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Preface

This book presents the English translation of the author’s German edition
‘Technische Akustik’ (the 8th edition published by Springer Verlag in 2009). In
whatever language, ‘Engineering Acoustics’ sees itself as a teaching textbook
that could serve as a tool for autodidactic studies and as a compendium
of lectures and courses as well. Readers are addressed who already possess a
certain training in physical and mathematical thinking and in expressing ideas
and explanations using mathematical formulas. On the other hand no highly
specified knowledge is vital: readers with no more than the usual skills – like
taking derivatives and solving simple integrals – are assumed. The appendix
gives a short introduction on the use of complex amplitudes in acoustics and
the reasons for their use. It is in general one of the author’s most important
aims not only to describe how the topic and its description develops but also
why a specific way is chosen. Often difficulties in understanding do not consist
in comprehending the single steps but in the question why they are done in
that - and in no other way.

Moreover the explanations do not restrict themselves to the mathematical
formulas. No doubt that formulas give the most unambiguous description of
matters, and they show problems and their solutions in quantity also, but
more remains to be done. Only the illustrative explanation relying on the
reader’s imagination produces understanding and comprehension. Textbooks
should make learning – often difficult enough – as easy as possible, and this
certainly does not imply to reduce the level.

In many respects this book is obliged to Lothar Cremer. For example, parts
of the author’s own knowledge originate from Cremer’s very first ‘Vorlesun-
gen über Technische Akustik’. Important discoveries of Cremer are included in
this new edition and it’s translations. Examples are, the optimum impedance
for mufflers and the coincidence effect which leads to a satisfying explana-
tion for sound transmission through walls; perhaps Cremer’s most important
discovery.

This book tries to present the foundations of that what nowadays seems
necessary to make our environment quieter. All chapters between ‘elastic iso-
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lation’ – the 5th – and ‘diffraction’ – the 10th – directly or indirectly address
the question, how to reduce the sound level in the most important environs
of everyday life indoors and outdoors – in buildings and in the open air. This
requires the understanding of some principal features first. To fully compre-
hend the physics of sound transmission through walls for example, implies the
understanding of bending wave propagation on plates. Because of that reason
chapters on ‘the media’ precede the chapters on the noise reduction meth-
ods. The (short) chapter on sound perception serves as an introduction. The
last chapter deals with the most important receiving and source instruments:
microphones and loudspeakers. Specific measurement procedures are already
discussed in many other chapters. The chapter ‘absorption’ for example begins
with a discussion of how to measure the absorption coefficient.

The translation of this book was done by Stefan Zimmermann and Rebecca
Ellis. The cooperation with them was interesting, satisfying, and excellent.
Many thanks to them for all their efforts and patience with me.

Berlin, February 2009 Michael Möser
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1

Perception of sound

The perception of sound incidents requires the presence of some simple phys-
ical effects. A sound source oscillates and brings the surrounding air into
motion. The compressability and mass of the air cause these oscillations to be
transmitted to the listener’s ear.

Small pressure fluctuations, referred to as sound pressure p, occur in air
(or gas or fluid) and which are superimposed to the atmospheric pressure
p0. A spatially distributed sound field radiates from the source with different
instantaneous sound pressures at each moment. The sound pressure is the
most important quantity to describe sound fields and os always space- and
time-dependent.

The observed sound incident at a point has two main distinguishing at-
tributes: ‘timbre’ and ‘loudness’. The physical quantity for loudness is sound
pressure and the quantity for timbre is frequency f , measured in cycles per
second, or Hertz (Hz). The frequency range of technical interest covers more
than the range that is audible by the human ear, which is referred to as hear-
ing level. The hearing range starts at about 16 Hz and ranges up to 16000 Hz
(or 16 kHz). The infrasound, which is located below that frequency range,
is less important for air-borne sound problems, but becomes relevant when
dealing with vibrations of structures (e.g. in vibration control of machinery).
Ultrasound begins above the audible frequency range. It is used in applica-
tions ranging from acoustic modelling techniques to medical diagnosis and
non-destructive material testing.

The boundaries of the audible frequency range dealt with in this book
cannot be defined precisely. The upper limit varies individually, depending on
factors like age, and also in cases of extensive workplace noise exposure or the
misuse of musical devices. The value of 16 kHz refers to a healthy, human being
who is about 20 years old. With increasing age, the upper limit decreases by
about 1 kHz per decade.

The lower limit is likewise not easy to define and corresponds to flickering.
At very low frequencies a series of single sound incidents (e.g. a series of
impulses) can be distinguished as well. If the frequency increases above the
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2 1 Perception of sound

flickering frequency of (about) 16 Hz, single incidents are no longer perceived
individually, but seem to merge into a single noise. This transition can be
found, for example, when it slowly starts to rain: the knocking of single rain
drops at the windows can be heard until the noise at a certain density of
rain merges into a continuous crackling. Note that the audible limit for the
perception of flickering occurs at the same frequency at which a series of single
images in a film start to appear as continuous motion.

The term ‘frequency’ in acoustics is bound to pure tones, meaning a si-
nusoidal wave form in the time-domain. Such a mathematically well-defined
incident can only rarely be observed in natural sound incidents. Even the
sound of a musical instrument contains several colourations: the superposi-
tion of several harmonic (pure) tones produces the typical sound of the in-
strument (see Fig. 1.1 for examples). An arbitrary wave form can generally be

Fig. 1.1. Sound spectra of a violin played at different notes (from: Meyer, J.:
”Akustik und musikalische Aufführungspraxis”. Verlag Erwin Bochinsky, Frankfurt
1995). Relative sound pressure level versus frequency.

represented by its frequency components extracted through spectrum analy-
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sis, similar to the analysis of light. Arbitrary signals can be represented by
a sum of harmonics (with different amplitudes and frequencies). The associ-
ation of decomposed time signals directly leads to the representation of the
acoustic properties of transducers by their frequency response functions (as,
for example, those of walls and ceilings in building acoustics, see Chap. 8).
If, for instance, the frequency-dependent transmission loss of a wall is known,
it is easy to imagine how it reacts to the transmission of certain sound in-
cidents like, for example, speech. The transmission loss is nearly always bad
at low frequencies and good at high frequencies: speech is therefore not only
transmitted ‘quieter’ but also ‘dull’ through the wall. The more intuitive as-
sociation that arbitrary signals can be represented by their harmonics will be
sufficient throughout this book in the aforementioned hypothetical case. The
expansion of a given signal into a series of harmonics, the so-called Fourier
series and Fourier integrals, is based on a solid mathematical foundation of
proof (see the last chapter of this book).

The subjective human impression of the sound pitch is perceived in such
a way that a tonal difference of two pairs of tones is perceived equally if the
ratio (and not the difference) of the two frequency pairs is equal. The tonal
difference between the pair made of fa1 and fa2 and the pair made of fb1 and
fb2 is perceived equally if the ratio

fa1

fa2
=
fb1

fb2

is valid. The transition from 100 Hz to 125 Hz and from 1000 Hz to 1250 Hz is,
for example, perceived as an equal change in pitch. This law of ‘relative tonal
impression’ is reflected in the subdivision of the scale into octaves (a doubling
in frequency) and other intervals like second, third, fourth and fifth, etc. used
for a long time in music. All of these stand for the ratio in frequency and not
for the ‘absolute increase in Hz’.

This law of ‘tonal impression,’ which more generally means that a stimulus
R has to be increased by a certain percentage to be perceived as an equal
change in perception, is not restricted to the tonal impression of the human
being. It is true for other human senses as well. In 1834, Weber conducted
experiments using weights in 1834 and found that the difference between two
masses laid on the hand of a test subject was only perceived equally, when a
mass of 14 g was increased by 1 g and a mass of 28 g was increased by 2 g. This
experiment and the aforementioned tonal perception leads to the assumption
that the increment of a perception ∆E for these and other physical stimuli is
proportional to the ratio of the absolute increase of the stimulus ∆R and the
stimulus R

∆E = k
∆R
R

, (1.1)

where k is a proportionality constant. For the perception of pitch the stimulus
R = f represents the frequency, for the perception of weight R = m represents
the mass on the hand.
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This law of relative variation (1.1) is also true for the perception of loud-
ness. If a test subject is repeatedly presented with sound incidents consisting
of pairs of sound pressure incidents p and 2p and 5p and 10p respectively, the
perceived difference in loudness should be equal. The perception of both pitch
and loudness should at least roughly follow the law of relative variation (1.1).

As mentioned earlier (1.1), there is a relativity law which governs varia-
tions in stimulus ∆R and in perception ∆E. It is, of course, also interesting to
examine the relation between R and E. Given that it is, at best, problematic, if
not presumably impossible, to quantify perceptions, the principal characteris-
tics of the E(R) function should be clarified. These ‘perception characteristics’
are easily constructed from the variation law, if two points of stimulus R and
perception E are chosen as shown in Fig. 1.2. A threshold stimulus R0 is
defined, at which the perception starts: stimuli R < R0 below the threshold
are not perceivable. A minimal stimulus is needed to achieve perception at
all. The second point is chosen arbitrarily to be twice the threshold R = 2R0

and the (arbitrary) perception E0 is assigned. The further characteristics re-

Fig. 1.2. Qualitative relation between stimulus R and perception E

sult from examining the perceptions 2E0, 3E0, 4E0, etc. The perception 2E0

is assigned twice the stimulus of E0, therefore related to R = 4R0. Just as
E = 3E0 is related to the stimulus R = 8R0 the perception 4E0 is related
to R = 16R0, etc. As can be seen from Fig. 1.2 the gradient of the curve
E = E(R) decreases with increasing stimulus R. The greater the perception,
the greater the increase of the stimulus has to be to achieve another increment
of perception (for example E0).
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The functional relation E = E(R) can certainly be determined from the
variation law (1.1) by moving towards infinitesimal small variations dE and
dR:

dE = k
dR
R

.

Integration yields
E = 2.3k lg(R/R0). (1.2)

Bare in mind that the logarithms of different bases are proportional, e.g.
lnx = 2.3 lg x. The perception of loudness is therefore proportional to the
logarithm of the physical stimulus –in this case, sound pressure. This relation,
validated at least roughly by numerous investigations, is also known as the
Weber-Fechner-Law.

The sensual perception according to a logarithmic law (for the character-
istics see Fig. 1.2 again) is a very sensible development of the ‘human species’.
Stimuli close to the threshold R = R0 are emphasized and therefore ‘well per-
ceivable’, whereas very large stimuli are highly attenuated in their perception;
the logarithmic characteristics act as a sort of ‘overload protection’. A wide
range of physical values can thus be experienced (without pain) and several
decades of physical orders of magnitude are covered. The history of the species
shows that those perceptions necessary to survive in the given environment,
which also cover a wide range of physical values, follow the Weber-Fechner-
Law. This is not true for the comparatively smaller range of temperature
perception. Variations of a tenth or a hundredth of a degree are by no means
of interest to the individual. In contrast, the perception of light needs to cover
several decades of order of magnitude. Surviving in the darkest night is as im-
portant as the ability to see in the sunlight of a very bright day. And the
perception of weight covers a range starting from smallest masses of about 1 g
up to loads of several 10000 g. The perception of loudness follows the loga-
rithmic Weber-Fechner-Law, because the human ear is facing the problem of
perceiving very quiet sounds, like the falling of the leaves in quiet surround-
ings, as well as very loud sounds, like the roaring sound of a waterfall in close
vicinity. As a matter of fact, humans are able to perceive sound pressures
in the range of 20 · 10−6N/m2 to approximately 200 N/m2, where the upper
limit roughly depicts the pain threshold. About ten decades of loudness are
covered, which represents an exceedingly large physical interval. To illustrate,
this range in equivalent distances would cover an interval between 1 mm and
10 km. The amazing ear is able to perceive this range. Imagine the impossi-
bility of an optical instrument (like a magnifying glass), to be able to operate
in the millimeter range as well as in the kilometer range!

When technically quantifying sound pressure, it is more handy to use a
logarithmic measure instead of the physical sound pressure itself to represent
this wide range. The sound pressure level L is internationally defined as

L = 20 lg
(
p

p0

)
= 10 lg

(
p

p0

)2

, (1.3)
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with p0 = 20 10−6 N/m2, as an expressive and easy to use measure. The
reference value p0 roughly corresponds to the hearing threshold (at a frequency
of 1 kHz, because the hearing threshold is frequency-dependent, as will be
shown in the next section), so that 0 dB denotes the ‘just perceivable’ or ‘just
not perceivable’ sound event. If not otherwise stated, the sound pressure p
stands for the root mean square (rms-value) of the time domain signal. The
specification in decibels (dB) is not related to a specific unit. It indicates the
use of the logarithmic law. The factor 20 (or 10) in (1.3) is chosen in such
a way that 1 dB corresponds to the difference threshold between two sound
pressures: if two sound incidents differ by 1 dB they can just be perceived
differently.

The physical sound pressure covering 7 decades is mapped to a 140 dB
scale by assigning sound pressure levels, as can be seen in Table 1.1. Some
examples for noise levels occurring in situations of every day life are also
shown.

Table 1.1. Relationship between absolute sound pressure and sound pressure level

Sound pressure Sound pressure level Situation/description
p (N/m2, rms) L (dB)

2 10−5 0 hearing threshold
2 10−4 20 forest, slow winds
2 10−3 40 library
2 10−2 60 office
2 10−1 80 busy street
2 100 100 pneumatic hammer, siren
2 101 120 jet plane during take-off
2 102 140 threshold of pain, hearing loss

It should be noted that sound pressures related to the highest sound pres-
sure levels are still remarkably smaller than the static atmospheric pressure
of about 105 N/m2. The rms value of the sound pressure at 140 dB is only
200 N/m2 and therefore 1/500 of atmospheric pressure.

The big advantage when using sound pressure levels is that they roughly
represent a measure of the perceived loudness. However, think twice when
calculating with sound pressure levels and be careful in your calculations. For
instance: How high is the total sound pressure level of several single sources
with known sound pressure levels? The derivation of the summation of sound
pressure levels (where the levels are in fact not summed) gives an answer
to the question for incoherent sources (and can be found more detailed in
Appendix A)

Ltot = 10 lg

(
N∑
i=1

10Li/10

)
, (1.4)
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where N is the total number of incoherent sources with level Li. Three ve-
hicles, for example, with equal sound pressure levels produce a total sound
pressure level

Ltot = 10 lg
(

3 10Li/10
)

= 10 lg 10Li/10 + 10 lg 3 = Li + 4.8 dB

which is 4.8 dB higher than the individual sound pressure level (and not three
times higher than the individual sound pressure level).

1.1 Octave and third-octave band filters

In some cases a high spectral resolution is needed to decompose time domain
signals. This may be the case when determining, for example, the possibly
narrow-banded resonance peaks of a resonator, where one is interested in the
actual bandwidth of the peak (see Chap. 5.5). Such a high spectral resolution
can, for example, be achieved by the commonly used FFT-Analysis (FFT: Fast
Fourier Transform). The FFT is not dealt with here, the interested reader can
find more details for example in the work of Oppenheim and Schafer ”Digital
Signal Processing” (Prentice Hall, Englewood Cliffs New Jersey 1975).

In most cases, a high spectral resolution is neither desired nor necessary. If,
for example, an estimate of the spectral composition of vehicle or railway noise
is needed, it is wise to subdivide the frequency range into a small number of
coarse intervals. Larger intervals do not express the finer details. They contain
a higher random error rate and cannot be reproduced very accurately. Using
broader frequency bands ensures a good reproducibility (provided that, for
example, the traffic conditions do not change). Broadband signals are also
often used for measurement purposes. This is the case in measurements of
room acoustics and building acoustics, which use (mainly white) noise as
excitation signal. Spectral details are not only of no interest, they furthermore
would divert the attention from the validity of the results.

