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Preface

This Volume is the second of a series of two:

• Volume 1: Equilibrium
• Volume 2: Stresses, deformations and displacements

These volumes introduce the fundamentals of structural and continuum
mechanics in a comprehensive and consistent way. All theoretical devel-
opments are presented in text and by means of an extensive set of figures.
Numerous examples support the theory and make the link to engineering
practice. Combined with the problems in each chapter, students are given
ample opportunities to exercise.

The book consists of distinct modules, each divided into sections which are
conveniently sized to be used as lectures. Both formal and intuitive (engi-
neering) arguments are used in parallel to derive the important principles.
The necessary mathematics is kept to a minimum however in some parts
basic knowledge of solving differential equations is required.

The modular content of the book shows a clear order of topics concerning
stresses and deformations in structures subject to bending and extension.
Chapter 1 deals with the fundamentals of material behaviour and the intro-

duction of basic material and deformation quantities. In Chapter 2 the fibre
model is introduced to describe the behaviour of line elements subject to ex-
tension (tensile or compressive axial forces). A formal approach is followed
in which the three basic relationships (the kinematic, constitutive and static
relationships) are used to describe the displacement field with a second
order differential equation. Numerous examples show the influence of the
boundary conditions and loading conditions on the solution of the displace-
ment field. In Chapter 3 the cross-sectional quantities such as centre of
mass or centre of gravity, centroid, normal (force) centre, first moments of
area or static moments, and second moments of area or moments of inertia
are introduced as well as the polar moment of inertia. The influence of the
translation of the coordinate system on these quantities is also investigated,
resulting in the parallel axis theorem or Steiner’s rule for the static moments
and moments of inertia. With the definitions of Chapters 1 to 3 the complete
theory for bending and extension is combined in Chapter 4 which describes
the fibre model subject to extension and bending (Euler–Bernoulli theory).
The same framework is used as in Chapter 2 by defining the kinematic,
constitutive and static relationships, in order to obtain the set of differential
equations to describe the combined behaviour of extension and bending. By
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choosing a specific location of the coordinate system through the normal
(force) centre, we introduce the uncoupled description of extension and
bending. The strain and stress distribution in a cross-section are introduced
and engineering expressions are resolved for cross-sections with at least
one axis of symmetry. In this chapter also some special topics are covered
like the core of a cross-section, and the influence of temperature effects.

For non-constant bending moment distributions, beams have to transfer
shear forces which will lead to shear stresses in longitudinal and transversal
section planes. Based on the equilibrium conditions only, expressions for
the shear flow and the shear stresses will be derived. Field of applications
are (glued or dowelled) interfaces between different materials in a compos-
ite cross-section and the stresses in welds. Special attention is also given to
thin-walled sections and the definition of the shear (force) centre for thin-
walled sections. This chapter focuses on homogeneous cross-sections with
at least one axis of symmetry. Shear deformation is not considered.

Chapter 6 deals with torsion, which is treated according to the same concept
as in the previous chapters; linear elasticity is assumed. The elementary
theory is used on thin-walled tubular sections. Apart from the deformations
also shear stress distributions are obtained. Special cases like solid circular
sections and open thin-walled sections are also treated.

Structural behaviour due to extension and or bending is treated in Chap-
ters 7 and 8. Based on the elementary behaviour described in Chapters 2 and
4 the structural behaviour of trusses is treated in Chapter 7 and of beams in
Chapter 8. The deformation of trusses is treated both in a formal (analytical)
way and in a practical (graphical) way with aid of a relative displacement
graph or so-called Williot diagram. The deflection theory for beams is
elaborated in Chapter 8 by solving the differential equations and the in-
troduction of (practical) engineering methods to obtain the displacements
and deformations based on the moment distribution. With these engineering

formulae, forget-me-nots and moment-area theorems, numerous examples
are treated. Some special cases like temperature effects are also treated in
this chapter.

Chapter 9 shows a comprehensive description of the fibre model on un-
symmetrical and or inhomogeneous cross-sections. Much of the earlier
presented derivations are now covered by a complete description using
a two letter symbol approach. This formal approach is quite unique and
offers a fast and clear method to obtain the strain and stress distribution
in arbitrary cross-sections by using an initially given coordinate system
with its origin located at the normal centre of the cross-section. Although a
complete description in the principal coordinate system is also presented, it
will become clear that a description in the initial coordinate system is to be
preferred. Centres of force and core are also treated in this comprehensive
theory, as well as the full description of the shear flow in an arbitrary cross-
section. The last part of this chapter shows the application of this theory
on numerous examples of both inhomogeneous and unsymmetrical cross-
sections. Special attention is also given to thin-walled sections as well as
the shear (force) centre of unsymmetrical thin-walled sections which is of
particular interest in steel structures design.

This latter chapter is not necessarily regarded as part of a first introduction
into stresses and deformations but would be more suitable for a second or
third course in Engineering Mechanics. However, since this chapter offers
the complete and comprehensive description of the theory, it is an essential
part of this volume.

We do realise, however, that finding the right balance between abstract
fundamentals and practical applications is the prerogative of the lecturer.
He or she should therefore decide on the focus and selection of the topics
treated in this volume to suit the goals of the course in question.
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Foreword

Structural or Engineering Mechanics is one of the core courses for new
students in engineering studies. At Delft University of Technology a joint
educational program for Statics and Strength of Materials has been devel-
oped by the Koiter Institute, and has subsequently been incorporated in
the curricula of faculties like Civil Engineering, Aeronautical Engineering,
Architectural Engineering, Mechanical Engineering, Maritime Engineering
and Industrial Design.

In order for foreign students also to be able to benefit from this pro-
gram an English version of the Dutch textbook series written by Coenraad
Hartsuijker, which were already used in most faculties, appeared to be nec-
essary. It is fortunate that in good cooperation between the writers, Springer
and the Koiter Institute Delft, an English version of two text books could
be realized, and it is believed that this series of books will greatly help the
student to find his or her way into Engineering or Structural Mechanics.

Indeed, the volumes of this series offer some advantages not found
elsewhere, at least not to this extent. Both formal and intuitive approaches
are used, which is more important than ever. The books are modular and can
also be used for self-study. Therefore, they can be used in a flexible manner

and will fit almost any educational system. And finally, the SI system is
used consistently. For these reasons it is believed that the books form a
very valuable addition to the literature.

René de Borst
Scientific Director, Koiter Institute Delft



1Material Behaviour

To calculate the stresses and deformations in structures, we have to know
the material behaviour, which can be obtained only by experiments.

Through standardised tests, the material properties are laid down in a num-
ber of specific quantities. One of these tests is the tensile test, described in
Section 1.1, resulting in a so-called stress-strain diagram.

Section 1.2 looks at stress-strain diagrams for a number of materials.

This book addresses mainly materials with a linear-elastic behaviour, which
obey Hooke’s Law. Section 1.3 devotes attention to the linear behaviour of
materials, such as steel, aluminium, concrete and wood.

1.1 Tensile test

Strength, stiffness and ductility are important material properties and can
be described as follows:
• strength – the resistance that has to be overcome to break the cohesion

of the material;
• stiffness – the resistance against deformation;
• ductility – the capacity to undergo large strains before fracture occurs.
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Figure 1.1 Prismatic bar subject to tension.

Figure 1.2 Test bar.

Figure 1.3 Force-elongation diagram (F -�� diagram).

An important and often-used test for determining the strength, stiffness and
ductility of a material is the tensile test. In tensile tests, a specimen of the
material in the form of a bar is placed in a so-called tensile testing machine.
The test bar is slowly stretched until fracture occurs. For each applied elon-
gation �� the required strength F 1 is measured, and both values are plotted
in a so-called F -�� diagram or force-elongation diagram.

Figure 1.1 shows a prismatic bar; prismatic means that the bar has a uniform
cross-section. To prevent fracture of the bar near the ends a test bar is
shaped at the ends as in Figure 1.2. In that case, �� is the elongation of
the distance � between two measuring points on the prismatic part of the
bar.

Figure 1.3 shows the force-elongation diagram or F -�� diagram (not to
scale) for hot rolled steel (mild steel) in tension.

There are four stages in this F -�� diagram.
• Linear-elastic stage – path OA

This part of the diagram is practically straight. Up to point A there
seems to be a proportionality (linear relationship) between the force
F and elongation ��. If the load in A is removed, the same path is
followed in opposite direction until point O is again reached. In other
words, if the force is removed, the bar springs back to its original
length. This type of behaviour is known as elastic.

• Yield stage or plastic stage – path AB
Path AB of the diagram generally includes a number of “bumps” but
is otherwise virtually horizontal. This means that the elongation of the

1 If a change in length is applied and the required force is measured, the test is
referred to as being deformation-driven. If, however, a load is applied and the
associated change in length is measured, the test is said to be load-driven. In
general, deformation-driven tests and load-driven tests give different results.
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Figure 1.4 Local necking of a test bar.

Figure 1.5 F -�� diagrams for bars with various dimensions.

Figure 1.6 Due to the same force F , a member that is twice as
long has an elongation that is twice as large.

bar increases with a nearly constant load. This phenomenon is known
as yielding or plastic flow of the material.

• Strain hardening stage – path BC
When the deformation becomes larger, the material may offer addi-
tional resistance. The required force to obtain the elongation increases.
This is called strain hardening.

• Necking stage – path CD
Beyond point C, the load decreases with increasing elongation. Locally
the bar produces a pronounced necking (see Figure 1.4) that increases
until fracture occurs at D. At fracture the load falls away and both parts
of the bar spring back a little elastically.

If somewhere between point A (the limit of proportionality) and point D
at which fracture occurs) the load is removed, the test bar reverts a little
elastically. The return path (unloading path) is a nearly straight line parallel
to OA. In Figure 1.3 this is shown by means of the dashed line. Once the
load has been released to zero the bar demonstrates a permanent set or
plastic elongation ��p; the elastic elongation was ��e.

The F -�� diagram depends not only on the material, but also on the dimen-
sions of the test bar, namely the length � between the measuring points on
the prismatic part of the bar, and the area A of the cross-section. Figure 1.5
shows the F -�� diagrams for three bars made of the same material but with
different dimensions.

If the (prismatic) bar is chosen twice as long without changing the load
F , then the elongation is twice as large. We can see this by looking at
the behaviour of the two bars in Figure 1.6, attached one behind the other.
The total elongation is the sum of the elongations of each of the bars. The
elongation �� is therefore proportional to the length � of the bar.
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Figure 1.7 For a cross-section that is twice as large, the required
force to get the same elongation �� is twice as large.

Figure 1.8 The normal stress σ = N/A due to extension is con-
stant in a homogeneous cross-section.

To eliminate the influence of the length of the test bar, we plot ε = ��/� on
the horizontal axis instead of ��. The (dimensionless) deformation quantity

ε = ��

�
= elongation

original length

is referred to as the strain of the bar.

If the cross-section A of the bar is chosen twice as large, a doubled load
F is required to get the same elongation ��. Refer to the behaviour of the
two parallel bars in Figure 1.7. To get an elongation �� each bar has to be
subjected to a normal force F , and the total load on the system of two bars is
2F . Therefore the force F is proportional to the area A of the cross-section
of the bar.

To eliminate the influence of the area of the cross-section, we plot the
quantity

σ = F

A

along the vertical axis instead of F ; σ is the normal stress in the cross-
section.

In general, the normal stress varies across the cross-section and σ = F/A

should be seen as the “average” normal stress in the cross-section. If the
cross-section is homogeneous (the cross-section consists of the same mate-
rial everywhere) and the cross-section in question is far enough away from
the ends of the bar where the loads are applied (these are disruption zones),
then the normal stress due to the tensile force is roughly constant over the
cross-section (see Figure 1.8).

By converting the force-elongation diagram (F -�� diagram) into a stress-
strain diagram (σ -ε diagram) we eliminate the influence of the bar dimen-

Figure 1.6 Due to the same force F , a member that is twice as
long has an elongation that is twice as large.
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Figure 1.9 σ -ε diagram with a distinct yield region.

sions on the result of the tension test. So test bars of various dimensions
lead to almost the same σ -ε diagrams.1

The values found by experiments are of course subject to dispersion. In
addition, they depend on the way the experiments are performed, such as
the speed at which the load is increased. For all materials the test results
are influenced by temperature, and for wood and concrete, for example,
humidity also plays a role.

1.2 Stress-strain diagrams

Figure 1.9 shows a σ -ε diagram with a distinct yield range. The specific
quantities by which the shape of the stress-strain diagram is more or less
determined are

fy – the yield point;2

ft – the tensile strength;3

εy – the yield strain, that is the strain at the start of the yield stage;
εpl – the strain at the end of the yield stage;

1 Due to the local character of necking, the strain at fracture may differ per test
bar.

2 Also referred to as yield stress or yield strength. Strength quantities in the σ -ε
diagram are indicated by the kernel symbol f instead of σ .

3 Also referred to as ultimate (tensile) stress. To calculate the stress σ , the force
may be divided by the original area A of the cross-section, or by the actual cross-
section A′ which will have decreased from A through transverse contradiction,
and necking. Since A′ is less than A, the ‘true’ stress F/A′ is larger than the
‘nominal’ stress F/A. In building practice, attention is restricted to the nominal
stress.
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Figure 1.10 Material properties.

εt – the strain associated with the tensile strength ft;
εu – the strain at fracture.

In the elastic range, there is a linear relationship between the stress σ and
strain ε:

σ = Eε.

The proportionality factor E is a material constant and is known as the
modulus of elasticity or Young’s modulus. The modulus of elasticity charac-
terises the resistance (stiffness) of the material with respect to deformations
due to a change in length. In the σ -ε diagram, the modulus of elasticity is
equal to the slope E = σ/ε of the path in the linear-elastic stage.

Since the strain ε is dimensionless, the modulus of elasticity E has the
dimension of a stress (force/area).

In Figure 1.10, the concepts stiffness, strength, etc., are shown in the σ -ε
diagram.
• a stiff material has a larger modulus of elasticity E than a compliant

material;
• a hard material has a larger yield point fy than a soft material;
• a strong material has a higher tensile strength ft than a weak material;
• a ductile material has a larger strain εu at fracture than a brittle material.

Ductile materials include most metals, such as steel, aluminium, etc. For
metals, the σ -ε diagrams for tension and compression are generally equal,

Figure 1.9 σ -ε diagram with a distinct yield region.
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Figure 1.11 σ -ε diagram for a brittle material.

Figure 1.12 σ -ε diagram for steel Fe 360.

so the compressive strength1 f ′
c is equal to the tensile strength ft.

Materials in which fracture occurs with minor strain are known as brittle
materials. Examples include concrete, stone, cast iron, glass. With stone-
like materials, the diagrams for tension and compression generally differ
and the compressive strength is generally larger than the tensile strength
(see Figure 1.11).

The σ -ε diagrams for a number of materials are shown below.

• Steel
Figure 1.12 shows the σ -ε diagram for steel Fe 360. The diagram is not
drawn to scale. For the tensile strength ft and the yield point fy we use

ft = 360 N/mm2 and fy = 235 N/mm2.

The modulus of elasticity is

E = 210 GPa.

The stress at which yielding starts is easy to determine:

εy = σy

E
= 235 N/mm2

210 × 103 N/mm2 = 0.00112.

1 In mechanics, it is the convention to call normal stresses positive if they are
tensile. If one is primarily dealing with compressive stresses, it may be conve-
nient to call compressive stresses positive. In that case, the prime is used for the
change in sign. See also Volume 1, Section 6.5.
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Figure 1.13 σ -ε diagrams for various grades of steel.

Figure 1.14 The 0.2% offset yield strength f0.2.

If the yield strain, a dimensionless quantity, is expressed in percentages,
then

εy = 0.112%.

The strain hardening starts at the strain εpl that is some 20 times as large as
εy:

εpl ≈ 2%.

The strain at fracture εu is another 10 to 15 times larger:

εu ≈ 25%.

Structural steel Fe 360 is a ductile material with a distinct yield point and a
relatively low tensile strength. Adding small amounts of alloying elements
during steel preparation or the cold working1 of steel results in grades of
steel with considerably higher tensile strengths. Figure 1.13 shows (more
or less to scale) σ -ε diagrams for different grades of steel. It is clear that:
• All grades of steel have more or less the same modulus of elasticity E.
• The higher the tensile strength ft, the smaller the fracture strain εu. In

other words, the ductility decreases with increasing strength.
• For grades of steel with a high tensile strength (Fe 600 and above)

there is a gradual transition from the linear-elastic stage to the strain-
hardening stage. There is no yield stage.

For steel without yield stage, the yield point fy is chosen by the so-called
offset method. This is illustrated in Figure 1.14, where a line offset an (ar-

1 That is drawing and rolling the steel to its finished dimensions at room
temperature.
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Figure 1.15 Example of a σ -ε diagram for aluminium.

Figure 1.16 Two σ -ε diagrams for rubber.

bitrary) amount of 0.2% is drawn parallel to the initial σ -ε diagram. The
yield point fy is now replaced by the 0.2% offset yield strength, indicated
as f0.2:

fy = f0.2.

• Aluminium
Aluminium is a ductile material: it can undergo large deformations before
fracture occurs. But there is no clear yield point (see Figure 1.15). Also
here the 0.2% offset yield strength is used.

The modulus of elasticity is:

E = 70 GPa.

The modulus of elasticity of aluminium is about a third that of steel. Alu-
minium is therefore approximately three times as compliant as steel. This
means that in the elastic stage the deformations of an aluminium structure
are about three times as large as the deformations of the same structure
constructed in steel.

As with steel, the properties of aluminium depend strongly on the alloying
elements, the method of preparation and the after-treatment.

• Rubber
For rubber, there is a linear-elastic relationship between stress and strain up
to very high strains (10 to 20%). Beyond the linear-elastic stage, the proper-
ties depend on the type of rubber (see Figure 1.16). In the non-linear area,
rubber may still behave elastically for a long time. In that case the same
path for loading and unloading is followed in the σ -ε diagram (non-linear
elasticity). Some soft types of rubber are capable of huge elongations. The
strain at fracture may be 800%. Just before fracture, there is generally a
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Figure 1.17 σ -ε diagram for glass.

Figure 1.18 Example of a σ -ε diagram for concrete.

clear increase in stiffness. This behaviour can be verified by stretching a
common elastic band.

• Glass
Glass behaves linearly until it breaks (see Figure 1.17). Glass is an ideal
brittle material. The modulus of elasticity and tensile strength depend on
the type of glass. The tensile strength of glass fibres may be up to 100
times as large as that of plate glass.

• Concrete
Concrete is a stone-like material with a small tensile strength and a large
compressive strength (see Figure 1.18). For strength calculation, one uses
extensively idealised diagrams. For deformation calculation, a linear-elastic
material behaviour is assumed with a modulus of elasticity in which all
time-dependent effects have been taken into account. Concrete is some 6 to
8 times as compliant as steel.

• Wood
Wood is an anisotropic material: due to its fibre structure, the material
properties are not the same in all directions.1 The σ -ε diagram for wood
is therefore less explicit. It depends on many factors: in addition to the
direction of the fibre there is the humidity and speed of loading. Moreover,
the behaviour under tension and compression differ. With respect to tension,
the behaviour of wood is brittle and fracture occurs suddenly. When subject
to compression wood seems relatively ductile; the fibres fold but continue
to offer resistance.

1 In isotropic materials the material properties are the same in all directions. In
anisotropic materials the material properties depend on the direction.
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Figure 1.19 σ -ε diagram for an elastic-plastic material.

Figure 1.20 σ -ε diagram for a rigid-plastic material.

1.3 Hooke’s Law

For materials with a sufficiently long yield stage (ductile materials such as
steel Fe 360), the σ -ε diagram is often simplified to that in Figure 1.19 for
an elastic-plastic material.

In building practice, we are mainly interested in the situation in which a
structure or part of the structure reaches a so-called limit state.1 Here, we
distinguish between ultimate limit states and serviceability limit states:
• Ultimate limit states are states at which the structure or part of it col-

lapses. This may be due to a loss of equilibrium (e.g. through turning
over, sliding, floating or instability) or to a loss of carrying capacity
(because the structure is not strong enough in one or more of its parts
to transfer the forces to which they are subjected).

• Serviceability limit states are states in which the structure or part of it
no longer functions appropriately (e.g. due to excessive deformations,
vibrations, cracking, etc.), often long before the structure collapses.

When in an ultimate limit state the structure collapses because one or more
structural parts are no longer strong enough to transfer the forces, the mate-
rial will be loaded to its ultimate in these parts, and ductile materials will be
loaded far into the plastic region. The associated ultimate load (yield load)
for ductile materials is determined by the theory of plasticity.2 Since the
linear-elastic stage is of minor importance here, the σ -ε diagram is often
simplified to that of a rigid-plastic material (see Figure 1.20).

1 See also Volume 1, Section 6.2.4.
2 Also referred to as the theory of plastic design, ultimate-load design or limit

design.



12 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

In a serviceability limit state the deformations are generally so small that
they are on the linear-elastic path of the σ -ε diagram, sufficiently far from
the yield point. Calculations relating to the serviceability limit states are
therefore performed according to the linear theory of elasticity, based on
the proportionality between stress σ and strain ε:

σ = Eε.

The proportionality between stress and strain was found by Robert Hooke
(1635–1703) and is known as Hooke’s Law. Hooke formulated the law as
“ut tensio sic vis” (as is the tension so is the force), and published it in
1678 as the anagram “ceiiinosssttuv”.

σ = Eε is Hooke’s law in its simplest form.1

Note that the use of the word “law” can be somewhat misleading. The
character of this law is somewhat different to those of other generally
applicable laws such as those of Newton. Hooke’s law is no more than a
good representation of certain results found by experiments. The approach
is very good for the elastic stage in metals.

For wooden beams subject to moderate forces the approach is reasonable;
time-dependent influences are corrected by a creep factor.

For concrete, the approximation is not so good. Under compression, the
relationship between stress and strain is barely linear. Time-dependent in-
fluences (shrinkage and creep) are other complicating factors. However,

1 In Chapter 6, where the shear stresses due to torsion is covered, Hooke’s law
appears in an entirely different guise. Hooke’s law is covered from a general
perspective in Volume 4.
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Figure 1.21 The linear-elastic paths for various materials in one
σ -ε diagram.

in serviceability limit states, a linear-elastic material behaviour is also as-
sumed for concrete. The time-dependent effects are taken into account in
the modulus of elasticity.

Figure 1.21 shows the first part of the linear-elastic stage for different ma-
terials in one σ -ε diagram. The slope of each path represents the modulus
elasticity E = σ/ε, the material property that characterises the stiffness of
the material against deformation through a change in length. The figure
provides an idea of the differences in stiffness between the various materials
in the elastic stage.

In the next chapters it is assumed that the stresses and strains remain within
the linear-elastic stage and follow Hooke’s law.



2Bar Subject to Extension

A bar is a body of which the two cross-sectional dimensions are consid-
erably smaller than the third dimension, the length. A bar is one of the
most frequently used types of structural members. To understand something
about the behaviour of bar type structures, it is first necessary to understand
the behaviour of a single bar.

This chapter addresses the case of a bar subject to extension. We talk of
extension when the (straight) bar remains straight after deformation and
does not bend.1

Section 2.1 addresses the assumptions that are the basis of the fibre model,
a physical model with which it is easier to imagine the behaviour of a bar.
It is also assumed that the cross-section of the bar is homogeneous and that
the material behaves linear elastically.

Three basic relationships can be distinguished when describing the be-
haviour of a bar, namely the kinematic relationships, the constitutive
relationships and the static relationships or equilibrium relationships. They
are derived for extension in Section 2.2.

1 Chapter 4 addresses combined bending and extension.
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Figure 2.1 The fibre model for a bar. The behaviour of the model
is described in a xyz coordinate system with the x axis parallel to
the fibres and the yz plane perpendicular to the fibres and parallel
to the cross-sections.

Section 2.3 addresses the strain and stress distribution in a cross-section
due to extension.

The point of application of the resultant N of all normal stresses in the
cross-section, due to extension, is known as the normal force centre or
normal centre NC. Section 2.4 addresses the location of the normal centre,
which plays an important role for bending with extension.1

A mathematical description of the extension problem is given in Sec-
tion 2.5, where the three basic relationships from Section 2.2 are put
together to give the differential equation for extension.

Next follows a number of examples: calculating the changes in length and
displacements in Section 2.6 and working with the differential equation in
Section 2.7.

In Section 2.8 some remarks are made on the difference that may be noticed
between the formal approach used in this book and engineering practice.

2.1 The fibre model

In order to imagine the behaviour of a bar, we create a physical model.
A condition is that the results of the model have to give a sufficiently
accurate picture of reality. It is always the experiment that must confirm
the correctness of the chosen model and the associated assumptions.

A model that seems to function effectively is the so-called fibre model (see
Figure 2.1). This model is based on the following assumptions:

1 See Chapter 4.

This chapter ends with a number of problems in Section 2.9.
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• Inspired by the structure of wood, the member is considered to consist
of a very large number of parallel fibres in the longitudinal direction.
Later we will look at the limiting case in which the number of fibres is
so large that the area �A of a single fibre approaches zero.

• The fibres are kept together by a very large number of absolutely rigid
planes perpendicular to the direction of the fibres. These rigid planes
are known as cross-sections. Later we will look at the limiting case
in which the number of cross-sections is so large that the distance �x

between two consecutive cross-sections approaches zero.
• The plane cross-sections remain plane and normal to the longitudinal

fibres of the beam, even after deformation. This assumption is known
as Bernoulli’s hypothesis.1

To describe the behaviour of the model, we use an xyz coordinate system
with the x axis parallel to the fibres and the yz plane parallel to the cross-
sections, perpendicular to the direction of the fibres.

The location of a cross-section is defined by its x coordinate; the location
of a fibre is defined by its y and z coordinates.

Later we will see that the behaviour of the bar is most easily described when
the x axis is selected along a particular preferred fibre through the normal
centre NC. This fibre is known as the bar axis. As long as the location of
the normal centre and bar axis are not yet known, the x axis is defined along
an arbitrary fibre that may even lie outside the cross-section.

The following assumptions are made with respect to the material behav-
iour:

1 Named after the Swiss Jacob Bernoulli (1654–1705), from a famous family of
mathematicians and physicists.
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Figure 2.2 The cross-section is (a) homogeneous for steel beam,
and (b) inhomogeneous for a reinforced concrete beam.

• All the fibres consist of the same material and therefore have the same
material properties. In this case, the cross-section of the bar is said to
be homogeneous.

• The material behaves linear-elastically and follows Hooke’s law, with
a linear relationship between stress σ and strain ε:

σ = Eε.

Note that in a homogeneous cross-section all the fibres have the same
modulus of elasticity E (see Figure 2.2a).

If the fibres do not all have the same modulus of elasticity, because they
consist of different materials, the cross-section is said to be inhomoge-
neous.1 In this way, a reinforced concrete beam has an inhomogeneous
cross-section, because the “concrete fibres” and “steel fibres” have different
moduli of elasticity (see Figure 2.2b).

2.2 The three basic relationships

When investigating the behaviour of a bar, we distinguish three different
basic relationships:
• Static or equilibrium relationships.
• Constitutive relationships.
• Kinematic relationships.

Static or equilibrium relationships
The static relationships link the load (due to external forces) and the section
forces. They follow from the equilibrium.

1 Inhomogeneous cross-sections are covered in Chapter 9.
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Figure 2.3 Schematic representation of the link between load and
displacement for a bar subject to extension. To obtain this link, we
have to use all three basic relationships: kinematic, constitutive, and
static. The deformation quantity ε represents the strain of the bar.

Constitutive relationships
The constitutive relationships link the section forces and the associated de-
formations. They follow from the behaviour of the material (linear-elastic
in this case).

Kinematic relationships
The kinematic relationships link the deformations and the displacements.
They are the result of a permanent cohesion within the bar – holes do
not suddenly appear. The kinematic relationships are independent of the
material behaviour.

The three basic relationships allow us to link the load (due to external
forces) and the associated displacements. In Figure 2.3 this is schematically
shown for a bar subject to extension.

Below the three basic relationships are discussed in a reversed order.

2.2.1 The kinematic relationship

In this section we look for the relationship between the deformation and
displacement for a bar subject to extension.

In Section 1.1, the strain ε was introduced as a deformation quantity. For
the bar in a tensile test it was defined as

ε = ��

�
= elongation

original length
.

Below, this definition is used also for the strain of the individual fibres.
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Figure 2.4 A small bar segment with length �x, before and after
the deformation by extension.

Figure 2.4 shows a small segment of a bar subject to extension. The segment
has a length �x, and is bounded by the end-sections a and b.

If the bar changes length due to tension or compression, the cross-sections
will move with respect to one another.1 Assume end-section a moves in the
x direction by a distance u and end-section b moves by a distance u + �u.

All longitudinal fibres between the end-sections a and b have the same
original length “�”. This length is equal to the distance �x between both
end-sections. The elongation “��” of the fibres is equal to the difference in
displacement �u between the end-sections b and a.

For extension, all fibres undergo the same strain ε:

ε = “��”

“�”
= elongation

original length
= �u

�x
.

The limit of �u/�x as �x tends to zero is known as the derivative of u

with respect to x:

lim
�x→0

�u

�x
= du

dx
.

The strain of the fibres is therefore

ε = du

dx
.

This is the kinematic relationship for extension; it provides a link between

1 Remember that the bar will not bend (curve) if there is no bending, but only
extension.
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Figure 2.5 The resultant of the normal stress σ in fibre (y, z) with
area �A is a small force �N = σ�A.

the deformation quantity ε (the strain of the fibres in the bar) and the
displacement u (of a cross-section in x direction).

For a bar segment the change in length “��” is equal to the difference in
displacement between the end-sections:

“��” = �u = ε�x.

The total change in length of the bar is found by summing all contributions
ε�x of the individual segments over the entire length of the bar:

�� =
∫

�

ε dx.

This relationship is the basis for the formulae for calculating the change in
length of a bar. Examples are given in Section 2.6.

2.2.2 The constitutive relationship

This section looks at the relationship between deformation and section
force for a bar subject to extension. This relationship is dependent on the
behaviour of the material, i.e. the modulus of elasticity E.

The resultant of the normal stress σ in fibre (y, z) with area �A is a small
force �N (see Figure 2.5):

�N = σ�A.

In a linear-elastic material, the fibres follow Hooke’s law:

σ = Eε
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so that

�N = σ�A = Eε�A.

The total normal force N is found by summing the contributions of all the
fibres or, in other words, integrating all the forces �N with respect to the
cross-section A:

N =
∫

A

σ dA =
∫

A

Eε dA.

For extension, all the fibres undergo the same elongation, and ε can be
placed outside the integral. If the cross-section is homogeneous, all fibres
have the same modulus of elasticity and E can also be placed outside the
integral. Hence

N = Eε

∫
A

dA

or

N = EAε.

This is the constitutive relationship for extension. It links the normal force
N (a section force) and the strain ε (a deformation quantity). The constitu-
tive relationship depends on the behaviour (constitution) of the material as
it includes the modulus of elasticity E.

EA is known as the axial stiffness of the bar. The axial stiffness is a measure
of the resistance of the bar to axial deformation, and depends on both the
modulus of elasticity E of the material and the area A of the cross-section.

Figure 2.5 The resultant of the normal stress σ in fibre (y, z) with
area �A is a small force �N = σ�A.
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Figure 2.6 The section forces on a bar segment with small length
�x (�x → 0).

2.2.3 The static relationship

Static or equilibrium relationships link load and section forces. They follow
from the equilibrium of a small member segment, and were derived in Vol-
ume 1, Section 11.1. There, we found that extension (only normal forces)
and bending (bending moments and shear forces) can be treated separately.

We recapitulate the derivation of the static relationship for extension.

In Figure 2.6, a small segment with length �x has been isolated from a bar.
The bar segment is subject to the distributed loads qx and qz. The loads
act on the bar axis (for clarity this is not drawn as such for qz ). When the
length �x of the bar segment is sufficiently small, the distributed loads qx

and qz can be considered uniformly distributed.

The (unknown) section forces on the right-hand and left-hand section
planes are shown in accordance with their positive directions. The section
forces are functions of x, and are generally different in the two section
planes. Assume that the forces on the left-hand section plane are N,V and
M . Also assume that these forces increase over distance �x by �N , �V

and �M respectively. The forces on the right-hand section plane are then
(N + �N), (V + �V ) and (M + �M).

The force equilibrium of the bar segment in the x direction gives

∑
Fx = −N + (N + �N) + qx �x = 0

or

�N + qx �x = 0.
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Figure 2.7 Strain diagram due to extension: the strain is uniformly
distributed over the cross-section. (a) Spatial representation; (b) and
(c) two-dimensional representations.

After dividing by �x we find

�N

�x
+ qx = 0.

In the limit �x → 0, the equation for the force equilibrium for an ele-
mentary bar segment changes into the first-order differential equation

dN

dx
+ qx = 0.

This is the static relationship for extension.

Comment: The derivation is invalid when a concentrated force Fx is acting
on the bar segment. In that case, there is a step change in the variation of
the normal force N . As a function of x, N is then no longer continuous and
differentiable.

2.3 Strain diagram and normal stress diagram

In a bar subject to extension, all fibres undergo the same elongation,
regardless of the material behaviour (see Section 2.2.1).

Using the constitutive relationship

N = EAε,

we find a uniform strain over the cross-section:

ε = N

EA
.
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Figure 2.8 Normal stress diagram due to extension: in a homo-
geneous cross-section the normal stress is uniformly distributed.
(a) Spatial representation; (b) and (c) two-dimensional representa-
tions.

Figure 2.7a shows the uniform strain distribution over a rectangular cross-
section in a strain diagram. Here, along each fibre (y, z) the value of the
associated strain ε(y, z) is plotted. It is the convention to plot the positive
values in the positive x direction and the negative values in the negative x

direction.

In principle, the strain diagram is a spatial figure. If the strain is independent
of the y coordinate, as in this case, then the figure can be simplified into a
plane diagram (see Figure 2.7b).

One often leaves out the axes, and the sign associated with the strain is
placed within the diagram. So we can see in Figure 2.7c that the strain
is constant over the cross-section, that it is negative, and has the value
0.15 × 10−3 (= 0.15�).

In a bar with homogeneous cross-section, all fibres have the same modulus
of elasticity E. If such a bar is subject to extension, the fibres are not only
subject to the same strain, but also to the same normal stress:

σ = Eε = E
N

EA
= N

A
.

Figure 2.8a shows the uniform distribution of the normal stresses in a nor-
mal stress diagram. Here, in the same way as in the strain diagram, the
value of the normal stress σ(y, z) in each fibre (y, z) is plotted along that
fibre.

Like the strain diagram, the stress diagram is a spatial figure. If the stresses
are independent of the y coordinate, it can be simplified into a plane
diagram (see Figure 2.8b).

Here too the axes are generally omitted and the sign of the stress is placed
within the diagram. Figure 2.8c shows that the normal stress is constant
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over the cross-section, and that it is a compressive stress of 31.5 N/mm2.

Comment: In bars subject to extension, all fibres undergo the same strain ε,
irrespective whether the cross-section is homogeneous or inhomogeneous.
On the other hand, in a bar subject to extension all fibres have the same
normal stress σ if and only if the cross-section is homogeneous: in an
inhomogeneous cross-section, the normal stresses due to extension are no
longer uniformly distributed.

2.4 Normal centre and bar axis

This section addresses the location of the normal centre NC of a cross-
section, and by consequence the location of the bar axis. To locate NC we
must consider bending moments for which we follow a formal approach
that can differ from engineering practice. In Section 2.7 the difference be-
tween the formal approach and the approach used in engineering practice
is described.

The resultant of all normal stresses due to extension is the normal force N .
For a homogeneous cross-section,

N =
∫

A

σ dA = σA.

The point of application of the normal force N is defined as the normal
force centre or normal centre of the cross-section, indicated by NC. The
fibre through the normal centre NC is defined as the bar axis.

Later we shall see that the behaviour of a bar is most easily described
in a coordinate system with the x axis along the bar axis. It is therefore
important to know the location of the normal centre NC. This problem is
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Figure 2.9 By moving the small normal force �N from fibre
(y, z) towards the x axis, we generate small bending moments �My

and �Mz.

solved in two ways, given below:
a. in a xyz coordinate system with the x axis through the normal centre

NC of the cross-section, and along the bar axis;
b. in a xyz coordinate system with the x̄ axis along an arbitrary fibre.

Solution a:
Assume the x axis passes through the normal centre NC of the cross-
section, the point of application of the resultant of all normal stresses due
to extension.

The resultant of the normal stress σ in fibre (y, z) with area �A is a small
force �N :

�N = σA.

This small force at fibre (y, z) is statically equivalent to an equal small force
�Nx

1 at the normal centre NC (the origin of the yz coordinate system),
together with two small bending moments �My and �Mz, acting in the xy

plane and xz plane respectively (see Figure 2.9):

�My = y�N = yσ�A,

�Mz = z�N = zσ�A.

1 In the notation “Nx” the index x indicates that the normal force N acts along the
x axis. Since it is the convention to let the normal force apply at the bar axis and
to select the x axis there, the index is generally omitted. In this section we are
also using a coordinate system for which the x axis does not coincide with the
member axis. Therefore the index x is temporarily used.
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Figure 2.10 The section forces Nx , My and Mz due to the normal
stresses in the cross-section.

If we sum the contributions of all small forces �N over the entire cross-
section, we find the normal force

Nx =
∫

A

σ dA = σ

∫
A

dA = σA,

and the bending moments

My =
∫

A

σy dA = σ

∫
A

y dA (bending moment acting in the xy plane),

Mz =
∫

A

σz dA = σ

∫
A

z dA (bending moment acting in the xz plane).

Since in a homogeneous cross-section the normal stress σ due to extension
is uniformly distributed (i.e. independent of the coordinates of the fibre with
small area dA), σ can be placed outside the integrals.

The section forces Nx,My and Mz due to the normal stresses in the cross-
section are shown in Figure 2.10.

If the resultant of all normal stresses has its line of action through the nor-
mal centre NC, My and Mz have to be zero. The location of the normal
centre (the bar axis) in a homogeneous cross-section apparently follows
from the condition:

∫
A

y dA = 0 and
∫

A

z dA = 0.

This implies that in a homogeneous cross-section the location of the normal
centre NC is determined exclusively by the geometry (shape) of the cross-
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Figure 2.11 The bending moments My and Mz when the x axis
is not chosen along the bar axis, and the point of application of Nx

does not coincide with the normal centre NC of the cross-section.

section. The normal centre then coincides with the centroid of the cross-
section,1 as we shall see in Chapter 3.

Solution b:
We can also work in a xyz coordinate system with the x̄ axis chosen along
an arbitrary fibre that need not coincide with the bar axis.

The small force �N = σ�A at fibre (ȳ, z̄) is statically equivalent to an
equal small force �Nx̄ at the x̄ axis, together with two small moments �Mȳ

and �Mz̄ acting in the xy plane and xz plane respectively (see Figure 2.11):

�Mȳ = ȳ�N = ȳσ�A,

�Mz̄ = z̄�N = z̄σ�A.

Summing the contributions of all small forces �N over the entire cross-
section A, leads to

Nx̄ =
∫

A

σ dA = σ

∫
A

dA = σA,

Mȳ =
∫

A

σ ȳ dA = σ

∫
A

ȳ dA (2.1a)

= bending moment acting in the xy plane,

Mz̄ =
∫

A

σ z̄ dA = σ

∫
A

z̄ dA (2.1b)

= bending moment acting in the xz plane.

1 Chapter 3 addresses the location of the centroid in further detail.
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If the line of action of the resultant of all normal stresses due to extension
passes through the normal centre NC, with coordinates (ȳNC, z̄NC), then

Mȳ = Nx ·ȳNC = σA·ȳNC, (2.2a)

Mz̄ = Nx ·z̄NC = σA·z̄NC. (2.2b)

When Equation (2.2) is equated to Equation (2.1), we find the coordinates
(ȳNC, z̄NC) of the normal centre NC:

ȳNC =
∫
A ȳ dA

A
and z̄NC =

∫
A z̄ dA

A
.

These are the coordinates of the centroid of the cross-section.

Conclusion: In a homogeneous cross-section the normal centre NC coin-
cides with the centroid of the cross-section.

Comment: The bar axis was defined as the fibre through the normal centre
NC. It is often said that the bar axis is in the centroid of the cross-section.
This is true only for homogeneous cross-sections. For inhomogeneous
cross-sections it is untrue. Therefore it is preferable to define the bar axis
as the fibre through the normal centre NC, the point of application of the
resultant of all normal stresses due to extension.

2.5 Mathematical description of the
extension problem

In Section 2.5.1, the three basic equations from Section 2.2 are combined to
form a single, second-order differential equation in the displacement u. This
differential equation for extension can be solved by repeated integration.

Figure 2.11 The bending moments My and Mz when the x axis
is not chosen along the bar axis, and the point of application of Nx

does not coincide with the normal centre NC of the cross-section.
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The general solution contains two (still unknown) integration constants.
Section 2.5.2 describes how these integration constants follow from the
boundary conditions (joining and/or end conditions).

Numerical examples, in which the differential equation is used, are given
in Section 2.7.

2.5.1 The differential equation for extension

The three basic equations for extension are (see Section 2.2)

Kinematic relationship: ε = u′, (2.3)

Constitutive relationship: N = EAε, (2.4)

Static relationship: N ′ + qx = 0. (2.5)

By substituting the strain ε from Equation (2.3) into Equation (2.4) we find

N = EAu′.

Substituting this expression for N in (2.5) gives

(EAu′)′ + qx = 0. (2.6)

This is a second-order1 differential equation for the axial displacement
u. When the axial stiffness EA is constant (independent of x), the bar is
known as prismatic and the differential equation can be simplified to

1 The order of the differential equation is determined by the highest derivative.
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Figure 2.12 A bar divided into fields. The boundary conditions
are found at the bar ends and at the joins of two adjacent fields.

EAu′′ + qx = 0.

or

EAu′′ = −qx. (2.7)

For a prismatic bar, the extension problem reduces to an equation involving
just the second derivative in the axial displacement u.

2.5.2 Boundary conditions: joining and/or end conditions

The differential equation for extension can be solved through repeated
integration whether or not EA is constant and the bar is prismatic. Each
integration gives an (still unknown) integration constant. The total number
of integration constants in the general solution is two; this number is equal
to the order of the differential equation.

For a prismatic bar differential equation (2.7) applies only for regions in
which the displacement u and the normal force N = EAu′ are continuous
and/or continuous differentiable, and in which the axial stiffness EA is
constant. Such a region is known as a field (see Figure 2.12).

Each field has its own solution with its own two integration constants.

The integration constants follow from the boundary conditions on the
boundaries of a field. At the join of two adjacent fields the boundary condi-
tion is called a joining condition. At the end of a field without an adjacent
field, the boundary condition is called an end condition.

Joining conditions:
There are always two conditions per join: one relates to the displacement
u, the other relates to the normal force N = EAu′.
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Figure 2.13 The joining conditions related to u and N . (a) At a
join of two adjacent fields, the displacement u must be continuous:
uAB

B = uBC
B . (b) The force equilibrium of a small bar segment at a

join of two fields gives NAB
B = NBC

B + Fx,B.

Joining condition related to the displacement u

At a join of two fields, the displacement u must be continuous – holes
cannot suddenly appear in the bar! Therefore the following applies at join
B, where the fields AB and BC are connected1 (see Figure 2.13a):

uAB
B = uBC

B .

Joining condition related to the normal force N = EAu′
If a concentrated force Fx;B is acting at join B, the joining condition follows
from the force equilibrium in x direction of a small bar segment at the join.
With a length �x of the segment, and �x → 0 we find (see Figure 2.13b)

−NAB
B + NBC

B + Fx,B = 0

or

NAB
B = NBC

B + Fx,B.

If there is a distributed load qx it is not included in the equilibrium equation,
because the influence of qx�x is negligibly small with respect to the other
terms in the equilibrium equation when �x → 0.

With normal force N expressed in terms of the displacement u, the joining
condition at B is

(EAu′)AB
B = (EAu′)BC

B + Fx,B.

If join B is unloaded (Fx,B = 0), then the normal force N is continuous:

1 Field boundaries (locations) are indicated by a sub-index and the fields (regions)
are indicated by an upper index.
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Figure 2.14 Principle of action and reaction: N is continuous in
an unloaded join of two fields.

NAB
B = NBC

B .

This is in line with the principle of action and reaction (see Figure 2.14).

• End conditions
At a bar end there is always one boundary condition: an end condition.
At the bar end, either the displacement u, or the normal force N = EAu′
is prescribed. If u is prescribed (this happens at a support1), then N is
unknown; and vice versa, if N is prescribed (this occurs at a non-supported
end), then u is unknown. The prescribed value of N follows from the
equilibrium of a small end segment with length �x for which �x → 0.

Examples are given in Section 2.7.

2.6 Examples relating to changes in length and
displacements

In this section, only the kinematic and constitutive equations are used. Sec-
tion 2.6.1 includes a brief summary of the common formulae for calculating
changes in length for members subject to extension. Sections 2.6.2 to 2.6.5
include a number of examples in which the formulae are used to calculate
a change in length or a displacement.

2.6.1 Summary of the formulae for a change in length

For the change in length of a member we have

1 See also Volume 1, Section 4.3.1.

Figure 2.13 The joining conditions related to u and N . (a) At a
join of two adjacent fields, the displacement u must be continuous:
uAB

B = uBC
B . (b) The force equilibrium of a small bar segment at a

join of two fields gives NAB
B = NBC

B + Fx,B.
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�� =
∫

�

ε dx.

With ε = N/EA (the constitutive relationship) we find

�� =
∫

�

N

EA
dx.

This formulation is particularly useful when the variation of the normal
force in the member is known. We look at three cases in more detail.

Note: If we plot the strain ε = N/EA as a function of x in a so-called ε

diagram then the change in length of the member is equal to the area of that
ε diagram.

• A prismatic member
For a prismatic member, the axial stiffness EA is constant (independent of
x), and can be placed outside the integral:

�� = 1

EA

∫
�

N dx.

The change in length of the member is equal to the area of the N diagram,
divided by EA.

• A prismatic member with constant normal force
For prismatic members with constant normal force, both EA and N can be
placed outside the integral:

�� = N

EA

∫
�

dx = N�

EA
.
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Figure 2.15 A truss.

Table 2.1

Member Ni �i (EA)i ��i =
(

N�
EA

)
i

i (kN) (m) (kN) (m)

1 +60 3 200 × 103 +0.9 × 10−3

2 –100 5 250 × 103 −2.0 × 10−3

3 +80 3 200 × 103 +1.6 × 10−3

4 0 4 200 × 103 0

• A non-prismatic member with constant normal force
The normal force N can be placed outside the integral, but the axial stiffness
EA (as a function of x) must remain in it:

�� = N

∫
�

1

EA
dx.

2.6.2 Change in length of a truss members

For the truss in Figure 2.15, the truss members are prismatic (as is usual).
Members 1, 3 and 4 have an axial stiffness of 200 MN; diagonal member 2
has a different axial stiffness of 250 MN.

Question:
Determine the change in length of each of the members.

Solution:
The normal force in a truss member is constant. For a prismatic member
with a constant normal force,

�� = N�

EA
.

The length � and axial stiffness EA are known for each member. To deter-
mine the changes in length we have to know the member forces also. These
have to be calculated first. The results are shown in Table 2.1.1

1 Remember that the upper index is used to indicate the members.
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Figure 2.16 (a) Column from a three-storey building with (b) the
N diagram and (c) the ε diagram.

Comment: With these calculations, the units have to be taken into account
carefully. It is best to indicate the units, e.g. m and kN, at the start. In that
case, the axial stiffness has to be converted from MN into kN. The signs
for tension/elongation and compression/shortening must also be watched
carefully: an error in the sign of the normal force gives an elongation instead
of a shortening, and vice versa.

From the calculation, we see that member 3 undergoes the largest elonga-
tion with 1.6 mm. The largest shortening is 2 mm, and occurs in diagonal
member 2.

Due to the change in length of the members, the (free) joints C and D will
move. The calculation of the displacements of these joints is covered in
Chapter 7.

2.6.3 Column from a three-storey building

Figure 2.16a shows column ABCD from a three-storey building. Dimen-
sions, loads and axial stiffnesses are shown in the figure. The storey levels
are numbered from (1) to (3).

Questions:
a. Determine the variation of the strain along the height of column ABCD

(ε diagram).
b. Determine the change in length of column ABCD.
c. Determine the vertical displacement of B, C and D respectively.

Solution:
Column ABCD is not prismatic, nor is the normal force constant, see the N

diagram in Figure 2.16b. Per storey, the column is prismatic and the normal
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force is constant. The column can therefore be seen as a stack of prismatic
members with constant normal forces.

Per storey level i we can therefore use

��i = Ni�i

(EA)i
.

When calculating the strains, changes in length and displacements, we will
hereafter use the units mm and N.

a. The variation of the strain ε in column ABCD (the ε diagram for ABCD).
Part AB (1st storey):

ε(1) = N(1)

EA(1)
= −3000 × 103 N

12 × 109 N
= −0.25 × 10−3 = −0.25�.

Part BC (2nd storey):

ε(2) = N(2)

EA(2)
= −1800 × 103 N

6 × 109 N
= −0.3 × 10−3 = −0.3�.

Part CD (3rd storey):

ε(3) = N(3)

EA(3)
= −600 × 103 N

6 × 109 N
= −0.1 × 10−3 = −0.1�.

Figure 2.16c shows the variation of the strain ε = N/EA in a ε diagram
over the total height of the column.

Figure 2.16 (a) Column from a three-storey building with (b) the
N diagram and (c) the ε diagram.
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The strain is a maximum in field BC, the second storey, even though the
normal force is not the largest there.

b. The change in length of column ABCD.
First the change in length per storey (field) is determined:

AB (1st storey):

��(1) = N(1)�(1)

EA(1)
= (−3000 × 103 N)(5 × 103 mm)

12 × 109 N
= −1.25 mm.

BC (2nd storey):

��(2) = N(2)�(2)

EA(2)
= (−1800 × 103 N)(3.5 × 103 mm)

6 × 109 N
= −1.05 mm.

CD (3rd storey):

��(3) = N(3)�(3)

EA(3)
= (−600 × 103 N)(3.5 × 103 mm)

6 × 109 N
= −0.35 mm.

The change in length of column ABCD is therefore

�� = ��(1) + ��(2) + ��(3) = −2.65 mm.

The column shortens by 2.65 mm.

The change in length of the column can also be found from the area of the
ε diagram (N/EA diagram):

�� =
∫

�

ε dx =
∫

�

N

EA
dx
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= (−0.25 × 10−3)(5 × 103 mm)

+ (−0.3 × 10−3)(3.5 × 103 mm)

+ (−0.1 × 10−3)(3.5 × 103 mm

= −1.25 − 1.05 − 0.35 = −2.65 mm

c. The displacements at B, C and D.
Column AB shortens by 1.25 mm, therefore B drops by 1.25 mm. Column
BC shortens by 1.05 mm; C drops by 1.25 + 1.05 = 2.30 mm. Column CD
shortens by 0.35 mm; D drops by 1.25 + 1.05 + 0.35 = 2.65 mm, the same
amount as the shortening of the entire column.

2.6.4 Prismatic column subject to its dead weight

Figure 2.17a shows a prismatic column, with length �, cross-section A and
a total dead weight G. The modulus of elasticity is E.

Questions:
Due to the dead weight determine:
a. The variation of N and ε as functions of x.
b. The variation of the displacement u as function of x.
c. The vertical displacement at the top of the column.

Solution:
a. The variation of N and ε as function of x.
The dead weight can be seen as a uniformly distributed axial load qx along
the bar axis:

qx = −G

�
.

Figure 2.16 (a) Column from a three-storey building with (b) the
N diagram and (c) the ε diagram.
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Figure 2.17 (a) A prismatic column, fixed at its base and free
at the top, subject to its dead weight. The associated (b) N and ε

diagrams, and (c) the displacement diagram or u diagram.

Since the distributed load is acting opposite to the x direction, qx is neg-
ative. The equilibrium of the isolated part of the column in Figure 2.17b
gives

N(x) = G

�
x − G = −G

(
1 − x

�

)

so that

ε(x) = N(x)

EA
= − G

EA

(
1 − x

�

)
.

The normal force N and strain ε are linear over the height of the column.
Figure 2.17b shows the N diagram and ε diagram.

b. The variation of the displacement u as a function of x.
The displacement u (positive in the positive x direction) follows from

�u = u(x) − u(0) =
∫ x

0
ε dx

so that

u(x) = u(0) +
∫ x

0
ε dx.

At the support x = 0 the displacement is zero: u(0) = 0. With this end
condition we find

u(x) =
∫ x

0
ε dx = − G

EA

∫ x

0

(
1 − x

�

)
dx = − G�

EA

(
x

�
− 1

2

x2

�2

)
.

The displacement is parabolic (quadratic in x) and is negative everywhere;
this means that the displacement is directed downwards.
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The variation of the displacement u along the x axis is shown in a dis-
placement diagram or u diagram (see Figure 2.17c).

c. The vertical displacement at the top of the column.
The displacement at the top x = � can be found from the expression for
u(x):

u(�) = − G�

2EA
.

The minus sign means that the column shortens.

Note that for the displacement at the top also applies

u(�) =
∫ �

0
ε dx.

This integral can be interpreted as the area of the ε diagram. That is the area
of the triangle in Figure 2.17b, which is easy to determine:

u(�) = 1
2 ·

(
− G

EA

)
· � = − G�

2EA
.

2.6.5 Non-prismatic column with constant normal force

The column in Figure 2.18a has a length � and a square cross-section of
which the side varies linearly from a at the ends to 2a at the middle. The
modulus of elasticity is E.

Question:
Determine the change in length of the column due to the compressive
force F .

Figure 2.17 (a) A prismatic column, fixed at its base and free
at the top, subject to its dead weight. The associated (b) N and ε

diagrams, and (c) the displacement diagram or u diagram.
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Figure 2.18 (a) A non-prismatic column with constant normal
force. (b) For calculations, half the column can be considered on
basis of symmetry.

Comment: This problem requires some mathematical skill, such as the
substitution of variables.

Solution:
For the change in length of the non-prismatic column with constant normal
force we have

�� = N

∫
�

1

EA
dx = N

E

∫
�

1

A
dx.

Since the area A = A(x) of the cross-section is a function of x, it has to
remain inside the integral.

Symmetry considerations make it possible to consider half the column (see
Figure 2.18b). If �� is the change in length of the total column, then ��/2
is the change in length of half the column:

1
2�� = N

E

∫ �/2

0

1

A(x)
dx,

which, with N = −F , implies

�� = −2F

E

∫ �/2

0

1

A(x)
dx.

We now have to find the area of the cross-section as a function of x. For the
width b(x) at height x we have

b(x) = 2a
(

1 − x

�

)
,



44 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

and for the area A(x) of the cross-section there

A(x) = {b(x)}2 = 4a2
(

1 − x

�

)2
.

Solving the integral gives the following:

∫ �/2

0

1

A(x)
dx =

∫ �/2

0

1

4a2
(
1 − x

�

)2
dx

= 1

4a2

∫ �/2

0

1(
1 − x

�

)2

d
(
1 − x

�

)
(
− 1

�

) .

Select a new variable x̃:

x̃ = 1 − x

�
.

With this new variable the integration limits x = 0 and x = �/2 change to
x̃ = 1 and x̃ = 1/2 respectively, so that

∫ �/2

0

1

A(x)
dx = − �

4a2

∫ 1/2

1

1

x̃2
dx̃ = − �

4a2

(
− 1

x̃

)∣∣∣∣
1/2

1
= �

4a2
.

For the change in length of the column we now find

�� = −2F

E

∫ �/2

0

1

A(x)
dx = −2F

E

�

4a2 = − F�

2Ea2 .

The minus sign indicates that the column shortens.

Figure 2.18 (a) A non-prismatic column with constant normal
force. (b) For calculations, half the column can be considered on
basis of symmetry.



2 Bar Subject to Extension 45

2.7 Examples relating to the differential equation for
extension

In Section 2.6 we used just the kinematic and constitutive relationships. In
this section we now involve the static relationship (equilibrium equations).
First a summary is given of the various formulae that form the basis for
the differential equation for extension, and that are required to satisfy the
boundary conditions (Section 2.7.1). Next two examples are given. The
examples relate to a column subject to extension, that in the first case is
statically determinate (Section 2.7.2), and in the second case is statically
indeterminate (Section 2.7.3).

2.7.1 Summary of the formulae for extension

Before dealing with the two examples in which the problem of extension is
solved with the help of the differential equation, we first provide a summary
of the various formulae related to extension in the scheme alongside.

For a prismatic member, starting from the second-order differential equa-
tion for extension, we find the normal force N by integrating once:

N = EAu′ = −
∫

qx dx,

and after integrating again we find the displacement u:

EAu = −
∫ (∫

qx dx

)
dx.

With each integration there appears an unknown integration constant. This
means that the expression for the normal force N contains one integration
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Figure 2.19 A prismatic column, fixed at the base and free at the
top, subject to its dead weight.

constant and that for the displacement u contains two integration constants.

The unknown integration constants follow from the boundary conditions
(end and/or joining conditions). These conditions relate to the magnitude
of N and/or u on a field boundary. A member end always gives one bound-
ary condition (an end condition); a field join always gives two boundary
conditions (joining conditions).

2.7.2 Prismatic column fixed at one side, and subject to its
dead weight

Figure 2.19 shows a prismatic column, fixed at the base and free at the top,
with length �, cross-section A and a total dead weight G. The modulus of
elasticity is E.

The same column was discussed in Section 2.6.4, but in a different way.

Question:
Use the differential equation for extension to determine the variation of the
displacement u and normal force N due to the dead weight of the column.

Solution:
The dead weight can be seen as a uniformly distributed axial load qx along
the column axis:

qx = −G

�
.

The differential equation for extension is now (pay attention to the signs!)

EAu′′ = −qx = +G

�
.
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By repeated integration we find

N = EAu′ = G

�
x + C1,

EAu = 1
2

G

�
x2 + C1x + C2.

The constants C1 and C2 follow from the boundary conditions, in this case
end conditions. At an end, either the magnitude of the normal force N is
known or the magnitude of the displacement u.

The column is fixed at the base, at x = 0, and cannot move here.1 This
gives the first boundary condition:

x = 0; u = 0.

Furthermore, the column is unloaded at the top at x = �. There the normal
force is zero.2 This gives the second boundary condition:

x = �; N = EAu′ = 0.

The first boundary condition leads to

C2 = 0,

and the second to

1 The normal force N is initially unknown here.
2 The displacement u is initially unknown here.
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Figure 2.20 The column with associated u and N diagrams.

C1 = −G.

For the variation of the displacement u we find

EAu = 1
2

G

�
x2 − Gx

or, rewritten,

u = G�

EA

(
1
2

x2

�2 − x

�

)
.

The variation of the normal force N is

N = EAu′ = G
(x

�
− 1

)
.

Note that the normal force N is proportional to the slope of the u diagram.
Note in particular that u = −G�/(2EA) at the top, and N = −G at the
base.

Figure 2.20 shows the u diagram and N diagram. The same results were
found in Section 2.6.4. Since the structure is statically determinate, the
variation of the normal force could be derived directly from the equilibrium
there, without using the strain-displacement (kinematic) and stress-strain
(constitutive) equations.

2.7.3 Prismatic column fixed at two sides, and subject to its
dead weight

Figure 2.21 shows a prismatic column fixed at both ends, with length �,
cross-section A and a total dead weight G. The modulus of elasticity is E.
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Figure 2.21 A prismatic column, at both ends fixed, subject to its
dead weight.

Question:
Use the differential equation for extension to determine the variation of the
displacement u and normal force N due to the dead weight of the column.

Solution:
The difference between this and the previous example is that the column is
now fixed at both ends. As a consequence the force flow is indeterminate.
This means that the support reactions and the variation of the normal force
can no longer be derived directly from the equilibrium equations. There are
an infinite number of force flows that satisfy the equilibrium equations.

The correct force flow satisfies not only the equilibrium equations, but also
the condition that the deformed column has to fit exactly between both fixed
supports. Therefore, the actual force flow satisfies not only the equilibrium
equations but also the stress-strain (constitutive) equations and the strain-
displacement (kinematic) equations.

When performing calculations for a statically indeterminate structure we
therefore need all three basic relationships: kinematic, constitutive and
static, as shown below.

With

qx = −G

�

the differential equation for extension is

EAu′′ = −qx = G

�
.
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After repeated integration we find

N = EAu′ = G

�
x + C1,

EAu = 1
2

G

�
x2 + C1x + C2.

So far, the results are exactly the same as those for the statically determinate
column in Section 2.7.2. The difference occurs in the boundary conditions
(end conditions).

The column is fixed at its base (x = 0) and at its top (x = �). This leads to
the following two boundary conditions:

x = 0; u = 0,

x = �; u = 0.

The first boundary condition gives

C2 = 0

and the second

C1 = − 1
2 G.

For the displacement u as a function of x we find

EAu = 1
2

G

�
x2 − 1

2 Gx

Figure 2.21 A prismatic column, at both ends fixed, subject to its
dead weight.
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Figure 2.22 The column with associated u and N diagrams. The
support reactions are derived from the N diagram.

or, rewritten,

u = G�

2EA

(
x2

�2 − x

�

)
·N = EAu′ = G

(x

�
− 1

2

)
.

For the normal force N we find

N = EAu′ = G
(x

�
− 1

2

)
.

The distribution of the displacement u and normal force N along the
column axis is shown in Figure 2.22, in a u and N diagram respectively.

The displacement u is parabolic. The maximum displacement occurs at the
middle (x − �/2):

u
(
x = 1

2�
) = 1

8
G�

EA
.

The normal force N is linear. At the base (x = 0) there is a compressive
force of G/2 and at the top (x = �) there is a tensile force of G/2. At the
middle (x = �/2) the normal force is zero. Note that the normal force is
proportional to the slope of the u diagram.

The support reactions in Figure 2.22 are derived from the N diagram.

Check: In Section 2.6.1 it was noted that the change in length �� for a
prismatic member is equal to the area of the N diagram, divided by EA.
For the column in this example, the total area of the N diagram is zero.
Therefore, the total change in length of the column is zero and the deformed
column indeed fits between both fixed supports.
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Figure 2.23 (a) The bending moments (section forces) My and
Mz in the formal approach. The positive directions of My and Mz,
acting in the xy and xz plane respectively, follow from their defin-
itions: My = ∫

A yσ dA and Mz = ∫
A zσ dA. (b) The moments Ty

and Tz about the y and z axes respectively. By definition their posi-
tive directions are found from the right-hand or corkscrew rule. Note
that for a positive cross-sectional plane, My = −Tz and Mz = +Ty .
(c) In engineering practice the bending moments (section forces)
My and Mz on a positive cross-sectional plane are often defined in
the same way as Ty and Tz. On a negative cross-sectional plane My

and Mz are then opposite to Ty and Tz.

2.8 Formal approach and engineering practice

This book uses a formal definition of bending moments which is consistent
with the stress definitions used in continuum mechanics1 (see Volume 1,
Section 10.1.3). However it is sad to see that in engineering practice a
different notation is often used, mainly based on historical and pragmatic
grounds.

The formal definitions are shown in Figure 2.23a. Here, the bending mo-
ments My and Mz are defined as moments acting in the xy and xz plane
respectively.

In Volume 1, Sections 3.1.4, 3.1.5, and 3.3 the definitions are given for the
moments of a force or couple about a point or about a line. To distinguish
these moments from the bending moments M (section forces), we used a
different symbol T . So Ty and Tz are the moments about the y and z axis
respectively, as shown in Figure 2.23b. By definition the positive directions
of Ty and Tz are found from the right-hand rule2 or corkscrew rule.3 Note
that for a positive cross-sectional plane (formal approach)

My = −Tz,

Mz = +Ty.

However, in engineering practice the bending moments (section forces) My

and Mz for a positive cross-sectional plane are usually defined in the same

1 The formal definition also leads to a consistent tensor notation, which is out of
the scope of this volume.

2 See Volume 1, Section 1.3.2.
3 See Volume 1, Section 3.3.1.
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way as Ty and Tz. Hence, the bending moments My and Mz are moments
about the y and z axis respectively, as shown in Figure 2.23c. The bending
moments on the negative cross-sectional plane are equal and opposite.

Note from the above that the definitions of the bending moments My and
Mz according to the formal approach are not the same as those often used
in engineering practice, and their positive directions may be opposite. The
consequences will be discussed later.

Students have to be aware that different books may use different definitions.
Older books even use coordinate systems in which the beam axis is the z

axis.

Once the definitions are clear, the actual coordinate system used is for en-
gineering purposes of no concern. However the authors explicitly use the
formal definitions for educational purposes in order to obtain a consistent
and convenient set of equations. In some sections in this book, pronounced
differences between this formal approach and the engineering approach will
be discussed.
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2.9 Problems

Mixed problems on stress, strain and change in length due to extension
(Sections 2.1 to 2.6).

2.1 A column supports a “mushroom floor” of 50 m2. The weight of floor
and inventory is 12.5 kN/m2. The column has a rectangular cross-section
of 500 × 500 mm2.

Question:
Determine the compressive stress in the column.

2.2 In the truss shown, all diagonal members have a cross-sectional area
of 1400 mm2. The other members have a cross-sectional area of 800 mm2.
The truss is loaded by two forces of 80 kN.

Questions:
a. Determine the stresses in the top chord members.
b. Determine the stresses in the bottom chord members.
c. Determine the stresses in the verticals.
d. Determine the stresses in the diagonals.

2.3 An anchor bar of a bank protection has a circular cross-section with a
diameter of 30 mm. The (design value of the) strength is 100 N/mm.

Question:
Determine the admissible tensile force in the anchor bar.
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2.4: 1–2 In both trusses, the members AC and BC have the same
cross-sectional area A = 800 mm2. The tensile stresses in the truss may
not exceed 140 N/mm2, and the compressive stresses may not exceed
80 N/mm2.

Question:
Determine the maximum vertical force F at C that may be exerted on the
truss. Which member is critical?

2.5 A steel wire with cross-sectional area A = 150 mm2 is subject to ten-
sion by a force F . The modulus of elasticity is E = 210×103 N/mm2. The
yield stress is fy = 235 N/mm2.

Questions:
a. Determine the strain per mil if F = 25.2 kN.
b. Determine the force F for which the yield stress is reached.

2.6 A mass of 245 kg is suspended from a steel wire with a cross-sec-
tional area of 28 mm2 and a length of 6 m. The modulus of elasticity is

E = 210 GPa. The dead weight of the wire is neglected. Assume the
gravitational field strength is g = 10 N/kg.

Questions:
a. Determine the stress in the wire.
b. Determine the strain of the wire.

2.7 A prismatic bar of length � has a circular cross-section with diameter
d . The bar is loaded by a tensile force F . At the bar a strain ε is measured.
The modulus of elasticity of the material is E. In the calculation use
� = 0.85 m, d = 20 mm, ε = 0.47� and E = 210 GPa.

Questions:
a. Determine the normal stress in the cross-section in N/mm2.
b. Determine the axial stiffness of the bar in MN.
c. Determine the magnitude of the tensile force F in kN.
d. Determine the elongation of the bar in mm.
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2.8 Four different wires are loaded by four different forces. All requisite
information can be found from the figure.

Questions:
a. Which wire has the largest normal stress?
b. Which wire has the largest strain?
c. Which wire has the largest elongation?

2.9 A block with weight G = 12 kN is suspended from a steel wire
with length � and cross-sectional area A. The modulus of elasticity is
E = 210 × 103 MPa. Due to the weight G the wire may not lengthen by
more than 2 mm and the stress may not exceed 240 N/mm2.

Questions:
a. Determine the minimum cross-sectional

area A for � = 1.5 m.
b. Determine the minimum cross-sectional

area A for � = 2.1 m.

2.10 When a weight of 3 kN is suspended from a wire, the wire lengthens
by 1.5 mm.

Question:
Determine the elongation if the weight is 5 kN.
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2.11 A water tower consists of a prismatic steel column that supports a
spherical water reservoir. The reservoir has a dead weight of 200 kN and
a volume of 100 m3. The steel column shortens 36 mm when the reservoir
is entirely filled. The dead weight of the column is ignored. Assume the
specific weight of water is 10 kN/m3.

Questions:
a. Determine the shortening of the steel column

when the reservoir is 60% full.
b. Determine the shortening of the steel column

when the reservoir is empty.

2.12 In the structure shown, the wires a and b are of the same material and
have the same cross-section. The structure is loaded by the force F .

Question:
Determine the ratio ��(a)/��(b) if ��(a) and ��(b) are the elongations of
the wires a and b respectively.

2.13 All members in the truss have the same axial stiffness of 280 MN.
The truss is loaded by two forces of 70 kN.

Question:
Determine the changes in length of the members.
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2.14 All members in the truss have the same cross-sectional area A = 1500
mm2. The modulus of elasticity is E = 70 GPa. The truss is loaded by a
force of 270 kN.

Questions:
a. Determine the stresses in the members.
b. Determine the strains in the members, in per mille.
c. Determine the changes in length of the members.

2.15 See the truss in problem 2.14, but now all members loaded by tension
have a cross-sectional area A = 1500 mm2, and all members loaded by
compression have a cross-sectional area A = 2000 mm2. The modulus of
elasticity is E = 70 GPa.

Questions:
a. Determine the stresses in the members.
b. Determine the strains in the members, in �.
c. Determine the changes in length of the members.

2.16 All members in the truss
have the same axial stiffness
EA = 150 MN. The truss is
loaded at C by a vertical force
F = 200 kN.

Question:
Determine the displacement of
the roller at B.

2.17 All members in the truss
have the same axial stiffness
EA = 150 MN. The truss is
loaded at C by a vertical force
F . In consequence of this, the
roller at B moves a distance u.

Questions:
a. Determine F if u = 4 mm.
b. Find u if F = 175 kN.
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2.18 All members in the truss
have the same axial stiffness
EA = 75 MN. The truss is loaded
at D by a vertical force of 135 kN.

Questions:
a. Determine the change in length

of member CD.
b. Determine the displacement of

the roller at B.

2.19 A block with weight G = 48 kN is
suspended from a wire that runs over a
pulley without friction. See the figure for the
dimensions. The cross-sectional area of the
wire is A = 38 mm2; the length is � = 14 m.
The modulus of elasticity is E = 200 GPa.
The dead weight of the wire is neglected.

Question:
How far does the block drop due to the elon-
gation of the wire?

2.20 Two square blocks with different weights G1 and G2 are glued to-
gether, and suspended from two wires. The wires are of different lengths �1
and �2 and have different strain rigidities EA1 and EA2. In the calculation
use � = 1.5 m, �2 = 2.0 m, G1 = 18 kN and G2 = 6 kN.

Question:
Determine the ratio EA1/EA2 for which
the blocks, subject to their dead weight,
drop without rotating.

2.21 A triangular homogeneous slab of constant thickness is suspended
from two steel wires BD and CE of equal length. The cross-sectional area
A of the wires is different so that B and C drop the same amount.

Question:
Determine the ratio A(CE)/A(BD).
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2.22 A triangular steel plate ABC of constant thickness is suspended from
two steel wires BD and CE.

Questions:
a. Determine the ratio ��(BD)/��(CE)

if the cross-sectional area of the
steel wires has been selected so
that the same stress occurs in both
wires.

b. Determine the ratio ��(BD)/��(CE)

if both wires have the same
cross-sectional area.

2.23 A triangular homogeneous slab ABC of constant thickness is
suspended at its corners with vertical wires from the ceiling. All wires have
the same length, cross-sectional area and modulus of elasticity.

Questions:
Which statement is correct after the suspension?
a. A will hang lower than B and C.
b. B will hang lower than A and C.
c. C will hang lower than A and B.
d. A, B and C will be at the same height.

First use your intuition and then check your answer by analysis.

2.24 A rigid beam with a dead weight of 3 kN/m is suspended from two
vertical bars, one made of copper, the other of steel. Before connecting the
beam to the bars, the lower ends of the bars are at the same level. A load F

is also suspended from the beam as indicated.

For the copper bar: Ec = 120 GPa and Ac = 100 mm2.
For the steel bar: Es = 210 GPa and As = 200 mm2.

Questions:
a. Determine the magnitude

of the load F for which the
beam remains horizontal.

b. Determine the associated
drop of the beam.

c. Determine the associated
stress in the steel bar.

d. Determine the associated
stress in the copper bar.
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2.25 Bar ABC consists of the two parts AB and BC with different length
and different axial stiffnesses (see the figure). The bar is loaded by a tensile
force F = 30 kN. In the calculation use
�1 = 0.6 m, �2 = 1.2 m, EA1 = 6 MN and EA2 = 8 MN.

Questions:
a. Determine the strain of AB in �.
b. Determine the elongation of BC in mm.
c. Determine the total elongation of ABC in mm.

2.26 Compound bar (I), with length � = �1 + �2, has an axial stiffness
EA1 over length �1 and an axial stiffness EA2 over length �2. Due to a
tensile force F , an equally long prismatic bar (II) with axial stiffness EA

undergoes the same elongation �� as compound bar (I). In the calculation
use �1 = 1.8 m, �2 = 2.4 m, EA1 = 30 MN and EA2 = 40 MN.

Questions:
a. Determine the axial stiffness EA of bar (II) in MN.
b. Determine the elongation of both bars if F = 70 kN.

2.27: 1–3 A prismatic bar AB with cross-sectional area A = 240 mm2 is
fixed at A and free at B, and is loaded by three axial forces F1, F2 and F3.
The modulus of elasticity is E = 200 GPa. There are three different cases
of loading:

(1) F1 = 25 kN, F2 = 15 kN and F3 = 30 kN.
(2) F1 = 25 kN, F2 = 45 kN and F3 = 25 kN.
(3) F1 = 16 kN, F2 = 60 kN and F3 = 12 kN.

Questions:
a. Determine the N diagram.
b. Determine the variation of the strain along the bar (the ε diagram).
c. Determine the displacement ux;B.
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2.28: 1–2 Bar ABCD has a uniform cross-sectional area A = 400 mm2

and consists of three materials with different modulus of elasticity:

E(AB) = 25 GPa, E(BC) = 80 GPa, and E(CD) = 200 GPa.

There are two cases of loading:
(1) F1 = 50 kN, F2 = 10 kN, F3 = 20 kN and F4 = 60 kN.
(2) F1 = 25 kN, F2 = 45 kN, F3 = 60 kN and F4 = 40 kN.

Questions:
a. Determine the N diagram.
b. Determine the variation of the strain along the bar (the ε diagram).
c. Determine the change in length of bar segments AB, BC and CD.
d. Determine the change in length of the total bar.

2.29 A rigid block with weight G is suspended
from three vertical bars of equal cross-sectional
area A = 250 mm2 and equal length � = 2 m.
The outer bars (1) and (3) are made of copper
and the centre bar (2) is made of steel. Due to
the weight G all bars lengthen by 0.96 mm. The
modulus of elasticity of copper is Ec = 125 GPa
and that of steel is Es = 200 GPa.

Questions:
a. Determine the strains and stresses in the bars.
b. Determine the forces in the bars.
c. Determine weight G of the block.

2.30 Two interlocking tubes (1) and
(2) with a length of 600 mm are
loaded by means of a rigid cover
plate by a compressive force F . As a
result, both tubes shorten by 0.4 mm.
In the calculation use
A(1) = 3000 mm2, A(2) = 1500 mm2,
E(1) = 100 GPa and E(2) = 70 GPa.

Questions:
a. Determine the normal force in the

outer tube (1).
b. Determine the normal force in the

inner tube (2).
c. Determine the magnitude of force

F .
d. Determine the amount of shorten-

ing if F = 420 kN.

2.31 As problem 2.30, but now E(1) = 70 GPa and E(2) = 100 GPa.
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2.32 The members AD, BD and CD are connected by a hinge at joint D.
All members have the same axial stiffness EA = 125 MN. Due to the force
F the horizontal (component of the) displacement of joint D is 1.6 mm.

Questions:
a. Determine the forces in members BD and CD.
b. Determine the magnitude of force F from the equilibrium of joint D.
c. Determine the vertical (component of the) displacement of joint D.

2.33 In the structure shown, members AB and BC have the same axial
stiffness EA = 50 MN. Due to the vertical force of 189.5 kN at C, AC
shortens by 3.96 mm.

Questions:
a. Determine the force in member AC.
b. Determine the force in member BC from the force equilibrium of joint

C.
c. Determine the drop of joint C.
d. Determine the support reactions at A, B and C.

2.34 An entirely rigid and weightless beam ABC is supported by a hinge at
A and suspended from two vertical bars at B and C. In unloaded condition,
the beam is horizontal. C drops by 20 mm under influence of force F at C.
In the calculation, use for the axial stiffnesses of the bars EA(1) = 1500 kN
and EA(2) = 3000 kN.

Questions:
a. Determine the strains in the bars.
b. Determine the forces in the bars.
c. Determine the magnitude of force F .
d. Determine the magnitude and direction of the support reaction at A.
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2.35 An entirely rigid and weightless beam ABCD is supported by a hinge
at A and is suspended from the vertical bars (1) to (3) at B, C and D. In
unloaded condition, the beam is horizontal. As a result of force F at D, D
drops by 0.6 mm. In the calculation use A(1) = A(2) = A(3) = 1000 mm2

and E(1) = 200 GPa, E(2) = 100 GPa, E(3) = 300 GPa.

Questions:
a. Determine the strains and stresses in the bars.
b. Determine the forces in the bars.
c. Determine the magnitude of force F .
d. Determine the magnitude and direction of the support reaction at A.

2.36 A steel bar, with screw thread at each end, is enclosed in a cylindrical
steel bush with a length of 300 mm.

It is assumed that the washers at the ends of the bush are non-deformable
and have negligible thickness. One of the bolts is turned until there is a
tensile force of 56 kN in the bar. The cross-sectional area of the bar is
Abar = 500 mm2, and of the bush Abush = 1000 mm2. The modulus of
elasticity is E = 210 GPa.

Questions:
a. Determine the shortening of the bush.
b. Determine the elongation of the bar.
c. Determine the length by which the bolt must be turned to achieve a

tensile force of 56 kN in the bar.

2.37 In a centrically prestressed concrete beam with a length of 6 m there
is the prestressing force Fp = 1100 kN. The prestressing tendon is stressed
using a jack until the required prestressing force has been achieved. After
that, the tendon is locked in position with end anchorage devices.
For the concrete beam, Ac = 63.2 × 103 mm2 and Ec = 30 GPa. For the
prestressing tendon, Ap = 900 mm2 and Ep = 210 GPa.

Questions:
a. Determine the shortening of the concrete beam due to the prestressing

force.
b. Determine elongation of the tendon.
c. Determine the stroke of the jack (the length by which the jack has

to draw out the tendon) in order to achieve the prestressing force of
1100 kN.
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2.38 A rigid block with a weight of 63 kN is suspended from three ver-
tical bars of equal cross-sectional area A = 250 mm2 and equal length
� = 1.5 m. The outer bars (1) and (3) are made of steel and the centre bar
(2) is made of copper. The modulus of elasticity of copper is Ec = 125 GPa
and that of steel is Es = 200 GPa.

Questions:
a. Determine the vertical displacement of the block.
b. Determine the forces in the bars.
c. Determine the stresses in the bars.

2.39 As problem 2.38, but now the outer bars (1) and (3) are made of
copper and centre bar (2) is made of steel.

2.40 An entirely rigid and weightless beam ABC is supported by a hinge
at A and suspended from two vertical bars at B and C. In the unloaded
state, the beam is horizontal. The structure is loaded at C by the force

F = 30 kN. For the axial stiffnesses of the bars use EA(1) = 3000 kN and
EA(2) = 1500 kN.

Questions:
a. How much does C drop?
b. How large are the strains and forces in the bars?
c. Determine the magnitude and direction of the support reaction at A.

2.41 A cable is wound stress-free around a drum. From the drum 633.5 m
of cable is released into a deep mine shaft. The cable bears only its dead
weight. The mass density of the cable is 7.85 × 103 kg/m3. The modulus of
elasticity of the cable is E = 90 × 103 N/mm2. Assume the gravitational
field strength is 10 N/kg.

Questions:
a. Determine the elongation of the free-hanging cable.
b. Determine the length for which a maximum stress of 130 N/mm2 is

achieved in the cable.
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2.42 A load of 1500 N is suspended from a 150-metre steel wire with
circular cross-section and diameter of 6 mm. The mass density of steel is
γ = 78.5 kN/m3 and the modulus of elasticity is E = 210 GPa. Assume
the gravitational field strength is g = 10 N/kg.

Questions:
a. Determine the elongation of the steel wire due to the load.
b. Determine the elongation of the steel wire due to its dead weight.
c. Determine the total elongation of the steel wire.
d. Determine the maximum normal stress in the steel wire.

2.43 A pile in the ground is loaded by a force F1. The pile bears this load
in a part F2 at the end, and the rest on friction. The friction forces are
modelled as a uniformly distributed axial line load q . The pile has a length
� and a square cross-sectional area a × a (see the figure). The modulus of
elasticity is set at 25 GPa. In the calculation use � = 24 m, a = 300 mm,
F1 = 2.55 MN and F2 = 1.35 MN.

Questions:
a. Determine the uniformly distributed load q due to friction.
b. Determine the shortening of the pile.
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2.44 A 12 mm-thick tapered steel plate is loaded on two opposite sides by
uniformly distributed tensile stresses. The stress on the left-hand side is
100 N/m2. The modulus of elasticity is E = 210 GPa.

Questions:
a. Determine the tensile stress on the right-hand side.
b. Determine the normal force in the plate modelled as a line element.
c. Provide a rough estimate of the change in length of the plate , without

extensive calculation.
d. Determine the change in length of the plate modelled as a line element

accurately.

2.45 A concrete column in the shape of a truncated cone is loaded by
a compressive force F (see the figure). The modulus of elasticity is
25 GPa. In the calculation use F = 4 MN, � = 2.8 m, r1 = 150 mm and
r2 = 250 mm.

Question:
Determine the shortening of the column.
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2.46 A load of 1500 N is suspended from a 150-metre steel wire with
a diameter of 6 mm. The mass density of steel is γ = 78.5 kN/m3 and
the modulus of elasticity is E = 210 GPa. Assume the gravitational field
strength is g = 10 N/kg.

Questions:
a. Determine the vertical displacement u as a function of the distance x

(in mm) from the point of suspension. Draw the displacement diagram.
b. Determine the displacement at the free end.

The differential equation for extension (Sections 2.5 to 2.7)

2.47: 1–2 The prismatic column AB, with a fixed support at A and a free
end at B, is 6 metres high and has an axial stiffness EA = 9 MN. The
column is subject to extension in two ways.

Questions:
a. Write down the distributed load as a function of x.
b. Using the differential equation for extension, determine the normal

force N and displacement u as functions of x.
c. Sketch the N diagram and u diagram.
d. Determine the support reactions; draw them in the directions in which

they act on the column.
e. Determine the displacement of column end B.
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2.48: 1–2 The prismatic bar AB, supported by hinges at both ends, is
axially loaded in two different ways. The length of the bar is 6 metres; the
axial stiffness is EA = 9 MN.

a. Write down the distributed load as a function of x.
b. Using the differential equation for extension, determine both the normal

force N and displacement u as functions of x.
c. Sketch the N diagram and u diagram.
d. Determine the support reactions; draw them in the directions in which

they act on the bar.

2.49: 1–4 A simply supported prismatic member with length � and axial
stiffness EA is subject to extension by four different distributed axial loads
q(x) with top value q̂:

(1) q(x) = q̂ ·
(

1 − 2
x

�

)
, (2) q(x) = q̂ cos

πx

�
,

(3) q(x) = 4 q̂ ·
(

x

�
− x2

�2

)
, (4) q(x) = q̂ sin

πx

�
.

In the calculation use � = 5 mm, q̂ = 2.4 kN/m and EA = 2 MN.

Questions:
a. Using the differential equation for extension, determine both the normal

force N and displacement u as functions of x.
b. Sketch the N diagram and u diagram.
c. Determine the support reactions; draw them as they act on the member.
d. Determine the displacement of the member end at the roller support.
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2.50: 1–4 A prismatic member of length � is supported at both ends by a
hinge, and has an axial stiffness EA. The member is subject to extension
by the following four distributed axial loads q(x) with top value q̂:

(1) q(x) = q̂ ·
(

1 − 2
x

�

)
, (2) q(x) = q̂ cos

πx

�
,

(3) q(x) = 4 q̂ ·
(

x

�
− x2

�2

)
, (4) q(x) = q̂ sin

πx

�
.

In the calculation use � = 5 mm, q̂ = 2.4 kN/m and EA = 2 MN.

Questions:
a. Use the differential equation for extension to determine both the normal

force N and displacement u as a functions of x.
b. Sketch the N diagram and u diagram.
c. Determine the support reactions and draw them as they act on the

member.



3Cross-Sectional Properties

In the calculation of stresses due to extension, the cross-sectional area A

plays an important role:

σ = N

A
.

We also encounter the cross-sectional area A when calculating the defor-
mation due to extension, namely in the axial stiffness EA of the member
(the resistance of the member to axial deformation).

When calculating stresses and deformations due to bending and torsion, we

Below you will find a summary of a number of geometrical character-
istics of a cross-section involved in extension, bending and torsion1 (see
Figure 3.1):

1 Another (geometric) cross-sectional quantity involved in torsion is the torsion
constant It, or torsional stiffness factor. This quantity will be dealt with in
Chapter 6.

Figure 3.1 Area element dA with its coordinates y and z.

come across other cross-sectional properties.
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A =
∫

A

dA, Sy =
∫

A

y dA, Iyy =
∫

A

y2 dA,

Sz =
∫

A

z dA, Iyz = Izy =
∫

A

yz dA,

Izz =
∫

A

z2 dA,

Ip =
∫

A

r2 dA.

To prepare for the bending problem in Chapter 4, in which cross-sectional
properties play an important role, we have devoted this chapter to the
geometric characteristics of cross-sections. We cover their definitions and
properties, and the ways in which they can be calculated.

The geometric quantities Sy and Sz are called first moments of area.1 They
are also referred to as static moments (of area). They play a role in deter-
mining the location of the centroid of the cross-section. We cover this in
Section 3.1.

The geometric quantities Iyy , Iyz = Izy and Izz are called second moments
of area.2 These quantities are involved in calculating the stresses and de-
formations due to bending.3 Iyy and Izz are also referred to as the moments
of inertia of the cross-section. Iyz and Izy are also known as the product

1 Other names are moments of area of the first degree or linear moments of area.
2 Other names are moments of area of the second degree or quadratic moments of

area.
3 See Chapter 4: Members Subject to Extension and Bending.
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of inertia of the cross-section. Sometimes, the product of inertia is also
referred to as a moment of inertia.

Another quadratic moment of area is the polar moment of inertia:

Ip =
∫

A

r2 dA.

We come across the polar moment of inertia in the formulas used for cir-
cular cross-sections to determine shear stresses and deformations resulting
from torsion.1

The moments of inertia are covered in Section 3.2. The difference between
the formal approach and engineering practice is explained in Section 3.2.4.

With thin-walled cross-sections, the material can be seen as concentrated
in the centre lines, so that the cross-section changes into a line figure. This
often simplifies the calculation of cross-sectional properties, and is covered
in Section 3.3.

Sections 3.1 to 3.3 end with a number of examples.

In Section 3.4 some remarks are made on the difference that may be noticed
between the formal approach used in this book and engineering practice.

The chapter ends with a number of problems in Section 3.5.

1 See Chapter 6: Members Subject to Torsion.
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Figure 3.2 The static moments Sy = ∫
A y dA and Sz = ∫

A z dA.

Figure 3.3 The static moment Sy = ∫
A y dA is a measure for the

position of the material with respect to the z axis.

3.1 First moments of area; centroid and normal centre

In Section 3.1.1 we define the first moments of area or static moments
Sy and Sz, and explain their meaning. The parallel axis theorem in Sec-
tion 3.1.2 gives transformation rules for the static moments due to a
translation of the coordinate system. The location of the centroid of the
cross-sectional area is addressed in Section 3.1.3. The parallel axis theorem
plays an important part in this. Finally, Section 3.1.4 includes a number of
examples.

3.1.1 Static moments

In a yz coordinate system, the static moments or first moments of area Sy

and Sz for an area A are defined as

Sy =
∫

A

y dA,

Sz =
∫

A

z dA.

Sy is found by multiplying a small area element dA by its y coordinate (see
Figure 3.2) and summing all the contributions over the cross-section. Note
that Sy involves the integral of y, and Sz of z. This makes these definitions
easy to memorise.

Since small area elements with a positive y coordinate generates positive
contributions to Sy and small area elements with a negative y coordinate
generates negative contributions, Sy can be interpreted as a measure for the
position of the material with respect to the z axis (see Figure 3.3).
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Figure 3.4 Sy = 0 when the z axis is a line of symmetry.

In the same way Sz is a measure for the position of the material with respect
to the y axis.

Note: Pay attention to the fact that

Sy =
∫

A

y dA is the static moment in the xy plane,1 and that

Sz =
∫

A

z dA is the static moment in the xz plane.2

In literature aimed at technical applications, a different notation is some-
times used with Sy and Sz interchanged. We should therefore always be
aware of the definitions of Sy and Sz. The notation used here has the benefit
that Sy and Sz can be seen as the y and z component of a vector, so that
the rules of vector algebra can be applied to these quantities. This is useful,
for example, when determining the transformation rules for static moments
due to a rotation of the coordinate system.

It is easy to show that the static moment about a line of mirror symmetry
is zero. In Figure 3.4, for example, the z axis is a line of symmetry. For
each area element3 dA(1) there is an equally large and mirror-symmetrical
area element dA(2). Since their y coordinates have opposite signs, their
joint contribution to Sy = ∫

A
y dA is zero. The total contribution of all area

elements dA(1) (to the left of the line of symmetry) therefore cancels the

1 Or the moment about the z axis.
2 Or the moment about the y axis.
3 Remember that the indices related to an area or region are applied as upper

index. Indices related to a point or location are applied as sub-index.
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Figure 3.5 A cross-section split into two parts.

Figure 3.6 Mutually translated coordinate systems.

total contribution of all area elements dA(2) (to the right of the line of
symmetry). Hence

Sy =
∫

A

y dA =
∫

A(1)

y dA(1) +
∫

A(2)

y dA(2) = 0.

The static moment of an area divided into two parts can be calculated by
summing the static moments of both parts (see Figure 3.5):

Sy =
∫

A

y dA =
∫

A(1)

y dA(1) +
∫

A(2)

y dA(2) = S(1)
y + S(2)

y .

In the same way:

Sz = S(1)
z + S(2)

z .

For complicated cross-sectional shapes, this is a useful tool: split the cross-
section in a number of parts that are easy to calculate, such as rectangles,
triangles, circles, etc., and sum their separate contributions.

3.1.2 Parallel axis theorem for static moments

For static moments, the so-called parallel axis theorem plays an important
role in determining the centroid of an area.

For a translated yz coordinate system, in which y0 and z0 are the coordi-
nates of the origin O of the original yz coordinate system (see Figure 3.6),
we have

y = y + y0,

z = z + z0.
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The static moments in the translated yz coordinate system are

Sy =
∫

A

y dA =
∫

A

y dA + y0

∫
A

dA,

Sz =
∫

A

z dA =
∫

A

z dA + z0

∫
A

dA,

or

Sy = Sy + y0A,

Sz = Sz + z0A.

These formulas give the transformation rules due to a translation of the
coordinate axes, and are referred to as the parallel axis theorem for static
moments.

3.1.3 Centroid and normal centre

The centroid C is defined as that point of an area A for which the static
moments of the area are zero when the origin of the yz coordinate system
is chosen there:

Sy =
∫

A

y dA = 0,

Sz =
∫

A

z dA = 0.

The normal centre NC is defined as that point of the cross-sectional area
where the resultant of all normal stresses due to extension has its point of
application.
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Figure 3.7 A plate in the gravitational field, with a uniformly
distributed mass, can be kept in equilibrium by a single force at its
centroid C.

In Section 2.4 we showed for a homogeneous cross-section the static
moments about the normal centre NC are also zero. In a homogeneous
cross-section, the normal centre apparently coincides with the centroid C
of the cross-sectional area.1

The word centroid is derived from the statics of bodies in the gravitational
field. A plate, in the shape of the cross-section, with a uniformly distributed
mass, can be maintained in equilibrium by a single force at its centroid (see
Figure 3.7). If the origin of the coordinate system is chosen at the centroid,
as defined above, the moment equilibrium about the z axis requires

∫
A

ρgy dA = ρg

∫
A

y dA = 0,

in which ρ is the mass per area and g the gravitational field strength. Since
ρ and g are equal for all area elements dA, they can be left outside the
integral. The moment equilibrium about the z axis therefore leads to the
condition that the static moment Sy must be zero.

In the same way, the moment equilibrium about the y axis leads to the
condition that the static moment Sz must be zero.

1 Since in a homogeneous cross-section the centroid C and the normal centre NC
coincide, both concepts are often interchanged, even though they are clearly
defined differently. But note: for inhomogeneous cross-sections, the centroid
and the normal centre do not coincide and the two concepts may no longer
be interchanged! We recommend keeping the two concepts distinct even for
homogeneous cross-sections.
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Figure 3.8 Centroidal yz coordinate system and non-centroidal
yz coordinate system. yC and zC are the coordinates of centroid C
in the translated yz coordinate system.

In the (non-centroidal) yz coordinate system in Figure 3.8, in which yC and
zC are the coordinates of the centroid C, we have

y = y + yC,

z = z + zC.

Using the parallel axis theorem from Section 3.1.2 we find

Sy = Sy + ȳCA,

Sz = Sz + z̄CA.

Since the (centroidal) yz coordinate system passes through centroid C,

Sy = 0,

Sz = 0.

Hence

Sy = yCA,

Sz = zCA.

The static moments Sy and Sz of an area A are equal to the product of that
area and the y and z coordinate respectively of the centroid C of that area.

Also the converse applies: if Sy and Sz are known, the coordinates of the



80 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

Figure 3.9 In mirror-symmetrical cross-sections, the centroid C is
on the line of symmetry.

centroid C1 are

yC = Sy

A

zC = Sz

A
.

Note: When determining the static moments of an area A, we can consider
the area as being concentrated at its centroid C.

Cross-sections having mirror symmetry
A plane figure that by reflection in a line m is reflected on itself is known as
having mirror symmetry2 with respect to m. m is known as a line of (mirror)
symmetry.

For cross-sectional areas having mirror symmetry the centroid C is on the
line of symmetry. In Figure 3.9a, Sy = 0. Therefore the centroid C is on
the z axis. In Figure 3.9b, Sz = 0, and the centroid C is on the y axis. In
Figure 3.9c there are two lines of symmetry and therefore the centroid C
coincides with the intersection of both lines.

Cross-sections having point symmetry
A plane figure that by reflection in a point C is reflected on itself is said to
have point symmetry3 with respect to C. C is known as a centre of (point)
symmetry.

For cross-sectional areas having point symmetry, the centroid coincides

1 See the derivation in Section 2.4.
2 Mirror symmetry is also referred to as reflection symmetry or line symmetry.
3 Point symmetry is also referred to as polar symmetry.
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Figure 3.10 In point-symmetrical cross-sections, the centroid C
coincides with the centre of point symmetry.

Figure 3.11 In rotation-symmetrical cross-sections, the centroid
C coincides with the centre of rotational symmetry.

with the centre of symmetry C. Two examples are given in Figure 3.10.

For each area element dA(1) there exists an equal and point-symmetrical
area element dA(2). In a coordinate system with the origin at C, the centre
of symmetry, the y and z coordinates of these elements have opposite signs
and their joint contributions to respectively

∫
A

y dA and
∫
A

z dA are zero.
Therefore, summed over the entire area, the result is

Sy = 0 and Sz = 0.

This affirms that the centroid of the area coincides with the centre of point
symmetry.

Cross-sections having rotational symmetry
Plane figures that after rotation through an angle α about a point C coin-
cide with themselves are said to have rotational symmetry with respect to
C. C is known as the centre of rotation and α is known as the angle of
rotation.

With plane figures, point symmetry is a special case of rotational symmetry
(the angle of rotation α is then 180◦).

For cross-sectional areas having rotational symmetry, the centroid coin-
cides with the centre of rotation C. Two examples are given in Figure 3.11.

For the cross-section in Figure 3.11a, the angle of rotation α = 72◦. This
regular pentagon has five lines of symmetry, of which two are shown. The
centroid is on the intersection of the lines of symmetry; that is also in the
centre of rotation.

The hollow cross-section with flaps in Figure 3.11b has no line of sym-
metry. The angle of rotation is α = 120◦. The shape of the cross-section
can be imagined by rotating part PQ twice through 120◦ about C (see
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Figure 3.12 The centroid of the three equally large area elements
dA(1), dA(2) and dA(3) is at the centre of rotational symmetry.

Figure 3.12). For each area element dA(1) on PQ there are two equally
large rotational symmetric area elements dA(2) and dA(3). It is easy to show
that the centroid of dA(1), dA(2) and dA(3) is at the centre of rotation C. By
repeating this procedure for all other area elements, we find that the centroid
of the entire cross-section coincides with the centre of rotation.

To illustrate the derived formulas, we will determine the area of a cross-
section and the location of its centroid in six examples.

3.1.4 Examples

Example 1
Given the triangular cross-section in Figure 3.13a.

Questions:
a. Determine the cross-sectional area A.
b. Determine the z coordinate of centroid C.1

Solution:
a. The width b(z) of the dark strip in Figure 3.13b is

b(z) = z

h
b.

1 In general, the yz coordinate system is chosen in such a way that the origin of
the coordinate system coincides with the centroid (normal centre) of the cross-
section. Other yz coordinate systems are generally overlined or accented. Only
when there can be no confusion are we allowed to deviate from this rule, as in
this example.
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Figure 3.13 The centroid of a triangle.

For a height dz the area dA of the strip is

dA = b(z) dz = b

h
z dz.

The area A of the triangle is found by summing the areas dA of all the strips
across height h. This is done by integrating:

A =
∫ h

0
b(z) dz = b

h

∫ h

0
z dz = b

h
· 1

2z2
∣∣∣∣
h

0
= 1

2bh.

b. For the z coordinate of centroid C,

zC = Sz

A
.

Since all area elements dA on the dark strip have the same z coordinate, Sz

is easily calculated:

Sz =
∫

A

z dA =
∫ h

0
z · b

h
z · dz =

∫ h

0

b

h
z2 dz = b

h
· 1

3z3
∣∣∣∣
h

0
= 1

3 bh2.

Therefore

zC =
1
3 bh2

1
2 bh

= 2
3 h.

This is in line with the known fact that the medians in a triangle intersect
in one point (they are concurrent) and divide each other in the ratio 1:2 (see
Figure 3.13c).
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Figure 3.14 The centroid of a quadrant bounded by a parabola.

Example 2
Given the cross-section in Figure 3.14a, bounded by the lines y = 0, z = 0
and the parabola z = h(1 − y2/b2).

Questions:
a. Determine the area A of the cross-section.
b. Determine the y coordinate of centroid C.

Solution:
a. The area of the dark strip in Figure 3.14b is

dA = z dy = h

(
1 − y2

b2

)
dy.

The total area A of the cross-section is found by integrating:

A =
∫ b

0
z dy = h

∫ b

0

(
1 − y2

b2

)
dy = h

(
y − 1

3
y3

b2

) ∣∣∣∣∣
b

0

= 2
3 bh.

Note that the area enclosed by the parabola in Figure 3.14b is equal to 2/3
of the rectangular area.

b. The contribution of the dark strip to the static moment Sy is

dSy = y dA = yz dy = hy

(
1 − y2

b2

)
dy.

By summing the contributions of all the strips, or in other words by
integrating, we find
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Figure 3.15 The centroid of a thin-walled half-ring.

Sy =
∫

A

y dA = h

∫ b

0
y

(
1 − y2

b2

)
dy = h

(
1
2 y2 − 1

4
y4

b2

) ∣∣∣∣∣
b

0

= 1
4 b2h.

For the y coordinate of the centroid this gives (see Figure 3.14c)

yC = Sy

A
=

1
4 b2h

2
3 bh

= 3
8 b.

Example 3
Given the cross-section in Figure 3.15a in the shape of a thin-walled half
ring. The radius of the ring (with respect to its centre line) is R, and the
wall thickness is t . Thin-walled means that the wall thickness t is much is
smaller than the radius R (t � R).

Questions:
a. Determine the cross-sectional area A.
b. Determine the location of centroid C.

Solution:
a. The small dark part of the ring in Figure 3.15b, with length R dϕ and
thickness t , has an area

dA = t · R dϕ.

By integrating we find the cross-sectional area:

A =
∫ π

0
tR dϕ = tϕ

∣∣π
0 = πRt.

Note that the area of the thin-walled half-ring is equal to the product of the
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developed length πR and the wall-thickness t .

b. The centroid of the cross-sectional area is located on the z axis, as this is
a line of symmetry. Therefore

yC = 0.

The z coordinate of the centroid follows from

zC = Sz

A
.

The dark area element in Figure 3.15b gives a contribution dSz to Sz:

dSz = z dA = R sin ϕ · tR dϕ = R2t sin ϕ dϕ.

By integrating we find

Sz =
∫

A

z dA = R2t

∫ π

0
sin ϕ dϕ = −R2t cos ϕ

∣∣π
0 = 2R2t

and (see Figure 3.15c)

zC = Sz

A
= 2R2t

πRt
= 2R

π
≈ 0.64R.

Example 4
Given the semicircular cross-section with radius R in Figure 3.16a.

Question:
Determine the coordinates yC and zC of centroid C.Figure 3.15 The centroid of a thin-walled half-ring.
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Figure 3.16 The centroid of a semicircular cross-section.

Solution:
The centroid is on the line of symmetry:

yC = 0.

For determining zC we consider a plate in the gravitational field, in the
shape of the cross-section, and subject to a uniformly distributed dead
weight. The centroid is the point where the resultant of the uniformly
distributed dead weight applies.

The semicircle can be seen as being composed of a very large number of
very small triangles. One of these triangles has been darkened (see Fig-
ure 3.16b). Of each triangle, the centroid is at “one third of its height”. The
centroids of all triangles form a half ring with radius r:

r = 2
3 R.

This means that the total dead weight of the semicircular plate can be seen
as being (uniformly) concentrated in a half ring. Using the results from the
previous example (the centroid of a thin-walled half ring), the location of
the centroid is (see Figure 3.16c)

zC = 2r

π
= 4R

3π
≈ 0.42R.

Example 5
Given the L-shaped cross-section in Figure 3.17.

Questions:
a. Determine the cross-sectional area.
b. Determine the location of the centroid.
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Figure 3.17 An L-shaped cross-section.

Figure 3.18 The L-shaped cross-section seen as the sum of two
rectangles.

Solution:
In the same way as we can determine an area by summing the areas of
the constituent parts, we can determine the static moments by summing the
static moments of the constituent parts (see Section 3.2.1). This property
is useful for complicated cross-sectional shapes. We split the cross-section
into n parts that are easy to calculate, and find (with i = 1, 2, . . . , n)

A = ∑
Ai,

Sy = ∑
Si

y,

Sz = ∑
Si

z.

The
∑

symbol means there has to be summed over all n constituent parts.

Another useful property is that, when calculating a static moment, the area
can be considered to be concentrated at its centroid (see Section 3.2.2.).
The static moment Si

y of part i is therefore equal to the product of its area

(Ai) and the y coordinate of its centroid (yi
C):

Si
y = yi

CAi.

In the same way

Si
z = zi

CAi.

We now have the following formulas for determining the area A and static
moments Sy and Sz of a cross-section divided into n parts:

A = ∑
Ai,

Sy = ∑
Si

y = ∑
yi

CAi,
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Figure 3.19 The L-shaped cross-section seen as the difference
between two rectangles.

Table 3.2

Section i Ai yi
C zi

C Si
y = yi

CAi Si
z = zi

CAi

1 48a2 4a 3a 192a3 144a3

2 −24a2 5a 4a −120a3 −96a3

∑
A = 24a2 ∑

sy = 72a3 Sz = 48a3

Sz = ∑
Si

z = ∑
zi

CAi.

Returning to the example, the L-shaped cross-section can be split into two
rectangles (1) and (2), for which we know the area (Ai) and the location
of the centroid (yi

C; zi
C) (see Figure 3.18). Using the above-mentioned for-

mulas, the area and static moments of the cross-section are calculated in
Table 3.1.

The cross-section can also be seen as the difference between two rectangles
(see Figure 3.19). The area of rectangle (2) must now be used negatively.
Table 3.2 shows that this approach gives the same values for A, Sy and Sz.

The location of the centroid C is

yC = Sy

A
= 72a2

24a2 = 3a,

zC = Sz

A
= 48a3

24a2 = 2a.

Table 3.1

Section i Ai yi
C zi

C Si
y = yi

CAi Si
z = zi

CAi

1 16a2 4a a 64a3 16a3

2 8a2 a 4a 8a3 32a3

∑
A = 24a2 ∑

Sy = 72a3 Sz = 48a3
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Figure 3.20 The L-shaped cross-section seen as a plate in the
gravitational field, with a uniformly distributed mass.

Table 3.3

Circle i Ai yi
C Si

y = yi
CAi

1 4πR2 0 0

2 −πR2 R −πR3

∑
A = 3πR2 ∑

Sy = −πR3

Alternative solution:
The centroid of the cross-section can be found by considering the cross-
section as a plate in the gravitational field with a uniformly distributed dead
weight.

Assume that the dead weight of (a part of) the plate is equal to its area (see
Figure 3.20). The resultant of the dead weight of rectangle (1) is equal to
area A(1) and has its line of action through centroid C(1):

A(1) = 16a2.

The resultant of the dead weight of rectangle (2) is equal to area A(2) and
has its line of action through centroid C(2):

A(2) = 8a2.

The total dead weight is

A = A(1) + A(2) = 24a2.

The line of application of A passes through the centroid C we are looking
for. The centroid C is on the line segment C(1)C(2). The location of C is
determined by the ratio

CC(1)

CC(2)
= A(2)

A(1)
= 8a2

16a2
= 1

2 .

Using the grid, the location of centroid C can directly be indicated in
Figure 3.20.



3 Cross-Sectional Properties 91

Figure 3.21 The centroid of a circular cross-section with a circular
hole.

Example 6
Given the cross-section in Figure 3.21a, where a small circle (2) with radius
R has been removed from the large circle (1) with radius 2R.

Question:
Determine the coordinates yC and zC of the centroid C.

Solution:
The centroid is on the y axis because this is a line of symmetry:

zC = 0.

The y coordinate follows from

yC = Sy

A
.

A and Sy have been determined in Table 3.3.

The y coordinate of centroid C is (see Figure 3.21b)

yC = Sy

A
= −πR3

3πR2
= − 1

3 R.

3.2 Second moments of area

In Section 3.2.1 we define the second moments of area Iyy , Iyz, Izy and Izz,
and explain their meaning.

With Steiner’s parallel axis theorem in Section 3.2.2 we obtain transfor-
mation rules for the second moments of area due to a translation of the
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Figure 3.22 An area element dA with its coordinates y and z.

coordinate system. The polar moment of inertia Ip, also a second moment
of area, is covered in Section 3.2.3.

Unfortunately there is a difference between the formal definitions and
those mostly used in engineering practice. These differences are dealt
with in Section 3.2.4. To conclude, a number of examples are given in
Section 3.2.5.

3.2.1 Moments of inertia

In a yz coordinate system, the second moments of area Iyy , Iyz, Izy and Izz

for an area A are defined as (see Figure 3.22)

Iyy =
∫

A

y2 dA,

Iyz = Izy =
∫

A

yz dA,

Izz =
∫

A

z2 dA.

Iyy and Izz are generally referred to as the moments of inertia of the cross-
section and Iyz = Izy is known as the product of inertia. These geometric
quantities are used in determining the stresses and deformations due to
bending. Sometimes, the product of inertia is also referred to as a moment
of inertia (when generalising).

Note that the double index in Iyy , Iyz = Izy and Izz returns under the
integral symbol. This makes these definitions easy to memorise.

Iyy is found by multiplying an area element dA by the square of its y

coordinate and by summing all contributions over the cross-section. Iyy
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Figure 3.23 The moments of inertia Iyy and Izz are a measure of
the amount of material with (in an absolute sense) large y coordinate
and z coordinate respectively.

is therefore always positive. Iyy can be seen as a measure of the amount of
area with (in an absolute sense) large y coordinate.

In the same way, Izz is always positive and can be seen as a measure of the
amount of area with (in an absolute sense) large z coordinate.

Figure 3.23 shows three cross-sections, each with the same area A. The
material in cross-section (1) is far more stretched in the z direction than
in the y direction (in an absolute sense the area elements have far larger z

coordinates than y coordinates), so that we can conclude that

I (1)
yy < I(1)

zz .

For the circular cross-section (2) symmetry implies that

I (2)
yy = I (2)

zz .

The circular cross-section (3) has been moved with respect to cross-section
(2) in the negative y direction. This displacement does not influence the
value of Izz, therefore

I (3)
zz = I (2)

zz .

Iyy does change, however. Since cross-section (3) has far more material
with a large (be it negative) y coordinate than with a large z coordinate,

I (3)
yy > I(3)

zz .

The products of inertia Iyz and Izy are equal by definition. They are found
by multiplying all the area elements dA by their y and z coordinate and
summing all contributions over the cross-section. The product of inertia is
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Figure 3.24 The product of inertia Iyz = Izy is a measure of the
distribution of the material across the quadrants.

Figure 3.25 In a mirror-symmetrical cross-section, with one of the
coordinate axes along the line of symmetry, the product of inertia is
Iyz = Izy = 0.

a measure for the distribution of the material across the quadrants.

In Figure 3.24 the same ellipsoidal cross-section has been placed in three
different positions. Cross-section (1) contains more material in the posi-
tive quadrants (and moreover with larger y and z coordinates) than in the
negative quadrants, so that

I (1)
yz = I (1)

zy > 0.

In cross-section (2) the material in the negative quadrants dominates:

I (2)
yz = I (2)

zy < 0.

For cross-section (3), symmetry considerations imply

I (3)
yz = I (3)

zy = 0.

If the cross-section has a line of symmetry and one of the coordinate axes
coincides with the line of symmetry, we can show that the product of inertia
is zero.

In Figure 3.25 the z axis is a line of symmetry. For each area element
dA(1) there is an equal mirror-symmetrical area element dA(2). Both area
elements have the same z coordinate, but their y coordinates have opposite
signs. As a result their joint contribution to

∫
A

yz dA is zero.

For all area elements dA(1) (to the left of the line of symmetry) the contri-
bution to

∫
A yz dA cancels those for area elements dA(2) (to the right of the

line of symmetry), so that for the entire cross-section,

Iyz =
∫

A

yz dA =
∫

A(1)

yz dA(1) +
∫

A(2)

yz dA(2) = 0.
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Figure 3.26 A cross-sectional area split into two parts.

As before, the moments of inertia of an area divided into two parts can be
calculated by summing the moments of inertia of the separate parts (see
Figure 3.26):

Iyz = I (1)
yz + I (2)

yz .

In the same way

Iyy = I (1)
yy + I (2)

yy ,

Izz = I (1)
zz + I (2)

zz .

For more complicated cross-sectional shapes, this is a useful property:
divide the cross-section into a number of parts that can be easily calcu-
lated, such as rectangles, triangles, circles, etc., and sum their separate
contributions.

Note: Pay attention to the fact that

Iyy =
∫

A

y2 dA is the moment of inertia in the xy plane,1 and that

Izz =
∫

A

z2 dA is the moment of inertia in the xz plane.2

In much of the literature aimed at technical applications, a different notation
is used: Iyy , Izz, Iyz are denoted by Iy , Iz, Cyz respectively. We should

1 Or: moment of inertia about the z axis.
2 Or: moment of inertia about the y axis.
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Figure 3.27 Principal axes.

therefore always be aware of the definitions of the moments of inertia. See
also Section 3.2.4.

The benefit of the notation used here is that it is in line with the notation
for the components of a second-order tensor. The geometric quantities Iyy ,
Iyz = Izy and Izz behave as components of a second-order tensor, so that
we can now use the known rules of tensor calculus. This is particularly
useful when investigating the transformation of these quantities due to a
rotation of the coordinate system.1

To conclude this section, we define a number of common concepts.

Centroidal moments of inertia
A centroidal coordinate system is a coordinate system with its origin at the
centroid C of the cross-sectional area. The moments of inertia of a cross-
sectional area in a centroidal coordinate system are known as the centroidal
moments of inertia.

Principal axes, principal directions and principal values
If in a certain centroidal yz coordinate system the product of inertia
Iyz = Izy is zero, then the coordinate axes are referred to as the principal
axes of the cross-section. The directions of these axes are known as the
principal directions. The values of the moments of inertia Iyy and Izz in the
principal coordinate system are known as the principal values.

If one of the coordinate axes is a line of symmetry, then Iyz = Izy = 0, and
the coordinate axes are principal axes (see Figure 3.27).

Radius of inertia
Assume that for determining the moments of inertia Iyy and Izz the cross-

1 The benefits mentioned become apparent in a number of subjects covered in
Volume 4. See also Sections 9.4 and 9.11.



3 Cross-Sectional Properties 97

sectional area A may be considered to be concentrated at the point

(y, z) = (ry, rz).

Then

Iyy = r2
yA,

Izz = r2
z A.

Hence

ry =
√

Iyy

A
,

rz =
√

Izz

A
.

The quantities ry and rz are known as the radii of inertia of the cross-
section;1 they have the dimension of a length.

The radii of inertia are used in formulas to check the stability of members
subject to compression. They can also play a role in formulas for concrete
beams that, in order to avoid tensile stresses, have to be prestressed.

Note: Although the notation of the radii of inertia ry and rz suggest that
they are components of a vector, this is not the case. Upon rotation of the
coordinate system they do not transform like the components of a vector.

1 Also referred to as radii of gyration.
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Figure 3.28 Mutually translated coordinate systems.

3.2.2 Steiner’s parallel axis theorem for moments of inertia

As with static moments, the transformation formulas due to a translation of
the coordinate system are also important for the moments of inertia.

If in a translated yz coordinate system x0 and y0 are the coordinates of
the origin O of the initial yz coordinate system (see Figure 3.28), then the
relationship between the coordinates in the translated and initial coordinate
system is

y = y + y0,

z = z + z0.

For the moments of inertia in the translated yz coordinate system we find

Iyy =
∫

A

y2 dA =
∫

A

y2 dA + 2y0

∫
A

y dA + y2
0

∫
A

dA,

Iyz = Izy =
∫

A

yz dA

=
∫

A

yz dA + y0

∫
A

z dA + z0

∫
A

dA + y0z0

∫
A

dA,

Izz =
∫

A

z2 dA =
∫

A

z2 dA + 2z0

∫
A

z dA + z2
0

∫
A

dA,

or
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Figure 3.29 Centroidal yz coordinate system and non-centroidal
yz coordinate system. yC and zC are the coordinates of centroid C
in the translated yz coordinate system.

Iyy = Iyy + 2y0Sy + y2
0A,

Iyz = Izy = Iyy + y0Sz + z0Sy + y0z0A,

Izz = Izz + 2z0Sz + z2
0A.

If the origin O of the initial yz coordinate system is chosen at the centroid
C (see Figure 3.29), the static moments Sy and Sz are by definition zero and
the formulas above can be considerably simplified:

Iyy = Iyy + y2
CA,

Iyz = Izy = Iyz + yCzCA,

Izz = Izz + z2
CA.

In this form they are known as Steiner’s parallel axis theorem.1

Since Iyy , Iyz and Izz are centroidal moments of inertia,2 for clarity we
recommend writing Steiner’s parallel axis theorem in this way:

Iyy = Iyy(centr) + y2
CA,

Iyz = Izy = Iyz(centr) + yCzCA,

Izz = Izz(centr) + z2
CA.

1 Jacob Steiner (1796–1863), Swiss mathematician, one of the great geometricians
of the 19th century. He contributed greatly to the development of projective
geometry.

2 The moments of inertia in a coordinate system with its origin at centroid C; see
the end of Section 3.2.1.
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Figure 3.30 Area element dA with its coordinates.

Steiner’s theorem implies that Iyy and Izz are minimal when yC = 0 and
zC = 0, or when the yz coordinate system has its origin at centroid C.
The centroidal moments of inertia Iyy(centr) and Izz(centr) are therefore the
smallest moments of inertia.

3.2.3 Polar moment of inertia

For an area A the polar moment of inertia Ip is defined as (see Figure 3.30)

Ip =
∫

A

r2 dA.

The polar moment of inertia plays a role in the rotation of a body about an
axis. The same quantity is found in formulas for determining shear stresses
and deformations due to torsion in circular cross-sections.

Since

r2 = y2 + z2

it also holds that
∫

A

r2 dA =
∫

A

y2 dA +
∫

A

z2 dA,

or

Ip = Iyy + Izz.

The polar moment of inertia Ip is equal to the sum of the moments of inertia
Iyy and Izz.
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Figure 3.31 Rectangular cross-section with (a) a non-centroidal
yz coordinate system and (b) a centroidal yz coordinate system.

Note that Ip = Iyy + Izz does not change when the yz coordinate system
rotates. Ip = Iyy + Izz is said to be invariant.

For an arbitrary cross-sectional shape it is usually more difficult to deter-
mine Ip than Iyy and Izz. Ip can then be found as the sum of Iyy and Izz. An
exception is the circular cross-section for which Ip is easier to determine
than Iyy and Izz. Here Ip is often used to find Iyy and Izz.

3.2.4 Examples

Example 1
Given the rectangular cross-section in Figure 3.31a.

Questions:
a. Determine the centroidal moments of inertia.
b. Determine the moments of inertia in the yz coordinate system.

Solution:
a. The centroidal moments of inertia are the moments of inertia in a yz co-
ordinate system with its origin at centroid C (see Figure 3.31b). Symmetry
implies

Iyz = Izy = 0.

The y and z axes are therefore principal axes of the cross-section.

To determine Izz we first look at the hatched strip in Figure 3.31b, with area

dA = b dz.
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All area elements on this strip have the same z coordinate. For the con-
tribution of this strip to Izz we have

dIzz = I
strip
zz = z2 dA = bz2 dz.

The moment of inertia Izz is found by summing the contributions of all the
strips over height h, which can be achieved by integrating:

Izz = ∑
I

strip
zz =

∫
A

z2 dA = b

∫ +h/2

−h/2
z2 dz = 1

3bz3
∣∣+h/2
−h/2 = 1

12 bh3.

This formula for the moment of inertia in the xz plane for a rectangular
cross-section,

Izz = 1
12 bh3

is widely used in building practice.1

In the formula for Izz the height h appears to the power of three, and the
width b only appears to the first power. Izz can be seen as a measure for the
extent of the cross-section in z direction.

When determining Iyy we can use the properties derived from the formula
for Izz:

Iyy = 1
12 b3h.

1 Izz is involved in bending in the vertical xz plane.

Figure 3.31 Rectangular cross-section with (a) a non-centroidal
yz coordinate system and (b) a centroidal yz coordinate system.
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Figure 3.32 When calculating the moments of inertia in the
non-centroidal yz coordinate system, Steiner’s parallel axis theorem
is used, with yC = b/2 and zC = −h/2.

Figure 3.33 A cross-section constructed of two rectangular
beams.

In summary, the centroidal moments of inertia for a rectangular cross-
section are

Izz = 1
12 bh3,

Iyy = 1
12 b3h,

Iyz = Izy = 0.

b. The moments of inertia in the non-centroidal yz coordinate system are
found using Steiner’s parallel axis theorem (see Figure 3.32):

Izz = Izz(centr) + z2
CA = 1

12 bh3 + ( − 1
2h

)2
bh = 1

3 bh3,

Iyy = Iyy(centr) + y2
CA = 1

12 b3h + ( 1
2b

)2
bh = 1

3 b3h,

Iyz = Izy = Iyz(centr) + yCzCA = 0 + ( 1
2b

)( − 1
2 h

)
bh = − 1

4 b2h2.

The negative value of Iyz is in agreement with the fact that the cross-section
lies in a negative yz quadrant.

Example 2
A compound beam is constructed of two similar beams with rectangular
cross-section, as shown in Figure 3.33.

Question:
Determine the centroidal moments of inertia of the compound cross-
section.
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Figure 3.34 The two rectangular beams on top of one another.

Solution:
For each of the two rectangular cross-sections (1) and (2) we have1

A = bh,

Izz(centr) = 1
12 bh3,

Iyy(centr) = 1
12 b3h.

Using Steiner’s parallel axis theorem we find

Izz = I
(1)
zz(centr) + A(1)(−h)2 + I

(2)
zz(centr) + A(2)(+h)2,

Iyy = I
(1)
yy(centr) + I

(2)
yy(centr).

This means for the compound cross-section

Izz = 2Izz(centr) + 2Ah2 = 2 · 1
12 bh3 + 2 · bh · h2 = 13

6 bh3,

Iyy = 2Iyy(centr) = 2 · 1
12 b3h = 1

6 b3h.

Note the large contribution of the parallel axis theorem to the value of Izz!
For the compound cross-section in Figure 3.34, with the two rectangular

1 Izz(centr) is Izz in a local yz coordinate system with its origin at the centroid of
the rectangular cross-section. With respect to the compound cross-section this
yz coordinate system is non-centroidal. Therefore we formally should overline
the yz coordinate systems for the rectangles (1) and (2). Since these coordinate
systems are not shown and the extra indication “(centr)” is used, there is no
possibility of confusion, and the overlining is omitted.

Figure 3.33 A cross-section constructed of two rectangular
beams.
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Figure 3.35 A thin-walled strip: t � h.

cross-sections on top of one another, we have

Izz = 1
12 b(2h)3 = 4

6 bh3.

By moving the material in Figure 3.34 apart by the distance h, the value of
Izz increases more than three times.

For the compound cross-section symmetry implies

Iyz = Izy = 0.

Example 3
Given the thin-walled strip1 in Figure 3.35.

Thin-walled means that the wall thickness t is much smaller than the height
h:

t � h.

Question:
Determine the centroidal moments of inertia.

Solution:
The formulas for a rectangular cross-section give

Izz = 1
12 th3,

Iyy = 1
12 t3h,

Iyz = Izy = 0.

1 Other thin-walled cross-sections are covered in Section 3.3.
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Figure 3.36 A parallelogram-shaped cross-section.

Iyy and Izz are related by

Iyy = t2

h2 Izz.

For a thin-walled strip, with t � h, Iyy is negligibly small compared to Izz,
or in practical terms:

Iyy ≈ 0.

Summarising for the thin-walled strip in Figure 3.35:

Izz = 1
12 th3,

Iyy ≈ 0,

Iyz = Izy = 0.

Example 4
You are given the parallelogram-shaped cross-section in Figure 3.36.

Question:
Determine the centroidal moments of inertia.

Solution:
In Figure 3.37 look at the hatched part of the cross-section and consider it
as a thin-walled strip. The centroid C′ of the strip is on the line y = z cot α.1

The area of the strip is

1 cot α = 1/ tan α.

Figure 3.35 A thin-walled strip: t � h.
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Figure 3.37 The parallelogram-shaped cross-section seen as a
stack of thin-walled strips.

Astrip = dA = b dz.

We determine the centroidal moments of inertia with the formulas for a
thin-walled strip, derived in Example 3. With thickness dz of the strip we
find

I
strip
zz(centr) = 0,

I
strip
yy(centr) = 1

12 b3 dz,

I
strip
yz(centr) = 0.

The contributions of the hatched strip to the requested centroidal moments
of inertia of the cross-section are found by applying Steiner’s parallel axis
theorem to the strip:

dIzz = I
strip
zz = I

strip
zz(centr) + z2 · Astrip,

dIyy = I
strip
yy = I

strip
yy(centr) + (z cot α)2 · Astrip,

dIyz = I
strip
yz = I

strip
yz(centr) + (z cot α)z · Astrip.

This leads to

dIzz = b · z2 dz,

dIyy = 1
12 b3 · dz + b cot2 α · z2 dz,

dIyz = b cot α · z2 dz.
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Figure 3.38 All cross-sections have the same distribution of
material across the height and therefore also have the same Izz.

The moments of inertia are found by summing the contributions of all
strips, that is by integrating over height h:

Izz = b

∫ +h/2

−h/2
z2 dz,

Iyy = 1
12 b3

∫ +h/2

−h/2
dz + b cot2 α

∫ +h/2

−h/2
z2 dz,

Iyz = b cot α
∫ +h/2

−h/2
z2 dz.

This results in

Izz = 1
12 bh3,

Iyy = 1
12 b3h + 1

12 bh3 cot2 α,

Iyz = Izy = 1
12 bh3 cot α.

Check: For α = 90◦, cot α = 0, and these formulas change into those for a
rectangular cross-section (see Example 1):

Izz = 1
12 bh3,

Iyy = 1
12 b3h,

Iyz = Izy = 0.

Figure 3.37 The parallelogram-shaped cross-section seen as a
stack of thin-walled strips.
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Figure 3.39 A triangular cross-section.

Figure 3.40 The triangular cross-section seen as a stack of thin-
walled strips.

Comment: Note that Izz is independent of angle α and equal to the mo-
ment of inertia of a rectangular cross-section. Moreover, all cross-sectional
shapes shown in Figure 3.38, with a constant width b across height h, have
the same Izz:

Izz = 1
12 bh3.

All these cross-sectional shapes have the same material distribution in
vertical z direction; they consist of the same stack of strips. Moving the
strips with respect to one another in the y direction does not influence the
magnitude of Izz (but, of course, it affects the magnitude of Iyy and Iyz).

Example 5
You are given the triangular cross-section in Figure 3.39. The triangle is
defined by the height h, base b and direction α of the median from the top.

Questions:
a. Determine the moments of inertia in the yz coordinate system through

the top.
b. Determine the centroidal moments of inertia.
c. Determine the moment of inertia Izz in a yz coordinate system with

the yy axis along the base.

Solution:
a. We follow the same procedure as in Example 4. Take the hatched part of
the cross-section in Figure 3.40 and consider it as a thin-walled strip. The
centroid C′ of the strip is located on the median y = z cot α. The difference
with respect to Example 4 is that the width of the strip is no longer constant
but depends on z:

b(z) = z

h
b.
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The area of the hatched strip is

Astrip = b(z) dz = b

h
z dz.

The centroidal moments of inertia for the thin-walled strip are

I
strip
zz(centr) = 0,

I
strip
yy(centr) = 1

12 {b(z)}3 dz = 1
12

b3

h3 z3 dz,

I
strip
yz(centr) = 0.

The contributions of the hatched strip to the requested moments of inertia
in the yz coordinate system through the top of the triangle are found by
applying Steiner’s parallel axis theorem:

dIzz = I
strip
zz = I

strip
zz(centr) + z2Astrip,

dIyy = I
strip
yy = I

strip
yy(centr) + (z cot α)2Astrip,

dIyz = I
strip
yz = I

strip
yz(centr) + (z cot α)zAstrip.

This leads to

dIzz = b

h
z3 dz,

dIyy =
{

1
12

b3

h3
+ b

h
(cot α)2

}
z3 dz,

Figure 3.40 The triangular cross-section seen as a stack of thin-
walled strips.
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Figure 3.41 A symmetrical cross-section: Iyz = Izy = 0.

Figure 3.42 All triangular cross-sections have the same distribu-
tion of material across the height and therefore also have the same
Izz.

dIyz = b

h
(cot α)z3 dz.

Integration over height h gives:

Izz = b

h

∫ h

0
z3 dz = 1

4 bh3,

Iyy =
{

1
12

b3

h3
+ b

h
(cot α)2

}∫ h

0
z3 dz = 1

48 b3h + 1
4 b3h(cot α)2,

Iyz = b

h
cot α

∫ h

0
z3 dz = 1

4 bh3 cot α.

Check: For α = 90◦ the triangle is equilateral with the z axis as a line of
symmetry (see Figure 3.41). In that case Iyz = 0. This is in conformity with
the expression for Iyz, as cot α = 0 for α = 90◦.

Also note that Izz is independent of angle α. All triangles in Figure 3.42,
with the same base and height, have the same moment of inertia Izz (see
also Example 4).

b. The centroidal moments of inertia are found by using Steiner’s parallel
axis theorem:

Izz = Izz(centr) + z2
CA,

Iyy = Iyy(centr) + y2
CA,

Iyz = Izz(centr) + yCzCA.
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Figure 3.43 A triangle and its centroid C.

Izz, Iyy and Iyz are known quantities. In addition, Figure 3.43 shows that

zC = 2
3 h,

yC = zC cot α = 2
3 h cot α,

A = 1
2 bh.

We now find

Izz(centr) = Izz − z2
CA = 1

4 bh3 − ( 2
3 h

)2( 1
2 bh

)
,

Iyy(centr) = Izz − y2
CA = 1

48 b3h + 1
4 bh3(cot α)2 − ( 2

3 h cot α
)2( 1

2 bh
)
,

Iyz(centr) = Iyz − yCzCA = 1
4 bh3 cot α − ( 2

3 h cot α
)( 2

3 h
)( 1

2 bh
)
.

These equations simplify to

Izz(centr) = 1
36 bh3,

Iyy(centr) = 1
48 b3h + 1

36 bh3(cot α)2,

Iyz(centr) = 1
36 bh3 cot α.

c. Izz can also be found using Steiner’s parallel axis theorem (see Fig-
ure 3.43):

Izz = Izz(centr) + z
2
CA = 1

36 bh3 + ( − 1
3 h

)2( 1
2 bh

) = 1
12 bh3.
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Figure 3.44 A cross-sectional shape that can be seen as being
composed of a rectangle and a number of triangles.

The moments of inertia Izz (either overlined or not) are independent of the
angle α between the median and y axis. The various values are given below
(see Figure 3.43):

Izz(top) = 1
4 bh3,

Izz(centr) = 1
36 bh3,

Izz(base) = 1
4 bh3.

Example 6
You are given the cross-section in Figure 3.44a. The dimensions are shown
in the figure.

Questions:
a. Determine the centroidal moments of inertia.
b. Determine the centroidal polar moment of inertia.

Solution (units in mm):
a. Symmetry implies

Iyz = Izy = 0.

To determine Izz and Iyy , the cross-section is divided into a rectangle and
a number of triangles to which the previously derived formulas can be
applied.

Calculation for Izz (see Figure 3.44b):

Izz = I
rectangle
zz(centr) + 2 × (

I
triangle
zz(centr) + I

triangle
zz(centr)

)
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Figure 3.45 A concrete bridge beam modelled as a composition
of three rectangles.

= 1
12 × 60 × 203 + 2 × ( 1

36 60 × 303 + 202 × 1
2 × 60 × 30

)
= 850 × 103 mm4.

Calculation for Iyy (see Figure 3.44c):

Iyy = I
rectangle
yy(centr) + 4 × I

triangle
yy(centr)

= 1
12 × 20 × 603 + 4 × 1

12 × 30 × 303

= 630 × 103 mm4.

b. The polar moment of inertia is (see Section 3.3.3)

Ip = Iyy + Izz = 63 × 104 + 85 × 104 = 14.8 × 106 mm4.

Example 7
Figure 3.45 shows the simplified cross-section of a concrete bridge girder.
The dimensions follow from the figure.

Question:
Determine the centroidal moments of inertia.

Solution:
We first have to determine the centroid C of the cross-section. The centroid
is located on the line of symmetry:

yC = 0.5 m.

Figure 3.44b and c A cross-sectional shape composed of a rect-
angle and a number of triangles.
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Table 3.4

part i Ai (m2) zi
C (m) Si

z
= zi

CAi (m3)

1 0.20 +0.10 +0.02

2 0.12 +0.50 +0.06

3 0.16 +1.00 +0.16∑
A = 0.48 m2 ∑

Sz = +0.24 m3

Table 3.5

part i Ai (m2) zi
C(m) I i

zz(centr) I i
zz(Steiner) I i

zz (m4)

(m4) (m4)

1 0.20 –0.40 6.67 × 10−4 320 × 10−4 326.67 × 10−4

2 0.12 0 36 × 10−4 0 36 × 10−4

3 0.16 +0.50 21.33 × 10−4 400 × 10−4 421.33 × 10−4

The z coordinate of the centroid follows from

zC = Sz

A
.

To determine A and Sz the cross-section has been split up into three
rectangles. The calculation is executed in Table 3.4.

From Table 3.4 we find

zC = Sz

A
= 0.24 m3

0.48 m2 = 0.5 m

the centroid of the cross-section coincides with the centroid of the web
(rectangle (2)).

The centroidal moment of inertia Izz is found by summing the contributions
of the three rectangles. The contribution of rectangle i to Izz is

I i
zz = I i

zz(centr) + I i
zz(Steiner).

The centroidal moment of inertia I i
zz(centr) for rectangle i can be found with

the formula derived for a rectangle: “(1/12)bh3”.

The contribution I i
zz(Steiner), due to Steiner’s parallel axis theorem, is

I i
zz(Steiner) = (zi

C)2Ai.

The numerical results with respect to the calculation of Izz are given in
Table 3.5.

Note the large contribution of the flanges (1) and (3) to the centroidal
moments of inertia, this as a result of Steiner’s parallel axis theorem!
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Figure 3.46 A solid circular cross-section.

Figure 3.47 The solid circular cross-section seen as a stack of
thin-walled strips.

Example 8
In Figure 3.46 you are given the circular cross-section with radius R.

Questions:
a. Determine the centroidal moment of inertia Izz.
b. Determine the centroidal polar moment of inertia Ip.

Solution:
a. To determine Izz, the cross-section is again considered to be a stack
of thin strips with thickness dz, width b(z) and area dA = b(z) dz (see
Figure 3.47):

Izz =
∫

A

z2 dA =
∫ +R

−R

z2b(z) dz.

Put

b(z) = 2R cos ϕ,

z = R sin ϕ,

dz = d(R sin ϕ)

dϕ
dϕ = R cos ϕ dϕ,

and adjust the integration limits:

Izz =
∫ +R

−R

z2b(z) dz =
∫ +π/2

−π/2
(R cos ϕ)2(2R cos ϕ)R cos ϕ dϕ

= 2R4
∫ +π/2

−π/2
sin2 ϕ cos2 ϕ dϕ.
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Use the trigonometric relationships for the double angle:1

sin2 ϕ cos2 ϕ = 1
4 sin2 2ϕ = 1

8 (1 − cos 4ϕ).

We now find

Izz = 1
4 R4

∫ +π/2

−π/2
(1 − cos 4ϕ) dϕ

= 1
4 R4(ϕ − 1

4 sin 4ϕ
)∣∣∣+π/2

−π/2
= 1

4 πR4.

b. The centroidal polar moment of inertia Ip is

Ip =
∫

A

r2 dA =
∫

A

(y2 + z2) dA = Iyy + Izz

in which Iyy = Izz, so that

Ip = 2Izz = 2 · 1
4 πR4 = 1

2 πR4.

Alternative solution:
Here we cover questions a and b in reverse order: we first determine the
polar moment of inertia Ip and then determine the moments of inertia Iyy

and Izz.

1 The formulas are: sin 2α = 2 sin α cos α,
cos 2α = cos2 α − sin2 α = 1 − 2 sin2 α.
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Figure 3.48 The solid circular cross-section seen as a composition
of rings that fit together.

b. Assume the cross-section consists of a large number of thin-walled rings
that fit together. Figure 3.48 shows one of these rings with radius r and
thickness dr . The contribution of the ring to the polar moment of inertia of
the cross-section is

dIp = I
ring
p =

∫
Aring

r2 dA.

All area elements dA on the ring have the same distance r to C. Hence

dIp = I
ring
p =

∫
Aring

r2 dA = r2Aring.

The area Aring of the thin-walled ring is equal to the product of circumfer-
ence 2πr and thickness dr:

Aring = 2π dr.

The contribution of the thin-walled ring to Ip is

dIp = I
ring
p = 2πr3 dr.

Through integration we can sum the contributions of all the rings, so that

Ip =
∫ R

0
2πr3 dr = 1

2 πR4.

a. The centroidal polar moment of inertia Ip of a circular cross-section is
much easier to determine than the centroidal moments of inertia Iyy and
Izz. Therefore it is the most plausible way to determine Iyy and Izz via Ip.
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Figure 3.49 A thick-walled ring.

