 1)(2s - 2) = (s2 - 2s + 5 ) ( 2 ~  + 1.5). 
Thus, 

so that 

When 

when 

3.5s2 - 12s - 5.5 = 0, 

s = 3.84 or - 0.41. 

s = 3.84, K = - 9.44, and 

s = - 0.41, K = + 0.24. 
9. The intersection with the imaginary axis is when s = jo, That is, 

Equate real parts: - 0 2 K  + 5K = w2 + 1. 
Equate imaginary parts: - 2 K o  = - 1.50. 

K (  -02 - 2jw + 5) = - ( - o2 + 1.5jw - 1). 

So that either o = 0 and K = 0.2, 
or o2 = 1117 and K = 0.75. 

Therefore for stability, 0.75 > K > 0.2. The root locus can now be sketched. 

(ii) K(s2  - 2s + 5) = - ( s2  + 1.5s - l), 

so that 

( K  + 1)s’ + (1.5 - 2K)s  + (5K - 1) = 0 

Require +ve coefficients, so 

K > - 1, 2K < 1.5, and 5K > 1. 
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That is. 
K < 0.75 and K > 0.2. 

Determinants require 

and 

Thus 

R ,  = 1.5 - 2 K  > 0. that is K < 0.75, 

R 2  = (1.5 - 2 K ) ( K  + 1) > 0, that is K < 0.75 or > - 1. 
0.75 > K > 0.2 for stability. 

= - 1, 1 [ (s + 2 ) ( s  - 0.5) 
s2 - 2s + 5 

( i i i )  K 

so if K = 0.3. 
1.3 S' + 0.9 s + 0.5 = 0. 
s = - 0.346 k j0.515. or 

0.515 e =  tan-' ~ 

0.346 

= 56" 
Damping ratio i = cos 56" = 0.558. 

Example 66 
A control system with overall gain K has an open loop transfer function given by 

K 
4 0 ' ~ )  = s(i + sxi + 2sj 

(i) Draw the root locus diagram as K increases to x. 
(ii) Find K,,,, which is the maximum value K can have for the system to be stable, 

and the corresponding frequency of oscillation. 
(iii) Confirm the value of K,,, by using the Routh-Hurwitz criterion. 
(iv) The system is modified by adding to the open loop derivative action with a time 

constant of 3.75 s. Write down the open loop transfer function of the modified 
system and comment on the stability. Also find the system oscillation frequency 
and damping factor when K = K,,,. 

To draw the root locus diagram, apply the rules. 
1. There are three loci. 
2. The loci are symmetrical with respect to the real axis. 
3. There are poles at s = 0, s = - 1 and s = - $. 

These points correspond to K = 0. 
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0 

4. There are no zeros. 
5. I = 3, so the inclinations of the asymptotes are 

Tf 3n 5n 
3' 3 '  3 ' ' "  

K + + x ,  _ _ _  

2n 4n 
3 '  3 

and 0, - -. .. K + - m. 

6. The asymptotes intersect at the point given by 

( 0 i T 1 - O  , 0). that is ( - i, 0). 

7. For the real axis: 

K > O  K < O  K > O  1 K < O  

dK 
ds 

8. The breakaway points are when - = 0. 

Now 

- K = 2 s 3  + 3s2 + s, 

so 

dK 
- = 6s' + 6s + 1, 
d K  
ds ds 

and when - = 0, 

- 6 & J(36 - 24) 
12 

= - 0.2 or 0.8. S =  

When 

s = - 0.2, K = - 0.1, 

and when 

s = - 0.8, K = - 0.12. 

9. The intersection with the imaginary axis is when s = jw. That is 

- 2jw3 - 3w2 + j w  + K = 0. 
Equating the real parts gives - 3w2 + K = 0, and equating the imaginary parts gives 
- 2w3 + w = 0. That is w = 0 or w2 = 4; when w = 0, K = 0 and when w2 = 4, 
K = ?  2' 

The root locus may now be drawn: 
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(ii) Maximum K, K,,, for the system to be stable is given when s = jw.  From rule 9, 

K,,, = $ and w 2  = +. 

That is, the frequency of oscillation = 0.707 rad/s = 0.11 Hz. 

(iii) For Routh-Hurwitz, the equation is 

2s3 + 3s2 + s + K = 0, 

that is a, = 2, a, = 3, a, = 1 and a, = K. 

Condition 1 requires K > 0. 
For condition 2, 

R ,  = 1 

1 K  
R,  = l 2  3 1 = 3 - 2K, that is K 3 i 

R ,  = 2 3 1 = 1.6 - 2.2K, that is K 3 i I: 1 I 
Hence for a stable response $ > K > 0. 

(iv) The OLTF of the modified system is 

K(l + 32s) 
@o(s) = s( 1 + s)( 1 + 2s) 

The addition of a zero makes this system stable for all values of K. 
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3 When K = K,,, = 7, 

3(1 + 7 s )  
@o(s) = 2s( 1 + sX1 f 2s) 

The frequency equation is therefore 

2s(l + s)(l + 2s) + 3(1 + 7 s )  = 0. 

That is 

4s3 + 6s2 + YS + 3 = 0. 

By trial and error, one root is when s = - a. 
Dividing (s + a) into the frequency equation gives (4s2 + 5s + 12). The roots 
of 4s’ + 5s + 12 = 0 are given by 

- 5 & J ( 2 5 - 4  x 4 x 12) 5 . 
= - - + J 1.62. 

8 8 -  
s =  

Thus the frequency of oscillation is 1.62 rad/s or 0.26 Hz, and the damping 
factor is $. 

Example 67 
A position control system is shown below in block diagram form. 
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(i) Use the Routh-Hurwitz criterion to find the maximum value of gain K for stability 
(ii) Because this value of K is too low for the application, a compensating subsystem 

with transfer function (s + l)/(s + 10) is to be inserted in the forward feed of the 
system. 

Sketch the root locus diagram of the modified system for all values of the gain 
K ,  and find the range of values K can have for stability. 

Given that the damped natural frequency of the system response is 1 rad/s, 
estimate the damping ratio. 

(i) The frequency equation is 

K(s + 2) 
+ s(s + 1)2(s + 5) = O. 

That is, 

s4 + 7s3 -t 11s’ + (5 + K)s + 2K = 0. 

For the Routh-Hurwitz criterion, condition 1 requires K > 0. 
Also for condition 2, 

R , = 5 + K  

5 + K  2K 
R 2 = l  7 11 I 

= 55 - 3K, so +ve for K < 7, 
and 

R+K 0 E 1 S ~ O K I  7 

= (5 + K)[77 - 5 - K] - 7[14K], 

= 360 - 5K + 72K - K 2  - 98K. 

Limit when R, = 0, i.e. when 

K 2  + 31K - 360 = 0, 

that is 

(K - 9 ) ( K  + 40) = 0 

or 

K = 9 or - 40. 

Thus maximum value of K is 9. 
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(ii) Modified system block diagram: 

That is, 

To draw the root locus diagram, apply the rules. 

1. There are four loci. 
2. The locus is symmetrical with respect to the real axis. 
3. There are poles at s = 0, - 1, - 5,  - 10 ( K  = 0). 
4. There is a zero at s = - 2 ( K  = 2 E). 
5. r = 3, so the inclination of the asymptotes are 

Tl 3Tl 5Tl 
3' 3 '  3 ' " '  

271 471 
3 '  3 

K - + + x ,  - _ -  

and 0, - - ... K -+ - x. 

6. The asymptotes intersect at the point given by 

, 0). that is ( - y, 0). 
0 - 1 - 5 - 10 - ( - 2) ( 3 

7. For the real axis; 
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dK 
ds 

8. The breakaway points are when - = 0. 

Now 

K ( s  + 2) 
s(s + l)(s + 5)(s + 10) = O7 

1 +  

s4 + 16s3 + 65s2 + 50s 
s + 2  

SO K = -  

dK 
- = 0 gives 
ds 

3s4 + 40s3 + 1 6 1 ~ ~  + 260s + 100 = 0. 

Trial and error gives (approximately) s =  - 0.55 and K =4. 

and s = - 1.5. 
9. The intersection with the imaginary axis is when s = jw. That is, 

w4 - 16jw3 - 65w2 + 50jw + Kjw + K.2 = 0. 

Equate real parts: w4 - 65w2 + 2K = 0. 

Equate Imaginary parts: - 16w3 + 50w2 + Kw = 0. 

so that 

or 

w = 0 and K = 0, 

w = 6 and K = 526. 

Thus max K for stability = 526. 
The root locus can now be drawn as shown opposite. 

For stability, 526 > K > 0. 
For the damping ratio at 1 rad/s, 

( = cos 8 

0.55 - - 
J( 1 2 + 0.552) 

z 0.48. 
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5.7 CONTROL SYSTEM FREQUENCY RESPONSE 
Frequency response methods provide a convenient means for investigating the 
dynamic behaviour of control systems. By frequency response is meant the response 
of a system to an harmonic input of the form xi = Xi cos cot. 

5.7.1 The Nyquist criterion 
The conditions for limiting stability were found by the root locus method by plotting 
1 + @,(s) = 0 and finding the value of K for s = jto. An alternative method is to plot 
@&s) with s = jw, i.e. sinusoidal forcing, and find when this quantity is equal to - 1. 
Thus the closed loop stability is determined from the open loop response. This is the 
basis of the Nyquist criterion. The Nyquist criterion is an important method for 
studying linear feedback systems since it is expressed only in terms of the open loop 
transfer function. 
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The open loop transfer function can be plotted on a Nyquist diagram; an example 
is shown in Fig. 5.43. If the loop formed by the open loop transfer function as the 
frequency increases from - cc to + 00 encloses the point cD,(s) = ( - 1 ,O)  the system 
is unstable. The proximity of the loop to that point is a measure of how stable the 
system is. 

Fig. 5.43. Nyquist diagram. Stable system. 

All points to the right of a contour, as it is traversed in a clockwise direction, are 
said to be enclosed by it (Fig. 5.44). Because the contour is symmetrical about the 
real axis, it is only necessary to calculate the contour as o increases from - co to zero. 

Im % (jo) 

Re m0 (jo) 

Fig. 5.44. Nyquist loop enclosure. 
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Example 68 
Draw the Nyquist diagram for the system with an open loop transfer function 

K 
(s + a)(s + b) 

and hence determine whether the closed loop system will be stable. 

K 
Substitute s = jo, 

@o(s) = (s + a)(s + b j  

K - K 
@,(jW) = 

( a  + j o ) (b  + jo) - (ab - w 2 )  + j o (a  + b) 

Rationalize and hence 

K((ab - 02) - jo(a + b)) 
((ab - 02)2 + 02(a + b)’)’ 

@,(jo) = 

Thus 

K ( u ~  - w2)((a - w ~ ) ~  + 0 2 ( a  + b)2) 
((ab - w ~ ) ~  + 0 2 ( a  + 6)’) 

Re @,(jo) = 

and 

- KW(U + b) 
Im @,(jw) = 

((ab - 02)2 + 0 2 ( a  + b)’)‘ 

Hence the following table can be deduced: 

w Re@,(jw) Im@,(jo) 

- - x  0 
- ve large - ve 
- ve small + ve 

0-  + ve 

0 
+ ve 
+ ve 

0 

The loop is symmetrical for positive values of o. 
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From this table the Nyquist diagram can be sketched, as shown. 

I t  can be seen that increasing K merely increases the size of the loop, and it will 
never pass through ( - 1,O). Thus the system is always stable. 

Example 69 
Consider the closed loop system with an open loop transfer function given by 

K 
s3 + 62 + 11s + 6' 

Determine the maximum value of K for a stable response. 

Put s =  jw, so that 

K 
(6 - 6w2) + jw( 11 - w2)' 

@Jjw) = 

Rationalize and split into real and imaginary parts. 
Thus 

6K(1 - w2)  

w6 + 14w4 + 49w2 + 36' 
Re@,,Cjw) = 

and 

- Kw( 11 - 01') 

w6 + 1401~ + 490)~ + 36' 
Im@,,Cjo) = 

Hence the following table. 
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0 Re@,Cjw) Im@,,(jo) 

- x  0 0 
- ve large - ve small - ve small 
- \‘11 - ve 0 

- ve small - ve + ve 
- 1  0 + ve 
0 K,/6 0 

From this table the Nyquist diagram can be sketched as shown: 

When o = - J l l ,  Im@,(jo~) = 0 
and 

K 
60’ 

_ -  - 
6K(1 - 11) 

Re@,,(jw) = 
113 + 14.112 + 49.11 + 36 - 

so that K can be increased to 60 before instability occurs. 
Alternatively, the maximum value of K for stability can be found by putting 

Re@,,(jw) = - 1 when Im@,,(jw) = 0. In this case - 1 = - K/60, and K = 60, as before. 
When K = 60, the curve passes through ( - 1,O). This point is not enclosed. 
The closeness of a contour to the ( -  1, 0) point can be expressed in terms of the 

gain margin and the phase margin, Fig. 5.45, so that in the above example the gain 
margin is 6 0 / K .  Hence the Nyquist criterion gives information on ‘absolute’ stability 
and ‘relative’ stability. ‘Relative’ stability is used to indicate the degree of stability 
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of a system, and is associated with the nearness of the open loop frequency response 
plot to the ( - 1,O) point. The quantitative measures ‘gain margin’ and ‘phase margin’ 
determine the degree of stability. 

Fig. 5.45. Gain and phase margins. 

The Nyquist method is also useful for assessing system performance based on 
experimental measurements, as shown in the following example. 
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Example 70 
The following experimental results were obtained from an open loop frequency 
response test of a control system: 

w rad/s 4 5 6 8 10 
- 

Gain 0.66 0.48 0.36 0.23 0.15 
Phase 
angle - 134" - 143" - 152" - 167" - 180" 

Plot the locus of the transfer function, and measure the gain and phase margins. 

Hence the gain margin = 1/0.15 = 6.7, and the phase margin = 59". 
It can be seen that the Nyquist diagram can be drawn directly from sinusoidal 

steady-state measurements on the components that make up the open loop transfer 
function. This is very useful for determining system stability characteristics when 
transfer functions of the loop components are not available in analytic form, or when 
physical systems are to be tested and evaluated experimentally. 



Fig. 5.46. Nyquist diagram. 

Example 71 
A control system has an open loop transfer function 

K 
@’(’) = S(S + 2)(s + 3)’ 

Sketch the Nyquist frequency response diagram, and determine whether the closed 
loop system will be stable when K = 20. 

The system is to be modified by adding derivative action of time constant one 
second. What will be the effect on the stability of the closed loop system? 

K - K 
@’(’) = s(s + 2)(s + 3) - s3 + 5s’ + 6s’ 
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Fig. 5.47. Derivative action effect. 

Hence 

K 
- 5w’ + jo(6 - o’). 

(Do(jo) = 

Rationalize and split into real and imaginary parts, so that 

- 5w’K 
Re cDoCjw) = 

( - 5 ~ ~ ) ’  + ~ ’ ( 6  - 02)” 

and 

- ~ ( 6  - 0’) 

( - 5 0 ~ ) ’  + ~ ’ ( 6  - 0’ 1 ” Im @,,(jo) = 

The following table can now be deduced: 

w Re (D,(jo) Im (Do(jw) 

- x  0 0 
- ve large - ve - ve 
- ve small - ve + ve 

0- - 5K/36 X 
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Also, when w2 = 6 or 0, Im Oo(jw) = 0. 

I f w = O  

Re Oo(jw) = 0, 

and if w2 = 6, 

K 
Re Oo(jw) = - -. 

30 

The Nyquist diagram can now be drawn: 

When K = 20 the (- 1, 0) point is not enclosed, so the system will be stable. 
However, although the gain margin is reasonable, the phase margin is small, so 

that derivate action should be considered. If derivative action with a time constant 
of one second is added, the OLTF becomes 

K ( s  + 1) 
' o ( ~ )  = s(s + 2)(s + 3 j  

Thus 
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K ( j o  + 1) 
jd- o2 + 5jo + 6)’ 

- K(04 - 02) 
o6 + 1304 + 36w2’ 

- K(4w3 + 60)  
o6 + 1304 + 36w2’ 

a)o(jo) = . 

so that 

Re cD,(jo) = 

and 

Im cDo(jo) = 

The following table can now be deduced: 

0 Re a)o(jo) Im O0(jo) 

- - x  0 0 
- ve large - ve small + ve small 
- ve small - ve large + ve large 

0- K/36 +a 
- 1  0 ~ 1 5  

Hence the Nyquist diagram can be plotted as shown below. 
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The modified system is thus stable for all values of K ,  with a much improved phase 
margin, which gives a better transient performance. 

Example 72 
A process is controlled by adding negative feedback through an integral action 
controller as shown: 

(i) Sketch the Nyquist frequency response diagram for the open loop transfer function 
of the system, and thus determine whether the system is stable or not. 

(ii) The system is modified by adding derivative action so that the controller transfer 
function becomes 

(?) 
Write down the open loop transfer function of the modified system and hence 
sketch the Nyquist frequency response diagram. Comment on the stability of the 
modified system and calculate the gain margin. 

2 - 2 
'OW = s(i + s)(i + 2 4  - 3s2 + s + 2s3  

0) 

Put s = j w  for harmonic response, and rationalize: 

1- - 3w2 - j(w - 2w3) 
- 3w2 + 2 [  j(w - 2w3) - 3w2 - j(w - 2w2) 

'o( jw)  = 

so 
- 6w2 

4w6 + so4 + w2' 
Re Oo(jw) = 

and 

- 2(w - 2 w 3 )  
Im Q0(jw) = 

Hence the following table: 

4w6 + 5w4 + w2' 
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w Re @,uw) Im @,(jw) 

- x  0 0 
- ve large - ve - ve 
- ve small - ve + ve 
0- - 6  X 

0 4 
3 
- - - & 

The Nyquist diagram can now be drawn. 

The system is unstable because the point ( -  1,O) is enclosed. 

(ii) For the modified system 

(2 + s) 
DO(’) = 2s3 + 3s2 + s’ 

Putting s = j w  and rationalizing as before gives 

1 - 3w’ - j(w - 2w3) 2 + j w  
- 30’ + j(w - 2w3) - 30’ - j(w- 2w3) ’ [ @,cjw) = 
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so 

- 5w2 - 2w4 
Re Qo(jw) = 

4w6 + 5w4 + w2' 

- 2w + o3 
4w6 + 5w4 + w2' 

and Im Q0(jw) = 

Hence the following table: 

0 Re QoCjw) Im Qo(jo) 

- - co  0 0 
- ve large - ve - ve 
- ve small - ve + ve 
0 -  - 5  co 

+ ve 
0 1 

0 
- 

- J3 
- J2 3 

The Nyquist diagram can now be drawn. 
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The system is now stable because the point ( -  1,O) is not enclosed. 
The intercept on the real axis is - 3  so the gain margin = 3. 1 

Example 73 
A process is controlled by adding negative feedback through an integral action 
controller as shown below 

(i) Sketch the Nyquist frequency response diagram for the open loop transfer function 
(OLTF) of the system, and comment on the stability. 

(ii) The system is modified by adding proportional action so that the controller 
transfer function becomes 5(s + l)/s. 

Sketch the Nyquist frequency response diagram for the OLTF of the modified 
system, comment on the stability and calculate the gain margin. 

10 - 10 
(i) OLTF = 

s(s + 3)(s2 + 2s + 2) - s4 + 5s3 +8s2 + 6s’ 

Put s = jw, and @Jjw) becomes 

10 
(w4 - 80.1’) + j(6w - 5 0 ~ ) ‘  

- - 10 
w4 - 5Jw3 - 8w2 + 6jo 

Rationalize to give 

Re Qofiw) = 
1 0 w 2 ( ~ ’  - 8) 

w8 + 9w6 + 4w4 + 360’’ 

and 

- 1046 - 5w2) 
w8 + 906 + 404 + 36w” 

Im Qofio) = 

Hence the following table: 
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0 Re @,,(jo) Im @,,(jo) 

- - x  0 0 
- ve large + ve - ve 
- ,18 0 - 0.104 
- If! - 1.23 0 
- ve small - ve + ve 

0 -  - 2.2 X 

v 5  

Thus the Nyquist diagram is as below. Because ( -  1,O) is enclosed, the system is 
unstable. 

(ii) With proportional control added, 

1qs + 1) 
s(s + 3)(? + 2s + 2)' 

OLTF = 

Putting s = jo and rationalizing gives 
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and 

so 

and 
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l q w 4  - 8w2) + lOw(6w - 5w2) 
w8 + 9w6 + 4w4 + 36w2 

Re O0(iw) = 

100(w4 - 8w2) - 1q6w - 5w3) 
w8 + 9w6 + 4w4 + 36w2 

' Im @ocjw) = 

- 40w4 - 2001' 
Re @o(jo) = 

o8 + 9w6 + 4w4 + 360~' 

low5 - 3003 - 60w 
w8 + 9w6 + 4w4 + 36w2' 

Im O0(iw) = 

Hence the following table: 

0 Re @o(iw) Im @o(iw) 

- 3 2  0 
- ve large - ve 
- 4.37 - 0.63 
-ve small - ve 

0- - 0.56 

0 
- ve 

0 
+ ve 
x 

The Nyquist diagram is shown overleaf. 

The system is now stable because ( -  1,O) is not enclosed. 
Gain Margin = = 1.59, with satisfactory phase margin. 