Measurements of the spectral components of time domain signals are re-
alized using filters. These filters are electronic circuits which let a supplied
voltage pass only in a certain frequency band. The filter is characterized by
its bandwidth ∆f , the lower and upper limiting frequency fl and fu, respec-
tively and the center frequency fc (Fig. 1.3). The bandwidth is determined
by the difference of fu and fl, ∆f = fu − fl. Only filters with a constant
relative bandwidth are used for acoustic purposes. The bandwidth is propor-
tional to the center frequency of the filter. With increasing center frequency
the bandwidth is also increasing. The most important representatives of filters
with constant relative bandwidth are the octave and third-octave band filters.
Their center frequency is determined by

fc =
√
flfu

The characteristic filter frequencies are known, if the ratio of the limiting
frequencies fl and fu is given.
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Fig. 1.3. Typical frequency response function of a filter (bandpass)

Octave bandwidth

fu = 2fl ,

which results in fc =
√

2fl and ∆f = fu − fl = fl = fc/
√

2.

Third-octave bandwidth

fu = 3
√

2fl = 1.26fl ,

which results in fc = 6
√

2fl = 1.12fl and ∆f = 0.26fl.
The third-octave band filters are named that way, because three adjacent

filters form an octave band filter ( 3
√

2 3
√

2 3
√

2 = 2). The limiting frequencies are
standardized in the international regulations EN 60651 and 60652.

When measuring sound levels one must state which filters were used dur-
ing the measurement. The (coarser) octave band filters have a broader pass
band than the (narrower) third-octave band filters which let contributions of
a higher frequency range pass. Therefore octave band levels are always greater
than third-octave band levels. The advantage of third-octave band measure-
ments is the finer resolution (more data points in the same frequency range)
of the spectrum.

By using the level summation (1.4), the octave band levels can be calcu-
lated using third-octave band measurements. In the same way, the levels of
broader frequency bands may be calculated with the aid of level summation
(1.4). The (non-weighted) linear level is often given. It contains all attributes
of the frequency range between 16 Hz and 20000 Hz and can either be mea-
sured directly using an appropriate filter or determined by the level addition
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1.2 Hearing levels 9

of the third-octave or octave band levels in the frequency band (when con-
verting from octave bands, N = 11 and the center frequencies of the filters
are 16 Hz, 31.5 Hz, 63 Hz, 125 Hz, 250 Hz, 500 Hz, 1 kHz, 2 kHz, 4 kHz, 8 kHz
and 16 kHz). The linear level is always higher than the individual levels, by
which it is calculated.

1.2 Hearing levels

Results of acoustic measurements are also often specified using another single
value called the ‘A-weighted sound pressure level’. Some basic principles of the
frequency dependence of the sensitivity of human hearing are now explained,
as the measurement procedure for the A-weighted level is roughly based on
this.

Fig. 1.4. Hearing levels

The sensitivity of the human ear is strongly dependent on the tonal pitch.
The frequency dependence is depicted in Fig. 1.4. The figure is based on
the findings from audiometric testing. The curves of perceived equal loud-
ness (which have the unit ‘phon’) are drawn in a sound pressure level versus
frequency plot. One can imagine the development of these curves as follows:
a test subject compares a 1 kHz tone of a certain level to a second tone of
another frequency and has to adjust the level of the second tone in such a
way that it is perceived with equal loudness. The curve of one hearing level
is obtained by varying the frequency of the second tone and is simply defined
by the level of the 1 kHz tone. The array of curves obtained by varying the

10 100 1000 10000
−20

0

20

40

60

80

100

120

Frequency f [Hz]

S
ou

nd
 p

re
ss

ur
e 

le
ve

l L
 [d

B
]

0 phon

10

20

30

40

50

60

70

80

90



10 1 Perception of sound

level of the 1 kHz tone is called hearing levels. It reveals, for example, that a
50 Hz tone with an actual sound pressure level of 80 dB is perceived with the
same loudness as a 1 kHz tone with 60 dB. The ear is more sensitive in the
middle frequency range than at very high or very low frequencies.

1.3 A-Weighting

The relationship between the objective quantity sound pressure or sound pres-
sure level, respectively, and the subjective quantity loudness is in fact quite
complicated, as can be seen in the hearing levels shown in Fig. 1.4. The fre-
quency dependence of the human ear’s sensitivity, for example, is also level-
dependent. The curves with a higher level are significantly flatter than the
curves with smaller levels. The subjective perception ‘loudness’ is not only
depending on frequency, but also on the bandwidth of the sound incident.
The development of measurement equipment accounting for all properties of
the human ear could only be realized with a very large effort.

Fig. 1.5. Frequency response functions of A-, B-, C- and D-weighting filters

A frequency-weighted sound pressure level is used both nationally and
internationally, which accounts for the basic aspects of the human ear’s sen-
sitivity and can be realized with reasonable effort. This so-called ‘A-weighted
sound pressure level’ includes contributions of the whole audible frequency
range. In practical applications the dB(A)-value is measured using the A-
filter. The frequency response function of the A-filter is drawn in Fig. 1.5.
The A-filter characteristics roughly represent the inverse of the hearing level
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1.3 A-Weighting 11

curve with 30 dB at 1 kHz. The lower frequencies and the very high frequen-
cies are devaluated compared to the middle frequency range when determining
the dB(A)-value. As a matter of fact, the A-weighted level can also be deter-
mined from measured third-octave band levels. The levels given in Fig. 1.5
are added to the third-octave band levels and the total sound pressure level,
now A-weighted, is calculated according to the law of level summation (1.4).
The A-weighting function is standardized in EN 60651.

Fig. 1.6. Third-octave band, non-weighted and A-weighted levels of band-limited
white noise

A practical example for the aforementioned level summation is given in
Fig. 1.6 by means of a white noise signal. The third-octave band levels, the
non-weighted (Lin) and the A-weighted (A) total sound pressure level are
determined. The third-octave band levels increase by 1 dB for each band with
increasing frequency. The linear (non-weighted) total sound pressure level is
higher than each individual third-octave band level, the A-weighted level is
only slightly smaller than the non-weighted level.

It should be noted that exceptions for certain noise problems (especially
for vehicle and aircraft noise) exist, where other weighting functions (B, C
and D) are used (see also Fig. 1.5). Regulations by law still commonly insist
on the dB(A)-value.

Linearly determined single-number values, regardless of the filter used to
produce them, are somewhat problematic, because considerable differences in
individual perceptions do not become apparent. Fig. 1.4 clearly shows, for
example, that 90 dB of level difference are needed at 1 kHz to increase the
perception from 0 to 90 phon; at the lower frequency limit at 20 Hz only 50 dB
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12 1 Perception of sound

are needed. A simple frequency weighting is not enough to prevent certain
possible inequities. On the other hand, simple and easy-to-use evaluation pro-
cedures are indispensable.

1.4 Noise fluctuating over time

It is easy to determine the noise level of constant, steady noise, such as from
an engine with constant rpm, a vacuum cleaner, etc. Due to their uniform
formations, such noise can be sufficiently described by the A-level (or third-
octave level, if so desired.)

How, on the other hand, can one measure intermittent signals, such as
speech, music or traffic noise? Of course, one can use the level-over-time nota-
tion, but this description falls short, because a notation of various noise events
along a time continuum makes an otherwise simple quantitative comparison
of a variety of noise scenarios, such as traffic on different highways, quite dif-
ficult. In order to obtain simple comparative values, one must take the mean
value over a realistic average time period.

The most conventional and simplest method is the so-called ’energy-
equivalent continuous sound level’ Leq. It reflects the sound pressure square
over a long mean time

Leq = 10 lg

 1
T

T∫
0

p2
eff (t)
p2

0

 dt = 10 lg

 1
T

T∫
0

10L(t)/10

 dt (1.5)

(p0 = 20 10−6N/m2). Hereby peff (t) indicates the time domain function of
the rms-value and L(t) = 10lg(peff (t)/p0)2, the level gradient over time. The
square of a time-dependent signal function is also referred to as ’signal en-
ergy’, the energy-equivalent continuous sound level denotes the average signal
energy; this explains the somewhat verbose terminology. For sound pressure
signals obtained using an A-filter, third-octave filters, or the like, we use an
A-weighted energy-equivalent level.

Depending on the need or application, any amount of integration time T
can be used, ranging from a few seconds to several hours. There are com-
prehensive bodies of legislation which outline norms set by a maximum level
Leq, which is permissible over a certain time reference period ranging up
to several hours. For instance, the reference time period ’night’ is normally
between the hours of 10 p.m. and 6 a.m., an eight-hour time period. Nor-
mally, for measuring purposes, a much smaller mean time frame is used in
order to reduce the effect of background noise. The level Leq is then recon-
structed based on the number of total noise events and applied over a longer
period of time. For example, let Leq be an energy-equivalent sound level to
be verified for a city railway next to a street. The mean time period for this
measurement would then be approximately how long it takes for the train
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to pass by the street. That is, we are looking for the energy-equivalent con-
tinuous sound level for an average period that corresponds to the time it
takes for the train to pass by the street, such as of 30 seconds Leq(30s).
Suppose the train passes by every 5 minutes without a break. In this case,
we can easily calculate the long-term Leq (measured over several hours, as
may correspond to the reference periods ’day’ or ’night’, for instance) by
Leq(long) = Leq(30s)− 10lg(5min/30s) = Leq(30s)− 10 dB.

Applying mean values is often the most sensible and essential method for
determining or verifying maximum permissible noise levels. However, mean
values, per definition, omit single events over a time-based continuum and can
thus blur the distinctions between possibly very different situations. A light
rail train passing by once every hour could well emit similar sound levels Leq
as characterized by the permanent noise level of a busy street over a very long
reference period, for example. The long-term effects of both sources combined
may, in fact, result in one of the sources being completely obliterated from
the Leq altogether (refer to Exercise 5).

The energy-equivalent continuous sound level serves as the simplest way to
characterize sound levels fluctuating over time. Cumulative frequency levels
can be determined by the peak time-related characteristic measurements, a
method which is instrumental in the statistical analysis of sound levels.

1.5 Summary

Sound perception is governed by relativity. Changes are perceived to be the
same when the stimulus increases by a certain percentage. This has led to
the conclusion of the Weber-Fechner law, according to which perception is
proportional to the logarithm of the stimulus. The physical sound pressures are
therefore expressed through their logarithmic counterparts using sound levels
of a pseudo-unit, the decibel (dB). The entire span of sound pressure relevant
for human hearing, encompassing about 7 powers of ten, is reflected in a clearly
defined scale from about 0 dB (hearing threshold) up to approximately 140 dB
(threshold of pain). A-weighting is scaled to the human ear in order to roughly
capture the frequency response function of hearing. A-weighted sound levels
are expressed in the pseudo-unit dB(A).

Sounds at intermittent time intervals are quantified using mean time val-
ues. One such quantification method approximates ’energy-equivalent perma-
nent sound levels.’

1.6 Further reading

Stanley A. Gelfand’s ”Hearing – an Introduction to Psychological and Physi-
ological Acoustics” (Marcel Dekker, New York 1998) is a physiologically ori-
ented work and contains a detailed description of the anatomy of the human
ear and the conduction of stimuli.
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1.7 Practice exercises

Problem 1

An A-weighted sound level of 50 dB(A) originating from a neighboring factory
was registered at an emission control center. A pump is planned for installation
50m away from the emission control center. How high can the A-weighted
decibel level, resulting from the pump alone, be registered at the emission
control center so that the overall sound level does not exceed 55 dB(A)?

Problem 2

A noise contains only the frequency components listed in the table below:

f/Hz LThirdoctave/dB ∆i/dB

400 78 -4,8
500 76 -3,2
630 74 -1,9

800 75 -0,8
1000 74 0
1250 73 0,6

Calculate

• both non-weighted octave levels
• the non-weighted overall decibel level and
• the A-weighted overall decibel level.

The corresponding A-weights are given in the last column of the table.

Problem 3

A noise consisting of what is known as white noise is defined by a 1 dB-
increase from third-octave to third-octave (see Figure 1.6). How much does
the octave level increase from octave to octave? How much higher is the overall
decibel level in proportion to the smallest third-octave when N third-octaves
are contained in the noise? State the numerical value for N = 10.

Problem 4

A noise consisting of what is known as pink noise is defined by equal decibel
levels for all the third-octaves it contains. How much does the octave level
increase from octave to octave and what are their values? How much higher
is the overall decibel level when there are N thirds contained in the noise?
State the numerical value for N = 10.
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Problem 5

The energy-equivalent permanent sound level is registered at 55 dB(A) at an
emission control center near a street during the reference time period ’day,’
lasting 16 hours. A new high-speed train track is scheduled to be constructed
near the sight. The 2-minute measurement of a sound level Leq of a passing
train is 75 dB(A). The train passes by every 2 hours.

How high is the energy-equivalent permanent sound level measured over a
longer period of time (in this case, reference time interval ’day’)

• a) of the train alone and
• b) of both sound sources combined?

Problem 6

A city train travels every 5 minutes from 6 a.m. to 10 p.m. At night, between
10 p.m. and 2 a.m., it travels every 20 minutes, with a break from 2-6 a.m. in
between. A single train passes within 30 seconds and for this time duration,
the sound level registers at Leq(30s) = 78 dB(A). How high is the energy-
equivalent permanent sound level for the reference time intervals ’day’ and
’night’?

Problem 7

The sound pressure level L of a particular event, such as the emission of a
city train as in the previous example, can under certain circumstances only be
measured against a given background noise, such as traffic. Assume that the
background noise differs from the sound event to be measured at a decibel level
∆L. How high is the actual combined noise level? State the general equation
for measuring errors and the numerical value for ∆L = 6 dB, ∆L = 10 dB
and ∆L = 20 dB.

Problem 8

As in Problem 7, sound emission is to be measured in the presence of a noise
disturbance. How far away does the the noise source have to be in order to
obtain a measuring error of 0.1 dB?

Problem 9

Sometimes filters of a relatively constant bandwidth are employed to take
finer measurements in sixth-octaves increments as opposed to the customary
third-octave increments. State the equations for

• the consecutive center frequencies
• the bandwidth and
• the limiting frequencies.
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Problem 10

In a calculated measurement where an octave and all of its constituent thirds
are given, it appears that one of the thirds may have been a measurement
error. How can the result be checked against the other three values that are
assumed to be correct?



2

Fundamentals of wave propagation

The most important qualitative statements about wave propagation can be
deduced by everyday life experience. When observing temporary, frequently
repetitive sound incidences, such as a child bouncing a ball, hammering at a
construction site, etc., a time delay can easily be observed between the optical
perception and the arrival of the acoustic signal. This time delay increases with
increasing distance between the observer and the source. Apart from the facts
that

• the sound pressure level decreases with increasing distance and
• sound sources have a radiation pattern and
• echoes accumulate, for instance, at large reflecting surfaces (like house

walls) or, more generally, if the ‘acoustic environment’ (ground, trees,
bushes, etc.) is left out of our considerations,

the only thing that distinguishes different observation points is the time de-
lay. Indeed, sound incidences sound the same from any vantage point, as the
frequency components are the same. The wave form of a sound field (in a gas)
is not altered during propagation. The propagation is called ‘non-dispersive’,
because the form of the signal is not altered during wave transmission. In con-
trast, the propagation of bending waves in beams and plates, for instance, is
dispersive in gases (see Chap. 4). The fact that sound fields do not alter their
wave form during transportation is not trivial. Non-dispersive wave propaga-
tion in air is not only an essential physical property of sound travel; imagine if
sound incidences were composed differently at various distances. Such a case
would render communication impossible!

This chapter attempts to describe and to explain the physical properties
of wave propagation in gases. First, it seems reasonable to clarify the physical
quantities and their basic relations, which are needed to describe sound fields.
This chapter should likewise serve as a means to refresh basic knowledge in
thermodynamics. The following deliberations are based on the assumption of
perfect gases. This assumption in respect to air-borne sound in the audible

M. Möser, Engineering Acoustics, DOI 10.1007/978-3-540-92723-5_2,  
© Springer-Verlag Berlin Heidelberg 2009  



18 2 Fundamentals of wave propagation

frequency range is justified by extensive experimental evidence with highly
significant correlation.

2.1 Thermodynamics of sound fields in gases

The physical condition of a perfect gas, starting with a given, constant mass
M , can be described by

• its volume Vtot it fills
• its density ρtot
• its inner pressure ptot and
• its temperature Ttot.