Figure 3.50 A rectangular cross-section with two circular holes.

Symmetry implies

Iyy = Izz, and Ip = Iyy + Izz = 1
2 πR4.

Hence

Iyy = Izz = 1
2 Ip = 1

4 πR4.

Example 9
Figure 3.49 shows a thick-walled ring. The interior radius is Ri , the exterior
radius is Re.

Questions:
a. Determine the centroidal moments of inertia.
b. Determine the centroidal polar moment of inertia.

Solution:
The thick-walled ring can be considered the difference between two circu-
lar cross-sections, with radii Re and Ri, respectively. Using the formulas
derived in the previous example we find

Ip = 1
2 π(R4

e − R4
i )

and

Iyy = Izz = 1
2 Ip = 1

4 π(R4
e − R4

i ).

Example 10
You are given the rectangular cross-section in Figure 3.50, with two circular
holes.
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Figure 3.51 A thin-walled strip: t � h.

Question:
Determine the area A and the centroidal moments of inertia Izz and Iyy .

Solution (units in mm):

A = 900 × 500 − 2π × 1502 = 450 × 103 − 141.4 × 103

= 308.6 × 103 mm2,

Izz = 1
12 × 900 × 5003 − 2 × 1

4 π × 1504 = 9.375 × 109 − 0.795 × 109

= 8.58 × 109 mm4,

Iyy = 1
12 × 9003 × 500 − 2 × ( 1

4 π × 1504 + 2002 × π × 1502)

= 30.38 × 109 − 6.45 × 109

= 23.93 × 109 mm4.

Comment: The material around the y axis (z = 0) contributes a relatively
small amount to Izz. By removing material at this place in the cross-section
we can save on material and weight without a major reduction in Izz.1

In this way the holes allow a saving of over 30% in material while Izz

decreases by only 8%.

Since the removed material is eccentric with respect to the z axis, Iyy

decreases significantly more, namely by 21%.

1 Reducing the amount of material reduces the costs for material. Reducing the
weight leads to lower foundation costs. One must however take into account the
costs for removing the material.

Figure 3.50 A rectangular cross-section with two circular holes.
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Figure 3.52 Open and closed thin-walled cross-sections.

Figure 3.53 A symmetrical I-section.

3.3 Thin-walled cross-sections

The strip shown in Figure 3.51 is referred to as being thin-walled, which
means that the thickness t is much smaller than the height h:

t � h.

Thin-walled cross-sections are constructed of thin-walled strips (see Sec-
tion 3.2, Example 3). The strips may be curved or closed. Examples of
thin-walled cross-sections are given in Figure 3.52.

With thin-walled cross-sections, the material can be considered concen-
trated in the centre lines of the strips, so that the cross-section changes into a
line figure. This simplifies the calculation of the cross-sectional properties.
This is illustrated in Section 3.3.1 for a symmetrical I-section. A number of
numerical examples are presented in Section 3.3.2.

3.3.1 Symmetrical I-section

Figure 3.53 shows a symmetrical I-section with height h, width b, flange
thickness tf and web thickness tw. For a numerical example we use the
values associated with the standard steel section HE 200A:

h = 190 mm, tf = 10 mm,

b = 200 mm, tw = 6.5 mm.

With these values we find (see Figure 3.53)

h′ = h − tf = 180 mm,

h′′ = h − 2tf = 170 mm.
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The area A of the cross-section is

A = 2Aflange + Aweb = 2btf + h′′tw. (3.1a)

The moment of inertia Iyy is

Iyy = 2 × I
flange
yy(centr) + Iweb

yy(centr)

in which

I
flange
yy(centr) = 1

12 tfb
3 = 1

12 × 10 × 2003 = 6.67 × 106 mm4,

Iweb
yy(centr) = 1

12 h′′t3
w = 1

12 × 170 × 6.53 = 3.89 × 103 mm4.

The contribution of the web to Iyy is about 0.58� of the contribution of the
flanges and can therefore be ignored:

Iyy = 2 × I
flange
yy(centr) = 1

6 tfb
3, (3.2a)

Iyy = 2 × 6.67 × 106 = 13.34 × 106 mm4.

The moment of inertia Izz is

Izz = 2 × (
I

flange
zz(centr) + I

flange
zz(Steiner)

) + Iweb
zz(centr)

in which

I
flange
zz(centr) = 1

12 bt3
f = 1

12 × 200 × 103 = 16.67 × 103 mm4,

I
flange
zz(Steiner) = btf

( 1
2 h′′) = 200 × 10 × ( 1

2 × 180
)2 = 16.20 × 106 mm4,

Figure 3.53 A symmetrical I-section.
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Figure 3.54 The thin-walled I-section modelled as a line figure.

Iweb
zz(centr) = 1

12 tw(h′′)3 = 1
12 × 6.5 × 1703 = 2.66 × 106 mm4.

The contribution of the centroidal moments of inertia of the flanges to Izz

is about 1� of the contribution due to Steiner’s parallel axis theorem and
will therefore be ignored:

Izz = 2 × I
flange
zz(Steiner) + Iweb

zz(centr) = 1
2 b(h′)2tf + 1

12 (h′′)3tw, (3.3a)

Izz = 32.40 × 106 + 2.66 × 106 = 35.06 × 106 mm4.

We see that the flanges contribute about 12 times more to Izz than the web.

For the dimensions of a HE 200A section, tf � b and tw � h. The cross-
section can be considered thin-walled. With the material concentrated in the
centre lines the cross-section changes into a line figure (see Figure 3.54).

Area A of the cross-section is found (per strip) as the product of wall
thickness and length of the strip:

A = 2btf + h′tw. (3.1b)

Modelling the cross-section as a line figure means

Iweb
yy(centr) = 0,

I
flange
zz(centr) = 0.
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Figure 3.55 In the “thin-walled formulas” for A and Izz the
contribution of the hatched areas has been accounted twice.

The moments of inertia of the cross-section as a line figure are now

Iyy = 2 × I
flange
yy(centr) = 1

6 tfb
3, (3.2b)

Izz = 2 × I
flange
zz(Steiner) + Iweb

zz(centr) = 1
2 b(h′)2tf + 1

12 (h′)3tw. (3.3b)

When determining A and Izz we account the hatched areas in Figure 3.55
twice.1 Therefore the thin-walled formulas (3.1b) and (3.3b) give slightly
higher results than the thick-walled formulas (3.1a) and (3.3a). The dif-
ference is about 1.5%, as can be derived from the numerical values in
Table 3.6.

Table 3.6

HE 200A A (mm2) Iyy (mm4) Izz (mm4)

thick-walled 5105 13.34 × 106 35.06 × 106

thin-walled 5170 13.34 × 106 35.56 × 106

table book 5380 13.34 × 106 36.92 × 106

Table 3.6 also includes the values for a HE 200A section, taken from a
table book with the properties of standard steel beams. A and Izz turn out
to be some 4% larger than calculated. The reason for this lies in the corners

1 h′ is used in the thin-walled formulas (3.1b) and (3.3b) versus h′′ in the thick-
walled formulas (3.1a) and (3.3a).

Figure 3.54 The thin-walled I-section modelled as a line figure.
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Figure 3.56 A rolled steel section has rounded corners.

Figure 3.57 (a) A thin-walled Z-section. (b) The cross-section as
a line figure, with the centroids of web and flanges.

between web and flanges that are rounded in rolled steel sections. These
dark areas in Figure 3.56 were ignored in the calculation.

3.3.2 Examples

Example 1
You are given the thin-walled Z-section in Figure 3.57a with uniform wall
thickness t .

Question:
Determine the centroidal moments of inertia in a yz coordinate system.

Solution:
The cross-section has point symmetry; the centroid C is at half-height in
the web. Figure 3.57b shows the thin-walled cross-section as a line figure,
with the centroids of the web and the flanges.

For the thin-walled cross-section

Iweb
yy(centr) = 0,

I
flange
zz(centr) = 0.

In addition

I
flange
yz(centr) = Iweb

yz(centr) = 0.

The centroidal moments of inertia are:

Iyy = 2 × (
I

flange
yy(centr) + I

flange
yy(Steiner)

)

= 2 ·
(

1
12 ta3 + at · ( 1

2 a
)2

)
= 2

3 a3t,
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Izz = 2 × I
flange
zz(Steiner) + Iweb

yy(centr) = 2 · at · a2 + 1
12 t (2a)3 = 8

3 a3t,

Iyz = Izy = I
upper flange
yz(Steiner) + I

lower flange
yz(Steiner)

= at
( + 1

2 a
)
(−a) + at

( − 1
2 a

)
(+a) = −a3t .

Check: The fact that Iyz = Izy is negative for the cross-section is in agree-
ment with the location of the material in the negative quadrants. We can
also see from the shape of the cross-section that Izz is larger than Iyy : the
material is more extended in the z direction (a measure for Izz) than in the
y direction (a measure for Iyy ).

Example 2
You are given the cross-section in Figure 3.58a, in the shape of an open
thin-walled ring with radius R and wall thickness t .

Questions:
a. Determine the area.
b. Determine the centroidal polar moment of inertia.
c. Determine the centroidal moments of inertia.

Solution:
At the gap the ends of the ring are not joined, but are next to one another.
In determining the area and moments of inertia of the cross-section it is
irrelevant whether the ring is open (with gap) or closed (without gap).

Figure 3.57 (a) A thin-walled Z-section. (b) The cross-section as
a line figure, with the centroids of web and flanges.
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Figure 3.58 An open thin-walled ring.

a. The area is equal to the product of the wall thickness and the developed
length:

A = t · 2πR = 2πRt.

b. The polar moment of inertia is defined as

Ip =
∫

A

r2 dA.

On the ring all the area elements dA are at the same distance r = R to the
origin of the centroidal coordinate system (see Figure 3.58b). Hence

Ip =
∫

A

r2 dA = R2
∫

A

dA = R2A = 2πR3t .

c. Symmetry about the centroid implies

Iyy = Izz.

With

Ip =
∫

A

r2 dA =
∫

A

y2 dA +
∫

A

z2 dA = Iyy + Izz

we find

Iyy = Izz = 1
2 Ip = πR3t .

On the basis of symmetry (the material is uniformly distributed across the
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Figure 3.59 An open thick-walled ring.

positive and negative quadrants) the centroidal product of inertia is

Iyz = Izy = 0.

Alternative solution:
The ring-shaped cross-section can also be seen as the difference between
two circular cross-sections with radius Re and Ri (see Figure 3.59). Here

Re = R + 1
2 t,

Ri = R − 1
2 t .

a. The area A is the difference:

A = Ae − Ai = π(Re)
2 − π(Ri)

2

= π
(
R + 1

2 t
)2 − π

(
R − 1

2 t
)2

= 2πRt.

b. For the polar moment of inertia we use the formula for a thick-walled
ring (see Section 3.2.4, Example 9):

Ip = 1
2 π(R4

e − R4
i ) = 1

2 π
{(

R + 1
2 t

)4 − (
R − 1

2 t
)4

}

= 1
2 π

{(
R + 1

2 t
)2 + (

R − 1
2 t

)2
}{(

R + 1
2 t

)2 − (
R − 1

2 t
)2

}

= 1
2 π

(
2R2 + 1

2 t2)(2Rt) = 2πRt
(
R2 + 1

4 t2).
This expression holds for a thick-walled ring. For thin-walled rings with
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Figure 3.60 A thin-walled triangular cross-section.

Table 3.7

part i Ai yi
C zi

C Si
y

= yi
CAi Si

z
= zi

CAi

1 6at 3a 8a 18a2t 48a2t

2 8at 0 4a 0 32a2t

3 10at 3a 4a 30a2t 40a2t∑
A = 24at

∑
Sy = 48a2t Sz = 120a2 t

t � R the term t2/4 may be neglected with respect to R2. In that case

Ip = 2πR3t .

Example 3
You are given the thin-walled triangular cross-section in Figure 3.60a, with
uniform wall thickness t .

Questions:
a. Determine the area of the cross-section.
b. Determine the location of the centroid.
c. Determine the centroidal moments of inertia.

Solution:
a. In Figure 3.60b the sides of the triangular cross-section are numbered.
In addition, the centroids of the sides are shown. They are at the centre of
each side. The area A and static moments Sy and Sz have been calculated
in Table 3.7.

b. The coordinates of centroid C are

yC = Sy

A
= 48a2t

24at
= 2a,

zC = Sz

A
= 120a2t

24at
= 5a.

The location of the centroid is shown in Figure 3.60c.

Comment: Beware: the centroid of the thin-walled triangle is not at one
third of the height!
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c. The centroidal moments of inertia are determined by determining the
contributions of the individual sides and summing them.

Calculation for Iyy :

I (1)
yy = I

(1)
yy(centr) + I

(1)
yy(Steiner) = 1

12 · t · (6a)3 + 6at · a2 = 24a3t,

I (2)
yy = I

(2)
yy(centr) + I

(2)
yy(Steiner) = 0 + 8at · (−2a)2 = 32a3t,

I (3)
yy = I

(3)
yy(centr) + I

(3)
yy(Steiner) = 1

12 · 5
3 t · (6a)3 + 10at · a2 = 40a3t .

Hence

Iyy =
3∑

i=1
I (i)
yy = 24a3t + 32a3t + 40a3t = 96a3t .

The following formula has been used to determine I
(3)
yy(centr) for oblique strip

(3):

Iyy = “ 1
12 bh3”,

in which b is the width of the strip in z direction (b = 5t/3) and h is the
height of the strip in the y direction (h = 6a) (see Figure 3.61). See also
Section 3.2.4, Example 4.

Calculation for Izz:

I (1)
zz = I

(1)
zz(centr) + I

(1)
zz(Steiner) = 0 + 6at · (3a)2 = 54a3t,

I (2)
zz = I

(2)
zz(centr) + I

(2)
zz(Steiner) = 1

12 · t · (8a)3 + 8at · (−a)2 = 152
3 a3t,

Figure 3.60 A thin-walled triangular cross-section.
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Figure 3.61 Iyy(centr) = “ 1
12 bh3” = 1

12 · 5
3 t · (6a)3.

Figure 3.62 Izz(centr) = “ 1
12 bh3” = 1

12 · 5
4 t · (8a)3.

I (3)
zz = I

(3)
zz(centr) + I

(3)
zz(Steiner) = 1

12 · 5
4 t · (8a)3 + 10at · (−a)2 = 190

3
3t .

and

Izz =
3∑

i=1
I (i)
zz = 54a3t + 152

3 a3t + 190
3 a3t = 168a3t .

Again, the following formula has been used to determine I
(3)
zz(centr) for

oblique strip (3):

Izz = “ 1
12 bh3”,

but now b is the width of the strip in the y direction (b = 5t/4) and h is the
height of the strip in the z direction (h = 8a) (see Figure 3.62).

Calculation for Iyz:

I (1)
yz = I

(1)
yz(centr) + I

(1)
yz(Steiner) = 0 + 6at · (+a)(+3a) = 18a3t,

I (2)
yz = I

(2)
yz(centr) + I

(2)
yz(Steiner) = 0 + 8at · (−2a)(−a) = 16a3t,

I (3)
yz = I

(3)
yz(centr) + I

(3)
yz(Steiner).

I
(3)
yz(centr) for oblique strip (3) is determined with the help of Figure 3.63:

I
(3)
yz(centr) =

∫
A

yz dA,
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Figure 3.63 Iyz = ∫
A yz dA.

in which

y = 3
4 z and dA = 5

4 t dz.

This leads to

I
(3)
yz(centr) =

∫ +4a

−4a

3
4 z · z · 5

4 t dz = 5
16 z3t

∣∣+4a

−4a
= 40a3t,

and

I (3)
yz = I

(3)
yz(centr) + I

(3)
yz(Steiner) = 40a3t + 10at · (+a)(−a) = 30a3t .

The centroidal product of inertia of the cross-section is finally

Iyz =
3∑

i=1
I (i)
yz = 18a3t + 16a3t + 30a3t = 64a3t .

Comment: I
(3)
yz(centr) could also have been determined using the formula de-

rived in Section 3.2.4, Example 4, for a parallelogram-shaped cross-section:

I
(3)
yz(centr) = “ 1

12 bh3 cot α” = 1
12 · 5

4 t · (8a)3 · 3
4 = 40a3t .

3.4 Formal approach and engineering practice

In this book a formal definition is used for the second moments of area or
moments of inertia Iyy , Iyz = Izy , and Izz. These geometric cross-sectional
properties behave as components of a second-order tensor, and their no-
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Figure 3.64 An area element dA with its coordinates y and z.

tation is in line with the notation for the components of a second-order
tensor.1

The term “second moment of area” is preferred to the term “moment of
inertia” frequently used in engineering practice because it has nothing to
do with mass. Nevertheless we follow engineering practice in which Iyy

and Izz are referred to as the moments of inertia of the cross-section, and
Iyz = Izy is known as the product of inertia. Sometimes the product of
inertia is also said to be a moment of inertia.

In engineering text books and engineering practice usually a different nota-
tion is used for the moments of inertia: Iy , Iyz = Izy , and Iz. Sometimes the
product of inertia is also denoted as Cyz = Czy . In a yz coordinate system
there definitions are (see Figure 3.64)

Engineering practice: Formal definition:

Iy =
∫

A

z2 dA (about the y axis) Izz =
∫

A

z2 dA (in the xz plane)

Iyz = Cyz =
∫

A

yz dA Iyz =
∫

A

yz dA

Iz =
∫

A

y2 dA (about the z axis) Iyy =
∫

A

y2 dA (in the xy plane)

In engineering practice, Iy and Iz are generally referred to as the moments
of inertia about the y and z axis of the cross-section. In the formal definition
Iyy and Izz are referred to as the moments of inertia in the xy and xz plane
respectively.

1 The introduction of tensors and the tensor transformation rules are covered in
Section 9.11.
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Figure 3.65 Centroidal yz coordinate system and non-centroidal
yz coordinate system. yC and zC are the coordinates of centroid C
in the translated yz coordinate system.

Note that

Iy = Izz and Iz = Iyy .

In the engineering notation special attention is required for the change in
the indices. The moment of inertia about the y axis, Iy , requires integrating
z2, and a similar source for errors arises for the moment of inertia about the
z axis.

All manipulations on moments of inertia remain the same. As an example
we show the engineering notation for Steiner’s parallel axis theorem. If
the origin of the initial yz coordinate system is chosen at the centroid C,
the moments of inertia in a translated non-centroidal yz coordinate system
become (see Figure 3.65)

Engineering practice: Formal definition:

Iy = Iy + z2
CA, Izz = Izz + z2

CA

Iyz = Cyz = Iyz + yCzCA, Iyz = Iyz + yCzCA

Iz = Iz + y2
CA, Iyy = Iyy + y2

CA.

Pay special attention to the changes in the indices.
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3.5 Problems

Static moment, centroid and normal centre (Section 3.1)

3.1 For the static moments Sy and Sz give both the mathematical definition
and the physical meaning.

3.2: 1–3 The figure shows three cross-sections in the shape of (1) a
rectangle, (2) a triangle and (3) a circle. The distance between two con-
secutive grid lines is 10 mm.

Questions:
In the given yz coordinate system determine
a. the static moment Sy .
b. the static moment Sz.

3.3 Due to its dead weight, the homogeneous T-shaped plate with constant
thickness hangs in the position as shown.

Questions:
a. Determine the distance a from the “top” of the flange to the centroid of

the plate.
b. Determine the “height” h of the plate.

3.4 Questions:
a. Give the definition of the centroid C of an area.
b. Give the definition of the normal centre NC of a cross-sectional area.
c. When do/don’t the centroid C and normal centre NC in a cross-

sectional area coincide?
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3.5: 1–4 You are given the cross-sectional dimensions of four homoge-
neous T-beams.

Question:
Determine the location of the normal centre NC.

3.6 You are given a thin-walled I-section with unequal flanges. In the
calculation use
t1 = t2 = 25 mm, t3 = 20 mm, b1 = 400 mm and b2 = 200 mm.

Question:
Determine the z coordinate of the centroid.
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3.7: 1–4 You are given four different plane figures. Questions:
Determine in the given yz coordinate system
a. the area A;
b. the static moment Sy ;
c. the y coordinate of the centroid;
d. the static moment Sz;
e. the z coordinate of the centroid.

3.8: 1–4 You are given four different plane figures.

Questions:
a. Determine the y coordinate of the centroid.
b. Determine the z coordinate of the centroid.
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3.9 The thin-walled cross-section in the shape of a circular arch has a radius
R = 200 mm and wall thickness t = 25 mm. The angle of aperture is 2α,
in which α = 73◦.

Question:
Determine the z coordinate of the
centroid of the cross-section.

3.10: 1–2 You are given two thin-walled cross-sections in the shape of a
quarter ring and half ring respectively, with radius R and wall thickness t .

Questions:
a. Determine the area A.
b. Determine the location of the centroid.

3.11: 1–2 You are given two circle sectors with radius R.

Questions:
a. Determine the area A.
b. Determine the location of the centroid.

3.12: 1–2 You are given two parabolic segments.

Questions:
a. Determine the area A.
b. Determine the y coordinate of the centroid.
c. Determine the z coordinate of the centroid.
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Moments of inertia (Sections 3.2 and 3.3)

3.13 For the following cross-sectional properties, give both the mathemat-
ical definition and the physical meaning:
a. The moments of inertia Iyy and Izz.
b. The products of inertia Iyz and Izy .

3.14 You are given a mirror symmetrical cross-section with the y axis along
the line of symmetry. See for example the cross-section shown.

Question:
Show that Iyz = Izy = 0.

3.15 What do you understand by the centroidal moments of inertia of a
cross-section?

3.16 Four different profiles are constructed from three battens.

Questions:
a. Which profile has the largest centroidal moment of inertia Izz?
b. Which two profiles have the same centroidal moment of inertia Izz?
c. Which profile has the smallest centroidal moment of inertia Iyy?

Answer the questions without extensive calculation.

3.17 NC is the normal centre of an arbitrary cross-section with an area
A = 12 × 103 mm2. In the singly-overlined coordinate system, with the
y axis at a distance a = 25 mm above the normal centre, it applies that
Izz = 47.5 × 106 mm4.

Questions:
a. Determine the moment of inertia Izz in the doubly-overlined coordi-

nate system with the y axis at a distance b = 50 mm under the normal
centre.

b. Determine the centroidal moment of inertia Izz.
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3.18 Two identical profiles, with height
h, area A and centroidal moment of
inertia Izz, are joined to form a box
girder. In the calculation use h = 100 mm,
A = 2400 mm2 and Izz = 4 × 106 mm4.

Question:
Determine the centroidal moment of inertia
Izz of the compound cross-section.

3.19 The compound cross-section shown, with material-free lines of
symmetry, is constructed of four rectangular cross-sections. In the calcu-
lation use a = 120 mm and b = 60 mm.

Questions:
a. Determine the moment of inertia Izz of the compound cross-section.
b. Determine the centroidal moment of inertia Izz of the compound cross-

section when all the constituent rectangles are located directly next to
one another.

c. By what percentage does Izz increase when the touching rectangles
from question b are moved apart to the position shown in question a?

3.20 As Problem 3.19, but now replace in the questions Izz by Iyy .

3.21: 1–3 You are given three different cross-sectional shapes.

Questions:
a. Determine the centroidal moment of inertia Iyy .
b. Determine the centroidal product of inertia Iyz.
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3.22: 1–4 You are given the cross-sections of four different T-beams.

Question:
Determine the centroidal moment of inertia Izz.

3.23: 1–2 You are given the cross-sections of two I-shaped beams with
unequal flanges.

Question:
Determine the centroidal moment of inertia Izz.
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3.24: 1–4 You are given four different cross-sectional shapes.

Question:
Determine the centroidal moment of inertia Izz.

3.25 When does one refer to the moments of inertia Iyy and Izz as the prin-
cipal values, and when are the y and z directions the principal directions of
the cross-section?

3.26: 1–6 You are given six different cross-sectional shapes.
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Questions:
a. Determine the centroidal moment of inertia Iyy . Is this a principal

value?
b. Determine the centroidal moment of inertia Izz. Is this a principal

value?
c. Determine the centroidal product of inertia Iyz = Izy .

3.27: 1–2 You are given two different symmetric profiles.

Questions:
Determine in the given yz coordinate system
a. the moment of inertia Iyy ;
b. the moment of inertia Izz;
c. the product of inertia Iyz.

3.28: 1–3 You are given three cross-sections constructed of steel sections.
Use a book of tables to obtain the cross-sectional properties of the various
steel sections.

Questions:
For the compound cross-section determine
a. the area A;
b. the centroidal moment of inertia Iyy ;
c. the centroidal moment of inertia Izz.
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3.29 The figure shows the dimensions of a stiffener. The stiffeners are
used on the thin-walled box girder shown with a rectangular cross-section
and a uniform wall thickness of 2 mm. The location of the stiffeners is
shown in the figure.

Questions:
a. Determine the centroid of a stiffener.
b. Determine the centroidal moments of inertia Iyy and Izz of a stiffener.
c. Determine the centroidal moment of inertia Izz of the cross-section of

the box girder without stiffeners.

d. Determine the centroidal moment of inertia Izz of the cross-section
of the box girder with stiffeners. In percentage terms, what is the
contribution of the stiffeners to this moment of inertia?

3.30: 1–2 You are given two thin-walled open cross-sections.

Questions:
a. Determine the centroidal moment of inertia Iyy .
b. Determine the centroidal moment of inertia Izz.
c. Determine the centroidal product of inertia Iyz = Izy .
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3.31: 1–3 You are given three hollow sections with everywhere the same
wall thickness 0.30 m. Assume that the cross-sections are thin-walled.

Questions:
a. Determine the location of the centroid of the cross-section.
b. Determine the centroidal moment of inertia Izz.
c. Determine the centroidal moment of inertia Iyy .

3.32 You are given a cross-section in the shape of a right-angled triangle
with width b and height h.

Questions:
a. Through integration, determine the quantities of inertia Iyy , Izz, and

Iyz = Izy in the given yz coordinate system.
b. Use Steiner’s parallel axis theorem to determine the centroidal quanti-

ties of inertia Iyy(centr), Izz(centr) and Iyz(centr) = Izy(centr).
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3.33: 1–4 The four homogeneous cross-sections shown can be considered
as being built up by a number of rectangles and/or triangles for which it is
assumed that the formulas for the centroidal quantities of inertia are known.

Questions:
a. Determine the location of the normal centre NC.
b. Determine the centroidal moment of inertia Izz.
c. Determine the centroidal moment of inertia Iyy .
d. Determine the centroidal product of inertia Iyz = Izy .

3.34 You are given a thin-walled hollow circular cross-section with radius
R = 400 mm and wall-thickness t = 7 mm.

Questions:
a. Show through integration that for the centroidal moment of inertia

Izz = πR3t .
b. Determine the value of Izz for the given numerical dimensions of the

cross-section.



3 Cross-Sectional Properties 147

3.35 You are given the thin-walled corrugated sheet in the shape of a large
number of half circles with radius R and wall thickness t .

Question:
Determine the centroidal moment of inertia Izz.

3.36 You are given a solid circular cross-section with radius R = 75 mm.

Questions:
a. Show by integration that for

the centroidal moment of inertia
Izz = πR4/4.

b. Show by integration that for the
centroidal polar moment of iner-
tia Ip = πR4/2.

c. Determine Izz and Ip for the
given numerical value of radius
R.

3.37: 1–2 You are given two symmetrical cross-sections with a hole.

Questions:
a. Determine the moment of inertia Izz.
b. Determine the polar moment of inertia Ip.
c. Determine the moment of inertia Iyy .
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3.38 You are given a thin-walled cross-section in the shape of a circular
arch segment with radius R, wall-thickness t , and angle of aperture 2α.

Questions:
a. Determine the area A.
b. Determine the static moments Sy and Sz in the given (non-centroidal)

yz coordinate system.
c. Determine the coordinates of the centroid of the cross-section.

Check these values for α = π/2 and α = π .
d. Determine the inertia quantities Iyy , Izz and Iyz = Izy in the given (non-

centroidal) yz coordinate system.
e. Use Steiner’s parallel axis theorem, and the answers to questions c and

d, to determine the centroidal inertia quantities Iyy(centr), Izz(centr) and
Iyz(centr) = Izy(centr). Check these values for α = π/2 and α = π .

3.39 You are given a circle sector with radius R and angle of aperture 2α.

Questions:
a. Determine the area A.
b. Determine the static moments Sy and Sz in the given (non-centroidal)

yz coordinate system.
c. Determine the coordinates of the centroid.

Check these values for α = π/2 and α = π .
d. Determine the inertia quantities Iyy , Izz and Iyz = Izy in the given (non-

centroidal) yz coordinate system.
e. Use Steiner’s parallel axis theorem, and the answers to questions c and

d, to determine the centroidal inertia quantities Iyy(centr), Izz(centr) and
Iyz(centr) = Izy(centr). Check these values for α = π/2 and α = π .
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3.40 You are given a thin-walled cross-section in the shape of a ring with
radius R and wall-thickness t .

Questions:
a. Show that Ip = 2πR3t .
b. Why is Iyy = Ip/2?

3.41 The given cross-section is rotational-symmetric and has in the given
centroidal yz coordinate system a moment of inertia Iyy = 40 × 106 mm4.

Question:
Determine the centroidal polar moment of
inertia Ip.

3.42 You are given hollow rectangular cross-section.

Question:
Determine the centroidal polar moment of inertia Ip.

3.43 When rotating the yz coordinate system through an angle α to the
overlined yz position, the associated moments of inertia Iyy and Izz of the
given cross-section change into Iyy and Izz.

Question:
Show (without extensive calculations) that Iyy + Izz = Iyy + Izz.



4Members Subject to
Bending and Extension

The behaviour of members subject to bending and extension is analysed
with the help of the fibre model. In Section 4.1, the various assumptions
associated with this model are described.

One of the assumptions is that planar cross-sections remain planar. Sec-
tion 4.2 shows that the consequence is a linear strain distribution over the
cross-section.

When describing the behaviour of members (line elements), we distinguish
three types of basic relationships: the kinematic relationships, the consti-
tutive relationships and the static or equilibrium relationships. They are
covered in Section 4.3.

In Section 4.4, we derive the stress formula for bending in combination with
extension. The application of the stress formula is illustrated in Section 4.5
in a number of examples.

For bending without extension (without a normal force), the section modu-
lus is often used to calculate the extreme bending stresses. This concept is
covered in more detail in Section 4.6.

Section 4.7 includes a number of examples of bending without normal
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forces, in which the concept of the section modulus is applied.

The derived stress formulas so far relate to a situation in which the load
acts in one of the principal directions. If this is not the case, the load can be
resolved into components according to the principal directions. By super-
posing the contributions due to extension and to bending in both principal
directions, in Section 4.8 we find the general stress formula with respect to
the principal directions.

In Section 4.9, we investigate in which area the centre of force1 must lie
such that all stresses within the cross-section have the same sign. This area
is known as the core2 of the cross-section.

Cores play an important role in prestressed concrete beams and spread
foundations. Examples are given in Section 4.10.

The mathematical description of the problem of bending with extension is
covered in Section 4.11. Here, the three basic relationships from Section 4.3
are combined to form two separate differential equations: one for extension
and one for bending.

In Section 4.12 we look at the effect of a change in temperature on the
constitutive relationships.

Finally, in Section 4.12, some critical observations are added to the fibre
model, and a summary is given of the various formulas in this chapter.

1 The centre of force is the point of application of the resultant of all normal
stresses in the cross-section, see also Volume 1, Sections 10.1.1. and 14.2.

2 Also reffered to as kern or kernel.
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Figure 4.1 The fibre model for a member subject to extension
and bending. The model consists of many fibres parallel to the axial
direction, that are kept together by many rigid planes normal to the
fibres. These rigid planes are known as cross-sections.

4.1 The fibre model

To understand the behaviour of a member (line element), we use a physical
model, for which we can easily describe the member properties. In Sec-
tion 2.1, we introduced the fibre model for members subject to extension
(see Figure 4.1). This model is inspired by the fibre structure of wood, and
appears to be an effective model for bending with extension also.

The assumptions for the fibre model are as follows:
• The member consists of many parallel fibres in longitudinal direction.
• The fibres are kept together by many rigid planes normal to the

direction of the fibres. These rigid planes are called cross-sections.
• The cross-sections (rigid planes) are planar and perpendicular to

the fibres, before and after the deformation of the member. This
assumption is known as Bernoulli’s hypothesis.1

With respect to the material behaviour the following assumptions are made:
• The cross-section is homogeneous: all fibres consist of the same

material and therefore have the same material properties.
• The material behaves linear-elastically according to Hooke’s Law:

σ = Eε.

1 The assumption “planar cross-sections remain planar” is known as Bernoulli’s
hypothesis, after the Swiss Jacob Bernoulli (1654–1705). However, Bernoulli
did not manage to derive the correct stress distribution in the cross-section.
The first to achieve that was the French physicist Parent (1666–1716). His work
remained unnoticed as a result of his poor presentation. Independently of Parent,
the French physicist Charles Augustin de Coulomb (1736–1806) published an
article in 1773 in which he suggested the correct normal stress distribution due to
bending. Coulomb also addressed the shear stresses resulting from shear forces.
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Figure 4.2 The location of a cross-section is defined by its x

coordinate, that of a fibre is defined by its y and z coordinates.

The description of the member’s behaviour occurs in an xyz coordinate
system with the x axis in the direction of the fibres, and the yz plane normal
to the fibres, that is parallel to the cross-sections. The location of a cross-
section is defined by the x coordinate while that of a fibre is defined by its
y and z coordinates (see Figure 4.2).

In principle, the x axis can be chosen along any arbitrary fibre. It is the
convention however that the x axis coincides with the member axis. In this
choice, the origin of the yz coordinate system in the cross-ection coincides
with the normal centre NC. This has great benefits, as will become clear in
Section 4.3.2.

At present little can be said about the orientation of the yz coordinate
system within the cross-section. We make the following assumption:

• The load and support reactions act in the xz plane and they cause
displacements and rotations in the xz plane only.

Such a situation can be expected when the xz plane is a plane of mirror
symmetry,1 as in the cross-sections in Figures 4.1 and 4.2.

This last assumption means that the problem of a member subject to bend-
ing and extension is reduced to a two-dimensional problem. We deviate
from this in Section 4.8.

1 In Section 4.3.2. we shall see that the y and z axis are best taken to coincide with
the principal directions of the cross-section.
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Figure 4.3 (a) Cross-section with a fibre layer in which all fibres
have the same z coordinate. When the member deforms the fibres
change in length. The rigid cross-sectional planes are planar and
perpendicular to the fibres, both before and after deformation of the
member (Bernoulli’s hypothesis). (b) A short member segment from
the undeformed member and (c) after the deformation by bending
and extension.

4.2 Strain diagram and neutral axis

When a member deforms, the fibres change in length, but the planar
cross-sections remain planar and normal to the fibres, before and after the
deformation of the member (Bernoulli’s hypothesis).

Since the cross-sections are assumed to be rigid, and the displacements and
rotations occur solely in the xz plane, all fibres with the same z coordinate

is indicated hereafter by its z coordinate in the undeformed state.

Let us look at the fibres between the two cross-sections in Figure 4.3b, at
a mutual distance �x (�x →0). Due to deformation of the member, these
cross-sections rotate with respect to one another through a (small) angle
�ϕ. The deformed state is shown in Figure 4.3c. The change in length
�u(z) of the fibres in the z layer is

�u(z) = (R + z)�ϕ − �x,

in which R is the radius of curvature of the member axis. The change in
length �u(z) of the fibres is linear in z.

The strain of the fibres in the z layer is

ε(z) = lim
�x→0

�u(z)

�x
= du(z)

dx
= R

dϕ

dx
+ z

dϕ

dx
− 1.

Since all fibres between two consecutive cross-sections have the same
initial length �x, the strain ε(z) is also linear in z. Assuming

R
dϕ

dx
= 1 + ε and z

dϕ

dx
= zκz,

will deform in the same way. Such a fibre layer is shown in Figure 4.3a and
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Figure 4.4 Strain diagram and neutral axis (na). The strain distri-
bution is linear because planar cross-sections remain planar, and is
independent of the material behaviour.

Figure 4.5 Spatial representation of the strain diagram. The neu-
tral axis (na) is a straight line that divides the cross-section into two
parts, one with only positive strains (the fibres lengthen) and the
other with only negative strains (the fibres shorten).

we can write for this linear strain distribution

ε(z) = ε + κzz. (4.1)

Here ε and κz are deformation quantities. We come back to these quantities
in Section 4.3.1.

In Figure 4.4 the strain distribution over the height of the cross-section is
sketched in a strain diagram or ε diagram. From the strain diagram we see
that ε is the strain in the fibre layer z = 0 (through the member axis) and
that κz is the slope of the strain diagram:

κz = dε(z)

dz
.

In Section 4.3.1 we show that κz is also the curvature of the member axis in
the xz plane.

The strain diagram is generally drawn in two-dimensions. The fibre layer in
which the strain is zero is known as the neutral axis, in Figure 4.4 indicated
as na.

The neutral axis is a straight line that divides the cross-sectional area into
two parts: one part with only positive strains (where all fibres lengthen) and
the other with only negative strains (where all fibres shorten). To clarify the
concept neutral axis there is a spatial representation of the strain diagram
in Figure 4.5.

Comment: The fact that the strain distribution is linear follows directly from
the assumption that planar cross-sections remain planar and is independent
of the material behaviour. The linear strain distribution therefore not only
applies for elastic deformations but also for plastic deformations.
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Figure 4.6 Schematic representation of the relationship between
load and displacement for bending with extension. In order to ob-
tain this link, we must have three basic relationships: kinematic,
constitutive and static (or equilibrium).

4.3 The three basic relationships

As noted in Section 2.2, there are three basic relationships when describing
member behaviour:

• Kinematic relationships
Kinematic relationships link deformations and displacements. They follow
from the lasting cohesion in the member: holes and gaps do not suddenly
appear in a member. The kinematic relationships are independent of the
material behaviour.

• Constitutive relationships
Constitutive relationships link the section forces and the associated de-
formations. They follow from the (in this case linear-elastic) material
behaviour.

• Static relationships or equilibrium relationships
Static relationships link the load (due to external forces) and section forces.
They follow from the equilibrium.

The three basic relationships that are derived below for bending with ex-
tension allow us to link the loads (due to external forces) and the associated
displacements. This is shown in the scheme in Figure 4.6 for a member
with bending and extension in the xz plane.

The direct link between loads and displacements, mentioned above, is
further discussed in Section 4.11.

4.3.1 Kinematic relationships

We first derive the kinematic relationships. They relate the deformation
quantities and displacement quantities.
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Figure 4.7 The displacement and rotation of a cross-section in a
member subject to extension and bending when the deformation is
in the xz plane.

Figure 4.7 shows the displacement of a cross-section as the result of
a (largely exaggerated) deformation of the member. In Section 4.1 we
assumed that displacements and rotations occur only in the xz plane. In
that case, the position of the cross-section is defined by three displacement
quantities, the two components of translation, and one rotation:

u – the displacement of the cross-section in the x direction;
w – the displacement of the cross-section in the z direction;
ϕ – the rotation of the cross-section about the y axis.1

In Figure 4.8 we see an enlarged representation of the situation for the
cross-section from Figure 4.7, together with the fibres that are being kept
together by the cross-section.

On the basis of Bernoulli’s hypothesis, planar cross-sections remain normal
to the fibres, before and after deformation of the member. This means

ϕ = −dw

dx
. (4.2)

The rotation of the cross-section is equal to the slope of the member axis.
The minus sign indicates that the positive direction of ϕ (ϕy) in the xz

coordinate system is opposite to the positive direction of dw/dx.

As a result of the relationship between ϕ and w via formula (4.2), there
remain only two independent displacement quantities for the cross-section:
u and w.

1 ϕ is the shortened notation for ϕy , the rotation about the y axis. Since there is
only one rotation, the index y is omitted for simplicity.
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Figure 4.8 The enlarged cross-section from Figure 4.7, with the
fibres that are kept together by the cross-section. u(z) is the dis-
placement in the x direction of a point at the fibre layer z.

Figure 4.9 Strain diagram and neutral axis (na). The deforma-
tion quantity ε is the strain of the fibre layer z = 0 (the member
axis). The deformation quantity κz is equal to the slope of the strain
diagram. κz is also the curvature of the member axis in the xz plane.

Figure 4.8 shows the z fibre layer in the cross-section. If the rotation
ϕ = −dw/dx of the cross-section is small (ϕ � 1 and therefore sin ϕ ≈ ϕ),
then the displacement in the x direction for these fibres in the z layer is

u(z) = u + z sin ϕ ≈ u + zϕ = u − z
dw

dx
.

The strain in the fibre layer is

ε(z) = du(z)

dx
= du

dx
+ z

dϕ

dx
= du

dx
− z

d2w

dx2
.

In Section 4.2 we defined the strain distribution by formula (4.1):

ε(z) = ε + κzz.

By comparing both expressions for ε(z) we find the required kinematic
relationships that link the deformation quantities and displacement quan-
tities:

ε = du

dx
, (4.3)

κz = dϕ

dx
= −d2w

dx2
. (4.4)

The deformation quantity ε is the strain in the fibre layer z = 0 (the member
axis); the deformation quantity κz is the slope of the strain diagram (see
Figure 4.9).
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Figure 4.10 (a) The deformation of a small member element be-
tween two cross-sections at a mutual distance �x (�x → 0). After
deformation, the cross-sections are at an angle �ϕ to one another
and ε(z) is the strain of the fibre layer at a distance z to the member
axis. (b) When deformed, the difference in length between the outer
fibre layers is h�ϕ.

The deformation quantity κz is also the curvature of the member in the xz

plane. To prove this, we again look at a small member element between
two cross-sections at a distance �x (�x→0) (see Figure 4.10a). After
deformation, the cross-sections are at an angle �ϕ to one another, and ε

is the strain of the member axis. In a fibre at a vertical distance z from the
member axis the strain is ε(z). For this fibre, the arc length in the deformed
state is

�s = �x + �u = {1 + ε(z)}�x.

In mathematics, the curvature is defined as the change per arc length of the
direction of a tangent to a curve, so

κ = lim
�s→s

�ϕ

�s
= dϕ

ds
.

For the curvature of the z fibre in the xz plane we find

κz = lim
�s→0

�ϕ

�s
= 1

1 + ε(z)
· lim
�x→0

�ϕ

�x
= 1

1 + ε(z)

dϕ

dx
.

As a consequence of the differences in strain, the curvature is not the same
for all the fibres.

Structural materials, such as concrete, steel, wood and so forth, gener-
ally experience only minor strains. For these materials ε(z) � 1, and the
influence of the strain on the difference in curvature can be neglected:

κz = lim
�s→0

�ϕ

�s
≈ lim

�x→0

�ϕ

�x
= dϕ

dx
.
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κz therefore not only represents the slope of the strain diagram, but also the
curvature of the member (axis) in the xz plane.

The reciprocal of the absolute value of the curvature κ is the radius of
curvature R of the bend member:

R = 1

|κz| .

Note: The assumption ε(z) � 1 implies that the difference in strain
between the outermost fibres must also be small (see Figure 4.10b):

h�ϕ

�x
≈ h

R
� 1.

This means that the height h of the member must be far smaller than the
radius of curvature R of the deformed member. The derivation is therefore
valid only when the member does not bend too much.

4.3.2 Constitutive relationships

The constitutive relationships link the section forces (the stress resultants
in the cross-section) and the deformation quantities. In order to define the
constitutive relationships we have to know the material behaviour.

It is assumed that the material behaves linear-elastically and follows
Hooke’s Law. According to Hooke’s Law (in its simplest form) the normal
stresses σ in the fibres are proportional to the strains ε in the fibres:

σ = Eε.

The modulus of elasticity E or Young’s modulus is a material constant.
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Figure 4.11 (a) In a fibre (y, z) with area �A and stress σz there
is a small force �N = σ(z)�A. (b) If this force �N is moved to-
wards the normal centre NC, the bending moments �My = y�N

and �Mz = z�N are generated.

It is also assumed that the cross-section is homogeneous. This means that
all fibres have the same modulus of elasticity E.

From the linear strain distribution in a linear-elastic member with homoge-
neous cross-section, given by

ε(z) = ε + κzz,

there is a linear stress distribution:

σ(z) = Eε(z) = E(ε + κzz). (4.5)

From this distribution of the normal stresses we can now determine the
section forces (stress resultants). There are three section forces: the normal
force N , bending moment My in the xy plane, and the bending moment Mz

in the xz plane.

In a fibre (y, z) with area �A and stress σ(z), the resultant is a small force
�N (see Figure 4.11a):

�N = σ(z)�A.

If this small force is moved to the normal centre NC of the cross-section it
produces the following bending moments (see Figure 4.11b):

�My = y�N = yσ(z)�A,

�Mz = z�N = zσ(z)�A.

The section forces are found by summing the contributions of all the fibres,
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achieved by integrating over the area of the cross-section:

N =
∫

A

σ(z) dA,

My =
∫

A

yσ(z) dA,

Mz =
∫

A

zσ(z) dA.

Substitute expression (4.5) for σ(z) and we find

N = Eε

∫
A

dA + Eκz

∫
A

z dA,

My = Eε

∫
A

y dA + Eκz

∫
A

yz dA,

Mz = Eε

∫
A

z dA + Eκz

∫
A

z2 dA.

With the knowledge gained in Chapter 3 we recognise the following cross-
sectional quantities in the surface integrals:

∫
A

dA = A,

∫
A

y dA = Sy,

∫
A

yz dA = Iyz,

∫
A

z dA = Sz,

∫
A

z2 dA = Izz.



164 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

So the section forces can be written as

N = EAε + ESzκz,

My = ESyε + EIyzκz,

Mz = ESzε + EIzz κz.

These expressions supply a link between the section forces N; My; Mz and
deformation quantities ε; κy; κz, and are therefore the required constitutive
relationships. They hold for a member subject to bending and extension,
with the deformations solely in the xz plane.

Using two assumptions from Section 4.1 that relate to the choice of the
coordinate system, we can considerably simplify the constitutive relation-
ships.

• The first assumption relates to the location of the x axis.
If the x axis coincides with the member axis, the origin of the yz coordinate
system coincides with the normal centre NC of the cross-section. In a coor-
dinate system through the normal centre of a homogeneous cross-section,
the static moments Sy and Sz are zero, and we can therefore simplify the
constitutive relationships to

N = EAε,

My = EIyzκz,

Mz = EIzzκz.

• The second assumption relates to the orientation of the y and z axes.
It was assumed that the load and support reactions act in the xz plane. In
that case there are section forces only in the xz plane, and My = EIyzκz
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(a section force in the xy plane) must be zero. This is possible only if the
product of inertia Iyz is zero. For that the y and z axes must coincide with
the principal directions of the cross-section. Only then do the member load
and support reactions in the xz plane generate displacements and rotations
only in the xz plane.1

This leaves the following relationships:

N = EAε (strain), (4.6)

Mz = EIzzκz (bending). (4.7)

These are the constitutive relationships for members subject to bending
and extension, in the simplest formulation. The simple form is a result of
the choice of the coordinate system.

By selecting the origin of the coordinate system at the normal centre of the
(homogeneous) cross-section, the cases of extension and bending can be
treated separately:

• A normal force N generates extension (strain ε) only and no bending.
• A bending moment Mz generates bending only in the xz plane

(curvature κz) and no extension (that is no strain in the member axis).

EA is known as the axial stiffness (resistance of the member to a change in

1 In Section 4.1 it was originally postulated that the xz plane, the plane in which
the load and support reactions are acting, must be a symmetry plane. Now we
see that the derivation is valid also for a non-symmetrical cross-section, as long
as the y and z axis coincide with the principal directions.
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Figure 4.12 The section forces on an isolated member element
with small length �x (�x → 0).

length). EIzz is known as the bending stiffness in the xz plane (resistance
of the member to bending in the xz plane).

4.3.3 Static relationships

The static or equilibrium relationships supply a link between loads and sec-
tion forces. They follow from the equilibrium of a small member element
and were derived before.1

The derivation of the static relationships will be briefly repeated here.

In Figure 4.12, a small element with length �x has been isolated from the
member. The member element is subject to the distributed loads qx and qz.

The (unknown) shear forces acting on the left-hand and right-hand cross-
sectional planes are shown in their positive directions. Assume that the
forces on the left-hand cross-sectional plane are N,V and M .2 Also as-
sume that these forces increase over a distance �x by �N , respectively
�V and �M . The forces on the right-hand cross-sectional plane are then
(N + �N), (V + �V ), and (M + �M).

The force equilibrium of the member element in x and z direction respec-
tively implies

�N + qx�x = 0,

�V + qz�x = 0.

1 See Volume 1, Section 11.1.
2 For the shear force V and the bending moment M , both acting in the xz plane,

we have omitted the z index in this section. It is felt that no misunderstandings
are possible.
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The moment equilibrium about point A on the right-hand sectional plane
implies that1

�M − V �x = 0.

If these three equilibrium equations are divided by �x, we find in the limit
�x → 0

dN

dx
+ qx = 0 (extension), (4.8)

dV

dx
+ qz = 0 (bending), (4.9)

dM

dx
− V = 0 (bending). (4.10)

These are the static relationships for members subject to bending and ex-
tension. The cases of extension (only normal forces) and bending (bending
moments and shear forces, no normal forces) can be treated separately.

For bending, relationships (4.9) and (4.10) can be combined to

d2M

dx2 + qz = 0 (bending). (4.11)

Note: The derivation is not valid when concentrated forces and/or couples
act on any member element with length �x. In that case, the func-
tions of N,V and/or M are no longer continuous and/or continuously
differentiable.

1 For details, see Volume 1, Section 11.1.
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The static relationships are covered again in Section 4.11 where they are
applied together with the constitutive and kinematic relationships in order
to derive a direct relationship between loading and displacements for a
member subject to extension and bending.

4.4 Stress formula and stress diagram

For the stress distribution in a homogeneous cross-section, (4.5) states that

σ(z) = Eε(z) = E(ε + κzz).

Using the constitutive relationships (4.6) and (4.7) we can express the strain
ε and curvature κz directly in terms of the normal force N and the bending
moment Mz respectively:

ε = N

EA
and κz = Mz

EIzz

.

Substituting these expressions ε and κz in that for σ(z) leads to the
following stress formula:

σ(z) = E

(
N

EA
+ Mzz

EIzz

)
= N

A
+ Mzz

Izz

. (4.12)

This is an extremely important formula because we now can determine the
distribution of the normal stresses in the cross-section directly from the
magnitudes of the normal force and the bending moment.

The stress formula applies only when the cross-section is homogeneous, the
y and z axes coincide with the principal directions of the cross-section, and
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Figure 4.13 (a) Normal stress diagram with neutral axis (na).
(b) The normal stresses as they act on the cross-section accord-
ing to the stress diagram. (c) The associated section forces (stress
resultants).

Figure 4.14 Spatial representation of the stress diagram. The neu-
tral axis (na) is a straight line in the cross-section that separates the
area with tensile stresses and the area with compressive stresses.

the load and support reactions act in the xz plane. Note that the stress dis-
tribution in the homogeneous cross-section is independent of the modulus
of elasticity E.

Figure 4.13a shows the distribution of the normal stress as a function of
z in a (normal) stress diagram or σ diagram. Figure 4.13b shows how the
stresses according to the stress diagram act on a (positive) cross-sectional
plane, while Figure 4.13c shows the associated section forces (the stress
resultants).

When interpreting the stress diagram, we must remember that the stress is
constant in a fibre layer over the width of the member. In order to emphasise
this, the stress diagram is also shown spatially in Figure 4.14.

In a homogeneous cross-section, stress and strain diagrams have the same
shape (stress and strain diagrams are similar); compare Figures 4.5 and
4.14.

In the neutral axis (na), the fibre layer in which the strain is zero, the
stress is zero. The neutral axis is therefore a straight line that divides the
cross-section into two, a part with only tensile stresses, and one with only
compressive stresses (see Figure 4.14).

The location of the neutral axis (zna) can be found with stress for-
mula (4.12) as the line where the stress is zero:

σ(zna) = N

A
+ Mz zna

Izz

= 0 ⇒ zna = − N

Mz

Izz

A
. (4.13)

Note that the neutral axis can be located outside the cross-section.



170 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

Figure 4.15 The stress diagram σ split into the contributions σ (N)

and σ (M) resulting from the normal force N (extension) and the
bending moment Mz (bending) respectively. The normal force N

generates a constant normal stress in the cross-section. The bend-
ing moment generates a linear stress distribution over the height of
the cross-section, with the neutral axis passing through the normal
centre NC.

In the stress formula, the stresses resulting from N (extension) and Mz

(bending) are determined separately and added. The separate contributions
of N and Mz are also recognisable in the stress diagram (see Figure 4.15).

The normal force gives a constant normal stress in the cross-section:

σ (N) = N

A
(extension). (4.14)

In the total stress diagram, σ (N) is the stress at the member axis.

The bending moment gives a linear stress distribution over the height of the
cross-section:

σ (M) = Mzz

Izz

(bending). (4.15)

For bending, the neutral axis passes through the normal centre NC (it coin-
cides with the y axis). The largest bending stresses1 occur in the outermost
fibres of the cross-section and have opposite signs.

Note: In strain, all the fibres are equally loaded and the material in the
cross-section is used efficiently. In bending, the outermost fibres of the
cross-section are most heavily loaded, while the fibres near the member axis
barely participate. For bending, the material in the cross-section is used far
less efficiently than for extension.

1 The expression “bending stress” is often used for the normal stress due to a
bending moment only. But beware: “normal stress” may not be seen as the stress
due to a normal force only!
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Figure 4.16 A column with triangular cross-section loaded by an
eccentric compressive force, with the associated normal force and
bending moment diagrams.

4.5 Examples relating to the stress formula for
bending with extension

This section includes five examples. In the first four (Sections 4.5.1 to 4.5.4)
we determine the stress distribution due to bending with extension. In the
last (Section 4.5.5), we determine the section forces from a given stress
distribution.

4.5.1 A column loaded by an eccentric compressive force

The prismatic column with triangular cross-section in Figure 4.16 is loaded
by an eccentric compressive force of 600 kN. The cross-sectional dimen-
sions of the column and the eccentricity of the compressive force are shown
in the figure. The dead weight of the column is omitted from the calculation.

Questions:
a. Which fibres are most heavily loaded?
b. Draw the normal stress diagram for a cross-section. Also draw the sep-

arate stress diagrams due to the (central) normal force and the bending
moment respectively.

c. Determine the location of the neutral axis and plot it on the stress
diagram.

Solution:
a. In Figure 4.16, the N and M diagrams are shown for the column mod-
elled as a line element. All cross-sections are subject to the same normal
force and the same bending moment.
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For the coordinate system given in Figure 4.16 we have

N = −600 kN = −600 × 103 N,

Mz = (−600 kN)(+50 mm) = −30 × 106 Nmm.

To determine the distribution of the normal stresses we have to know the
area A of the cross-section and the (centroidal) moment of inertia Izz,
associated with bending in the xz plane:

A = 1
2 (400 mm)(300 mm) = 60 × 103 mm2,

Izz = 1
36 bh3(400 mm)(300 mm)3 = 300 × 106 mm4.

The units N and/or mm, in which all quantities will be expressed are not
mentioned in the interim calculations below.

For the normal stress distribution equation (4.12) implies

σ(z) = N

A
+ Mzz

Izz

= −600 × 103

60 × 103 + −30 × 106 × z

300 × 106

=
(
−10 − z

10

)
N/mm2.

The extreme stresses occur in the outermost fibres (fibre layers) AB and C:

AB: z = +100 mm ⇒ σ = −20 N/mm2,

C: z = −200 mm ⇒ σ = +10 N/mm2.

Figure 4.16 A column with triangular cross-section loaded by an
eccentric compressive force, with the associated normal force and
bending moment diagrams.
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Figure 4.17 The normal stress diagram σ , together with the sep-
arate contributions σ (N) due to the (central) compressive force of
600 kN, and σ (M) due to the bending moment of 30 kNm.

b. The normal stress is distributed linearly between AB and C. The normal
stress diagram is shown in Figure 4.17, with the separate contributions σ (N)

and σ (M) due to the (central) compressive force of 600 kN and the bending
moment of 30 kNm respectively.

Note: Directly applying stress formula (4.12) means that one has to be
careful with the signs for N and M . In order to make sure that no errors
are made, we recommend that you look at the contributions σ (N) due to
extension and σ (M) due to bending separately, and check that their signs
agree with the directions of N and M .

In Figure 4.17, σ (N) is indeed a compressive stress and the signs of the
bending stresses σ (M) agree with the direction of the bending moment M .

c. The location zna of the neutral axis is found from the condition that the
stress in that fibre layer is zero. Using the normal stress formula we find

σ(na) = −10 − zna

10
= 0 ⇒ zna = −100 mm.

The neutral axis is therefore 100 mm to the left of the normal centre NC, as
is shown in Figure 4.17.

4.5.2 A ceiling hook subject to an eccentric tensile force

The cast-iron ceiling hook in Figure 4.18 is loaded by a vertical force of
5 kN, of which the line of action is shown in the figure. The dimensions of
cross-section AB, a symmetrical T-section, can be found from the figure.
The T-section should not be considered to be thin-walled.
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Figure 4.18 A ceiling hook with symmetrical T-section.

Figure 4.19 The location of the normal centre NC in the cross-
section.

Questions:
a. For cross-section AB, determine and plot the normal stress distribution

due to the 5 kN force. How large are the maximum stresses?
b. Determine the location of the neutral axis, and plot it on the stress

diagram.

Solution (units N and mm):
a. In cross-section AB there is a tensile force of 5000 N. There is also a
bending moment, of which the magnitude can be determined only when we
know the location of the normal centre of the cross-section. Therefore we
calculate first
• the area A of the cross-section,
• the location of the normal centre NC, and
• the (centroidal) moment of inertia Izz, associated with bending in the

xz plane for the coordinate system shown in Figure 4.19.

The area A of the cross-section is

A = (75 + 88) × 12 = 1956 mm2.

The location of the normal centre NC is (see Figure 4.19)

z̄NC = S
flange
z̄ + Sweb

z̄

A
= 75 × 12 × 6 + 88 × 12 × (12 + 44)

1956
= 33 mm.

The moment of inertia Izz of the T-section follows from

Izz = I
flange
zz(centr) + I

flange
zz(Steiner) + Iweb

zz(centr) + Iweb
zz(Steiner).
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Figure 4.20 The normal force and the bending moment in
cross-section AB follow directly from the equilibrium of the iso-
lated part under the section.

This gives

Izz = 1
12 × 75 × 123 + 75 × 12 × 272 + 1

12 × 12 × 883 + 88 × 12 × 232

= 1.907 × 106 mm4.

In addition to the normal force N = +5000 N there is a bending moment
Mz = −(5000 N)(133 mm) = −665 × 103 Nmm in cross-section AB, as
can be derived from the equilibrium of the part under section AB (see
Figure 4.20). Determining the normal stress distribution is now a question
of completing the stress formula(e).

According to (4.14) the contribution due to extension is

σ (N) = N

A
= +5 × 103

1956
= +2.56 N/mm2.

According to (4.15) the contribution due to bending is

σ (M) = Mzz

Izz

= −665 × 103 × z

1.907 × 106 =
(
−0.35 × z

1 mm

)
N/mm2.

The associated stress diagrams are shown in Figure 4.21.

Check: The sign of the stresses σ (N) and σ (M) agree with the directions of
N and M .

The stress diagrams σ (N) and σ (M) superimposed on one another of course
lead to the same result as a direct application of stress formula (4.12):

σ (z) = N

A
+ Mzz

Izz

=
(
+2.56 − 0.35 × z

1 mm

)
N/mm2.
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Figure 4.21 The normal stress diagram σ can be found by super-
posing the contributions σ (N) and σ (M) due to the normal force and
the bending moment respectively.

The stresses are extreme in the outermost fibre layers at A and B:

A : z = −33 mm ⇒ σ = +14.1 N/mm2,

B : z = +67 mm ⇒ σ = −20.9 N/mm2.

Figure 4.21 also shows the ultimate normal stress diagram.

Note that the extreme bending stresses σ (M), due to the eccentricity of the
axial load, are considerably larger than the stress σ (N) due to the normal
force.

b. The location of the neutral axis can be derived directly from the stress
diagram in Figure 4.21. The distance of the neutral axis to the left side A
is

14.1

14.1 + 20.9
× 100 = 40.3 mm.

It is also possible to use the derived expression for the stress distribution,
using the condition that σ = 0 at z = zna:

σ(zna) = +2.56 − 0.35 × zna = 0 ⇒ zna = 2.56

0.35
= 7.3 mm.

This means that the neutral axis is 7.3 mm to the right of the normal centre
NC. This is in line with what was found before.
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Figure 4.22 The column of the crane has a hollow rectangular
cross-section at AB.

Figure 4.23 The section forces in cross-section AB follow directly
from the equilibrium of the isolated part above the section.

4.5.3 A crane

The small crane in Figure 4.22 is on a quay wall and carries a load of
188 kN. The lifting cable is transported to the winch at E over two friction-
less pulleys C and D. The cable is vertical over DE. At AB, the cross-section
is a hollow rectangle with external dimensions of 750×375 mm2 and a wall
thickness of 25 mm.

Questions:
a. For cross-section AB, determine and plot the normal stress distribution

and include the values.
b. Determine the location of the neutral axis and plot it on the stress

diagram.

Solution (units N and mm):
The equilibrium of the crane above section AB (see Figure 4.23) gives the
following normal force N and bending moment My in cross-section AB:1

N = −2 × 188 × 103 = −376 × 103 N,

My = +188 × 103 × 6050 − 188 × 103 × 525 = 1.039 × 109 Nmm.

In order to determine the normal stresses, we have to know the area A of
the cross-section and, since the bending moment is acting in the xy plane,
the moment of inertia Iyy . These quantities are determined below for the
hollow cross-section as the difference between two rectangles:

A = 375 × 750 − (375 − 50)(750 − 50) = 53.75 × 103 mm2,

1 The bending moment My acts in the xy plane.
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Figure 4.24 The normal force diagram with the neutral axis (na).

Iyy = 1
12 × 375 × 7503 − 1

12 × (375 − 50)(750 − 50)3

= 3.894 × 109 mm4.

The stress resulting from the normal force is

σ (N) = N

A
= −376 × 103

53.75 × 103 = −7 N/mm2.

The maximum bending stresses are

σ (M)
max = ±My · 1

2h

Iyy

= ±1.039 × 109 × 750/2

3.894 × 109 = ±100 N/mm2

with tension in the outermost fibre layer at A and compression in the outer-
most fibre layer at B.

The resulting normal stresses at A and B are

A : σ = −7 + 100 = +93 N/mm2,

B : σ = −7 − 100 = −107 N/mm2.

The stress distribution between A and B is linear. The σ diagram is given
in Figure 4.24.

b. From the stress diagram we can derive the location of the neutral axis at
a distance

93

93 + 107
× 750 ≈ 349 mm

Figure 4.23 The section forces in cross-section AB follow directly
from the equilibrium of the isolated part above the section.
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Figure 4.25 A T-beam with its cross-sectional dimensions. The
T-beam is prestressed by a straight steel tension rod (tendon) at P,
180 mm under the member axis.

from A, that is 26 mm to the left of the normal centre NC (see Figure 4.24).

4.5.4 A prestressed beam

The prismatic T-beam in Figure 4.25 is simply supported at A and B, and is
loaded by two forces of 346 kN. The T-beam is prestressed with a straight
tendon at P, 180 mm under the beam axis. The prestressing force Fp is
2400 kN. The dimensions of the beam and the location of the normal centre
NC are given in the figure.

The cross-sectional quantities of the beam are:

A = 480 × 103 mm; Iyy = 160 × 103 mm; Izz = 32.4 × 109 mm4

Questions:
For materials that are not particularly resistant to tension (such as concrete),
one can apply prestressing to suppress possible tensile stresses. Check
whether this has been successful here. The following suggestions may help
in answering:
a. Model the prestressed beam as a line element and draw all forces acting

on it. Plot the normal force and bending moment diagrams with the
deformation symbols.

b. Check the normal stresses in the indicative cross-sections. Where in
those cross-sections is the neutral axis positioned?

Solution:
a. The tendon exerts an eccentric compressive force of 2400 kN on both
beam ends. By moving these eccentric compressive forces to the beam axis,
we generate moments on the beam ends:



180 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

Figure 4.26 The tendon exerts an eccentric compressive force of
2400 kN on both beam ends. By moving these eccentric compres-
sive forces to the member axis we generate moments of 432 kNm
on the beam ends.

Figure 4.27 The T-beam modelled as a line element with all the
forces acting on it and the associated normal force and bending
moment diagrams.

(180 mm)(2400 kN) = 432 kNm.

See Figure 4.26 and make sure the directions are correct!

Figure 4.27 shows all the forces acting on the prestressed beam modelled as
a line element, as well as the normal force and bending moment diagrams.

b. As the normal force is constant, we need to check for stresses in the cross-
sections where the bending moments are largest. Figure 4.27 shows the
relevant cross-sections C and D, where the bending moments are 432 kNm
and 260 kNm respectively.

• Stress check cross-section C (see Figure 4.28):

N = −2400 mm,

Mz = −432 kNm (compression at the bottom, and tension at the top).

Due to the normal force, the normal stress is

σ (N) = N

A
= −244 kN

48 × 103 mm2 = −5.0 N/mm2.

The maximum bending stresses occur in the outer fibres at the bottom (b)
and at the top (t), with zb = +525 mm and zt = −375 mm respectively:

σ
(M)
b = Mzzb

Izz

= (−432 kNm)(+525 mm)

32.4 × 109 mm4 = −7.0 N/mm2,

σ
(M)
t = Mzzt

Izz

= (−432 kNm)(−3.75 mm)

32.4 × 109 mm4 = +5.0 N/mm2.

Sign check: In agreement with the direction of the bending moment, there
is compression in the bottom fibres and tension in the top fibres.
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Figure 4.28 The section forces at C and the associated normal
stress diagram obtained by superposing the contributions σ (N) due
to extension and σ (M) due to bending. The neutral axis (na) co-
incides with the top fibre layer.

Figure 4.29 The section forces at D and the associated normal
stress diagram obtained by superposing the contributions σ (N) due
to extension and σ (M) due to bending. The neutral axis (na) is out-
side the cross-section here.

The resulting normal stresses in the outer fibre layers are:

σb = (−5.0 − 7.0) N/mm2 = −12.0 N/mm2,

σt = (−5.0 + 5.0) N/mm2 = 0.

The stress diagram is shown in Figure 4.28. There is compression over the
entire cross-section. The neutral axis coincides with the top fibre layer.

• Stress check cross-section D (see Figure 4.29):

N = −2400 kN,

Mz = +260 kN (tension at the bottom and compression at the top).

The normal stress σ (N) due to extension (the normal force) is the same as
in cross-section C:

σ (N) = N

A
= −2400 kN

480 × 103 mm2 = −5.0 N/mm2.

The maximum bending stresses occur in the outer fibres at the bottom (b)
and at the top (t) of the cross-section:

σ
(M)
b = Mzzb

Izz

= (+260 kNm)(+525 mm)

32.4 × 109 mm4
= +4.2 N/mm2,

σ
(M)
t = Mzzt

Izz

= (+260 kNm)(−375 mm)

32.4 × 109 mm4
= −3.0 N/mm2.

Sign check: Here too, the sign of the stress in the outer fibres is in agreement
with the direction of the bending moment
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Figure 4.30 The normal stress diagram for a rectangular cross-
section of a laminated wood joist.

The resulting stresses in the outer fibre layers are

σb = (−5.0 + 4.2) N/mm2 = −0.8 N/mm2,

σt = (−5.0 − 3.0) N/mm2 = −8.0 N/mm2.

The stress diagram is shown in Figure 4.29. Here too, there is compression
in the entire cross-section. The neutral axis is outside the cross-section.

From the stress diagram, we can derive that the neutral axis is

0.8 N/mm2

(8.0 − 0.8) N/mm2 (900 mm) = 100 mm

below the bottom of the cross-section.

Comment: When calculating the bending stresses σ (M) one has to be care-
ful with the plus and minus signs in the formula. Therefore always check
whether the signs of the bending stresses agree with the direction of the
bending moment.

4.5.5 Interpreting a normal stress diagram

Figure 4.30 shows the normal stress distribution for a rectangular cross-
section from a laminated wood joist.

Questions:
a. Use the given stress diagram to determine the magnitude and point of

application of the resultant Rt of all tensile stresses. Do the same for
the resultant Rc of all compressive stresses.

b. From the magnitudes and points of application of Rt and Rc, determine
the normal force and bending moment in the cross-section.

Figure 4.29 The section forces at D and the associated normal
stress diagram obtained by superposing the contributions σ (N) due
to extension and σ (M) due to bending. The neutral axis (na) is out-
side the cross-section here.
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Figure 4.31 Spatial representation of how the stresses from the
diagram in Figure 4.30 act on the cross-section.

Figure 4.32 (a) The resultants Rt and Rc of the tensile and com-
pressive stresses respectively, (b) the section forces N and Mz, and
(c) the centre of force in the cross-section.

c. Where in the cross-section is the centre of force?

Solution:
a. Figure 4.31 gives a spatial representation of the stress diagram. The re-
sultant of all the tensile (compressive) stresses is equal to the volume of the
stress diagram over the area with tension (compression):

Rt = 1
2 × (10 N/mm2)(540 mm)(200 mm) = 540 kN,

Rc = 1
2 × (5 N/mm2)(270 mm)(200 mm) = 135 kN.

The points of application of the stress-resultants Rt and Rc are given in
Figure 4.32a.

b. The normal force N is by definition positive as a tensile force, and is
found from the difference between Rt and Rc:

N = Rt − Rc = (540 kN) − (135 kN) = 405 kN.

N is a tensile force.

The bending moment is found as the sum of the moments with respect to the
normal centre NC of all the small stress resultants σ�A (see Section 4.3.2).
This is equal to the sum of the moments with respect to NC of the stress
resultants Rt and Rc. In the given coordinate system

Mz = +Rt × (225 mm) + Rd × (315 mm)

= +(540 kN)(225 mm) + (135 kN)(315 mm) = +164 kNm.
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Figure 4.33 Stress diagram for bending without extension; in the
outer fibre layers (b) and (t) the bending stresses are maximum and
have opposite signs; the neutral axis (na) passes through the normal
centre NC.

This bending moment gives a tensile stress in the bottom fibre layer and a
compressive stress in the top one.

Figure 4.32b shows the section forces N and Mz in magnitude and direc-
tion.

c. The combination of a (central) normal force N and a bending moment Mz

is statically equivalent to a single eccentric force, in this case a tensile force
of 405 kN (see Figure 4.32c). The point of application of this eccentric
tensile force is known as the centre of force.1 The eccentricity ez of the
centre of force is

ez = Mz

N
= +164 kNm

+405 kN
= +0.405 m = +405 mm.

The centre of force is at the bottom of the cross-section.

4.6 Section modulus

For bending without extension (without a normal force), the neutral axis
passes through the normal centre NC, and the maximum normal stresses
occur in the outer fibre layers (see Section 4.4, equation (4.15)).

Assume eb and et are the distances from NC to the bottom (b) and top fibre
layer (t) respectively. The maximum stresses in the outer fibre layers are
then (see Figure 4.33):

1 The centre of force in the cross-section is the point of application of the resultant
of all normal stresses in the cross-section (see Volume 1, Section 14.2). For a
tensile force the centre of force is also called the centre of tension.

Figure 4.32 (a) The resultants Rt and Rc of the tensile and com-
pressive stresses respectively, (b) the section forces N and Mz, and
(c) the centre of force in the cross-section.
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Figure 4.34 (a) to (c) Cross-sections with the y axis as a line of
symmetry; (d) with bending in the xz plane, the maximum tensile
bending stress and maximum compressive bending stress are equal
(but with opposite signs).

σb = +Mzeb

Izz

and σt = −Mzet

Izz

.

The values Izz/eb and Izz/et are known as the section moduli of the cross-
section and are indicated by Wz;b and Wz;t:

Wz;b = Izz

eb
and Wz;t = Izz

et
. (4.16)

With these notations we can write for the maximum bending stresses

σb = + Mz

Wz;b
and σt = − Mz

Wz;t
. (4.17)

Often the signs in these formulas are omitted, and one has to deduce them
from the direction of the bending moment.

In books of tables with properties for designing beams, you will find the
section modulus alongside other cross-sectional quantities, as the location
of the centroid and the moments of inertia. With the help of the section
modulus one can easily calculate the maximum bending stresses.

For cross-sections in which the y axis is a line of symmetry, such as those
in Figure 4.34, it holds that eb = et = h/2 and Wz;b and Wz;t have the same
magnitude:

Wz;b = Wz;t = Wz = Izz

1
2h

. (4.18)

The maximum bending tensile stress and bending compressive stress now
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have the same magnitude, and we write

σmax = ±Mz

Wz

. (4.19)

The signs are generally omitted in this formula also.

Note: There is a frequently used formula for the section modulus for a
rectangular cross-section (see Figure 4.34b):

Wz = Izz

1
2 h

=
1

12 bh3

1
2 h

= 1

6
bh2. (4.20)

In the next section, the application of these formulas is illustrated with the
help of a number of examples.

4.7 Examples of the stress formula related to bending
without extension

This section includes four examples of bending without a normal force, in
which we use the section modulus to determine the bending stresses.

In the first example in Section 4.7.1 we address the investigation of the most
appropriate cross-sectional shape for bending.

Thereafter we look at two examples in which the beams have symmetrical
cross-sections. The beams are subject to bending and have to be dimen-
sioned. Section 4.7.2 concerns a laminated wooden beam; Section 4.7.3
concerns a steel floor joist. In both examples load factors are used.

Figure 4.34 (a) to (c) Cross-sections with the y axis as a line of
symmetry; (d) with bending in the xz plane, the maximum tensile
bending stress and maximum compressive bending stress are equal
(but with opposite signs).
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Figure 4.35 A simply supported prismatic beam with a point load
at midspan. For the beam, four cross-sectional shapes are investi-
gated that all have (virtually) the same area and therefore the same
amount of material.

Finally, in Section 4.7.4, we determine the maximum bending stresses in a
cantilevered T-beam.

4.7.1 The most favourable cross-sectional shape for bending

Four prismatic beams (a) to (d) are loaded by the same point load F , at the
middle of the span with length � = 1 m. The beams are made of plain con-
crete, and have different cross-sections. Figure 4.35, alongside the scheme,
shows the cross-sectional dimensions of the beams (a) to (d). The area of
the cross-section and therefore the amount of material is (nearly) the same
for all four beams.

It is given that cracking of concrete occurs at a bending tensile stress
of 3 MPa and that concrete crushes at a bending compressive stress of
40 MPa.1

Question:
Determine the load-bearing capacity for each beam. The dead weight of the
beams is ignored.

Solution:
The maximum bending moment occurs at midspan:

Mmax = 1

4
F�.

The maximum bending stresses occur in the outer fibre layers z = ±h/2.

1 Remember that 3 MPa = 3 × 106 N/m2 = 3 N/mm2.
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According to (4.18), it is

σmax = ±M

W
,

in which

W = I

1
2 h

.

As there is no possibility of confusion, the index z in Mz,Wz and Izz has
been omitted here.

The maximum tensile stress is the critical one, and in this case it occurs at
the bottom of the beam. This stress may not exceed the given limiting value
σ̄ = 3 N/mm2 for tensile stresses.1

The maximum bending moment M̄ that the cross-section can transfer
follows from (4.18):

M̄ = σ̄W.

The maximum admissible force F̄ , the load-bearing capacity, is therefore

F̄ = 4M̄

�
= 4σ̄W

�
.

For all four beams the load-bearing capacity is calculated in Table 4.1.

The table shows that adjusting the cross-sectional shape can considerably

1 Also referred to as maximum admissible tensile stress.

Figure 4.35 A simply supported prismatic beam with a point load
at midspan. For the beam, four cross-sectional shapes are investi-
gated that all have (virtually) the same area and therefore the same
amount of material.
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Table 4.1

Figure 4.36 Steel beams: (a) an IPE-section and (b) an H-section
of a broad-flanged beam.

enhance the load-bearing capacity with the same amount of material (the
same area A of the cross-section).

For bending without normal force, the outer fibres are loaded maximally.
The fibres near the neutral axis are not used optimally as far as strength
is concerned. From a structural perspective, it appears to be favourable to
remove material here and bring it outward, far from the neutral axis. The
result is a larger moment arm, and therefore a larger bending moment that
can be transferred with the same maximum stress.

It is for this reason that you will rarely find solid rectangular cross-sections
for steel beams, but mainly sections with a maximum of material at the
outside, in the outer fibres (see the IPE and H-sections in Figure 4.36). IPE-
sections have small flanges. H-sections have broad flanges; such beams are
known as broad-flanged beams.

If one can achieve a larger load-bearing capacity by adjusting the cross-
sectional shape, then one can use lighter profiles. This is very important for
structures in which the dead weight is a substantial part of the load, such
as for bridge beams with large spans. In addition to the saving of material,
there is also a saving on weight, so that the bending moments due to the
dead weight become smaller.

Returning to the example of the plain concrete beams, we note that the
stresses in the compression zone are well below the admissible value.
Hence, the available material has not been used optimally for the plain
concrete cross-sections.

In concrete, the load-bearing capacity can be further increased by rein-
forcing the beam in the tension zone (so-called reinforced concrete: the
reinforcing steel transfers the tension forces) or by applying prestressing
through which the tensile stresses are “suppressed” (so-called prestressed
concrete; see the example in Section 4.5.4).

Type A (mm2) I (mm4) 1
2 h (mm) W (mm3) M̄ (Nmm) F̄ (N)

a 5000 1.042 × 106 25 41.68 × 103 125.0 × 103 500

b 5000 4.167 × 106 50 83.34 × 103 250.0 × 103 1000

c 4973 6.323 × 106 50 126.5 × 103 379.4 × 103 1518

a 5000 15.367 × 106 70 219.5 × 103 658.6 × 103 2634
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Figure 4.37 Concrete beams with adjusted cross-sectional shapes:
(a) a prefab double T-beam, and (b) a box girder.

Figure 4.38 Loading schemes and bending moment diagrams for
the given live load and an estimated dead weight of a wooden main
girder.

Also for concrete beams we see that the shape of the cross-section is ad-
justed to the force flow as far as possible (see for example the T-beam and
box girder in Figure 4.37).

4.7.2 Dimensioning a laminated wooden main girder (strength
calculation)

Figure 4.38 shows the scheme for a wooden main girder with a span of
20 m. The live load on the girder consists of a number of point loads, shown
in the figure. The dead weight of the girder is estimated at 1 kN/m. The
figure also shows the bending moment diagrams due to both the live load
and dead weight. The main girder is constructed as a laminated beam1 with
a rectangular cross-section, composed of planks that are 196 mm wide and
34 mm thick (see Figure 4.39).

The beam is considered to be sufficiently strong when the bending stress
due to the design value of the load nowhere exceeds the design value f

of the bending strength. The design value is equal to γdw times the dead
weight and γll times the live load. Here γdw and γll are the so-called load
factors.2

Questions:
a. Determine the number of planks in the cross-section so that the beam

1 A laminated beam is a beam composed of planks glued together. The cross-
section can be considered solid.

2 The regulations state which load combinations have to be taken into account and
which load factors γ have to be applied. We do not address this here. Nor do we
address the way in which the design value f of the bending strength for wood is
determined. See also Volume 1, Section 6.2.5.
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Figure 4.39 The main girder is constructed as a laminated beam,
composed of planks 196 mm wide and 34 mm thick.

just meets the strength demand. Use in the calculation

γdw = 1.2, γll = 1.5 and f = 20 N/mm2.

b. Determine the maximum bending stress in the serviceability state, for
which

γdw = γll = 1.

Solution:
The maximum bending moment due to the design value for the load occurs
at midspan:

Mmax = 1.5 × (360 kNm) + 1.2 × (50 kNm) = 600 kNm.

The (extreme) bending stress σmax caused by this moment must remain
under the design value f = 20 N/mm2 of the bending strength:

σmax = Mmax

W
≤ f.

This gives the least section modulus Wrequired that is required:

Wrequired = Mmax

f
= 600 kNm

20 N/mm2
= 3 × 106 mm3.

The cross-section of the laminated beam, consisting of a stack of planks
196 mm wide, must satisfy1

Wrequired = 1
6 bh2 = 1

6 × (196 mm) × h2 = 30 × 106 mm3

1 Remember that, for a rectangular cross-section, W = 1
6 bh2, see formula (4.20).
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Figure 4.40 (a) The final cross-sectional dimensions of the main
girder and (b) the stress diagram resulting from the maximum
bending moment in the serviceability state.

in which h is the height of the beam. From this equation we find the mini-
mum height of the beam:

hmin =
√

6 × Wrequired

b
=

√
6 × (30 × 106 mm3)

196 mm
= 958.3 mm.

For a thickness of 34 mm per plank, the number of planks we need at least
is

958.3 mm

34 mm
= 28.2 ≈ 29 .

With 29 planks of 34 mm thickness the height of the laminated beam is
29× (34 mm) = 986 mm. The final cross-section is shown in Figure 4.40a.
The section modulus W for this cross-section is

W = 1
6 bh2 = 1

6 (196 mm)(986 mm)2 = 31.76 × 106 mm3.

Checking the estimated dead weight:
With a specific weight of 6 kN/m3 the dead weight of the beam is

(196 mm)(986 mm)(6 kN/m3) = 1.16 kN/m.

This is slightly more than the 1 kN/m assumed. The maximum bending
moment due to the dead weight is therefore not 50 kNm, but 1.16 × 50 =
58 kNm. To be sure (not being experienced designers), we therefore check
for the adjusted dead weight.
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Figure 4.41 A steel floor beam with loading scheme and bending
moment diagram.

The design value of the load gives the following maximum bending mo-
ment at midspan:

Mmax = 1.5 × (360 kNm) + 1.2 × (58 kNm) = 609.6 kNm.

σ = Mmax

W
= 609.6 kNm

31.76 × 106 mm3
= 19.2 N/mm2 ≤ f = 20 N/mm2.

This cross-section therefore meets the strength demand.

b. The last question relates to the maximum bending stress in the service-
ability state.

With γdw = γll = 1, the maximum bending moment in the serviceability
state is :

Mmax = (360 kNm) + (58 kNm) = 418 kNm,

and the maximum bending stress is

σ = Mmax

W
= 418 kNm

31.76 × 106 mm3 = 13.2 N/mm2.

Figure 4.40b shows the normal stress distribution in the serviceability state.

4.7.3 Dimensioning a steel floor beam (strength calculation)

In Figure 4.41 a steel beam with a span of 8 m is bearing a wooden floor.
The total floor load, including the dead weight, is 3.7 kN/m2.

Hence the maximum bending stress is
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The steel beam is considered to be sufficiently strong if the bending stress
due to the design value of the load nowhere exceeds the yield strength fy .
The design value of the load is equal to the load at serviceability level
multiplied by a load factor γ .1

Questions:
a. Dimension the steel beam for strength, assuming a load factor γ = 1.5

and fy = 235 N/mm2.
b. Determine the maximum bending stress in the serviceability state.

Solution:
a. If the steel beam is carrying half the floor load on each side,2 the load
on the beam is (4 m)(3.7 kN/m2) = 14.8 kN/m. Estimate the dead weight of
the steel beam at 1 kN/m, then the total load on the beam is

q = 15.8 kN/m.

With the load factor γ = 1.5, the design value of the load is

γ q = 1.5 × 15.8 kN/m = 23.7 kN/m.

The maximum bending moment in the beam is at midspan. Due to the
design load

Mmax = 1
8 γ q�2 = 1

8 (23.7 kN/m)(8 m)2 = 189.6 kNm.

1 Departing from the regulations, we use the same load factor for all loads in this
example.

2 This is a reasonable assumption.

Figure 4.41 A steel floor beam with loading scheme and bending
moment diagram.
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Table 4.2

Section W (mm3) Weight (N/m)

IPE 360 904 × 103 571

HE 200 M 967 × 103 1020

HE 240 B 938 × 103 832

HE 250 A 836 × 103 682

The beam meets the strength demand if

σmax = Mmax

W
≤ fy.

This implies the least section modulus Wrequired that is required:

Wrequired = Mmax

fy
= 189.6 kNm

235 N/mm2 = 806.8 × 103 mm3.

Table 4.2 includes a number of standard sections that meet the strength
demand.

We choose IPE 360. The IPE-section has the smallest weight of material as
well as the largest height (360 mm). If one wanted to build more slenderly,
that would require more material and therefore more money.

b. In the serviceability state the final load on the beam is 14.8 kN/m plus
571 N/m dead weight. Rounded off that makes

q = 15.4 kN/m.

The maximum bending moment in the serviceability state is now

Mmax = 1
8 q�2 = 1

8 (15.4 kN/m)(8 m)2 = 123.2 kNm,

and the maximum bending stress is

σmax = Mmax

W
= 123.2 kNm

904 × 103 mm3 = 136 N/mm2.
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Figure 4.42 Loading scheme for a cantilevered T-beam, and the
associated bending moment diagram.

Note: The section chosen meets the strength demand. In addition to the
strength demand, there is also a stiffness demand as the beam may not
deflect too much. This may mean in certain cases that a heavier section
has to be used than was found on the basis of the strength demand. Deter-
mining the deflection and checking the stiffness of the beam is covered in
Chapter 8.

4.7.4 Maximum bending stresses in a cantilevered T-beam

For the cantilevered beam in Figure 4.42 a T-shaped cross-section with a
height of 400 mm has been used. There is bending in the vertical symmetry
plane of the T-beam. The figure also shows the bending moment diagram
for the given load.

The section moduli of the cross-section are

Wb = 27 × 106 mm3 and Wt = 45 × 106 mm3.

Questions:
a. Determine the location of the normal centre NC.
b. Draw the normal stress diagram for the cross-sections in which the

bending moment is a maximum.
c. Determine the maximum tensile and compressive bending stresses,

and indicate where these stresses occur.

Solution:
a. The section moduli were defined in (4.16):

Wb = I

eb
and Wt = I

et
,
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Figure 4.43 The distances eb and et from the normal centre NC
to the bottom fibre layer (b) and top fibre layer (t) respectively.

in which eb is the distance from the normal centre NC to the bottom fibre
layer (b) and et is the distance to the top fibre layer (t) (see Figure 4.43).

For eb/et we find

eb

et
= Wt

Wb
= 45 × 106 mm3

27 × 106 mm3 = 5

3
.

For

eb + et = h = 400 mm

this leads to

eb = 5

5 + 3
× 400 mm = 250 mm,

et = 3

5 + 3
× 400 mm = 150 mm,

from which the location of the normal centre NC is found.

b. The M diagram in Figure 4.42 shows that the bending moment is a
maximum at B and C. Since the distances eb and et to the outer fibre layers
differ, both fibre layers have to be involved in calculating the maximum
tensile and compressive bending stresses.

• Cross-section B: M = 144 kN/m (tension at the bottom and compres-
sion at the top)

σb = + M

Wb
= + 144 kNm

27 × 106 mm3 = +5.3 N/mm2,
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σt = − M

Wt
= − 144 kNm

45 × 106 mm3
= −3.2 N/mm2.

• Cross-section C: M = 108 kNm (tension at the top and compression at
the bottom)

σb = − M

Wb
= − 108 kNm

27 × 106 mm3 = −4.0 N/mm2,

σt = + M

Wt
= + 108 kNm

45 × 106 mm3
= +2.4 N/mm2.

The stress diagrams are shown in Figure 4.44.

c. The maximum tensile bending stress is 5.3 N/mm2 and occurs in cross-
section B, in the bottom fibre layer. The maximum compressive bending
stress is 4.0 N/mm2 and occurs at support C, also in the bottom fibre layer.

4.8 General stress formula related to the principal
directions

The stress formula

σ(z) = N

A
+ Mzz

Izz

applies only when the load and support reactions act in the xz plane, and
the y and z axes coincide with the principal directions of the cross-section
(see Section 4.3.2).

Figure 4.43 The distances eb and et from the normal centre NC
to the bottom fibre layer (b) and top fibre layer (t) respectively.

Figure 4.42 Loading scheme for a cantilevered T-beam, and the
associated bending moment diagram.
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Figure 4.44 The normal stress diagrams for the cross-sections at
B and C.

Figure 4.45 A purlin in a inclined roof plane. The load on the
purlin can be resolved into components in the principal directions
of the cross-section.

If the load does not act in a principal direction, as with the purlin in the
inclined roof plane in Figure 4.45, the load can be resolved into components
in the principal directions. In addition to the bending moments Mz in the
xz plane there are also bending moments My in the xy plane.

The stress formula (with respect to the principal directions) is found by
superposing three contributions:

Extension: σ = N

A
,

Bending in the xy plane: σ(y) = Myy

Iyy

,

Bending in the xz plane: σ(z) = Mzz

Izz

.

This results in the following general stress formula:

σ(y, z) = N

A
+ Myy

Iyy

+ Mzz

Izz

. (4.21)

Note how easy this formula is to memorise!

If N = 0 the neutral axis always passes through normal centre NC.

If N �= 0 the neutral axis is found from the condition σ(y, z) = 0:

−My

N

A

Iyy

y − Mz

N

A

Izz

z = 1.

This equation in y and z is that of a straight line.
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Figure 4.46 Loading scheme and cross-sectional dimensions of
a steel roof purlin with a U-section. The purlin can be considered
thin-walled.

Formal approach and engineering practice
In the formal approach we found that for the general stress formula with
respect to the principal directions

σxx = N

A
+ Myy

Iyy

+ Mzz

Izz

. (a)

following expression:1

σxx = N

A
− Mzy

Iz

+ Myz

Iy

. (b)

Notice not only the difference between the indices in the expressions (a)
and (b), but also the difference in sign of one of the terms. The formal
approach leads clearly to an expression that is easier to memorise.

In the example below, we follow the formal approach, and use the general
stress formula with respect to the principal directions for determining the

1 Remember that the definitions of My and Mz are different in the formal ap-
proach and engineering practice, and also that the moments of inertia are defined
and denoted in different ways (see Sections 2.8 and 3.4):

M formal
y = −M technical

z and I formal
yy = I technical

z ,

M formal
z = +M technical

y and I formal
zz = I tecnical

y .

In the technical notation often used in engineering practice we obtain the

stress distribution in a steel roof purlin.
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Figure 4.47 The load on the purlin resolved in the principal
directions of the cross-section.

Example
Steel purlins with a U-section have been used in the roof truss in Fig-
ure 4.46. The purlins are simply supported and have a span � = 4 m. They
are subject to a uniformly distributed vertical load q = 1250 N/m, which
includes the dead weight of the purlin.

The dimensions of the U-section and the location of the normal centre NC
are given in the figure, and in the principal yz coordinate system

Iyy = 0.85 × 106 mm4 and Izz = 9.25 × 106 mm4.

The U-section can be considered thin-walled. The slope α of the roof is
given by tan α = 3/4.

Questions:
a. For the cross-section at midspan, determine the normal stresses at the

four corners A to D.
b. For this cross-section at midspan, draw the normal stress diagram.

Also draw in the diagram the location of the neutral axis. What is the
angle between the neutral axis and the y axis?

Solution:
a. The loads qy and qz in the principal directions y and z are

qy = −q sin α = −(1250 N/m) × 3
4 = −750 N/m,

qz = +q cos α = +(1250 N/m) × 4
5 = +1000 N/m.

Note: Since the load in the xy plane acts opposite to the positive y direction,
qy is negative (see Figure 4.47).
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Figure 4.48 The normal stress diagram. The stresses are plotted

there is only bending and no extension, the neutral axis (na) must
pass through the normal centre NC. Since the normal stress in the
cross-section is proportional to the distance to the neutral axis the
stress distribution in the cross-section can also be represented by
plotting the stress distribution on a line normal to the neutral axis.

At midspan the bending moments are

My = 1
8 qy�

2 = 1
8 (−750 N/m)(4 m)2 = −1500 Nm,

Mz = 1
8 qz�

2 = 1
8 (+1000 N/m)(4 m)2 = +2000 N/m.

In the stress formula (there is no normal force)

σ(y, z) = Myy

Iyy

+ Mzz

Izz

,

these bending moments give the following stress distribution:

σ(y, z) = −1500 Nm

0.85 × 106 mm4
× y + +2000 Nm

9.25 × 106 mm4
× z

= −(1.765 N/mm3) × y + (0.216 N/mm3) × z .

The stresses in the corners A to D are determined in Table 4.3.

In the fourth and fifth column, the stresses due to My and Mz are shown
separately. The resulting stress is found by summing the contributions of
My and Mz. This stress is shown in the last column.

b. The stresses in the cross-section are linear. For a thin-walled cross-
section, a uniform stress across the wall thickness is assumed. The stress
varies only along the wall. The stress distribution along the wall, for ex-
ample flange AB, can be determined by plotting the stresses at A and B
normal to AB and drawing a straight line between these points. In this
way, the stresses along flanges and web are shown for the whole thin-
walled U-section in Figure 4.48. The maximum tensile bending stress

normal to the centre lines of web and flanges of the U-section. Since
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Table 4.3

Corner y coord. z coord. σ σ Resulting normal

(mm) (mm) due to My due to Mz stress σ(y, z)

(N/mm2) (N/mm2) (N/mm2)

A –45 –80 +79.4 –17.3 +62.1

B +20 –80 -35.3 –17.3 –52.6

C +20 +80 –35.3 +17.3 –18.0

D –45 +80 +79.4 +17.3 +96.7

Figure 4.49 Spatial representation of the normal stress distribu-
tion in the purlin.

occurs at D and is 96.7 N/mm2. The maximum compressive bending stress
is 52.6 N/mm2 and occurs at B.

In Figure 4.48 there are two places in the flanges where the stress is zero.
These points are located on the neutral axis. Since the neutral axis is a
straight line it can be plotted directly on the stress diagram. If the stress
diagram is drawn to scale, the neutral axis must pas through the normal
centre NC (there is no normal force). This is a check.

The equation for the neutral axis follows from the condition

σ(yna, zna) = −(1.765 N/mm3) × yna + (0.216 N/mm3) × zna = 0.

For the angle β between the y axis and the neutral axis we now find

tan β = zna

yna
= 1.765 N/mm3

0.216 N/mm3 = 8.17 ⇒ β = 83◦.

It can be shown that the normal stress in the cross-section is proportional
to the distance to the neutral axis. This means that there is the same normal
stress at all points on a line parallel to the neutral axis. The stress diagram
can therefore also be represented by plotting the stress distribution on a
line normal to the neutral axis. Such a stress diagram is also included in
Figure 4.48.

In Figure 4.49, the stress diagram is represented spatially.

4.9 Core of the cross-section

Some materials, especially stony materials such as brickwork and plain
concrete, can effectively transfer compressive stresses but offer little or no
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Figure 4.50 If the resultant of all the normal stresses in a
cross-section is a force N , the point of application of this force is
known as the centre of force (cf). If the eccentric normal force N is
moved from the centre of force to the normal centre NC, bending
moments My and Mz are generated.

resistance to tensile stresses. To prevent cracking, we assume that these
materials cannot transfer tensile stresses at all. Consequently there must be
compression within the entire cross-section, and the neutral axis must fall
outside the cross-section. A borderline case occurs when the neutral axis
just touches the boundary of the cross-section.

In this section we determine the area in which the centre of force has to be,
in order for all stresses within the cross-section to have the same sign. This
area is known as the core of the cross-section. The concept of a core is very
important in dealing with materials that will resist compression better than
tension. Cores play a role in prestressed concrete beams as well in spread
foundations.

If the resultant of all normal stresses in a cross-section is a force, the point of
application of this force is known as the centre of force1 (see Figure 4.50).
If this eccentric normal force N is moved from the centre of force, with
coordinates (ey; ez), to the normal centre NC, bending moments My and
Mz are generated:

My = Ney and Mz = Nez.

When N,My and Mz are known, the coordinates (ey; ez) of the centre of
force are

ey = My

N
and ez = Mz

N
.

The core of the cross-section is the set of centres of force for which all

1 See Volume 1, Section 14.2. The concept centre of force is only relevant when
N �= 0.
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Figure 4.51 If only a normal force N and bending moment Mz act
in the cross-section, and the bending moment My is zero, the centre
of force (cf) is in the xz plane.

the stresses within the cross-section have the same sign, and the neutral
axis is outside the cross-section or just touches it. In other words, it is that
part of the cross-section within which an axial force can be applied without
causing a stress of opposite sign at any point.

When determining the core, it is not relevant whether the normal force is
a tensile force or a compressive force. It is therefore assumed here that the
normal force is a tensile force, even though cores are applied mostly for
cross-sections subject to compression.

In the first instance, we will look at cross-sections for which the two prin-
cipal axes are also lines of symmetry, so that Wz;b = Wz;t = Wz. We have
chosen a rectangular cross-section.

Assume that the cross-section is subject to a normal force N and bend-
ing moment Mz, and that the bending moment My is zero. In that case,
ey = My/N = 0 and the centre of force (cf) is located in the xz plane (see
Figure 4.51).

Next we look for the location of the centre of force1 for which the neutral
axis coincides with one of the outer fibre layers. In that case there is either
tension or compression in the entire cross-section.

For the stresses in the outer fibre layers applies

σb = N

A
+ Mz

Wz

= N

A
+ Nez

Wz

,

σt = N

A
− Mz

Wz

= N

A
− Nez

Wz

.

1 Remember: the centre of force is the point of application of the resultant axial
force in the cross-section.
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Figure 4.52 A and B are the centres of force for which the neutral
axis (na) is exactly in one of the outer fibre layers. A is known as
the upper core point and B as the lower core point. The distance k

is known as the core radius.

If the neutral axis coincides with the bottom fibre layer, the location ez of
the centre of force follows from σb = 0:

ez = −Wz

A
.

This is point A in Figure 4.52.

If the neutral axis coincides with the top fibre layer, the location ez of the
centre of force follows from σt = 0:

ez = +Wz

A
.

This is point B in Figure 4.52.

The quotient Wz/A is known as the core radius k. For a rectangular cross-
section

k = Wz

A
=

1
6 bh2

bh
= 1

6 h . (4.22)

With the centre of force at A the stress in the bottom fibre layer is zero. With
an axial force applied at B, the stress in the top fibre layer is zero. For the
rectangular cross-section in Figure 4.53 it can equally be argued that with
the centre of force at C the stress in the left-hand edge of the cross-section
is zero, and with the centre of force at D the stress in the right-hand edge is
zero.

If the centre of force is located on AC the eccentric normal force can be
resolved into a force at A and a force at C. The force at A gives a zero
stress at the bottom edge and the force at C gives a zero stress at the left-
hand edge. Together, this leads to a zero stress at corner E. Hence, if the
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Figure 4.53 The rhombus ABCD is known as the core of the
cross-section. If the centre of force is located within the core then
the neutral axis is entirely outside the cross-section and all the
normal stresses in the cross-section have the same sign.

Figure 4.54 For a T-beam the upper core radius kt and lower core
radius kb have different magnitudes.

centre of force is located on AC the normal stress is zero at the corner E.

Conclusion: If the centre of force is located somewhere on the boundary of
rhombus ABCD, the neutral axis touches the boundary of the cross-section.
The rhombus ABCD is known as the core of the cross-section.

If the centre of force is located inside the core, the neutral axis is completely
outside the cross-section and all normal stresses in the cross-section have
the same sign, namely that of the normal force N .

If the centre of force is located outside the core, the neutral axis cuts the
cross-section into areas, one with compressive stresses and the other with
tensile stresses.

Another example is the cross-section of the T-beam in Figure 4.54, with
only one line of symmetry. The beam is subject to a load in the plane of
symmetry. Since the distances eb and et to the outer fibres layers are not
equal, we have to distinguish between the section moduli Wb and Wt. For
the stress in the bottom fibre layer (b) we have

σb = N

A
+ Mzeb

Izz

.

With Mz = Nez and Izz/eo = Wz;o we can write

σo = N

A
+ Nez

Wz;o
= 0,

The neutral axis is located in the bottom fibre layer if the stress there is
zero:

σo = N

A
+ Nez

Wz;b
= 0,

from which we find
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ez = −Wz;b
A

.

This point, point A in Figure 4.54, is known as the upper core point. Wz;b/A
is known as the upper core radius kt:

kt = Wz;b
A

.

In the same way, the lower core point is found by locating the neutral axis
at the top fibre layer:

ez = +Wz;t
A

.

This is point B in Figure 4.54. The lower core radius; kb is given by

kb = Wz;t
A

As long as, in Figure 4.54, the centre of force due to the load in the plane
of symmetry stays between A and B, the neutral axis will fall outside the
cross-section, and the stresses will have the same sign everywhere.

4.10 Applications related to the core of the
cross-section

In practice, the concept of a core of a cross-section is applied, for example,
to determine how to prestress a concrete beam to avoid tensile stresses.

Figure 4.54 For a T-beam the upper core radius kt and lower core
radius kb have different magnitudes.
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Figure 4.55 A roof constructed of concrete plates supported by
prestressed concrete beams.

This is covered in the example in Section 4.10.1.

Another application is given in Section 4.10.2, and relates to the calculation
of the earth pressure under a rigid foundation plate. It is assumed that the
earth pressure on the plate at a certain point is proportional to the vertical
displacement of the plate in that point.

4.10.1 Beams with central and eccentric prestressing

The roof in Figure 4.55 is constructed of concrete roof plates supported on
prestressed concrete beams. The roof plates are 0.10 m thick, 2 m long and
1 m wide. The beams have a rectangular cross-section, 0.10 m wide and
0.24 m high, and a length of 3 m. Plates and beams are simply supported.

The load on the roof consists of a uniformly distributed (surface) load of
1 kN/m2. The specific weight of the roof plates is 24 kN/m3 and that of the
beams is 25 kN/m3.

The compressive stress in the concrete of the beams may not exceed the
limiting value of 10 N/mm2. The concrete cannot resist tensile stresses.

Questions:
If the beams are prestressed by means of a straight tendon parallel to the
beam axis, determine the prestressing force required to suppress the tensile
stresses due to the dead weight and working load:
a. for central prestressing;
b. for eccentric prestressing.

Check for both cases that the compressive stresses remain under the given
limiting value of 10 N/mm2.
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Figure 4.56 The concrete beams have a rectangular cross-section.

Figure 4.57 The loading scheme and bending moment diagram
for a beam.

Solution:
We first determine the area A and section modulus W . For the rectangular
cross-section of the beam in Figure 4.56:

A = (0.10 m)(0.24 m) = 24 × 10−3 m2,

W = 1
6 (0.10 m)(0.24 m)2 = 960 × 10−6 m3.

Next we determine the load q for a single beam resulting from the dead
weight and the working load.

The total load per mm2 plate is

(1 kN/m2) + (0.10 m)(24 kN/m3) = 3.4 kN/m2,

and gives a line load on the beams of

(2 m)(3.4 kN/m2) = 6.8 kN/m.

There is also the dead weight of the beams:

(0.10 m)(0.24 m)(25 kN/m3) = 0.6 kN/m.

The total load on a beam is therefore the uniformly distributed (line) load

q = (6.8 kN/m) + (0.6 kN/m) = 7.4 kN/m.

A scheme of the loaded beam is shown in Figure 4.57, together with
the bending moment diagram The maximum bending moment occurs at
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Figure 4.58 The loading case for central prestressing, together
with the loading scheme of the beam and the normal force diagram.
In central prestressing, the straight tendon coincides with the mem-
ber axis and the beam ends are subject to central compressive forces.
Central prestressing does not generate bending moments.

Figure 4.59 Stress diagrams for the critical cross-section at mid-
span, due to the load q and central prestressing force Fp.

midspan and is1

M
(q)
max = 1

8 q�2 = 1
8 (7.7 kN/m)(3 m)2 = 8.325 kNm.

The associated stress distribution σ (q) in the cross-section is shown in Fig-
ure 4.59a, with tension at the bottom and compression at the top of the
beam. The maximum tensile and compressive stress in the outer fibres are
equal in magnitude. This magnitude follows from the formula

σ = M

W
= 8.32 kNm

960 × 10−6 m3
= 8.67 kN/mm2.

Hence (see Figure 4.59a)

σ
(q)

b = +8.67 N/mm2 and σ
(q)

b = −8.67 N/mm2.

Since the concrete cannot transfer tensile stresses, this stress distribution is
unacceptable.

The tensile stresses in the cross-section can be eliminated by prestressing
the beam, in which steel bars, cables or wires are installed under tension. In
this case the beam is prestressed by a straight cable, the tendon. The tensile
force Fp in the tendon is the prestressing force. This tensile force exerts
equally large compressive forces Fp on the beam ends via the anchors.

a. Central prestressing
With central prestressing, the tendon coincides with the beam axis and the

1 The upper index indicates the cause of the bending moment, in which we dis-
tinguish between the load q (due to dead weight and working load) and the
prestressing force Fp.
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beam ends are loaded by central compressive forces. Figure 4.58 shows
the loading case for central prestressing, together with the loading scheme
of the beam and the normal force diagram. Central prestressing does not
generate bending moments.

As a result of central prestressing, the stress in the cross-section is constant:

σ = −Fp

A
.

The stress diagram σ (Fp) is shown in Figure 4.59b.

The critical cross-section is at midspan. If no tensile stresses are allowed,
the stress diagrams in Figures 4.59a and 4.59b show that the stress in the
bottom fibre layer has to be zero (or negative):

σb = σ
(q)
b + σ

(Fp)

b = (+8.67 N/mm2) − Fp

A
≤ 0.

For the prestressing force Fp we find

Fp ≥ (8.67 N/mm2) × A = (8.67 N/mm2)(24 × 10−3 m2) = 208 kN.

The minimum required prestressing force is

Fp = 208 kN.

The resulting stress diagram in Figure 4.59c shows that for this prestressing
force a compressive stress of 17.34 N/mm2 occurs at the top of the beam,
considerably larger than the limiting value of 10 N/mm2.

Figure 4.58 The loading case for central prestressing, together
with the loading scheme of the beam and the normal force diagram.
In central prestressing, the straight tendon coincides with the mem-
ber axis and the beam ends are subject to central compressive forces.
Central prestressing does not generate bending moments.

Figure 4.59 Stress diagrams for the critical cross-section at mid-
span, due to the load q and central prestressing force Fp.
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Figure 4.60 The loading case for eccentric prestressing, together
with the loading scheme of the beam, and the normal force and
bending moment diagrams. The (straight) tendon is now under the
member axis. The eccentric compressive forces on the beam ends
generate a bending moment in the beam.

Figure 4.61 Stress diagrams for the cross-section at midspan,
resulting from the load q and the eccentric prestressing Fp.

Conclusion: With central prestressing, it would seem impossible to meet the
demands that there are no tensile stresses in the cross-section and that the
compressive stresses are below the given limiting value.

b. Eccentric prestressing
A better result is achieved with eccentric prestressing, by shifting the ten-
don from the member axis towards the tension area. Figure 4.60 shows the
prestressed beam, its loading scheme, and the N and M diagrams when the
prestressing force Fp has an eccentricity ep.

For the critical cross-section at midspan, Figure 4.61 shows the stress dia-
grams due to M

(q)
max and Fp. For the stress at the bottom of the beam we find

σb = +M
(q)
max

W
− Fp

A
− Fpep

W
.

With core radius k = W/A this can also be written as

σb = +M
(q)
max

W
− Fp

W
(k + ep).

If no tensile stresses are permitted (in the bottom fibre layer) then σb ≤ 0.
Hence

Fp ≥ M
(q)
max

k + ep
.

The minimum required prestressing force Fp becomes smaller with increas-
ing eccentricity ep.

In addition to the maximum moment, we also have to check for a minimum
moment, for example when there is no working load, whether there are
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Figure 4.62 Stress diagrams for the cross-section at midspan
when the tendon is located at the lower core point, and the pre-
stressing force is 110 kN.

indeed no tensile stresses. For the case in question the ends of the beam are
critical.

Here, the bending moment due to the load is zero and the stress distribution
in the cross-section is entirely determined by the eccentric compressive
force Fp. If no tensile stresses may occur, the eccentric compressive force
must have its point of application within the core. The maximum eccentric-
ity is therefore achieved by placing the tendon at the lower core point. Then
ep = k, and the minimum required prestressing force is

Fp = M
(q)
max

2k
.

For a cross-section with differing lower core point kb and upper core point
kt we would have found:

Fp = M
(q)
max

kb + kt
.

The minimum required prestressing force Fp appears to be equal to the
maximum bending moment due to q divided by the height of the core.

For the beam with rectangular cross-section in the example we have

k = 1
6 h = 0.04 m.

For the minimum required prestressing force Fp we find

Fp = M
(q)
max

2k
= 8.325 kNm

2 × (0.04)
= 104 kN.

Figure 4.61 Stress diagrams for the cross-section at midspan,
resulting from the load q and the eccentric prestressing Fp.
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Figure 4.63 Stress diagrams for the end cross-sections when the
tendon is located at the lower core point, and the prestressing force
is 110 kN.

Figure 4.64 It is common practice to assume that the vertical earth
pressure under a foundation plate at a certain point is proportional
to the vertical displacement of the plate at that point. For a rigid
foundation plate, the earth pressure will be linearly distributed and
we can use the stress formulas for a cross-section subject to bending
and extension.

Figures 4.62 and 4.63 show the stress diagrams for the cross-sections at
midspan and at the beam ends respectively, when the prestressing cable
is located at the lower core point and that the magnitude of the prestress-
ing force is 110 kN (slightly larger than the required value of 104 kN).
Checking the correctness of the values in the figures is left to the reader.

Conclusion: There are no tensile stresses and the compressive stress re-
mains below the given limiting value of 10 N/mm2.

4.10.2 Earth pressure under a building with spread foundation

For the earth pressure under a foundation plate, it is common practice to
assume that the vertical earth pressure on the plate at a certain point is pro-
portional to the vertical displacement of the plate at that point. In this way,
the earth pressures can be found rather quickly and are relatively accurate.

For a rigid foundation plate, the vertical displacement is linear, and so is the
earth pressure. In that case, we can use the stress formulas for cross-sections
subject to bending and extension.

Since soil is incapable of transferring tensile stresses, it is usual to define
compressive stresses as positive, a practice that is adopted in this section.

The (symmetrical) foundation plate in Figure 4.64 is loaded in the plane of
symmetry by a couple T , and a force F at the normal centre (or centroid)
of the plate. On the analogy of cross-sections subject to bending and exten-
sion, the extreme earth pressures σe;extr at the edges of the plate are (note:
earth pressures are positive here)

σe;extr = F

A
± T

W
. (4.23)

Here A is the area of the foundation plate and W is the section modulus.
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Figure 4.65 The shaft of a suspended building is rigidly connected
with a thick concrete plate on a spread foundation. The building,
shaft and foundation plate have a square ground plan.

Figure 4.66 The distribution of the earth pressure due to the dead
weight G and the moment Hh caused by the wind load.

This formula is used in the example below to determine the earth pressure
under a rigid foundation plate.

Example
Figure 4.65 shows the model of a suspended building, constructed of a
concrete shaft with cantilevers at the top from which hangers have been
suspended that together bear the floors. The shaft is rigidly connected with a
thick concrete plate on a spread foundation. The building, shaft and founda-
tion plate have a square ground plan. The side of the square foundation plate
has a length a = 10.5 m. The total weight G of the building is 22 MN. The
resulting wind load H is 1 MN and applies at a distance h = 25 m above the
underside of the foundation plate. It is assumed that this horizontal force is
entirely transferred by the friction under the foundation plate, and that the
resistance from the edges of the foundation plate can be neglected.

Questions:
a. Determine the distribution of the earth pressure under the foundation

plate for the given load.
b. Determine the magnitude of the horizontal force H for which the earth

pressure in one of the edges of the foundation plate is just zero.
c. Determine the distribution of the earth pressure for H = 2 MN.

Solution:

area: A = a2 = (10.5 m)2 = 110.25 m2,

section modulus: W = 1
6 · a · a2 = 1

6 × (10.5 m)3 = 192.94 m3,

core radius: k = 1
6a = 1

6 × (10.5 m) = 1.75 m.

The foundation plate is subject to a vertical force G and a couple Hh (see
Figure 4.66).

For the square foundation plate,
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Figure 4.67 The centre of force has an eccentricity e = Hh/G

and is outside the core of the square foundation plate. k is the core
radius.

Figure 4.68 When the eccentricity e of the centre of force is equal
to the core radius k, there will be zero stresses at the (left) edge.

a. The extreme earth pressures at A and B using (4.23) are

σe;A = +G

A
− Hh

W
= + 22 MN

110.25 m2
− (1 MN)(25 m)

192.94 m3

= (+0.20 − 0.13) N/mm2 = +0.07 N/mm2 (compression!)

σe;B = +G

A
+ Hh

W
= + 22 MN

110.25 m2 + (1 MN)(25 m)

192.94 m3

= (+0.20 + 0.13) N/mm2 = +0.33 N/mm2 (compression!)

Figure 4.66 shows the distribution of the earth pressure under the founda-
tion plate.

The location of the centre of force is (see Figure 4.67)

e = Hh

G
= (1 MN)(25 m)

22 MN
= 1.14 m.

The eccentricity of the centre of force is smaller than the core radius
k = 1.75 m; all stresses under the foundation plate therefore have the same
sign.

b. When the eccentricity e of the centre of force is equal to the core radius
k, e = k = 1.75 m, there will be zero stresses at the (left) edge. In that case,
the magnitude of the horizontal force H follows from e = k = Hh/G:

H = Gk

h
= (22 MN)(1.75 m)

25 m
= 1.54 MN.

The associated diagram for the earth pressure is shown in Figure 4.68.
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Figure 4.69 If the centre of force falls outside the core of the foun-
dation plate, tensile stresses should occur. Since that is not possible
in soil, the stress diagram changes in the sense that the active area
of the soil under the foundation plate becomes smaller.

c. If H becomes larger than 1.54 MN, the centre of force falls outside the
core of the foundation plate and tensile stresses will occur. Since soil cannot
transfer tensile stresses, the stress diagram will change in the sense that the
active area of soil under the foundation plate gets smaller.

When H = 2 MN the eccentricity of the centre of force is:

e = Hh

G
= (2 MN)(25 m)

22 MN
= 2.27 m.

The point of application of the eccentric compressive force G is now 2.98 m
from the edge B, as indicated in Figure 4.69. Assume that the earth pressure
in that case is linear from zero at C to σe;max at edge B. The distance CB
is indicated by c. Since the active part of the foundation plate is rectangu-
lar, the line of action of the resultant of the triangularly distributed earth
pressure is at c/3 from edge B.

From the moment equilibrium of the foundation plate it follows that the
line of action of the resulting earth pressure has to coincide with the line of
action of the eccentric compressive force G. Hence

1
3 c = 2.98 m ⇒ c = 8.94 m.

From the force equilibrium of the foundation plate,

1
2 ac σe;max = G,

we find the maximum earth pressure at edge B (see Figure 4.69):

σe;max = 2G

ac
= 2 × (22 MN)

(10.5 m)(8.94 m)
= 0.47 N/mm2.
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With this, the distribution of the earth pressure under the foundation plate
is determined for G = 22 MN and H = 2 MN.

4.11 Mathematical description of the problem of
bending with extension

After Section 4.3 we addressed in detail the various stress formulas and the
associated subjects. In this section, we derive the differential equations for
a member subject to bending with extension.

Using differential equations, we can trace generally applicable properties of
the member behaviour. They can be used to determine the distribution of the
section forces and displacements, even when the member is statically inde-
terminately supported. Differential equations also play an essential role in
investigating the behaviour of combined systems, such as a railway sleeper
in a ballast bed, a suspension bridge, or a block of buildings constructed as
a frame linked to a rigid shaft – more advanced subjects from mechanics
that fall outside the scope of this book.

The differential equations are derived from the three types of relationships
covered in Section 4.3. For bending with extension in the xz plane they are1

• The kinematic relationships that link the deformations and displace-
ments (see Section 4.3.1):

ε = du

dx
(extension),

1 Except for the loads q, all the indices are hereafter omitted. They are the index
y for ϕ, the index z for κ,V and M , and the index zz for I .
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Table 4.4 The differential equations for extension and bending of
a prismatic member.

ϕ = −dw

dx

κ = dϕ

dx

⎫⎪⎪⎬
⎪⎪⎭

⇒ κ = −d2w

dx2 (bending).

• The constitutive relationships that link the section forces and associated
deformations (see Section 4.3.2):

N = EAε (extension),

M = EIκ (bending).

• The static or equilibrium relationships that link the load (by external
forces) and the section forces (see Section 4.3.3):

dN

dx
+ qx = 0 (extension),

dV

dx
+ qz = 0

dM

dx
− V = 0

⎫⎪⎬
⎪⎭ ⇒ d2M

dx2 + qz = 0 (bending).

A summary of all the equations is included in Table 4.4.

The kinematic relationships for extension and bending are independent of
one another, due to the assumption that the rotations ϕ of the cross-sections
are small. Since the cross-sections remain perpendicular to the member
axis, the rotation ϕ can be eliminated from the two kinematic equations
for bending and one equation in w is left over.

The constitutive relationships for extension and bending are also indepen-
dent of one another as a result of the choice of the coordinate system, with
the x axis through the normal centre of the cross-section and the y and z

axes coinciding with the principal directions.

d
d
u
x

ε = N EAε=
d 0
d x
N q
x
+ =

2

2
d 0
d x
uEA q
x

+ =

d
d
d
d

w
x

x

ϕ

ϕκ

⎫= − ⎪⎪
⎬
⎪=
⎪⎭

2

2
d
d
w
x

κ = − M EIκ=

d 0
d
d 0
d

z
V q
x
M V
x

⎫+ = ⎪⎪
⎬
⎪− =
⎪⎭

2

2
d 0
d z
M q
x

+ =
4

4
d 0
d z
wEI q
x

− + =

kinematic
relationships

constitutive
relationships

static
relationships

differential
equations

extension

bending
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Finally, the static relationships for extension and bending can be treated
separately. This is so because the equilibrium equations were applied to the
undeformed geometry of the member. By eliminating the shear force V in
the equations for bending, one equation in M is left.

Substituting the kinematic relationships in the constitutive relationships,
and again substituting the result in the static relationships, we obtain the
following two differential equations for a prismatic member subject to
extension and bending:

extension: EA
d2u

dx2
+ qx = 0,

bending: − EI
d4w

dx4
+ qz = 0.

For extension, we have a second-order differential equation in the displace-
ment u.

For bending, we have a fourth-order differential equation in the displace-
ment w.

Note: The differential equations can be applied only when all quantities as a
function of x are continuous and/or continuously differentiable. If not, then
the member has to be split into a number of fields, so that the differential
equations indeed are valid for each separate field. We neglect the fact that
in mathematics there are methods to integrate discontinuous functions.

Solving the differential equations is done through repeated integration. For
each integration there is one integration constant. The total number of in-
tegration constants in the solution is equal to the order of the differential
equation: two for extension and four for bending.

The integration constants follow from the end conditions and joining condi-
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tions. Both the end conditions and joining conditions can be regarded as the
boundary conditions for a specific field. These are the conditions that the
quantities expressed in the displacements u and w (and/or the relationships
between these quantities) have to meet at a field boundary (field end or field
joining).

The boundary conditions relate to the following quantities:

u,

N = EAε = EA
du

dx
,

w,

ϕ = −dw

dx
,

M = EIκ = −EI
d2w

dx2
,

V = dM

dx
= −EI

d3w

dx3
.

When the boundary conditions for extension relate only to the quantities u

and N , and those for bending solely to the quantities w,ϕ,M and V , the
extension and bending effects are independent of one another and can be
treated separately.

The differential equation for extension was earlier derived in Section 2.5
and applications were given in Section 2.7.

Applications of the differential equation for bending will be covered in
Chapter 8. There we will also cover other methods for determining the
displacements due to bending.

Note: We assumed a prismatic member. The axial stiffness EA and bending
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stiffness EI are then constant, i.e. independent of x. For a non-prismatic
member, EA and EI are functions of x and the differential equations for
extension and bending respectively are

extension:
d

dx

(
EA

du

dx

)
+ qx = 0,

bending:
d2

dx2

(
−EI

d2w

dx2

)
+ qz = 0.

The reader is left to check the correctness of these equations.

4.12 Thermal effects

In this section we investigate the thermal effects at cross-sectional level.
The result is a “tool” for determining the influence of a change in tempera-
ture of a member on the deformations and the force flow. We will work in
an xyz coordinate system with the x axis along the member axis (through
the normal centre of the cross-section) and the y and z axis coinciding with
the principal directions of the cross-sections.

We also assume that:
• the change in temperature is constant in the y direction and linear in the

z direction,1

• the cross-section is homogeneous, and
• the member deforms in the xz plane.

1 Since we restrict ourselves to the cross-sectional thermal effects, the variation of
the temperature in the x direction is not relevant here.
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We return to the familiar fibre model, and we first look at a single fibre.
Under the influence of the stress σ in the fibre there is a strain

ε(σ) = σ

E
.

Due to an increase in temperature �T there is an additional strain

ε(T ) = α�T .

Here α is the coefficient of thermal expansion of the material. For conve-
nience, we hereafter omit the � sign and write

ε(T ) = αT ,

in which T now represents the increase in temperature of the fibre.

The total strain is

ε = ε(σ) + ε(T ) = σ

E
+ αT .

From this we find that the stress σ in the fibre is

σ = E(ε − αT ).

The modulus of elasticity E and coefficient of thermal expansion α are
material constants. In a homogeneous cross-section, all fibres have the same
E and the same α. On the contrary, the stress σ , strain ε and temperature
increase T can differ per fibre and be functions of the location (y, z) of the
fibre. In general, for an arbitrary (y, z) fibre we have

σ(y, z) = E · [ε(y, z) − αT (y, z)]. (4.24)
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Figure 4.70 The strain diagram for a member deforming in the xz

plane. ε is the strain of the member axis and κz is the curvature of
the member (axis) in the xz plane; κz is also the slope of the strain
diagram.

Figure 4.71 It is assumed that the increase in temperature is
linear over the height of the cross-section (the z direction) and is
constant in the width direction (the y direction). T is the increase
in temperature of the member axis and dT (z)/dz is the temperature
gradient.

If the member deforms in the xz plane and planar cross-sections remain
planar, the strain distribution is independent of the y coordinate:

ε(y, z) = ε(z) = ε + κzz. (4.25)

ε is the strain of the member axis and κz is the curvature of the member
(axis) in the xz plane (κz is also the slope of the strain diagram) (see
Figure 4.70).

If the increase in temperature is linear over the height of the cross-
section (the z direction) and constant over the width (the y direction), the
temperature increase is also independent of the y coordinate, and can be
written as

T (y, z) = T (z) = T + z
dT (z)

dz
. (4.26)

T is the increase in temperature of the member axis and dT (z)/dz is the
temperature gradient. In a linear distribution T (z), the temperature gradient
is independent of z (see Figure 4.71).

The stress in fibre layer z is found by substituting (4.25) and (4.26) in
(4.24):

σ(z) = E

{
(ε + κzz) − α

(
T + z

dT (z)

dz

)}

or, rewritten,

σ(z) = E(ε − αT ) + Ez

(
κz − α

dT (z)

dz

)
. (4.27)

The section forces (stress resultants) N,My and Mz are

N =
∫

A

σ(z) dA, (4.28)
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My =
∫

A

yσ(z) dA, (4.29)

Mz =
∫

A

zσ(z) dA. (4.30)

After substituting (4.27) in (4.28) to (4.30) we can work out the integrals.
In doing so it is important to remember that in (4.27) the terms in brackets
are independent of z. We find

N = EA(ε − αT ) + ESz

(
κz − α

dT (z)

dz

)
,

My = ESy(ε − αT ) + EIyz

(
κz − α

dT (z)

dz

)
,

Mz = ESz(ε − αT ) + EIzz

(
κz − α

dT (z)

dz

)
.

If, as usual, we choose the origin of the yz coordinate system at the normal
centre of the cross-section, the static moments Sy and Sz are zero, and the
expressions above simplify to

N = EA(ε − αT ),

My = EIyz

(
κz − α

dT

dz

)
,

Mz = EIzz

(
κz − α

dT

dz

)
.

If the y and z direction coincide with the principal directions of the cross-
section, the product of inertia Iyz is also zero, and so is the bending moment
My that acts in the xy plane. Now two equations are left:
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N = EA(ε − αT ), (4.31)

Mz = EI

(
κz − α

dT

dz

)
. (4.32)

If the member is free to deform and there is no load, there will be no normal
forces and bending moments. From the zero value for N and Mz we find
the deformation quantities ε(T ) and κ(T ) associated with a free deformation
due to a change in temperature:

ε = ε(T ) = αT , (4.33)

κz = κ(T )
z = α

dT (z)

dz
. (4.34)

The constitutive relationships (4.31) and (4.32) therefore can also be written
as

N = EA(ε − ε(T )), (4.35)

Mz = EI(κz − κ(T )
z ). (4.36)

Note: The influence of a change in temperature finds expression in the
constitutive relationships. This is not surprising if you remember that the
coefficient of thermal expansion is a material property. The kinematic and
static relationships remain unchanged.

When ε(T ) and κ
(T )
z are constant over the member length and are not

functions of x, the differential equations for bending and extension remain
unchanged. When working out the boundary condition (end and/or joining
conditions), it is important to remember the constitutive relationships have
changed due to the change in temperature. An application of the formulas
is given in Section 8.2, Example 4.
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4.13 Notes for the fibre model and summary of
the formulas

After a number of comments regarding the fibre model, we provide a sum-
mary of the different formulas derived in this chapter.

4.13.1 Notes for the fibre model

In the fibre model, only the normal stresses σ due to normal force and
bending moment are responsible for the deformations. Experiments and
more accurate calculations using elasticity theory show that the fibre model
gives a correct description of the real member behaviour for extension and
pure bending (bending without shear forces).

For bending with shear forces, i.e. with a varying bending moment, there
are also shear stresses (acting in the cross-sectional plane) in addition to
normal stresses (acting normal to the cross-sectional plane). The magni-
tude of the shear stresses can be found from the equilibrium.1 The fibre
model now is less accurate in the description of the member behaviour.
There are differences that must be ascribed to the deformation through
shear stresses. However, the differences are minor for slender members (the
length is very large compared with the cross-sectional dimensions). In that
case, the bending stresses are much larger than the shear stresses and the
shear deformation is negligible.

If the shear deformation cannot be ignored, planar cross-sections are no
longer planar and there is no longer a linear bending stress distribution.
Nevertheless, the fibre model (with planar cross-sections remaining planar)
can still be used in many cases. The shear deformation due to shear forces

1 See Chapter 5.
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Figure 4.72 If, in the model, the shear deformation under the in-
fluence of the shear forces is included, this is expressed in a tilting
of the planar cross-sections (cs) with respect to the member axis
(ma). The rotation of the cross-section is now no longer equal in
magnitude to the slope dw/dx of the member axis.

Figure 4.73 If the cross-section of a beam does not vary gradually,
but in steps, one has to take into account a certain length where the
stress distribution deviates from the linear distribution. According to
Saint Venant’s principle, this length is of the same order as the sum
of the cross-sectional dimensions at both sides of the step change.

is then expressed in the fibre model as a tilting of the planar cross-sections
(d) with respect to the member axis (s), as shown in Figure 4.72. The
cross-sections no longer remain perpendicular to the member axis, and the
rotation ϕ of a cross-section is now no longer equal in magnitude to the
slope dw/dx of the member axis!

In the above we assumed prismatic members, members with the same
cross-section (the same cross-sectional quantities and material properties)
everywhere. The fibre model can also be used roughly on members with a
cross-section that changes gradually. If the cross-section does not change
gradually but in steps, you will have to count on a length with a stress
distribution at both sides of the step change that deviates from the linear
distribution (a disruption zone). According to Saint Venant’s principle,1 the
total length with deviant stress distribution is of the same magnitude as
the sum of the cross-sectional dimensions at both sides of the joining (see
Figure 4.73).

There are also deviant stress distributions at the points of application of
concentrated loads and the points where support reactions act. In the fibre
model, with its rigid cross-sections, these details are not taken into account.

4.13.2 Summary formulas

Prior warning: All the formulas were derived in a particular context and
have limiting conditions.

1 Named after Adhémar Jean Claude Barré de Saint Venant (1797–1886), French
civil engineer. He contributed greatly to the development of the theory of
elasticity.
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• Kinematic relationships (Section 4.3.1):

ε = du

dx
(extension),

ϕ = −dw

dx

κ = dϕ

dx

⎫⎪⎪⎬
⎪⎪⎭

⇒ κ = −d2w

dx2
(bending).

• Constitutive relationships (Section 4.3.2):

N = EAε (extension),

M = EIκ (bending).

• Static (or equilibrium) relationships (Section 4.3.3):

dN

dx
+ qx = 0 (extension),

dV

dx
+ qz = 0

dM

dx
− V = 0

⎫⎪⎪⎬
⎪⎪⎭

⇒ d2M

dx2 + qz = 0 (bending).

• Differential equations for bending and extension (Section 4.11) (see
Table 4.4):

Table 4.4 The differential equations for extension and bending of
a prismatic member.

d
d
u
x

ε = N EAε=
d 0
d x
N q
x
+ =

2

2
d 0
d x
uEA q
x

+ =

d
d
d
d

w
x

x

ϕ

ϕκ

⎫= − ⎪⎪
⎬
⎪=
⎪⎭

2

2
d
d
w
x

κ = − M EIκ=

d 0
d
d 0
d

z
V q
x
M V
x

⎫+ = ⎪⎪
⎬
⎪− =
⎪⎭

2

2
d 0
d z
M q
x

+ =
4

4
d 0
d z
wEI q
x

− + =

kinematic
relationships

constitutive
relationships

static
relationships

differential
equations

extension

bending
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extension: EA
d2u

dx2 + qx = 0,

bending: −EI
d4w

dx4 + qz = 0.

• Strain formula for bending and extension (Section 4.2):

ε(z) = ε + κzz.

• Stress formula for bending and extension (Section 4.4):

σ(z) = N

A
+ Mzz

Izz

.

The contributions due to extension and bending are

σ (N) = N

A
(extension) and σ (M) = Mzz

Izz
(bending).

In extension, the normal stress is constant over the cross-section. In bend-
ing, the normal stress is linear over the height of the cross-section and is
zero at the normal centre.

• Section moduli (Section 4.6):

Wz;b = Izz

eb
and Wz;t = Izz

et
.

eb and et are the distances from the normal centre to the outer fibre layers
at the bottom (b) and top (t) of the cross-section.
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The extreme bending stresses in the outer fibre layers (b) and (t) are

σb = + Mz

Wz;b
and σt = − Mz

Wz;t
.

If the y axis is a line of symmetry, Wz;b = Wz;t = Wz, and the extreme
bending stresses are equal in magnitude.

A rectangular cross-section has

Wz = 1
6 bh2 or in brief W = 1

6 bh2.

In a symmetrical cross-section, the extreme stresses due to bending and
extension are

σmax = N

A
± Mz

Wz

or in brief σmax = N

A
± M

W
.

• General stress formula related to the principal directions (Section 4.8):

σ(y, z) = N

A
+ Myy

Iyy

+ Mzz

Izz

.

• Core of the cross-section (Section 4.9):

kb = Wz;t
A

(lower core radius) and kt = Wz;b
A

(upper core radius).

If the y axis is a line of symmetry, then Wz;b = Wz;t = Wz, and the lower
and upper core radii are equal:

k = Wz

A
.
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A rectangular cross-section has

k = 1
6 h.

• Thermal effects (Section 4.12):
Free deformation due to a change in temperature:

ε = εT = αT and κz = κ(T )
z = α

dT

dz
.

The constitutive relationships taking into account a change in temperature:

N = EA
(
ε − ε(T )

)
and Mz = EI

(
κz − κ(T )

z

)
,

or

N = EA(ε − αT ) and Mz = EI

(
κz − α

dT

dz

)
.
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4.14 Problems

General comment: The dead weight of structures is left out of consideration
unless expressly indicated otherwise in the questions.

Strain diagram, stress diagram and stress formula (Sections 4.1 to 4.5)

4.1 A simply supported beam with rectangular cross-section is loaded in
the xz plane. For four loading cases (I to IV) strain measurements are taken
with respect to the fibres a, b, and c in a cross-section. The results are as
follows:

Loading case Fibre a Fibre b Fibre c

I –0.1� +0.1� +0.3�
II –0.2� 0 +0.2�
III –0.3� +0.2� +0.3�
IV +0.3� +0.1� –0.1�

Questions:
a. Assess the reliability of these results using a sketch of the strain

diagram. What is your conclusion?
b. For loading case I, determine the value of the strain ε and curvature κ .

c. For loading case IV, determine the value of the strain ε and curvature
κ .

d. What are the dimensions of ε and κ?

4.2 Questions:
a. Which quantities are linked by the kinematic relationships for members

subject to bending and extension.
b. On which assumptions are the kinematic relationships based?

4.3 Questions:
a. What is the name for the relationships N = EAε and M = EIκ , and

under which conditions do these relationships apply?
b. What is the definition of the quantities N and M?
c. Derive the relationships N = EAε and M = EIκ clearly showing the

meaning of the normal centre.

4.4 A beam with rectangular cross-section b × h and modulus of elasticity
E is subject to a four-point bending test. In doing so, the beam assumes the
shape of a circle between the supports with a radius of curvature R. In the
calculation use a = 0.5 m, b = 20 mm, h = 30 mm, E = 210 GPa and
F = 0.6 kN.

Questions:
a. Determine the radius of curvature R in mm.
b. Determine the maximum bending stress in the beam.
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4.5 The stress formula

σ(z) = N

A
+ Mzz

Izz

may be applied only if the coordinate system used meets certain conditions.

Question:
What are these conditions?

4.6 A normal force N = −441 kN and a
bending moment Mz = +88.2 kNm act in
the triangular cross-section shown.

Question:
Plot the normal stress diagram for the
cross-section. Clearly indicate the separate
contributions by N and Mz.

4.7: 1–2 The same cantilever beam, with the rectangular cross-section
shown, is loaded in two ways by a force of 5 kN. The force is applied at
the member axis.

Questions:
a. Determine the maximum normal stress in the beam, in an absolute

sense.
b. Determine the location where this maximum stress occurs. Is this stress

tensile or compressive?

4.8 A normal force N = −2250 kN and bending moment Mz = 436.5
kNm act in the cross-section shown.

Questions:
a. Determine the normal stress at the point

(y = −200 mm, z = +180 mm).
b. Determine the normal stress at the point

(y = +200 mm, z = −120 mm).
c. Plot the normal stress diagram and clearly indicate the contributions by

N and Mz.
d. Determine the z coordinate of the neutral axis.

4.9 Questions:
a. What is the definition of the normal centre in a homogeneous cross-

section?
b. What is the significance of the normal centre?
c. In question (a), what is meant by the concept “homogeneous”?
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4.10 In the cross-section shown, only a bending moment acts in the
vertical plane of symmetry.

Question:
Which of the sign combinations (a) to (e) could be correct for the normal
stress at the points A to D?

A B C D

a. – 0 + +

b. – – + +

c. – – 0 +

d. – + + +

e. + + – –

4.11 You are given a simply supported T-beam. For the given load, σA, σB
and σC are the normal stresses in cross-section I–I, in the fibres at A, B and
C respectively.

Question:
Which of the combinations of normal stresses (a) to (f) could be correct?

σA in N/mm2 σB in N/mm2 σC in N/mm2

a. –30 +10 –50

b. –30 –10 +50

c. –30 0 +30

d. +30 –10 –50

e. –50 +10 +30

f. –30 +10 +50

4.12 You are given a thin-walled I-section with height h = 300 mm.
The area of the upper flange is A1 = 3600 m2 and of the lower flange
A2 = 2400 mm2. The area of the web is so small that it can be neglected.
There is a compressive force Rc = 180 kN in the upper flange and a tensile
force Rt = 90 kN in the lower flange.
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Questions:
a. Determine the normal force in the cross-section.
b. Determine the bending moment in the cross-section.