5.7.2 Bode analysis 
Bode analysis consists of plotting two graphs: the magnitude of @&) with s = jw, 
and the phase angle of Q0(s) with s = jw, both plotted as a function of the frequency 
w. Log scales are usually used for the frequency axis and for the magnitude of @,,(io). 

The magnitude, I@o(io)l of the transfer function @o(jw) for any value of w is plotted 
on a log scale in decibel (dB) units, where 

dB = 20 log,o~@o(iw)/. 

Thus the magnitude plot of a frequency response function expressible as a product 
of more than one term can be obtained by adding the individual dB magnitude plots 
for each product term. Thus the Bode magnitude plot for 
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100(1 + 0.ljo) 
@,Cjo) = 

(1 + j o )  

is obtained by adding the Bode magnitude plots for 100, (1 + 0.ljo) and 1/(1 + jo). 
The dB magnitude against log w plot is the Bode magnitude plot, and the phase 

angle against log w plot is the Bode phase angle plot. 
Bode analysis techniques can be investigated by considering Bode diagrams of 

some simple frequency response functions. 
The gain constant k has a magnitude Ik( and a phase angle of 0 deg if k is positive, 

and - 180" if k is negative. This is true for all values of o so that the Bode diagrams, 
or plots are as in Fig. 5.48 opposite. 

The frequency response function, or sinusoidal transfer function, for a pole at the 
origin, is 

1 
@ -- 

a - (io)' 

The Bode diagrams are thus as shown in Fig. 5.49. 
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Fig. 5.48. Bode plots. 

Fig. 5.49. Bode plots. 

The Bode diagram for transfer functions of the form (1 + jw7) and 1/(1 +jog can 
be represented most conveniently by straight line asymptotes. For example, consider 
the transfer function 1/(1 + jw7'). 
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so that as o -0, magnitude -, 1, and log,, gain = 0; and as w + a large value, 
magnitude -, l/(wT) and log,, gain = - log,,wT 

These straight line asymptotes meet at oT = 1. o = 1/T is the 'corner' or 'break' 
frequency. At this frequency. 

gain (dB) = 20 log,, l 1  - : j~=2010g(+)=  -2OlogJ2 

= - 3 dB. 

For the phase angle diagram, 

1 
tan-'wT = 0 for wT g 1, and 

= -90" for wT >> 1. 

These results are shown in Fig. 5.50 opposite. 

It can be seen that Bode diagrams provide a very flexible method for the analysis of 
control systems. If a system is modified, the additional transfer function terms can 
simply be added into the diagrams, and experimental results can be plotted so that 
from straight line approximations an equation for the transfer function can be found. 

Example 74 
Draw Bode diagrams for the open loop transfer function given below, and determine 
the gain and phase margins. 

5 
jo(1 + jwO.6)(1 + jwO.1) 

O,(jO) = 

Bode magnitude diagram: 

20 log,, 1 Oo(jw) I = 20 log,,5 - 20 log,, I j w  I - 20 log,, 1 1 + jw0.6 I - 
20 log,, I 1 + jw0.l I .  

Initially, consider each term: 

20 10g,,5 = 10 x 0.698 = 14 dB: 
The Bode magnitude diagram for O,, given is obtained by adding graphically the 

diagrams shown on p. 276. Before doing this it is convenient to calculate the phase 
angle diagram so that it can be plotted on the same axes; the gain and phase margins 
can then easily be found. 

Bode phase angle diagram. 

arg @,(jo) = - 90" - arg tan-' 0 . 6 ~  - arg tan-'O.lw 

Hence the table which follows on p. 276: 
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Fig. 5.50. Bode plots. 
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w(rad/s) 1 2 3 4 5 10 

- 90" - 90" - 90" - 90" - 90" - 90" - 90" 
- tan- ' 0 . 6 ~  - 31" - 51" - 61" - 67" - 72" - 81" 
- tan - ' 0 . 1 ~  - 6" - 11" - 17" - 22" - 27" - 45" 

arg @,,cjW) - 127" - 152" - 168" - 179" - 189" -216" 

The Bode phase angle diagrams can now be plotted. Linear-log graph paper should 
be used. 
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From the above diagram, when phase angle = -180", Gain margin = 6 dB, and 
the phase margin is the angle when the gain is unity, that is, 0 dB. Hence, phase 
margin = 15". That is, the system is stable in closed loop, but, because of the small 
phase margin, it will have a poor transient performance. 

Example 75 
The open loop transfer function of a control system is given by 

30 
s(1 + O.ls)(l + 0.25s) 

(i) Plot the Bode amplitude and phase angle diagrams, determine the gain margin 
and the phase margin, and state whether the system is stable or not. 

(ii) A phase lag network is introduced into the system with a transfer function 

(1 + s)/(1 + 10s). 
Draw the Bode diagrams for the modified system, find the new gain and phase 
margins, and comment on the system stability. 

(i) Bode amplitude, or gain diagram: 

20 log,, @,(io) = 20 log,, 30 - 20 log,,Jw - 20 log,,(l + 0.ljw) 
- 20 log,,(l + 0.25jw). 
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20 logI030 = 29.5, so this line can be drawn on the diagram directly. The other 
terms can be drawn on the diagram and added to give the amplitude diagram 
as shown. 
The Bode phase diagram is drawn from the results of the following table: 

arg @,(jw) = - 90" - arg tan 0.10 - arg tan 0.250. 

oradis 3 5 10 15 

- 90" - 90" - 90" - 90" - 90" 
- tan-'O.lw - 17" - 27" - 45" - 56" 
- tan- '0.250 - 37" - 51" - 68" - 75" 

arg @ o C j 4  - 144" - 168" - 203" - 221" 

From the diagrams, the system is unstable, gain margin = - 9 dB and phase 
margin = - 25". 

(ii) Phase lag network now added, so add to amplitude diagram for original system 
plot for (1 + jw) and 1/(1 + lOjo), to give a new Bode amplitude diagram. 

New phase adjustment as below : 

orad/s 3 5 10 15 

- tan- '100 - 88" - 89" - 89" - 89" 
+ tan- 'O + 71" + 79" + 84" + 86" 

- 17" - lo" - 5" - 3" 

Original 
phase - 144" - 168" - 203" - 221" 

arg @oCjO) - 161" - 178" - 208" - 224" 

The Bode phase diagram for the modified system can now be drawn. The system 
is now stable with gain margin = 7 dB and phase margin = 22". 



Problems 

6.1 SYSTEMS HAVING ONE DEGREE OF FREEDOM 
1. The figure shows a pendulum which consists of a light rigid rod of length L 

pivoted to a fixed point at one end and having a mass m fixed to its other end. 
A spring of stiffness k is attached as shown, at a distance a from the pivot. In 
the position shown the rod is vertical and the spring is horizontal and unloaded. 
Find the frequency of free oscillations of small amplitude in the plane of the 
diagram. 
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2. A structure is modelled by a rigid horizontal member of mass 3000 kg, supported 
at each end by a light elastic vertical member of flexural stiffness 2 MN/m. 

Find the frequency of small amplitude horizontal vibrations of the rigid 
member. 

3. Part of a structure is modelled by a thin rigid rod of mass rn pivoted at the 
lower end, and held in the vertical position by two springs, each of stiffness k, 
as shown. 

Find the frequency of small amplitude oscillation of the rod about the pivot. 

4. A wire is stretched between two fixed horizontal supports a distance L apart 
by a force 7: A body of mass in is attached to the wire at a fixed distance x 
from one support. Find the natural frequency of small transverse vibrations of 
the body, assuming that T is constant. 

5. The figure shows a simple model of a vehicle which is moving with a constant 
speed V over a surface with a sinusoidal profile. The mass of the vehicle is rn 
and the stiffness of its suspension springs is k. The wavelength of the surface 
profile is L and the amplitude of its undulations is h. 

Derive an equation for the steady state vertical displacement of the vehicle 
as it moves over the sinusoidal surface in terms of its speed, natural frequency 
and the surface parameters. 
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6. A spring of stiffness k is connected to a viscous damper in series, and released 
from rest with a displacement xo from the zero force position. Neglect the mass 
of the system and express the displacement x as a function of the time t after 
release. 

7. A body supported by an elastic structure performs a damped oscillation of 
period 1 s, in a medium whose resistance is proportional to the velocity. At a 
given instant the amplitude was observed to be 100 mm and in 10 s this had 
reduced to 1 mm. 

What would be the period of the free vibration if the resistance of the medium 
were negligible? 

8. A swing door is a uniform rectangular slab 0.9 m wide and mass 17 kg. It is 
pivoted about one vertical edge to a device which provides a spring moment 
proportional to the angle of the door from its closed position, acting in parallel 
with a viscous damper. When the door is held open at 90", a moment of 16 N m 
is needed to keep it in that position, and when it is released from that position 
it swings through the closed position 2.3 s later. 

Find, to an accuracy of 5 %  or better, the damping ratio of the system. 
9. A turbine disc of mass 20 kg has its mass centre on the axis of a central hole 

40 mm in diameter. The disc is suspended from a horizontal knife edge passed 
through the central hole, and makes small free oscillations in the plane of the 
disc while immersed in a fluid which exerts a resistance proportional to the 
angular velocity of the disc. 

The period of the oscillations is found to be 1.6 sand the amplitude is observed 
to decrease sixfold in each complete oscillation. Write down the equation of 
motion and derive its solution, and hence calculate the mass moment of inertia 
of the disc about the axis of the central hole and the effective viscous damping 
coefficient. 

10. The moving part of a galvanometer has a mass moment of inertia I of 
1.5 x kg m2 and is connected to the frame by a spiral spring which has 
an effective stiffness k of 1.2 x N m/rad and a viscous damper of coefficient 
c. Write down the equation of motion and derive from it the value of c which 
will make the movement just not oscillatory. 
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11. The figure shows a pendulum which consists of three light arms OA, OB and 
OC, rigidly attached to each other and pivoted at 0, and of a mass rn which is 
on the end of the vertical arm OA. The arm OB is horizontal and attached at 
its end to a vertical spring having a stiffness k while the arm OC is vertical and 
attached at its end to a horizontally positioned viscous damper whose damping 
coefficient is c. 

Determine the frequency of small amplitude undamped oscillations of the 
pendulum about 0 and find the critical damping coefficient in terms of the 
given parameters. 
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12. An indicator is operated by a solid cylindrical float of mass m, diameter d ,  and 
length D, which moves with its axis vertical in a coaxial vertical tube of diameter 
D, as shown. The float is connected by a rack and pinion to a rotating indicator 
disc, which can be treated as a uniform disc of mass m and radius r ;  r is also 
the pitch circle radius of the pinion. The link between the float and the rack is 
of negligible mass, as is the rack. In static equilibrium the float is half immersed 
in the liquid in the tube. 

Assuming that no liquid enters or leaves the tube and that viscous forces are 
negligible, find the frequency of small free oscillations of the system. 

13. A uniform door of width 0.8 m and mass 20 kg is closed by a torsion spring of 
stiffness 100 N m/rad and a viscous damper of coefficient c. 

Write down the equation of motion of the door whilst closing, give the solution, 
and comment on the response of the door for amounts of damping less than, 
equal to, and greater than critical. Find the value of c for critical damping. With 
the damping made critical, the door is held open at 90" and released; find, to 
the nearest tenth of a second, the time taken for the door to turn through 89". 
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14. A U-tube manometer with two vertical arms has an internal diameter of 6 mm, 
and contains mercury (density 13.6 g/cm3), the total length of the mercury 
column being 0.8 m. Assuming the mercury to move as an incompressible body, 
the friction between the mercury and the inside of the tube can be expressed as 
a shear force c per unit wetted area per unit velocity. 

When the mercury column is displaced from its equilibrium position and then 
allowed to move freely, a damped oscillation is observed, the amplitude at the 
end of the eleventh cycle being one tenth of the amplitude at the end of the first 
cycle. Write the equation of motion, and hence find the value of c(in N s/m3) 
and the natural frequency of the oscillation. 

15. To determine the amount of damping in a bridge it was set into vibration in 
the fundamental mode by dropping a weight on it at  centre span. The observed 
frequency was 1.5 Hz, and the amplitude was found to have decreased to 0.9 
of the initial maximum after 2 s. The equivalent mass of the bridge (estimated 
by the Rayleigh energy method) was lo5 kg. 

Assuming viscous damping and simple harmonic motion, calculate the 
damping coefficient, the logarithmic decrement, and the damping ratio. 

16. When considering the vibrations of a structure, what is meant by the Q factor? 
Derive a simple relationship between the Q factor and the damping ratio for a 
single degree of freedom system with light viscous damping. 

Measurements of the vibration of a bridge section resulting from impact tests 
show that the period of each cycle is 0.6 s, and that the amplitude of the third 
cycle is twice the amplitude of the ninth cycle. Assuming the damping to be 
viscous, estimate the Q factor of the section. 

When a vehicle of mass 4000 kg is positioned at the centre of the section the 
period of each cycle increases to 0.62 s; no change is recorded in the rate of 
decay of the vibration. What is the effective mass of the section? 
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17. The figure shows a diagrammatic end view of one half of a swing-axle suspension 
of a motor vehicle which consists of a horizontal half-axle OA pivoted to the 
chassis at 0, a wheel rotating about the centre line of the axle, and a spring of 
stiffness k and a viscous damper with a damping coefficient c both located 
vertically between the axle and the chassis. The mass of the half-axle is rn, and 
its radius of gyration about 0 is h. The mass of the wheel is rn, and it may be 
regarded as a thin uniform disc having an external radius r and located at a 
horizontal distance s from the pivot 0. The spring and the damper are located 
at horizontal distances q and p from the pivot 0, as shown. 

Derive the equation for angular displacement of the axle-wheel assembly about 
the pivot 0, and obtain from it an expression for the frequency of damped free 
oscillations of the assembly. Express this frequency in terms of the given 
parameters and the undamped natural frequency of the assembly. 
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18. The T-shaped body shown pivots about a point 0 on a horizontal ground 
surface and is held upright, so that its mass centre G is a distance h vertically 
above 0, by two springs pinned to it and to the ground. Each spring has a 
stiffness k and its vertical centre line is at  a distance c from the pivot 0. The 
T-shaped body has a mass m and a radius of gyration r about its mass centre. 

The body is acted on by a force F whose line of action is horizontal and at 
a height d above the ground, where d > h. Derive an expression for the rotation 
of the body if the force rises suddenly from zero to F ,  assuming that the angular 
displacement of the body is small. 

If the suddenly applied force F drops equally suddenly to zero after a time 
ro from its original application, derive the equation of the rotational motion of 
the body for times greater than to. 

19. An aircraft ejector seat can be regarded as a horizontal platform which can be 
given a vertical acceleration, and the pilot can be treated (greatly simplified) as 
a rigid mass of 90 kg supported on the platform by springs of total effective 
stiffness 10.9 kN/m. When the pilot is to be ejected, the platform is given a 
constant vertically upward acceleration of 49 m/s2 which lasts for 0.19 s, when 
the pilot is freed from the platform and continues to move through the air. 

Considering only the vertical component of motion and neglecting the effect 
of air resistance, find: 
(a) the maximum height to which the pilot rises above his original position of 

(b) the maximum acceleration to which he is subjected. 
static equilibrium, and 
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20. The natural frequency of the undamped spring-body system of the vibrometer 
shown is 5 Hz. When the vibrometer is fixed to a horizontal surface of a motor 
running at 750 rev/min, the absolute amplitude of vibration of the suspended 
body is observed to be 1 mm. What is the amplitude of vertical vibration of the 
motor, and at what motor speed will the amplitude of motor vibration be the 
same as the amplitude of vibration of the vibrometer body? 

21. The figure shows a vibration exciter which consists of two contra-rotating wheels, 
each carrying an eccentric body of mass 0.1 kg at an effective radius of 10 mm 
from its axis of rotation. The vertical positions of the eccentric bodies occur at 
the same instant. The total mass of the exciter is 2 kg and damping is negligible. 

Find a value for the stiffness of the spring mounting so that a force of amplitude 
100 N, due to rotor unbalance, is transmitted to the fixed support when the 
wheels rotate at 150 rad/s. 

22. A motor generator set of total mass 365 kg is mounted on damped vibration 
isolators. It runs at 1450 rev/min, and the unit is observed to have a vibration 
amplitude of 0.76 mm. When the unit is disturbed at standstill, it is found that 
the resulting damped oscillations have a frequency of 23 Hz and a decay factor 
of 15. 
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Find (a) the coefficient of viscous damping, (b) the magnitude of the exciting 
force at the normal running speed, and (c) the amplitude of the forced vibration 
if damping were not present. 

23. A piston is made to reciprocate in a vertical cylinder with absolute motion 
X ,  cos vt. The cylinder, of mass 2 kg, is attached to a platform of negligible 
mass and supported by springs of total stiffness 5 kN/m. 

If the viscous drag between the piston and cylinder is characterized by the 
coefficient c = 200 N s/m, find the amplitude X ,  of the absolute motion of the 
cylinder, and its pha.se angle with respect to the piston motion. Take 
X ,  = 0.025 m and v = 25 rad/s. 

24. A machine of mass 520 kg produces a vertical disturbing force which oscillates 
sinusoidally at a frequency of 25 Hz. The force transmitted to the floor is to 
have an amplitude, at this frequency, not more than 0.4 times that of the 
disturbing force in the machine, and the static deflection of the machine on its 
mountings is to be as small as possible consistent with this. 

For this purpose, rubber mountings are to be used, which are available as 
units, each of which has a stiffness of 359 kN/m and a damping coefficient of 
2410 N s/m. How many of these units are needed? 

25. A fan is mounted on a spring and viscous damper in parallel so that only linear 
motion in the vertical direction occurs. 

Briefly derive an expression for the force transmitted to the ground through 
the spring and damper if the fan generates an harmonic disturbing force in the 
vertical direction. 

Given that the fan has a mass of 40 kg and a rotating unbalance of 0.01 kg m, 
determine the spring stiffness required for 10% force transmission. Take the 
damping ratio of the system to be 0.2 and the fan speed as 1480 rev/min. 

When running under these conditions what effect on the transmission would 
removal of the damping element have? 

26. The basic element of many vibration-measuring devices is the seismic unit, which 
consists of a mass m supported from a frame by a spring of stiffness k in parallel 
with a damper of viscous damping coefficient c. The frame of the unit is attached 
to the structure whose vibration is to be determined, the quantity measured 
being z ,  the relative motion between the seismic mass and the frame. The motion 
of both the structure and the seismic mass is translation in the vertical direction 
only. 

Derive the equation of motion of the seismic mass, assuming that the structure 
has simple harmonic motion of circular frequency v, and deduce the steady state 
amplitude of z. 

Given that the undamped natural circular frequency o of the unit is much 
greater than v, show why the unit may be used to measure the acceleration of 
the structure. 

Explain why in practice some damping is desirable. 
If the sensitivity of the unit (that is, the amplitude of z as a multiple of the 

amplitude of the acceleration of the frame) is to have the same value when 
v = 0.2 o, as when v -@ o find the necessary value of the damping ratio. 
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27. A machine of mass 940 kg produces a vertical disturbing force which oscillates 
sinusoidally, having an amplitude of 320 N at the machine’s normal running 
speed of 550 rev/min. At this speed the force transmitted to the floor is to have 
an amplitude of not more than 100 N, and to achieve this the machine is to be 
mounted on viscously damped springs. The static deflection of the spring 
mountings is to be not more than 15 mm, and the amplitude of vibration at 
resonance is to be kept as low as possible. 

Find (a) the total spring stiffness and total viscous damping coefficient which 
will enable these conditions to be satisfied, and (b) the resonance speed of the 
machine when such mountings are fitted. 

28. The vibration of the floor of a laboratory is found to be simple harmonic motion 
at a frequency in the range 15 -60 Hz (depending on the speed of some nearby 
reciprocating plant). It is desired to install in the laboratory a sensitive instrument 
which requires insulating from the floor vibration. The instrument is to be 
mounted on a small platform which is supported by three similar springs resting 
on the floor, arranged to carry equal loads; the motion is restrained to occur 
in a vertical direction only. The combined mass of the instrument and the 
platform is 40 kg: the mass of the springs can be neglected, and the equivalent 
viscous damping ratio of the suspension is 0.2. 

Calculate the maximum value for the spring stiffness if the amplitude of the 
transmitted vibration is to be less than 10% of that of the floor vibration, over 
the given frequency range. 

29. A new concert hall is to be protected from the ground vibrations from an adjacent 
highway by mounting the hall on rubber blocks. The predominant frequency 
of the sinusoidal ground vibrations is 40 Hz, and a motion transmissibility of 
0.1 is to be attained at that frequency. 

Calculate the static deflection required in the rubber blocks, assuming that 
these act as linear, undamped springs. 

30. A galvanometer consists of a coil and mirror assembly suspended on a torsional 
spring in a fixed enclosure filled with a liquid which gives viscous damping. The 
moment of inertia of the moving part about its axis of rotation is 2 x kg m2, 
the spring stiffness is 0.0116 N m/rad, and the damping coefficient is 
5.29 x N m s/rad. 

Find the natural frequency of the galvanometer, and the amplitude and phase 
errors in its indication, when supplied with a sinusoidal input signal at a 
frequency of 100 Hz and amplitude 100 mA. 