When conducting theoretical experiments with a small and constant mass
of a gas, bound, for example, by a small enclosure with uniform constant
pressure and uniform constant density, the state descriptions of volume, tem-
perature, and pressure are the most illuminating. The density ρtot = M/Vtot
then appears as a redundant quantity which can be determined by the vol-
ume. It is enough to describe the gaseous state of large (sometimes infinite)
masses and volumes–relevant when dealing with sound fields–in terms of pres-
sure, density and temperature, but for the purposes of review in the basics of
thermodynamics, the following theoretical investigations outlined below will
focus on constant gas masses. Sometimes, however, the following derivations
are based on , since the origins of thermodynamics should be refreshed as
mentioned earlier. The principles from the following discussions will then be
appropriately applied to the important sound field quantities.

As a matter of fact, the question arises as to how the quantities used for
describing a gaseous state are related. The criteria of a constant mass of a gas
(when put, for example, into a vessel with a variable volume) should be met
and can be approximately described as such:

• heating of the gas with constant volume results in an increased pressure
ptot ∼ Ttot

• the pressure of the gas is inversely proportional to the volume ptot ∼
1/Vtot.

These and other such statements can be summarized in the Boyle-Mariotte
equation, if one accounts for the fact that an increased mass (with constant
pressure and constant temperature) needs an increased volume. It is given by

ptotVtot =
M

Mmol
RTtot, (2.1)

where Mmol is a material constant, the so-called ‘molar mass’. The molar mass
Mmol defines the ‘molecular mass in grams’ of the corresponding element (see
the periodic system of elements), e.g. Mmol(N2) = 28 g and Mmol(O2) = 32 g
which results in Mmol(air) = 28.8 g (air consists of approximately 20% oxygen
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and 80% nitrogen). R = 8.314 N m/K is the universal gas constant (K=Kelvin
is the unit of the absolute temperature, 0◦C = 273 K).

As mentioned earlier, sound fields are better described by using densities.
Equation (2.1) is therefore transformed for ‘acoustic purposes’ to

ptot =
R

Mmol
ρtotTtot . (2.2)

A graphical representation of (2.2) can easily be illustrated by isotherms,
where curves with Ttot = const. are straight lines in the ptot-ρtot-plane. It
represents an array of characteristic lines (see Fig. 2.1). To describe the actual
path that the three variables of state take in that array of characteristic lines,
a second piece of information is needed. The Boyle-Mariotte equation does
not completely express how a variation of one variable of state (e.g. carried
out in the experiment) influences the other. If, for example, the volume of
a gas is compressed (by pressing a piston into a vessel), it is also possible
that the temperature or the pressure can change. The Boyle-Mariotte equa-
tion does not include that detailed information. It only states that the ratio
of the two quantities is altered. Additional observations are needed to clarify
this. Experience shows that the speed of the compression and the environ-

Fig. 2.1. Isotherms with the composition of adiabatic compression by one isobar
and one isochor step

ment in which the compression takes place are of major importance. If the
compression is done very quickly in a piston (or in an insulated environment
without thermal conduction) then a temperature increase in the gas can be
observed. Usually, thermal conduction is a very slow process that takes a long
time (and is even impossible in a thermally non-conducting, insulated envi-
ronment). Therefore, the observed increase in temperature is not achieved by
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heat consumed by the exterior, but rather, only results from the interior com-
pression. If the volume compression is done very slowly and takes place in an
environment with good thermal conduction, so that a temperature difference
between the interior and the exterior can be compensated, the inner tem-
perature can stay constant. In other words, thermal conduction is a crucial
prerequisite for isothermal compression.

As already mentioned, thermal conduction is a slow process. Thus, isother-
mal compensations take a long time. In contrast, sound fields are subject to
fast changes (apart from the lowest frequencies). It can, therefore, be assumed
that sound-related processes happen without the participation of thermal con-
duction in the gas. In other words, when dealing with sound fields the gas can
(nearly) always be assumed to lack thermal conduction. Thermal transporta-
tion processes play a minor role. This change in the gaseous state without
thermal conduction is called ‘adiabatic’. The fact that sound related pro-
cesses are adiabatic also means that they cannot be isothermal, which would
imply that thermal conduction takes place. The temperature of the gas and
likewise the pressure and the density must therefore be subject to changes in
time and space. Apart from scaling factors, these three variables of state even
have the same time- and space-dependence, as will be shown shortly.

To derive adiabatic equations of state, one could refer to the literature.
Nevertheless, it is given here because the derivation is neither difficult nor
very extensive. As a starting point of the observation, imagine the adiabatic
process taking place with a net thermal consumption of zero. It is composed
of two steps: one with constant density and one with constant pressure (see
also Fig. 2.1). All changes are assumed to be infinitesimal. The steps are
then inevitably related to the temperature changes dTp (ptot=const.) and
dT% (%tot=const.). In both steps heat can be transferred; only the total adia-
batic process has to manage without any thermal conduction. When the total
adiabatic process is composed, the sum of all thermal transfers has to be zero

dEp = −dE%. (2.3)

The isobar step consumes the heat

dEp = McpdTp, (2.4)

where cp is the specific heat constant for constant pressure. The isochor step
consumes the heat (note that %=const. and V=const. is equivalent when the
mass is constant)

dE% = McV dT%, (2.5)

where cV is the specific heat constant for constant volume. For the adiabatic
process defined in (2.3),

dT%
dTp

= −κ, (2.6)

with
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κ =
cp
cV
. (2.7)

The infinitely small temperature changes for constant pressure and constant
density can now be expressed by the corresponding changes of the pressure
(for the isochor step) and the density (for the isobar step). Equation (2.2) is
solved for the gas temperature

Ttot =
Mmol

R

ptot

ρtot
,

which results in
dTp

dρtot
= −Mmol

R

ptot

ρtot
2

and
dT%

dptot
=
Mmol

R

1
ρtot

.

Equation (2.6) is thus synonymous with

dT%
dTp

=
dptot
ρtot

ptotdρtot
ρtot2

= −ρtot
ptot

dptot
dρtot

= −κ

or with
dptot
ptot

= κ
dρtot
ρtot

. (2.8)

Integration of both sides yields

ln
ptot

p0
= κ ln

ρtot

%0
= ln

(
ρtot

%0

)κ
,

which finally gives the adiabatic equation of state

ptot

p0
=
(
ρtot

%0

)κ
. (2.9)

The integration constants are chosen in such a way that (2.9) is fulfilled for the
static quantities p0 and %0. Equation (2.9) describes the relationship between
pressure and density in a perfect gas ‘without thermal conduction’, as already
mentioned. For perfect, diatomic gases, which are of interest in acoustics only,
κ = 1.4.

It only remains to adapt the relations found in the Boyle-Mariotte equation
(2.2) and in the adiabatic equation of state (2.9) for the lucid description
of sound fields. The acoustic quantities represent small time- (and space-)
dependent changes which are superimposed on the static quantities. It is thus
reasonable to split the total quantities (thus the index tot) into a static part
and an alternating part
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ptot = p0 + p (2.10a)
ρtot = %0 + % (2.10b)
Ttot = T0 + T, (2.10c)

where p0, %0 and T0 are the static quantities ‘without any sound’ and p, % and
T are the alterations due to the sound field. The superimposed sound field re-
lated quantities are designated as sound density, sound temperature and sound
pressure. These quantities are actually tiny compared to the static quantities.
As mentioned in Chap. 1, the rms-value of the sound pressure due to (dan-
gerously high) levels of 100 dB is only 2 N/m2. The atmospheric pressure is
about 100000 N/m2! The static quantities as well as the total quantities, but
not the sound field related quantities alone, because they represent only a part
of the total quantity, must certainly fulfil the Boyle-Mariotte equation (2.2).
The opposite is true, which is shown by inserting (2.10–c) into (2.2)

p0 + p =
R

Mmol
(%0 + %)(T0 + T ) ≈ R

Mmol
(%0T0 + %0T + T0%), (2.11)

where the (small quadratic) product between sound density and sound tem-
perature is neglected in the last step. The static quantities vanish in (2.11),
because they are a solution to the Boyle-Mariotte equation themselves and
for the sound field related quantities

p =
R

Mmol
(%0T + T0%) (2.12)

remains. This equation becomes a little clearer when dividing by the static
pressure p0 which gives

p

p0
=

%

%0
+
T

T0
. (2.13)

If the resulting quotients are designated as ‘relative quantities’, (2.13) states
that the relative sound pressure is the sum of the relative density and the
relative sound temperature.

The second relationship between the sound field quantities is given by the
adiabatic equation of state (2.9) which will be adapted for the comparatively
small sound field quantities in what follows.

First, note that the adiabatic equation of state (2.9) states a non-linear
relationship between pressure and density in the gas. On the other hand, only
the smallest alterations around the operating point (p0, %0) are of interest;
thus the curved characteristics can be replaced by its tangent at the operating
point. In other words, the characteristics can be linearized, because quadratic
and higher order terms of a Taylor series expansion can be neglected.

To do this, the sound field quantities in eq.(2.10) are applied to the specific
adiabatic equation for the aggregate values (2.9)

p0 + p

p0
= 1 +

p

p0
=
(
%0 + %

%0

)κ
=
(

1 +
%

%0

)κ
.
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The power series truncated after the linear term f(x) = (1 + x)κ at x = 0
exists in f(x) = 1 + κx, therefore

1 +
p

p0
= 1 + κ

%

%0
.

The linearized, adiabatic equation of state adapted for acoustic purposes then
becomes

p

p0
= κ

%

%0
. (2.14)

Sound fields are nearly always described by means of their pressure dis-
tribution, because the sound pressure can be detected with microphones very
easily, whereas the sound density can only be determined indirectly by the
pressure. So, whenever possible, the sound pressure will be used in the follow-
ing formulations. For that purpose, if a density occurs it has to be expressed
by a sound pressure. This can be achieved by solving (2.14) for the density

% =
p

c2
, (2.15)

with
c2 = κ

p0

%0
. (2.16)

Obviously, sound pressure and sound density have the same time and spatial
dependence. If the relative density is eliminated in (2.13) by using (2.14), the
relative sound temperature becomes

T

T0
=

p

p0
− %

%0
=
(

1− 1
κ

)
p

p0
.

All three relative quantities have the same wave form, apart from different
scaling factors.

The next section will show that the constant c introduced in (2.16) has a
special physical meaning: c denotes the speed at which the sound propagates
in the gas. Verifying the dimensions (the units) of the quantities yields no
contradiction to this statement, although it is not a proper proof:

dim(c) =

√
dim(p)
dim(%)

=

√
N m3

m2 kg
=

√
kg m

s2

m
kg

=
m
s

The unit of c, dim(c), is indeed equal to that of a speed.
If the Boyle-Mariotte equation (2.2) (which is valid for the static quantities,

too) is inserted into (2.16), the speed of sound c becomes

c =
√
κ

R

Mmol
T0 . (2.17)

It depends only on material constants and the absolute temperature, and is
independent of the static pressure and the static density. To check (2.17), the
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parameters of air Mmol = 28.8 10−3 kg for T0 = 288 K (15◦C) are inserted
into the equation and the well-known value of c = 341 m/s is obtained. For
practical applications, it is nearly always sufficient to neglect temperature
changes of up to 10◦C and calculate with the rounded value of 340 m/s.

It should perhaps be noted that the assumption of isothermal compression
for sound-related processes (which is actually not valid in the unbounded gas)
would lead to a speed of sound

ciso =
√

RT0

Mmol
=
cadia√
κ
≈ 0.85cadia

which is too small. As a matter of fact, it was the discrepancy between ciso and
experimental values which showed that sound related compression processes
are not isothermal but adiabatic. The experimentally determined speed of
sound must therefore be equal to cadia.

2.2 One-dimensional sound fields

2.2.1 Basic equations

The aim of the last section was to clarify the meaning of the physical variables
of state sound pressure, sound density and sound temperature that arise in
sound fields. The next section turns to the crucial question of acoustics: how
is the phenomenon of (non-dispersive) wave propagation of sound in gases
physically explained and described?

To derive the basic properties, the effects mentioned in the introduction,
as well as the attenuation with increasing distance and reflections, are left out
of consideration. What remains is the simple case of one-dimensional sound
fields, depending only on a single coordinate. Such a one-dimensional wave
guide can be realized, for example, by capturing the sound field in a tube
with a rigid lining filled with just air. The air is then forced to propagate in
one direction, i.e. the tube axis (which does not necessarily produce a sound
field which is constant over the cross sectional area of the tube.) This will be
shown in more detail in Chap. 6 which deals with sound absorption.

The main properties of sound fields can be deduced from the basic assump-
tion that a perfect gas is an elastically shapeable and mass-adherent medium.
A very simple and illuminating explanation for the propagation of waves is
obtained if the air column in the one dimensional wave guide is segmented into
a number of smaller sections (Fig. 2.2) and the segments alternate between el-
ements with ‘mass-characteristics’ and elements with ‘spring-characteristics’.
Thus a so-called chain of elements model is obtained for the segmented air
column. The excitation of the air column can, for example, be realized with
a loudspeaker. The loudspeaker, assigned to the chain of elements, represents
the displacement of the first mass in Fig. 2.2. If the first mass suddenly starts
to move to the right, the first (air) spring is compressed; the spring puts a
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Fig. 2.2. Segmented air column, consisting of alternating elements of volume, rep-
resenting mass substitutes and spring substitutes

force onto the second mass. Initially, the mass is not moving and due to its
mass inertia, it also does not immediately start to move. The onset of motion
actually begins with ‘delayed’ displacement. To illustrate the inertia law, the
time dependence of a force which suddenly starts to excite, and the displace-
ment of a coupled ‘free’ mass is shown in Fig. 2.3, where the mass is gradually
put into motion. Therefore, the displacement of the second mass in the chain
of elements starts with a delayed offset to the force of the spring. The mass
compresses the next spring to the right and is slowed down. The ‘delay’ is cu-
mulative, as the displacement is transmitted ’on down the line’ or ’from mass
to mass.’ The process is replicated throughout the chain of elements and the
pulse initiated at the left end of the chain migrates to the right with a finite
speed.

Fig. 2.3. Free mass and exemplary force-time characteristics with resulting
displacement-time characteristics

Obviously, two different sorts of speed must be distinguished here. One
is the ‘migration speed’ of the pulse through the wave guide. It is called
propagation speed or wave speed, denoted in this book by c. The other one,
which has to be distinguished from c, is the speed at which the local gas masses
move around their equilibrium position, as the wave ‘runs through’ them. For
better distinction the speed of the local gas elements is called ‘velocity’. It is
always denoted by v in this book.
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The aforementioned physical aspects can now readily be formulated in
equations. Two investigations are necessary: it has to be discussed how the
air springs are compressed by the displacement at their boundaries to the left
and to the right and the problem has to be solved how the air masses are
accelerated by the forces of the springs acting on them. Small air volumes of
length x are used for both investigations. The elements of length ∆x (initially
assumed to have a finite length for illustration purposes) will finally shrink to
the infinitesimal length dx, because the description of the physical facts is a
lot easier with functions and their derivatives.

The inner compression of one gas element with mobile boundaries is de-
rived by the fact that the mass between the boundaries is constant. If one
element is compressed, the density increases. The mass of the element de-
picted in Fig. 2.4 is S∆x%0 if the medium is at rest (without sound), where
S is the cross-sectional area of the column. If an elastic deformation takes
place (in the presence of sound), the motion of the left boundary defined by
ξ(x) and the motion of the right boundary defined by ξ(x+ ∆x) takes place,
the mass is given by S [∆x+ ξ(x+ ∆x)− ξ(x)] ρtot. The mass is equal to the
mass at rest and using ρtot = %0 + %, we obtain

(%0 + %) [∆x+ ξ(x+ ∆x)− ξ(x)]S = %0∆xS ,

or, after the dividing the surface S and multiplying it out,

%∆x+ %0 [ξ(x+ ∆x)− ξ(x)] + % [ξ(x+ ∆x)− ξ(x)] = 0 . (2.18)

The small quadratic term of sound density and displacement are insignif-
icant, even at the highest most relevant sound levels. The sound density in
question here can be described by

Fig. 2.4. Deformation of an element of the gas column leads to a change in internal
density

% = −%0
ξ(x+ ∆x)− ξ(x)

∆x
.