4.13 A T-beam is loaded as shown.

Questions:
a. Which normal stress diagram could match cross-section I?
b. Which normal stress diagram could match cross-section II?

4.14 In the cross-section shown there is only a bending moment. The
cross-sectional dimensions are given in mm and the stresses in N/mm2.

Question:
Which stress diagram is correct?

4.15: 1–2 You are given two cross-sections with associated normal stress
diagrams. The cross-sectional dimensions are given in mm and the stresses
in N/mm2.

Question:
Determine the normal force N in the cross-section.
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4.16: 1–2 You are given two cross-sections with associated stress diagrams.

Question:
Which of the combinations (a) to (f) is valid for the sign of the normal force
and the deformation symbol of the bending moment in the cross-section?

N M

a. 0 �

b. 0 �

c. + �

d. + �

e. – �

f. – �

4.17: 1–4 You are given two different rectangular cross-sections with
two normal stress diagrams for each cross-section. The cross-sectional
dimensions are given in mm, the stresses are in N/mm2.

Questions:
a. Determine the normal force N in the cross-section, with the right sign.
b. Determine the bending moment Mz in the cross-section, with the right

deformation symbol.
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4.18 The stress diagram shown applies to all nine thin-walled cross-
sections (the wall thickness t is far smaller than the length a).

Questions:
a. Which of the cross-sections is subject to bending without a normal

force?
b. In which of the cross-sections is the normal force not equal to zero?

4.19: 1–9 See problem 4.18 for the figure and details.

Questions:
a. Determine the normal force N , expressed in a, t and σ , with the right

sign.
b. Determine the bending moment M , expressed in a, t and σ , with the

right deformation symbol (� or �).

4.20 You are given the strain diagram of a thin-walled triangular box
girder with a uniform wall thickness. The cross-sectional dimensions are
given in mm.

Questions:
a. Determine the location of the normal centre.
b. From the given strain diagram, determine the deformation quantities ε

and κz.
c. If the modulus of elasticity E = 210 × 103 N/mm2, plot the stress

diagram.
d. From the stress diagram, determine the resultant Rt of all tensile

stresses.
e. From the stress diagram, determine the resultant Rc of all compressive

stresses.
f. From the magnitude and location of Rt and Rc, determine the mag-

nitude of the normal force N and the bending moment Mz in the
cross-section, with the correct signs.

g. Where in the cross-section is the centre of force?
h. From the answers to (b) and (f), derive the magnitude of the axial and

bending stiffness.
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4.21 The cantilever beam has a rectangular cross-section. The dead weight
of the beam is 40 kN.

Question:
Determine the resultant of all tensile stresses in the cross-section at the fixed
end. Compare its magnitude to the dead weight of the beam.

4.22 The cantilever joist has a cross-
section of 600 × 100 mm2 and a dead
weight of 360 N/m, and is loaded at its
free end by a vertical force of 840 kN.

Question:
Determine the maximum bending stress
in the cross-section at the fixed end.

4.23 The simply supported beam, with a centroidal moment of inertia
Izz = 800 × 10−6 m4, is carrying a uniformly distributed load q over its
full length. Assume et = 200 mm and eb = 400 mm.

Question:
Determine the load q for which the maximum bending stress in the beam is
6 N/mm2.

4.24 A simply supported beam is loaded at the ends A and B by couples
TA and TB and is carrying the point load F . A steel I-section has been
used for the beam, 220 mm high, with Izz = 27.5 × 106 mm4. Use in the
calculation TA = 4 kNm, TB = 6 kNm and F = 12 kN.

Question:
Determine the maximum bending stress in the beam.
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4.25 The simply supported thin-walled cantilevered T-beam has a moment
of inertia Izz = 150×106 mm4. The load and location of the normal centre
NC are shown in the figure.

Questions:
a. Determine the maximum bending tensile stress in the T-beam and the

location of the cross-section in which it occurs. Plot the stress diagram
for this cross-section.

b. Determine the maximum bending compressive stress in the T-beam
and the location of the cross-section in which it occurs. Plot the stress
diagram for this cross-section.

4.26: 1–2 The simply supported cantilevered beam has a rectangular
cross-section and is loaded by a uniformly distributed load q between the
supports and by a force F at the free end.

Questions:
Determine the maximum bending stress in the beam when
1. F = 1 kN and q = 0.6 kN/m.
2. F = 1 kN and q = 0.9 kN/m.

4.27 A bending moment M and normal force N act in the given cross-
section of a T-beam. The maximum normal stress in an absolute sense is a
compressive stress of 8 N/mm2. For the cross-section A = 60 × 103 mm2

and Izz = 400 × 106 mm4. The location of the normal centre NC and that
of the neutral axis (na) are also given.

Questions:
a. Plot the normal stress diagram for the cross-section.
b. Determine the normal force N , with the right sign.
c. Determine the bending moment M , with the right sign.
d. Where in the cross-section is the centre of force?
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4.28: 1–2 The following applies to the solid triangular and circular cross-
sections:
E = 210 × 103 N/mm2, ε = 0.25� and κz = −83.3 × 10−3 m−1.

Questions:
a. Plot the strain and stress diagrams.
b. Determine the radius of curvature of the member at the given cross-

section.
c. Determine the axial and bending stiffness of the member at the given

cross-section.
d. Determine the normal force with the right sign, and the bending mo-

ment with the right deformation symbol.
e. Where in the cross-section is the centre of force?

4.29 You are given a rectangular cross-
section in which the neutral axis (na) is at
a distance a below the upper edge.

Questions:
Determine the coordinate ez of the centre
of force when
a. a = 0.
b. a = 60 mm.
c. a = 240 mm.
d. a = 320 mm.

4.30: 1–2 You are given two tapered consoles with rectangular cross-
section and a uniformly distributed load q over the full length. The width of
both consoles is constant. The maximum bending stress in cross-section B
is 12 N/mm2. It is allowed to use the stress formula derived for a prismatic
member.

Question:
Determine the maximum bending stress in cross-section A at the fixed end.

4.31 In the thin-walled tube with radius
R = 350 mm and wall-thickness t = 13 mm,
the maximum bending stress is 120 N/mm2.

Question:
Determine the bending moment in the tube.
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4.32 The section shown is loaded in the vertical plane by a bending mo-
ment M .

Question:
Determine the magnitude of the bending moment M when the maximum
bending stress in the cross-section is 125 N/mm2.

4.33 A central compressive force of 1800 kN acts in the cross-section
shown.

Questions:
a. Determine the maximum bending moment that the cross-section can

transfer in the xz plane for the given compressive force if the tensile
stress may not be larger than 2.5 N/mm2.

b. Plot the associated stress diagram and determine the z coordinate of the
neutral axis.

4.34 For the fixed column with rectangular cross-section, loaded by two
forces, are four stress diagrams given for the cross-section at the fixed end.
The area of the cross-section is A = 10 × 103 mm2; the section modulus
is W = 300 × 103 mm3.

Question:
Which stress distribution is correct?
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4.35 A column with rectangular cross-section
is loaded by an eccentric compressive force
F = 720 kN. The dead weight of the column is
neglected.

Question:
Plot the normal stress diagram for cross-section
I–I.

4.36 Due to an eccentric compressive force F ,
there is the stress distribution in cross-section I–I
of the column as shown. The cross-section of the
column is square with 400 mm sides.

Questions:
a. Determine the magnitude of force F .
b. Determine the eccentricity of force F .

4.37 The tower shown has a square cross-section with 10 m sides and
a weight of 3 kN/m3. The tower is subject to horizontal wind loading of
1 kN/m2. The tower is on a spread foundations. The foundation plate is
square with 10 × 10 m2 dimensions. It is assumed that the earth pressure
under the foundation plate is linear and that it can be determined using the
stress formula for a member subject to bending and extension.

Question:
Determine height h for which there are no tensile stresses under the foun-
dation plate.

4.38 The chimney, that can be understood as a thin-walled circular tube
with radius R = 0.5 m, is 10 m high and has a dead weight of 60 kN. Fw
is the resultant of the horizontal wind loading. Tensile stresses are not
permitted in the cross-section at the base.

Question:
Determine the maximum value of Fw.
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4.39 The figure shows the centre lines of a clamping bracket ABCD,
modelled as a line element. The clamping bracket has a T-shaped cross-
section. The cross-sectional dimensions are given in the figure. The wall
thickness is a uniform 12 mm. The cross-section can be considered thin-
walled. The clamping bracket is loaded at A and D by two compressive
forces of 5.76 kN.

Questions:
a. Determine the required cross-sectional quantities.
b. Determine and plot the normal stress distribution in cross-section a–b.
c. Determine and plot the normal stress distribution in cross-section c–d.

4.40 The beam ADB has a rectangular cross-section and rests with its
lower side on a hinged support at A and an oblique bar support DG at D.
The dimensions are given in the figure. ADB bears a uniformly distributed
load of 90 kN/m.

Questions:
a. Model beam ADB as a line element, and draw all the forces acting on

it.
b. For ADB, draw the bending moment, shear force and normal force

diagrams.
c. Determine and the plot the normal stress diagram for the cross-sections

at C and E.
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4.41 The beam shown has a rectangular cross-section, and is supported by
a hinge at A at the lower side of the beam, and by an oblique bar support at
B at the upper side. A vertical force F = 250 kN acts at the free end.

Questions:
a. Model the isolated beam as a line element, and draw all the forces

acting on it.
b. Plot the M , V and N diagrams.
c. Plot the normal stress diagram for the cross-section at D.
d. Plot the normal stress diagram for the cross-section directly to the left

of B.
e. Plot the normal stress diagram for the cross-section directly to the right

of B.
f. Which of the diagrams (c, d or e) is closest to reality? Explain your

answer.

4.42 The thin-walled T-beam shown has a uniform wall thickness of 10 mm
and is loaded as shown by the forces F1 = 240 kN and F2 = 30 kN. For
the cross-section A = 12 × 103 mm2 and Izz = 450 × 106 mm4.

Questions:
a. Model the beam as a line element, and plot the M and N diagrams.
b. Determine and plot the normal stress diagram for the cross-section at

support B.
c. Determine and plot the normal stress diagram for the cross-section

midway between A and B.

4.43 A thin-walled steel column with height h and a uniform wall thickness
t is fixed at its base and is loaded by the forces F1 and F2 at its free end,
as shown in the figure. In the calculation use F1 = 315 kN, F2 = 63 kN,
h = 3 m and t = 10 mm. The following cross-sectional quantities are ad-
ditionally given: A = 15 × 103 mm2 and Izz = 840 × 106 mm4. The loca-
tion of the normal centre NC can be read from the figure.

Questions:
a. Model the column as a line element and draw all the forces acting on

it, including the support reactions.
b. Plot the N and M diagrams, with the signs (deformation symbols).
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c. Determine and plot the normal stress diagram for the cross-section at
the fixed end. At which distance from NC is the neutral axis in this
cross-section?

d. Determine and plot the normal stress diagram at half-height. At which
distance from NC is the neutral axis in this cross-section?

4.44 The concrete column shown, with a height 4 m, is fixed at its base.
The column is loaded by an eccentric compressive force of 480 kN and
a horizontal force of 96 kN at its free end. The column has a trapezoidal
cross-section. The dimensions can be read from the figure. The modulus of
elasticity for concrete is 30 GPa.

Questions:
a. Show the correctness of the location of the normal centre NC.

b. Prove that Izz = 6.6 × 109 mm4.
c. Model the column as a line element and plot the M and N diagrams

with signs (deformation symbols).
d. Determine the normal stress diagram for the cross-section at the fixed

end.
e. Determine the normal stress diagram for the cross-section 0.5 m below

the free end.
f. Determine the normal stress diagram for the cross-section at half-

height.
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4.45 A straight tendon has been placed in a canal in a concrete beam with
rectangular cross-section. With a prestressing jack, a tensile stress σp is
generated in the tendon after which the jack is replaced by an anchorage.
The diagram shows the stresses produced by the prestressing in each
cross-section. The stress is given in N/mm2. The beam dimensions are in
mm.

Other data: Cross-section tendon Ap = 200 mm2; modulus of elas-
ticity tendon Ep = 200 × 102 mm2; modulus of elasticity of concrete
Ec = 35 × 103 N/mm2. The concrete beam can be considered to have
a homogeneous concrete cross-section (the area of the canal can be
neglected).

Questions:
a. Determine the magnitude of the prestressing force Fp and the distance

c of the tendon to the bottom side of the beam.
b. Determine the lengthening of the tendon due to the prestressing.
c. Determine the shortening of the concrete fibres in the layer at the height

of the tendon due to the prestressinging.
d. Determine the “stroke” (lengthening) that the prestressing jack has to

make.
e. Determine the maximum uniformly distributed load q (including the

dead weight) that the beam can carry without tensile stresses in the
fibres and with compressive stresses that do not exceed the limiting
value of 12 N/mm2.

f. Determine the change in length that the concrete fibres at the height of
the tendon undergo due to this load q .

g. Show that the magnitude of the prestressing force is marginally larger
under the influence of the load q calculated under (e).

4.46 You are given a simply supported centrally prestressed cantilevered
T-beam. The prestressing force is 1200 kN. The dimensions and load are
given in the figure. For the cross-section of the beam use
A = 240 × 10−3 m2, Iyy = 4.5 × 10−3 m4 and Izz = 7.4 × 10−3 m4.

Questions:
a. Plot the M , N and V diagrams as a result of loading and prestressing.
b. In which cross-section is the compressive stress a maximum? Plot the

normal stress distribution for that cross-section.
c. In which cross-section is the tensile stress a maximum? Plot the normal

stress distribution for that cross-section.
d. Plot the normal stress distribution in the cross-section at support B.
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4.47 You are given an eccentrically prestressed T-beam. The straight
tendon is 90 mm below the beam axis. The prestressing force is 1200 kN.
Dimensions and load are given in the figure. For the beam cross-section
use A = 0.24 m2, Iyy = 4.5 × 10−3 m4 and Izz = 7.4 × 10−3 m4.

Questions:
a. Plot the M and N diagrams.
b. In which cross-section is the compressive stress a maximum? Plot the

normal stress distribution for that cross-section.
c. In which cross-section is the tensile stress a maximum? Plot the normal

stress distribution for that cross-section.
d. Where in the cross-section at E is the neutral axis? Determine the

distance from the neutral axis to the lower side of the cross-section.

4.48 You are given the normal stress diagram in the cross-section at
midspan C of the simply supported cantilevered T-beam, loaded by

two equal forces F . The tendon is straight and is placed d = 345 mm
from the lower side of the beam. The dimensions and location of the
normal centre NC in the cross-section are given in the figure. For the
cross-section of the beam use A = 480 × 103 mm2, Iyy = 16 × 109 mm4

and Izz = 33.3 × 109 mm4.

Questions:
a. Determine the normal force and the bending moment in the cross-

section at midspan C.
b. Determine the prestressing force Fp.
c. Determine the forces F .
d. Plot the M diagram for the beam, with the deformation symbols.
e. Determine the normal stress diagram for the cross-section at support B.



250 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

4.49 The cantilevered prestressed beam shown has a rectangular cross-
section. The straight tendon is located at (y = 0; z = −60 mm). The
prestressing force Fp is 432 kN. The beam carries a uniformly distributed
load q = 10 kN/m over its entire length.

Questions:
a. Plot the N and M diagrams due to only the prestressing force Fp.
b. Plot the M diagram due to the distributed load q .
c. Plot the normal stress diagram for a cross-section directly next to

support A.
d. Plot the normal stress diagram for the cross-section at support B.
e. Determine the normal stress diagram for the cross-section midway

between A and B.

4.50 You are given a simply supported prestressed beam with rectangular
cross-section which carries a uniformly distributed load q over its entire
length. The straight tendon is located at (y = 0, z = ep). The prestressing
force is Fp. In the calculation use � = 8 m, b = 0.5 m, h = 0.9 m,
q = 100 kN/m and ep = 250 mm.

Questions:
a. Determine the minimum prestressing force Fp for which there is no

tension in the cross-section at midspan.
b. Plot the normal stress diagram for that cross-section. Clearly indi-

cate the separate contributions due to the distributed load q and the
prestressing force Fp.

4.51 A normal force N and bending moment Mz = M are acting in
the rectangular cross-section shown, with dimensions b = 200 mm and
h = 360 mm.
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Questions:
a. In the MN diagram, plot all combinations of M and N for which

the maximum tensile or compressive stress in the cross-section is
15 N/mm2.

b. In the diagram, hatch the area with combinations of M and N for which
the tensile and compressive stresses in the cross-section do not exceed
the value of 15 N/mm2.

c. In the same diagram, plot all combinations of M and N for which
the stress in the upper or lower fibre layer is zero, and the stresses
in all the other fibres are compressive and do not exceed the value of
15 N/mm2. Hatch the area for which there are no tensile stresses and
the compressive stress nowhere exceeds the value of 15 N/mm2.

d. If a force Fx is applied at (y, z) = (0,−20 mm), plot the path in the
MN diagram as Fx varies. For which value(s) of Fx has the compres-
sive stress reached the limit value of 15 N/mm2? Check the value(s) by
plotting the associated stress diagram.

Section modulus and bending without extension (Sections 4.6 and 4.7)

4.52 You are given two cross-sections.

Questions:
a. Determine the section modulus Wz;b.
b. Determine the section modulus Wz;t.
c. Determine the maximum bending stress due to Mz = 408 Nm.
d. Plot the stress diagram due to Mz = 408 Nm.
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4.53: 1–5 An IPE-section is used for the five steel beams shown. The
strength demand is that the maximum bending stress for the given load
may not exceed 160 N/mm2.

Questions:
a. Determine the lightest section from the

table that meets this strength demand.
b. Determine the maximum bending

stress upon application of the chosen
section.

Section W in mm3

a. IPE 270 429 × 103

b. IPE 300 557 × 103

c. IPE 330 713 × 103

d. IPE 360 904 × 103

e. IPE 400 1160 × 103

f. IPE 450 1500 × 103

g. IPE 500 1980 × 103

4.54 You are given a wooden joisting covered by a wooden floor. The
beams must be able to carry a floor load of 4 kN/m2. Use in the calculation
� = 6 m, a = 0.6 m, b = 150 mm and h = 300 mm.

Questions:
Determine the maximum bending stress in a joist for the given floor load.

4.55 A simply supported wooden beam, 2 m long, is loaded at midspan by
a point load of 10.5 kN. The rectangular cross-section of the beam is 0.2 m
wide and 0.1 m high.
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Questions:
a. Determine the maximum bending stress in the beam.
b. In order to ensure that the maximum bending stress remains below the

limiting value of 7 MPa, a 0.2 m wide wooden strip is glued to the
beam. What is the minimum required thickness of this strip?

4.56 In the beam shown, the bending stress due to the given load may not
exceed 10 N/mm2.

Questions:
a. Select from the table the minimum required

width b.
b. Determine the maximum bending stress for

the chosen width.

b in mm

a. 90

b. 110

c. 130

d. 150

4.57: 1–2 The two wooden beams shown are designed exclusively for
strength. The maximum bending stress due to the given load in the
serviceability state may not exceed 10 N/mm2.

Questions:
a. Determine the minimum required beam height

h from the table below that meets the given
strength demand.

b. Determine the maximum bending stress upon
application of the chosen beam height.

h in mm

a. 210

b. 230

c. 240

d. 260
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4.58 The beam shown has a rectangular cross-section and may not be
higher than 500 mm. For the given load, the bending stress must remain
below 10 N/mm2.

Question:
Determine the minimum required width of the beam.

4.59 You are given a simply supported wooden beam with rectangular
cross-section and a uniformly distributed load q over the entire length of
the beam. The bending stress in the beam may not exceed 10 N/mm2.

Question:
Determine the maximum admissible load q on the beam.

4.60 The wooden beam is constructed of planks glued on top of one an-
other, 150 mm wide and 30 mm thick. For the given load, the maximum
bending stress may not exceed 10 N/mm2.

Questions:
a. Determine the minimum height of the beam.
b. Determine the maximum bending stress for the calculated height of the

beam.

General stress formula related to the principal directions (Section 4.8)

4.61 A simply supported, 4-m long purlin in an inclined roof plane is
loaded at midspan by a vertical force of 1 kN.

Questions:
a. Determine the cross-section in which the bending stress is a maximum.
b. Determine the magnitude of this maximum bending stress.
c. For this cross-section, determine the normal stresses at the four corners.
d. Plot the normal stress diagram.
e. Draw the neutral axis in the cross-section.

4.62 A simply supported beam with a length of 6 m and a rectangular
cross-section of 100 × 200 mm2 bears a vertical uniformly distributed load
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q1 = 1600 N/m and a horizontal uniformly distributed load q2 = 400 N/m,
both over the entire length of the beam.

Questions:
a. In which cross-section is the bending stress a maximum?
b. Determine the magnitude of this bending stress.
c. For this cross-section, determine the normal stresses at the four corners.
d. Plot the normal stress diagram.
e. Draw the neutral axis in the cross-section.

4.63 In the rectangular cross-section shown, the resultant of all normal
stresses is a compressive force of 27 kN with its point of application at the
upper left-hand corner.

Questions:
a. Determine the normal force N and the bending moments My and Mz.
b. Determine the normal stress at each of the corners.
c. Plot the normal stress diagram.
d. Draw the neutral axis in the cross-section.

4.64 An angle steel with equal legs is fixed at A (with one of the legs ver-
tical) and free at B. There is a vertical force of 500 kN at B. The centroidal
moments of inertia of the angle steel are Iyy = Izz = 225 × 103 mm4

and Iyz = −135 × 103 mm4. The principal moments of inertia are
Iyy = 90 × 103 mm4, Izz = 360 × 103 mm4 and Iyz = 0. The angle steel
is thin-walled.

Question:
Determine the normal stresses in P, Q and R of the cross-section at A.

Core of the cross-section (Sections 4.9 and 4.10)

4.65 What do you understand by the core of the cross-section?
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4.66: 1–3 You are given three different cross-sections.

Questions:
a. Determine the location of the upper core point.
b. Determine the location of the lower core point.

4.67 A column has a solid circular cross-section with a diameter of
400 mm.

Question:
Determine the core radius of the cross-section.

4.68 In the cross-section of a thin-walled tube with an area A = 2500 mm2,
the resultant of all normal stresses is a tensile force of 200 kN of which the
point of application is on the edge of the core.

Questions:
a. Determine the maximum normal stress in the cross-section.
b. Plot the normal stress distribution in the cross-section.

4.69 For the steel I-section shown applies A = 15 × 103 mm2 and
Izz = 24.75 × 106 mm4.

Questions:
a. Plot the normal stress diagram if the resul-

tant of all normal stresses is a tensile force
of 495 kN with its point of application at the
lower core point of the cross-section.

b. Determine the location of the lower core
point.

4.70 You are given the cross-section of a T-beam.

Questions:
a. Plot the normal stress diagram if a tensile

force of 27 kN is applied at the upper core
point.

b. Draw the normal stress diagram if a com-
pressive force of 336 kN is applied at the
lower core point.

c. Determine the location of the upper core
point.

d. Determine the location of the lower core
point.
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4.71 You are given a square hollow cross-section.

Question: Draw the core of this cross-section.

4.72 A block with square cross-section of
600 × 600 mm2 has a mass of 3600 kg and is
loaded at the middle of one of its sides by a com-
pressive force of 36 kN. The stress distribution
under the block is linear. Use g = 10 N/kg for the
gravitational field strength.

Questions:
a. Determine the maximum compressive stress if

tensile stresses are allowed under the block.
Plot the stress distribution under the block.

b. Determine the maximum compressive stress
if no tensile stresses are allowed under the
block. Plot the stress distribution under the
block.

Mixed problems

4.73 You are given a small element with length dx

from a member subject to bending. As a result of
a bending moment M , the end cross-sections of the
element rotate through an angle dϕ with respect to
one another. In the calculation use M = 24 kNm,
dx = 150 mm and dϕ = 3 × 10−3 rad.

Question:
Determine the bending stiffness EI of the member.

4.74 The cross-section shown is subject to bending. The cross-sectional
dimensions are in mm.

Question:
Which stress diagram could be correct?
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4.75: 1–4 You are given four different rectangular cross-sections with
associated normal stress diagrams. The cross-sectional dimensions are in
mm, the stresses are in N/mm2.

Questions:
a. Determine the normal force in the cross-section, with the right sign.
b. Determine the bending moment in the cross-section, with the right

bending symbol (� or �).

4.76: 1–2 You are given the cross-sections of two T-beams with associated
normal stress diagrams. The cross-sectional dimensions are in mm and the
stresses are in N/mm2.

Question:
Determine the normal force N in the cross-section. Is this a tensile or
compressive force?

4.77 A thin-walled box with rectangular cross-section and uniform wall
thickness has been used for the cantilevered beam shown.



4 Members Subject to Bending and Extension 259

Questions:
a. In which cross-section is the normal stress a maximum for the given

load?
b. Plot the normal stress diagram for that cross-section.

4.78 A uniformly distributed load q = 26.1 kN/m acts on the cantilevered
beam shown. An I-section is used for the beam, with a height h = 300 mm
and moment of inertia Izz = 270 × 106 mm4.

Questions:
a. Determine the maximum bending stress in the beam if a = 1 m, and

the location of the cross-section in which this stress occurs.
b. Determine the maximum bending stress in the beam if a = 2 m, and

the location of the cross-section in which this stress occurs.

4.79 You are given a column with rectangular
cross-section, loaded by an eccentric compressive
force.

Questions:
a. How large may the eccentricity e be so that no

tension occurs in the column.
b. For that value of e determine the maxi-

mum compressive stress in an arbitrary cross-
section if F = 150 kN.

4.80 The given cross-section of a wooden joist is
subject to a bending moment M and normal force
N , acting in the vertical plane of symmetry. There
are just no tensile stresses in the cross-section.

Questions:
a. Determine the normal force N if M = 3 kNm.
b. Determine the maximum normal stress in the

cross-section if b = 75 mm.
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4.81 For the homogeneous block with rectangular
cross-section, the given normal stress distribution at
the base is the result of the dead weight G = 48 kN
and the eccentric compressive force F .

Question:
Determine the magnitude of force F .

4.82 Beam ACDB has a rectangular cross-section and is supported at its
lower side by a hinge at A and an oblique bar at D. The beam is loaded by
a vertical force of 300 kN at the free end B.

Questions:
a. Model the isolated beam as a line element and draw all the forces acting

on it.
b. Draw the M , V and N diagrams.
c. Draw the normal stress diagram for the cross-section at C.
d. Draw the normal stress diagram for the cross-section directly to the left

of D.
e. Draw the normal stress diagram for the cross-section directly to the

right of D.
f. Which of the diagrams (c, d or e) is closest to reality? Explain your

answer.

4.83 The cantilever beam with a length of 3 m has a thin-walled T-cross-
section. The beam is loaded at its free end by two forces with their point of
application at the centre of the flange: a horizontal tensile force of 36 kN
and a vertical force Fz = 4.5 kN.

Questions:
a. Demonstrate the correctness of the location of the given normal centre

NC.
b. Verify that Iyy = 90 × 106 mm4 and Izz = 360 × 106 mm4.
c. Model the beam as a line element, draw all the forces acting on it, and

draw the M and N diagrams.
d. Draw the normal stress diagram for the fixed cross-section at x = 0 m.
e. Draw the normal stress diagram for the cross-section at x = 2 m.
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4.84 A thin-walled steel column with height h and uniform wall thickness
t is fixed at its base. The column is loaded at its free end by forces F1
and F2 (see the figure). In the calculation use F1 = 315 kN, F2 = 63 kN,
h = 3 m and t = 10 mm. For the cross-sectional quantities it is given that
A = 15 × 103 mm2 and Izz = 840 × 106 mm4. The location of the normal
centre is given in the figure.

Questions:
a. Model the column as a line element and draw all the forces acting on

it, including the support reactions.
b. Draw the N and M diagrams, with the correct signs/symbols.
c. Determine and draw the normal stress diagram for the cross-section at

the fixed end. In this cross-section, how far is the neutral axis from NC?
d. Determine and draw the normal stress diagram for the cross-section

halfway up. In this cross-section, how far is the neutral axis from NC?

4.85 The cantilevered beam with rectangular cross-section is prestressed
by means of a straight tendon at P, with an eccentricity e = 100 mm. The
prestressing force Fp is unknown. All other data can be found from the
figure.

Questions:
a. Draw the M diagram as a result of only force F = 16 kN, with the

deformation symbols.
b. Draw the N and M diagrams due to the unknown prestressing force Fp

(express the values in Fp and e), with the deformation symbols.
c. Determine the minimum prestressing force Fp for which no tension

occurs in the cross-section at support B.
d. Draw the N and M diagrams due to F = 16 kN and Fp with the value

determined in (c).
e. Draw the normal stress diagram for the cross-section at support B.
f. Draw the normal stress diagram for the cross-section at support A.
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4.86 The simply supported prestressed beam has a rectangular cross-
section and carries a uniformly distributed load across its entire length.
The prestressing cable is straight and located at (y = 0; y = 100 mm). The
prestressing force Fp is unknown.

Questions:
a. Determine the minimum prestressing force Fp for which no tension

occurs in the cross-section at midspan C.
b. Draw the normal stress diagram for the cross-section at C.
c. Draw the normal stress diagram for the cross-section at A.
d. Are both diagrams (in A and C) equally realistic? Explain your answer.

4.87 The T-beam shown is prestressed with a straight prestressing bar at P.
The prestressing force is 240 kN. All other data can be found in the figure.

Questions:
a. Determine the N and M diagrams due to the load and prestressing

together.
b. In which cross-section is the tensile stress a maximum? Draw the

normal stress diagram for that cross-section.
c. In which cross-section is the compressive stress a maximum? Draw the

normal stress diagram for this cross-section.

4.88 Cantilever beam AB, with rectangular cross-section, is fixed at A. At
its free end B the beam is loaded in the xz plane by a (horizontal) compres-
sive force F . The point of application of F is unknown. The compressive
force F generates a compressive stress of 12 N/mm2 in the top fibre layer
of the cross-section at C, and a zero stress in the bottom fibre layer of that
cross-section.
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Questions:
a. Draw the normal stress diagram for the cross-section at C.
b. Determine the normal force N and bending moment M for the cross-

section at C.
c. How large is the compressive force F and where in the cross-section B

is its point of application?
d. Draw the N and M diagrams due to F .

If there is also a uniformly distributed load qz acting over the entire length
of the beam, there are some more questions:
e. Determine the maximum value qz whereby no tensile stresses occur in

the beam.
f. Draw the N and M diagrams due to the values determined for F and

qz.
g. Draw the normal stress distribution for the cross-section at A.
h. Draw the normal stress distribution for the cross-section at C.

4.89 A simply supported 3.6 m purlin is carrying a uniformly distributed
load of 1 kN/m over its entire length.

Questions:
a. In which cross-section is the bending stress a maximum?

b. Determine the magnitude of this maximum bending stress.
c. For this cross-section, determine the normal stresses in the four corners.
d. Draw the normal stress diagram.
e. Sketch the neutral axis in the cross-section.

4.90 The given thin-walled cross-section is subject to the bending
moments My = −80σa2t and Mz = +52σa2t .

Questions:
a. Determine the normal stresses at corners A to D, expressed in σ .
b. Draw the normal stress distribution in the cross-section.
c. Sketch the neutral axis in the cross-section.
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4.91: 1–2 Two columns are loaded by an eccentric compressive force of
20 kN. Column (1) has a rectangular cross-section and column (2) has a
thin-walled U-cross-section.

Questions:
a. Determine the normal stress at the corners of cross-section I–I if the

compressive force is applied at A. Where in the cross-section is the
neutral axis?

b. Determine the normal stress at the corners of cross-section I–I if the
compressive force is applied at B. Where in the cross-section is the
neutral axis?

4.92: 1–2 You are given two symmetrical rectangular hollow cross-
sections. The cross-sections are subject to bending moments My and Mz.
Use in the calculation the following values for

• cross-section (1): My = 712.8 kNm and Mz = 648 kNm.
• cross-section (2): My = 3.6 kNm and Mz = 1.8 kNm.

Questions:
a. Determine section modulus Wy .
b. Determine the maximum bending stress due to the bending moment

My .
c. Determine section modulus Wz.
d. Determine the maximum bending stress due to bending moment Mz.

4.93 You are given the cross-section of a beam, with associated nor-
mal stress distribution. The cross-sectional dimensions are in mm and the
stresses in N/mm2.

Questions:
a. Determine the section modulus for the cross-section.
b. Determine the normal force N in the cross-section, with the right sign.
c. Determine the bending moment M in the cross-section, with the right

deformation symbol (� or �).
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4.94 For the given cross-section it applies that A = 20 × 103 mm2 and
Izz = 240 × 106 mm4.

Questions:
a. Draw the normal stress diagram if the resultant of all stresses is a tensile

force of 60 kN that has its point of application at the upper core point.
b. Determine the distance from the upper core point to the normal centre

of the cross-section.

4.95 The location of the normal centre NC and upper core point A are
shown in the given cross-section.

Question:
Determine the location of lower core point B, i.e. the lower core radius kb.

4.96 You are given the cross-section of a thin-
walled circular steel tube, with radius R and wall
thickness t .

Question:
Determine the core radius of the cross-section, to
be expressed in R and t .

4.97 You are given a solid iso-
sceles triangular cross-section
with base b and height h.

Questions:
a. Determine section modulus

Wz;b.
b. Determine section modulus

Wz;t.
c. Determine the location of

the upper core point.
d. Determine the location of

the bottom edge of the core.



266 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

4.98: 1–2 You are given two homogeneous cross-sections with the same
normal stress diagram. The cross-sectional dimensions are given in mm
and the stresses in N/mm2.

Questions:
a. Determine the location of the normal centre.
b. From the stress diagram given, determine the magnitude and point of

application of resultant Rt of all tensile stresses.
c. From the stress diagram given, determine the magnitude and point of

application of resultant Rc of all the compressive stresses.
d. From the magnitudes and the points of application of the stress resul-

tants Rt and Rc determine the normal force N and the bending moment
M in the cross-section, with the correct signs or deformation symbols.

e. Where in the cross-section is the centre of force?
f. If E = 30 × 103 N/mm2, draw the deformation diagram and determine

from this diagram the deformation quantities ε and κ .
g. Using the answers from (d) and (f), determine the magnitude of the

axial and bending stiffness at the cross-section.

4.99 A simply supported wooden beam is constructed of n planks, 22 mm
thick, that have been glued together. The beam has a span of � = 3 m and
carries a uniformly distributed load q = 24 kN/m.

Question:
Determine the minimum number of planks n for which the bending stress
is no larger than 10 N/mm2.

4.100 You are given a simply supported wooden beam with rectangular
cross-section and a uniformly distributed load q .

Question:
Determine the uniformly distributed load q for which the maximum
bending stress is 6 N/mm2.
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4.101 You are given a wooden cantilever beam with rectangular cross-
section, and loaded at its free and by a force F .

Question:
Determine the force F for which the maximum bending stress in the beam
is 10 N/mm2.

4.102 The cantilevered beam shown has a rectangular cross-section with
a height h that is three times the width b. For the given load, the bending
stress may not exceed the value of 10 N/mm2 at any point.

Question:
Determine the minimum height h of the beam.

4.103 A T-beam, with a = 2 m, is loaded as shown by forces F1 = 195 kN
and F2 = 45 kN. The centroidal moment of inertia Izz of the cross-section
is 1.8 × 109 mm4.

Questions:
a. Determine the maximum bending tensile stress in the beam.
b. Determine the maximum bending compressive stress in the beam.
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4.104 You are given a 10 m marble column fixed in a foundation and free
at the other end. The column has a circular cross-section with diameter
d = 1 m. The dead weight of marble is 27.5 kN/m3. No tensile stresses are
allowed in marble. The column is subject to a uniformly distributed wind
load q .

Questions:
a. Determine the maximum wind load q .
b. Determine the normal stress distribution in the cross-section at the fixed

end due to the wind load and the dead weight.
c. Draw the normal stress distribution in the cross-section at half-height

due to wind load and the dead weight.

4.105 The tapered column shown is loaded by a compressive force of
240 kN at the centroid of the upper cross-section. The dead weight of the
column is ignored. To determine the normal stresses in a cross-section, you
can use the stress formula derived for a prismatic member.

Question:
Determine the normal stress at A.
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4.106 A block with 0.5 × 0.5 m2 base and height of 1 m is standing freely
on the floor. The dead weight of the block is 5 kN. The block is pushed by
a horizontal force of 625 N. The block cannot slide. The normal stresses
between block and floor are assumed linear.

Question:
Which of the diagrams for the stress distribution between block and floor
may be correct?

4.107 The soil under the square 3 × 3 m2 foundation plate cannot transfer
tensile stresses. The stress distribution for the given load is shown.

Questions:
a. Determine the distance a over which there is no earth pressure.
b. Determine the maximum earth pressure under the foundation plate.
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4.108 A tower-like structure is rigidly fixed to a square 6×6 m2 foundation
plate. The foundation plate is assumed to be rigid. The soil should be
seen as an elastic layer, generating a counter pressure that is proportional
to its compression The total weight of the structure with foundation
plate is G. The resultant of the wind load is W and acts 14.14 m above
the base of the foundation plate. The earth pressure on the foundation
plate due to G and W is 14.65 kN/m2 along AB and 85.35 kN/m2 along CD.

Questions:
a. Determine G and W from the given earth pressure.
b. Determine the earth pressure under the foundation plate due to G and

W when the wind load W acts in the direction AC. Use for G and W

the values found in question (a).
c. Which of the wind directions intended under (a) and (b) is least

favourable with respect to the strength of the foundation?

4.109 A solid wooden raft with a square surface of 3 × 3 m2 and thickness
of 0.14 m is floating in still water. Assume that the raft does not deform.
A person is standing still (with bare feet) at one of the corners. Mass

density water: 1000 kg/m3. Mass density wood: 500 kg/m3. Assume the
gravitational field strength is 10 N/kg.

Question:
What weight G is allowed so that the person does not get his feet wet?

4.110 You are given the thin-walled T-section (t � a).

Questions:
a. In a diagram, plot all the combinations of M and N for which the max-

imum tensile stress and/or compressive stress has reached the limiting
value σ̄ .

b. In the diagram, hatch the area with the combinations M and N for
which neither the tensile stress nor the compressive stress exceeds the
limiting value σ̄ .



5Shear Forces and Shear
Stresses Due to Bending

In the previous chapter, we looked (inter alia) at the normal stress distribu-
tion in the cross-section of a member subject to extension and bending. The
normal stress distribution in a cross-section is directly related to the normal
force and the bending moment.

When the bending moment in a beam is not constant the beam must also
transfer shear forces. There are not only shear forces and shear stresses
in the cross-sectional planes of the beam, but also in longitudinal section
planes.

In Section 5.1 we look at the shear forces and shear stresses in a longitudinal
section plane and we derive the associated formulas. Some examples are
given in Section 5.2.

In Section 5.3 we derive the formulas for the shear stresses in a cross-
sectional plane. The application of these formulas is illustrated by a number
of examples in Section 5.4. Each of the examples contains something
noteworthy.

In Section 5.5 we address the concept of the shear force centre or shear
centre SC. The shear centre is that point in the cross-section through which
the line of action of the shear force must pass so that there will be no torsion.
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Figure 5.1 (a) A rectangular beam, built up of two square beams
joined together rigidly by a glued joint, behaves as a solid beam.
(b) The associated bending stress diagram in the cross-section at
midspan. (c) The square beams are separate and can move with
respect to one another. (d) The associated bending stress diagram
for the cross-section at midspan.

In Section 5.6 a summary is given of the various formulas and rules.

Chapter 5 ends with a number of problems in Section 5.7.

When deriving and applying the various formulas, we consistently use signs
to indicate the directions of the various quantities. In practice these signs
are often omitted and one works with the absolute values. The directions are
then (if necessary) determined afterwards on the basis of insight, experience
and common sense.

5.1 Shear forces and shear stresses in longitudinal
direction

The fact that shear forces can occur in the longitudinal direction of beams
subject to bending is illustrated by the simply supported beam in Figure 5.1.
The beam with a rectangular cross-section is built up of two square beams,
and is loaded by a force at midspan.

In Figure 5.1a both square beams are rigidly joined, for example by means
of a glued joint, and they work together fully: the rectangular beam behaves
as a solid beam. The normal stress diagram for the cross-section at midspan
is shown in Figure 5.1b.

In Figure 5.1c the square beams are separate and can move with respect to
one another. The bottom fibres of the upper beam lengthen, while the top
fibres of the lower beam shorten. Figure 5.1d shows the normal stress dia-
gram at midspan. If each square beam is carrying half of the total load, the
maximum bending stresses are twice as large as those in the stress diagram

If both square beams work together fully, longitudinal shear forces (inter-

in Figure 5.1b. The calculation is left to the reader.
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Figure 5.2 If both square beams work together fully, longitu-
dinally shear forces (interaction forces) have to act between both
beams to eliminate the difference in length between the adjacent
fibres at the glued joint.

Figure 5.3 (a) A beam segment between the cross-sections a-a and
b-b, with small length �x (�x → 0). The normal stress in a fibre is
not constant but changes over the length �x. (b) The cross-section
of the beam segment; all fibres in the z fibre layer have the same
normal stress.

action forces) will have to act in the glued joint in order to eliminate the
difference in length between the deformed adjacent fibres of both square
beams (see Figure 5.2).

In this section we derive the formulas for the shear force and shear stresses
in a longitudinal section plane.

5.1.1 Change of the normal stress in a fibre

In preparation of determining the magnitude and distribution of the shear
forces in the longitudinal direction, we first determine how the normal stress
in a fibre changes between two consecutive cross-sections a-a and b-b at a
small distance �x (�x → 0) (see Figure 5.3).

The normal stress σ(z) in a z fibre layer follows from the stress formula

σ(z) = N

A
+ Mzz

Izz

. (5.1)

Here it must be noted that the formula applies only when
• the x axis passes through the normal centre NC, and
• the z direction is a principal direction.

The normal stress distribution in cross-section a-a will generally differ from
that in cross-section b-b. Assume σ(z) is the normal stress in a z fibre at
cross-section a-a and σ(z)+�σ(z) is the normal stress in the same fibre at
cross-section b-b. In the limit �x → 0, the change per length of the normal
stress in the fibre considered is

lim
�x→0

�σ(x)

�x
= dσ(z)

dx
= d

dx

(
N

A
+ Mzz

Izz

)
. (5.2)
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• the beam is prismatic, and
• the normal force is constant.

If the beam is prismatic, the cross-sectional properties A and Izz are
constant, i.e. independent of the x coordinate. In that case, (5.2) can be
written

dσ(z)

dx
= 1

A

dN

dx
+ z

Izz

dMz

dx
.

If N is also constant, i.e. independent of x, then dN/dx = 0. With
dMz/dx = Vz the change per length of the normal stress in a z fibre is
now

dσ(z)

dx
= z

Izz

dMz

dx
= Vzz

Izz
. (5.3)

The change in normal stress in a z fibre is directly related to the change in
the bending moment, i.e. to the shear force.

Note: Since the derivation is based on stress formula (5.1), formula (5.3)

• the x axis passes through normal centre NC, and
• the z direction is a principal direction.

Next we determine the shear force in the longitudinal direction.

5.1.2 Shear force in the longitudinal direction (traditional formula)

From the small beam segment in Figure 5.4a, with length �x, the lower
part has been isolated. This part is referred to as the shearing element or

Figure 5.3 (a) A beam segment between the cross-sections a-a and
b-b, with small length �x (�x → 0). The normal stress in a fibre is
not constant but changes over the length �x. (b) The cross-section
of the beam segment; all fibres in the z fibre layer have the same
normal stress.

applies only when

Below, we will use the following two assumptions:
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Figure 5.4 (a) The lower part of the beam segment, with small
length �x, has been isolated and is called the sliding element.
(b) The cross-section of the sliding element has an area Aa. (c) Spa-
tial representation of the sliding element with all forces acting on it.
Since the resultant of all the normal stresses on the front and back
of the sliding element are not equal, a longitudinal shear force must
act on the longitudinal section plane.

sliding element. Quantities relating to the sliding element hereafter have an
upper index “a”. In this way, Aa is the cross-sectional area of the sliding
element (see Figure 5.4b). Figure 5.4c gives a spatial representation of the
sliding element.

Note: The longitudinal section plane may be curved in the transverse
direction.

Assume the resultant of all normal stresses on the back of the sliding ele-
ment is Na and that on the front is Na + �Na (see Figures 5.4a and 5.4c).
Here

Na =
∫

Aa
σ(z) dA. (5.4)

Since the resultants of the normal stresses on the front and back of the
sliding element are not equal, a longitudinal shear force must act on the
longitudinal section plane.

Assume sa
x is the shear force per length in the longitudinal direction, acting

on the sliding element. The total shear force on the sliding element, with
small length �x, then equals sa

x�x.

Note: Here we assume that the longitudinal shear forces and shear stresses,
acting on the sliding element, are positive if they act in the positive x

direction.

The sliding element has to meet the conditions of force equilibrium in x

direction:

∑
Fx = −Na + (Na + �Na) + sa

x�x = 0.
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In the limit �x → 0 we find

sa
x = lim

�x→0

�Na

�x
= −dNa

dx
. (5.5)

dNa/dx is found by differentiating (5.4):

dNa

dx
= d

dx

∫
Aa

σ(z) dA =
∫

Aa

dσ(x)

dx
dA.

Differentiating with respect to the longitudinal direction and integrating
with respect to the cross-sectional area of the sliding element are two
independent operations that may be interchanged.

Using (5.3) we now find

dNa

dx
=

∫
Aa

dσ(x)

dx
dA =

∫
Aa

Vzz

Izz

dA = Vz

Izz

∫
Aa

z dA = VzS
a
z

Izz

. (5.6)

In (5.6), in the last but one step, Vz and Izz have been placed outside the
integral as they apply to the entire cross-section. The remaining integral

∫
Aa

z dA

is equal to the static moment of the cross-sectional area of the sliding
element and is denoted by Sa

z .

Substituting (5.6) into (5.5) gives the following formula for sa
x , the shear

force per length in the longitudinal direction:

sa
x = −dNa

dx
= −VzS

a
z

Izz

. (5.7)

Figure 5.4 (a) The lower part of the beam segment, with small
length �x, has been isolated and is called the sliding element.
(b) The cross-section of the sliding element has an area Aa. (c) Spa-
tial representation of the sliding element with all forces acting on it.
Since the resultant of all the normal stresses on the front and back
of the sliding element are not equal, a longitudinal shear force must
act on the longitudinal section plane.
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Figure 5.5 The longitudinal shear force Ra
x;s is found from the

force equilibrium of the sliding element in the x direction. This
shear force is proportional to the change in the bending moment
between the front and back cross-sections of the beam segment
considered.

The (distributed) longitudinal shear force sa
x is directly related to the mag-

nitude of cross-sectional shear force Vz. The minus sign is the result of the
assumption that a longitudinal shear force is positive if it acts on the sliding
element in the positive x direction.

The derivation shows that sa
x , the shear force per length in the longitudinal

direction, is independent of the (constant) normal force in the beam.

Alternative derivation
The following alternative derivation is based on a beam without normal
force. In that case the normal force Na is the resultant of all normal stresses
σM(z) on the sliding element due to bending.

For the normal force Na on the sliding element at cross-section a-a (see
Figure 5.5)

Na =
∫

Aa
σM(z) dA.

Substitute the normal stress distribution due to bending in this equation:

σM(z) = Mzz

Izz

,

and we find

Na =
∫

Aa

Mzz

Izz

dA = Mz

Izz

∫
Aa

z dA = MzS
a
z

Izz

.

Here

Sa
z =

∫
Aa

z dA
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is the static moment of the cross-sectional area of the sliding element.

If at cross-section a-a the normal force Na on the sliding element changes
to Na + �Na at cross-section b-b (see Figure 5.5), the change �Na is the
result of the change in the bending moment Mz by a quantity �Mz. In other
words:

�Na = �MzS
a
z

Izz

. (5.8)

Figure 5.6 gives a spatial representation of the sliding element of the beam,
with a small length ��. sa

x is the shear force per length in the longitudinal
direction, and positive when it acts in the positive x direction on the sliding
element (see Figure 5.6a). Ra

x;s is the resultant shear force in the longitu-
dinal direction, also positive when it acts in the positive x direction on the
sliding element (see Figure 5.6b).

The resultant shear force Ra
x;s follows directly from the force equilibrium

in the x direction (see Figures 5.5 and 5.6b):

∑
Fx = −Na + Ra

x;s + (Na + �Na) = 0 ⇒ Ra
x;s = −�Na.

Substitute expression (5.8) for �Na and we find

Ra
x;s = −�MzS

a
z

Izz

. (5.9)

Conclusion: The resultant shear force in longitudinal direction is propor-
tional to the difference between the bending moments on the front and back
cross-section of the beam segment considered.

Note: Formula (5.9) applies only if the x axis passes through the normal
centre NC and the z direction is a principal direction.

Figure 5.5 The longitudinal shear force Ra
x;s is found from the

force equilibrium of the sliding element in the x direction. This
shear force is proportional to the change in the bending moment
between the front and back cross-sections of the beam segment
considered.
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Figure 5.6 Spatial representation of the sliding element with all
forces acting on it: (a) sa

x is the shear force per length on the lon-
gitudinal section plane; (b) Ra

x;s is the resultant shear force on the
longitudinal section plane.

If the length �� of the sliding element is large:

Ra
x;s =

∫
��

sa
x dx. (5.10)

If �� = �x is small:

Ra
x;s = sa

x�x = −�MzS
a
z

Izz

,

or

Sa
x = −�Mz

�x

Sa
z

Izz

.

In the limiting case �x → 0 this again leads to (5.7):

sa
x = − lim

�x→0

�Mz

�x

Sa
z

Izz

= −dMz

dx

Sa
z

Izz

= −VzS
a
z

Izz

. (5.7)

5.1.3 Shear force in the longitudinal direction (alternative
formula)

In Section 5.1.2 we derived

sa
x = −dNa

dx
. (5.5)

To keep matters simple, it is again assumed that there is no normal force and
that Na is the resultant of all normal stresses σM(z) on the sliding element
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Figure 5.7 If Na is the resultant of all the bending stresses σM(z)

on the sliding element, then this force is proportional to the bending
moment Mz. So we can write Na = k · Mz. Here k is a proportion-
ality factor determined by the shape of the of the cross-section of
the sliding element.

due to bending only (see Figure 5.7):

Na =
∫

Aa
σM(z) dA.

This normal force Na on the sliding element is proportional to the magni-
tude of the bending moment Mz in the cross-section in question. We can
therefore say

Na = k · Mz. (5.11)

Here, k is a proportionality factor of which the magnitude is determined
entirely by the shape of the cross-section of the sliding element.

Since k = Na/Mz is constant, this relationship can be determined from
(5.11) for any arbitrary value of Mz = M∗

z . Hence

k = Na (due to M∗
z )

M∗
z

.

By differentiating (5.11) with respect to x we find

dNa

dx
= k · dMz

dx
= k · Vz =

[
Na (due to M∗

z )

M∗
z

]
· Vz.

Substituting this in (5.5) leads to the following expression for sa
x , the shear

force per length in the longitudinal direction:

sa
x = −Vz ·

[
Na (due to M∗

z )

M∗
z

]
. (5.12)
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Figure 5.8 For bending without normal force, the shear force per
length is a maximum in the planar longitudinal section through the
neutral axis. Since there is no normal force, the neutral axis passes
through the normal centre NC.

Figure 5.9 If the longitudinal shear force sa
x (force per length) is

smeared uniformly over the developed width ba of the longitudinal
section plane, the average shear stress τ a

average (force per area) on
the sliding element is τ a

average = sa
x/ba.

Comment: In deriving this alternative formula for the shear stress per length
in the longitudinal direction, we have not used any property bound to the
principal directions. Therefore, expression (5.12) also applies if the y,z

directions do not coincide with the principal directions of the cross-section.
However, there is the limitation that M∗, the resultant bending moment in
the cross-section, must act in the same plane as the resultant shear force
Vz, as otherwise the differentiation of (5.11) is no longer valid.1

From formula (5.12) we can directly derive the fact that the shear force sa
x

is a maximum when Na, the resultant of all normal stresses on the sliding
element due to the bending moment M∗

z , is a maximum. This is in the planar
longitudinal section through the neutral axis associated with this bending
moment (see Figure 5.8).

5.1.4 Shear stresses in the longitudinal direction

Figure 5.9 shows the sliding element between two cross-sections at a
mutual distance equal to the unit of length.

If the longitudinal shear force sa
x (force per length) is uniformly smeared

over the developed width ba of the longitudinal section, we find the average
shear stress τ a

average (force per area) on the longitudinal section plane of the
sliding element:

τ a
average = sa

x

ba . (5.13)

1 In another way it can be shown that formula (5.12) can be used under all con-
ditions if, without taking account of the actual moment in the cross-section, we
take for M∗

z an arbitrary moment acting in the plane of the resultant shear force
Vz.
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Figure 5.10 (a) Laminated timber beam with (b) shear force di-
agram. The beam is constructed by gluing together three timber
layers, as shown in (c) the cross-section.

The actual shear stress need not be uniformly distributed over the width ba.
This is discussed in Section 5.3.

It can be agreed that the longitudinal shear stress τ a
average on the sliding

element is positive as it, just like the longitudinal shear force, acts in the
positive x direction. Usually, however, one works with the absolute values
and signs are omitted. In the following, the letter τ is used for the absolute
value of a shear stress.

5.2 Examples relating to shear forces and shear
stresses in the longitudinal direction

The formulas derived in the previous section for the shear forces and shear
stresses in the longitudinal direction are used in this section for determining
the forces in the joints for beams of which the cross-section is built up of
several parts. We will be looking at a laminated timber beam, a steel beam
with a welded I-section, a wooden beam with dowels and a nailed wooden
box beam.

5.2.1 Laminated timber beam

The laminated timber beam in Figure 5.10a is loaded at its free end by a
force of 6.48 kN. Due to this load the cross-sectional shear force Vz in the
beam is constant, see the shear force diagram in Figure 5.10b. The lami-
nated beam is formed by gluing together three timber layers, as indicated
in Figure 5.10c.

Figure 5.9 If the longitudinal shear force sa
x (force per length) is

smeared uniformly over the developed width ba of the longitudinal
section plane, the average shear stress τ a

average (force per area) on
the sliding element is τ a

average = sa
x/ba.
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Figure 5.11 (a) Side view of a beam segment with small length
�x. The lower timber has been selected as the sliding element. In
the glued joint, a longitudinal shear force sa

x (force per length) acts
on the lower timber. (b) Cross-section of the beam. The sliding area
is Aa.

Questions:
a. Calculate the shear force (force per length) in the glued joints.
b. Calculate the (average) shear stress in the glued joints.

Solution:
a. Below, the shear force per length is determined for the lower glued joint.
Figure 5.11a gives a side view of the sliding element isolated from a beam
segment with small length �x. A shear force sa

x acts on the sliding element
in the longitudinal direction. Remember that sa

x is positive when it acts on
the sliding element in the positive x direction. Figure 5.11b shows the cross-
section of the sliding element, for which the lowermost of the three timbers
has been chosen.

The shear force per length is

sa
x = −VzS

a
z

Izz

.

Since the cross-sectional shear force Vz is constant over the length of the
beam (see Figure 5.10b), this also holds for sa

x , the longitudinal shear force
per length.

In the given coordinate system

Vz = +6480 N.

Note: The deformation symbol has to be translated here into the correct
plus/minus sign in the given coordinate system.
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Figure 5.12 (a) A constant longitudinal shear force per length of
48 N/mm acts over the entire length of the lower timber. (b) If the
shear force per length of 48 N/mm is uniformly smeared across the
120 mm width of the horizontal section plane, the average shear
stress in the glued joint is τaverage = 0.4 N/mm2.

Furthermore,

Izz = 1
12 bh3 = 1

12 (120 mm)(180 mm)3 = 58.32 × 106 mm4.

The static moment Sa
z of the sliding area Aa is equal to the product of Aa

and za
C, in which za

C is the z coordinate of the centroid of the sliding area
(see Figure 5.11b):

Sa
z = Aaza

C = (120 mm)(60 mm)(+60 mm) = +432 × 103 mm3.

The shear force per length is now

sa
x = −VzS

a
z

Izz

= − (+6480 N)(+432 × 103 mm3)

58.32 × 106 mm4
= −48 N/mm.

The minus sign indicates that the longitudinal shear force on the sliding
element acts in the negative x direction.

Figure 5.12a shows the sliding element over the entire length of the beam
(this is the bottom timber), including the uniformly distributed longitudinal
shear force per length of 48 N/mm acting on it.

b. If the shear force per length of 48 N/mm is smeared uniformly over the
120 mm width of the horizontal section plane, we find the average shear
stress τaverage in the glued joint:

τaverage = 48 N/mm

120 mm
= 0.4 N/mm2.

Figure 5.12b shows the (average) shear stresses as they act in the glued joint
on the bottom timber of the beam.

Figure 5.11 (a) Side view of a beam segment with small length
�x. The lower timber has been selected as the sliding element. In
the glued joint, a longitudinal shear force sa

x (force per length) acts
on the lower timber. (b) Cross-section of the beam. The sliding area
is Aa.
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Figure 5.13 Since the static moment of the entire cross-section
is zero, the static moment of the hatched upper part of the
cross-section is equal to that of the non-hatched lower part, but with
an opposite sign. This means that the shear forces on the upper part
are equal and opposite to those on the lower part. This is entirely in
line with the concept of interaction.

Note: If the part of the beam above the longitudinal section is chosen as
the sliding element (i.e. the two upper timbers; see Figure 5.13), the only
consequence is that the static moment Sa

z changes sign. Since the static
moment of the entire cross-section is zero, the static moment of the upper
part of the cross-section is equal and opposite to that of the lower part. This
can be verified by calculation (see Figure 5.13):

Sa
z = Aaza

C = (120 mm)(120 mm)(−30 mm) = −432 × 103 mm3.

The shear forces per length on the upper and lower sliding part are therefore
equally large, but have opposite signs. This means that the shear force on
the upper sliding part has an direction opposite to the shear force on the
lower sliding part, entirely in line with the concept of interaction.

It is left to the reader to verify that the shear forces and shear stresses in the
upper glued joint are equal to those in the lower glued joint.

5.2.2 Steel beam with a welded I-section

The simply supported steel beam AB in Figure 5.14a has a span � and is
carrying a uniformly distributed load q . Figure 5.14b shows the associated
V diagram. An I-section has been chosen for the beam. The cross-sectional
dimensions are shown in Figure 5.14c. The cross-section is thin-walled.
The flanges have a wall thickness t . The web is three times as thick as a
flange. It is also given that the height h of the I-section is equal to 1/12 of
the span �, i.e. � = 12h.

This cross-section is not a standardised rolled steel section but a welded
section. Here the flanges and web are made of rectangular steel plates and
joined by means of welds.
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Figure 5.14 (a) A simply supported steel beam with a uni-
formly distributed load over its entire length, and (b) the associated
shear force diagram. (c) The cross-section of the beam is a welded
I-section. The connection between flanges and web is realised by
double corner welds. The lower flange is chosen as the sliding part
of the cross-section for calculating the shear forces in a corner weld.

There are various types of welds. Here the joint between a flange and the
web is a so-called double corner weld. Figure 5.15a shows the joint between
web and bottom flange. In double corner welds, there is always a (small)
gap between web and flange. Therefore the web and flange can exert forces
on one another only via the corner welds.

For the calculation, we assume that the corner weld is shaped like a isosce-
les triangle. The thickness of the gap (sketched rather large in Figure 5.15)
is ignored.

Questions:
a. Determine the maximum shear force per length that a single corner

weld has to transfer.
b. Which cut across the corner weld is most dangerous? In other words:

how should the cut across the corner weld be chosen such that the
(average) shear stress in the weld is as large as possible? And how
large is this shear stress?

Solution:
a. The formula for the shear force per length in the longitudinal direction is

sa
x = −VzS

a
z

Izz

.

We see that the longitudinal shear force sa
x is largest where the cross-

sectional shear force Vz is largest, i.e. at the supports A and B.

Below we look at the shear force at B, where

Vz = − 1
2 q�.
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Figure 5.15 (a) With double corner welds, there is always a small
gap between the web and the flange. Web and the flanges can there-
fore exert forces on one another only via the corner welds. (b) The
throat cut is the cut in which the average shear stress in longitudinal
direction is a maximum.

The (centroidal) moment of inertia Izz is

Izz = 1
12 · 3t · h3 + 2 · ht · ( 1

2 h
)2 = 3

4 h3t .

If a cut is introduced across both corner welds at the bottom flange, and the
bottom flange is seen as the sliding part of the cross-section, then the static
moment Sa

z of the sliding part is (see Figure 5.14c)

Sa
z = ht · ( + 1

2 h
) = + 1

2 h2t .

The expressions for Vz, Izz and Sa
z substituted into the formula for the shear

force per length gives

sa
x = −

( − 1
2 q�

)( + 1
2 h2t

)
3
4 h3t

= +q�

3h
.

With � = 12h this becomes

sa
x = +4q.

Note: At the supports, the double corner weld has to transfer a distributed
shear force in the longitudinal direction that is four times as large as the
distributed load q on the beam!

The shear force is transferred by two (similar) corner welds. Per corner
weld, the shear force (per length) is 2q .

b. The maximum (average) shear stress in the longitudinal direction occurs
where the (developed) length ba of the cut over the weld is shortest. This
is in the so-called throat cut across the weld (see Figure 5.15b). For the
double corner weld ba = 2a.
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Figure 5.16 A wooden beam is constructed of two timbers that
are joined by means of dowels or shear connectors. Dowels can be
hardwood blocks (carpenter dowels), steel rings (ring dowels) that
fit tightly in recesses made in the timbers, or toothed plate connec-
tors. They prevent the beams from sliding over one another. The
timbers are clamped to one another by means of bolts so that the
dowels cannot jump away.

At the supports, where the shear forces are largest, the (average) longitudi-
nal shear stress in the double throat cut is largest:

τaverage = sa
x

ba = 4q

2a
= 2

q

a
.

5.2.3 Wooden beam with dowels

The simply supported wooden beam in Figure 5.16 has a span of 3.6 m and
carries over its entire length a uniformly distributed load of 1.25 kN/m. The
cross-section is constructed of two timbers of 90×140 mm2 that are joined
by means of dowels or shear connectors. The maximum shear force that a
dowel can transfer1 is F̄dowel = 5 kN.

Dowels may be hardwood blocks (carpenter dowels), steel rings (ring
dowels) that fit tightly in recesses made in the timbers, or toothed plate
connectors. They prevent the timbers from sliding over one another. The
timbers are clamped to one another by means of bolts so that the dowels
cannot jump away.

Questions:
a. Determine the number of dowels required for the given load.2

1 This is the limiting value of the shear force that the dowel can transfer, also
known as the allowable shear force. This value is overlined here.

2 Since the timbers are joined locally, at the dowels only, and since there is always
some clearance between timbers and dowels, the timbers will not work together
fully. In practice this effect has been taken into account by a reduction of the
moment of inertia of the cross-section. Below we will ignore this effect and
assume that the built-up beam behaves as one piece.
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Figure 5.18 (a) The beam modelled as a line element with
(b) shear force diagram and (c) bending moment diagram.

b. Determine the active area per dowel if all dowels are equally loaded.

Solution:
a. Figure 5.18 shows the support reactions and the V and M diagrams.

The longitudinal shear force per length between the timbers is

sa
x = −VzS

a
z

Izz

,

in which

Izz = 1
12 (140 mm)(180 mm) = +68.04 × 106 mm4.

If the bottom timber is seen as the sliding element, then (see Figure 5.17)

Sa
z = (140 mm)(90 mm)(+45 mm) = +567 × 103 mm3.

Figure 5.17 The lower timber is chosen as the sliding element.
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Figure 5.19 (a) Diagram with the distribution of the longitudinal
shear force sa

x (force per length) acting on the lower timber. This
longitudinal shear force is proportional to the cross-sectional shear
force Vz (see Figure 5.18b). (b) At midspan the cross-sectional
shear force changes sign. There the longitudinal shear force also
changes sign and therefore direction. The longitudinal shear forces
are largest at the supports and decrease towards midspan.

We now find

sa
x = −VzS

a
z

Izz

= −Vz · 567 × 103 mm3

68.04 × 106 mm4 = − Vz

120 mm
.

Figure 5.19a shows the distribution of the longitudinal shear force sa
x (force

per length) on the bottom timber in a diagram. The maximum value occurs
at the supports, where the cross-sectional shear force Vz is a maximum:

|sa
x;max| = |Vz;max|

120 mm
= 2.25 × 103 N

120 mm
= 18.75 N/mm.

The longitudinal shear force sa
x (force per length) in Figure 5.19 has the

same distribution as the cross-sectional shear force Vz in Figure 5.18b. To
find the sign (direction) of the longitudinal shear force, the deformation
symbols in the V diagram have to be translated into the correct plus- and
minus signs in the xz coordinate system in which we work.

The cross-sectional shear force V is positive for the left-hand side of the
beam, and negative for the right-hand side. As a consequence the longitu-
dinal shear force sa

x is negative on the left-hand side (acting in the negative
x direction) and positive on the right-hand side (acting in the positive x
direction) (see Figure 5.19b).

Since it is of no consequence for the dowels in which direction the lon-
gitudinal shear force acts, it is common practice to neglect the signs in
the calculation and to work with the absolute values. For the rest of this
problem we will also use only absolute values.

Figure 5.20 shows a spatial representation of the distribution of the longi-
tudinal shear force sa

x (force per length) on the lower timber. The resultant
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Figure 5.20 Spatial representation of the distribution of the longi-
tudinal shear forces on the lower timber.

longitudinal shear force Ra
s over the half beam length is equal to the area of

the triangular diagram:

Ra
s = 1

2 × (18.75 N/mm) × (1.8 × 103 mm) = 16.875 kN.

To find Ra
s we can also use formula (5.8) from Section 5.1.2:

Ra
x;s = −�MzS

a
z

Izz

,

in which �M is the increase of the bending moment over the half beam
length. From the M diagram in Figure 5.18c it follows that

|�M| = 2.025 kNm.

For the (absolute value of the) resultant shear force over the half beam
length we now find

Ra
s =

∣∣∣∣−�MzS
a
z

Izz

∣∣∣∣ = (2.025 kNm)(567 × 103 mm3)

68.04 × 104 mm4 = 16.875 kN.

This is the value we found earlier.

Assume the number of dowels for a half beam is n. If each dowel can
transfer a maximum shear force F̄dowel = 5 kN, the value of n follows from

n ≥ Ra
s

F̄dowel
= 16.875 kN

5 kN
≈ 3.4 ⇒ n = 4.

This means that for each half of the beam four dowels are required. So the



292 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

Figure 5.21 sa
x diagram for the longitudinal shear forces on the

lower timber at the left-hand side of the beam. The shear force
interaction is concentrated in a dowel. If four dowels per half beam
length are sufficient, and one wants to apply them such that all four
are equally loaded, the active area per dowel is found by dividing
the sa

x diagram into four equal areas.

entire beam requires ntot = 8 dowels.

Note: Per area for which the shear force has the same sign, one must always
apply a whole number of dowels. One could also have said that the total
shear force in the entire beam is equal to 2Ra

s , and that the total number of
dowels required is

ntot ≥ 2Ra
s

F̄dowel
= 2 × (16.875 kN)

5 kN
≈ 6.8 ⇒ ntot = 7.

It now appears that seven instead of eight dowels will suffice. This is incor-
rect, however. With a symmetrical placement of seven dowels, one of the
dowels is at midspan. Since the shear force at midspan is zero, this dowel
is useless; only six dowels are actually effective, and not seven dowels.

b. The longitudinal shear forces are largest at the supports and decrease
towards midspan. Therefore the dowels are more tightly spaced near the
supports of the beam than near midspan (see Figure 5.16).

In a dowel, the shear force interaction is concentrated. The force on a
dowel is equal to the resultant of the longitudinal shear forces in the “active
area” of the dowel and can be found from the corresponding area of the sa

x

diagram or longitudinal shear force diagram.

Figure 5.21 shows the sa
x diagram for the lower timber at the left-hand side

of the beam.

If the four dowels per half beam length are applied in such a way that all
four are equally loaded, the active area per dowel is found by dividing the
sa
x diagram into four equal areas. In that case

R(1)
s = R(2)

s = R(3)
s = R(4)

s = Fdowel.
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Figure 5.22 (a) The active areas of the four dowels for the
left-hand side of the beam. (b) Since the resultant shear force over a
certain length is proportional to the change in the bending moment
�M over that length, the active areas of the four dowels can also be
determined via the intersections of the M diagram with a number of
parallel lines at mutually equal distances �M = 1

4 Mmax.

Fdowel (now not overlined) is the actual shear force per dowel and is equal
to the resultant shear force divided by the required number of dowels:

Fdowel = Ra
s

n
= 16.875 × 103 N

4
= 4219 N.

The lengths a1 to a3 are found from the sa
x diagram in Figure 5.21:

1
2 × a1 × a1

1800 mm
× (18.75 N/mm) = R(1)

s

= Fdowel = 4219 N.

In the same way

1
2 × a2 × a2

1800 mm
× (18.75 N/mm) = R(1)

s + R(2)
s

= 2Fdowel = 8438 N,

and

1
2 × a3 × a3

1800 mm
× (18.75 N/mm) = R(1)

s + R(2)
s + R(3)

s

= 3Fdowel = 12657 N.

This leads to

a1 = 900 mm,

a2 = 1273 mm,

a3 = 1559 mm.



294 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

The active areas of the four dowels for the left-hand side of the beam are
shown in the sa

x diagram in Figure 5.22a.

Figure 5.22b also shows the bending moment diagram for the left-hand side
of the beam. According to formula (5.9) in Section 5.1.2 the resultant of the
longitudinal shear forces over a certain length is proportional to �M , the
change in the bending moment over that length.

If all dowels are equally loaded, the change �M over all active areas of
the dowels must be equal. For four dowels per half beam length we have
�M = 1

4 Mmax.

The active areas of the dowels could also be determined via the intersec-
tions of the M diagram with a number of parallel lines at equal distances
�M (see Figure 5.22b). However, this approach is more laborious than the
one using the shear force diagram, and is omitted here.

5.2.4 Nailed wooden box beam

The simply supported wooden box beam in Figure 5.23, with a span of
5.6 m, carries a uniformly distributed load of 2.1 kN/m over its full length.
The beam is constructed of two battens that serve as flanges, and two sheets
of plywood that serve as webs. The cross-sectional dimensions are shown
in Figure 5.23. The plywood is fastened to the battens by wire nails. Each
nail can transfer a maximum shear force of F̄nail = 300 N.1

1 Also said to be the allowable load in shear.

Figure 5.22 (a) The active areas of the four dowels for the
left-hand side of the beam. (b) Since the resultant shear force over a
certain length is proportional to the change in the bending moment
�M over that length, the active areas of the four dowels can also be
determined via the intersections of the M diagram with a number of
parallel lines at mutually equal distances �M = 1

4 Mmax.
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Figure 5.24 The beam modelled as a line element with shear force
diagram and bending moment diagram.

Questions:
a. Determine the required number of nails in the whole beam.
b. How should these nails be distributed over the length of the beam?

Solution:
a. Figure 5.24 shows the support reactions and the V and M diagrams. The
calculation is left to the reader.

The hollow cross-section can be seen as the difference between two
rectangles, hence

Izz = 1
12 (200 mm)(240 mm)3 − 1

12 (160 mm)(120 mm)3

= 207.36 × 106 mm4.

Figure 5.23 A simply supported wooden box beam. The beam is
constructed of two battens that serve as flanges, and two sheets of
plywood that serve as webs. The plywood is fastened to the battens
by wire nails.
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Figure 5.25 To determine the required number of wire nails, a
symmetrical double cut a-b is applied over the lower batten. The
lower batten is considered the sliding element.

Assume the bottom batten is the sliding element (see Figure 5.25), then the
static moment of the sliding element is

Sa
z = Aaza

C = (160 mm)(60 mm)(+90 mm) = 864 × 103 mm3.

According to formula (5.7) from Section 5.1.2 the total distributed longitu-
dinal shear force (force per length) in the double cut a-b is

sa
x = −VzS

a
z

Izz

. (5.7)

This longitudinal shear force sa
x is a maximum at the supports, where the

cross-sectional shear force Vz (in absolute sense) is largest: |Vz| = 5.88 kN.
So

|sa
x;max| = (5.88 × 103 N)(864 × 103 mm3)

207.36 × 106 mm4 = 24.5 N/mm.

The distribution of the longitudinal shear force sa
x (force per length) is

plotted in a diagram in Figure 5.26a. This sa
x diagram is similar to the V

diagram in Figure 5.24. At A the cross-sectional shear force is positive,
therefore sa

x is negative and acts in the negative x direction. Check this!
The opposite holds at B.

Note: For determining the required number of nails, the signs are less
important than the shape of the longitudinal shear force diagram.
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Figure 5.26 (a) The distribution of the longitudinal shear force
per length in double cut a-b. On the basis of mirror symmetry, half
this shear force acts in each of the sections a and b. (b) The sliding
batten in a spatial representation, with the longitudinal shear forces
(forces per length) in the cuts a and b as they actually act.

The shear force distribution in Figure 5.26a applies to the double cut a-b
(see Figures 5.25 and 5.26b). On the basis of mirror symmetry, we can
expect half the shear force to act in each of the cuts a and b.

In Figure 5.26b the bottom batten (the sliding element) is shown spa-
tially, with the distribution of the longitudinal shear forces (forces per
length) as they act in the cuts a and b on the batten. At A the longitudinal
shear force sa

x is negative and acts on the bottom batten in the negative
x direction. At B the longitudinal shear force is acting in the positive x

direction.

The resultant longitudinal shear force over the half beam length AC in the
joint cuts a and b is equal to the area of the half shear force diagram in
Figure 5.26a:

Ra
s = 1

2 (2.8 × 103 mm)(24.5 N/mm) = 34300 N.

Ra
s can also be found with formula (5.9) from Section 5.1.2:

Ra
s =

∣∣∣∣�M · Sa
z

Izz

∣∣∣∣ = Mmax · Sa
z

Izz

= (8.232 × 106 Nmm)(864 × 103 mm3)

207.36 × 106 mm4 = 34300 N.
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Figure 5.27 (a) The resultant longitudinal shear force over half
the beam length AC in double cut a-b is equal to the area of half the
sa
x diagram in Figure 5.26a. (b) Since the same number of wire nails

are required for cut a-a as for cut b-b the total number of nails in the
hatched area AC in (a) must be even.

With F̄nail = 300 N, the total number of nails n that is required for the
hatched area of the beam in Figure 5.27a is

n ≥ Ra
s

F̄nail
= 34300 N

300 N
= 114.3.

Since the same number of nails needed for both cut a and cut b (see
Figure 5.27b), n must be even. Therefore

n = 116.

In other words, 58 wire nails are needed per cut. For the whole beam, the
total number ntot of nails required is

ntot = 4n = 4 × 116 = 464.

b. Assume all wire nails are equally loaded. The shear force per nail is then

Fnail = Ra
s

n
= 34300 N

116
= 295.7 N.

Figure 5.28a shows the sa
x diagram for AC relating to double cut a-b. To

determine the distribution of the wire nails over the length of the beam, we
look in this diagram for the length a1 for which the hatched area is exactly
equal to the shear force that can be transferred by two nails (one in cut a
and one in cut b):

1
2 × a1 × a1

2800 mm
× (24.5 N/mm) = 2Fnail = 2 × (295.7 N).
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Figure 5.28 (a) The longitudinal shear force distribution (sa
x dia-

gram) for the left-hand side AC of the beam, relating to double cut
a-b. To determine the distribution of the wire nails over the length of
the beam, length a1 follows from the condition that the area of the
hatched triangle is equal to the shear force that can be transferred
by two nails (one in cut a-a and one in cut b-b; see Figure 5.27).
(b) With a1 = 368 mm, the sa

x diagram for AC can be divided into
seven fields of 368 mm and an end field of 224 mm. In fields 1 to
7 we find the number of nails directly from the areas divided into
rectangles and triangles. A triangle represents two nails. A rectangle
represents four nails. Fields 1 to 7 amount to 98 wire nails. The
remaining wire nails are used in the end field.

We find

a1 = 368 mm.

In Figure 5.28b, the sa
x diagram for AC is divided into 7 fields of 368 mm

and an end field of 224 mm. In the fields i (i = 1, . . . , 7) we can now
directly read off the number of wire nails ni from the areas divided into
rectangles and triangles. A triangle stands for two nails. A rectangles has
double the area and represents four nails. Fields 1 to 7 amount to 98 nails, as
shown in Table 5.1. The end field therefore needs n − 98 = 116 − 98 = 18
wire nails.

Table 5.1

field i ni

1 2

2 6

3 10

4 14

5 18

6 22

7 26∑ = 98

Check of the number of nails in the end field:

n(8) = R
(8)
s

Fnail
=

1
2 (24.5 + 22.54)(N/mm)(224 mm)

295.7 N
= 17.8 ≈ 18.
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Figure 5.29 The longitudinal shear force distribution (sa
x diagram)

for the left-hand side AC of the beam, relating to double cut a-b. To
find the number of required wire nails and their distribution over the
length of the beam in one go, length AC can be divided directly into
a number of fields of equal length, after which the (even) number of
nails per field can be determined.

Table 5.2

field i Ri
s (N) Ri

s/F̄nail ni

1 700 2.3 4

2 2100 7.0 8

3 3500 11.7 12

4 4900 16.3 18

5 6300 21.0 22

6 7700 25.7 26

7 9100 30.3 32∑ = 34300 114.3 122

Alternative solution:
Divide the length of the beam into a number of fields of equal length, e.g.
seven fields of 400 mm (see Figure 5.29). Per field i determine the resultant
shear force Ri

s. For field (1) the shear force diagram is a triangle:

R(1)
s = 1

2 × (400 mm) × ( 1
7 × 24.5 N/mm

) = 700 N.

Using the distribution in triangles and rectangles, the resultant shear forces
can now be easily determined per field; this is shown in Table 5.2. The
number of nails ni required per field i follows from

ni ≥ Ri
s

F̄nail
.

The results of the calculation are included in the last two columns of Ta-
ble 5.2. Since the sa

x diagram relates to the double cut a-b, and both cuts
need the same number of nails, ni must be even.

Table 5.2 shows that using this alternative approach 122 wire nails are re-
quired in the hatched part of the box beam in Figure 5.27, instead of 116.
The total number of wire nails in the beam is 488, that is 5% more than the
464 we found previously.

5.3 Cross-sectional shear stresses

In this section we derive the formulas for the shear stresses on a cross-
sectional plane.

Using the moment equilibrium for a small parallelepiped, we first show
that the shear stresses on two mutually perpendicular planes are equal. Next
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Figure 5.30 (a) The stresses on a small rectangular block with
dimensions �x; �y; �z. The stresses are shown only for the vis-
ible sides, without naming them. The dimensions of the block are
so small that all the stresses on the sides are uniformly distributed
and their resultants apply at the centres of the sides. The arrows
shown can be interpreted as the stress resultants. (b) The equation
for the moment equilibrium about axis a-a through A, parallel to
the y axis, only includes the shear stress resultants shown. All other
stress resultants make a zero contribution as they either pass through
axis a-a or are parallel to it.

we determine the shear stresses on a cross-sectional plane (cross-sectional
shear stresses) from the shear stresses on a longitudinal plane (longitudinal
shear stresses). We assume that the shear stresses, normal to the intersec-
tion line of both planes, are uniformly distributed over the width of that
line.

For cross-sections (or parts thereof) for which the width of the sliding el-
ement is constant, we show a relationship between the shape of the shear
stress diagram and that of the bending stress diagram. This leads to a set of
rules with which we can quickly sketch the shear stress distribution.

5.3.1 Shear stresses on two mutually perpendicular planes

Figure 5.30a shows a small rectangular block with dimensions �x; �y; �z.
The stresses are shown only for the visible planes without naming them.
The dimensions of the block are so small that all stresses on the planes are
uniformly distributed and their resultants therefore apply at the centres of
the planes. The arrows in Figure 5.30a can therefore be considered stress
resultants.

Below we look at the moment equilibrium of the block parallel to the xz

plane. In the equation
∑

Ty |A = 0 (the equation for the moment equilib-
rium about the a-a axis through A, parallel to the y axis) only the shear
stress resultants in Figure 5.30b are relevant. All other stress resultants
make a zero contribution as they either pass through the a-a axis or act
parallel to it.
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Figure 5.31 (a) Side view of the small block, with the shear
stresses that play a role in the equations for the moment equilibrium
about A. For the shear stresses, the kernel-index notation has been
used. In the limiting case in which the dimensions of the block
approach zero, the stresses on opposite sides are equal. (b) The
shear stress resultants on the block. Moment equilibrium implies
σzx = σxz: the shear stresses on the two perpendicular planes are
equal.

Figure 5.31a gives a side view of the block with the shear stresses that play
a role in the equations for the moment equilibrium about A. The kernel-
index notation has been used for the shear stresses.1 In the limiting case
that the dimensions of the block approach zero, the stresses on the opposite
planes are equal.

Figure 5.31b shows the resultants of the shear stresses. The resultants on
the upper and lower plane, σzx�x�y, form a couple (σzx�x�y)�z that
acts anti-clockwise about A. The resultants σxz�y�z on the side planes
form a couple (σxz�y�z)�x that acts clockwise.

From the moment equilibrium we find:

∑
Ty |A = +(σzx�x�y)�z − (σxz�y�z)�x = 0

so that

σzx = σxz.

The shear stresses in the two mutually perpendicular x and z planes are
therefore equal.

In the same way, the moment equilibrium
∑

Tz = 0 gives

σxy = σyx,

1 See Volume 1, Section 10.1.2.
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Figure 5.32 (a) and (b) The shear stresses on two perpendicu-
lar planes are equal and their directions are such that either the
arrowheads or the arrow tails point to one another. Since there is
no coordinate system, the shear stresses are denoted by τ . (c) With
these shear stresses there is no moment equilibrium, so this picture
is false.

and
∑

Tx = 0 gives

σyz = σzy.

Conclusion: From the moment equilibrium of a small rectangular element
it follows that the shear stresses in two perpendicular directions are equal.
As a formula this means:

σij = σji with i, j = x, z, y and i �= j.

Figure 5.32 shows the above for the situation in which there is no coordinate
system. The shear stress is now denoted by the Greek letter τ .

The shear stresses in two perpendicular planes are equal, and their direc-
tions are such that either the arrowheads or the tails are pointed to one
another.

Since the situation in Figure 5.32c does not meet these conditions it is not
correct: there is no moment equilibrium!

5.3.2 Shear stress formulas

Figure 5.33a shows a rectangular cross-section that has to transfer a shear
force Vz. To keep the figure simple, the shear force has been drawn outside
the cross-section.1

The sliding element of the cross-section is hatched in Figure 5.33a. The
plane cut PQ has a width ba, and is normal to the sides of the cross-section.
To name the shear stresses, an m axis is introduced, normal to the cut PQ,

1 Attention: Vz is not a “compressive force”.
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Figure 5.33

with the arrowhead for the positive direction pointing out of the (hatched)
material of the sliding element.

In Figure 5.33b the sliding element has been isolated and sa
x is shown, the

shear force per length in longitudinal direction. This can be determined
using the traditional formula (5.7) from Section 5.1.2:

sa
x = −VzS

a
z

Izz

(5.7)

in which z must be a principal direction of the cross-section.

Figure 5.33 (a) A rectangular cross-section subject to a shear
force Vz. To ensure clarity in the figure, the shear force is placed
outside the cross-section. The sliding element of the cross-section
is hatched. Plane cut PQ has a width ba and is normal to the
edges of the cross-section. In order to label the shear stresses, the
m axis has been introduced, perpendicular to the cut PQ and in
such a way that the positive direction, indicated by the arrowhead,
points out of the (hatched) material of the sliding part of the cross-
section. (b) The sliding element with the longitudinal shear force
sa
x (force per length) on the longitudinal section plane. (c) Smear-

ing the shear force sa
x (force per length) uniformly over width ba

leads to the longitudinal shear stress σmx (force per area). (d) In
the cut PQ, the longitudinal section plane and the cross-sectional
plane are perpendicular to one another. Since the shear stresses
on two perpendicular planes are equal, σxm = σmx .
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Figure 5.34 The two small boundary elements at P and Q on the
rib PQ. Since the outside of the beam is unloaded, there are no shear
stresses here. This means that the shear stresses at P and Q parallel
to PQ are zero. Only the shear stresses σxm = σmx , normal to PQ,
can act here.

sa
x can also be determined using the alternative formula (5.12) from

Section 5.1.3:

sa
x = −Vz ·

[
Na (due to M∗

z )

M∗
z

]
. (5.12)

Here z need not be a principal direction.

The shear force sa
x (force per length) uniformly smeared over the width ba

leads to the shear stress σmx (force per area)1 (see Figure 5.33c):

σmx = sa
x

ba .

In PQ, the longitudinal section plane and cross-sectional plane are perpen-
dicular to one another, and since the shear stresses on two perpendicular
planes are equal to one another, we also know the shear stress on the
cross-sectional plane (see Figure 5.33d):

σxm = σmx = sa
x

ba .

With (5.7) this leads to the traditional shear stress formula:

σxm = −VzS
a
z

baIzz

, (5.14)

1 See also formula (5.13) in Section 5.1.4 in which no xm coordinate system was
available.
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Figure 5.35 When the plane cut PQ is chosen to be normal to
the centre line m, and the width ba is not too large, we can assume
that the shear stresses (1) are normal to PQ (and have no compo-
nent parallel to PQ) over the entire width ba, and (2) are uniformly
distributed over the entire width ba.

Figure 5.36 (a) A thin-walled angle steel with equal legs has
to transfer a shear force Vz in the plane of mirror symmetry. The
sliding element is hatched. The cut PQ is normal to the centre line
of the leg. The m axis has been chosen along the centre line in such
a way that the arrowhead is directed out of the hatched sliding area.
The arrowhead indicates the positive m direction.

that only applies when z is a principal direction.

With (5.12) we find an alternative shear stress formula, independent of the
principal directions:

σxm = −Vz

ba

[
Na (due to M∗

z )

M∗
z

]
. (5.15)

In Figure 5.34 rib PQ has been enlarged and the two small boundary ele-
ments at P and Q are shown. Since the outside of the beam is unloaded,
there are no shear stresses here. This means that within the beam the
shear stresses at P and Q, parallel to PQ, are zero. Only the shear stresses
perpendicular to PQ, σxm = σmx , are present.

If the cut PQ is plane, and the width ba is not too large, we may assume
that

• the shear stresses over the entire width ba are perpendicular to PQ, and
have no component parallel to PQ;

• the shear stresses are uniformly distributed over the width ba.

The fact that the shear stress formulas (5.14) and (5.15) lead to shear
stresses that are normal to the cut PQ, and are constant over the width
ba of this cut is purely the result of the assumptions. In many cases these
assumptions give a good representation of reality.

The stress formulas (5.14) and (5.15) apply to all profiles (or parts thereof)
of which the edges of the cross-section are parallel to one another, such as
in Figure 5.35, where only a part of the cross-section is shown.

A condition is that the cut PQ is chosen normal to the centre line. Only in
that case are the small boundary elements at P and Q right-angled and, in the
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Figure 5.36 (b) A spatial representation of the sliding element,
together with the longitudinal shear force sa

x (force per length).
(c) The shear stresses σxm = σmx = sa

x/ba act normal to PQ. Al-
though the shear force Vz acts vertically, the shear stresses in the
cross-section are not vertical but are parallel to the centre lines of
the legs.

same way as above, can we make it plausible that the shear stresses in the
cross-section are normal to PQ and parallel to the centre line.

An example is the angle steel with equal legs in Figure 5.36a, with a shear
force Vz. The sliding element is hatched. The cut PQ is normal to the centre
line. The m axis is parallel to the centre line such that the arrow for the
positive direction points out of the material of the hatched sliding element.

Figure 5.36b gives a spatial representation of the sliding element, with the
longitudinal shear force sa

x (force per length). Figure 5.36c shows the shear
stresses:

σxm = σmx = sa
x

ba .

Note that, although the cross-sectional shear force Vz acts vertically, the
cross-sectional shear stresses do not act vertically, but are parallel to the
centre line(s) of the profile.

Check option: The resultant force due to the shear stresses in the cross-
section equals to the cross-sectional shear force Vz by definition.1

1 Figure 5.36 shows all quantities in their positive direction. If the shear stress due
to the shear force Vz is determined, we find a negative value for σxm. This means
that the actual shear stresses are opposite to the shear stresses in Figure 5.36c. In
the cross-sectional plane therefore the actual shear stress acts downwards, which
is entirely in line with the direction of the shear force. See also the examples in
Section 5.4.
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Figure 5.37 The shear stresses perpendicular to the boundary of
a cross-section are zero.

Figure 5.38 Part of a cross-section in which the width ba of the
sliding element is constant (i.e. independent of m).

5.3.3 Rules relating to the shear stress distribution in a
cross-section

The fact that there act no shear stresses on the outside of the beam and that
the shear stresses in two mutually perpendicular planes are always equal to
one another leads to the first of a set of generally applicable rules:

Rule 1. All shear stresses perpendicular to the boundary of a cross-section
are zero.

See for example the T-beam in Figure 5.37.

Using the alternative shear stress formula (5.15), derived in Section 5.3.2, it
is possible to derive a further three rules for cross-sections (or parts thereof)
in which the width ba is constant. Figure 5.38 shows a part of a cross-section
in which ba is constant, or in other words, is independent of m.

In a slightly changed notation, the shear stress formula (5.15) is

τ = Vz

ba

[
Na (due to M∗

z )

M∗
z

]
. (5.15)

Here τ is the shear stress due to the shear force Vz. The sign is neglected.

Remember that the asterisk indicates that the magnitude of Mz is not rele-
vant here.

By differentiating (5.15) for τ with respect to m we find (ba is independent
of m)

dτ

dm
= Vz

ba

1

M∗
z

[
dNa

dm
(due to M∗

z )

]
. (5.16)

If σ is the normal stress at centre line m due to a bending moment M∗
z ,
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again without taking note of the sign, then (see Figure 5.38)

dNa = σ · dAa = σ · ba dm,

so that

dNa

dm
= baσ.

Substituting in (5.16) we find

dτ

dm
= Vz

M∗
z

σ. (5.17)

From differential equation (5.17) we can now derive the rules 2 to 4 for a
cross-section (or parts thereof) with a constant width ba.

Rule 2. If the bending stress σ is constant, the shear stress τ must be linear
(in m).

Rule 3. If the bending stress σ is linear, the shear stress τ must be parabolic
(quadratic in m).

Rule 4. The shear stress τ has an extreme in the cut through the normal
centre NC; at this point σ = 0 and so dτ/dm = 0.

Rules 1 to 4 allow us to predict the general shape of the shear stress dia-
gram, without extensive calculations. Determining the shear stresses in a
limited number of cuts is then generally sufficient for a good sketch of the
shear stress diagram.

When determining the shear stresses, it is common practice to neglect the
signs and to use absolute values. In that case, it is usual to indicate the
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shear stress by means of τ .1 If necessary, the directions of the shear stresses
can de derived afterwards from the direction of the shear force. The cross-
sectional shear force is after all always the resultant of all shear stresses in
the cross-section.

The use of the shear stress formulas, whether or not in combination with the
rules derived here, is illustrated in Section 5.4 with the help of a number of
examples.

5.4 Examples relating to the shear stress distribution
in a cross-section

Below, the shear stress formulas derived in the previous section are applied
to a number of simple cross-sectional shapes. In addition to a beam with
rectangular cross-section and a T-beam we will look at open thin-walled
cross-sections and hollow thin-walled cross-sections. In all these cases, the
cross-section is mirror symmetrical and the shear force acts in the plane of
symmetry.

Next, we determine the shear stress distribution in a solid triangular cross-
section and a solid circular cross-section. In both cross-sections the width
of the sliding element is not constant but varies. In such situations the shear
stress formulas have to be used with care.

If the shear force is not acting in the plane of mirror symmetry, the line
of action of the resultant of all shear stresses in the cross-section (the

1 If one is not consistent with the sign convention σxm = σmx in the kernel-index
notation, this soon leads to errors. In such a case, it is preferable to indicate the
normal stress with the letter σ and a shear stress with the letter τ .
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Figure 5.39 (a) A beam with a rectangular cross-section has
to transfer shear force V shown. The sliding element of the
cross-section is hatched. (b) The sliding element of the cross-section
with the shear stress σxm at the cut.

shear force) usually does not pass through the normal centre NC. This
leads to a new special point in the cross-section: the shear force centre or
shear centre SC. The shear centre is the point in the cross-section through
which the line of action of the shear force must pass so that there will be
no torsion.

This section is closed with a number of examples in which we determine
the location of the shear centre.

5.4.1 A beam with rectangular cross-section and a T-beam

Example 1: Beam with rectangular cross-section
The beam with rectangular cross-section in Figure 5.39a has to transfer the
shear force V shown.

Questions:
a. Determine the shear stress distribution in the cross-section.
b. Determine the resultant of all shear stresses in the cross-section.

Solution:
a. The hatched sliding element in Figure 5.39a has been shown separately
in Figure 5.39b. The shear stress σxm at a distance z under the normal centre
NC can be found using formula (5.14) from Section 5.3.2:

σxm = −VzS
a
z

baIzz

. (5.14)

Here

Vz = V, ba = b, and Izz = 1
12 bh3.
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Furthermore,

Sa
z = Aa · za

C

in which

Aa = b · ( 1
2 h − z

)
,

and

za
C = z + 1

2 · ( 1
2 h − z) = 1

2

( 1
2 h + z

)
.

This gives

Sa
z = Aa · za

C = b
( 1

2 h − z
) · 1

2

( 1
2 h + z

) = 1
2 b

(1
4 h2 − z2).

Substitution in shear stress formula (5.14) leads to

σxm = −V · 1
2 b

( 1
4 h2 − z2)

b · 1
12 bh3

= −3

2

V

bh

(
1 − 4

z2

h2

)
.

The shear stress σxm is quadratic in z: the distribution of the shear stresses
over the height of the cross-section is parabolic.

Figure 5.40a shows the parabolic shear stress distribution in a shear stress
diagram. Significant values include those at the boundaries z = ± 1

2 h and
at the centre z = 0:

Figure 5.39 (a) A beam with a rectangular cross-section has
to transfer shear force V shown. The sliding element of the
cross-section is hatched. (b) The sliding element of the cross-section
with the shear stress σxm at the cut.
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Figure 5.40 (a) The distribution of the shear stresses over the
height of the cross-section can be plotted in a shear stress diagram.
Here we have used a visual notation: arrowheads indicate the direc-
tion in which the shear stresses actually act. In such a case, the m

direction is generally omitted and the shear stresses are denoted by
τ . (b) The direction of the shear stresses is in line with the direction
of the shear force V .

z = ± 1
2 h⇒ σxm = 0 (see also Section 5.3.3, rule 1),

z = 0 ⇒ σxm = −3

2

V

bh
(vertex of the parabola; see Section 5.3.3,
rule 4).

The shear stress σxm is negative across the entire height of the beam
(− 1

2 h < z < + 1
2 h). This means that the shear stresses act in the negative

m direction everywhere, in line with the direction of the shear force in
Figure 5.40b.

Plus and minus signs are not used in the shear stress diagram in Fig-
ure 5.40a. Instead thereof a visual notation has been used with arrows
indicating the direction of the shear stresses on the cross-sectional plane.
In a such case, one usually omits the m direction in the diagram and refers
to the shear stress as τ .

The average vertical shear stress τaverage is found by uniformly smearing
the shear force V over the area A of the cross-section:

τaverage = V

A
= V

bh
.

However, the vertical shear stresses cannot be uniformly distributed as they
have to be zero at the top and bottom of the rectangular cross-section (see
Section 5.3.3, rule 1). Therefore the shear stresses near the centre of the
cross-section have to be larger than the average shear stress.

The maximum shear stress τmax occurs in the cut through the normal centre
NC (see Section 5.3.3, rule 4):
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Figure 5.41 (a) Side view of a small beam segment to the left of
a cross-section in which a shear force Vz = V acts and a bending
moment M∗

z of arbitrary value. (b) The normal stress distribution
due to the bending moment M∗

z . (c) Since the normal stress is linear
over the height of the cross-section, the shear stress is parabolic
(rule 3). The shear stress is largest at the level of the normal centre
NC (rule 4). This is the vertex of the parabola. The direction of
the shear stresses follows from the direction of the shear force. The
shear stresses are zero at the upper and lower edges (rule 1). These
rules are sufficient to quickly sketch the shear stress diagram. To
complete the diagram only τmax has to be calculated.

τmax = 3

2

V

bh
.

The maximum shear stress turns out to be 50% larger than the average shear
stress.

Alternative solution to question a:
a. If you do not have to know the shear stress distribution as a function of
m, a quick alternative solution is possible using the rules in Section 5.3.3.

Figure 5.41a shows a small beam segment to the left of the cross-section
in which the shear force Vz = V and an arbitrary bending moment M∗

z

act. The normal stress distribution due to M∗
z is linear and is shown in Fig-

ure 5.41b. The shear stress distribution due to Vz = V is therefore parabolic
(rule 3) (see Figure 5.41c). The shear stresses are vertical and act in the
direction of the shear force in Figure 5.41a. In addition, the shear stresses
are zero at the top and bottom of the cross-section (rule 1). The maximum
shear stress (the vertex of the parabola) is located at the level of the normal
centre (rule 4).

The maximum shear stress can be determined using Figure 5.42:

τmax =
∣∣∣∣VzS

a
z

baIzz

∣∣∣∣ = V · 1
2 bh · 1

4 h

b · 1
12 bh3

= 3

2

V

bh
.

τmax can also be determined from shear stress formula (5.15), using the
normal stress diagram in Figure 5.41b:

τ = Vz

ba

[
Na (due to M∗

z )

M∗
z

]
. (5.15)
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Figure 5.42 The maximum shear stress occurs in the plane cut
through the normal centre NC, coinciding with the neutral axis in
the case of bending without extension.

Figure 5.43 The resultant of all shear stresses in the cross-section
(this is the cross-sectional shear force) is equal to the volume of the
spatially shown shear stress diagram.

If we are concerned with the maximum shear stress, at the level of the nor-
mal centre NC, then Na (due to M∗

z ) is the resultant of all normal stresses
at one side of the neutral axis (na) (see Figure 5.41b):

Na (due to M∗
z ) = 1

2 · σmax · 1
2 h · b = 1

4 bhσmax.

With

σmax = M∗
z

W
= M∗

z

1
6 bh2

we find

Na (due to M∗
z ) = 1

4 bh · M∗
z

1
6 bh2

= 3M∗
z

2h
.

Formula (5.15) now gives

τmax = V

b
·

3M∗
z

2h

M∗
z

= 3

2

V

bh
.

b. The resultant R of all shear stresses in the cross-section is equal to the
volume of the spatial stress diagram in Figure 5.43. Since the area under a
parabola is equal to two-thirds of the area of the rectangular base, we find:

R = 2
3 · hτmax · b = 2

3 · h · 3

2

V

bh
· b = V.

In a cross-section the resultant of all shear stresses indeed is equal to the
shear force.
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Figure 5.44 The shear stress formulas are based on the assump-
tion that the shear stresses are uniformly distributed over the width
ba = b. This is a good assumption for narrow cross-sections with
b � h. For wider cross-sections the shear stress along the edges is
larger than that at the centre: (a) with b/h = 0.5 the difference is
only 4% and (b) with b/h = 4 it is 100%.

Figure 5.45 (a) A simply supported concrete T-beam with a
uniformly distributed load. (b) The cross-sectional dimensions.

Comment: When deriving the shear stress formulas in Section 5.3.2 we
assumed that the shear stresses are uniformly distributed over the width
ba = b of the cut (see Figure 5.44a). This turns out to be correct only
for narrow cross-sections with b � h. For wider cross-sections the shear
stress along the edges is larger than at the centre (see Figure 5.44b), and the
maximum shear stresses are larger than those calculated with the formulas
derived here. For a rectangular cross-section with b/h = 0.5 the difference
is only 4%, with b/h = 1 this is 13% and with b/h = 4 the difference is
100%.

Example 2: T-beam
The simply supported concrete T-beam in Figure 5.45 has a span of 4 m
and carries a uniformly distributed load of 21 kN/m over the full span. The
cross-sectional dimensions are given in Figure 5.45b. The vertical shear
stresses in the beam may not exceed the value τ̄ = 0.5 kN/m, also called
the allowable shear stress.

Questions:
a. For the cross-section directly to the left of support B, draw the

distribution of the vertical shear stresses due to the shear force.
b. Over which length a are the shear stresses too large, and will additional

components be required, such as extra stirrups or bent up reinforcing
bars.

Solution:
a. First, the location of the normal centre NC and the magnitude of the
centroidal moment of inertia Izz are determined for the cross-section. For
that purpose the cross-section is split into a web with area A1 and a flange
with area A2 (see Figure 5.46):
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Figure 5.46 The location of the normal centre NC in the cross-
section.

Figure 5.47 The T-beam modelled as a line element, with its V

diagram.

A1 = (200 mm)(300 mm) = 60 × 103 mm2,

A2 = (500 mm)(120 mm) = 60 × 103 mm2.

Since the areas A1 and A2 are equally large the normal centre NC is located
precisely between the centroids of rib and flange.

This location can also be determined formally in the yz coordinate system
given in Figure 5.46:

z̄NC = Sz̄

A
= (270 mm) × A1 + (60 mm) × A2

A1 + A2
= 165 mm.

For the (centroidal) moment of inertia Izz we now find:

Izz = 1
12 (200 mm)(300 mm)3 + (200 mm)(300 mm)(105 mm)2

+ 1
12 (500 mm)(120 mm)3 + (500 mm)(120 mm)(105 mm)2

= 1845 × 106 mm4.

Next we determine the shear stress distribution in the cross-section.

The V diagram for the beam modelled as a line element is given in
Figure 5.47.
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Figure 5.48 The (cross-sectional) shear force directly to the left
of support B.

Figure 5.49 (a) The (cross-sectional) shear force directly to the
left of support B, together with a bending moment M∗

z of arbitrary
value. (b) The normal stress distribution due to M∗

z . (c) A sketch of
the shear stress distribution. The vertical shear stresses are zero at
the upper and lower edges of the T-beam. Since the bending stress is
linear over the height, the shear stress distribution will be parabolic.
Due to the difference in width ba, the parabolic distributions for web
and flange are not the same. Both parabolas have their vertex at the
level of the normal centre NC.

Figure 5.50 Due to the step change of the width ba at the joint
between flange and web, the shear stress distribution “jumps” from
one parabola to the other.

Figure 5.48a shows the cross-section at support B, on which a shear force of
42 kN acts. Figure 5.48b gives the side view of a part of the beam directly
to the left of support B, together with the shear force of 42 kN.

Figure 5.49a shows this part again, but this time there is also a bending
moment M∗

z . Note: this is not the actual bending moment; this bending
moment with an arbitrary value is introduced only for the sake of rules 2 to
4 in Section 5.3.3. These rules make it possible to make an adequate sketch
of the shear stress distribution with relative little calculation. Since rules 2
to 4 apply only when the width ba is constant, the web and flange of the
T-beam have to be treated separately.

Applying rule 1:
The vertical shear stresses are zero at the bottom edge of the web, and also
at the top and bottom edges of the flange.

Applying rule 3:
Figure 5.49b shows the normal stress diagram due to the bending moment
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Figure 5.51 (a) Calculation of τmax, the maximum shear stress at
the level of normal centre NC: ba = 200 mm. (b) Calculation of τ1,
the shear stress at the upper boundary of the web: ba = 200 mm.
(c) Calculation of τ2, the shear stress at the lower boundary of the
flange: ba = 500 mm. (d) The actual shear stresses at the lower
boundary of the flange have to be zero over a large proportion of
the width ba.

M∗
z . The normal stresses vary linearly across the height of the beam, i.e.

linearly across the web and linearly across the flange. This means that the
shear stresses due to the shear force Vz vary parabolically. As a result of the
difference in width ba the parabolic shear stress distributions for web and
flange are not the same.

Applying rule 4:
The shear stress is a maximum at the level of the normal centre NC; this is
the vertex of the parabolic shear stress diagram.

Using this information, we can now make a good sketch of the shear stress
diagram (see Figure 5.49c). The direction of the shear stresses follows from
the direction of the shear force in Figure 5.49a. As a result of the step
change in the width ba where the flange meets the web (see Figure 5.50),
the shear stress distribution “jumps” from one parabola to the other (see
Figure 5.49c).

To complete the sketch we have to determine the values of τmax, τ1 and τ2.
For that we use shear stress formula (5.14) with absolute values:

τ =
∣∣∣∣VzS

a
z

baIzz

∣∣∣∣ .
Calculation of τmax, the maximum shear stress at the level of the normal
centre NC (see Figure 5.51a):

τmax = (42 × 103 N)(200 mm)(255 mm)(252/2 mm)

(200 mm)(1845 × 106 mm4)
= 0.74 N/mm2.

Calculation of τ1, the shear stress at the upper boundary of the web (see
Figure 5.51b):
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Figure 5.52 The shear stress diagram. The shear stress τ2 at the
lower boundary of the flange is based on the assumption that the
shear stress is constant over the total width of the flange. This is
not realistic as it is zero for a large proportion of the width. Here
the shear stress formula fails and indicates only an average value.
If one is interested in the actual values, the shear stress diagram for
the flange is of little practical significance. This part of the diagram
has therefore been shown by a dotted line.

τ1 = (42 × 103 N)(200 mm)(300 mm)(105 mm)

(200 mm)(1845 × 106 mm4)
= 0.72 N/mm2.

Calculation of τ2, the shear stress at the lower boundary of the flange (see
Figure 5.51c):

τ2 = (42 × 103 N)(200 mm)(300 mm)(105 mm)

(500 mm)(1845 × 106 mm4)
= 0.29 N/mm2.

Figure 5.52 shows the shear stress diagram with the values determined
above.

When determining τ1 and τ2, at the upper boundary of the web and the
lower boundary of the flange, we use the same values of Vz, Sa

z and Izz in
the shear stress formula. Only the values for ba are different: τ1 is related
to the width of the web and τ2 to the width of the flange (see Figures 5.51b
and 5.51c).

The shear stress formula is based on the assumption that the shear stress is
constant over width ba. In Figure 5.51c a uniform distribution of the shear
stresses τ2 over the width of the flange is not realistic as, except at the web,
no vertical shear stresses can act at the bottom edge of the flange (rule 1)
(see Figure 5.51d).

It is not known how the vertical shear stresses vary across the width of the
flange. Here the shear stress formula fails and gives only the average shear
stress. For the actual values, this part of the shear stress diagram is of little
practical significance. Therefore it is shown by a dotted line in Figure 5.52.

Comment: The formulas (5.7) and (5.12), for the shear force per length in
a cut, still remain valid.

Figure 5.51c and d (c) Calculation of τ2, the shear stress at the
lower boundary of the flange: ba = 500 mm. (d) The actual shear
stresses at the lower boundary of the flange have to be zero over a
large proportion of the width ba.
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Figure 5.53 (a) Shear force diagram (V diagram) for the T-beam.
(b) Plotting the maximum shear stress τmax as a function of the
location x of the cross-section, gives a diagram that is similar to
the shear force diagram. In the hatched areas, the actual shear stress
is too large and additional measures will have to be taken, such as
extra stirrups or bent up reinforcing bars.

b. The maximum vertical shear stress τmax in the cross-section occurs at
the level of the normal centre NC and is proportional to the magnitude of
the cross-sectional shear force V . With the solution of question a we found
that, due to a shear force V = 42 kN, the maximum vertical shear stress is
τmax = 0.74 N/mm2. Hence it follows that

τmax = V

42 kN
× (0.74 N/mm2).

Figure 5.53a shows the V diagram for the T-beam. If we plot τmax as a
function of the location x of the cross-section, we find a diagram that is
similar to the V diagram (see Figure 5.53b).

In the hatched areas in Figure 5.53b, the distance to the zero line is larger

τmax > τ̄ = 0.5 N/mm2.

Here the shear stresses are too large and additional measures will have to
be taken.

The distance a follows from the similarity of the hatched triangle and
triangle PQR:

a

2 m
= (0.74 − 0.5) N/mm2

0.74 N/mm2 ⇒ a = 0.65 m.

Note: If a concentrated force acts on a beam, such as in this example at the
supports, there is a disruption in the calculated stress distribution. The dis-
ruption occurs across a length of the order of the beam height and is a result
of the fact that the concentrated force “needs some length to be introduced”

than the allowable shear stress τ̄ :
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into the structure. This phenomenon is not covered in elementary beam
theory, nor in this example.

Comment: Using computer programs based on the so-called finite element
method we can learn more about the stress distribution in areas with dis-
ruptions or, as in question a, about the actual shear stress distribution in the
flange of a T-beam.

5.4.2 Thin-walled open cross-sections

In this section we determine the shear stress distribution due to shear
for a number of thin-walled cross-sections. In all cases, the cross-section
is mirror symmetrical and the shear force acts in the plane of mirror
symmetry.

Example 1: An I-section
A thin-walled I-section, with the cross-sectional dimensions given in Fig-
ure 5.54, has to transfer the shear force Vz = V as shown. The shear
force has been drawn outside the cross-section for sake of clarity.1 In the
calculation use b = h and tf = tw = t .2

Questions:
a. Sketch the shear stress distribution in the web, and determine the

relevant values.
b. Sketch the shear stress distribution in the flanges, and determine the

relevant values.

1 In Figure 5.54, the force V is not a compressive force.
2 The index “f” for the wall thickness t relates to the flange; the index “w” relates

to the web.
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Figure 5.54 A thin-walled I-section has to transfer shear force
Vz = V in the vertical plane of mirror symmetry.

Figure 5.55 To determine the shear stresses in the web, a cut
normal to the centre line m is introduced. The location of the cut
is determined by the auxiliary coordinate m1. The sliding part of
the cross-section is hatched.

c. Determine the resultant of all shear stresses in the cross-section.

Solution:
a. In Figure 5.55, a cut has been introduced in the web, normal to the centre
line. The location of the cut is determined by an auxiliary coordinate m1.
The sliding element of the cross-section has been hatched.

The shear stress is determined using formula (5.15):

σxm = −VzS
a
z

baIzz

, (5.15)

in which

Izz = 1
12 twh3 + 2 · tfb · ( 1

2 h
)2 = 7

12 th3,

and

ba = tw = t .

In addition

Sa
z = tfb · 1

2 h + twm1 · ( 1
2 h − 1

2 m1
) = 1

2 th2 + 1
2 thm1 − 1

2 tm2
1.

Substitute these expressions into (5.15) and we find

σxm = −V · ( 1
2 th2 + 1

2 thm1 − 1
2 tm2

1

)
t · 7

12 th3

= −6

7

V

th

(
1 + m1

h
− m2

1

h2

)
.

The shear stresses in the web are quadratic in m1 (parabolic).
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Figure 5.56 (a) The shear stress diagram for the web (determined
with respect to the centre lines of the I-section): the shear stresses
are parabolic and have their top values at the level of the normal
centre NC. (b) The direction of the shear stresses in the web is in
line with the direction of the cross-sectional shear force.

Figure 5.57 The diagram for the vertical shear stresses in the
I-section as often seen in the literature. The jump in the shear stress
distribution is caused by the difference in width of web and flange.
For the actual magnitude of the shear stresses, the values in the
flange are not realistic, and are best omitted.

The location of the maximum (the vertex of the parabola) follows from

dσxm

dm1
= −6

7

V

th

(
0 + 1

h
− 2m1

h2

)
= 0 ⇒ m1 = 1

2 h.

This, as can be expected from rule 4, is at the level of the normal centre
NC.

Relevant values for creating a good sketch of the shear stress distribution
are found in

m1 = 0 ⇒ σxm = −6

7

V

th

m1 = 1
2 h ⇒ σxm = −15

14

V

th
(vertex of the parabola).

Figure 5.56a shows the shear stress diagram for the web. Here we have used
the visual notation: the shear stresses are represented by arrows with their
heads in the directions in which they actually act on the cross-sectional
plane.

The three calculated shear stresses are negative and act opposite to the m

direction, that is in the positive z direction. This direction holds for the
whole web (0 < m1 < h), and is in line with the direction of the shear force
V in Figure 5.56b.

Comment: In the literature, the diagram in Figure 5.57 is often used for
the vertical shear stress distribution in an I-section. The step change in the
shear stress distribution is caused by the difference in width between web
and flange. From the previous section we know that these values in the
flange are not realistic and therefore are best omitted!
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Figure 5.58

b. In Section 5.3.2 it was stated in general that in (those parts of) a cross-
section with a constant width ba measured normal to the centre line, the
following apply:
• the shear stresses are parallel to the centre line;
• the shear stresses are uniformly distributed across the width ba.

A condition is that the width ba is relatively small compared to the length
of the centre line of (the relevant part of) the cross-section. Thin-walled
cross-sections meet this condition by definition.

For a thin-walled I-section, this means that the shear stresses in the flanges
are horizontal, regardless of the (vertical) direction of the shear force. The
background is illustrated briefly in Figure 5.58.

In Figure 5.58a a cut has been introduced at P normal to the centre line
of the upper flange. The hatched part to the right of the cut is considered
the sliding element. This is spatially shown in Figure 5.58b for a beam
segment with small length �x.

Figure 5.58 (a) To calculate the shear stresses in a flange, a
cut normal to the centre line is introduced at P. The part to the
right of the cut is chosen as the sliding part of the cross-section,
and is hatched. (b) The sliding element of the flange has been
isolated from the rest of the small beam segment with length �x.
The longitudinal shear force sa

x (force per length) follows from
the force equilibrium in x direction of the sliding element. At P,
the shear force sa

x leads to the longitudinal shear stress σmx . Since
the shear stresses on two mutually perpendicular planes are equal,
there is a horizontal shear stress σxm = σmx in the flange. In the
cross-section, the shear stresses in the flanges are horizontal, even
though the shear force acts in the vertical direction.
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If there is a shear force, the bending moments on the front and back cross-
sectional plane of the small beam segment are not of the same magnitude.
This follows from

dM

dx
= V or �M =

∫
V dx.

Hence the bending stresses1 on the front and back cross-sectional planes
are different.

Assume that the resultant of all normal stresses on the back plane of the
sliding element is Na, and that on the front plane is Na +�Na. The sliding
element can be in equilibrium only if a longitudinal shear force acts in the
cut. With sa

x as shear force per length, the resultant shear force in the cut
with small length �x is sa

x�x.

For a small wall thickness t , it can be assumed that sa
x , the shear force per

length, is the resultant of a shear stress σmx which is uniformly distributed
across the wall thickness:

σmx = sa
x

t
.

Since the shear stresses on two mutually perpendicular planes are equal2

the horizontal cross-sectional shear stress σxm in the flange is equal to the
mx

We will now determine the shear stress distribution in the top flange.

1 Bending stresses are normal stresses due to bending.
2 This follows from the moment equilibrium of a small parallelepiped, see

Section 5.3.1.Figure 5.58

in the longitudinal cut.shear stress σ
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Figure 5.59 To calculate the shear stress distribution in a flange,
one can use a symmetrical double cut across both flange halves. The
location of the double cut is defined by the distance m2 to the flange
edges.

Figure 5.60 The sliding parts of the cross-section, with the m

directions and shear stresses σxm.

In order to speed up matters, a symmetrical double cut has been introduced
across both flange halves in Figure 5.59. The location of the double cut is
defined by the distance m2 to the flange edges.

Since the z axis is a line of mirror symmetry with respect to the cross-
section and the load, the shear force in the double cut will distribute itself
evenly across the single cuts a-a and b-b. Hence, the shear stresses in a-a
and b-b will be equal and opposite.

Figure 5.60 is a magnified representation of the sliding elements, with the
m directions and the shear stress σxm. Remember that for the calculation
we have to use b = h and tf = t .

The following hold:

Vz = V,

Sa
z = 2 · m2tf · ( − 1

2 h
) = −thm2,

ba = 2tf = 2t (Note: this is a double cut!),

Izz = 7
12 th3.

Substitute these values in shear stress formula (5.15) and we find

σxm = −V · (−thm2)

2t · 7
12 h3

= +6

7

V

th

m2

h
.

In both flange halves the shear stress distribution is linear in m2. Significant
values for a good sketch are found in the edges of the flange (m2 = 0) and
at the web (m2 = 1

2 b):
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Figure 5.61 (a) The shear stress diagram, determined for
the I-section and plotted on the centre lines. For thin-walled
cross-sections plotting on the centre lines is a useful way of pre-
senting the shear stress distribution in both the web and flanges in
a single figure. The values are plotted in such a way that the fig-
ure remains orderly. (b) The shear stresses in the cross-section are
uniformly distributed across the wall thickness. It is as if the shear
stresses flow from the edges of the upper flange towards the web,
and flow out below to the edges of the lower flange. This continuity
in shear flow is a characteristic for the shear stress distribution in a
thin-walled cross-sections due to a cross-sectional shear force.

m2 = 0 ⇒ σxm = 0,

m2 = 1
2 b

( = 1
2 h

) ⇒ σxm = +3

7

V

th
.

The shear stresses in the upper flange are all positive and therefore act in
the positive m direction(s).

The determination of the shear stress distribution in the lower flange occurs
in the same way and is left to the reader.

For thin-walled cross-sections, it is useful to plot the shear stresses in the yz

plane, along the centre lines of the cross-section (see Figure 5.61a). In this
way, we can present the shear stress distribution in both web and flanges in
a single figure. Arrows indicate the actual directions of the shear stresses.
It is irrelevant on which side of the centre lines the values are plotted.
They are plotted in such a way that the shear stress diagram is easy to
read.

Figure 5.61b shows again how the shear stresses act in the thin-walled
I-section, without including the values. The shear stresses are constant
across the wall thickness. It is as if the shear stresses “flow towards”
the web from the edges of the upper flange, and “flow out” at the lower
flange. This continuity in flow direction of the shear stresses is character-
istic for the shear stress distribution in thin-walled cross-sections due to a
cross-sectional shear force.
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Figure 5.62 The product of shear stress τ and wall thickness t is
known as the shear flow s: s = τ t .

Figure 5.63 Where web and upper flange meet, the total shear
flow towards the joint (the flow-in) is equal to the total shear flow
from the joint (the flow-out).

The product of shear stress τ and wall thickness t is called the shear flow
(see Figure 5.62):

s = τ t.

If we look somewhat more closely at the join between web and flange,
hereafter referred to as the “joint”, the total shear flow towards the joint
(the flow-in, sin) is equal to the total shear flow from the joint (the flow-out,
sout), or

sin = sout.

So the following hold for the joint between web and upper flange (see
Figure 5.63):

flow-in: sin = 2 × 3

7

V

th
· t = 6

7

V

h
,

flow-out: sout = 6

7

V

th
· t = 6

7

V

h
.

The flow-in equals the flow-out.

This is not a coincidence but a generally valid property that results from the
force equilibrium of the joint in the longitudinal direction.
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Figure 5.64

To demonstrate the general applicability, we look at a beam element with
small length �x, and isolate the joint between web and upper flange (see
Figure 5.64a).

If s
(1)
x , s

(2)
x and s

(3)
x are the shear forces per length on the sliding elements

(1) to (3), the resultant shear forces are s
(1)
x �x, s

(2)
x �x and s

(3)
x �x. There

are equal and opposite forces acting on the joint. The force equilibrium of
the joint in x direction implies

−s(1)
x �x − s(2)

x �x − s(3)
x �x = 0,

or

s(1)
x + s(2)

x + s(3)
x = 0. (5.18)

We have assumed that the dimensions of the joint in the transverse direction
are so small that the resultants of the normal stresses on the front and back
(cross-sectional) planes of the joint can be neglected.

Figure 5.64 (a) The joint between web and upper flange has
been isolated for a beam segment with small length �x. The force
equilibrium of the joint in x direction implies that, in the joint,
the sum of the shear forces per length must equal zero. (b) In
the plane of the cross-section, this means that the total shear flow
towards the joint must be zero:

∑
τ t = 0. In other words: the

total flow-in and flow-out must be equal at a joint.
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Expression (5.18) means that, at a joint, the sum of the shear forces per
length must be zero. The shear force per length is equal to the product of
the longitudinal shear stress τ (on the longitudinal section plane) and the
wall thickness t (the width of the cut). Expression (5.18) can therefore also
be formulated as

∑
τ t = 0. (5.19)

In expression (5.19), since the shear stresses in two mutually normal planes
are equal, τ can also be seen as the shear stress in the plane of the cross-
section, so that τ t is the shear flow s.

Expression (5.19) can be interpreted as follows:

The total shear flow towards a joint must be zero (see Figure 5.64b),

or in other words:

At a joint, the total flow-in must be equal to the total flow-out.

For a thin-walled cross-section we can now add three new rules to the four
rules mentioned in Section 5.3.3 and relating to the shear stress distribution
in a cross-section due to shear.

Rule 5. There is continuity in the “flow direction” of the shear stresses.

Rule 6. The shear flow s equals the product of the shear stress τ and thick-
ness t:

s = τ t.
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Figure 5.65 (a) The shear stress distribution in the cross-section
with (b) the shear stress resultants in web and flanges. The resultant
of the vertical shear stresses in the web is equal to the vertical shear
force V in the cross-section. The horizontal shear stress resultants
in the flanges form an equilibrium system together.

Rule 7. At a joint, the total flow-in is equal to the total flow-out:

sin = sout.

At the end of this example, we will use the rules 1 to 7 to present a quick
alternative solution to the questions a and b. First, however, we will answer
question c and determine the resultant of all shear stresses in the cross-
section.

c. Figure 5.65a shows the shear stress diagram for the thin-walled I-section.
Figure 5.66 gives a spatial representation of the shear stress distribution in
the web. The resultant of all shear stresses in the web is a vertical force that
is equal to the volume of the stress diagram. This in turn is equal to the
area of the stress diagram in Figure 5.65a, multiplied by the web thickness
tw = t . The area of the stress diagram of the web is most easily determined
by splitting the diagram into a rectangle and a parabola. In this way we find
the following shear stress resultant in the web:

Rweb =
{

6

7

V

th
· h︸ ︷︷ ︸

rectangle

+ 2
3 ·

(
15

14

V

th
− 6

7

V

th

)
· h

︸ ︷︷ ︸
parabola

}
× t

= 6
7 V + 2

3 · 3
14 V = V.

The resultant of the shear stresses in a flange half is a horizontal force equal
to the area of the triangular shear stress diagram in Figure 5.65a, multiplied
by the web thickness tf = t:

Rhalf flange =
{

1
2 · 3

7

V

th
· h

2

}
× t = 3

28 V.
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Figure 5.66 Spatial representation of the shear stress distribution
in the web. The shear force is equal to the resultant of all shear
stresses in the web, and is found from the volume of the stress
diagram.

Figure 5.65b shows the shear stress resultants for the I-section. The forces
in the flange halves form an equilibrium system. The resultant of the ver-
tical shear stresses in the web, as can be expected, is equal to the vertical
shear force V to be transferred by the cross-section.

Note with respect to the magnitude of the shear stresses in the web that the
shear force V is transferred fully by the web of the I-section. The average
shear stress in the web is

τaverage = V

Aweb
with Aweb = th.

In the I-section in question, the maximum shear stress is

τmax = 15

14

V

th
= 15

14

V

Aweb
= 1.07τaverage.

Here the maximum shear stress in the web of the I-section is just 7% larger
than the average shear stress in the web.

The deviation depends on the exact cross-sectional dimensions, but varies
little for the thin-walled I-sections used in practice. Therefore the following
global rule can be used for I-sections in the design phase:

τmax ≈ τaverage,

or, more realistically:

τmax ≈ 1.1 × τaverage.
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Figure 5.67 (a) Side view of the beam segment to the left of a
cross-section, with the shear force V in the xz plane. An arbitrary
bending moment M∗

z has been added, acting in the same plane as
the shear force. (b) The bending stress distribution due to M∗

z : the
bending stress is constant in the flanges and linear in the web. This
means that the shear stress is linear in the flanges and parabolic in
the web. (c) The shear stresses in the web have the same direction
as the shear force V . (d) The horizontal shear stresses in the flanges
are linear, and zero at the edges. (e) From the continuity of the shear
flow it follows that the shear stresses in the upper flange must flow
towards the web and that those in the lower flange must flow away
from the web. (f) The shear stresses in the web are parabolic. The
vertex of the parabola is located at the level of the normal centre
NC. For the joins between the web and flanges, flow-in = flow-out.

Alternative solution to the questions a and b:
Using rules 1 to 7 we can make a good sketch of the shear stress distribution
with little calculation.

Figure 5.67a gives the side view of a small part of the beam, with a shear
force V in the xz plane. A bending moment M∗

z has been added in the plane
in which the shear force acts. Note that this moment is not actually present,
but is introduced for the sake of rules 2 to 4 from Section 5.3.3.

Figure 5.67b shows the bending stress diagram due to M∗
z . Figure 5.67c

shows the cross-section, with the shear force V that it has to transfer.
Due to this shear force, the following apply for the shear stresses in the
thin-walled I-section:

• The shear stresses are constant across the wall thicknesses. They act
vertically in the web and horizontally in the flanges.

• From the direction of the shear force it follows that the shear stresses
in the web are directed downwards (see Figure 5.67d).

• The shear stresses are zero at the edges of the flanges (rule 1).
• From Figure 5.67b we see that there is a constant bending stress in

the flanges, so the shear stress distribution here is linear (rule 2) (see
Figure 5.67d).

• Based on mirror symmetry, the shear stress distributions in the left-hand
and right-hand flange halves are equal and opposite.

• From the continuity of the flow direction it follows that the shear
stresses in the upper flange must flow towards the web and that the
shear stresses in the lower flange must flow away from the web (rule 5)
(see Figure 5.67e).

• From Figure 5.67b we see that the bending stresses in the web are
linearly distributed, so the shear stress distribution here is parabolic
(rule 3) (see Figure 5.67f).
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Figure 5.68 A thin-walled angle steel with equal legs must
transfer a shear force of 40

√
2 kN in the plane of symmetry.

• The vertex of the parabola (the location of the maximum shear stress in
the web) is at the level of the normal centre NC (rule 4).

• At the joins between web and flanges, “flow-in” = “flow-out” (rule 7)
(see Figure 5.67f):

2 × τa · tf = τb · tw.

With tf = tw = t we find

τb = 2τa.

We therefore have to know only two values to draw a complete sketch of
the shear stress diagram: τa (or τb) and τc (see Figure 5.67f).

Example 2: An angle steel with equal legs
A thin-walled angle steel, with equal legs of 200 mm and a wall thickness
of 15 mm, has to transfer a shear force of 40

√
2 kN in the plane of mirror

symmetry (see Figure 5.68).

Questions:
a. Determine the shear stress distribution in the cross-section, including

the maximum shear stress.
b. Determine the resultant of all the shear stresses in the cross-section.

Solution (units in N and mm):
a. The location of the normal centre NC is given in Figure 5.68. It is left to
the reader to check its correctness.



336 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

Figure 5.69 To determine the moment of inertia Izz, the legs of
the thin-walled angle steel are considered as strips. For a thin-walled
strip, it is not important whether it is a rectangle or a parallelogram.

Figure 5.70 The moment of inertia Izz of a parallelogram is equal
to that of a rectangle with the same (horizontally measured) width
b and height h.

To determine the shear stress distribution, we will use the following
formula:

σxm = −VzS
a
z

baIzz

.

For determining the (centroidal) moment of inertia Izz, the angle steel is
considered to consist of two strips, of which the right-hand strip is shown
in Figure 5.69. For a thin-walled strip it makes little difference whether it
is seen as a rectangle or as a parallelogram. A parallelogram has the benefit
that we can use its property that the moment of inertia is equal to that of
a rectangle with the same (horizontally measured) width and height (see
Figure 5.70). In this way, we find for the moment of inertia of the angle
steel the following value:

Izz = 2 × 1
12 bh3 = 2 × 1

12 × 15
√

2 × (100
√

2)3 = 10 × 106 mm4.

Figure 5.71 shows the sliding part of the cross-section. The location of
the cut where the shear stress σxm acts is defined by the distance m (mea-
sured along the centre line) to the edge at the lower side of the angle steel
(0 < m ≤ 200 mm).

The static moment Sa
z of the sliding element is

Sa
z = 15 × m × (

50
√

2 − 1
4 m

√
2
) = (750m − 3.75m2) × √

2 mm3.

Furthermore

Vz = 40
√

2 × 103 N
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Figure 5.71 The sliding part of the cross-section is hatched. The
location of the cut where the shear stress σxm acts is defined by the
distance m measured along the centre line to the lower side of the
profile.

Figure 5.72 The shear stress diagram. The shear stress distribution
is parabolic. The maximum shear stress occurs at the level of the
normal centre NC; this is the vertex of the parabola.

and

ba = 15 mm.

If these values are substituted in the shear stress formula, we find the
following for the right-hand leg of the angle steel:

σxm = −VzS
a
z

baIzz

= −40
√

2 × 103 × (750m − 3.75m2)
√

2

15 × 10 × 106

= (2m2 − 400m) × 10−3 N/mm2.

The shear stress distribution is quadratic in m and therefore a parabola. The
location of the maximum shear stress (the vertex of the parabola) we find
from

dσxm

dm
= (4m − 400) = 0 ⇒ m = 100 mm.

The shear stress is a maximum at the level of the normal centre NC.

Three values are sufficient for a good sketch of the shear stress distribution
in the right-hand leg of the angle steel:

m = 0 ⇒ σxm = 0,

m = 100 mm ⇒ σxm = −20 N/mm2 (the maximum shear stress),

m = 200 mm ⇒ σxm = 0.

Since the shear stresses are negative across the entire height, they act
opposite to the direction of σxm in Figure 5.71.
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Figure 5.73 (a) The shear stress resultants RAB and RBC for the
legs AB and BC respectively. (b) The resultant of RAB and RBC is
equal to the vertical shear force of 40

√
2 kN.

Figure 5.74 (a) Side view of the beam segment to the left of a
cross-section, with the shear force V in the xz plane. An arbitrary
bending moment M∗

z has been added, acting in the same plane as
the shear force. (b) The bending stress diagram due to M∗

z . The
bending stresses are linear in both legs of the angle steel so that
the shear stress distributions here are parabolic. (c) The shear stress
diagram. The parabolic shear stresses are a maximum at the level
of the normal centre NC. The shear stresses are zero at the lower
edges of the legs. With this the complete shear stress diagram can
be sketched. The direction of the shear stresses follow from the
direction of the shear force.

The mirror symmetry of the cross-section and load implies that the shear
stress distributions in the left-hand and right-hand legs of the angle steel are
equal. Figure 5.72 shows the complete shear stress diagram.

b. The resultant force RAB of the shear stresses in leg AB of the angle steel
(see Figure 5.72) is equal to the area of the parabolic shear stress diagram,
multiplied by the wall thickness of 15 mm:

RAB = 2
3 × (200 mm)(20 N/mm2) × (15 mm) = 40 × 103 N = 40 kN.

The shear stress resultant in BC is equal to that in AB, hence

RAB = RBC = 40 kN.

The shear stress resultants for AB and BC are shown in Figure 5.73a. The
resultant of all shear stresses in the cross-section is indeed equal to the
vertical shear force of 40

√
2 kN (see Figure 5.73b).

Alternative solution:
Figure 5.74a shows the side view of a small part of the beam, with the shear
force Vz = V . A bending moment M∗

z of arbitrary value has been added,
acting in the same plane as the shear force.

Figure 5.74b shows the bending stress diagram due to M∗
z . The bending

stresses are linear in both legs of the angle steel, so the shear stress distrib-
ution is parabolic here (rule 3), with a maximum at the level of the normal
centre NC (rule 4). In addition, the shear stresses are zero at the lower end of
the legs (rule 1). With this we can plot the whole shear stress diagram (see
Figure 5.74c). The direction of the shear stresses follow from the direction
of the shear force (components in the legs). In the end we have to determine
only τmax.
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Figure 5.75 (a) The cross-sectional dimensions of a thin-walled
steel U-section, used as a column. (b) The column has to transfer a
shear force of 47.5 kN in the plane of symmetry as shown.

Figure 5.76 Web and flanges of the U-section.

Example 3: A steel U-section
A steel U-section (or channel profile) has been used as a column in a tempo-
rary support. The cross-section can be considered thin-walled. Figure 5.75a
shows the cross-sectional dimensions. Figure 5.75b shows the side view of
a part of the column, with the shear force of 9.5 kN that the column has to
transfer in the xy plane.

Questions:
a. Check the correctness of the location of the normal centre NC in

Figure 5.75a.
b. Determine the shear stress distribution.
c. Determine the maximum shear stress in the cross-section and the

location where it occurs.

Solution (units in N and mm):
a. In a yz coordinate system through the normal centre NC, the following
applies per definition:

Sy =
∫

A

y dA = 0 and Sz =
∫

A

z dA = 0.

Since the y axis is a line of symmetry, the condition Sz = 0 is met. There
remains to show that

Sy = Sweb
y + 2 × S

flange
y = 0.

Figure 5.76 indicates what is understood by web and flanges in this
situation.1

1 In this situation, with a shear force parallel to the “flanges”, it is disputable what
is flange is and what is web.
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Sy = 7 × 140 × (+16.5) + 2 × {10 × 60 × (−30 + 16.5)}
= 16170 − 16200 = −30 mm3.

Note that the flanges have a negative contribution to Sy .

Sy is not exactly zero. The actual location of the normal centre NC is a little
more to the right and follows from

yNC = Sy

A
= −30

7 × 140 + 2 × 10 × 60
= −0.014 mm.

So the values 16.5 and 43.5 in Figure 5.75a are rounded off from the more
accurate values 16.514 and 43.486.

b. Since the shear force acts in the xy plane, the shear stress formula is

σxm = − VyS
a
y

baIyy

.

For the thin-walled U-section, the following applies:

Iyy = Iweb
yy(Steiner) + 2 × {

I
flange
yy(centr) + I

flange
yy(Steiner)

}

= 7 × 140 × (+16.5)2 +
+ 2 × { 1

12 × 10 × 603 + 10 × 60 × (−30 + 16.5)2}

= 845.5 × 103 mm4.

Figure 5.75 (a) The cross-sectional dimensions of a thin-walled
steel U-section, used as a column. (b) The column has to transfer a
shear force of 47.5 kN in the plane of symmetry as shown.

Figure 5.76 Web and flanges of the U-section.
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Figure 5.77 (a) The sliding part of the cross-section for determin-
ing the shear stresses in the upper flange. (b) Since the shear stress
distribution is symmetrical, we can also use a symmetrical double
cut.

First we determine the shear stresses in the upper flange. Figure 5.77a
shows the sliding element. The location of the cut with shear stress σxm

is defined by distance m1 to the edge of the flange.

The static moment Sa
y of the sliding part of the flange is

Sa
y = 10 × m1 × ( − 43.5 + 1

2 m1
) = 5m2

1 − 435m1 (0 ≤ m1 ≤ 60).

With Vy = −9.5 × 103 N and ba = 10 mm we find

σxm = − VyS
a
y

baIyy

= − (−9.5 × 103)(5m2
1 − 435m1)

10 × (845.5 × 103)

= (m2
1 − 87m1) × 5.618 × 10−3 N/mm2.

This is a parabolic shear stress distribution. The shear stress is a maximum
when m1 = 43.5 mm, that is at the level of the normal centre NC.

A number of values are

m1 = 0 ⇒ σxm = 0,

m1 = 43.5 mm ⇒ σxm = −10.64 N/mm2

m1 = 60 mm ⇒ σxm = −9.1 N/mm2.

σxm is negative everywhere and is therefore acting opposite to the direction
of σxm shown in Figure 5.77a. This is in line with the direction of the shear
force.

(the top value),
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In the same way, we can find the shear stress distribution in the lower
flange. However, it is possible to determine the shear stress distributions
in both flanges at one go. Therefore we use the symmetrical double cut in
Figure 5.77. Since the cross-section is mirror symmetrical and the shear
force is acting in the plane of mirror symmetry, the shear stress distribution
is also symmetrical.