31. The figure shows the essential elements of an instrument for recording vibrations, 
which consist of a frame A with a vertical pillar and light rod that pivots about 
a horizontal axis passing through the pillar at 0. The rod has a concentrated 
mass rn attached to its free end and is held in a horizontal position by a spring 
of stiffness K ,  while its vibrations are damped by a viscous damper whose 
damping coefficient is C. 

If the frame of the instrument is given a vertical displacement a sin vt, consider 
the rotation of the rod about 0 and derive an equation for the maximum 
amplitude of the relative, steady-state, vertical displacements between the mass 
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m and the frame in terms of the given quantities and the natural frequency of 
the free vibrations of the instrument. 

32. The figure shows, diagrammatically, a trailer which is towed at a constant 
velocity t' along a test track with a sinusoidal surface. The trailer has a mass 
M and is connected by springs of total stiffness K to the wheels which have a 
total mass m. The wavelength of the track surface is L and the amplitude of its 
undulations is h. 

Derive an equation for the force exerted by the wheels on the track surface 
in terms of the given quantities, assuming that the only relative motion between 
the trailer and the wheels is in a vertical direction and that the diameter of the 
wheels is small compared with the undulations of the track. 

33. A two-wheeled trailer of sprung mass 700 kg is towed at 60 km/h along an 
undulating straight road whose surface may be considered sinusoidal. The 
distance from peak to peak of the road surface is 30 m and the height from 
hollow to crest 0.1 m. The effective stiffness of the trailer suspension is 60 kN/m, 
and the shock absorbers which provide linear viscous damping are set to give 
a damping ratio of 0.67. 

Assuming that only vertical motion of the trailer is excited, find the absolute 
amplitude of this motion and its phase angle relative to the undulations. 
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34. A wooden floor, 6 m by 3 m, is simply supported along the two shorter edges. 
The mass is 380 kg and the static deflection at the centre under the self-weight 
is 7 mm. It is proposed to determine the dynamic properties of the floor by 
dropping a sand bag of 50 kg mass on it at the centre, and to measure the 
response at that position with an accelerometer and a recorder. 

(a) the frequency of the fundamental mode of vibration which would be recorded; 
(b) the number of oscillations at the fundamental frequency for the signal 

amplitude on the recorder to be reduced to half, assuming a loss factor of 
0.05; and 

(c) the height of drop of the sand bag so that the dynamic deflection shall not 
exceed 10 mm, and the corresponding maximum acceleration. 

35. An instrument is supported by a spring and viscous damper in parallel so that 
only linear motion in the vertical direction occurs. 

Briefly derive an expression for the force transmitted to the support through 
the spring and damper, if the instrument generates an harmonic disturbing force 
F sin vt  in the vertical direction. 

If the mass of the instrument is 7 kg, the damping ratio of the system is f and 
the frequency of the disturbing force is 50 Hz determine the spring stiffness 
required for only 10 per cent force transmission to the support. Find also the 
value of the viscous damping coefficient. 

In order to select the instruments required, estimate: 

6.2 SYSTEMS HAVING MORE THAN ONE DEGREE OF FREEDOM 

36. A turbine rotor with mass moment ofinertia 12 kg mz is connected to a generator 
by a straight shaft of length 1 m and torsional stiffness 600 kN m/rad. The 
generator armature has a mass moment of inertia of 5 kg m2. Calculate the 
natural frequency of free torsional oscillation of the system and give the mode 
shape. Ignore damping. 

37. A tractor and a trailer have masses of lo00 kg and 500 kg respectively. They 
are connected by a coupling which consists of two springs in series, one spring 
having a stiffness of 200 kN/m and the other of 50 kN/m; there is negligible 
damping. 

Find the frequency of free, small amplitude, longitudinal oscillations of the 
system when the tractor and trailer are in line and on a horizontal surface. 
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38. To analyse the vibrations of a two-storey building it is represented by the lumped 
mass system shown, where m, = Tm, and k ,  = $k ,  ( k ,  and k ,  represent the 
shear stiffnesses of the parts of the building shown). 

Calculate the natural frequencies of free vibrations and sketch the correspond- 
ing mode shapes of the building, showing the amplitude ratios. 

If a horizontal harmonic force F ,  sin vt is applied to the top floor, determine 
expressions for the amplitudes of the steady state vibration of each floor. 

1 

39. The rigid beam shown in its position of static equilibrium in the figure has a 
mass m and a mass moment of inertia 2ma2 about an axis perpendicular to the 
plane of the diagram and through its centre of gravity G. 

Assuming no horizontal motion of G, find the frequencies of small oscillations 
in the plane of the diagram and the corresponding positions of the nodes. 
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The figure shows a car mounted on its springs which are constrained so that 
the centre of gravity of the car G can move only vertically. The car has a mass 
1 1 1  and a radius of gyration K O  about an axis through G normal to the plane 
of the figure. The rear springs have a total stiffness k, and are at a distance a 
from G and the front springs have a total stiffness k, and are at a distance b 
from G. 

Derive an equation for the natural frequencies of the vibrations of the car in 
terms of the natural frequencies of pure vertical, or bounce, vibrations and of 
pure rotational, or pitch, vibrations and the other parameters of the system. 

Show that when there is no coupling between the bounce and pitch modes 
of vibration the natural frequencies in bounce and pitch are equal. 

41. A vehicle has a mass of 2000 kg and a 3 m wheelbase. The mass moment of 
inertia about the centre of mass is 500 kg m2, and the centre of mass is located 
1 m from the front axle. 

Considering the vehicle as a two degree of freedom system, find the natural 
frequencies and the corresponding modes of vibration, if the front and rear 
springs have stiffnesses of 50 kN/m and 80 kN/m respectively. 

The expansion joints of a concrete road are 5 m apart. These joints cause a 
series of impulses at equal intervals to vehicles travelling at a constant speed. 
Determine the speeds at which pitching motion and up and down motion are 
most likely to arise for the above vehicle. 
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42. A film reel is driven by a tightly wound helical spring stretched round two 
grooved pulleys, as shown. The pulleys 1 and 2 have radii rI  and r 2 ,  angular 
displacements 8, and e,, and moments of inertia about their axes of rotation 
I ,  and I,, respectively. The stiffness of each unsupported section of the spring is k .  

Derive an expression for the natural frequency of small amplitude free 
oscillations of the system. Assume that there is no damping and note that during 
oscillation r ,O,  + r202.  

43. A small electronic package is supported by springs as shown. The mass of the 
package is m, each spring has a constant axial stiffness k,  and damping is 
negligible. 

Considering motion in the plane of the figure only, and assuming that the 
amplitude of vibration of the package is small enough for the lateral spring 
forces to be negligible, write down the equations of motion and hence obtain 
the frequencies of free vibration of the package. 

Explain how the vibration mode shapes can be found. 

44. Explain, in one sentence each, what is meant by a natural frequency and mode 
shape of a dynamic system. 

45. Part of a machine can be modelled by the system shown. Two uniform discs A 
and B, which are free to rotate about fixed parallel axes through their centres, 
are coupled by a spring. Similar springs connect the discs to the fixed frame as 
shown in the figure. Each of the springs has a stiffness of 2.5 kN/m which is 
the same in tension or compression. Disc A has a mass moment of inertia about 
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its axis of rotation of 0.05 kg m2, and a radius of 0.1 m, whilst for the disc B 
the corresponding figures are 0.3 kg m2 and 0.2 m. Damping is negligible. 

Determine the natural frequencies of small amplitude oscillation of the system 
and the corresponding mode shapes. 

46. Briefly derive the equations which describe the operation of an undamped 
dynamic vibration absorber. 

A milling machine of mass 2700 kg demonstrates a large resonant vibration 
in the vertical direction at a cutter speed of 300 rev/min when fitted with a 
cutter having 20 teeth. To overcome this effect it is proposed to add an undamped 
vibration absorber. 

Calculate the minimum absorber mass and the relevant spring stiffness 
required if the resonance frequency is to lie outside the range corresponding to 
a cutter speed of 250 to 350 rev/min. 

47. In a pumping station, a section of pipe resonated at a pump speed of 120 rev/min. 
To eliminate this vibration, it was proposed to clamp a spring-mass system 
to the pipe to act as an absorber. In the first test, an absorber mass of 2 kg 
tuned to 120 cycle/min resulted in the system having a natural frequency of 96 
cycle/min. 

If the absorber system is to be designed so that the natural frequencies lie 
outside the range 85 - 160 cycle/min, what are the limiting values of the absorber 
mass and spring stiffness? 

48. A certain machine of mass 300 kg produces an harmonic disturbing force 
F cos 15t. Because the frequency of this force coincides with the natural frequency 
of the machine on its spring mounting an undamped vibration absorber is to 
be fitted. 

If no resonance is to be within 10% of the exciting frequency, find the minimum 
mass and corresponding stiffness of a suitable absorber. Derive your analysis 
from the equations of motion, treating the problem as one-dimensional. 

49. A machine tool of mass 3000 kg has a large resonant vibration in the vertical 
direction at 120 Hz. To control this resonance, an undamped vibration absorber 
of mass 600 kg is fitted, tuned to 120 Hz. 

Find the frequency range in which the amplitude of the machine vibration is 
less with the absorber fitted than without. 
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50. The figure shows a body of mass m, which is supported by a spring of stiffness 
k ,  and which is excited by an harmonic force P sin vt .  An undamped dynamic 
vibration absorber consisting of a mass m, and a spring of stiffness k ,  is attached 
to the body as shown. 

Derive an expression for the amplitude of the vibrations of the body. 
The body shows a violent resonance at 152 Hz. As a trial remedy a vibration 

absorber is attached which results in a resonance frequency at 140 Hz. How 
many such absorbers are required if no resonance is to occur between 120 and 
180 Hz? 

51. (i) Show that the frequency at which an undamped vibration absorber is most 
effective (0,) is given by the expression 

(where ma and k ,  are the mass and stiffness of the added absorber system) 
and is therefore independent of the properties of the system to which the 
absorber has been added. Also, derive an expression for the steady-state 
amplitude of the absorber mass when the system is being driven at its natural 
frequency 0,. 

(ii) In order to suppress vibration, a vibration absorber system is to be attached 
to a machine tool which operates over a range of speeds. The design of the 
absorber is chosen to be a light beam, which is rigidly fixed at one end to 
the machine tool, and a mass, which may be clamped at various positions 
along the length of the beam so as to tune the absorber to a required 
frequency. 

Given that the beam is made of aluminium which has a Young's Modulus 
of 70 GN/mZ and is of square section, 60 x 60 mm, and the absorber mass 
is 25 kg, calculate the minimum length of the beam required for the absorber 
to function over the frequency range 40-50 Hz. Ignore the mass of the 
beam itself. 
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Also, calculate how far from the fixed end of the beam the mass would have 
to be clamped in order to tune the absorber to the maximum frequency of its 
range of operation. 

52. A machine of mass M produces an harmonic disturbing force at a frequency 
which coincides with the natural frequency of the machine on its spring mounting. 
A vibration absorber is to be fitted such that no resonance is to be within 20 
per cent of the exciting frequency. Find the minimum mass of a suitable absorber. 

53. The figure shows a steel shaft which can rotate in frictionless bearings, and 
which has three discs rigidly attached to it in the positions shown. Each of the 
three discs is solid, uniform, and of diameter 280 mm. The modulus of rigidity 
of the shaft material is 83 GN/m2, and the density of the discs is 7000 kg/m3. 

Find the frequencies of free torsional vibrations of the system. 

54. An aeroplane has a fuselage mass of 4000 kg. Each wing has an engine of mass 
500 kg, and a fuel tank of mass 200 kg at its tip, as shown. 

Neglecting the mass of each wing, calculate the frequencies of flexural vibration 
in a vertical plane. Take the stiffness of the wing sections to be 3k and k as 
shown, where k = 100 kN/m. 
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55. A manufacturer of delicate equipment ships his products, which have a mass m, 
by fitting them with a spring mounting of stiffness k. It is found that damage 
to the equipment is caused by large amplitude vibrations in the vertical direction. 
A special packing is therefore considered. The packing case, of mass m, is 
supported on a spring mounting of stiffness k; two pieces of equipment, each 
of mass m, are supported within the case by three springs each of stiffness k, as 
shown (idealized). 

Considering vibrations in the vertical direction only, find the natural frequen- 
cies of this system and hence comment on its suitability. 
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56. A marine propulsion installation is shown in the figure. For the analysis of 
torsional vibration, the installation can be modelled as the system shown, where 
the mass moments of inertia for the engine, gearbox, and propeller taken about 
the axis of rotation are I,, I , ,  and I ,  respectively, and the stiffnesses of the 
gearbox and propeller shafts are k ,  and k ,  respectively. The numerical values are 

I ,  = 0.8 kg m2, 
I ,  = 0.3 kg m2, 
I ,  = 2.0 kg m2, 

k ,  = 400 kNm/rad, 
k ,  = 120 kNm/rad, 

and damping can be neglected. 

positions of the node for each frequency. 
Calculate the natural frequencies of free torsional vibration and give the 
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57. A machine is modelled by the system shown. The masses of the main elements 
are m, and m2,  and the spring stiffnesses are as shown. Each roller has a mass 
m, diameter d ,  and mass moment of inertia J about its axis, and rolls without 
slipping. 

Considering motion in the longitudinal direction only, use Lagrange’s 
equation to obtain the equations of motion for small free oscillations of the 
system. Given that m, = 4m, m2 = 2m, and J = md2/8, deduce the natural 
frequencies of the system and the corresponding mode shapes. 
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58. A simplified model for studying the dynamics of a motor vehicle is shown. The 
body has a mass M and a moment of inertia about an axis through its mass 
centre of I,. It is considered to be free to move in two directions: vertical 
translation, and rotation in the vertical plane. Each of the unsprung wheel 
masses, m, is free to move in vertical translation only. Damping effects are 
ignored. 
(a) Derive equations of motion for this system. Define carefully the coordinates 

used. 
(b) Is it possible to determine the natural frequency of a ‘wheel hop’ mode 

without solving all the equations of motion? If not, suggest an approximation 
which might be made in order to obtain an estimate of the wheel hop 
frequency and calculate such an estimate given the following data: 

k = 20 kN/m; K = 70 kN/m; m = 22.5 kg. 
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59. To analyse the vibration of a two-coach rail unit, it is modelled as the system 
shown. Each coach is represented by a rigid uniform beam of length I and mass 
in: the coupling is a simple ball-joint. The suspension is considered to be three 
similar springs, each of stiffn'ess k,  positioned as shown. Damping can be 
neglected. 

Considering motion in the plane of the figure only, obtain the equations of 
motion for small amplitude free vibrations and hence obtain the natural 
frequencies of the system. 

Explain how the mode shapes may be found. 

60. A structure is modelled by three identical long beams and rigid bodies, connected 
by two springs as shown. The rigid bodies are each of mass M and the mass 
of the beams is negligible. Each beam has a transverse stiffness K at its 
unsupported end, and the springs have stiffness k and 2k as shown. 

Determine the frequencies and corresponding mode shapes of small amplitude 
oscillation of the bodies in the plane of the figure. Damping can be neglected. 
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61. A tractor and trailer, each of mass M ,  are shown idealized in the figure. The 
trailer carries a heavy cylindrical drum of mass $M and radius r ;  the drum can 
roll without slipping on the trailer. Both the tractor/trailer coupling and the 
trailer/drum attachment have a stiffness K. 

Considering motion in the longitudinal (fore and aft) direction only, use 
Lagrange’s equation to obtain the equations of motion for small free oscillations 
of the system. Hence deduce the natural frequencies of the system and the 
corresponding mode shapes. 

62. Part of a structure is modelled by the triple pendulum shown. 
Obtain the equations of motion of small amplitude oscillation in the plane 

of the figure by using the Lagrange equation. Hence determine the natural 
frequencies of the structure and the corresponding mode shapes. 
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63. Vibrations of a particular structure can be analysed by considering the equivalent 
system shown. The bodies are mounted on small frictionless rollers whose mass 
is negligible, and motion occurs in a horizontal direction only. 

Write down the equations of motion of the system and determine the frequency 
equation in determinant form. Indicate how you would (a) solve the frequency 
equation, and (b) determine the mode shapes associated with each natural 
frequency. 

Briefly describe how the Lagrange equation could be used to obtain the 
natural frequencies of free vibration of the given system. 

64. A simply supported beam of negligible mass and of length I ,  has three bodies 
each of mass m attached as shown. The influence coefficients are, using standard 
notation. 

z l l  = 313/256 EI  
z21 = 3.6113/256 E l  

5~~~ = 2.3313/256 EI 
a’2 = 5.3313/256 E I .  

Write down the flexibility matrix, and determine by iteration the frequency 
of the first mode of vibration, correct to 2 significant figures, if EI  = 10 Nm’, 
m = 2 kg, and 1 = 1 m. 

Comment on the physical meaning of the eigenvector you have obtained, and 
use the orthogonality principle to obtain the frequencies of the higher modes. 
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65. Find the dynamic matrix of the system shown. Given that k = 20 kN/m and 
m = 5 kg, find the lowest natural frequency of the system and the associated 
mode shape. 

66. Define the term degree of freedom and explain the terms normal mode of vibration 
and natural frequency as applied to systems which have more than one degree 
of freedom. 

67. Define the terms direct receptance and cross receptance, and explain how the 
receptance technique can be used in the analysis of complex dynamic systems. 

68. Many dynamic systems are excited by time-dependent quantities which are not 
harmonic, yet harmonic frequency response methods are sometimes used in the 
analysis of the response of such systems. How, and under what conditions, can 
this be justified? 

69. All real mechanical systems possess damping and yet, in the vibration analysis 
of such systems, damping is often neglected. 

Why is this done, and how is it justified? 
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70. A structure is modelled by the three degree system shown. Only translational 
motion in a vertical direction can occur. 

Show that the influence coefficients are 
1 x l l  = x~~ = x~~ = y k  

x~~ = r 3 ,  = x~~ = qk, 
and 

1 

and proceed to find the flexibility matrix. Hence obtain the lowest natural 
frequency of the system and the corresponding mode shape. 
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71. Find the driving point impedance of the system shown. The bodies move on 
frictionless rollers in a horizontal direction only. 

Hence show that the amplitude of body 1 is 

~ ( ( 7 2  000 + 2620~2 + 0.2~412 + (2oV3)2) 
F.  

v2(0.04v4 + 1224v2 + 32400) 
72. 

Find the driving point mobility of the system shown; only motion in the vertical 
direction occurs, and damping is negligible. Hence obtain the frequency equation: 
check your result by using a different method of analysis. 
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73. The receptance at a point in a structure is measured over a frequency range, 
and it is found that a resonance occurs in the excitation range. It is therefore 
decided to add an undamped vibration absorber to the structure. 

Sketch a typical receptance-frequency plot for the structure, and by addmg the 
receptance plot of an undamped vibration absorber, predict the new natural 
frequencies. Show the effect of changes in the absorber mass and stiffness, on the 
natural frequencies, by drawing new receptance - frequency curves for the absorber. 

SYSTEMS WITH DISTRIBUTED MASS AND ELASTICITY 
74. The figure shows the model of a system consisting of an engine, a propeller and 

a shaft connecting them. The effective moments of inertia of the engine, propeller 
and shaft about the common axis of rotation are I, ,  I ,  and I,, respectively. The 
shaft has a polar second moment of area J about the axis of rotation and the 
material from which it is made has a modulus of rigidity G. The other components 
of the system may be considered rigid and damping to be negligible. 

During free torsional oscillations of the system a node occurs along the shaft at 
a distance d from the disc representing the engine. Derive expressions for the natural 
frequency of the system and for the distance d in terms of the given quantities. 

6.3 

75. A uniform bar of length 1 is rigidly fixed at one end and is free at the other. 
Show that the frequencies of longitudinal vibration are 

(n + 4) c Hz f =  - 
21 

where c is the velocity of longitudinal waves ( E / p )  in the bar, and n = 0,1,2,. . . . 
76. A solid steel shaft, 25mm in diameter and 0.45m long, is mounted in long 

bearings in a rigid frame at one end and has at its other end, which is unsupported, 
a steel flywheel. The flywheel can be treated as a rim 0.6 m in outer diameter 
and 20 mm square cross-section, with rigid spokes of negligible mass lying in 
the mid-plane of the rim. 

Find the frequency of free flexural vibrations. 
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77. A uniform horizontal steel beam is built in to a rigid structure at one end and 
pinned at the other end; the pinned end cannot move vertically but is otherwise 
unconstrained. The beam is 8 m long, the relevant flexural second moment of 
area of a cross-section is 4.3 x lo6 mm4, and the beam’s own mass together 
with the mass attached to the beam is equivalent to a uniformly distributed 
mass of 600 kg/m. 

Using a combination of sinusoidal functions for the deflected shape of the 
beam, estimate the lowest natural frequency of flexural vibrations in the vertical 
plane. 

78. In the figure, the bearings at each end of the shaft allow the shaft to tilt freely; 
the shaft is uniform, of material having a Young’s modulus E,  and with a flexural 
second moment of area I,. The two discs, each having a mass in and a diametral 
mass moment of inertia I ,  are rigidly attached to the shaft in the positions shown. 

Neglecting the mass of the shaft, estimate the lowest frequency of free flexural 
vibrations when the shaft is not rotating. 