In the limiting case of infinitesimal small gas elements ∆x → dx, the
difference quotient becomes the differential quotient

ξ(x) ξ(x+Δx)

x x+Δx
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%

%0
= −∂ξ(x)

∂x
. (2.19)

The sound density is directly related to the spatial derivative of the displace-
ment. The latter is also called ‘elongation’ (or dilatation). This derivation is
crucial for the following investigations. It states that the relative sound density
is equal to the negative elongation.

It should be noted that this fact can also be interpreted as the spring
equation. If the sound density in the penultimate step is replaced by the
sound pressure % = p/c2 and multiplied by the cross sectional area S, we get

Sp = −S%0c
2 ξ(x+ ∆x)− ξ(x)

∆x
.

is obtained. The left side, Sp, represents the force F produced by deformation
of the gas spring of length ∆x. Hook’s law can be applied to the case of springs
with moving ends, validating

Sp = −s[ξ(x+ ∆x)− ξ(x)],

where s represents the stiffness of the spring. In the case of layers of elastic
material, as in a gas element, with a cross sectional area S and length ∆x

s =
ES

∆x
(2.20)

is given, where E represents a material constant, the so-called elastic modulus.
It should be indicated for the interpretation of (2.20) that producing a certain
change in displacement at the ends requires an applied force which has to be
larger. The larger the cross sectional area of the layer is, the smaller the
thickness of the layer. The elastic modulus in gases is obviously related to the
propagation speed by

E = %0c
2 . (2.21)

The second phenomenon pertaining to sound wave propagation that needs
to be investigated is how gas particles are accelerated by the applied forces
of the springs. The answer is found in Newton’s law, which is applicable
to the (small) volume element of the gas column as shown in Fig. 2.5. The
acceleration ∂2ξ/∂t2 of the enclosed mass is caused by the force ‘pushing from
the left’ Sp(x), from which the force ‘pushing back from the right’ Sp(x+∆x)
must be subtracted. The acceleration caused by the change in force is smaller,
the smaller the mass m of the element is. Applying Newton’s law, we obtain

∂2ξ

∂t2
=
S

m
[p(x)− p(x+ ∆x)] .

Alternatively, using m = volume× density = ∆xS%0, we obtain

∂2ξ

∂t2
= − 1

%0

p(x+ ∆x)− p(x)
∆x

.
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The element is finally compressed, and using

lim
∆x→0

=
p(x+ ∆x)− p(x)

∆x
=
∂p

∂x
,

we arrive at the ‘inertia law of acoustics’,

%0
∂2ξ

∂t2
= −∂p

∂x
. (2.22)

Equations (2.19) and (2.22) form the basic equations in acoustics. They

Fig. 2.5. Accelerated element of the gas column

are able to describe all (one-dimensional) sound incidences. The compression
of the elastic continuum ‘gas’ caused by space-dependent displacement is de-
scribed in (2.19); how the displacement is caused by compression, on the other
hand, is described in (2.22). If both observations are combined they yield the
explanation for wave propagation. ‘Combining’ the two observations in terms
of equations means inserting one equation into the other. The displacement
is consequently eliminated in (2.19) and (2.22). This can be achieved by a
twofold differentiation of (2.19) by time

1
%0

∂2%

∂t2
= − ∂3ξ

∂x∂t2

and differentiating (2.22) by space

∂3ξ

∂x∂t2
= − 1

%0

∂2p

∂x2
.

Hence it follows
∂2p

∂x2
=
∂2%

∂t2
,

where the sound density can ultimately be replaced by the sound pressure
% = p/c2 from (2.15) as stated earlier

p(x+Δx)S

x x+Δx

p(x)S
v
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∂2p

∂x2
=

1
c2
∂2p

∂t2
. (2.23)

Equation (2.23), which is referred to as the wave equation; all occurring sound
incidences must satisfy (2.23).

As has already been shown, the wave equation is derived from both ’basic
equations of acoustics’, the law of compression eq.(2.19) and the law of inertia
as applied to sound fields eq.(2.22), together with the ’material law’ % = p/c2.
ξ appears in both equations. It makes sense to express them in terms of sound
velocity

v(x, t) =
∂ξ

∂t
. (2.24)

The next section will explore the reason for this. For the simplest case
of progressive waves, the signal forms of pressure and velocity are the same.
Therefore, defining sound vibrations by their velocity, and not by their particle
displacement, is the conventional approach in the field of acoustics. Sound
velocity will from here on be used in this book as well. For this reason, the basic
equations (2.19) and (2.22) will be noted here as a reminder, but hereafter
only in terms of pressure and velocity. Thus, the universal law of compression
is therefore

∂v

∂x
= − 1

%0c2
∂p

∂t
, (2.25)

and the law of inertia exists in

%0
∂v

∂t
= −∂p

∂x
. (2.26)

Both equations apply universally, even for sound fields where progressive
waves are travelling in both directions. From here on, we will only refer to the
notations (2.25) and (2.26). Also, the 0 index in the density constant compo-
nent %0 will be left out, as there will be no cause for subsequent confusion of
the terms hereafter. Sound density will only be treated in Chapter 2.

2.2.2 Progressive waves

In general, any function which is exclusively dependent on the argument t−x/c
or t+ x/c is a solution to the wave equation (2.23)

p(x, t) = f(t∓ x/c) . (2.27)

f(t) stands for a signal form possessing a structure which has been created by
the emitter, that is, the sound source. c signifies the constant already defined
in the previous section, where it was already alluded to as the definition for the
sound propagation speed. The following considerations will serve as immediate
proofs to this fact. First, it should be explained why (2.23) is described as the
wave equation. The name is derived from a graphical representation of its
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solutions (2.27) as a function of space, as shown in Figure 2.6 for constant,
frozen time (here for f(t − x/c), that is, the negative value in the argument).
The graph depicts a set of curves of the same parallel offset space-dependent
functions which cross each other. As can be seen from the graph, the state of
gas ”‘sound pressure”’ migrates as at constant speed along the x axis. This
migration of the local states is known as a ”‘wave”’.

The still unanswered question of the physical meaning of the constant c
can now be explained. Imagine a certain value of the function f (in Fig. 2.6
the maximum of f is chosen) which is located at x at the time t and travels
by the distance ∆x during the time ∆t

f(x, t) = f(x+ ∆x, t+ ∆t) .

This is the case if (t− x/c) is the same in both cases, which is equivalent to

Fig. 2.6. Principal characteristics of p = f(t − x/c) for two different times t = 0
and t = t

t− x

c
= (t+ ∆t)

x+ ∆x
c

and results in
∆x
∆t

= c .

Because the speed is calculated by ‘speed=distance/time to travel’, c describes
the ‘transport speed of the function’, i.e. the propagation speed of the wave.
Obviously, it is independent of the characteristics of the function f ; in par-
ticular, all frequencies travel at the same speed. The fact that the signal

x

p(
x,

t)
 =

 f(
t−

x/
c)

t=0 Δ tt= 

Δ x 
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characteristics are not altered during propagation is an important feature of
sound propagating in gases (compare the dispersive bending waves in beams
and plates, see Chap. 4) which is one of the most important physical precon-
ditions for acoustic communication (e.g. speech).

If only one wave occurs, travelling in a specific direction, it is called a plane
propagating wave. Combinations of waves travelling in opposite directions
contain standing waves (see also Sect. 2.2.4 on p. 34). For travelling waves
with p(x, t) = f(t− x/c) the inertia law of acoustics (2.22) yields

%0v = −
∫

∂p

∂x
dt = −

∫
∂f(t− x/c)

∂x
dt =

1
c

∫
∂f(t− x/c)

∂t
dt =

p

c
,

which says that sound pressure and sound velocity have a constant ratio,
independent of space and time, called the wave resistance or specific resistance
of the medium:

p(x, t)
v(x, t)

= %0c . (2.28)

Eq.(2.28) provides a simple answer to the remaining question of how the
sound source leaves its ”footprint” on the signal form of the sound pressure
f(t). The following assumptions are made for This model presupposes the
following in respect to the one-dimensional wave guide model–as previously
mentioned, a tube filled with air:

• There are no reflections (the tube is terminated in an extremely effective
absorber known as a wave capturer

• The sound source is composed of a plane membrane (such as that of a loud-
speaker), which oscillates at a previously designated membrane velocity of
vM (t) at its resting position in x = 0

Since no reflections are present, the sound pressure solely consists of a pro-
gressive wave travelling in the x direction in the form of

p(x, t) = f(t− x/c) ,

and for the molecular sound velocity v in the wave guide, the following can
be derived from eq.(2.28)

v(x, t) = p(x, t)/%0c = f(t− x/c)/%0c .

The velocity of the medium v must be equal to the velocity of the membrane
at the position of the source x = 0, therefore

f(t)/%0c = vM (t) ,

according to which sound pressure

p(x, t) = %0cvM (t− x/c)

and sound velocity
v(x, t) = vM (t− x/c)

in the wave guide are simply
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• defined by the source signal ’membrane velocity vM (t)’ and
• by the existence of progressive waves in this situation.

Sound pressure can be defined using a more formal and universal approach
as a phenomenon which meets the criteria of the wave equation. However, the
exact structure can only be defined based on a given constraint at the position
x = 0, v(0, t) = vM (t). This method is known as the ’solution of a boundary
value problem.’ The simplest example of such a problem was outlined above.

Definition of quantities

For travelling waves, (2.28) can be used to assess the order of magnitude of
velocity and displacement. A relatively high level of 100 dB is related to a rms-
value of the sound pressure of prms = 2 N/m2. In a plane progressive wave
vrms = prms/c, where %0 = 1.2 kg/m3, and c = 340 m/s is vrms = 5 10−3 m/s
= 5 mm/s. The local particle speed ‘velocity’ is therefore very, very small
compared to c = 340 m/s. Even the displacement is not very large. It is
calculated by

ξrms =
vrms
ω

, (2.29)

assuming pure tones only and v = dξ/dt. For 1000 Hz this would result in
ξrms = 10−6 m = 1 µm! In acoustics, the displacement often ranges in only
one-thousandth of the diameter of an atom.

Compared to that, the accelerations occurring in acoustics can be consid-
erably larger. Based on

brms = ωvrms, (2.30)

an acceleration of brms = 30 m/s2, a threefold ground acceleration, is obtained
for a 100 dB-sound pressure level at f = 1000 Hz.

Harmonic time dependencies

Sound and vibration problems are, for practical reasons, often described using
harmonic (sinusoidal) time-dependencies. Generally, the sound pressure of a
wave travelling along the x-direction has the form

p(x, t) = p0 cosω(t− x/c) , (2.31)

which can be written in abbreviated form using the so-called wave number

k = ω/c

as
p(x, t) = p0cos(ωt− kx) . (2.32)

As is generally known, ω, which is
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ω = 2πf =
2π
T

(2.33)

contains the time period T of a complete cycle. Likewise, the wave number k
must contain the spatial period

k =
ω

c
=

2π
λ
. (2.34)

Fig. 2.7. spatial dependence of the sound pressure in a propagating wave at a
constant time. Half a period is shown. The sound velocity v exists in the same space
and time function due to v = p/%0c.

The spatial period λ of a complete cycle is generally known as the wave-
length. As can be seen clearly, this term is restricted to pure tones only. For
the wavelength, using (2.33) and (2.34),

λ =
c

f
(2.35)

is obtained. For non-dispersive sound waves in air the wavelength is roughly
inversely proportional to frequency; it ranges from λ = 17 m (f = 20 Hz) to
λ = 1.7 cm (f = 20000 Hz). This is a considerably large interval. It should not
be surprising that the size of objects has to be expressed in terms of wavelength
in acoustics (like in optics). Most objects and structures are acoustically ‘in-
visible’ in the low frequency range, where their size is small compared to the
wavelength. At high frequencies they are acoustically effective, representing
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either sound absorbers, more or less complex reflectors, or diffusers, respec-
tively. The aforementioned components in eq.(2.31) for progressive waves in
pure tones are summarized again in Figure 2.7. It entails a cosine-formed
space-dependent function, which moves from left to right at the propagation
rate of c. According to eq.(2.28), pressure and particle speed possess the same
space- and time-dependent signal characteristics.

2.2.3 Complex notation

From here on in this book, pure tone waves will be described using only com-
plex amplitudes. More details on how to use, the purpose of and advantages
of describing real-valued processes using complex numbers are outlined in Ap-
pendix B2. This appendix describes how to notate a sinusoidal wave travelling
in the x-direction using space-dependent complex amplitudes

p(x) = p0e−jkx .

Waves travelling in the negative x-direction can by described by

p(x) = p0ejkx

If reflections are present or there are waves travelling in opposite directions, (as
in the case of two sources or in a reflective room), a summation of both terms
may occur. To describe the reverse transformation of the complex amplitudes
to real-valued time and space domain functions, we use the time convention

p(x, t) = Re
{
p(x)ejωt

}
(2.36)

The time convention eq.(2.36) applies to the excitation of pure tones and for
all physical quantities, as well as for all velocity components of any sound and
reverberation field, for electrical voltage, currents, etc. Complex amplitudes
are also referred to as ’pointers’ or ’complex pointers.’

Subsequently, sound velocity, which results from a presumably known
sound pressure spatial dependency, also often needs to be defined. As pre-
viously mentioned, this is calculated using the acoustical inertia law (2.26),
which is written in complex notation as

v =
j

ω%0

∂p

∂x
(2.37)

2.2.4 Standing waves and resonance phenomena

If a progressive wave is impeded by a barrier, it can be reflected at that
location. If the one-dimensional wave guide has boundaries on both sides –
at left, for example, bounded by a sound source and at the right, a reflector,
as assumed in the following – standing waves and resonance phenomena will
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occur. As mentioned in the model of the one-dimensional wave guide (as well
as for pure tones) the complex sound pressure amplitudes are composed of
two terms

p(x) = p0[e−jkx + rejkx] . (2.38)

As previously described, the first summand describes a wave moving in the
+x direction and the second summand, one moving in the −x direction. p0

describes the amplitude of the wave travelling toward the reflector. In the
sound field ansatz (2.38) , we have already taken into consideration that the
returning wave −x direction may be attenuated relative to the approaching
wave by a reflection coefficient r, if only a semi-reflection is at hand (as in the
case of partial absorbers at the end of the tube in x = 0, refer to Chapter 6 for
more information). The sound velocity pointing in the x direction pertaining
to the sound pressure (2.38), using (2.37), becomes

v(x) =
k

ω%0
p0[e−jkx − rejkx] =

p0

%0c
[e−jkx − rejkx] . (2.39)

For the sake of simplicity, let us initially assume that the reflector located
at x = 0 is ”’rigid”’. Therefore, the reflector must be made up of a large,
immobile mass or non-elastic structure. Because the air particles, which span
across the reflector at x = 0, are unable to penetrate the fixed barrier, their
velocity, which is described by the sound velocity, must be zero:

v(x = 0) = 0 . (2.40)

Therefore, the reflection coefficient r which characterizes the rigid reflector
must be (2.39)

r = 1 , (2.41)

leading to the spatial dependency for sound pressure of

p(x) = 2p0 cos kx (2.42)

and for sound velocity of

v(x) =
−2jp0

%0c
sin kx . (2.43)

The time convention helps us determine the resulting space and time domain
functions

p(x) = 2p0 cos kx cosωt (2.44)

and
v(x) =

2p0

%0c
sin kx sinωt . (2.45)

Regardless of the relationship between the sound pressure amplitude p0 and
the sound source, which we have not yet explored here, the equations (2.44)
and (2.45) serve as a universal description of a standing wave. Both space
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dependencies in terms of pressure and velocity within fixed time periods are
represented in Figures 2.8 and 2.9. The sound field is characterized as sta-
tionary, because the space function is likewise stationary and is never shifted
through time. The function is simply ”dimmed in” or ”dimmed out” depend-
ing on the local amplitude. Sound pressure and sound velocity do not comprise
a fixed relationship independent of space and time as is the case with progres-
sive waves. On the contrary, the domain functions of pressure and velocity for
standing waves are of a varying, phase-shifted nature.

Fig. 2.8. Space-dependent sound pressure in a standing wave at multiple constant
times. Half a period is shown.