Figure 5.78a shows the shear stress distribution for both flanges. It could
have been predicted that the shear stresses in the flanges would be parabolic,
founded on the bending stress diagram in Figure 5.79a due to the arbitrary
bending moment M∗

y in the xy plane, the same plane in which the shear
force acts (see Figure 5.79c). The bending stresses are linear in the flanges,
so the shear stress distribution is parabolic here (rule 3).

Figure 5.79 shows that the bending stresses in the web are constant and that
the shear stresses here are therefore linear (rule 2). The shear stresses at the
top and bottom of the web can be determined using the property flow-in =
flow-out (rule 7) (see Figure 5.78a):

τa × 7 = τb × 10.

This implies

τa = 10
7 τb = 10

7 × 9.5 = 13.0 N/mm2.

Due to mirror symmetry, the shear stresses are zero on the line of mirror
symmetry (the y axis).

Figure 5.78b shows the complete shear stress diagram.

Figure 5.77 (a) The sliding part of the cross-section for determin-
ing the shear stresses in the upper flange. (b) Since the shear stress
distribution is symmetrical, we can also use a symmetrical double
cut.
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Figure 5.79 (a) The bending stress diagram for (b) the U-section,
due to (c) an arbitrary bending moment M∗

y in the xy plane, the
same plane in which the shear force acts.

Figure 5.78 (a) The parabolic shear stress distribution in both
flanges. The maximum shear stress occurs at the level of the normal
centre NC. (b) The complete shear stress diagram.

c. The maximum shear stress in the flanges is 10.64 N/mm2 and occurs at
the level of the normal centre NC. However, the largest shear stress in the
cross-section is not in the flanges, but in the web at the join with the flanges,
and is 13.0 N/mm2.
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Figure 5.80 The sliding part of the cross-section for determining
the shear stresses in the web.

Comment in relation to the shear stress distribution in the web: If we want
to determine the shear stress distribution in the web in the same way as that
for the flanges, we can use the sliding element in Figure 5.80. The location
of the cut with shear stress σxm is defined by the distance m2 to (the centre
line of) the upper flange.

For the static moment Sa
y of the sliding element,

Sa
y = 10 × 60 × (−13.5) + 7 × m2 × (+16.5) = 115.5m2 − 8100.

With Vy = −9.5 × 103 N and ba = 7 mm we find

σxm = −VyS
a
y

baIyy

= − (−9.5 × 103)(115.5 × m2 − 8100)

7 × (845.5 × 103)

= (115.5 × m2 − 8100) × 1.605 × 10−3 N/mm2.

This is indeed a linear distribution.

A number of values:

m2 = 0 ⇒ σxm = −13.0 N/mm2,

m2 = 70 mm ⇒ σxm = −0.02 N/mm2,

m2 = 140 mm ⇒ σxm = +12.95 N/mm2.

The fact that the shear stress at the centre of the web is not exactly zero is
a consequence of the fact that the distance from the normal centre NC to
the web in Figure 5.75a has been rounded off from 16.514 mm to 16.5 mm.
This is also the reason for the difference in shear stress values at the top of
the web (13.0 N/mm2) and bottom of the web (12.95 N/mm2).
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Figure 5.81 (a) The cross-section of a thin-walled box girder
bridge. Since the cross-section is mirror symmetrical and the shear
force acts in the plane of symmetry the shear stress distribution is
also mirror symmetrical. (b) The shear stresses can be determined
by introducing a symmetrical double cut (normal to the centre
lines). In the shear stress formula we have to use the total wall
thickness across the double cut for the width of the sliding element:
ba = 2 × t .

Figure 5.82 (a) A thin-walled hollow cross-section, subject to a
shear force which does not act in a plane of symmetry. (b) For the
given double cut it is possible to determine the total shear force
per length (shear flow), but it is unknown how this shear force is
distributed between the webs.

5.4.3 Thin-walled hollow cross-sections

Figure 5.81a shows the cross-section of a box girder bridge with the shear
force V . Since the cross-section is mirror symmetrical and the shear force
acts in the plane of symmetry, the shear stress distribution in the cross-
section will be mirror symmetrical.

In the symmetrical double cut, as indicated in Figure 5.81b, the shear
stresses are assumed uniformly distributed across the total thickness of
both walls. Now the shear stress distribution can be determined using the
formulas (5.14) or (5.15):

σxm = −VzS
a
z

baIzz

, (5.14)

σxm = −Vz

ba

[
Na (due to) M∗

z )

M∗
z

]
. (5.15)

In these formulas the total wall thickness of the double cut has to be used
for width ba of the sliding element. For Figure 5.81b

ba = 2 × t .

More generally, we can say that the shear stress formulas (5.14) and (5.15)
can be applied successfully to thin-walled mirror symmetrical unicellular
hollow cross-sections with the shear force acting in the plane of mirror
symmetry.

In many other cases, where we do not know whether the shear stresses
are uniformly distributed over the total width of the multiple cut, the shear
stress formulas (5.14) and (5.15) cannot not be used. Two examples are
given in Figures 5.82 and 5.83.
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Figure 5.83 (a) A mirror symmetrical hollow cross-section with
two cells, subject to a shear force in the plane of symmetry. The
shear stress distribution will be symmetrical. (b) For the given cut
over three webs we can to determine the total shear force per length
(shear flow) on the sliding element, but we do not know how this
shear flow is distributed over the webs. The shear stresses in the
outer webs may be different from those in the centre web.

For the hollow cross-section in Figure 5.82a, the vertical shear force V does
not act in a plane of symmetry. With the double cut in Figure 5.82b, we can
determine the total shear force per length (shear flow) in the double cut,
but we do not know how it is distributed between the cuts. In other words,
it is unknown which part of the shear force is transferred by each of the
webs. The shear stresses therefore need not be the same in the two cuts.
This means that the shear stress formulas (5.14) and (5.15) cannot be used
here.

Another example is the symmetrical hollow cross-section in Figure 5.83a,
with two cells. The shear stress distribution due to shear force V in the plane
of symmetry will be symmetrical. It is possible to determine the total shear
force per length (shear flow) for the sliding element in Figure 5.83b, but it
is unknown how this shear force is distributed between the three webs. The
shear stresses in the outer webs may be different from those in the centre
web. Here too, the shear stress formulas (5.14) and (5.15) cannot be used.

Next you will find two examples in which the formulas (5.14) and (5.15)
suffice to determine the shear stress distribution.

Example 1: A rectangular hollow cross-section
A thin-walled box girder, with the cross-sectional dimensions given in
Figure 5.84, has to transfer a shear force of 60 kN.

Question:
Determine the shear stress distribution in the cross-section.

Solution (units in N and mm):
The shear stress distribution can be determined by using formula (5.14):

σxm = −VzS
a
z

baIzz

, (5.14)
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Figure 5.85 (a) To determine the shear stresses in the upper
flange, we work with a symmetrical double cut. (b) The shear stress
distribution in the upper flange.

Figure 5.84 A thin-walled rectangular hollow cross-section has to
transfer the shear force of 60 kN as shown.

in which

Vz = 60 × 103 N,

and

Izz = 2 × Iweb
zz(centr) + 2 × I

flange
zz(Steiner)

= 2 × 1
12 × 30 × 5003 + 2 × 20 × 250 × (±250)2

= 1250 × 106 mm4.

We first determine the shear stress distribution in the top flange. For the
sliding element in Figure 5.85a it holds that
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Figure 5.86 (a) The symmetrical double cut for determining the
shear stresses in the webs. (b) The shear stress distribution in the
webs.

ba = 2 × 20 = 40 mm,

and

Sa
z = 2 × 2 × m1 × (−250) = −10m1 × 103 mm3.

So we find for the top flange

σxm = − (+60 × 103)(−10m1 × 103)

40 × (1250 × 106)
= +12m1 × 10−3 N/mm2.

This is a linear distribution. All shear stresses act in the positive m direction.

A number of values:

m1 = 0 ⇒ σxm = 0,

m1 = 125 mm ⇒ σxm = +1.5 N/mm2.

The shear stress distribution is shown in Figure 5.85b.

The shear stress distribution in the webs is determined using the sliding
element in Figure 5.86a. Here

ba = 2 × 30 = 60 mm

and

Sa
z = 20 × 250 × (−250) + 2 × 30 × m2 × ( − 250 + 1

2 m2
)

= (30m2
2 − 15m2 × 103 − 1.25 × 106) mm3.

Figure 5.85 (a) To determine the shear stresses in the upper
flange, we work with a symmetrical double cut. (b) The shear stress
distribution in the upper flange.



5 Shear Forces and Shear Stresses Due to Bending 349

Figure 5.87 The shear stress diagram for the whole cross-section.

For the shear stress distribution in the webs we now find

σxm = − (+60 × 103)(30m2
2 − 15m2 × 103 − 1.25 × 106)

40 × (1250 × 106)

= (−24m2
2 × 10−6 + 12m2 × 10−3 + 1) N/mm2.

This is a parabolic distribution. The location of the top follows from
dσxm/dm2 = 0 and is located at m2 = 250 mm, at the level of the normal
centre NC.

A number of values:

m2 = 0 ⇒ σxm = +1 N/mm2,

m2 = 250 mm ⇒ σxm = +2.5 N/mm2 (the top value),

m2 = 500 mm ⇒ σxm = +1 N/mm2.

The shear stress distributions in the webs are shown in Figure 5.86b. The
shear stresses are positive and therefore act in the positive m direction, or
downwards. This is in line with the direction of the shear force in the cross-
section.

The determination of the shear stresses in the bottom flange is left to the
reader.

Figure 5.87 shows the complete shear stress diagram. A number of checks,
which are left to the reader, include the following:
• In the corners flow-in = flow-out.
• The resultant of all shear stresses in the webs is equal to the shear force.
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Figure 5.88 (a) Side view of the box girder to the left of a
cross-section subject to a shear force of 60 kN and an arbitrary
bending moment M∗

z , both acting in the xz plane. (b) The bending
stress diagram due to M∗

z . Since the bending stress is constant in
the flanges, the shear stresses here are linear. The bending stress is
linear in the webs, so the shear stresses here are parabolic. (c) For
a good sketch of the shear stress diagram, determining the values
in the four symmetrical double sections a-a to d-d suffices. (d) The
complete shear stress diagram.

Figure 5.89 The cross-section of a thin-walled tube subject to a
shear force Vz = V .

Alternative solution:
Again an alternative and quicker solution is possible by first predicting the
shear stress distribution on the basis of the bending stress diagram, after
which the values at a number of relevant places are determined to get a
good sketch of the shear stress distribution.

Figure 5.88b shows the bending stress diagram due to the arbitrary bending
moment M∗

z , acting in the same plane the shear force of 60 kN is acting.
The bending stresses are constant in the flanges, here the shear stresses will
be linear (rule 2). In the webs the bending stresses are linear and the shear
stress distribution will be parabolic (rule 3). The vertex of the parabola is
located at the level of the normal centre NC (rule 4).

To make a good sketch of the shear stress diagram, it is not necessary to
determine the shear stress as a function of the location of the cut. It suffices
to determine the values in the four symmetrical double cuts a-a to d-d shown
in Figure 5.88c.

Since in the double cut a-a the area of the sliding element is zero, the
static moment of the sliding element1 and therefore also the shear stress
is zero. Furthermore, we can use the property flow-in = flow-out for the
shear stresses in the double cuts b and c. This greatly reduces the amount
of calculation required.

Example 2: A thin-walled hollow circular tube
Figure 5.89 shows the cross-section of a thin-walled hollow circular tube
with radius r and wall thickness t . The cross-section has to transfer a
vertical shear force Vz = V .

1 If one chooses the sliding element of the cross-section on the other side of
section a-a, the area is equal to that of the entire cross-section and the static
moment is also zero.
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Figure 5.90 The sliding part of the cross-section. The location of
the symmetrical double cut is indicated by the angle ϕ.

Figure 5.91 To find the static moment Sa
z of the sliding part of the

cross-section, the contribution of a small area element with length
r dθ and wall thickness t is determined first.

Questions:
a. Determine the shear stress distribution.
b. Determine the maximum shear stress.
c. Show that the resultant of all shear stresses in the cross-section is equal

to the shear force.

Solution:
a. The shear stress is determined using formula (5.14):

σxm = −VzS
a
z

baIzz

. (5.14)

Here (see also Section 3.3.2, example 2)

Izz = Iyy = 1
2 Ip = πr3t .

Figure 5.90 shows the sliding part of the cross-section. The location of the
symmetrical double cut is defined by the angle ϕ.

The width ba of the double cut is

ba = 2t .

We now have to determine only the static moment Sa
z of the sliding part of

the cross-section. To do so we look at a small element from the tube wall
with length rdθ (see Figure 5.91). With wall thickness t , the area dA of this
element is

dA = t · r dθ.
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The z coordinate of this small area is

z = r cos θ.

The contribution of this small area to the static moment Sa
z is

dSa
z = z · dA = r cos θ · rt dθ = r2t cos θ dθ.

The static moment Sa
z of the sliding element is found by adding all contribu-

tions dSa
z between θ = −ϕ and θ = +ϕ, that means by integrating between

these values:

Sa
z =

∫ +ϕ

−ϕ

r2t cos θ dθ = r2t sin ϕ
∣∣+ϕ

−ϕ
= 2r2t sin ϕ.

We have now determined all quantities that occur in the shear stress formula
(5.14). The shear stress distribution is therefore

σxm = −V · 2r2t sin ϕ

2t · πr3t
= − V

πrt
sin ϕ.

In Figure 5.92a the value of the shear stress has been plotted radially as a
function of ϕ. The direction is shown by means of arrows.

A simpler picture can be obtained by plotting the shear stress as a function
of y = ±r sin ϕ. The shear stress diagram then consists of two straight lines
(see Figure 5.92b).

Note that the shear stress is zero on the vertical line of symmetry.

Figure 5.91 To find the static moment Sa
z of the sliding part of the

cross-section, the contribution of a small area element with length
r dθ and wall thickness t is determined first.
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Figure 5.92 (a) The shear stresses due to the vertical shear force V

plotted radially as a function of ϕ. The direction of the shear stresses
is indicated by arrows. (b) A simpler representation is possible by
plotting the shear stresses as a function of y = ±r sin ϕ. In that case
the diagram is built up of two straight lines.

b. The maximum shear stress τmax occurs in ϕ = π/2 (or y = ±r):

τmax = V

πrt
.

With A = 2πrt we can also write

τmax = 2
V

A
.

The average (vertical) shear stress in the cross-section is

τaverage = V

A
.

For a thin-walled tube, the maximum shear stress is twice as large as the
average shear stress:

τmax = 2 × τaverage .

c. To calculate the resultant of all shear stresses in the cross-section we
first look at the two mirror symmetrical located area elements dA in Fig-
ure 5.93a. With a length rdϕ and wall thickness t the area of each element
is

dA = t · r dϕ.

Both elements are subject to the same shear stress τ :

τ = |σxm| = V

πrt
sin ϕ.
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Figure 5.93 (a) To find the resultant of all shear stresses in
the cross-section we first investigate the contribution of the shear
stresses in two small, symmetrically-located area elements dA, with
length rdϕ and wall thickness t . (b) The horizontal components dRh
in the two symmetrically-located area elements together form an
equilibrium system and have a zero resultant. The vertical compo-
nents dRv remain. By summing up these components with respect
to both halves of the cross-section (that means by integrating) we
find that the resultant of all shear stresses in the cross-section is
indeed equal to the shear force V .

The resultant of the shear stresses on a each of the area elements is (see
Figure 5.93b):

dR = τ · dA = V

πrt
sin ϕ · rt dϕ = V

π
sin ϕ · dϕ.

The horizontal components dRh of both symmetrical area elements form an
equilibrium system and have a zero resultant. Only the vertical components
dRv remain:

dRv = dR · sin ϕ = V

π
sin2 ϕ · dϕ.

By adding the contributions dRv for all small area elements across both
halves of the cross-section we find the vertical resultant Rv:

Rv = 2
∫ π

0
dRv = 2

∫ π

0

V

π
sin2 ϕ · dϕ = 2V

π

∫ π

0
sin2 ϕ · dϕ.

With
∫ π

0
sin2 ϕ · dϕ = π

2

we find

Rv = V.

The resultant of all shear stresses in the cross-section indeed equals the
shear force V .
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Comment: The integral

∫ π

0
sin2 ϕ · dϕ

can easily be determined if one bears in mind that the areas enclosed by
the functions sin2 ϕ and cos2 ϕ between ϕ = 0 and ϕ = π are equal in
magnitude:

∫ π

0
sin2 ϕ · dϕ =

∫ π

0
cos2 ϕ · dϕ, (5.20)

and that

∫ π

0
sin2 ϕ · dϕ +

∫ π

0
cos2 ϕ · dϕ =

∫ 2

0
(sin2 ϕ + cos2 ϕ) · dϕ

=
∫ π

0
dϕ = π. (5.21)

From (5.20) and (5.21) we directly find

∫ π

0
sin2 ϕ · dϕ =

∫ π

0
cos2 ϕ · dϕ = π

2
.

5.4.4 Cross-sections with varying width of the sliding element

So far, we have only determined the shear stresses for cross-sections with
a constant width of the sliding element. In this section, we look at two
examples in which the width of the sliding element varies, namely a solid
triangular cross-section and a solid circular cross-section. Here too, we as-
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Figure 5.94 A solid equilateral triangular cross-section subject to
a shear force V in the vertical plane of mirror symmetry.

Figure 5.95 (a) The hatched triangle is selected as the sliding part
of the cross-section. The width ba of the sliding part depends on the
location m of the cut. (b) The shear stress σxm at the cut.

sume that the shear stresses normal to the cut are constant and that they can
be determined using the known shear stress formulas. However, the actual
shear stresses also have components parallel to the cut.

In a third example we illustrate that the approach used for the first two
examples must be used with care.

Example 1: Solid triangular cross-section
The equilateral triangular cross-section in Figure 5.94 is subject to a shear
force V in the vertical plane of mirror symmetry.

Questions:
a. Determine the distribution of the vertical shear stresses.
b. Determine the distribution of the shear stresses along the oblique edges.

Solution:
a. The hatched triangle in Figure 5.95a is selected as the sliding element.
In Figure 5.95b, this part has been shown with the shear stresses σxm at the
cut.

The shear stresses are determined using formula (5.14):

σxm = −VzS
a
z

baIzz

, (5.14)

in which

Vz = +V,

ba = b
m

h
, and

Izz = 1
36 bh3 (see Section 3.2.4, Example 5).
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Figure 5.96 (a) The normal centre NC is at one third of the height.
(b) The maximum vertical shear stress (the vertex of the parabola)
is not at the level of the normal centre, but at half-height. (c) On the
other hand, the vertical shear flow s = τvt = |σxm|ba is largest at
the cut through the normal centre.

The static moment Sa
z is

Sa
z = Aa · za

C,

in which Aa is the area of the sliding element,

Aa = 1
2 · ba · m = 1

2 b
m2

h
,

and za
C is the z coordinate of the centroid of the hatched triangle (see

Figure 5.95a):

za
C = −c = − 2

3 (h − m) (note the minus signs!).

This leads to

Sa
z = Aa · za

C = 1
2 b

m2

h
· {−2

3 (h − m)
} = − 1

3 bh2
(

m2

h2 − m3

h3

)
.

We have now determined all the necessary quantities, and using shear stress
formula (5.14) we find

σxm = −
(+V )

{
− 1

3 bh2
(m2

h2
− m3

h3

)}

b
m

h
· 1

36 bh3
= 12

V

bh

(
m

h
− m2

h2

)
.

Figure 5.96b shows the shear stress distribution in a diagram.

The vertical shear stresses σxm are quadratic in m and the shear stress di-
agram therefore is parabolic. The location of the vertex of the parabola is
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found from

dσxm

dm
= 12

V

bh

(
1

h
− 2m

h2

)
= 0 ⇒ m = 1

2 h.

The maximum shear stress (the vertex of the parabola) is not at the level of
the normal centre but at half-height of the triangular cross-section!

The shear stresses are positive across the entire height and, as expected, act
in the direction of the shear force V .

The maximum vertical shear stress τv;max is

τv;max = 3
V

bh
= 1.5

V

A
.

Here, A = 1
2 bh is the area of the cross-section.

The average vertical shear stress is

τv;average = V

A
.

As in a rectangular cross-section, the maximum vertical shear stress appears
to be 50% larger than the average vertical shear stress:

τv;max = 3
2 τv;average .

Comment: The vertical shear stress is a maximum at half-height and not at
the level of the normal centre NC. The shear flow s = τ t = |σxm|ba on the
other hand is largest in the cut along the y axis, through the normal centre
NC. See Figure 5.96c, which shows the distribution of the shear flow s over

Figure 5.96 (a) The normal centre NC is at one third of the height.
(b) The maximum vertical shear stress (the vertex of the parabola)
is not at the level of the normal centre, but at half-height. (c) On the
other hand, the vertical shear flow s = τvt = |σxm|ba is largest at
the cut through the normal centre.
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Figure 5.97 (a) The shear stresses τv = σxm were determined on
the assumption that they are uniformly distributed over the width ba

of the plane cut and act vertically. (b) At the edges, the shear stresses
cannot be vertical; they have to be parallel to the edge. We assume
that τv is the vertical component of the shear stress τedge directed
along the edge. (c) We also assume that the shear stress between the
edges gradually changes direction as shown.

the height of the cross-section. It is up to the reader to check the shape of
this shear flow diagram.

For each arbitrary cross-sectional shape, the shear flow is largest in a cut
through the normal centre NC. Prove it.1

b. The shear stresses σxm are determined on the assumption that they are
uniformly distributed across width ba and that they act vertically. See Fig-
ure 5.97a, in which the sliding element has been magnified and in which
τv = σxm.

On the oblique edges, the shear stresses cannot be vertical; they have to run
parallel to the edges (rule 1). Apparently τv is the vertical component of the
shear stress τedge directed along the edge (see Figure 5.97b):

τedge = τv

cos α
.

The horizontal component of the shear stress along the edge is

τh;edge = τv tan α.

It is assumed that the shear stresses between the edges change direction
gradually as shown in Figure 5.97c. The shear stress τϕ

τϕ = τv

cos ϕ
,

1 Use Section 5.1.3 and Figure 5.8.

at an angle ϕ is
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Figure 5.98 Distribution across the height of the cross-section of
the shear stresses τcentre line in the line of symmetry (solid line) and
of the shear stresses τedge along the edges (dotted line), both in one
diagram.

with horizontal component τh;ϕ:

τh;ϕ = τv tan ϕ.

In Figure 5.98, the shear stress distribution across the height has been plot-
ted in a diagram for τcentre line = τϕ = 0 along the line of symmetry, and
τedge = τϕ = α along the edges. Table 5.3 presents the ratio between τedge
and τcentre line for three values of b/h:

τedge

τcentre line
= τϕ = α

τϕ = 0
= 1

cos α
=

√
1
4 (b/h)2 + 1 .

With a width b that is twice the height h, the shear stresses along the edge
are 41% larger than those along the line of symmetry. However, the shear
stress distribution we determined is an approximation. If the width b is
relatively large with respect to the height h we can start doubting the ac-
curacy of the values found. Are the vertical shear stress components really
uniformly distributed across the width?

Table 5.3

b/h τedge/τcentre line

0.5 1.03

1.0 1.12

2.0 1.41
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Figure 5.99 A solid circular cross-section, with radius r , subject
to a vertical shear force V .

Figure 5.100 (a) The sliding part of the cross-section. The loca-
tion of the cut is indicated by the angle ϕ. (b) The shear stresses
σxm at the cut.

More complicated calculations using the theory of elasticity or a computer-
based approach can answer this question. This is outside the scope of this
book.

Example 2: Solid circular cross-section
The solid circular cross-section in Figure 5.99, with radius r , transfers the
vertical shear force V as shown.

Questions:
a. Determine the shear stress distribution.
b. Determine the maximum shear stress.

Solution:
In Figure 5.100a the sliding element has been hatched. The location of
the cut is defined by the angle ϕ. Figure 5.100b shows the sliding element
separately with the shear stresses σxm at the cut.

These stresses are determined using shear stress formula (5.14):

σxm = −VzS
a
z

baIzz

. (5.14)

Here

Vz = +V,

ba = 2r sin ϕ, and

Izz = 1
4 πr4 (see Section 3.2.4, Example 8).
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Figure 5.101 To find the static moment Sa
z of the sliding part of

the cross-section we sum up (by integrating) the contributions of the
thin strips between the cuts set by the angles θ and θ + dθ .

A difficult part of the calculation is the static moment Sa
z of the sliding

element. To find this, a very narrow strip between two cuts has been created,
defined by the angles θ and θ + dθ in Figure 5.101, in which dθ is very
small.

The width of this very narrow strip is 2r sin θ and the thickness1 is r sin θ ·
dθ . The area of the strip is

dA = 2r sin θ · r sin θ · dθ = 2r2 sin θ · dθ,

and has z coordinate

z = r cos θ.

The contribution of this strip to Sa
z is

dSa
z = z · dA = r cos θ · 2r2 sin2 θ · dθ = 2r3 sin2 θ cos θ · dθ.

By summing the contributions of all the strips, or integrating between θ = 0
and θ = ϕ, we find

Sa
z =

∫ ϕ

0
2r3 sin2 θ cos θ · dθ = 2r3

∫ ϕ

0
sin2 θ · d(sin θ)

1 In Volume 1, Section 15.3.2, we derived that the vertical displacement due to
a small rotations equals the rotation multiplied by the horizontal distance to the
centre of rotation. In the same way we can say for small values of dθ : the vertical
distance equals the angle dθ multiplied by the horizontal distance r sin θ to the
centre of rotation.

Figure 5.100 (a) The sliding part of the cross-section. The loca-
tion of the cut is indicated by the angle ϕ. (b) The shear stresses
σxm at the cut.
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Figure 5.102 The vertical shear stresses τv, uniformly distributed
across the width of the cross-section, are parabolically distributed
across the height of the cross-section.

= 2r3( 1
3 sin3 θ

)∣∣ϕ
0 = 2

3 r3 sin3 ϕ.

Using shear stress formula (5.14) we find

σxm = − V · 2
3 r3 sin3 ϕ

2r sin ϕ · 1
4 πr4

= −4

3

V

πr2
sin2 ϕ.

Since

sin2 ϕ = 1 − cos2 ϕ = 1 − z2

r2

we can also write σxm as a function of z:

σxm = −4

3

V

πr2

(
1 − z2

r2

)
.

The vertical shear stress σxm is quadratic in z and the distribution is there-
fore parabolic across the height of the cross-section. Figure 5.102 shows
the distribution of the vertical shear stresses τv = |σxm| in a shear stress
diagram.

σxm is negative across the entire height of the cross-section. This means that
the vertical shear stresses act opposite to the m direction in Figure 5.100,
i.e. downwards. This agrees with the direction of the shear force.

The vertex of the parabola is at z = 0, at the level of the normal centre NC.
Here the maximum vertical shear stress τv;max occurs:

τv;max = 4

3

V

πr2
= 4

3

V

A
,
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Figure 5.103 (a) The vertical shear stresses determined with the
shear stress formula are uniformly distributed across the width of
the cut. (b) Except at half-height, the shear stresses at the edges of
the cross-section cannot be vertical, but must be directed along the
edge. At the edge, τv is the vertical component of the shear stress
τ directed along the edge. (c) Between the edges, we assume that
the shear stress changes direction as shown: all shear stresses in a
cut pass through the intersection of the tangents at the end points of
that cut.

in which A = πr2 is the area of the cross-section.

The average vertical shear stress is

τv;average = V

A
.

The maximum vertical shear stress is therefore 33% larger than the average
vertical shear stress:

τmax = 4
3 τv;average.

b. The vertical shear stresses determined before are uniformly distributed
across width ba; see Figure 5.103a, in which τv = |σxm|. Except at half-
height, the shear stress in an edge of the cross-section cannot be vertical
but must be parallel to the edge. At an edge, τv is the vertical component of
the shear stress τ directed along the edge (see Figure 5.103b). For the shear
stress τedge in an edge we have

τedge = τv

sin ϕ
.

The horizontal component is

τh;edge = τv

tan ϕ
.

Between the left and right-hand edges we assume that the direction of
the shear stress changes in the manner shown in Figure 5.103c: all shear
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Figure 5.104 The distributions across the height of the shear
stresses τcentre line in the line of symmetry (solid line) and τedge
along the edges (dotted line). The maximum shear stress is the ver-
tical shear stress at half height, acting across the entire width of the
cross-section.

Figure 5.105 A square cross-section subject to a shear force V in
diagonal direction.

stresses at the cut pass through the intersection of the tangents at the end
points of the cut. The largest shear stress at a cut therefore occurs at the
edges.

In the shear stress diagram in Figure 5.104, the shear stress distributions of
τcentre line along the line of symmetry and τedge along the edges are plotted
across the height of the cross-section. The maximum shear stress is still the
vertical shear stress at half-height of the cross-section, and acting across the
entire width.

Comment: The shear stress distribution shown is an approximation. Using
the theory of elasticity we can show that the vertical component of the shear
stress is not uniformly distributed, but rather slightly larger at the centre and
slightly less at the edges. The maximum shear stress occurs at the centre of
the cross-section and is about 4% larger than the value determined before.

A third example will illustrate that the strategy used for Examples 1 and 2
cannot always be used successfully.

Example 3: Solid square cross-section
The solid square cross-section in Figure 5.105 has to transfer a shear force
V in diagonal direction.

Question:
How can the shear stress distribution in the cross-section be determined?

Solution:
The approach in the previous examples presupposes that the vertical com-
ponent of the shear stresses at a cut is constant across the width ba.
Figure 5.106a shows the vertical shear stress components τv for cut AC
with this assumption.

The shear stresses in this figure cannot be correct, however. Since the shear
stress at the corners A and B has a zero component in two directions (those
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Figure 5.106 (a) The vertical component of the shear stresses can-
not, as shown here, be constant across the width of cut AC. (b) Since
at corners A and B the shear stresses in the two directions normal to
the edges have zero components, the shear stress must be zero here.

Figure 5.107 The diagonal shear force can be resolved into
components in the y and z direction, parallel to the edges of the
cross-section. So we can use the shear stress formula for a rectangu-
lar cross-section to find the shear stresses σxy and σxz as a function
of y and z respectively.

normal to the edges, see Figure 5.106b), the shear stress there must be zero
here. Therefore also τv must be zero at A and B. So the vertical component
of the shear stresses at cut AC is clearly not constant across the width of the
cut. Here the shear stress formula gives inaccurate results.

Another and better way to find the shear stress distribution is to resolve the
shear force in the y and z directions parallel to the sides of the cross-section
(see Figure 5.107). Using the shear stress formula for a rectangular cross-
section, we can determine the shear stresses σxy and σxz as a function of y

and z respectively. These shear stresses are parabolic.

The total shear stress is found from

τ =
√

σ 2
xy + σ 2

xz .

We will not perform the calculation here but only provide the result:
• The shear stress is zero at the corners A, B, C and D.
• The shear stresses at the horizontal cut AC act vertically and are

parabolically distributed (see Figure 5.108a).
• Along diagonal BD the shear stresses act vertically and are paraboli-

cally distributed (see Figure 5.108b).
• The shear stresses outside diagonals AC and BD have a horizontal

component.
• The maximum shear stress occurs at the centre of the cross-section and

is

τmax = 3

2

V

A

in which A is the area of the cross-section.
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Figure 5.108 The actual shear stress is zero at the corners A, B, C
and D. In the diagonals AC and BD the shear stresses are vertically
directed and parabolically distributed.

Figure 5.109 Examples of mirror symmetrical open thin-walled
cross-sections, subject to shear forces in a principal direction that
does not coincide with the line of symmetry. The line of action of
the resultant of all shear stresses due to the shear force does not
to pass through the normal centre NC. This leads to a new special
point in the cross-section: the so-called shear centre SC.

Conclusion: The shear stress formula will usually lead to incorrect results
for a cut through a corner of the cross-section. Since the shear stress must
be zero at the corner, the shear stresses cannot be uniformly distributed
along the width of the cut. This is also true when the corners are rounded
with a small radius.

5.5 Shear centre

So far, we have looked exclusively at mirror symmetrical cross-sections,
with the shear force as the resultant of all shear stresses in the cross-section
acting in the plane of mirror symmetry. In the following examples, the
cross-sections are thin-walled and mirror symmetrical, but the shear force
is now acting in a principal direction that does not coincide with the line of
symmetry. See the examples in Figure 5.109.

In these cases we can determine the shear stress distribution due to the
shear force. When we next determine the resultant of all shear stresses in
the cross-section, this resultant indeed is equal in magnitude and direction
to the shear force, but its line of action does not pass through the normal
centre NC, as one possibly might have expected. This leads to a new point
in the cross-section: the so-called shear force centre or shear centre SC.

The shear force centre SC is that point in the cross-section through which
the line of action of the shear force has to pass so that there will to be no
torsion.

In the following examples we look for the shear centre.
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Figure 5.110 A U-section on its side, subject to a vertical shear
force Vz = 9.35 kN. The position of the line of action is unknown.

Figure 5.111 (a) Side view of the beam to the left of the
cross-section with the shear force Vz and an arbitrary bending
moment M∗

z , both acting in the xz plane. (b) The bending stress
diagram due to M∗

z . (c) A sketch of the shear stress diagram due to
Vz.

Example 1: A steel U-section
The U-section in Figure 5.110 has to transfer a shear force Vz = 9.35 kN.
This U-section was used previously in Section 5.4.2, Example 3.

Questions:
a. Determine the shear stress distribution.
b. Determine the resultant of all shear stresses in a flange.
c. Determine the resultant of all shear stresses in the web.
d. Determine the magnitude, direction and line of action of the resultant

of all shear stresses in the cross-section.
e. Determine the location of the shear centre SC.

Solution (units in N and mm):

σxm = −VzS
a
z

baIzz

, (5.14)

in which

Izz = Iweb
zz(centr) + 2 × I

flange
zz(Steiner)

= 1
12 × 7 × 1403 + 2 × (60 × 10) × 702 = 7.48 × 106 mm4.

The shear stress distribution is determined using the quick method. For that
we have drawn the side view of the beam with the shear force Vz and a
bending moment M∗

z in Figure 5.111a. Figure 5.111b shows the bending
stress diagram due to M∗

z and Figure 5.111c gives a sketch of the shear
stress diagram due to Vz.

In the flanges, the bending stress is constant, so the shear stress distribution

a. The shear stresses are determined using (5.14):
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Figure 5.112 The complete shear stress diagram.

is linear. On the (free) flange edges, the shear stress is zero. At the joints
between the flanges and the web, flow-in = flow-out. The shear stresses at
the top and bottom of the web are therefore not zero. In the web, the bending
stress is linear, so the shear stress is parabolic. The top value is at the level
of the normal centre NC. The direction of the shear stress in the web is
equal to that of the shear force. The direction of the shear stresses in the
flanges now follows from flow-in = flow-out at the joints.

For the complete shear stress diagram, we have to determine only the shear
stresses τ1 to τ3 at the cuts 1 to 3 (see Figure 5.111c).

Calculation τ1:
For the lower flange as sliding element

Sa
z = 60 × 10 × (+70) = +42 × 103 mm3.

Hence

τ1 =
∣∣∣∣−VzS

a
z

baIzz

∣∣∣∣ = (9.35 × 103)(42 × 103)

10 × (7.48 × 106)
= 5.25 N/mm2.

Calculation τ2:
flow-in = flow-out:

τ1 · tf = τ2 · τw

in which tf = 10 mm is the flange thickness and tw = 7 mm is the web
thickness.

τ2 = tf

tw
τ1 = 10

7
× 5.25 = 7.5 N/mm2.
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Figure 5.113 (a) The shear stress resultants in web and flanges.
(b) The forces in the flanges form a couple. (c) By combining the
force in the web and the couple produced by the forces in the
flanges, we find that the force in the web shifts by a distance e.
The resultant of all shear stresses therefore has its line of action at a
distance e from the centre line of the web.

Calculation τ3 = τmax:
For the lower half of the cross-section, chosen as sliding element,

Sa
z = 60 × 10 × (+70) + 7 × 70 × (+35) = 59.15 × 103 mm3.

So

τ3 = τmax =
∣∣∣∣−VzS

a
z

baIzz

∣∣∣∣ = (9.35 × 103)(59.15 × 103)

7 × (7.48 × 106)
= 10.56 N/mm2.

Figure 5.112 shows the complete shear stress diagram, with the values and
directions.

b. The resultant of all shear stresses in a flange is

Rflange = 1
2 bτ1 · tf = 1

2 × 60 × 5.25 × 10 = 1575 N.

c. The resultant of all shear stresses in the web is most easily determined
by splitting the shear stress diagram into a rectangle and a parabola:

Rweb = {
hτ2 + 2

3 h(τmax − τ2)
} · tw

= {
140 × 7.5 + 2

3 × 140 × (10.56 − 7.5)
} × 7 ≈ 9350 N.

d. Figure 5.113a shows the shear stress resultants in web and flanges.
The resultant in the web is equal in direction and magnitude to the shear
force. The resultants in the flanges form a couple with moment (see Fig-
ure 5.113b)

Rflange × h = 1575 × 140 = 220.5 × 103 Nmm.

Figure 5.112 The complete shear stress diagram.
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Figure 5.114 When there is no torsional moment, the sum of the
moments of all shear stress resultants must be zero with respect to
any arbitrary point A(y, z) on the line of action of the shear force.

By combining the force of 9350 N in the web with the couple1 of
220.5 × 103 Nmm from the flanges, we find that the force shifts over a
distance e (see Figure 5.113c):

e = 220.5 × 103 Nmm

9350 N
= 23.6 mm.

The resultant of all shear stresses due to a shear force Vz is a force equal
in magnitude and direction to the shear force, but with its line of action
outside the cross-section at a distance e from the centre line of the web.

Alternative solution question d:
The line of action of the shear force can also be found from the condition
that the moment of the shear force about an arbitrary point is equal to the
sum of moments about the same point of all shear stress resultants in the
cross-section. If that point is chosen on the line of action of the shear force,
the sum of moments of all shear stress resultants must be zero. This gives
the equation of the line of action of the shear force, as shown below.

Assume point A with coordinates (y,z) is a point on the line of action of
the shear force (see Figure 5.114). The y coordinate of the normal centre
NC is given here.2 Then

∑
Tx |A = +1575 × (70 − z) + 1575 × (70 + z) − 9350 × (y − 16.5)

= 374.8 × 103 − 9350 × y = 0,

so

1 See Volume 1, Section 3.1 and Section 3.5, Problem 3.2-2.
2 It was determined previously in Section 5.4.2, Example 3.
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Figure 5.115 The shear centre SC is that point in the cross-section
through which the line of action of the shear force V must pass so
that there will be no torsion.

y = +40.1 mm and z is undetermined.

The line of action of the shear force is vertical at a distance e from the cen-
tre line of the web:

e = y − 16.5 = 40.1 − 16.5 = 23.6 mm.

e. If the vertical shear force does not have the line of action shown in
Figure 5.113c, there will be torsion. We can check this experimentally by
holding a U-shaped curtain rail on its side. Under the influence of its dead
weight, that applies within the cross-section, the rail will twist. As a result,
additional shear stresses are generated in the cross-section. Shear stresses
due to torsion are covered in Chapter 6.

If torsion is unwanted, and there should be no shear stresses due to torsion,
the shear force Vz must have the line of action given in Figure 5.115. For
a shear force Vy , the line of action must coincide with the line of mirror
symmetry. The intersection of both lines of action is called the shear centre
SC.

The shear centre SC is that point in the cross-section through which the line
of action of the shear force has to pass so that there will be no torsion.

Note the analogy with the definition of the normal centre NC:

The normal centre NC is that point in the cross-section at which the normal
force must act so that there will be no bending.

If the cross-section has a line of symmetry, the shear centre SC will be
located on that line. If the cross-section does not have a line of symmetry,
first determine the shear stress distribution and the line of action for the
shear force Vy in one principal direction, and repeat the procedure for the
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Figure 5.116 (a) The thin-walled U-section, subject to a shear
force Vz with its line of action through the shear (force) centre SC.
(b) A sketch of the associated shear stress diagram.

shear force Vz in the other principal direction. The intersection of the lines
of action of Vy and Vz is then the shear centre SC (see Figure 5.115).

Formulas for the thin-walled U-section
In the thin-walled U-section in Figure 5.116a, Aw is the area of the web:

Aw = htw,

and Af is the area of a flange:

Af = btf.

For the (centroidal) moment of inertia Izz we find

Izz = 1
2 Afh

2(1 + α),

in which

α = 1

6

Aw

Af
.

For the shear stress distribution in Figure 5.116b, due to the shear force
Vz = V , applies

τ1 = V

Aw

tw

tf

1

1 + α
,

τ2 = V

Aw

1

1 + α
,

τ3 = τmax = V

Aw

1 + 1.5α

1 + α
.
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Figure 5.117 A thin-walled I-section on its side, subject to a
vertical shear force Vz = V . The line of action of V is unknown.

In these equations, V/Aw is the average vertical shear stress in the web.

For the distance e from the shear centre SC to the centre line of the web we
can derive

e = b

2(1 − α)
.

This shows that the location of the shear centre SC is determined entirely
by the shape of the cross-section and is independent of the magnitude and
direction of the shear force.

The reader is asked
• to derive the given expressions;
• to check that these expressions, applied to the example, indeed lead to

the same values.

Example 2: An I-section on its side
In Figure 5.117 an I-section on its side is loaded by a shear force Vz = V .
The location of the normal centre NC can be found from the figure. Note
that the two vertical flanges have different wall thicknesses.

Questions:
a. Determine the shear stress distribution.
b. Determine the shear centre.

Solution:
a. The shear stresses are determined using (5.14):

σxm = −VzS
a
z

baIzz

, (5.14)
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Figure 5.118 (a) The cuts where the shear stresses are determined.
(b) The shear stress diagram.

in which

Izz = 1
12 (2t + t)h3 = 1

4 th3.

Due to an arbitrary bending moment M∗
z in the plane of the shear force Vz

the bending stress distribution in the vertical flanges will be linear, so the
shear stress distribution here must be parabolic.

Calculation τ1 in the cuts 1 (see Figure 5.118a):

|Sa
z | = 1

2 h · 2t · 1
4 h = 1

4 th2,

and therefore

τ1 = V · 1
4 th2

2t · 1
4 th3

= 1

2

V

th
.

Calculation τ2 in the cuts 2 (see Figure 5.118a)

|Sa
z | = 1

2 h · t · 1
4 h = 1

8 th2.

This gives

τ2 = V · 1
8 th2

t · 1
4 th3

= 1

2

V

th
.

The shear stresses are equal in both vertical flanges. Figure 5.118b shows
their shear stress distributions.
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Figure 5.119 The shear centre SC is located on the intersection
of the line of symmetry and the line of action of the shear force.
The shear centre SC and normal centre NC are clearly two different
points in the cross-section.

Calculation τ3 in the cuts 3 (see Figure 5.118a)

|Sa
z | = 0,

and so

τ3 = 0.

The shear stress in the horizontal web is zero (see Figure 5.118b). At the
joint with the horizontal flanges this is in line with the demand flow-in =
flow-out.

b. Figure 5.119 shows the resultant shear forces R1 and R2 in the vertical
flanges:

R1 = 2
3 · h · 1

2
V

th
· 2t = 2

3 V,

R2 = 2
3 · h · 1

2
V

th
· t = 1

3 V.

The resultant of R1 and R2 is the shear force:

R = R1 + R2 = 2
3 V + 1

3 V = V.

The shear centre SC is located on the line of action of the shear stress
resultant R = V , and on the line of symmetry. It therefore coincides with
the intersection of both lines (see Figure 5.119).

The shear centre SC and normal centre NC are clearly two different points
in the cross-section.

Figure 5.118 (a) The cuts where the shear stress is determined.
(b) The shear stress diagram.
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Figure 5.120 Thin-walled T- and L-sections.

Figure 5.121 In thin-walled T- and L-sections the shear forces
centre SC is located on the intersection of “flange” and “web”.

Figure 5.122 The loading scheme for a steel plate that is being
cut with scissors. The distance a between the forces F exerted by
the cutting tool is considerably smaller than the thickness t of the
plate. In this area the shear stress formulas derived cannot be used.

Example 3: Thin-walled T- and L-sections
You are given the thin-walled sections in Figure 5.120.

Question:
Determine the shear centre SC.

Solution:
For these sections the shear centre SC can be found without calculation.

The shear force V is the resultant of the shear stress resultants R1 and
R2 in Figure 5.121. The line of action of the shear force V always passes
through the intersection of the lines of action of R1 and R2, regardless of
the magnitude and direction of the shear force. This point is therefore the
shear centre SC.

Conclusion: In thin-walled T- and L-sections the shear centre SC is on the
intersection between “flange” and “web”.

5.6 Other cases of shear

So far, we have looked at situations in which shear is combined with bend-
ing. We derived the formulas for the shear forces and shear stresses from
the change in the bending stresses between two consecutive cross-sections.
This means that the formulas apply only when the material behaves linear
elastically and when all the other assumptions on which the bending stress
formulas are based are met.

In this section, we look at a number of examples for which the theory we
have covered so far does not suffice, and reality is clearly more complex.

An example is given in Figure 5.122. It shows the loading scheme for a
steel plate that is being cut with scissors. The distance a between the forces
F exerted by the cutting tool is considerably smaller than the thickness t
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Figure 5.123 Model of a punching system, where a cutting stamp
made of hard steel is pressed through the plate material with large
force.

Figure 5.124 The stresses and forces acting on a cylindrical
punching slug. The slug is the material that is stamped out of the
plate.

of the plate. In this area, the elementary beam theory no longer applies,
and the shear stress formulas cannot be used. Moreover, if the forces F are
increased to such an extent that the plate is actually cut through, the plate
material is clearly no longer linear-elastic.

Another example is punching or die-cutting, where a cutting stamp of hard
steel is pressed through the plate material with a large force. The plate is on
a rigid foundation that includes a cut out that is only slightly larger than the
stamp. A model of the punch setup is shown in Figure 5.123.

When performing calculations for such complicated situations, it is com-
mon practice to use an average shear stress τaverage (for which one simply
writes τ ) and then compare this to a limiting value τ̄ , which could be re-
ferred to as the (allowable) shear strength. This shear strength is generally
determined experimentally and is attuned to the practical situation in ques-
tion. Often, the shear stresses in such situations should not be considered
real stresses, but rather design quantities. An example is given below.

Example 1: Punching a plate
Round holes have to be punched into an aluminium plate with thickness
t = 7.5 mm. The maximum punching force that the press can exert is
40 kN. The shear strength of aluminium is τ̄ = 60 MPa.

Question:
Determine the maximum diameter d of the holes that can be punched.

Solution:
The material that is punched out of the plate is known as the punching slug.
Figure 5.124 shows all the stresses and forces acting on the cylindrical slug.

Shear strength τ̄ acts on the on the lateral surface of the cylinder with area
πd · t . The top of the slug is subject to punching force Fpunch. From the
vertical equilibrium of the slug it follows that

Figure 5.122 The loading scheme for a steel plate that is being
cut with scissors. The distance a between the forces F exerted by
the cutting tool is considerably smaller than the thickness t of the
plate. In this area the shear stress formulas derived cannot be used.
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Figure 5.126 Spatial representation of (a) the single shear joint
and (b) the double shear joint.

Fpunch = πd · t · τ̄ ,

from which we find

dmax = Fpunch;max

π · t · τ̄ = 40 × 103 N

π × (7.5 mm)(60 N/mm2)
= 28.3 mm.

Another example relates to the bolted connections in Figure 5.125. These
so-called lap joints are used in steel and wooden structures. A distinction
is made between the (asymmetrical) single shear joint in Figure 5.125a
and the (generally symmetrical) double shear joint in Figure 5.125b. Fig-
ure 5.126 shows the joints in a spatial representation. Of course, more than
one bolt can be used.

Figure 5.125 Lap joints. A distinction can be made between
(a) the asymmetrical single shear joint and (b) the generally sym-
metrical double shear joint. Lap joints are used in steel and wooden
structures.
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Figure 5.127

If the friction between the overlapping strips can be ignored, the transfer
of force F from one strip to the other strip(s) occurs entirely via the bolt.1

In the single shear joint in Figure 5.127a, the bolt shank has to transfer a
shear force F (see Figure 5.127b). With a diameter d of the bolt shank, the
average shear stress in the shank is

τbolt = F

Abolt
= F

1
4 πd2

.

The contact stress between the bolt and the strip is actually extremely
complicated. In practice it is simplified by introducing the upsetting stress
σupsetting. This is the average normal stress on area τd that is found from
the projection of the bolt shank on the strip:

Figure 5.127 (a) A single shear lap joint. (b) The bolt (shank)
has to transfer a shear force F . (c) The contact stress between the
bolt and the strip is very complicated. In practice the situation is
simplified by introducing the upsetting stress σupsetting. This is
the average normal stress on the area τd , found from the projec-
tion of the bolt shank on the strip. (d) The upsetting stress acting
on the upper strip. (e) The distance from the bolt hole to the end of
the strip must be large enough to prevent the strip material from
sliding. The dotted line gives a simple model of the slide shape.

1 In so-called high tensile bolts, applied on steel joints, this is not the case. Here
the joining parts are screwed so tightly together that the force F is transferred
entirely by friction.
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Figure 5.128 A double shear lap joint in which two bolts have to
transfer a tensile force of 78 kN.

Figure 5.129 The two bolts together have to transfer shear forces
of 39 kN.

σupsetting = F

τd
.

Figure 5.127c shows the upsetting stress on the bolt, while Figure 5.127d
shows that on the upper strip.

The distance from the bolt hole to the end of the strip has to be large enough
to prevent the strip material from sliding. Figure 5.127e shows a simple
model of the slide shape. In regulations, the demands with respect to sliding
are often combined with those related to the upsetting stress.

To end this section, we provide second example.

Example 2: A bolted double shear lap joint
The double shear lap joint with two bolts in Figure 5.128 has to transfer a
tensile force of 78 kN. All the information required can be found from the
figure.

Questions:
a. Determine the (average) shear stress in the cross-section of the bolt

shank.
b. Determine the upsetting stress on each of the strips.

Solution:
a. Figure 5.129 shows that the two bolts together have to transfer a shear
force of 39 kN. The (average) sheer stress in the bolt shank is then

τbolt = 39 × 103 N

2 × 1
4 π × (16 mm)2

= 97 N/mm2.
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b. The upsetting stress on the outer strips (5.1) is

σ
(1)
upsetting = 39 × 103 N

2 × (16 mm)(6 mm)
= 203 N/mm2.

The upsetting stress on the centre strip (2) is

σ
(2)
upsetting = 78 × 103 N

2 × (16 mm)(8 mm)
= 305 N/mm2.

5.7 Summary of the formulas and rules

Section 5.7.1 is a summary of the most important formulas for determining
the shear forces and shear stresses in both a longitudinal direction and in
the plane of the cross-section.

In Section 5.7.2 there are a number of rules for sketching the shear stress
distribution in the plane of the cross-section.

5.7.1 Formulas

• Shear force per length in the longitudinal direction (also known as the
shear flow in the longitudinal direction) (Sections 5.1.2 and 5.1.3):

sa
x = −VzS

a
z

Izz

(the z direction is a principal direction), (5.7)

Sa
x = −Vz ·

[
Na(due to M∗

z )

M∗
z

]
. (5.12)

In formula (5.12) M∗
z is a bending moment of arbitrary value, acting in

Figure 5.128 A double shear lap joint in which two bolts have to
transfer a tensile force of 78 kN.

Figure 5.129 The two bolts together have to transfer shear forces
of 39 kN.
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the same plane as in which the shear force is acting. Here the z direc-
tion need not be a principal direction.

• Resultant shear force in the longitudinal direction (Section 5.1.2):

Ra
x;s = −�MzS

a
z

Izz

(the z direction is a principal direction). (5.9)

• Average shear stress in the longitudinal direction (Section 5.1.4):

τ a
average = sa

x

ba . (5.13)

• The shear stresses in two mutually perpendicular planes are equal
(Sections 5.3.1 and 5.3.2):

σij = σji with i, j = x, y, z and i �= j.

For the relationship between the shear stress σxm in the plane of the
cross-section and the shear stress σmx in a longitudinal section this
means

σxm = σmx = sa
x

ba .

• Shear stress formulas (Section 5.3.2):
The shear formulas apply on the assumption that the shear stresses are
acting normal to the cut and are constant over the width ba of that cut:

σxm = −VzS
a
z

baIzz

(the z direction is a principal direction), (5.14)

σxm = −Vz

ba

[
Na(due to M∗

z )

M∗
z

]
. (5.15)

Formula (5.15) applies even when the z direction is not a principal di-
rection.
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• Definition shear centre:
The shear centre SC is that point in the cross-section through which
the line of action of a shear force must pass so that there will be no
torsion.

5.7.2 Rules for the shear stress distribution in the cross-sectional
plane

1. The shear stress normal to the edge of a cross-section is zero (Sec-
tion 5.3.3).

Rules 2 to 4 apply only to cross-sections (or parts thereof) in which the
width ba of the sliding element is constant (Section 5.3.3):

2. If the bending stress σ is constant, the shear stress τ must be linear (in
m).

3. If the bending stress σ is linear, the shear stress τ must be parabolic
(quadratic in m).

4. The shear stress τ is extreme at the cut through the normal centre NC.

Other rules (Section 5.4.2, Example 1 and Section 5.4.4, Example 1):

5. The flow direction of the shear stresses is continuous.
6. The shear flow s is equal to the product of the shear stress τ and thick-

ness t : s = τ t .
7. Where flanges and webs join, the shear flow must meet the demand that

the total flow-in is equal to the total flow-out: flow-in = flow-out.
8. The shear flow is always largest in a cut through the normal centre NC.
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5.8 Problems

General comment:
• All problems are without torsion.
• In a number of questions, you are asked to provide both the shear stress

and the normal stress.
• The dead weight of the structure is ignored unless explicitly mentioned

otherwise.

Shear forces and shear stresses in longitudinal direction (Sections 5.1 and
5.2)

5.1 A prismatic beam is subject to bending and shear in the xz plane.
There is a constant normal force in the beam. The normal stress in a fibre
is a function of x.

Question:
Show that for the change per length of the normal stress σ in a fibre at a

lim
�x→0

= �σ

�x
= dσ

dx
= Vzz

Izz

.

5.2 A beam is constructed of two timbers glued together, and is loaded by
the point load F as shown. In the calculation use a = 90 mm, b = 120 mm
and F = 6 kN.

Questions:
a. Determine the maximum shear flow (force per length) in the glued joint.

Where does this maximum shear flow occur?
b. Determine the maximum shear stress in the glued joint. Where does

this maximum occur?

5.3 A beam is built up of 5 planks of 40 × 120 mm2 glued together. The
beam is simply supported with a span of 2 m and carries a uniformly
distributed load q over the entire length. The normal stress may not exceed
the limiting value σ̄ = 7 N/mm2 (the allowable normal stress). The shear
stress in the glued joints may not exceed the limiting value τ̄ = 0.6 N/mm2

(the allowable shear stress).

Questions:
a. For which load q does the normal stress reach its limiting value?
b. For which load q does the shear stress in one of the glued joints reach

distance z from the xy plane the following applies:



386 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

its limiting value?
c. Which limiting value (for the normal stress or shear stress) is indicative

of the bearing capacity of the beam?

5.4 A cantilever beam is built up of two timbers connected by toothed plate
shear connectors. The timbers are clamped to one another by bolts. Each
connector can transfer a maximum shear force of 7 kN. In the calculation
use a = 100 mm, b = 120 mm, � = 3 m and F = 4.5 kN.

Question:
Determine the minimum number of shear connectors required in the beam.

5.5 The web and flange of a thin-walled T-section are connected by a
double corner weld. The cross-sectional dimensions in the figure are given
in mm. A shear force of 10 kN acts in the plane of mirror symmetry of the
cross-section.

Question:
Determine the shear force per length (in N/mm) in the throat cut k of one
of the corner welds.

5.6 The cantilever box girder has a square cross-section and is constructed
of two U-sections welded together. The cross-section is thin-walled with a
uniform wall thickness t . The cross-section can be placed in the positions I
or II. In the calculation use q = 8 kN/m, a = 180 mm and t = 10 mm.

Questions:
a. Determine the maximum shear force per length in a single weld for the

cross-section in position I.
b. Determine the maximum shear force per length in a single weld for the

cross-section in position II.
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5.7 A simply supported beam with a square hollow cross-section, is con-
structed of four planks glued together. It is assumed that the shear stress
in the glued joints is uniformly distributed over the width of the joint. The
beam can be placed in position I or position II. The beam is subject to the
vertical load as shown.

Question:
Which of the statements below is cor-
rect? The shear stress in the glued
joints is:
a. larger in position I than in posi-

tion II.
b. equal in the positions I and II.
c. smaller in position I than in posi-

tion II.

5.8 See problem 5.7. In the calculation use a = 1.5 m, F = 23.2 kN,
c = 120 mm and d = 40 mm.

Questions:
a. Determine the maximum shear stress in the glued joints for the beam

in position I.
b. Determine the maximum shear stress in the glued joints for the beam

in position II.

5.9 A simply supported beam with length � = 4 m is built up of two
square beams of 120 × 120 mm2 that are connected by means of dowels.
Each dowel can transfer a maximum shear force of 5 kN. The beam carries
a uniformly distributed load q = 1.8 kN/m over its full length.

Question:
Determine the minimum number of dowels required.

5.10 A cantilever beam AB is loaded at its free end B by a vertical force
of 3600 N. The beam is constructed of two timbers of 100 × 240 mm2 that
are joined by means of dowels, as shown in the figure. The maximum shear
force that a dowel can transfer is 5.8 kN.

Questions:
a. Determine the minimum number of dowels required.
b. Determine the maximum force per dowel.
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5.11 A simply supported beam consists of three battens that are joined
by means of toothed plate shear connectors, and clamped by bolts. Each
connector can transfer a maximum shear force of 6 kN. For the moment of
inertia in the vertical plane use I = 3.21 × 109 mm4.

Question:
How many connectors are needed in the given situation?

5.12 The wooden beam shown is constructed of a batten and two planks
that are connected by means of wire nails. Each nail can transfer a
maximum shear force of 300 N. The beam is simply supported with
a span of 4 m and carries a uniformly distributed load of 1.5 kN/m
over the full length. Use for the moment of inertia in the calculation
Izz = 69.28 × 106 mm4.

Question:
For the given load, the total number of wire nails required is closest to
a. 40.
b. 80.
c. 160.
d. 320.

Shear stresses in the cross-sectional plane (Sections 5.3 and 5.4)

5.13 A rectangular cross-section of width b and height h transfers a shear
force V = 58 kN in the vertical plane. The area of the cross-section is
A = 14.5 × 103 mm2.

Questions:
a. Determine the average vertical shear stress.
b. Determine the maximum shear stress.
c. Determine the shear stress at quarter-height.
d. How does the maximum shear stress change

if the shear force does not act vertically but
horizontally?

5.14: 1–2 You are given two different beams with rectangular cross-
section.
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Question:
Determine the maximum shear stress in the beam.

5.15 The cantilever beam has a rectangular cross-section and caries a
uniformly distributed load over the entire length.

Question:
Determine area A of the cross-section in order that the shear stress nowhere
exceeds the limiting value τ̄ = 0.5 N/mm2.

5.16 A simply supported beam with a span of 1.2 m carries a uniformly
distributed load q over the full length. The beam has a rectangular cross-
section with dimensions 50 × 120 mm2.

Question:
Determine the uniformly distributed load q for which the maximum shear
stress in the beam is 0.6 N/mm2.

5.17 When dimensioning the wooden beam shown, the shear stress appears
to be indicative. The limiting value for the shear stress (the allowable shear
stress) is τ̄ = 0.6 N/mm2. The beam has a rectangular cross-section with
width b = 80 mm and carries a uniformly distributed load q = 0.8 kN/m
over the entire length of the beam.

Question:
Determine the minimum height h of the beam.
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5.18 A beam with rectangular cross-section is loaded as shown. In the
calculation use F = 42 kN, b = 120 mm and h = 300 mm.

Question:
Determine the maximum vertical shear stress in the beam.

5.19 A prismatic beam with rectangular
cross-section is supported as shown and
is loaded by a uniformly distributed load
q = 40 kN/m.

Question:
Determine the minimum area A of the cross-section required so that the
shear stress is nowhere larger than τ̄ = 1.2 N/mm2.

5.20 The rectangular cross-section shown
has to transfer a vertical shear force.

Questions:
a. At which of the points A, B and/or C is

the shear stress largest?
b. At which of these points is the shear

stress smallest?

5.21 A horizontal shear force is transferred by the rectangular cross-section
from problem 5.20.

Questions:
a. In which of the points A, B and/or C is the shear stress smallest?
b. At which of these points is the shear stress largest?

5.22 A simply supported beam with a span of 2.83 m carries a uniformly
distributed load q over the entire length. The beam has a rectangular
cross-section with dimensions 100 × 200 mm2. The limiting value for
the bending stress (the allowable bending stress) is σ̄ = 7.5 N/mm2;
the limiting value for the shear stress (the allowable shear stress) is
τ̄ = 0.6 N/mm2.

Question:
Determine the maximum load q that the beam can carry.

5.23 The wooden cantilever beam has a rectangular cross-section and
carries a uniformly distributed load q = 5 kN/m. The limiting value for the
bending stress is σ̄ = 7 N/mm2; the limiting value for the shear stress is
τ̄ = 1 N/mm2.
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Questions:
a. Investigate whether the maximum bending stress remains below the

limiting value.
b. Investigate whether the maximum shear stress remains below the

limiting value.
c. Determine the maximum load q that the beam can carry without

exceeding the limiting values for the bending and shear stresses.

5.24 A simply supported beam with rectangular cross-section carries a
point load F at midspan.

Question:
For the given situation, determine the ratio between the maximum bending
stress and maximum shear stress if � = 15h.

5.25: 1–2 You are given two different beams with the same rectangular
cross-section.

Questions:
a. Determine the maximum bending stress in the beam.
b. Determine the maximum shear stress in the beam.

5.26 The cantilever beam shown has a rectangular cross-section b×h with
b = h/2. The limiting value for the shear stress is τ̄ = 0.33 N/mm2; the
limiting value for the bending stress is σ̄ = 15 N/mm2. The load follows
from the figure.

Question:
Determine the minimum beam height h.
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5.27: 1–2 A beam with rectangular cross-section is subject to a so-called
four-point bending test.

Questions:

1. Which claim is correct for the normal stress σA and shear stress τA at
point A of cross-section C?
a. σA �= 0 and τA �= 0.
b. σA = 0 and τA �= 0.
c. σA �= 0 and τA = 0.
d. σA = 0 and τA = 0.

2. Which claim is correct for the normal stress σB and shear stress τB at
point B of cross-section C?
a. σB �= 0 and τB �= 0.
b. σB = 0 and τB �= 0.
c. σB �= 0 and τB = 0.
d. σB = 0 and τB = 0.

5.28 A cantilever beam with rectangular cross-section is loaded at its free
end by the two forces F1 and F2 as shown.

Questions:
a. In which of the given points is the tensile bending stress largest?
b. In which of the given points is the compressive bending stress largest?

c. In which of the given points is the shear stress largest?

5.29 A vertical shear force of 42.8 kN acts in the cross-section. The
moment of inertia in the vertical plane is I = 102 × 103 mm4.

Questions:
a. Determine the vertical shear stress at A.
b. Determine the vertical shear stress at B.
c. Determine the maximum vertical shear stress in the cross-section and

the location where it occurs.



5 Shear Forces and Shear Stresses Due to Bending 393

5.30 A glued wooden T-beam is simply supported and carries a uniformly
distributed load over the full length.

Question:
Determine the maximum shear stress in the beam.

5.31 A simply supported concrete T-beam is carrying a uniformly dis-
tributed load of 40 kN/m. The shear stress in the beam may not exceed the
limiting value τ̄ = 0.6 N/mm2.

Question:
Over which length a must provisions be made (such as extra stirrups or bent
up reinforcing bars) in order to transmit excessively large shear stresses?

5.32 The T-section shown has to transfer a downward shear force of 1 kN
in the vertical plane of symmetry. The cross-section should be considered
thin-walled in the calculation.

Questions:
a. Determine the distribution of the shear stresses as a function of the

location in the cross-section.
b. Draw the shear stress diagram, including relevant values and the

direction of the shear stresses.
c. Determine the shear force per length in the longitudinal direction at the

join of the web to the flange.
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5.33 A thin-walled symmetrical U-profile has to transfer the shear force
Vz = V in the plane of symmetry. The cross-sectional dimensions are
shown in the figure.

Questions:
a. Determine the location of the normal

centre NC and the magnitude of the
(centroidal) moment of inertia Izz.

b. Sketch the bending stress diagram due
to an arbitrary bending moment M∗

z .
c. On the basis of the bending stress

distribution in the cross-section, what
can you say about the shear stress
distribution? Sketch the shear stress
diagram (without calculation). Also
indicate in which direction the shear
stresses are acting.

d. Where in the cross-section is the shear stress a maximum? Determine
its value.

e. Also determine the shear stresses at C, in both the web and the flange.

5.34 A thin-walled angle steel with equal legs and a uniform wall thickness
of 12 mm has to transfer a shear force V = 48

√
2 kN in the horizontal plane

of symmetry.

Questions:
a. Plot the shear stress diagram. Indicate the direction of the shear stresses.
b. Determine the maximum shear stress. Where in the cross-section does

it occur?

c. Verify that the resultant of all shear stresses in the cross-section is equal
to the shear force.

5.35 A thin-walled T-section with a web thickness of 10 mm and a flange
thickness of 5 mm has to transfer a shear force of 18 kN in the plane of
symmetry. The cross-sectional dimensions are given in the figure.

Questions:
a. Determine the location of the nor-

mal centre NC.
b. Determine the shear stresses in the

web as a function of z.
c. Determine the shear stresses in the

flange as a function of y.
d. For the entire cross-section plot the

shear stress diagram. Indicate the
direction of the shear stresses and
include a number of relevant val-
ues.
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5.36 The cross-sectional dimensions of a thin-walled U-section are given
in the figure. The cross-section has to transfer a shear force Vy = 7200 N.

Questions:
a. Verify that the moment of inertia in the xy plane is Iyy = 18×106 mm4.
b. Sketch the shear stress diagram (without calculation). Indicate the

directions.
c. Determine the values for a number of relevant places. What is the

maximum shear stress and where does it occur?

5.37 The simply supported beam AB is subject to a vertical force 3F at
C, at one-third of the span. The beam has a thin-walled cross-section (a
U-section); the web thickness is t and the flange thickness 2t . Both height
and width of the profile are h.

Questions:
a. Determine the location of the normal centre NC and the magnitude of

the (centroidal) moment of inertia Izz.
b. Determine and plot the distribution of the shear stresses acting in cross-

section D on the left-hand part of the beam. Indicate the direction of the
shear stresses and a number of relevant values.

c. Determine the longitudinal shear force per length at cut c-c at the join
between web and flange.
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5.38 A thin-walled T-beam with uniform wall thickness of 10 mm is
loaded by the forces F1 = 240 kN and F2 = 40 kN as shown in the fig-
ure. For the cross-section of the T-beam applies A = 12 × 103 mm and
Izz = 450 × 106 mm4.

Questions:
a. Model the beam as a line element and plot the M , V and N diagrams.
b. In which cross-section is the normal stress a maximum? Determine and

plot the normal stress diagram for that cross-section.
c. Determine and plot the shear stress diagram for a cross-section to the

left of support B. How large is the maximum shear stress in that cross-
section and where does it occur?

d. Determine and plot the shear stress diagram for a cross-section to the
right of support B. How large is the maximum shear stress in that cross-
section and where does it occur?

5.39 A thin-walled double T-section has a uniform wall thickness of
12 mm. The location of the normal centre NC is given in the figure. You
are also given Izz = 40 × 106 mm4. The cross-section has to transfer a
shear force of 32 kN in the vertical plane of symmetry.

Questions:
a. Determine the shear stress at cut a.
b. Determine the shear stress at cut b.
c. Determine the shear stress at cut c.
d. Determine the maximum shear stress in a web. Where does it occur?
e. For the entire cross-section plot the shear stress diagram, indicate the

direction of the shear stresses and include a number of relevant values.

5.40 A shear force of 48 kN acts in the vertical plane of symmetry of the
thin-walled I-section shown. The I-section has a uniform wall thickness of
12 mm. The moment of inertia in the vertical plane is Izz = 256×106 mm4.

Questions:
a. Verify that Izz = 256 × 106 mm4.
b. Determine the maximum shear stress in one of the flanges.
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c. Determine the maximum shear stress
in the web.

d. Plot the shear stress diagram for the en-
tire cross-section. Include a number of
relevant values and indicate the direc-
tion of the shear stresses by means of
arrows.

5.41 A thin-walled steel column with height h and a uniform wall
thickness t is fixed at the base and loaded at its free end by the forces F1
and F2 as shown in the figure. In the calculation use F1 = F2 = 66.15 kN,
h = 3 m and t = 10.5 mm. For the cross-section you are also given
A = 15.75 × 103 mm2 and Izz = 882 × 106 mm4.

Questions:
a. Determine the location of the normal centre NC.
b. Model the column as a line element and draw all the forces acting on

it, including the support reactions.
c. Draw the N , V and M diagrams, with the deformation symbols.
d. For the cross-section 1 m above the fixed end, determine and plot the

normal stress diagram.
e. For the cross-section 1 m above the fixed end, determine and plot the

shear stress diagram.

5.42 A thin-walled box girder has a rectangular cross-section and uniform
wall thickness. Load and dimensions are given in the figure.

Questions:
a. In which cross-section does the maximum normal stress occur? For this

cross-section plot the normal stress diagram, with the correct signs for
tension and compression.

b. In which cross-section does the maximum shear stress occur? Draw the
shear stress diagram for that cross-section. Indicate in the cross-section
the direction of the shear force and the direction of the shear stresses.

c. Verify that the resultant of all shear stresses in the cross-section is equal
to the shear force.
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5.43 A shear force Vz = 44 kN is acting in
the thin-walled cross-section shown with
a uniform wall thickness of 8 mm. The
moment of inertia is Izz = 396×106 mm4.

Questions:
a. Determine the shear stress at cut a.
b. Determine the shear stress at cut b.
c. Determine the shear stress at cut c.
d. Determine the maximum shear stress

in the cross-section.
e. Sketch the complete shear stress dia-

gram. Write down the relevant values
and use arrows to indicate the direction
of the shear stresses.

5.44 The thin-walled cross-section shown has a uniform wall thickness of
10 mm and has to transfer a shear force of 45 kN in the plane of symmetry.

Questions:
a. Determine and plot the shear stress diagram for AB. How large is the

maximum shear stress in AB?
b. Determine the resultant of all shear stresses in AB.
c. How large is the resultant of all shear stresses in CD?
d. Determine and plot the shear stress diagram for CD. How large is the

maximum shear stress in CD?
e. Determine that the resultant of all shear stresses in CD from the shear

stress diagram, and verify that the answer agrees with the answer to
question c.

5.45 You are given the cross-section of a thin-walled tube with radius R

and wall thickness t . The cross-section has to transfer a shear force Vz.

Questions:
a. Determine Izz for this cross-section.
b. For the static moment of the sliding part of the cross-section, shown in

the figure, verify that Sa
z = 2R2t sin ϕ.
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c. Determine and plot the shear stress distribution due to the shear force
Vz as a function of ϕ. In the calculation use R = 150 mm, t = 8.6 mm
and Vz = 40.5 kN.

d. How large is the maximum shear stress (in N/mm2) and where does it
occur?

5.46 The thin-walled cross-section shaped as an isosceles triangle has a
uniform wall thickness of 10 mm. A shear force of 25 kN is acting in the
vertical plane of symmetry. The moment of inertia in the vertical plane is
Izz = 61.2 × 106 mm4.

Questions:
a. Verify the location of the normal centre NC.
b. Verify that Izz = 61.2 × 106 mm4.
c. Sketch the shear stress diagram for the entire cross-section (without

calculation!). Use arrows to indicate the direction of the shear stresses.
d. Determine the values in the shear stress diagram for a number of

relevant places.
e. Determine the maximum shear stress in the cross-section and the place

where it occurs.
f. Verify that the resultant of all shear stresses in the cross-section is equal

to the shear force of 25 kN.

5.47 A simply supported member with a solid circular cross-section
is loaded as shown by a force of 36 kN. The diameter of the circular
cross-section is 100 mm.

Questions:
a. Determine the maximum bending stress in the member.
b. Determine the maximum shear stress in the member.

5.48 The solid cross-section in the shape of an isosceles triangle transfers
a shear force of 75 kN in the vertical plane of symmetry.

Questions:
a. Determine the shear stress at the level of the normal centre of the cross-

section.
b. Determine the maximum shear stress in the cross-section.
c. Sketch the shear stress distribution across the height of the cross-

section.
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Shear centre (Section 5.5)

5.49 Question:
What are the properties of the shear centre SC in a cross-section?

5.50 A horizontal shear force Vy = 24 kN acts in the thin-walled cross-
section shown. The cross-sectional dimensions are given in the figure.

Questions:
a. Determine the distance a between the normal centre NC and the (centre

line of the) upper flange.
b. For the entire cross-section determine and plot the shear stress distrib-

ution due to Vy = 24 kN. Indicate the directions and include a number
of relevant values.

c. Determine the shear stress resultants for the web and flanges individu-
ally.

d. Verify that the resultant of all shear stresses in the cross-section is equal
to the shear force Vy = 24 kN. Determine distance b from the line of
action of Vy to the upper flange.

e. Where in the cross-section is the shear centre SC?

5.51 A shear force Vz = 40
√

2 kN in a angle steel with equal legs acts
normal to the plane of symmetry of the cross-section. The profile is
thin-walled with a uniform wall thickness of 12 mm. The dimensions are
given in the figure.

Questions:
a. Determine the shear stress distribution as a function of z.
b. Plot the shear stress diagram. Indicate the directions and include a

number of relevant values.
c. Determine the resultant of all shear stresses in AB and BC respectively.
d. Verify that the resultant of all shear stresses in the cross-section is equal

to the shear force Vz = 40
√

2 kN. Where is the line of action of Vz?
e. Where is the shear centre SC?

5.52 A vertical shear force Vz = 20 kN acts in the thin-walled cross-section
shown. The cross-sectional dimensions are given in the figure.
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Questions:
a. Determine the location of the normal

centre NC.
b. Determine cross-sectional properties

needed to determine the shear stress
distribution.

c. Determine and plot the shear stress dis-
tribution. Indicate the directions and
include a number of relevant values.

d. Determine and plot the resultant of all
shear stresses in the upper flange, the
lower flange and the web respectively.

e. Where is the line of action of the resultant of all shear stresses in the
cross-section (that is the line of action of the shear force)?

f. Where is the shear centre SC of the cross-section?

5.53 A vertical shear force V acts in a thin-walled square cross-section
with a small gap. The cross-section has a uniform wall thickness t . In
position I the gap is at the centre of the bottom flange. In position II the
cross-section has turned through 90◦ and the gap is at the centre of the
right-hand web.

Questions (without calculation):
a. Sketch the shear stress distribution for the cross-section in position I.

Use arrows to indicate the direction of the shear stresses.
b. Sketch the shear stress distribution for the cross-section in position II.

Use arrows to indicate the direction of the shear stresses.

5.54 See the cross-sections from problem 5.53, but now use in the cal-
culation a = 240 mm, t = 12.5 mm and V = 32 kN.

Questions:
a. Determine and plot the shear stress diagram for the cross-section in

position I.
b. Verify that the resultant of all shear stresses in the cross-section is equal

to the shear force. Where is the line of action of the shear force?
c. Determine and plot the shear stress diagram for the cross-section in

position II.
d. Verify that the resultant of all shear stresses in the cross-section is equal

to the shear force. Where is the line of action of the shear force?
e. Where in the cross-section is the shear centre SC?

Other cases of shear (Section 5.6)

5.55 Round holes with diameter d are
punched into an aluminium plate with
thickness t = 8 mm. The shear strength
is τ̄ = 60 MPa.

Questions:
a. Determine the punching pressure σ

required for a diameter d = 30 mm.
b. Determine the punching pressure σ

required for a diameter d = 40 mm.
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5.56 Rafter (1) is connected to joist (2) by means of a toothed joint. Both
rafter and joist are 80 mm wide. There is a compressive force of 17.4 kN
in rafter (1). All other data can be found in the figure. Assume that the
toothed joint is smooth (frictionless).

Questions:
a. Determine the upsetting force exerted by the rafter on the edge of the

joist.
b. Determine the required length � of the edge so that the shear stress

remains below limiting value τ̄ = 0.9 MPa.

5.57 The glued lap joint shown connects three planks of width 100 mm
and has to transfer a tensile force of 63 kN. The average shear stress in the
glued joint may not exceed the limiting value τ̄ = 1.75 MPa.

Question:
Determine the required length � of the lap joint.

5.58 The bolted lap joint between the
three planks of width 25 mm has to
transfer a tensile force of 7.5 kN. The bolt
has a diameter of 10 mm. The length of
the edge is 60 mm for the inner plank (1)
and 50 mm for the outer planks (2).

Questions:
a. Determine the shear stress in the bolt.
b. Determine the shear stress in the slid-

ing part of plank (1).
c. Determine the upsetting stress on

plank (1).
d. Determine the shear stress in the slid-

ing parts of the planks (2).
e. Determine the upsetting stress on the

planks (2).
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Mixed questions

5.59 A simply supported wooden beam, 2 m long, is loaded by a point
load of 10.5 kN at midspan. The rectangular cross-section of the beam is
0.2 m wide and 0.1 m high, as shown in the figure.

Questions:
a. Determine the maximum bending stress in the beam.
b. For the given load, the maximum bending stress has to remain below a

limiting value of 7 MPa. To ensure that, a 0.2 m wide wooden strip is
glued on top of the beam. What minimum thickness is required for this
strip?

c. For case b determine the maximum shear force per length that the glued
joint has to transfer. Where does this maximum occur?

5.60 A simply supported beam with a rectangular cross-section of
80 × 180 mm2 has a span of 6 m and carries a uniformly distributed load
of 12 kN/m over the full length.

Questions:
a. Determine the maximum bending stress in the beam.
b. Determine the maximum shear stress in the beam.

5.61 A thin-walled I-section has to transfer a shear force of 42 kN in the
vertical plane of symmetry. The cross-sectional dimensions are given in
the figure. In the calculation use a = 300 mm and t = 15 mm.

Questions:
a. Determine the shear stress in the web at cut I.
b. Determine the shear stress in the web at cut II, directly beneath the

upper flange.
c. Determine the shear stress in the upper flange at cut II, directly adjacent

to the web.
d. Plot the complete shear stress diagram, include a number of relevant

values and indicate the direction of the shear stresses.
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5.62 Given the welded steel box beam AD, fixed at A and free at D. The
beam is loaded by a vertical force of 10 kN at D. The moment of inertia
in the vertical plane (the plane in which the load acts) is I = 13×106 mm4.

Question:
Determine the longitudinal shear force that a single weld has to transfer
along length BC.

5.63 A thin-walled circular tube with radius R and wall thickness t has to
transfer a vertical shear force V = 7 kN. The area of the cross-section is
A = 1000 mm2.

Questions:
a. Determine the average vertical shear

stress.
b. Determine the maximum shear stress.
c. Determine the shear stress at a quarter-

height.

5.64 A simply supported upside down T-beam carries a uniformly dis-
tributed full load q .

Questions:
a. In which of the four given points is the vertical shear stress largest?
b. In which of those points is the vertical shear stress smallest?

5.65 The cantilever beam shown, with a length of 3 m, has a thin-
walled cross-section. The cross-sectional dimensions and the location of
the normal centre NC are shown in the figure. The moments of inertia
are Iyy = 90 × 106 mm4 and Izz = 360 × 106 mm. At the free end acts a
vertical force of 4.5 kN. There is also a horizontal tensile force of 36 kN
with its point of application at the centre of the flange.

Questions:
a. Model the beam as a line element and draw all the forces acting on it.

Draw the M , V and N diagrams, with the deformation symbols. Include
a number of relevant values.

b. Plot the normal stress diagram for the cross-section at x = 1 m.
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c. For cross-section at x = 1 m, determine the shear stress distribution in
the web as a function of z.

d. For the entire cross-section plot the shear stress diagram. Include a
number of relevant values. Indicate the direction of the shear stresses

5.66 A vertical shear force of 42.8 kN acts in the cross-section shown.

Questions:
a. Determine the vertical shear stress at

A.
b. Determine the vertical shear stress at

B.
c. Determine the maximum vertical shear

stress in the cross-section and the place
where it occurs.

5.67 The simply supported wooden beam with a uniformly distributed
load is constructed of two timbers, coupled by means of toothed plate shear
connectors and clamped to one another by means of bolts. Each shear
connector can transfer a maximum shear force of 5 kN.

Question:
How many shear connectors are needed for the entire beam?

5.68 A thin-walled U-section with uniform wall thickness t = 5 mm has
to transfer a shear force of 45 kN in the vertical plane of symmetry.

Questions:
a. Determine the shear stress distri-

bution as a function of the place
in the cross-section.

b. Plot the shear stress diagram. In-
clude a number of relevant val-
ues and indicate the direction in
which the shear stresses are actu-
ally acting.

c. Determine the longitudinal shear
force per length at cut c-c, where
web and flange are connected.

acting on the positive cross-sectional plane.
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5.69 A simply supported beam with rectangular cross-section carries a
uniformly distributed load over its entire length.

Question:
For the given situation, determine the ratio between the maximum shear
stress and maximum bending stress.

5.70 The cantilever beam shown is loaded by a vertical force of 24 kN at
the free end. The beam is constructed of two identical rectangular beams
that are connected by means of ring dowels. Each dowel can transfer a
maximum shear force of 20 kN.

Question:
Determine the minimum number of ring dowels required.

5.71 The simply supported beam with overhangs has a rectangular cross-
section and carries a uniformly distributed load over its entire length.

Question:
Determine the maximum shear stress in the beam and the place where it
occurs.

5.72 In the figure the dimensions are given for the clamping frame ABCD
modelled as a line element. The clamping has a T-shaped cross-section,
the dimensions of which are shown in the figure. The wall thickness is a
uniform 12 mm. The cross-section must be considered thin-walled. The
clamp is loaded at A and D by two compressive forces of 5.76 kN.

Questions:
a. Determine and plot the shear stress distribution in (web and flange of)

cross-section a-b. Indicate the direction of the shear stresses and include
a number of relevant values.

b. In the same way determine and plot the shear stress distribution in (web
and flange of) cross-section c-d.
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5.73 Round holes are punched into a plate.

Question:
Which of the statements below is correct?
1. The punch pressure required is larger

for large holes than for small holes.
2. The punch pressure required is larger

for small holes than for large holes
3. The punch pressure required is inde-

pendent of the diameter of the holes.

5.74 The cross-sectional dimensions for a thin-walled U-section are given
in the figure. The cross-section has to transfer a shear force Vz = 11.2 kN.

Questions:
a. Verify that the moment of inertia is Izz = 126 × 106 mm4.
b. Sketch the shear stress diagram (without calculation). Indicate the

directions.
c. Determine the values for a number of relevant points. How large is the

maximum shear stress and where does it occur?
d. Verify that the resultant of all shear stresses is equal to the shear force.
e. Where is the line of action of the shear force Vz?
f. Where is the shear centre SC of the cross-section?
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5.75 A simply supported hollow wooden beam caries a uniformly
distributed load. The beam can be built up in three different ways: see the
cross-sections 1, 2 and 3 as shown in the figure. The various parts of the
beam are connected by means of hidden pins.

Question:
Order the cross-sections according to the number of pins required, starting
with the cross-section needing the most pins. The answer is a three-figure
number.

5.76 A simply supported wooden beam with a span of 5 m carries a uni-
formly distributed load q over its entire length. The beam has a rectangular
cross-section with area A = 20 × 103 mm2.

Question:
For which load q is the maximum shear stress in the beam 1.2 N/mm2.

5.77 The simply supported concrete I-beam has a span of 4 m and carries
a uniformly distributed load of 11 kN/m. The limiting value for the shear
stress (the allowable shear stress) is τ̄ = 0.7 N/mm2.

Question:
Over which length a are the shear stresses too large and are extra provisions
required (such as stirrups or bent up reinforcement)?

5.78 A thin-walled box beam with rectangular cross-section is supported
and loaded as shown. The wall thickness of the flanges is 2t and that of the
webs is 3t . In the calculation use a = 250 mm, t = 10 mm and F = 60 kN.

Questions:
a. Determine the normal stress diagram for the cross-section with the

maximum normal stress.
b. Determine the shear stress diagram for the cross-section with the

maximum shear stress.
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5.79 A simply supported wooden beam with length � = 4 m carries a
uniformly distributed load q = 2 kN/m. As shown in the figure, the beam
is built up from three parts connected by wire nails. The maximum shear
force that a nail can transfer is 200 N. For the moment of inertia of the
cross-section, in the plane of loading, use I = 59.52 × 106 mm4.

Question:
What is the minimum number of wire nails required?

5.80 The thin-walled cross-section in the shape of an isosceles trapezium
has a uniform wall thickness of 7 mm. The cross-section has to transfer a
shear force of 99.3 kN in the vertical plane of symmetry. The moment of
inertia in the xz plane is Izz = 90.1 × 106 mm4.

a. Verify the location of the normal centre NC.
b. Verify that Izz = 90.1 × 106 mm4.
c. Determine the shear stress in the upper flange at corner A.
d. Determine the shear stress in the lower flange at corner B.
e. Determine the maximum shear stress in one of the webs.
f. Plot the shear stress diagram for the entire cross-section. Include a

number of relevant values and use arrows to indicate the direction of
the shear stresses.



6Bar Subject to Torsion

The previous chapter addressed the shear stress distribution due to a shear
force. In this chapter we look at the shear stresses caused by torsional
moments. We will also look at the deformation due to torsion.

In most cases, determining the stresses and deformations due to torsion
is rather complicated. A fully comprehensive and general approach is not
within the scope of this book. Here we will cover a number of simple cases.
The theory introduced here can therefore not be used for more complicated
situations.

In Section 6.1 we again look at the material behaviour, but now with a
particular focus on the deformation of the material under the influence of
shear stresses.

Subsequently we look at the loading case of torsion for a number of
members with simple cross-sectional shapes: circular cross-sections in Sec-
tion 6.2 and thin-walled cross-sections in Section 6.3. Here we not only
discuss the shear stress distribution in the cross-section, but we also look at
the deformation of the member subject to torsion.
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Figure 6.1 In the linear-elastic range, according to Hooke’s Law
there is a linear relationship between the normal stress σ and
extension ε: σ = Eε. The modulus of elasticity E characterises
the resistance (stiffness) of the material against deformation in
extension.

Figure 6.2 (a) Side view of a small rectangular volume element
subject to pure shear in the plane of the drawing. (b) The shear
stresses τ will deform the rectangle: the rectangle changes into a
parallelogram. The change γ of the right angle is called the shear
strain (or sometimes the angle of shear).

In Section 6.4 we present some numerical examples. After a summary of
the various formulas in Section 6.5, the chapter ends with a number of
problems in Section 6.6.

6.1 Material behaviour in shear

To obtain information about the material behaviour, in Chapter 1 we looked
only at the tension test. The tension test provides a stress-strain diagram or
σ -ε diagram, representing the relationship between the normal stress σ and
the strain ε. In the linear-elastic range, Hooke’s law in extension applies
(see Figure 6.1):

σ = Eε.

The modulus of elasticity E characterises the resistance (stiffness) against
deformation of the material in extension.

Shear forces and torsional moments are transferred by shear stresses. Shear
stresses also cause deformations. In members subject to a shear force, these
deformations are generally so small that they can be ignored. Furthermore,
they are not required to find the shear stress distribution. For, in the ele-
mentary beam theory the shear stress distribution due to a shear force is
derived from the difference between the bending stresses on two adjacent
cross-sections (see Sections 5.1 to 5.4).

To find the shear stresses due to torsion, we must know, however, in which
way the material deforms under the influence of shear. Figure 6.2a shows
the side view of a small rectangular volume element that is subject to pure
shear in the plane of the drawing. The shear stress τ on one of the sides
cannot exist alone but always occurs in combination with equally large



6 Bar Subject to Torsion 413

Figure 6.3 In the linear-elastic range, Hooke’s Law states that
there is a linear relationship between the shear stress τ and shear
strain γ : τ = Gγ . The shear modulus (of elasticity) G characterises
the resistance (stiffness) of the material against the deformation in
shear.

shear stresses on the other three sides (see Section 5.3.1).

The shear stresses τ will cause the rectangular volume element to distort:
the rectangle in Figure 6.2a changes into the parallelogram in Figure 6.2b.
The change of the right angle is often denoted by γ . The small angle γ is
a measure of the deformation of the element due to shear and is called the
shear strain (or sometimes the angle of shear).

If we plot the magnitude of the shear stress τ against that of the shear strain
γ we get a shear stress-strain diagram or τ -γ diagram.

In the linear-elastic range there is a linear relationship between the shear
stress τ and shear strain γ (see Figure 6.3):

τ = Gγ.

This relationship is known as Hooke’s law in shear.1

G is a constant of proportionality and is called the shear modulus of
elasticity. The shear modulus is a material quantity that characterises the
resistance (stiffness) against deformation of the material in shear. In the
τ -γ diagram the shear modulus is the slope G = τ/γ in the linear-elastic
range.

The shear strain γ is expressed in radians and is therefore dimensionless.
The shear modulus has the same dimension as a stress, thus force/area.

To gain an idea of the order of magnitude of the shear strain γ , the value γy
is determined for structural steel at the moment that the yield shear stress
τy is reached. For structural steel, the shear stress at which yield occurs is

1 In Engineering Mechanics, Volume 4, we cover the complete Hooke’s law.
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Figure 6.4 The τ -γ diagram and the shear modulus G can be
derived from the torsion test.

Figure 6.5 If, for various values of the torsional moment Mt,
we measure the associated rotation �ϕx of one end cross-section
with respect to the other and plot the results against one another, we
generate the Mt-�ϕx diagram.

approximately half the yield strength fy in the case of tension,1 so

τy = 120 N/mm2.

In addition, for structural steel

G = 80 GPa.

This gives

γy = τy

G
= 120 N/mm2

80 × 103 N/mm2
= 1.5 × 103 rad ≈ 0.09◦.

This change of the right angle is so small that it cannot be seen with the
naked eye.

The τ -γ diagram and the shear modulus G can be derived using the torsion
test. In this test, a straight prismatic member is loaded by two equal and
opposite twisting moments Mt at both ends (see Figure 6.4).2 A member
loaded in this manner is said to be in pure torsion. If for various values
of Mt the associated rotation �ϕx of one end cross-section with respect to
the other is measured, the results can be plotted in a Mt-�ϕx diagram. See
Figure 6.5, where only the linear-elastic path is shown.

1 See Section 1.2.
2 Twisting or torsional moments act in the plane of the cross-section. They are

shown by means of bent arrows in the plane of the cross-section, but also, as in
Figure 6.4, by means of straight arrows with a double arrow head, normal to the
plane of the cross-section. See Engineering Mechanics, Volume 1, Sections 3.3.1
and 10.1.3.
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Figure 6.6 A thin-walled circular tube is loaded at its ends by
two equal and opposite torsional moments Mt. If the tube in the
longitudinal direction is divided into a large number of segments
with small length dx, all these segments are subject to torsion in
the same way. So there will be the same shear stress distribution
everywhere.

The translation of this Mt-�ϕx diagram into a τ -γ diagram requires some
effort. This will be clear in the next section where the inverse route is fol-
lowed: starting from the τ -γ diagram we derive the relationship between
Mt and �ϕx .

6.2 Torsion of bars with circular cross-section

The simplest torsion problem is probably that of a thin-walled circular tube.
This is what we start with in Section 6.2.1. The kinematic and constitutive
equations for torsion, derived in this section, however are generally valid.

In Section 6.2.2 we look at torsion of a bar with solid circular cross-section.
Here, we consider the member to consist of a large number of thin-walled
circular tubes that fit together perfectly.

We use the same approach in Section 6.2.3 for a thick-walled circular tube.

In these cases we look not only at the shear stress distribution, but also at
the deformation due to torsion.

6.2.1 Thin-walled circular tube

The thin-walled tube in Figure 6.6 has a length � and a circular cross-section
with radius R and wall thickness t . At its ends, the tube is subject to two
equal and opposite torsional moments Mt.

• Shear stress formula
The tube is split in the longitudinal direction into a large number of slices
with small length dx (see Figure 6.6). All these slices are subject to tor-
sion in the same way, so there will be the same shear stress distribution
everywhere.
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Figure 6.7 For thin-walled cross-sections, it can be assumed that
the shear stresses are parallel to the centre line and constant across
the wall thickness. Since the tube and load are axially symmetric,
it can also be expected that the shear stresses τ are constant in the
circumferential direction.

Figure 6.8 In addition to shear stresses in the plane of the cross-
section, there are also shear stresses in the longitudinal direction.

For thin-walled cross-sections, it can be assumed that the shear stresses
are parallel to the centre line and are constant across the wall thickness.
In addition, both tube and the load are axially symmetric. Therefore it can
be expected that the shear stresses τ are constant in the circumferential
direction (see Figure 6.7).

From Figure 6.7 it can be derived that the shear stress τ on a small cross-
sectional element with area dA = t ·R dθ makes the following contribution
to the torsional moment Mt:

dMt = R · τdA = τ · R2t dθ.

By integration we find

Mt =
∫ 2π

0
τ · R2t dθ = 2πR2t · τ.

Since all shear stresses τ act in circumferential direction and are constant,
and the small shear forces (shear stress × area) on all small areas dA have
the same arm R, we can write Mt down directly:

Mt = τ · A · R = τ · 2πRt · R = 2πR2t · τ.

This leads to the following shear stress formula for a thin-walled tube
subject to torsion:

τ = Mt

2πR2t
, (6.1a)

or

τ = MtR

Ip
. (6.1b)
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Figure 6.9 (a) To find out more about the deformation of the
tube due to the torsional moment Mt, a small segment of length
dx has been isolated. (b) A small rectangular element ABCD has
been isolated from the segment.

Figure 6.10 Element ABCD is subject to pure shear. Due to the
shear stresses τ the rectangle ABCD changes into a parallelogram.

Here Ip is the polar moment of inertia of the thin-walled circular cross-
section (see also Section 3.3.2, Example 2):

Ip = 2πR3t .

Comment: There are not only shear stresses in the cross-sectional planes,
but also shear stresses in longitudinal planes (see Figure 6.8).

• Deformation due to torsion
To get more knowledge about the deformation of the tube in Figure 6.6,
subject to torsion by the torsional moments Mt, a small slice with length dx

has been isolated from the tube (see Figure 6.9a). Next a small rectangular
element ABCD on the slice has been isolated (see Figure 6.9b).

Element ABCD is subject to pure shear. Due to the shear stress τ , the
rectangle ABCD changes into a parallelogram (see Figure 6.10).

The right angle between AB and AD changes by γ

γ = τ

G
.

In consequence, point B moves in the circumferential direction to B′ over
a distance γ dx. This means that the two cross-sections at a distance dx of
one another rotate about an angle dϕx with respect to one another:

dϕx = γ dx

R
= τ dx

GR
. (6.2)

All the rectangular elements on the slice in Figure 6.9 behave like the rec-
tangular element ABCD. Using the fact that all these elements are deformed
in the same way into parallelograms that fit together perfectly, we can state
the following:
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The cross-sections of a thin-walled circular tube subject to torsion remain
plane after deformation and maintain their circular shape.

The change of the rotation dϕx per length dx is called the torsional strain
χ :

χ = dϕx

dx
. (6.3)

The torsional strain χ has the dimension radian/length (length−1).

The torsional strain χ is the deformation quantity in torsion, similar to the
strain ε in extension and curvature κ in bending.

Expression (6.3) represents the kinematic relationship for torsion. It links
the torsional strain χ of the member (a deformation quantity) and the
rotation ϕx of the cross-section (a displacement quantity).

By combining the shear stress formula (6.1) with the formulas (6.2) and
(6.3) we find for the thin-walled circular tube

χ = Mt

GIp
(6.4a)

or

Mt = GIpχ. (6.4b)

GIp is referred to as the torsional stiffness of the tube. This quantity char-
acterises the resistance of the tube against the deformation due to torsion.
The torsional stiffness GIp has the dimension force × length2.

Figure 6.10 Element ABCD is subject to pure shear. Due to the
shear stresses τ the rectangle ABCD changes into a parallelogram.
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Table 6.1

Kinematic Constitutive

equation equation

Extension ε = du

dx
N = EAε

Bending κz = dϕy

dx
= −d2w

dx2
Mz = EIzzκz

Torsion χ = dϕx

dx
Mt = GItχ

Expression (6.4) links the torsional moment Mt (a section force) and the
torsional strain χ (a deformation quantity) and is the constitutive equation
for torsion.

Comments:
• It is customary to indicate the torsional stiffness by means of GIt,

in which It is known in general as the torsion constant of the cross-
section. For expression (6.4) one should therefore properly write

χ = Mt

GIt
or Mt = GItχ.

For circular cross-sections, the torsion constant It is equal to the polar
moment of inertia Ip.

• In the shear stress formula (6.1) the shear modulus G is missing. In the
linear-elastic range the shear stress is independent of the material. If
two homogeneous tubes of different material have the same dimensions
and are loaded by equal torsional moments, the same shear stresses
occur. However, the torsional strain is not the same!

• The derived kinematic and constitutive equation for torsion are gener-
ally valid1 and fit in the array of equations for extension and bending,
as shown in Table 6.1.

1 They apply not only to thin-walled tubes but also to members with other cross-
sections.
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Figure 6.11 The thin-walled tube (a) before and (b) after the
deformation due to torsion. All rectangular elements on the tube
are deformed into parallelograms. It can clearly be seen that planar
cross-sections remain planar and that straight lines parallel to the x

axis remain straight.

Figure 6.11a shows the tube divided into a large number of rectangular
elements. Figure 6.11b shows the distorted tube. Under the influence of the
torsional moment Mt all rectangles on the tube change into parallelograms.

We can clearly see that the planar cross-sections remain planar, and
that initially straight lines parallel to the x axis remain straight after
deformation through torsion.

These observations are confirmed by experiments.

To find the rotation �ϕx of the right-hand cross-section with respect to the
left-hand cross-section we use formulas (6.3) and (6.4):

χ = dϕx

dx
= Mt

GIp
.

Hence

dϕx = Mt

GIp
dx.

Since Mt is constant over the entire length � of the tube this gives

�ϕx =
∫ �

0
dϕx = Mt

GIp

∫ �

0
dx = Mt�

GIp
.

Comment: Notice the resemblance to the expression for the extension of a
truss member:

�� = N�

EA
.
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Figure 6.12 Bar with a solid circular cross-section, subject to
torsion.

Figure 6.13 It is assumed that the solid bar is built up of a large
number of perfectly fitting thin-walled circular tubes, all with the
same torsional strain.

6.2.2 Bar with solid circular cross-section

The bar in Figure 6.12, with length � and a solid circular cross-section with
radius R, is subject to torsion by the moments Mt at the ends. Below we first
look at the deformation of the bar and then at the shear stress distribution.

• Deformation due to torsion
To handle this problem, we consider the solid bar to consist of a large num-
ber of perfectly fitting thin-walled circular tubes. Assume the shear stress in
a thin-walled tube with radius r and thickness dr is τ (r) (see Figure 6.13).
Also assume dMt is the contribution of the shear stresses in this thin-walled
tube to the total torsional moment Mt in the solid cross-section.

Applying formula (6.4b) on a thin-walled tube with a torsional strain
χ = dϕ/dx we find

dMt = G · 2πr3 dr · χ.

Here 2πr3 dr is the polar moment of inertia of the thin-walled tube with
radius r and thickness dr .

Since all thin-walled tubes are part of one and the same solid cross-section
they have to fit together perfectly after deformation. This means that the tor-
sional strain χ = dϕ/dx has to be the same for all constituent thin-walled
tubes.

The resultant torsional moment Mt in the solid cross-section is found by
summing the contributions dMt of all the thin-walled tubes, that is by
integration with respect to r:

Mt = Gχ

∫ R

0
2πr3 dr = Gχ · 1

2 πR4. (6.5a)
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In the term 1
2 πR4 we recognise the polar moment Ip of the solid circular

cross-section:

Ip = 1
2 πR4.

So (6.5a) we can also write as

Mt = GIpχ, (6.5b)

or, in reverse,

χ = Mt

GIp
. (6.5c)

GIp is the torsional stiffness of the solid circular cross-section.

Using the same method as in Section 6.2.1, we find the following for the
rotation �ϕx of the end cross-sections with respect to one another:

�ϕx = Mt�

GIp
.

• Shear stress formula for torsion
Assume the thin-walled tube in Figure 6.13, with radius r , wall thickness
dr and shear stress τ (r), makes a contribution dMt to the torsional moment
Mt in the solid cross-section. According to (6.1)

dMt = 2πr2 dr · τ (r).

Next assume a torsional strain χ . For the thin-walled tube the constitutive

Figure 6.13 It is assumed that the solid bar is built up of a large
number of perfectly fitting thin-walled circular tubes, all with the
same torsional strain.



6 Bar Subject to Torsion 423

Figure 6.14 The shear stress due to torsion is proportional to
distance r to the axis of the bar.

equation (6.4) applies:

dMt = G · 2πr3 dr · χ.

By eliminating dMt from the two above-mentioned equations we find

τ (r) = rGχ. (6.6a)

The shear stress due to torsion is proportional to the distance r to the axis
of the bar, (see Figure 6.14). Substitute the previously derived expression
(6.5c) for the torsional strain χ in (6.6a) and we find the shear stress formula
for torsion:

τ (r) = Mtr

Ip
. (6.6b)

Comment: Notice that this shear stress formula for torsion is very similar to
the bending stress formula:

σ(z) = Mz

I
.

The bar with solid circular cross-section was considered to be built up of
a large number of perfectly fitting thin-walled tubes, all with the same tor-
sional strain. In Section 6.2.1 we found that in thin-walled circular tubes,
subject to torsion, planar cross-sections remain planar and maintain their
circular shape. If we assume further that the change in length of a thin-
walled tube subject to torsion is negligible, we can conclude for the bar
with solid cross-section – as a built-up of thin-walled circular tubes – that
planar cross-sections remain planar and maintain their circular shape after
the deformation due to torsion.
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Figure 6.15 Thick-walled circular tube, subject to torsion.

Figure 6.16 The thick-walled circular tube is assumed to consist
of a large number of perfectly fitting thin-walled circular tubes, all
with the same torsional strain.

Since all the thin-walled tubes have the same torsional strain, i.e. the same
rotation per length measured along the axis of the bar, they will not rotate
with respect to one another within the same cross-section. This means that
straight radial lines in the solid cross-section remain straight and radial after
the deformation due to torsion.

Conclusions for a bar with solid circular cross-section, subject to torsion:
a. Planar cross-sections remain planar and maintain their circular shape.
b. Straight radial lines in the cross-section remain straight and radial.

These conclusions are confirmed by experiments.

6.2.3 Thick-walled circular tube

In Figure 6.15 a thick-walled tube with length � is loaded by torsional
moments Mt at the ends. The tube has a circular cross-section with inner
radius Ri and outer radius Re.

The approach used in Section 6.2.2 can also be used successfully for this
thick-walled tube. Again the cross-section is considered to consist of a large
number of thin-walled tubes that fit together perfectly.

• Deformation due to torsion
Assume the shear stresses in a thin-walled tube with radius r and wall
thickness dr make a contribution dMt to the torsional moment Mt in the
thick-walled cross-section (see Figure 6.16).

Assuming a torsional strain χ = dϕ/dx, we find with formula (6.4b) for a
thin-walled tube

dMt = G · 2πr3 dr · χ.

Here 2πr3 dr is the polar moment of inertia of a thin-walled tube with
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radius r and thickness dr .

Since all thin-walled tubes are part of one and the same cross-section
they have to fit together perfectly after deformation. This means that the
torsional strain χ = dϕ/dx has to be the same for all thin-walled tubes.

The torsional moment Mt in the thick-walled cross-section is found by
summing the contribution dMt of all thin-walled cross-sections, that is by
integrating with respect to r:

Mt = Gχ

∫ Re

Ri

2πr3 dr = Gχ · 1
2 π(R4

e − R4
i ). (6.7a)

Notice that in (6.7a) only the lower limit of integration differs from (6.5a).

For a thick-walled circular cross-section the polar moment of inertia Ip is
(see Section 3.2.4, Example 9)

Ip = 1
2 π(R4

e − R4
i ).

So we can write (6.7a) as

Mt = GIpχ, (6.7b)

or, in reverse,

χ = Mt

GIp
. (6.7c)

Here GIp is again the torsional stiffness of the cross-section.

• Shear stress formula
In thick-walled circular cross-sections also, the shear stresses due to torsion
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Figure 6.17 The shear stress due to torsion is proportional to
distance r to the tube axis.

Figure 6.18 A thin-walled tube subject to torsion. The hollow
cross-section is of an arbitrary shape. The wall thickness t need not
be constant but may vary (gradually).

are proportional to the distance r to the tube axis (see Figure 6.17). We find
the same shear stress formula as for solid circular cross-sections:

τ (r) = Mtr

Ip
with Ri ≤ r ≤ Re. (6.8)

The derivation is identical to that in Section 6.2.2 and is not repeated here.

6.3 Torsion of thin-walled cross-sections

In Section 6.3.1, we derive the shear stress formula and the torsion constant
for thin-walled closed cross-sections of arbitrary shape. These formulas are
known as Bredt’s formulas.

In Section 6.3.2 a thin-walled strip is considered to consist of a large num-
ber of thin-walled rectangular tubes that fit together perfectly and to which
Bredt’s formulas apply.

The formulas derived for a thin-walled strip are used in Section 6.3 to find
the torsion constant and shear stress formula for thin-walled open cross-
sections.

Barré de Saint Venant1 found that for members with non-circular cross-
section, subject to torsion, the planar cross-sections no longer remain planar
but warp. In Section 6.3.1 this will be proved for a non-circular thin-walled
tube. The formulas derived here apply only if the cross-sections are free to
warp. If the cross-sections are not free to warp, but have to remain plane,

1 Adhémar Jean Claude Barré de Saint Venant (1797–1886) published many im-
portant papers on the theory of elasticity and on the strength of materials. In
1853 he developed the fundamental differential equation for elastic torsion.
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Figure 6.19 If the wall thickness is small, it can be assumed that
the shear stresses σxm are parallel to the centre line m. It may also
be expected that they are constant across the wall thickness t .

Figure 6.20 An arbitrary part isolated from a tube segment with
small length dx. The cuts (1) and (2) are normal to the centre line
m.

there will be also axial normal stresses. Torsion with restrained warping is
outside the scope of this book.

6.3.1 Thin-walled tubes

In Figure 6.18 a thin-walled tube is subject to torsion. The torsional moment
is Mt. The hollow cross-section is of an arbitrary shape. The wall thickness
t need not be constant but may change gradually.

First we derive the shear stress formula and next we look at the deformation
due to torsion.

• Shear stress formula
In Figure 6.19 the m axis has been chosen in the peripheral direction, along
the centre line or median line of the thin-walled cross-section. The origin
of the m axis can be an arbitrary point on the centre line.

A cross-section is considered thin-walled when the wall thickness is small
with respect to the other cross-sectional dimensions. In that case, we can
expect that the shear stresses in the wall are parallel to the centre line m. In
addition we can expect that these stresses σxm are constant across the wall
thickness t , as shown in Figure 6.19.

In Figure 6.20 an arbitrary part has been isolated from a tube segment
with small length dx. The cuts (1) and (2) are normal to the centre line
m. Since in two mutually normal planes the shear stresses are equal, the
shear stresses in the cross-sectional plane are equal to the shear stresses in
the longitudinal direction. These shear stresses are shown in the cuts (1)
and (2).
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Figure 6.21 (a) The product of shear stress σxm and wall thickness
t is called (b) the shear flow sm. In a thin-walled tube subject to
torsion the shear flow is constant: sm = σxm · t = constant.

If there are no normal stresses in the longitudinal direction,1 the force
equilibrium in the x direction of the isolated part in Figure 6.20 implies
that

σmx;1 · t1 · dx = σmx;2 · t2 · dx.

Since σmx = σxm we can switch over to the shear stresses in the cross-sec-
tional plane. After dividing by the length dx we find

σxm;1 · t1 = σxm;2 · t2.

Since cuts (1) and (2) have been arbitrarily chosen we can conclude that the
product of shear stress σxm and wall thickness t is constant. This product is
called the shear flow sm (see Figure 6.21):

sm = σxm · t = constant. (6.9a)

We omit the suffix m, and write

s = τ · t = constant. (6.9b)

Formula (6.9) implies that the shear stress τ in a thin-walled tube is a
maximum where the wall thickness t is a minimum, and vice versa.

Comment: The name for the concept shear flow, which was already used
in earlier sections for the product of shear stress and wall thickness, can
now be explained properly. The inner and outer boundaries of the thin-

1 Warping is not restrained.
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Figure 6.22 (a) The contribution to the torsional moment Mt
of the shear stresses on a small area element with length dm is
dMt = a · sm dm = 2sm dAm. Here dAm = 1

2 a dm is the area of
the hatched triangle. (b) Am is the area enclosed by the centre line
m of the thin-walled cross-section.

walled cross-section can be thought of as being the boundaries of a belt
canal (without side branches) with constant depth d and variable width t .
Next assume a constant quantity of water is steadily circulating through the
canal. The rate of flow of the water is τ . The amount of water that passes
through a plane across the canal per unit of time is the volume speed or
volume flow rate, and is equal to the product of rate of flow τ , depth d and
width t . In the belt canal with steadily circulating water the volume speed
is constant, or

τ · t · d = constant.

If the depth d of the channel is constant, then

τ · t = constant.

Because of the flow analogy this quantity has been called the shear flow s:

s = τ · t = constant.

The shear flow s is constant. The shear stress (rate of flow) τ is inversely
proportional to the wall-thickness t (width of the belt canal). The shear
stress (rate of flow) τ is largest where the wall-thickness (width of the canal)
t is smallest, and vice versa.

In the thin-walled cross-section in Figure 6.22a we look more closely at a
small area element with length dm in the peripheral direction. A small shear
force acts on this small area element; its magnitude is

shear stress × wall thickness × length = shear flow × length = sm dm.

For clarity, this small force has been exaggerated in Figure 6.22.
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Assume dMt is the contribution of this shear force to the torsional moment
Mt in the cross-section:

dMt = asm dm.

Here a is the distance from the line of action of the small force sm dm to
the point O with respect to which the torsional moment is determined.

By summing or integrating all contributions dMt over the total peripheral
length (contour) c of the cross-section we find the torsional moment in the
cross-section:

Mt =
∫ c

0
asm dm.

Integrating along the contour c, we find

Mt =
∮

asm dm = sm

∮
a dm. (6.10)

The integral sign with a circle means that the integration process is carried
out around the hollow cross-section along the centre line m. Since the shear
flow sm is constant (independent of m) this term has been taken outside the
integral. The integral

∮
a dm.

is completely determined by the geometry of the cross-section and has a
very simple geometrical interpretation. The product adm is equal to twice
the area dAm of the hatched triangle in Figure 6.22a, with base dm and
height a.

Figure 6.22 (a) The contribution to the torsional moment Mt
of the shear stresses on a small area element with length dm is
dMt = a · sm dm = 2sm dAm. Here dAm = 1

2 a dm is the area of
the hatched triangle. (b) Am is the area enclosed by the centre line
m of the thin-walled cross-section.
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If we sum all the contributions adm in the peripheral direction we find
twice the area Am that is enclosed by the centre line of the thin-walled
cross-section (see Figure 6.22b):

∮
a dm = 2Am. (6.11)

Substituting (6.11) in (6.10) leads to the following relationship between the
torsional moment Mt and the shear flow sm:

Mt = 2Amsm. (6.12a)

With

sm = σxmt (6.9a)

we find the following shear stress formula:

σxm = sm

t
= Mt

2Amt
. (6.13a)

This shear stress formula is known as Bredt’s first formula,1 and its
derivation is entirely based on equilibrium considerations.

When working without m direction, we may omit the suffix m in sm, and
write

Mt = 2Ams, (6.12b)

1 Rudolph Bredt (1842–1900), German engineer, developed the theory for a thin-
walled tube subject to torsion and published it in 1896.
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Figure 6.23 A narrow strip of small length dx has been isolated
from the thin-walled tube. We look at the small rectangular element
ABCD, located on this strip. Following the rotation dϕx , the rec-
tangular element will change into a parallelogram. The change of
the right angle at A is caused by the displacement of B in the m

direction (the peripheral direction).

s = τ t, (6.9b)

τ = s

t
= Mt

2Amt
. (6.13b)

Notice that Am is the area enclosed by the centre line of the cross-section
(see Figure 6.22b). Do not confuse this with the actual area A of the cross-
section!

Comment: In the derivation of Bredt’s first formula (the shear stress for-
mula), the location of the point O with respect to which the moment is
determined, is not important.

• Deformation due to torsion
In Figure 6.23 a narrow strip with small length dx has been isolated from
the thin-walled cylinder. Below we will look at the deformation of the small
rectangular element ABCD, located on this strip.

Assume the back and front cross-sections of the strip, at mutual distance dx,
rotate with respect to one another through an angle dϕx . For this rotation,
we have (see Section 6.2.1)

dϕx = χ dx, (6.3)

in which χ is the torsional strain. The rectangular element ABCD will
change into a parallelogram (see Figure 6.23).

The change of the right angle at A is caused by the displacement of B (with
respect to A) in the m direction (that is in the peripheral direction).

The displacement of B due to rotation dϕx is normal to the joining line OB
if O is the point about which the cross-section rotates. This displacement
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Figure 6.24 The displacement of B due to rotation dϕx is normal
to the joining line OB if O is the point about which the cross-section
rotates. This displacement has a component dum in m direction for
which dum = a dϕx applies.

Figure 6.25 (a) The deformation of the rectangular element.
Closer investigation shows that γ1 cannot be the correct change of
the right angle at A. (b) Reality is more complicated: since there
are also displacements ux in the x direction, the change of the right
angle at A is γ1 + γ2.

has a component dum in the m direction:1

dum = a dϕx.

Here a is the distance from O to the tangent at B to the centre line m (see
Figure 6.24).

In Figure 6.25a element ABCD has been shown separately. For the change
γ1 of the right angle at A we have

γ1 = dum

dx
= a dϕx

dx
= aχ.

For the shear stresses τ on the small rectangular element ABCD we now
find

τ = Gγ1 = Gaχ. (6.14)

We should have

τ = s

t
. (6.15)

According to (6.15) the shear stress is inversely proportional to the wall
thickness t and does not depend on the distance a, as in (6.14). This means
the shear strain γ1 cannot be the correct.

Reality is more complicated: planar cross-sections no longer remain planar
but start to warp. Points on the cross-section also undergo displacements
ux in the x direction. The warping ux is the same for all cross-sections, and

1 See also Engineering Mechanics, Volume 1, Section 15.3.2.
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depends on m only (and not on x).

Figure 6.26 shows how the cross-section can warp, and Figure 6.25b shows
what happens to element ABCD:

γ1 = dum

dx
= a dϕx

dx
= aχ,

γ2 = dux

dm
.

The total change of the right angle at A is

γ = γ1 + γ2 = aχ + dux

dm
.

The constant shear flow equation is

s = τ t = Gγ t = Gt

(
aχ + dux

dm

)
.

From this we find

dux = s

Gt
dm − aχ dm,

and so

�ux =
∫

dux = s

G

∫
1

t
dm − χ

∫
a dm. (6.16)

Since the shear flow s, shear modulus G and torsional strain χ are constant
(independent of m) they have been placed outside the integral.

Figure 6.25 (a) The deformation of the rectangular element.
Closer investigation shows that γ1 cannot be the correct change of
the right angle at A. (b) Reality is more complicated: since there
are also displacements ux in the x direction, the change of the right
angle at A is γ1 + γ2.
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Figure 6.26 Planar cross-sections do not remain planar but will
warp. The warping ux is the same for all cross-sections and depends
only on the m coordinate in the peripheral direction (and not on the
x coordinate).

Expression (6.16) can be used to determine ux as a function of m, repre-
senting the warping of the cross-section.

If all contributions dux all around the periphery are summed, for example
from B round to B, the value for ux must not change:

∮
dux = 0.

In that case it follows from (6.16) that

s

G

∮
1

t
dm − χ

∮
a dm = 0.

With

s = Mt

2Am
(6.12)

and
∮

a dm = 2Am (6.11)

we can write

Mt

2GAm

∮
1

t
dm − χ · 2Am = 0.

This gives the following relationship between the torsional moment Mt and
the torsional strain χ :
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Mt = G
4A2

m∮
1

t
dm

· χ.

For this constitutive equation we write

Mt = GItχ (6.4)

in which GIt is the torsional stiffness.

The quantity It is known as the torsion constant.1 For a thin-walled tube

It = 4A2
m∮

1

t
dm

. (6.17)

This expression is known as Bredt’s second formula.

Comment: In the derivation of Bredt’s second formula, the result is inde-
pendent of the location of point O, the point about which the cross-section
rotates.

Comment: Equations (6.4) and (6.12) can be used to determine the warping
of the cross-section:

�ux = χ

(
It

2Am

∫ m

0

1

t
dm −

∫ m

0
a dm

)
.

1 Sometimes It is called the torsional moment of inertia. This unfortunate nomen-
clature is due to the analogy of the constitutive relationships Mt = GItχ and
M = EIκ for torsion and bending respectively. For bending, the quantity I is
known as the moment of inertia.
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Figure 6.27 Bredt’s formulas derived for thin-walled tubes can be
checked using a thin-walled circular tube.

It is preferable to use the warping function �ux/χ as this function depends
only on the m coordinate in the peripheral direction and therefore only on
the shape of the cross-section. The warping function is independent of the
magnitude of the torsional moment.

Check: We can check Bredt’s formulas using the thin-walled circular cross-
section in Figure 6.27, with radius R and constant wall thickness t . For this
cross-section the area within the centre line is

Am = πR2.

In addition
∮

1

t
dm = 1

t

∮
dm = 2πR

t
.

With the shear stress formula (6.13) we find

τ = Mt

2Amt
= Mt

2πR2t
= MtR

2πR3t
= MtR

Ip
.

And with formula (6.17) we find for the torsion constant

It = 4A2
m∮ 1

t
dm

= 4 × (πR2)2

2πR/t
= 2πR3t = Ip.

These results agree with those found earlier in Section 6.2.1.
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Figure 6.28 A thin-walled strip subject to torsion. A thin-walled
strip is a member with rectangular cross-section of which the width
or wall thickness t is far smaller than the height h: t � h.

6.3.2 Thin-walled strip

A thin-walled strip is a member with rectangular cross-section of which
the width or wall thickness t is far smaller than the height h: t � h (see
Figure 6.28).

An exact calculation of the shear stress distribution and the torsion constant
is outside the scope of this book. Below, the calculation proceeds on the
basis of a number of assumptions that are justified through experiments
and more accurate calculations based on the theory of elasticity.

• Shear stress formula
A torsional moment Mt causes shear stresses that, as it were, flow around
within the cross-section (see Figure 6.29). Over a large part of the height,
the shear stresses are parallel to the centre line of the strip. This picture
changes only near the ends.

It is assumed that the magnitude of the shear stresses σxz, parallel to the
centre line, are proportional to the distance y to the centre line:

σxz = ky.

Here k is a yet unknown proportionality constant.

To determine the constant k the thin-walled strip is thought to be built up
of a large number of perfectly fitting rectangular thin-walled tubes with
constant wall thickness. Figure 6.30 shows one of these tubes. The width
of the tube is 2y. The area Am enclosed by the centre lines of this tube is
approximately

Am ≈ 2hy.
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Figure 6.30 The thin-walled strip is assumed to consist of a large
number of perfectly fitting rectangular tubes with a constant wall
thickness. To these tubes we can apply Bredt’s formulas.

Figure 6.29 A torsional moment Mt causes shear stresses in the
strip that, as it were, flow around within the cross-section. Over a
large part of the height, the shear stresses are parallel to the centre
line of the strip. This only changes near the ends. It is assumed
that the shear stress σxz, is parallel to the centre line and that its
magnitude is proportional to the distance y to the centre line.
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Comment: The actual height of the tube will be between h and (h−t). Since
t � h the height for all thin-walled tubes is approximated by the same value
h. It should also be noted that the wall thickness dy of the cylinder is small
with respect to the width 2y.

The shear stresses in the tube are

σxz = ky.

Assume the contribution of these shear stresses to the torsional moment in
the tube is dMt. Bredt’s first formula (6.13) states the following:

Mt = 2Amtτ.

Applied to the tube in Figure 6.30 this becomes

dMt = 2 · 2hy · dy · ky = 4khy2 dy.

The total torsional moment Mt in the strip follows from summing the con-
tributions of all individual thin-walled tubes. This is done by integration
with respect to y:

Mt =
∫ t/2

0
4khy2 dy = 1

6 kht3.

With this we have found the constant k:

k = Mt
1
6 ht3

.

Figure 6.30 The thin-walled strip is assumed to consist of a large
number of perfectly fitting rectangular tubes with a constant wall
thickness. To these tubes we can apply Bredt’s formulas.
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The shear stress formula for the strip is now

σxz = Mty

1
6 ht3

. (6.18a)

If we do not use a coordinate system, we write

τ = Mtem

1
6 ht3

. (6.18b)

Here em is the distance to centre line m. The direction of τ can be deduced
directly from the direction of the torsional moment.

The maximum shear stress τmax occurs at the boundaries of the cross-
section, at y = ±t/2 or, without coordinate system, at em = t/2:

τmax = Mt
1
3 ht2

. (6.19)

• Deformation due to torsion
For the thin-walled strip, the constitutive equation (6.4) gives

Mt = GItχ.

To find the torsion constant It the strip is again thought to consist of a large
number of perfectly fitting rectangular thin-walled tubes with constant wall
thickness.

For the thin-walled tube in Figure 6.30 its area is approximately

Am = 2ht,
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and
∮

1

t
dm = 1

dy
(4y + 2h) ≈ 2h

dy
.

Furthermore assume that dIt is the contribution of this thin-walled tube to
the torsion constant It of the cross-section of the strip. According to Bredt’s
second formula (6.17)

It = 4A2
m∮

1

t
dm

.

Applied to the thin-walled tube in Figure 6.30 we find

dIt = 4 · (2hy)2

2h/dy
= 8hy2 dy.

The torsion constant It of the thin-walled strip is found by summing the
contributions of all thin-walled tubes. Through integration we find

It =
∫ t/2

0
8hy2 dy = 8

3 hy3
∣∣∣t/2

0
= 1

3 ht3. (6.20)

Comment: Knowing the torsion constant for the strip, we can write the shear
stress formula (6.18) as follows:

Figure 6.30 The thin-walled strip is assumed to consist of a large
number of perfectly fitting rectangular tubes with a constant wall
thickness. To these tubes we can apply Bredt’s formulas.
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Figure 6.31 The shear stresses σxz determined appear to provide
only half the torsional moment Mt.

σxz = Mty

1
6 ht3

= Mty

1
2 It

, (6.18c)

or without a coordinate system

τ = Mtem

1
2 It

. (6.18d)

Comment: For the thin-walled strip the factor 1/2 in the denominator
destroys the analogy with the bending stress formula:

σ = Mzz

Izz

.

Comment: Figure 6.31 shows the shear stress distribution σxz, determined
before, due to the torsional moment Mt. If, in reverse order, we calculate
the torsional moment from these shear stresses, we find

∑
Tx = h

∫ +1/2

−1/2
yσxz dy = h

∫ +1/2

−1/2
y

Mty

1
6 ht3

dy

= Mt
1
6 t3

y3

3

∣∣∣∣∣
+t/2

−t/2

= 1
2 Mt.

The shear stresses σxz seem only to provide half the torsional moment Mt!
The other half of the torsional moment is provided by the shear stresses
σxy . These shear stresses normal to the centre line act only within the small
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Figure 6.32 The other half of the torsional moment Mt is provided
by the shear stresses σxy , acting in the small hatched triangular
areas, and normal to the centre line of the strip. Although their
resultants are small, they still provide half the torsional moment
because of the large arm h.

Figure 6.33 Open thin-walled cross-sections can be consid-
ered to be built up of thin-walled strips. So the formulas derived
for a thin-walled strip can also be applied to open thin-walled
cross-sections. Circular or other curved parts can be considered as
strips, on the condition that the wall thickness is far smaller than the
radius of curvature of the strip .

triangular areas, hatched in Figure 6.32. Although their resultants are small,
they provide half the torsional moment, as a result of the large arm h.

6.3.3 Thin-walled open cross-sections

Thin-walled open cross-sections such as those in Figure 6.33 can be thought
to be built up from a number of thin-walled strips. Circular or other curved
parts can also be viewed as strips, on the condition that the wall thickness
is far smaller than the radius of the curved strip.

If the wall thickness t for all constituent strips of a thin-walled open cross-
section is uniform, then the torsion constant It of this cross-section is
according to (6.20):

It = 1
3 ht3. (6.21)

Here h is the developed length of the thin-walled cross-section.

If the wall thickness is not equal for all constituent strips, then

It = ∑
i

1
3 hi t

3
i . (6.22)

The summation has to be performed over the number of constituent strips;
each strip i has a thickness ti and length hi . The shear stress τ due to torsion
again is parallel to the centre line m in each of the constituent strips and
proportional to the distance em to the centre line:

τ = Mtem

1
2 It

. (6.23)
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Figure 6.34 Considerable stress concentrations may occur in the
re-entrant corners of thin-walled cross-sections, depending on the
radius of curvature r . The derived shear stress formulas do not apply
to these stresses.

The direction of τ can be deduced directly from the direction of the tor-
sional moment Mt.

The formulas (6.21) to (6.23), based on those of a thin-walled strip, are
justified through experiments and also through more accurate calculations
based on the theory of elasticity.

Comment: Near re-entrant angles of a thin-walled open cross-section there
can be considerable stress concentrations, depending on the radius of cur-
vature r (see Figure 6.34). The shear stress formulas derived do not take
into account these stress concentrations.

Comment: From (6.23) it follows that in a thin-walled open cross-section
the shear stress due to torsion is a maximum where em is a maximum; this is
at the boundary of the strip, where the wall thickness is largest. But beware:
in a thin-walled closed cross-section the shear stress is constant across the
wall thickness and is a maximum where the wall thickness is smallest.

6.4 Numerical examples

In this section we present eight numerical examples with respect to torsion.

In Example 1 we determine the contribution of the shear stresses in the
outer shell of a solid circular cross-section to the torsional moment. Ex-
ample 2 addresses dimensioning a shaft with solid circular cross-section.
In addition the rotation due to torsion is determined. In Example 3 the
behaviour under torsion of a rectangular hollow cross-section and a circular
hollow cross-section are compared. Both cross-sections are thin-walled and
have the same use of material. Deformation due to torsion is discussed again
in Example 4: here one of the four supports of a box girder bridge undergoes
a settlement. In Example 5 the shear stress distribution is determined for a
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Figure 6.35 A shaft with solid circular cross-section has to
transfer a torsional moment of 3.2 kNm.

Figure 6.36 It is investigated which part of the torsional moment
is transferred by the outer circular shell with a thickness of 15 mm.

rectangular thin-walled hollow cross-section subject to an eccentric shear
force. This example combines the shear stresses due to a shear force and
a torsional moment. Next, in Example 6, the behaviour of a square thin-
walled hollow cross-section is compared to that of a thin-walled strip. Both
cross-sections have the same area. In Example 7 the torsion stresses in a
closed thin-walled cross-section are compared to those in an open thin-
walled cross-section. Finally, in Example 8 we determine the shear stress
distribution for a U-profile due to a shear force of which the line of action
does not pass through the shear centre. Also this example combines the
shear stresses due to a shear force and a torsional moment.

Example 1: Shear stresses in a shaft with solid circular cross-section
subject to torsion
A shaft with solid circular cross-section has to transfer a torsional moment
of 3.2 kNm. The diameter of the shaft is 60 mm (see Figure 6.35).

Questions:
a. Determine the maximum shear stress in the shaft.
b. Which part of the torsional moment is transferred by the outer circular

shell with a thickness of 15 mm (see Figure 6.36).
c. Determine the ratio between the torsional stiffness of the thick-walled

tube in Figure 6.36 and that of the solid cross-section in Figure 6.35.

Solution:
a. The solid cross-section has a radius of R = 30 mm. The polar moment
of inertia is

Ip = 1
2 πR4 = 1

2 × π × (30 mm)4 = 1.272 × 106 mm4.

The shear stresses due to torsion are proportional to the distance to the cen-
tre of the cross-section. The maximum shear stress occurs at the boundary
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Figure 6.37 The shear stress distribution in the solid shaft, due to
torsion .

Figure 6.38 The outer 15 mm-thick circular shell transfers some
94% of the total torsional moment in the solid cross-section. This
contribution is so large because the larger shear stresses occur in the
outer shell and have moreover the larger “moment levers”.

(see Figure 6.37) and is

τmax = MtR

Ip
= (3.2 × 106 Nmm)(30 mm)

1.272 × 106 mm4 = 75.7 N/mm2.

b. Figure 6.38 shows the shear stress distribution in the outer shell of
15 mm. In fact this is the shear stress distribution in a thick-walled tube.
The polar moment of inertia of the tube is

Ip = 1
2 π(R4 − R4

i ) = 1
2 × π × {(30 mm)4 − (15 mm)4}

= 1.193 × 106 mm4.

The relationship between the torsional moment M tube
t and the maximum

shear stress τmax in the tube is

M tube
t = τmaxIp

Re
= (75.5 N/mm2)(1.193 × 106 mm4)

30 mm
= 3.0 kNm.

The outer shell of the tube therefore transfers

3.0
3.2 × 100% = 93.7%

of the torsional moment in the solid cross-section.

This is not surprising if one knows that the larger shear stresses occur in the
outer shell, and moreover have larger “moment levers”.

c. For circular cross-sections the torsion constant It is equal to the polar
moment of inertia Ip. The requested ratio between the torsional stiffness of
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Figure 6.39 (a) Spatial representation of a member fixed at A,
loaded by torsional moments at B and C. (b) The member in the xz

plane with the torsional moments represented by moment vectors
(double headed arrows).

the tube and the solid cross-section is

GI tube

GI solid
t

= I tube
p

I solid
p

= 1.193 × 106 mm4

1.272 × 106 mm4 = 0.937.

Comment: The hollow cross-section in Figure 6.36, with a wall-thickness
of 15 mm (equal to half the radius of the solid cross-section), uses 25% less
material then the solid cross-section (check it!), but transfers about 94% of
the torsional moment in the solid cross-section. Also it contributes 94% to
the torsional stiffness of the solid cross-section. From this we can conclude
that, as far as the use of material is concerned, hollow cross-sections are
more efficient than solid cross-sections.

Example 2: Dimensioning and deformation of a member with solid
circular cross-section
The prismatic member ABC in Figure 6.39 is fixed at A, and has a solid
circular cross-section. The member is loaded by torsional moments of
2000 Nm and 870 Nm at B and C respectively. Figure 6.39a gives a spatial
representation of the member with loading. Figure 6.39b shows the mem-
ber in the xz plane with the torsional moments represented by moment
vectors.1 The lengths AB and BC can be read from the figure. The shear
stress may not exceed the limiting value τ̄ = 90 N/mm2 (the allowable
shear stress). The shear modulus G is 80 MPa.

Questions:
a. What does it mean that “member ABC is prismatic”?

1 The moment vector has a double arrow head and is normal to the plane in
which the moment acts. The direction of the moment vector and the direction
of rotation of the moment are related via the corkscrew rule or right-hand rule,
see Engineering Mechanics, Volume 1, Section 3.3.1.



6 Bar Subject to Torsion 449

Figure 6.40 (a) The isolated member ABC. The fixed-end mo-
ment (torsional moment) At follows from the moment equilibrium
of the member about the x axis. (b) The isolated member with all the
torsional moments acting on it. (c) The torsional moment in AB can
be found from the moment equilibrium about the x axis of the part to
the left of any arbitrary section between A and B. (d) The torsional
moment in BC can be found from the moment equilibrium about
the x axis of the part to the left of any arbitrary section between
B and C. (e) Check: the part to the right of the section must be in
equilibrium.

b. Sketch the Mt diagram.
c. Determine for the cross-section the minimum diameter required,

rounded off to 1 mm.
d. Determine the rotations of the cross-sections at B and C.

Solution:
a. A prismatic member is a member in which the cross-sectional quantities
are the same for all cross-sections, so that they are independent of the x

coordinate chosen along the member axis. These cross-sectional quantities
include the area A of the cross-section, the moment of inertia I , the torsion
constant It, the axial stiffness EA, the bending stiffness EI and the torsional
stiffness GIt.

b. The Mt diagram
In Figure 6.40a member ABC has been isolated. The as yet unknown fixed-
end moment At (a torsional moment), for which the direction has been
assumed in Figure 6.40a, follows from the moment equilibrium of the
member about the x axis:

∑
Tx = At + (2000 Nm) − (870 Nm) = 0 ⇒ At = −1130 Nm.

Figure 6.40b shows the fixed-end moment as it actually acts at A on the
member.

The torsional moment in AB is found from the moment equilibrium about
the x axis of the part to the right or left of an arbitrary section between A
and B. Figure 6.40c shows the part to the left of the section. The unknown
section force Mt is pictured in accordance with its positive direction.

Remember that the torsional moment in a cross-section is positive when it
acts on the positive section plane in the positive direction of rotation about
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the x axis, and when it acts on the negative section plane in the negative
direction of rotation about the x axis.1

We can also say that a torsional moment is positive when the arrowheads
of the moment vector on the positive section plane points in the positive
x direction and on the negative section plane points in the negative x

direction.

The torsional moment in AB is found from the moment equilibrium about
the x axis of the part to the left or to the right of an arbitrary section between
A and B. From the equilibrium of the part to the left of the section, shown
in Figure 6.40c, we find

∑
Tx = −(1130 Nm) + Mt = 0 ⇒ Mt = +1130 Nm.

The torsional moment in AB is positive.

The torsional moment in BC is found from the moment equilibrium of the
part to the left of an arbitrary section between B and C (see Figure 6.40d):

∑
Tx = −(1130 Nm) + (2000 Nm) + Mt = 0 ⇒ Mt = −870 Nm.

The same result is found from the equilibrium of the part to the right of the
section (see Figure 6.40e):

∑
Tx = −Mt − (870 Nm) = 0 ⇒ Mt = −870 Nm.

The torsional moment in BC is negative.

The distribution of the torsional moments is shown in the Mt diagram in

1 See Engineering Mechanics, Volume 1, Section 10.1.3.

Figure 6.40 (a) The isolated member ABC. The fixed-end mo-
ment (torsional moment) At follows from the moment equilibrium
of the member about the x axis. (b) The isolated member with all the
torsional moments acting on it. (c) The torsional moment in AB can
be found from the moment equilibrium about the x axis of the part to
the left of any arbitrary section between A and B. (d) The torsional
moment in BC can be found from the moment equilibrium about
the x axis of the part to the left of any arbitrary section between
B and C. (e) Check: the part to the right of the section must be in
equilibrium.
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Figure 6.41 The distribution of the torsional moments represented
in an Mt diagram: (a) with plus and minus signs and (b) with
deformation symbols.

Figure 6.42 The positive direction of the torsional moment in a
cross-section, in vector presentation (vectors with double headed
arrows), is the same as the positive direction of a normal force (a
tensile force).

Figure 6.41. In Figure 6.41a with plus and minus signs and in Figure 6.41b
with deformation symbols.