79. Part of the cooling system in a generating station consists of a steel pipe 80 mm 
in outer diameter, 5 mm thick, and 4 m long. The pipe may be assumed to be 
built in at each end so that the static deflection y at a distance x from one end 
of the pipe of length 1 is given by 

y = -  mg x2(I - x)2, 
24 E l  

where in is the mass per unit length. 
Calculate the lowest natural frequency of transverse vibration of the pipe 

when full of liquid having a density of 930 kg/m3. Take the density of steel as 
7750 kg/m3 and E as 200 GN/m2. 
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80. A uniform horizontal beam, made of steel having Young’s modulus equal to 
207 GN/mZ, is supported as shown. The beam is rigidly built into a fixed support 
at A, and is free to rotate, but not to move vertically, at B. A mass of 560 kg 
is attached to the beam at C. The relevant flexural second moment of area of 
the beam is 2.2 x m4, and the beam’s own mass and the load on it 
(excluding the mass at C )  are equivalent to a uniformly distributed mass, moving 
with the beam, of 600 kg/m. 

Use Rayleigh’s method to estimate the lowest natural frequency of flexural 
vibrations in the vertical plane. 

81. Derive the frequency equation for flexural vibration of a uniform beam which 
is pinned (simply supported) at  one end and free at the other. 

Show that the fundamental mode of vibration has a natural frequency of zero 
and explain the physical significance of this mode. 

Obtain an approximate value for the natural frequency of the first bending 
mode of vibration and compare this with the corresponding value for a beam 
which is rigidly clamped at one end and free at the other. 

82. A rotor of mass 90 kg is fixed at the mid-point of a shaft 1.8 m long. The ends 
of the shaft are freely supported in self-aligning bearings. Given that 
E l  = 10.8 GN/mZ for the shaft, and the motion is undamped, calculate the 
whirling speed. 

Damage to the rotor will occur if the amplitude of the axis of rotation of the 
rotor whilst running exceeds twice its eccentricity. Find the speed range which 
must be avoided in the absence of other restraints. 

6.4 CONTROL SYSTEMS 

83. Discuss the merits of open loop and closed loop control systems. 
84. Draw block diagrams to represent 

(a) a system for automatically dipping the headlights of a motor car when 

(b) a servomechanism which could be used to assist the steering of a motor car. 
85. For the hydraulic servo shown in Fig. 5.25, find the value of xo as a function 

of time following a sudden change in xi of magnitude X .  

approaching an oncoming vehicle, and 
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86. Find the transfer function xo/xi  for the hydraulic servo shown 

87. The temperature of a heat source is continuously monitored on a remote recorder 
where the rate of change of the indicated temperature at any instant is 
proportional to the difference between the real and recorded temperature. 

Show that the system can be described by a simple first order transfer function, 
and define the time constant required to achieve a steady state error of 1°C 
when the source temperature increases by 3°C per second. 

88. A spool valve controls the flow of oil to a ram driving a load as shown below. 

Given that 

Qo is the flow through the valve per unit valve opening, 
V, is the volume of oil in the system, 
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K is the bulk modulus of the oil, 
M is the mass of the load, 
A is the cross-sectional area of the ram, and 
Lis the leakage coefficient, 

derive the T F  for the system when the actuator (ram) position is fed back to 
the valve by means of a 1:l linkage. 

89. A simple position control system contains the following elements: 
a device to produce a signal proportional to the difference at any instant 

a linear amplifier; and 
a motor which exerts a torque proportional to the input signal to the motor 

The object whose position is to be controlled has a constant inertia I and is 
supported in a fixed frame by bearings which exert viscous damping of coefficient 

between the desired and actual positions; 

L. 

Draw a block diagram showing how these elements can be arranged to perform 
the intended function, and show the appropriate transfer function in each block. 
Find, in terms of I and c, the value of the factor relating the motor torque to 
the error signal which will ensure that when a step displacement is required the 
first overshoot will be one tenth the magnitude of the step. 

90. The position of a gun turret, having a constant inertia J and rotating in bearings 
which give a viscous damping coefficient c, is to be controlled by an electric 
servo system which consists essentially of 
(a) a potentiometer to give a voltage proportional to the position demanded, 
(b) a second potentiometer to give a voltage proportional to the position 

(c) an amplifier which produces an output voltage proportional to the difference 

(d) a motor which exerts a torque proportional to the voltage applied to it. 
Draw a block diagram (not an electrical circuit diagram) showing how these 

elements would be arranged to give a working system, and show in each block 
the appropriate transfer function. 

During tests it is found that the steady-state response to a constant velocity 
input is acceptable, but that when a step displacement input is applied the first 
overshoot is larger than desired. 

Show, by adding to the block diagram and solving the relevant equations, 
that by adding to the amplifier input a signal proportional to the rate of change 
of the error, the overshoot to a step displacement input can be reduced without 
changing the steady-state response to a constant velocity input. 

91. With reference to a position servo having linear characteristics, state the essential 
features of (a) output velocity feedback, (b) derivative of error control, and (c) 
integral of error control. State what kind of error can be eliminated by the use 
of each method. 

A linear position control system has an amplifier-plus-motor constant of k,  
an inertia I ,  and viscous damping (in fixed bearings) c. An integral of error 

achieved at any instant, 

at any instant between these two voltages (that is, the error), and 
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signal is to be added to the error signal before amplification. 
Find the value of the constant by which the integral signal is multiplied which 

would make the system unstable. 
92. A simple angular position control system contains a device to produce a signal 

proportional to the difference at any instant between the desired and actual 
positions, a linear amplifier, and a motor which exerts a torque proportional 
to the input signal to the motor. The load whose position is to be controlled 
has a constant mass moment of inertia I about its axis of rotation and is 
supported in a fixed frame by bearings which exert viscous damping of coefficient 

Draw a block diagram showing how these elements can be arranged to perform 
the intended function, and show the appropriate transfer function in each block. 

In a particular case for which J = 100 kg m2 and c = 50 N m s/rad, when a 
step input is applied to the system whilst at rest the first overshoot is to be one 
fifth of the magnitude of the step. 

Find the value of the factor which relates the motor torque to the error signal. 
93. The output speed of an experimental turbine is dependent on the angular position 

of a regulator valve controlling the fluid input to the turbine. The angular 
position of the valve is controlled by an electromagnetic device which monitors 
the speed of the output shaft and produces a 2" change in valve position for 
each 1 rad/s change in turbine output speed. Take the fluid input system to be 
well represented by a first-order lag transfer function with a time constant of 
0.2 s, and the inertia and viscous friction of the turbine system to be 5 kg m2 
and 20 N m per rad/s respectively. 

(a) Draw a block diagram of the system and deduce its transfer function, if, 
with the output speed monitor disconnected, the turbine is found to change 
speed by 10 rad/s for a step change in regulator valve position of 5". 

(b) Calculate the frequency and decay rate of the transient response for a step 
change in the regulator valve position. 

(c) Calculate the steady-state error in output speed for an increase in turbine 
load of 200 N m. 

94. The angular position of a large turntable is remotely controlled in 30" steps. At 
present the transient response of the system to the step input is allowed to decay 
to within an acceptable error band before a braking system is applied to lock 
the table in position. The present error-actuated control system consists of a 
potentiometer giving 60 volt/rad error to an amplifier and motor unit working 
at 10 N m/volt. The motor drives the gearbox and turntable which have a total 
moment of inertia of 2400 kg m2 and viscous bearing friction of 48 N m s/rad. 

(a) If an acceptable position error is that the maxima of the error are less than 
f 2 0 %  of the input step, calculate the minimum time elapsed before the 
brake can be applied. 

(b) Velocity feedback is to be employed to improve the response by reducing 
the time elapsed before the brake is applied. Calculate the velocity feedback 
requirements to achieve critical damping, and show that the minimum time 

C. 
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elapsed, before the brake can be applied, is less than f of the time for the 
system without velocity feedback. 

95. A certain servomechanism is required to control the angular position 8, of a 
rotatable load of moment of inertia J .  The rotation of the load is subject to a 
viscous friction torque c per unit angular velocity. The mechanism has velocity 
feedback such that the motor torque is 

where E is the error between the desired angular position input Bi and the output 
position e,, and K ,  and K ,  are constants. 

(a) Draw a block diagram of the system and establish the equation of motion. 
(b) Find the steady-state positional error when the input signal has constant 

velocity given by 

dei 
dt 
- = p. 

(c) When a step input is applied the response overshoot must not exceed 10%. 
Find the minimum value of the damping ratio required, and express this 
ratio in terms of the given parameters. 

96. The angular position do of a turntable is controlled by a servomechanism which 
has positive acceleration feedback. The moment of inertia of the turntable about 
its axis of rotation is 5 kg m2 and the effective viscous damping coefficient is 
10 N m +ad. 

The motor torque is 2 0 ( ~  + kgJ N m where E is the error, in radians, between 
the position of the input, Bi, and the turntable position, e,, and kg, is the 
feedback signal proportional to the acceleration of the turntable. 

(i) Draw a block diagram for the servomechanism and derive its equation of 
motion. 

(ii) If a step input is applied, determine the steady-state error and the 
value of k required for the maximum output overshoot to be 5% of the 
steady-state value, and 

suddenly applied to the turntable. 
(iii) Determine the steady-state position error if an external torque of 5 N m is 

97. A linear remote position control system with negative output feedback consists 
of a potentiometer giving 8V/rad error to an amplifier and motor which applies 
a torque of 3 N m/V to the load. The load has an inertia of 6 kg m2 and viscous 
friction of 12 N m s/rad. 

(i) Draw a block diagram for the system and derive its equation of motion. 
(ii) Calculate the maximum overshoot in the output response to a step input 

of 2 rad. 
(iii) If a tachogenerator is employed to provide negative output velocity 

feedback, derive the new equation of motion and calculate the velocity 
feedback coefficient needed to give critical damping. 
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98. The angular position 8, of a turntable is controlled by a servomechanism which 
has positive acceleration feedback. The moment of inertia of the turntable about 
its axis of rotation is 4.2 kg m2, and the effective viscous damping coefficient is 
4 N m s/rad. The motor torque is given by 

Torque = ((ei - 8,) + 0.28’,)16. 

where 6, is the input position, and 0.20, is the feedback signal proportional to 
the acceleration of the turntable. 

(i) Draw a block diagram for the servomechanism and derive its equation of 
motion. 

(ii) If a step input of 0.2 rad is applied, find the steady-state error, the 
frequency of the transient output oscillation, and the output position 0.5 s 
after the step has been applied. 

99. An angular remote position feedback control system consists of a servomotor 
system, with a linear transfer function of K ,  = 32 N m/rad error, driving a load 
of 0.5 kg m2 which is subjected to a viscous resistance of 1 N m s/rad. 

(a) Sketch the block diagram for the system, derive the closed loop transfer 
function and calculate the steady-state error if the input is increased at a 
constant rate of 2 radJs. 

(b) If a derivative of error controller, with a gain constant of K d ,  is added in 
parallel with K , ,  sketch the new block diagram, calculate the response to 
a step input, and define the value of Kd which will give critical damping. 

(c) Show that when an integral of error controller, with gain constant of Ki, is 
added in parallel with K ,  and K,, the velocity lag is reduced to zero, and 
define the range of K ,  that will allow system stability. 

100. An experimental fuel injection system can be approximated by a transfer function 
in the form: 

Ki 
1 + sT’ 

and forms part of a system designed to control the speed of an engine. Feedback 
is obtained through a speed regulator system which alters the fuel input to the 
injection system by changing the angular position of a control valve. The 
regulator is designed to move the control valve K ,  radians for each rad/s change 
in engine output speed. 

(a) Consider the engine to have inertia J ,  and viscous friction c, and draw a 
block diagram of the system when the input is an initial manual setting of 
the angular position of the control valve e,, and the output is the engine 
speed 8,. Also deduce the system transfer function. 

(b) If the engine is subjected to a step change in Oi, show that the time 
required for the output speed to settle down within +_ 1 % of the step change 
is less than 1s under the following conditions: 
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Ki = 200 N m/rad, 
K ,  = 0.2 rad/(rad/s), 

T =  0.1 s, 
J = 5 kg m2, and 
c = 10 N m +ad. 

increased by 100 N m. 
(c) Calculate the steady-state error in output speed when the engine load is 

101. A ship's rudder has a moment of inertia about its pivot of 370 kg m2. When 
the ship is stationary, rotation of the rudder is resisted by a moment 
MI  = 800 DO, N m, where 8, is the rudder angle in radians measured from 
the straight-ahead position. The position of the rudder is to be controlled by a 
simple servosystem which applies to the rudder a turning moment 
M ,  = k(8, - 8,) N m, where k is a constant and Bi is the rudder angle demanded 
at any instant. 

A step input of 0.1 radian is applied: find the value of k which will make the 
magnitude of the error (ei - 8,) equal to 0.01 radian at the first overshoot. 

When the ship is moving, hydrodynamic forces on the rudder amount to an 
additional moment M ,  = 3500 8, + 700 DO, N m: with the value of k found 
above, and the same step input, find the magnitude of the first overshoot and 
the steady-state error. 

102. The angular position 8, of a turntable is controlled by a servomechanism which 
has acceleration feedback. The turntable has a moment of inertia of 30 kg m2 
and viscous damping of coefficient 20 N m s/rad. The motor torque is 
10(& + k(d28,/dtz)) N m, where E is the error, in radians, between the position 
of the input Oi and the turntable position e,, and k(d28,/dt2) is the feedback 
signal proportional to the acceleration of the turntable. 

(a) Draw a block diagram for the system and derive its equation of motion. 
(b) Find the value of k for the damping to be critical. 
(c) Given that the input to the system is a constant angular velocity, derive an 

expression for the steady-state error. Determine the value of this error when 
the input is 2 revolutions per minute. 

103. A simple linear servomechanism consists of a motor which supplies a torque 
equal to k times the error (8) between input (ei) and output (8,). The motor 
drives a rotational load of mass moment of inertia I and equivalent viscous 
damping coefficient (less than critical) c. 

Draw a block diagram for the mechanism and write down the equation of 
motion. 

In a particular mechanism, I = 80 kg m2, k = 2 kN m/rad error, and 
c = 100 N m s/rad. Given that a step rotation of lo" is applied to the input 
when the mechanism is at rest, find the time to reach zero error the first time, 
the time to reach the first overshoot value, and the magnitude of the first 
overshoot. 

If, when the mechanism is at rest, the input is suddenly rotated at 10 rad/s, 
find the steady state error. How could this be altered to lo"? 



318 Problems [Ch. 6 

104. A linear remote position angular control system with negative output feedback 
consists of a potentiometer giving 16 V/rad error to an amplifier, motor, and 
gearbox system which supplies 3 N m/V to the output shaft. The motor and 
gearbox system has an inertia of 12 kg m2 and viscous friction of 24 N m s/rad. 

(a) Determine the maximum overshoot in the output response to a step input 
of 1 rad. 

(b) If a tachogenerator is employed to improve the response, derive the new 
transfer function and calculate the velocity feedback requirements to achieve 
critical damping. 

105. What is meant by the stability of a dynamic system, and how does an unstable 
system respond to a stimulus? 

106. A root locus diagram is often used to assess the dynamic behaviour of a system. 
What does each line or locus on such a diagram represent, and what aspects 
of the dynamic behaviour does it demonstrate? 

107. For the control system shown in the figure in block diagram form, find the 
OLTF of the equivalent single loop system and sketch the root locus diagram 
for this system if 0 < K ,  < co and K ,  = g. Hence find the maximum value 
of the amplifier gain K ,  for stability. 
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108. The control system for positioning the gun turret of a tank comprises the units 
shown. 

(a) Derive the open- and closed-loop transfer functions. 
(i) if G is constant, and 

(ii) if, to allow for build time of the field current, 

G = G,,/(l + ST,) 

(b) Sketch the root locus for the system in each case, given that c = 10 V/rad/s; 
K O  = 0.2 A/V; K ,  = 1 VJrad; K ,  = 1 kN mJA; J = 400 kg mZ; T, = 0.4 s. 

109. The simple unity feedback control system shown has three elements with 
individual functions as shown. 

(a) Sketch the root locus diagram of this system and determine the maximum 

(b) Find a value of K such that the closed loop system has a complex conjugate 
value of the amplifier gain K for stability. 

pole pair with damping factor 0.5. 
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110. The block diagram of a certain position control system is shown. Both the input 
and output potentiometers have a gain K: the gain of the amplifier is G. 

Simplify the system to one having a single unity feedback loop, and find the 
open loop transfer function. 

By sketching the root locus diagram for this system, determine the maximum 
value of G for stability. 

111. The main elements of a position control system are shown in the block diagram. 
The input and output potentiometers each have a gain K, and the gain of the 
amplifier is G. 

Find the open loop transfer function of the equivalent single loop system, and 
sketch the root locus diagram for this system. Hence determine the limiting 
value of the product GK for stability. 
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112. In a simple unity feedback control system the elements have individual functions 
as given in the figure below. 

(a) Sketch the root locus diagram of this system for all positive values of the 
amplifier gain K ,  and determine the range of values for K for stability. 

(b) Confirm this range of values by applying the Routh-Hurwitz criterion. 
(c) Find the damping ratio of the system response when K = 0.3. 

113. A dynamic system with overall gain K has an open loop transfer function 

K 
s(l + 0.1 sK1 + 0.05 s)' 

Draw the root locus diagram as K increases to infinity. Find K,,,, which is 
the maximum value K can have for the system to be stable, and the corresponding 
frequency of oscillation. Confirm the value of K,,, by using the Routh - Hurwitz 
criterion. 

The system can be modified by adding derivative action of time constant 0.5 s. 
Comment on the stability of the modified system, and find the system oscillation 
frequency and damping factor when K = K,,,. 

114. A certain controlled process can be represented by the system shown. The transfer 
function of the process is 

10 
(1 + 0.2 ~ ) ~ ( 1  + 0.05 s)' 

and the controller has a transfer function G(s). The input to the controller is the 
error signal (0, - e,,). 
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(a) Given that G(s) = K, sketch the root locus diagram for the system as K 
increases to infinity, and find the maximum value of K for the system to be 
stable, and the corresponding frequency of oscillation. 

(b) The system is modified by using a new controller with 
G(s) =r K(l  + 0.2 s)/(l + 0.02 s). Sketch the root locus diagram for the 
modified system as K increases to infinity, and briefly compare its perform- 
ance with the original system when K > 0. 

(c) Find the maximum value of K for the modified system to be stable, and 
check this result using the Routh - Hurwitz criterion. 

1 1  5. The main elements of a position control system are shown in the figure. Both 
the input and output potentiometers have a gain K, and the gain of the amplifier 
is G. 

(a) Simplify the system to one having a single unity feedback loop and find the 
open loop transfer function. 

(b) Sketch the root locus diagram for this system and hence find the maximum 
value of GK for the system to be stable. 

(c) Confirm the result of part (b) by using the Routh-Hurwitz method and 
comment on the disadvantages of this method when compared to graphical 
methods such as root locus. 

116. In a simple control system, feedback is used to maintain near-constant speed 
of an engine under varying load conditions. The system is shown in block 
diagram form. 

The governor has proportional gain k , ,  and the engine speed is sensed by an 
electrical tachometer with a first-order transfer function; the engine can be 
described by a second-order transfer function. 
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(a) Write down the open loop transfer function of the system, and put 

(b) Sketch the root locus diagram for the system for values of K > 0, and 
determine the maximum value of K for stability. Confirm your answer by 
using the Routh - Hurwitz method. 

(c) Find the value of K when complex conjugate roots exist whose real part is 
-0.7, and find the damping ratio i of the system with this gain. 

K = k , k , k , .  

117. A position control system is shown in block diagram form below. 

(a) Use the Routh - Hurwitz criterion to find the maximum value of gain K for 
stability. 

(b) Because this value of K is too low for the application, a compensating 
subsystem with transfer function (s + l)/(s + 10) is to be inserted in the 
forward feed of the system. 

Sketch the root locus diagram of the modified system for all values of the 
gain K ,  and find the range of value K can have for stability. 

If the damped natural frequency of the system response is 1 rad/s, estimate 
the damping ratio. 

118. Given the open loop transfer function of a dynamic system, explain how you 
would construct a Nyquist frequency response diagram. How would you 
determine from this diagram whether the system was stable or not? 

119. A control system has an open loop transfer function given by 

K 
@o(s) = (s + 1)(s2 + 5s + 6)'  

where K is an unspecified gain constant. 

(a) Derive an expression for the overall or closed loop transfer function, @.,(s). 
(b) For the particular case of K = 90, sketch the Nyquist frequency response 

diagram for the open-loop transfer function of this system and thus determine 
whether or not the system is stable. 

(c) Hence, or otherwise, determine the range of values of K for which the system 
is stable. 

120. A control system has an open loop transfer function 

1 
@o(s) = s( 1 + sH1 + 2s). 
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Sketch the Nyquist frequency response diagram for O0(s), comment on the 
stability of the system, and calculate the gain margin. 

The system is modified by adding to the open loop derivative action with a 
time constant of 3 s. Write down the open loop transfer function of the modified 
system, and hence sketch the Nyquist frequency response diagram. Comment 
on the stability of the modified system. 

121. A unity feedback control system has the following closed loop transfer function 

K 
s(1 + s q 2  + K '  

(a) Sketch the loop frequency response diagram and with T= 0.25 s use the 
Nyquist stability criterion to determine the upper limit of gain constant K 
for system stability. 

(b) Using the Routh-Hurwitz method, confirm the upper limit of K and 
determine the lower limit. 

(c) If T =  0.1 s and K = 5, determine the closed loop frequency and magnitude 
at a phase lag of 90". 