As described above, resonance phenomena can be explained by the pres-
ence of multiple reflections at both ends of the tube. Furthermore, let us as-
sume that the one-dimensional gas continuum is excited by a single in-phase
oscillating surface at the location x = −l. The velocity of the surface v0 is
therefore independent of y. Of course, the velocity of the single oscillating
surface must be equal to that of the sound field. According to eq.(2.43), the
velocity is therefore

v0 = v(−l) =
2jp0

%0c
sin kl , (2.46)

resulting in

p0 =
−j%0cv0

2 sin kl
(2.47)

denoting the relationship between the field constant p0 and the velocity v0,
the latter quantity which describes the sound source.
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Fig. 2.9. Space-dependent sound velocity in a standing wave at multiple constant
times. Half a period is shown.

The resonance frequencies of an oscillator are those frequencies at which a
sound or reverberation field develops for any source, no matter how weak the
signal, given in a loss-free scenario. In other words, resonance phenomena can
also be referred to as ”vibrations without excitation”. For the air-filled tube
bounded on both side with rigid-reflecting walls discussed here, resonances
obviously occur at sin(kl) = 0, for kl = nπ (n = 1, 2, 3, ...). Based on k =
ω/c = 2πf/c = 2π/λ, the resonance frequencies are

f =
nc

2l
. (2.48)

For the wavelength λ corresponding to each resonance frequency,

l = n
λ

2
. (2.49)

When resonance exists, the length of the resonator is divided up into multiples
of half the wavelength.

The reasons behind this result are easy to understand. A wave propagating
from the source travels twice the distance of the length of the tube 2l, to and
from the reflector. If it aligns itself in-phase with the next emitted wave, the
sum of the waves then doubles. This in-phase alignment has already taken
place an arbitrary amount of times in the steady state, meaning, that the
field has already reached a resonance. In-phase alignment thus produces an
infinite amount of completely identical space dependencies, whose sum grows
without bound. In-phase alignment occurs only when the propagation path 2l
is a multiple of the wavelength, thus 2l = nλ.
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The sound field analyzed above becomes infinitely large at the resonance
frequencies, the reason being, that no loss is assumed to occur in the sound
waves, neither along the medium nor at the reflections along the tube’s walls.
This pre-existing condition simplifies the analysis of the sound field, but is not
realistic. In reality, the sound field consistently looses energy, whether it be
through the friction at the tube’s walls (viscous gas damping) or through the
finite sound damping occurring between the walls and the termination of the
tube, both factors which were left out of this hypothetical model. In actual
experimental situations, the observer can easily hear the tone from outside of
the tube.

In most actual rooms we use in everyday life, such as apartments, lecture
halls, etc., the boundary surfaces (walls) behave neither as completely reflec-
tive nor completely absorbent at corresponding frequencies. Rather, walls of
rooms possess reflection coefficients which can be anywhere between 0 and
1. In this case, the sound field is invariably composed of both progressive
and standing waves, which can be easily illustrated using the one-dimensional
continuum model. The approaching wave appearing in eq.(2.38) p0e

−jkx can
be theoretically decomposed into a fully-reflective component rp0e

−jkx and a
non-reflective component (1− r)p0e

−jkx

p0e−jkx = rp0e−jkx + (1− r)p0e−jkx . (2.50)

With this, the total field referred to in eq.(2.38) can be expressed as

p(x) = rp0(e−jkx + ejkx) + (1− r)p0e−jkx . (2.51)

The first term with the coefficient r describes, as shown, a standing wave,
and the second term with the coefficient 1 − r describes a progressive wave.
Except for the extreme cases r = 0 and r = 1, sound fields are always made
up of both types of waves. If the walls of a room are neither completely
reflective or completely anechoic (non-reflecting), a mixture of both standing
and progressive waves is present. Progressive waves are described as the ’active
field’ and standing waves as the ’reactive field’. That is to say that all sound
fields are comprised of both active and reactive components.

2.3 Three-dimensional sound fields

The one-dimensional wave propagation explained in the previous section can
be easily transferred to the more general case of three-dimensional wave prop-
agation. The three-dimensional extension of the principle of mass conservation
(2.19) has to account for the fact that the volume element hosting the con-
stant mass can now be constrained in all three space dimensions. Instead of
(2.19), it is given simply by

%

%0
= −∂ξx

∂x
− ∂ξy

∂y
− ∂ξz

∂z
(2.52)
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As previously mentioned, this book describes the sound field by the variables
pressure and velocity. Equation (2.52) is therefore differentiated by time, and
% = p/c2 is inserted:

1
%0c2

∂p

∂t
= −∂vx

∂x
− ∂vy

∂y
− ∂vz

∂z
(2.53)

The three dimensional extension of the acoustic inertia law is even simpler.
Considerations concerning forces can be applied to each component of the
dimension separately for a thorough analysis. It should be noted for com-
pleteness that (2.26) refers to the x-component of the velocity, and the corre-
sponding force balance equations for the two other dimensions can be added:

%0
∂vx
∂t

= −∂p
∂x

(2.54a)

%0
∂vy
∂t

= −∂p
∂y

(2.54b)

%0
∂vz
∂t

= −∂p
∂z

(2.54c)

For the derivation of the three-dimensional wave equation, the velocity in
(2.53) and (2.54) (a,b,c) must be eliminated. If (a) is differentiated by x, (b)
by y and (c) by z, and the result is inserted into (2.53) and differentiated by
t, the wave equation obtained is

∂2p

∂x2
+
∂2p

∂y2
+
∂2p

∂z2
=

1
c2
∂2p

∂t2
. (2.55)

Equations (2.53) to (2.55) are often written with vector differential operators.
Analogous to (2.53),

divv = − 1
%0c2

∂p

∂t
(2.56)

can be written, where div is the divergence. Analogous to (2.54–c),

gradp = −%0
∂v
∂t

, (2.57)

can be written, where grad is the gradient. The wave equation then becomes
(∆ is the delta operator)

∆p =
1
c2
∂2p

∂t2
. (2.58)

The formulations in (2.56) to (2.58) can also be interpreted independently of
a specific coordinate system. They can be directly ‘translated’ into a specific
coordinate system (such as cylindrical or spherical coordinates), using, for
example, a mathematical handbook. From that point of view, (2.52) to (2.55)
appear to be the ‘Cartesian release’ of the more general relations (2.56) to
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(2.58). The descriptions using vectorial differential operators cannot be found
elsewhere in this book. They are only given for completeness.

In terms of mathematical field theory, a complete description of the sound
field by means of a scalar spatial function p, whose gradient represents the
vector field v, is given by (2.56) through (2.58). The acoustic field theory,
where the wave equation is solved under the presence of certain boundary
conditions, is not treated in this book. The interested reader can refer to the
book by P.M. Morse and U. Ingard ”Theoretical Acoustics” (McGraw Hill,
New York 1968).

It should be mentioned that it can directly (and perhaps a little formally)
be inferred from (2.56) through (2.58) that all sound fields are ‘irrotational’
or conservative. Because rot grad = 0, it is in particular

rotv = 0 . (2.59)

The attribute ‘irrotational’ is a peculiarity of the propagation of sound in
gases which does not, for example, apply to solid structures.

2.4 Energy and power transport

The investigations of Sects. 2.1 and 2.2.1 have shown that the entity of wave
propagation exists in the local compression of the medium (described by the
pressure) and, consequently, in local vibrations of the gas elements. The ‘dis-
turbance pattern’ (in comparison to the equilibrium position) migrates – for
plane progressive waves – along one of the spatial axes.

This implies that energy is stored locally and momentarily in the medium.
It consumes the same amount of energy to compress gases as does to accelerate
the gas masses in motion. This effect can also be observed, when looking at
the ‘chain of elements’ again, where the springs store potential energy and the
masses store kinetic energy.

The kinetic energy of a mass m moving at speed v is given by

Ekin =
1
2
mv2, (2.60)

as is generally known. The potential energy of a spring with the stiffness s,
compressed by a force F is given by

Epot =
1
2
F 2

s
. (2.61)

The momentarily stored energy EV of a gas element of volume ∆V (which
is again ‘small’ and has the length ∆x and cross-sectional area S) can be
deduced by these two energies. The kinetic energy becomes

Ekin =
1
2
%0v

2∆V .



2.4 Energy and power transport 41

The potential energy (of the spring), using F = pS and s = ES/∆x =
%0c

2S/∆x with (2.20) and (2.21) becomes

Epot =
1
2
p2S2∆x
%0c2S

=
1
2
p2∆V
%0c2

.

The net energy stored in the element of volume results in

E∆V =
1
2

{
p2

%0c2
+ %v2

}
∆V . (2.62)

As each single point in the gas can store energy,

E =
1
2

{
p2

%0c2
+ %v2

}
(2.63)

describes the energy density of the sound field. For small volumes ∆V the
stored energy is simply given by

EV = EV . (2.64)

The state of energy in a gas has the same wave characteristics as the field
quantities pressure and velocity. In particular,

p = f(t− x/c) and v = p/%0c

is given for a plane progressive wave (see (2.27) and (2.28)) which results in
an energy

E(x, t) =
p2

%0c2
=

1
%0c2

f2
(
t− x

c

)
, (2.65)

which has the same wave form as the square of the pressure, but also describes
a transport process along the x-axis. The stored energy ‘runs with the sound
field’ and is therefore also a wave. The energy distribution is displaced ‘some-
where else’ ‘some time later’. Summarizing, one can imagine that in plane
progressive waves, the source emits energy which migrates through the gas at
the speed of sound. This energy is irrecoverably lost from the transmitter.

The energy transport of stationary (i.e. continuously driven) sources is
more easily described in terms of a power quantity. To recapitulate the dif-
ference between the terms energy and power, the household light bulb should
be mentioned. The power – usually measured in Watts – specifies the instan-
taneous consumption of light and heat. The bill paid to the supplier of the
electricity is calculated by the product of the usage time multiplied by the con-
sumed power. The consumed energy increases linearly with time, the power
is the temporal change, i.e. the differentiation by time of the energy-time
characteristics.

When investigating acoustic power flows, the cross-sectional area through
which the power flows must be taken into account because the propagation of
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sound is a spatially distributed process. The sound power of the plane wave,
for example, flowing through the area S, increases with increasing S. It is
therefore wise to describe the power by the product

P = IS . (2.66)

This newly defined quantity I is called intensity, which represents the acoustic
sound power surface density. Intensity is generally a vector pointing in the
direction of the propagating wave. We assumed one-dimensional sound fields
for the purposes of deriving (2.66). Therefore, I points in the x-direction
(using the notation of this chapter). It was also assumed that the intensity is
constant over the area S.

Energy density and power density are related quantities. Their relationship
results from the principle of energy conservation which, in this case, is applied
to the (small) gas column from Fig. 2.4. The energy outflow at x+ ∆x during
the time interval ∆t is I(x + ∆x)S∆t, the energy inflow during this time
interval is I(x)S∆t. The difference between the energy inflow and outflow
must produce a difference V E(t + ∆t) − V E(t) of the energies stored at the
times t+ ∆t and t:

S∆x (E(t+ ∆t)− E(t)) = S (I(x)− I(x+ ∆x)) ∆t

Dividing both sides by S∆x∆t and using the limiting cases ∆x → 0 and
∆t→ 0 yields

∂I

∂x
= −∂E

∂t
. (2.67)

For power and intensity measurements in particular, the question arises as
to how the intensity can be derived from both field quantities pressure and
velocity. Using the energy density according to (2.65), (2.67) already gives the
answer

∂I

∂x
= −1

2

(
1

%0c2
∂p2

∂t
+ %0

∂v2

∂t

)
= −

(
p

%0c2
∂p

∂t
+ %0v

∂v

∂t

)
.

Here, ∂p/∂t is expressed by ∂v/∂x according to (2.25) and ∂v/∂t by ∂p/∂x
according to (2.26):

∂I

∂x
= p

∂v

∂x
+ v

∂p

∂x
=
∂(pv)
∂x

.

A lucid result is obtained by integration:

I(t) = p(t)v(t) (2.68)

The intensity is equal to the product of sound pressure multiplied by sound
velocity. This is also valid for the more general, three-dimensional case, where
(2.68) is replaced by

I = pv . (2.69)
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The power flowing through the area S is generally calculated by

P =
∫

IdS (2.70)

where dS is the vectorial area element (normal to the area S everywhere).
For stationary sources, the time average of the power is of interest only,

resulting in

Ī =

T∫
0

I(t)dt (2.71)

and
P̄ = ĪS . (2.72)

For plane progressive waves

I(t) =
p2(t)
%0c

(2.73)

and for pure tones p = p0 cosωt, we get

P̄ = Ī =
p0

2

2%0c
=
prms

2

%0c
(2.74)

(prms is the root-mean-square). As it is clear from (2.74) the determination
of the sound pressure alone is sufficient when measuring the intensity of plane
progressive waves. For that reason, sound power can often be calculated are
under free field conditions (e.g. in an anechoic chamber) at a large distance
to the source. Under such conditions, it can be assumed that p = %0cv, in
fact, holds. To calculate the sound power, the (imaginary) surface enveloping
the source is divided into N ‘small’ partitions Si. The root-mean-square of
the sound pressure is then calculated for each partition. The radiated sound
power thus results in

P̄ =
N∑
i=1

prms,i
2

%0c
. (2.75)

Finally, it should be noted that power and intensity can also be described
by their corresponding levels. The required reference values P0 and I0 are
defined in

LI = 10 lg
Ī

I0
(2.76)

and in

Lw = 10 lg
P̄

P0
(2.77)

in such a way, that for the case of the plane progressive wave flowing through
a surface of S = 1 m2, the same values for the sound pressure level L, the
intensity level LI and the sound power level Lw are obtained. Using
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L = 10 log
(
prms
p0

)2

with p0 = 2 10−5 N/m2

I0 =
p0

2

%0c
= 10−12 W/m2 (2.78)

and
P0 = I0 × 1 m2 = 10−12 W (2.79)

are obtained (where %0c = 400 kg/m2s).

2.5 Intensity measurements

Measuring the sound power under free field conditions can be reduced to the
determination of the sound pressure on a surface, as introduced before. This
requires a special, anechoic test facility which may not be available. As a
matter of fact, it is sometimes impossible or would be too expensive to put
certain technical sound sources into anechoic environments. There is enough
reason to use a sound power measurement technique which is independent of
special environmental conditions.

Such a measurement technique must necessarily include the determination
of the sound velocity. The basic idea of intensity measurements is to estimate
the pressure gradient which is needed to determine the velocity by measuring
the difference between the sound pressures acting on two microphone types.
In place of the actual velocity

%0
∂v

∂t
= −∂p

∂x
,

we use the measured velocity

%0
∂vM

∂t
=
p(x)− p(x+ ∆x)

∆x
(2.80)

to determine the intensity. x and x + ∆x denote the positions of the two
intensity-probe microphones.

The direction in which the two microphones are positioned ∆x is not
necessarily the same as the actual (or suspected) direction of the sound prop-
agation. The measurement technique described in this section invariably de-
termines the vectorial component of the intensity pointing in the direction
given by the axis of the two measurement positions.

Indeed, (2.80) approximates the ‘actual sound velocity’. The sound inten-
sity determined by the aid of (2.80) will include systematic errors which are
also subject to further investigations here. First, the measurement techniques
will be described in detail. Then, an error analysis specifying the procedure’s
limitations will follow.
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As already mentioned, sound power measurements are especially useful for
stationary (‘permanently running’) sources which are implied in the following.
The intensity measurement technique utilizing (2.80) can either implement the
time averaged mean value of the local intensity (where the required time do-
main signal can, for instance, be A-weighted as well) or the spectral analysis of
the frequency components. The following sections will examine how intensity
is measured in both the time domain and in the frequency domain.

2.5.1 Time domain

To measure intensity in the time domain, the pressure difference in (2.80) must
be integrated by an analogue electrical circuit or a digital signal processor:

vM(t) =
1

∆x%0

∫
[p(x)− p(x+ ∆x)] dt (2.81)

The time dependence of the intensity results in the product of pressure and
velocity. We use the space average of the two pressure signals because there are
two signals for the sound pressure. These are obtained from the two adjacent
positions

pM(t) =
1
2

[p(x) + p(x+ ∆x)] , (2.82)

resulting in

I(t) = pM(t)vM(t) =
1

2%0∆x
[p(x) + p(x+ ∆x)]

∫
[p(x)− p(x+ ∆x)] dt .