Comment: In a vector addition, here the addition of moment vectors in the
x direction, it is irrelevant whether the vectors represent moments or forces.
It is therefore not surprising that the calculation of the torsional moments
represented by vectors is very similar to the determination of the normal
forces in a member subject to extension. Even the positive direction of the
torsional moment as section force, represented by its vector, is equal to the
positive direction of the normal force (a tensile force) (see Figure 6.42).

c. The minimum member diameter required
The maximum shear stress in the cross-section has to remain below the
limiting value τ̄ = 90 N/mm2. This means that

τmax = MtR

Ip
= MtR

1
2 πR4

= 2Mt

πR3 ≤ τ̄ .

From this we find

R3 ≥ 2Mt

πτ̄
= 2 × (1130 × 103 Nmm)

π × (90 N/mm2)
= 7.781 × 103 mm3.

The minimum required member diameter d is therefore

d = 2R = 2 × 3
√

7.781 × 103 mm3 = 39.6 mm ≈ 40 mm.

d. The rotation of the cross-sections at B and C
The torsional stiffness of the solid circular cross-section with a diameter
d = 40 mm is
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Figure 6.43 The member subject to torsion, with the rotations at
B and C.

GIt = GIp = G × 1
2 πR4 = (80 × 103 N/mm2) × 1

2 π × (40/2 mm)2

= 20.11 × 109 Nmm2.

The rotation of the cross-section at B with respect to the cross-section at A
is

�ϕAB
x = ϕx;B − ϕx;A = MAB

t �AB

GIt
.

Since the member is fixed at A, ϕx;A = 0. The rotation of the cross-section
at B is therefore

ϕx;B = MAB
t �AB

GIt
= (+1130 × 103 Nmm)(1425 mm)

20.11 × 109 Nmm2

= +80 × 10−3 rad = (+80 × 10−3 rad) × 360◦

2π rad
= +4.6◦.

The rotation of the cross-section at C with respect to the cross-section at B
is

�ϕBC
x = ϕx;C − ϕx;B = MBC

t �BC

GIt
,

from which we find

ϕx;C = ϕx;B + MBC
t �BC

GIt

= (+80 × 10−3 rad) + (−870 × 103 Nmm)(695 mm)

20.11 × 109 Nmm2

= +50 × 10−3 rad = (+50 × 10−3 rad) × 360◦

2π rad
= 2.9◦.
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Figure 6.44 (a) Rectangular thin-walled tube and (b) circular
thin-walled tube.

The rotations at B and C are shown in Figure 6.43.

Example 3: Rectangular thin-walled tube versus circular thin-walled
tube
The rectangular thin-walled tube 1, for which the dimensions are given in
Figure 6.44a, is replaced by the circular thin-walled tube 2 as pictured in
Figure 6.44b. Both tubes are made of the same material and have the same
shear modulus G. In addition, it is given that
• the material use for tube 2 is half the material use for tube 1, and
• a torsional moment Mt gives the same maximum shear stress in both

tubes.

Questions:
a. Determine radius R (expressed in a) and wall thickness t2 (expressed

in t1) of tube 2.
b. Determine the ratio between the torsional stiffnesses of both tubes. Use

for tube 2 the values determined under a.

Solution:
a. From the information on the use of material it follows that area A2 of
tube 2 must be half that of area A1 of tube 1:

A2 = 1
2 A1.

With

A1 = 2 × 2a × t1 + 2 × a × 2t1 = 8at1,

A2 = 2πRt2,
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we find

2πRt2 = 4at1. (a)

The maximum shear stress τmax;1 in rectangular tube 1 occurs where the
wall thickness is smallest, i.e. in the webs with thickness t1:

τmax;1 = Mt

2Amt1
.

Here Am is the area within the centre lines of the rectangular tube:

Am = 2a2,

so that

τmax;1 = Mt

4a2t1
.

The maximum shear stress τmax;2 in circular tube 2 is

τmax;2 = MtR

Ip
= MtR

2πR3t2
= Mt

2πR2t2
.

It is given that the torsional moment Mt causes the same maximum shear
stress in both tubes:

τmax;1 = Mt

4a2t1
= τmax;2 = Mt

2πR2t2
.

Figure 6.44 (a) Rectangular thin-walled tube and (b) circular
thin-walled tube.
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Hence

2πR2t2 = 4a2t1. (b)

From (a) and (b) we find the required dimensions of the circular tube cross-
section:

R = a,

t2 = 2

π
t1 ≈ 0.64t1.

b. The torsional stiffness of rectangular tube 1 is

GIt;1 = G
4A2

m∮
1

t
dm

= G
4 × (2a2)2

2
2a

t1
+ 2 · a

2t1

= 16
5 Ga3t1.

With R = a and t2 = 2t1/π the torsional stiffness of circular tube 2 is

GIt;2 = GIp = G · 2πR3t2 = G · 2πa3 · 2

π
t1 = 4Ga3t1.

The ratio between the torsional stiffnesses is

GIt;2
GIt;1

= 4Ga3t1
16
5 Ga3t1

= 1.25.

The circular cross-section offers with respect to the rectangular cross-
section a 50% reduction in the use of material, and besides the torsional
stiffness is even 25% larger!
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Figure 6.45 (a) Rectangular cross-section of (b) a concrete box
girder bridge, simply supported at A, B, C and D. (c) The centre
lines of the cross-section that is considered thin-walled.

Example 4: Settlement of a box girder bridge
A concrete box girder bridge has the rectangular cross-section shown in
Figure 6.45a The box girder is prismatic and can be considered thin-walled.
Figure 6.45b shows the top view of the bridge with a span of � = 48 m.
The bridge is simply supported at the points A, B, C and D. The supports
are assumed to be able to transfer tensile forces. Diaphragms (cross-beams)
have been constructed at AB and CD to transfer the support reactions into
the hollow cross- section.

Support A undergoes a settlement as a result of which a torsional moment
is induced in the beam. The maximum shear stress due to this torsional
moment is 1 N/mm2.

In the calculation use G = 13.5 GPa for the shear modulus.

Questions:
a. Determine the torsional moment in the hollow cross-section.
b. Determine the settlement of support A.
c. Determine the support reactions due to the settlement of support A.

Solution:
First we determine the cross-sectional quantities necessary for answering
the questions. Figure 6.45c shows the centre lines of the cross-section. The
distance between the centre lines between the upper and lower flange is

(1700 mm) − 220 mm

2
− 150 mm

2
= 1515 mm.

The area Am within the centre lines of the cross-section is

Am = (3300 mm)(1515 mm) = 5 × 106 mm2.
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Figure 6.46 If support A undergoes a settlement of uz;A
cross-section AB will rotate through an angle ϕx = uz;A/b.

The torsion constant It is

It = 4A2
m∮

dm

t

= 4 × (5 × 106 mm2)2

3300 mm

150 mm
+ 3300 mm

220 mm
+ 2 × 1515 mm

360 mm

= 2.2 × 1012 mm4 = 2.2 m4.

a. The shear stress due to torsion is

τ = Mt

2Amt
.

The maximum shear stress occurs in the lower flange as the wall thickness
is smallest there:

τmax = Mt

2Amtmin
.

With τmax = 1 N/mm2 we find for the torsional moment

Mt = 2Amtminτmax = 2 × (5 × 106 mm2)(150 mm)(1 N/mm2)

= 1.5 × 109 Nmm = 1500 kNm.

b. Due to the settlement uz;A of support A cross-section AB rotates with
respect to cross-section CD through an angle ϕx (see Figure 6.46):

ϕx = uz;A
b

,



458 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

Figure 6.47 The torsional moment Mt = 1500 kNm acting on the
end cross-section AB is statically equivalent to (the moment caused
by) the support reactions Av and Bv, acting on the box girder at A
and B respectively.

Figure 6.48 The support reactions due to a settlement of support
A, assuming that the supports can transfer tensile forces.

in which

ϕx = Mt�

GIt
.

For settlement in A we now find

uz;A = ϕxb = Mt�b

GIt
= (1500 × 103 Nm)(48 m)(3.3 m)

(13.5 × 109 N/mm2)(2.2 m4)

= 8 × 10−3 m = 8 mm.

c. The torsional moment Mt = 1500 kNm to which the box girder is subject
at cross-section AB is statically equivalent to the support reactions at A and
B. The vertical support reactions Av and Bv together therefore form the
couple Mt (see Figure 6.47), from which it follows that

Av = Bv = Mt

b
= 1500 kNm

3.3 m
= 454.5 kN.

Figure 6.48 shows the vertical support reactions at A en B, and also at C
and D.

Example 5: Rectangular hollow cross-section with an eccentric shear
force
The thin-walled tube in Figure 6.49 has a rectangular cross-section and
transfers an eccentric shear force Vz = V = 60 kN. The cross-sectional di-
mensions are given in the figure.

Question:
Determine the shear stress distribution in the cross-section.
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Figure 6.50 The shear force V with eccentricity e is statical-
ly equivalent to a central shear force combined with a torsional
moment Mt = V e.

Figure 6.51 The shear stress distributions due to (a) the central
shear force and (b) the torsional moment.

Figure 6.49 The thin-walled rectangular tube has to transfer an
eccentric shear force.

Solution:
The eccentric shear force V can be replaced by a central shear force and a
torsional moment Mt (see Figure 6.50):

Mt = V e = (60 × 103 N)(125 mm) = 7.5 × 106 Nmm = 7.5 kNm.

The shear stress distribution due to the shear force in the vertical plane of
symmetry was determined previously in Section 5.4.3, Example 1, and is
shown in Figure 6.51a. The shear stresses are uniformly distributed across
the wall thickness.
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The shear stresses due to the torsional moment are also uniformly dis-
tributed across the wall thickness. The magnitude of these shear stresses
follows from

τ = Mt

2Amt
,

in which

Am = (250 mm)(500 mm) = 125 × 103 mm2.

In the flanges, with t = 20 mm, we find

τflange = 7.5 × 106 Nmm

2 × (125 × 103 mm2)(20 mm)
= 1.5 N/mm2,

and in the webs, with t = 30 mm,

τweb = 7.5 × 106 Nmm

2 × (125 × 103 mm2)(30 mm)
= 1.0 N/mm2.

Since the shear flow s = τ t is constant, the shear stresses are inversely
proportional to the wall thickness, so the shear stress in the web can also be
derived from that in the flange:

τweb = tflange

tweb
τflange = 20 mm

30 mm
(1.5 N/mm2) = 1.0 N/mm2.

The shear stress distribution due to torsion is pictured in Figure 6.51b.

The resultant shear stress distribution is shown in Figure 6.52 and is found
by superposing both diagrams in Figure 6.51.

Figure 6.51 The shear stress distributions due to (a) the central
shear force and (b) the torsional moment.
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Figure 6.52 The shear stress distribution due to the eccentric shear
force.

Example 6: Square thin-walled tube versus thin-walled strip
The square thin-walled tube in Figure 6.53a has a side a = 200 mm, mea-
sured along the centre lines, and a uniform wall thickness t = 2.5 mm. The
thin-walled strip in Figure 6.53b has the same height a = 200 mm, but a
wall thickness that is four times as large: 4t = 10 mm. Tube and strip are
made of the same material, with the same use of material. The shear mod-
ulus is G. Both cross-sections are subject to the same torsional moment
Mt.

Questions:
a. Determine the ratio between the torsional stiffness of tube and strip.
b. Determine the ratio between the maximum shear stress in tube and

strip.

Solution:
a. According to (6.17) the torsional stiffness of the tube is

GIt;tube = G · 4 · (a2)2

4a
t

= Ga3t .

According to (6.20) the torsional stiffness of the strip is

GIt;strip = G · 1
3 a · (4t)3 = 64

3
Gat3.

The ratio requested between the torsional stiffness of tube and strip is

GIt;tube

GIt;strip
= Ga3t

64
3 Gat3

= 3

64

a2

t2
.

Figure 6.53
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Figure 6.53 (a) A square thin-walled tube and (b) a thin-walled
strip. Tube and strip are made of the same material and have the
same use of material. For a/t = 80 and compared with the strip,
the tube has a torsional stiffness that is 300 times as large and a
torsion stress that is a factor of 30 smaller.

With a = 200 mm, t = 2.5 mm and a/t = 80 we find

GIt;tube

GIt;strip
= 3

64 × 802 = 300.

For the given dimensions and with respect to torsion, the tube is 300 times
as stiff as the strip.

b. The shear stress in the thin-walled tube is uniform (see Section 6.3.1).
According to (6.13)

τtube = Mt

2Amt
= Mt

2a2t
.

The shear stress in the strip is linearly distributed across thickness 4t (see
Section 6.3.2). According to (6.19) the maximum shear stress in the strip is

τstrip;max = Mt
1
3 · a · (4t)2

= 3

16

Mt

16at2 .

The ratio between the maximum shear stress in tube and strip is

τtube;max

τstrip;max
= Mt

2a2t
· 16

3

at2

Mt
= 8

3

t

a
.

With a = 200 mm, t = 2.5 mm and a/t = 80 we find

τtube;max

τstrip;max
= 8

3 × 1
80 = 1

30 .

The shear stress in the tube with given dimensions is 30 times smaller than
the maximum shear stress in the strip.



6 Bar Subject to Torsion 463

Figure 6.54 Two thin-walled cross-sections with the same dimen-
sions. Section I is closed and section II is open.

Figure 6.55 Torsional stresses in the closed cross-section. The
shear stresses are constant over the wall thickness. The shear stress
is inversely proportional to the wall thickness. This follows from the
property that the shear flow (shear stress × wall thickness) is con-
stant. The maximum shear stress occurs where the wall thickness is
smallest.

Comment: With respect to torsion the maximum shear stress in a closed
thin-walled cross-section is much smaller than in a thin-walled strip, and
the torsional stiffness is much larger.

Example 7: Hollow thin-walled cross-section versus open thin-walled
cross-section
Figure 6.54 shows two square thin-walled cross-sections with dimensions
relating to the centre lines of 160 × 160 mm2. Cross-section I is closed
and cross-section II is open (see the small gap at the bottom flange). The
wall thickness of the flanges is 10 mm and that of the webs is 5 mm. Both
cross-sections are subject to the same torsional moment Mt = 768 Nm.

Questions:
a. Determine the maximum shear stress in cross-section I.
b. Determine the maximum shear stress in cross-section II.

Solution:
a. In the closed cross-section the shear stress is constant across the wall
thickness:

τ = Mt

2Amt
.

Here Am is the area enclosed by the centre lines of the cross-section:

Am = (160 mm)(160 mm) = 25.6 × 103 mm2.

The shear stress is a maximum where the wall thickness is smallest, that is
in the webs with t = 5 mm:

τ (I)
max = τweb = 768 × 103 Nmm

2 × (25.6 × 103 mm2)(5 mm)
= 3.0 N/mm2.
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Figure 6.56 Shear stresses due to torsion of the open cross-
section. The shear stresses are linear across the wall thickness. The
maximum shear stress is proportional to the wall thickness. The
maximum shear stress occurs where the wall thickness is largest.

Figure 6.57 The thin-walled U-section transfers a shear of which
the line of action coincides with the web.

In the flanges the shear stress is half the magnitude. Check this!

Figure 6.55 shows the shear stress distribution.

b. In the open cross-section the shear stresses are linear across the wall
thickness and the shear stress formula is

τ = Mtem

1
2 It

.

Here em is the distance to centre line m and It is the torsion constant:

It = ∑ 1
3 ht3 = 1

3 {2 × (80 mm)(10 mm)3

+ (160 mm)(10 mm)3 + 2 × (160 mm)(5 mm)3}
= 120 × 103 mm4.

Since the shear stress is proportional to the distance to the centre lines the
largest shear stress occurs where the wall thickness is a maximum, namely
in the flanges with t = 10 mm and em;max = t/2 = 5 mm:

τ (II)
max = τflange = (768 × 103 Nmm)(5 mm)

1
2 × (120 × 103 mm4)

= 64 N/mm2.

In the webs the maximum shear stress is half the magnitude. Check this!

Figure 6.56 shows the shear stresses in webs and flanges.

Note that the shear stresses in the thin-walled open cross-section are
considerably larger than those in the thin-walled closed cross-section! For
the given dimensions the maximum shear stress in the open cross-section is
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Figure 6.58 (a) Shear stress diagram due to the shear force; there
is no torsion. (b) The shear force V , as a resultant of all these shear
stresses, has its line of action at a distance e = 23.6 mm from the
centre line of the web. The shear centre SC is located on this line.
The shear centre is defined as the point of the cross-section through
which the line of action of the shear force must pass so that there
will be no torsion.

more than 42 times as large as that in the closed cross-section.

Comment: For a thin-walled closed cross-section the maximum shear
stress is inversely proportional to the wall thickness. For a thin-walled
open cross-section the maximum shear stress is proportional to the wall
thickness.

This means that in a closed cross-section the shear stress is a maximum
where the wall thickness is smallest, while in an open cross-section the
shear stress is a maximum where the wall thickness is largest.

Example 8: U-section subject to an eccentric shear force
The thin-walled U-section in Figure 6.57 transfers a shear force of 9.35 kN.
The line of action of the shear force coincides with the web.

Questions:
a. Determine the shear stress distribution due to shear (without torsion).
b. Determine the shear stress distribution due to torsion (without shear).
c. Determine the maximum shear stress in the cross-section.

Solution:
a. In Section 5.5, example 1, the shear force distribution was determined
for the given cross-section due to a vertical shear force V = 9.35 kN
with an unknown line of action. That shear stress distribution is given in
Figure 6.58a.
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Figure 6.59 If the shear force V is shifted through a distance e

from the web to shear centre SC, a torsional moment Mt = V e is
generated.

In the same example it was shown that the shear force V as a resultant
of all these shear stresses has its line of action at a distance e = 23.6 mm
from the centre line of the web. Shear centre SC is located on this line (see
Figure 6.59b).

The shear centre SC is that point of the cross-section through which the line
of action of the shear force must pass so that there will be no torsion.

b. In this question the line of action of the shear force coincides with
the web, and does not pass through the shear centre. Therefore there is a
torsional moment Mt = V e (see Figure 6.59):

Mt = V e = (9.35 × 103 N)(23.6 mm) = 220.66 × 103 Nmm.

In the thin-walled open cross-section the torsional moment gives shear
stresses that are linear across the wall thickness (see Figure 6.60):

τ = Mtem

1
2 It

.

The shear stresses are largest in the edges of flanges and web, where
em = t/2.

The torsion constant It is

It = ∑ 1
3 ht3

= 1
3 {2 × (60 mm)(10 mm)3 + (140 mm)(7 mm)3}

= 56.0 × 103 mm4.
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Figure 6.60 The shear stresses due to the torsional moment
are linear across the wall thickness. The maximum shear stress is
proportional to the wall thickness.

The maximum shear stress in the flanges is

τf;max = Mt · 1
2 tf

1
2 It

= (220.66 × 103 Nmm)
( 1

2 × 10 mm)

1
2 × 56.0 × 103 mm4

= 39.40 N/mm2.

The maximum shear stress in the web is

τw;max = Mt · 1
2 tw

1
2 It

= (220.66 × 103 Nmm)
( 1

2 × 7 mm)

1
2 × 56.0 × 103 mm4

= 27.58 N/mm2.

The magnitude and direction of the maximum shear stresses due to the
torsional moment Mt are shown in Figure 6.60.

c. The maximum shear stress in the cross-section is found by superpos-
ing the shear stresses due to the shear force (Figure 6.58a) on that due to
the torsional moment (Figure 6.60). Here one must remember that, in a
thin-walled open cross-section, the shear stresses due to a shear force are
constant across the wall thickness while those due to a torsional moment
are linearly distributed!

The maximum shear stress in the flanges occurs at the inside of the cross-
section, at the join to the web (see Figure 6.61), and amounts to

τf;max = (5.25 N/mm2) + (39.40 N/mm2) = 44.65 N/mm2.

The maximum shear stress in the web occurs at half height, also at the
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Figure 6.61 The maximum shear stresses due to the shear force
with its line of action along the web occur at the inside of the sec-
tion: in the flanges at the join to the web, and in the web at half
height.

inside of the cross-section (see Figure 6.61):

τw;max = (10.5 N/mm2) + (27.58 N/mm2) = 38.14 N/mm2.

Figure 6.61 shows how at these locations the shear stress is distributed
across the wall thickness.

If the line of action of the shear force does not pass through the shear centre
SC a torsional moment is induced. Due to this torsional moment the shear
stresses can increase considerably, especially in open cross-sections.

Comment: We have not taken into account possible stress concentrations in
the corners. These cannot be determined with the formulas we have derived.

6.5 Summary of the formulas

Here we provide a brief summary of the most important formulas for
determining stresses and deformations due to torsion.

• Constitutive and kinematic equations for torsion (Section 6.2.1)

Constitutive equation

Mt = GIt · χ.

Kinematic equation

χ = dϕx

dx
, ϕx =

∫
χ · dx.

Here G is the shear modulus, It the torsion constant, GIt the torsional stiff-
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stiffness, χ the torsional strain and ϕx is the rotation of the cross-section.

• Circular cross-sections
In circular cross-sections the torsion constant It is equal to the polar
moment of inertia Ip.

Thin-walled circular cross-section (Section 6.2.1)

τ = MtR

It
, It = Ip = 2πR3t .

Thick-walled circular cross-section (Section 6.2.3)

τ = Mtr

It
, It = Ip = 1

2 π(R4
e − R4

i ).

Solid circular cross-section (Section 6.2.2)

τ = Mtr

It
, It = Ip = 1

2 πR4.

• Closed thin-walled cross-sections (Section 6.3.1)

s = τ t = constant (the shear flow is constant),

τ = Mt

2Amt
, It = 4A2

m∮
1

t
dm

.

Here Am is the area that is enclosed by the centre line m of the closed
thin-walled cross-section.
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• Thin-walled strip (Section 6.3.2)

τ = Mtem

1
2 It

, It = 1
3 h3t .

• Open thin-walled cross-sections (Section 6.3.3)

τ = Mtem

1
2 It

, It = ∑
i

1
3 hit

3
i .
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6.6 Problems

General comments:
• In a number of problems, not only the shear stress due to a torsion will

be required, but also the shear stress due to a shear force and sometimes
also the normal stress.

• The dead weight of the structure is ignored unless indicated otherwise.

Material behaviour in the case of shear (Section 6.1)

6.1 A 25 mm thick rubber plate, 200 mm long and 120 mm high, is firmly
glued to two steel strips at top and bottom. A force of 500 N acts on the
upper strip.

Question:
Determine the displacement of the upper strip with respect to the lower strip
if the shear modulus for rubber is 3 MPa.

6.2 A rubber block of 200 × 160 × 50 mm3 is firmly glued at the top and
the bottom to two rigid steel plates. Due to the force of 7.2 kN as shown,
the upper plate moves 7.5 mm in the x direction.

Questions:
a. Determine the shear modulus for the type of rubber used.
b. Determine the displacement of the upper plate if the force of 7.2 kN

acts in the y direction and not the x direction.

Torsion of circular cross-sections (Section 6.2)

6.3 A solid circular cross-section has to transfer a torsional moment of
1 kNm. The shear stress in the cross-section may not exceed 10 MPa.

Question:
Determine the minimum required diameter d of the cross-section.
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6.4 A solid circular cross-section with diame-
ter d1 = 150 mm and a hollow circular cross-
section with external diameter d2 = 180 mm
and an as yet unknown inner diameter d3
are subject to the same torsional moment Mt.
Due to Mt the same maximum shear stress
τmax = 80 MPa occurs in both cross-sections.

Questions:
a. Determine the magnitude of the torsional

moment Mt.
b. Determine the inner diameter d3 of the

hollow cross-section.
c. Determine the shear stress at the inner

boundary of the hollow cross-section.

6.5 A thin-walled circular tube of which the
cross-section has a radius R = 150 mm and an
area A = 8000 mm2 is subject to a torsional
moment Mt = 30 kNm.

Question:
Determine the shear stress in the cross-section.

6.6 The cross-section of a thin-walled steel
tube has an area A = 1000 mm2. The shear
stress may not exceed the limiting value
τ̄ = 90 MPa.

Question:
Determine the maximum torsional moment
that the cross-section can transfer.

6.7 The thin-walled circular tube AB is loaded by a force F with
eccentricity a. The radius of the circular cross-section is R and the wall
thickness is t . In the calculation use F = 30 kN, a = 1.65 m, R = 150 mm
and t = 7 mm.

Questions:
a. Determine the shear stress distribution in the cross-section of the tube

due to the torsional moment.
b. Determine the shear stress distribution due to the shear force.
c. Determine the shear stress distribution due to the torsional moment and

the shear force.
d. Determine the maximum shear stress and the place where it occurs.
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6.8 The double bent member in the horizontal plane is constructed from a
thin-walled tube of radius R = 200 mm and wall thickness t = 10 mm.
The structure is loaded by a vertical force of 15.7 kN at D. The force acts

Questions with respect to the cross-section at the fixed support A:
a. Determine the shear stress distribution due to the torsional moment.
b. Determine the shear stress distribution due to the shear force.
c. Determine the location and magnitude of the maximum shear stress.
d. Determine the normal stress distribution due to the bending moment.

6.9 A solid circular shaft has to transfer a torsional moment of 1.96 kNm.
The limiting value of the shear stress is τ̄ = 80 N/mm2. The shear modulus
is G = 80 GPa.

Questions:
a. Determine the required diameter d of the shaft.
b. Determine the rotation of the end cross-sections with respect to one

another (use for d the value found in (a)).

6.10 The solid shaft in problem 6.9 is replaced by a hollow shaft with an

Questions:
a.
b. Determine the rotation of the end cross-sections with respect to one

another (use the wall-thickness found in (a)).

6.11 The horizontal forces in the plane of the roof cause torsion in the
column. The column is rigidly connected to the roof and the foundation.
A steel tube has been used for the column with an external diameter of
180 mm. The polar moment of inertia is Ip = 60 × 106 mm4. For the shear
modulus of steel use G = 80 GPa.

Questions:
a. Determine the maximum

shear stress in the column.
b. Determine the minimum

shear stress in the column.
c. Determine the difference

in rotation �ϕ between
both end cross-sections of
the column (in degrees)
if the column length is
2.40 m.

external diameter of 75 mm. All other data remain the same.

Determine the required wall thickness of the shaft.

in the axis of symmetry of the cross-section.
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6.12 Solid member ABC consists of two equally long parts AB and BC
with circular cross-section of different diameter. The member, is fixed
at A and is loaded at the free end C by a torsional moment of 200 Nm.
The dimensions are shown in the figure. The shear modulus is G = 80 GPa.

Questions:
a. Determine the maximum shear stress.
b.
c. Determine the rotation at C (in degrees).

6.13: 1–3 Prismatic member AB has a solid circular cross-section and is
subject to torsion by the three moments Mt;1, Mt;2 and Mt;3. The polar
moment of inertia is Ip = 2.578 × 106 mm4. The shear modulus is G =
80 GPa.

There are three different loading cases:

(1) Mt;1 = 5 kNm, Mt;2 = 3 kNm and Mt;3 = 6 kNm.

(2) Mt;1 = 5 kNm, Mt;2 = 9 kNm and Mt;3 = 5 kNm.

(3) Mt;1 = 3.2 kNm, Mt;2 = 12 kNm and Mt;3 = 2.4 kNm.

Questions:
a. Draw the Mt diagram.
b. Determine the distribution of the torsional strain χ over the length of

the member and draw the χ diagram.
c. Determine the rotation at B (in degrees).

Torsion of thin-walled cross-sections (Section 6.3)

6.14 A thin-walled tube with a gradually changing wall thickness t is
loaded by a torsional moment Mt.

Questions:
a. What do you understand by the shear flow in a cross-section?
b. Prove that the shear flow is constant.
c. For the shear stress due to torsion, derive the formula below:

σxm = Mt

2Amt
.

d. What does the quantity Am mean in this formula?

Determine the rotation at B (in radians).
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6.15 A shear stress of 100 N/mm2 is
caused by a torsional moment in a thin-
walled circular tube. The cross-sectional
dimensions are given in the figure.

Question:
Determine the magnitude of the torsional
moment.

6.16: 1–4 Four thin-walled closed cross-sections transfer the same
torsional moment Mt = 1000 Nm.

Questions:
a. Determine the shear stress distribution in the cross-section.
b. Determine the contribution of the shear stresses in the flanges to the

torsional moment.
c. Determine the contribution of the shear stresses in the webs to the

torsional moment.

6.17 A cantilever beam with a thin-walled triangular cross-section is
loaded at its free end by an eccentric force F = 45 kN. The cross-section
has a uniform wall thickness t = 24 mm. For the rest use a = 260 mm and
b = 375 mm.

Questions:
a. Determine the magnitude of the torsional moment in the beam.
b. Determine the maximum shear stress due to only the torsional moment.
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6.18 You are given two circular thin-walled cross-sections with radius R

and wall thickness t . Cross-section I is closed and cross-section II has a
gap at S. The same torsional moment Mt acts in both cross-sections.

Questions:
a. Determine the expression for the maximum shear stress τmax;I in cross-

section I.
b. Determine the expression for the maximum shear stress τmax;II in cross-

section II.
c. Determine the ratio τmax;II/τmax;I. What does this mean numerically if

R = 60 mm and t = 3 mm?

6.19 You are given two square thin-walled cross-sections: cross-section I

lower flange). The wall thickness of the flanges is 15 mm and that of the
webs is 6 mm. The same torsional moment Mt = 735 Nm is acting in both
cross-sections.

Questions:
a. Draw the shear stress distribution in cross-section I.
b. Determine the maximum shear stress in cross-section I.

c. Draw the shear stress distribution in cross-section II.
d. Determine the maximum shear stress in cross-section II.

6.20: 1–2 You are given two square thin-walled cross-sections.

Questions:
a. Determine the torsion constant of the cross-section.
b. Determine the torsion constant if the cross-section is no longer closed

but has a small gap at the centre of the right-hand web.

is closed and cross-section II is open (it has a small gap at the centre of the
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6.21 You are given three thin-walled open cross-sections (a), (b) and (c)
and one thin-walled closed cross-section (d). The cross-sectional dimen-
sions are given in the figure.

Questions:
a. Arrange (in ascending order) the open cross-sections according to the

magnitude of the torsion constant.
b. Compare the torsion constant of the closed cross-section (d) with the

torsion constant of the open cross-sections.

6.22 The rectangular hollow cross-section is thin-walled with uniform
wall thickness of 15 mm. The cross-section has to transfer an eccentric
vertical force of 60 kN. The line of application of the shear force coincides
with the left web. The cross-sectional dimensions are given in the figure.

Questions:
a. Determine the shear force and the torsional moment in the cross-

section.
b. Draw the shear stress distribution in the cross-section due to only the

shear force. Indicate the direction of the shear stresses and include the
values at a number of relevant places.

c. Determine the shear stress distribution due to only the torsional mo-
ment.

d. Determine the shear stress distribution due to the combination of shear
force and torsional moment.

e. Determine the maximum shear stress and the point where this occurs.
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6.23 You are given two thin-walled square cross-sections with a flange
thickness of 12 mm and a web thickness of 6 mm. One cross-section is
open, with a gap at the centre of the lower flange, while the other cross-
section is closed. Both cross-sections have to transfer the same eccentric
shear force. All necessary information can be found in the figure.

Questions:
a. For both cross-sections, sketch the shear stress distribution due to the

shear force only. Indicate the direction of the shear stresses and include
a number of relevant values. For each of the cross-sections indicate
the location where the shear stress due to shear is a maximum and
determine these values.

b. In the same way, for both cross-sections sketch the shear stress distrib-
ution due to the torsional moment only. For each of the cross-sections,
indicate the location where the shear stress due to torsion is largest and
determine these values.

c. For the open cross-section, indicate the location and magnitude of the
maximum shear stress due to the combination of shear and torsion.

d. For the closed cross-section, indicate the location and magnitude of the
maximum shear stress due to the combination of shear and torsion.

6.24 The cross-section of the cantilever beam shown is shaped like a
thin-walled isosceles triangle with a uniform wall thickness. The cross-
sectional dimensions are given in the figure. The beam is loaded by an
eccentric force of 60 kN at its free end.

Questions with respect to the cross-section at the fixed support:
a. Sketch the shear stress diagram due to the torsional moment.
b. Sketch the shear stress diagram due to the shear force.
c. Determine the location and magnitude of the maximum shear stress.
d. Determine the normal stress diagram due to the bending moment.

6.25 You are given a thin-walled U-
section. The force of 4800 N is the
resultant of all shear stresses in the
cross-section. The dimensions are
given in the figure.

Questions:
a. Determine the magnitude and

direction of the shear force and
the torsional moment in the
cross-section.

b. Determine the moment of iner-
tia Izz.
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c. Determine the shear stress distribution due to the shear force. Sketch
this distribution, indicate the direction of the shear stresses and include
a number of relevant values.

d. Determine the torsion constant It.
e. Determine the shear stress distribution due to the torsional moment.

Draw this distribution, indicate the direction of the shear stresses and
include a number of relevant values.

f. Determine the location and magnitude of the maximum shear stress due
to the combination of shear force and torsional moment.

6.26 A thin-walled U-section has been used for a cantilever beam. The
beam is loaded at its free end by a vertical force of 9.35 kN of which the
line of action coincides with the web. The dimensions are given in the
figure.

Questions with respect to the middle cross-section of the beam:
a. Determine the shear stress distribution due to the shear force. Sketch

this distribution, indicate the direction of the shear stresses and include
a number of relevant values.

b. Determine the magnitude and direction of the torsional moment.
c. Determine the shear stress distribution due to the torsional moment.

Sketch this distribution, indicate the direction of the shear stresses and
include a number of relevant values.

d. Determine the location and magnitude of the maximum shear stress in
the cross-section.

Mixed problems

6.27 A thin-walled tube is loaded as shown by an eccentric shear force of
3 kN. The tube has a circular cross-section with a diameter of 120 mm and
an area of 1250 mm2.

Question:
Determine the maximum shear stress in the cross-section.
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6.28 The bent bar type structure in the horizontal plane is constructed of
a thin-walled circular tube with radius R = 100 mm and wall thickness
t = 5 mm. The structure is loaded by a vertical force at A and a horizontal
force at B. Both forces act on the centre lines of the structure.

Questions with respect to the cross-section at the fixed support C:
a. Determine the shear stress distribution due to the torsional moment.
b. Determine the shear stress distribution due to the shear force.
c. Determine the location and magnitude of the maximum shear stress.
d. Determine the normal stress distribution due to the normal force.
e. Determine the normal stress distribution due to the bending moment.
f. Determine the locations and magnitudes of the maximum tensile and

maximum compressive stress, and the location of the neutral axis.

6.29 A prismatic circular tube with an internal diameter of 63 mm and a
wall thickness of 3 mm is loaded by a torsional moment Mt. The torsional
strain of the tube may not exceed χ̄ = 0.25◦/m and the shear stress may
not exceed τ̄ = 20 MPa. The shear modulus is G = 38 GPa.

Questions:
a. Determine the value of Mt for which the limiting value χ̄ is reached.
b. Determine the value of Mt for which the limiting value τ̄ is reached.
c. Determine the maximum torsional moment that the tube can transfer.

6.30: 1–2 Member ABCD consists of three parts with different torsion-
al stiffnesses:

GI
(AB)
t = 4 kNm2, GI

(BC)
t = 1.6 kNm2 and GI

(CD)
t = 2.5 kNm2.

There are two loading cases:
(1) Mt;1 = 120 Nm, Mt;2 = 40 Nm, Mt;3 = 20 Nm and Mt;4 = 100 Nm.
(2) Mt;1 = 80 Nm, Mt;2 = 120 Nm, Mt;3 = 90 Nm and Mt;4 = 50 Nm.

Questions:
a. Plot the Mt diagram.
b. Determine the torsional strain distribution across along the length of

the member (the χ diagram).
c. Determine the change in rotation �ϕx across AB, BC and CD.
d. Determine the rotation of cross-section B with respect to the cross-

section at A.
e. Determine the rotation of cross-section C with respect to the cross-

section at A.
f. Determine the rotation of cross-section D with respect to the cross-

section at A.
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6.31 The dimensions of the square open cross-section, with a gap at S, are
given in the figure. An eccentric shear force of 1.68 kN is transferred by
the cross-section. The line of application of the shear force coincides with
the left web.

Questions:
a. Determine the shear force and the torsional moment in the cross-

section.
b. Draw the shear stress distribution due to only the shear force. Indicate

the direction of the shear stresses and include a number of relevant
values.

c. In the same way draw the shear stress distribution due to only the
torsional moment.

d. Determine the maximum shear stress due to the eccentric shear force
and the location(s) where it occurs.

6.32 The thin-walled tube with rectangular cross-section and uniform wall
thickness of 18 mm, has to transfer an eccentric vertical force of 48 kN as

shown in the figure. Also the cross-sectional dimensions follow from the
figure.

Questions:
a. Determine the shear force and the torsional moment in the cross-

section.
b. Prove that the moments of inertia of the cross-section are:

Iyy = 168 × 106 mm4 and Izz = 480 × 106 mm4.

c. Draw the shear stress distribution in the cross-section due to the shear
force only. Indicate the direction of the shear stresses and include the
values in a relevant number of places.

d. In the same way draw the shear stress distribution due to only the
torsional moment.

e. Sketch the shear stress distribution due to the combination of shear
force and bending moment.

f. Where in the cross-section is the shear stress a maximum and how large
is this maximum value?
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6.33 You are given two square thin-walled cross-sections with uniform
wall thickness t . Cross-section I is closed and cross-section II is open with
a small gap at the centre of the lower flange. The (shear) force V shown is
the resultant of all shear stresses in the cross-section. In the calculation use
V = 31 kN, a = 360 mm and t = 20 mm.

Questions:
a. Determine the location and magnitude of the maximum shear stress in

cross-section I.
b. Determine the location and magnitude of the maximum shear stress in

cross-section II.

6.34 The force of 65 kN shown is the resultant of all shear stresses in the
triangular cross-section. The cross-section is thin-walled with a uniform
wall thickness of 14 mm.

Questions:
a. Determine the magnitude and direction of the shear force and the

torsional moment in the cross-section.
b. Determine the shear stress distribution due to the shear force only.
c. Determine the shear stress distribution due to the torsional moment

only.
d. Determine the maximum shear stress in the cross-section and the place

where it occurs.



7Deformation of Trusses

In trusses all members are subject to extension. If the truss is statically
determinate, all member forces follow directly from the equilibrium, and
the change in length of all members can be determined using Section 2.6.

This chapter describes how to determine the joint displacements in a truss
from the change in length of the members. Here we assume that the de-
formation of the truss is exclusively the result of the change in length of
the members and not of any deformation in the joints. Hence the joints
are considered non-deformable. The analysis applies only if the deforma-
tions are small, i.e. the change in length of the members must be small
with respect to the original length of the member. In Section 7.1 we show
that this condition is nearly always met in practice. The section contin-
ues by assessing the influence of a small member rotation on the joint
displacements.

Section 7.2 takes a graphical approach to determine the joint displacements
using a so-called Williot diagram. This method is successfully only on the
condition that it is always possible to find a joint that is directly linked to
two other joints for which the displacements are known.

If this is not the case, the calculation becomes more complicated. Such
situations are covered in Sections 7.3 and 7.4; in Section 7.3 by means of a
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Figure 7.1 The change in length �� of a prismatic member loaded
by extension is �� = N�/EA.

Williot diagram corrected with a rigid-body rotation, and in Section 7.4 by
means of a Williot diagram with a Mohr correction diagram, also known
as a Williot–Mohr diagram. The different methods are illustrated by some
examples.

Chapter 7 ends with a number of problems in Section 7.5.

7.1 The behaviour of a single truss member

In this section we show that the change in length of a truss member is
always very small in practice. Next we will point out again that the small
displacement along the arc of an circle, due to a small rotation, can be
replaced by an equal displacement along the tangent to the arc.1

7.1.1 Change in length of a truss member

When determining the changes in length �� we assume that
• the members are prismatic;
• the material exhibits linear elastic behaviour and therefore follows

Hooke’s law.

For the prismatic and linear elastic member in Figure 7.1, subject to ex-
tension, we have (see Section 2.6.1)

�� = N�

EA
.

1 See also Engineering Mechanics, Volume 1, Section 15.3.2.
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Figure 7.2 The σ -ε diagram for an elastic-plastic material with
yield point fy and yield strain εy.

If the change in length with respect to the original member length has to be
small, this means that

��

�
= N

EA
= ε � 1.

Hence the strain in the member has to be small.

Below we will look at steel, aluminium and wood and to which degree they
will be strained at serviceability level.

Steel
Steel Fe360 has the modulus of elasticity

E = 210 GPa = 210 × 103 N/mm2,

and a yield point

fy = 235 MPa = 235 N/mm2.

The yield strain is (see Figure 7.2)

εy = fy

E
= 235 N/mm2

210 × 103 N/mm2 ≈ 1.1 × 10−3 = 1.1�.

A steel member Fe360, one metre long, will therefore yield at an elongation
of approximately 1.1 mm. In practice we will remain clearly below the yield
point so that the strains are less than 1�.
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Aluminium
The modulus of elasticity of aluminium is about one third of that of steel:

E = 70 GPa

but the ultimate stresses are lower. At the 0.2% offset yield strength1

f0.2 = 150 MPa

the strain is

ε = f0.2

E
= 150 N/mm2

70 × 103 N/mm2 ≈ 2.1 × 103 = 2.1�.

The deformation of an aluminium truss will therefore roughly be twice as
large as that of a steel truss, but is still small.

Wood
For wood, with a modulus of elasticity E of about 10 MPa and a tensile
strength ft = 50 MPa, the fracture strain is

ft

E
= 50 N/mm2

10 × 103 N/mm2
= 5 × 10−3 = 5�.

but is still small.

It can be assumed that at serviceability level the condition that the
deformations are small is practically always met.

1 See Section 1.2.

The deformation of a wooden truss is about five times that of a steel truss,



7 Deformation of Trusses 487

Figure 7.3 (a) When member AB rotates about A, B undergoes
a circular movement about A and ends up at B′. (b) For small
rotations, the displacement along the arc can be replaced by a
displacement along the tangent to the circle.

7.1.2 Rotation of a truss member

If the joints in a truss move, the members will generally also rotate.
For small displacements, the rotations are also small. This implies a lin-
ear relationship between the member rotation and the associated joint
displacements, as shown below.

In Figure 7.3a member AB with length �� is subject to a rotation θ about
A. As a result, B moves along a circle with its centre at A and ends up at
B′. In Figure 7.3 the displacements are expressed in � and θ .

If the rotation θ remains small, e.g. θ < 0.05 rad ≈ 3◦, then

sin θ ≈ tan θ ≈ θ and cos θ ≈ 1,

and the arc cannot be distinguished from a straight line normal to AB,
the member axis in its original position. For small rotations, the displace-
ment along the arc of the circle can therefore be replaced by an equal
displacement along the tangent of the circle1 (see Figure 7.3b).

We will use this property frequently below.

7.2 Williot diagram

In this section, we use a number of examples to present a graphical method
for determining the joint displacements in a truss due to a change in length
of the truss members.

1 See also Engineering Mechanics, Volume 1, Section 15.3.2.
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Table 7.1

Member N(i) �(i) EA(i) ��(i)

i (kN) (mm) (kN) (mm)

1 +20 2000 40 × 103 +1

2 −10
√

2 2000
√

2 20
√

2 × 103 −√
2

Figure 7.4 (a) A simple truss consisting of two members. (b) The
tension and compression members for the given load.

Example 1
Figure 7.4a shows a simple truss, consisting of two members. The dimen-
sions and loading are given in the figure. By convention, the joints are
labelled by capital letters and the members by numbers. The two members
have different axial stiffnesses:

EA(1) = 40 × 103 kN and EA(2) = 20
√

2 × 103 kN.

Question:
Determine the displacement of joint C for the given load.

Solution:
The calculation consists of two phases. In the first phase, we determine the
member forces and changes in length, and in the second the displacement
of joint C.

We first have to calculate the member forces. This calculation is left to the
reader. The result is shown in the second column of Table 7.1.

In Figure 7.4b the truss has been shown again indicating for each member
whether it is in tension or compression.

With member length �(i) in the third column and the axial stiffness EA(i) in
the fourth column, we can determine the change in length ��(i) for member
(i):

��(1) = N(1)�(1)

EA(1)
= (+20 kN)(2000 mm)

40 × 103 kN
= +1 mm,

��(2) = N(2)�(2)

EA(2)
= (−10

√
2 kN)(2000 mm)

20
√

2 × 103 kN
= −√

2 mm.

The result is included in the last column of Table 7.1.
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Figure 7.5 (a) The members are isolated from one another in C
and their directions are temporarily fixed. Member AC lengthens so
that C displaces to the right. Member BC shortens so that C moves
downwards to the left. The members are no longer contiguous.
(b) Next, members AC and BC are rotated about A and B respec-
tively until they join up again in C′. CC′ is now the displacement
vector of joint C. The displacements in the figure are shown some
570 times larger than the structural dimensions.

Figure 7.6 If the joint displacements are drawn in a separate
figure, we can create a Williot diagram or displacement diagram.

Comments:
• Tensile forces (N > 0) cause a lengthening of the member (�� > 0)

and compressive forces (N < 0) a shortening (�� < 0). An error in the
sign therefore immediately leads to incorrect joint displacements. So be
aware of the signs!

• Also pay close attention to the units in which you are working. It
is recommended that you determine the units in which you wish to
perform the calculation beforehand. Here we have chosen kN units and
mm units.

The second phase consists of calculating the displacement of joint C. Joint
C is fixed to joints A and B via the members (1) and (2), for which we know
the displacements: zero in this case.

To find the displacement of joint C, we temporarily cut the members at C,
and let them keep their original direction. Next we plot at C the changes of
length of the members (1) and (2) along the member axes.

Member (1) elongates by 1 mm, as a result of which C on member (1)
moves 1 mm to the right. Member (2) shortens by

√
2 mm, as a result

of which C on member (2) moves
√

2 mm to the left and down. These
displacements have been exaggerated in Figure 7.5a, and drawn to the
following scale: 1 square ≡ 0.5 mm.

After deformation, the members are no longer connected: there is a gap.
The location of C on member (1) no longer coincides with the location of
C on member (2). This is the result of keeping the members (1) and (2) in
their original directions. In reality, these directions are not fixed but free:
the members may still rotate about A and B. The next step therefore is to
release the directions of the members (1) and (2) and to rotate them about
A and B respectively. By rotating member (1) about A, end C moves along
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Table 7.2

Member N(i) �(i) EA(i) ��(i)

i (kN) (mm) (kN) (mm)

1 +20 2000 40 × 103 +1

2 −10
√

2 2000
√

2 20
√

2 × 103 −√
2

3 −10 2000 40 × 103 −0.5

4 0 2000
√

2 40 × 103 0

5 −10 2000 40 × 103 −0.5

6 +10
√

2 2000
√

2 20
√

2 × 103 +√
2

a line perpendicular to AC, indicated in Figure 7.5b by a dashed line. In the
same way, the rotation of member (2) about B gives a displacement of C
along the perpendicular to BC. Both members are rotated until they meet in
C′, the intersection of both dashed perpendiculars.

In Figure 7.5b, CC′ is therefore the displacement vector1 of joint C due to
the change in length of members (1) and (2).

Since the displacements are very small with respect to the structural di-
mensions, it is not possible to draw the structure and the displacements to
the same scale. In Figure 7.5 this has been solved by choosing different
scales for structure and displacements: the structural dimensions have been
reduced and the displacements have been magnified. However, for trusses
with more than two members this approach is not practicable. For this rea-
son, the displacements are drawn in a separate figure (see Figure 7.6); this
(relative) displacement diagram is also referred to as a Williot diagram.2

The joints that do not move, in this case A and B, are at the origin of
the diagram, indicated by an encircled dot. The changes in length of the
members are represented by heavy line segments without an arrow head.3

Each line segment is labelled by the member number to which the change
in length refers. The displacements due to a rotation of the members are
represented by dashed lines. The displaced joints are given an accent in the
figure.

1 The displacement vector has not been drawn separately in the figure.
2 Named after the French engineer Williot (1843–1907) who presented this

method in 1877.
3 The arrow directions are omitted in the Williot diagram as they can be confusing

in certain situations.

Figure 7.6 If the joint displacements are drawn in a separate
figure, we can create a Williot diagram or displacement diagram.
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Figure 7.7 (a) A truss, loaded by a vertical force at E. (b) The
tension, compression and zero-force members for the given load.

The magnitude of the displacement can be found in the Williot diagram by
measurement or calculation. From the Williot diagram in Figure 7.6, using
the squares, we can read off that

ux;C = +1 mm and uy;C = −3 mm.

Example 2
For the truss in Figure 7.7a is the axial stiffness of the diagonals 20

√
2 MN

and of the other members 40 MN.

Question:
Determine the joint displacements.

Solution (using kN and mm units):
Calculating the forces in and changes in length of the members is left to the
reader. The results are shown in Table 7.2.

In Figure 7.7b, the truss has been drawn again. The figure shows whether
each member is in tension or compression, or is a zero-force member.

When drawing the Williot diagram, we always look for a joint that is
connected to two other joints for which the displacements are known.

At first we can determine the displacement of joint C; joint C is connected,
via the members (1) and (2), to the joints A and B for which the displace-
ments are zero. Having found the displacement of joint C, we can determine
the displacement of joint D; joint D is connected to the joints B and C via
the members (3) and (4). And finally we can determine the displacement of
E.

The order in which we plot the joint displacements in the Williot diagram
is therefore A, B → C → D → E.
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Figure 7.8 The various stages in drawing the Williot diagram.
From fixed points A and B the order is (a) C, (b) D and (c) E.

Joint C
The configuration of part ABC of the truss and the changes in length of the
members (1) and (2) are equal to that of the truss in Example 1. The Williot
diagram for joint C in Figure 7.8a is therefore equal to that in Example 1
and is found in exactly the same way.

Joint D
Joint D is connected to B via member (3). Member (3) shortens by 0.5 mm.
In the Williot diagram, D therefore moves 0.5 mm (1 square) to the left with
respect to B (see Figure 7.8b). By rotating member (3) about B, D ends up
somewhere on the dashed vertical line p.

Joint D is also connected to C via member (4), or properly speaking, to the
displaced joint C′. Since member (4) is a zero-force member, D does not
move vertically with respect to C′. Member (4) can however rotate about
C′. This means that D in the Williot diagram must be somewhere on the
dashed horizontal line q through C′. The new position of joint D is found
as the intersection D′ of dashed lines p and q .

Note that when drawing the Williot diagram we need Figure 7.7b. From
this figure we can read the direction of the current member and tell whether
the member in question lengthens or shortens.

Joint E
Members (5) and (6) connect joint E to joints C and D, for which we have
already determined the displacements.

Member (5) lengthens. In the Williot diagram, E moves with respect to C′,
by a distance of

√
2 mm downwards to the right (see Figure 7.8c). After

member (5) rotates about C′, E ends up somewhere on the dashed oblique
line r . Member (6) shortens. In the Williot diagram, E moves with respect
to D′ by 0.5 mm to the left. After member (6) rotates about D′, E ends up
somewhere on the dashed vertical line s. The new position of E is found as
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Table 7.3

Joint ux (mm) uy (mm)

C +1 −3

D −0.5 −3

E −1 −7

Figure 7.9 The deformed truss; the displacements have been

Figure 7.10 (a) A truss with (b) the tension and compression
members due to the given load.

the intersection E′ of the dashed lines r and s.

Using the square grid, we can read off the joint displacements directly from
the Williot diagram in Figure 7.8c. The values are collected in Table 7.3.

To gain an impression of the deformation of the truss, we have drawn the
displacements and structural dimensions on different scales in Figure 7.9;
here the displacements are drawn 200 times as large as the structural
dimensions.

Example 3
The truss in Figure 7.10a is dimensioned so that for the given load, all
members have the same strain (in an absolute sense): |ε| = 1/1500.

Question:
Determine the joint displacements.

Solution:
If the strain is given, we have to know only the sign of the normal force1 to
be able to determine the change in length, as �� = ε�. Figure 7.10b shows

1 Its magnitude is not relevant now.

scaled up 200 times as large as the structural dimensions.
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Table 7.4

Member N(i) �(i) ��(i)

i (sign) (mm) (mm)

1 + 3000 +2

2 − 3000
√

2 −2
√

2

3 + 3000 +2

4 − 3000
√

2 −2
√

2

5 + 3000 +2

the tension and compression members in the truss. The changes in length
are shown in Table 7.4.

When drawing the Williot diagram, we always look in a truss for a joint that
is connected to two other joints for which the displacements are known.
Here this is not possible since B is a roller and can move horizontally.

The solution is found in the members (1) and (5) that are in the same line,
and connect joint A (hinged support) with joint B (roller support). Due to
the elongation of members (1) and (5), the roller B will move to the right
along the horizontal roller track by a distance ��(1) + ��(2). The fact that
D can still move vertically is irrelevant, as explained below in the Williot
diagram in Figure 7.11a.

Joint D
Member (1) lengthens by 2 mm, so D moves 2 mm (two squares in the
Williot diagram) to the right with respect to fixed point A. After member
(1) rotates about A, the new location of D ends up somewhere on the dashed
vertical line p. At this stage it is not possible to say anything else about the
final location of D.

Joint B
Member (5) lengthens by 2 mm. As a result, B moves 2 mm (two squares)
to the right with respect to D′, i.e. 2 mm to the right with respect to dashed
line p. After of member (5) rotates about D′, the new location of B must be
on the dashed vertical line q . Note that the location of dashed line q can be
found without knowing the vertical displacement of D.

B is located on the horizontal roller track and can move only horizontally
with respect to A. In the Williot diagram B must therefore be located on the
dashed horizontal line r through A. The final location of B is now found as
the intersection B′ of the lines q and r .

Figure 7.10 (a) A truss with (b) the tension and compression
members due to the given load.
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Figure 7.11 (a) Since B can move only along the horizontal roller
track, B′, the new position of B, must lie on the horizontal line r

through fixed point A in the Williot diagram. The changes in lengths
of the members (1) and (5), which are in the same line, can be drawn
directly behind one another in the diagram. (b) The full Williot di-
agram for the joint displacements, to be constructed from A and B
in the order C and D.

Conclusion: If joints A and B are connected by two (or more) members
in the same line, and we look for the displacement of A with respect to B
(or vice versa), then the members between A and B can be considered a
continuous member with a change in length that is equal to the sum of the
changes in length of the individual members.

This means that, in the Williot diagram, the changes in length of members
which are in the same line can be plotted directly behind one another.

In the Williot diagram in Figure 7.11b, the displacements have been plotted
in the order A → B → C → D.

Joint C
Joint C is connected to joints A and B via the members (2) and (4). Member
(2) shortens by 2

√
2 mm, so C moves downwards to the left with respect to

A (diagonally across two squares). After member (2) rotates about A, the
location of C ends up somewhere on dashed line s.

Member (4) shortens by 2
√

2 mm. With respect to B′, C moves downwards
to the right (diagonally across two squares). After member (5) rotates, C
ends up somewhere on dashed line t . The new position of C is found as the
intersection C′ of lines s and t .

Joint D
Joint D is connected to joints A and C by members (1) and (3). The dis-
placements of joints A and C are known Due to the lengthening of member
(1), D moves with respect to A by 2 mm (two squares) to the right. After
rotating member (1) about A, the new location of D ends up somewhere
on the dashed vertical line p. This part of the Williot diagram was drawn
previously. New is now the effect of member (3).

Due to the lengthening of member (3), D moves with respect to C′ by 2 mm
(two squares) downwards. After rotating member (3) about C′, the new
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location of D will be somewhere on the dashed horizontal line h. The final
location of D is the intersection D′ of the lines p and h.

Note: Point D′ in the Williot diagram can of course also be found via the
members (5) and (3) that connect joint D with joints B and C. This is left
to the reader.

Using the square grid, the joint displacements can be read directly off the
Williot diagram. The values are shown in Table 7.5.

Table 7.5

Joint ux (mm) uy (mm)

B +4 0

C +2 −6

D +2 −8

Example 4
Member AB in Figure 7.12 is supported on a hinge at A and a roller
with vertical roller track at B. The member is loaded by a vertical force
F = 50 kN at B. The axial stiffness of the member is EA = 43 MN.

Question:
Determine the settlement of B.

Figure 7.11 (a) Since B can move only along the horizontal roller
track, B′, the new position of B, must lie on the horizontal line r

through fixed point A in the Williot diagram. The changes in lengths
of the members (1) and (5), which are in the same line, can be drawn
directly behind one another in the diagram. (b) The full Williot di-
agram for the joint displacements, to be constructed from A and B
in the order C and D.

Figure 7.10 (a) A truss with (b) the tension and compression
members due to the given load.
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Figure 7.12 Member AB is supported on a hinge in A and a roller
with vertical roller track in B and is loaded by a vertical force in B.

Figure 7.13 (a) Subject to the compressive force in the member,
AB shortens by |��|. After rotating about A, B returns to B′ on the
vertical roller track. (b) The Williot diagram for the displacement of
joint B.

Solution:
With

cos β = 2√
5

,

the normal force N and the elongation �� of member AB are

N = − F

cos β
= − 1

2 F
√

5 = −25
√

5 kN,

�� = N�

EA
= (−25

√
5 kN)(2

√
5 m)

43 × 103 kN
= −5.81 × 10−3 m.

Subject to the compressive force, member AB shortens by |��| = 5.81 mm
(see Figure 7.13a). As a result, the shortened member AB ends up with its
end B at P, no longer on the vertical roller track. As the shortened member
rotates about A, B moves along dashed line p. Finally the end B of the
shortened member AB is back on the roller track at B′. For the vertical
displacement of B we now find

wB = |��|
cos β

= 1
2 |��|√5 = 1

2

√
5 × (5.81 mm) = 6.5 mm.

The answer was found by drawing the displacements in Figure 7.13a.
The displacements can also be drawn in a Williot diagram, as shown in
Figure 7.13b. A does not move and is found at the origin (the encircled dot)
of the Williot diagram. Due to the shortening |��| of AB, B moves with
respect to A to the right and downwards. After the member rotates about
A, B moves along the dashed line p. The vertical roller B allows only a
vertical displacement at B. In the Williot diagram, this is a displacement
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Figure 7.14 A truss with hinged support A and roller support B
with horizontal roller track. The supports are at uneven heights. The
members (1) and (5) are in the same line.

Table 7.6

Member N(i) �(i) EA(i) ��(i)

i (kN) (mm) (kN) (mm)

1 +18
√

5 2000
√

5 24
√

5 × 103 +1.5
√

5

2 −60 5000 60 × 103 +5

3 +24
√

5 1000
√

5 24
√

5 × 103 +√
5

4 −60 5000 60 × 103 +5

5 +30
√

5 2000
√

5 24
√

5 × 103 +2.5
√

5

along the dashed vertical line q through the origin of the diagram. The final
location of B is the intersection B′ of lines p and q .

From the Williot diagram we find, as derived earlier,

wB = |��|
cos β

.

Example 5
For the truss in Figure 7.14, the axial stiffness of the even members is
60 MN and that of the odd members is 24

√
5 MN.

Question:
Determine the joint displacements for the given load.

Solution (using kN and mm units):
The calculation of the member forces and the changes in length of the

In Figure 7.15, the tension and compression members in the truss are indi-
cated by means of plus and minus signs so that the Williot diagram can be
drawn quickly.

To start drawing the Williot diagram, we have the problem that there
is no joint that is directly connected to two other joints for which the
displacements are known.

The solution is found in the members (1) and (5) that are in the same line,
connecting joint A (hinged support) with joint B (roller support). For the
displacement of B with respect to A, the changes in length of members (1)
and (5) can be plotted in the Williot diagram directly behind one another
(see Example 3).

members is again left to the reader. The result is given in Table 7.6.
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Figure 7.16 The Williot diagram for the joint displacements. In
order to find the displacement of B we can plot the change in length
of the members (1) and (5), which are in the same line, directly
behind one another in the diagram. The Williot diagram can then be
completed from A and B in the order C and D.

Figure 7.15 The tension and compression members for the given
load.

Joint B
As a result of the elongation of members (1) and (5), B moves with respect
to A to the right and upwards by a distance ��(1)+��(5) (see Figure 7.16):

��(1) + ��(5) = (1.5
√

5 + 2.5
√

5) mm = 4
√

5 mm.

After member (1) rotates, the new location for D is somewhere on dashed
line p and that for B is somewhere on dashed line q . B can move only along
the horizontal roller track. This displacement is represented in the Williot
diagram by the dashed horizontal line r through A. The final location of B
is therefore the intersection B′ of the lines q and r .

Now that the displacement of B is known, we can determine the displace-
ment of C, and subsequently from A and C (or B and C) determine the
displacement of D (see the Williot diagram in Figure 7.16).
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Table 7.7

Joint ux (mm) uy (mm)

B +10 0

C +15 −17.5

D +14 −20.5

Figure 7.17 (a) A truss with (b) the tension, compression and
zero-force members for the given load.

A summary of the joint displacements is given in Table 7.7.

Example 6
The truss in Figure 7.17a is dimensioned in such a way that for the given
load in all loaded members there is a strain |ε| = 0.75�.

Question:
Determine the joint displacements.

Solution:
The member forces are given in Table 7.8. The calculation is left to the
reader.

The change in length of member (i) is

��(i) = |ε| × � × sign(N(i)),

in which sign(N(i)) stands for the sign of the normal force N(i) in member
i. Hence

sign(N(i)) = +1 for N(i) > 0,

sign(N(i)) = −1 for N(i) < 0,

sign(N(i)) = 0 for N(i) = 0.

The values found for �� are given in the last column of Table 7.8.

Members (6) to (10) are zero-force members and maintain their original
length.

Joints A and B do not move: in the Williot diagram they coincide with the
origin. When calculating the joint displacements we use the property that
the changes in length of members that are in the same line can be plotted
behind one another in the Williot diagram.
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Figure 7.18 The Williot diagram for the joint displacements.
Joints A and B do not move, and coincide with the origin of the
diagram. When determining the joint displacements we use the
property that the changes in length of members that are in the same
line can be plotted behind one another in the Williot diagram. The
displacements of the joints D, E, G and H are found directly from
A and B. Next, the displacement of C is found from A and H while
that of K is found from B and D.

The displacements of joints D, E, G and H are found in this way directly
from A and B. Next we can find the displacement of C from A and H and
that of K from B and D.

The Williot diagram is shown in Figure 7.18. In this diagram the dashed
line due to the rotation of zero-force member i is indicated with ⊥(i), and
represents a displacement normal to the referred member.

Table 7.8

Member N(i) �(i) ��(i) Member N(i) �(i) ��(i)

i (kN) (m) (mm) i (kN) (m) (mm)

1 +20 4 +3 7 0 3 0

2 +20 4 +3 8 0 5 0

3 +20 4 +3 9 0 3 0

4 +20 4 +3 10 0 5 0

5 +50 5 +3.75 11 +40 4 +3

6 0 3 0 12 +40 4 +3

Table 7.9

Joint ux (mm) uy (mm)

C +3 −14.25

D +6 +8

E +9 0

Joint ux (mm) uy (mm)

G +12 −16

H −6 −14.25

K −3 +8
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Figure 7.19 A truss is supported in a hinge at A on a land abut-
ment while B is on a pontoon. Both supports are at equal height. By
changing the water level, support B submerges by 0.2 m.

Figure 7.20 (a) If B submerges, the truss, as a rigid body, rotates
about A. As a result of the rotation the points of the truss are dis-
placed normal to the joining line with A, and the magnitude of the
displacement is proportional to the distance to A. (b) The truss after
the rotation about A. The displacements are drawn 7.5 times as large
as the structural dimensions.

The joint displacements from the Williot diagram are given in Table 7.9.

Example 7
The truss in Figure 7.19 is supported by a hinge on an abutment at A, and
on a pontoon at B. Both supports are at the same height. As a result of a
change in the water level, support B submerges by a distance of 0.2 m.

Question:
a. Determine the joint displacements due to the submerging of B.
b. Draw these displacements in a Williot diagram.

Solution:
If support B submerges, the truss does not deform but behaves as a rigid
body, and undergoes a rotation about A (see Figure 7.20a).

Intermezzo:1

If a rigid body rotates about a point P through a small angle θ , the
displacement of a point Q at a distance � from P is equal to u = �θ

and this displacement will be perpendicular to the joining line PQ (see
Figure 7.21).

For uh, the horizontal component of the displacement of Q, and uv, the
vertical component, we have

uh = �v · θ,

uv = �h · θ.

Here �h is the horizontal component of the distance � between P and Q,
and �v is the vertical component.

1 See also Engineering Mechanics, Volume 1, Section 15.3.2.
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Figure 7.21 For a small rotation we have (ignoring the sign):
• the horizontal displacement uh is equal to “the rotation θ × the

vertical distance �v to the centre of rotation”;
• the vertical displacement uv is equal to “the rotation θ × the

horizontal distance �h to the centre of rotation”.

To summarise, for a small rotation (ignoring the sign):
• the horizontal displacement is equal to “rotation × vertical distance

to the centre of rotation”;
• the vertical displacement is equal to “rotation × horizontal distance

to the centre of rotation”.

Using the rules in the intermezzo we can calculate the rotation θ of the truss
from the vertical displacement uv;B of B (see Figure 7.20):

θ = uv;B
�AB

h

= 0.2 m

6 m
= 1

30
rad = 1.9◦.

In column 2 to 5 of Table 7.10, we use this value of θ to determine the joint
displacements uh and uv (without signs).

In Figure 7.20 the displacements of the truss are drawn to scale, but 7.5 as
large as the structural dimensions.

The joint displacements of the truss due to the rotation as a rigid body are
perpendicular to the joining lines between the referred joints and the centre
of rotation A, and are proportional to their distances to A.

The displacement in G is therefore perpendicular to joining line AG, that
in E is perpendicular to AE, that in C is perpendicular to AC, etc. The
direction of the displacements can be determined easily using Figure 7.20.
In the xy coordinate system in Figure 7.20b, all horizontal displacements
ux are positive and all vertical displacements uy are negative; see the last
two columns of Table 7.10.

Note that all points on a horizontal line have the same vertical distance �v
and therefore undergo the same horizontal displacement uh (ux); see for
example the joints D, E and G. In the same way, all points on a vertical line

Table 7.10

Joint �v uh = �v · θ �h uv = �h · θ ux uy

(mm) (m) (m) (m) (m) (m)

B 0 0 6 0.2 0 –0.2

C 0 0 3 0.1 0 –0.1

D 3 0.1 0 0 +0.1 0

E 3 0.1 3 0.1 +0.1 –0.1

G 3 0.1 6 0.2 +0.1 –0.2
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Figure 7.22 The displacements due to a rotation θ about A, set
down in a Williot diagram, form a figure that is similar to the shape
of the truss, but rotated about an angle of 90◦ about A (in the
direction of θ ).

Figure 7.23 A truss for which we cannot draw the Williot dia-
gram: from the fixed point A we do not get any further than the
displacement of B along the roller track.

undergo the same vertical displacement; see for example C and E or A and
D.

In Figure 7.22 the displacements from Table 7.10 are plotted in a Williot
diagram. In the diagram, the displaced joints form a figure that is similar to
the shape of the truss, yet rotated through an angle of 90◦ about A (in the
direction of θ ). The scale depends on the magnitude of the rotation. We use
this property in the next section.

Table 7.10

Joint �v uh = �v · θ �h uv = �h · θ ux uy

(mm) (m) (m) (m) (m) (m)

B 0 0 6 0.2 0 –0.2

C 0 0 3 0.1 0 –0.1

D 3 0.1 0 0 +0.1 0

E 3 0.1 3 0.1 +0.1 –0.1

G 3 0.1 6 0.2 +0.1 –0.2

7.3 Williot diagram with rigid-body rotation

The success of the graphical method in which the joint displacements of a
truss are constructed in a Williot diagram depends on the availability of a
joint that is directly attached to two other joints for which the displacements
are known. This is not always the case. If, for example, we want to draw the
Williot diagram for the truss in Figure 7.23, we start from the fixed joint A,
but cannot get any further than the displacement of joint B along the roller
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Figure 7.24 The tension and compression members for the given
load.

track. Then it stops: there is no joint that is directly attached to joints A and
B.

A way out of this problem is found by temporarily assuming that one of the
members attached to the fixed point A does not rotate but keeps its original
direction. Assume member AD is fixed in direction. Based on this situation
we can construct a Williot diagram for the joint displacements. In general
we will find that the displaced joint B is no longer located on the roller
track. We therefore need to make a correction, a rigid-body rotation of the
truss about the fixed point A until B is on the roller track again.1

The displacements due to the rigid-body rotation of the truss can be de-
termined analytically, or we can draw a separate Williot diagram (see
Section 7.1, Example 7) from which we can read off the values.

The resulting joint displacements of the truss are found by superimposing
• the displacements from the Williot diagram, assuming AD is fixed in

its original direction at A, and
• the displacements due to the rigid-body rotation of the truss about A.

This method is illustrated below using two examples.

Example 1
Figure 7.23 shows the dimensions of a truss loaded by a vertical force at
E. Figure 7.24 shows which members are subject to tension and which to
compression. The members are dimensioned in such a way that for the
given load |ε| = 1/1500.

Question:
Determine the joint displacements.

1 The temporary assumption that AD is fixed in direction has been abandoned.
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Table 7.11

Member N(i) �(i) ��(i)

i sign (m) (mm)

1 + 1.5
√

2 −√
2

2 − 3 +2

3 + 1.5
√

2 +√
2

4 − 3 −2

5 − 1.5
√

2 −√
2

6 + 3 +2

7 − 1.5
√

2 −√
2

Solution:
For the change in length of a member i we have (see also Section 7.1,
Example 6)

��(i) = |ε| × � × sign(N(i)).

The values of �� are calculated in Table 7.11.

There are four steps in determining the joint displacements:
1. draw the Williot diagram with one of the members fixed in direction;
2. calculate the angle through which the truss has to be rotated;
3. calculate the displacements due to the rigid-body rotation of the truss;
4. superimpose the displacements found with steps (1) and (3).

First step: Draw the Williot diagram for a fixed member direction
First the truss is (temporarily) loosened from the roller support at B, so
that B can move freely. Subsequently we assume that member AD is fixed
in its original direction and (in the order C, E, B) we can construct all
joint displacements in a Williot diagram (see Figure 7.25). These values
are given in Table 7.12.

These displacements actually represent the deformation (change in shape)
of the truss. Figure 7.26 shows the deformed truss with member AD fixed
in its original direction. It should be noted that the displacements have been
scaled up 100 times as large as the structural dimensions.

Comment: Instead of fixing the direction of member AD, one could fix the
direction of member AC. In general this leads to a different Williot diagram.

From the deformed truss in Figure 7.26 it appears that, if AD is fixed in di-
rection, member AC does not rotate. In this specific example, we therefore
find (coincidentally) the same Williot diagram when member AC is fixed
in direction as when member AD is fixed in direction. It is left to the reader
to check this.

Figure 7.24 The tension and compression members for the given
load.
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Figure 7.26 The deformed truss if we (temporarily) fix the direc-
tion of AD. The displacements have been scaled up 100 times as
large as the structural dimensions. In order to get joint B back on
the roller track, the deformed truss as a rigid body is rotated about
point A.

Table 7.12

Joint ux (mm) uy (mm)

B +4 +12

C +2 0

D −1 −1

E −3 +3

Figure 7.25 With a fixed direction of member AD, the Williot
diagram can be drawn in the order C, E, B. The diagram shows that
B is displaced by 12 mm upwards and is therefore no longer located
on the roller track.

Second step: Calculate the angle through which the truss has to be rotated
The Williot diagram in Figure 7.25 shows that B has moved 12 mm up-
wards. See also the deformed truss in Figure 7.26. This cannot be correct
as B is resting on a roller with horizontal roller track. B can move only
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Figure 7.27 The joint displacements due to the rigid-body rota-
tion. Since the joint displacements in the deformed truss are small
with respect to the structural dimensions the calculation of the joint
displacements due to the rigid-body rotation can be related to the
undeformed truss.

Table 7.13

Joint �v (m) �h (m) ux (mm) uy (mm)

B 0 6 0 −12

C 0 3 0 −6

D 15 1.5 +3 −3

E 1.5 4.5 −3 −9

horizontally and must therefore be on the horizontal line through A in the
Williot diagram.

In order to correct the displacement of joint B, the deformed truss as a rigid
body is rotated about fixed point A, so that B moves 12 mm downwards.
Since the joint displacements in the deformed truss are small with respect
to the structural dimensions, the calculation of the joint displacements due
to the rigid-body rotation can be related to the undeformed truss. Due to
the rigid-body rotation, B therefore moves perpendicular to line AB in
the undeformed truss (see Figure 7.27), and not normal to line AB′ in the
deformed truss in Figure 7.26, which gives an inaccurate picture of reality!

The angle θ through which the truss has to rotate is (see Figure 7.27)

θ = 12 mm

6 m
= 2 × 10−3 rad.

Third step: Calculate the displacements due to the rigid-body rotation of
the truss
Figure 7.27 shows the joint displacements due to the rigid-body rotation of
the truss as a whole. All displacements are perpendicular to the joining line
with fixed point A and are proportional to the distance to A.

With uh = |ux | = �v · θ and uv = |uy | = �h · θ we can now calculate the
horizontal and vertical displacement as a result of the rotation θ . For the
displacements ux and uy , related to the xy coordinate system, the signs
can be derived from the directions in Figure 7.27. The results are shown in
Table 7.13.

Of course we can also draw a separate Williot diagram for the displace-
ments due to the rigid-body rotation of the truss. This diagram is similar to
the shape of the truss, but rotated through 90◦ (see Section 7.1, Example 7).



7 Deformation of Trusses 509

Figure 7.28 The Williot diagram for the displacements due to the
rigid-body rotation of the truss. In the diagram, A is the fixed point
while the displacement of B is known, namely 12 mm downwards.
Since the Williot diagram has the same shape as the truss, with the
exception that it is rotated by 90◦ (in the direction of the rigid-body
rotation), it can easily be drawn between the known points A and B.

In the diagram we know the points A and B: A is the fixed point (zero
displacements) and B moves downwards by 12 mm. Since the Williot di-
agram has the same shape as the truss, it can easily be drawn between
the known points A and B (see Figure 7.28). The displacements from the
Williot diagram are the same as those shown in Table 7.13.

Fourth step: Superimposing the displacements found with steps 1 and 3
Table 7.14 shows the resultant joint displacements. They are found by
superimposing the displacements due to the deformation of the truss, as-
suming member AD is fixed in direction, and the displacements due to the
rigid-body rotation of the truss, to correct for the consequences of the fixed
member direction.

Table 7.14

Displacement due Displacement due Resulting

to deformation to rigid-body displacement

rotation

Joint ux (mm) uy (mm) ux (mm) uy (mm) ux (mm) uy (mm)

B +4 +12 0 –12 +4 0

C +2 0 0 –6 +2 –6

D –1 –1 +3 –3 +2 –4

E –3 +3 +3 –9 0 –6
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Figure 7.29 The deformed truss after the rigid-body rotation. The
displacements are scaled up 100 times as large as the structural
dimensions.

Figure 7.30 A structure consisting of the truss BCDE joined to
the rigid member ACD.

Figure 7.29 shows the truss in a deformed condition, with the displacements
scaled up 100 times as large as the structural dimensions.

Example 2
The structure in Figure 7.30 consists of a rigid member ACD and truss
BCDE. The roller track at B is at an incline of 45◦. A vertical force F acts
at G. The truss is dimensioned in such a way that all loaded members have
a strain |ε| = 1�.

Table 7.15

Member N(i) �(i) ��(i) Member N(i) �(i) ��(i)

i (m) (mm) i (m) (mm)

1 0 4 0 4 + 1
2 F

√
2 2

√
2 +2

√
2

2 0 4 0 5 − 1
2 F

√
2 2

√
2 −2

√
2

3 + 1
2 F

√
2 2

√
2 +2

√
2 6 −F 4 –4

Figure 7.31 The tension, compression and zero-force members in
the truss section of the structure for the given load.
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Figure 7.32 The Williot diagram for the joint displacements can
be drawn for a fixed direction of member ACD in the order G,
E, B. The diagram shows that B is subject to an upward vertical
displacement of 12 mm (AB′ in the Williot). In reality, B can move
only along the roller track at an angle of 45◦, a displacement in
the diagram along line r through A. In order to get B on the roller
track r , the (deformed) truss is rotated through an angle θ about the
fixed point A. As a result of this rigid-body rotation, B moves in a
direction normal to the joining line AB in the truss. In the diagram,
B moves from B′ to B′′.

Question:
Determine the joint displacements.

Solution:
The member forces are shown in the second column of Table 7.15. The
calculation is left to the reader. Figure 7.31 shows the tension, compression
and zero-force members.

The changes in length of the members are

��(i) = |ε| × � × sign(N(i)),

in which ε = 0.001. The values calculated are shown in the last column of
Table 7.15.

Figure 7.32 shows the Williot diagram for the case in which the direction
of ACD is fixed. Since the member is rigid, C and D do not move, and in
the Williot diagram they coincide with fixed point A. The Williot diagram
is plotted in the order G, E, B.

The Williot diagram shows that B undergoes an upward vertical displace-
ment of 12 mm (vector AB′ in the Williot diagram1).

In reality, B can move only along the roller track at a 45◦ angle. In the
Williot diagram this is a displacement along line r through A. In order to
get B back to roller track r , the (deformed) structure is rotated through
an angle θ about fixed point A. In this rigid-body rotation, B moves in a
direction perpendicular to AB. In the Williot diagram B moves from B′ to
B′′. This is a displacement uh;B = 2 mm to the right and uv;B = 10 mm
downwards (see Figure 7.32).

1 Displacement vector AB′ is a vector pointing from A to B′. This vector is not
shown in Figure 7.32.
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Figure 7.33 The displacements due to the rigid-body rotation are
proportional to the distance to the centre of rotation A, and can be
determined from uh = |ux | = �v · θ and uv = |uy | = �h · θ . The
displacements have been scaled up here 125 times as large as the
structural dimensions.

Table 7.16

Displacement due Displacement due Resulting
to deformation to rigid-body displacement

rotation

Joint ux (mm) uy (mm) ux (mm) uy (mm) ux (mm) uy (mm)

B 0 +12 +2 –10 +2 +2

C 0 0 +2 –2 +2 –2

D 0 0 +4 –4 +4 –4

E –4 +4 +4 –8 0 –4

G 0 –4 +2 –6 +2 –10

The magnitude of the rotation θ is (see Figure 7.33)

θ = uv;B
�AB

h

= 10 mm

10 m
= 10−3 rad.

Figure 7.32 The Williot diagram for the joint displacements can
be drawn for a fixed direction of member ACD in the order G,
E, B. The diagram shows that B is subject to an upward vertical
displacement of 12 mm (AB′ in the Williot). In reality, B can move
only along the roller track at an angle of 45◦, a displacement in
the diagram along line r through A. In order to get B on the roller
track r , the (deformed) truss is rotated through an angle θ about the
fixed point A. As a result of this rigid-body rotation, B moves in a
direction normal to the joining line AB in the truss. In the diagram,
B moves from B′ to B′′.



7 Deformation of Trusses 513

Figure 7.34 The Williot diagram for the displacements due to the
rigid-body rotation. In the diagram, we know the fixed point A and
the point B′′ due to a displacement of B by 2 mm to the right and
10 mm downwards (see Figure 7.33). Between A and B′′ we can
draw a figure that has the same shape as the structure but which has
been rotated through 90◦. This is the Williot diagram we are looking
for.

From the horizontal displacement at B we find the same direction and mag-
nitude of θ :

θ = uh;B
�AB

v
= 2 mm

2 m
= 10−3 rad.

Figure 7.33 shows all joint displacements due to the rigid-body rota-
tion. The displacements are proportional to the distance to the centre
of rotation A, and can be determined by using uh = |ux | = �v · θ and
uv = |uv| = �h · θ . In Figure 7.33 the displacements have been scaled up
125 times as large as the structural dimensions.

We could also draw a Williot diagram for the displacements caused by the
rigid-body rotation (see Figure 7.34). In the Williot diagram, fixed point
A is known, as is point B′′, 2 mm to the right of A and 10 mm below A.
Between A and B′′ we can draw a figure that has the same shape as the
structure, but rotated through an angle of 90◦. This figure is the Williot
diagram we are looking for.

The displacements due to the deformation of the structure, assuming mem-
ber ACD is fixed in direction, can be found from the Williot diagram in
Figure 7.32. They have been placed in the second and third column of
Table 7.16.

The displacements due to the rigid-body rotation of the structure can be
found from Figure 7.33, or from the Williot diagram in Figure 7.34. They
are given in columns four and five of Table 7.16. The latter two columns of
the Table show the resulting joint displacements, found by superimposing
the displacements due to the deformation and the rigid-body rotation.

It is left to the reader to make a sketch of the deformed structure. Use
squared paper and a scale of 1 square ≡ 0.5 m for the structural dimensions
and 1 square ≡ 4 mm for the displacements.
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Figure 7.35 A truss with the tension and compression members
for the given load.

Table 7.17

Member ��(i) Member ��(i)

i (mm) i (mm)

1 −√
2 5 −√

2

2 +2 6 +2

3 +√
2 7 −√

2

4 −2

7.4 Williot–Mohr diagram

The correction by the rigid-body rotation of the structure can also be
directly plotted using a so-called correction diagram within the Williot
diagram that is based on a fixed member direction. The method is then
fully graphical. The method with the correction diagram was devised by
Otto Mohr.1 A Williot diagram with correction diagram is therefore also
referred to as a Williot–Mohr diagram.

The method is illustrated by two examples.

Example 1
We start with the truss in Figure 7.35, for which the changes in length of the
members are given in Table 7.17. We determined the joint displacements of
this truss previously in Section 7.2, Example 1.

Question:
Determine the joint displacements using a Williot–Mohr diagram.

Solution:
In a Williot–Mohr diagram we actually draw two Williot diagrams in one
figure.

The first Williot diagram relates to the deformation of the structure with one
of the members fixed in direction. See Figure 7.36a, in which the direction
of member AD is fixed. The points in the first Williot diagram are indicated
by means of B′, C′, etc.

1 Otto Christian Mohr (1835–1918), German engineer, contributed greatly to the
development of structural mechanics. He was particularly well known for his
graphical methods.
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Figure 7.36 (a) The Williot diagram for the deformation of the
truss if the direction of member AD is fixed. (b) The Williot diagram
for the rigid-body rotation of the truss, but plotted in the opposite
direction!

From the Williot diagram we see that B′ is 12 mm too high and is no longer
on the horizontal roller track. In order to correct this, we have to rotate the
structure about A so that B′ moves downwards by 12 mm.

So far, the approach is identical to that in Section 7.2, Example 1. The
difference occurs when we draw the second Williot diagram related to the
rigid-body rotation.

The second Williot diagram is related to the joint displacements as a
result of the rigid-body rotation of the structure, but beware!: in this
Williot diagram the displacements are plotted in the opposite direction.
The displacement of B is therefore not downwards by 12 mm, but upwards
by 12 mm! The second Williot diagram is shown in Figure 7.36b. The
displaced joints are shown by B0, C0, etc.

The second Williot diagram is a figure with the same shape as the structure,
but rotated through 90◦, and can therefore be easily drawn from points A
and B0.

If both Williot diagrams are drawn on top of one another we find the
Williot–Mohr diagram (see Figure 7.37). The figure AB0E0D0 is known
as the Mohr (correction) diagram.
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Figure 7.37 If both Williot diagrams from Figure 7.36 are super-
imposed on one another we find the Williot–Mohr diagram. Figure
AB0E0D0 is known as the correction diagram or the Mohr diagram.
In the Williot–Mohr diagram the joint displacements are no longer
measured from the fixed point A, but each joint has its own origin
on the correction diagram. The displacement vector of B is B0B′,
for C it is C0C′, etc.

In a Williot–Mohr diagram, the joint displacements are no longer measured
from the origin at fixed point A, but each joint has its own origin on the
Mohr correction diagram.1

Working with a Mohr correction diagram means that we do not rotate the
deformed truss, but rotate the undeformed truss in the opposite sense. The
displacement vector2 of B is (see Figure 7.37)

−AB0 + AB′ = B0A + AB′ = B0B′.

Here −AB0 is the displacement due to the rigid-body rotation and AB′ is
the displacement due to the deformation of the truss with a fixed direction
of (in this case) member AD. The displacement vector of C is

−AC0 + AC′ = C0A + AC′ = C0C′.

Through measurements in the figure, taking the scale into account, we find
that joint C (with displacement vector C0C′) moves 2 mm to the right
(ux = +2 mm) and 6 mm downwards (uy = −6 mm).

In the same way we find the displacements of D and E.

The reader is asked to check whether the joint displacements found in the
Williot–Mohr diagram agree with the values in Table 7.18, found previous-
ly in Section 7.2, Example 1.

1 The ux ;uy coordinate system, that had its origin at fixed point A, has disap-
peared. Instead, the x and y directions are given.

2 Displacement vector AB0 is a vector that points from A to B0. B0A is a vector
that points from B0 to A. In other words: AB0 = −B0A.
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Figure 7.38 A truss with the tension, compression and zero-force
members for the given load.

Table 7.19

Member N(i) �(i) ��(i)

i (sign) (m) (mm)

1 – 3 2

2 0 3
√

2 0

3 + 3 +2

4 – 3
√

2 −2
√

2

5 0 3 0

Table 7.18

Displacement

Joint ux (mm) uy (mm)

B +4 0

C +2 −6

D +2 −4

E 0 −6

Example 2
The truss in Figure 7.38 is loaded by a vertical force F at D. The figure
shows which members are subject to compression and tension and which
are zero-force members. All loaded members have a strain |ε| = 1/1500.

Question:
Determine the joint displacements using a Williot–Mohr diagram.

Solution:
The changes in length of the members are ��(i) = |ε| × � × sign(N(i)),
and are shown in Table 7.19.
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First, from fixed point B we draw the Williot diagram, with a fixed direction
of one of the members BC or BD. Figure 7.39a shows the Williot diagram,
assuming zero-force member BD fixed in direction.

The Williot diagram shows that A moves 8 mm to the right (the horizontal
component of displacement vector BA′) and is therefore no longer on the
vertical roller track. Since A can move only vertically, a correction has to
be made.

If we use the Mohr correction diagram, the displacement vector A0A′ in the
Williot–Mohr diagram will have to be aimed vertically. This means that A0
must be located on the vertical line a through A′, parallel to the roller track
(see Figure 7.39b).

The correction diagram is found by rotating the truss about fixed point B.
In doing so, A moves in a direction perpendicular to joining line AB in the
truss (see Figure 7.38). This means that A0 must be on line b in the Williot–
Mohr diagram, through the fixed point B and perpendicular to the joining
line AB (see Figure 7.39b).

Conclusion: A0 is at the intersection of the lines a and b.

In the Mohr correction diagram we now know A0 and the fixed point B.
Since the correction diagram arises from a rotation about B, the diagram
has the same shape as the truss, but rotated through 90◦. It is now relatively
simple to find the points C0 and D0 between A0 and B. Figure 7.40 shows
the complete Williot–Mohr diagram.

Table 7.19

Member N(i) �(i) ��(i)

i (sign) (m) (mm)

1 – 3 2

2 0 3
√

2 0

3 + 3 +2

4 – 3
√

2 −2
√

2

5 0 3 0

Figure 7.38 A truss with the tension, compression and zero-force
members for the given load.
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Figure 7.40 The Williot diagram with correction diagram or the
Williot–Mohr diagram. The Williot diagram is shown for a fixed
direction of member BD. If we fix the direction of member BC
(instead of BD), we arrive at a different Williot–Mohr diagram. The
joint displacements remain the same of course.

Figure 7.39 (a) The Williot diagram for the deformation of the
truss if the direction of zero-force member BD is fixed. The dia-
gram can be drawn in the order B, D, C, A. (b) Since A can move
only vertically, the displacement vector A0A′ in the Williot–Mohr
diagram must be aimed vertically. This means that the point A0 of
the correction diagram must be on the vertical line a through A′,
parallel to the roller track. The correction diagram is formed by
rotating the truss about the fixed point B. In doing so, A moves
in a direction normal to the joining line AB in the truss. This means
that A0 in the Williot–Mohr diagram must be located on the line b,
through the fixed point B and normal to the joining line AB. A0 is
at the intersection of the lines a and b.
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Table 7.20

Displacement

Joint ux (mm) uy (mm)

A 0 −8

C −2 −6

D 0 −8

The diagram shows that, for example, joint C (with displacement vec-
tor C0C′) moves 2 mm to the left (ux = −2 mm) and 6 mm downwards
(uy = −6 mm). All joint displacements are shown in Table 7.20.

Figure 7.41 shows the deformed truss: the displacements have been drawn
125 times as large as the structural dimensions.

Comment: If we fix the direction of member BC instead of BD, we will get
a different Williot–Mohr diagram. The joint displacements found from this
diagram remain the same however. It is left to the reader to check this.

Figure 7.41 The deformed truss. The displacements have been
scaled up 125 times as large as the structural dimensions.

Figure 7.40 The Williot diagram with correction diagram or the
Williot–Mohr diagram. The Williot diagram is shown for a fixed
direction of member BD. If we fix the direction of member BC
(instead of BD), we arrive at a different Williot–Mohr diagram. The
joint displacements remain the same of course.
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7.5 Problems

General comments:
• The material behaves linear elastically, and the stress always remains

beneath the yield point.
• The dead weight of the structure is ignored unless indicated otherwise.

Williot diagram (Section 7.1)

7.1 A rigid body undergoes a (small) rotation in the xy plane of ϕ = 3.5◦
about point A with coordinates (xA; yA) = (+4.585 m; +2.290 m). A
point B on the body, with coordinates (xB; yB) = (+0.525 m; −0.755 m),
is displaced by a distance uB

Questions:
a. Sketch point B and the direction of the displacement uB in the figure.
b. Determine the horizontal component ux;B of the displacement of B.
c. Determine the vertical component uy;B of the displacement of B.

7.2 As a result of the dead weight of the rigid block, member AB is ex-
tended by 8.5 mm.

Questions:
a. Determine the horizontal displacement of C.
b. Determine the vertical displacement of C.

7.3: 1–2 A rigid block is supported in two different ways. Subject to an
increase in temperature, the wire AB extends by 1.5

√
2 mm.

Questions:
a. Determine the horizontal displacement of corner D.
b. Determine the vertical displacement of corner D.

as a result of this rotation.
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7.4 A rigid block with weight 60 kN is supported as shown. In the
situation shown, the spring is stress-free. The stiffness of the spring is
k = 5000 kN/m. In the calculation use c = 5 m and d = 4 m.

Questions:
a. Determine the compression of

the spring once member AB is
removed.

b. Determine the vertical displace-
ment of A.

c. Determine the rotation of the
body about C in degrees.

7.5 A rigid member AB is supported and loaded as shown. Member CD,
which is deformable, has a cross-section A = 1500 mm2 and modulus of
elasticity E = 200 × 103 N/mm2.

Questions:
a. Determine the change in length of member CD.
b. Determine the settlement of B.

7.6: 1–2 Member AB is supported in two different ways. In both cases the
roller support undergoes a prescribed displacement of 20 mm. The mem-
ber is so long that the rotation due to the prescribed displacement remains
small.

Question:
Determine the change in length of member AB.

7.7 As a result of a certain load (not shown in the figure) joints C and D of
the truss undergo the following displacements:
• Joint C: ux;C = +25 mm; uy;C = −30 mm.
• Joint D: ux;D = 0; uy;D = −15 mm.

Questions:
a. Determine the change in length of member CD due to only the joint

displacement ux;C = +25 mm.
b. Determine the change in length of member CD due to only the joint

displacement ux;D = −15 mm.
c. Determine the change in length of member CD in the truss for the given

joint displacements of C and D.
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7.8 In the figure shown, AB is a member isolated from a truss. The length
of the member is 3 m and the axial stiffness 750 MN. The displacements of
the member ends A and B are

• ux;A = +10 mm;
• ux;A = −15 mm;
• ux;B = −10 mm;
• ux;B = −25 mm.

Questions:
a. Determine the change in length of member AB.
b. Determine the normal force in member AB, with the correct sign.

7.9 In the structure shown, member BC
has twice the axial stiffness as member AC.
The structure is loaded at C by a vertical
force F . In the calculation use a = 2.5 m,
b = 1.25 m, EA = 11.3 MN and
F = 25.6 kN.

Questions:
a. Determine the vertical displacement of

C.
b. Determine the horizontal displacement

of C.

7.10 A 15 kN load is suspended from two steel wires. The wire cross-
section has area A = 100 mm2. The modulus of elasticity of steel is set at
E = 200 GPa.

Question:
Determine the vertical displacement of C.

7.11 A block with weight G is suspended from three wires. All wires have
the same axial stiffness EA. In the calculation use a = 2 m, G = 50 kN
and EA = 12.5 MN.

Question:
Which of the vertical vertical displacements at A and B is larger? Determine
this displacement.
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7.12 In the truss shown all members have
the same axial stiffness EA = 32 MN.
The truss is loaded at C by the vertical
force F . In the calculation use a = 1 m
and F = 20 kN.

Questions:
a. Determine the vertical displacement

of joint C.
b. Determine the horizontal displace-

ment of joint C.

7.13 You are given the same truss loaded in two different ways by a force
of 10 kN at D. The member cross-sections are A(1) = A(3) = 50

√
5 mm2

and A(2) = A(4) = 50 mm2. The modulus of elasticity is E = 200 GPa.

Question:
Using a Williot diagram, determine the displacement of joint D. Draw the
displacements in the diagram 5 times as large as they are in reality (use a
scale of 1 cm ≡ 2 mm).

7.14 The structure shown is dimensioned in such a way that, due to the
vertical force F at A, all loaded members are subject to the same absolute
strain |ε| = 0.001. In the calculation use a = 1.5 m, b = 4.0 m, c = 1.0 m,
d = 2.0 m and e = 1.5 m.

Question:
Use a Williot diagram to determine the vertical displacement of point A.
Draw the displacements in the diagram 10 times as large as they are in
reality using a scale 1 cm ≡ 1 mm.
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7.15 For the truss shown, the top hinge has to be raised by a = 13 mm by
shortening tie rod AC.

Questions:
a. Determine the length by which the tie rod has to be shortened if

b = 6 m.
b. Determine the length by which the tie rod has to be shortened if

b = 2 m.

7.16 The truss frame shown has a swivel in member CD. By shortening
member CD the height of the frame can be adapted.

Question:
By how much must member CD be shortened if the joint E is to be raised
by 30 mm?

7.17 In the truss shown, all members have the same axial stiffness
EA = 216 MN. The load consists of a vertical force of 240 kN at joint D.

Question:
Determine the vertical displacement of joint D.

7.18: 1–2 The trusses shown are dimensioned in such a way that the given
loading (which is equal for both trusses) generates a stress of 100 N/mm2

in all tension members and a stress of 50 N/mm2 in all compression
members. Use E = 200 GPa for the modulus of elasticity.
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Question:
Determine the displacement of joint B.

7.19 In the structure shown, all joints are hinged. For the given load, all
loaded members have the same absolute strain |ε| = 0.001.

Questions:
a. Determine the member forces.
b. Determine the change in length of

the members.
c. Determine the Williot diagram for

the joint displacements. Draw the
displacements in the diagram 10
times as large as they are in reality
(so use a scale of 1 cm ≡ 1 mm).

d. For all joints, write down the dis-
placements ux and uy in a table.

7.20 In the truss shown, all members
have the same axial stiffness
EA = 40 MN.

Question:
Determine the horizontal displacement
of joint E due to the given load.

7.21 For the load shown, all loaded members in the truss have the same
absolute strain |ε| = 1/1500.

Questions:
a. In the truss indicate all tension, compression and zero-force members

by means of +, − and 0, without directly determining the magnitude
of the member forces.

b. Use a Williot diagram to determine the displacement of joints B to E.
Draw the diagram on squared paper and use a scale of 1 square ≡ 1 mm.
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7.22 In the truss shown, all members have the same absolute strain for the
given load: |ε| = 0.08%.

Question:
Use a Williot diagram to determine the vertical displacement of joint E.
Draw the diagram on squared paper using a scale of 1 square ≡ 1 mm.

7.23 The truss, in which all members have the same axial stiffness
EA = 35.2 MN, is loaded at G by a vertical force F = 44 kN.

Questions:
a. Draw the Williot diagram for the joint displacements. Use squared

paper and draw the displacements at full size.
b. Draw the deformed structure on squared paper. For the structural di-

mensions use a scale of 1 cm ≡ 1 m; draw the displacements at full
size.

7.24: 1–2 The same truss is loaded on two different ways by a force at D.
For the member cross-sections:

A(1) = 100
√

5 mm2;
A(2) = A(4) = A(6) = 100 mm2;
A(3) = A(5) = 100

√
2 mm2.

The modulus of elasticity is E = 200 GPa.

Question:
Use a Williot diagram to determine the joint displacements. Draw the dia-
gram on squared paper (with 5 mm squares) and use a scale of 1 square ≡
2/3 mm. Put the values ux and uy in a table.
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7.25 In the truss shown, all members have
the same axial stiffness EA = 400 MN.

Question:
Determine the vertical displacement of
joint C due to the given load.

7.26 In the truss shown, all members have the same cross-sectional area
A = 2000 mm2 and modulus of elasticity E = 200 GPa.

Question:
Determine the horizontal displacement of joint A for the given load.

7.27 Truss ABC has a pulley at C of which the diameter is negligible com-
pared to the other dimensions of the structure. A load of weight G = 60 kN
is suspended from a cable that at C runs over the pulley without friction and
is fixed at D. All members have the same axial stiffness EA = 84.85 MN.
Neglect the change in length of the cable.

Questions:
a. Determine the member forces and the changes in length of the mem-

bers.
b. Determine the displacement of joint C.
c. Determine the settlement of load G due to the displacement of joint C.

7.28 The truss shown is loaded by a horizontal force of 15 kN at G. All
members have the same axial stiffness EA = 22.5 MN.

Questions:
a. Determine the horizontal displacement of joint G.
b. Determine the vertical displacement of joint G.
c. Sketch the deformed truss.



7 Deformation of Trusses 529

7.29 In the truss shown, all members have the same cross-sectional area
A = 2000 mm2 and modulus of elasticity E = 200 GPa.

Question:
Determine the displacement of joint B for the given load.

7.30 In the structure shown, member AB is shortened by 15
√

2 mm by
means of a swivel.

Questions:
a. Determine the vertical displacement uy;C of joint C.
b. Sketch the deformed structure.

7.31 The truss shown has a swivel in member AB.

Questions:
a. Determine the vertical displacement of joint C if member AB is

lengthened by 20 mm by using the swivel.

b. Sketch the deformed structure.

7.32 In the cantilever structure, joint L must be raised by 90 mm as
compared to the position shown in the figure. This is achieved by changing
the length of one of the members.

Questions:
a. By which amount must the length of member CE change such that joint

L is raised by 90 mm. Is this a lengtening or shortening? Sketch the
deformed structure.

b. By which amount must the length of member DE change such that
joint L is raised by 90 mm? Is this a lengtening or shortening? Sketch
the deformed structure.
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7.33 In the truss shown, member (1), which is damaged, is replaced by a
new member that is 30 mm too long.

Questions:
a. By how much does the horizon-

tal position of A change?
b. By how much does the vertical

position of A change?
c. Draw the deformed truss.

7.34 The truss shown is dimensioned in such a way that for the given
load there is a tensile stress of 140 N/mm2 in all tension members and
a compressive stress of 70 N/mm2 in all compression members. For all
members the modulus of elasticity is E = 210 GPa.

Question:
Determine the displacement of the roller at B.

7.35 In the truss shown, all diagonal members have an axial stiffness
EA

√
2; the other members have axial stiffness EA. In the calculation use

� = 5 m, EA = 125 MN and F = 25 kN.

Questions:
a. Determine all member forces.

b. Determine the changes in length for all members.
c. Use a Williot diagram to determine the displacements of all joints. In

the diagram draw the displacements 10 times as large as they actually
are (use a scale of 1 cm ≡ 1 mm).

7.36 The truss shown is dimensioned in such a way that for the given load
all loaded members have the same absolute strain |ε| = 0.6�.

Questions:
a. For all members, find the changes in length �� and put them in a table.
b. Use a Williot diagram to determine the horizontal and vertical displace-

ments for all joints and collect the values in a table. Draw the diagram
on squared paper using a scale of 1 square ≡ 1.5 mm.
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7.37: 1–2 The same truss is supported in two different ways. The truss
is dimensioned in such a way that for the given load |ε| = 0.001 for all
loaded members.

Questions:
a. For each of the members, indicate whether they are tension, com-

pression or zero-force members (without determining the member
forces).

b. For all members, collect the changes in length in a table.
c. In order to find the joint displacements, draw the Williot diagram on

squared paper. Use a scale of 1 square ≡ 2 mm.
d. Collect the displacements ux and uy for all joints in a table.
e. Draw the deformed truss. For the structural dimensions use a scale of

1 cm ≡ 0.5 m and for the displacements use 1 cm ≡ 20 mm.

7.38 The truss shown is dimensioned so that for the given load all loaded
members have the same absolute strain |ε| = 0.5 × 10−3.

Questions:
a. Determine all member forces expressed in F .
b. For all members determine the change in length ��.

c. Use a Williot diagram to determine the displacements of the joints. In
the diagram draw the displacements five times as large as they actually
are (using a scale of 5 mm ≡ 1 mm).

7.39 In the truss shown, joint B is loaded by a vertical force of 40 kN. All
members have the same modulus of elasticity E = 2 × 105 N/mm2. The
cross-sectional areas of the members are
• member 1: A = 150 mm2;
• members 2 and 3: A = 600 mm2;
• members 4 to 7: A = 300

√
5 mm2.
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Questions:
a. Collect all the member forces in a table alongside the changes in lengths

of the members.
b. Use a Williot diagram to determine the displacement in the x and y

directions for all joints. Collect these values in a table. Draw the Williot
diagram on squared paper (with 5 mm squares) and for the scale of the
displacements use 1 square ≡ 1 mm.

7.40: 1–2 In the two trusses shown, the members are dimensioned in such
a way that for the given load all members have the same absolute strain
|ε| = 0.001.

Questions:
a. Determine all the member forces, expressed in F , and place them in a

table.
b. For all members determine the change in length and collect the results

in a table.
c. Draw the Williot diagram for the joint displacements. Draw the dis-

placements in the diagram full size.
d. For all joints, read off the horizontal and vertical displacements ux and

uy and collect the values in a table.
e. If, with unchanged load and axial stiffness, all member lengths are dou-

bled, what impact does this have on the stresses in the truss members
(strength) and on the joint displacements (stiffness)? Substantiate your
answer.

7.41 In the truss shown, all loaded members have the same absolute strain
|ε| = 0.001.

Questions:
a. For all members, determine the change in length in mm and collect all

the values in a table.
b. Use a Williot diagram to determine the displacement of joint E. In the

diagram, draw the displacements full size. Indicate in which order you
determine the joint displacements in order to reach the requested result
as quickly as possible.
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7.42: 1–2 The same truss is loaded in two different ways. The truss is
dimensioned in such a way that in both loading cases |ε| = 0.5� for all
loaded members.

Questions:
a. In the truss, indicate all tension, compression and zero-force members

by +, − and 0, without directly determining the magnitude of the
member forces.

b. Use a Williot diagram to determine the horizontal and vertical displace-
ments of joint D in the most efficient way.

c. Use a Williot diagram to determine the horizontal and vertical displace-
ments of joint N in the most efficient way.

7.43 In the truss shown, members (2) and (3) cross one another as do
members (6) and (7). For the given load all loaded members have the same
absolute strain |ε| = 0.8�.

Questions:
a. Collect all the member forces and changes in length of the members in

a table.
b. On squared paper (using 5 mm squares), draw a Williot diagram for the

joint displacements. Use a scale of 1 square ≡ 4 mm.
c. From the Williot diagram, read off the joint displacements ux and uy ,

and collect the values in a table.
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7.44 For the truss, drawn on a squared grid, and the given load, all loaded
members have the same absolute strain |ε| = 0.5�.

Questions:
a. In the truss, indicate the tension, compression and zero-force members.
b. Use a Williot diagram to determine the displacement of joint D. Draw

the Williot on squared paper with 5 mm squares and use a scale of
1 square ≡ 2 mm.
Hint: from C, first determine the displacement of joints G and H.

Williot diagram with rigid-body rotation (Section 7.2)

7.45 For the given load it holds for all loaded members in the truss that
• diagonal members (odd numbers): |ε| = 0.50 × 10−3;
• other members (even numbers): |ε| = 0.25 × 10−3.

Questions:
a. Indicate which members are tension, compression and zero-force mem-

bers. Determine the changes in length of the members.
b. If the truss is isolated from the roller support at B and the direction of

member AC is fixed, use a Williot diagram to determine the displace-
ments of joints B up to E. For the displacements in the diagram, use a
scale of 1 cm ≡ 1 mm.

c. Through which angle should the truss as a rigid body be rotated? Deter-
mine the displacements of B up to E due to the rigid-body rotation.

d. Collect the final displacements of B up to E in a table.

7.46 As problem 7.45, but now fix the direction of member AD.
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7.47 For the truss shown, the vertical force F at D causes in all loaded
members the same absolute strain of |ε| = 1/1500.

Questions:
a. On squared paper, draw the Williot diagram when the direction of

member BC is fixed. For the displacements use a scale of 1 square ≡
2 mm.

b. Determine the joint displacements due to the rigid-body rotation.
c. Determine the final joint displacements. Check the answers using

Section 7.4, Example 2, Table 7.20.

7.48 In the structure shown, member BCD is rigid. If the structure is
loaded at G and K by forces F , the loaded members have an absolute strain
|ε| = 1�.

Questions:
a. Determine the member forces, expressed in terms of F , and the changes

in length of the members.
b. Draw the Williot diagram for the joint displacements if the direc-

tion of member BCD is fixed. Use a scale of 1 cm ≡ 3 mm for the
displacements in the diagram.

c. Determine the displacements due to the rigid-body rotation.
d. Determine the final joint displacements.

7.49 For the given load by the forces F at D and G, all the loaded members
in the truss have the same absolute strain |ε| = 1�.

Questions:
a. Draw the Williot diagram when the direction of member AG is fixed.

For the displacements in the diagram, use a scale of 1 cm ≡ 2 mm.
b. Determine the angle through which the truss as a rigid body has to be

rotated, and find the joint displacements due to the rigid-body rotation.
c. Determine the resultant joint displacements.
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7.50 All loaded members in the truss have |ε| = 1�, except for member
EC which is rigid and therefore does not deform.

Questions:
a. Draw the Williot diagram when the direction of member AB is fixed.

Draw the displacements in the diagram five times as large as they
actually are, using a scale of 1 cm ≡ 2 mm.

b. Determine the joint displacements due to the rigid-body rotation.
c. Determine the resultant joint displacements.

7.51 As problem 7.50, but now member EC is no longer rigid, but has an
absolute strain |ε| = 1�.

7.52 The truss shown is supported by a hinge at A and suspended at C
from member BC. If the vertical force F acts at E, all loaded members
have |ε| = 1/1500, except for member BC which is rigid and therefore
does not deform.

Questions:
a. Determine the member forces, expressed in terms of F , and the changes

in length in the members.
b. Since joint G is directly linked to the fixed points A and B, all joint

displacements can be found in one go using a Williot diagram. If you
do not see this, isolate the structure at B and draw the Williot diagram
for a fixed direction of member AG. Do so on squared paper with 5 mm
squares and use a scale of 1 square ≡ 1 mm.

c. Determine the angle through which the truss as a rigid body has to be
rotated, and find the displacements due to the rigid-body rotation.

d. Determine the resultant joint displacements.
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7.53 As problem 7.52, but now member BC has also |ε| = 1/1500 and is
no longer rigid.

7.54 For given load F at E, all loaded members in the truss have the same
absolute strain |ε| = 0.1%.

Questions:
a. Determine all the member forces, expressed in terms of F , and the

changes in length of the members.
b. Draw the Williot diagram for the joint displacements, fixing the direc-

tion of member AC. Draw the diagram on squared paper (with 5 mm
squares) and use a scale of 1 square ≡ 1 mm.

c. Determine the angle through which the truss as a rigid body has to be
rotated and find the joint displacements due to the rigid-body rotation.

d. Determine the final joint displacements.

7.55 As problem 7.54, but now fix the direction of member AD.

Comment: Problems 7.56 to 7.66 are also suitable for the method based on
a Williot diagram with rigid-body rotation.

Williot–Mohr diagram (Section 7.3)

7.56 The truss is loaded by a force F at D that acts at an angle of 45◦. All
loaded members have the same absolute strain |ε| = 1�.

Questions:
a. Indicate which members are tension, compression and zero-force

members. Determine the changes in length of the members.
b. If the truss is isolated from the roller support at B and you fix the

direction of member AC, determine the displacements of joints B to
E using a Williot diagram. In the diagram, use a scale of 1 cm ≡ 4 mm
for the displacements.

c. Draw the Mohr diagram and, from the Williot–Mohr diagram, read off
the displacements of the joints B to E.

7.57 As problem 7.56, but now fix the direction of member AD.
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7.58 For the given load, all loaded members in the given truss have the
same absolute strain |ε| = 1/1500.

Questions:
a. Draw the Williot diagram when the direction of member BC is fixed.

Draw the displacements in the diagram five times the actual size
(choose a scale of 1 cm ≡ 2 mm).

b. Correct the Williot diagram with the Mohr diagram and read off the
final displacements of the joints from the figure.

7.59 As problem 7.58, but now fix the direction of member BD.

7.60 The truss shown is supported on a hinge at A and on a roller at B. The
roller track is at 45◦. The truss is loaded by a force of 30 kN that acts at
C at 45◦. All members have the same modulus of elasticity E = 200 GPa.
The cross-sectional areas of the members are
• members 1 and 5: A = 100

√
2 mm2;

• members 2 to 4: A = 100 mm2.

Questions:
a. Draw the Williot diagram when the direction of member AC is fixed.

For the displacements in the diagram, use a scale of 1 cm ≡ 1.5 mm.
b. Correct the Williot diagram with the Mohr diagram, and read off all

joint displacements from the Williot–Mohr diagram.

7.61 As problem 7.60, but now fix the direction of member AD.



7 Deformation of Trusses 539

7.62 For the given loading by the forces F at D and G, all the loaded
members in the truss are subject to the same absolute strain |ε| = 1�.

Questions:
a. Draw the Williot diagram when the direction of member AD is fixed.

For the displacements in the diagram, use a scale of 1 cm ≡ 2 mm.
b. Correct the Williot diagram with the Mohr diagram, and read off all

joint displacements from the Williot–Mohr diagram.

7.63 For all loaded members in the truss shown, it holds under the given
load that |ε| = 1�. An exception is member EC, which is rigid and
therefore does not deform.

Questions:
a. Draw the Williot diagram when the direction of member AD is fixed.

Draw the displacements in the Williot diagram five times as large as
they actually are (with a scale of 1 cm ≡ 2 mm).

b. Correct the Williot diagram with the Mohr diagram, and read off all
joint displacements from the Williot–Mohr diagram.

7.64 As problem 7.63, but now member EC is no longer rigid and is subject
to an absolute strain |ε| = 1�.
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7.65 The truss shown is supported in a hinge at A. At C it is suspended
from member BC. If the vertical force F acts at E, all loaded members
have |ε| = 1/1500, except member BC, which is rigid and therefore does
not deform.

Questions:
a. Determine the member forces, expressed in terms of F , and find the

changes in length of the members.
b. Since joint G is directly joined to the fixed points A and B, a Williot

diagram can be used to find all the joint displacements in one go. If you
do not see this, isolate the structure at B and draw the Williot diagram
for a fixed direction of member AG. Do so on squared paper with 5 mm
squares and use a scale of 1 square ≡ 1 mm.

c. Correct the Williot diagram with the Mohr diagram.
d. Determine the final joint displacements.

7.66 As problem 7.65, but now member BC has |ε| = 1/1500 and is no
longer rigid.

Comment: Problems 7.45 to 7.55 are suitable also for the method based on
a Williot diagram that is corrected by a Mohr diagram.



8Deformation Due to Bending

In this chapter we discuss how to determine the deflection due to bending.
Using a number of examples, we distinguish four methods:
1. The method starting directly from the moment distribution

(Section 8.1);
2. The method based on the differential equation for bending

(Section 8.2);
3. The method using forget-me-nots (Section 8.3);
4. The moment-area method (Section 8.4).

The chapter ends with two properties related to the moment-area the-
orems for a simply supported beam, namely the rotation of the beam
at the supports, and a formula to approximate the maximum deflection
(Section 8.5).

A brief description is given of the four methods to determine the deflection
due to bending.

The first two methods are based on differential equations, and have an
analytical character.

The first method starts directly from the moment distribution, and is dis-
cussed in Section 8.1. Since we have to know the moment distribution
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beforehand, this method is applicable only for statically determinate beams.

This is not the case for the second method covered in Section 8.2, based
on the differential equation for bending. This method can be used for both
statically determinate and statically indeterminate beams. Moreover it has
the benefit that, once the deflections have been determined, they can be used
to determine the distribution of the section forces, and the magnitude of the
support reactions. A disadvantage of the second method is that it is more
laborious than the first.

The first two methods, based on differential equations, can actually be used
only for straight prismatic beams with a relatively simple loading. With
these methods the requested quantities are found as functions of the location
x. However, in practice it is usually sufficient to know a limited number of
relevant values at certain locations. This aspect is met by the latter two
methods: the method using forget-me-nots and the moment-area method.

Forget-me-nots are formulas for the deflections and rotations associated
with a limited number of simple standard cases. By combining the forget-
me-nots (superposition) it is often easy to determine the deflections and
rotations for many cases that are not standard. A number of examples are
given in Section 8.3.

A disadvantage of the method using forget-me-nots is that one has to have
the formulas at hand, or know them off by heart.

In principle, forget-me-nots can be applied to bent bars and portals also,
although it is not always particularly easy to do so. The method covered
in Section 8.4 based on the moment-area theorems is more appropriate for
that case. Since the moment-area theorems can be applied only when the
moment distribution is known, the method is usually limited to statically
determinate structures.
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A visual interpretation1 is used with the moment-area formulae.

The methods based on forget-me-nots and moment-area theorems have a
strong visual focus: when applying them, we need to have a good picture
of the deformation of the members in the structure.

All four methods use the basic equations derived in Section 4.3 for a mem-
ber subject to bending in the xz plane. These equations and the formulae to
be derived from them in this chapter apply only if the x axis coincides with
the member axis (and therefore passes through the normal centre of the
cross-section) and the z axis coincides with one of the principal directions
of the cross-section.2

Comment: The deflection w in the z direction, as a function of the loca-
tion x, describes the shape of the member axis after deformation through
bending. The member axis deformed through bending is also known as the
bending curve or elastic curve.3

8.1 Direct determination from the moment distribution

The deflection due to bending can be determined directly from a known mo-
ment distribution by using the constitutive equation found in Section 4.3.2:

Mz = EIzzκz,

1 The moment-area formulae can also be treated analytically, an approach not
followed here.

2 See Section 4.3.2.
3 The name “elastic curve” applies only to elastic beams.
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and the kinematic equation found in Section 4.3.1:

κz = −d2w

dx2 .

By substituting the expression for the curvature κz in the constitutive equa-
tion we find the following relationship between the bending moment Mz

and the second derivative of the deflection w:

Mz = −EIzz
d2w

dx2 .

Written as

d2w

dx2 = − Mz

EIzz
,

this formula can be used to determine the deflection w directly from the
moment distribution by twice integrating the quantity Mz/EIzz (curvature
κz). For of a prismatic member the bending stiffness EIzz is independent of
x and we can find EIzzw by twice integrating the bending moment Mz:

EIzz
d2w

dx2
= −Mz.

The importance of this formula is demonstrated using four examples. To
simplify the notation, the z indices are omitted.

Example 1: Cantilever beam with uniformly distributed load
The cantilever beam AB in Figure 8.1a, with length � and bending stiffness
EI , is fixed at A, and carries a uniformly distributed load q along its entire
length.
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Figure 8.1 (a) A cantilever beam with uniformly distributed load
and (b) associated bending moment diagram. (b) The bending mo-
ment M as a function of x is found directly from the moment
equilibrium of the part of the beam to the right of the section at
a distance x from fixed end A.

Questions:
a. Determine the deflection w and rotation ϕ as functions of x.
b. Determine the deflection wB and rotation ϕB at the free end B.

Solution:
a. The differential equation

EI
d2w

dx2 = −M

is relevant only in a coordinate system. If the bending moment diagram is
given with deformation symbols, as in Figure 8.1b, these symbols will have
to be translated into signs related to the coordinate system. In Figure 8.1b,
the sign of the bending moment is shown between brackets.

For the xz coordinate system in Figure 8.1a the bending moment is

M = − 1
2 q(� − x)2 = − 1

2 qx2 + q�x − 1
2 q�2.

This expression is found by writing down the moment equilibrium for the
part of the beam to the right of the cross-section at a distance x from fixed
end A (see Figure 8.1c). The bending moment to be determined in the cross-
section is assumed to act in a positive sense. It is therefore important to take
account of the applicable sign conventions.

Substitution of the moment distribution in the differential equation leads to

EI
d2w

dx2
= −M = + 1

2 qx2 − q�x + 1
2 q�2.
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Figure 8.2 Deformation of the cantilever beam due to a uniformly
distributed load. To make the image clearer, the deformations have
been magnified with respect to the length of the beam. The de-
formed beam axis is also referred to as the bending curve or elastic
curve.

After a single integration we find

EI
dw

dx
= + 1

6 qx3 − 1
2 q�x2 + 1

2 q�2 + C1,

and after a second integration

EIw = + 1
24 qx4 − 1

6 q�x3 + 1
4 q�2x2 + C1x + C2.

C1 and C2 are integration constants. These constants follow from the
boundary conditions with respect to w and/or ϕ = −dw/dx. In this exam-
ple we know that at the fixed end A (x = 0) both the vertical deflection w

and the rotation ϕ of the cross-section (or the slope dw/dx of the member
axis) are zero:

x = 0, w = 0;

x = 0, ϕ = −dw

dx
= 0.

The boundary conditions lead to

C1 = C2 = 0.

The distribution of the deflection w and rotation ϕ are

w = q�4

24EI

(
+x4

�4
− 4

x3

�3
+ 6

x2

�2

)
,

ϕ = −dw

dx
= q�3

6EI

(
−x3

�3 + 3
x2

�2 − 3
x

�

)
.
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Figure 8.3 (a) A simply supported beam with uniformly distrib-
uted load. (b) The bending moment M as a function of x is found
from the moment equilibrium of the part of the beam to the left
of the cross-section at a distance x from support A. (c) Bending
moment diagram.

The expressions for w and ϕ as functions of x can be written down in
various ways. We have selected a form in which the term between brackets
is dimensionless.

b. The requested deflection and rotation at the free end B (x = �) are found
by substituting x/� = 1 in the expressions for w and ϕ:

wB = q�4

8EI
,

ϕB = − q�3

6EI
.

Figure 8.2 shows the deformation of the beam modelled as a line element.
The deformed beam axis is known as the bending curve or elastic curve.
To ensure the image is legible, the deflections have been magnified with
respect to the length of the beam.

According to the calculation, ϕB is negative. This means that the rotation
at B is opposite to the positive direction in the given xz coordinate sys-
tem. Figure 8.2 shows the actual rotation at B with its magnitude (i.e. the
absolute value).

Example 2: Simply supported beam with uniformly distributed load
The simply supported beam AB in Figure 8.3a has a length � and bending
stiffness EI . The beam carries a uniformly distributed load q over the entire
length �.

Questions:
a. Determine the maximum deflection.
b. Determine the rotations ϕA and ϕB at the supports.
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Solution:
a. In the given xz coordinate system the moment distribution is

M = − 1
2 qx2 + 1

2 q�x.

This can be derived from the equilibrium of the part of the beam to the left
or right of the cross-section at a distance x from A (see Figure 8.3b). The
M diagram is shown in Figure 8.3c.

Using the differential equation

EI
d2w

dx2 = −M = + 1
2 qx2 − 1

2 q�x,

we find by repeated integration

EI
dw

dx
= + 1

6 qx3 − 1
4 qx2� + C1,

EIw = + 1
24 qx4 − 1

12 qx3� + C1x + C2.

The two boundary conditions required are found at the supports A (x = 0)
and B (x = �), where the deflection is zero:

x = 0, w = 0;
x = �, w = 0.

From the first boundary condition it follows that

C2 = 0.

Figure 8.3 (a) A simply supported beam with uniformly distrib-
uted load. (b) The bending moment M as a function of x is found
from the moment equilibrium of the part of the beam to the left
of the cross-section at a distance x from support A. (c) Bending
moment diagram.
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Figure 8.4 Deformation of the simply supported beam subject to a
uniformly distributed load. The displacements have been magnified
with respect to the length of the beam.

The second boundary condition gives

+ 1
24 q�4 − 1

12 q�3 · � + C1� + C2 = 0,

from which we find

C1 = + 1
24 q�3.

With C1 and C2 we have found the following expressions for w and ϕ:

w = q�4

24EI

(
+x4

�4 − 2
x3

�3 + x

�

)
,

ϕ = −dw

dx
= q�3

24EI

(
−4

x3

�3
+ 6

x2

�2
− 1

)
.

Figure 8.4 shows the deformed beam. The deflections have again been
magnified with respect to the length of the beam.

The deflection w is largest where ϕ = −dw/dx is zero. Formally, we have
to look for the value of x for which ϕ = 0. On the basis of the mirror
symmetry we can expect this to be the case at midspan C, so for x/� = 1/2:

wC = q�4

24EI

{
+( 1

2

)4 − 2 × ( 1
2

)3 + ( 1
2

)} = 5

384

q�4

EI
.

Check:

ϕC =
(

−dw

dx

)
C

= q�3

24EI

{
−4 × ( 1

2

)3 + 6 × ( 1
2

)2 − 1
}

= 0.
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The slope of the member axis is indeed zero at midspan.

b. At the supports A (x/� = 0) and B (x/� = 1) the rotations are

ϕA = − q�3

24EI
,

ϕB = + q�3

24EI
.

In line with the mirror symmetry of the loading case, the rotations at A and
B are of equal magnitude, but have opposite directions.

Example 3: Simply supported beam loaded by a uniformly distributed
load and a couple at one of the supports
The simply supported beam AB in Figure 8.5a, with a span of 4 m, car-
ries a uniformly distributed load of 24 kN/m along its entire length and is
additionally loaded by a couple of 96 kNm at B. The beam has a bending
stiffness EI = 2000 kNm2.

Questions:
a. Determine the equation of the elastic curve.
b. Determine the maximum deflection.
c. Determine the rotations ϕA and ϕB at the supports.

Solution (units in kN and m):
a. In Figure 8.5b the part of the beam to the left of the cut at a distance x

from A has been isolated. A shear force V and a bending moment M are
acting in the cut (cross-section). Both section forces are shown in the figure
in their positive directions according to the coordinate system given. The
support reaction at A is 24 kN. The calculation is left to the reader.

Figure 8.4 Deformation of the simply supported beam subject to a
uniformly distributed load. The displacements have been magnified
with respect to the length of the beam.
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Figure 8.5

From the moment equilibrium of the isolated part of the beam

∑
Ty |cut = −(24 kN) · x + (24 kN/m) · x · 1

2 x + M = 0

it follows that

M = −(12 kN/m) · x2 + (24 kN) · x.

The M diagram is shown in Figure 8.5c.

From the differential equation

EI
d2w

dx2
= −M = (12 kN/m) · x2 − (24 kN) · x

we find after repeated integration

EI
dw

dx
= (4 kN/m) · x3 − (12 kN) · x2 + C1,

EIw = (1 kN/m) · x4 − (4 kN) · x3 + C1x + C2.

Figure 8.5 (a) A simply supported beam loaded by a uniformly
distributed load and a couple at the right-hand support B. (b) The
isolated part of the beam for determining the bending moment M

as a function of x. (c) Bending moment diagram. (d) Deformed
beam axis or elastic curve. The displacements have been magni-
fied at least 100 times as compared to the structural dimensions.
The elastic curve has a point of inflection where the bending
moment is zero and the deformation sign changes sign.
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The integration constants C1 and C2 follow from the boundary conditions
at the supports A (x = 0) and B (x = 4 m), where deflection w is zero:

x = 0, w = 0;
x = 4 m, w = 0.

Elaborating the boundary conditions gives

C1 = 0 and C2 = 0.

With EI = 2000 kNm2 we find for the deflection w and rotation ϕ the
following functions of x:

w = x4

2000 m3
− 4x3

2000 m2
,

ϕ = −dw

dx
= − x3

500 m3
+ 3x2

500 m2
.

The beam axis deformed by bending (the elastic curve) is shown in
Figure 8.5d. The deflections are magnified by more than 100 times the
structural dimensions. The effect of the couple at B is apparently so
large that the beam does not bend downwards, but rather bends upwards
everywhere.

Comment: The bending moment is zero at x = 2 m (see the M diagram
in Figure 8.5c). At this point the bending moment changes sign. The cur-
vature, proportional to the bending moment, also changes sign here. This
is found in the reversal of the deformation symbols in the M diagram, as
well in the shape of the elastic curve (see Figure 8.5d). Where the bending
moment changes sign, the elastic curve has a point of inflection.Figure 8.5
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b. The deflection w is extreme where the slope dw/dx of the elastic curve
is zero (or where the rotation ϕ = −dw/dx of the cross-section is zero):

ϕ = −dw

dx
= − x3

500 m3
+ 3x2

500 m2
= 0 ⇒ x = 3 m.

This value of x substituted in the expression for w leads to

w(x=3 m) = (3 m)4

2000 m3 − 4 × (3 m)3

2000 m2 = −13.5 × 10−3 m.

The maximum deflection is therefore a deflection upwards of 13.5 mm at
x = 3 m (see Figure 8.5d).

c. At the supports A (x = 0) and B (x = 4 m) the rotations are

ϕA = 0,

ϕB = − (4 m)3

500 m3 + 3 × (4 m)2

500 m2 = −0.032 rad (≈ 1.83◦).

Since ϕA = 0 the elastic curve at A has a horizontal tangent (see Fig-
ure 8.5d).

Comment: For numerical calculations, it must be noted that the quantities
ϕ and dw/dx are expressed in radians.
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Example 4: Simply supported beam loaded by a point load at midspan
The simply supported beam AB in Figure 8.6a, with length � and bending
stiffness EI , is loaded by a force F at midspan C.

Questions:
a. Determine the deflection wC at midspan.
b. Determine the rotations ϕA and ϕB at the supports.

Solution:
a. The bending moment diagram is shown in Figure 8.6b. The maximum
bending moment occurs at the point load and is 1

4 F�. From here the
bending moment varies linearly to zero at the supports.

Since the bending moment diagram cannot be described by means of a
single function for the entire beam, the fields to the left and right of the
point load have to be examined separately. In this case it is possible to use
symmetry considerations so that it is sufficient to consider only one half
of the beam. Below we consider the left half of the beam. In the given
coordinate system, the bending moment is

M = + 1
2 Fx

(
0 ≤ x ≤ 1

2 �
)
.

With

EI
d2w

dx2 = −M = − 1
2 Fx

(
0 ≤ x ≤ 1

2 �
)

we find after integrating

EI
dw

dx
= − 1

4 Fx2 + C1,

EIw = − 1
12 Fx3 + C1x + C2.

Figure 8.6 (a) A simply supported beam loaded by a force F at
midspan with (b) the associated bending moment diagram.
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Figure 8.7 Bending curve of the simply supported beam carrying
a point load at midspan.

The integration constants follow from the end condition at A (x = 0) and
the joining condition at C (x = 1

2 �):

x = 0, w = 0 ⇒ C2 = 0;

x = 1
2 �,

dw

dx
= 0 ⇒ C1 = + 1

16 F�2.

The joining condition at C (x = 1
2 �) follows from the mirror symmetry of

the loaded beam: the beam will not rotate at midspan so that the tangent to
the member axis remains horizontal there.

In the left-hand halve of the beam (0 ≤ x ≤ 1
2 �) the deflection w and

rotation ϕ are

w = F�3

48EI

(
−4

x3

�3
+ 3

x

�

)
,

ϕ = −dw

dx
= F�2

16EI

(
+4

x2

�2 − 1

)
.

The deformation of the beam is shown in Figure 8.7.

The deflection at C (x/� = 1/2), at the point load, is also the maximum
deflection of the beam:

wC = wmax = F�3

48EI
.
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Figure 8.8 If in this case we want to determine the bending curve
using the differential equation, we have to distinguish between two
fields, each with their own differential equation.

b. For the rotation at support A (x/� = 0) we find

ϕA = − F�2

16EI
.

The rotation at support B is equal and opposite to that at A. In the given
coordinate system that means

ϕB = + F�2

16EI
.

Figure 8.7 shows the deflections and rotations as they actually occur, and
their magnitudes (i.e. their absolute value).

Comment: If the point of application C of the force F is not at midspan, the
beam will have to be divided into two fields: field (1) to the left of C and
field (2) to the right of C, as shown in Figure 8.8.

Now, for each field we have to determine the equation of the M diagram.
By integrating twice we can then find the distribution of the deflections w(1)

for field (1) and w(2) for field (2).

Two integration constants occur per field, so that a total of four integration
constants have to be found from the two end conditions and the two joining
conditions.

The end conditions state that the deflection at the supports is zero:

w
(1)
A = 0,

w
(2)
B = 0.

Figure 8.7 Bending curve of the simply supported beam carrying
a point load at midspan.
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Table 8.1 The differential equations for bending in the xz plane
for a prismatic beam with bending stiffness EI .

The two joining conditions state that the fields (1) and (2) are rigidly con-
nected to one another at C, and therefore must have the same deflection and
rotation:

w
(1)
C = w

(2)
C ,

ϕ
(1)
C = ϕ

(2)
C .

Determining the deflections for this relatively simple loading case is
starting to become quite laborious. Other methods, such as those with
forget-me-nots (Section 8.3) or moment-area theorems (Section 8.4), are
preferable here.

8.2 Differential equation for bending

In Section 4.13, we derived the fourth-order differential equation for
bending in the xz plane for a prismatic member (see also Table 8.1):

−EI
d4w

dx4 + q = 0,

or written otherwise:

EI
d4w

dx4 = q.

If the distributed load q is known, we can integrate four times to find the
deflection w. After each integration a single integration constant appears.
The total number of integration constants in the general solution is therefore
four.
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The integration constants follow from the boundary conditions (end condi-
tions at an end and joining conditions at a joint). These are the conditions
that certain quantities, expressed in terms of w (or relationships between
these quantities) have to meet at the member ends and joints between the
fields.

A member end always provides two end conditions and a joint between
fields always provides four joining conditions. They can relate to

w,

ϕ = −dw

dx
,

M = EIκ = −EI
d2w

dx2
,

V = dM

dx
= −EI

d3w

dx3
.

The expressions for the bending moment M and the shear force V can be
simply derived from the basic relationships in Table 8.1.

Determining the deflection w using the fourth-order differential equa-
tion for bending is more labour-intensive than the previous method based
on a second-order differential equation, but is more effective for a non-
uniformly distributed load and can also be used for statically indeterminate
beams. We illustrate this using four examples.

To simplify the notation, the derivative of x is indicated by means of a prime
(′):

d(. . .)

dx
= (. . .)′.

Table 8.1 The differential equations for bending in the xz plane
for a prismatic beam with bending stiffness EI .
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Figure 8.9 A cantilever beam, loaded at its free end by a couple.

In this new notation, the differential equation for bending is

EIw′′′′ = q,

and the oter relations are

ϕ = −w′,

M = −EIw′′,

V = M ′ = −EIw′′′.

Example 1: Cantilever beam loaded by a couple at its free end
Beam AB in Figure 8.9, with length � and bending stiffness EI , is fixed at
A and loaded by a couple T at the free end B.

Questions:
a. Determine the deflection w as a function of x.
b. Determine the deflection wB and rotation ϕB at the free end B.

Solution:
a. There is no distributed load, so q = 0. In this case the differential
equation for bending is

EIw′′′′ = 0.

Through repeated integration we find

EIw′′′ = C1,

EIw′′ = C1x + C2,
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Figure 8.10 The boundary conditions V = 0 and M = +T at the
free end follow from the equilibrium of a small beam element with
length �x (�x → 0).

EIw′ = 1
2 C1x

2 + C2x + C3,

EIw = 1
6 C1x

3 + 1
2 C2x

2 + C3x + C4.

There are four boundary conditions: two at A and two at B. At A (x = 0)
we know that the deflection w and rotation ϕ = −w′ are zero:

x = 0, w = 0 ⇒ C4 = 0,

x = 0, ϕ = −w′ = 0 ⇒ C3 = 0.

At B (x = �) we know that the shear force V is zero:

x = �, V = −EIw′′′ = 0 ⇒ C1 = 0.

We also know the bending moment at B: M = +T .

x = �, M = −EIw′′ = +T ⇒ C2 = −T .

The fact that V = 0 and M = +T at B can also be checked by looking at
the equilibrium of a small member element with length �x (�x → 0) (see
Figure 8.10).

Now that we have determined the integration constants we can write down
w, ϕ, M and V as functions of x:

w = − T �2

2EI

x2

�2 ,

ϕ = −w′ = + T �

EI

x

�
,

Figure 8.9 A cantilever beam, loaded at its free end by a couple.
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Figure 8.11 Elastic curve of a cantilever beam loaded by a couple
at its free end.

Figure 8.12 The water pressure on a water-retaining sheet-pile
wall, fixed in a concrete floor and modelled as a cantilever beam.

M = −EIw′′ = T ,

V = −EIw′′′ = 0.

Figure 8.11 shows the deformed beam.

b. The deflection and rotation at B (x/� = 1) is

wB = − T �2

2EI
,

ϕB =
(

−dw

dx

)
B

= + T �

EI
.

Comment: Checking whether the expressions for M and V agree with the
M and V diagrams is left to the reader.

Example 2: Water-retaining sheet-pile wall fixed in a concrete floor
The water-retaining sheet-pile wall, fixed in a concrete floor, is modelled
in Figure 8.12 as the cantilever beam AB. The beam has a length � and
bending stiffness EI . The water pressure is linearly distributed from q at
the fixed end A to zero at the free end B. In the given xz coordinate system

q(x) = −q
x

�
+ q.

Questions:
a. Determine the expressions for w, ϕ, M and V as functions of x.
b. Determine the deflection wB and rotation ϕB at the free end B.
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Solution:
a. The differential equation for bending is

EIw′′′′ = q(x) = −q
x

�
+ q.

Through integration we find

EIw′′′ = − 1
2

q

�
x2 + qx + C1,

EIw′′ = − 1
6

q

�
x3 + 1

2 qx2 + C1x + C2,

EIw′ = − 1
24

q

�
x4 + 1

6 qx3 + 1
2 C1x

2 + C2x + C3,

EIw = − 1
120

q

�
x5 + 1

24 qx4 + 1
6 C1x

3 + 1
2 C2x

2 + C3x + C4.

Each boundary gives two boundary conditions. The boundary conditions at
A (x = 0) lead to

x = 0, w = 0 ⇒ C4 = 0,

x = 0, ϕ = −w′ = 0 ⇒ C3 = 0.

From the boundary conditions at B (x = �) we find the following using
C3 = C4 = 0:

x = �, M = −EIw′′ = 0 ⇒ − 1
6 q�2 + 1

2 q�2 + C1� + C2 = 0,

x = �, V = −EIw′′′ = 0 ⇒ − 1
2 q� + q� + C1 = 0.

Figure 8.12 The water pressure on a water-retaining sheet-pile
wall, fixed in a concrete floor and modelled as a cantilever beam.
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Figure 8.13 A water-retaining sheet piling, fixed in a concrete
floor and modelled as a cantilever beam: (a) loading, (b) elastic
curve, (c) bending moment diagram and (d) shear force diagram.

These are two equations with C1 and C2 as the unknowns. The solution is

C1 = − 1
2 q�,

C2 = + 1
6 q�2.