(d) Under the conditions of (c), determine the gain margin. 

controller as shown. 
122. A process is controlled by adding negative feedback through an integral action 

(a) Sketch the Nyquist frequency response diagram for the open loop transfer 

(b) The system is modified by adding proportional action so that the controller 

Sketch the Nyquist frequency response diagram for the OLTF of the 

function (OLTF) of the system, and comment on the stability. 

transfer function becomes 5(s + l)/s. 

modified system, comment on the stability and calculate the gain margin. 
123. A control system has an open loop transfer function (QLTF) given by 

k 
s3 + 6s' + 8s' @0(4 = 

where k is a gain constant. 

when k = 20 and thus determine whether or not the system is stable. 
Sketch the Nyquist frequency response diagram for the OLTF of this system 

Also, find the maximum value which k can have for the system to be stable. 
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124. A control system has an open loop transfer. function (OLTF) given by 

2 
= s(l + SX1 + 2s)' 

Sketch the Nyquist frequency response diagram for the OLTF of this system, 
and thus determine whether the system is stable or not. 

The system is modified by adding to the open loop derivative action with a 
time constant of 0.5 s. 

Write down the OLTF of the modified system, and hence sketch the Nyquist 
frequency response diagram. Comment on the stability of the modified system 
and calculate the gain margin. 

125. How can a frequency response be represented by a Bode diagram? Indicate what 
gain and phase margins are in this context. 

126. The OLTF of a control system is given by 

7 
s(l + 0.5 sX1 + 0.167 s)' 

Plot the Bode diagrams and determine the gain and phase margins. 
127. A servosystem has an OLTF 

40 
s(1 + 0.0625 sX1 + 0.25 s)' 

Plot the Bode diagram and determine the gain margin and phase margin and 

A phase lag network is introduced into the servosystem. It has a transfer 
whether the system is stable. 

function. 

(1  + 4 s) 
( 1  + 80 s) '  

Draw the Bode diagram for the modified system, and find the new gain and 

128. The following data were collected from an open loop frequency response test 
phase margins. 

on a unity feedback control system. 

Frequency 0.1 0.4 1 2 4 10 20 40 100 
w(rad/s) 

Magnitude 40 28 20 13 4 -14 -30 -48 -72 
(dB) 

Phase -90 -98 -112 -134 -168 -216 -242 -260 -270 
4 (degrees) 
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Plot the Bode magnitude and phase diagrams and define the complete loop 
transfer function given that one component in the system is known to have a 
transfer function of the form 1/(1 + ~17)~. 

129. The forward path of a unity feedback control system has the following open 
loop transfer function. 

K 
GH(s)  = $1 + T,s)(l + T2s)' 

(a) Use the Bode method of asymptotes to plot magnitude and phase over the 
frequency range 1 to lo00 rad/s, and estimate the maximum value of K for 
system stability when TI = 0.5 s and T2 = 0.01 s. 

(b) The first-order lag term, 1/( 1 + T,s), represents a control circuit in the system. 
If this is replaced by a simple time delay of T, s, show what effect this has 
on the Bode plots, and estimate the new maximum value of K for stability. 
Confirm your result by using the Nyquist method. 

130. The data given in the following table represent the results of an open loop 
frequency response test on a unity feedback control system. The system is 
designed to attenuate the amplitude of input variations around a frequency of 
4Hz. 

Frequency 
(H4  0.1 0.2 0.4 1.0 2.0 4.0 10 20 40 100 

Magnitude 
(dB) -0.1 -0.4 -1.6 -5.6 -9.1 -10.6 -8.5 -5.0 -2.0 -0.7 

(A magnitude of 0 dB was measured outside the range 0.01 Hz to lo00 Hz.) 

(a) Use the data to plot the Bode magnitude diagram, and establish linear 
transfer functions which will accurately describe the open and closed loop 
system responses. 

(b) Sketch the phase response of the open loop system and use your diagram 
to establish what approximate phase distortion exists between input 
frequencies of 1 and 10Hz. 

131. A unity feedback closed loop control system has the following loop transfer 
function which, on test, exhibits unit gain at the phase cross-over frequency, 

k 
s(l + 0.1 s)(1 + s)' 

(a) Sketch the Bode modulus and phase diagrams of this system and determine 

(b) A phase-lead network having the following form is to be used on the system; 
the value of gain constant k. 
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Show that the maximum phase-lead of this network is 

Qmax = 90" - 2 tan-'J(a/b) 

and that it achieved at a frequency w = J(ab). 
(c) The phase-lead network is applied to the forward path of the system in such 

a way that the maximum phase change produced by the network occurs at 
the phase-crossover frequency. Calculate the parameters a and b of the 
network, and the modification needed to the gain constant k, to achieve a 
phase margin of 30". 



7 
Answers and solutions to selected problems 

1. FBDs are 

Moments about 0 gives 

1,B’ = -mgL9 - ka29, 

where 

I, = mC. 

Thus 

o + (  mgL mL2 + ka2 >,=o, 

and 
f = L 277 J(mg2:2) Hz. 
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2. 

f=- 1 J k  -= -  ln J ( 2  x:&106) = 5.8 Hz. 
~ I T  m 

3. FBDs are 

Moments about pivot gives 

1 
+ml28’ = mg - 8 - 2k128, 

2 

# + e [  2k12 1 - mg1/2 ] = o .  
%ml2 

so 

and 

f = _r_ 2 n  /( 1 2 k , ~ m g )  Hz. 

4. 
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Equation of motion is 

-+-- T y  T y  - -my, 
x L - x  

so 

T L  
mj + ~ y = 0, x(L - x) 

and 

f = L J(&) Hz. 
27T X L - x  

5. For vehicle, 

so 

mi + k(z - h sin vt) = 0. 

Thus 

mz + kz = kh sin vt, 

and 

z =  (k ~ fmv2) sin vt, 

= ( 1 -;;j sin vt. 

z = ( I - ( L 7 j l ) s i n ( F ) t .  

Hence 
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1 100 
A = - In - = 0.46 

10 1 
7. 

* 2 ~ [ ,  SO i = 0.0732. 

0, = wJ(1 - i2), so f, = fJ(1 - i2), 
and 

T = T,J(1 - i2) 
= 1 J(1 - 0.07322) 

= 0.997 S .  

8. j = 0.72 

9. FBDs: 

Moments about 0 gives 

1,0 = -mgrB - c0, 

so equation of motion is 

I,$ + CB + mgre = 0. 

Now if T ,  = 1.6 s, and A = In 6 = 1.792, 

1.792 = 2~</J(1 - i2) 
SO i = 0.273. 

1 

T V  

f, = - = 0.625 Hz, 

o, = oJ'(1 - i2), so w = 4.075 rad/s. 

so w, = 3.92 rad/s. 

Now, 

rad/s, 1 W = &) = J(20 x 9.;; x 0.02 
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so 

Io = 0.236 kg m2 

= I ,  + mr2, and I ,  = 0.228 kg m2. 

cc = 2J(mgr 10) 
= 1.925 N m s/rad, Hence c = [c, = 0.525 N m s/rad. 

10. Equation of motion is l o g  + cb + k e  = 0. Require critical damping so 

cc = 2 J W O )  
= 2 4 1 . 2  x 10-5 x 1.5 x 1 0 - 6 )  

= 8.48 x 1 O - 6  N m s/rad. 

11. FBDs without damping: 

Equation of motion is md2g = mgde - ke2B, so frequency of undamped oscilla- 
tions is 

L 2 n  /( ke2i ygd)  Hz. 

With damping, equation of motion is 

md2g + cf 28 + (ke2 - rngd) 8 = 0, 

so 

J((ke2 - m g d )  md 2). 
2 c =-  

c f 2  
12. FBDs: 
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so 

Fr = imr2g.  
Thus F = i m x  because rB' = x. 
Body floats half submerged so 

71 171  

4 2 4  
m = - d 2Dp,,y = - - d 'Dpliquid, 

and 
p -1 

b - 2PL' 
When body displaced distance x downwards (say), liquid level rises by y where 

71 71 
- d ' X  = - (D2 - d 2, y,  
4 4 

so 

d 2  
y = x  (D2 - d 2 ) '  

and 

x + y = x  (D2? ~ d 2 ) '  

f='J( 271 3(D2 4Dg - d 2 )  )Hz.  

Equation of motion therefore 

D2 
mk = -+mx - p L i d 2  (Di - d 2 )  '' 

Hence 

13. 

Equation of motion is IB' + co + kfl = 0, so that 

6 = e - W  ( A  sin w,t + B cos ~ , t ) ,  

where 
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o=/F, c, =2J(Ik) and [=- .  C 

c c  

w, = 0 J(1 - [ '). 

Now 

0.8' 
3 

I = 20 x - = 4.27 kg m', 

and 

k = 100 N m/rad, 

so that 

c, = 2J(100 x 4.27) = 41.3 N m s/rad. 

Also 

o = /E = 4.84 rad/s. 

For critical damping, 

8 = (A + Bt) e-"'. 

Initial conditions are t = 0, 6 = n/2, and t = 0, 4 = 0. Hence 

7T 
0 = - (1 + 4.84t) e-4.84r. 

2 

Require 

e = 0.01745. 

Trial and error, or graphical solution gives t = 1.3 s. 

14. c = 7.9 N s/m3; f =  0.789 Hz. 
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15. In 2 s execute 3 cycles, so 

1 1  A = 3 In - = 0.035. 
0.9 

For small A, A e 2n[ ,  hence J = 0.0056. 

Also for small c, m e w ,  

so 

c, = 2J(km) = 2 m o  = 2 x 10' x 3n = 10 600 N m s/rad. 

m = 59000 kg. 

Equation of motion is 

ZOO + cp2d + kq20 = 0. 

When c = 0, 

w = /(?) rad/s. 

With damping w, = oJ(1 - c ') 
where 

Thus 

0, = w /[ 1 - (*)I rad/s. 
4kq21, 
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18. FBDs are 

Equation of motion is Fd + mghe - 2kc% = Io& or 

g + ( 2 k c 2 1 : m g h ) e = - .  Fd 
I O  

C.F. + P.I. give solution as 

Fd 
8 = A sin wt + B cos wt + ~ 

O Z I ,  ’ 

where 

w = , / [ ( 2 k c 2  - mgh)/I,] .  

Substitute initial conditions for 

(1  - cos wt). e = -  
W210 

Fd 

19. 

Equation of motion is 

mE + kx = ky, 
1 where y = 7 at ’. Hence 

mE + kx = - at ’. k 
2 

Solution is 
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a t 2  am 
2 k  

x = A cos of + B sin of + 
Initially t = 0 and x = 0 and i = 0 so that 

am at 

k 2 
x =-(cos or - 1) + -. 

When t = 0.19 s, 

10.9 x 103 49 x 0.192 
X =  1:; 'Po3 90 ) - I) + 2 

= 0.275 m, 

and 

am 
k 

i = - - o sin or + at 

= 5.45 m/s. 

Now for r > 0.19 s, initial velocity is 5.45 m/s, acc is -9.81 m/s2 and if distance 
to max. height is s, then 

0 = 5.54' - 2 x 9.81 s 

so 

s = 1.51 m. 

Thus max. height of pilot = 1.51 + 0.275 = 1.785 m. 
Max. value of cos or is 0.5 when t = 0.19 s, so 

a m o 2  3a 
k 2 

cos ot + a = - = 73.5 m/s2. x =  -~ 

20. x = 5.25 mm; N = 424 rev/min. 

21. Equation of motion is 

mx + kx = m,rv2 sin vt, 

so the amplitude of the motion is m,rv2/(k - mv2). Thus 

k(&) = transmitted force. 

Substituting values gives 

k(0.2 x 0.01 x 1502) = loo. 
k - (2  x 150') 

Hence k = 81.8 kN/m. 
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22. Decay factor 15 so [w = 15 and o, = wJ(1 - [’) where w, = 2 3 . 2 ~  rad/s. 
Hence [ = 0.103 and w = 145.6 rad/s. 
Since w = J(k/m), 

k = (145.6)2 x 365 = 7740 kN/m, 

and 

c, = 2 J(km) = 106 310 N s/m. 

Thus 

c = [c, = 10950 N s/m. 

At 1450 rev/min, 

27c 
60 

v = 1450.- = 152 rad/s. 

Now 

F 
J[(k - mv’)’ + (cv)’] 

X =  

F 
J[(7740 x lo3 - 365 x 1522)2 + (10950 x 152)2]’ 

F = 1370 N. 

- - 

Since X = 0.76 x 10-3m, 

Without damping 

= 2.85 mm. 

23. X ,  = 0.02 m; X ,  lags X ,  by tan-’ (i). 
24. If n units are required, then 

k = 359.103.n N/m, 

c = 2410n N s/m 

w2 = 359.103n/520 = 691n sK2 

c, = 2 J(km), 

so 

cf = 4 x 359 x 520 x 103n = 747 x 10%. 

v = 25 x 2n rad/s, so v’ = 2.46 x 104/s2. 

Hence 
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F T  V2 

FO o2 - = 0.4, and - = 35 .61~  

Substitute values in 

1 +  2 - -  

1 - -  + 2 - -  
co 0 

(2Y=[( L2Y ( :o:Y ( c vy  ] 
To give 

n2 + 6.42n - 114.6 = 0, 

so 

n = + 8 or -14.5 

Thus 8 units in parallel will give specified attenuation; more units would give 
less static deflection but more transmitted force. 

25. (k - mv2)2 + c2v2 = 100 (k2 + c2v2), 

so 

99k2 + 99c2v2 + 2kmv2 - (mv2)2 = 0. 

Now 

c = 0 . 2 ~ ~  = 0.4J(km), 

v = 154.8 rad/s, 

and 

m = 40 kg. 

Hence 

k2 + 17.3 x 104k - 93 x 10' = 0, 

and thus 

k = 43 kN/m. 

If 

= 0.0469. F-r c = o ,  - 
Fo - 
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26. 

[Ch. 7 

Equation of motion is mx = k( y - x) + c( j - i). If 

z = y - x x ,  i = j - i ,  and z = y - x ,  

then 

mz + ci + kz = my = -mv2yo sin vt. 

Assume 

z = zo sin(vt + 4), 
then 

-mv2zo sin(vt + 4) + czov cos(vr + 4) + kz,  sin(vt + 4) 
- - -mv2yo sin vt. 

If -=/: and [ = -=% c 
c, 2k'  

then 

Now if o % v, (v/o)~ < 1 and 
2 

zo-(t)  Yo, 

that is, the acceleration vzyo is measured. 

denominator increases to compensate. If v/w = 0.2 and no error is required, 
As (v /o)  increases [l - ( v / o ) ~ ] ~  decreases, but the damping term in the 
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1 V 
= 1, when - = 0.2, 

[ 1 - (%)‘I2 + [2, ;] o 

so that 

[l - 0.0412 + 4c2[0.04] = 1, 

and hence J = 0.7. 

Here FT = 100 N, F, = 320 N, m = 940 kg, v = 57.6 rad/s, 

57.6 (:y = (E) = 5.05. 
o = /& = 25.6 rad/s and 

Hence 

100 1 + 20.212 (m) = 16.4 + 20.2c2’ 

so that = 0.184. 
Now 

940 x 9.81 
0.015 

k =  = 615 kN/m, 

Also 

c, = 2J(km) = 24615 x lo3 x 940 

= 48 kN s/m, 

so that 

c = cc, = 8850 N s/m. 

v = 25.6J(1 - 0.184’) = 25.1 rad/s. 

or 241 rev/min. 

Substituting = 0.2 gives 
2 (ir - 17.84 (:) - 99 = 0, 

so that 
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( y )  = 4.72. 

Limit at 15 Hz, so v = 30n rad/s and 

30n 
4.72 

w =-= 19.95 = 

Hence 

kT = 15.92 kN/m 

and 

k T  k = - = 5.3 kN/m. 3 

Hence 

V 

0 
- = 3.32. 

Since 

80n 
3.32 v = 80n rad/s, w = - = &, 

so that 

x 9.81 = 1.7 mm. 

= 2400 rad/s, 
0.01 158 
2.10-9 

30. 

c, = 2,/(kZ) = 9.84 x lop6 N m +ad. 

Thus 

and 

w, = 2400,/(1 - 0.29) = 2020 rad/s 
so 

frequency = 322 Hz. 

IB' + cb + k6 = TCOS Or, 

For torsional system, 



Sec. 7.11 Answers and solutions to selected problems 343 

so that 

T/k cos(Qt + 4) 
J{[l - Q’/w’]’ + [2[ Q/o]’)’ 

e =  

Expect 

T e = ;, 

so denominator gives amplitude error. Phase error is 

tan-’[ 2i(Q/o) 1. 
1 - (Q/o)2 

Now 

so (:y = 0.0686. 
n 100 
o 382’ 
-=-  

Hence 

denominator = J[(1 - 0.0686)’ + 4 x 0.29 x 0.06863 

= 0.975, 

so that amplitude error = 2$%. 
Phase error, 

2 x 0.539 x 100/382 
0.9314 

4 = tan-’ 9 

= 17”. - 

+ m h(2no/L)’ sin(2nulL)t) . 
32. ( [  K - M(2nc/L)’ 1 1 M K  

F =  ( M + m ) g -  

33. x = 0.056 m; 4 = 3.7”. 

35. Equation of motion is 

mx + c i  + kx = F sin vt, 

thus 

F sin(vt - 4) 
J [ ( k  - mv’)’ + (cv)’] ‘ 

X =  

Force transmitted to support, 

F ,  = k x  + c i  

= , / [k  2 + (C#)] x. 
Hence 
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5-  /[I + (21  $7 
F - - .  

[l-(;).].+[,,;~=loo+loo [ 21- 3 , 

Now, 

1 and ( = T ,  
1 

F 10 
- -  FT - - 

thus 

and (:y - 46 (:y - 99 = 0. 

Hence 

v = 6.93 /; rad/s, 

so 

v2m 
6.932 - 6.932 

(2n x 50)2 x 7 k = -  - 

= 14.38 kN/m. 
Also 

c, = 2J(km) = q(14.38 x lo3 x 7)  = 634.5 N/m/s. 

c =- = 211.5 N s/m. 
634.5 

3 
36. 

where 
I ,  = 12 kg m2, I ,  = 5 kg m2 
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and 

k = 600 x lo3 N m/rad. 

Now 

f = -  -= -  3 
2n 1 J:: ;n J:. Hz3 

SO kAIB = kBIA.  

Also 

k A k B  hence k = ___ 
1 1 1  - 

k A + G = k ’  k A  + k B ’  

and 

k A  x k A  (k) 
k =  

k A  + k A  (2) ’ 
so that 

k A =  (‘A; ___ ‘ B )  k ,  

and 

f = L 2n /[(e) k ]  Hz, 

= & /(E x 600 x lo3 = 65.6 Hz. ) 
Also, 

5 I,= (’,? ___ ’,> 1 = 17 = 0.29 m, 
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37. 

1 
Frequency of oscillation = - /& = L. /%, so 

2n m,  2n mB 

k,m, = k,m, 9 

or 

k,  x 500 = k,  x 1O00, so that k,  = 2k,. 

Springs connected in series, so 

- - -+ -=-+-  
k k ,  k ,  200 50’ 
1 1 1 1 1  - 

so 

k = 40 kN/m, 

and 

1 1  1 - + - =  
k,  k ,  40 X lo3‘ 

Since 

k, = 2k,, k ,  = 120 x lo3 N/m. 

Thus 

= 1.74 Hz. 
j =  L 2n J ” O  103 x lo3 

38. Equations of motion are, for free vibration, 

( k ,  - m l o 2 )  X ,  + ( - k l )  X ,  = 0, 

and 

( - k l )  X ,  + ( k ,  + k,  - r n 2 0 2 )  X ,  = 0. 

Hence frequency equation is 

( k ,  - m1o2Wk1 + k ,  - m 2 w 2 )  - ( - k l  )’ = 0, 

or 
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a4 ( m l m 2  ) - o2 ( m , k ,  + m , k ,  + m,k,  ) + k , k ,  = 0. 

Now 
1 m ,  = Tm, and k ,  = i k 2 ,  

Thus 

2m:w4 - 5 m 1 k , w 2  + 2k: = 0, 

or 

( 2 m , 0 2  - k ,  ) (mlw2 - 2k1 ) = 0. 

That is 

so that 

Hz and f, = L t $ H z .  
27T 

Now 

-- kl . - Xl 
X ,  k ,  - m 1 a 2 ’  

that is, at frequency fl , 

Xl 
x2 
- = +0.5 .  

and at frequency f, , 

X ,  
x2 
- = - 1.0. 

With harmonic force F ,  sin vt  applied, 

( k ,  - m l u 2 )  X ,  + ( - k l )  X - F 2 -  1 ,  

and 

( - k ,  ) X ,  + ( k ,  f k ,  - m 2 0 2 )  X ,  = 0. 

Hence 

( k ,  + k ,  - m 2 0 2 )  
A x, = F ,  

and 

kl 

, - A  
X - - F ,  
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where 

A = mlm2w4 - w2(mlk ,  + mlk2 + m2kl ) + k 1 k 2 .  

39. FBD: 

Equations of motion are 

- k(z - 3a0) - 2k(z - af3) - k(z + a0) = mz, 

and 

k ( Z  - 3 a 0 ) 3 ~  + 2k(z - a0)a - k(z + a0)a = IGg. 