(2.83)
The time average is again obtained with the aid of an analogue or digital
integrator

Ī =
1

2%0∆xT

T∫
0

[p(x) + p(x+ ∆x)]
∫

[p(x)− p(x+ ∆x)] dtdt, (2.84)

where T is the averaging time.

2.5.2 Frequency domain

Harmonic time dependencies

Initially, we can assume that the exciting sound source emits a single tone of
a given and known (or at least easily measurable) frequency. This assump-
tion allows us to select a simple method for measuring intensity. In addition,
this preliminary discussion provides a control for the investigations of the
more general case of arbitrary time dependencies to be elaborated in the next
section.
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Here we can measure the amplitude spectra of the two pressure signals,
denoted in the following by p(x) and p(x + ∆x). According to the time con-
ventions p(x, t) = Re{p(x)ejωt} and p(x+∆x, t) = Re{p(x+∆x)ejωt} apply.
Based on these definitions, the complex amplitude of the sound velocity (2.80)
becomes

vM =
−j

ω%0∆x
[p(x)− p(x+ ∆x)] . (2.85)

The pressure pM is again determined by the average value of the two measured
quantities

pM =
1
2

[p(x) + p(x+ ∆x)] . (2.86)

The time average of the intensity (the effective intensity) is thus formed by

IM =
1
2

Re {pMvM
∗} =

1
4ω%0∆x

Re {j [p(x) + p(x+ ∆x)] [p∗(x)− p∗(x+ ∆x)]}

(2.87)
(∗ = complex conjugate). Because pp∗ is a real quantity, we are left with

IM =
1

4ω%0∆x
Re {−j [p(x)p∗(x+ ∆x)− p∗(x)p(x+ ∆x)]} .

Applying Re{−jz} = Re{−j(x+ jy)} = y = Im{z} yields

IM =
1

4ω%0∆x
Im {p(x)p∗(x+ ∆x)− p∗(x)p(x+ ∆x)} ,

or by using Im{z − z∗} = 2Im{z}, we ultimately arrive at

IM =
1

2ω%0∆x
Im {p(x)p∗(x+ ∆x)} . (2.88)

As can be seen in the above, we only need to know the two amplitudes |p(x)|
and |p(x+ ∆x)| and the phase difference between them to calculate IM.

The argument p(x)p∗(x + ∆x) is also called the cross-spectral density,
whose imaginary part yields the intensity. Once again, it should be noted
that p(x) and p(x + ∆x) denote complex amplitudes or complex amplitude
spectra. The unit of their product is [N/m2] and does not represent a power
density function [power/Hz]. The intensity contained in a frequency band is
derived by the summation of the included spectral components.

Arbitrary time dependencies

To measure the frequency domain for arbitrary source time-dependencies,
one only has to decompose the time dependencies p(x, t) and p(x + ∆x, t)–
occurring at the locations x and x + ∆x – into their frequency components.
Chapter 13 provides a more detailed description of how to carry out the
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necessary steps for this type of spectral decomposition. At this stage, it suffices
to provide an overall outline of this procedure in the sections which follow.

First, we can conclude that the required time signals can only be observed
during a certain finite time period T – a truly infinite time length is impossible
for the period of observation. The signals are therefore only known in the given
interval 0 < t < T . On the other hand, intensity measurements usually only
make sense for stationary operating sources. It is therefore logical to assume
that the signals beyond the interval 0 < t < T behave ’similarly’ to the one
within the interval. The simplest way to define this criteria is to assume that
the signals perpetuate themselves periodically with the observation period T ,
that p(x, t+T ) = p(x, t) (and of course, p(x+∆x, t+T ) = p(x+∆x, t) both
apply. The period T does not have to define an actual physical period, such
as the rotation of a running motor, rather, it can simply be a time arbitrarily
set for the purpose of the measurement. The fact that this mathematically
’strict’ periodization excludes the possibility of significant error underscores
an important characteristic of stationary signals: local intensity and global
signal power by no means depend on the time interval extracted from the
longer stationary signal to define the period T . Furthermore, an average can
be obtained by taking random samples of time length T .

The advantage gained by the pre-existing condition of artificial periodiza-
tion is that only certain discrete frequencies nω0 (with ω0 = 2π/T ) can
occur within such signals. This drastically simplifies the quantitative anal-
ysis. As shown by eq.(13.38), for example, the time dependencies p(x, t) and
p(x+∆x, t) can actually be expressed in Fourier series

p(x, t) =
∞∑

n=−∞
pn(x)ejnω0t (2.89)

and

p(x+∆x, t) =
∞∑

n=−∞
pn(x+∆x)ejnω0t. (2.90)

The complex-valued spectral amplitudes of each time dependency are ex-
pressed in the quantities pn(x) and pn(x + ∆x). Eq.(13.37) shows how the
complex amplitude series pn(x) and pn(x + ∆x) are derived from the (peri-
odic) time-dependencies p(x, t) and p(x+∆x, t). Because constant components
do not occur in acoustics (constant pressures do not produce waves – if they
did, they would not be able to heard!), the pre-existing condition is namely
p0(x) = p0(x+∆x) = 0 for the following deliberations. As a reminder, ’conju-
gated symmetry’ – p−n = p∗n (∗ = complex conjugates) – applies, because by
nature, the time dependencies p(x, t) and p(x+∆x, t) resulting from the sum-
mation in themselves must have real values. The summation does not have
to occur without bound. Indeed, the frequencies they contain depend on the
filter connected upstream, or on the measuring device itself, which of course,
always possesses a low-pass or band-pass characteristic.
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With the help of both aforementioned series decomposition eq.(2.84) con-
verges to

Ī =
1

2%0∆xT

T∫
0

∞∑
n=−∞

[pn(x) + pn(x+∆x)]ejnω0t

∞∑
m=−∞

1
jmω0

[pm(x)− pm(x+∆x)]ejmω0tdt . (2.91)

In the second sum, we use m for the summation index to avoid confusion with
the first sum. After multiplying the entire equation out, it results in

Ī =
1

2%0∆xT

T∫
0

∞∑
n=−∞

∞∑
m=−∞

[pn(x) + pn(x+∆x)]

1
jmω0

[pm(x)− pm(x+∆x)]ej(n+m)ω0tdt . (2.92)

Due to
T∫

0

ej(n+m)ω0tdt = 0

for n+m 6= 0 (for n+m = 0 the integral is equal to T ), only the summands
are left with m = −n, resulting in

Ī =
−1

2%0∆x

∞∑
n=−∞

[pn(x) + pn(x+∆x)]

1
jnω0

[p−n(x)− p−n(x+∆x)] . (2.93)

For one of the partial sums obtained by multiplying out the term inside the
parentheses,

∞∑
n=−∞

pn(x)p−n(x)
jnω0

= 0

applies, because each summand results in zero (with n = N and n = −N)
and also due to the precondition that was defined as p0(x) = 0. Likewise,

∞∑
n=−∞

pn(x+∆x)p−n(x+∆x)
jnω0

= 0

is true. For the effective intensity, this results in

Ī =
1

2%0∆x

∞∑
n=−∞

1
jnω0

[pn(x)p−n(x+∆x)− pn(x+∆x)p−n(x)],
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using eq.(2.93), or using the ’conjugate symmetry,’

Ī =
1

2%0∆x

∞∑
n=−∞

1
jnω0

[pn(x)p∗n(x+∆x)− pn(x+∆x)p∗n(x)] .

The basic signal structure of the summands therefore can be defined as (z −
z∗)/j, or simply (z − z∗)/j = 2 Im{z}. Thus follows

Ī =
1

%0∆x

∞∑
n=−∞

1
nω0

Im{pn(x)p∗n(x+∆x)} . (2.94)

The expression Im{pn(x)p∗n(x+∆x)}/nω0%0∆x constitutes the frequency re-
sponse of the effective intensity. Obviously, every frequency component can be
seen as a separate and distinct energy storage. The net intensity is therefore
derived from the sum of the spectral intensity components.

The term pn(x)p∗n(x+∆x) is typically referred to as spectral cross power.
Spectral intensity is defined by its imaginary component.

2.5.3 Measurement error and limitations

High frequency error

The most obvious and immediately evident problem of intensity measurements
exists in the fact that accumulation of differentials at the differentiation itself
only provides sound conclusions for large wavelengths at their respective low
frequencies. Even the simplest model indicates the magnitude of the resulting
error. A plane progressive wave along the x-direction

p(x) = p0e−jkx

is assumed to be the sound field. The corresponding actual intensity I is given
by

I =
1
2

Re {pv∗} =
1
2
p0

2

%0c

where v = p/%0c was used for plane progressive waves. In contrast, the mea-
sured intensity, according to (2.88), is

IM =
p0

2

2ω%0∆x
Im
{

e−jkxejk(x+∆x)
}

=
p0

2

2ω%0∆x
sin k∆,

which results in
IM
I

=
%0c

ω%0∆x
sin k∆x =

sin k∆x
k∆x

. (2.95)

The actual and measured intensity are identical only at low frequencies, where
k∆x� 1, because of sin k∆x ≈ k∆x. For values of k∆x = 2π∆x/λ = 0.182π
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already, sin k∆x/k∆x = 0.8; the error, using 10 lg IM/I = −1, is thus 1 dB.
The measurement error is therefore only smaller than 1 dB if approximately
x < λ/5 applies. If the error does not exceed 1 dB, it is only necessary to
measure up to λ = 12.5 cm and therefore up to f = c/λ = 2700 Hz for a
spacing of only x = 2.5 cm

Low frequency error

The second error, concerning the lower frequency limit, occurs because the
intensity probe, consisting of two microphones, seems to detect a ‘phantom
intensity’ which is actually not present due to small errors in the phase relation
between the microphones. To explain this effect, it must be clarified that there
are sound fields which carry power (i.e. the time-averaged power is non-zero)
as well as sound fields which do not carry power (i.e. the time-averaged power
is zero). The first case is true for plane progressive waves, whereas the second
case applies to standing waves. First, we will discuss the power transport for
both fundamental wave types.

Power transport in progressive waves

As explained earlier, plane progressive waves with

p(x) = p0e−jkx

and with
p(x, t) = Re

{
p(x)ejωt

}
= p0 cos(ωt− kx)

consist of a spatial dependency travelling with time (see Fig. 2.7). The phase
difference between the two sound pressures in the distance ∆x is ∆ϕ = k∆x =
2π∆x/λ. The effective intensity is I = p0

2/2%0c.

Power transport in standing waves

As described above, standing waves have the sound pressure space-time do-
main function of

p(x, t) = Re
{
p(x)ejωt

}
= 2p0 cos kx cosωt , (2.96)

and for sound velocity,

v(x, t) = Re
{
v(x)ejωt

}
=

2p0

%0c
sin kx sinωt . (2.97)

Both spatial dependencies are shown in Figure 2.8 over a constant time period.
The phase relationship between two microphone positions is either ϕ = 0◦

or ϕ = 180◦. Standing waves do not carry any intensity nor power in a time
average, as can be seen from the pressure nodes shown in Fig. 2.8. At nodes
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with p = 0, the intensity is thus zero at all times (I(t) = p(t)v(t) = 0). Power
never penetrates through surfaces where p = 0.

Due to the principle of energy balance, no power can flow through any
surface over a time average. This can also be shown mathematically. From
the complex pressure and velocity the intensity becomes

I(x, t) =
2p0

2

%0c
sin kx cos kx sinωt cosωt =

p0
2

2%0c
sin 2kx sin 2ωt . (2.98)

The time-averaged intensity is therefore zero at each position. The fact that
standing waves can manage without consuming external energy can be ex-
plained by the exceptions assumed for them. No energy is lost during the
(assumed) total reflection, for example. The sound wave can travel eternally
between two reflectors without loosing energy, because the air was also as-
sumed to be without losses. The assumption of no losses is, of course, more
or less violated in practice.

Summarizing, it can be stated that power flow is bound to sound fields,
where the phase of the sound pressure is different at two different positions. If,
in contrast, the signals at two (arbitrarily chosen) positions are either identical
or opposite in phase, the time-averaged power flow is zero. The aforementioned
facts describe, more or less, the second problem of intensity measurements.
In a reverberant sound field with low absorption at the walls, the sound field
consists more or less of standing waves. If a small phase error between the
two microphone signals arises in the measurement setup, a non-existent ef-
fective intensity is detected. Thus, the intensity measurement technique is
not necessarily independent of the chosen test environment; rooms with long
reverberation times are not suitable.

To estimate the measurement error due to phase errors, a sound field
consisting of plane progressive and standing waves is initially assumed to be

p = ppe−jkx + ps cos kx, (2.99)

where pp denotes the amplitude of the plane wave and ps denotes the am-
plitude of the standing wave. In the following passages, both quantities are
assumed to be real.

For sufficiently low frequencies, or assuming sufficiently large distances
k∆x � 1, a very accurate estimate of the actual intensity is given by the
measurement prescription (2.88), if no phase error occurs during the mea-
surement. For simplicity, the first measurement position is chosen to be x = 0
and

IM =
1

2ω%0∆x
Im {p(0)p∗(∆x)}

describes the intensity without experimental error. The measured intensity
with a phase error is



52 2 Fundamentals of wave propagation

IM =
1

2ω%0∆x
Im
{
p(0)p∗(∆x)ejϕ

}
.

The sound pressure at the first position p(0) can be considered real because
only the phase difference between the measured signals is important, thus

IM
I

=
Im{p∗(∆x)ejϕ}

Im{p∗(∆x)}
=

Im{p(∆x)e−jϕ}
Im{p(∆x)}

.

It is correct to assume that the phase error is a small quantity; microphone
manufacturers, for example, specify ϕ = 0.3◦ (!) as a tolerable phase error.
Applying e−jϕ = 1− jϕ yields

IM
I

= 1− j Im{jp(∆x)}
Im{p(∆x)}

= 1− ϕRe{p(∆x}
Im{p(∆x}

, (2.100)

where Im{jz} = Re{z} is also used. According to (2.99) and using kx� 1, it
is

p(∆x) = ppe−jk∆x + ps cos(k∆x) ≈ pp + ps − jppk∆x

and consequently, (2.100) becomes

IM
I

= 1 + ϕ
pp + ps

k∆xpp
= 1 +

ϕ

k∆x

(
1 +

ps

pp

)
. (2.101)

In practice, ϕ/k∆x is a small quantity even at low frequencies ω (for ϕ =
0.3π/180, at f = 100 Hz and ∆x = 5 cm it is, for example, ϕ/k∆x ≈ 1/20).
The phase error only plays an important role if the amplitude of the standing
wave field ps is considerably larger than that of the plane wave, ps � pp. The
ratio of the measured intensity I and the actual intensity IM can be estimated
under this conditions to be

IM
I

= 1 +
ϕ

k∆x
ps

pp
. (2.102)

If a measurement error of 1 dB is still tolerable, then

ϕ

k∆x
ps

pp
< 0.2 (2.103)

has to be fulfilled in the measurement. The the standing wave quota de-
creases in practice with increasing frequency. Therefore, (2.103) can also be
interpreted as the determination of the lower band limit of the measured fre-
quency range

f >
ϕ

2π
5c
∆x

ps

pp
. (2.104)

Using ϕ = 0.3π/180 (this corresponds to 0.3◦) and ∆x = 0.05 as an example,
it follows that
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f > 28
ps

pp
Hz .

If ps = 10pp, a tolerance of 1 dB would be achieved above f = 280 Hz. As
will be shown in Chap. 6, the walls of a test stand should have an absorption
coefficient of α = 0.3.

On one hand, equation (2.95) requires small microphone spacing intervals
∆x in order to achieve small errors in the high frequency range. However,
(2.104) requires, in contrast, a large ∆x to account for low frequencies. For
broadband measurements, the frequency range is usually split into two inter-
vals, using two different microphone spacing increments.