Together with C3 = C4 = 0 we now find

w = q�4

120EI

(
−x5

�5
+ 5

x4

�4
− 10

x3

�3
+ 10

x2

�2

)
,

ϕ = −w′ = q�3

120EI

(
+5

x4

�4 − 20
x3

�3 + 30
x2

�2 − 20
x

�

)
,

M = −EIw′′ = q�2

120

(
+20

x3

�3 − 60
x2

�2 + 60
x

�
− 20

)
,

V = −EIw′′′ = q�

120

(
+60

x2

�2
− 120

x

�
+ 60

)
.

Check (after differentiating again):

q(x) = EIw′′′′ = q

120

(
−120

x

�
+ 120

)
= −q

x

�
+ q.

This is indeed the expression for the distributed load on the sheet-pile wall.

b. The deflection w and rotation ϕ at B (x/� = 1) are

wB = q�4

30EI
,
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Figure 8.14 A beam with uniformly distributed load, supported
in two different ways: (a) statically determinate and (b) statically
indeterminate.

ϕB = − q�3

24EI
.

A sketch of the deformed sheet-pile wall is given in Figure 8.13b.

The M and V diagrams are shown in Figures 8.13c and 8.13d. The de-
formation symbols are given between brackets.

The bending moment and shear force are largest at the fixed end A
(x/� = 0):

MA = − 1
6 q�2,

VA = + 1
2 q�.

It is left to the reader to check the correctness of these values by considering
the equilibrium of the beam as a whole. In doing so, pay attention to both
the magnitude and the sign.

Example 3: Beam with a uniformly distributed load, supported in two
different ways
The third example relates to the two beams AB and CD in Figure 8.14.
Both beams have the same span � and bending stiffness EI , and carry
a uniformly distributed load q over the entire length �. Both beams are
supported on a roller at the left-hand side, but the supports at the right-hand
side are different: beam AB is supported by a hinge at the right end while
beam CD is fixed at the right end.

Questions:
a. For both beams determine the deflection w as a function of x.
b. For beam CD draw the bending curve and the M and V diagrams.

Figure 8.13 A water-retaining sheet piling, fixed in a concrete
floor and modelled as a cantilever beam: (a) loading, (b) elastic
curve, (c) bending moment diagram and (d) shear force diagram.
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Figure 8.15 Schematic representation of the relationship between
the load and displacement w for bending in the xz plane. For
statically determinate structures, the moment distribution can be
determined directly from the static relationship. This is not possible
for statically indeterminate structures, and one needs all three types
of basic relationships.

Intermezzo: For beam CD the number of available equilibrium equations
is insufficient to determine all the support reactions. Unlike beam AB,
which is statically determinate, beam CD is statically indeterminate.

The force distribution in a statically indeterminate beam is such that the
deformed beam “keeps fitting” between the supports. In order to find this
force distribution, also the constitutive and kinematic relationships have
to be involved in the calculation in addition to the equilibrium equations.
In Figure 8.15, the relationship between the deflection w and the load
qz is shown for bending in the xz plane. Since all three relationships
mentioned are used to derive the fourth-order differential equation for
bending, this differential equation for bending can be used for statically
indeterminate beams also.

Solution:
a. For both beams in Figure 8.14, the calculation is the same up to and
including the boundary conditions at the roller support x = 0. There are no
differences until applying the boundary conditions at the right-hand support
x = �.

The same differential equation applies to both beams:

EIw′′′′ = q,

and so does the same general solution, found by integrating four times:

EIw′′′ = qx + C1,

EIw′′ = + 1
2 qx2 + C1x + C2,

EIw′ = + 1
6 qx3 + 1

2 C1x
2 + C2x + C3,

EIw = + 1
24 qx4 + 1

6 C1x
3 + 1

2 C2x
2 + C3x + C4.
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The boundary conditions at the roller supports A and D (x = 0) are the
same:

x = 0, w = 0 ⇒ C4 = 0,

x = 0, M = −EIw′′ = 0 ⇒ C2 = 0.

The boundary conditions at hinged support B and fixed support D (x = �)
differ. Here the solutions for beam AB and CD start to deviate.

We first look for the solution for the statically determinate beam AB in
Figure 8.14a.

Using C2 = C4 = 0, we find at B (x = �)

x = �, w = 0 ⇒ 1
24 q�4 + 1

6 C1�
3 + C3� = 0,

x = �, M = −EIw′′ = 0 ⇒ 1
2 q�2 + C1� = 0.

The solution of the two equations in C1 and C3 is

C1 = − 1
2 q�,

C3 = + 1
24 q�3.

For beam AB we therefore find

w = q�4

24EI

(
+x4

�4
− 2

x3

�3
+ x

�

)
.

This is in line with what we found before in Section 8.1, Example 2, directly
from the moment distribution using a second-order differential equation.

Figure 8.14 A beam with uniformly distributed load, supported
in two different ways: (a) statically determinate and (b) statically
indeterminate.
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Finally we look at the statically indeterminate beam CD in Figure 8.14b.

At the fixed end D (x = �) we find, using C2 = C4 = 0.

x = �, w = 0 ⇒ 1
24 q�4 + 1

6 C1�
3 + C3� = 0,

x = �, ϕ = −w = 0 ⇒ 1
6 q�3 + 1

2 C1�
2 + C3 = 0.

The solution of these two equations in C1 and C3 is

C1 = − 3
8 q�,

C3 = + 1
48 q�3.

The deflection of beam CD is therefore

w = q�4

48EI

(
+2

x4

�4 − 3
x3

�3 + x

�

)
,

and for ϕ, M and V we find

ϕ = −w′ = q�3

48EI

(
−8

x3

�3
+ 9

x2

�2
− 1

)
,

M = −EIw′′ = q�2

48

(
−24

x2

�2 + 18
x

�

)
,

V = −EIw′′′ = q�

48

(
−48

x

�
+ 18

)
.
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Figure 8.16 (a) Statically indeterminate beam loaded by a uni-
formly distributed load with (b) elastic curve, (c) bending moment
diagram and (d) shear force diagram. The elastic curve has a point
of inflection where the bending moment is zero. The field moment
is largest where the shear force is zero.

b. The deformed beam CD is shown in Figure 8.16b.

The rotation at C (x = 0) is

ϕC = − q�3

48EI
.

In Figures 8.16c and 8.16d, the moment and shear force distributions are
shown. The fixed-end moment at D (x = �) is

MD = − 1
8 q�2.

The shear forces at C (x = 0) and D (x = �) are

VC = + 3
8 q�,

VD = − 5
8 q�.

The field moment is a maximum where the shear force V is zero, namely
at x = 3

8 �:

Mmax = 9
128 q�2.

At x = 3
4 � the bending moment changes sign and therefore also the curva-

ture. This is found in the reversal of the deformation symbols for bending,
in the M diagram indicated in brackets. There is a point of inflection in the
elastic curve.

Comment: The deformation symbols in the bending moment diagram can
be an important help in correctly describing the deformation of the beam.
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Figure 8.17 A prestressed plate bridge modelled as a line element
across three supports, subject to solar radiation.

Figure 8.18 Due to the solar radiation, the increase in temperature
in the plate is assumed to be linear across the thickness h, from
T = 15◦ K at the upper side to zero at the underside.

Comment: The reader is asked to draw the support reactions in the direction
in which they act and to check the equilibrium of the beam as a whole.

Example 4: Prestressed plate bridge subject to solar radiation
A prestressed plate bridge across three supports is modelled in Figure 8.17
as line element ABC. The spans AB and BC have the same length � = 30 m.
The plate thickness is constant at h = 1 m.

Subject to solar radiation, the temperature in the plate increases with a
linear distribution across the plate thickness h by T = 15◦ K at the upper
side to zero at the underside. The distribution is shown in Figure 8.18.

The coefficient of thermal expansion is α = 10−5 K−1. The modulus
of elasticity of prestressed concrete is E = 30 × 103 N/mm2. The dead
weight is 25 kN/m3.

Questions:
a. Derive the differential equation for bending, using the constitutive re-

lationship in which the influence of a change in temperature has been
taken into account.

b. Using this differential equation, determine the deflection due to the
change in temperature. Use symmetry considerations and work in the
given xz coordinate system.

c. For the plate bridge modelled as a line element ABC sketch the bend-
ing curve. How large is the maximum deflection and where does it
occur?

d. For a strip from the plate of 1-metre width, draw the bending moment
and shear force diagrams. Find the support reactions.

e. Compare the previously determined values of the bending moments,
shear forces and support reactions to those due to the dead weight.
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Table 8.2 The differential equations for bending in the xz plane
for a prismatic beam with bending stiffness EI , taking into account
thermal effects.

Solution:
a. Table 8.2 includes the various relationships for bending, taking into
account thermal effects.1

The kinematic relationships remain unchanged:

ϕ = −w′,

κ = ϕ′ = −w′′.

The effect of a temperature change finds expression only in the constitutive
relationship. The following was derived in Section 4.12:

M = EI(κ − κT ) = −EI(w′′ + κT ),

in which

κT = α
dT (z)

dz
= −α

T

h
.

The equilibrium equations also remain unchanged, so that

V = M ′ = {−EI(w′′ + κT )}′

and

q = −V ′ = {EI(w′′ + κT )}′′

1 See Section 4.12.
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Figure 8.19 Due to the mirror symmetry of the bridge about B,
the computation can be restricted to half the bridge, with support B
acting as a fixed end.

or

{EI(w′′ + κT )}′′ = q.

This is the fourth-order differential equation for bending in its most general
form.

If the member is prismatic (the bending stiffness EI is independent of x)
then EI can be left outside the brackets. If κT is also independent of x, as
it is here, this term disappears from the differential equation. Under these
conditions it holds that

EIw′′′′ = q.

Comment: With this fourth-order differential equation the effect of the
temperature change would appear to have disappeared from the problem.
But appearances are deceptive: the temperature effect reappears in the
relationships applicable for the boundary conditions.

b. Due to the mirror symmetry of the bridge about B, the computation
can be restricted to half the bridge, with support B acting as a fixed end.
The solution to the differential equation follows for beam BC (see Fig-
ure 8.19). We will initially work in symbols. At a later stage, we will enter
the numerical values.

There is no distributed load q in the example, so

EIw′′′′ = 0.

The general solution is found by integrating four times:

EIw′′′ = C1,
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EIw′′ = C1x + C2,

EIw′ = 1
2 C1x

2 + C2x + C3,

EIw = 1
6 C1x

3 + 1
2 C2x

2 + C3x + C4.

The boundary conditions at the “fixed end” B are

x = 0, w = 0 ⇒ C4 = 0,

x = 0, ϕ = −w′ = 0 ⇒ C3 = 0.

Using C3 = C4 = 0 we find the boundary conditions at support C:

x = �, w = 0 ⇒ 1
6 C1�

3 + 1
2 C2�

2 = 0,

x = �, M = −EIw′′ − EIκT = 0 ⇒ −C1� − C2 − EIκT = 0.

The solution of the two equations in C1 and C2 is

C1 = − 3
2 EI

κT

�
,

C2 = 1
2 EIκT .

The deflection w is

w = 1
4 κT �2

(
−x3

�3
+ x2

�2

)
.

Figure 8.19 Due to the mirror symmetry of the bridge about B,
the computation can be restricted to half the bridge, with support B
acting as a fixed end.
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Figure 8.20 Elastic curve due to the effect of solar radiation. The
beam bends upwards across its entire length. The curvature at the
points of inflection is zero.

The derivatives of w are

w′ = 1
4 κT �

(
−3

x2

�2 + 2
x

�

)
,

w′′ = 1
4 κT �

(
−6

x

�
+ 2

)
,

w′′′ = 1
4

κT

�
(−6) = − 3

2
κT

�
,

and finally (as a check):

w′′′′ = 0.

c. In these expressions

κT = −α
T

h
= −(10−5 K−1)

15 K

1 m
= −150 × 10−6 m−1

and

� = 30 m.

The bending deformation due to the solar radiation is shown in Figure 8.20.
The deflection w is an extreme where w′ is zero, this occurs at

x = 2
3 � = 20 m,
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Figure 8.21 Support reactions, bending moment diagram and
shear force diagram for a 1 metre wide plate strip, due to the solar
radiation only. Note that the deformation sign in the M diagram
near the end supports no longer agrees with the actual curvature in
Figure 8.20.

and is

wextr = 1
4 κT �2

{
−( 2

3

)3 + ( 2
3

)2
}

= 1
27 κT �2

= 1
27 × (−1.5 × 10−4 m−1)(30 m)2 = −5 × 10−3 m.

This is a displacement upwards of 5 mm.

The deformed structure has a point of inflection at x = 1
3 � = 10 m, where

the curvature is zero. The reader is asked to check this.

d. To determine the bending moments and shear forces in a strip of the plate
with width b = 1 m, we first determine the bending stiffness EI for this
strip:

EI = E · 1
12 bh3 = (30 × 103 N/mm2) × 1

12 × (1 m)(1 m)3

= 2.5 × 106 kNm2.

Be aware of the units!

The bending moment is

M = −EIw′′ − EIκT = − 1
4 EIκT

(
−6

x

�
+ 2

)
− EIκT

= − 3
2 EIκT

(
−x

�
+ 1

)

= − 3
2 × (2.5 × 106 kNm2)(−150 × 10−6 m−1)

(
−x

�
+ 1

)

= +562.5 ×
(
−x

�
+ 1

)
kNm.

Figure 8.20 Elastic curve due to the effect of solar radiation. The
beam bends upwards across its entire length. The curvature at the
points of inflection is zero.
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Figure 8.22 Support reactions, bending moment diagram and shear
force diagram for a 1-metre wide plate strip, due to its dead weight.

The shear force is

V = M ′ = + 3
2 EI

κT

�

= + 3
2 × (2.5 × 106 kNm2) × −150 × 10−6 m−1

30 m
= −18.75 kN.

Figure 8.21 shows the support reactions, bending moment diagram, and
shear force diagram due to the solar radiation, in which the plus and minus
signs have been translated into deformation symbols.

Comment: The deformation symbol in the M diagram in Figure 8.21 is not
in agreement with the actual curvature of the beam near the end supports,
as shown in Figure 8.20. This is due to the fact that the actual curvature
consists of two components, namely a curvature M/EI due to the bending
moments that occur, and a curvature κT associated with a free deformation
due to the change in temperature.

e. In Figure 8.22, as a comparison, the support reactions, bending moments
and shear forces due to the dead weight of q = 25 kN/m are shown for
the 1 metre wide strip of the plate. To do so, we used the results from
Example 3, as presented in Figure 8.16.

The support moment at B decreases by 20% under the influence of the
solar radiation. The maximum field moment on the other hand increases
by some 14% from 1582 kNm in x = 0.625� = 18.75 m to 1800 kNm in
x = 0.6� = 18 m.

Comment: The reader is asked to draw the bending moment and shear force
diagrams for the 1 metre wide strip due to the combination of the dead
weight and solar radiation, and to check the above-mentioned values.
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Table 8.3 Forget-me-nots for a prismatic cantilever beam with
length � and bending stiffness EI .

8.3 Forget-me-nots

A number of loading cases are so common that, like the Greek scientist
Myosotis Palustris, we can include them in a table. In this way, Table 8.3
includes for three loading cases the expressions for the rotation and deflec-
tion at the free end of a prismatic cantilever beam with length � and bending
stiffness EI .1

The translation of the Greek word “myosotis” is “forget-me-not”. The
formulas in Table 8.3 are therefore known as the forget-me-nots.

They are easy to memorise if you remember the numerical pairs (1, 2),
(2, 3), (6, 8) for the coefficients in the denominator. If you forget the power
of the length �, this can be found from a dimension analysis.

By making clever use of these simple formulas, it is possible to determine
more complicated loading cases also. A disadvantage of the method with
forget-me-nots is that you have to know the formulas off by heart or have
the table within reach.

The working method with forget-me-nots is strongly visual; we usually
work without a coordinate system or do not use one in the first instance.2

The deflection w is still a displacement normal to the member axis, but the
positive direction of w is no longer derived from a coordinate system but
rather from the picture that includes the sketch of the deformed beam. The
positive direction of the rotation θ is also derived from that picture. See for

1 These expressions can be determined in the way shown in Sections 8.1 and/or
8.2; see Section 8.2, Example 1 for forget-me-not (1) and Section 8.1, Exam-
ple 1, for forget-me-not (3). It is left to the reader to determine forget-me-not
(2).

2 For this reason there is no coordinate system in Table 8.3.
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Figure 8.23 (a) The method with forget-me-nots has a strong vi-
sual orientation. One generally works without a coordinate system.
The positive directions of the displacement w, normal to the mem-
ber axis, and the rotation θ are derived from a picture in which the
deformed beam is sketched. (b) In a (global) xz coordinate system,
to avoid confusion with the letter w, the displacements are no longer
named u and w, but ux and uz.

example the deformation due to bending of a fixed member with slope α in
Figure 8.23a.

Sometimes the displacements1 have to be named in a coordinate system. In
order to avoid confusion with the letter w, in a xz coordinate system the
displacements in the x and z directions respectively are no longer denoted
by means of u and w, but rather with ux and uz, and the rotation with ϕ

(actually ϕy).2

Figure 8.23b shows the deflection w at the free end of the fixed member
with a slope, translated into the (global3) xz coordinate system:

ux = +w sin α,

uz = +w cos α.

Since the direction of the rotation θ at the free end is opposite to the positive
sense of rotation in the xz coordinate system it also holds that

ϕ = −θ.

The forget-me-nots are nearly always used in combination with a sketch of
the deformed beam (the elastic curve). Before sketching the deformation of
the beam it is advisable to first sketch the bending moment diagram, includ-
ing the deformation symbols; calculations are generally not necessary (see
Figure 8.24). With the deformation symbols, you can immediately see how

1 Rotations are also referred to as “displacements” when generalising.
2 Since there is no possibility of confusion, the index y is omitted for simplicity.
3 The position of a global coordinate system is related to the direction of gravity

in the vast majority of cases.
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Figure 8.24 (a) Cantilever beam. Forget-me-nots are nearly al-
ways used with (c) a sketch of the deformed beam or elastic curve.
For a good sketch, it is advisable to draw first (b) the bending
moment diagram, including the deformation signs; calculations
are often not required. The deformation signs in the bending mo-
ment diagram give a direct clue about the way in which the beam
bends. The elastic curve has a point of inflection where the bending
moment changes sign.

the beam curves. At the point where the bending moment changes signs,
the elastic curve has a point of inflection. When sketching the elastic curve,
we should take account of the limited freedom of movement in the sup-
ports. The beam in Figure 8.24, for example, cannot move vertically at its
supports.

Comment: The elastic curve in Figure 8.24c is only a rough sketch. Calcu-
lations will have to show whether the beam does indeed move upwards at
the free end. If not, the sketch will have to be changed.

Below we include 10 examples with forget-me-nots. For the first six, we
use the forget-me-nots in Table 8.3. After Example 6, we present Table 8.4
with eight new forget-me-nots, to be used in the last four examples.

The application is limited to straight beams. All the beams are prismatic
and have bending stiffness EI , unless indicated otherwise.

In principle, the forget-me-nots can also be used for bent and non-prismatic
beams, although this is not generally very practicable. The method pre-
sented in Section 8.4, based on the moment-area theorems, is far more
suitable for such cases.

Example 1: Tail-wagging effect
Beam ABC in Figure 8.25a is fixed at A and is loaded by the force F at B.

Question:
Determine the rotation and deflection at the free end C.

Solution:
Figure 8.25b shows a sketch of the bending moment diagram and Fig-
ure 8.25c shows a sketch of the elastic curve. Since the bending moment
along BC is zero, this part of the beam remains straight (the curvature is
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Figure 8.25 (a) Cantilever beam ABC loaded by a force F at
B, with (b) the bending moment diagram and (c) the elastic curve.
Since the bending moment along BC is zero, this part of the beam
remains straight. The displacement at C due to the rotation θB at B
is known as the tail-wagging effect.

zero). The rotation θC at C is therefore equal to the rotation θB at B:

θC = θB.

The deflection wC at C is equal to the deflection wB at B, to which the
deflection bθB due to the rotation θB at B has to be added:

wC = wB + bθB.

The deflection bθB due to the rotation at B is known as the tail-wagging
effect.

When determining the deflection due to the tail-wagging effect we again
use the fact that for a small rotation θB the deflection bθB along the arc of
the circle (with centre B and radius BC) can be replaced by a deflection of
the same magnitude along the tangent to this circle, i.e. perpendicular to
BC.1

Using forget-me-not (2), we find

θB = Fa2

2EI
and wB = Fa3

3EI
.

The rotation and deflection at C are

θC = θB = Fa2

2EI
,

wC = wB + bθB = Fa3

3EI
+ b

Fa2

2EI
= Fa2(2a + 3b)

6EI
.

1 See also Section 7.1.2 and Engineering Mechanics, Volume 1, Section 15.3.2.
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Figure 8.26 (a) A cantilever beam with triangular load and (b) a
sketch of the elastic curve.

Example 2: Cantilever beam with triangular load
Cantilever beam AB in Figure 8.26a is fixed at A and carries a linearly
distributed load q(x) = q̂x/� over its entire length �.

Question:
Determine the deflection and rotation of the beam at the free end B.

Solution:
Figure 8.26b shows a sketch of the expected deformation of the beam with
the rotation θB and deflection wB at B. The sketch is based on common
sense; it is not necessary to draw the M diagram first.

In order to determine the deflection at B, the distributed load is split into a
large number of small forces q(x)�x (see Figure 8.27a):

q(x)�x = q̂
x

�
�x.

For each of these forces, the contribution �θB to the rotation at B and
the contribution �wB to the deflection at B are calculated separately (see
Figure 8.27b). In fact we now have the same situation as in Example 1.
Using forget-me-not (2) we find

�θB =
q̂

x

�
�x · �x2

2EI
,

�wB =
q̂

x

�
�x · x3

3EI
+

q̂
x

�
�x · x2

2EI
· (� − x).
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Figure 8.27 (a) To determine the displacement at B, the dis-
tributed load is split into a large number of small forces q(x)�x.
(b) The influence of a single force on the displacement and rotation
at B.

The second term in the expression for �wB is the contribution from the
tail-wagging effect.

The rotation and deflection at B are found by summing the contributions
from all the small forces, i.e. integrating over the length �:

θB = ∑ q̂
x

�
�x · x2

2EI
= q̂

2�EI

∫ �

0
x3 dx = 1

8

q̂�3

EI

wB = ∑
⎛
⎜⎝

q̂
x

�
�x · x3

3EI
+

q̂
x

�
�x · x2

2EI
· (� − x)

⎞
⎟⎠

= q̂

6�EI

∫ �

0
[2x4 + 3x3(� − x)] dx = 11

120

q̂�4

EI
.

These displacements are in line with the expectation in Figure 8.26b.

Translated to the xz coordinate system the displacements are

ϕy;B = −θB = −1

8

q̂�3

EI
,

wz;B = wB = + 11

120

q̂�4

EI
.
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Figure 8.28 (a) A cantilever beam with a point load at the free
end. (b) The load on part AC of the beam. (c) The deflection and
rotation at C is determined by the deformation of AC only.

Example 3: Rotation and deflection as functions of x

Cantilever beam AB, with length �, is loaded at the free end by a force F

(see Figure 8.28a).

Question:
Determine the deflection uz and rotation ϕy as functions of x.

Solution:
The deflection at C, at a distance x from A, is determined by the defor-
mation of AC. In Figure 8.28b, part AC has been released from CB. The
load on AC consists only of the section forces at C: a shear force F and a
bending moment F(� − x). The deformation due to this load is sketched in
Figure 8.28c.

By applying the forget-me-nots (1) and (2) and superposing their contribu-
tions, the rotation and deflection at C are found to be

θC = F(� − x) · x

EI
+ F · x2

2EI
= F�2

2EI

(
−x2

�2 + 2
x

�

)
,

wC = F(� − x) · x2

2EI
+ F · x3

3EI
= F�3

6EI

(
−x3

�3
+ 3

x2

�2

)
.

These expressions can be written in various ways; here we have selected a
form for which the term between brackets is dimensionless.

The requested displacements, formulated in the given xz coordinate system,
are

ϕy(x) = −θC = F�2

2EI

(
+x2

�2 − 2
x

�

)
,
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Figure 8.29 (a) Cantilever beam ABC with a uniformly distrib-
uted load on BC. (b) Sketch of the elastic curve. The displacement
at C is found by determining the deformations of AB and BC sep-
arately and superposing them. (c) The deformation of only AB
(BC remains straight) results in the contributions wC;1 and wC;2.
(d) The deformation of only BC (AB remains straight) results in the
contribution wC;3.

uz(x) = +wC = F�3

6EI

(
−x3

�3 + 3
x2

�2

)
.

Example 4: Superposing deformations
Cantilever beam ABC is fixed at A, and carries a uniformly distributed load
q over length BC (see Figure 8.29a).

Questions:
a. Determine the deflection at the free end C.
b. Determine the rotation at the free end.

Solution:
a. In Figure 8.29b the elastic curve has been sketched. The deflection at
C is found by determining the deformation of AB and BC separately and
superposing them.

Deformation AB
AB, released from BC, is a cantilever beam loaded at B by a shear force
q� and a bending moment 1

2 q�2 (see Figure 8.29c). The forget-me-nots (1)
and (2) give the rotation and deflection at B as

θB =
1
2 q�2 · �

EI
+ q� · �2

2EI
= q�3

EI
,

wB =
1
2 q�2 · �2

2EI
+ q� · �3

3EI
= 7

12

q�4

EI
.

The deformation of only AB (BC remains straight) results in the contri-
butions wC;1 and wC;2 in Figure 8.29c. Contribution wC;1 is equal to the
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deflection at B:

wC;1 = wB = 7

12

q�4

EI

and contribution wC;2 is the tail-wagging effect due to the rotation at B:

wC;2 = � · θB = � · q�3

EI
= q�4

EI
.

Deformation BC
The deflection due to the deformation of BC is shown in Figure 8.29c as
contribution wC;3. Since AB is straight, this deflection can be determined
using forget-me-not (3) for the situation shown in Figure 8.29d:

wC;3 = q�4

8EI
.

Final deflection
The final deflection of C is equal to the sum of the three contributions wC;1
to wC;3:

wC = wC;1 + wC;2 + wC;3 = 7

12

q�4

EI
+ q�4

EI
+ q�4

8EI
= 41

24

q�4

EI
.

Comment: The deflection at C is only 15% less than that for a load along
the entire length of the beam (check this!). This is not surprising if one
imagines that a load near the free end causes relatively the largest moments
and, moreover, that the influence on the deflection is larger due to the larger

b. The rotation at C can also be found by superposing the individual con-

Figure 8.29 (a) Cantilever beam ABC with a uniformly distrib-
uted load on BC. (b) Sketch of the elastic curve. The displacement
at C is found by determining the deformations of AB and BC sep-
arately and superposing them. (c) The deformation of only AB
(BC remains straight) results in the contributions wC;1 and wC;2.
(d) The deformation of only BC (AB remains straight) results in the
contribution wC;3.

lever in the tail-wagging effect.
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Figure 8.30 Beam ABC, fixed at A, with a uniformly distributed
load on BC.

Figure 8.31 (a) The load can be split into two loading cases that
are easy to determine using forget-me-nots: (1) a downward load q

along the entire length of the beam and (2) an upward load q along
half the beam length AB. (b) A sketch of the elastic curve for each
of the loading cases. The sketches provide information only on the
directions of the rotations and deflections that occur, and not on
their magnitude.

tributions due to the deformation of AB (see Figure 8.29c) and BC (see
Figure 8.29d):

θC =
1
2 q�2 · �

EI
+ q� · �2

2EI︸ ︷︷ ︸
(= θB) due to the
deformation of AB

+ q�3

6EI︸ ︷︷ ︸
due to the

deformation of BC

= 7

6

q�3

EI
.

Example 5: Superposing loading cases
The loading case in Figure 8.30, covered earlier in Example 4, is elaborated
here using an alternative method.

Question:
Determine the rotation and deflection at the free end C.

Solution:
In Figure 8.31a the load is split into two loading cases that can easily be
determined using forget-me-nots: (1) a downward load q over the entire
length of the beam and (2) an upward load q over half the beam length AB.

In Figure 8.31b, the elastic curve is sketched for each of the loading cases.1

For determining the rotation and deflection in C, only forget-me-not (3)
suffices.

Loading case (1)

θC;1 = q(2�)3

6EI
= 4

3

q�3

EI
,

1 The sketch of the elastic curves in Figure 8.31b provides information only on the
directions of the rotations and deflections that occur, and not on their magnitude.
The deflections are not shown to scale.
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Figure 8.32 (a) In order to determine the deflection at C, the dis-
tributed load can be split into many small forces q(x)�x. (b) The
influence of one of those forces on the deflection and rotation at C.

Figure 8.33 (a) A simply supported beam with an eccentric force
F . (b) Sketch of the elastic curve.

wC;1 = q(2�)4

8EI
= 2

q�4

EI
.

Loading case (2)

θC;2 = q�3

6EI
,

wC;2 = q�4

8EI
+ q�3

6EI
· � = 7

24

q�4

EI
.

The second term in the expression for wC;2 is the one due to the tail-
wagging effect.

Final rotation and deflection
The final rotation and deflection at C is found by superposing the loading
cases (1) and (2). Taking into account the directions in Figure 8.31b we
find:

θC = θC;1 − θC;2 = 4

3

q�3

EI
− q�3

6EI
= 7

6

q�3

EI
,

wC = wC;1 − wC;2 = 2
q�4

EI
− 7

24

q�4

EI
= 41

24

q�4

EI
.

These values are in line with what we found previously in Example 4.

Comment: The deflections can also be determined as in Example 2, where
we first determined the influence of a small force q�x on the rotation
and deflection (see Figure 8.32) and then sum the influences of all these
small forces through integrating along the length BC. The elaboration is left
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Figure 8.34 In order to determine θC and wC, the undeformed
beam is released from the supports at A and B. Subsequently, the
beam is picked up at C, translated over a distance wC, rotated
through an angle θC, and fixed in this position. Beam ACB does
not remain straight but will deform due to the support reactions
Fb/(a+b) at A and Fa/(a+b) at B; the deflections are wA and wB.
Since the beam is supported at A and B, the resultant deflections at
A and B (due to the tail-wagging effect at C and the deformation of
ACB) will be zero.

to the reader. With this approach we also have a superposition of loading
cases.

Example 6: Simply supported beam with an eccentric point load
The simply supported beam AB in Figure 8.33a is loaded by the force F at
C.

Question:
a. Determine the deflection and rotation at C, where the point load is

applied.
b. Determine the rotations at the supports A and B.
c. Determine the maximum deflection and the place where it occurs.

Solution:
a. Figure 8.33b shows a sketch of the elastic curve. The rotation and deflec-
tion at C are θC and wC respectively. In order to determine these values, the
undeformed beam is released from the supports at A and B. Next, the beam
is picked up at C, translated over a distance wC and rotated through an angle
θC, and fixed in this position (see Figure 8.34a). The resultant deflections at
A and B are (wC + θC · a) (↓) and (wC − θC · b) (↓) respectively.

The beam fixed at an angle does not remain straight, but will deform due to
the support reactions Fb/(a+b) at A and Fa/(a+b) at B. The deflections
at A and B, shown in Figure 8.34b by wA (↑) and wB (↑), can be deter-
mined with forget-me-not (2). Since the beam is supported at A and B, the
resultant deflections must be zero there. At A therefore

wC + θC · a − wA = wC + θC · a︸ ︷︷ ︸
tail-wagging effect due

to the rotation at C

− F b
a+b

· a3

3EI︸ ︷︷ ︸
due to the

deformation of AC

= 0.
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In the same way, at B

wC − θC · b − wB = wC − θC · b︸ ︷︷ ︸
tail-wagging effect due

to the rotation at C

− F a
a+b

· b3

3EI︸ ︷︷ ︸
due to the

deformation of AC

= 0.

This gives two equations with θC and wC as the unknowns. The solution is

wC = F

3EI

a2b2

a + b
,

θC = Fab

3EI

a − b

a + b
.

Comment: If a < b then θC is negative. This means that the rotation at C is
opposite to the direction of θC given in Figure 8.34.

Comment: If θC �= 0, the deflection at C, where the point load is applied, is
not the maximum deflection. The maximum deflection only occurs at C if
θC = 0. In that case a = b, and the point load is applied at midspan. With
a = b = 1

2

wmax = F�3

48EI
.

This value is in line with that found earlier in Section 8.1, Example 4.

b. The rotations θA and θB at A and B respectively are found by superposing
the influences of the now known rotation at C, and the deformation of the

Figure 8.34 In order to determine θC and wC, the undeformed
beam is released from the supports at A and B. Subsequently, the
beam is picked up at C, translated over a distance wC, rotated
through an angle θC, and fixed in this position. Beam ACB does
not remain straight but will deform due to the support reactions
Fb/(a+b) at A and Fa/(a+b) at B; the deflections are wA and wB.
Since the beam is supported at A and B, the resultant deflections at
A and B (due to the tail-wagging effect at C and the deformation of
ACB) will be zero.

� the maximum deflection is
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Figure 8.35 (a) A beam with (b) a sketch of the elastic curve,
assuming the maximum deflection occurs at D.

Figure 8.36 The maximum deflection of a simply supported pris-
matic beam with the point load F at the centre of the span � is
F�3/48EI .

beam (see Figure 8.34):

θA = −θC + F b
a+b

· a2

2EI
= Fab

6EI

a + 2b

a + b
, (8.1)

θB = +θC + F a
a+b

· b2

2EI
= Fab

6EI

2a + b

a + b
.

In both expressions the second term gives the contribution due to the
deformation of the beam fixed at C at an angle. Beware of the signs here.

c. Assume the maximum deflection occurs at D at a distance d from A; we
assume that d ≤ a (see Figure 8.35a). In Figure 8.35b the elastic curve
is shown for part AD. AD can be seen as a beam horizontally fixed at D,
loaded at the free end A by the support reaction Fb/(a + b). With a length
d of the beam we have

θA = F b
a+b

· d2

2EI
, (8.2)

wmax = F b
a+b

· d3

3EI
. (8.3)

We previously derived

θA = Fab

6EI

a + 2b

a + b
. (8.1)

By equating the expressions (8.1) and (8.2) we find the location where the
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Table 8.4 Additional forget-me-nots for a prismatic beam sup-
ported at both ends with length � and bending stiffness EI .

deflection is a maximum:

d =
√

1
3 a(a + 2b) . (8.4)

By substituting this value of d in (8.3), we find the expression for the
maximum deflection:

wmax = Fb(a2 + 2ab)3/2

9
√

3 EI(a + b)
as long as a ≥ b. (8.5)

Comment: Expression (8.4) was derived assuming that d ≤ a. From (8.4)
in that case it follows a ≥ b. Expression (8.5) therefore applies only under
this condition.

Check formula (e): It is left to the reader to check whether for Figure 8.36
this formula with a = b = 1

2 � indeed leads to

wmax = F�3

48EI
.

The loading case in Figure 8.36 was discussed earlier in Section 8.1,
Example 4. It could also be considered a forget-me-not as in Table 8.4.

Table 8.4 supplements the three forget-me-nots from Table 8.3 with eight
loading cases. Of course the table can be expanded as required. The forget-
me-nots (7) to (11) relate to statically indeterminate beams.1 In these cases
the fixed-end moments are also given. The vertical support reactions can be
determined from the moment equilibrium of the beam as a whole.

1 These loading cases can be calculated using the method given in Section 8.2 by
solving the fourth-order differential equation for bending.
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Figure 8.37 (a) Hinged beam with a point load F on centre field
BC. (b) Load on and deformation of the end fields AB and CD.
(c) The elastic curve if centre field BC has an infinite bending stiff-
ness. (d) Load on and deformation of centre field BC for a finite
bending stiffness. (e) The elastic curve if centre field BC has a finite
bending stiffness.

Below there are four more examples in which the forget-me-nots from
Table 8.4 are used.

Example 7: Hinged beam
The hinged beam ABCD in Figure 8.37a has hinged joints at B and C, and
is fixed at A and D. AB has a bending stiffness EI , CD has a bending
stiffness 2EI and BC has an infinite bending stiffness. The beam is loaded
by a vertical force 6F at E, the centre of BC.

Questions:
a. Determine the vertical deflection at E, and sketch the elastic curve of

ABCD.
b. How do the deflection and elastic curve asked for in (a) change if BC

is not rigid, but has a finite bending stiffness EI?

Solution:
a. The forces at the hinges B and C on parts AB and CD of the beam are
shown in Figure 8.37b as the forces 3F . For AB and CD the figure also
includes a sketch of the associated elastic curve. The deflections at B and C
can be determined with forget-me-not (2):

wB = 3F · a3

3EI
= Fa3

EI
,

wC = 3F · (2a)3

3 × 2EI
= 4

Fa3

EI
.

Figure 8.37c shows the deflections to scale. BC remains straight as the
bending stiffness is infinite. The deflection at E in the given xz coordinate
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system is

uz;E = wE;1 = wB + wC

2
= 5

2

Fa3

EI
.

b. If BC is not infinitely stiff, the effect of the deformation of BC has to
be superposed on the deflection at E found above (see Figure 8.37d). The
additional deflection is, using forget-me-not (5),

wE;2 = 6F · (2a)3

48EI
= Fa3

EI
.

The final deflection at E is now

uz;E = wE = wE;1 + wE;2 = 5

2

Fa3

EI
+ Fa3

EI
= 7

2

Fa3

EI
.

Figure 8.37e shows the new sketch of the elastic curve.

Comment: If we investigate the rotation ϕBC
C at end C of BC1 more closely,

it turns out to be zero (see Figures 8.37c to 8.37e):

ϕBC
C = −θ1 + θ2 = −wC − wB

2a
+ 6F · (2a)2

16EI

= −3

2

Fa3

EI
+ 3

2

Fa3

EI
= 0.

The tangent to the elastic curve of BC is therefore horizontal at C.

1 The rotation at C is different for beam BC and CD. For this reason an upper
index shows to which part of the beam the rotation at C is related.

Figure 8.37 (a) Hinged beam with a point load F on centre field
BC. (b) Load on and deformation of the end fields AB and CD.
(c) The elastic curve if centre field BC has an infinite bending stiff-
ness. (d) Load on and deformation of centre field BC for a finite
bending stiffness. (e) The elastic curve if centre field BC has a finite
bending stiffness.
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Figure 8.38 (a) A statically indeterminate beam with a uniformly
distributed load for which we want to check the deflection at C.
(b) Elastic curve of the beam. The fixed-end moment at A is 1

8 q�2

and can be found from Table 8.4. (c) The bending moment diagram
and elastic curve do not change if at A the fixed end is replaced by
a hinged support and at the same time a couple is applied with the
same magnitude and direction as the fixed-end moment. The dis-
placement at C can now be found by determining the contributions
due to the distributed load on AB and the couple at A separately
with forget-me-nots, and superposing them.

Example 8: Statically indeterminate beam
The statically indeterminate beam in Figure 8.38a has a span � and carries
a uniformly distributed load q along its entire length. For this loading case,
forget-me-not (9) in Table 8.4 applies.

Question:
Check the value given in Table 8.4 for the deflection at C.

Solution:
Table 8.4 shows that the fixed-end moment at A is 1

8 q�2 (see Figure
8.38b).1 The figure includes a sketch of the elastic curve. The bending
moment diagram and therefore the deformation of the beam do not change
if at A the fixed end is replaced by a hinged support and at the same time
a couple is applied with the same magnitude and direction as the fixed-end
moment (see Figure 8.38c).

The deflection wC at C is found by determining separately the contributions
wC;1 due to the distributed load on AB and wC;2 due to the couple at A. In
doing so we assume that a downward deflection at C is positive, as shown
in Figure 8.38b.

The deflection due to the load q is positive (points downwards) and is
determined using forget-me-not (6):

wC;1 = 5

384

q�4

EI
.

The deflection due to the couple 1
8 q�2 at A is negative (points upwards)

1 This was derived in Section 8.3 using the fourth-order differential equation for
bending.
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and is determined using forget-me-not (4):

wC;2 = −
1
8 q�2 · �2

16EI
= − 1

128

q�4

EI
.

The final deflection at C is:

wC = wC;1 + wC;2 = 5

384

q�4

EI
− 1

128

q�4

EI
= 1

192

q�4

EI
.

Example 9: Simply supported beam with overhang and uniformly dis-
tributed load
The simply supported beam ABC with overhang in Figure 8.39a carries a
uniformly distributed load q = 16 kN/m along its entire length. The bend-
ing stiffness of the beam is EI = 20 MNm2. The dimensions are given in
the figure.

Questions:
a. Determine the deflection at D.
b. Determine the deflection at A.
c. Draw a sketch of the elastic curve.

Solution:
a. The deflection at D is found by looking at the influences of the loads on
BC and AB separately and by superposing their contributions.

The distributed load on BC causes a deflection wD;1 at D (see Figure 8.39b).
With forget-me-not (6) we find

wD;1 = 5

384

(16 kN/m)(6 m)4

20 MNm2
= 13.5 mm (↓)

Figure 8.38 (a) A statically indeterminate beam with a uniformly
distributed load for which we want to check the deflection at C.
(b) Elastic curve of the beam. The fixed-end moment at A is 1

8 q�2

and can be found from Table 8.4. (c) The bending moment diagram
and elastic curve do not change if at A the fixed end is replaced by
a hinged support and at the same time a couple is applied with the
same magnitude and direction as the fixed-end moment. The dis-
placement at C can now be found by determining the contributions
due to the distributed load on AB and the couple at A separately
with forget-me-nots, and superposing them.
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Figure 8.39 (a) A simply supported beam with overhang and uni-
formly distributed load. (b) Elastic curve due to the deformation of
BC under the influence of the load on BC. (c) Elastic curve due
to the deformation of BC under the influence of the load on AB.
(d) Deflection due to the deformation of AB only.

The distributed load on AB exerts a moment MB at B on BC (see Fig-
ure 8.39c):

MB = 1
2 × (16 kN/m)(2 m)2 = 32 kNm.

As a result D undergoes an upward deflection wD;2, to be determined using
forget-me-not (5):

wD;2 = 1

16

(32 kNm)(6 m)2

20 MNm2 = 3.6 mm (↑)

Since wD;1 > wD;2 the final deflection wD at D points downwards:

wD = wD;1 − wD;2 = (13.5 mm) − (3.6 mm) = 9.9 mm (↓)

or, in the given xz coordinate system,

uz;D = +9.9 mm.

b. The deflection at A is found by adding the influence of the deformation
of AB to the tail-wagging effect due to the rotation at B. When determining
the tail-wagging effect, we have to consider the effects of the loads on both
AB and BC; they are calculated separately.

The distributed load on BC gives an upward deflection wA;1 at A (see
Figure 8.39b). Using forget-me-not (5) we find the tail-wagging effect at
A:

wA;1 = (2 m) × θB;1 = (2 m) × 1

24

(16 kN/m)(6 m)3

20 MNm2 = 14.4 mm (↑)

The moment MB = 32 kNm at B due to the distributed load on AB, and
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Figure 8.40 (a) A simply supported beam with overhang and
uniformly distributed load with (b) bending moment diagram and
(c) elastic curve. The elastic curve has a point of inflection where
the bending moment is zero.

Figure 8.41 An inclined shored bar with a vertical force of 20 kN
at the top.

acting on BC, gives a downward deflection wA;2 at A (see Figure 8.39c).
Using forget-me-not (4) we find the tail-wagging effect at A:

wA;2 = (2 m) × θB;2 = (2 m) × 1

3

(32 kNm)(6 m)

20 MNm2 = 6.4 mm (↓)

The deflection wA;3 due to the deformation of AB only follows from
Figure 8.39d, and is determined using forget-me-not (3):

wA;3 = 1

8

(16 kN/m)(2 m)4

20 MNm2
= 1.6 mm (↓)

The final deflection wA points upwards:

wA = wA;1 − wA;2 − wA;3
= (14.4 mm) − (6.4 mm) − (1.6 mm) = 6.4 mm (↑)

or, in the given xz coordinate system:

uz;A = −6.4 mm.

c. In Figure 8.40, the bending moment diagram and elastic curve are shown
for the beam. The elastic curve has a point of inflection where the bending
moment changes sign.

Example 10: An inclined shored bar
The inclined shored bar ACD in Figure 8.41 is loaded by a vertical force of
20 kN at D. The bar has a bending stiffness of 40 MNm2. Deformation due
to the normal force is ignored.

Question:
Determine the vertical displacement of D in the given xy coordinate system.
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Figure 8.42 (a) Bending moment diagram for the inclined shored
bar. (b) Sketch of the elastic curve. Due to the bending of ACD, D
is displaced normal to the member axis. (c) w1 is the deflection at
D due to the deformation of AC. (d) w2 is the deflection at D due to
the deformation of CD.

Solution:
The bending moment diagram for ACD is shown in Figure 8.42a. The force
of 20 kN at D has a component of 12 kN normal to the member axis. This
force causes the bending deformation of ACD.

Since there is no axial force deformation, C will not move and we can
consider C a “fixed” point. Due to the bending of ACD, D will move normal
to the member axis. A sketch of the elastic curve is given in Figure 8.42b.

When determining the deflection w at D we consider the contributions
due to the deformation of AC and CD separately. They are shown in
Figure 8.42b as w1 and w2 respectively.

At C a moment of 60 kNm acts on AC (see Figure 8.42c). As a result AC is
deformed, and a rotation θC occurs at C, to be determined with forget-me-
not (4):

θC = 1

3

(60 kNm)(5 m)

40 MNm2
= 2.5 × 10−3 rad.

The rotation at C causes the tail-wagging effect w1 at D:

w1 = θC × (5 m) = (2.5 × 10−3 rad)(5 m) = 12.5 mm.

The deflection w2 due to the deformation of CD (see Figure 8.42d) has to
be added to the deflection w1. w2 is determined using forget-me-not (2):

w2 = 1

3

(12 kN)(5 m)3

40 MNm2 = 12.5 mm.
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Figure 8.43 The deflection at D, normal to the member axis,
resolved into a horizontal and vertical component.

The final deflection at D is (see Figure 8.42b)

w = w1 + w2 = (12.5 mm) + (12.5 mm) = 25 mm.

Figure 8.43 shows a magnified representation around D. The deflection w

at D of 25 mm, normal to ACD, has a horizontal component of 20 mm (→)
and a vertical component of 15 mm (↓). In the given yz coordinate system
the horizontal displacement is

ux;D = +20 mm

and the vertical displacement

uy;D = −15 mm.

8.4 Moment-area theorems

The moment-area theorems are a powerful method for determining the rota-
tions and displacements due to bending, for structures in which the moment
distribution is known.

The moment-area theorems are based on the kinematic and constitutive
relationships derived in Section 4.3 for a member subject to bending in
the xz plane.

In Section 8.4.1 we derive the moment-area theorems and present a vi-
sual interpretation of the result, after which Section 8.4.2 demonstrates the
power of the visual interpretation using a number of examples.
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Figure 8.44 (a) Segment AB of a beam with a distributed load.
(b) The associated bending moment diagram, and (c) the M/EI

diagram, curvature diagram or reduced moment diagram.

8.4.1 Derivation

There are two moment-area theorems: one relating to the rotation ϕ and one
to the deflection w. When deriving them, we use the kinematic relationships
(see Section 4.3.1)

ϕ = −dw

dx
, (8.6)

κ = dϕ

dx
, (8.7)

and the constitutive relationship (see Section 4.3.2)

M = EIκ or κ = M

EI
. (8.8)

We derive the moment-area theorems for beam segment AB in Figure
8.44a, for which the bending moment diagram is shown in Figure 8.44b.

When deriving the propositions, we use the xz coordinate system in which
the kinematic and constitutive formulas were also derived. In the bending
moment diagram the deformation symbol is therefore placed in brackets.
After their derivation, we present a visual interpretation of the moment-
area theorems. In doing so, the deformation symbol provides information
on the way in which a beam bends.

Derivation of the first moment-area theorem
The first moment-area theorem relates to the rotation ϕ. By eliminating the
curvature κ from (8.7) and (8.8) we find:

dϕ

dx
= M

EI
. (8.9)
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The change in rotation ϕ is determined by the value of the quantity M/EI .
This quantity is also referred to as the reduced moment. In fact it is simply
the curvature κ , according to constitutive relationship (8.8): κ = M/EI .

The M/EI diagram in Figure 8.44c is also referred to as the reduced mo-
ment diagram or curvature diagram.

From (8.9) it follows that

dϕ = M

EI
dx.

If we integrate this equation along the length AB we find

�ϕ = ϕB − ϕA =
∫ B

A

M

EI
dx

︸ ︷︷ ︸
area M/EI

diagram

. (8.10a)

According to (8.10a), the increase �ϕ of the rotation between A and B is
equal to the area of the M/EI or curvature diagram between A and B. This
is known as the first moment-area theorem.

If the rotation at A is known, the rotation at B is found with

ϕB = ϕA +
∫ B

A

M

EI
dx

︸ ︷︷ ︸
area M/EI

diagram

. (8.10b)

Comment 1: Depending on the sign of M , the integral, which represents the
area of the M/EI diagram, can be either positive or negative.

Figure 8.44 (a) Segment AB of a beam with a distributed load.
(b) The associated bending moment diagram, and (c) the M/EI

diagram, curvature diagram or reduced moment diagram.
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Comment 2: The first moment-area theorem (8.10) applies only if the ro-
tation ϕ is continuous and continually differentiable along the length AB.
This means that there may be no hinges between A and B.

Derivation of the second moment-area theorem
The second moment-area theorem relates to the deflection w. From the
kinematic relationship (8.6)

ϕ = −dw

dx
(8.6)

it follows that

dw = −ϕ dx.

Integrating between the limits A and B we obtain

�w = wB − wA = −
∫ B

A
ϕ dx.

Using partial integration we find

�w = wB − wA = −ϕx
∣∣B
A +

∫ B

A

dϕ

dx
x dx

= −ϕBxB + ϕAxA +
∫ B

A

dϕ

dx
x dx.

According to (8.9), the differential under the integral sign is

dϕ

dx
= M

EI
(8.9)
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Figure 8.45 In the integral
∫ B

A
M
EI

(xB − x) dx, the term under
the integral is equal to the static moment of the hatched area with
respect to B.

so that �w can also be defined as

�w = wB − wA = −ϕBxB + ϕAxA +
∫ B

A

M

EI
x dx. (8.11)

Using the first moment-area theorem (8.10b) we find the rotation ϕB:

ϕB = ϕA +
∫ B

A

M

EI
dx. (8.10b)

Making use of this formula we can now rewrite (8.11):

�w = wB − wA = −ϕA(xB − xA) −
∫ B

A

M

EI
(xB − x) dx

︸ ︷︷ ︸
static moment M/EI

diagram wrt B

. (8.12a)

This is known as the second moment-area theorem.

The significance of the integral in the right-hand term is illustrated by
means of the M/EI or curvature diagram in Figure 8.45. Here the area of the
hatched strip, with width dx, is equal to (M/EI) dx. This value multiplied
by the distance (xB − x) is equal to the static moment (linear area moment)
of the hatched area with respect to B. The integral in (8.12a) therefore repre-
sents the static moment of the M/EI diagram (curvature diagram) between
A and B, with respect to B.
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Figure 8.46 (a) The M/EI diagram for beam segment AB. (b) The
tangents at A and B to the deformed beam segment AB (elastic
curve) intersect at C, at the height of the centroid of the M/EI

diagram, and there form an angle that is equal to the area of the
M/EI diagram. (c) The displacement at B due to the deformation
of AB can be determined from A by superposing the tail-wagging
effect |pq| due to the rotation at A and the tail-wagging effect |qr|
due to the bend at C. The latter is equal to the area of the M/EI

diagram.

If the deflection wA and rotation ϕA at A are known, the deflection at B is
found from

wB = wA − ϕA(xB − xA)︸ ︷︷ ︸
tail-wagging

effect pq due to
the rotation at A

−
∫ B

A

M

EI
(xB − x) dx

︸ ︷︷ ︸
qr due to the

deformation of AB

. (8.12b)

See Figure 8.46 for the visual interpretation.

Comment: The second moment-area theorem (8.12) is applicable only if the
rotation ϕ and deflection w are continuous and continuously differentiable
over AB.

Visual interpretation of the moment-area theorems
Figure 8.46a shows the M/EI or curvature diagram for beam AB, where it
is assumed that the curvature between A and B is the result of a positive
bending moment, so that the integral in the right-hand term of (8.12) is
positive.

Figure 8.46b shows a sketch of the associated deformation of beam segment
AB (the elastic curve).

The distance |pr| in the figure is the difference in deflection between A and
B. We distinguish the contributions |pq| and |qr|. The distance |pq| is the
result of the tail-wagging effect due to the rotation ϕA at A:

|pq| = ϕA(xB − xA).

The distance |qr| is the result of the deformation of AB and is equal to the
static moment of the M/EI diagram with respect to B:

|qr| =
∫ B

A

M

EI
(xB − x) dx.
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The static moment with respect to B can also be written as the product of
the area of the M/EI diagram and the distance (xB − xC) from B to the
centroid C of the M/EI diagram (see Figure 8.46a):

|qr| =
∫ B

A

M

EI
(xB − x) dx

︸ ︷︷ ︸
static moment M/EI

diagram wrt B

= (xB − xC)

∫ B

A

M

EI
dx

︸ ︷︷ ︸
area M/EI

diagram

.

According to the first moment-area theorem, the area of the M/EI diagram
is equal to the increase in rotation between A and B:

∫ B

A

M

EI
dx = ϕB − ϕA.

Making use of this, we find that the distance |qr| (equal to the static moment
of the M/EI diagram with respect to B) is

|qr| = (xB − xC)

∫ B

A

M

EI
dx = (xB − xC)(ϕB − ϕA).

The second moment-area theorem (8.12b) can therefore be written as

wB = wA − ϕA(xB − xA)︸ ︷︷ ︸
tail-wagging effect pq

due to the rotation at A

− (xB − xC)(ϕB − ϕA)︸ ︷︷ ︸
qr due to the

deformation of AB

. (8.12c)

See Figure 8.46c for the significance of each of the terms.

Conclusion: The tangents at A and B to the deformed beam segment (elastic
curve) AB intersect at C, at the height of the centroid of the M/EI diagram.

Figure 8.46 (a) The M/EI diagram for beam segment AB. (b) The
tangents at A and B to the deformed beam segment AB (elastic
curve) intersect at C, at the height of the centroid of the M/EI

diagram, and there form an angle that is equal to the area of the
M/EI diagram. (c) The displacement at B due to the deformation
of AB can be determined from A by superposing the tail-wagging
effect |pq| due to the rotation at A and the tail-wagging effect |qr|
due to the bend at C. The latter is equal to the area of the M/EI

diagram.
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The intersection at C is at an angle that is equal to the area of the M/EI

diagram (see Figure 8.46b).

If we wish to determine from A the rotation and deflection at B we could
model the elastic curve as two straight lines: the tangents at A and B. These
lines intersect at the location of the centroid of the M/EI diagram, and are
at an angle that is equal to the area of the M/EI diagram (see Figure 8.46c).

The deflection at B due to the deformation of AB can be determined as the
tail-wagging effect due to both the rotation at A and the angle between the
tangents at A and B.

Comments: One can imagine that the bend at C is caused by concentrating
the curvature of AB at a single point. The bend must therefore agree with
the deformation symbol in the M diagram (or the M/EI diagram).

The derived moment-area theorems (8.10a/b) and (8.12a/b) can be elabo-
rated analytically. In doing so, one has to take the coordinate system into
account for all the quantities. In that case, the integrals for the area and the
static moment of the M/EI diagram can be either positive or negative.

An objection to the analytical approach is that it is really practicable only
for straight beams.1 Another disadvantage is that we cannot “see what is
happening”.

When applying the moment-area theorems, we shall use the visual inter-
pretation as explained with the help of formula (8.12c). Not only can we
then “see what is happening”, but we can also use them for bent beams and

1 In bent beams, problems arise due to the fact that at each bend we have to shift
from one (local) coordinate system to another.

frames.
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Table 8.5 Plane figures with their area A and x coordinate of the
centroid C.

In the visual approach, the area and centroid of the M/EI diagram play an
important role. These properties are included in Table 8.5 for a number of
common types of plane figures.

8.4.2 Examples

In this section we illustrate the efficiency of the moment-area theorems by
means of ten examples.

Examples 1 to 4 relate to beams with one fixed and one free end. The beam
in Example 3 is non-prismatic. Example 5 addresses a fixed bent beam. In
Examples 6 to 9 the structure is simply supported. The structure is a straight
beam, with or without overhang (Examples 6 and 7) or consists of several
rigidly joined straight bars (Examples 8 and 9). Finally, in Example 10, we
determine the displacements of a three-hinged frame.

Comment: In applying the moment-area theorems to the first five exam-
ples, we start from a fixed end where the rotation ϕ and deflection w are
known.1 This changes at Example 6. In Examples 6 to 9, the rotation in
the starting point is unknown and has to be determined from a deflection
known elsewhere. Example 10, where we determine the displacements of
a three-hinged frame, goes even further as the necessary rotations at the
supports have to be determined from the joining conditions at the hinge.

The method with moment-area theorems is strongly visual. Therefore, for
straight beams we often work without a coordinate system, or initially ig-
nore it. A deflection due to bending, normal to the beam axis, is denoted
as w and a rotation as θ . The positive direction of w, as with the forget-
me-nots,2 is derived from the picture that includes a sketch of the deformed

1 At a fixed end ϕ = 0 and w = 0.
2 See Section 8.3.
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Figure 8.47 Deflection of a cantilever beam loaded by a force.

beam (elastic curve). The positive direction of the rotation θ is also derived
from the picture.

With bent members (Example 5) and for other, more complicated member
structures (Examples 8 to 10), it is preferable to use a global coordinate
system1 and to name the deflections in this system. In order to avoid confu-
sion with the letter w in a global xz coordinate system, the displacements
in the x and z direction respectively are no longer denoted by u and w, but
by ux and uz, and the rotation is denoted by ϕ (actually ϕy).2

Example 1: A forget-me-not
Forget-me-not (2) from Table 8.3 applies to the prismatic cantilever beam
in Figure 8.47a, with length � and bending stiffness EI .

Question:
Verify the expressions for the rotation and deflection at B using the
moment-area theorems.

Solution:
Figure 8.47b shows the M/EI diagram, including the deformation symbol.
To find the deflection at B, the deformed beam can be modelled as two
straight lines (the tangents at A and B to the elastic curve) that at the loca-
tion of the centroid of the M/EI diagram intersect at an angle that is equal
to the area of the M/EI diagram.

The centroid of the M/EI diagram is at C, at �/3 from the fixed end A.
Figure 8.47c shows the bend θ . We can imagine that the bend is the result

1 A global coordinate system is a system that applies to the structure as a whole.
The orientation of a global coordinate system is usually related to the direction
of gravity.

2 Since there is no possibility of confusion, the index y is omitted for simplicity.
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Figure 8.47

of concentrating the curvature of the beam at one single point. The bend
therefore has to match the deformation symbol.

The bend θ is set down with one of the legs along the beam axis, in such a
way that the angle of the bend is open to the direction in which we want to
know the rotation and/or deflection. With a certain amount of imagination
and good will, you can see an “eye” in the bend, looking in the direction
that we are working towards, in this case the direction of B.

Comment: The bend is generally drawn in the M/EI diagram, i.e. in Fig-
ure 8.47b. If we draw the M/EI diagram correctly, i.e. at the tension side
of the beam axis, the bend will always be outside the M/EI diagram, and
will never penetrate it. The bend θ is equal to the area of the M/EI diagram:

Figure 8.47 (a) A cantilever beam loaded by a force F at the free
end, with (b) the M/EI diagram. (c) The deformation of the beam
can be considered concentrated in a bend at C, at the location of
the centroid of the M/EI diagram. The magnitude of the bend θ

is equal to the area of the M/EI diagram. If the M/EI diagram is
drawn correctly, i.e. at the tension side of the beam axis, the bend
will always be outside the M/EI diagram, and never penetrate
it. The open side of the bend θ points in the direction in which
we want to know the rotation and/or displacement, in this case in
the direction of B. With a certain amount of imagination, you can
see an “eye” in the bend looking in the direction towards which
we are working. (d) The displacement at B is found as the tail-
wagging effect due to the bend θ at C. (e) The straight lines at
(d) are the tangents to the deformed beam axis (elastic curve) at
A and B. Using these lines we can make a quick and accurate
sketch of the deformed beam (elastic curve).
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Figure 8.48 (a) Beam fixed at an angle, loaded by a vertical force
at the top, with (b) the M/EI diagram. The deformation due to
bending of AB can be considered concentrated in the bend θ at C,
at the centroid of the M/EI diagram. (c) The displacement at B is
found by rotating the upper part CB through an angle θ about C.
(d) Sketch of the elastic curve. The displacement due to bending is
always normal to the member axis.

θ = 1
2 · � · F�

EI
= F�2

2EI
.

The rotation and deflection at B can be determined from Figure 8.47d. The
rotation at B is

θB = θ = F�2

2EI
.

The deflection at B is found as the tail-wagging effect due to the bend θ at
C:

wB = θ · 2
3 � = F�2

2EI
· 2

3 � = F�3

3EI
.

The values found are in agreement with forget-me-not (2) from Table 8.3.

The straight lines in Figure 8.47d, the tangents to the deformed beam at A
and B, can be used for a quick and accurate sketch of the elastic curve (see
Figure 8.47e).

Example 2: Deflection at the top of a beam fixed at an angle
Member AB in Figure 8.48a is fixed at an angle at A and is loaded by a
vertical force of 30 kN at the free end. The bending stiffness of the member
is EI = 5.2 MNm2. Deformation due to normal forces is ignored.

Question:
Determine the horizontal displacement at B due to bending.

Solution:
The bending moment at A is (30 kN)(1 m) = 30 kNm. Figure 8.48b shows
the M/EI diagram, with the deformation symbol. The centroid of the M/EI

diagram is at C, at one-third of the member length from A. Here the bend θ

is shown.
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Figure 8.49 For the displacement at Q due to a small rotation θ

about P we have
• the horizontal component uh = θ · �v,
• the vertical component uv = θ · �h.

Intermezzo:1

For the displacement due to a small rotation θ (ignoring signs) Figure 8.49
shows that
• The horizontal component of the displacement at Q is equal to

“rotation × vertical distance to the centre of rotation P”:

uh = θ · �v.

• The vertical component of the displacement at Q is equal to
“rotation × horizontal distance to the centre of rotation P”:

uv = θ · �h.

Figure 8.48b–d

The magnitude of the bend θ is equal to the area of the triangular M/EI dia-
gram. For a member length of

√
(1 m)2 + (2.4 m)2 = 2.6 m and a bending

stiffness EI of 5.2 MNm2 this area is

θ = 1
2 × (2.6 m) × 30 kNm

5.2 × 103 kNm2
= 7.5 × 10−3 rad.

At C, the bend θ indicates the angle over which the upper part CB has to be
rotated to find the deflection at B (see Figure 8.48c).

With θ = 7.5 × 10−3 rad and �v = 2
3 × (2.4 m) = 1.6 m, the horizontal

component of the deflection at B is (see Figure 8.48c)

uB;h = θ · �v = (7.5 × 10−3 rad)(1.6 m) = 12 × 10−3 m = 12 mm.

1 See also Section 7.2, Example 7, and Engineering Mechanics, Volume 1,
Section 15.3.2.
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Figure 8.50 (a) A non-prismatic cantilever beam, loaded by the

(c) the M/EI or κ diagram. The deformation of AB and BC can be
considered concentrated at the bends θ1 and θ2 at the centroids of
respectively the trapezoid M/EI diagram for AB, and the triangular
M/EI diagram for BC.

Figure 8.48d shows the elastic curve. Please note that the deflection due to
bending (for small deflections) is always normal to the member axis.

Comment: The method using the moment-area theorems is far more effi-
cient here than that with the forget-me-nots. To verify this, the reader is
asked to perform the same calculation with the forget-me-nots.

Example 3: Non-prismatic cantilever beam
The non-prismatic cantilever beam ABC in Figure 8.50a is loaded by a
force F at the free end C. The bending stiffness is 2EI for AB and EI for
BC.

Questions:
a. Determine the rotation and deflection at B and C.
b. Draw a sketch of the elastic curve.
c. By how many percent does the deflection increase at C if the beam is

prismatic with bending stiffness EI?

Solution:
a. Figure 8.50b shows the M diagram and Figure 8.50c the M/EI diagram,
both with the deformation symbols.

When determining the deflections, we can consider the deformation of AB
and BC concentrated at the bends θ1 and θ2 at the centroids of respectively
the trapezoid M/EI diagram for AB, and the triangular M/EI diagram for
BC. For the trapezoid M/EI diagram for AB, the magnitude and location
of the bend can be found using the formulas in Table 8.5.

The magnitude of the bends θ are

θ1 = 1
2 · � ·

(
F�

EI
+ F�

2EI

)
= 3

4

F�2

EI
(area of a trapezium),

force F at the free end, with (b) the bending moment diagram and
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Figure 8.50 (c) The M/EI or curvature diagram. The deformation
of AB and BC can be considered concentrated at the bends θ1 and θ2
at the centroids of respectively the trapezoid M/EI diagram for AB
and the triangular M/EI diagram for BC. (d) Sketch of the elastic
curve. The deflections at B and C are found as the tail-wagging
effect due to θ1, and θ1 and θ2 respectively. (e) To simplify the
calculation, the trapezoid part of the M/EI diagram can also be split
into two triangles.

θ2 = 1
2 · � · F�

EI
= 1

2

F�2

EI
(area of a triangle).

The locations of these bends are defined by (see Figure 8.50c)

a1 = 1
3 · � ·

F�
EI

+ 2 × F�
2EI

F�
EI

+ F�
2EI

= 4
9 �,

a2 = � + 1
3 � = 4

3 �.

At the bends θ1 and θ2 in Figure 8.50c we can again see the “eyes” looking
in the direction in which we want to know the deflection.

Figure 8.50d shows the expected shape of the elastic curve.

The deflection at B is found as the tail-wagging effect due to θ1:

wB = (� − a1) · θ1 = 5
9 � · 3

4

F�2

EI
= 5

12

F�3

EI
.

The deflection at C is found as the tail-wagging effect due to both θ1 and
θ2:

wC = (2� − a1) · θ1 + (2� − a2) · θ2

= 14
9 � · 3

4

F�2

EI
+ 2

3 � · 1

2

F�2

EI
= 3

2

F�3

EI
.
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The rotations at B and C are

θB = θ1 = 3

4

F�2

EI
,

θC = θ1 + θ2 = 3

4

F�2

EI
+ 1

2

F�2

EI
= 5

4

F�2

EI
.

Comment: If we do not have the formulas for the area and the centroid
of a trapezium, we can split the trapezoid M/EI diagram for AB into two
simpler shapes, such as the two triangles in Figure 8.50e. In that case the
following holds:

θ2 = θ3 = 1
2 · � · F�

EI
= 1

2

F�2

EI
,

θ4 = 1
2 · � · F�

2EI
= 1

4

F�2

EI
.

The deflection and rotation at B are now found as the tail-wagging effect
due to bends θ3 and θ4; those at C are found as the tail-wagging effect due
to θ2 to θ4. For example:

wC = 5
3 � · θ3 + 4

3 � · θ4 + 2
3 � · θ2

= 5
3 � · 1

2

F�2

EI
+ 4

3 � · 1

4

F�2

EI
+ 2

3 � · 1

2

F�2

EI
= 3

2

F�2

EI
.

Figure 8.51 The elastic curve with the tangents at A, B and C and
the bends θ1 and θ2. The deflections are scaled.
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Figure 8.51 The elastic curve with the tangents at A, B and C and
the bends θ1 and θ2. The deflections are scaled.

b. In Figure 8.51 the deflections are scaled. They have been magnified with
respect to the structural dimensions. Using the tangents at A, B and C, we
can easily draw an accurate sketch of the elastic curve.

c. If the beam is prismatic, with bending stiffness EI , the deflection at C
according to forget-me-not (2) is

wC = F(2�)3

3EI
= 8

3

F�3

EI
.

With respect to the value wC = 3
2

F�3

EI
found earlier in part (a), the deflec-

tion at C increases by

8
3 − 3

2
3
2

× 100% = 78%.

Comment: In the area AB the bending moments are largest, as is the in-
fluence on the deflection at the free end C (the tail-wagging effect due to
θ1, see Figure 8.50c). A magnification of the bending stiffness in this area
therefore causes a relatively strong reduction in the deflection at C.

Example 4: Cantilever beam with distributed load and point load
In Figure 8.52a cantilever beam ABC carries a uniformly distributed load
q = 50 kN/m along AB and a point load F = 15 kN at C. The bending
stiffness is EI = 7.36 MNm2.

Question:
Determine the deflection at C.
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Figure 8.52

Solution:
Figure 8.52b shows the M/EI diagram. In order to recognise the shape of
the M diagram in the M/EI diagram, the numerical value of the bending
stiffness EI has not been included in the M/EI diagram. Figure 8.52c
shows a sketch of the expected elastic curve.

When determining the deflection wC at C we split the M/EI diagram into
the parts (1) due to the distributed load q and (2) due to point load F (see
Figures 8.52d and 8.52e). With EI = 7.36 MNm2 the bends θ1 and θ2 are

θ1 = 1
3 × (1.2 m) × 36 kNm

EI
= 1.957 × 10−3 (area parabola),

θ2 = 1
2 × (2.4 m) × 36 kNm

EI
= 5.870 × 10−3 (area triangle).

The deflections wC;1 due to the distributed load and wC;2 due to the point
load are determined as the tail-wagging effects due to the bends θ1 and θ2
respectively

wC;1 = θ1 × (2.1 m) = (1.957 × 10−3) × (2.1 m) = 4.109 × 10−3 m ,

wC;2 = θ2 × (1.6 m) = (5.870 × 10−3) × (1.6 m) = 9.391 × 10−3 m .

Figure 8.52 (a) A cantilever beam with a uniformly distributed
load and a point load, (b) the M/EI diagram and (c) a sketch of
the elastic curve. (d) The deformation due to the parabolic part
(1) of the M/EI diagram can be considered concentrated at the
bend θ1. (e) The deformation due to the triangular part (2) of the
M/EI diagram can be considered concentrated at the bend θ2.
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Figure 8.53 (a) A bent beam loaded by the force F at the free end
C. (b) The M/EI diagram. The bends θ1 and θ2 represent the defor-
mations of AB and BC respectively and are drawn in such a way that
their open sides look in the direction that we are working towards,
i.e. from A (where the rotation and displacement are known) to B
and C (where we wish to know the rotation and displacement).

By superposing the contributions of the distributed load and point load we
find for the final deflection at C

wC = wC;1 + wC;2 = 13.5 × 10−3 m = 13.5 mm.

Comment: Seventy percent of the deflection at C is caused by the point load
of 15 kN at C, and 30% by the distributed load of 50 kN/m over AB. This
could have been expected as the point load causes larger moments over the
length of the beam than the distributed load.

Example 5: Fixed bent beam
The bent prismatic beam ABC, with a right angle at B, is fixed at A and
loaded by a force F at the free end C. The bending stiffness of the bent
beam is EI . The deformation due to normal forces is ignored.

Questions:
a. Determine the displacements at B and C in the given xy coordinate

system.
b. Sketch the elastic curve with scaled displacements.

Solution:
a. Figure 8.53b shows the M/EI diagram. The deformation of AB can be
considered concentrated at bend θ1, that of BC at bend θ2. The location of
these bends (at the centroids of the respective parts of the M/EI diagram)
are indicated in the figure. The magnitudes are

θ1 = � · F�

EI
= F�2

EI
(area of a rectangle),

θ2 = 1
2 · � · F�

EI
= 1

2

F�2

EI
(area of a triangle).
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Figure 8.54 (a) Displacements and rotations at B and C due to the
deformation of AB. (b) Displacement and rotation at C due to the
deformation of BC. (c) The elastic curve with scaled displacements.
Since the right angled bent at B is rigid, the deformation of the
structure is due to the deformation of the members only, and the

The bends are drawn in such a way again that the open side looks in the
direction towards which we are working, i.e. from A (where the deflection
and rotation are known) toward B and C (where we want to determine the
deflection and rotation).

When determining the deflections at B and C we look at the following
separately: (1) the influence of the deformation of AB and (2) the influence
of the deformation of BC.

The deformation of AB causes the tail-wagging effect due to the bend θ1
(see Figure 8.54a). In the given coordinate system

u
(1)
x;B = u

(1)
x;C = +θ1 · 1

2 � = +F�2

EI
· 1

2 � = +1

2

F�3

EI
.

B and C have the same vertical distance to the bend θ1 and therefore ex-
perience the same horizontal displacement.1

Since the horizontal distance from B to the bend θ1 is zero, the vertical
displacement of B is also zero:

u
(1)
y;B = 0.

In addition

u
(1)
y;C = −θ1 · � = −F�2

EI
· � = −F�3

EI

The vertical displacement of C due to θ1 is aimed downwards, against the
positive y direction: hence the minus sign.

1 See also the Intermezzo in Example 2. right angle at B remains a right angle in the deformed structure.
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The deformation of BC causes the tail-wagging effect due to the bend θ2
(see Figure 8.54b). The deformation of BC influences only the deflection
of C. In the given coordinate system

u
(2)
x;C = 0,

u
(2)
y;C = −θ2 · 2

3 � = −1

2

F�2

EI
· 2

3 � = −1

3

F�3

EI
.

The results are

ux;B = u
(1)
x;B = +1

2

F�3

EI
,

uy;B = u
(1)
y;B = 0,

ux;C = u
(1)
x;C + u

(2)
x;C = +1

2

F�3

EI
+ 0 = +1

2

F�3

EI
,

uy;C = u
(1)
y;C + u

(2)
y;C = −F�3

EI
− 1

3

F�3

EI
= −4

3

F�3

EI
.

b. In Figure 8.54c the displacements at B and C are scaled. They have
been magnified again with respect to the structural dimensions. In addi-
tion, the tangents to the elastic curve at A, B and C are shown. These
tangents can be used to draw a quick and accurate sketch of the elastic
curve.

Comment: The deformation of the structure is the result of the deformation
of the members AB and BC. Rigid corner joints1 do not change shape. In

1 If the corner joint at B is not rigid but, for example, a spring joint, the angle
between the members AB and BC will change. This has an effect on the displace-

Figure 8.54 (a) Displacements and rotations at B and C due to the
deformation of AB. (b) Displacement and rotation at C due to the
deformation of BC. (c) The elastic curve with scaled displacements.
Since the right angled bent at B is rigid, the deformation of the
structure is due to the deformation of the members only, and the
right angle at B remains a right angle in the deformed structure.
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Figure 8.55 (a) A simply supported beam with overhang, loaded
by a force F at the free end of the overhang, with (b) the bending
moment diagram and (c) a sketch of the elastic curve. The maxi-
mum deflection in field AB occurs at D. Here the elastic curve has a
horizontal tangent. (d) The M/EI diagram for AB. The unknown ro-
tation θA at A is determined from the moment area theorem and the
fact that the displacement at B is zero. To determine the displace-
ment at B, we start at A and have to deal only with the deformation
of AB.

the deformed structure, the right angle at B is therefore still a right angle
(see Figure 8.54c).

Comment: In the first five examples in applying the moment-area theorems,
we started at the a fixed end A for which the rotation ϕA and wA were
known (zero). This changes at Example 6. In Examples 6 to 9 the rota-
tion at the start is not known but has to be determined from a deflection
known elsewhere. Example 10, where we calculate the displacements for a
three-hinged frame, goes a step further in that the necessary rotations at the
supports have to be determined from the joining conditions at the hinge.

Example 6: Simply supported beam with overhang
Beam ABC, simply supported at A and B, carries a force F at the free end
C of the overhang (see Figure 8.55a). The beam is prismatic with bending
stiffness EI .

Questions:
a. Determine the deflection at C.
b. Determine the location and magnitude of the maximum deflection in

field AB.

Solution:
a. Figure 8.55b shows the M diagram. Figure 8.55c shows a sketch of the
elastic curve. An as yet unknown rotation θA occurs at A. The unknown
rotation θA can be found from the fact that the deflection at B is zero.
Starting at A, we can find the deflection at B by considering the deformation
of AB. Figure 8.55d shows the M/EI diagram for this part of the beam. For
the bend θ1 we have

ment at C. The calculation of the structures with non-rigid joints falls outside the
scope of this book.
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Figure 8.55 (d) The M/EI diagram for AB. The unknown rotation
θA at A is determined from the moment area theorem and the fact
that the displacement at B is zero. To determine the displacement
at B, we start at A and have to deal only with the deformation of
AB. (e) For the displacement at C, the M/EI diagram for the entire
beam has to be taken into account. The deformations of AB and
BC are concentrated in the bends θ1 and θ2 respectively. (f) If the
elastic curve at D has a horizontal tangent, then θ3 = θA. With this
information we can determine the distance x from D to support A.

θ1 = 1
2 · a · Fb

EI
= 1

2

Fab

EI
.

From

wB (↓) = −θA · a + θ1 · 1
3 a = 0

it follows that

θA = 1
3 θ1 = 1

6

Fab

EI
.

For the deflection at C we have to consider the M/EI diagram for the entire
beam (see Figure 8.55e).

With

θ2 = 1
2 · b · Fb

EI
= 1

2

Fb2

EI

we find

wC (↓) = −θA · (a + b) + θ1 · ( 1
3 a + b

) + θ2 · 2
3 b

= −1

6

Fab

EI
· (a + b) + 1

2

Fab

EI
· ( 1

3 a + b
) + 1

2

Fb2

EI
· 2

3 a

= 1

3

F(a + b)b2

EI
.

b. Assume the maximum deflection in field AB occurs at D, at a distance
x from A (see Figure 8.55c). The elastic curve has a horizontal tangent at
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Figure 8.56 (a) A simply supported beam with uniformly distrib-
uted load. (b) Sketch of the elastic curve. (c) The M/EI diagram.
(d) Part of the M/EI diagram required for determining the deflec-
tion at C. In the calculation, the M/EI diagram for AC is split into
a parabolic section (bend θ2) and a triangular section (bend θ3).

D, so that θD = 0. Using this fact we can determine the distance x. For the
length x of the hatched area of the M/EI diagram, Figure 8.55f shows that

θ3 = 1
2 · x · Fb

EI
· x

a
= 1

2

Fab

EI

x2

a2 .

From

θD ( ) = θA − θ3 = 1

6

Fab

EI
− 1

2

Fab

EI

x2

a2 = 0

it follows that

θ3 = θA and x = 1
3 a

√
3 = 0.577a.

This can be used to find the maximum deflection at D:

wD (↑) = θA · x − θ3 · 1
3 x = θA · 2

3 x

= 1

6

Fab

EI
· 2

9 a
√

3 = 1

27

Fa2b

EI

√
3 .

Example 7: Simply supported beam with uniformly distributed load
The simply supported beam in Figure 8.56a has a span of 12 m and carries
a uniformly distributed load of 15 kN/m. The beam is prismatic with a
bending stiffness EI = 320 MNm2.

Question:
Determine the deflections at C and D, the points at one-third of the span.

Solution:
Figure 8.56b shows a sketch of the elastic curve, and Figure 8.56c shows

�
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the M/EI diagram.1

To determine the deflection wC at C we first have to know the rotation at
one of the supports.

The rotation θA at A follows from the fact that the deflection at B is zero.
Working from A to B, the bend θ1 is set down in the M/EI diagram with
the open side looking in the direction towards B (see Figure 8.56b). The
magnitude of θ1 is

θ1 = 2
3 · (12 m) · (270 kNm)

EI
= 2160 kNm2

EI
(area parabola).

From

wB (↓) = θA · (12 m) − θ1 · (6 m) = 0

it follows that

θA = 1
2 θ1 = 1

2 · 2160 kNm2

EI
= 1080 kNm2

EI
.

Starting at A, we can now determine the deflection at C. Here the defor-
mation of only AC is relevant. The M/EI diagram for AC is shown in
Figure 8.56d. The calculation is left to the reader. The M/EI diagram is
split into a parabolic area and a triangular area, of which the contributions

1 In order to recognise the shape of the M diagram in the M/EI diagram the nu-
merical value of the bending stiffness EI has not been included in the diagram.

Figure 8.56 (a) A simply supported beam with uniformly distrib-
uted load. (b) Sketch of the elastic curve. (c) The M/EI diagram.
(d) Part of the M/EI diagram required for determining the deflec-
tion at C. In the calculation, the M/EI diagram for AC is split into
a parabolic section (bend θ2) and a triangular section (bend θ3).
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are calculated separately below. With

θ2 = 2
3 · (4 m) · (30 kNm)

EI
= 80 kNm2

EI
(area of a parabola),

θ3 = 1
2 · (4 m) · (240 kNm)

EI
= 480 kNm2

EI
(area of a triangle),

we find

wC (↓) = θA · (4 m) − θ2 · (2 m) − θ3 · ( 1
3 × 4 m

)

= 1080 kNm2

EI
· (4 m) − 80 kNm2

EI
· (2 m)

− 480 kNm2

EI
· ( 1

3 × 4 m
)

= 3520 kNm3

EI
.

With EI = 220 MNm2, the numerical value of the deflection at C is

wC = 3520 kNm3

320 MNm2
= 11 × 10−3 m = 11 mm (↓)

On the basis of symmetry, the deflection at D is equal to that at C:

wD = wC = 11 mm (↓)
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Figure 8.57 (a) The simply supported right-angled beam is loaded
by a horizontal force F at roller support A. (b) The M/EI diagram.
The bends θ1 and θ2 represent the deformations of CB and BA
respectively. The open sides of the bends look in the direction in
which we are working: from C over B to A. The unknown rotation at
C is found from the joining condition that the vertical displacement
at A must be zero.

Example 8: Simply supported right-angled beam
The right-angled beam in Figure 8.57a is supported by a hinge at C and
supported on a roller with horizontal roller track at A. The corner joint at B
is rigid. The structure is loaded by a horizontal force F at A. AB and BC
have the same bending stiffness EI . Normal force deformation is ignored.

Questions:
a. Determine the horizontal displacement of the roller support at A.
b. Sketch the elastic curve for ABC.

Solution:
a. Figure 8.57b shows the M/EI diagram. The calculation is left to the
reader.

C is a fixed point where the rotation is still unknown. This rotation can be
determined by using the fact that the vertical deflection at A is zero.

In order to avoid errors, the calculations below are all performed in the xy

coordinate system shown in Figure 8.57a.

Assume the rotation at C is ϕC (see Figure 8.57b). Working from C to A,
we draw the bends θ1 and θ2, which represent the deformations of BC and
AB respectively, with the the open side in the viewing direction, from C
over B to A. For these bends we have

θ1 = 1
2 · � · F�

EI
= 1

2

F�2

EI
,

θ2 = · 2� · F�

EI
= F�2

EI
.1

2
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Figure 8.58 The elastic curve drawn to scale, with the tangents
at A, B and C. The right angle at B remains a right angle in the
deformed structure.

The vertical displacement at A is determined as the tail-wagging effect due
to ϕC, θ1 and θ2:

uy;A = −ϕC · 2� − θ1 · 2� − θ2 · 4
3 �.

From uy;A = 0 it follows that

ϕC = −θ1 − 2
3 θ2 = −1

2

F�2

EI
− 2

3 × F�2

EI
= −7

6

F�2

EI
.

ϕC is negative; so the rotation at C is opposite to the direction assumed in
Figure 8.57b.

The horizontal displacement at A is determined as the tail-wagging ef-
fect due to ϕC and θ1. It should be noted that the tail-wagging effect
due to θ2 does not influence the horizontal displacement of A (again see
Figure 8.57b)

ux;A = −ϕC · � − θ1 · 1
3 �

= −
(

−7

6

F�2

EI

)
· � −

(
1

2

F�2

EI

)
· 1

3 � = +F�3

EI
.

b. Figure 8.58 shows the displacements of A and B to scale. With a certain
amount of effort, we can also draw the tangents at A, B and C. This provides
sufficient information for a good sketch of the elastic curve.

Comment:
Since the corner joint at B is rigid, the right angle at B remains a right angle
in the deformed structure.
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Figure 8.59

Example 9: Simply supported structure composed of two rigidly joined
beams
The structure shown in Figure 8.59a is supported by a hinge at A and on
a roller with vertical roller track at D. The corner joint at C is rigid. All
members have the same bending stiffness EI .

For the given load 3F at B we only take account of the deformation due to
bending; normal force deformation is ignored.

Use the xz coordinate system given in Figure 8.59a.

Questions:
a. Determine the rotation at A.
b. Determine the displacement at C.
c. Determine the displacement at D.
d. Determine the displacement at B.

Solution:
a. Figure 8.59b shows the M/EI diagram. Since all members have the same
bending stiffness EI the M/EI diagram is the same shape as the M dia-
gram. The calculation is left to the reader.

Figure 8.59 (a) Simply supported structure composed of two
beams rigidly joined at C, and loaded by a vertical force 3F at
the free end B. (b) The M/EI diagram. The unknown rotation ϕA
can be determined from the joining condition that the horizontal
displacement in D is zero. Here only the deformation of ACD is
relevant, concentrated in the bends θ1 and θ2, that look with their
open ends in the direction in which we are working: from A over
C to D. (c) Sketch of the elastic curve. The rigid angle at C does
not change.
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A is a fixed point where the rotation ϕA is still unknown (see Figure 8.59b).
This rotation can be found from the condition that the roller cannot move
horizontally at D:

ux;D = 0.

Looking from A only the rotation ϕA and the deformations of AC and CD
are of influence on the deflection at D. The deformations of AC and CD
are represented by the bends θ1 and θ2 respectively. The open side of these
bends are again pointed in the viewing direction, from A via C to D. The
bends θ1 and θ2 are

θ1 = 1
2 · 4a · 12Fa

EI
= 24

Fa2

EI
,

θ2 = 1
2 · 5a · 18Fa

EI
= 45

Fa2

EI
.

From

ux;D = −ϕA · 3a − θ1 · 3a − θ2 · 2a = 0

it follows that

ϕA = −θ1 − 2
3 θ2 = −54

Fa2

EI
.

The minus sign points to the fact that the rotation at A is opposite to the
direction assumed in Figure 8.59b (see the sketch of the elastic curve in
Figure 8.59c).
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Figure 8.59 (b) The M/EI diagram. The unknown rotation ϕA
can be determined from the joining condition that the horizontal
displacement in D is zero. Here only the deformation of ACD is
relevant, concentrated in the bends θ1 and θ2, that look with their
open ends in the direction in which we are working: from A over C
to D. (c) Sketch of the elastic curve. The rigid angle at C does not
change.

b. The vertical deflection at C is

uz;C = −ϕA · 4a − θ1 · 4
3 a = +184

Fa3

EI
.

c. The vertical deflection at D is

uz;D = +θ1 · 8
3 a + θ2 · 8

3 a = +184
Fa3

EI
.

Comment: Since D is directly above A and the horizontal component of
the distance between A and D is zero, a rotation at A has no effect on the
vertical displacement at D.

d. To determine the vertical deflection at B we also have to know the bend
θ3:

θ3 = 1
2 · 2a · 6Fa

EI
= 6

Fa2

EI
.

Hence

uz;C = −ϕA · 6a − θ1 · ( 4
3 a + 2a

) + θ3 · 4
3 a = +252

Fa3

EI
.

Figure 8.59c shows a sketch of the elastic curve. Since the corner joint at C
is rigid, the deformation of the structure has no effect on the angle between
the members ACB and CD.

Example 10: Three-hinged frame
In the three-hinged frame in Figure 8.60a, ACSD has a bending stiffness EI

and BD has a bending stiffness EI
√

5. The frame is loaded by a vertical
force 8F at D. Normal force deformation is ignored.
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Figure 8.60 (a) Three-hinged frame, loaded by a vertical force 8F

at D. (b) The M/EI diagram.

Questions:
a. Determine the displacements at S, C and D.
b. Sketch the elastic curve.

Solution:
a. Figure 8.60b shows the M/EI diagram. The calculation is left to the
reader.

Note that the displacements and rotations are consistently denoted in the
xz coordinate system given in Figure 8.59a. With complicated structures,
working in a coordinate system reduces the probability of mistakes, even
when the visual approach is used as with the use of moment-area theorems.

A and B are fixed points with unknown rotations. Assume ϕA is the rotation
at A and ϕB the rotation at B (see Figure 8.60c).

Since the rotation directly to the left of S need not be the same as that
directly to the right of S, the moment-area theorem cannot be used to work
from A to B in one go.1 Sections AS and BS are therefore released at S for
the time being, and addressed separately.

for both AS and BS. The unknown rotations ϕA and ϕB in these expressions
follow from the joining condition that the displacements directly to the left
and right of S must be equal. So

u
(AS)
x;S = u

(BS)
x;S ,

1 If the rotations directly to the left and right of hinge S are not equal, then the
rotation ϕ is discontinuous at S. However, when deriving the moment-area the-
orems in Section 8.4.1 we stated that the moment-area theorems are valid only
if the rotation is continuous.

From A and B, we can determine the horizontal and vertical deflection at S
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u
(AS)
z;S = u

(BS)
z;S .

Figure 8.60c shows the bends θ1 to θ4 that represent the deformations of the
various parts of the three-hinged frame. All the bends θ1 to θ4 look in the
direction in which we work, that is towards S.

To simplify the notation, we introduce the quantity θ :

θ = Fa2

EI
.

The bends θ1 to θ4 can be expressed in terms of θ :

θ1 = 1
2 · 6a · 12Fa

EI
= 36

Fa2

EI
= 36θ,

θ2 = θ1 = 36θ,

θ3 = 1
2 · 3a

√
5 · 6Fa

EI
√

5
= 9

Fa2

EI
= 9θ,

θ4 = 1
2 · 3a · 6Fa

EI
= 9

Fa2

EI
= 9θ.

The displacement directly to the left of S (on AS) is

u
(AS)
x;S = −ϕA · 6a + θ1 · 2a = −6ϕAa + 72θa,

u
(AS)
z;S = −ϕA · 6a + θ1 · 6a + θ2 · 4a = −6ϕAa + 360θa.

Figure 8.60 (a) Three-hinged frame, loaded by a vertical force 8F

at D. (b) The M/EI diagram.
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Figure 8.60 (c) The unknown rotations ϕA and ϕB at the supports
are determined from the joining condition that the displacements
directly to the left and right of hinge S have to be equal. For AS,
working from A to S, and for BS, working from B to S, all bends
look towards S.

The deflection directly to the right of S (on BS) is

u
(BS)
x;S = −ϕB · 6a + θ3 · 2a = −6ϕBa + 18θa,

u
(BS)
z;S = +ϕB · 6a − θ3 · 4a − θ4 · 2a = +6ϕBa − 54θa.

From the equation u
(AS)
x;S = u

(BS)
x;S it follows that

−6ϕAa + 72θa = −6ϕBa + 18θa ⇒ ϕA − ϕB = +9θ. (8.13)

In the same way, it follows from u
(AS)
z;S = u

(BS)
z;S that

−6ϕAa + 360θa = +6ϕBa − 54θa ⇒ ϕA + ϕB = +69θ. (8.14)

(8.13) and (8.14) are two equations with ϕA and ϕB as the two unknowns.
The solution is

ϕA = 39θ = +39
Fa2

EI
,

ϕB = 30θ = +30
Fa2

EI
.

The rotations at A and B are both positive; their directions therefore agree
with the directions assumed in Figure 8.60c.

From A we can now determine the following displacements and rotations
to the left of S:1

1 The intermediate calculations are left to the reader.
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Figure 8.61 Elastic curve drawn to scale. Deformation occurs
only in the members. The rigid corner joints at C and D do not
change. The displacement at C is normal to AC and the displace-
ment of D normal to BD. The elastic curve for CSD shows a bend
at hinge S.

ux;C = −ϕA · 6a + θ1 · 2a = −162
Fa3

EI
and uz;C = 0,

ux;S = −ϕA · 6a + θ1 · 2a = −162
Fa3

EI
(ux;S = ux;C),

uz;S = −ϕA · 6a + θ1 · 6a + θ2 · 4a = +126
Fa3

EI
,

ϕC = ϕA − θ1 = +3
Fa2

EI
and ϕ

(AS)
S = ϕC − θ2 = −33

Fa2

EI
.

From B we can determine the displacements and rotations to the right of S:

ux;D = −ϕB · 6a + θ3 · 2a = −162
Fa3

EI
(ux;D = ux;S = ux;C),

ux;D = +ϕB · 3a − θ3 · a = +81
Fa3

EI
,

ϕD = ϕB − θ3 = +21
Fa2

EI
and ϕ

(BS)
S = ϕD − θ4 = +12

Fa2

EI
.

Comment: The displacement at S is no longer determined from B, as it is
equal to that determined from A. The reader is requested to check this by
means of calculation.

b. Figure 8.61 shows the elastic curve. Please note the following:
• The corner joints at C and D are rigid and therefore remain unchanged

in the deformed structure.
• The elastic curve for CSD has a bend at hinge S. Here the rotation

Figure 8.60 (c) The unknown rotations ϕA and ϕB at the supports
are determined from the joining condition that the displacements
directly to the left and right of hinge S have to be equal. For AS,
working from A to S, and for BS, working from B to S, all bends
look towards S.
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Figure 8.62 (a) A simply supported beam with (b) the M/EI or
curvature diagram due to a distributed load for which the details
are not given. (c) Elastic curve due to the deformation of only a
small beam element at C. AC and BC remain straight and meet at
an angle which is equal to the area of the hatched strip in the M/EI

diagram. (d) The final elastic curve associated with the complete
M/EI diagram in (b).

ϕ (the derivative of the vertical displacement) is therefore indeed
discontinuous.

• Since the normal force deformation is ignored, the horizontal distance
between C, S and D does not change. All points on CSD therefore have
the same horizontal displacement. For CSD, the deformation due to
bending causes only vertical displacements.

• The displacement at D is normal to BD, since – we repeat – the de-
formation due to bending gives deflections only normal to the member
axis.

8.5 Simply supported beams and the M/EI diagram

In this last section in Chapter 8 we look at two properties related to the
M/EI diagram for a simply supported beam. In Section 8.5.1 we show that
the rotations at the supports can be found as the support reactions due to a
distributed load that is equal in shape and magnitude to the M/EI diagram.
In Section 8.5.2 we derive an approximate formula for determining the
maximum deflection of a simply supported beam. This formula is related
to the area of the M/EI diagram.

8.5.1 Rotation at the supports of a simply supported beam;
the conjugate-beam method

In this section we show that the rotations at the supports of a simply sup-
ported beam can be found as the support reactions due to a distributed load
equal in magnitude and shape to the M/EI diagram.

Figure 8.62b shows the M/EI diagram of the simply supported beam AB in
Figure 8.62a. The beam is subject to a distributed load, for which the details
are not further given. Figure 8.62c shows the deflections and rotations due
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to the deformation of only a small beam element dx at C, at a distance x

from A and (�−x) from B. Since the deformation of AC and BC is ignored,
these parts remain straight. At C they are at an angle dϕ to one another, of
which the magnitude is equal to the area of the hatched strip of the M/EI

diagram in Figure 8.62b:

dϕ = M

EI
dx.

The rotation dθA at A due to only the deformation dϕ of the beam at C
is found from the geometry (kinematic relationship) in Figure 8.62c. The
distance BB′ is

BB′ = � dθA = (� − x) dϕ,

so

dθA =
(

1 − x

�

)
dϕ =

(
1 − x

�

) M

EI
dx. (8.13)

Since

dϕ = dθA + dθB,

the rotation at B is

dθB = dϕ − dθA = x

�

M

EI
dx. (8.14)

The final rotations θA in A and θB at B (see Figure 8.62d) is found by sum-
ming the deformation contributions of all small beam elements dx between
x = 0 and x = �, i.e. by integrating all contributions over the length �:

Figure 8.62 (a) A simply supported beam with (b) the M/EI or
curvature diagram due to a distributed load for which the details
are not given. (c) Elastic curve due to the deformation of only a
small beam element at C. AC and BC remain straight and meet at
an angle which is equal to the area of the hatched strip in the M/EI

diagram. (d) The final elastic curve associated with the complete
M/EI diagram in (b).
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Figure 8.63 (a) A simply supported beam with a distributed load
q = q(x). (b) The support reactions dAv and dBv due to the resul-
tant q dx of the distributed load q over a small beam element dx at
C.

θA =
∫ �

0

(
1 − x

�

) M

EI
dx, (8.15)

θB =
∫ �

0

x

�

M

EI
dx. (8.16)

Figure 8.63a shows the same simply supported beam with an arbitrarily
distributed load q . The support reactions at A and B are Av and Bv re-
spectively. We determine these support reactions by using Figure 8.63b,
in which the support reactions dAv and dBv are shown due to only the
resultant qdx of the distributed load q over the small length dx at C. From
the equilibrium of beam AB it follows that

dAv =
(

1 − x

�

)
q dx, (8.17)

dBv = x

�
q dx. (8.18)

The support reactions Av at A and Bv in B are found by integrating the
contributions of all beam elements dx over the length �:

Av =
∫ �

0

(
1 − x

�

)
q dx, (8.19)

Bv =
∫ �

0

x

�
q dx. (8.20)

If we compare the equilibrium equations (8.17) to (8.20) for the support
reactions at A and B to kinematic relationships (8.13) to (8.16) for the rota-
tions at A and B, there is a clear similarity in structure. If, in the equilibrium
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equations (8.17) to (8.20) we replace the distributed load q by M/EI , the
associated support reactions are exactly equal to the rotations.

Conclusion: For a simply supported beam, the rotations at the supports can
be found as the support reactions due to a distributed load that is equal in
shape and magnitude to the M/EI diagram.

The direction of the rotations in Figure 8.62d can be related to the direc-
tion of the support reactions in Figure 8.63a, however they can often be
predicted beforehand using common sense.

Comment: If the analogy is applied correctly, the real M/EI diagram and
the M/EI diagram as load diagram are plotted on opposite sides of the
member axis: compare Figures 8.62b and 8.63a. In Figure 8.62b, M/EI is
positive in the given xz coordinate system. In the same coordinate system, a
positive M/EI diagram as a load acts downwards, as shown in Figure 8.63a.

Comment: Equations (8.17) to (8.20) are based on the equilibrium equa-
tions, and (8.13) to (8.16) on the kinematic relationships. Both types of
relationship are shown below as they were derived previously in an xz

coordinate system:1

Kinematic relationships Equilibrium equations

d(−ϕ)

dx
= −κ = − M

EI

dV

dx
= −q

dw

dx
= (−ϕ)

dM

dx
= V

d2w

dx2 = −κ = − M

EI

d2M

dx2 = −q

1 See Section 4.3.
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Figure 8.64 (a) Fixed beam loaded by the force F at the free end,
with (b) the M/EI diagram and (c) the elastic curve. (d) If the M/EI

diagram in (b) is seen as the load diagram – plotted on the opposite
side of the beam axis, and acting upwards – then the associated
bending moment diagram (e) is the same shape as the elastic curve
(c). It is confusing, however, that the boundary conditions at A and
B have to be adapted.

The kinematic relationships have the same structure as the equilibrium
equations. If the curvature κ = M/EI is seen as a distributed load q , the
associated shear force V is equal to the rotation ϕ apart from the sign,
and the bending moment is equal to the deflection w. The shear force dia-
gram (apart from the sign) therefore gives the distribution of the rotation ϕ

and the bending moment diagram gives the bending curve. This analogy is
known as the conjugate-beam method.

When further elaborating this analogy, we have to take account, however,
of the fact that the boundary conditions may be changed. For the beam AB,
fixed at A in Figure 8.64a, and loaded by a point load at the free end B,
both the deflection and rotation at A are zero. In Figure 8.64d the M/EI

diagram has been introduced as the loading diagram. At A the shear force
(that in an absolute sense represents the rotation) must be zero, and the
bending moment (that represents the deflection) must be zero. Apparently,
A has become a free end in the analogy, and B has become a fixed end. In
this situation the bending moment diagram, as a result of the triangular load
(see Figure 8.64e) is the same as the elastic curve of the beam due to the
point load (see Figure 8.64c).1

Since all in all this is quite confusing, this approach is not elaborated for
a general case, but its application remains limited to the simply supported
beam in which case the boundary conditions in the analogy do not change.
This is illustrated using three examples, the elaboration of which is to a
great extent left to the reader.

1 In Figure 8.64b M/EI in the given xz coordinate system is negative and, as a
distributed load, it acts upwards. Therefore the real M/EI diagram and the M/EI

diagram as load diagram are plotted on opposite sides of the member axis.
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Figure 8.65 (a) A simply supported beam loaded by a couple at
the left-hand end, with (b) the M/EI diagram and (c) the elastic
curve. The rotations θA and θB at the supports are equal to the
support reactions Av and Bv due to (d) a distributed load of which
the load diagram is equal to the M/EI diagram in (b).

Example 1: Simply supported beam loaded by a couple at one end
The simply supported beam in Figure 8.65a is loaded by the couple T at A.
The beam is prismatic with bending stiffness EI .

Question:
Determine the rotations at A and B.

Solution:
Figure 8.65b shows the M/EI diagram and Figure 8.65c shows a sketch of
the elastic curve. The rotations θA and θB are equal to the support reactions
Av and Bv of the simply supported beam in Figure 8.65d, when the M/EI

diagram has been applied as the load diagram.

The resultant R is

R = 1
2 · T

EI
· � = T �

2EI
.

From the moment equilibrium about B and A respectively we find

θA = Av = 2
3 R = 2

3 · T �

2EI
= T �

3EI
,

θB = Bv = 1
3 R = 1

3 · T �

2EI
= T �

6EI
.

This result is in agreement with forget-me-not (4) in Table 8.4.
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Figure 8.66 (a) A simply supported, non-prismatic beam with
uniformly distributed load. (b) The M/EI diagram and (c) the elas-
tic curve. The rotations θA and θB at the supports are equal to the
support reactions Av and Bv due to (d) a distributed load, of which
the load diagram is equal to the M/EI diagram in (b).

Example 2: Simply supported, non-prismatic beam with uniformly dis-
tributed load
In Figure 8.66a, the simply supported beam carries a uniformly distributed
load q along the entire length. The beam is non-prismatic with a bending
stiffness EI for AC and 2EI for BC.

Question:
Determine the rotations at A and B.

Solution:
Figure 8.66b shows the M/EI diagram and Figure 8.66c a sketch of the
elastic curve. In Figure 8.66d, the M/EI diagram is considered to be the
loading diagram. The support reactions Av and Bv are equal to the rotations
θA and θB respectively, and can determined from the equilibrium of the
beam in Figure 8.66d. The resultants R(AC) and R(BC) are

R(AC) = 2
3 · 1

2 � ·
1
8 q�2

EI
= q�3

24EI
,

R(BC) = 2
3 · 1

2 � ·
1
8 q�2

2EI
= q�3

48EI
.

Using the moment equilibrium about B and A respectively, we find

θA = Av = 11
16 · R(AC) + 5

16 · R(BC) = 9

256

q�3

EI
,

θB = Bv = 5
16 · R(AC) + 11

16 · R(BC) = 7

256

q�3

EI
.
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Figure 8.67 (a) A simply supported beam with overhangs and
a uniformly distributed load. (b) The M/EI diagram and (c) the
elastic curve. The rotations θA and θB at the supports are equal to
the support reactions Av and Bv due to (d) a distributed load on AB,
of which the load diagram is equal to the M/EI diagram in (b). Note
that the M/EI diagrams of the overhangs are ignored!

Example 3: Simply supported beam with overhangs and a uniformly
distributed load
The beam in Figure 8.67a, simply supported at A and B, has two overhangs
of equal length, and carries a uniformly distributed load q along the entire
length. The beam is prismatic and has a bending stiffness EI .

Question:
Determine the rotations at the supports.

Solution:
Figure 8.67b shows the M/EI diagram. The calculation is left to the reader.
Figure 8.67c shows a sketch of the expected elastic curve.

The rotations at the supports A and B depend on the deformation of AB
only. The effect of the overhangs is expressed in the bending moment di-
agram and consequently in the M/EI diagram for AB. When determining
the rotations at A and B, we therefore ignore the M/EI diagram of the
overhangs!

In Figure 8.67d, the M/EI diagram for AB is considered to be the load
diagram.1 The resultant R of the distributed load on half the beam AB is

R = 1
3 ·

1
2 qa2

EI
· a = qa3

6EI
.

On the basis of symmetry, the vertical support reactions at A and B are
equal:

Av = Bv = R = qa3

6EI
.

1 Here the upward distributed load is not plotted on the underside but on the
upperside of the member axis.
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Figure 8.68 The M/EI diagram for a simply supported beam with
(a) a uniformly distributed load and (b) a point load at midspan.

The rotations θA and θB in Figure 8.67c are equal to the vertical support
reactions at A and B respectively:

θA = θB = qa3

6EI
.

8.5.2 Maximum deflection of a simply supported beam

In this section we derive an approximate formula for the maximum deflec-
tion of a simply supported beam. This formula is related to the area of the
M/EI diagram.

The same simply supported prismatic beam with span � and bending stiff-
ness EI carries in Figure 8.68a a uniformly distributed load q , and in Fig-
ure 8.68b a point load F at midspan. Figure 8.68 shows the M/EI diagram
for both cases.

The maximum bending of the beam with uniformly distributed load q is:1

w
(q)
max = 5

384

q�4

EI
.

The area of the M/EI diagram is

A(q)
M/EI = 2

3 ·
1
8 q�2

EI
· � = 1

12

q�3

EI
.

1 See Section 8.1, Example 2 and Section 8.2, Example 3.
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The maximum deflection w
(q)
max can also be written as

w
(q)
max = 5

384

q�4

EI
= 5

32
· A(q)

M/EI · �. (8.21)

Comment: A dimension check shows us that the area of the M/EI diagram
is dimensionless!

In the same way, the maximum bending of the beam with a point load F at
the centre of the span can be expressed in the area of the M/EI diagram.

The maximum deflection1 is

w(F)
max = 1

48

F�3

EI
.

The area of the M/EI diagram is

A(F )
M/EI = 1

2 ·
1
4 F�

EI
· � = 1

8

F�2

EI
,

so w
(F)
max can be written as

w(F)
max = 1

48

F�3

EI
= 1

6
· A(F )

M/EI · �. (8.22)

The coefficients 5/32 = 15/96 and 1/6 = 16/96 in equations (8.21) and
(8.22) differ by some 6.5%. Expression (8.22) could therefore be used as

1 See Section 8.1, Example 4.

Figure 8.68 The M/EI diagram for a simply supported beam with
(a) a uniformly distributed load and (b) a point load at midspan.
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Figure 8.69 (a) A simply supported beam with two point loads
and (b) the associated M/EI diagram.

an approximation for the maximum deflection:

wmax = 1
6 · AM/EI · �. (8.23)

This formula also works quite well when the beam is not prismatic.

Comment: The approximate formula (8.23) is less effective if the bending
moment at the supports is not zero.

Below we give four examples.

Example 1: Simply supported beam with two point loads
The simply supported prismatic beam in Figure 8.69a carries two point
loads F .

Question:
Find an approximation to the maximum deflection.

Solution:
Figure 8.69b shows the M/EI diagram with area 2Fa/EI . According to
the approximate formula (8.23), the maximum deflection is

wmax = 1
6 × 2

Fa2

EI
× 3a = Fa3

EI
.

This is approximately 4.3% larger than the exact value of 23
24

Fa3

EI
.
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Figure 8.70 (a) A simply supported beam with a point load on
one-third of the span and (b) the associated M/EI diagram.

Example 2: Simply supported prismatic beam with an eccentric point
load
The simply supported beam AB in Figure 8.70a has a span � and bending
stiffness EI . The beam carries a point load F at C at a distance �/3 from
the support A.

Question:
Find an approximation to the maximum deflection.

Solution:
Figure 8.70b shows the M/EI diagram with area

AM/EI = 1
2 × 2

9
F�

EI
× � = 1

9

F�2

EI
.

The approximate formula (8.23) gives the maximum deflection:

wmax = 1
6 × 1

9

F�2

EI
× � = 1

54

F�3

EI
= 18.5 × 10−3 × F�3

EI
.

Note: the maximum deflection does not occur at C, where the point load is
applied, nor at midspan.

Comment: The exact value of the deflection can be determined using
formula (8.5), derived in Section 8.3, Example 6:

wmax = Fb(a2 + 2ab)3/2

9
√

3 EI(a + b)
in which a + b = � and a > b.

In the situation in Figure 8.64 we have to use a = 2
3 � and b = 1

3 �, so

wmax = F · 1
3 �

{( 2
3 �

)2 + 2
( 2

3 �
)( 1

3 �
)}3/2

9
√

3 · EI�
= 17.92 × 10−3 × F�3

EI
.



8 Deformation Due to Bending 645

Figure 8.71 (a) A simply supported beam with a uniformly dis-
tributed load on half span AB and (b) the associated M/EI diagram.
The area of the M/EI diagram is easily determined as the sum of
the hatched area of the parabola over AB and the area of the triangle
over ABC.

The approximate formula gives a maximum deflection some 3% higher than
the exact value.

Example 3: Simply supported prismatic beam with a uniformly dis-
tributed load over half the span
The simply supported beam ABC in Figure 8.71a has a length 2� and
bending stiffness EI . The beam carries a uniformly distributed load q over
AB.

Question:
Find an approximation to the maximum deflection.

Solution:
Figure 8.71b shows the M/EI diagram, the calculation of which is left to
the reader. The area of the M/EI diagram can be determined as the sum of
the hatched area of the parabola over AB and the area of the triangle over
ABC:

AM/EI = 2
3 ×

1
8 q�2

EI
× � + 1

2 ×
1
4 q�2

EI
× 2� = 1

3

q�3

EI
.

With approximate formula (8.23) the maximum deflection is

wmax = 1

6
× 1

3

q�3

EI
× 2� = 1

9

q�4

EI
= 0.111

q�4

EI
.

A computer calculation of the maximum deflection gives 0.015 q�4

EI
.

The approximate formula therefore overestimates the maximum deflection
by some 5.5%.
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Figure 8.72 (a) A simply supported non-prismatic beam, loaded
by a series of concentrated forces, with (b) the bending mo-
ment diagram and (c) the M/EI diagram. In the M/EI diagram,
EI = EI(AB) = 11.3 MNm2.

Example 4: Simply supported non-prismatic beam with three point
loads
The simply supported beam ABC in Figure 8.72a has a bending stiffness
EI = 11.3 MNm2 over AB, and a bending stiffness 2EI = 22.6 MNm2

over BC. The location and magnitude of the point loads are given in the
figure.

Question:
Find an approximation to the maximum deflection.

Solution:
Figure 8.72b shows the M diagram and Figure 8.72c shows the M/EI

diagram. The calculation is left to the reader.

The area of the M/EI diagram can be determined by splitting it into
triangles and rectangles (or trapeziums). This gives

AM/EI = 282.5 kNm2

EI
= 282.5 kNm2

11.3 MNm2

= 25 × 10−3.

Comment: From this numerical example we can see that the area of the
M/EI diagram is dimensionless.

An approximation for the maximum bending with formula (8.23) leads to

wmax = 1

6
· AM/EI · �

= 1
6 × (25 × 10−3) × (12 m) = 50 mm.
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Figure 8.73 (a) The simply supported non-prismatic beam, loaded
by a series of concentrated forces, with (b) the elastic curve accord-
ing to an exact calculation. The maximum deflection occurs to the
left of B and is 48 mm.

This value is approximately 4% larger than the maximum deflection of
48 mm that is found with an exact calculation. Figure 8.73 shows a sketch
of the elastic curve determined with a computer program. The maximum
deflection of 48 mm is to the left of B.

Comment: The authors would like to emphasise that the outlined method
of Section 8.5 is strictly limited to simply supported beams. For any other
structure, the other general outlined methods should be deployed.
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8.6 Problems

General comments:
• In all problems, the material behaviour is linearly elastic.
• Unless stated otherwise, the members are prismatic with bending

stiffness EI .
• Deformation due to normal forces is ignored unless stated otherwise.
• The structure’s dead weight is ignored unless clearly stated otherwise.
• So-called “second-order effects” are ignored.1

Determining displacements directly from the moment distribution
(Section 8.1)

8.1: 1–2 The cantilever beam shown is loaded at its free end by a couple
T and force F respectively.

1 “Second-order effects” include the change in force distribution due to a change
in the geometry of the structure. These can be important, particularly for
members in compression. This subject is covered in Engineering Mechanics,
Volume 4.

Questions:
a. Use the method described in Section 8.1 to determine the equation for

the elastic curve from the moment distribution and plot it.
b. Determine the displacement and rotation at the free end x = �. Com-

pare these values regarding magnitude and direction with the relevant
loading case in Table 8.3.

8.2 The simply supported beam AB is loaded by a couple T at support B.

Questions:
a. Determine the bending moment diagram and sketch the elastic curve.
b. Determine the equation for the elastic curve from the moment distribu-

tion.
c. Determine the rotations at the supports, and the displacement at mid-

span. Compare these values regarding magnitude and direction with the
relevant loading case in Table 8.4.

8.3: 1–4 The simply supported beam AB is loaded in four different ways
by couples.
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Questions:
a. Determine the bending moment diagram and sketch the elastic curve.
b. Determine the equation for the elastic curve from the moment distribu-

tion.
c. Determine the rotations and the displacement at midspan.

8.4 A cantilever beam with length � has a constant height h and a linearly
varying width b(x) = b(1 − x/�). The beam is loaded by a force F at
the free end. The material behaviour is linearly elastic with modulus of
elasticity E.

Questions:
a. Determine the equation for the elastic curve from the moment distribu-

tion.
b. Determine the deflection and rotation at the free end. Compare these

values with those of a prismatic beam with height h and (constant)
width b.

Differential equation for bending (Section 8.2)

8.5 Questions:
a. Which three types of equation are at the basis of the fourth-order

differential equation for bending? Describe their significance in words.
b. For a prismatic member, derive the fourth-order differential equation

for bending.
c. To what order does this differential equation change if the member is

not prismatic?

8.6 For an initially straight prismatic beam AB with length � and bending
stiffness EI , the elastic curve is given by

w = q

48EI
x3(2x − 3�).

Questions:
a. Draw the elastic curve.
b. Show that the beam is subject to a uniformly distributed load q .
c. Draw the bending moment diagram and shear force diagram.
d. Draw the forces and moments acting on the beam ends and show that

the beam as a whole is in equilibrium.
e. How could the beam be supported and what, in that case, does the load

consist of?
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8.7 The statically indeterminate beam AB with length � and bending
stiffness EI carries a uniformly distributed load q .

Questions:
a. Determine the displacement w as a function of x.
b. Determine the rotation at B and the deflection at midspan C. Check the

correctness of the results using Table 8.4.
c. Determine the bending moment M and shear force V as functions of x.
d. Draw the bending moment and shear force diagrams with the defor-

mation signs if q = 10 kN/m and � = 4 m. At A and B also draw the
tangents to the bending moment diagram.

e. Determine the location and magnitude of the maximum bending mo-
ment.

f. Determine the support reactions at A and B as they are actually act-
ing; write down their values. Check the correctness of the results using
Table 8.4.

8.8: 1–4 The simply supported beam AB is loaded by couples in four
different ways.

Questions:
a. Use the differential equation for bending to determine the equation for

the elastic curve and plot it.
b. Use the elastic curve to determine the bending moment and shear force

as functions of x, and draw these functions.

c. Determine the expressions for the rotations at the supports and the dis-
placement at midspan.

8.9 The simply supported beam AB carries a linearly distributed load
qz = q̂(1 − x

�
). The bending stiffness of the beam is EI .

Questions:
a. Determine the equation of the elastic curve.
b. Determine the rotations at A and B.
c. Determine the maximum deflection.
d. Determine the bending moment and shear force diagrams, with the

deformation signs and the tangents at A and B. In the calculation use
q̂ = 80 kN/m and � = 4.5 m.

e. Determine the magnitude and location of the maximum bending mo-
ment.
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8.10: 1–3 A statically indeterminate beam AB is loaded in three different
ways and carries the same linearly distributed load qz = q̂ x

�
. In the

calculation use q̂ = 20 kN/m and � = 6 m.

Questions:
a. Use the differential equation for bending to determine the bending

moment and the shear force as functions of x.
b. Draw the bending moment and shear force diagrams, with the deforma-

tion signs.
c. Draw the support reactions at A and B as they are actually acting and

write down their values.
d. Determine the maximum field moment.

8.11 The beam ABC is fixed at both ends, has a length 2� and a bending
stiffness EI . It carries a point load F at midspan B.

Questions:
a. Solve the differential equation for bending for the half beam AB. Which

boundary and joining conditions are used?
b. Draw the elastic curve for the entire beam.
c. Determine the deflection at B. Check the correctness of the answer

using Table 8.4.
d. For AB determine the bending moment and the shear force as functions

of x.
e. For the entire beam, draw the bending moment and shear force dia-

grams.
f. Draw the support reactions at A and B as they are actually acting and

write down their values. Check the correctness of the results using
Table 8.4.
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The three forget-me-nots (Section 8.3, Table 8.3)

8.12 The three columns shown have the same bending stiffness EI . In case
(a) the displacement at the top is 4 mm.

Questions:
a. Determine the displacement at the top in case (b).
b. Determine the displacement at the top in case (c).

8.13 The cantilever beam ABC carries a uniformly distributed load
q = 16 kN/m over AB. The bending stiffness is EI = 23.4 MNm2.

Questions (with the right sign in the given xy coordinate system):
a. Determine the rotation at C in radians.
b. Determine the rotation at C in degrees.
c. Determine the deflection at C.

8.14 You are given a prismatic cantilever beam, loaded at the free end by
a couple T . The deflection at B is 12 mm.

Question:
Determine the deflection at the free end C.

8.15 In the hinged beam ASB, AS has a bending stiffness EI = 5 MNm2,
while SB has an infinite bending stiffness. The dimensions and load are
given in the figure.

Question:
Determine the displacement at S.
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8.16: 1–3 The cantilever beam ACB is
loaded in three different ways.

Questions:
a. Sketch the bending curve.
b. Use forget-me-nots to determine the

deflection and rotation at C.

8.17 Member AA′ has a bending stiffness EI = 15 MNm2, and member
BB′ has a bending stiffness 2EI = 30 MNm2, as shown in the figure.
All other members are rigid. Dimensions and loading are given in the figure.

Questions:
a. Determine the displacement at A.
b. Determine the displacement at B.

8.18 You are given a prismatic column with bending stiffness EI .

Question:
Determine how the column is deformed for the given load.

8.19: 1–2 You are given two structures with the dimensions and load-
ing shown in the figure. Both members AB have the same bending stiffness
EI = 18 MNm2. All other members are rigid.

Question:
Determine the displacement at B.



654 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

8.20 The beam ABC is fixed at A and carries a uniformly distributed
load q = 9.5 kN/m over AC. The bending stiffness of the beam is
EI = 19 MNm2.

Questions:
a. Determine the deflection at C due to the deformation of AB.
b. Determine the deflection at C due to the deformation of BC.
c. Determine the final deflection at C.

8.21 The column AB fixed at A is loaded at its free end by a horizontal
force of 50 kN and a couple T . The direction of the couple is unknown.
The bending stiffness is EI = 4.1 MNm2.

Questions:
a. Determine the direction and magni-

tude of T such that B is not displaced
horizontally.

b. Determine the bending moment and
shear force diagrams; include the val-
ues.

c. Sketch the elastic curve.
d. Determine the rotation at B.
e. Determine the displacement at the

centre of AB.
f. Can you find this loading case in Table 8.4? Check the correctness of

your values using this table.

8.22 The cantilever beam ABC fixed at A, and is loaded by a force of
96 kN at B and another unknown force F at the free end C. The direction
of force F is not given.

Questions:
a. Determine the direction and magnitude of force F so that the displace-

ment at the free end B is zero.
b. Determine the bending moment diagram for AB and sketch the elastic

curve.
c. Determine the deflection at C if the bending stiffness of the beam is

EI = 16 MNm2.
d. Can you find this loading case in Table 8.4? Are the values you found

in line with the values in the table?

Other forget-me-nots (Section 8.3, Tables 8.3 and 8.4)

8.23 You are given a simply supported beam AB. In position (a) the beam
deflects 12 mm due to its dead weight.

Question:
Determine the deflection due to its dead weight in position (b).
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8.24: 1–4 The simply supported beam AB is loaded in four different ways
by couples.

Questions:
a. Determine the bending moment diagram and sketch the elastic curve.
b. Determine the rotations at the supports.
c. Determine the deflection at midspan.

8.25 You are given three beams. At the free end the beam deflects 15 mm
in case (a) and 10 mm in case (b).

Question:
Determine the deflection at the free end of the beam in case (c).

8.26 You are given four different beams with the same bending stiffness
EI .

Question:
For which beam is the deflection at the free end A largest?

8.27 See problem 8.26 for details.

Questions:
a. For each of the beams sketch the elastic curve.
b. Order the beams according to the magnitude of the deflection at A,

starting with the beam with the smallest deflection.

Note: you need not present extensive calculations.
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8.28 The simply supported beam has a bending stiffness EI = 4.5 MNm2.
Dimensions and loading are given in the figure.

Questions:
a. Determine the bending moment diagram with deformation signs.
b. Sketch the elastic curve with the points of inflection.
c. Determine the vertical displacement uz;C at C using forget-me-nots.

8.29 The beam ABC is simply supported at A and B with an overhang
at B; it carries a uniformly distributed load q = 12 kN/m. The bending
stiffness of the beam is EI = 15 MNm2.

Questions:
a. Determine the deflection at the centre of span AB.
b. Determine the deflection at the free end C.
c. Sketch the elastic curve. In the sketch indicate the location of the points

of inflection.

8.30 The beam, simply supported at A and B has two overhangs, and
carries a uniformly distributed load q = 16 kN/m. The bending stiffness of
the beam is EI = 20 MNm2.

Questions:
a. Determine the deflection at the centre of span AB.
b. Determine the deflection at the free end C.
c. Sketch the elastic curve with the points of inflection.

8.31 The simply supported beam ABC has a bending stiffness 2EI

over AB, twice as large as the bending stiffness EI of BC. The beam
carries a uniformly distributed load q = 16 kN/m. For the calculation use
EI = 15 MNm2.

Questions:
a. Determine the deflection at B.
b. Determine the rotation at B.
c. Determine the rotation at A.
d. Determine the rotation at C.
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8.32: 1–2 In structure (1) AB has an infinite bending stiffness, while BC
has a finite bending stiffness EI = 40 MNm2. This is also the bending
stiffness of both AB and BC in structure (2). Dimensions and loading are
given in the figure.

Question:
Determine the displacement at A.

8.33 In the structure shown, the bent member ABC is supported on a hinge
at C, and a two-force member at B. Member ABC has a bending stiffness
EI = 176 MNm2.

Question:
Determine the displacement at A for the given load.

8.34 The hinged beam ABCD has hinges at B and C and is fixed at A and
D. All beam segments have the same bending stiffness EI . The beam is
loaded by a vertical force 6F at the centre of BC.

Questions:
a. Determine the bending moment diagram.
b. Sketch the elastic curve.
c. Determine the deflection at B.
d. Determine the deflection at C.
e. Determine the deflection at the centre of BC.

8.35 You are given the hinged beam shown with bending stiffness
EI = 13.5 MNm2. The dimensions and load are given in the figure.

Questions:
a. Sketch the elastic curve.
b. Determine the deflection at A.
c. Determine the deflection at B.
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8.36 The hinged beam ACDB has hinges at C and D and is fixed at A and
B. All beam segments have the same bending stiffness EI . A uniformly
distributed load q acts over the length ACD.

Questions:
a. Determine the bending moment diagram.
b. Sketch the elastic curve.
c. Determine the deflection at C.
d. Determine the deflection at D.
e. Determine the deflection at the centre of CD.
f. Draw the elastic curve to scale.

8.37: 1–2 You are given two hinged beams. In both cases the bend-
ing stiffness is EI = 10 MNm2. Dimensions and loading are given in the
figures.

Questions:
a. Sketch the elastic curve.
b. Determine the deflection at C.
c. Determine the gap �ϕ at hinge S.

8.38 In the structure shown, AB has a bending stiffness EI = 15 MNm2.
All other members are infinitely stiff. A is a fixed end, C is a hinged sup-
port and B and D are hinged joints. Dimensions and loading are given in
the figure.

Questions:
a. Determine the vertical displacement of E.
b. Determine the horizontal displacement of E.
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Moment-area theorems (Section 8.4)

8.39 As a result of the force F at A, B undergoes a displacement of 15 mm.

Question:
Determine the displacement at A.

8.40 Beam ABC, fixed at C, has an infinite bending stiffness over AB and
a finite bending stiffness EI = 47.5 MNm2 over BC. AB is subject to a
uniformly distributed load q = 15 kN/m.

Question:
Determine the deflection at A.

8.41 The cantilever beam ABC is loaded by a force of 10 kN at the free
end A. The beam has a bending stiffness of 45 MNm2.

Questions:
a. Determine the deflection at A due to the deformation of BC.
b. Determine the deflection at A due to the deformation of AB.

c. Determine the resultant deflection at A. Explain in words the large
difference between the contributions found in (a) and (b).

8.42 You are given four different cantilever beams, loaded at the free end
B by point loads F and 2F .

Question:
Order the beams according to levels of deflection at the free end B, starting
with the beam with the largest deflection.

Comment: You need not provide extensive calculations.
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8.43 The bending stiffness of the beam shown varies linearly from 4EI at
the fixed end to EI at the free end. Dimensions and loading are given in the
figure. In the calculation use EI = 2.5 MNm2.

Question:
Determine the deflection at the free
end.

8.44 You are given three members with the same bending stiffness EI and
the same load from a vertical force F at the free end.

Questions:
If in these three cases one compares the vertical displacement at the free
end, which statement is correct?

a. The vertical displacement is largest at A.
b. The vertical displacement is largest at B.
c. The vertical displacement is largest at C.
d. The vertical displacements at A, B and C are equal.

Comment: You need not provide extensive calculations.

8.45: 1–2 Member AB is fixed at an angle at A, and is loaded in two ways at
the free end B by a force of 8 kN. The bending stiffness is EI = 52 MNm2.

Questions:
a. Sketch the elastic curve.
b. Use the moment-area theorems to determine the horizontal component

of the displacement at B.
c. In the same way, determine the vertical component of the displacement

at B.
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8.46 In the structure shown, all members have the same bending stiffness
EI = 3 MNm2. Dimensions and loading are given in the figure.

Questions:
a. Determine the vertical displacement at C.
b. Determine the vertical displacement at C in the case that the bending

stiffness of AB is not EI , but 4EI = 12 MNm2.

8.47 In the structure shown, all members have the same bending stiffness
EI = 40 MNm2. Dimensions and loading are given in the figure.

Questions (in the given xz coordinate system):
a. Determine the vertical displacement at A.
b. Determine the rotation at A.

8.48: 1–4 The structure shown is loaded in four different ways by forces
F . Member ABC has a bending stiffness EI . Deformation by normal for-
ces is ignored.

Questions:
a. Determine the magnitude and direction of the displacement at B,

expressed in terms of a, F and EI .
b. Determine the magnitude and direction of the displacement at C.
c. Sketch the elastic curve of ABC.
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8.49: 1–2 You are given two fixed bent members. The dimensions and
loading are given in the figure. The bending stiffness is EI = 50 MNm2.

Questions:
a. Determine the vertical displacement of A.
b. Determine the horizontal displacement of A.

8.50: 1–2 You are given two fixed bent members with the same bending
stiffness EI . The dimensions and loading are given in the figure.

Questions:
a. Determine the horizontal displacement at A.
b. Determine the vertical displacement at A.
c. Determine the rotation at A.

8.51 In the structure shown, all members have the same bending stiffness
EI = 54 × 103 kNm2. The dimensions and loading are given in the figure.

Questions:
a. Determine the magnitude and direction of the displacement at C.
b. Determine the magnitude and direction of the displacement at D.

8.52: 1–4 In the structure shown all members have the same bending
stiffness EI

√
2. The structure is loaded in four different ways by forces F .
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Questions:
Determine the horizontal and vertical component of the displacement
a. at B.
b. at C.
c. at D.

8.53 The free supported overhanging beam has a bending stiffness
EI = 4.5 MNm2. The dimensions and loading are shown in the figure.

Questions:
a. Determine the bending moment diagram with deformation signs.
b. Sketch the elastic curve with the points of inflection.

c. Determine the vertical displacement uz;A at A using the moment-area
theorems.

8.54 In the structure shown all
members have the same bending
stiffness EI = 7.5 MNm2. The di-
mensions and loading are given in
the figure.

Questions:
a. Determine the displacement of

C.
b. Sketch the elastic curve for

ACB.

8.55 You are given a free supported overhanging beam. A part of the beam
has infinite bending stiffness. For the part with finite bending stiffness
EI = 5 MNm2.

Questions:
a. Sketch the elastic curve.
b. Determine the rotations at A and B.
c. Determine the displacement at C.
d. Determine the location and magnitude of the maximum displacement

for AB.
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8.56: 1–2 You are given a beam with bending stiffness EI = 3 MNm2,
loaded in two different ways. The dimensions and loading are given in the
figure.

Questions:
a. Determine the rotation at A.
b. Determine the deflection at C.
c. Determine the deflection at D.
d. Determine the location and magnitude of the maximum deflection.

8.57: 1–2 You are given two structures for which the dimensions and load-
ing are given in the figure. All members have the same bending stiffness
EI = 140 MNm2.

Questions:
a. Determine the displacement of the roller.
b. Determine the displacement of the joint where the force is applied.

8.58 In the structure shown, AC has
a bending stiffness EI , and BC has a
bending stiffness EI

√
2. In the calcu-

lation use EI = 261 MNm2. The di-
mensions and loading are given in the
figure.

Questions:
a. Determine the displacement of B.
b. Determine the displacement of C.
c. Sketch the elastic curve of ACB.



8 Deformation Due to Flexure 665

8.59 In the structure shown, all members have the same bending stiffness
EI = 96 MNm2. Dimensions and loading can be found in the figure.

Questions:
a. Determine the displacement of the roller at B.
b. Determine the displacement of C.
c. Sketch the elastic curve.

8.60: 1–2 You are given the same structure, loaded in two different ways.
In the calculation use F1 = 30 kN, F2 = 15 kN and EI = 9 MNm2. Use
the given xy coordinate system.

Questions:
a. Determine the rotation at A.
b. Determine the displacement of roller support B.
c. Determine the displacement of D.
d. Determine the displacement of C.
e. Sketch the elastic curve.

8.61 In the given structure, all members have the same bending stiffness
EI = 10 MNm2. Dimensions and loading can be found in the figure.

Questions:
a. Sketch the (expected) elastic curve.
b. Determine the displacement at B.
c. Determine the displacement at C.
d. Determine the displacement at D.
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8.62: 1–2 In the structure shown, ACD and BC are joined by a hinge at
C. All members have the same bending stiffness EI = 10 MNm2. The
structure is loaded in two different ways by a force of 30 kN.

Questions:
a. Sketch the (expected) elastic curve.
b. Determine the displacement at C.
c. Determine the displacement at D.

8.63 In the three-hinged frame, the girder has an infinite bending stiffness.
The bending stiffness of the left-hand column is EI = 5 MNm2, that of the
right-hand column is 3EI = 15 MNm2. Dimensions and loading are given
in the figure. Use the given xy coordinate system.

Questions:
a. Determine the rotations at A and B.
b. Determine the horizontal and vertical displacement at hinge S.
c. Determine the gap �ϕ at hinge S.
d. Sketch the elastic curve.

Simply supported beams and the M/EI diagram (Section 8.5)

8.64: 1–2 The beam ACB is rigid over AC, and has a finite bending stiff-
ness EI = 2 MNm2 over CB. The load consists of a couple of 60 kNm at
one of the supports.

Questions (in the given xz coordinate system):
a. Sketch the elastic curve.
b. Determine the rotations at A and B, in both radians and degrees.
c. Determine the deflection at C.
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8.65: 1–2 You are given two different beams. All the necessary information
can be found in the figures.

Questions:
a. Make a rough sketch of the elastic curve.
b. Determine the rotations at A and B, in both degrees and radians.

8.66 You are given a non-prismatic beam in which the segments BC and
DE have a finite bending stiffness EI = 36 MNm2 and all other segments
are rigid.

Questions:
a. Sketch the elastic curve.

b. Determine the rotation at B.
c. Determine the rotation at C.
d. Determine the displacement at A.

8.67 All the given information can be derived from the figure.

Question:
Determine the displacement at A.

8.68 You are given a beam with overhang. All the necessary information
is given in the figure. In the calculation use EI = 5 MNm2.

Question:
Determine the deflection at A.
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8.69 You are given the free supported non-prismatic beam shown. In the
calculation, use EI = 50 MNm2.

Questions:
a. Give an approximation to the maximum deflection.
b. Provide an accurate determination of the maximum deflection.

8.70 A simply supported prismatic beam carries a uniformly distributed
load of 12 kN/m on its left-hand side. The bending stiffness of the beam is
31 MNm2.

Questions:
a. Give an approximation to the maximum deflection.
b. Provide an accurate determination of the maximum deflection.

8.71: 1–4 You are given four different beams loaded by a point load. All
the necessary information is given in the figure.

Questions:
a. Give an approximation to the maximum deflection.
b. Provide an accurate determination of the maximum deflection.

Mixed problems

8.72 You are given two loading cases (a) and (b) for the same beam. In
case (a) the deflection at the centre of the span is 10 mm.

Question:
Determine the deflection at the centre of the span for case (b).
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8.73 A block with mass 3000 kg is suspended on a cable that is joined to
a fixed column by means of a trolley. The bending stiffness of the column
is EI = 12.5 MNm2. Under the influence of the block’s weight, the cable
stretches by 10 mm. For the gravitational field strength, use g = 10 N/kg.

Question:
Determine the vertical displacement of the block.

8.74 Two fixed columns of different lengths but the same bending stiffness
EI are loaded at the top by an equal horizontal force F . The horizontal
displacement at A is 10 mm.

Question:
Determine the horizontal displacement at B.

8.75 The non-prismatic beam AB is fixed at A and loaded by a couple T

at its free end B.

Questions:
a. Determine the rotation at B in radians.
b. Determine the rotation at B in degrees.
c. Determine the displacement at B.

8.76 The top of column (a) bends by 20 mm.

Question:
How much does the top of column (b) bend?
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8.77 You are given a prismatic column.

Question:
In which way will the column deform for the given load? Substantiate your
answer without extensive calculations.

8.78 The beam AB fixed at A is loaded at its free end by a couple T and a
force F . The direction of the force is unknown.

Questions:
a. Determine the direction and magnitude of the force F , expressed in

terms of T and �, such that the displacement at the free end B is zero.
b. Determine the bending moment and shear force diagrams for AB.
c. Sketch the elastic curve.
d. Determine the rotation at B.
e. Determine the deflection at the centre of AB.

f. Can you find this loading case in Table 8.4? Are the values you found
in line with those in the table?

8.79: 1–2 You are given two statically indeterminate beams with the same
length � and bending stiffness EI , but with different loads.

Questions:
a. Without calculations sketch the bending moment diagram and elastic

curve.
b. Use the differential equation for bending to find the equation for the

elastic curve.
c. Now determine the bending moment and shear force as functions of x

and draw the bending moment and shear force diagrams.
d. Table 8.4 provides a number of values for this loading case. Compare

these to the values you have found.

8.80 The member AB is fixed at an angle of 30◦ at A, and is loaded by a
vertical force F at the free end B.
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Questions:
a. Sketch the elastic curve.
b. Use forget-me-nots to determine the vertical component of the dis-

placement at B.
c. In the same way determine the horizontal component of the displace-

ment at B.

8.81 As problem 8.80, but now perform the calculation using the moment-
area theorems.

8.82 In the structure shown, AB has a bending stiffness EI = 3.75 MNm2

and BC has infinite bending stiffness. Deformation due to normal forces is
ignored.

Questions (using the correct signs in the given xy coordinate system):
a. Determine the vertical displacement of C.
b. Determine the horizontal displacement of C.

8.83 You are given a non-prismatic cantilever beam loaded by a force F at
the free end. The dimensions are given in the figure. In the calculation use
F = 4 kN, b = h = 200 mm, � = 1 m and E = 11 GPa.

Question:
Determine the deflection at the free end.

8.84 You are given an overhanging beam of which a part has an infinite
bending stiffness. The loading and dimensions are given in the figure.