Substitute 

I = 2ma2, z = A sin wt and 0 = B sin wt, 

to give 

(mu’ - 4k)A + 4kaB = 0, 

and 

4kaA + (2ma202 - 12ka2)B = 0, 

so that the frequency equation is 

(mu2 - 4kX2ma2w2 - 12ka2) - 16k2a2 = 0. 

Multiply out and factorize to give 

2 z  1 J k  m 
1 2k 

fl = %  J;;; Hz and f2 =-  -Hz. 

w4 - w2(w: + 0:) + wtw: - (k,b - k,a)2/m2K : = 0. 40. 
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41. System is 

where 

m = 2000 kg; I = 3 m; a = 1 m; b = 2 m; I ,  = 500 kg m2; 

k ,  = 50 x lo3 N/m; k ,  = 80 x lo3 N/m. 

FBDs: 

Equations of motion are 

mji = - k , ( y  - b e )  - k , ( y  + ae), 

and 

ZJ  = k , (  y - b0)b - k,( y + a@. 

Substitute 

y = Ysin cor and 8 = 0 sin cot 

and rearrange: 

( k ,  + k ,  - m o 2 ) Y +  (k,a - k,b)O = 0, 
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and 

(k,a - k ,b )Y+  (k,b2 + k,a2 - I ,w2)0  = 0. 

Hence the frequency equation is 

( k ,  + k,  - mw2)(k,b2 + k,a2 - i ,02) - (k,a - k,b)2 = 0. 

Substituting numerical values and dividing by lo3 gives 

(130 - 20, #370 - 0.50~ ) - (- 1 lo), = 0, 

or 

w4 - 8050~ + 36ooO = 0. 

Hence 

, 805 f 710 
= 47.5 or 758 (rad/s),, 

2 
o =  

so that 

f, = 1.09 Hz and f2 = 4.38 Hz. 

The mode shape is obtained from 

Y k , b -  k,a 
0 
_ -  - 

k ,  + k, - m o 2 ’  

so that at f, , o2 = 47.5 and 

160 x 103 - 50 x 103 
- =3.14, Y 

- o - 130 x io3 - 2 x io3 x 47.5 

and at f,, o2 = 758 and 

= -0.079. 
110 - - Y 

o 1386 ~ 

- -~ 

Speeds are V, = 78 km/h and V, = 19.8 km/h. 

42. FBDs: 

Equations of motion are 

i l O l  = 2kr,(r,B, - r ,B,  ), 
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and 

120, = -2kr,(r,O, - r l O l ) .  

Assume 

0, = A ,  sin wt and 0, = A ,  sin wt. 

Thus 

A,[2kr:  - 1 , w 2 ]  + A 2 [ - 2 k r , r , ]  = 0, 

and 

A , [ - 2 k r 1 r , ]  + A2[2kr:  - I,w2] = 0. 

Frequency equation is therefore 

(2kr: - I ,w2 )(2kr: - I ,w2)  - ( 2 k r , r , ) ,  = 0, 

or 

11Z,w4 - 2k(r:I,  + r i I , ) w 2  = 0, 

so 

w = 0 (rotation), 

or 

w2 = 2k(r:I,  + r:I l  ) 

1112 
7 

so that 

f =  L Sk(r:12 + r 2 ,  1 Hz. 
2 n  1112 

43. FBDs are as below: 
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That is, 

k x J 3  k y  k y  k x  - + -  - - _  
4 4 2 2  

Equations of motion are 

ky kx 3 J 3  ( C F , )  m2 = - -- - kx - - ky - 
2 2  4 4 '  

and 

ky kx J 3  ky 
( C F , )  m j =  - k y - - + - - k x - - -  

2 2  4 4 '  

Assuming a solution of the form x = X sin wt, y = Y sin wt, these are 

- m w 2 X + - X +  5k  (J34-2 )  ___ k Y =  0, 
4 

and 

7 
4 

(q) kX - mw2Y+ - k Y =  0. 

Hence 

(i k - mw2)(: k - m a 2 )  -((?)cy = 0, 

and 

k 2  
16 

m2w4 - 3mkw2 + - (28 + 4 J 3 )  = 0. 

Hence 

w4 w2 _ -  3 - + 2.183 = 0, R4 R2 

where 
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R = J;, 
and 

0 _ -  - 1.326 or 1.114. 
s2 

Thus frequencies of vibration are therefore 

"/:& 2n and */;Hz. 2n 

45. FBDs are 

The equations of motion are 

-ka2tl, - kabtl, - ka28, = I,gA, 

and 

- kabtl, - kb28, - kb28, = IBgB. 
Substitute 8, = A sin ot and 8, = B sin at to give 

( -  I , 0 2  + 2ka')A + kab B = 0, 

and 

kab A + ( - I , 0 2  + 2kb')B = 0, 

So the frequency equation is 

I , I , 0 4  - 2k(I,a2 + I,b' )02 + 3k 'a2b2 = 0. 

Substitute numerical values to give 

w = 19.9 rad/s or 35.7 rad/s. 
At 19.9 rad/s, A / B  = -1.65, 
and at 35.7 rad/s AIB = +3.68. 



354 Answers and solutions to selected problems [Ch. 7 

46. From section 3.1.5, 

p y  + (y = 2 
+ p, 

(gy + (gy = 
2 + p 

and R,R, = w’. 
If R, = 250, R, = 3002/250 = 360, and if R, = 350, R, = 3002/350 = 257. 
Therefore require R, = 250 and 12, = 360 to satisfy the frequency range criterion. 
(R, and R, are rev/min). Hence 

and p = 0.136. 
Hence 

absorber mass = 367 kg. 

and 
stiffness = 144.6 x lo6 N/m. 

47. Substitute numerical values into frequency equation to give m = 9.8 kg. 
If R, = 85, p = 0.5 so absorber mass = 4.9, and k = 773 N/m. 

48. (!y = 2 2 + P  * J( T ) .  P 2  + 4P 

If R, = 0.9 W ,  this gives p = 0.0446, and if 

Limit therefore p = 0.0446 and absorber mass is 134 kg with stiffness 30.1 kN/m. 
0, = 1.1 W ,  p = 0.0365. 

49. 
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Require 

F . (Phase requires -ve sign) - F ( K  - mv2)  
[ (K  + k )  - Mv2][k - mo’] - k 2  - - K - Mv2 

Multiplying out and putting 

m 
M 

p = - = 0.2 

gives 

2(-3 - ( 3 4  + p)  + 2 = O? 

so 
2 (5 )  = * f $,/(p’ + 8p) = 1.05 0.32. 

4 

Thus (e) = 1.17 or 0.855, 

so 

f, = 102 Hz and i2 = 140 Hz. 

Frequency range is therefore 102- 140 Hz. 

50. ( 3 2 + ( 3 > ’ = 2 + p ,  

and R,R, = o: (from section 3.1.5). 
Now o = 152 Hz, R, = 140 Hz so R, = 152’/140 = 165 Hz; hence 

(gy + (Ey = 2 + p, 
and 

p = 0.0266. 

Require o = 152 Hz, R, = 120 Hz so R, = 192 Hz (which meets frequency 
range criterion). Hence (gy + (g>’ = 2 + p  1 

so 

p1 = 0.219. 

Therefore require 0.219/0.0266 = 8.2, that is 9 absorbers. 
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51. Cantilever absorber: 

3EI 
L3 

Beam stiffness at free end = - = k. 

Thus 

3 x 70 x lo9 x (0.06)4 
L3 x 12 

k =  

Design based on 40 Hz frequency so 

k = (271 x 40), x 25. 

Hence 

L= 0.524 m. 

When f =  50 Hz, calculation gives L = 0.452 m. 

52. From section 3.1.5, 

R,R, = w2 

and ej2 + ej2 = 2 + p. 

Thus if R, = 1.2 o, R, = 0.833 o, which is not within 20% of w (=v). 
So require R ,  = 0.8 w and then R, = 1.25 w. Hence 

0.8, + 1.25, = 2 + p, 

so that p = 0.2, and 

[Ch. 7 

mass of absorber = 0.2 M. 
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53. 

Equations of motion are 

k(8, - 8, ) = 21O,, 

k(8, - 8, ) + k(8, - 8, ) = I O 2 ,  

and 

k(8, - 8,) = IO,. 
Substitute 8, = A sin wr, 8, = B sin wt and 8, = C sin or  and eliminate A,  B 
and C to give frequency equation as 

k k 2  
I I 

204 - 7 - w 2  + 4 7 = 0. 

Hence 

k k 
w 2  = 0.72 - or 2.78 -. 

I I 

Now 

GJ 83 x lo9 x R x 0.054 k = - -  - = 7.83 x lo4 N m/rad, 
1 0.65 x 32 

and 

I =  7t x 0’284 x 0.023 x 7000 = 97.1 x l O - 3  kg m2. 
32 

Hence 

f, = 121.6 Hz and f2 = 239 Hz. 

where f = wf2a. 
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54. Consider half of aircraft: 

Equations of motion are 

3k(z ,  - z ,  ) = 2000 2, , 

3k(z ,  - z ,  ) + k(2 ,  - z* ) = 500 i,, 

and 

k ( z ,  - z , )  = 200 2, .  

Substitute 

z 1  = A ,  sin ut, z ,  = A ,  sin ot and z 3  = A ,  sin ot, 

and eliminate A ,  , A , ,  A ,  to give frequency equation as 

2 x 10404 - 290 0 2 k  + 0.81 k Z  = 0. 

Hence 

02= 379 or 1074, 

and 

f, = 3.09 Hz and f, = 5.22 Hz. 
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55. FBDs 

Equations of motion are 

m x ,  = k ( x ,  - x 1  ) + k(x,  - x 1  ) - k , x , ,  

m x ,  = k ( x ,  - x , )  - k ( x ,  - x 1  ), 

and 

mx3 = - k ( x 3  - x , )  - k(x3  - x l ) .  

Substitute x i  = X i  sin wt, so that 

(3k - m w 2 )  X ,  - k X ,  - k X ,  = 0, 

- k X ,  + (2k - m w 2 )  X ,  - k X ,  = 0, 

and 

-kX, - k X ,  + (2k - m u 2 )  X ,  = 0. 

Hence frequency equation is 

(3k - m w 2 ) , ( k  - m u 2 )  - 2k2(3k  -mu?)  = 0. 

and either 3k - m w 2  = 0 so that w = J 3  J(k /m) ,  or 

k 2 - 4mkw2 + m2w4 = 0. 

Thus 
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w = 0.52,/(k/m), 1.73,/(k/m) or 1.93J(k/m) rad/s 

which are all well clear of J(k/m), so system suitable. 

56. Model system as follows: 

Equations of motion are 

Z I O l  = -k,(O, - 0 2 ) ,  

1202 = k l ( 4  - 0,) - k2(O, - %I, 
and 

Z3g3 = k2(02 - 03). 

Substituting Oi = Oi sin wt gives 

Ol[k, - Z , O ~ ]  + O,[-k,]  

O1C-h 1 
= 0, 

= 0, + OJk1 + k2 - 120’1 + O,[-k,] 

and 

@,[-k21 + 03[k2 - Z3w2] = 0. 

The frequency equation is therefore 

(kl - Z,W’)[(~, + k2 - Z2w2 )(k2 - Z3w2) - k:] 

+ k1[(k2 - Z3w2)(-k,)] = 0. 

That is 

o ~ [ Z , Z ~ Z ~ O ~  - w2(k,Z2Z3 + klZlZ3 + k2ZlZ3 + k2ZlZ2) 

+ k,k2(Zl + I ,  + Z3)] = 0 

so that either w = 0 (rigid body rotation) or [. . .] = 0. 
Substituting numerical values gives 

0.48 w4 - 1100 x 103 o2 + 149 x 109 = 0, 

so that 
w1 = 380  rad/s and w2 = 1460 rad/s. 

That is 
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fl = 60.5 Hz and f2 = 232 Hz. 

At fl = 60.5 Hz, 

= +1.4, k l  - 01 
e, k l  - 1 , 0 2  

0 3  

e2 k 2  - 1 ~ ~ 2  

_ -  

and 

- k 2  = -0.697. _ -  

and at f2 = 232 Hz, 

- -0.304, 01 
e, 

e 
0 2  

_ -  

and 

-2 = -0.028. 

57. T =  Lm 2 1 1  i2 + Lm 2 2  i2 + Lrn 2 (2y 2 + L m  2 cy 2 +'J 2 (j..y -2 2 + ? J  1 (Xdy - 

and 

V = i k x :  + i.4k (?Y + +k(x,  - x ~ ) ~ .  

Apply the Lagrange equation 
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(Z) + ax, av = 0: 
dt a i ,  

m 25 (g)  = m,?, + - 1, + il, dt a i l  2 d 

and 

- k x ,  + k x ,  + 9k(2xl - x , )  = 3kx,  - k x , .  
av 

a x ,  
_-  

Hence equation of motion is 

+ 3kx,  - kx,  = 0. 

Similarly other equation of motion is 

1, ( m2 + + $) + k(x, - x ,  ) = 0. 
4 

If m ,  = 4m, m2 = 2m and J = md '18, equations become 

+ 3kx,  - kx,  = 0, 

and 

m 
1, ( 2 m  + + :) + kx,  - k x ,  = 0. 

Assume xi  = Xi sin ut, so that 

and 

The frequency equation is therefore 

(3k  - 7 m w 2 ) ( k  - 19 m w 2 )  - (- k ) ,  = 0, 

which is 

361 (gy - 380 (ET + 64 = 0, 

where 
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n = J;. 
Hence 

380 f J(3802 - 4 x 361 x 64) (i) = 361 x 2 9 

and 

o = 0.459 /; or 0.918 /; rad/s. 

For the mode shape, 

- _ -  
19 ' 

3k - - m o 2  
4 

x2 

When 

= +0.5, 
k - o = 0.459 /; rad/s, - - 

19 
4 

3k -- x 0.21k x2 

and when 

= -1.0. - - ~ 

k 
- Xl 

x2 
o = 0.918 /; rad/s, 

19 
4 

3k - - x 0.843k 
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58. FBDs: 

Equations of motion are: 

m y =  - k ( y - a 4 - x 1 ) - k ( y + a 4 - x 2 ) ,  

Z G 4  = k( y - 04 - x 1  )a - k( y + a 4  - x 2 ) a ,  

mx1 = k( y - a4 - x 1  ) - K x ,  , 

and 

mx2 = k ( y  + a4 - x , )  - K x , .  

Assume for wheel hop that body does not move; then 

y = b = O  and f=&-, 1 K + k  

9.0 x 103 =-'J = 10.1 Hz. 
271 22.5 ~ 

59. fl = & /($ - e)*.; m 

f 2  = & /($) Hz; 

f 3  = & /(; + m> Hz. 
3k J 3 k  
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60. Assume x 1  > x2  > x, . FBDs are then as follows: 

The equations of motion are therefore 

- K x ~  - k(x1 - x2)  = M X , ,  

k(x1 - ~ 2 )  - K x ,  - 2k(x2 - x 3 )  = M X 2 ,  

and 2k(x2 - X ,  ) - K x ,  = Mji,  . 

Substituting x i  = X i  sin o r  and rearranging gives: 

X l [ K  + k - M w ~ ]  + X 2 [ - k ]  + X,[O] = 0, 

X , [ - k ]  + X 2 [ K  + 3k - M o 2 ]  + X 3 [ - 2 k ]  = 0, 

and 

X , [ O ]  + X , [ - 2 k ]  + X 3 [ K  + 2k - M o 2 ]  = 0. 

The frequency equation is therefore 
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K + k - M o 2  - k  0 
- k  K + 3 k - M o 2  - 2k 
0 -2k K + 2 k - M w 2  

[Ch. 7 

= 0. 

That is, 

( K  + k - M m 2 ) [ ( K  + 3k - M o 2 ) ( K  + 2k - M a 2 )  - 4k2] 

+ k [ - k ( K  + 2k - M w ’ )  = 0, 

or 

M - w4(3M + 6M 2k) + m 2 ( 3 M K 2  + 12MKk + 6 M k 2 )  

- ( K  + 6K 2k + 6 K k 2 )  = 0. 

The solutions to this equation give the natural frequencies. 

61. fi = 0 Hz; 1 : l : l ;  

f2 = & /(;) Hz; 1:0: - 1.5; 

f3 = & /(%) Hz; 1 :  - -’- 13 3 
1 1 ’ 1 1  

v = m ,  gY1 - cos e l )  + m, gy1 - cos 9,) + m, gY1 - COS e,) 

+ $k,(a sin 8, - a sin 01), + 3k,(a sin 8,  - a sin e,),. 

For small oscillations, 

and sin 8 2: 8. 
8, 
2 1 - c o s e 2 : -  

Apply Lagrange equation with qi = e l ,  e,, 8, in turn to obtain the equations 
of motion. 
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63. Assume x 1  > x 2  > x 3  > x , .  FBDs are then as follows: 

The equations of motion are therefore 

k1x1 + k2(x1 - x 2 )  + k3(x1 - x3) = -mlkl ,  

-k2(x1 - ~ 2 )  + k,(x,  - x 3 )  = - m 2 x z ,  

- k 3 ( x l  - x3) - k4(x2 - ~ 3 )  + k 5 ( x 3  - x,) = - m 3 k 3 ,  

and 

- k 5 ( x 3  - x,) = - m  4 k 4 ’  

Substitute xi = Xi sin U t :  

kIX1 + kAX1 - X 2 )  + k3(x1 - x,) = m,02X,,  

-k2(Xl - X 2 )  + k4(X2 - x,)  = m z w z X 2 ,  

-k3(X1 - x3) - k4(X2 - X 3 )  + k,(X3 - X,) = m , 0 2 X 3 ,  
and 

- k 5 ( X 3  - X,) = m,02X, .  
Thus 

X1Ck1 + kz + k3 - mlw21 + x,[-kJ + X3[-k3] + X,[O] = 0, 

X I C - ~ I  + XzCk2 + k, - m 2 0 2 ]  + X3[-k4] + x,[o] = 0. 

x ~ [ - k 3 1  + x,C-k4I + X3Ck3 + k4 + k, - m3m2] + X,[-k5] = 0, 
and 
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X, [O]  + X,[O] + X , [ - k s ]  + X, [k ,  - m402] = 0. 

Frequency equation is, therefore: 

k ,  + k,  + k ,  - mlw2 - k2 - k ,  0 
0 

= 0. - k ,  k ,  + k, - m 2 0 2  - k ,  
- k ,  - k, k ,  + k,  + k ,  - m 3 0 2  - k ,  

0 0 -k, k ,  - m402  

65. Assume x 1  > x ,  > x 3 .  FBDs are 

Equations of motion are therefore 

-2k(x1 - x , )  - k(xl  - x 3 )  = 3 m x 1 ,  

2k(x,  - x , )  = mx,, 

and 

k(xl  - x 3 )  - kx ,  = m x 3 .  

Putting x i  = X i  sin ot and rearranging gives 

- 3 k X 1  + 2 k X ,  + k X ,  = - 3 m 0 2 X , ,  

2 k X ,  - 2kX,  = - m o 2 X , ,  

and 

k X ,  - 2 k X ,  = - m w 2 X , .  

That is 
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k 2k k '  
m 3m 3m 
2k 2k 

m 

- -- -- 

- 

2k 
m 
- [i m 0 
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Hence 

0.5 0.25 0.25 

0.25 0.25 0.5 
[ 0.25 0.5 0.251 { E;] = & f:} 

or 

2 1 1  
[ I  1 1 2  2 l ] { i J  =s{i;} 

For lowest natural frequency assume mode shape 1, 1, 1 :  

Hence correct assumption and 

k 
m u 2  
-- - 1, 

so 
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74. 

Now 
f = - 1 J"f - = - 1 J G J  - = - 1 J GJ Hz, 

271 I ,  27~ Ikd 27~ I b ( L - d )  
where G is modulus of rigidity for the shaft, and 

J is polar second moment of area of shaft about axis of rotation. 
Thus 

I kd = I b(L- d ), 
or 

(I, + $1, :) d = (Ip + $I,r+))(L - d ). 

so 
d(IE -k Ip + $1,) = ( Ip  + 51,)  L 

Hence 

d =  ( I ,  + Ip + fI, ) L 
I ~ + ~ l s  

76. 
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Assume 

y = y,( 1 - cos(; ;)), 
then 

- d2Y = -(cy cos(; ;), 
dx 

Now 

where 

and 

S y 2  dm = Sl? y2 dx + m2yt + I ,  

- - 5 L Y L  [ 1 - 2 COS(: :) + cos2(: :)] dx 

4L L 

Substituting numerical values gives 

E = 207 x lo9 N/m2, 

L = 0.45 m, 

I - - x 2S4 x lop8 = 1.916 x lo-* m4, 
n 

'-64 

n 
m, = 7850 x - x (0.025)2 x 0.45 = 1.732 kg, 

m, = 7850 x n x 0.58(0.02)2 = 5.71 kg, 

4 
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and 

so that 

1.325 x lo5 w’ = 
9.026 ’ 

and w = 121 rad/s, so that f = 19.3 Hz. 

77. 