2.5.4 Standards

The following standards should be applied to measuring intensity and perfor-
mance:

• ISO 9614-1: Determining the sound level of noise sources in intensity mea-
surements - Part 1: Measurements at discrete points (from 1995)

• EN ISO 9614-2: Determining the sound performance level of noise sources
in intensity measurements - Part 2: Measurements with continuous sam-
pling (from 1996)

• EN ISO 9614-3: Determining sound performance levels from noise sources
in intensity measurements - Part 3: Scanning procedures of accuracy class
1 (from 2003)

• DIN EN 61043: Electrical acoustics; Sound intensity measuring devices;
Measurements with microphone pairs (from 1994)

2.6 Wave propagation in a moving medium

This section is intended to explain the principle phenomena and effects at-
tributed to the moving medium gas. It has already been established that
motion is always relative to a point or coordinate system that is imagined
to be stationary. The question pertaining to the fluid medium means – more
precisely – the examination of its relationship to the sound source and re-
ceiver (ear or microphone). To this end, we will consider the following three
commonplace situations:

1. In a windy, open-air environment, the sound source and sound receiver
remain at a fixed location on the ground while the medium as a whole is
passing over the object. Here one can think of both the sender and ear or
microphone as stationary while the gas is flowing over it.

2. A common everyday experience is hearing an almost stationary sound
source, that is moving at a particular driving speed U relative to the air,
such as a siren on a police squad car or a fire truck. In this situation,
the receiver can be construed as sitting in a stationary medium while the
sound source is moving relative to both.
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3. And finally, the receiver, (the vehicle driver’s ear, for instance) can be
moving to or away from the stationary sound source in the medium. In
this situation, the stationary source can be construed as being fixed in the
medium while the receiver is moving relative to both.

These three cases make up two groups which differ from one another by
an important characteristic. In the first case, the distance between the sender
and receiver stays the same, as well as the duration of the sound incidence
between both remains constant over time. For this reason, the sound signal
traverses the entire signal system without distorting the signal process. On
the other hand, if the sender and receiver are moving relative to one another,
the distance between them and the corresponding signal duration T itself is
time-dependent, and therefore results in a distortion of the sound signal as it
is transferred.

Figure 2.10 clearly illustrates this distinction. A signal transmitted with

Fig. 2.10. Diagram outlining the basic principles of the Doppler effect

the duration T (t0) is emitted at the point in time t0. The signal emitted at the
point in time t0 + ∆T requires T (t0 + ∆T ) to reach its receiver. Only when
the time durations are the same, that is, when the source and receiver are
relatively stationary to one another and T (t0) = T (t0 + ∆T ), is the received
signal an exact unaltered image of the original signal. In the case of pure
sound sources, (frequency fQ) the same frequency arrives at the receiver, thus
for the receiver frequency fE , fE = fQ is true. Chapter 13 will show how
this implicates an important characteristic for all time-invariant (and linear)
transmitters: the frequencies of the stimulus (source) and the effect (receiver)
are the same.

The relative motion of the sender and receiver to one another constitutes
a nearly exact universal image for all time-dependent, that is, time-invariant,
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transmitters. In this case, both time durations T (t0) and T (t0 + ∆T ) differ
because the distance between source and receiving point has changed during
the time interval ∆T . Therefore, pure tones on the sender-side undergo a
change in frequency during the transmission, resulting in a difference between
the frequencies of sender and receiver, fQ and fE respectively. This effect is
known, according to its first discoverer, as the Doppler effect.

The acoustical systems of stationary sources and receivers, or sources and
receivers moving relative to one another – and/or relative to a stationary or
moving medium – are analogous to a flowing river or a placid lake, where
waves are moving along the surface (see Figure 2.11); the latter images depict
air sound waves in gas.

Fig. 2.11. Diagram outlining the basic principles of the Doppler effect for a receiver
moving with the fluid

First let us consider the first case of a stationary source as observed by
a likewise stationary onlooker, standing on the river bank (Figure 2.11). The
stationary source can be imagined as some sort of an impact testing machine
which is repeatedly striking the surface of the water with a period of TQ.
The source frequency which it emits is fQ = 1/TQ. In a stationary medium
U = 0 the disturbances caused by the machine move along the wave guide
at the velocity c, covering exactly ∆x = cTQ distance during a time period.
For a fluid medium, the fluid disturbances are taken up as well, left by the
source ’in its wake’ at a velocity of c+U , covering a distance of exactly ∆x =
(c + U)TQ during one time period. The distance between two disturbances
can be defined by its local period and therefore, by its wavelength λ, which
is equal to the distance covered by the disturbances in TQ. The wavelength is
therefore described by
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λ =
c+ U

fQ
. (2.105)

The wavelength has therefore increased in proportion to the relatively
stationary medium. This is why it is completely irrelevant whether the wave
surges are observed by someone standing (or photographing) from the river
bank or by a receiver moving along with the medium. The same wavelength
would even be observed by a ship swimming with the current as by someone
standing on the bank.

As mentioned earlier, the frequencies of the source and the receiver are
the same. This is also implicated by simple analogy of the running wave
surges caused by the machine. During the time interval ∆T the disturbances
(c + u)∆T pass by the receiver. The number of disturbances passing by the
observer NE during the time interval ∆T is therefore

NE =
∆x

λ
=

(c+ U)∆T
λ

. (2.106)

The ratio NE/∆T describes the frequency at the receiver of

fE =
NE
∆T

. (2.107)

Eq.(2.105) results in fE = fQ.
A similar observation can be made of the Doppler shift from an observer

moving with the fluid. In this scenario, the waves are moving past him at a
velocity of c (see Figure 2.11), whereby the following applies to the number
of wavelengths passing by him NE

NE =
c∆T

λ
. (2.108)

After applying the wavelength according to eq.(2.105) the result is

NE/∆T =
c

λ
= fQ

c

c+ U
. (2.109)

The left side, once again, describes the receiving frequency. The right side can
be simplified using the velocity ratio U/c by substituting it with the Mach
number M

M =
U

c
. (2.110)

The Doppler shift for a stationary source (frequency fQ) with an observer
moving with the medium at a frequency of fE) can be expressed as

fE =
fQ

1 +M
. (2.111)

As explained in the beginning, only relative motion is taken into account.
Whether the fluid is moving with an embedded receiver and the source is
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stationary (on the river bank as depicted in the above example), or whether
the fluid and receiver can be considered stationary and the source is moving
away from these two in the opposite direction, is irrelevant. Only when fluid
and receiver are stationary relative to one another can eq. (2.111) be used to
describe the Doppler shift. It goes without saying that M can, in this case,
be either positive or negative. Negative values of U , which describe the case
when source and receiver are moving toward either, are allowed here and in
the text which follows.

Fig. 2.12. Diagram outlining the basic principles of the Doppler effect for a sta-
tionary source and moving receiver in fluid

In contrast, the Doppler shift changes in the third scenario described
above. In this case, the source is moving with the medium. Figure 2.12 pro-
vides the simplest way to describe this phenomena: a stationary source is
floating in a likewise placid lake (fluid) while the receiver at the river bank is
moving left at the velocity of U as shown in Figure 2.12. Of course, in this
case, the wave motions on the water are not of interest to the observer on the
river bank, and the wavelength can simply be expressed as

λ =
c

fQ
. (2.112)

The number of periods in the waves NE that rush by the moving receiver
during the time interval ∆T is

NE =
∆x

λ
=

(c− U)∆T
λ

. (2.113)

Because the observer tries to move in the opposite direction of the waves,
the waves are passing him at a velocity of c-U. Therefore, in this situation
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where the number of wave periods NE surge past the observer during the time
interval ∆T the Doppler shift can be described as

fE =
NE
∆T

=
(c− U)

λ
= fQ

c− U
c

= (1−M)fQ . (2.114)

Eq.(2.114) describes the specific Doppler shift scenario when the medium and
source stationary relative to one another.

As can be seen from the examples above, one must be able to distinguish
whether it is the sender or the receiver which is moving relative to the medium.
Both cases result in different Doppler shifts. When the source is moving rel-
ative to the medium, we have to also consider a change in wavelength. The

Fig. 2.13. Doppler shifts for sources both moving and stationary in the medium.

differences between the rules for (2.111) and (2.114) are, however, quite small
for smaller Mach numbers, as shown in Figure 2.13. Furthermore, one must
take into consideration that a Mach number of only 0.1 in air already corre-
sponds to a velocity of 34m/s, or more than 120 km/h; higher velocities than
this seldom occur in acoustics.

Up until now, the preceding investigation has only served to explain the
essentials of a one-dimensional wave guide. Doppler shift does not occur in
three-dimensional sound propagation under windy conditions with a station-
ary source and likewise stationary observer system on the earth’s surface.
However, in this case, sound propagates in a directional wavelength, which is
easily imaginable: the wavelength moving in the same direction as the wind
will be larger than when it is moving away, and is not yet influenced by fluid
velocity flanking it on the sides. In general, it can be shown that the sound
field pM (x, y, z) for small Mach numbers M taken from the sound field in a
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Fig. 2.14. Particle movements during sound propagation in fluid medium (M =
0, 33) for a stationary source applied to a stationary coordinate system

stationary medium p(x, y, z) can be arrived at with more precision as in the
following

pM (x, y, z) = ejkMxp(x, y, z) . (2.115)

Here we are assuming fluid motion at U in the direction of x. k describes the
wavenumber in a stationary medium (k = ω/c = 2π/λ). The effects already
described can be discerned in Figure 2.14 depicting particle movements. To
further illustrate the depiction in the graph, the wind is shown as blowing
from left to right with a rather large Mach number of M = 0, 33 (approx.
400 km/h).

2.7 Raised waves

Non-linearities have been left out of the previous sections in this chapter for
good reason. Up to the highest perceivable levels of up to 140 dB, the field
quantities sound pressure p, sound density %, and sound temperature T are so
small in comparison to the static dimensions p0, %0 and T0 that the quadratic
expressions composing these dimensions can be left out.

The non-linear components only become significant when the levels are
higher than what is humanly tolerable, such as the sound levels used to test
satellite parts. ’Highest sound level acoustics’ is obviously not a topic in this
’Lecture on Acoustical Engineering’. However, a few remarks can be made
here as a completion to the study of acoustics as a whole.

The most important aspect here is easy to understand. As described in
the last section, the sound propagation speed changes in fluid medium. Now
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the sound particle velocity also describes the local movement of the medium
which occurs in a sound incidence. For this reason, the speed of the sound
increases in regions that are moving at a high local particle velocity in the
same direction as the wave propagation, and decreases in regions that are
moving at a high local particle velocity, but in the opposite direction of the
wave propagation. The particular velocity maxima are moving ’at supersonic
speed’ and therefore faster than the particle velocity minima, which are, in
principle, moving at ’sub-sonic speed.’ In this process, maxima are moving
farther away from their preceding minima and approaching the next minima.
This effect can be demonstrated by simulation processing. The results are
illustrated in Figure 2.15. First, the linear wave can be expressed as

vl(x, t) = v0 cosω(t− x

c
) (2.116)

and the non-linear wave, as

v(x, t) = v0 cosω(t− x

c+ vl(x, t)
) = v0 cos (ωt− 2πx

λ(1 + vl(x, t)/c)
), (2.117)

each a spatial function for t = 0 in the case of v0 = 0.025c, corresponding to
a sound level of approximately 163 dB. Much smaller particle velocity ampli-
tudes, of course, disrupt this effect. The slope of the flanks increase, because,
as mentioned before, the maxima are moving toward the minima which follow
them, explaining the wave raising effect. As can be seen here, the wave is
further raised with increasing distance to the source (here assumed to be at
x = 0). At a certain ’critical’ distance xcr, the maximum will have surpassed
the next minimum, causing a kind of ’breaking’ effect, similar to ocean waves.
The critical distance can be easily determined in this hypothetical model. At
all points in time ωt = 2nπ the maxima can be found at

xmax
λ(1 + v0/c)

= n ,

and the minima at
xmin

λ(1− v0/c)
= n+ 1/2 , .

xmax = xmin is true for the ’breaking point,’ resulting in

n =
1
4

1− v0/c

v0/c
≈ xcr/λ . (2.118)

According to this analysis, it is only a question of distance from the source
until the raised wave effect occurs. In the scenario depicted in Figure 2.15
xcr/λ ≈ 10 . In contrast, when reaching 100 dB, v0 ≈ 7 10−3m/s and thus
v0/c ≈ 2 10−5, or xcr ≈ 104λ. Even at 1000Hz, the breaking point would
therefore be about 3.5 km from the source. This example should make it clear
how the internal attenuation inherent in the medium over long propagation
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Fig. 2.15. Simulation of a raised wave with v0 = 0.025c for all points in time ωt =
2nπ

distances causes a flattening of the raised signal, accompanied by the usual
effects of decreasing sound level with increasing propagation distance in any
three-dimensional continuum.

It remains to be mentioned that the previously indicated (and neglected)
physical non-linearities indeed lead to a change in sound velocity. The easiest
way to illustrate this is to retain the quadratically small Taylor expansion term
in the adiabatic equation of state. In f(x) = (1+x)κ ≈ 1+κx+κ(κ−1)x2/2,
one can replace (2.14) with

p

p0
= κ

%

%0
+
κ(κ− 1)

2
(
%

%0
)2 = κ

%

%0
[1 +

κ− 1
2

%

%0
] . (2.119)

Now when applying c2 = κp0/%0, as we did before, the result is

p = c2N% , (2.120)

whereby cN indicates a non-linear, space- and time-dependent sound velocity

c2N = c2[1 +
κ− 1

2
%

%0
] . (2.121)

Similarly, it can be shown that the non-linear expression contained in the
mass conservation principle according to eq.(2.18) can likewise be interpreted
as a non-linear change in the sound velocity.
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2.8 Summary

Sound consists of very small changes in pressure p, density %, and temperature
T of gases, which disperse in the form of waves in the medium at the speed of c.
For pure tones, the waves have a wavelength of λ = c/f . Thermal conduction
does not occur in sound phenomena, which undergo very rapid changes in
time. For this reason, along with the Boyle-Mariotte equation, the adiabatic
equation of state holds for sound phenomena. Based on the Boyle-Mariotte
equation, acoustic quantities are given by

p

p0
=

%

%0
+
T

T0
.

The adiabatic equation expressed in terms of quantities of state is

% =
p

c2
.

Herein c signifies the sound propagation speed, which is

c =
√
κ

R

Mmol
T0

and is not only dependent on the material (type of gas), but also on the tem-
perature. The particle velocity v describes the local air movements associated
with the changes in density. For plane progressive waves (in a reflection-free
wave guide), the ratio of pressure and particle velocity remains constant:

p = %0c v

The constant %0c is known as the wave impedance or as the specific resistance
of the medium.

Standing waves result from two progressive waves of equal amplitude but
propagating in opposite directions. These waves either originate due to reflec-
tion or are the product of two sources. In the case of an incomplete reflection,
the sound field is comprised of progressive (’active’) and standing (’reactive’)
components.

Resonances can result from losses of sound energy in a gas-filled volume
which are not caused by either inner losses or by losses due to outward trans-
portation. These types of losses can be explained by the ’principle of in-phase
alignment’ in the case of one-dimensional wave guides.

The instantaneously stored sound energy travels along with sound in the
medium. Sound energy consists of two components: energy of motion and
compression energy. The transport of the sound energy is described by the
intensity I = P/S. The intensity is the ratio of the power P permeating the
surface area S to the surface area S itself. Overall, it can be shown that the
intensity consists of the product of pressure and particle velocity



2.10 Practice exercises 63

I = p v .

Acoustic power measurements, as in intensity field measurements, involve find-
ing v, either by using a pair of microphones, or by taking measurements under
free-field conditions in the far-field, where the intensity can be measured based
on measurements of the sound pressure alone.

The Doppler effect results form situations with relative motion between
sound source and receiver. The frequency shifts are caused by time-dependent
time delays. The Doppler frequency slightly differs for moving sources or for
moving receivers relative to the fluid.

2.9 Further reading

The book ”Waves and Oscillations” by K. U. Ingard (Cambridge University
Press, Cambridge 1990) provides an excellent and easily understandable de-
scription of the nature of waves. It describes acoustical waves in gases, fluids
and solid state bodies. It also describes the behavior of other types of waves,
such as electromagnetic and water surface waves. F. Fahy’s book ”Sound In-
tensity” (Elsevier, London and New York 1995) is recommended for further
reading on the topic of sound intensity measurement techniques.