Questions:
a. Sketch the elastic curve.
b. Determine the deflection at A, expressed in terms of F , a and EI .
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8.85 The simply supported beam ABC shown, with a span of 6 m, is loaded
by a force of 40 kN at midspan B. The bending stiffness of AB is 2EI ,
twice as large as the bending stiffness EI of BC. In the calculation use
EI = 15 MNm2. Perform the calculation using the moment-area theorems.

Questions:
a. Determine the rotation at A.
b. Determine the rotation at B.
c. Determine the rotation at C.
d. Determine the deflection at B.

8.86 As problem 8.85, but now perform the calculation using forget-me-
nots.

8.87: 1–2 The same beam with overhang is loaded in two different ways.
The bending stiffness is EI = 40 MNm2.

Questions:
a. Determine the rotation at A.
b. Determine the deflection at the centre of AB.
c. Determine the deflection at C.
d. Sketch the elastic curve.

8.88: 1–3 The beam with two over-
hangs is loaded in three different
ways by forces F .

Questions:
a. Sketch the elastic curve.
b. Determine the deflection at C.
c. Determine the deflection at D.
d. Determine the deflection at E.

8.89: 1–2 A beam with overhang has a bending stiffness EI = 5 MNm2.
The beam is loaded in two different ways. Dimensions and loading are
given in the figures.

Questions:
a. Determine the bending moment diagram with the deformation signs.
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b. Sketch the elastic curve with the points of inflection.
c. Determine the deflection of the overhang at A.

8.90 In the structure shown, all
members have the same bending
stiffness EI = 15 MNm2. Dimen-
sions and loading are shown in the
figure.

Question:
Determine the displacement of C.

8.91: 1–2 You are given two structures with the dimensions and loading
given in the figure. All members have the same bending stiffness
EI = 40 MNm2.

Questions:
a. Determine the displacement of the roller.
b. Determine the displacement of the joint where the force is applied.

8.92 In the structure shown, AC has a bending stiffness EI and BC has a
bending stiffness 3EI . In the calculation use EI = 28 MNm2. Dimensions
and loading can be found in the figure.

Questions:
a. Determine the displacement of B.
b. Determine the displacement of C.
c. Sketch the elastic curve.

8.93 In the structure shown the
beam has bending stiffness 2EI

and the column has a bending stiff-
ness EI . Loading and dimensions
are shown in the figure.

Question:
Determine the displacement of the
roller.
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8.94: 1–2 You are given two different structures in which all members
have the same bending stiffness EI . Both structures carry a uniformly
distributed load of 30 kN/m. The dimensions are given in the figures.

Questions:
a. Determine the displacement of the roller.
b. Sketch the elastic curve.

8.95: 1–2 You are given two structures in which the members all have the
same bending stiffness EI = 80 MNm2. Dimensions and loading are given
in the figures.

Questions:
a. Determine the displacement of the roller.
b. Determine the horizontal displacement of the girder.
c. Sketch the elastic curve.

8.96 The structure shown is constructed of the parts AS and SB joined
by a hinge at S. All parts have the same bending stiffness EI . Loading and
dimensions are given in the figure. Use the given xz coordinate system.

Questions:
a. Sketch the (expected) elastic curve.
b. Determine the displacement at S.
c. Determine the gap �ϕ at S.
d. Determine the displacement at C.
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8.97: 1–2 In the given three-hinged frame, the girder CS has a bending
stiffness EI and the slanted posts have a bending stiffness EI

√
5. The

structure is loaded in two ways by a force 4F at C. Use the given xy co-
ordinate system.

Questions:
a. Determine the rotations at A and B.
b. Determine the displacement of S.
c. Determine the displacement of C.
d. Sketch the elastic curve.

Mixed exercises including elements from Chapter 7

8.98 In the given structure, all members have the same bending stiffness
EI . Dimensions and loading can be found in the figure. Name the displace-
ments in the given xy coordinate system. Deformation due to normal forces
is ignored.

Questions:
a. Determine the bending moment diagram for ABC.
b. Determine the displacement of B.

c. Determine the displacement of C.
d. Determine the displacement of D.

8.99 In the given structure, mem-
ber AA′ has a bending stiff-
ness EI = 40 MNm2, and mem-
ber BB′ has a bending stiffness
1
2 EI = 20 MNm2. All other mem-
bers are rigid. Dimensions and
loading can be found in the figure.

Question:
Determine the displacement of C.
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8.100: 1–2 You are given two structures, of which the dimensions and
loading are given in the figure. Both members AB have the same bending
stiffness EI = 18 MNm2. All other members are rigid.

Question:
Determine the displacement of C.

8.101: 1–2 You are given the same structure as in problem 8.100, here
loaded by horizontal forces.

Question:
Determine the displacement of C.

8.102: 1–4 The structure given is loaded in four different ways by forces
F . Member ABC has a bending stiffness EI . Deformation due to normal
forces is ignored.

Question:
Determine the displacement at D, expressed in terms of a, F and EI .
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8.103 The inclined shored member ACD is loaded by a vertical force of
20 kN at D. ACD has bending stiffness 40 MNm2.

Questions:
a. Determine the vertical displacement of D if the deformation due to

normal forces is ignored.
b. In the same way determine the horizontal displacement of D.
c. How do the vertical and horizontal displacement of D change if the

deformation due to the normal force in (only) member BC is taken into
account. The axial stiffness of BC is 12

√
5 MN.

8.104 The fixed bent member ABC is loaded by a vertical force F
√

2 at
C. The bending stiffness is EI and the axial stiffness is EA.

Questions:
a. Determine the bending moment diagram with the deformation signs

and include the values.
b. Determine the horizontal displacement ux;b of C due to bending only.
c. Determine the horizontal displacement ux;e of C due to extension only.
d. Determine the final horizontal displacement of C due to both bending

and extension.
e. If the member has a rectangular cross-section with width b and (in the

plane of bending) depth h = 0.6a, how large is the ratio ux;e/ux;b at
C?



9
Unsymmetrical
and Inhomogeneous
Cross-Sections

The fibre model for beams introduced in Chapter 4 was limited to sym-
metrical and homogeneous cross-sections. In this chapter the model is
extended in a straightforward manner to be used for unsymmetrical and/or
inhomogeneous cross-sections subject to extension and bending.

9.1 Sketch of the problem and required assumptions

The cross-sections used so far always contained at least one line of symme-
try and the cross-section itself was always homogeneous, i.e. made of one
single material. With the fibre model as introduced in Chapter 4 the beam is
modelled as a collection of a large number of parallel and initially straight
fibres. The fibres are kept together by a large number of rigid planes, called
cross-sections, which are by definition perpendicular to the fibres and beam
axis. The beam axis coincides with the fibre through the normal (force)
centre NC of the cross-section. In a homogeneous cross-section the normal
centre coincides with the centroid of the cross-section.

In Figure 9.1 this model is shown together with the coordinate system used.
The origin of the yz coordinate system in the cross-section per definition

Figure 9.1 The fibre model for a member subject to extension
and bending. The model consists of many fibres parallel to the axial
direction, that are kept together by many rigid planes normal to the
fibres. These rigid planes are known as cross-sections.
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Figure 9.2 (a) An unsymmetrical and homogeneous cross-section,
(b) an inhomogeneous cross-section with one line of symmetry, and
(c) an unsymmetrical and inhomogeneous cross-section.

coincides with the normal centre NC, located on the beam axis.

Based on this model, formulas for calculating stresses and strains for
combined bending and extension have been derived in Chapter 4. For un-
symmetrical and/or inhomogeneous cross-sections, as shown in Figure 9.2,
these formulas cannot be used. Figure 9.2a shows a homogeneous unsym-
metrical cross-section. In Figure 9.2b the cross-section is inhomogeneous
with one line of symmetry. In Figure 9.2c the unsymmetrical cross-section
is inhomogeneous.

A number of the assumptions introduced in Chapters 2 and 4 also hold for
unsymmetrical and inhomogeneous cross-sections subject to bending and
extension:

• The member consists of many parallel fibres in longitudinal direction.
• The fibres are kept together by many rigid planes normal to the

direction of the fibres. These rigid planes are called cross-sections.
• The cross-sections (rigid planes) are planar and perpendicular to the

fibres, before and after the deformation of the member. This assumption
is known as Bernoulli’s hypothesis.

• Cross-sectional rotations remain small: ϕ � 1.

With respect to the material behaviour the following assumption is made:
• All fibres behave linear-elastically according to Hooke’s Law. This

implies a linear relationship between the stresses σ and strains ε:

σ = Eε.

New is the following assumption with respect to inhomogeneous cross-
sections:

Figure 9.3 The location of a cross-section is defined by its x coor-
dinate, that of a fibre by its y and z coordinates.

The assumptions with respect to the fibre model are as follows:
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Figure 9.4 The positive directions of the section forces that are
transmitted via normal stresses. N is the normal force, My the bend-
ing moment in the xy plane, and Mz the bending moment in the xz

plane.

• In a beam with inhomogeneous cross-section the fibres are of different
materials, with each material having its own modulus of elasticity E.

In the figures shown we use a xyz coordinate system (see Figure 9.3). The
x axis is always chosen in longitudinal direction, parallel to the fibres. The
position of a cross-section is given with its x coordinate. In the cross-
section itself the position of a fibre is given with the y and z coordinate.
By definition the x axis is chosen along the beam axis, defined as the fibre
through the normal centre NC. So the origin of the coordinate system of
the cross-section coincides always with the normal centre NC. This spe-
cial choice of the origin of the coordinate system of the cross-section is a
priori unknown. In Chapters 2 and 3 we found that for homogeneous cross-
sections the location of the normal centre NC coincides with the centroid.1

With some simple calculus the location of NC can also be obtained for
inhomogeneous cross-sections, as will be shown in Section 9.7.

The positive normal force and bending moments2 are shown in Figure 9.4;
the positive displacements and rotations3 are shown in Figure 9.5. Their
directions are related to the given coordinate system.

All quantities that vary over the cross-section will be presented as functions
of y and z. As an example we mention the strain ε and stress σ :

ε(y, z),

σ (y, z).

1 See Sections 2.4 and 3.1.3 in this volume.
2 Their definitions were given in Engineering Mechanics, Volume 1, Sec-

tion 10.1.3.
3 For the positive rotations, see Engineering Mechanics, Volume 1, Section 1.3.2.

Figure 9.5 The positive displacements and rotations in the xyz

coordinate system.
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Figure 9.6 A point P(x, y, z) of cross-section x on fibre (y, z).

In case of an inhomogeneous cross-section, the modulus of elasticity E can
vary over the cross-section and a function of y and z will be used:

E(y, z).

Most quantities may also vary with respect to the x coordinate. However, in
equations which hold for a specific cross-section the x coordinate is omit-
ted. The fibre model describes only the strains and stresses due to bending
and extension. The influence of torsional moments are therefore excluded.
Shear forces will not cause any strains in the fibre model. However with a
simple model based on the equilibrium, as introduced in Chapter 5 for sym-
metrical homogeneous cross-sections, we can also obtain the shear flow and
stresses in unsymmetrical and/or inhomogeneous cross-sections. At the end
we will discuss the shear (force) centre SC for unsymmetrical thin-walled
cross-sections.

9.2 Kinematic relationships

The kinematic relationships link the displacements of a cross-section to
the fibre strains at that cross-section. In space, the displacement of a cross-
section as a rigid plane can be described by three translations ux , uy , uz and
three rotations ϕx , ϕy , ϕz. Consider a point P(x, y, z) of cross-section x

on fibre (y, z) (see Figure 9.6). With respect to the displacement u(x, y, z)

of P , in the direction of the fibre, only three displacement quantities are di-
rectly relevant: the translation ux of the cross-section in the x direction and
the rotations ϕy about the y axis and ϕz about the z axis. On the assumption
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Figure 9.7 A rigid cross-section is translated by ux in the x

direction, and rotated through ϕy and ϕz about the y and z axis
respectively. Both the (a) top view and (b) side view show the effect
of the rotations upon the displacement u of point P.

of small rotations1 we can write

u(x, y, z) = ux − yϕz + zϕy. (9.1)

Since the rotations are small their influences can be superimposed. The dis-
placement quantities ux , ϕy and ϕz are cross-sectional related and therefore
only functions of x.

In Figure 9.7 expression (9.1) is clarified with some sketches: the displaced
cross-section is translated by ux and rotated about the y and z axis. Both the
top and side view show the influence of the rotations upon the displacement
u of point P.

With the displacement of point P also the strain of the fibre at P can be
obtained:

ε(y, z) = lim
�x→0

�u(x, y, z)

�x
= ∂u(x, y, z)

∂x

= dux

dx
− y

dϕz

dx
+ z

dϕy

dx
,

or written in an simplified notation2

ε(y, z) = u′
x − ϕ′

z + zϕ′
y. (9.2)

1 See Engineering Mechanics, Volume 1, Section 15.3.2.
2 We simplify the notation by assuming d(. . .)/dx = (. . .)′.
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The rotations ϕy and ϕz can be expressed in the displacements uy and uz

(see Figure 9.7):

ϕy = −duz

dx
= −u′

z,

ϕz = +duy

dx
= u′

y.

Comment: The difference in sign between the expressions for ϕy and ϕz

is the consequence of the definition of a positive rotation (it is left to the
reader to check this).

The strain according to (9.2) in the fibre through P can now be written as

ε(y, z) = u′
x − yu′′

y − zu′′
z . (9.3)

We can rewrite expression (9.3) by introducing the following three cross-
sectional deformation quantities:

ε = u′
x,

κy = −u′′
y = −ϕ′

z,

κz = −u′′
z = +ϕ′

y. (9.4)

These equations are known as the kinematic equations and link the
cross-sectional deformation quantities to the cross-sectional displacement
quantities.

Figure 9.7 A rigid cross-section is translated by ux in the x

direction, and rotated through ϕy and ϕz about the y and z axis
respectively. Both the (a) top view and (b) side view show the effect
of the rotations upon the displacement u of point P.
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Figure 9.8 The strain distribution over the cross-section in a
spatial strain diagram. Since plane cross-sections remain plane, the
strain distribution is linear and can be represented by a plane. The
slopes of this plane in y and z direction are the curvatures κy and
κz. ε is the strain in the fibre coinciding with the x axis (y = z = 0).
The fibres with zero strain form a straight line in the cross-section.
This straight line is called the neutral axis.

With the kinematic equations (9.4) the strain in a fibre according to (9.3)
can be written as

ε(y, z) = ε + yκy + zκz. (9.5)

The strain ε(y, z) at P is equal to the strain ε of the fibre coinciding with
the x axis, added to the strain due to bending (curvature) of the beam in the
xy plane and xz plane respectively.

In Figure 9.8 the strain distribution over the cross-section is visualised in
a spatial strain diagram. From the assumption that plane cross-sections re-
main plane follows a linear strain distribution, represented by a plane. ε is
the strain in the fibre coinciding with the x axis (y = z = 0). The slopes of
this plane in the y and z directions are κy and κz:

κy = ∂ε(y, z)

∂y
slope of the strain diagram in the y direction,

κz = ∂ε(y, z)

∂z
slope of the strain diagram in the z direction.

The deformation quantities κy and κz are the components of the curvature
of the beam in the xy and xz planes respectively.
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9.3 Curvature and neutral axis

In Section 4.3.1 we derived for the curvature of a beam in the xz plane1

κz = −u′′
z .

In the same way we can find the curvature of the beam in the xy plane

κy = −u′′
y.

In

ε(y, z) = ε + yκy + zκz, (9.5)

the curvatures κy and κz appear to be the components of a vector κ . From
formula (9.5) follows that a positive curvature causes a positive strain for
positive values of y and z.

The prove that the curvature κ behaves like a vector or first-order tensor
is given below, where we investigate the effect of a rotation of the cross-
sectional yz coordinate system on the components of κ .

Between the coordinates of point P in the yz coordinate system and in a
yz coordinate system, rotated through an angle α, we have the following

1 In Section 4.3.2 the displacement in the z direction is denoted by the letter
w. Here we use the kern-index notation and denote the displacement in the z

direction by uz .

Both expressions are valid under the assumption of small strains.
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Figure 9.9 (a) The coordinates of a point P in the yz coordinate
system and in a yz coordinate system, rotated through an angle
α, are related by the transformation rules of a vector or first-order
tensor. (b) These transformation rules can be derived from the two
shaded triangles.

relationship (see Figure 9.9):

ȳ = +y cos α + z sin α,

z̄ = −y sin α + z cos α. (9.6a)

The inverse is

y = +ȳ cos α − z̄ sin α,

z = +ȳ sin α + z̄ cos α. (9.6b)

These are the transformation rules of the components of a vector or first-
order tensor, in this case the position vector of P.

Using (9.6) we can rewrite the strain distribution in a cross-section
according to (9.5):

ε(y, z) = ε + yκy + zκz,

= ε + (ȳ cos α − z̄ sin α)κy + (ȳ sin α + z̄ cos α)κz

= ε + ȳ(κy cos α + κz sin α) + z̄(−κy sin α + κz cos α),

or

ε(y, z) = ε + ȳκȳ + z̄κz̄,

in which

κȳ = +κy cos α + κz sin α,

κz̄ = −κy sin α + κz cos α. (9.7a)
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Figure 9.10 The curvature κ behaves as a vector, and can be visu-
alised by an arrow. As a consequence of the used sign conventions,
the arrow for κ always points from the concave side to the convex
side of the curved beam.

Figure 9.11 The curvature κ and its components, represented by
arrows in the plane of the cross-section. The straight line k is the
intersection of the plane of curvature with the cross-section.

The inverse is

κy = +κȳ cos α − κz̄ sin α,

κz = −κȳ sin α + κz̄ cos α. (9.7b)

Comparing the transformation rules (9.7) with (9.6) for the position vector
of P, we see that κy and κz indeed behave as the components of a vector or
first-order tensor. This vector is the curvature κ .

Being a vector means that the curvature has a magnitude and a direction. So
the curvature κ can be visualised by an arrow which, as a consequence of
the used sign conventions, points from the concave side to the convex side
of the curved beam (see Figure 9.10). In Figure 9.11 the arrow representing
the curvature κ is shown in the plane of the cross-section. The straight line
k is the intersection of the plane of curvature with the cross-section. For
convenience sake, although not quite correct, the line k will be called plane
of curvature.

The magnitude of the curvature κ is

κ =
√

κ2
y + κ2

z . (9.8)

The angle between the curvature κ and the y axis is defined by

tan αk = κz

κy

. (9.9)
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Figure 9.12 The fibres with zero strain form a straight line in
the cross-section. This straight line is defined as the neutral axis,
abbreviated as na. The neutral axis divides the cross-section in areas
with positive and negative strains, and is perpendicular to the plane
of curvature k.

The fibres with zero strain form a straight line in the cross-section. This
straight line is called the neutral axis, abbreviated as na (see Figures 9.8
and 9.12). The expression for the neutral axis na can be found from (9.5):

ε(y, z) = ε + yκy + zκz = 0. (9.10)

points, for which we can choose the points of intersection with the coor-
dinate axes. Substituting z = 0 in (9.8) we find the intersection y1 of the
neutral axis with the y axis:

y1 = − ε

κy

.

Substituting y = 0 in (9.8) the intersection z1 with the z axis is found:

z1 = − ε

κz

.

In Figure 9.12 the neutral axis is drawn in the cross-sectional coordinate
system, together with the plane of curvature k of the beam. The arrow
representing the curvature κ points from the concave side (with negative
strain: ε < 0) to the convex side (with positive strain: ε > 0). The figure
shows that the plane of curvature k of the beam is perpendicular to the
neutral axis na. It is left to the reader to proof this.

In order to draw the neutral axis in the cross-section, we only need two
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Figure 9.13 (a) The resultant of the normal stresses on small area
�A around a point P is a small force �N . This force at P is statically
equivalent to (b) a small force �N at the normal centre NC (the
intersection of the member axis with the plane of the cross-section),
together with (c) a small moment �My in the xy plane and (d) a
small moment �Mz in the xz plane.

9.4 Normal force and bending moments –
centre of force

Assume the normal stress distribution in a cross-section is given by a yet
unknown function σ(y, z). At an arbitrary point P(y, z) of the cross-section
the normal stress is σ(y, z) . The resultant of all normal stresses on a small
area �A at P is a small (normal) force �N (see Figure 9.13a):

�N = σ(y, z)�A. (9.11)

This small force �N with its point of application at P is statically equivalent
with a small force �N at the origin of the cross-sectional yz coordinate
system, together with two small (bending) moments �My and �Mz (see
Figures 9.13b–d):1

�My = y�N = yσ(y, z) · �A,

�Mz = z�N = zσ(y, z) · �A. (9.12)

Summing the contributions of all small forces �N by integrating over the
whole cross-sectional area A leads to the following section forces:

N =
∫

A

σ(z) dA, (9.13)

My =
∫

A

yσ(z) dA, (9.14a)

1 See also Engineering Mechanics, Volume 1, Section 10.1.3, and in this volume
Section 4.3.2.
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Figure 9.14 The positive directions of N , My and Mz for both a
positive and a negative cross-sectional plane.

Figure 9.15 In order to investigate how the section forces will
change when the yz coordinate system is transformed into a new
yz coordinate system by rotating it about an angle α, we consider
the behaviour of a small force �N with its point of application at
P(y, z) = P(ȳ, z̄).

Mz =
∫

A

zσ(z) dA. (9.14b)

• N is the normal force and has its point of application at the origin of
the cross-sectional yz coordinate system.

• My is the bending moment in the xy plane.
• Mz is the bending moment in the xz plane.

N , My and Mz are section forces (interaction forces). Their positive
directions are related to the normal stresses in the cross-section.

From (9.11) we find a positive normal force when σ(y, z) is a tensile stress;
so a positive normal force is a tensile force.

A tensile stress (σ > 0) at a small area �A results in positive contributions
to My for y > 0 and Mz for z > 0, as can be seen from (9.12). So a bending
moment My (Mz) is positive when it causes tensile stresses at the positive
y side (z side) of the x axis and compressive stresses at the negative y side
(z side).

Figure 9.14 shows the positive directions of N , My and Mz for both a
positive and a negative cross-sectional plane.1

The section forces N , My and Mz are defined in the cross-sectional yz co-
ordinate system. Below we will investigate how section forces will change
when the yz coordinate system is transformed into a new yz coordi-
nate system by rotating it about an angle α (see Figure 9.15). Therefore
we investigate the contribution of the small force �N with its point of
application at P(y, z) = P(ȳ, z̄):

�N = σ(y, z)�A = σ(ȳ, z̄)�A.

1 For the bending moments the formal definitions are used; see Section 2.8.
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Figure 9.16 The bending moment M behaves as a vector or
first-order tensor, so both M and its components My and Mz can
be represented by single pointed arrows in the cross-section. The
arrow for M points from the area with compressive stresses to
the area with tensile stresses. The line m is the intersection of the
cross-sectional plane with the plane in which the bending moment
M acts. This line is called the plane of loading, since in this plane
the load is transferred.

The magnitude of this small force is not influenced by a rotation of the
coordinate system, nor is the magnitude of the normal force N . For the
bending moments My and Mz this is quite different, as will be shown below.

In the rotated xy coordinate system the bending moments are defined by

Mȳ =
∫

ȳσ (ȳ, z̄) dA,

Mz̄ =
∫

z̄σ (ȳ, z̄)) dA.

With the transformation formulae (9.6b) for the position vector of P(y, z)

y = +ȳ cos α − z̄ sin α,

z = +ȳ sin α + z̄ cos α.

we find

My =
∫

yσ(y, z) dA

=
∫

(+ȳ cos α − z̄ sin α)σ(ȳ, z̄) dA

=
(∫

ȳσ (ȳ, z̄) dA

)
cos α −

(∫
z̄σ (ȳ, z̄) dA

)
sin α,

or

My = −Mȳ cos α − Mz̄ sin α.
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Figure 9.17 Two presentations for the bending moment M : with
a bent arrow and with a straight single pointed arrow. The straight
arrow always points from the area with compressive stresses to
the area with tensile stresses. m is the plane of loading. Note
that the vector presentation with a single arrow is different from
the often used angular vector presentation with a double arrow
(perpendicular to the plane m)

In the same way we find

Mz = −Mȳ sin α + Mz̄ cos α.

These transformation formulae due to a rotation of the coordinate system
are similar to (9.6b), the transformation formulae for the position vector of
point P(y, z) = P(ȳ, z̄): My and Mz behave as the components of a vector
or first-order tensor. This vector is the cross-sectional bending moment M .

Both M and its components My and Mz can be represented by single
pointed arrows in the cross-section (see Figure 9.16). The line m is the
intersection of the cross-sectional plane with the plane in which the bend-
ing moment M acts. In this plane the load is transferred. For convenience,
although not quite correct, we call line m the plane of loading.

The magnitude of the bending moment M is

M =
√

M2
y + M2

z . (9.15)

The bending moment M acts in a plane m through the x axis, making an
angle αm with the y axis:

tan αm = Mz

My

. (9.16)

Figure 9.17 shows two presentations for the bending moment M in the
cross-section: with a bent arrow and with a straight single pointed ar-
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Figure 9.18 (a) Both the normal force N and the bending moment
M are section forces that are transferred by the normal stresses in
the cross-section. (b) If N is not zero, the resultant of M and N

is a single force N , with its point of application at (ey, ez) on m.
This point of application is called the centre of force (cf ) of the
cross-section and is the point of application of the resultant of all
normal stresses in the cross-section.

row. The straight arrow1 always points from the cross-sectional area with
compressive stresses to the cross-sectional area with tensile stresses.

Both the normal force N and the bending moment M are section forces that
are transferred by the normal stresses in the cross-section. If N is not zero,
the resultant of M and N is a single force N , with its point of application
on m and with an eccentricity e (see Figure 9.18):

e = M

N
. (9.17)

The eccentricity e has components ey and ez:

ey = My

N
and ez = Mz

N
. (9.18)

Point (ey, ez) is called the centre of force of the cross-section.2 It is the point
of application of the resultant of all normal stresses in the cross-section. The
centres of force in all consecutive cross-sections form a line known as the
line of force of the member.

1 The vector presentation with a single arrow is different from the often used
angular vector presentation with a double arrow (perpendicular to the plane m).
See Engineering Mechanics, Volume 1, Section 3.3.

2 See Engineering Mechanics, Volume 1, Section 14.2.
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9.5 Constitutive relationships for unsymmetrical
and/or inhomogeneous cross-sections

In this section we will derive the constitutive relationships that link the
section forces N , My and Mz to the cross-sectional deformation quantities
ε, κy and κz.

The fibre model used so far, assumes a linear elastic stress-strain relation.
We will restrict ourselves to this simple model, using Hooke’s Law:

σ = Eε.

If the cross-section is not made of one single material, the cross-section
is called inhomogeneous. In an inhomogeneous cross-section the modulus
of elasticity E may vary between fibres based on the material used for
each fibre or part of the cross-section. The inhomogeneous character can
be implemented by using a function for the modulus of elasticity E. In the
cross-sectional yz coordinate system this function is denoted as E(y, z).

At a certain point (y, z) of the cross-section, we assume a strain ε = ε(y, z)

and a stress σ = σ(y, z). For a homogeneous cross-section all fibres have
the same modulus of elasticity E and the stress and strain at the point (y, z)

of the cross-section are related by

σ(y, z) = E · ε(y, z).

For inhomogeneous cross-sections the constitutive relationship which links
the stresses to the strains has to be modified slightly:

σ(y, z) = E(y, z) · ε(y, z).
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The kinematic relationships are independent of the material properties. So
we can use expression (9.5) to describe the linear strain distribution in both
homogeneous and inhomogeneous cross-sections:

ε(y, z) = ε + yκy + zκy.

Note that the cross-sectional quantities ε, κy and κz are independent of
y and z. According to Hooke’s Law, the stress in a specific fibre (y, z)

becomes

σ(y, z) = E(y, z) · (ε + yκy + zκz). (9.19)

For inhomogeneous cross-sections the modulus of elasticity is a function of
y and z, and the stress distribution will not be linear anymore.

The normal force N can be found with (9.13):

N =
∫

A

σ(y, z) dA =
∫

A

E(y, z) · (ε + yκy + zκz)dA

= ε

∫
A

E(y, z) dA + κy

∫
A

E(y, z)y dA + κz

∫
A

E(y, z)z dA.

The bending moments My and Mz can be found with (9.14):

My =
∫

A

yσ(y, z) dA =
∫

A

E(y, z) · (ε + yκy + zκz)y dA

= ε

∫
A

E(y, z)y dA + κy

∫
A

E(y, z)y2 dA + κz

∫
A

E(y, z)yz dA,

Mz =
∫

A

zσ(y, z) dA =
∫

A

E(y, z) · (ε + yκy + zκz)z dA
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= ε

∫
A

E(y, z)z dA + κy

∫
A

E(y, z)yz dA + κz

∫
A

E(y, z)z2 dA.

Since the modulus of elasticity E(y, z) is a function of y and z, this quantity
remains under the integral.

In order to obtain expressions which can be handled more easily we will
introduce a number of new cross-sectional quantities which will be denoted
with so-called double letter symbols:
∫
A

E(y, z) dA = EA,

∫
A

E(y, z)y dA = ESy,

∫
A

E(y, z)y2 dA = EIyy,

∫
A

E(y, z)z dA = ESz,

∫
A

E(y, z)yz dA = EIyz = EIzy,

∫
A

E(y, z)z2 dA = EIzz. (9.20)

Using these double letter symbols the expressions for N , My and Mz can
now be rewritten:

N = EAε + ESyκy + ESzκz,

My = ESyε + EIyyκy + EIyzκz,

Mz = ESzε + EIzyκy + EIzzκz,

or in matrix notation:
⎡
⎢⎣

N

My

Mz

⎤
⎥⎦ =

⎡
⎢⎣

EA ESy ESz

ESy EIyy EIyz

ESz EIzy EIzz

⎤
⎥⎦

⎡
⎢⎣

ε

κy

κz

⎤
⎥⎦ . (9.21)
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These are the cross-sectional constitutive equations we were looking for.

The matrix shown is called the cross-sectional stiffness matrix linking the
section forces N , My and Mz to the sectional deformation quantities ε, κy

and κz.

Comment: Formula (9.21) applies for both homogeneous and inhomoge-
neous cross-sections. For inhomogeneous cross-sections the double letter
symbols represent the integrals defined in (9.20). Only in case of homoge-
neous cross-sections we can read the double letter symbols as products:

EA = E · A, ESy = E · Sy, EIyy = E · Iyy, . . .

For homogeneous cross-sections the constitutive relationships (9.21) can be
written as

⎡
⎢⎣

N

My

Mz

⎤
⎥⎦ = E ·

⎡
⎢⎣

A Sy Sz

Sy Iyy Iyz

Sz Izy Izz

⎤
⎥⎦

⎡
⎢⎣

ε

κy

κz

⎤
⎥⎦ . (9.22)

From the constitutive equations (9.21) we can conclude that if we know the
strain ε at the fibre coinciding with the x axis and both curvatures κy and
κz, the section forces N , My and Mz can be computed.

Moreover we can conclude that all sectional properties of a beam can be
assigned to a single fibre which coincides with the x axis. This is why we
are allowed to represent beams according to the beam theory1 as single line
elements in frame models.

So far we worked with the x axis chosen along an arbitrary fibre, and there-

1 We restrict ourselves to the so-called Euler–Bernoulli beam theory.
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fore with an arbitrary cross-sectional yz coordinate system. However the
constitutive equations (9.21) can be significantly simplified by choosing
the x axis along a special fibre, called the member axis. The origin of the
cross-sectional yz coordinate system then coincides with a special point,
called the normal (force) centre NC of the cross-section. The position of
the normal centre NC is defined by

ESy =
∫

A

E(y, z)y dA = 0, (9.23a)

ESz =
∫

A

E(y, z)z dA = 0. (9.23b)

Choosing the origin of the cross-sectional yz coordinate system at the nor-
mal centre NC the coupling terms ESy and ESz between extension and
bending in (9.21) will vanish since these become zero due tot the definition
of the normal centre NC:

⎡
⎢⎣

N

My

Mz

⎤
⎥⎦ =

⎡
⎢⎣

EA 0 0

0 EIyy EIyz

0 EIzy EIzz

⎤
⎥⎦ . (9.24)

From (9.24) we conclude that a normal force N , applied at the normal
centre NC, causes only extension (and a strain ε at the member axis) and
no bending (no curvatures κy and κz), and that the bending moments My

and Mz causes only bending (and curvatures κy and κz) and no extension
(no strain ε at the member axis).1 This means that there is no interaction
between extension and bending. In the constitutive equations the extension

1 See also Section 2.4.
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part of the equations is fully uncoupled from the bending part. The system
of constitutive equations can therefore also be written as

N = EAε (extension), (9.26)

[
My

Mz

]
=

[
EIyy EIyz

EIzy EIzz

]
(bending). (9.27)

In (9.26) EA is the axial stiffness of the member at the current cross-section
(the resistance of the member to a change in length). In (9.27) the quanti-
ties EIyy , EIyz = EIzy and EIzz together represent the stiffness against
bending of the member at the current cross-section.

Both My;Mz and κy;κz are vectors or first-order tensors and can be ex-
pressed in one another by the linear relationship (9.27). This means that the
stiffness quantities EIyy , EIyz = EIzy and EIzz are the components of a
second-order tensor. The matrix

[
EIyy EIyz

EIzy EIzz

]

is called the bending stiffness tensor. Since EIyz = EIzy the stiffness tensor
is a symmetrical tensor. The properties of the bending stiffness tensor will
be investigated in Section 9.11.

From (9.27) we see a coupling between bending in the xy and xz plane by
the terms EIyz = EIzy . If EIyz = EIzy = 0,

[
EIyy 0

0 EIzz

]
.

Bending in the xy and xz plane is uncoupled. Here the y and z directions are
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Figure 9.19 (a) The line k is the intersection of the cross-sectional
plane and the plane of curvature. Its orientation is defined by the
angle αk . The vector representing the curvature κ points from the
area with negative strains to the area with positive strains. The plane
of curvature k is perpendicular to the neutral axis na. For bending
without extension the neutral axis passes through the normal centre
NC. (b) The line m is the intersection of the cross-sectional plane
and the plane of loading. The orientation of m is defined by the
angle αm. The vector representing the bending moment M is point-
ing from the area with compressive stresses to the area with tensile
stresses.

called the principal directions for the bending stiffness of the cross-section.
The associated stiffness quantities EIyy and EIzz are called the principal
values. The principal values and principal directions are discussed in more
detail in Section 9.11.3.

9.6 Plane of loading and plane of curvature –
neutral axis

In this section we investigate the relationship between the directions of
the vectors representing the bending moment M and curvature κ (see Fig-
ure 9.19). This relationship is given by (9.27), the constitutive equations for
bending:

[
My

Mz

] [
EIyy EIyz

EIzy EIzz

] [
κy

κz

]
. (9.27)

These equations apply only in a cross-sectional yz coordinate system with
its origin at the normal centre NC.

m is the intersection of the cross-sectional plane and the plane in which
the bending moment acts. This plane can also be called plane of loading.
The orientation of m is defined by the angle αm (see Figure 9.19b). The
vector representing the bending moment M is pointing from the area with
compressive stresses to the area with tensile stresses.

k is the intersection of the cross-sectional plane and the plane of curvature.
Its orientation is defined by the angle αk (see Figure 9.19a). The vector
representing the curvature κ is pointing from the area with negative strains
to the area with positive strains.
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The intersection of the cross-sectional plane and the neutral plane (plane
with zero strain) is the neutral axis na. The neutral axis divides the cross-
section in two parts with positive and negative strains respectively. The
strain distribution is defined by (9.5):

ε(y, z) = ε + yκy + zκz,

and the neutral axis by

ε + yκy + zκz = 0.

Below we restrict ourselves to bending without extension (ε = 0), so the
equation of the neutral axis becomes1

yκy + zκz = 0, (9.28)

and the neutral axis passes through the normal centre NC. The neutral
axis na is perpendicular to the vector representing the curvature κ (see
Figure 9.19b).

The direction of the neutral axis depends on the load condition of the cross
section. Given the plane of loading m, the question is to find the plane of
curvature k and the direction of the neutral axis na perpendicular to k, and
vice versa.

Example 1
The triangular shaped homogeneous cross-section in Figure 9.20 is loaded

1 In case of bending with extension (ε �= 0) the neutral axis na does not pass
through the normal centre NC anymore, but still remains perpendicular to the
curvature κ (see Section 9.3, Figure 9.12).

Figure 9.19 (a) The line k is the intersection of the cross-sectional
plane and the plane of curvature. Its orientation is defined by the
angle αk . The vector representing the curvature κ points from the
area with negative strains to the area with positive strains. The plane
of curvature k is perpendicular to the neutral axis na. For bending
without extension the neutral axis passes through the normal centre
NC. (b) The line m is the intersection of the cross-sectional plane
and the plane of loading. The orientation of m is defined by the
angle αm. The vector representing the bending moment M is point-
ing from the area with compressive stresses to the area with tensile
stresses.
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Figure 9.20 A triangular shaped homogeneous cross-section is
loaded in the vertical plane by a bending moment Mz = M . The
plane of loading m thus makes an angle αm = 90◦ with the y axis.

in the vertical plane by a bending moment Mz = M . So the plane of loading
m makes an angle αm = 90◦ with the y axis.

Question:
Determine the orientation of the neutral axis.

Solution:
First we have to calculate the components of the stiffness tensor. The
moments of inertia of this triangular cross-section can be found with the
formulae derived in Section 3.2.4, Example 5:

Iyy = Izz = 1
36 bh3 = 1

36 (3a)4 = 9
4 a4 ⇒ EIyy = EIzz = 9

4 Ea4,

Izz = Izy = 1
72 b2h2 = 1

72 (3a)4 = 9
8 a4 ⇒ EIyz = EIzy = 9

8 Ea4.

These values, together with My = 0 and Mz = M , substituted in (9.27)
leads to

[
0

M

]
= 9

8 Ea4
[

2 1

1 2

] [
κy

κz

]
.

The solution of these two equations, with κy and κz as the unknown quan-
tities, is

κy = − 8

27

M

Ea4
,

κz = +16

27

M

Ea4 .
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Figure 9.21 The plane of curvature k. The neutral axis na
is perpendicular to the line k and, since there is no extension,
passes through the normal centre NC. There is a distinct difference
between the plane of loading m and the plane of curvature k.

The solution can also be found by inverting the constitutive matrix:

[
κy

κz

]
= 1

9
8 Ea4 × 3

×
[

2 −1

−1 2

] [
0

M

]
= 8

27

M

Ea4 ×
[ −1

2

]

⇒

⎧⎪⎪⎨
⎪⎪⎩

κy = − 8

27

M

Ea4 ,

κz = +16

27

M

Ea4 .

The direction of the plane of curvature k is defined by

Figure 9.20 A triangular shaped homogeneous cross-section is
loaded in the vertical plane by a bending moment Mz = M . The
plane of loading m thus makes an angle αm = 90◦ with the y axis.
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Figure 9.22 A beam with homogeneous triangular cross-section is
compelled to curve in the vertical plane with κz = κ , so the neutral
axis na is horizontal.

tan αk = κz

κy

= +16/27

−8/27
= −2 ⇒ αk = 116.57◦.

Figure 9.20 shows the plane of loading m. Figure 9.21 shows the plane
of curvature k. The neutral axis na is perpendicular to line k and passes
through the normal centre NC since there is no extension.

Comment: From this example we observe a distinct difference between the
plane of loading m and the plane of curvature k.

Example 2
A beam with the triangular homogeneous cross-section in Figure 9.22 is
compelled to curve in the vertical plane with κz = κ , so the neutral axis na
is horizontal.

Question:
Determine the plane of loading, or in other words, the plane in which the
resultant bending moment acts.

Solution:
The direction of the plane of curvature k is defined by αk = +90◦ (see
Figure 9.22). To find the direction of the plane of loading m we substitute
κy = 0 and κz = κ in (9.27), together with the values

EIyy = EIzz = 9
4 Ea4 and EIyz = EIzy = 9

8 Ea4

determined in the previous example:

[
My

Mz

]
= 9

8 Ea4
[

2 1

1 2

]
×

[
0

κ

]
= 9

8 Ea4κ

[
1

2

]
⇒

⎧⎨
⎩

My = 9
8 Ea4κ,

Mz = 9
4 Ea4κ.
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Figure 9.23 The plane of loading m associated with a vertical
plane of curvature and a horizontal neutral axis.

The direction of the plane of loading m is defined by (see Figure 9.23)

tan αm = Mz

My

= 2.

This plane of loading is associated with a vertical plane of curvature and a
horizontal neutral axis.

Comments:
• The examples given are related to homogeneous cross-sections. For

inhomogeneous cross-sections the strategy remains the same on the
understanding that EIyy , EIyz = EIzy and EIzz, the components of
the bending stiffness tensor, have to be read as double letter symbols.

• Note that in both examples the plane of loading m does not coincide
with the plane of curvature k. An interesting question is: when does the
plane of loading coincide with the plane of curvature? This question
will be answered in Section 9.11.3.

9.7 The normal centre NC for inhomogeneous
cross-sections

The special location of the origin of the cross-sectional yz coordinate sys-
tem for which the coupling terms ESy and ESz between extension and
bending are zero is by definition called the normal (force) centre NC. The
fibre through NC is called the beam axis.

Selecting the origin of the cross-sectional yz coordinate system at the nor-
mal centre NC has the advantage that extension and bending can be treated
separately:
• A normal force generates solely extension (a strain ε at the beam axis)

and no bending (no curvatures κy and κz).
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Figure 9.24 The weighted small area E(y, z) dA about point
P(y, z) = P(ȳ, z̄) is the product of the area dA and the modulus
of elasticity E(y, z) = E(ȳ, z̄) at P.

• A bending moment M with components My and Mz generates solely
bending (with curvatures κy and κz) and no extension (no strain ε at
the beam axis).

The coupling terms ESy and ESz are referred to as the weighted static
moments (of area) or weighted first-order moments of area.

To find the position of the normal centre NC of the cross-section, or the
origin of the yz coordinate system for which the coupling terms ESy and
ESz become zero, we assume that ȳNC and z̄NC are the coordinates of NC
in an arbitrarily chosen yz coordinate system (see Figure 9.24). Next we
choose the origin of a yz coordinate system at NC. The coordinates of an
arbitrary point P(ȳ, z̄) = P(y, z) in the two coordinate systems are related
by

ȳ = y + ȳNC ,

z̄ = z + z̄NC .

For the weighted static moments with respect to the yz coordinate system
we now find

ESȳ =
∫

A

E(y, z) · ȳ dA =
∫

A

E(y, z) · y dA + ȳNC

∫
A

E(y, z) dA

= ESy + EA · ȳNC,

ESz̄ =
∫

A

E(y, z) · z̄ dA =
∫

A

E(y, z) · z dA + z̄NC

∫
A

E(y, z) dA

= ESz + EA · z̄NC. (9.29)



708 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

These formulae give the transformation rules due to a translation of the
coordinate system, and are referred to as the parallel axis theorem for the
weighted static moments.1

By definition the weighted static moments with respect to the yz coordinate
system with its origin at NC are zero:

ESy = 0 and ESz = 0,

so (9.29) simplifies into

ESȳ = EA · ȳNC,

ESz = EA · z̄NC (9.30)

and the coordinates of NC in an arbitrarily chosen yz coordinate system
can be found from

ȳNC = ESȳ

EA
and z̄NC = ESz̄

EA
. (9.31)

Comment: For homogeneous cross-sections the normal centre NC coincides
with the centroid C of the cross-section, and the double letter symbols EA,
ESy and ESz may be read as the products E ·A, E ·Sy and E ·Sz. So (9.31)
changes into

ȳNC = ȳC = Sȳ

A
and z̄NC = z̄C = Sz̄

A
. (9.32)

1 For homogeneous cross-sections formulae (29) simplify into those derived in
Section 3.1.3.
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Figure 9.25 (a) A composite beam with rectangular cross-section
is constructed of two materials 1 and 2. Both materials have a differ-
ent modulus of elasticity E and a different mass density ρ. (b) The
centroids C1 and C2 of the homogeneous parts of the cross-section.
(c) The location of the normal centre NC of the cross-section.

This is in agreement with the results found before in Section 3.1.3.

Below the newly derived formulae are illustrated by two examples.

Example 1: Normal centre versus mass centre (centre of gravity)
A composite beam with rectangular cross-section is constructed by the two
glued materials 1 and 2 (see Figure 9.25a). Both materials have a different
modulus of elasticity E and a different mass density ρ. The modulus of
elasticity for material 2 is four times larger than for material 1: E2 = 4E1.
The mass density is two times larger for material 2 than for material 1:
ρ2 = 2ρ1.

Questions:
a. Determine the location of the normal centre NC of the cross-section.
b. Determine the location of the mass centre MC (or centre of gravity) of

the cross-section.

Solution:
a. In Figure 9.25b for each homogeneous part i the location of the centroid
Ci is given. In this figure also the yz coordinate system in which we will
work is given.

The coordinates of the normal centre NC with respect to this coordinate
system can be found with the method outlined before, using double letter
symbols for the inhomogeneous cross-section. We do not need integral
calculus here since for each material simple geometrical shapes can be
recognised.

The weighted areas (axial stiffnesses) for the homogeneous parts 1 and 2 of
the cross-section are

(EA)1 = E1a
2,
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(EA)2 = E2 · 2a2 = 2a2E2,

and the weighted static moments:

(ESȳ)1 = (EA)1 · 1
2 a = 1

2 a3E1, (ESz̄)1 = (EA)1 · 1
2 a = 1

2 a3E1,

(ESȳ)2 = (EA)2 · 1
2 a = a3E1, (ESz̄)2 = (EA)2 · 2a = 4a3E2.

Using these expressions we find with (9.30)

ȳNC = ESȳ

EA
= (ESȳ)1 + (ESȳ)2

(EA)1 + (EA)2
=

1
2 a3E1 + a3E2

a2E1 + 2a2E2
= a

E1 + 2E2

2E1 + 4E2
,

z̄NC = ESz̄

EA
= (ESz̄)1 + (ESz̄)2

(EA)1 + (EA)2
=

1
2 a3E1 + 4a3E2

a2E1 + 2a2E2
= a

E1 + 8E2

2E1 + 4E2
.

Substituting E2 = 4E1 results in the following coordinates of the normal
centre NC:

ȳNC = 1
2 a,

z̄NC = 1 5
6 a.

The location of NC is shown in Figure 9.25c.

Since both the geometrical shape and the elastic properties (i.e. the modulus
of elasticity E) of the cross-section are mirror symmetric with respect to the
line ȳ = a/2, the normal centre NC will be on this line of symmetry.

b. To find the location of the mass centre MC of the cross-section we con-
sider a beam slice of unit thickness and place the slice horizontal in the
vertical gravity field. The point of application of the total weight of the

Figure 9.25 (a) A composite beam with rectangular cross-section
is constructed of two materials 1 and 2. Both materials have a differ-
ent modulus of elasticity E and a different mass density ρ. (b) The
centroids C1 and C2 of the homogeneous parts of the cross-section.
(c) The location of the normal centre NC of the cross-section.
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Figure 9.26 To find the location of the mass centre MC of the
cross-section, a beam slice of unit thickness is considered, and
placed in horizontal position in the vertical gravity field. The point
of application of the total weight of the slice is the mass centre
MC of the cross-section (or centre of gravity). (a) The weights per
homogeneous part, with their points of application at the associated
centroids. (b). The location of the mass centre MC.

slice is the mass centre MC (or centre of gravity) of the cross-section.

Figure 9.26a shows the weights per homogeneous part with their points of
application at the associated centroids. The moment equilibrium about the
z̄ and ȳ axis lead to respectively

ρ1g · a2 · 1
2 a︸ ︷︷ ︸

part 1

+ ρ2g · 2a2 · 1
2 a︸ ︷︷ ︸

part 2

= (ρ1g · a2 + ρ2g · 2a2) · ȳMC,

ρ1g · a2 · 1
2 a︸ ︷︷ ︸

part 1

+ ρ2g · 2a2 · 2a︸ ︷︷ ︸
part 2

= (ρ1g · a2 + ρ2g · 2a2) · z̄MC,

in which g is the gravitational field strength.

With ρ2 = 2ρ1 we find

ȳMC = 1
2 a,

z̄MC = 1 7
10 a.

The location of MC is shown in Figure 9.26b.

For inhomogeneous cross-sections the normal centre NC in general does
not coincide with the mass centre MC. This is a vital aspect when encoun-
tering inhomogeneous cross-sections.

Example 2: An inhomogeneous and unsymmetrical cross-section
The cross-section of a composite member consists of four squares of dif-
ferent materials (see Figure 9.27a). In the calculation use E1 = 30 GPa,
E2 = 60 GPa, E3 = 100 GPa and E4 = 200 GPa.
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Figure 9.27 (a) The cross-section of a composite member consist-
ing of four squares of different materials glued firmly together. (b)
The centroids of the four homogeneous parts.

Question:
Determine the point of application of the resultant of all normal stresses in
the cross-section if there is extension only, and no bending.

Solution:
If there is no bending the resultant of all normal stresses is a force, the nor-
mal force N , with its point of application at the normal centre NC. In order
to calculate the location of NC we will use the yz coordinate system with

homogeneous part a number of relevant values are calculated in Table 9.1.

From Table 9.1 we find

EA =
∫

E(ȳ, z̄) dA =
4∑

i=1
(EA)i = 624 × 106 N = 624 MN.

EA is the axial stiffness of the beam at the cross-section given.

Table 9.1 Calculation of the weighted area and weighted static
moment per homogeneous area.

i Ei Ai (EA)i (ȳC)i (z̄C)i (ESȳ)i (ESz̄)i

(N/mm2) (mm2) (N) (mm) (mm) (Nmm) (Nmm)

1 30 × 103 1.6 × 103 48 × 106 60 20 2.88 × 109 0.96 × 109

2 60 × 103 1.6 × 103 96 × 106 60 60 5.76 × 109 5.76 × 109

3 100 × 103 1.6 × 103 160 × 106 20 60 3.20 × 109 9.60 × 109

4 200 × 103 1.6 × 103 320 × 106 20 20 6.40 × 109 6.40 × 109

∑
624 × 106 ∑

18.24 × 109 22.72 × 109

its origin at the top right corner of the cross-section (see Figure 9.27b). Per
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Figure 9.28 The location of the normal centre NC.

In Table 9.1, (ȳC)i and (z̄C)i are the coordinates of the centroid Ci of the
homogeneous square i of the cross-section (see Figure 9.27b).

For the weighted static moments, calculated in the two last columns of
Table 9.1, applies1

(ESȳ)i = (EA · ȳC)i and (ESz̄)i = (EA · z̄C)i .

For the inhomogeneous cross-section we find

ESȳ =
∫

E(ȳ, z̄)ȳ dA =
4∑

i=1
(ESȳ)i = 18.24 × 109 Nmm,

ESz̄ =
∫

E(ȳ, z̄)z̄ dA =
4∑

i=1
(ESȳ)i = 22.72 × 109 Nmm.

The coordinates of the normal centre NC are found with (9.31):

ȳNC = ESȳ

EA
= 18.24 × 109 Nmm

624 × 106 N
= 29.23 mm,

z̄NC = ESz̄

EA
= 22.72 × 109 Nmm

624 × 106 N
= 36.41 mm.

Figure 9.28 shows the location of the normal centre NC in the cross-section.

1 For the static moment of each homogeneous part of the cross-section we can
apply the formulae derived in Section 3.1.3.
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Figure 9.29 The procedure to find the stress distribution in an
inhomogeneous cross-section.

9.8 Stresses due to extension and bending –
a straightforward method

In this section a straightforward strategy is presented to find the stresses
due to extension and bending. In Section 9.9 this strategy is illustrated by a
number of examples.

In Section 9.4 we derived the constitutive equations (9.26) and (9.27):

N = EAε (extension), (9.26)

[
My

Mz

]
=

[
EIyy EIyz

EIzy EIzz

] [
κy

κz

]
(bending). (9.27)

Note that these equations are valid only in a yz coordinate system with its
origin at the normal centre NC.

When the section forces N , My and Mz are known, we can calculate from
the constitutive equations the cross-sectional deformation quantities ε, κy

and κz.

In Section 9.2 we derived formula (9.5) for the strain distribution in the
cross-section:

ε(y, z) = ε + yκy + zκz, (9.5)

in which we can substitute the solutions of (9.26) and (9.27).

From the strain we find the stress according to Hooke’s Law:

σ(y, z) = E(y, z) · ε(y, z) = E(y, z){ε + yκy + zκz}. (9.33)

The strategy is summarised in the scheme of Figure 9.29.
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Figure 9.30 The cross-section of a composite member consisting
of four squares of different materials glued firmly together.

In inhomogeneous cross-sections the modulus of elasticity will vary across
the cross-section, and the stress distribution will not be similar to the strain
distribution. One single expression for the stress distribution can therefore
not be found for inhomogeneous cross-sections.

Comment: Since extension and bending are uncoupled in the constitutive
equations (9.26) and (9.27), the stresses due to extension and bending are
also uncoupled.

9.9 Applications of the straightforward method

The calculation of stresses with the straightforward method is illustrated by
some examples: stresses due to extension in Section 9.9.1, due to bending
in Section 9.9.2, and due to bending with extension in Section 9.9.3.

9.9.1 Stresses due to extension

The cross-section of a composite member is built up out of four squares of
different materials (see Figure 9.30). In the calculation use E1 = 30 GPa,
E2 = 60 GPa, E3 = 100 GPa and E4 = 200 GPa.

Question:
Draw the strain and stress diagram due to a normal force N = 312 kN.

Solution:
The location of the normal centre NC was calculated in Section 9.7, Exam-
ple 2, and is given in Figure 9.31a. In the same example the axial stiffness
EA of the cross-section was determined:

EA = 624 MN.



716 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

Figure 9.31 (a) The location of the normal centre NC of the com-
posite cross-section. (b) The strain diagram due to a tensile force
of 312 kN. The associated stress diagram in (c) projected on the xz

plane, and (d) the stress diagram in 3-D.

In case of extension without bending κy = κz = 0 and, according to (9.5),
all fibres have the same strain ε. The value of ε is found from (9.26):

ε(y, z) = ε = N

EA
= 312 × 103 N

624 × 106 N
= 0.5 × 10−3 = 0.5�.

Figure 9.31b shows the strain diagram.

The stresses are found with Hooke’s Law. Within each homogeneous part
of the cross-section the stresses are constant:

part 1: σ1 = E1ε = (30×103 N/mm2)(0.5×10−3) = 15 N/mm2,

part 2: σ2 = E2ε = (60×103 N/mm2)(0.5×10−3) = 30 N/mm2,

part 3: σ3 = E3ε = (100×103 N/mm2)(0.5×10−3) = 50 N/mm2,

part 4: σ4 = E4ε = (200×103 N/mm2)(0.5×10−3) = 100 N/mm2.

In Figure 9.31c the projection of the stress diagram on the xz plane is given.
Figure 9.31d shows the stress diagram in 3-D.

Note that the stresses are a maximum/minimum in the material with the
largest/smallest stiffness (i.e. modulus of elasticity E).

9.9.2 Stresses due to bending

Here again we use the straightforward method in which all work will be
done in the yz coordinate system only. According to the authors this method
is to be preferred. However in engineering practice often a different method
is being used, in which the coordinate system is chosen in the so called
principal directions of the cross-section. This method will be discussed in
Section 9.10.
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Figure 9.32 A prismatic homogeneous cantilever beam with a
thin-walled Z-section, loaded by a vertical force F at the free end
B.

Example 1: Bending stresses in thin-walled homogeneous cross-section
You are given the thin-walled cantilever beam in Figure 9.32. The beam is
loaded by a force Fz = F at B. The wall-thickness of the cross-section is
3t everywhere. The modulus of elasticity is E.

Questions:
a. Calculate the components of the bending stiffness tensor.
b. Determine the bending moment at the fixed end A.
c. Determine the components of the curvature at the fixed end A.
d. Draw the strain and stress diagram for the cross-section at A.
e. Calculate the extreme bending stresses at A.

Solution:
a. Since the homogeneous cross-section has point symmetry, the normal
centre NC coincides with the centre of point symmetry. Here is the origin
of the yz coordinate system in which we calculate the components of the
bending stiffness tensor (see Figure 9.32):

EIyy = E · 1
12 · 3t · (2a)3 = 2Ea3t,

EIyz = EIzy = E · {
3at · a · (− 1

2 a
) + 3at · (−a) · 1

2 a
} = −3Ea3t,

EIzz = E · { 1
12 · 3t · (2a)3 + 2 · 3at · a2} = 8Ea3t .

b. The load acts in the vertical xz plane. So the components of the bending
moment at the fixed end A are

My = 0 and Mz = −F�.

�

�

� �

�

�

�

� �

� �
� �

�

� �
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c. The constitutive equations for bending are given by (9.27):

[
My

Mz

]
=

[
EIyy EIyz

EIzy EIzz

] [
κy

κz

]
. (9.27)

Substituting the values calculated, we find

[
0

−F	

]
= Ea3t ×

[
2 −3

−3 8

] [
κy

κz

]
.

These are two equations with the two unknowns κy and κz to solve. The
solution can be found by inverting the matrix:

[
κy

κz

]
= 1

7Ea3t
×

[
8 3

3 2

] [
0

−F	

]
⇒

⎧⎪⎪⎨
⎪⎪⎩

κy = −3

7

F	

Ea3t
,

κz = −2

7

F	

Ea3t
.

(9.34)

The curvature of the beam at A is

κ =
√

κ2
y + κ2

z = 3F	
√

3

Ea3t
.

The curvature occurs in a plane k that makes an angle αk with the y axis:1

tan αk = κz

κy
= +2

3
⇒ αk = 33.69◦ + 180◦.

1 αk positive in the direction of a rotation from the y axis to the z axis.

Figure 9.32 A prismatic homogeneous cantilever beam with a
thin-walled Z-section, loaded by a vertical force F at the free end
B.

�

�
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�
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Figure 9.33 For the cross-section at A: the plane of loading m,
the plane of curvature k, the neutral axis na, the strain (ε) diagram,
and the stress (σ ) diagram. Since the stresses and strains are propor-
tional with the distance to the neutral axis na, they are plotted on a
line perpendicular to the neutral axis na.

By definition the vector κ points to the area with positive strains (i.e. tensile
stresses). The neutral axis na is perpendicular to the curvature vector κ and
the plane of curvature k. Since there is no extension the neutral axis passes
through the normal centre NC. Figure 9.33 shows the plane of loading m,
the plane of curvature k, and the neutral axis na.

d. The strain distribution in the cross-section follows from

ε(y, z) = ε + κyy + κzz.

Substituting ε = 0 (there is no extension), and the values of κy and κz found
before, we find

ε(y, z) = − F	

7Ea3t
(3y + 2z). (9.35)

Applying Hooke’s Law, we find the stress distribution from the strain
distribution:

σ(y, z) = Eε(y, z) = − F	

7a3t
(3y + 2z). (9.36)

The stresses and strains are proportional with the distance to the neutral
axis. Therefore in a diagram the stresses and strains are plotted on a line
perpendicular to the neutral axis (see Figure 9.33). In a homogeneous cross-
section, as here, there is a similarity in shape between the stress and strain
diagram.

e. The strains are extreme at the points with the largest distance to the neu-
tral axis, that is in Q (maximum positive strain) and R (maximum negative
strain). Since the cross-section is homogeneous, the stresses are extreme at
the same points Q (maximum tensile stress) and R (maximum compressive
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Figure 9.34 (a) The normal stresses plotted along the centre line
of the thin-walled Z-section. (b) The magnitudes and points of ap-
plication of the tensile and compressive stress resultants (forces) in
the cross-section.

Table 9.2

y z σ (y, z)

P +a −a −σ0

Q 0 −a +2σ0 ← maximum tensile stress

R 0 +a −2σ0 ← maximum compressive stress

S −a +a +σ0

stress). The stresses at P, Q, R and S are calculated with formula (9.36);
their values are given in Table 9.2 and expressed in terms of a reference
value σ0:

σ0 = 1

7

F	

a2t
. (9.37)

The stress distribution in the cross-section is linear. For a thin-walled cross-
section, it may be assumed that the stress across the wall thickness is
constant. So the stress varies only along the wall. The stress distribution
along the wall, for example upper flange AB, can be determined by plotting
the stresses at A and B normal to AB, and drawing a straight line between
these points. In the same way, the stress distribution along web and lower
flange can be plotted. The result is given in Figure 9.34a.

Note that the bending moment, acting in the vertical xz plane, causes both
tensile and compressive stresses in the flanges.

From the stress diagram in Figure 9.34a we see three points with a zero
stress. These points are located on the neutral axis na. The neutral axis is
a straight line. If the stress diagram is drawn to scale, these three points
have to be on a straight line (i.e. the neutral axis) which must pass through
the normal centre NC (since there is no normal force). The latter can be
regarded as a check.

Another check is to verify the bending moments due to the stress diagram in
Figure 9.34a. Figure 9.34b shows the magnitudes and points of application
of the tensile and compressive stress resultants in the cross-section. Using
expression (9.37) for the reference value σ0, we find

My = {− 1
2 atσ0 · ( 2

3 a + 2
9 a

) + 2atσ0 · 2
9 a

} × 2 = 0,

Mz = {+ 1
2 atσ0 · a − 2atσ0 · a − 3atσ0 · 2

3 a
} × 2 = −7a2tσ0 = −F	.
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Figure 9.35 (a) Cantilever beam with (b) inhomogeneous cross-
section.

Figure 9.36 Centroids of the homogeneous parts of the inhomo-
geneous cross-section.

These are indeed the components of the bending moment for which we
calculated the stress distribution.

Example 2: Bending stresses in an inhomogeneous cross-sections
The cantilever beam in Figure 9.35, with an inhomogeneous cross-section,
is constructed of three parts, numbered by 1 to 3. The parts are firmly glued
together. Different materials are used for flanges and web. The beam is
loaded by a force of 250 N at B. The moduli of elasticity are E1 = E3 =
12000 N/mm2 and E2 = 6000 N/mm2.

Questions:
a. Calculate the components of the bending stiffness tensor.
b. Determine the bending moment at the fixed end A.
c. Determine the components of the curvature at the fixed end A.
d. Draw the strain and stress diagram for the cross-section at A.
e. Calculate the extreme bending stresses at A.

Solution (units in N and mm):
a. We will use the solution technique given in the scheme of Figure 9.29.
First we have to find the normal centre NC. Since E1 = E3, the given cross-
section has point symmetry with respect to both its geometry and elastic
material properties (i.e. moduli of elasticity). The centre of point symmetry
coincides with the centroid of part 1, so here is the normal centre NC of the
cross-section.

The components of the bending stiffness tensor, EIyy , EIyz = EIzy and
EIzz are defined in the yz coordinate system with its origin at NC. These
sectional bending stiffness quantities represented by double letter symbols
can be found using the fact that the cross-section is composed of three
homogeneous parts of simple geometry for which the local centroids are
known (see Figure 9.36).
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For component EIyy applies

(EIyy)i is the contribution of homogeneous part i to the bending stiffness
component EIyy in the central yz coordinate system.

(EIyy)i is the product of modulus of elasticity E and centroidal moment of
inertia Iyy of homogeneous part i of the cross-section in a local centroidal
yz coordinate system.

(yC)i is the y coordinate of the centroid C of homogeneous part i.

(EA)i is the product of modulus of elasticity E and area A of homogeneous
part i.

In the same way

EIyz = EIzy =
3∑

i=1
(EIyz)i = ∑

i

{(EIyz)i︸ ︷︷ ︸
0

+(yCzC)i(EA)i)},

EIzz =
3∑

i=1
(EIzz)i =

3∑
i=1

{(EIzz)i + (z2
C)i(EA)i}.

Note that in determining the components of the bending stiffness tensor we
use the parallel axis theorem for each of the homogeneous parts.

Comment: For each rectangular homogeneous part in its local centroidal yz

coordinate system EIyz = EIzy = 0.

It is assumed that the reader is familiar with the calculation of the geometri-
cal properties of a homogeneous cross-section, according to Chapter 3. For
instance (measures in mm)

Figure 9.35 (a) Cantilever beam with (b) inhomogeneous cross-
section.

Figure 9.36 Centroids of the homogeneous parts of the inhomo-
geneous cross-section.

EIyy =
3∑

i=1
(EIyy)i =

3∑
i=1

{(EIyy)i + (y2
C)i(EA)i)}.
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Figure 9.37 (a) Bending moment M and plane of loading m;
(b) curvature κ and plane of curvature k.

EIyy = +E1
( 1

12 × 10 × 503︸ ︷︷ ︸
(Iyy)1

+ 10 × 50 × 152︸ ︷︷ ︸
par axis theorem

) + E2
1

12 × 30 × 203︸ ︷︷ ︸
(Iyy)2

+ E3
( 1

12 × 10 × 503︸ ︷︷ ︸
(Iyy)3

+ 10 × 50 × 152︸ ︷︷ ︸
par axis theorem

)
.

The ultimate calculation of EIyy , EIyz = EIzy and EIzz is presented in
two tables. In Table 9.3 the weighted area and the weighted local centroidal
moments of inertia for the homogeneous parts of the cross-section are deter-
mined. Since (EIyz)i = (EIzy)i = 0, these values are left out of the table.
In Table 9.4 the effect of the parallel axis theorem is calculated. Using a
spread sheet may speed up the calculus.

From Tables 9.3 and 9.4 we find

EIyy = (2.62 × 109 Nmm2) + (2.7 × 109 Nmm2) = 5.32 × 109 Nmm2,

EIyz = EIzy = −3.6 × 109 Nmm2,

EIzz = (0.37 × 109 Nmm2) + (4.8 × 109 Nmm2) = 5.17 × 109 Nmm2.

b. The load acts in the xz plane. The components of the bending moment
M at A are (see Figure 9.37a)

My = 0 and Mz = −(250 N)(0.55 m) = −137.5 × 103 Nmm.

The bending moment vector M makes an angle αm =270◦ with the y axis.1

1 αm is positive in the direction from the y axis to the z axis.
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Table 9.3 Calculation of the weighted areas and weighted local
centroidal moments of inertia for the three homogeneous parts of
the cross-section.

part Ei Ai (Iyy)i (Izz)i (EA)i (EIyy)i (EIzz)i

i (N/mm2) (mm2) (mm4) (mm4) (N) (Nmm2) (Nmm2)

1 12 × 103 500 104.167 × 103 4.167 × 103 6 × 106 1.25 × 109 0.05 × 109

2 6 × 103 600 20 × 103 45 × 103 3.6 × 106 0.12 × 109 0.27 × 109

3 12 × 103 500 104.167 × 103 4.167 × 103 6 × 106 1.25 × 109 0.05 × 109

∑
1.5 × 106 2.62 × 109 0.37 × 109

Table 9.4 Calculation of the contributions due to the parallel axis
theorem.

part (EA)i (yC)i (zC)i (y2
C)i(EA)i (yCzC)i (EA)i (z2

C)i(EA)i

i (N) (mm) (mm) (Nmm2) (Nmm2) (Nmm2)

1 6 × 106 +15 −20 1.35 × 109 −1.8 × 109 2.4 × 109

2 3.6 × 106 0 0 0 0 0

3 6 × 106 −15 −20 1.35 × 109 −1.8 × 109 2.4 × 109

∑
2.7 × 109 −3.6 × 109 4.8 × 109
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c. The curvatures can be obtained from the constitutive equations (9.27):

[
My

Mz

]
=

[
0

−0.137.5 × 103

]
= 109 ×

[
5.32 −3.6

−3.6 5.17

] [
κy

κz

]

⇒
{

κy = −34.03 × 10−6 mm−1,

κz = −50.29 × 10−6 mm−1.

The curvature of the beam at A is

κ =
√

κ2
y + κ2

z = 60.72 × 10−6 mm−1.

The curvature occurs in a plane k that makes an angle αk with the y axis:1

Figure 9.37b shows the vector κ and the plane of curvature k. Also the plane
of loading m is shown. We have to remember that vector κ by definition
points to the area with positive strains.

d. The strain distribution over the cross-section is given by (9.5):

ε(y, z) = ε + yκy + zκz,

in which

ε = 0, κy = −34.03 × 10−6 mm−1 and κz = −50.29 × 10−6 mm−1.

1 The vector κ points to the area with positive strains. αk is positive in the direction
of a rotation from the y axis to the z axis.

Figure 9.37 (a) Bending moment M and plane of loading m;
(b) curvature κ and plane of curvature k.
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Table 9.5 Calculation of the strain ε and stress σ at key points in
the cross-section.

part point y z Ei Strain ε Stress σ

i (mm) (mm) (N/mm2) (×10−3) (N/mm2)

1 O +40 −25 12 × 103 −0.10 −1.25

P −10 −25 12 × 103 +1.60 +19.17

Q +40 −15 12 × 103 −0.61 −7.28

S −10 −15 12 × 103 +1.09 +13.14 ←
2 R +10 −15 6 × 103 +0.41 +2.48

S −10 −15 6 × 103 +1.09 +6.57 ←
T +10 +15 6 × 103 −1.09 −6.57

U −10 +15 6 × 103 −0.41 −2.48

3 T +10 +15 12 × 103 −1.09 −13.14

V −40 +15 12 × 103 +0.61 +7.28

W +10 +25 12 × 103 −1.60 −19.17

X −40 +25 12 × 103 +0.10 1.25

e. The stress at any point can be found by multiplying the strain of the
considered fibre with its corresponding modulus of elasticity:

σ(y, z) = E(y, z) × ε(y, z).

The calculation of the strain and stress at key points in the cross-section is
given in Table 9.5 (see Figure 9.38).

At the four points R, S, T and U two different stresses are possible, de-
pending on the material considered. The consequence of the difference in
modulus of elasticity will be a step in the stress distribution at these points.
For point S this is shown in bold in the last column of Table 9.5.

The strain and stress distribution can be presented graphically in diagrams.
To draw these diagrams it is important to know the position of the neutral
axis. The expression for the neutral axis is found from

ε(y, z) = ε + yκy + zκz = 0.

Substituting

ε = 0, κy = −34.03 × 10−6 mm−1 and κz = −50.29 × 10−6 mm−1

results in

−34.03 × 10−6y − 50.29 × 106z = 0
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Figure 9.38 The strain and stress diagrams, plotted on a line per-
pendicular to the neutral axis na.

or

−34.03y − 50.29z = 0

in which y and z have to be expressed in mm.

In Figure 9.38 the neutral axis na is drawn. The neutral axis is a straight line
perpendicular to the plane of curvature k. Since there is no extension, the
strain at the normal centre NC is zero (ε = 0), and the neutral axis passes
through NC.

Figure 9.38 shows also the strain and stress diagram.

Since the strains are proportional to the distance to the neutral axis, it is
usual to plot their values along a line perpendicular to the neutral axis. The
strain diagram is always represented by a straight line.

Per homogeneous part of the cross-section also the stresses are proportional
with the distance to the neutral axis. Therefore the stresses are also plotted
along a line perpendicular to the neutral axis. To avoid any ambiguity the
stress distribution is plotted outside the cross-section in separate drawings
for the two materials.

9.9.3 Stresses due to bending and extension

Figure 9.39a shows the cross-section of a composite member, built up out of
four squares of different materials. The cross-section transfers an eccentric
tensile force N = 139 kN for which the centre of force cf coincides with
the point where the four materials meet.
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Figure 9.39 (a) The cross-section of a composite member, built up
out of four squares of different materials. The cross-section transfers
an eccentric tensile force for which the centre of force cf coincides
with the point where the four materials meet. (b) Location of the
normal centre NC of the cross-section.

Figure 9.40 The weighted area and the weighted local centroidal
moments of inertia of the homogeneous parts of the cross-section
are determined with the help of this figure.

In the calculation use E1 = 30 GPa, E2 = 60 GPa, E3 = 100 GPa and
E4 = 200 GPa. The axial stiffness of the cross-section is EA = 624 MN.
The location of the normal centre NC is given in Figure 9.39b.1

Question:
Plot the associated strain and stress diagram.

Solution:
We start to calculate the components of the bending stiffness tensor:

EIyy =
4∑

i=1
(EIyy)i =

4∑
i=1

{(EIyy)i + (y2
C)i(EA)i},

EIyz = EIzy =
4∑

i=1
(EIyz)i =

4∑
i=1

{(EIyz)i︸ ︷︷ ︸
0

+(yCzC)i(EA)i},

EIzz =
4∑

i=1
(EIzz)i =

4∑
i=1

{(EIzz)i + (z2
C)i (EA)i}.

Note that in determining the bending stiffness components we use the
parallel axis theorem for each of the homogeneous parts.

Comment: For each square homogeneous part in the local centroidal yz

coordinate system EIyz = EIzy = 0.

The ultimate calculation of EIyy , EIyz = EIzy and EIzz is presented in
two tables. In Table 9.6 the weighted areas and the weighted local cen-
troidal moments of inertia for the homogeneous parts of the cross-section
are determined (see also Figure 9.40). Since (EIyz)i = (EIzy)i = 0, these
values are left out of the table. In Table 9.7 the contributions due to the
parallel axis theorem are calculated.

1 The location of the normal centre NC and the value of the axial stiffness EA
were determined earlier in Section 9.7, Example 2.
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Table 9.6 Calculation of the weighted areas and weighted local
centroidal moments of inertia for the four homogeneous parts of the
cross-section.

part Ei Ai (Iyy)i = (Izz)i (EA)i (EIyy)i = (EIzz)i

i (N/mm2) (mm2) (mm4) (N) (Nmm2)

1 30 × 103 1.6 × 103 213.33 × 103 48 × 106 6.40 × 109

2 60 × 103 1.6 × 103 213.33 × 103 96 × 106 12.80 × 109

3 100 × 103 1.6 × 103 213.33 × 103 160 × 106 21.33 × 109

4 200 × 103 1.6 × 103 213.33 × 103 320 × 106 42.67 × 109

∑
624 × 106 83.20 × 109

Table 9.7 Calculation of the contributions due to the parallel axis
theorem.

part (EA)i (yC)i (zC)i (y2
C)i (EA)i (yCzC)i(EA)i (z2

C)i(EA)i

i (N) (mm) (mm) (Nmm2) (Nmm2) (Nmm2)

1 48 × 106 +30.77 −16.41 45.45 × 109 −24.24 × 109 12.93 × 109

2 96 × 106 +30.77 +23.59 90.89 × 109 +69.68 × 109 53.42 × 109

3 160 × 106 −9.23 +23.59 13.63 × 109 −34.84 × 109 89.04 × 109

4 320 × 106 −9.23 −16.41 27.26 × 109 +48.47 × 109 86.17 × 109

∑
177.23 × 109 +59.07 × 109 241.56 × 109
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From Tables 9.6 and 9.7 we find

EIyy = (83.20 × 109 Nmm2) + (177.23 × 109 Nmm2)

= 260.43 × 109 Nmm2,

EIyz = EIzz = 59.07 × 109 Nmm2,

EIzz = (83.20 × 109 Nmm2) + (241.56 × 109 Nmm2)

= 324.76 × 109 Nmm2.

The coordinates of the centre of force cf are (see Figure 9.40)

ey = +10.77 mm,

ez = +3.59 mm.

The centre of force is the point of application of the tensile force
N = 139 kN the cross-section has to transfer. Due to the eccentricity of
the tensile force the bending moments are

My = Ney = (139 × 103 N)(10.77 mm) = 1.497 × 106 Nmm,

Mz = Nez = (139 × 103 N)(3.59 mm) = 0.499 × 106 Nmm.

The plane of loading m, the plane in which the bending moment acts, is
defined by the angle αm (see Figure 9.41):

tan αm = Mz

My

= ez

ey

= 3.59

10.77
= 1

3
⇒ αm = 18.43◦.

Figure 9.39 (a) The cross-section of a composite member, built up
out of four squares of different materials. The cross-section transfers
an eccentric tensile force for which the centre of force cf coincides
with the point where the four materials meet. (b) Location of the
normal centre NC of the cross-section.

Figure 9.40 The weighted area and the weighted local centroidal
moments of inertia of the homogeneous parts of the cross-section
are determined with the help of this figure.
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The strain distribution is given by (9.5)

ε(y, z) = ε + yκy + zκz,

in which the strain ε and curvatures κy and κz can be found from the
constitutive equations (9.26) and (9.27):

N = EAε (extension), (9.26)

[
My

Mz

]
=

[
EIyy EIyz

EIzy EIzz

] [
κy

κz

]
(bending). (9.27)

Substitute all known numerical values in (9.26):

(139 × 103 N) = (624 × 106 N) × ε, (9.38)

and in (9.27):

[
1.497

0.499

]
× (106 Nmm) = (109 Nmm2) ×

[
260.43 59.07

59.07 324.76

] [
κy

κz

]
.

(9.39)

From (9.38) we find the strain ε:

ε = 139 × 103 N

624 × 106 N
= 222.756 × 10−6.

Figure 9.41 The strain diagram and stress diagram. The strain
diagram is linear. The stress diagram is more complicated, but linear
per homogeneous part of the cross-section. To find the maximum
stress, not only the distance to the neutral axis (the magnitude of
the strain) is relevant but also the modulus of elasticity of the related
fibre.
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κy and κz can be found by inverting (9.39):

[
κy

κz

]
= 10−3 mm−1

81088
×

[
324.76 −59.07

−59.07 260.43

] [
1.497

0.499

]

⇒
{

κy = 5.632 × 10−6 mm−1,

κz = 0.512 × 10−6 mm−1.

The direction of the curvature κ and the plane of curvature k are defined by
the angle αk:

tan αk = κz

κy

= 0.512 × 10−6 mm−1

5.632 × 10−6 mm−1
= 0.0909 = 1

11
⇒ αk = 5.19◦.

Now the stress distribution can be written as

ε(y, z) = (222.756 + 5.632 × y + 0.512 × z) × 10−6,

in which y and z have to be expressed in mm.

The equation of the neutral axis na is

222.761 + 5.632 × y + 0.512 × z = 0.

The neutral axis intersects the y and z axis in y1 and z1 respectively:

y1 = −222.756 mm

5.632
= −39.55 mm

and
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Figure 9.41 The strain diagram and stress diagram. The strain
diagram is linear. The stress diagram is more complicated, but linear
per homogeneous part of the cross-section. To find the maximum
stress, not only the distance to the neutral axis (the magnitude of
the strain) is relevant but also the modulus of elasticity of the related
fibre.

z1 = −222.756 mm

0.512
= −435.02 mm.

The neutral axis is outside the cross-section.

Figure 9.41 shows sketches of the strain diagram and stress diagram. The
strain diagram is linear. The stress diagram is more complicated, but linear
per homogeneous part of the cross-section. To find the maximum stress, not
only the distance to the neutral axis (the magnitude of the strain) is relevant
but also the modulus of elasticity of the related fibre.

For each material (homogeneous part) the maximum stress is computed in
Table 9.8. The points where these maximum stresses occur are given in
column two.

Comment: Since the neutral axis is outside the cross-section the entire
cross-section is subject to the same sign of strain, e.g. a positive strain.
Therefore the entire cross-section is in tension.

Table 9.8 Calculation of the maximum stress per homogeneous
part of the cross-section.

part point yj zj ε(yj , zj ) Ei σ (yj , zj )

i j (mm) (mm) (×10−6) (N/mm2) (N/mm2)

1 A 50.77 3.59 510.5 30 × 103 15.3

2 B 50.77 43.59 531.0 60×3 31.9

3 C 10.77 43.59 305.7 100 × 103 30.6

4 D 10.77 3.59 285.3 200 × 103 57.1
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9.10 Stresses in the principal coordinate system –
alternative method

In the previous section the bending stresses in the cross-section were cal-
culated for an arbitrary yz coordinate system. The disadvantage of this
method is the coupling between the bending components. The advantage
is the straightforward method. According to the authors this method is to
be preferred. However in engineering practice the calculation is often based
on the principal coordinate system.

If the yz coordinate system is chosen according to the principal direc-
tions of the cross-section, then the non-diagonal terms EIyz = EIzy are
zero by definition. So the constitutive relations for bending in the principal
directions y and z are uncoupled:

[
My

Mz

]
=

[
EIyy 0

0 EIzz

] [
κy

κz

]
. (9.40)

For the components of the curvature we find

κy = My

EIyy

, (9.41a)

κz = Mz

EIzz

. (9.41b)

The strain distribution in a cross-section subject to combined bending and
extension becomes

ε(y, z) = ε + κyy + κzz

= N

EA
+ Myy

EIyy

+ Mzz

EIzz

. (9.42)
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Figure 9.42 Procedure to find the stress distribution in a principal
coordinate system.

The stress distribution is found by

ε(y, z) = E(y, z) · ε(y, z)

= E(y, z) ·
(

N

EA
+ Myy

EIyy

+ Mzz

EIzz

)
. (9.43)

For homogeneous cross-sections the modulus of elasticity E is independent
of the coordinates y and z, so (9.43) simplifies into

σ(y, z) = E ·
(

N

EA
+ Myy

EIyy

+ Mzz

EIzz

)
= N

A
+ Myy

Iyy

+ Mzz

Izz

. (9.44)

Note that in a homogeneous cross-section, the stress distribution due to
combined bending and extension is independent of the modulus of elas-
ticity.

The advantage of the very simple and easy to memorise formulae (9.43) and
(9.44) is however small. Additional work has to be done since all quantities
used have to be referred to the principal coordinate system, as shown by
the scheme in Figure 9.42. The additional work consists of computing the
principal directions and the principal bending stiffness values and calculat-
ing the components of the bending moment in the principal directions. The
strain and stress distribution are found in the principal coordinate system
and, if needed, have to be transformed to the initially given coordinate
system.

In Section 9.11 the transformation rules will be discussed for the compo-
nents of a vector or first-order tensor (the bending moment M and curvature
κ) and of a second-order tensor (the bending stiffness tensor EI ). Examples
of calculating the stresses in a principal coordinate system are given in
Section 9.12.
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Figure 9.43 Both the bending moment M and the curvature κ

are vectors or first-order tensors. They can be represented by single
pointed arrows. m is the plane in which the bending moment M acts,
also called the plane of loading, and k is the plane of curvature. The
vectors M and κ are linked by a second-order tensor, the bending
stiffness tensor EI .

9.11 Transformation formulae for the bending stiffness
tensor

The constitutive relationship for bending is given by (9.27):

[
My

Mz

]
=

[
EIyy EIyz

EIzy EIzz

] [
κy

κz

]
, (9.27)

or in matrix notation

{M} = [EI ]{κ}.

Both the bending moment M and the curvature κ are vectors or first-order
tensors. They can be represented by the arrows in Figure 9.43. Here m is the
plane in which the bending moment acts, also called the plane of loading,
and k is the plane of curvature. The vectors M and κ are linked by the
bending stiffness matrix which is a second-order tensor.

The characteristics of a first-order tensor and second-order tensor are
explained in Sections 9.11.1 and 9.11.2.

In Section 9.11.3 we look for the so-called principal values and principal
directions with respect to the bending stiffness of the cross-section, and in-
vestigate when the plane of loading m coincides with the plane of curvature
k.

The principal directions and principal values of the bending stiffness tensor
can also be found with a simple graphical method. This method is based
on what is called Mohr’s circle and is presented in Section 9.11.4. With
Mohr’s circle we can easily find the components of the bending stiffness
tensor in any arbitrary coordinate system.
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Figure 9.44 The yz coordinate system is transformed into a new
yz coordinate system by rotating it about an angle α.

9.11.1 First-order tensor

A vector or first-order tensor is characterised by1

• its magnitude,
• its direction, and
• the transformation rules with respect to its components when the co-

ordinate system is rotated.

When the yz coordinate system is transformed by rotation into the yz

coordinate system (see Figure 9.44), the components of both the bending
moment M and curvature κ change according to the same transformation
rules:2

[
Mȳ

Mz̄

]
=

[
cos α sin α

− sin α cos α

] [
My

Mz

]

and

[
κȳ

κz̄

]
=

[
cos α sin α

− sin α cos α

] [
κy

κz

]
,

or in matrix notation

{M} = [R]{M} and {κ̄} = [R]{κ},

1 These vectors are physical quantities with certain properties, and are more than
a column matrix in linear algebra.

2 See Sections 9.3 and 9.4.
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in which [R] is called the transformation matrix:

[R] =
[

cos α sin α

− sin α cos α

]
.

The backward transformation (from yz to yz) will be

{M} = [R]−1{M} and {κ} = [R]−1{κ̄}.

For the transformation matrix holds that the inverse matrix is equal to the
transposed matrix:1

[R]−1 = [R]T =
[

cos α − sin α

sin α cos α

]
.

Matrices with this property are called orthogonal.

A vector or first-order tensor can be identified by the transformation rules
when rotating the coordinate system.

An important fact is the independency of the magnitude of the vector to the
coordinate system used. Both in a yz and yz coordinate system,

M =
√

M2
x + M2

y =
√

M
2
x + M

2
y

and

κ =
√

κ2
x + κ2

y =
√

κ̄2
x + κ̄2

y .

1 This can be concluded from the fact that the determinant of the matrix is 1.
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We say that the magnitudes M and κ are invariant.

9.11.2 Second-order tensor

The components of the first-order tensors M and κ are linearly linked by
the bending stiffness matrix

[
EIyy EIyz

EIzy EIzz

]
.

If a linear relationship between two first-order tensors is represented by a
matrix, this matrix is by definition a second-order tensor. So the bending
stiffness matrix is a second-order tensor, referred to as the bending stiffness
tensor. Since EIzy = EIyz, the bending stiffness tensor is a symmetrical
tensor.

In scientific publications the matrix notation is not used very often. The
standard notation used is the tensor notation:

Mi = EIij κj with i, j = x, z,

or simplified

M = EIκ. (9.45)

A second-order tensor can be identified by the transformation rules for its
components when rotating the coordinate system (see Figure 9.44).

In the rotated yz coordinate system we find by repeated application of the
transformation rules

M = RM = R EI κ = R EI R−1κ̄,

Figure 9.44 The yz coordinate system is transformed into a new
yz coordinate system by rotating it about an angle α.
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or

M = EIκ̄,

in which EI is the transformed bending stiffness tensor:

EI = R EI R−1.

The components of the bending stiffness tensor in the rotated coordinate
system follow from

EI =
[

EIyy EIyz

EIzy EIzz

]

=
[

cos α sin α

− sin α cos α

]
︸ ︷︷ ︸

R

[
EIyy EIyz

EIzy EIzz

]
︸ ︷︷ ︸

EI

[
cos α − sin α

sin α cos α

]
︸ ︷︷ ︸

R−1

,

which gives

EIyy =+EIyy cos2 α + EIyz sin α cos α + EIzy sin α cos α + EIzz sin2 α,

EIyz =−EIyy sin α cos α + EIyz cos2 α − EIzy sin2 α + EIzz sin α cos α,

EIzy =−EIyy sin α cos α − EIyz sin2 α + EIzy cos2 α + EIzz sin α cos α,

EIzz =+EIyy sin2 α − EIyz sin α cos α − EIzy sin α cos α + EIzz cos2 α.

(9.46)
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Figure 9.45 Most likely the vectors M and κ will not have the
same direction, and the plane of curvature k will not coincide with
the plane of loading m.

These are the transformation rules for the components of a second-order
tensor. Since EIyz = EIzy (the bending stiffness tensor is a symmetric
tensor), the transformation rules simplify into

EIyy = +EIyy cos2 α + 2EIyz sin α cos α + EIzz sin2 α,

EIyz = EIzy = −(EIyy − EIzz) sin α cos α + EIyz(cos2 α − sin2 α),

EIzz = +EIyy sin2 α − 2EIyz sin α cos α + EIzz cos2 α. (9.47)

9.11.3 Principal values and principal directions

A second-order tensor describes the linear relation between the compo-
nents of two vectors or first-order tensors. Most likely these two vectors
will not have the same direction (see Figure 9.45). So M and κ will usually
not have the same direction. This results in a plane of curvature which
does not coincide with the plane of loading. The bending moment M and
curvature κ act only in the same plane if the following relation holds:

[
My

Mz

]
= λ

[
κy

κz

]
.

If we substitute this into the constitutive relationship we find:

[
My

Mz

]
=

[
EIyy EIyz

EIzy EIzz

] [
κy

κz

]
= λ

[
κy

κz

]

which gives
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[
EIyy − λ EIyz

EIzy EIzz − λ

]
︸ ︷︷ ︸

EI−λI

[
κy

κz

]
︸ ︷︷ ︸

κ

= 0 (9.48)

or

(EI − λI)κ = 0 (9.49)

in which I is the unity matrix.

Equation (9.49) represents an eigenvalue problem. Only for certain values
of λ this system will have a non-zero solution. The values of λ are the eigen-
values and the associated solutions of κ the eigenvectors. The homogeneous
system of equations (9.48) will have a non-zero solution if the determinant
of the matrix is zero:

Det[EI − λI ] = (EIyy − λ)(EIzz − λ) − EIyzEIzy = 0.

Since the non-diagonal terms are equal (EIyz = EIzy ), we find the follow-
ing characteristic polynomial which has to be zero:

(EIyy − λ)(EIzz − λ) − EI 2
yz = 0,

or

λ2 − (EIyy + EIzz)λ + (EIyyEIzz − EI 2
yz) = 0. (9.50)

The solution of this equation is

λ1, λ2 = 1
2 (EIyy + EIzz) ± 1

2

√
(EIyy − EIzz)2 + 4EI 2

yz .
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The two eigenvalues λ1, λ2 are also known as the principal values EI1,
EI2.

EI1, EI2 = 1
2 (EIyy + EIzz) ± 1

2

√
(EIyy − EIzz)2 + 4EI 2

yz . (9.51)

The words eigenvalue and principal value describe the same concept.

The eigenvalues will always be the same, independent of the choice of
the coordinate system. This means that the characteristic polynomial will
always be the same regardless the choice of the coordinate system. In order
to obtain in every coordinate system the same characteristic polynomial,
the constants of polynomial (9.50) have to be invariant. So we can write

λ2 − I1λ + I2 = 0

in which I1 and I2 are two invariants:1

I1 = EIyy + EIzz,

I2 = EIyyEIzz − EI 2
yz. (9.52)

For each solution of the eigenvalue λi an eigenvector κi can be found. The
eigenvectors κi are independent of one another, which means that they
are mutual perpendicular to one another. Their directions are called the
principal directions.

1 Note: I1 and I2 are internationally used notations for the invariants and have
nothing to do with the moment of inertia for which the same symbol is used.



744 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

Figure 9.46 If the rotated yz coordinate system is a principal
coordinate system, then EIyz = EIzy = 0

If we rotate the yz coordinate system to the principal yz coordinate system
as shown in Figure 9.46, the constitutive relationship in this coordinate
system becomes

[
Mȳ

Mz̄

]
=

[
EIyy 0

0 EIzz

] [
κȳ

κz̄

]
, (9.53)

in which EIyy and EIzz are the principal bending bending stiffness values,
also denoted as EI1 and EI2.1

In (9.53) both non-diagonal terms are zero which is by definition the case
for a principal tensor. From this relation we can also see that bending in
the principal directions is fully uncoupled. This means that both vectors M

and κ only coincide if the plane of loading m or the plane of curvature k

coincides with one of the principal directions.

To find the principal directions we can substitute the eigenvalues (9.51) in
(9.48) and determine the directions of the eigenvectors. However to avoid
extensive calculation we follow another route and return to one of the
transformation formulae (9.47) and look for the direction for which both
non-diagonal terms EIyz = EIzy in the rotated yz coordinate system are
zero (see Figure 9.46):

EIyz = EIzy

= (−EIyy + EIzz) sin α cos α + EIyz(cos2 α − sin2 α) = 0.

1 It is usual to denote the larger principal bending stiffness value as EI1 and the
smaller as EI2.
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Introducing the double angle 2α we can write

EIyz = − 1
2 (EIyy − EIzz) sin 2α + EIyz cos 2α = 0,

from which we find

tan 2α = EIyz

1
2 (EIyy − EIzz)

. (9.54)

The solution is

α1 = α0,

but since the tangent is a periodic function with period π (180◦) there is
also a second solution:

α2 = α0 + 90◦.

As mentioned before the two principal directions α1 and α2 are perpendic-
ular to one another.

Next we look for situations in which the plane of loading m coincides
with the plane of curvature k, assuming the yz directions of the coordinate
system coincide with the principal directions:

[
My

Mz

]
=

[
EIyy 0

0 EIzz

] [
κy

κz

]
, (9.55)

Here EIyy and EIzz are the principal bending bending stiffness values.

For the principal coordinate system the following relationship between the
direction αm of the bending moment vector (plane of loading) and the di-
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Figure 9.47 For a principal yz coordinate system exists the
following relationship between the direction αm of the bending
moment vector (plane of loading m) and the direction αk of the cur-
vature vector (plane of curvature k): tan αm = (EIzz/EIyy) tan αk .

rection αk of the curvature vector (plane of curvature) can be derived from
(9.55) (see Figure 9.47):

tan αm = Mz

My

= EIzz

EIyy

κz

κy

= EIzz

EIyy

tan αk. (9.56)

The directions of the vectors M and κ coincide only if
• αm = αk = 0, both M and κ act along the y axis (a principal axis);
• αm = αk = π/2, M and κ act along the z axis (the other principal axis);
• EIyy = EIzz ⇒ αm = αk .

In the last case, with two equal principal bending stiffness values, all direc-
tions are principal directions.

9.11.4 Mohr’s circle

In this section we discuss a simple graphical method to find the principal
directions and principal values of the bending stiffness tensor, and also the
stiffness values in any arbitrary direction. This method is based on what is
called Mohr’s circle.1

1 Mohr’s circle gives a graphical representation of the transformation formulae for
the components of a second-order tensor. Here we discuss the bending stiffness
tensor. But Mohr’s circle can also be used for other second-order tensors. Exam-
ples are the stress tensor, strain tensor (see Engineering Mechanics, Volume 4).
The first of this idea was made by Culmann in 1866. About 20 years later, Mohr
made a more complete study. Christian Otto Mohr (1835–1918) was a German
civil engineer active in railway and bridge design, and later became professor
at the Stuttgart Polytechnikum (1868–1873) and the Dresden Polytechnikum
(1873–1900).
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Figure 9.48 The yz coordinate system is rotated through an angle
α with respect to the principal directions, simply denoted by 1 and
2.

In Figure 9.48 the yz coordinate system is rotated through an angle α with
respect to the principal directions, simply denoted by 1 and 2. In order
to express the components of the bending stiffness tensor for the rotated
yz coordinate system into the principal stiffness values, the transformation
formulae (9.47) are used:

EIyy = EI1 cos2 α + EI2 sin2 α,

EIyz = EIzy = −(EI1 − EI2) sin α cos α,

EIzz = EI1 sin2 α + EI2 cos α. (9.57)

With

sin2 α = 1
2 (1 − cos 2α),

cos2 α = 1
2 (1 + cos 2α),

sin α cos α = 1
2 sin 2α,

the stiffness values (9.57) can be written as functions of the double angle
2α:

EIyy = 1
2 (EI1 + EI2) + 1

2 (EI1 − EI2) cos 2α,

EIyz = EIzy = −1
2 (EI1 − EI2) sin 2α,

EIzz = 1
2 (EI1 + EI2) cos2 α − 1

2 (EI1 − EI2) cos 2α. (9.58)

Assume

c = 1
2 (EI1 + EI2),

r = 1
2 (EI1 − EI2). (9.59)
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Figure 9.49 (a) Mohr’s circle in a (EIyy;EIyz) coordi-
nate system, with centre (EIyy;EIyz) = (c; 0) and radius r .
(b) Mohr’s circle in a (EIzz; EIzy) coordinate system, with centre
(EIzz;EIzy) = (c; 0) and radius r . (c) Since both circles represent
the transformation formulae for the same bending stiffness tensor,
they have to coincide.

It is usual to denote the larger principal bending stiffness value as EI1 and
the smaller as EI2, so r > 0.

Note that c and r are invariant, which means independent of the rotation of
the coordinate system.

Substitution of (9.59) in (9.58) gives

EIyy = c + r cos 2α, (9.60a)

EIyz = EIzy = −r sin 2α, (9.60b)

EIzz = c − r cos 2α. (9.60c)

Squaring and adding equations (9.60a) and (9.60b) shows that

(EIyy − c)2 + (EIyz)
2 = r2. (9.61a)

This equation can be interpreted as the equation of a circle (Mohr’s circle)
in a (EIyy; EIyz) coordinate system, with centre (EIyy; EIyz) = (c; 0)

and radius r (see Figure 9.49a).

Squaring and adding equations (9.60b) and (9.60c) gives

(EIzz − c)2 + (EIzy)2 = r2. (9.61b)

This is the equation of Mohr’s circle in a (EIzz; EIzy) coordinate system,
with centre (EIzz; EIzy) = (c; 0) and radius r (see Figure 9.49b). Since
the circles in Figures 9.49a and 9.49b are related to the transformation
formulae for the same bending stiffness tensor, they have to coincide (see
Figure 9.49c).
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Figure 9.50 In Mohr’s circle, the diagonal terms of the bending
stiffness tensor, EIyy and EIzz, are plotted on the horizontal axis,
the non-diagonal terms EIyz = EIzy are plotted on the vertical
axis. The positive directions of the vertical EIyz axis and EIzy axis
are opposite, and are chosen in such a way that it is very simple
to read from Mohr’s circle the stiffness values in other (rotated)
coordinate systems.

Figure 9.51 For two mutual perpendicular axes y and z, the
pairs of bending stiffness values (EIyy;EIyz) and (EIzz;EIzy)

are represented by two diametrical points of Mohr’s circle, A and B
respectively. Point A is found by plotting the angle 2α at the centre
c of the circle. The location of A defines the values of EIyy (to be
read from the horizontal axis) and EIyz (to be read from the vertical
axis). The location of point B is diametrical with respect to A, and
defines the values of EIzz and EIzy .

The diagonal terms of the bending stiffness tensor, EIyy and EIzz, are plot-
ted on the horizontal axis, the non-diagonal terms EIyz = EIzy are plotted
on the vertical axis. The positive directions of the vertical EIyz axis and
EIzy axis are opposite, and are chosen in such a way that it is very simple
to read from Mohr’s circle the stiffness values in other (rotated) coordinate
systems.

To memorise the positive EIyz and EIzy directions along the vertical axis
the following hints are given:
• Rotate the original yz coordinate system so that you can position it

between the horizontal and vertical axes as shown in Figure 9.50.
• In the lower corner the y axis points downward: this is the positive EIyz

direction. The first index y of EIyz corresponds with the y axis of the
rotated coordinate system.

• In the upper corner the z axis points upwards: this is the positive EIzy

direction. The first index z of EIzy corresponds with the z axis of the
rotated coordinate system.

The use of Mohr’s circle will be explained by two examples.

Example 1
In the first example the principal values EI1 and EI2 are given, together
with the angle α, which defines the position of the yz coordinate system.
Below we are looking for the components of the bending stiffness tensor in
the yz coordinate system.

For two mutual perpendicular axes y and z the pairs of bending stiffness
values (EIyy; EIyz) and (EIzz; EIzy) are represented by two diametrical
points of Mohr’s circle, A and B respectively. This is shown in Figure 9.51.
Point A is found by plotting de angle 2α at the centre c of the circle. The
location of A defines the values of EIyy (to be read from the horizontal
axis) and EIyz (to be read from the vertical axis). The location of point B
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Figure 9.52 (a) From Mohr’s circle we immediately can read
the principal values: EI1 = c + r and EI2 = c − r . (b) The pole
or direction centre DC has the special property that
• a line drawn through DC and parallel to the i axis of the ij

coordinate system intersects Mohr’s circle at the point (EIii;EIij );
• a line drawn through DC and parallel to the j axis of the ij coor-
dinate system intersects Mohr’s circle at the point (EIjj ;EIji).

is diametrical with respect to A, and defines the values of EIzz and EIzy .
EIyz and EIzy appear to be negative for the given values of EI1, EI2 and
α (α ≈ 28◦); their values have to be read from the negative axes.

Comment: The expressions (9.60) can be derived easily from Mohr’s circle
in Figure 9.51:

EIyy = c + r cos 2α, (9.60a)

EIyz = EIzy = −r sin 2α, (9.60b)

EIzz = c − r cos 2α. (9.60c)

Example 2
In the second example the components of the bending stiffness tensor in
a yz coordinate system are given, and the principal values and principal
directions are asked.

For two mutual perpendicular axes y and z the pairs of bending stiffness
values (EIyy; EIyz) and (EIzz; EIzy) are represented by two diametrical
points on Mohr’s circle (see Figure 9.52a). In this example, all stiffness
values are assumed to be positive.

The centre c and radius r of Mohr’s circle can be derived from the graph:

c = 1
2 (EIyy + EIzz),

r =
√{ 1

2 (EIyy + EIzz)
}2 + EI 2

yz .

Both c and r can be related to the two invariants I1 and I2 as defined in
(9.47):
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c = 1

2 I1 in which I1 = EIyy = EIzz,

r =
√( 1

2 I1
)2 − I2 in which I2 = EIyyEIzz − EI 2

yz.

From Mohr’s circle we immediately read the principal values:

EI1 = c + r and EI2 = c − r.

To find the principal directions we make use of a special point on Mohr’s
circle, which is called the pole or direction centre, and is denoted as DC
(see Figure 9.52b). The direction centre DC has the special property that
• a line drawn through DC and parallel to the i axis of the ij coordinate

system intersects Mohr’s circle at the point (EIii; EIjj );
• a line drawn through DC and parallel to the j axis of the ij coordinate

system intersects Mohr’s circle at the point (EIjj ; EIji).

So the location of the direction centre DC can be found as follows:
• Draw a line parallel to the y axis through point (EIyy; EIyz).
• Draw a line parallel to the z axis through point (EIzz; EIzy).
• The intersection of the two lines with Mohr’s circle is the direction

centre DC.

Using the direction centre DC, we can find the principle directions as
follows:
• Draw a line through DC and EI1. This line is parallel to the principal

axis denoted as 1, and is the first principal direction.
• Draw a line through DC and EI2. This line is parallel to the principal

axis denoted as 2, and is the second principal direction.
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Figure 9.53 Cantilever beam with homogeneous Z-section.

Figure 9.54 The cross-section at A is subject to a bending moment
M which acts in the vertical plane m. The vector M points upwards,
therefore αm = 270◦.

From Mohr’s circle in Figure 9.52 we directly read

tan α0 = EIyz

EI1 − EIzz

,

and for the central angle 2α0

tan 2α0 = EIyz

EIyy − c
= EIyz

EIyy − 1
2 (EIyy + EIzz)

= EIyz

1
2 (EIyy − EIyy)

.

This is in accordance with equation (9.54), derived before.

9.12 Application of the alternative method based on the
principal directions

The calculation of stresses in the principal coordinate system, as outlined
in Section 9.10, will be illustrated by two examples.

Example 1
Here we use the homogeneous Z-section from Example 1 in Section 9.9.2
(see Figure 9.53), and consider the cross-section at fixed end A. This cross-
section is subject to a bending moment M with components My = 0 and
Mz = −F	. The bending moment acts in the vertical plane m; the vector
M points upwards: αm = 270◦ (see Figure 9.54).

Questions:
a. Calculate the bending stress distribution in the principal coordinate

system.
b. Find, in the principal coordinate system, the directions of the vectors

M and κ for the bending moment and curvature respectively.

at centre c

�

�

� �

�

�

�

� �

� �
� �

�

� �
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Figure 9.55 (a) The pairs of bending stiffness values (EIyy;EIyz)

and (EIzz;EIzy) represent two points of Mohr’s circle. With the
help of these points the radius r and centre c of Mohr’s circle can
be found. (b) The complete circle. A particular point on the circle is
the direction centre DC, which is found by drawing a line parallel
to the y axis through point (EIyy;EIyz) and a line parallel to the z

axis through point (EIzz;EIzy). The intersection of these lines is
the direction centre DC. ȳ and z̄ are the principal coordinate axes.
EI1 and EI2 are the principal bending stiffnesses.

Solution:
a. In the given yz coordinate system we found

EIyy = 2Ea3t,

EIyz = EIzy = −3Ea3t,

EIzz = 8Ea3t .

With these values we have two points of Mohr’s circle. From Figure 9.55a
we find

c = 2 + 8

2
Ea3t,

r = Ea3t
√

(8 − c)2 + 32 = 3Ea3t
√

2 = 4.2426Ea3t .

In Figure 9.55b Mohr’s circle is plotted. From the circle we find the prin-
cipal bending stiffness quantities as

EI1 = c + r = (5 + 3
√

2)Ea3t = 9.2426Ea3t,

EI2 = c − r = (5 − 3
√

2)Ea3t = 0.7574Ea3t .

A particular point on the circle is the direction centre DC, which is found by
drawing a line parallel to the y axis through point (EIyy; EIyz) and a line
parallel to the z axis through point (EIzz; EIzy). Using the direction centre
DC we find the principal directions. In a principal yz coordinate system
with the positive ȳ axis in the first quadrant the principal values are (see
Figure 9.55b)
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EIyy = EI2 = 0.7574Ea3t, (9.62a)

EIzz = EI1 = 9.2426Ea3t . (9.62b)

The orientation of the principal yz coordinate system is defined by the angle
α0, which can directly be found from Mohr’s circle (see Figure 9.55b):

tan α0 = |EIyz|
EIzz − EI2

= 3

(8 − (5 − 3
√

2)
= 0.4142 ⇒ α0 = 22.5◦.

According to (9.44), the stress formula in the principal yz coordinate
system is very simple:

σ(ȳ, z̄) = E

(
Mȳȳ

EIyy

+ Mz̄z̄

EIzz

)
= Mȳȳ

Iyy

+ Mz̄z̄

Izz

. (9.63)

However, all quantities have to be expressed in the yz coordinate system.

So the components of M in the principal directions have to be determined.
We use the transformation formulae for a first-order tensor:1

[
Mȳ

Mz̄

]
=

[
cos α0 sin α0

− sin α0 cos α0

] [
My

Mz

]
.

The result is (see Figure 9.56)

[
Mȳ

Mz̄

]
=

[ +0.9239 +0.3827

−0.3827 +0.9239

] [
0

−F	

]
=

[ −0.3827F	

−0.9239F	

]
. (9.64)

1 See Section 9.11.1.

Figure 9.55 (a) The pairs of bending stiffness values (EIyy;EIyz)

and (EIzz;EIzy) represent two points of Mohr’s circle. With the
help of these points the radius r and centre c of Mohr’s circle can
be found. (b) The complete circle. A particular point on the circle is
the direction centre DC, which is found by drawing a line parallel
to the y axis through point (EIyy;EIyz) and a line parallel to the z

axis through point (EIzz;EIzy). The intersection of these lines is
the direction centre DC. ȳ and z̄ are the principal coordinate axes.
EI1 and EI2 are the principal bending stiffnesses.
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Figure 9.56 The coordinates (y, z) = (a,−a) of P are in the
principal yz coordinate system (ȳ, z̄) = (0.5412a, −1.3066a).

By substituting (9.64) and (9.62) in (9.63) we find the following stress
distribution:

σ(ȳ, z̄) = − F	

a3t
(0.5053ȳ + 0.1000z̄). (9.65)

Note that the location of the points in the cross-section also has to be ex-
pressed in the principal coordinates ȳ and z̄. Here again we can use the
transformation formulae for a first-order tensor:1

[
ȳ

z̄

]
=

[
cos α0 sin α0

− sin α0 cos α0

] [
y

z

]

=
[ +0.9239 +0.3827

−0.3827 +0.9239

] [
y

z

]
. (9.66)

To find the bending stress at point P, the coordinates (y, z) = (a,−a)

have to be changed into (ȳ, z̄) = (0.5412a,−1.3066a) (see Figure 9.56).
Substituting the (ȳ, z̄) coordinates in (9.64) we find

σ(P) = − F	

a3t
(0.5053 × 0.5412a − 0.1000 × 1.3066a)

= −0.1428
F	

a2t
= −1

7

F	

a2t
.

This is in agreement with the result found in Section 9.9.2, Example 1,
Table 9.2.

1 See (9.6a) in Section 9.3.
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Figure 9.57 (a) The plane of loading m, the plane of curvature
k, and the neutral axis na perpendicular to the plane of curvature
k. (b) The bending stress diagram; the normal stresses are plotted
along thin-walled flanges and web. The three points with zero stress
are on a straight line: the neutral axis na.

Comment: To express the stresses in the initially given yz coordinate sys-
tem, we can substitute (9.66) in (9.65). After some elaboration we find

σ(y, z) = − F	

a3t
(0.4286y + 0.2858z) = −1

7

F	

a3t
(3y + 2z).

This stress distribution is the same as we found in Section 9.9.2, Example 1,
formula (9.36).

b. In the principal yz coordinate system the direction of vector M is defined
by

tan ᾱm = Mz̄

Mȳ

= −0.9239F	

−0.3827F	
= 2.414 ⇒ ᾱm = 67.5◦ + 180◦ = 247.5◦.

To find the direction of the curvature vector κ in the principal coordinate
system, we use equation (9.56):

tan ᾱk = EIyy

EIzz

tan ᾱm = 0.7574Ea3

9.2426Ea3t
× 2.414 = 0.1978

⇒ ᾱk = 11.19◦ + 180◦ = 191.19◦.

These directions are shown in Figure 9.57. It can easily be verified that they
are in accordance with the directions found in Section 9.11.1, Example 1:
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Figure 9.58 An unsymmetrical and inhomogeneous cross-section,
subject to a bending moment M in the vertical plane m.

ᾱm = αm − α0 = 270◦ − 22.5◦ = 247.5◦,

ᾱk = αk − α0 = 213.69◦ − 22.5◦ = 191.19◦.

Example 2
The next example concerns the unsymmetrical and inhomogeneous cross-
section in Figure 9.58. The cross-sectional dimensions and the location
of the normal centre NC can be read from the figure. The moduli of
elasticity of the web and flange are E and 2E respectively, in which
E = 40 × 103 N/mm2.

The bending stiffness quantities in the given yz coordinate system, with its
origin at NC, are given:

EIyy = 166.6 × 1012 Nmm2,

EIyz = EIzy = 28.8 × 1012 Nmm2,

EIzz = 51.4 × 1012 Nmm2.

The cross-section is subject to a bending moment M in the vertical plane
m. The components of M are (see Figure 9.58)

My = 0 and Mz = +240 kNm.

Questions:
a. Calculate the bending stress distribution in the principal coordinate

system.
b. Find the plane of curvature k.
c. Draw the σ diagram by plotting the values perpendicular to k.
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Figure 9.59 (a) The pairs of bending stiffness values (EIyy;EIyz)

and (EIzz; EIzy) represent two points of Mohr’s circle. With the
help of these points the radius r and centre c of Mohr’s circle can
be found, and also the direction centre DC. (b) The complete circle.
EI1 and EI2 are the principal bending stiffnesses. ȳ and z̄ are the
principal coordinate axes.

Solution:
a. To calculate the bending stresses with the formulae based on the principal
directions, we first have to find these directions.

The bending stiffness quantities in the given yz coordinate system provide
two points of Mohr’s circle, as shown in Figure 9.59a. From this figure we
find the centre c and radius r of Mohr’s circle:

c = 109 × 10−12 Nmm2,

r = 64.4 × 10−12 Nmm2.

The principal values of the bending stiffness tensor are

EI1 = c + r = 173.4 × 1012 Nmm2,

EI2 = c − r = 44.6 × 1012 Nmm2.

The direction centre DC is found by drawing a line parallel to the y axis
through point (EIyy; EIyz) and a line parallel to the z axis through point
(EIzz; EIzy).

Using point DC we can easily find the principal directions. In a principal yz

coordinate system with the positive ȳ axis in the first quadrant the principal
values are (see Figure 9.59b)

EIyy = EI1 = 173.4 × 1012 Nmm2, (9.67a)

EIzz = EI2 = 44.6 × 1012 Nmm2. (9.67b)
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Figure 9.60 (a) The principal yz coordinate system. (b) The
vectors M and κ and the planes of loading m and curvature k.
The neutral axis na passes through the normal centre NC and is
perpendicular to k.

The orientation of the principal yz coordinate system is defined by the angle
α0, which can be found directly from Mohr’s circle:

tan α0 = |EIyz|
EI1 − EIzz

= 28.8

173.4 − 51.4
= 0.236 ⇒ α0 = 13.28◦.

For an inhomogeneous cross-section subject to bending the stress distribu-
tion in the principal yz coordinate system is given by (9.43):

σ(ȳ, z̄) = E(ȳ, z̄)

(
Mȳȳ

EIyy

+ Mz̄z̄

EIzz

)
. (9.68)

All quantities have to be related to the yz coordinate system.

The components of M in the principal yz coordinate system are found with
the transformation formulae for a first-order tensor:1

[
Mȳ

Mz̄

]
=

[
cos α0 sin α0

− sin α0 cos α0

] [
My

Mz

]
.

With α0 = 13.28◦, the result is (see Figure 9.60a)

[
Mȳ

Mz̄

]
=

[ +0.9733 +0.2297

−0.2297 +0.9733

] [
0

240 × 106 Nmm

]

=
[

55.13 × 106 Nmm

233.59 × 106 Nmm

]
. (9.69)

1 See Section 9.11.1.
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Table 9.9

E point y z σ

(N/mm2) (mm) (mm) (N/mm2)

flange

80 × 103 P +270 −90 −56.5

80 × 103 Q −330 −90 −13.6

80 × 103 V +270 +10 −15.2

80 × 103 W −330 +10 +27.7

web

40 × 103 R +170 +10 −4.0

40 × 103 S +70 +10 −0.4

40 × 103 T +170 +310 +58.0

40 × 103 U +70 +310 +61.6

By substituting (9.67) and (9.69) in (9.68) we find the following stress
distribution:

σ(ȳ, z̄) = E(ȳ, z̄)

(
Mȳȳ

EIyy

+ Mz̄z̄

EIzz

)

= E(ȳ, z̄)

109 mm
(317.9ȳ + 5237.5z̄). (9.70)

Substituting

[
ȳ

z̄

]
=

[
cos α0 sin α0

− sin α0 cos α0

] [
y

z

]
=

[ +0.9733 +0.2297

−0.2297 +0.9733

] [
y

z

]

in (9.70) we find, after some elaboration, the stress distribution as function
of the coordinates in the initially given yz coordinate system:

σ(ȳ, z̄) = E(ȳ, z̄)

109 mm
(−893.6y + 5170.7z).

In Table 9.9 the bending stress is calculated for all corners of the cross-
section.

b. In the principal yz coordinate system the direction of vector M is defined
by

tan ᾱm = Mz̄

Mȳ

= 233.59 × 106 Nmm

55.13 × 106 Nmm
= 4.237 ⇒ ᾱm = 76.72◦.

Check: αm = 90◦ − α0 = 90◦ − 13.28◦ = 76.72◦.
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Figure 9.61 The σ diagram. The maximum bending stresses oc-
cur at P and U: the maximum compressive bending stress is at
P (56.5 N/mm2) and the maximum tensile bending stress is at U
(61.6 N/mm2.

To find the direction of curvature vector κ in the principal coordinate
system, we use equation (9.56):

tan ᾱk = EIyy

EIzz

tan ᾱm

= 173.4 × 1012 Nmm2

44.6 × 1012 Nmm2 × 4.237 = 16.473 ⇒ ᾱk = 86.53◦.

Figure 9.60b shows the vectors M and κ and the planes of loading m and
curvature k. The neutral axis na passes through the normal centre NC and
is perpendicular to k.

c. The bending stress diagram is plotted in Figure 9.61. The maximum
bending stresses occur at P and U: the maximum compressive bending
stress is at P (56.5 N/mm2) and the maximum tensile bending stress is at U
(61.6 N/mm2).

9.13 Displacements due to bending

In Chapter 8 we discussed various methods to find the deflection of mem-
bers with a homogeneous cross-section subject to bending in one of the
principal planes.

The forget-me-nots were discussed in Section 8.3. These formulae are
valid only when the member is prismatic and bending occurs in one of
the principal planes. So the stiffness EI in the forget-me-nots has to be a
principal value. The forget-me-nots can be used both for homogeneous and
inhomogeneous cross-sections.
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Figure 9.62 Cantilever beam with an inhomogeneous cross-section.

Section 8.4 discussed a method based on the moment-area formulae. The
“moment-area” refers to the area of the M/EI diagram or, since M/EI = κ ,
the curvature diagram. The moment-area formulae are valid for both ho-
mogeneous and inhomogeneous cross-sections. An important advantage is
that the bending stiffness EI does not need to be a principal value. In a
yz coordinate system, not coinciding with the principal directions, we can
find the displacement wy in y direction with the moment-area formulae, in
which the “moment-area” refers to the area of the κy diagram (curvature
diagram in the xy plane). The displacement wz in z direction can be found
with the moment-area formulae, in which the “moment-area” refers to the
area of the κz diagram (curvature diagram in the xz plane).

Both the method with forget-me-nots and the method based on the moment-
area formulae will be illustrated by two examples.

Example 1
Consider the cantilever beam in Figure 9.62, with an inhomogeneous cross-
section and constructed of three firmly glued parts, numbered by 1 to 3.
For the flanges and web, different materials are used. The beam is loaded
by a point load of 250 N at C. The load is applied in such a way that no
torsion occurs. The moduli of elasticity are E1 = E3 = 6000 N/mm2 and
E2 = 12000 N/mm2. See also Section 9.9.2, Example 2.

Question:
Determine the deflection at C.

Solution:
Figure 9.63 shows the M diagram, and the plane of loading m. The com-
ponents of the bending moment at the fixed end A are
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Figure 9.63 The plane of loading.

Figure 9.64 The plane of curvature.

My;A = 0,

Mz;A = −(250 N)(0.55 mm) = −137.5 × 103 Nmm.

At the free end B the bending moment is zero. Between A and B the
moment varies linearly.

For My;A = 0 and Mz;A = −137.5 × 103 Nmm we found the y and z com-
ponents of the curvature at A in Section 9.9.2, Example 2:

κy;A = −34.03 × 10−6 mm−1,

κz;A = −50.29 × 10−6 mm−1.

Note that the vertical load causes curvatures in both the horizontal and
vertical plane.

The components of the curvature are proportional to the bending moment
and therefore varies linearly from the value at A to zero at B. Figure 9.64
shows the curvature diagram with the deformation symbols.

The orientation of the plane of curvature k, defined by the angle β in
Figure 9.64, follows from1

tan β = κz;A
κy;B

= −50.29 × 10−6 mm−1

−34.03 × 10−6 mm−1 = 1.478 ⇒ β = 55.9◦.

1 More precisely: αk = 235.9◦ and β = αk − 180◦ = 55.9◦.
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Figure 9.65 (a) Deflection in the xy plane and (b) in the xz plane.
The displacements are calculated with the moment-area theorems.

The displacement of B in the y direction can be derived from the curvature
diagram with help of the moment-area formulae (see Figure 9.65a):

θ1 = 1
2 	|κy;A|,

wy;B = θ1 · 2
3 	 = 1

3 	2|κy;A|

= 1
3 (550 mm)2(34.03 × 10−6 mm)−1 = 3.43 mm.

In the same way we find the displacement of B in the z direction (see
Figure 9.65b)

θ2 = 1
2 	|κz;A|,

wz;B = θ2 · 2
3 	 = 1

3 	2|κz;A|

= 1
3 (550 mm)2(50.29 × 10−6 mm)−1 = 5.07 mm.

The total displacement at B is

w =
√

(wy;B)2 + (wz;B)2 =
√

(3.43 mm)2 + (5.07 mm)2 = 16.2 mm.

Figure 9.66 shows a global sketch of the deflection of beam AB.

Comment: The deflection of the beam is in the plane of curvature k:

tan β = wz;B
wy;B

= 5.07 mm

3.43 mm
= 1.478 ⇒ β = 55.9◦.
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Figure 9.67 Cantilever beam with an inhomogeneous cross-section.Figure 9.66 The deflection of the beam is in the plane of cur-
vature. The deflection at B is 6.12 mm.

Alternative solution:
An alternative solution is possible by using forget-me-nots after resolving
the force F = 250 N in components according to the principal directions of
the cross-section. In Section 9.9.2, Example 2, we derived the components
of the bending stiffness tensor in the yz coordinate given (see Figure 9.67):

EIyy = 5.32 × 109 Nmm2,

EIyz = EIzy = −3.6 × 109 Nmm2,

EIzz = 5.17 × 109 Nmm2.
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Figure 9.68 Calculation of the principal bending stiffnesses EI1
and EI2, using Mohr’s circle. All stiffness values in Mohr’s circle
have to be multiplied by 109 Nmm2.

These values are represented by two points on Mohr’s circle: (EIyy; EIyz)

and (EIzz; EIzy), as shown in Figure 9.68. In the same figure the direction
centre DC is constructed. The centre c of Mohr’s circle follows from

c = EIyy + EIzz

2
= 5.245 × 109 Nmm2,

and its radius r from

r =
√

(EIyy − c)2 + (EIyz)2 = 3.601 × 109 Nmm2.

From the complete circle of Mohr we find the principal values:

EIyy = EI2 = c − r = 1.644 × 109 Nmm2,

EIzz = EI1 = c + r = 8.846 × 109 Nmm2.

The ȳ and z̄ coordinate axes are the principal axes of the cross-section. The
principal directions are defined by the angle α0:1

tan α0 = |EIzz|
EIzz − EI2

= 1.021 ⇒ α0 = 45.6◦.

Figure 9.69a shows the principal yz coordinate system in the cross-section.
The bending stiffness of the cross-section is a minimum in the ȳ direction
and a maximum in the z̄ direction.

1 It is usual to choose one of the positive principal coordinate axes in the first
quadrant.
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Figure 9.69 (a) The principal yz coordinate system. (b) The load
F resolved into ȳ and z̄ components.

Figure 9.70 (a) The components of the displacement at B. The
resultant displacement is in the plane of curvature k. (b) The cross-
section with the principal yz coordinate system, the plane of loading
m and the plane of curvature k.

In Figure 9.69b the load F at the free end B is resolved in components in
the principal directions:

Fȳ = F sin α0 = (250 N) × 0.7145 = 178.6 N,

Fz̄ = F cos α0 = (250 N) × 0.6997 = 174.9 N.

Next we apply the forget-me-nots:

wȳ = Fȳ	3

3EIyy

= (178.6 N)(550 mm)3

3 × (1.644 × 109 Nmm)2 = 6.02 mm,

wz̄ = Fz̄	
3

3EIzz

= (174.9 N)(550 mm)3

3 × (8.846 × 109 Nmm)2 = 1.10 mm.

Note that Fȳ and Fz̄ are nearly equal in magnitude. However, since the
bending stiffness is smaller in the ȳ direction than in the z̄ direction, the
displacement wȳ is larger than wȳ .

The resultant displacement w at B is

w =
√

(wȳ;B)2 + (wz̄;B)2 =
√

(6.02 mm)2 + (1.10 mm)2 = 6.12 mm.

The same value was found before.

Figure 9.70a shows the components of the displacements at the free end B
in the yz coordinate system and in the principal yz coordinate system. The
displacement occurs in the plane of bending k.
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Figure 9.71 (a) Simply supported beam with a uniformly distrib-
uted load. (b) The inhomogeneous cross-section.

Example 2
The simply supported prismatic beam AB in Figure 9.71a has a span
	 = 4 m and carries a uniformly distributed load q = 120 kN/m acting in
the vertical xz plane. The load is applied in such a way that no torsion
occurs.

The beam has an unsymmetrical and inhomogeneous cross-section. The
cross-sectional dimensions and the location of the normal centre NC are
given in Figure 9.71b. The moduli of elasticity of web and flange are E

and 2E respectively, in which E = 40 × 103 N/mm2. The bending stiff-
ness quantities in the given yz coordinate system, with its origin at NC, are
given:

EIyy = 166.6 × 1012 Nmm2,

EIyz = EIzy = 28.8 × 1012 Nmm2,

EIzz = 51.4 × 1012 Nmm2.

Question:
Find the displacement of beam AB at midspan.

Solution:
Figure 9.72 shows the plane of loading and the bending moment diagram.
The bending moment is parabolic, and has its maximum at midspan C:

Mmax = 1
8 q	2 = 1

8 (120 kN/m)(4 m)2 = 240 kNm.

More precisely:

My;C = 0,
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Figure 9.72 Bending moment diagram and the plane of loading
m.

Figure 9.73 κy diagram (curvature in the xy plane), κz diagram
(curvature in the xz plane), and the plane of curvature k.

Mz;C = +240 kNm = +240 × 106 Nmm.

To find the curvature at C we use the constitutive relationship M = EIκ :

[
My;C
Mz;C

]
=

[
EIyy EIyz

EIzy EIzz

] [
κy;C
κy;C

]
.

Substituting all known values in this equation, we have

[
0

240

]
× (106 Nmm) = (1012 Nmm2) ×

[
166.6 28.8

28.8 51.4

] [
κy;C
κz;C

]
.

By inverting the matrix we find

[
κy;C
κz;C

]
= 10−6 mm−1

7733.8
×

[
51.4 −28.8

−28.8 166.6

] [
0

240

]

⇒
{

κy;C = −0.894 × 10−6 mm−1,

κz;C = +5.170 × 10−6 mm−1.

Note that the vertical load causes curvatures in both the horizontal and
vertical plane.

Since the curvature is proportional to the bending moment, κy and κz are
also parabolic along the beam, with their top values at C. Figure 9.73 shows
a sketch of the curvature diagrams with the deformation symbols. The de-
formation of the beam will occur in the plane of curvature k. The orientation
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Figure 9.74 (a) Parabolic curvature diagram for the simply sup-
ported beam AB. The maximum curvature is κC at midspan C. To
find the displacement wC at C we will use the moment-area for-
mulae, in which the “moment-area” in fact refers to the area of the
curvature diagram. (b) Sketch of the deformed beam.

orientation of the plane of curvature is defined by the angle αk:

tan αk = κz;C
κy;C

= +5.170 × 10−6 mm−1

−0.894 × 10−6 mm−1 = −5.783 ⇒ αk = 99.81◦.

Comment: For the given load, the plane of curvature k is constant for the
entire beam.

Figure 9.74a shows a parabolic curvature diagram for the simply supported
beam AB. The maximum curvature is at midspan C. Figure 9.74b shows a
sketch of the deformed beam. To find the displacement wC at midspan C
we will use the moment-area formulae, in which the “moment-area” in fact
refers to the area of the curvature diagram.1

When considering the left-hand part AC of the curvature diagram, the dis-
placement at C can be found by superimposing the tail-wagging effects due
to the rotations θ1 and θ2.

θ1 is the rotation of the beam at support A. It can be found as the “support
reaction” due to a “distributed load” that is equal to the curvature diagram:2

θ1 = 1
2 × 2

3 κC	︸ ︷︷ ︸
area parabolic

curvature diagram

= 1
3 κC	.

θ2 represents the influence of the deformation of AC, which is concentrated

1 The “moment-area theorems” are not based on the bending moment M , but on
the curvature M/EI . Therefore a more correct name should be “curvature-area
theorems”.

2 See Section 8.5.1.
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Figure 9.75 The displacement at C, and the components in the y

and z directions. The displacement of 8.75 mm is in the plane of
curvature k. (b) The cross-section with the plane of loading m and
the plane of curvature k.

at the centroid of part AC of the curvature diagram. The location of the
centroid is given in Figure 9.74a.1

θ1 = 1
2 × 2

3 κC	︸ ︷︷ ︸
area curvature
diagram AC

= 1
3 κC	.

Using the expressions derived for θ1 and θ2 we find the displacement wC at
C:

wC = +θ1 × 1
2 	 − θ2 × 3

16 	 = + 5
48 κC	2.

This formula can be applied to both the curvature diagram in the xy plane
and the curvature diagram in the xz plane:

wy;C = 5
48 κy;C	2 = 5

48 (−0.894 × 10−6 mm−1)(4000 mm)2

= −1.49 mm,

wz;C = 5
48 κz;C	2 = 5

48 (+5.170 × 10−6 mm−1)(4000 mm)2

= +8.62 mm.

The resultant displacement wC occurs in the plane of curvature k (see
Figure 9.75):

wC =
√

(−1.49 mm)2 + (8.62 mm)2 = 8.75 mm.

1 See Section 8.4.1 and Tabel 8.5.
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Figure 9.76 (a) The principal yz coordinate system. (b) The load
q resolved into ȳ and z̄ components.

Alternative solution:
For a simply supported beam with a uniformly distributed load we use the
following forget-me-not to find the deflection at midspan:

ω = 5

384

q	4

EI
.

This formula holds only for a uniformly distributed load in one of the prin-
cipal directions. To apply this forget-me-not, we have to know the principal
directions of the cross-section, the principal bending stiffness values and
the components of the uniformly distributed load in these directions.

We are fortunate that the principal directions and principal bending stiffness
values were derived in Section 9.12, Example 2. With respect to the yz

coordinate system, the principal yz coordinate system is rotated through
an angle α0 = 13.28◦ (see Figure 9.76a). The principal bending stiffness
values are

EIyy = EI1 = 173.4 × 1012 Nmm2,

EIzz = EI2 = 44.6 × 1012 Nmm2.

In Figure 9.76b the uniformly distributed load q is resolved in components
in the principal directions:

qȳ = q sin α0 = (120 kN/m) × 0.2297

= 27.56 kN/m = 27.67 N/mm,

qz̄ = q cos α0 = (120 kN/m) × 0.9733

= 116.79 kN/m = 116.79 N/mm.
A situation with different planes of loading for

the beam. The direction of the plane of loading is defined by the
direction of the resultant bending moment in the cross-section.

Figure 9.77
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(a) The calculation of the displacement at C in the
principal yz coordinate system gives the same result as the calcula-
tion in the non-principal yz coordinate system. (b) The cross-section
with the principal yz coordinate system, the plane of loading m and
the plane of curvature k.

We now find

wȳ;C = 5

384

qȳ�
4

EIyy

= 5

384

(27.56 N/mm)(4000 m)4

173.4 × 1012 Nmm2 = 0.53 mm,

wz̄;C = 5

384

qz̄�
4

EIzz

= 5

384

(116.79 N/mm)(4000 m)4

44.6 × 1012 Nmm2 = 8.73 mm.

The resultant displacement wC

wC =
√

(0.53 mm)2 + (8.73 mm)2 = 8.75 mm.

The value and direction are in agreement with the results found before.

Comment: Again the planes of loading and curvature are constant over the

different planes of loading for the beam. The direction m of the plane of
loading is defined by the direction of the resultant bending moment in the
cross-section, and not by the direction of the resultant shear force!

9.14 Maxwell’s reciprocal theorem

The strain formula, expressed in the cross-sectional deformation quantities,
was derived in Section 9.2 (see equation (9.5)):

ε(y, z) = ε + κyy + κzz. (9.5)

It is common to choose a yz coordinate system with its origin coinciding
with the normal centre NC of the cross-section. In that case, ε is the strain at

entire length of the beam. Figure 9.77 shows a situation in which there are

Figure 9.78

is (see Figure 9.78):
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the normal centre NC (at the beam axis), and is caused by extension only; κy

and κz are the curvatures of the beam in the xy plane and xz plane respec-
tively, and are caused by bending only.

In a principal yz coordinate system, the constitutive relationships are

ε = N

EA
(extension), (9.26)

κy = My

EIyy

and κz = Mz

EIzz

(bending). (9.41)

Here, EIyy and EIzz are the principal bending stiffness values of the cross-
section.

Strain formula (9.5) can also be expressed in terms of the section forces N ,
My and Mz. We then need to substitute the constitutive relationships for the
cross-section into the formula for the strain distribution. In a principal yz

coordinate system,1

ε(y, z) = N

EA
+ Myy

EIyy

+ Mzz

EIzz

. (9.42)

For a non-zero normal force N , the three section forces N , My and Mz can
be replaced with one single eccentric normal force N , which acts in a point
(ey, ez). This point is referred to as the centre of force of the cross-section;
it is the point of application of the resultant of all normal stresses in the
cross-section.

1 See also Section 9.10.
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The coordinates ey and ez of the centre of force (the eccentricity of the
normal force N) follow from1

ey = My

N
and ez = Mz

N
.

For the bending moments in the xy and xz plane we now can write

My = N · ey and Mz = N · ez.

Substitute these expressions in (9.42), and we find

ε(y, z) = N

EA
+ Neyy

EIyy

+ Nezz

EIzz

= N

EA

(
1 + EA

EIyy

eyy + EA

EIzz

ezz

)
. (9.71)

The radius of inertia r is used to relate the second moment of area I to the
cross-sectional area A, according to2

I = A · r2.

For inhomogeneous cross-sections, we use the radius of inertia to relate the
bending stiffness EI to the axial stiffness EA:

r2
y = EIyy

EA
and r2

z = EIzz

EA
. (9.72)

1 See Section 9.4.
2 See also Section 3.2.1.
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Figure 9.79 Maxwell’s reciprocal theorem: the strain ε at P due
to a force N at Q is equal to the strain ε at Q due to a force N at P.

Since y and z are principal coordinate axes, ry and rz are the principal radii
of inertia. They have the dimension of a length.

Comment: Although the notation of the radii of inertia ry and rz suggest that
they are components of a vector, this is not the case. Upon rotation of the
coordinate system they do not transform like the components of a vector.

Using (9.7.2) we can further simplify expression (9.71) for the strain
distribution:

ε(y, z) = N

EA

(
1 + eyy

r2
y

+ ezz

r2
z

)
. (9.73)

This expression shows the strain ε at point (y, z) for a normal force N with
its point of application at (ey, ez). As an experiment of mind we can think
of a force N acting at (y, z) and observing the strain ε at (ey, ez). It appears
to result in exactly the same strain. This is due to the equivalence of ey and
y in the strain formula, and of ez and z.

We can summarise this phenomenon as follows.

The strain ε at P due to a force N at Q is equal to the strain ε at Q due to a
force N at P (see Figure 9.79).

This is also known as Maxwell’s reciprocal theorem and is general applica-
ble to linear elastic systems for which the superposition theorem holds.
We will make use of this theorem in the next section on the core of a
cross-section.
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Figure 9.80 The core of a homogeneous rectangular cross-section.

9.15 Core of a cross-section

When the neutral axis intersects the cross-section, both tensile and com-
pressive zones will occur on either side of the neutral axis. Some materials
can hardly sustain tensile stresses, e.g. brick walls and unreinforced con-
crete. For these materials, the cross-section should be loaded in such a way
that only compression occurs. The neutral axis should then be outside the
cross-section or just at its boundary. With this requirement we can deter-
mine the area in which the centre of force should be positioned in order to
prevent sign changes in the stress distribution. This area is called the core or
kern of the cross-section. In other words: the core of a cross-section is the
set of centres of force for which the neutral axis is outside the cross-section.

In Section 4.9 the core was introduced for a rectangular cross-section with
dimensions b × h, as shown in Figure 9.80. The core appeared to be a
diamond with the corner points on the y and z axis with a distance to the
NC of b/6 and h/6 respectively.

After discussing some properties of the core in Section 9.15.1, we will in
Section 9.15.2 outline a general method to find the core of (in)homogeneous
and unsymmetrical cross-sections. Some examples are given in Sec-
tion 9.15.3.

9.15.1 Properties of the core

In the following we will make use of two important properties:
• For a neutral axis tangent to the cross-section, the associated centre of

force is located on the edge of the core.
• Cross-sections for which all valid boundary positions of the neutral

axis form a polygon, also have a polygon as core. The number of
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Figure 9.81 There are six valid boundary positions of the neutral
axis: AB, AH, HF, FE, ED and DB. For each of the six valid bound-
ary positions of the neutral axis, the associated centre of force is a
corner of the core.

Figure 9.82 Each neutral axis passing through B and not inter-
secting the cross-section, relates to a centre of force on the straight
line between the points 1 and 2. The valid boundary positions 1-1
and 2-2 of the neutral axis correspond with the centres of force 1
and 2 respectively; they are corners of the core, and are called core
points.

corners of the core is equal to the number of valid boundary positions
of the neutral axis.

A centre of force within the core corresponds with a stress distribution in
the cross-section that does not exhibit a change in sign. So the total cross-
section is in tension or in compression, which implies that the neutral axis
is outside the cross-section.