Assume 

and 

L 3x 
y = yo COS - for 0 < x2 < -, 3 2L x2 

Now 

EZ (d2y/dx2)’ dx 

w ’ =  j y’ dm 
, 

where 

1 jy’ (g) cos’ 2Lx2 37L dx, 

4L 
= Y :  (z) 4’ 
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and 

y 2 d m = m y o [ s o  2 2 L / 3  1 i ( l - 2 c o s - x ,  371 + c o s 2 - x l ) d x ,  3n s: 2L 2L 

1 +!r’ 3n 2L 
cos2 - x2 dx2 

5mL 2 
- Y o -  12 
-- 

Substituting numerical quantities gives f = 1.65 Hz. 

78. 

Assume 

. nx 
y = y o  sin - 

2L’ 

Then 

1 E l  (gy dx = 1:’ E l ,  (gy dx 

= E l ,  Jo  y i  ($) sin2 %dx, 
4 7tx 2 L  

= E l ,  (22)’ - y i L  

and 

Y 2  dm = my; + my:,,, + lY;Z,,,  9 s 
where 

Tc J3 
Y 2 L / 3  = Y O  sin - = Y O  - 3 2 

and 

7t 7LX 
y‘ = yo - cos FL’ 

2L 
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so 

I C 1  
YiL,3  = Yo j j .  x 5' 

Hence 

[y2 dm = y i  [T +SI, 
and 

E Is( nl2L)"L 
[7m/4 + n21/(16L2)]' 

w2 = 

IC 
I = - (804 - 70") = 832 x lo3 mm", 

64 
79. 

and 

IC IC 
massbength = - (0.082 - 0.072) 7750 + - (0.07)2 930 

4 4 

= 12.72 kg/m. 

Now [I x2(L- x)' dx 

(mg/24EI) j L  x4(L- x)" dx' 

M 21630 m L"' 

w2 = g 

0 

24EI E130 24EI 21 - - - ~ - - ~ -  

24 x 200 x 109 x 832 x 103 x 21 
S - *  - - 

12.72 x 1 O I 2  x 4" 

Hence w = 161 rad/s and f =  25.6 Hz. 

80. 
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For 

and for 

L 71x2 0 < x2 < -: y = yo  sin -. 
2 L 

Thus 

71x1 j E l  ($y dx = EZ [: 4 L  ( E T  cos2 - L dx, 

+ E1 j y  y i  (iT sin2 - 71x2 dx, 

= E Z y i ( t )  s. 3L 

L 

and 

j y 2  dm = (1 $ (1  - cos ?)’ dx, 

71x2 2 - y i  sin2 - dx, + rn, yo  L 

= y i  (0.625 m + ml). 
Substitute numerical values to get o2 
Hence f =  9.5 Hz. 

86. If spool valve displacement = y ,  
and spring displacement = p .  

Xi + P For control rod, y = - 2 ’  

Spring/damper force balance gives k p  = CD( p - x, ), and flow equation gives 
by = A D x ,  . Eliminating p and y gives 

b(cD - k )  _ -  - XO 

xi 2AcD2 - W2Ak + bc). 
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87. De, = k(6, - e,), 
so 

1 1 
= k '  - where 60 

Bi 1 + T D '  

If 

ei = pt, e, = (1 - TD + ...) pt, 
= pt - Tp. 

Thus 

6, = TB. 
1 If 6, = 1" when p = 3"/s, T = 3s. 

88. The flow Q into the main cylinder is used to move the piston, Qv , leak QL, and 
compress oil Qc. Thus 

Q = Q v  + QL + Qc, 
and 

Q = Q,Y. 
Flow equation gives 

Qv = ADx2 9 

and 

QL = L 6 ~ 3  

where 6 p  is the pressure difference across the piston and accelerates the load. 
That is, 

M D ~ X ,  = A 6 p ,  

so 

LM 
Q~ =A D ~ X , .  

Now bulk modulus is the pressure change/volumetric strain. That is 
K dV= Vdp where dp is the pressure charge causing a volumetric strain dV/K 
But Qc = dl//dt, and since K/2 is the volume of half the cylinder, 
dp/dt = (2k/K)Q,. The same rate of pressure charge occurs in the other half of 
the cylinder, so the rate of change of pressure differential is given by 

d 4K 
dt 6~ = - Q, - 

v, 
Since 
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Mvo D3x2. M 
A 

6p=-D2xZ, Q , = =  

Now 

Q = Q ~ Y ,  
so 

MVO D3xZ. 
A LM 

y = - Dx, + - D2xZ + ~ 

Qo QoA 4KAQ0 
For the control rod, y = $xl - x2), so 

1 
2LM 

D3 +- 
_ -  - x2 

2A 

2KAQo AQo Qo 
D 2 + - D + l  M VO x1 ~ 

89. 

Equation of motion is 

(ID2 + CD + GK)Oo = KGO, . 
Now 

overshoot = 0.1 = e-cn/dl -8 

Thus 

5n 
J(1 - [2) = 2 .39  

and 

[ = 0.59. 

Also 

C C [ = - =  
c, 2J(GKI)’  

so 
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CZ CZ 

4C2I I GK = - = 0.718 -. 

90. 

This system is equivalent to 

Equation of motion is (JD2 + cD + K ) 8 ,  = KO,.  Modified system is 

Equation of motion is 

[(e, - e,) + K1DOi - KIDeo]K = (JD2 + cD)B,, 

That is, 

[ J D ~  + c~ + K K , D  + K I O ,  = ( K K , D  + w e , .  
With a step input 0, = X ,  
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P.I. gives 

e o =  1 -  K , + -  D +  . . . (  ~ + K , D ) x ,  ( (  2 1 

( (  2 ) 

( 2 

= x. 
C.F. has damping term increased to ( c  + K K ,  ) 
With a ramp input Bi = Pt, P.I. gives 

so overshoot is reduced. 

e o =  1 -  K , + -  D +  . . . (  1 + K 1 D ) j t  

= (1 - ( K ,  + i) D + . . .)(p + K , p )  

= P t  + K I P  - K l  +-  P 

c 
= Pt - - p. 

K 

so steady-state error is 

c k A as before. 

92. 

For first overshoot from step input, 

- 1 - e-Cn, ( 1  -3 
5 -  9 

so 

in 
= log, 5 = 1.6094. 

JCl - i2) 

Hence 
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c2 = 0.20788. 

Now 

C C c = - =  
c, ~ J ( J K G )  

so 

= 30 Nm/rad. 
C2 502 G K = - =  
4Z12 4 x 100 x 0.20788 

93. (a) K = 2292 N m/rad; 

(b) o = 8.93 rad/s, 6 = 4.5 rad/s; 

(c) 8,  = 2 rad/s. 

94. (a) t = 19.6s; 

(b) K = 192 V/rad/s. 

95. 

Equation of motion is 

(JD2 + (c + K , K 2 ) D  + K,)O0 = KPi .  

e o = ( 1 - (  c + K 1 K 2  K l  ) D +  ... >B1' 
Velocity input Bi = pt gives P.1 as 

= pt - t + .,K2) p, 

(" +y) fi. 

K l  
so steady-state error is 
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With a step input, from the equation of motion 

c + K , K ,  ‘ = 2 J ( K , J )  

For 10% limit, 
e-tJJ(l-?) = 0.1 

9 

so 

- log, 0.1 = -2.3026. i n  - 
JCl - iz) - 

Hence 

so that 

C = 0.591, 

c + K , K ,  
= 0.591. 

2J(KiJ )  

98. 

(i) 

Equation of motion is 

K(ei - e, + 0 . 2 ~ 2 e , )  = ( J D ~  + CD) e,, 
or 

[(J - 0.2K)D2 + cD + K ]  8, = KO,. 

(ii) For step input O i ,  P.I. gives 

eo=  L - D +  ... 1 ,  e . = e .  1 ’  [ L  
That is, there is no steady-state error. C.F. gives 
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8, = Ae-["' sin(oJ(1 - 1') t + (b), 

so transient output frequency is wJ(1 - c'), where 

= 4 rad/s, 
16 

= J(J -:.2K) = J4.2 - 0.2 x 16 

and 

1 _ _  4 - C ' = 2J[K(J - 0.2K)I - 2J[16(4.2 - 0.2 x 16)] - '' 

so 

transient frequency = 4J[1 - (f)'] = 3.46 rad/s = 0.55 Hz. 

Complete solution for 8, is P.I. plus CF; 

e, = ei + Ae-CO' sin(oJ(1 - 1') t + 4). 

Now at t = 0, 8, = 0, so 0 = Oi + A sin 4, 
0 = A - io sin 4 + AoJ(1 - 1') cos 4. 
Hence 

and at t = 0, DO, = 0 so 

JCl - 1') and sin (b = J(l - 1'). tan 4 = 
i 

Also 

Thus 

e = e . -  ei sin(oJ(1 - i') t + (b), 
, ' JCl - i2) 

where 

J 3 .  7c 
sin 4 = J(1 - 1') = -, hence (b = - 

2 3 

When t = 0.5 s and Oi = 0.2 rad 

0.2 ,-+ x 4 x 0 .5  e, = 0.2 - 
JCl - (+)'I 

= 0.17 rad. 
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99. 

where s is the Laplace operator. 

32 
0 . 5 ~ ~  + s + 32. 

- CLTF, -- 80 KP - 
Oi - Js2 + cs + K ,  

Ramp input gives 

2 8. = - 
I s 2 ’  

so 

64 ) L A (  2s + 4 ). ( s 2 + 2 s + 6 4  s2 s s 2 + 2 s + 6 4  error = Bi - 8, = 1 - 

F.V.T. gives steady state error as 

lim [ sE(s)]  = lim [ 2s + 4 ] = & rad. 
S - t O  s-to s2 + 2 s +  64 - 
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00 KdS + K, _ -  
8i - J S z  + (Kd + C) S + K,' 

For critical damping 

(Kd + c) = 2,/(K,J), 

so 

Kd + 1 = 2J(32 x OS), 

so Kd = 7 N m s/rad. 

Now 

5 -  Kds2 + K,s + Ki 
Oi - J S 3  + (Kd + C)Sz + K,S + Ki' 

so 
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(Js3 + cs2)8, 
Js3 + ( K ,  + c)s2 + K,s + K,’ 

e i - e  = a 

F.V.T. gives velocity lag 

4 J s 3  + cs2)(Oi/s2) ]=o .  
s-.o [ Js3  + ( K d  + c)s2 + K,s + K i  

= Lim 

100. 

_ -  80 Ki 
Bi - (1 + sT)(Js + c) + K i K r ’  

Ki JTJ 
s2 + r+)s + ( KiKr TJ + c ) ’ - - 

K W 2  
s2 + 2cws + w2’  

- - 

where 

o = J ( ” i K r J +  C) = $” 0.1 x 0.2 x 5 + 10 = 10 rad/s, 

and 

J + T c  5 + 0 . 1  x 10 
TJ 0.1 x 5 

2l3Ij = - = = 12, 

so that 

Ki [ =0.6;  and Kw2 =-  
TJ 

and 
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K = 4. 

Hence 

400 
- 80 - - 
ei s2 + 12s + 100' 

For a step input 

X 
ei(s) = -, 

s 

so using Laplace tables 

e-["' sin(oJ(1 - C2)t + 4) . 1 1 
B,(t) = 400x - - [12 02J(1  - c2) 

Hence 

e-<"' sin(oJ(1 - i2)t + 4) . 1 400x 1 
error = - 

o2 [J(l - 12) 
Maximum error when oJ(1 - C2)t = nn, that is when t = nn/8. With 

[ - 0.09471, 
400x 

n = 1, error = - 
o2 

n = 2, error = - 400x [0.00898], 
o2 

which is less than 1% with t = 2n/8 ( t  < 1 s). 
With load applied, 

so 

e&, - L(l + sT) 8, = 
(1 + sT)(Js  + c) + K,K, '  

Hence error in 

eiKi 41 + S T )  8, = - 8, = 
(1 + sT)(Js + c) + K , K ,  (1 + sT)(Js + c) + K , K  
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F.V.T for L= 100/s gives 

= 2 radls. 
100 

c + K,K,  
error = 

101. 

Equation of motion is (JD2 + cD + K)O, = KO,. With step input X ,  overshoot 
is X e-c7dJ(1-lz). Thus 

0.01 = o.le-b/v’(l-cz). 

Hence 

[ = 0.592. 

Also 

C C2 

2 J ( J K  ) ’ 4Jc2’ 
[=--- SO K = -  

and 

= 1236 N m/rad. 
80O2 

K = -  
4 x 370 x 0.5922 

With hydrodynamic forces, 

so that 

[ J D ~ + ( ~ + ~ , ) D + ( K + K , ) ] ~ , = K ~ ~ .  

Now, steady-state output with step input 
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x =  ~ 

(K +KK,)x’ 

so steady-state error = 0.1 - - (z) O.l 

= 0.074 rad. 

First overshoot is 

(K f K , )  x e - w ~ l - c * ) ,  

where 

K + K,  = 4736 N mfrad, 

c + c1 = 1500 N m sfrad, 

C, = 2J[(K + K, )J] = 2 J(4736 x 370) 

= 2647 N m sfrad 

and 

1500 l = -  2647 = 0.567. 

Thus e-cn’v’(’-c*’ = e-2.17 = 0.114, and first overshoot is 

= 0.0029 rad. 
1236 
4736 

0.114 x 0.1 x - 

102. 

Equation of motion given by 

10(E + kD2B.)(JD2 1 + cD) = e,, 
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that is 

(J  - 10k )D20, + cD0, + 100, = 100,. 

For critical damping 

c = 24Clq.I - lOk)], 

so 

20 = 2J[10(30 - lOk)], 

hence 

k = 2s’. 

Now 

1 C e,=[(;- k D  ) 2 + - D + l  10 e,, 

so that if 8, = Bt, 

eo=[, +;D+($-k)D’] - 1  Bt 

C 
= pt - - B. 

10 

That is, the steady-state error is 

C 

lo B. 

Thus 

20 2n2 
s s - l o  60 

8 - - x - rad = 0.419 rad = 24”. 

103. 
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Equation of motion is (JD' + cD + K )eo = KO,.  Step input applied so 

e = e . -  i Csin(oJ(1 - i2)t  + 41, 
O ' JCl - i') 

where 

For no error, 0, = Bi, so that 

Now 

1 - _  100 
2,/(2000.80) - '' 

and 

w = /$ = ts = 5 radfs. 

Thus 

so that 

(F)t + 1.445 = 0, n,. ... 

Hence t = 0.342 s. 

The time to the first overshoot is 

7r.8 
- 0.633 s. 

n 
oJ(1 - 12)  - 5J63 = - 

The magnitude of the first overshoot is 
eie-in/J(I 4). 

Now 
- 

e - c r / ~ ( l  -;') = e - ( ~  X 8)/(8 x d'63 - - 0.673. 

Since 8; = lo", first overshmt is 6.73". 
With a ramp input, steady-state error is ( c / K )  j?. That is, 
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- x 10 = 0.5 rad. 
100 

2000 
104. 

Let K = KlK2 = 16 x 3 = 48 Nm/rad. 
With a step input, 

1 9  
,go = e,[1 + e-h /g( l - i2)  

where 

1 - -  24 - * c  C 
4=-=- 

c, 2,,/(JK) - 2J(48 x 12) - ” 

so that 
e - : 7 1 , ( l - 3  - - e-’ a’4 = 0.1629. 

Therefore the maximum overshoot is 0.163 rad. 

With tachogenerator 

The equation of motion is 

[(e, - e,)Kl - c1D8,]K, = [JD2 + cD]O,. 

Hence 

[JD2 + (c + c lK2)D + KIKz]O, = [KIK,]Bi. 

Transfer function 
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For critical damping 

c + c1K2 = 2,/(K1K2J 1, 

or 

24 + c13 = 2J(3 x 16 x 12) = 48. 

Hence c1 = 8 V/rad/s. 

107. Equation of motion is 

so that 

and 

8Kl OLTF = 
s(s + 4Xs + 5 )  + 8Kls' 

If 

Apply rules to draw root locus diagram: 
Poles at s = 0 and -; f j2. 
Asymptotes intersect at -3. 
Breakaway points at 3s2 + 18s + 7 = 0; that is s = -4 or -2. 
Intersection with imaginary axis given by putting s = j w  in 

s3 + 9s' + 7s + 8 K ,  = 0. 

Equating real and imaginary parts gives 

w = 0, K ,  = 0 and w2 = 7, K ,  = 27.3. 

Hence maximum value of K ,  for stability is 27.3. 
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The root locus diagram can now be drawn: 

Now 

s3 + 9s2 + (20 + 8K,)s + 8 K ,  = 0. 

If pole at -2  + j2 (or can take -ve sign) 

s2 = -8j and s3 = 16j + 16. 

Hence 

16j + 16 - 72j - 40 - 16K2 + 40j + 16K2 j + 8 K ,  = 0. 

Equate real and imaginary parts to give 

16 - 72 + 40 + 16Kz = 0 SO K2 = 1, 

and 

16 - 40 - 16K2 + 8K1 = 0 SO K l  = 5 

(can check by substitution: other pole at -5). 
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108. If G is constant, 

K2 {G[K,O,  - KIOo] - KocsOo) - = B o .  
Js2 

Hence 

80 GKIK2 CLTF = OC(s) = - = 
Oi Js2 + KoK,cs + G K l K 2 ’  

and 

00 GKlK2 OLTF = O0(s) = - = 
0, - eo ~ s 2  + ~ , ~ , c s ’  

And if 

GO 
1 + S T , ’  

G=- 

GOKlK2 
‘c(s) = ( Js2 + KoK2cs)(l  + ST, )  + G o K , K 2 ’  

- - GOKlK2 
JT,s3 + ( J  + KoK2cT,)s2  + KoK2cs  + G o K , K 2 ’  

and 

GOKIK2 

O0(’) = JT,s3 + ( J  + K,K2cT,)s2 + KoK2cs ’  

The root locus diagrams can now be drawn by applying the rules. 
With G constant, there are poles at 0 and - 5 and a breakaway point at - 2.5: 
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The system is always stable provided G > 0. 
With 

G = -  Go 
1 + S T , '  

25G 
'o(s) = 4s3 + 30s2 + 50s ' 

There are three loci, poles at 0, -5 and -5, and breakaway points at approx 
- 1  and -4: 

109. (a) K = 30; (b) K = 72. 

110. If signal in feedback loop is x, 

1 
(? + s + 2) = x* 

(KB, - KB, - x) 

and 

Gx e, = r 
s + 5 s '  

Hence 

G K(ei - e,) 
(s2 + 5s) (s2 + s + 3)' 

e, = ~ 

and OLTF, 

GK (A) = s(s + 5Hs2 + s + 3)' 

Plot root locus by using the rules: 
4 loci: 
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Poles at 
S = O  - 5 ,  -7 f j JY.  1 

Asymptotes intersect at -3. 
Breakaway point at - 3$. 
Substituting s = jo gives G K  = 133. 
Hence root locus diagram can be drawn: 

For stability, loci must lie on LHS of s-plane so that GK > 0 
and G K  < 133, 

111. For system shown, by considering signal in each loop 

GK(Oi - 0,) 
- (0.25 + 2s)eo] L 2s2 - - 00, [ s(1 + 0.5s) 

so that the equivalent single loop system OLTF is 

GK 80 - -- 
ei - eo s(i + osSxo.25 + 2s + 2 s ~ ) '  

The root locus diagram can be drawn by applying the rules: 
4 loci 
Poles at s = 0, -2, -0.15, -0.85. 
Asymptotes intersect at -3. 
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Breakaway points at - 1.6, -0.04 and -0.6. 
Substituting s = jo gives maximum GK for stability as 0.17 when o’ = 0.25/3. 
Hence the root locus diagram is as follows: 

Maximum value of GK for stability is 0.17. 

112. (a) 0.75 > K > 0.2 (c) [ = 0.558. 

113. To draw the root locus diagram, apply the rules: 
3 loci: 
Poles at s = 0, - 10, -20. 
Asymptotes intersect at - 10. 
Breakaway points at -4.2 and - 15.8. 
K,,, given by substituting s = jw in 

0 . 0 0 5 ~ ~  + 0.15s’ + s + K = 0, 

Equating real and imaginary parts gives 

o = O  and K =0, and o’= 200 and K = 30. 

Thus for stability 
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K,,, = 30 and f =  - J200 = 2.26 Hz. 
27c 

The root locus diagram can now be drawn: 

For Routh - Hurwitz criterion, equation is 

0 . 0 0 5 ~ ~  + 0.15s' + s + K = 0 

so condition one requires K > 0, and for condition two, a, = K ,  a, = 1, 
a, = 0.15, a3 = 0.005. So that 

R ,  = + 1  and R ,  = I ' K 1 =OM -0.005K 
0.005 0.15 

For R ,  to be +ve, K,,, = 30, as before. 
Modified system has OLTF 

K(l + 0.5s) 
s(1 + O.lsX1 + 0.05s)' 

That is a zero now exists at s = -2, and the asymptotes intersect at - 14. 

The root locus diagram is therefore as follows: 
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Therefore the system is stable for all +ve values of K .  
When K = K,,, = 30, 

30 + 15s = -0 .005~~ - 0 . 1 5 ~ ~  - S, 

or 

0.005~~ + 0 . 1 5 ~ ~  + 16s + 30 = 0. 

Trial and error gves s = - 1.9. Hence 

5s’ + 140s + 16000 = 0, 

and 

s = -14 kj55. 
That is, a damped oscillation frequency of 55 rad/s or 8.75 Hz, with damping 
factor 14. 
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1 OK 
= (1 + 0.2s)'( 1 + 0.05s) ' 114. 

To draw the root locus diagram, apply the rules: 
3 loci: 
3 poles at s = -5, - 5 ,  -20. 
Asymptotes intersect at - 10. 
Breakaway points. Put dK/ds = 0 to get 

s2 + 20s + 75 = 0 

so 

s =  -5  or -15. 

Intersection with imaginary axis when s = jw:  

10K + 1 + 0.45jw - 0.060~ - 0.002Jw3 = 0. 

Equate imaginary parts: 

0.450 - 0.0o2w3 = o 

that is w = 0 or 15 rad/s. 
Equate real parts: 

10K + 1 - 0 . 0 6 ~ ~  = 0 

[Ch. 7 

so K = -0.1 or 1.25. 
Hence maximum value of K for stability is 1.25. 
The root locus diagram can now be drawn: 
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~. 

10K 
'o(s) = (1 + O.O2s)(l + 0.2sHl + 0.05s). 

Root locus diagram can be drawn by applying the rules: 
3 loci: 
3 poles at s = -5, -20, -50. 
Asymptotes intersect at -25. 
Breakaway points. Put dK/ds = 0 to get 

s2 + 50s + 450 = 0, 

so 
s =  -12 or -37. 

Intersection with imaginary axis when s = jw. 
This gives w = 0 and K = -0.1 

and w2 = 1350 and K = 1.925. 
Hence maximum value of K for stability is 1.925. 
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To apply the Routh - Hurwitz criterion, 

s3 + 75s2 + 1350s + 5000 + 5000 x 10K = 0 

Condition (1) requires K = -0.1, and for condition (2), 

u3 = 1, u2 = 75, a, = 1350, and a, = 5000 + 50000K. 

That is 

5000 + 50000K 2 75 x 1350 

K,,, = 1.925, as before. 
or 

The root locus diagram for the modified system can now be drawn: 
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Compared with the original system, the RLdiagram is similar but moved to the 
left on the Re(s) axis. Hence the response is more highly damped for a given 
value of K. System has a damped, stable response at previous K,,, (1.25). 
Frequency of oscillatory response at new K,,, (1.925) is 37 rad/s, and much 
higher than previous value of 15 rad/s. 

116. By considering signal flow in block diagram and writing down the transfer 
functions, the characteristic equation is found to be 

(s + 1)(2s2 + 11s + 12) + K = 0. 

Root locus is drawn by applying the rules: 
3 loci - : 
Poles at - 1, -3, -4. 
Asymptotes intersect at -9. 
Breakaway points at -; and - 3. 
Substituting s = j w  gives K,,, = 137.5. 
Root locus diagram is as follows: only positive frequency and K > 0 is shown: 

3 

117. The characteristic equation is 

K ( s  + 2) 
1 + s(s + 1)2(s + 5) = O. 

That is, 



404 Answers and solutions to selected problems 

s4 + 7s3 + l l s 2  + (5 + K ) s  + 2K = 0. 

R , =  

For Routh-Hurwitz criteria, 
Condition 1 requires K > 0. 
For condition 2, 

7 1 1  5 + K  
0 1 7 

R ,  = 5 + K which is +ve for K > 0, 

R 2 = l  5 + K  2K 1 1  / = 5 5 - 3 K ,  

which is +ve for K < 

[Ch. 7 

= 360 - 5K + 72K - K 2  - 98K. 

Limit when K + 31K - 360 = 0. 
Thus for stability, 9 2 K > 0. 

That is K = 9 or -40. 

For the modified system, 

K (s + 2) 
s(s + 1Hs + 5Hs + 10) 

OLTF = 

The root locus diagram can be drawn by applying the rules: 
4 loci -: 
Poles at  s = 0,-1, -5, -10. 
Zero at -2, 
Asymptotes intersect at -45. 
Breakaway points found by trial and error at -;, -7;. 
Intersection with imaginary axis found by substituting s = jo to give K,,, = 526 
at 6 radfs. 
The root locus diagram can now be drawn: 
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For the damping ratio at 1 rad/s, 

i = cos 8 

0.55 
J(1’ + 0.55’)’ 

‘v 

Hence J = 0.48. 
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K Qo - - 119. Qc = - 
l + Q o  s 3 + 6 s ’ + 1 1 s + 6 + K ’  

When K = 90, 

90 
-jw3 - 6w2 + l l j o  + 6 

Q.,(iw) = . 

- 90[6(1 - w ’ )  - jw(l1 - w ’ ) ]  
- 

[36(1 - w ’ )  + ~ ’ ( 1 1  - w ’ ) ’ ] ’  

- 1,0 enclosed so system unstable. 
To pass through or enclose (- LO), K Q 60. Since when K = 90 point (-bo) 
passed through. 

1 
Q -  * - s(1 + sK1 + 2s)’ 

120. 

Put s = jw, rationalize and split into real and imaginary parts: 

+J[ -dl - 2 w 2 )  I- - 30’  
4w6 + so4 + 0’ Qo(io) = 

4w6 + 5w4 + w2 

Hence the following table: 

0 ReQ,Cjw) ImQo(iw) 

--co 0 0 
-ve large -ve small -ve small 
-ve small - ve + ve 
0- - 3  co 
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When 

lmO,,(jo) =o ,  o = o or o2 =+. 

When 

2 
3' 

- _-  - 3 ( 9  
4(+)3 + 5(+)2 + (+) - 

w2 = 4, Re@,,(jo) = 

Since the loop does not enclose ( -  1,O) the system is stable 

1 3  
Gain margin = - = -. 

213 2 

For the modified system, 

(1 + 3s) C D -  
o - s(1 + s)(l + 2s)' 
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Putting s = jw, rationalizing and finding real and imaginary parts gives 

+J[ -O4l + 7 w 2 )  1 - 6w4 
O0(jw) = 

406 + 5w4 + 0 2  4w6 + 5w4 + w2 
. 

Hence the following table: 

w Re@,Cjw) Im@,Cjo) 

-a3 0 0 
-ve large - ve + ve 
-ve small - ve + ve 

0- 0 00 

System is stable for all values of gain because (- 1,0) can never be enclosed. 
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121. (a) K,,, = 8 

(b) K m i n  = 0 

(c) w = 5 rad/s, magnitude = 1.33 

(d) Gain margin = 0.75. 

122. 
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-~ _I 10 II 
. -  

I O  
)(s- + L S + L )  s' + 3 s" + 8 S' + b S '  O L T F = , , + j - -  

Put s = jw and rationalize to get 

lO~'(w2 7 8) 
0 0" + 4 0- + 3b w2 Re@,(jw)= e + 9  

and 

- lOLO(6 - >w') 
0" + 4 w' + 36 w2 Im@,(jw) = + 

Hence the following table: 

-a2 
-ve large 
- 48 
-44 
-ve small 

0- 

0 
+ ve 

0 
- 1.23 
- ve 
- 2.2 

0 
- ve 

-0.104 
0 

+ ve 
cc 

The Nyquist diagram can now be plotted. 
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The system is unstable because ( -  1,O) point is enclosed. 
With proportional control added, 

1qs + 1) 
s(s + 3 K s 2  + 2s + 2)’ 

OLTF = 

Substituting s = jw, rationalizing and dividing into real and imaginary parts gives 

-400~ - 2 0 ~ ’  
Re@ ( ‘w 

o J ) = o8 + 9w6 + 4w4 + 36w” 

and 

loOs - 30w3 - 60w Im@ ( ’ w  
o J ) = w 8  + 9w6 + 404 + 3 6 0 ~ ’  

By drawing up a frequency table, the following Nyquist diagram is obtained: 
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The system is now stable because ( -  1,O) is not enclosed. 
Gain margin = & = 1.59 with satisfactory phase margin. 

123. Substitute s = jo into @&), rationalize and split into real and imaginary parts 
to give 

- 6K0’  
( -  6 0 ~  )2 + (80 - w3 )’ ’ Re@,(jw) = 

and 

- K  (80 - 0 3 )  
Im@,(jw) = 

( - 6 0 ~ ) ’  + (80 - w3)” 

Hence the following diagram: 
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If Im@,Cjo) = 0, w2 = 8, and then 

K 
Re0,Cjo) = - -. 

48 

That is, K,,, for stability is 48, so system stable when K = 20. 

124. Substituting s = j o  into the OLTF, rationalizing and splitting into real and 
imaginary parts gives 

- 6w2 
Re@,Cjo) = 

4 0 6  + 5 0 4  + 02’ 
and 

-2(w - 203 ) 
Im@,(jo) = 406 + 504 + 02. 

Hence the following table: 

0 Re@,W) Im@,Cjw) 

--co 0 0 
-ve large - ve - ve 
-ve small - ve + ve 
0- -6  00 

4 44 -3 0 - 
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The Nyquist loop can now be drawn: 

Since the ( -  1, 0) point is enclosed the system is unstable. 

For the modified system, 

2(1 + 0.5s) 
@o(s) = s(s + 1)(2s + 1)' 

Substituting s = ju, rationalizing and splitting into real and imaginary parts gives 

- 5 w 2  - 2w4 
4W6 + so4 + u2' Re@,Cjw) = 

and 

-20 + u3 
Im@,(jw) = 4u6 + 5w4 + u2' 

Hence the following table: 
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0 Re@,(jo) Im@,,(jo) 

--oo 0 0 
-ve large - ve - ve 
-ve small - ve + ve 

0- - 5  co 
+ ve 
0 1 

- J+ 0 
- J2 - 3  

The Nyquist loop can now be drawn: 

(- 1,O) is not enclosed, therefore the system is stable. 

1 Gain margin = - = 3. 
113 - 
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7 
J O ( l K 1  + U.lb'/JO]' 126. @,(jO) = . 

Magnitude: 

20 logl@,(jo)( = 20 log 7 - 20 log jw - 20 log11 + 0.5jol - 20 log11 + 0.167jwl. 

Now 20 log 7 = 17 dB -20 log j o  is plotted 

-20 log11 + 0.5jwl is plotted 

-20 log11 + 0.167jol is plotted 

These plots are all made on Log - Linear graph paper and added to give the 
Bode gain (or amplitude) plot. 
Phase: 

(@,(io) = -90" - tan-' (0.50) - tan-' (0.1670) 

O 1 2 4 6 10 
- 90" - 90" - 90" - 90" - 90" - 90" 
-tan- ' (0.50) - 27" - 45" - 63" - 72" - 79" 
-tan-'  (0.1670) -9" - 18" - 34" - 45" - 59" 

- 126" - 153" - 187" - 207" - 228" 

Hence the Bode phase plot can be drawn, see over leaf. 

If the magnitude and phase plots are drawn on the same frequency axis, it 
can be seen that the system is unstable with 

gain margin = - 1 dB, 

and 

phase margin = -4". 

40 
@,(io) = JW(1 -k u . ~ j o ~  -k u.z)o)' 127. 

Magnitude: 

201ogl@,(jw)~ = 20log40 - 201ogjo - 201ogll + O.O625jo( - 201ogll + 0.25jol. 
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Draw individual plots on log - linear graph paper and add to give Bode magnitude 

Phase: 
plot. 

(WO) = -90" - tan-' 0.06250 - tan-' 0.25jw 

0 1 5 10 20 
~ ~~ 

- 90" - 90" -90" - 90" -90" 
-tan - 0.06250 -4" - 17" - 32" - 51" 
-tan- ' 0.250 - 14" -51" - 68" - 79" 

- 120" - 158' -200" - 220" 

Hence Bode phase angle plot can be drawn. 
From plots, system is unstable with 

gain margin = -7 dB, 

and 

phase margin = -21", 

Phase lag network introduces new terms to be added into existing plots. Found 
that system now stable with 

gain margin = 18 dB, 

and 

phase margin = 50". 

129. Draw magnitude plots for 

and 
1 

1 + qjo' 
1 1 
6' 1 + TI jo 

Sketch in modulus for K = 1. 
Calculate a few phase values. 
Cross over occurs at 14 rad/s where K,,, can be found from 20 logJK I = -40. 
Hence 

K,,, = 100. 

When 
1 

1 + T'S 

term is replaced by a time delay term, 
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Sketch magnitude and phase plots. 
At phase cross over w = 3.1 rad/s and K = 3.2. 

130. 50". 

131. (a) K = 11. 
- 

(c) a = 1.83 rad/s; b = 5.48 rad/s; k' = 19.05. 

[Ch. 7 
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Index 

absorber, dynamic vibration, 104, 128, 296 
acceleration feedback, 315 
accelerometer, 315 
amplitude frequency response, 49, 106 
asymptotes, 231 
auto-correlation function, 80 
automatic control systems, 2, 6, 171 
axial loading, 152 

beam equation, 148 
beam, 

hinged structure, 156 
transverse vibration, 147 
with axial load, 152 
with discrete bodies, 153 

block diagram, 6, 172 
Bode analysis, 271 
Bode diagram, 184, 272, 325 
breakaway points, 233 
break frequency, 274 
bridge vibration, 285 
building vibration, 26 

cantilever, 163 
characteristic equation, 93 
closed loop, 180, 192, 194, 195 

electric servo, 194, 195, 3 1 1, 3 13 
hydraulic servo, 180, 192, 31 1 
system, 172 
transfer function, 225 
with feedback, 192 

column matrix, 11 6 
complex modulus, 42 
complex roots, 231, 234 
complex stiffness, 42 
compressibility, 312 
computer control, 172 
conservative system, 169 
continuous systems, 141, 309 
co-ordinate coupling, 96 
co-ordinate generalised, 122 
corner frequency, 274 
Coulomb damping, 69 

critical speed, 103, 151 
critical viscous damping 30, 284 
cross receptance, 125 

damping, 

equivalent viscous, 43, 44 

combined viscous and Coulomb, 40 
Coulomb (dry friction), 37, 69 
critical viscous, 30, 284 
energy dissipated, 43 
equivalent viscous, 43, 44, 45 
factor, 248, 251 
free vibration, 28 
hysteretic, 68, 70 
joints, 34 
ratio, 30, 65, 241, 246, 248 
root locus study of, 37 
viscous, 29, 46, 55, 67 

dead zone, 38 
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decay, 31,32 
delta function, 73 
derivative control, 185 
derivative of error control servo, 185 
design, 2 
direct receptance, 125 
D-operator, 37,71 
dry friction damping, 37, 69 
Duhamel integral, 74 
Dunkerley’s method, 153 
dynamic magnification factor, 49 
dynamic vibration absorber, 104, 128, 296 

earthquake model, 100 
effective mass, 52 
Eigenvalue, 117 
Eigenvector, 11 7 
electric servo, 194, 195, 199,203,207,239,313 
energy dissipated by damping, 43 
energy methods, 19 
ensemble, 77 
equations of motion, 8 
ergodic process, 79 
Euler buckling load, 166 
excitation, 54 

periodic, 74 
shock, 72 

fatigue, 2 
feedback, 172 
final value theorem, 223 
finite elements, 170 
flexibility matrix, 171 
flow equation, 179 
fluid leakage, 312 
force, 

suddenly applied, 71, 176, 192, 199, 287 
transmitted, 56 

forced vibration, 46, 102, 288, 190 
foundation vibration, 55 
Fourier series, 75 
frame vibration, 158 
free motion, 94 
free vibration, 

damped, 28 
undamped, 11,92 

bandwidth, 65 
corner, 274 
equation, 93, 227, 229, 230 
natural, 88 
response of control system, 255 

frequency, 

gain margin, 259, 325 

Gaussian process, 80 
geared system torsional vibration, 17 
generalised co-ordinate, 122 

half power points, 64 
harmonic analysis, 74 
hydraulic servo, 178, 185, 188, 311 
hysteretic damping, 41, 68 

equivalent viscous, 45 

impedance, 135, 308 
impulse, 73, 176 
influence coefficient, 117, 305 
integral control, 188 
integral of error control, 207 
isolation, 54, 56, 58, 62, 124, 287 
iteration, 1 17 

Kennedy-Pancu diagram, 68 

Lagrange equation, 115, 121, 301, 304 
Lanchester damper, 108 
Laplace, 

operator, 222 
transformation, 221 
transforms, list of, 222 

logarithmic decrement, 3 1 
longitudinal vibration, 142, 309 
loss factor, 42, 43 

machine tool vibration, 5, 113, 297 
magnification factor, 49 
margin gain, 259, 325 
margin phase, 259, 325 
mathematical model, 3 
matrix method for analysis, 115 
mobility, 135, 308 
mode of vibration, 93, 118, 141, 295 
model parameter, 7 
modelling, 3 
multi degree of freedom system, 88, 115, 

292 

narrowband process, 84 
natural frequency, 88 
negative output velocity feedback, 203 
node, 21 
noise, 1 
non-linearities, 8 
notation, xiii 
Nyquist, 

criterion, 255, 323 
diagram, 68, 256 
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open loop, 
hydraulic servo, 178,311 
system, 172 
transfer function, 225 

orthogonality of principal modes, 11 8 
output velocity feedback, 203, 313, 314, 315 
overshoot, 177, 196, 

periodic excitation, 46, 74 
phase frequency response, 49 
phase lag network, 325 
phase lead network, 326 
phase margin, 259, 325 
pole, 228 
portal frame analysis, 158 
power amplifier, error actuated, 178 
primary system, 104 
principal modes, 141 
probabalistic quantity, 77 
probability, 

distribution, 77 
density function, 78 

Q-factor, 51, 63, 285 

ramp input, 176, 183, 196 
random, 

variable, 77 
vibration, 77 

Rayleigh’s method, 159, 309, 31 1 
reaction time, 171 
receptance, 125, 155, 306 

cross, 125 
direct, 125 

reciprocating unbalance, 51 
reciprocity principle, 127 
relative stability, 259 
remote position control, 178 
resonance, 251 
Reynold’s number, 168 
root locus, 43, 228, 318 

rules, 230 
summary, 236 

rotary inertia and shear, 152 
rotating unbalance, 51, 288 
Routh-Hurwitz, 242, 321 

s-plane, 114, 227, 241 
servo, electric position, 194, 195, 239, 313 

comparison of main forms, 210 
response to sudden load, 199 
with derivative of error control, 207 
with integral of error control, 207 
with output velocity feedback, 203 

servo, simple hydraulic, 178 
closed loop, 180, 192, 31 1 
open loop, 178 
with derivative control, 185 
with integral control, 188 

shaft, stepped, 17 
shear frame, 90,293 
shock excitation, 72 
single degree of freedom system, 11, 159, 

280 
sinusoidal input, 183, 196 
spectral density, 84 
spool valve, 178 
springs, 

elastic soil, 27 
heavy, 159 
in parallel, 15 
in series, 14 
non-linear, 18 

square wave, 75 
stability, 

absolute, 259 
of control systems, 208, 218, 228, 242, 

318 
of vibrating systems, 169, 228, 242, 318 
relative, 259 

stable response, 28 
standard deviation, 80 
stationary process, 79 
steady state error, 176, 183, 187, 194, 196, 

207,208, 215, 223 
step input, 176, 182, 195 
stiffness, 

complex, 42 
equivalent torsional, 17 

string vibration, 141 
Strouhal number, 167 
structure, conservative, 169 
subsystem analysis, 127 
sweeping matrix, 120 
system, 

closed loop, 172 
open loop, 172 
matrix, 116 

time constant, 181 
torsional vibration, 15, 143 

trailer motion, 103, 281, 291 
transfer function, 

closed loop, 225 
open loop, 225 
system, 173, 224, 312 

transient motion, 48 

geared systems, 17 
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translation vibration, 11 
with rotation, 96, 293 

transmissibility, 56, 289, 290, 292 
frequency response, 57 

transverse beam vibration, 147, 160 
axial load, 152 
with discrete bodies, 153 

transverse string vibration, 141 
two degree of freedom system, 89, 92 

dynamic absorber, 104 
forced, 102 
free undamped, 92 
viscous damped, 104, 113 

unstable response, 11 5, 

vi bration, 
beam, 147 

bridge, 285 
buildings, 26 
combined viscous and Coulomb 

damping, 40 
continuous system with distributed mass, 

141 
Coulomb (dry friction) damping, 69 
decay, 31, 32 
distributed mass systems, 141, 309 
dynamic absorber, undamped, 104, 128, 

296 
floor, 61 
foundation, 55 
forced, 46, 102 
forced, damped, 46,69, 290 
free damped, 28 
free, undamped, torsional, 15 
free, undamped, torsional, geared system, 

free, undamped, translation, 11 

hinged, 156 

17 

hysteretic damping, 68, 70 
isolation, 54, 56, 58, 62, 124, 287 
longitudinal bar, 142, 309 
machine tool, 5, 11 3, 297 
mode of, 93, 118 
measurement, 86, 289 
multi degree of freedom system, 88, 11 5, 

292 
principal mode, 141 
random, 77 
rotation with translation, 96 
single degree of freedom, 10, 11, 159, 280 
systems with heavy springs, 159 
systems stability, 115 
torsional vibration of shaft, 143 
transverse beam, 147, 160 

transverse string, 141 
two degrees of freedom systems, 88, 92 
viscous damping, 29, 55, 284 

with discrete bodies, 153 

vibrometer, 87, 288 
viscous damped system with vibrating 

foundation, 55 
viscous damping, 29, 67, 11 3 

critical, 30 
equivalent coefficient, 43, 45 
ratio, 30, 65 

vortex shedding, 167 

wave, 
equation, 144 
motion, 141 

wheel shimmy, 228 
whirling of shafts, 151 
white noise, 84 
wide band process, 84 
wind excited oscillation, 167 

zero, 228 
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