For the cross-section in Figure 9.81 there are six valid boundary positions
of the neutral axis: AB, AH, HF, FE, ED and DB. Note that a neutral axis
which coincides with boundary BC cannot be valid since the neutral axis
then intersects the cross-section. For each of the six valid boundary posi-
tions of the neutral axis, the associated centre of force is a corner of the
core, and is called core point.

The second property states that when all valid boundary positions of the
neutral axis form a polygon, the core has straight edges and is also a
polygon. We will explain this for the simple rectangular cross-section in
Figure 9.82. From the two boundary lines 1-1 and 2-2 the associated centres
of force (core points) are denoted as 1 and 2. The quest now is to determine
the boundary of the core between these points. Therefore we use Maxwell’s
reciprocal theorem: the strain ε at P due to a force N at Q is equal to the
strain ε at Q due to a force N at P (see Figure 9.79).

When the centre of force is chosen at core point 1, then the neutral axis is
the line 1-1 along the upper edge of the cross-section. So there is a zero
strain at B. In reverse, according to Maxwell’s reciprocal theorem: when
the centre of force is chosen at B, there will be zero strain at core point 1.
When the centre of force is chosen at core point 2, then the neutral axis is
the line 2-2 along the left edge of the cross-section. Again there is a zero
strain at B. In reverse, according to Maxwell’s reciprocal theorem: when
the centre of force is chosen at B, there will be zero strain at core point 2.
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Figure 9.83 Cross-sections with curved edges. (a) The four valid
boundary positions of the neutral axis form a polygon, so the core of
the cross-section is also a polygon, with four sides. (b) Any neutral
axis tangent to the curved edge AB is associated with a centre of
force on the boundary of the core. This results in a curved boundary
of the core between the points 2 and 3.

Therefore the neutral axis associated with the centre of force at B is a
(straight) line which passes through the core points 1 and 2.

Conclusion:
• For a force at B there is a zero strain at all points on the straight line

through the core points 1 and 2.

Maxwell’s reciprocal theorem implies the following:
• For all centres of force on the straight line between the core points 1

and 2 there is a zero strain at B.

Each neutral axis passing through B and not intersecting the cross-section,
relates to a centre of force on the straight line between the points 1 and 2
(see Figure 9.82). The valid boundary positions 1-1 and 2-2 of the neutral
axis correspond with the centres of force 1 and 2; they are corners of the
core and are called core points.

This proves that the boundary of the core for cross-sections with straight
edges is built up by straight lines.

Figure 9.83 shows two cross-sections for which not all edges are straight.
In Figure 9.83a the four valid boundary positions of the neutral axis form a
polygon, so the core of the cross-section is also a polygon, with four sides.

Figure 9.83b shows a cross-section for which edge AB is not straight. The
core points (centres of force) 2 and 3 are associated with the neutral axes
2-2 through A and 3-3 through B respectively. Any neutral axis tangent to
the curved edge AB is associated with a centre of force on the boundary of
the core between the points 2 and 3. This results in a curved boundary of
the core between these points. The determination of this part of the core is
quite laborious.
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Figure 9.84 A neutral axis na which is bounding the cross-section.
This neutral axis intersects the y and z coordinate axes in the points
(y1, 0) and (0, z1) respectively.

9.15.2 General method to find the core

The neutral axis in a cross-section is defined by

ε(y, z) = ε + κy · y + κz · z = 0.

When the yz coordinate system is chosen in such a way that its origin
coincides with the normal centre NC, then extension and bending can be
treated separately. The strain ε at the origin of the coordinate system is
caused by extension and the curvatures κy and κz are caused by bending.
The cross-sectional constitutive relationships are

N = EAε (extension), (9.26)

[
My

Mz

]
=

[
EIyy EIyz

EIzy EIzz

] [
κy

κz

]
(bending). (9.40)

For a cross-section with non-zero normal force (and therefore ε �= 0), the
equation for the neutral axis can be written as

1 + κy

ε
y + κz

ε
z = 0. (9.71)

Consider a neutral axis na which is bounding the cross-section (see Fig-
ure 9.84). Assume this neutral axis intersects the y and z coordinate axes in
the points (y1, 0) and (0, z1) respectively. Using (9.71) we can relate these
points of intersection to the three cross-sectional deformation quantities:

y1 = − ε

κy

and z1 = − ε

κz

. (9.72)
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Between the components My and Mz of the bending moment and the com-
ponents ey and ez of the eccentricity of the normal force N , there is the
following relationship:1

[
My

Mz

]
= N

[
ey

ez

]
. (9.18)

Substitute in (9.18) the constitutive relationship for extension:

[
My

Mz

]
= EAε

[
ey

ez

]
. (9.73)

Substitute (9.73) in the constitutive relationship for bending,

EAε

[
ey

ez

]
=

[
EIyy EIyz

EIzy EIzz

] [
κy

κz

]
,

and use (9.72) to find the coordinates ey and ez of the centre of force:

[
ey

ez

]
= 1

EA

[
EIyy EIyz

EIzy EIzz

] [
κy/ε

κz/ε

]

= − 1

EA

[
EIyy EIyz

EIzy EIzz

] [
1/y1

1/z1

]
. (9.74)

1 See Section 9.4.
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Figure 9.85 (a) A homogeneous and unsymmetrical cross section.
(b) The location of the normal centre NC.

For a neutral axis which is tangent to the cross-section we now have found
the associated centre of force (ey, ez), which is a point on the boundary of
the core.

For a homogeneous cross-section the location is independent of the modu-
lus of elasticity E, since this quantity can be cancelled in (9.74):

[
ey

ez

]
= − 1

A

[
Iyy Iyz

Izy Azz

] [
1/y1

1/z1

]
. (9.75)

Reminder: Do not forget the minus sign in the formulae (9.74) and (9.75)!

Finding the core points has reduced to a straightforward procedure in which
all valid boundary positions of the neutral axis (tangent to the cross-section)
are considered. Each neutral axis is defined by the two points of intersection
with the coordinate axes. With formula (9.74) – or (9.75) for homogeneous
cross-sections – the location of the associated core point can be found. This
procedure will be illustrated by three examples.

9.15.3 Examples

Example 1: Core of a homogeneous unsymmetrical cross-section

Question:
Find the core of the homogeneous and unsymmetrical cross-section as
shown in Figure 9.85a.

Solution (units mm):
If the neutral axis coincides with a straight edge of the cross-section, with-
out intersecting the cross-section, the corresponding centre of force is a
corner of the core or core point. Four of such neutral axes can be drawn.
A fifth neutral axis, not coinciding with a straight edge, is bounding the
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Figure 9.86 The core of the cross-section.

cross-section at two corners (see Figure 9.86).1 The five neutral axes will
result in five core points; so the core is a five-sided polygon.

To find the core points of a homogeneous cross-section we need to know
• the cross-sectional area A;
• the location of the normal centre NC;
• the centroidal moments of inertia Iyy , Iyz = Izy and Izz.

The cross-sectional area is

A = 400 × 200 − 1202 = 65.6 × 103 mm2.

The position of the normal center NC can be found with the method
explained before.2 In a yz coordinate system with the ȳ axis along the
upper side of the cross-section, and the z̄ axis along the right side of the
cross-section (see Figure 9.85a),

ȳNC = ESȳ

EA
= Sȳ

A

400 × 200 × 100 − (120)2 × 60

65.6 × 103
= 109 mm,

z̄NC = ESz̄

EA
= Sz̄

A

400 × 200 × 200 − (120)2 × 60

65.6 × 103
= 231 mm.

The location of the NC is shown in Figure 9.85b.

Note that in a homogeneous cross-section the location of the normal centre
NC is independent of the modulus of elasticity E.

1 See Section 7.1.1.
2 See Section 3.1.3 for homogeneous cross-sections, and Section 9.4 for homoge-

neous and inhomogeneous cross-sections.
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The centroidal moments of inertia are

Iyy = 1
12 × 400 × 2003 + 400 × 200 × 92 − 1

12 × 1204 − 1202 × 492

= 221.3 × 106 mm4,

Iyz = 400 × 200 × 9 × 31 − 1202 × (−49) × (−171)

= −98.3 × 106 mm4,

Izz = 1
12 × 200 × 4003 + 400 × 200 × 312 − 1

12 × 1204 − 1202 × 1712

= 705.2 × 106 mm4.

In order to find all core points we will tabulate the calculation and use a
systematic numbering of the five neutral axes tangent to the cross-section,
and their associated centres of force (see Figure 9.86). All calculus can be
done with a spreadsheet, for instance in Excel. For each assumed position
of the neutral axis the points of intersection (y1, 0) and (0, z1) with the
coordinate axes are determined first. The position of the associated centre
of force can then be found with (9.75):

[
e1

e2

]
= − 1

A

[
Iyy Iyz

Izy Ezz

] [
1/y1

1/z1

]
,

or, after substituting the numerical values of A, Iyy , Iyz = Izy and Izz,

ey = −3.373 × 103 mm2

y1
+ 1.498 × 103 mm2

z1
,

Figure 9.86 The core of the cross-section.
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Table 9.10 Calculation results.

neutral axis y1 (mm) z1 (mm) core point ey (mm) ez (mm)

1-1 ±∞ −231 1 −6.5 +46.5

2-2 +91 ±∞ 2 −36.7 +16.3

3-3 ±∞ +169 3 +8.9 −63.6

4-4 −109 ±∞ 4 +30.9 −13.7

5-5 −220 −220 5 +8.5 +42.1

Figure 9.87 Composite steel-concrete column.

ez = +1.498 × 103 mm2

y1
− 10.750 × 103 mm2

z1
.

The results can be found in Table 9.10 and the graph of Figure 9.86.

If the normal force (the resultant of all normal stresses) has its point of
application within the core, there will be no change of sign in the stress
distribution, irrespective of the magnitude of the normal force!

Particularly for prestressed concrete beams this can be important. If the pre-
stressing tendons are within the core of the cross-section no tensile stresses
due to the prestressing will occur. We mention again that this is independent
of the magnitude of the prestressing force!

Example 2: Core of a composite steel-concrete column
The composite steel-concrete column AB in Figure 9.87 is fixed at A and
free at B. The column is loaded by an eccentric compressive force F at the
free end B. The steel I-section is not exactly in the centre of the column, as
can be seen from the cross-sectional measurements in the figure.

For the column a linear elastic behaviour is assumed. The moduli
of elasticity are Ea = 210 × 103 N/mm2 for the steel I-section and
Ec = 20 × 103 N/mm2 for the concrete. Furthermore, the following cross-
sectional properties are given for the steel I-section in its centroidal yz

coordinate system (see Figure 9.87b):

Aa = 10 × 103 mm2,

Iyy;a = 40 × 106 mm4,

Iyz;a = Izy;a = 0 (symmetrical cross-section),

Izz;a = 112.5 × 106 mm4.
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Questions:
a. Locate the normal centre NC.
b. Calculate for the composite column the cross-sectional stiffness quan-

tities in a yz coordinate system with its origin at the normal centre NC
of the cross-section.

c. Which points of application are allowed for the compressive force to
prevent tensile stresses in the column.

Solution (units N and mm):
a. We start to work in the yz coordinate system with its origin at the centre
of the steel I-section (see Figure 9.87b). The ȳ axis is a line of symmetry
for the composite column, so the normal centre NC is on the ȳ axis:

z̄NC = 0.

The ȳ coordinate of NC follows from

ȳNC = ESȳ

EA
.

So we have to find EA and ESȳ . We distinguish two contributions: the steel
section, and the full concrete cross-section reduced with the recess for the
I-section (applied as a negative area of concrete).

EA = (210 × 103) × (10 × 103)︸ ︷︷ ︸
(EA)a

+ (20 × 103)(4002 −

recess in the
concrete︷ ︸︸ ︷

10 × 103 )︸ ︷︷ ︸
(EA)c

= 5.1 × 109 N,

ESȳ = (ESȳ)c

= (20 × 103) × 4002 × (−20) = −6.4 × 109 Nmm.

Figure 9.87 Composite steel-concrete column.
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Figure 9.88 The normal centre NC of the composite cross-section.

Note that in the yz coordinate system Sȳ = 0 for both the steel section and
the recess in the concrete.

We now find:

ȳNC = ESȳ

EA
= −6.4 × 109 Nmm

5.1 × 109 N
= −12.55 mm.

b. Next we work in the yz coordinate system with its origin at the normal
centre NC, as shown in Figure 9.88. Since the y axis is a line of symmetry
for the cross-section, EIyz = EIzy = 0. The yz coordinate system is a
principal coordinate system, and EIyy and EIzz are the principal bending
stiffness values.

EIyy = (210 × 103)︸ ︷︷ ︸
Ea

×[(40 × 106) + (10 × 103) × 12.55]2

+ (20 × 103)︸ ︷︷ ︸
Ec

×[ 1
12 × 4004 + 4002 × 7.452

− {(40 × 106) + (10 × 103) × 12.552}︸ ︷︷ ︸
recess in the concrete

]

= 50.774 × 1012 Nmm2,

EIzz = (210 × 103)︸ ︷︷ ︸
Ea

×112.5 × 106

+ (20 × 103)︸ ︷︷ ︸
Ec

×{ 1
12 × 4004 − 112.5 × 106︸ ︷︷ ︸

recess in the concrete

}

= 64.042 × 1012 Nmm2.
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Figure 9.89 The core of the composite cross-section.

Table 9.11 Calculation results.

neutral axis y1 (mm) z1 (mm) core point ey (mm) ez (mm)

1-1 +192.45 ±∞ 1 −51.7 0

2-2 ±∞ +200 2 0 −62.8

3-3 −207.45 ±∞ 3 +48.0 0

4-4 ±∞ −200 4 0 +62.8

The axial stiffness EA was found earlier:

EA = 5.1 × 109 N.

c. Due to the eccentric load F at B, the normal force and bending moment
are constant along the column, and therefore the stress distribution is the
same for all cross-sections. If no tensile stresses are allowed, the point of
application of the compressive force F (the centre of force) must be within
the core of the cross-section. To find the core we have to consider four
bounding neutral axes, for which the associated centres of force are the
core points (see Figure 9.89). The core is a four sided polygon. The core
points can be found with the procedure explained in Section 9.15.2, by
using formula (9.74), appropriate for inhomogeneous cross-sections:

[
ey

ez

]
= − 1

EA

[
EIyy EIyz

EIzy EIzz

] [
1/y1

1/z1

]
. (9.74)

Substituting the numerical values of EA, EIyy , EIyz = EIzy (= 0) and
EIzz, we find

ey = −EIyy

EA

1

y1
= −50.774 × 1012 Nmm2

5.1 × 109 N

1

y1
= −9.956 × 103 mm

y1
,

ez = −EIzz

EA

1

z1
= −64.042 × 1012 Nmm2

5.1 × 109 N

1

z1
= −12.557 × 103 mm

z1
.

The results can be found in Table 9.11 and the graph of Figure 9.89.

If the point of application of the compressive force F is within the core,
the neutral axis is outside the cross-section, and only compressive stresses
occur in the cross-section. With the point of application on the boundary of
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Figure 9.90 A composite cross-section, built up out of four
squares of different materials, and the location of the normal centre
NC.

the core, the neutral axis is bounding the cross-section, and there are zero
stresses in one or more points on the edge of the cross-section.

Example 3: Core of a part of an inhomogeneous cross-section
The third and last example concerns the composite cross-section in Fig-
ure 9.90, built up by four squares of different materials. For this cross-
section, the normal centre NC and axial stiffness EA were determined in
Section 9.7, Example 2, and the bending stiffness quantities were calculated
in Section 9.9.3:

EA = 624 MN,

EIyy = 260.43 × 109 Nmm2,

EIyz = EIzz = 59.07 × 109 Nmm2,

EIzz = 324.76 × 109 Nmm2.

The cross-section is loaded by an eccentric compressive force.

Question:
Which points of application are possible for the compressive force to
prevent tensile stresses in the material DEFG?

Solution:
For this problem we find a way out with the core of part DEFG of the
cross-section. For a compressive force with its point of application (centre
of force) within this core, the neutral axis will not intersect DEFG, so there
are only compressive stresses within DEFG. With the point of application
on the boundary of the core, the neutral axis is bounding the edge of part
DEFG, and there are zero stresses in one or more points on edge DEFG.

To calculate the core points associated with the four neutral axes bounding
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Figure 9.91 (a) The location of the normal centre NC. (b) If
the cross-section is subject to a compressive force, and no tensile
stresses are allowed in the material DEFG, then the points of appli-
cation of the compressive force have to be within the shaded area
shown.

DEFG, as shown in Figure 9.91a, we use again (9.75):

[
ey

ez

]
= − 1

EA

[
EIyy EIyz

EIzy EIzz

] [
1/y1

1/z1

]

= − 109 Nmm2

624 × 106 N
×

[
260.43 59.07

59.07 324.76

] [
1/y1

1/z1

]

= −(1 mm2) ×
[

417.36 94.66

94.66 520.45

] [
1/y1

1/z1

]
,

or

ey = −417.36 mm2

y1
− 94.66 mm2

z1
,

ez = −94.66 mm2

y1
− 520.45 mm2

z1
.

The calculation is performed in Table 9.12. The core for DEFG is sketched
in Figure 9.91b.

Table 9.12 Calculation results.

neutral axis y1 (mm) z1 (mm) core point ey (mm) ez (mm)

1-1 +10.77 ±∞ 1 −38.8 −8.8

2-2 ±∞ +3.59 2 −26.4 −145.0

3-3 −29.23 ±∞ 3 +14.3 +3.2

4-4 ±∞ −36.41 4 +2.6 +14.3
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9.16 Thermal effects

Constrained or restricted deformations due to thermal effects may lead to
considerable stresses in structures. These stresses can even be larger than
stresses due to normal loading conditions. Temperature loads can therefore
not be neglected. In Section 4.12 the influence of a linear temperature dis-
tribution over the depth of a cross-section was discussed for a homogeneous
symmetrical cross-section. In this section, we will consider inhomogeneous
and/or unsymmetrical cross-sections, and a temperature distribution which
can be an arbitrary function of y and z.

In Section 9.16.1 we investigate the effect of a change in temperature on the
cross-sectional constitutive relationships for extension and bending. Next
the results are applied to a statically determinate beam in Section 9.16.2
and a statically indeterminate beam in Section 9.16.3. In these sections we
will look at the strain and stress distribution in the cross-section and the
deflection of the beam.

9.16.1 The constitutive relationships

The modulus of elasticity E as well as the coefficient of thermal expansion
α and the change in temperature T are functions depending on y and z:

E = E(y, z),

α = α(y, z),

T = T (y, z).

To simplify the expressions we introduce the following two- and three-letter
symbols as functions of y and z:
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α(y, z) · T (y, z) = αT (y, z),

α(y, z) · E(y, z) · T (y, z) = αET (y, z).

The extension of the fibre model subject to a change in temperature results
in a fibre strain which is the combination of a strain due to the stresses and
a strain due to the thermal effect. In order to clearly distinct between these
two components we use a superscript T or σ :

εT – strain due to the thermal effect;
εσ – strain due to the stresses.

The strain in a fibre due to a change in temperature, denoted with the tem-
perature distribution function T (y, z), can be expressed as

εT (y, z) = αT (y, z). (9.76)

The strain due to the stress in a fibre follows from the constitutive relation-
ship, e.g. Hooke’s law:

εσ (y, z) = σ(y, z)

E(y, z)
. (9.77)

The total strain definition thus becomes

ε(y, z) = εT (y, z) + εσ (y, z) = αT (y, z) + σ(y, z)

E(y, z)
. (9.78)

The assumptions as presented in Section 9.1 will also hold in this section.
Since plane cross-sections remain plane, the cross-sectional strain distribu-
tion is linear in y and z, and can be found with the earlier derived kinematic
relationship (9.5):
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ε(y, z) = ε + κyy + κzz. (9.5)

When we combine the latter two expressions, we obtain

σ(y, z) = E(y, z)εσ (y, z)

= E(y, z){ε(y, z) − εT (y, z)}
= E(y, z){ε + κyy + κzz︸ ︷︷ ︸

ε(y,z)

− αT (y, z)︸ ︷︷ ︸
εT (y,z)

}. (9.79)

With this expression the section forces N , My and Mz can be determined
as described in Section 1.4 using the well-known double letter symbols:

Normal force:

N =
∫

A

σ(y, z) dA =
∫

A

E(y, z){ε + κyy + κzz − αT (y, z)} dA

= EAε + ESyκy + ESzκz −
∫

A

αET (y, z) dA.

Bending moment:

My =
∫

A

yσ(y, z) dA

= ESyε + EIyyκy + EIyzκz −
∫

A

y · αET (y, z) dA,

Mz =
∫

A

zσ(y, z) dA

= ESzε + EIzyκy + EIzzκz −
∫

A

z · αET (y, z) dA.
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With the origin of the yz coordinate system chosen at the normal centre NC
of the cross-section (then ESy = ESz = 0), the expressions for the section
forces simplify to

⎡
⎢⎣

N

My

Mz

⎤
⎥⎦ =

⎡
⎢⎣

EA 0 0

0 EIyy EIyz

0 EIzy EIzz

⎤
⎥⎦

⎡
⎢⎣

ε

κy

κz

⎤
⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∫
A

αET (y, z) dA

∫
A

y · αET (y, z) dA

∫
A

z · αET (y, z) dA

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (9.80)

If the beam is unconstrained (can deform freely) and is not loaded by forces,
the section forces are zero. So the deformations which may occur are the
result of the thermal effect only. The cross-sectional deformation quantities
due to a change in temperature are denoted with the superscript T , and can
be found from (9.80):

⎡
⎢⎣

0

0

0

⎤
⎥⎦ =

⎡
⎢⎣

EA 0 0

0 EIyy EIyz

0 EIzy EIzz

⎤
⎥⎦

⎡
⎢⎣

εT

κT
y

κT
z

⎤
⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∫
A

αET (y, z) dA

∫
A

y · αET (y, z) dA

∫
A

z · αET (y, z) dA

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (9.81)

This system of equations can be solved with the expression for the inverse
stiffness tensor:
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⎡
⎢⎣

EA 0 0

0 EIyy EIyz

0 EIzy EIzz

⎤
⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1

EA
0 0

0
EIzz

Det(EI)
− EIzy

Det(EI)

0 − EIyz

Det(EI)

EIyy

Det(EI)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

in which Det(EI) is the determinant of the bending stiffness matrix:

Det(EI) = EIyyEIzz − EI 2
yz.

For the cross-sectional deformation quantities due to a change in temper-
ature we find in an arbitrary yz coordinate system, with its origin at the
normal centre NC,

εT = 1

EA

∫
A

αET (y, z) dA, (9.82)

κT
y = 1

Det(EI)

{
EIzz

∫
A

y · αET (y, z) dA − EIzy

∫
A

z · αET (y, z) dA

}
,

κT
z = 1

Det(EI)

{
−EIyz

∫
A

y · αET (y, z) dA + EIyy

∫
A

z · αET (y, z) dA

}
.

With these expressions, formula (9.80) can be simplified to

⎡
⎢⎣

N

My

Mz

⎤
⎥⎦ =

⎡
⎢⎣

EA 0 0

0 EIyy EIyz

0 EIzy EIzz

⎤
⎥⎦

⎡
⎢⎣

ε − εT

κy − κT
y

κz − κT
z

⎤
⎥⎦ . (9.83)
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For the special case in which the coordinate system coincides with the
principal directions of the cross-section, the expressions will further sim-
plify. Since the bending in the xy and the xz plane then are uncoupled
(EIyz = EIzy = 0), the constitutive relationships become

N = EA(ε − εT ), in which εT =
∫

A

αET (y, z) dA

EA
, (9.84a)

My = EIyy(κy − κT
y ), in which κT

y =
∫

A

y · αET (y, z)

EIyy

dA, (9.84b)

Mz = EIzz(κz − κT
z ), in which κT

z =
∫

A

z · αET (y, z)

EIzz

dA. (9.84c)

On cross-sectional level, only the constitutive relationships have to be
modified to obtain strains and stresses when introducing thermal effects.
However on structural level there will arise some problems, and we
have to distinct between statically determinate and statically indeterminate
structures.

Statically determinate structures
In a statically determinate structure the structural elements are uncon-
strained and can deform freely. The displacements and rotations due to
thermal effects can be determined directly from the obtained cross-sectional
temperature deformations εT , κT

y and κT
z . A change in temperature results

only in additional deformations which may occur freely; it does not effect
the section forces N , My and Mz. The section forces are independent of
the temperature and depend only upon the loading by forces. The section
forces can be found directly from the equilibrium conditions. An example
is given in Section 9.16.2.
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Figure 9.92 A prismatic cantilever T-beam with inhomogeneous
cross-section. In the flange the temperature is increased. The in-
crease is linear over the depth of the flange, and constant over the
width of the flange and the length of the beam.

Statically indeterminate structures
In statically indeterminate structures the deformations cannot occur freely
but are constrained, and the situation becomes more complex. The section
forces can not be determined with the equilibrium conditions only; the
kinematic and constitutive relationships are also required. Therefore the
section forces in a statically indeterminate structure are influenced by a
change in temperature. Using the compatibility or deformation conditions
for the deformation due to the loading by forces and the thermal effects,
we can determine the force distribution in the structure. In a cross-section
the deformation quantities ε, κy and κz can now be found from the section
forces N , My and Mz with help of the constitutive relationship (9.83):

⎡
⎢⎣

N

My

Mz

⎤
⎥⎦ =

⎡
⎢⎣

EA 0 0

0 EIyy EIyz

0 EIzy EIzz

⎤
⎥⎦

⎡
⎢⎣

ε − εT

κy − κT
y

κz − κT
z

⎤
⎥⎦ .

Subsequently the stress distribution in the cross-section can be found from
(9.79):

σ(y, z) = E(y, z){ε + κyy + κzz︸ ︷︷ ︸
ε(y,z)

− αT (y, z)︸ ︷︷ ︸
εT (y,z)

}.

This approach for statically indeterminate structures will be illustrated by
an example in Section 9.16.3.

9.16.2 Statically determinate beam subject to a temperature load

The inhomogeneous prismatic cantilever beam AB in Figure 9.92, with a T-
shaped cross-section, is constructed with different materials for flange and
web. Both materials behave linear elastic. The web of the T-section has a
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modulus of elasticity Ew = E and the flange has a modulus of elasticity of
Ef = 0.75E. The temperature distribution over the depth of the flange is
linear, as can be observed from the figure, and is constant over the width of
the flange and the length of the beam. The coefficient of thermal expansion
of the flange is α. The web of the beam remains under constant temperature
conditions. There are no loading forces.

Questions:
a. Find the force distribution in the structure.
b. Calculate the strain and stress distribution for the cross-section at fixed

end A.
c. Draw a sketch of the deformed beam.
d. Determine the maximum vertical displacement of this cantilever beam.

Solution:
Since the cross-sectional dimensions of the beam and temperature distrib-
ution are mirror symmetrical, there are only section forces, deformations
and displacements in the (vertical) plane of mirror symmetry, the xz plane
or xz plane (see Figure 9.92).

a. The cantilever beam is statically determinate and can deform uncon-
strained. The force distribution can be obtained directly from the equilib-
rium conditions and is independent of the temperature load. Since there are
no loading forces, all section forces are zero: N = 0 and Mz = 0.

b. Since all section forces are zero, the stresses in the beam are the result of
the temperature load only. To find the stress distribution in cross-section A,
we first have to determine the cross-sectional deformation quantities due
to the temperature load: εT and κT

z . For this purpose the location of the
normal centre and the stiffness quantities are required.

Normal centre NC
The location of the normal centre NC must be on the vertical line of sym-

Figure 9.92 A prismatic cantilever T-beam with inhomogeneous
cross-section. In the flange the temperature is increased. The in-
crease is linear over the depth of the flange, and constant over the
width of the flange and the length of the beam.
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Figure 9.93 The location of the normal centre NC.

metry. Therefore only the vertical position of the NC has to be found. In the
yz coordinate system in Figure 9.92, we find

z̄NC = Sz̄

EA
= a · EAf + 5a · EAw

EA

= a · ( 3
4 E · 2a · 16a

) + 5a · (E · 6a · 4a)

3
4 E · 2a · 16a + E · 6a · 4a

= 3a.

The location of the NC is shown in Figure 9.93. Here we choose a yz

coordinate system, with the z axis coinciding with the line of mirror sym-
metry. Since the z axis is a line of symmetry, the yz coordinate system is a
principal coordinate system, which means that EIyz = EIzy = 0.

Axial stiffness
The axial stiffness of the cross-section can be found as:

EA = EAf + EAw = 3
4 E · 2a · 16a + E · 6a · 4a = 48EA2.

Bending stiffness
Due to the mirror symmetry the beam will curve in the xz plane. Thus we
need to determine only the bending stiffness EIzz:

EIzz = 3
4 E × { 1

12 · 16a · (2a)3 + 16a · 2a · (2a)2}︸ ︷︷ ︸
flange

+ E × { 1
12 · 4a · (6a)3 + 4a · 6a · (2a)2}︸ ︷︷ ︸

web

= 272Ea4.
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Table 9.13 Strain and stress distribution due to the temperature
load for the (unconstrained) cantilever beam.

z ε × 272
αT

σ × 272
EαT

top flange −3a +152 −90

bottom flange −a +96 +72

top web −a +96 +96

normal centre 0 +68 +68

bottom web +5a −72 −72

The temperature function for the flange can be expressed as

T (y, z) = − 1
2 T

(
1 + z

a

)
with − 2a ≤ z ≤ −1.

With the basic formulae (9.84a) and (9.84c) we can now find the sectional
deformation quantities εT and κT

z due to the temperature load:1

εT =
∫

A

αET (y, z) dA

EA

=
∫ −a

−3a

1

EA
· α · 3

4 E ·
{
− 1

2 T
(

1 + z

A

)}
· 16a · dz

= 1
4 αT ,

κT
z =

∫
A

z · αET (y, z)

EIzz
dA

=
∫ −a

−3a

1

EIzz

· z · α · 3
4 E ·

{
− 1

2 T
(

1 + z

A

)}
· 16a · dz

= − 7
68

αT

a
.

For the unconstrained beam without loading forces, there are only strains
due to the temperature load. Therefore the strain distribution in the cross-
section is

1 Remember κy = 0.
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Figure 9.94 (a) Strain diagram and (b) stress diagram in case of
an unconstrained deformation. Note that the stress distribution is
not similar to the strain distribution. Even more noticeable is the
double root in the stress distribution. One of the zero stress points
coincides with the position of the neutral axis na, but the other zero
stress point does not! Remember that the neutral axis is defined as
the (straight) line in the cross-section with zero strain.

ε(y, z) = εT + κT
z z = 1

4 αT − 7
68

αT

a
z

= αT

272

(
68 − 28

z

a

)
.

According to (9.79) the stress distribution is

σ(y, z) = E(y, z)εσ (y, z)

= E(y, z){ε(y, z) − εT (y, z)}
= E(y, z) {εT + κT

z z︸ ︷︷ ︸
ε(y,z)

− αT (y, z)︸ ︷︷ ︸
εT (y,z)

}.

If we elaborate this expression for the flange we find

σ(y, z) = 3
4 E ×

{
αT

272

(
68 − 28

z

a

)
+ 1

2 αT
(

1 + z

a

)}

= EαT

272

(
153 + 81

z

a

)
.

For the web, εT (y, z) = αT (y, z) = 0, so the stress distribution is

σ(y, z) = E × αT

272

(
68 − 28

z

a

)
= EαT

272

(
68 − 28

z

a

)
.

For a number of key points the strain and stress values are calculated in
Table 9.13. The total strain and stress distribution for the cross-section are
shown in Figure 9.94.
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It is remarkable to notice that the stress distribution is not similar to the
strain distribution. Even more noticeable is the double root in the stress
distribution. One of the zero stress points coincides with the position of
the neutral axis na, but the other zero stress point does not! The fact that
we observe a double change of sign in the stress distribution is a direct
result of the elongation of the fibres due to the temperature gradient and the
requirement that the section forces are zero. The elongation of fibres must
be such that the resulting stress distribution forms an equilibrium system
(
∑

N = 0;
∑

M = 0. The beam will deform unconstrained without section
forces but with non-zero normal stresses!

The neutral axis is defined as the (straight) line in the cross-section with
zero strain.1 The neutral axis divides the cross-section into two parts:
one with positive straining and one with negative straining. This example
shows clearly that the neutral axis can not be defined unambiguously as the
(straight) line in the cross-section with zero normal stresses, since there are
two of these lines here.

As a result of the temperature load and the unconstrained deformation of the
beam, the strain distribution will be constant along the beam axis. There-
fore all cross-sections will exhibit the same strain and stress distribution as
shown in Figure 9.94.

c. The strain ε at the normal centre NC and the curvature κz are constant
along the length � of the beam:

ε(x) = εT = 1
4αT ,

κz(x) = κT
z = − 7

68
αT

a
.

1 See Sections 4.2 and 9.6.

Figure 9.94 (a) Strain diagram and (b) stress diagram in case of
an unconstrained deformation. Note that the stress distribution is
not similar to the strain distribution. Even more noticeable is the
double root in the stress distribution. One of the zero stress points
coincides with the position of the neutral axis na, but the other zero
stress point does not! Remember that the neutral axis is defined as
the (straight) line in the cross-section with zero strain.
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Figure 9.95 (a) Cantilever beam, (b) ε diagram, (c) κ diagram,
and (d) the curved beam in case of unconstrained deformation.

Figure 9.96 A statically indeterminate T-beam with inhomoge-
neous cross-section. In the flange the temperature is increased. The
increase is linear over the depth of the flange, and constant over the
width of the flange and the length of the beam.

In Figure 9.95 this is visualised in the ε and κz diagram for the beam. Also
a sketch is given of the beam deformation in the xz plane.

The elongation u of the beam equal to the area of the ε diagram:1

u = εT 	 = 1
4 αT 	.

Using the moment-area formulae we can find the vertical displacement wB
at B from the κz diagram:2

θ = κT
z 	 = 7

68 αT
	

a
,

wB = θ × 1
2 	 = 7

136 αT
l2

a
.

d. The maximum deflection occurs at B.

9.16.3 Statically indeterminate beam subject to a temperature load

For the statically indeterminate beam AB in Figure 9.96 the same cross-
section and temperature load will be used as in the previous example. The
beam is fixed at A and roller supported at B.

Questions:
a. Find the force distribution in the structure.

1 See Section 2.6.1.
2 See Sections 8.4 and 9.13. The angle θ is equal to the area of the κz diagram,

and is located at the centroid of the diagram.
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Figure 9.97 (a) For the statically indeterminate beam the roller
support is selected as the redundant constraint, and the reaction
force Bv as the static redundant. (b) By removing the roller support
at B we obtain a cantilever beam. This structure is called the re-
leased structure. The as yet unknown static redundant Bv is applied
as a load on the released structure. (c) The displacement associated
with the static redundant Bv, i.e. the vertical displacement wB at B,
due to both the static redundant and the actual load must be zero.
From this compatibility condition the unknown static redundant Bv
can be solved.

b. Calculate the strain and stress distribution for the cross-section at fixed
end A.

c. Draw a sketch of the deformed beam.
d. Determine the maximum vertical displacement of this cantilever beam.

Solution:
a. The beam is statically indeterminate to the first degree.1 Since a sta-
tically indeterminate structure cannot deform freely, the deformation is
constrained. To find the force distribution we have to take into account the
deformation behaviour of the beam.

Applying the force method, we first change the statically indeterminate
beam in such a way that it becomes statically determinate. For this purpose
we change the structure in a cantilever beam by removing the roller support
at B (see Figure 9.97b). The cantilever beam is called the statically deter-
minate released structure or, in short, released structure. Here we selected
the roller support as the redundant constraint, and the reaction force Bv, as
the static redundant.

The as yet unknown static redundant Bv is now applied as a load on the re-
leased structure, acting together with the actual load – here the temperature
load only.

Next the displacement associated with the static redundant Bv is calculated,
i.e. the vertical displacement wB at B, due to the static redundant and the
actual load (see Figure 9.97c). Subsequently we formulate the deformation
or compatibility condition for the displacement wB associated with the sta-
tic redundant Bv. The roller support as redundant constraint requires that
the vertical displacement wB, due to both the actual load and the unknown

1 See Engineering Mechanics – Volume 1, Section 4.5.
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Figure 9.98 (a) Support reaction at B, (b) shear force diagram,
and (c) bending moment diagram.

static redundant Bv, must be zero. In the end Bv can be solved from this
compatibility condition.

The unconstrained deformation of the cantilever beam, due to a temper-
ature load, was solved in the previous example in Section 9.16.2. Using
EIzz = 272Ea4, we find the vertical support reaction Bv at B from the
compatibility condition wB = 0:

wB = 7
136 αT

	2

a︸ ︷︷ ︸
due to T

− Bv	
3

3EIzz︸ ︷︷ ︸
due to Bv

= 0 ⇒ Bv = 21
136 αT

EIzz

a	
= −42EαT

a3

	
.

Since the beam is not subject to force loads, the bending moment and shear
force in the beam are the result of the support reaction Bv only. They can
directly be calculated from the equilibrium of the statically determinate
released structure (the cantilever beam) (see Figure 9.97b). The bending
moment and shear force diagrams are shown in Figure 9.98.

b. The bending moment at A is

Mz = 42EαT a3.

Since the yz coordinate system is a principal coordinate system the curva-
ture κz in the xz plane can be obtained directly from the bending moment
Mz:

κσ
z = Mz

EIzz

= 42
272

EαT a3

Ea4 = 42
272

αT

a
.
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Figure 9.99 (a) ε diagram and (b) σ diagram at the fixed end A
due to only the bending moment Mz = 42EαT a3.

Table 9.14 Strain and stress distribution at A, due to the section
forces.

z ε × 272
αT

σ × 272
EαT

top flange −3a −126 −94.5

bottom flange −a −42 −31.5

top web −a −42 −42

normal centre 0 0 0

bottom web +5a +210 +210

The associated strain and stress distribution are

εσ (y, z) = κσ
z z = 42

272 αT
z

a
,

σ (y, z) = Eεσ (y, z) = E(y, z) × 42
272 αT

z

a
.

For a number of key points, the strain and stress values at A due to the
section forces are computed in Table 9.14. In Figure 9.99 the strain and
stress distribution at A is shown in diagrams.

The actual strain and stress distribution are found by superposition of the
influence of the section forces (see Figure 9.99) and the influence of the
temperature load for the statically determinate released structure with zero
section forces as found in the previous example (see Figure 9.94). The result
is shown in Figure 9.100.

Note that the zero stress point in the cross-section is not on the neutral axis
na, which is outside the cross-section.

c. The actual curvature in Figure 9.101d is also a summation of the ear-
lier found curvature of the unconstrained beam due to the temperature
load in Figure 9.101b and the curvature due to the bending moment in
Figure 9.101c. The values of the curvature are expressed in terms of k:

k = 14
272

αT

a
.

d. The maximum vertical displacement will occur at the location were the
rotation ϕ is zero. From the curvature diagram in Figure 9.101d we observe
a zero rotation at C (x = 2

3 �). This can also be derived from the moment-
area formula for the rotation:
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Figure 9.101 (a) A statically indeterminate beam. (b) The released
structure with the κ diagram due to the temperature load, and (c)
the released structure with the κ diagram due to the bending mo-
ments. (d) The resultant κ diagram. (e) The deformed beam with
the maximum deflection at C.

Figure 9.100 The actual (a) strain and (b) stress distribution is
found by superposition of the influence of the bending moment
(see Figure 9.99) and the influence of the temperature load for the
released structure with zero section forces (see Figure 9.94). Note
that the zero stress point in the cross-section is not on the neutral
axis na, which is outside the cross-section.
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ϕC = ϕA +
∫ C

A

κz dx

= 0︸︷︷︸
ϕA

+ (area of the κz diagram between A and C)︸ ︷︷ ︸
integral

= 0.

So the maximum displacement occurs at C:

xC = 2
3 	.

The vertical displacement at C can be found using the rotations θ shown in
Figure 9.101d:

θ = 1
2 × 1

3 	 × k = 1
6 kl,

and

wC = − 5
9 	θ + 1

9 	θ = − 4
54 k	2 = − 4

54 × 14
272

αT 	2

a
≈ − 1

272
αT 	2

a
.

A sketch of the deformed beam is given in Figure 9.101e.

Comment: For both examples the section forces N and M at B are zero.
The strain and stress distribution at B should therefore be the distributions
found for the unconstrained deformation due to the temperature load, as
shown in Figure 9.94. However this stress distribution is not very realistic
since the end cross-section of the beam at B is a free edge where the normal
stresses should all be zero. Over a small distance from the free edge at B
the presented theory will therefore predict a wrong strain and stress distrib-

Figure 9.101 (a) A statically indeterminate beam. (b) The released
structure with the κ diagram due to the temperature load, and (c)
the released structure with the κ diagram due to the bending mo-
ments. (d) The resultant κ diagram. (e) The deformed beam with
the maximum deflection at C.
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ution. According to Saint Venant’s principle1 this will only be the case for
a distance equal to about the depth of the beam. For the rest we can make
use of this theory without any hesitation, but with this remark in mind.

9.17 Shear flow and shear stresses in arbitrary
cross-sections – shear centre

Apart from normal stresses there are also shear stresses in cross-sections. In
Chapter 5, a systematic method is outlined for homogeneous cross-sections
with at least one line of symmetry. In this section we will extend this
approach to unsymmetrical and or inhomogeneous cross-sections.

We discuss the shear flow in a longitudinal section plane, following the
traditional approach in Section 9.17.1 and an alternative approach in Sec-
tion 9.17.2. Shear stresses in longitudinal and cross-sectional planes can
be derived from the shear flow. For details we refer to Section 5.3. One of
the applications in Section 9.17.2 is the shear stress distribution in an in-
homogeneous rectangular cross-section, which is derived from the bending
stress distribution. At the end, in Section 9.17.3, we will pay attention to the
location of the shear (force) centre SC of open thin-walled cross-sections.

9.17.1 Shear flow in longitudinal direction (traditional approach)

From the force equilibrium of a small sliding element we found the fol-
lowing formula for sa

x , the shear force per length (or shear flow) on the

1 ´
contributed to the development of the theory of elasticity.
Named after Barre de Saint Venant (1797–1886), French civil engineer who
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Figure 9.102 The lower part of the beam segment, wit small
length �x, has been isolated and is called the sliding element. (b)
The cross-sectional area of the sliding element is Aa. (c) Spatial
representation of the sliding element with all the forces acting on
it. Since the resultant of all normal stresses on the front and back
of the sliding element are not equal, a longitudinal shear force must
act on the longitudinal section plane.

longitudinal section plane1 (see Figure 9.102):

sa
x = −dNa

dx
. (9.85)

Here, Na is the resultant force due to all normal stresses on the cross-
sectional area Aa of the sliding element:

Na =
∫

Aa
σ(y, z) dx. (9.86)

So

sa
x = −dNa

dx
= − d

dx

(∫
Aa

σ(y, z) dx

)
= −

∫
Aa

dσ(y, z)

dx
dx. (9.87)

Differentiating with respect to the longitudinal direction and integrating
with respect to the cross-sectional area of the sliding element are two
independent operations that may be interchanged.

The normal stress distribution in an inhomogeneous cross-section follows
from the constitutive relationship:

σ(y, z) = E(y, z)ε(y, z), (9.88)

in which ε(y, z) is the linear strain distribution:

ε(y, z) = ε + κyy + κzz. (9.89)

1 See Section 5.1.2.
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The cross-sectional deformation quantities ε, κy and κz follow from the
cross-sectional constitutive relationships as introduced in Section 9.5. If
the cross-sectional yz coordinate system coincides with the principal coor-
dinate system the cross-sectional constitutive relationships are uncoupled:

ε = N

EA
, κy = My

EIyy

and κz = Mz

EIzz

. (9.90)

Combining the expressions (9.88), (9.89) and (9.90) gives

σ(y, z) = E(y, z) ×
[

N

EA
+ Myy

EIyy

+ Mzz

EIzz

]
. (9.91)

For a prismatic beam1

dσ(y, z)

dx
= E(y, z) ×

[
1

EA

dN

dx
+ y

EIyy

dMy

dx
+ z

EIzz

dMz

dx

]
.

Substituting this result in (9.87), we find for the shear flow

sa
x = −dNa

dx
= −

∫
Aa

dσ(y, z)

dx
dx

= −
∫

Aa
E(y, z) ×

[
1

EA

dN

dx
+ y

EIyy

dMy

dx
+ z

EIzz

dMz

dx

]
dA. (9.92)

1 Note that in a prismatic beam the stiffness quantities, denoted with the double
letter symbols EA, EIyy and EIzz, are constant and independent of x.
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We assume a constant normal force N for the beam segment, so

dN

dx
= 0.

Furthermore, there are the following static relationships between the shear
forces and the bending moments:

Vy = dMy

dx
and Vz = dMz

dx
.

Equation (9.92) now changes into

sa
x = −

∫
Aa

E(y, z) ×
(

+ Vyy

EIyy

+ Vzz

EIzz

)
dA

= − Vy

EIyy

∫
Aa

E(y, z) · y dA − Vz

EIzz

∫
Aa

E(y, z) · z dA. (9.93)

Since the bending stiffness quantities EIyy and EIzz, and the shear forces
Vy and Vz are independent of dA = dy dz, they can be put in front of the
integrals. By introducing the double letter symbols

ESa
y =

∫
Aa

E(y, z) · y dA and ESa
z =

∫
Aa

E(y, z) · z dA,

expression (9.93) simplifies to the following formula for the shear flow:

sa
x = −VyESa

y

EIyy

− VzESa
z

EIzz

. (9.94)
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For a homogeneous cross-section the moduli of elasticity in the numerator
and denominator cancel each other out, and we have

sa
x = −VyS

a
y

Iyy

− VzS
a
z

Izz

. (9.95)

This expression is almost identical to the expression found in Sec-
tion 5.1.2. New element here is the contribution of the shear forces in two
directions.

For a yz coordinate system with its origin at the normal centre NC, but not
coinciding with the principal directions, the constitutive relationships for
bending are coupled:

[
My

Mz

]
=

[
EIyy EIyz

EIzy EIzz

] [
κy

κz

]

and

[
κy

κz

]
= 1

Det(EI)

[
EIzz −EIzy

−EIyz EIyy

] [
My

Mz

]
,

in which Det(EI) is the determinant of the bending stiffness matrix:

Det(EI) = EIyyEIzz − EI 2
yz.

Following the same procedure as before, we find for the shear flow
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Figure 9.103 (a) The cross-section of a concrete-steel composite
beam subject to bending. The cross-section has to transmit the shear
force Vz = 40 kN. (b) The location of the normal centre (centroid)
NCst of the homogeneous steel section.

sa
x = − Vy

Det(EI)
(ESa

y · EIzz − ESa
z · EIzy)

− Vz

Det(EI)
(ESa

z · EIyy − ESa
y · EIyz). (9.96)

For homogeneous cross-sections this changes into

sa
x = − Vy

Det(I )
(Sa

y · Izz − Sa
z · Izy) − Vz

Det(I )
(Sa

z · Iyy − Sa
y · Iyz). (9.97)

The expressions (9.96) and (9.97) are far from attractive. Therefore, for
general situations we will derive an alternative method in Section 9.17.3.

We will illustrate the traditional approach with two examples.

Example 1: Shear flow in a symmetric inhomogeneous cross-section
Figure 9.103a shows the cross-section of a concrete-steel composite beam
subject to bending. The cross-section has to transmit the shear force
Vz = 40 kN as is shown in the figure. The yz coordinate system is chosen at
the normal centre NC of the composite cross-section. The concrete flange
is without slip firmly attached to the steel section. Therefore we can assume
both parts to act together as one piece.

The location of the normal centre (centroid) NCst of the homogeneous steel
section is given in Figure 9.103b. More structural data:
• Area of steel: Ast = 32 × 103 mm2,
• Second moment of area of steel: Izz;st = 432 × 106 mm4,
• Modulus of elasticity of steel: Est = 210 × 103 N/mm2,
• Modulus of elasticity of concrete: Ec = 14 × 103 N/mm2.



9 Unsymmetrical and Inhomogeneous Cross-Sections 815

Figure 9.104 (a) The location of the normal centre NC of the com-
posite cross-section. (b) The location of the normal centre (centroid)
NCst of the homogeneous steel section.

Question:
Compute the longitudinal shear flow in the interface between steel and
concrete.

Solution (units in N and mm):
The composite cross-section has one of line symmetry, on which the normal
centre NC is located. In the yz coordinate system the vertical location of the
normal centre NC is (see Figure 9.104)

zNC = Ec × (200 × 2000) × 100 + Est × (32000) × 650

Ec × (200 × 2000) + Est × (32000)
= 400 mm.

formula (9.94) to find the shear flow:

Since the shear force in the y direction is zero we only have to consider the
quantities in the z direction. The bending stiffness in the z direction is

EIzz = Ec × [ 1
12 × 2000 × 2003 + (200 × 2000) × (300)2]

+ Est × [432 × 106 + 32 × 103 × (250)2]
= 1033.4 × 1012 Nmm2.

ESa
z = Ec × (2000 × 200) × (−300) = −1.68 × 1012 Nmm.

If we choose the concrete flange as the sliding element,

sa
x = −VyESa

y

EIyy

− VzESa
z

EIzz

.

The yz coordinate system is a principal coordinate system, so we can use
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Figure 9.105 The shear flow (shear force per length) between the
concrete flange and the steel section.

Figure 9.106 Cantilever beam with an unsymmetrical and inho-
mogeneous cross-section.

For the shear flow (shear force per length) in the interface between the
concrete flange and the steel section we find

sa
x = −VzESa

z

EIzz

= − (40 × 103 N) × (−1.68 × 1012 Nmm)

1033.4 × 1012 Nmm2

= +65 N/mm.

Since the shear flow is positive, it acts in the positive x direction on the
flange (the sliding element), and in the negative x direction on the steel
section (see Figure 9.105).

Example 2: Shear flow in an unsymmetrical and inhomogeneous cross-
section
The cantilever beam in Figure 9.106, with an inhomogeneous cross-section
and subject to a point load of 250 N at B, was discussed in Section 9.9.2,
Example 2. The beam is constructed of three parts, numbered by 1 to 3,
which are firmly glued together. Different materials are used for flanges
and web. The moduli of elasticity are E1 = E3 = 12000 N/mm2 and
E2 = 6000 N/mm2.

Question:
Determine the shear flow at the glue line RS.

Solution:
Here we can use formula (9.96). Since Vy = 0, this slightly simplifies the
formula:

sa
x = − Vz

Det(EI)
(ESa

z · EIyy − ESa
y · EIzy)

= −Vz · ESa
z · EIyy

Det(EI)
+ Vz · ESa

y · EIyz

Det(EI)
.
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Figure 9.107 The upper flange OPQS is chosen as the sliding
element.

In Section 9.9.2, Example 2, we derived

EIyy = 5.32 × 109 Nmm2,

EIyz = EIzy = −3.6 × 109 Nmm2,

EIzz = 5.17 × 109 Nmm2,

from which we find

Det(EI) = EIyyEIzz − EI 2
yz = 14.54 × 1018 N2mm

4
.

Consider the upper flange OPQS as the sliding element. The cross-sectional
area AA of the sliding element is (see Figure 9.107)

Aa = (50 mm)(10 mm) = 500 mm2.

Furthermore,

EAa = E1 · Aa = (12 × 103 N/mm2)(500 mm2) = 6 × 106 N,

ESa
y = E1A

a · ya
NC = (6 × 106 N)(+15 mm) = +90 × 106 Nmm,

ESa
z = E1A

a · za
NC = (6 × 106 N)(−20 mm) = −120 × 106 Nmm.

For Vz = +250 N the shear flow is
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Figure 9.108 The shear flow between upper flange and web. Since
the shear force Vz is constant along the length of the beam, the shear
flow will also be constant.

sa
x = −Vz · ESa

z · EIyy

Det(EI)
+ Vz · ESa

y · EIyz

Det(EI)

= (250 N)(−120 × 106 Nmm)(5.32 × 109 Nmm2)

14.54 × 1018 (Nmm2)2

+ (250 N)(+90 × 106 Nmm)(−3.6 × 109 Nmm2)

14.54 × 1018 (Nmm2)2

= 5.4 N/mm.

Since the shear force Vz is constant along the length of the beam, the shear
flow between the upper flange and web will also be constant. The direction
of the shear flow is shown in Figure 9.108. Since the shear flow is positive,
it acts in the positive x direction on the flange (the sliding element), and in
the negative x direction on the web.

The glued joint should be designed in such a way that it can resist this shear
flow. If so, the glued joint can be seen as an interface without slip, and the
composite cross-section acts as one piece.

9.17.2 Shear flow in longitudinal direction (alternative approach)

If the yz coordinate system does not coincide with the principal directions
of the cross-section we cannot use the rather simple formula (9.94), based
on the uncoupled bending terms of the constitutive relationship,

sa
x = −VyESa

y

EIyy

− VzESa
z

EIzz

, (9.94)

but we have to use the far more complicated formula (9.96)

� �

��

�  
 � �

 � � � � � � �
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Figure 9.109 (a) The shear force Ra
x;s in longitudinal direction

follows from the horizontal equilibrium of the sliding element. (b)
If Na

M is the resultant of only the bending stresses σM(y, z) on the
sliding element, then Na

M
is proportional to the bending moment

M : Na
M

= c2M . c2 is a proportionality factor determined by the
cross-sectional shape of the sliding element.

sa
x = − Vy

Det(EI)
(ESa

y · EIzz − ESa
z · EIzy)

− Vz

Det(EI)
(ESa

z · EIyy − ESa
y · EIyz). (9.96)

Below we will derive an alternative formula for general situations. We start
with the result of the horizontal equilibrium of the sliding element as shown
in Figure 9.109a. The shear flow (shear force per length in longitudinal
direction) is

sa
x = −dNa

dx
, (9.85)

in which

Na =
∫

Aa
σ(y, z) dA.

Since the normal stresses σ(y, z) on the cross-sectional area Aa of the
sliding element are proportional to the normal force N and the bending
moment M , we can split the resultant Na of these stresses on Aa into the
contributions Na

N = c1N due to N and Na
M = c2M due to M:

Na = Na
N + Na

M = c1N + c2M, (9.98)

in which

M =
√

M2
y + M2

z .
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For a prismatic beam, c1 and c2 are constant; they can be found as

c1 = Na
N

N
and c2 = Na

M

M
. (9.99)

Substitute (9.98) in (9.99):

sa
x = −dNa

dx
= −d(c1N + c2M)

dx
= −c1

dN

dx
− c2

dM

dM
.

Assuming a constant normal force N , we have dN/dx = 0 and find for the
shear flow

sa
x = −c2

dM

dx
= −c2V = −Na

M

M
V, (9.100)

in which

V =
√

V 2
y + V 2

z .

In this expression V is the resultant shear force in the cross-section.

In words, formula (9.100) states that the shear flow (shear force per length)
sa
x is equal to the resultant shear force V multiplied with a scaling factor

c2. This scaling factor is the resultant Na
M of the bending stresses1 on the

sliding element only, divided by the resultant bending moment M in the
cross-section (see Figure 9.109b).

1 Bending stresses are normal stresses due to bending only.

Figure 9.109 (a) The shear force Ra
x;s in longitudinal direction

follows from the horizontal equilibrium of the sliding element. (b)
If Na

M is the resultant of only the bending stresses σM(y, z) on the
sliding element, then Na

M
is proportional to the bending moment

M : Na
M

= c2M . c2 is a proportionality factor determined by the
cross-sectional shape of the sliding element.
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Figure 9.110 The equilibrium equation V = dM/dx holds only
when the positive directions of V and M are related as shown in the
figure.

Figure 9.111 Distribution of the bending stresses for an unsym-
metrical and inhomogeneous cross-section.

Note that the scaling factor c2 is independent of the magnitude of the bend-
ing moment M. Important in the application of this method is however that
both the shear force V and the bending moment M act in the same plane of
loading since we made use of the equilibrium condition

V = dM

dx
.

Moreover, we have to take into account that in this equilibrium the positive
directions of V and M condition are related as shown in Figure 9.110.

If in a cross-section only the shear force is known, or the bending moment
is zero, we can apply a non-zero dummy moment to calculate the scaling
factor c2. This will be illustrated in the second example below.

Example 1: Shear flow in an unsymmetrical and inhomogeneous cross-
section
In Section 9.9.2, Example 2, the bending stress distribution in Figure 9.111
was found for the inhomogeneous cross-section subject to a bending mo-
ment M with components My = 0 and Mz = −137.5 × 103 Nmm. The
cross-section has to transmit a shear force V with components Vy = 0 and
Vz = +250 N.

Question:
Determine the shear flow in the glue line RS.

Solution (units in N and mm):
Since we know the normal stress distribution due to bending only, we can
use the alternative formula for the shear flow:
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sa
x = −c2

dM

dx
= −c2V = −Na

M

M
V, (9.100)

The xz plane is the plane of loading, in which both the bending moment
M and the shear force V act. As mentioned before, the signs of V and M

are related to the positive directions as shown in Figure 9.110. So, in the xz

coordinate system, M is negative and V is positive:

M = Mz = −137.5 × 103 Nmm,

V = = Vz = +250 N.

To determine the shear flow in the glue line RS we consider the flange
OPQS as sliding element. The normal stresses at the four corners of this
flange are given in Table 9.15.1

Since the normal stress distribution over the rectangle OPQS is linear, the
resultant normal force on the sliding element can be found by multiply-
ing the average normal stress with the cross-sectional area of the sliding
element:

Na
M = (−1.25 + 19.17 − 7.28 + 13.14) N/mm2

4
× (50 × 10 mm2)

= +2972.5 N.

1 See Section 9.9.2, Example 2, Table 9.5.

Figure 9.110 The equilibrium equation V = dM/dx holds only
when the positive directions of V and M are related as shown in the
figure.

Figure 9.111 Distribution of the bending stresses for an unsym-
metrical and inhomogeneous cross-section.
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Table 9.15

point y (mm) z (mm) Stress σ (N/mm2)

O +40 −25 −1.25

P −10 −25 +19.17

Q +40 −15 −7.28

S −10 −15 +13.14

Figure 9.112 (a) A rectangular inhomogeneous cross-section,
built up out of three parts which are firmly glued together. (b) The
cross-section has to transmit a vertical shear force V = 40 kN.

For the shear flow in the glue line RS we now find

sa
x = −Na

M

M
V = − +2972.5 N

−137.5 × 103 Nmm
× (+250 N) = +5.4 N/mm.

The shear flow (shear force per length) on the upper flange acts in the
positive x direction, that on the web in the negative x direction. The same
result was found in Section 9.17.1, Example 2.

Example 2: Shear stresses in an inhomogeneous cross-section
The rectangular inhomogeneous cross-section in Figure 9.112a is built up
out of three parts which are firmly glued together. The cross-section has to
transmit a vertical shear force V = 40 kN as shown in Figure 9.112b.The
moduli of elasticity are
• part 1: E1 = 40 × 103 N/mm2,
• part 2: E2 = 160 × 103 N/mm2,
• part 3: E3 = 120 × 103 N/mm2.

The location of the normal centre NC is given in the figure. Furthermore, it
is given that EIzz = 200×1012 Nmm2 in the yz coordinate system shown.1

Question:
Determine the shear stress distribution, assuming the shear stresses are
constant across the width of the cross-section.

1 It is left to the reader to verify the location of the normal centre NC and the
mentioned value of EIzz, the bending stiffness in the xz plane.
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Figure 9.113

Solution:
Section 5 3.2 shows how the shear stresses in the cross-section can be found
from the shear flow (see Figure 9.113):

σxm = σmx = sa
x

ba . (9.101)

For an unambiguous notation of the shear stress, a temporarily m axis is
introduced, normal to the cut and with its positive direction pointing out of
the (hatched) material of the sliding element.

Figure 9.113 (a) A rectangular cross-section subject to a shear
force Vz. To ensure clarity in the figure, the shear force is placed
outside the cross-section. The sliding element of the cross-section
is hatched. Plane cut PQ has a width ba and is normal to the
edges of the cross-section. In order to label the shear stresses, the
m axis has been introduced, perpendicular to the cut PQ and in
such a way that the positive direction, indicated by the arrowhead,
points out of the (hatched) material of the sliding part of the cross-
section. (b) The sliding element with the longitudinal shear force
sa
x (force per length) on the longitudinal section plane. (c) Smear-

ing the shear force sa
x (force per length) uniformly over width ba

leads to the longitudinal shear stress σmx (force per area). (d) In
the cut PQ, the longitudinal section plane and the cross-sectional
plane are perpendicular to one another. Since the shear stresses
on two perpendicular planes are equal, σxm = σmx .
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Figure 9.114 (a) The shear force is given, V = Vz = 40 kN, but
not the bending moment M . Therefore a dummy moment is ap-
plied, for which is chosen M = Mz = 40 kNm. Diagrams for (b)
the strain ε(z) and (c) bending stress σxx(z), both due to the dummy
moment M = Mz = 40 kNm.

Comment: Formula (9.101) is based on the assumption that shear stresses
are uniformly distributed over the width of the longitudinal cut.1 We also
use the property that the shear stresses in two perpendicular planes are of
the same magnitude, thus σxm = σmx .2

To find the shear flow sa
x , we use the alternative approach:

sa
x = −Na

M

M
V. (9.100)

The shear force is V = Vz = 40 kN. The bending moment M is not given,
so we apply a dummy moment. By choosing M = Mz = 40 kNm (see
Figure 9.114a), we have

sa
x = −Na

M

M
V = − Na

M

40 kNm
(40 kN) = − Na

M

103 mm
, (9.101)

and for the shear stress

σxm = sa
x

ba = − Na
M

ba × (103 mm)
, (9.102)

in which Na
M is the resultant of all bending stresses on the sliding element,

due to M = 40 kNm.

1 For restrictions and special cases, see Sections 5.3.3, 5.3.4 and 5.4.
2 See the proof in Section 5.3.1.
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Table 9.16

part cut z Ei ε(z) σxx(z)

i (mm) (N/mm2) (N/mm2)

1 a-a −350 40 × 103 −70 × 10−9 −2.8

1 b-b −150 40 × 103 −30 × 10−9 −1.4

2 b-b −150 160 × 103 −30 × 10−9 −4.8

2 c-c +50 160 × 103 +10 × 10−9 +1.6

3 c-c +50 120 × 103 +10 × 10−9 +1.2

3 d-d +250 120 × 103 +50 × 10−9 +6.0

Since the yz coordinate system is a principal coordinate system, the
bending stresses can easily be found. The curvature in the xz plane is

κz = Mz

EIzz

= 40 × 106 Nmm

200 × 1012 Nmm2
= 0.2 × 10−9 mm−1.

The strain, stress and modulus of elasticity are functions of z only. The
linear strain distribution is

ε(z) = κzz = (0.2 × 10−9 mm−1) × z.

The bending stresses follow from1

σxx(z) = E(z) · ε(z).

The strains and stresses are calculated in Table 9.16 and their distributions
are shown in Figure 9.114.

The resultant of all bending stresses on the sliding element is

Na
M = ba × (area of the bending stress diagram).

Hence

σxm = − Na
M

ba × (103 mm)
= −area of the bending stress diagram

103 mm
. (9.103)

1 Since the double index notation (tensor notation) is used for the shear stress σxm,
we will use it also for the bending stress σ .

Figure 9.114 (a) The shear force is given, V = Vz = 40 kN, but
not the bending moment M . Therefore a dummy moment is ap-
plied, for which is chosen M = Mz = 40 kNm. Diagrams for (b)
the strain ε(z) and (c) bending stress σxx(z), both due to the dummy
moment M = Mz = 40 kNm.
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Figure 9.115 (a) The sliding element with the m coordinate axis.
(b) For part 1, the associated area of the bending stress diagram can
be calculated as function of m1.

Figure 9.116 (a) The sliding element with the m coordinate axis.
(b) For part 2, the associated area of the bending stress diagram can
be calculated as function of m2.

Procedure to derive the shear stress distribution from the bending stress
distribution:
• Choose an m coordinate normal to the cut, and pointing out of the

material of the sliding element considered.
• Find the bending stress, denoted as σxx , as a function of m.
• Integrate σxx to find the area of the bending stress diagram, as a

function m.
• With formula (9.103) we have the shear stress σxm as a function of m.

Below the units are omitted in the intermediate calculations; we use mm
and N.

Part 1 (see Figure 9.115):

σxx = −2.8 + 1.6

200
m1 = −2.8 + 0.008m1,

area =
∫ m1

0
σxx dm1 = −2.8m1 + 0.004m2

1,

area1 = (−2.8m1 + 0.004m2
1)
∣∣200
0 = −400,

σxm = −−2.8m + 0.004m2

103
. (9.104)

Note that area1 is the area of the bending stress diagram with respect to
part 1.

Part 2 (see Figure 9.116):

σxx = −4.8 + 6.4

200
m2 = −4.8 + 0.032m2,
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Figure 9.117 (a) The sliding element with the m coordinate axis.
(b) For part 3, the associated area of the bending stress diagram can
be calculated as function of m3.

area = area1 +
∫ m2

0
σxx dm2 = −400 − 4.8m2 + 0.016m2

2,

area1 + area2 = (−400 − 4.8m2 + 0.016m2
2)
∣∣200
0 = −720,

σxm = −−400 − 4.8m2 + 0.016m2
2

103 . (9.105)

Part 3 (see Figure 9.117):

σxx = +1.2 + 4.8

200
m3 = +1.2 + 0.024m3,

area = area1 + area2 +
∫ m3

0
σxx dm3 = −720 + 1.2m3 + 0.012m2

3,

area1 + area2 + area3 = (−720 + 1.2m3 + 0.012m2
3)
∣∣200
0 = 0,

σxm = −−720 + 1.2m3 + 0.012m2
3

103
. (9.106)

Note: area1 + area2 + area3 = 0 we can use as a check. Since we consider
bending stresses only, there is no resultant force and the total area of the
bending stress diagram has to be zero.

For each homogeneous part the vertical shear stress is quadratic in m.

The parabolic shear stress distribution is in agreement with the following
rule, derived in Section 5.3.3: if the bending stress is linear, the shear
stress must be parabolic. This and the other rules, summarised in Sec-
tion 5.7.2, apply also to the homogeneous parts within an inhomogeneous
cross-section.

Figure 9.116 (a) The sliding element with the m coordinate axis.
(b) For part 2, the associated area of the bending stress diagram can
be calculated as function of m2.



9 Unsymmetrical and Inhomogeneous Cross-Sections 829

Figure 9.118 (a) Cross-section with the shear force. (b) The
vertical shear stress distribution. For each homogeneous part the
shear stress is parabolic. All shear stresses σxm are positive, which
means that they act in the positive m direction. This agrees with the
direction of the shear force.

At P and S, σxm = 0. At the glue lines we find

Q: σxm = −area1

103
= −−400

103
= +0.4 N/mm2,

R: σxm = −area1 + area2

103
= −−720

103
= +0.72 N/mm2.

The shear stress diagram is sketched in Figure 9.118. All shear stresses σxm

are positive, which means that they act in the positive m direction. This is
in accordance with the direction of the shear force.

The shear stress is a maximum at the cut through the normal centre NC. For
m2 = 150 mm we find from (9.105)

σxm = −
(−400 − 4.8m2 + 0.016m2

2)
∣∣
m2=150

103 = +0.76 N/mm2.

9.17.3 Shear centre for unsymmetrical thin-walled cross-sections

If there is no torsion, the resultant force of all shear stresses in a cross-
section is equal to the shear force in that cross-section. However its line
of action will in most cases not pass through the normal centre NC, but
through the so-called shear (force) centre SC. The shear centre is defined
as follows:

The shear centre SC is that point in the cross-sectional plane through which
the line of action of the shear force must pass so that there will be no
torsion.

For rotation symmetrical cross-sections the shear centre SC coincides with
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the normal centre NC. If the cross-section has a line of symmetry, the shear
centre SC will be located on this axis. For a number of thin-walled sections
this is illustrated in Section 5.5.

In this section we will show how to find the location of the shear centre SC
for unsymmetrical thin-walled cross-sections. The necessary steps in the
procedure to find the shear centre are:
• Step 1: For an arbitrary shear force V1, find the shear stress distribution

in the cross-section and determine the line of action of the resultant
force due to the shear stresses. This is the line of action of V1 for shear
without torsion. So the shear centre SC is located on this line.

• Step 2: Repeat step 1 for an arbitrary shear force V2 in a direction other
than V1. The shear centre SC is located on the line of action of V2,
found from the shear stress distribution.

• Step 3: The shear centre is the point of intersection of the two lines of
action of V1 and V2.

Since we try to find the shear centre SC as the point of intersection of two
lines of action, it is essential to choose two shear forces V1 and V2 not
parallel to one another.

The term arbitrary means that we are free to choose the directions and the
magnitudes of the set of shear forces as long as these shear forces are not
parallel.

The procedure is illustrated in an example.

Example: Shear centre of an unsymmetrical thin-walled cross-section
The thin-walled homogeneous cross-section PQRS in Figure 9.119a has a
constant wall-thickness t = 30 mm. Use for the longitudinal measurement
a = 180 mm. The modulus of elasticity is E = 200 × 103 Nmm2.

Figure 9.118 (a) Cross-section with the shear force. (b) The
vertical shear stress distribution. For each homogeneous part the
shear stress is parabolic. All shear stresses σxm are positive, which
means that they act in the positive m direction. This agrees with the
direction of the shear force.
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Figure 9.119 (a) A homogeneous and unsymmetrical thin-walled
cross-section. (b) The location of the normal centre NC.

Questions:
a. Determine the normal centre NC of the cross-section and the central

bending stiffness values.1

b. Determine the shear centre SC of the cross-section.

Solution:
a. In the yz coordinate system, shown in Figure 9.119b, we find for the
coordinates of the normal centre NC

ȳNC = Sȳ

A
= t · a · 2a + t · 2a · a

t · (a + 2a + 3a)
= 2

3 a = 120 mm,

z̄NC = Sz

A
= t · a · 1

2 a + t · 3a · 3
2 a

t · (a + 2a + 3a)
= 5

6 a = 150 mm.

In the yz coordinate system with its origin at the normal centre NC the
components of the bending stiffness tensor are

EIyy = E ×

⎡
⎢⎢⎣ta · ( 4

3 a)2

︸ ︷︷ ︸
PQ

+ 1
12 t · (2a)3 + 2ta · ( 1

3 a)2

︸ ︷︷ ︸
QR

+ 3ta · ( 2
3 a)2

︸ ︷︷ ︸
RS

⎤
⎥⎥⎦

= 4Eta3 = 139.968 × 1012 Nmm2,

EIyz = E ×

⎡
⎢⎢⎣ta · ( 4

3 a) · (− 1
3 a)︸ ︷︷ ︸

PQ

+ 2at · ( 1
3 a) · (− 5

6 a)︸ ︷︷ ︸
QR

+ 3at · (− 2
3 a) · ( 2

3 a)︸ ︷︷ ︸
RS

⎤
⎥⎥⎦

= − 7
3 Eta3 = −81.648 × 1012 Nmm2,

1 These are the values in a central coordinate system, which is a coordinate system
with its origin at the normal centre NC of the cross-section.
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EIzz = E ×

⎡
⎢⎢⎣ 1

12 ta3 · ta · ( 1
3 a)2

︸ ︷︷ ︸
PQ

+ 2ta · ( 5
6 a)2

︸ ︷︷ ︸
QR

+ 1
12 t · (3a)3 + 3ta · ( 2

3 a)2

︸ ︷︷ ︸
RS

⎤
⎥⎥⎦

= 31
6 Eta3 = 180.792 × 1012 Nmm2.

In order to find the shear centre SC, we need these values.

b. The shear stress distribution due to an arbitrary shear force V is deter-
mined with the alternative approach, using a dummy moment M:

sa
x = −Na

M

M
V and σxm = sa

x

ba = −Na
M

ba

V

M
.

Na
M is the resultant of all bending stresses on the sliding element due to the

dummy moment:

Na
M = ba × (area of the bending stress diagram).

So

σxm = −Na
M

ba

V

M
= −(area of the bending stress diagram) × V

M
.

V and M have to be chosen in the same plane and in the correct directions
with respect to one another. Using a unity shear force for V and a unity
bending moment for M , we can simplify the calculation considerably:

σxm = −(area of the bending stress diagram) × dim

(
V

M

)
.

Figure 9.119 (a) A homogeneous and unsymmetrical thin-walled
cross-section. (b) The location of the normal centre NC.
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The numerical value of the shear stress is, with opposite sign, equal to the
area of the bending stress diagram for the sliding element. Since V/M is not
dimensionless, we may not forget to pay attention to the units in which we
work.

To find the location of the shear centre we have to compute the shear stress
distributions due to two shear forces, for which we choose shear forces in
the y and z direction. So the first distribution is the result of a unity shear
force Vy and the associated (dummy) unity moment My , and the second
is the result of a unity shear force Vz with the associated (dummy) unity
moment Mz:

Loading case 1:

[
Vy

Vz

]
=

[
1 N

0

]
;

[
My

Mz

]
=

[
1 Nmm

0

]
,

Loading case 2:

[
Vy

Vz

]
=

[
0

1 N

]
;

[
My

Mz

]
=

[
0

1 Nmm

]
.

In order to find the bending stress distribution we use the constitutive
relationship

[
My

Mz

]
=

[
EIyy EIyz

EIzy EIzz

] [
κy

κz

]

in the inverse form:

[
κy

κz

]
= 1

Det(EI)

[
EIzz −EIzy

−EIyz EIyy

] [
My

Mz

]
.
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Table 9.17

point y z σ (y, z) × 109

(mm) (mm) (N/mm2)

P +240 +30 +491.9

Q +240 −150 +334.2

R −120 −150 −364.2

S −120 +390 +108.8

Here

Det(EI) = EIyyEIzz − (EIyz)
2.

After substitution of the bending stiffness values found before, we find

[
κy

κz

]
= 1

1015 Nmm2

[
9.70 4.38

4.38 7.51

] [
My

Mz

]
.

Loading case 1

[
My

Mz

]
=

[
100 × 106 Nmm

0.0

]
,

[
κy

κz

]
= 1

1015 Nmm2
×

[
9.70 4.38

4.38 7.51

] [
1 Nmm

0

]

=
[

9.70

4.38

]
× (10−15 mm−1).

The strain distribution due to bending:

ε(y, z) = κyy + κzz

= (9.70 × y + 4.38 × z) × (10−15 mm−1).

The normal stress distribution due to bending:

σ(y, z) = E · ε(y, z) = Eκyy + Eκzz

= (1.940 × y + 0.876 × z) × (10−9 N/mm−3).
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Figure 9.120 The bending stress distribution due to
My = +1 Nmm.

The bending stresses at the key points P, Q, R and S are calculated in Ta-
ble 9.17. Figure 9.120 shows the bending stress diagram. When the picture
is drawn to scale, we have the check that the neutral axis na must pass
through the normal centre NC.

Next we will derive the shear stress distribution from the bending stress
diagram. Below, all quantities will be expressed in the units N and mm.
These units are omitted in the calculations. Since dim(V/M) = 1 mm−1,
this term does not influence the numerical results, but provides only the
correct dimension.

• PQ – loading case 1: Vy = 1 N (see Figure 9.120)

The bending stress σxx as a function of the auxiliary coordinate m1:

σxx =
(

491.9 − 491.9 − 334.2

180
m1

)
× 10−9

= (491.9 − 0.876m1) × 10−9.

Area of the bending stress diagram from P to the cut at m1:

area =
∫ m1

0
σxx dm1 = (

491.9m1 − 1
2 × 0.8761m2

1

) × 10−9,

area(PQ) =
∫ 180

0
σxx dm1 = 74349 × 10−9.

Shear stress σxm at the cut m1 (see Figure 9.121a):

σxm = −area = (−491.9m1 + 1
2 × 0.8761m2

1

) × 10−9.
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Resultant shear force in PQ (see Figure 9.121b):

RPQ = t ×
∫ 180

0
σxm dm1

= 30 × (− 1
2 × 491.9m2

1 + 1
6 × 0.8761m3

1

) × 10−9
∣∣180
0

= −0.21352 N.

• QR – loading case 1: Vy

The bending stress σxx as a function of the auxiliary coordinate m2:

σxx =
(

334.2 − 334.2 + 364.2

360
m2

)
× 10−9

= (334.2 − 1.94m2) × 10−9.

Area of the bending stress diagram from P to the cut at m2:

area = area(PQ) +
∫ m2

0
σxx dm2

= (
74349 + 334.2m2 − 1

2 × 1.94m2
2

) × 10−9,

area(PQR) = area(PQ) +
∫ 360

0
σxx dm2 = 68949 × 10−9.

Shear stress σxm at the cut m2 (see Figure 9.121a):

σxm = −area = (−74349 − 334.2m2 + 1
2 × 1.94m2

2

) × 10−9.

Figure 9.120 The bending stress distribution due to
My = +1 Nmm.

= 1 N (see Figure 9.120)
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Resultant shear force in QR (see Figure 9.121b):

RQR = t ×
∫ 360

0
σxm dm2

= 30 × (−74349m2 − 1
2 × 334.2m2

2 + 1
6 × 0.194m3

2

) × 10−9
∣∣360
0

= −1.00000 N.

• RS – loading case 1: Vy

The bending stress σxx as a function of the auxiliary coordinate m3:

σxx =
(

−364.2 + 364.2 + 108.8

540
m3

)
× 10−9

= (−364.2 + 0.8759m3) × 10−9.

Area of the bending stress diagram from P to the cut at m3:

area = area(PQR) +
∫ m3

0
σxx dm3

= (
68949 − 364.2m3 + 1

2 × 0.8759m2
3

) × 10−9.

Since there is no normal force, the total area of the normal stress diagram
must be zero. This condition is satisfied:

area(PQRS) = area(PQR) +
∫ 540

0
σxx dm3 = −13 × 10−9 ≈ 0.

Shear stress σxx at the cut m3 (see Figure 9.121a):

Figure 9.121 (a) The shear stress distribution due to Vy = +1 N.
(b) The resultants of the shear stresses in the flange and webs.

= 1 N (see Figure 9.120)
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Figure 9.121 (a) The shear stress distribution due to Vy = +1 N.
(b) The resultants of the shear stresses in the flange and webs.

σxm = −area = (−68949 + 364.2m3 − 1
2 × 0.8759m2

3

) × 10−9.

Resultant shear force in RS (see Figure 9.121b):

RRS = t ×
∫ 540

0
σxm dm3

= 30 × (−68949m3 + 1
2 × 364.2m2

3 − 1
6 × 0.8759m3

3

) × 10−9
∣∣540
0

= −0.21358 N.

The shear stress distribution is shown in Figure 9.121a. The resultants of
the shear stresses in the segments PQ, QR an RS are shown Figure 9.121b.
The top of the parabolic shear stress distribution appears where the bending
stress is zero, that is where the neutral axis na intersects the thin-walled
cross-section. The plus and minus signs of the shear stresses and their re-
sultants are related to the m coordinate axis for the specific segment. With
arrows the actual directions are indicated.

Figure 9.121 shows that the horizontal shear force Vy = 1 N is transmitted
by the flange QR. In the webs PQ and RS there are two equal and opposite
forces. The difference between the shear forces in PQ and RS are caused
by rounding off some values in the manual calculation, and is negligible.

Loading case 2

[
My

Mz

]
=

[
0

1 Nmm

]
,

[
κy

κz

]
= 1

1015 Nmm2
×

[
9.70 4.38

4.38 7.51

] [
0

1 Nmm

]

=
[

4.38

7.51

]
× (10−15 mm−1).
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Figure 9.122 The bending stress distribution due to
Mz = +1 Nmm.

Strain distribution due to bending:

ε(y, z) = κyy + κzz

= (4.38 × y + 7.51 × z) × (10−15 mm−1).

Normal stress distribution due to bending:

σ(y, z) = E · ε(y, z) = Eκyy + Eκzz

= (0.876 × y + 1.502 × z) × (10−9 N/mm3).

The bending stresses at the key points P, Q, R and S are calculated in
Table 9.18. Figure 9.122 shows the bending stress diagram.

Table 9.18

point y z σ (y, z) × 109

(mm) (mm) (N/mm2)

P +240 +30 +255.3

Q +240 −150 −15.1

R −120 −150 −330.4

S −120 +390 +480.7
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• PQ – loading case 2: Vz

The bending stress σxx as a function of the auxiliary coordinate m1:

σxx =
(

255.3 − 255.3 + 15.1

180
m1

)
× 10−9

= (255.3 − 1.5022m1) × 10−9.

Area of the bending stress diagram from P to the cut at m1:

area =
∫ m1

0
σxx dm1 = (

255.3m1 − 1
2 × 1.5022m2

1

) × 10−9

area(PQ) =
∫ 180

0
σxx dm1 = 21618 × 10−9.

Shear stress σxm at the cut m1 (see Figure 9.123a):

σxm = −area = (−255.3m1 + 1
2 × 1.5022m2

1

) × 10−9.

Resultant shear force in PQ (see Figure 9.123b):

RPQ = t ×
∫ 180

0
σxm dm1

= 30 × (− 1
2 × 255.3m2

1 + 1
6 × 1.5022m3

1

) × 10−9
∣∣180
0

= −0.08027 N.

Figure 9.122 The bending stress distribution due to
Mz = +1 Nmm.

= 1 N (see Figure 9.122)
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Figure 9.123 (a) The shear stress distribution due to Vz = 1 N.
(b) The resultants of the shear stresses in the flange and webs.

• QR – loading case 2: Vz

The bending stress σxx as a function of the auxiliary coordinate m2:

σxx =
(

−15.1 − 330.4 − 15.1

360
m2

)
× 10−9

= (−15.1 − 0.8758m2) × 10−9.

Area of the bending stress diagram from P to the cut at m2:

area = area(PQ) +
∫ m2

0
σxx dm2

= (
21618 − 15.1m2 − 1

2 × 0.8757m2
2

) × 10−9

area(PQR) = area(PQ) +
∫ 360

0
σxx dm2 = −40572 × 10−9.

Shear stress σxm at the cut m2 (see Figure 9.123a):

σxm = −area = (−21618 + 15.1m2 + 1
2 × 0.8758m2

2

) × 10−9.

Resultant shear force in QR (see Figure 9.123b):

RQR = t ×
∫ 360

0
σxm dm2

= 30 × (−21618m2 + 1
2 × 15.1m2

2 + 1
6 × 0.8758m3

2

) × 10−9
∣∣360
0

= 0.190 × 10−12 ≈ 0.

= 1 N (see Figure 9.122)
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• RS – loading case 2: Vz

The bending stress σxx as a function of the auxiliary coordinate m3:

σxx =
(

−330.4 + 330.4 + 480.7

540
m3

)
× 10−9

= (−330.4 + 1.502m3) × 10−9.

Area of the bending stress diagram from P to the cut at m3:

area = area(PQR) +
∫ m3

0
σxx dm3

= (−40572 − 330.4m3 + 1
2 × 1.502m2

3

) × 10−9.

Since there is no normal force, the total area of the normal stress diagram
must be zero. This condition is satisfied:

area(PQRS) = area(PQR) +
∫ 540

0
σxx dm3 = −4 × 10−9 ≈ 0.

Shear stress σxm at the cut m3 (see Figure 9.123a):

σxm = −area = (+40554 + 330.4m3 − 1
2 × 1.5020m2

3

) × 10−9.

Resultant shear force in RS (see Figure 9.123b):

RRS = t ×
∫ 540

0
σxm dm3

= 30 × (+40572m3 + 1
2 × 330.4m2

3 − 1
6 × 1.502m3

3

) × 10−9
∣∣540
0

= +0.91988 N.

Figure 9.123 (a) The shear stress distribution due to Vz = 1 N.
(b) The resultants of the shear stresses in the flange and webs.

= 1 N (see Figure 9.122)
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Figure 9.124 (a) The resultant of al stresses is a horizontal force
with its line of action 76.88 mm above the centre line of the flange
QR. (b) The resultant of all stresses is a vertical force with its line of
action 0.08 mm to the left of the centre line of web RS. (c) The point
of intersection of both lines of action is the shear centre SC of the
cross-section. The shear centre SC is that point in the cross-sectional
plane through which the line of action of the shear force must pass
so that there will be no torsion.

The shear stress distribution and resulting shear forces per segment are
shown in Figure 9.123.

The vertical shear force Vz = 1 kN is transmitted by the webs PQ and RS.
The resultant of the shear stresses in flange QR is zero. The resultant of the
shear stresses in both webs must be equal to Vz:

Vz = RPQ + RRS = (0.08027 N) + (0.91988 N) = 1.00015 N.

The small difference is caused by rounding off some values in the manual
calculation, and is negligible.1

To find the shear centre SC we summarise both loading cases (see
Figure 9.124).

Loading case 1: Vy

The shear forces in PQ and RS are statically equivalent with a moment in
the plane of the cross-section. Taking the mean value of RPQ and RRS, we
find

(0.21355 N)(360 mm) = 76.88 Nmm ( ).

The resultant of this moment and the shear force in QR is a horizontal force
with its line of action 76.88 mm above the centre line of the flange QR.

Loading case 2: Vz

The resultant of RPQ = 0.08026 and RRS = 0.91974 is a vertical force with

1 We can correct the values by multiplying them by 1/1.00015, but this is not
necessary to find the correct line of action of the resultant of all shear stresses in
the cross-section.

\

= 1 N

= 1 N
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its line of action at the following distance to the left of the centre line of web
RS:

0.08026

0.08026 + 0.91974
mm = 0.08 mm.

The intersection of the two lines of action is the shear centre SC. For this
thin-walled cross-section the shear centre SC and normal centre NC do not
coincide.

Only when the line of action of a shear force passes through the shear centre
SC, there is no torsion, and the shear stress distribution can be calculated by
using the formulae for the shear stresses due to a shear force. When the line
of action of the shear force does not pass through the shear centre SC, the
cross-section is also subject to torsion, generating additional shear stresses.

Figure 9.124 (a) The resultant of al stresses is a horizontal force
with its line of action 76.88 mm above the centre line of the flange
QR. (b) The resultant of all stresses is a vertical force with its line of
action 0.08 mm to the left of the centre line of web RS. (c) The point
of intersection of both lines of action is the shear centre SC of the
cross-section. The shear centre SC is that point in the cross-sectional
plane through which the line of action of the shear force must pass
so that there will be no torsion.
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9.18 Problems

• Unless mentioned otherwise, all cross-sections are homogeneous.
• A centroidal coordinate system is a coordinate system with its origin at

the centroid of the (homogeneous) cross-section.
• A central coordinate system is a coordinate system with its origin at the

normal centre of the cross-section.

Plane of loading and plane of curvature (Section 9.6)

9.1 For a rectangular cross-section, the location of the neutral axis na is
known and shown in the figure.

Questions:
a. Find the associated plane of loading m.
b. Is it possible to find the plane of loading m directly from the stress

distribution?

9.2: 1–2 For two cross-sections the neutral axis na is given. In both cross-
sections the maximum normal stress is a tensile stress of 144 N/mm2.

Questions:
a. Draw the σ diagram.
b. Find the resultant of all tensile stresses and its point of application.
c. Find the resultant of all compressive stresses and its point of applica-

tion.
d. Find the normal force N and bending moment M .
e. Draw in the cross-section the plane of loading m and plane of curvature

k.
f. If a centre of force exists, find its location (ey, ez).

9.3: 1–2 For the figure and data, see problem 9.2.

Questions:
a. Draw the plane of curvature k.
b. Calculate the centroidal moments of inertia in the yz coordinate system.
c. Without calculating the resultants of the tensile and compressive

stresses, find the normal force N and bending moment M .
d. Draw in the cross-section the plane of loading m and plane of curvature

k.

�

�

� �

� �

�

�

�
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9.4 The triangular cross-sections are subject to bending without extension.
The same normal stresses occur at P and Q: σP = σQ = +10 MPa.

Questions:
a. Find the stress at R.
b. Calculate the magnitude and direction of the bending moment. Use a

centroidal yz coordinate system.
c. Draw in the cross-section the neutral axis na, the plane of curvature k

The normal centre NC (Section 9.7) and the central bending stiffness
values (Section 9.8) for inhomogeneous cross-sections

9.5 The cross-section is constructed of three materials which are firmly
glued together. The moduli of elasticity are given in the figure.

Questions:
a. Find the location of the normal centre NC.
b. Calculate the central bending stiffness values EIyy , EIyz = EIzy and

EIzz.

9.6 The composite concrete-steel cross-section of a bridge girder is con-
structed of a concrete flange and a steel I-section. The cross-sectional
area of the steel section is As = 32 × 103 mm2. The centroidal bend-
ing stiffness of the steel section in the vertical plane of symmetry is
EIzz = 432 × 106 mm4. The moduli of elasticity of steel and concrete are
Es = 210 × 103 N/mm2 and Ec = 14 × 103 N/mm2 respectively.

Questions:
a. Find the location of the normal centre NC.
b. Calculate the central bending stiffness value EIzz.

and the plane of loading m.
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9.7: 1–4 You are given four unsymmetrical and inhomogeneous cross-
sections, with the following moduli of elasticity:
E1 = 12 GPa, E2 = 6 GPa, E3 = 40 GPa and E4 = 80 GPa.

Questions:
a. Find the location of the normal centre NC.
b. Calculate the central bending stiffness values EIyy , EIyz = EIzy and

EIzz.

Stresses due to extension and bending – straightforward method (Sec-
tions 9.8 and 9.9)

9.8 A steel strip of 20 × 50 mm2 is firmly fixed along the entire length of
a wooden beam. Beam and strip behave as one piece. The composite beam
is loaded by a tensile force in such a way that there is no bending.

Question:
Find the centre of force (point of application of the tensile force) for an
arbitrary cross-section.
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9.9 The steel-concrete column is loaded by an axial compressive force, in
such a way that there is no bending but only extension. The compressive
stress in the concrete is 6 N/mm2.

Question:
Find the compressive force in the column.

9.10 The steel-concrete column in problem 9.9 is subject to extension by a
compressive force of 5800 kN.

Questions:
a. Calculate the stresses in the concrete and in the steel I-section.
b. Which part of the compressive force is transmitted by the concrete and

which part by the steel I-section?

9.11 A tensile bar is constructed of three materials. The bar is loaded by a
tensile force of 440 kN.

Questions:
a. Calculate the axial stiffness of the bar.
b. Find the tensile stress in each of the three materials.

9.12 A steel strip is firmly fixed at the lower side of a wooden beam. Beam
and strip behave as one piece. The composite beam is axially loaded by a
central tensile force. The normal stress may not exceed the limiting values
σ steel = 150 N/mm2 and σ wood = 10 N/mm2.

Questions:
a. Find the point of application of the central tensile force.
b. Find the maximum tensile force which can be transmitted by the

composite cross-section.
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9.13: 1–3 A simply supported wooden beam is loaded by a force F at
midspan. The beam can be strengthened by steel strips in three different
ways:
1. Two steel strips of 120 × 10 mm2 at both sides.
2. One steel strip of 60 × 10 mm2 at the upper side of the beam.
3. Two strips of 60 × 10 mm2, one at the upper side of the beam and the

other at the lower side.
The moduli of elasticity are Ew = 15 GPa and Es = 210 GPa for wood
and steel respectively. The bending stresses may not exceed the limiting
values σw = 7 MPa and σ s = 140 MPa.

Questions:
a. Find the maximum force F the wooden beam can carry without steel

strips.
b. Plot for the beam without steel strip(s) the bending stress diagram for

the cross-section at midspan.
c. Find the maximum force F the wooden beam can carry with the steel

strip(s).
d. For the beam with steel strip(s), draw the bending stress diagram for

the cross-section at midspan.

9.14 The composite concrete-steel cross-section of a bridge girder is
constructed of an steel I-section and a concrete flange. The location of the
normal centre NC is shown in the figure. The central bending stiffness in
the vertical plane of symmetry is EIzz = 1033.4 × 106 Nm2. The axial
stiffness is EA = 12.32 × 109 N. The cross-section is loaded in the plane
of symmetry. At the upper side of the flange occurs a compressive stress of
7 N/mm2. At the lower side of the steel section occurs a tensile stress of
105 N/mm2.

Questions:
a. Draw the diagrams for the strain and stress distribution in the composite

cross-section.
b. Find the cross-sectional deformation quantities ε and κ .
c. Find the normal force and bending moment in the cross-section.
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9.15 The thin-walled cross-section is subject to a bending moment M =
100 kNm. The plane of loading m and the direction of M are shown in the
figure: tan αm = 2.

Questions:
a. Find the normal centre NC.
b. Draw in the cross-section the neutral

axis na.
c. Draw the normal stress diagram.
d. Draw in the cross-section the plane of

curvature k.

9.16 The thin-walled cross-section has to transmit the bending moments
My = +80σa2t and Mz = +52σa2t .

Questions:
a. Find the stresses at the four corners A to D, and plot the normal stress

diagram.
b. Determine the equation for the neutral axis in y and z.

c. Draw in the cross-section the neutral axis na, the plane of loading m,
and the plane of curvature k.

9.17 The cross-section shown is subject to bending without extension. The
largest stress is a tensile stress of 70 MPa. The neutral axis is horizontal.

Questions:
a. Draw the σ diagram.
b. Find the magnitude and direction of

the bending moment in the cross-
section.

c. Draw in the cross-section the plane of
loading m and the plane of curvature k.

9.18 In the thin-walled T-section the normal stresses are +3σ , −3σ and
−4σ at A, B and C respectively.

Questions:
a. Draw the normal stress diagram.
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b. Find the resultant of all tensile stresses, and its point of application.
c. Find the resultant of all compressive stresses, and its point of applica-

tion.
d. Find from b and c the normal force N , and the bending moments My

and Mz.
e. Verify the stress formula

σ = N

A
+ Myy

Iyy

+ Mzz

Izz

.

f. Draw in the cross-section the neutral axis na, the plane of curvature k,
and the plane of loading m.

9.19 The homogeneous thin-walled cross-section is loaded by bending in
such a way that the neutral axis na is horizontal. The maximum bending
stress is a tensile stress of 140 N/mm2.

Questions:
a. Verify the location of the normal centre NC and the values of the

centroidal moments of inertia.
b. Draw the stress diagram.

c. Find the components My and Mz of the bending moment M in the
cross-section.

e. Draw in the cross-section the plane of curvature k and the plane of
loading m.

9.20 The simply supported beam AB, with inhomogeneous and unsym-
metrical cross-section, is loaded by a force F at midspan C. The force F

is applied perpendicular to the beam axis, in such a way that the neutral
axes na in the cross-section at C is vertical. In this cross-section the
maximum bending stress is a compressive stress of 90 N/mm2. The moduli
of elasticity are E1 = 70 GPa and E2 = 210 GPa.

Questions:
a. Verify the location of the normal centre NC.
b. Draw the strain diagram and bending stress diagram.
c. Verify the central bending stiffness values: EIyy = 39.2 × 109 Nmm2,

EIyz = EIzy = 16.8 × 109 Nmm2, and EIzz = 23.8 × 109 Nmm2.
d. Find the bending moment in the cross-section at C.
e. Draw in the cross-section the plane of curvature k and the plane of

loading m.
f. Find the magnitude and direction α of the force F .
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9.21 The simply supported beam AB, with inhomogeneous and
unsymmetrical cross-section, is loaded by a vertical force F = 680 N at
midspan C. The moduli of elasticity are E1 = 70 GPa and E2 = 210 GPa.

Questions:
a. Verify the location of the normal centre NC.
b. Verify the central bending stiffness values: EIyy = 39.2 × 109 Nmm2,

EIyz = EIzy = 16.8 × 109 Nmm2, and EIzz = 23.8 × 109 Nmm2.
c. Find the bending moment in the cross-section at C.
d. Draw the strain diagram and bending stress diagram.
e. Draw in the cross-section the plane of loading m, the plane of curvature

k, and the neutral axis na.

9.22 The simply supported beam AB is loaded at midspan C by a horizontal
force Fy = 2880 kN and a vertical force Fz = 720 kN. The dimensions
of the thin-walled cross-section are shown in the figure. The modulus of
elasticity is E = 200 GPa.

Questions:
a. Verify the location of the normal centre NC.
b. Verify the central bending stiffness values: EIyy = 345.6×109 Nmm2,

EIyz = EIzy = −86.4 × 109 Nmm2, and EIzz = 64.8 × 109 Nmm2.

c. For the cross-section at midspan C, find the components of the curva-
ture κ .

d. Draw in this cross-section the plane of loading m, the plane of curvature
k, and the neutral axis na. Also draw the vectors (straight single-pointed
arrows) for the bending moment M and curvature κ .

d. For the cross-section at midspan C, draw the strain diagram and stress
diagram.

9.23: 1–6 You are given six thin-walled cross-sections loaded by an ec-
centric compressive force F = 30 kN, as shown in the figure. The distance
between two grid lines is 100 mm.

Questions:
a. Find the (components of the) bending moment in the cross-section.
b. Calculate the centroidal moments of inertia Iyy , Iyz = Izy and Izz.
c. Draw the stress diagram due to extension.
d. Draw the stress diagram due to bending.
e. Draw the stress diagram due to the combination of extension and

bending.
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9.24 A cantilever beam with an I-section is loaded by the two forces F1
(in the y direction) and F2 (in the z direction), as shown in the figure. The
length of the beam is 3 m. For the I-section: b = 160 mm, h = 152 mm,
Iyy = 6.12 × 106 mm4 and Izz = 16.73 × 106 mm4. The normal stress in
the cross-section is limited to σ = 100 MPa.

Questions:
a. Find the maximum values for F1 and F2 if F1 = F2.
b.
c. For the critical cross-section, draw the neutral axis na, the plane of

curvature k, and the plane of loading m. Also draw the direction of the
resultant shear force.

9.25 As problem 9.24, but now with a different I-section: b = h=160 mm,
Iyy = 9.58 × 106 mm4 and Izz = 26.34 × 104 mm4. The normal stress in
the cross-section is limited to σ = 140 MPa.

Questions:
a. Find the maximum values for F1 and F2 if F1 = 0.5F2.
b.
c. For the critical cross-section, draw the neutral axis na, the plane of

curvature k, and the plane of loading m. Also draw the direction of the
resultant shear force.

For the critical cross-section, plot the σ diagram.

For the critical cross-section, plot the σ diagram.
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Mohr’s circle for the moments of inertia and the bending stiffness
tensor (Section 9.11)

9.26: 1–4 You are given four cross-sections. The distance between two
grid lines is 30 mm.

Questions:
a. Find the normal centre NC of the cross-section.
b. Calculate the moments of inertia in the central yz coordinate system.
c. Draw Mohr’s circle for the moments of inertia.
d. Find from Mohr’s circle the principal directions and the principal values

of the moments of inertia I1 and I2.

9.27 For the cross-section the modulus of elasticity is E = 15 GPa.

Questions:
a. Find the normal centre NC of the cross-section.
b. Calculate bending stiffness values EIyy , EIyz = EIzy and EIzz in the

centroidal yz coordinate system.
c. Draw Mohr’s circle for the bending stiffness tensor.
d. Find from Mohr’s circle the principal directions and the principal

bending stiffness values EI1 and EI2.

9.28 You are given a rectangular cross-section.
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Questions:
a. Calculate the centroidal moments of inertia Iyy , Iyz = Izy and Izz, and

draw Mohr’s circle for the moments of inertia.
b. Find from Mohr’s circle the moments of inertia in the rotated yz

coordinate system.
c. Find from Mohr’s circle the moments of inertia in the rotated yz

coordinate system.

9.29: 1–4 You are given four unsymmetrical and inhomogeneous cross-
sections, with the following moduli of elasticity:
E1 = 12 GPa, E2 = 6 GPa, E3 = 40 GPa and E4 = 80 GPa.

Questions:
a. Find the normal centre NC.

b. Calculate the central bending stiffness values EIyy , EIyz = EIzy and
EIzz.

c. Draw Mohr’s circle for the bending stiffness tensor.
d. Find from Mohr’s circle the principal directions and the principal

bending stiffness values.

9.30 The wall thickness of the thin-walled triangular cross-section is
t = 12 mm. The modulus of elasticity is E = 2000 MPa.

Questions:
a. Verify the location of the normal centre NC.
b. Calculate bending stiffness values EIyy , EIyz = EIzy and EIzz in the

centroidal yz coordinate system.
c. Draw Mohr’s circle for the bending stiffness tensor.
d. Find from Mohr’s circle the principal directions and the principal

bending stiffness values EI1 and EI2.



856 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

Core of the cross-section (Section 9.15)

9.31: 1–3 You are given three thin-walled cross-sections.

Question:
Find the core of the cross-section.

9.32: 1–2 All sides of the two thin-walled hollow cross-sections have the
same thickness t .

Questions:
a. Find the core of the cross-section.
b. Find the stress distribution when the cross-section is subject to an

eccentric tensile force F applied at A.

9.33: 1–3 The three cross-sections transmit an eccentric compressive force
of 540 kN. For each cross-section the neutral axis na is shown in the figure.

Questions:
a. Find the core of the cross-section.
b. Find the centre of force associated with the neutral axis given.
c. Draw the σ diagram due to the eccentric compressive force, and cal-

culate the stresses at the corners of the cross-section.

Displacements due to bending (Section 9.13), normal stresses and shear
stresses (Section 9.17)

9.34 The simply supported beam AB, with span � = 1.6 m, is loaded
at midspan C by a vertical force F = 6.73 kN. The cross-section is con-
structed of three materials, firmly glued to one another, with the following
moduli of elasticity:
E1 = 80 GPa, E2 = 60 GPa and E3 = 100 GPa.

Questions:
a. Verify the location of the normal centre NC and the bending stiffness

EIzz in the xz plane.
b. Find the deflection at C.
c. Plot the strain and normal stress diagram for the cross-section at C.
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d. For the cross-section immediately to the right of C, calculate in a num-
ber of relevant points the value of the shear stress, and sketch the shear
stress diagram.

e. Where in cross-section C is the shear stress a maximum and what is its
value?

f. Which of the glue lines, a or b, has to transmit the larger (longitudinal)
shear stress?

9.35 The simply supported beam AB, with span � = 3 m, is loaded at
midspan C by a vertical force F = 5 kN. The cross-section is constructed of
a wooden beam with a steel strip firmly bond to its lower side. The moduli
of elasticity are Ewood = 10 GPa and Esteel = 210 GPa.

Questions:
a. Verify the location of the normal centre NC.
b. Show EIzz = 757 kNm2.
c. Plot the strain and normal stress distribution for the cross-section at C

in diagrams.

d. Find the deflection at C.
e. Find the maximum shear flow in the connection between the wooden

beam and the steel strip.

9.36 The simply supported beam AB, with span � = 3 m, is loaded at mid-
span C by a vertical force of 5.5 kN. The cross-section is constructed of
two materials, firmly glued to one another, with the following moduli of
elasticity: E1 = 45 GPa and E2 = 15 GPa. The dimensions of the cross-
section and the location of the normal centre NC are shown in the figure.
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Questions:
a. Verify the location of the normal centre NC.
b. Show EIzz = 206.55 kNm2.
c. Plot the strain and normal stress diagrams for the cross-section at

midspan C.
d. Find the deflection at C.
e. Find the maximum shear flow in the glue line between both materials.
f. For the cross-section at D, find the shear stress distribution as a function

of z.
g. Where is the shear stress a maximum in the cross-section at D and what

is its value?

Mixed problems: stresses due to bending and extension, normal centre,
stresses due to shear and torsion, shear centre, displacements due to
bending and extension

9.37: 1–2 The composite steel-concrete column AB is fixed at A and free at
B. The column is loaded by an eccentric compressive force F = 2500 kN
at the free end B. The point of application coincides with the centroid of the
steel I-section. The steel I-section is not exactly at the centre of the column,
as can be seen from the cross-sectional measurements in the figures. For
the column a linear elastic behaviour is assumed. The moduli of elasticity
and the cross-sectional properties for the steel I-section in its centroidal yz

coordinate system are given in the figure.

Questions:
a. Find the normal centre NC.
b. Calculate for the composite column the cross-sectional stiffness quan-

tities in a yz coordinate system with its origin at the normal centre NC
of the composite cross-section.

c. Draw for a cross-section the strain diagram and normal stress diagram.

d. Find the shortening of the column axis.
e. Find the horizontal displacement of the beam axis at the free end B.

9.38 The simply supported beam AB is loaded at midspan C by a
horizontal force F1 = 1.6 kN and a vertical force F2 = 5.12 kN. The beam
is loaded in such a way that there is no torsion. The length of the beam is
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� = 3.2 m. The dimensions of the thin-walled cross-section, the location of
the normal centre NC, and the moments of inertia are shown in the figure.
The modulus of elasticity is E = 200 GPa.

Questions:
a. Find the bending moment at C.
b. Find the radius of curvature of the deflected beam at C.
c. For the cross-section at C find the equation (as a function of y and z) of

the neutral axis.
d. Plot the σ diagram for the cross-section at C.
e. Find the horizontal and vertical component of the deflection at C.
f. For the cross-section at D, calculate the value of the shear stress τ in a

number of relevant points, and sketch the τ diagram.
g. Where in the cross-section at D is the shear stress τ a maximum and

what is its value?

9.39 The simply supported beam AB is loaded at midspan C by a
horizontal force F1 = 156 kN and a vertical force F2 = 48 kN. The beam
is loaded in such a way that there is no torsion. The length of the beam is
� = 4.5 m. The dimensions of the thin-walled cross-section, the location of
the normal centre NC, and the moments of inertia are shown in the figure.
The modulus of elasticity is E = 210 GPa.

Questions:
The same questions as in problem 9.38.
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9.40 Cantilever beam AB, with a length � = 2 m, carries a force
F = 7.17 kN at its free end B. The dimensions of the thin-walled
cross-section are shown in the figure. The moments of inertia are the
following: Iyy = 163.84 × 106 mm4, Iyz = Izy = −61.44 × 106 mm4 and
Izz = 40.96 × 106 mm4. The modulus of elasticity is E = 200 GPa.

Questions:
a. For the cross-section at A, show that κy = −1.5 × 10−6 mm−1 and

κy = −4.0 × 10−6 mm−1. Find the radius of curvature at A.
b. For the cross-section at A, draw the vectors for the bending moment M

and the curvature κ . Also draw the neutral axis na.
c. Plot the σ diagram for the cross-section at A, with the correct signs for

tension and compression.
d. Plot the distribution of κy and κz along the beam. Find the displacement

of the beam at the free end B.
e. At which locations in flanges and/or web are the shear stresses a max-

imum or minimum for the cross-section at C. Calculate these shear
stresses.

f. Find in this cross-section the shear stresses at Q and R. Make a
reasonable sketch of the shear stress distribution in the cross-section.

9.41 Cantilever beam AB, with a length � = 1 m, carries a vertical force
F = 500 N at its free end B. The line of action of the force passes through
the shear centre SC. The dimensions of the thin-walled L-section and the
centroidal moments of inertia are shown in the figure. The modulus of
elasticity is E = 200 GPa.

Questions:
a. Find the shear centre SC of the cross-section.
b. For the cross-section at A, draw the vectors for the bending moment M

and the curvature κ . Also draw the neutral axis na.
c. Plot the σ diagram for the cross-section at A, with the correct signs for

tension and compression.
d. Plot the distribution of κy and κz along the beam. Find the displacement

of the beam at the free end B.
e. At which locations in flange and/or web are the shear stresses a max-

imum or minimum for the cross-section at C. Calculate these shear
stresses.

f. Sketch the shear stress distribution in this cross-section. Calculate the
values at relevant points.
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9.42 Beam AB from problem 9.41 is connected at B at the two-force
member BC in such a way that B can move only in the vertical direction.
The hinged connection at B is realised at the shear centre SC of the
cross-section. A vertical force F = 500 N is applied at B; the line of action
of the force passes through the shear centre SC. The dimensions of the
thin-walled L-section and the centroidal moments of inertia are shown in
the figure. The modulus of elasticity is E = 200 GPa.

Questions:
a. For the cross-section at A, draw the vectors for the bending moment M

and the curvature κ . Also draw the neutral axis na.
b. Plot the σ diagram for the cross-section at A, with the correct signs for

tension and compression.
d. Plot the distribution of κy and κz along the beam. Find the displacement

of the beam at B.
e. At which locations in flange and/or web are the shear stresses a max-

imum or minimum for the cross-section at D. Calculate these shear
stresses.

f. Sketch the shear stress distribution in this cross-section. Calculate the
values at relevant points.

g. Find the normal force in two-force member BC.

9.43 The thin-walled cross-section transmits a bending moment M and
shear force V in such a way that the neutral axis na coincides with the
y axis. The torsional moment in the cross-section is zero. Furthermore
is given that the maximum bending stress is a compressive stress of
140 N/mm2, and that the maximum shear stress of 3.8 N/mm2 occurs in
the web and is directed downwards. The cross-sectional dimensions are
shown in the figure.

Questions:
a. Plot the bending stress diagram.
b. Find the magnitude and direction of the bending moment M .
c. Plot the shear stress diagram. Calculate the values at relevant points.
d. Find the magnitude and direction of the shear force V .
e. On which line in the cross-section is the shear centre SC is located?

Draw this line.



862 ENGINEERING MECHANICS. VOLUME 2: STRESSES, DEFORMATIONS, DISPLACEMENTS

9.44 Cantilever beam AB is fixed at A and loaded by the forces Fy and
Fz at the free end B, in such a way that there occurs no torsion. The beam
has a thin-walled triangular cross-section. All dimensions are shown in the
figure. The modulus of elasticity is E.

Questions:
a. Find the normal centre NC.
b. Find the principal directions and principal moments of inertia. Draw

Mohr’s circle, and locate the direction centre DC. Also find the
moments of inertia in the yz coordinate system.

c. For Fz = F and Fy = βF the deflection of the beam at B is vertically.
Find β, and find the vertical deflection at B.

d. Draw the normal stress diagram for the cross-section at A.

9.45 Cantilever beam AB, with a length � = 1.2 m, carries a force
F = 8 kN at its free end B. The line of action of the force passes through
the normal centre NC. The dimensions of the thin-walled cross-section and
the moments of inertia are shown in the figure. The modulus of elasticity is
E = 210 GPa.

Questions:
a. Verify the correctness of the location of the normal centre NC.

b. Verify the correctness of values of the moments of inertia, including
the signs. Find from Mohr’s circle the principal directions and principal
values.

c. Find the curvature κ of the beam at A. Use the yz coordinate system
given. Compute the radius of curvature at A.

d. For the cross-section at A, draw the vectors for the bending moment M

and the curvature κ . Also draw the neutral axis na.
e. Plot the σ diagram for the cross-section at A, with the correct signs for

tension and compression.
f. Plot the distribution of κy and κz along the beam. Find the displacement

of the beam axis at the free end B.
g. Sketch for the cross-section at C the τ diagram for the shear stresses

due to shear without torsion. Compute the values at relevant places.
Where in the cross-section is the shear stress a maximum or minimum
and compute these values.

h. Find the shear centre SC of the cross-section. How large is the tor-
sional moment in cross-section C. For this cross-section, find the shear
stresses due to torsion.

i. For the cross-section at C, find the maximum shear stress due to both
shear and torsion, and the location where it occurs.
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9.46 A thin-walled beam, with the cross-section shown, is loaded by a
shear force V in such a way that the neutral axis na in every cross-section
is located as shown in the figure.

Question:
Find the maximum shear stress in the cross-section, expressed in terms of
V , a and t .

9.47 The thin-walled cross-section with a constant wall thickness t =
4 mm is subject to a shear force Vz = 6400

√
2 N. The line of action of

Vz passes through the normal centre NC.

Questions:
a. Find the normal centre NC.
b. Draw the shear stress diagram for the cross-section due to the shear

force Vz, if there is no torsion. Show the direction of the shear stresses,
and write relevant values in the diagram.

c. Find the shear centre SC.
d. Find the torsional moment and the shear stresses due to torsion.
e. Find the maximum shear stress in the cross-section, due to both shear

and torsion, and the location where it occurs.

9.48 The thin-walled hexagon has a gap at A. NC is the normal centre of
the cross-section and SC the shear centre.

Question:
Find the distance d between NC and SC.

 � �
� �� �

�

�

�



Index

σ -ε diagram, 5
τ -γ diagram, 413

A
angle of rotation, 81
angle of shear, 413
angle steel, 306, 335, 377
anisotropic material, 10
average shear stress, 281, 313, 378, 380
axial stiffness, 22, 165, 700, 712

B
bar axis, 17, 26, 30
beam axis, 679, 706
beam with central and eccentric prestressing, 209
beam with rectangular cross-section, 209, 311, 709
bending curve, 543, 547, 637
bending moment, 28, 162, 681, 691, 693, 696
bending stiffness, 166, 701
bending stiffness tensor, 700, 706, 736
bending stress, 170

Bernoulli, Jacob, 17, 153
Bernoulli’s hypothesis, 17, 153, 680
boundary conditions, 32, 46, 222, 558
box girder, 190, 345, 346, 456
Bredt, Rudolph, 431
Bredt’s first formula, 431, 440
Bredt’s second formula, 436, 442
brittle material, 6

C
carpenter dowel, 288
central coordinate system, 722, 845
central prestressing, 64, 209, 211
centre of (point) symmetry, 80
centre of force, 152, 184, 204, 690, 694, 774
centre of rotation, 81, 503, 610
centre of tension, 184
centroid, 29, 74, 77
centroidal coordinate system, 96, 845
centroidal moments of inertia, 96
change in length, 6, 21, 34, 484
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characteristic polynomial, 742
circular cross-section, 116, 361, 421, 469

with hole, 91
closed thin-walled cross-section, 121, 345, 463, 469
closed thin-walled circular cross-section, 350, 415, 424, 427, 453, 469
coefficient of thermal expansion, 224, 227, 569, 791
compliant material, 6
composite concrete-steel beam, 814
composite concrete-steel column, 785
compressive bending stress, 185, 761
conjugate-beam method, 633, 637
constitutive equation (relationship), 15, 19, 151, 157

for bending, 161, 220, 227, 598, 700
for combined bending and extension, 164, 698
for extension, 21, 220, 227, 700
for torsion, 419, 436, 468

constrained structure, 796
continuity in shear flow, 328, 331, 334
core of the cross-section, 152, 203, 232, 777
core point, 206, 208, 778
core radius, 206, 232
core, 203, 777
corner weld, 286
cross-section, 17, 679, 680
cross-sectional deformation quantities, 146, 164, 227, 684, 714, 795
cross-sectional shear stress, 300, 307
cross-sectional stiffness matrix, 698
Culmann, 746
curvature of a beam, member, 160, 685, 686

D
de Coulomb, Charles Augustin, 153
de Saint Venant, Adhémar Jean Claude Barré, 229, 426, 809
deformation due to bending, 541, 761
deformation due to extension, 21, 34, 484
deformation due to torsion, 417, 421, 424, 432, 441
deformation of trusses, 483
deformation symbol, 451
differential equation for bending, 221, 557
differential equation for combined bending and extension, 220, 221
differential equation for extension, 31, 221
direction centre in Mohr’s circle, 750, 751
displacement diagram, relative, 490
displacement due to bending, 541, 761
displacement, positive, 681
disruption zone, 4, 229, 321
double cut, 296, 327, 341, 345, 348, 351
double letter symbols, 697, 721
dowel, 288
dowelled wooden beam, 288
ductile material, 6
ductility, 1

E
earth pressure, 209, 215
eccentric prestressing, 209, 213, 785
eccentric shear force, 458
eigenvalue, 742, 743
eigenvalue problem, 742
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eigenvector, 742
elastic curve, 543, 547
elasticity, 2
elastic-plastic material, 11
end condition, 32, 36, 221, 558
engineering notation, 52, 132, 200
equilaterial triangular cross-section, 356
equilibrium equation (static relationship), 15, 19, 151, 157

for bending, 166, 221, 821
for extension, 23, 166, 221

Euler–Bernoulli beam theory, 698
extension, 15

F
fibre, 17, 679, 680
fibre model, 15, 16, 151, 153, 228, 679, 680
field, 32, 221, 554, 556
first moment of area, 72, 74
force-elongation diagram, 2
forget-me-not, 576, 590, 761
formal notation, 52, 132, 200
free deformation due to a change in temperature, 227

G
general normal stress formula related to the principal direction, 199, 232
global coordinate system, 577, 607

H
hard material, 6
high tensile bolts, 380
hinged beam, 591

homogeneous cross-section, 4, 18, 26, 78
Hooke, Robert, 12
Hooke’s law, 1

in extension, 11, 18, 153, 161, 412, 680
in shear, 413

I
inhomogeneous cross-section, 18, 26, 78, 679, 680
invariant, 101, 739, 743, 748
I-section, 322, 374
isotropic material, 10

J
joining condition, 32, 46, 221, 558, 629

K
kinematic equation (relationship), 15, 19, 151, 157, 565

for bending, 159, 220, 227, 598, 684
for extension, 19, 219, 227, 684,
for torsion, 418, 468

L
laminated wooden beam, 182, 190, 282
lap joint, 379
limit design, 11
limit of proportionality, 3
line of (mirror) symmetry, 75, 80, 94, 96, 185, 327, 680
line of force, 694
linear moment of area, 72
linear theory of elasticity, 12
local coordinate system, 104, 605, 722
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longitudinal shear stress, 281
L-shaped cross-section, 87

M
mass centre, 709
material behaviour in shear, 412
material behaviour in extension, 5
Maxwell’s reciprocal theorem, 773
mirror symmetry, 80
modulus of elasticity, 6, 18, 161, 412, 682
Mohr, Christian Otto, 746
Mohr correction diagram, 484
Mohr’s circle, 736, 746
moment of inertia, 72, 92
moment-area theorem, 541, 598

first, 599
second, 601

Myosotis Palustris, 576

N
nailed wooden box beam, 294
necking, 3
neutral axis, 155, 156, 169, 685, 689, 701, 705, 801, 802
non-prismatic column, 42
normal (force) centre, 16, 26, 74, 77, 681, 699, 706
normal force, 162, 681, 690
normal stress diagram, 24, 169
normal stress, 4, 170
normal stress diagram, 24, 168, 716

O
offset method, 8
open thin-walled cross-section, 121, 322, 444, 463, 470

orthogonal matrix, 738

P
parallel axis theorem, 708

for static moments, 76
for moments of inertia, 98
for weighted static moments, 708

parallelogram-shaped cross-section, 106
Parent, 153
plane of curvature, 688, 701, 736
plane of loading, 693, 701, 736, 821
plastic flow, 3
plastic design, 11
point of inflection, 552, 558, 574, 578, 596
point symmetry, 80
polar moment of inertia, 73, 92, 100, 419
pole, 750, 751
prestressed beam, 179, 209
prestressed concrete, 189
principal axis, 96, 101, 766
principal coordinate system, 96, 734
principal direction, 96, 152, 543, 701, 734, 741
principal value, 96, 701, 735, 741
product of inertia, 72, 73, 92
punching, 378

open thin-walled circular cross-section, 126
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purlin, 201

Q
quadratic moment of area, 72

R
radius of curvature, 155, 161
radius of inertia, 96, 775
reciprocal theorem, 773
rectangular cross-section, 101

with holes, 119
rectangular hollow cross-section, 177, 345, 453, 458, 463
rectangular thin-walled tube, 453
reduced (bending) moment, 600
redundant constraint, 804
reinforced concrete, 189
released structure, 804
rigid-body rotation, 484, 502, 504, 508, 610
rigid-plastic material, 11
ring dowel, 288
rolled steel section, 125, 285
rotation of a truss member, 487, 489
rotation of the cross-section, 158, 449
rotation, positive, 681
rotational symmetry, 81
rules for the cross-sectional shear stress distribution, 308, 384

S
Saint Venant’s principle, 229, 809
section force, 23, 28, 52, 162, 220, 225, 681, 690
section modulus, 184, 215, 231

semicircular cross-section, 86
thin-walled, 85

serviceability limit states, 11
shear connector, 288
shear (force) centre, 311, 367, 372, 465, 809, 829
shear deformation, 228, 413
shear flow, 328, 331, 346, 384, 428, 429, 809
shear flow formula (alternative), 279, 383, 818
shear flow formula (traditional), 274, 382, 809
shear force

cross-sectional, 271, 277
longitudinal (alternative formula), 279, 383, 818
longitudinal (traditional formula), 274, 382, 809

shear joint, 379
shear modulus of elasticity, 413, 468
shear strain, 413
shear stress diagram, 312, 829
shear stress distribution due to shear, 271, 459
shear stress distribution due to torsion, 411, 460
shear stress formula, shear, 303, 367, 809

alternative, 306, 818
traditional 305, 812

shear stress formula, torsion, 415, 422, 425, 427, 438
shear stress-strain diagram, 413
shearing element, 274
sliding element, 275
slope of the strain diagram, 156, 159, 225, 685
soft material, 6
solar radiation, 569
solid circular cross-section, 116, 361, 421, 446
solid square cross-section, 365
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solid triangular cross-section, 83, 109, 171, 356, 703, 705
square thin-walled tube, 461
static moment (of area), 72, 74, 276
static redundant, 804
static relationship, see equilibrium equation
statically determinate structure, 48, 542, 564, 791
statically indeterminate structure, 49, 219, 558, 564, 590, 791, 797
Steiner, Jacob, 99
Steiner’s parallel axis theorem, 98, 115
stiff material, 6
stiffness, 1, 13
strain diagram, 24, 155, 685, 716
strain fomula for bending and extension, 156, 231, 773, 776

with temperature effects, 792
strain, 4
strain hardening, 3, 8
strength, 1
strength calculation, 10, 190, 193
stress diagram, see normal stress diagram, shear stress diagram
stress formula for bending and extension, 168, 171, 231, 716, 735, 754
stresses in the principal coordinate system, 734, 752
stress-strain diagram, 1, 4, 5
strong material, 6
summary formulae, 34, 72, 220, 229, 382, 468
superposition, 152, 199, 460, 467, 542, 582, 586, 806
symmetric tensor, 739
symmetrical I-section, 121

T
tail-wagging effect, 578
T-beam, 179, 190, 196, 207, 308, 316, 797

temperature gradient, 225
tensile bending stress, 185, 761
tensile strength, 5
tensile test, 1, 2
theory of plasticity, 11
thermal effect, 223, 233, 569, 570, 791
thick-walled circular cross-section, 119, 424, 444, 469
thin-walled circular cross-section

closed, 350, 415, 424, 427, 453, 469
open, 126

thin-walled cross-section
closed, 121, 345, 463, 469
open, 121, 322, 444, 463, 470

thin-walled half ring, 85
thin-walled I-section, 123, 285, 322, 374, 785
thin-walled L-section, 377
thin-walled strip, 105, 438, 461, 470
thin-walled triangular cross-section, 129
thin-walled T-section, 377
thin-walled U-section, 200, 339, 368, 373, 465
thin-walled Z-section, 125, 717, 752
three-letter symbol, 791
throat cut, 287
toothed plate connector, 288
torsion, 411
torsion constant, 71, 419, 426, 436, 468, 469, 470
torsion of thin-walled cross-sections, 426
torsion test, 414
torsional stiffness factor, 71
torsional stiffness of the solid circular cross-section, 422
torsional stiffness, 418, 419, 468
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torsional strain, 418, 469
transformation matrix, 738
transformation rules due to a translation

moments of inertia, 98
static moments, 74, 76
weighted static moments, 708

transformation rules due to a rotation
bending stiffness values, 741
second order tensor, 741
vector, 687, 737

truss member, 36, 484

U
ultimate limit states, 11
ultimate-load design, 11
ultimate (tensile) stress, 5
unconstrained, 796
unconstrained structure, 796, 802
unity matrix, 742
unsymmetrical cross-section, 679, 711, 782
upsetting stress, 380

V
vector addition, 451

W
warping, 427, 433, 436
warping function, 437
warping of the cross-section, 435
weak material, 6
weighted area, 707, 709, 723

weighted moment of inertia, 723, 728
weighted static moment, 709, 710
welded steel section, 285
Williot diagram, 483, 487, 490

with rigid-body rotation, 484, 504, 506
Williot–Mohr diagram, 484, 514
wooden beam

dowelled, 288
laminated, 182, 190, 282
nailed, 294

Y
yield point, 5
yield shear stress, 413
yield strain, 5
yield strength, 5

0.2% offset, 9
yield stress, 5
yielding, 3
Young’s modulus, 6, 161
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Homogeneous and symmetrical cross-sections

Definition cross-sectional quantities

area static moments moments of inertia polar moment

of inertia

A=∫
A dA Sy=∫

A y dA Iyy=∫
A y2 dA Ip=∫

A r2 dA=Iyy+Izz

Sz=∫
A z dA Iyz=Izy=∫

A yz dA

Izz=∫
A z2 dA

Coordinates of the normal centre NC (or centroid C) of an
homogeneous cross-section

ȳNC = ȳC = Sȳ

A
and z̄NC = z̄C = Sz̄

A

Steiner’s parallel axis theorem

Iyy = Iyy(centr) + ȳ2
CA

Iyz = Iyz = Iyz(centr) + ȳCz̄CA

Izz = Izz(centr) + z̄2
CA

Basic relationships for prismatic members subject to extension and
bending1

Strain formula for bending and extension

ε(z) = ε + κzz

Normal stress formulae for bending and extension

• extension: σN = N

A

• bending (bending stresses): σM = Mzz

Izz

• combined extension and bending: σ(z) = σN + σM = N

A
+ Mzz

Izz

Maximum bending stresses

These stresses occur in the outermost fibre layers z = −et and z = +eb.
• non-symmetrical cross-section:

σM
t = −Mzet

Izz
= − Mz

Wz;t
in which Wz;t = Izz

et
(section modulus)

σM
b = +Mzeb

Izz
= + Mz

Wz;b
in which Wz;b = Izz

eb
(section modulus)

• symmetrical cross-section:

σM
max = ±M

W

General normal stress formula for combined bending and extension

σ(y, z) = N

A
+ Myy

Iyy
+ Mzz

Izz

Coordinates of the centre of force in the cross-section

ey = My

N
and ez = Mz

N

1 All formulas related to bending are derived for the principal directions. For bending in the
xz plane the z axis is therefore a principal axis of the cross-section.
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Core of the cross-section
• non-symmetrical cross-section:

kb = Wz;t
A

(lower core radius)

kt = Wz;b
A

(upper core radius)

• symmetrical cross-section:

k = W

A

Shear flow (shear force per length) in the longitudinal direction

sa
x = −VzS

a
z

Izz
(traditional approach)

sa
x = −Vz ·

[
Na

M
(due to M∗

z )

M∗
z

]
(alternative approach)

Resultant shear force in the longitudinal direction

Ra
x;s = −�MzS

a
z

Izz

Shear stresses due to shear force

σxm = − VzS
a
z

baIzz
(traditional approach)

σxm = −Vz

ba

[
Na

M (due to M∗
z )

M∗
z

]
(alternative approach)

Basic relationships for members subject torsion
• Constitutive relationship: Mt = GItχ

• Kinematic relationship: χ = dϕx

dx

Shear stresses due to torsion
• Thin-walled circular cross-section:

τ = MtR

It
in which It = Ip = 2πR3t (torsion constant)

• Thick-walled circular cross-section:

τ = Mtr

It
in which It = Ip = 1

2 π(R4
e − R4

i )

• Solid circular cross-section:

τ = Mtr

It
in which It = Ip = 1

2 πR4

• Closed thin-walled cross-sections (general formula):

s = τ t = constant (the shear flow is constant)

τ = Mt

2Amt

• Thin-walled strip:

τ = Mtem
1
2 It

in which It = 1
3 ht3

• Open thin-walled cross-sections:

τ = Mtem
1
2 It

with It = ∑ 1
3 ht3

Change in rotation due to torsion
• General formula:

�ϕx =
∫
	
χ · dx =

∫
	

Mt

GIt
dx

• Prismatic member with constant torsional moment:

�ϕx = Mt	

GIt
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Torsion constant

• a closed thin-walled cross-section: It = 4A2
m∮ 1

t dm

• other cross-sectional shapes: see the shear stress formulas.

Change in length due to extension
• General formula:

�	 =
∫
	
ε dx =

∫
	

N

EA
dx

• Prismatic member with constant normal force:

�	 = N	

EA

Deformation due to bending
• First moment-area theorem:

�ϕ = ϕB − ϕA =
∫ B

A

M

EI
dx

︸ ︷︷ ︸
area M/EI
diagram

• Second moment-area theorem:

�w = wB − wA = −ϕA(xB − xA) −
∫ B

A

M

EI
(xB − x) dx

︸ ︷︷ ︸
static moment

M/EI diagram wrt B

Inhomogeneous and/or non-symmetrical cross-sections

Definition cross-sectional quantities

axial stiffness weighted static moments bending stiffness quantities

EA=∫
A E(y,z)·dA ESy=∫

A E(y,z)·y dA EIyy=∫
A(y,z)·y2 dA

ESz=
∫
A E(y,z)·z dA EIyz=EIzy=∫

A E(y,z)·yz dA

EIzz=
∫
A E(y,z)·z2 dA

Coordinates of the normal centre NC of the cross-section

ȳNC = ESȳ

EA
and z̄NC = ESz̄

EA

Strain formula for combined bending and extension

ε(y, z) = ε + κyy + κzz

Normal stresses due to combined bending and extension

σ(y, z) = E(y, z) · ε(y, z) = E(y, z) · (ε + κyy + κzz)

Constitutive relationships1

N = EAε (extension)
[

My

Mz

]
=

[
EIyy EIyz

EIzy EIzz

]
=

[
κy

κz

]
(bending)

In inverse form:

ε = N

EA[
κy

κz

]
= 1

Det(EI)

[
EIzz −EIyz

−EIzy EIyy

]
=

[
My

Mz

]

in which Det(EI) is the determinant of the bending stiffness matrix:

Det(EI) = EIyyEIzz − EI2
yz

1 The origin of the yz coordinate system coincides with the normal centre NC of the cross-
section.
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Transformation rules for the bending stiffness tensor

EIyy = +EIyy cos2 α + 2EIyz sin α cos α + EIzz sin2 α

EIyz = EIzy = −(EIyy − EIzz) sin α cos α + EIyz(cos2 α − sin2 α)

EIzz = +EIyy sin2 α − 2EIyz sin α cos α + EIzz cos2 α

Principal directions

tan 2α = EIyz

1
2 (EIyy − EIzz)

Shear flow (shear force per length) in the longitudinal direction
• traditional approach (in a principal yz coordinate system)

sa
x = −VyESa

y

EIyy
− VzESa

z

EIzz

• alternative approach

sa
x = −V ·

[
Na

M
(due to M∗)

M∗
]

The dummy moment M∗ acts in the same plane as the resultant shear force V .

Shear stresses due to shear force

σxm = sa
x

ba

Temperature effects1

Strain

ε(y, z) = εσ (y, z) + εT (y, z) = σ(y, z)

E(y, z)
+ αT (y, z)

Strain distribution

ε(y, z) = ε + κyy + κzz

Stress distribution

σ(y, z) = E(y, z)εσ (y, z) = E(y, z){ε + κyy + κzz︸ ︷︷ ︸
ε(y,z)

−αT (y, z)︸ ︷︷ ︸
εT (y,z)

}

Unconstrained temperature deformations

εT =
∫
A

αET (y, z) dA

EA

κT
y =

∫
A

y · αET (y, z)

EIyy
, dA

κT
z =

∫
A

z · αET (y, z)

EIzz
, dA

Constitutive relationships

N = EA(ε − εT )

My = EIyy(κy − κT
y )

Mz = EIzz(κz − κT
z )

1 The yz coordinate system is a principal coordinate system.
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Latin capitals

Quantity SI unit

Symbol Name Symbol1

Aa cross-sectional area of the slid-
ing element

m2

Am area enclosed by the centre line
of a closed thin-walled cross-
section

m2

Ev modulus of elasticity N/m2

EA axial stiffness N

EI bending stiffness Nm2

EIyy bending stiffness in the xy

plane
Nm2

EIyz = EIzy bending stiffness quantity Nm2

EIzz bending stiffness in the xz

plane
Nm2

G shear modulus Nm2

GIt torsional stiffness Nm2

I second moment of area,
moment of inertia

m4

Iyy moment of inertia in the xy

plane
m4

Iyz = Izy product of inertia m4

Izz moment of inertia in the xz

plane
m4

Ip polar moment of inertia m4

It torsion constant m4

M∗ dummy bending moment Nm

Quantity SI unit

Symbol Name Symbol1

Na resultant of all normal stresses
on the cross-sectional area of
the sliding element

N

Na
M resultant of all normal stresses

on the cross-sectional area of
the sliding element, due to
bending

N

R radius, radius of curvature m

Re outside radius of a circular
tube

m

Ri inside radius of a circular tube m

Ra
x;s resultant shear force in the lon-

gitudinal direction, acting on
the sliding element

N

S first moment of area, static mo-
ment

m3

Sy static moment in the xy plane m3

Sz static moment in the xz plane m3

Sa
z static moment in the xz plane

of the cross-sectional area of
the sliding element

m3

T temperature; increase in tem-
perature

K

W section modulus m3

Wt section modulus with respect
to the upper fibre layer

m3

Wb section modulus with respect
to the lower fibre layer

m3

Wz section modulus in the xz plane m3

Latin lower case

Quantity SI unit

Symbol Name Symbol1

ba width of the sliding segment,
width of a cut

m

eb distance of the lower fibre
layer to the member axis

m

em distance to the centre line m

(for thin-walled parts) of the
cross-section

m

et distance of the upper fibre
layer to the member axis

m

ey, ez coordinates of the centre of
force in the yz plane

m

f0.2 0.2% offset yield strength N/m2

ft tensile strength N/m2

fy yield point N/m2

k factor of proportionality l

k core radius m

kb lower core radius m

kt upper core radius m

m coordinate axis along the cen-
tre line (of a thin-walled part)
of the cross-section

m

qy distributed load acting in the y

direction
N/m

qz distributed load acting in the z

direction
N/m

1Expressed in the basic units.

Supplementary List of Symbols



Quantity SI unit

Symbol Name Symbol1

r radius of inertia, radius of
gyration

m

ry radius of inertia in the y direc-
tion

m

rz radius of inertia in the z direc-
tion

m

s shear flow (shear force per
length)

N/m

sin flow-in, shear flow towards the
joint

N/m

sm shear flow in the m direction N/m

sout flow-out, shear flow from the
joint

N/m

sa
x shear flow in the longitudinal

direction, acting on the sliding
element

N/m

t wall thickness m

tf web thickness m

yC, zC coordinates of the centroid m

yNC, zNC coordinates of the normal cen-
tre of a cross-section

m

ySC, zSC coordinates of the shear centre
of a cross-section

m

ya
C, za

C coordinates of the centroid of
the sliding part of the cross-
section

m

Quantity SI unit

Symbol Name Symbol1

α coefficient of thermal expan-
sion

1/K

ε strain 1

εT unconstrained strain due to
temperature effects

1

εpl strain at the end of the yield
stage

1

εt strain associated with the ten-
sile strength ft

1

εu strain at failure 1

εy yield strain, strain at the start
of the yield stage

1

χ distortion, torsional strain rad/m

κ curvature 1/m

κT unconstrained curvature due to
temperature effects

1/m

κy curvature in the xy plane 1/m

κz curvature in the xz plane 1/m

γ load factor 1

γ change of the right angle due
to shear, shear strain

rad

γg load factor related to the per-
manent load

1

γq load factor related to the vari-
able load

1

Quantity SI unit

Symbol Name Symbol1

γy shear strain associated with the
yield strain stress τy

1

θ angle, angle of rotation rad

σ̄ limiting value of the normal
stress, admissible value

N/m2

σM normal stress due to bending,
bending stress

N/m2

σN normal stress due to extension N/m2

σb normal stress in the lower fibre
layer

N/m2

σt normal stress in the upper fibre
layer

N/m2

σupset upsetting stress N/m2

σmx shear stress in the longitudinal
direction

N/m2

σxm shear stress in the plane of the
cross-section

N/m2

τ̄ limiting value of the shear
stress, admissible value

N/M2

τy yield shear stress N/m2

1Expressed in basic units.

Other symbols

(· · ·)′ d(···)
dx

, derivative with respect to x

Greek letters
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