2.10 Practice exercises

Problem 1

Which of the following space and time functions satisfy the wave equation?

f1(x, t) = ln(t+ x/c)

f2(x, t) = e(x−ct)

f3(x, t) = sh(ß(ct+ x))

f4(x, t) = cos(ax2 + bx3 − ct)

Problem 2

For experimental purposes, a cavity between double window panes is filled
three different times with hydrogen (density 0.084 kg/m3), oxygen (density
1.34 kg/m3), and carbon dioxide (density 1.85 kg/m3). To ensure that the
glass panes do not cave in or expand, the pressure in the three gases is kept
equal to the outside air pressure.

• How high is the speed of the sound in the above bivalent gases (air density
= 1.21 kg/m3, speed of sound = 340m/s)?

• How large are the elasticity moduli E = %0c
2 for the above gases and for

air?
• How large are the wavelengths at the frequency of 1000Hz?
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Problem 3

An effective sound pressure value of 0.04N/m2 is determined in a progressive
plane wave.How high is

• the particle velocity of the sound (at %0c = 400 kg/sm2),
• the particle displacement at the frequencies 100Hz and 1000Hz,
• the sound intensity,
• the sound power permeating a surface of 4m2 and
• sound pressure, sound intensity, and sound power levels for the surface

4m2?

Problem 4

The A-weighted sound pressure levels listed in the table are measured in an
anechoic chamber on a cubic enveloping surface which encompasses a sound
source. The 6 partitions of the enveloping surface are 2m2 each. How high is
the A-weighted sound performance level of the sound source?

Partition L/dB(A)

1 88
2 86
3 84
4 88
5 84
6 83

Problem 5

A sound source moving at the frequency of 1000Hz is moving at speeds of
50 km/h (or 100 km/h or 150 km/h) relative to a receiver. How high is the
receiver frequency if

• a) the source is at rest in the medium?
• b) the receiver is at rest in the medium?

Consider for both scenarios two cases each: the first case, when the sender and
receiver are moving toward each other, and the second case, when the sender
and receiver are moving away from each other.

Problem 6

How high is the sound propagation speed at a temperature of 200 C, in ’stale’
air (nitrogen) and in pure oxygen?
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Problem 7

Reflections with low acoustic impedance are described by a reflection coeffi-
cient of r = −1. Such a reflector exists in situations such as a tube with a
drastic increase in the cross-section at the opening (e.g. the lower end of a
recorder).

• Give the equation for the space-dependent sound pressure in front of the
reflector in the spatial range of x < 0 (origin is at the reflector)? Where
do the nodes lie on the pressure-dependent continuum?

• Find the particular sound velocity. Where are the sound nodes located?
• Derive the resonance function and give the first three resonance frequencies

for a tube length of 25 cm. A distance of the sound source l from the
reflector in an expanded membrane moving at a speed of v0 is given.

Problem 8

How large are the wavelengths in water (c=1200m/s) at 500Hz, 1000Hz,
2000Hz and 4000Hz?

Problem 9

A half-infinite, one-dimensional wave guide (a tube filled with air with a wave
capturer at each end) with a surface cross-section S is stimulated by a plane
loudspeaker membrane at x = 0. Let the membrane particular velocity vM (t)
be vM (t) = v0 sinπt/T in the time interval 0 < t < T ; beyond this interval
for t < 0 and for t > T , vM (t) = 0. Define

• the sound pressure for all points in time and space,
• the sound pressure for the particular sound velocity,
• the sound pressure for the energy density,
• the sound pressure for the intensity and
• the total energy radiating from the source.

How much energy does the source give off at a particular speed of v0 =
0, 01m/s = 1 cm/s, at a wave guide diameter of 10 cm with a circular cross-
sectional surface, and the signal duration at T = 0.01s?

Problem 10

A highly significant error margin of 2 dB (3 dB) is tolerated for measurements
using an intensity test probe.

• How large is the ratio of sensor distance ∆x to wavelength λ at the highest
permissable frequency reading?

• How high is the frequency reading for ∆x = 2.5 cm?
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Problem 11

What is the highest acceptable phase tolerance for the microphones when the
intensity sensors are ∆x = 5 cm apart from each other and are to measure
sound intensities with a standing wave component of ps/pp = 10 (ps/pp = 100)
down to as low as 100Hz with an accuracy of 1 dB?

Problem 12

A vehicle with a siren, a police patrol car or fire truck, is driving by a micro-
phone situated above the freeway with the siren on at no wind at a constant
speed U . The microphone registers a frequency of fE1 = 555.6Hz (the most
significant frequency of a warning signal) just before the car drives by. After
it drives by, the frequency is registered just at fE2 = 454.6Hz. How fast did
the vehicle pass by? How high is the transmitting frequency of the siren?



3

Propagation and radiation of sound

As we know from experience (and as will be shown in the next sections), sound
sources have a directivity. The sound level perceived by the observer is not
dependent on the distance from the source alone. If the source is rotated, the
level changes with angle.

On the other hand, it is known from several technical sound sources of
interest that they radiate sound in all directions uniformly. Sound sources
which are not too large like small machinery, ventilating system outlets emit-
ting low frequency sound, ramming, hammering and banging and lots of other
mainly broadband sound incidents have a negligible beam pattern in the sound
field they produce. It can generally be shown that unilateral extruding sound
sources show an omnidirectional radiation, if their size is small compared to
the wavelength. Their directivity at sufficiently low frequencies is spherical.
Finally, when estimating the radiation of sound sources, where the details
of their directivity are unknown, one has to assume that their sound field is
omnidirectional (which might actually not be the case).

Thus, the chapter on propagation and radiation begins with a discussion of
omnidirectional sound radiation in free field where secondary influences such
as weather conditions are neglected.

3.1 Omnidirectional sound radiation of point sources

Applying an energy principle considerably simplifies the investigation of om-
nidirectional sound sources. The acoustic power P penetrating an arbitrary
surface which surrounds the source must be identical for every surface (assum-
ing that propagation losses can be neglected for distances not too far from
the source). This assumption is also valid for the source surface itself which
is located directly on the source. Therefore, P has to be equal to the power
which the source injects into the medium.

A spherical surface S = 4πr2 is chosen for an omnidirectional radiation
pattern, with the source located at the center (Fig. 3.1). At larger distances

M. Möser, Engineering Acoustics, DOI 10.1007/978-3-540-92723-5_3,  
© Springer-Verlag Berlin Heidelberg 2009  



68 3 Propagation and radiation of sound

from the source the waveform of the radiated spherical waves resembles in-
creasingly that of a plane wave, because the radius of curvature of the wave-
fronts decreases. Using the power relations derived in Sect. 2.4 for the far-
field (r � λ (see also Sec. 3.5.4)) we obtain

P =
1
%c
p2
rmsS =

1
%c
p2
rms4πr

2 . (3.1)

Fig. 3.1. Spherical surface around an omnidirectional point source used for deter-
mining radiated sound power

The mean square pressure is thus inversely proportional to the square
of the distance. It is sensible to express (3.1) logarithmically, i.e. sound
pressure level. Equation (3.1) is non-dimensionalized by the reference value
P0 = p0

2S0/%c with S0= 1 m2 (see (2.79) on p. 44) and the logarithm to the
base 10 is taken (lg = log10), resulting in

Lp = Lw − 20 lg
r

m
− 11 dB, (3.2)

where Lp represents the sound pressure level at distance r. Based on the
distance law (3.2), the level falls off at 6 dB per doubling of distance. If the
noise source is located on a totally reflecting surface (like the ground), the
power flows through a hemisphere only. In this case, instead of (3.2), we
obtain

Lp = Lw − 20 lg
r

m
− 8 dB. (3.3)

3.2 Omnidirectional sound radiation of line sources

Sometimes in practice, extended noise sources occur, which may consist of
multiple, omnidirectional radiating (and incoherent) point sources. Examples
are trains and busy streets. The power is calculated using a cylindrical surface
(Fig. 3.2) and with l being the length of the line source, we obtain

omnidirect ional
source

distance r

sphere surface 4πr2
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P =
p2

rms

%c
2πrl, (3.4)

resulting in a level of

Lp = Lw − 10 lg
l

m
− 10 lg

r

m
− 8 dB (3.5)

or, if the source is again located on a reflecting surface

Lp = Lw − 10 lg
l

m
− 10 lg

r

m
− 5 dB . (3.6)

Here, the sound pressure level only decreases at 3 dB per doubling of distance.
Consequently, very long sources, like busy freeways, are still audible at large
distances. For instance, the level measured at a distance of 1 km is only 16 dB
lower than at a distance of 25 m. The value of Leq(25 m) = 76 dB(A) for the
equivalent A-weighted sound pressure level is certainly not underestimated,
therefore 60 dB(A) remain in the distance of 1 km! Fortunately the presence
of ground, plants and buildings alleviates the noise impact.

Fig. 3.2. Cylindrical surface around an omnidirectional line source used for deter-
mining radiated sound power

In the case of shorter line sources (e.g. public transportation trains), (3.6)
is applied to shorter distances, whereas (3.3) applies to larger distances. In
close vicinity to a source of finite length, the source characteristics resemble
that of a long line source, whereas at larger distances, the individual sources
shrink to a point. The transition between line and point source behavior occurs
at a critical distance of rcr = l/2, as can be seen by setting (3.1) and (3.4)
to be equal to one another. At distances r < rcr, the source behaves like
a line source with the level decreasing by 3 dB per doubling of distance; at
distances r > rcr, it acts like a point source with the level decreasing by 6 dB
per doubling of distance. If the source power has to be measured in practice,
it is usually measured close to the source in order to keep background noise
low. Using (3.6), one can calculate the power and subsequently implement
(3.3) to obtain a reasonable prognosis for distances r > l/2.

distance r

l inesource

length l

cyl inder surface 2πrl
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3.3 Volume velocity sources

As shown earlier, the root-mean-square sound pressure is inversely propor-
tional to the distance, assuming the simplest idealistic case of omnidirec-
tional radiation. For spherically-symmetric outgoing waves, the sound pres-
sure therefore is of the form

p =
A

r
e−jkr , (3.7)

where k is the wavenumber k = ω/c = 2π/λ and A the pressure amplitude.
Although it is formulated based on plausibilities, (3.7) fulfils the wave equation
(2.58), as can easily be shown.

To obtain such a ‘mathematically ideal’ field with perfect spherical sym-
metry, the sound source has to be constructed in a particular way. It consists
of a ‘pulsating sphere’ which is a spherical surface r = a, pulsating radially
with uniform local velocity va (see Fig. 3.3). The pulsating sphere is also
called a simple source (of order zero) or ‘monopole source’, to indicate that
the radiation is independent of the angle.

Fig. 3.3. Sound field (particle displacement) of a sphere pulsating with va

The pressure amplitude A, yet unknown in (3.7), can be calculated from
the velocity va on the surface of the sphere r = a. Similar to (2.26)

%
∂v

∂t
= −∂p

∂r

can be formulated (see also (2.57) in spherical coordinates) and assuming
complex amplitudes as in (3.7)
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v =
j

ω%

∂p

∂r
=

A

rω%

(
k − j

r

)
e−jkr =

A

%c

(
1− j

kr

)
e−jkr

r
(3.8)

is obtained. Because of v = va for r = a it follows that

A =
%cvaaejka

1− j
ka

. (3.9)

Restricting (3.9) to small sources ka = 2πa/λ� 1, the 1 in the denominator
can be neglected, which yields

A = jk%cvaa
2 = jω%vaa

2 . (3.10)

The sound pressure in (3.7) becomes

p = jω%vaa
2 e−jkr

r
(3.11)

now described by source terms only and stating the fact that the energy of
radially outgoing waves decreases with increasing distance.

The radiation of such an exact mathematically defined spherical monopole
source would be of theoretical interest only if the derived knowledge would
not be transferable to all volume velocity sources which are small compared to
the wavelength. The main characteristics of such sources can be interpreted
as a temporal change of their volume or the outflow of fluid mass. Some
examples of expanding bodies are a loudspeaker cone in a closed box, whose
dimensions are small compared to the wavelength, as well as explosions, the
orifice of the exhaust pipe of a car, opening (or closing) valves (e.g. opening
a bottle of sparkling wine). (3.11) can be applied to calculate all these small
volume velocity sources,. The term, describing the source characteristics, is
the volume velocity Q, generally calculated by

Q =
∫
s

vdS (3.12)

which provides the basis for determining the velocity of the source and the
surface area S of the source. For example, let v(t) be the velocity of a gas
flowing through an exhaust pipe of cross-sectional area S. In that case, the
volume velocity Q has to be distributed over the surface of the pulsating
sphere as explained in the latter example Q = 4a2va. In general, volume
velocity sources are described by

p = jω%Q
e−jkr

4πr
. (3.13)

In contrast to plane progressive waves with p = %cv, the three-dimensional
radiation of sound behaves like a time differentiation of the source velocity.
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Because jω represents time differentiation and e−jkr represents a delay of
e−jωτ with the delay time τ = r/c, (3.13) can be written in the time domain
as

p =
%

4πr
dQ(t− r/c)

dt
. (3.14)

If low noise emission is required, the change of the volume velocity with respect
to time has to be small. A sudden, jerky opening of valves is unfavorable in
the sense of noise control; the process could be done more quietly by opening
the valves gradually. An illustration is given in Fig. 3.4.

The sound pressure versus frequency characteristics p ∼ jωQ = bS are
proportional to the acceleration b. This fact is more important in the deter-
mination of frequency response functions of loudspeakers. The results from
this chapter will certainly be used in Chap. 11.

Fig. 3.4. ‘Noisy’ and ‘quiet’ change in volume velocity with equal amount
∫
Q(t)dt

3.4 Sound field of two sources

There are a lot of good reasons to discuss the sound field of two (small) volume
velocity sources. Arrangements of two equal sources, which are opposite in
phase, can often be found in practice. At sufficiently low frequencies, each
small and rigid oscillating surface which is not mounted into a chassis, as in a
loudspeaker without a box or a baffle, can be interpreted as a dipole source.

If the surface ‘pushes’ the air to the right (Fig. 3.5), it ‘sucks’ air from the
left at the same time. The compressed air on the right flows around the edge
to the back of the surface and compensates the density difference (and thus
the pressure difference). The medium produces a ‘short circuit’ of the mass.
The fact that this effect can be described by a pair of equal sources opposite in
phase leads to a non-uniform beam pattern and, at low frequencies, accounts
for a substantial smaller radiation of sound than for single sources, as will
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Fig. 3.5. A rigidly oscillating surface operates as a dipole source

be shown in the following discussions. ‘Active noise control’, a common topic
of discussion these days, attempts (amongst other things) to superimpose a
secondary sound field on that of an existing (primary) source which is opposite
in phase. Even in this case, the simplest model consists of two equal but
opposite sources.

Finally, it is currently a matter of interest in public address systems, for
example, how sound field changes are measured when a second (equal and
coherent) source is added.

Also, discussing the combination of two small sources is the simplest of the
more general case being where a source is composed of an arbitrary number
of multiple elements. The latter results in loudspeaker arrays. Moreover, os-
cillating surfaces in general (like plates, walls, ceilings, etc.) can be regarded
as composed of a superposition of higher order sources.

So there is enough reason to discuss different combinations of two sources.
Practical examples already mentioned will be pointed out when appropriate.

The model under investigation in the following paragraph is shown in
Fig. 3.6 using a spherical coordinate system. The sources are aligned along
the z-axis separated by a distance h; thus, a cylindrically symmetric sound
field is produced which is independent of the circumference angle ϕ. The angle
between the radius R, pointing from the origin towards the field point, and
the z-axis is usually denoted by ϑ; the angles in what follows are defined
with respect to that angle definition. The surface element dS, for example,
appearing in the (following) surface integral is given in spherical coordinates
by

dS = R2 sinϑdϑdϕ . (3.15)

The surface integral of a sphere is covered by the intervals 0 < ϕ < 2π and
0 < ϑ < π. In measuring process, it is also quite common to use the angle ϑN

normal to the axis. These two angles are related by

ϑ+ ϑN = 90◦ . (3.16)
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Fig. 3.6. Arrangement of two sources in a spherical coordinate system and definition
of the used quantities

When predicting beam patterns, ϑN will be used in the following; when inte-
grating intensities to obtain the power, it is easier to express ϑN by ϑ using
(3.16), in which case universal equations for spherical coordinates can be ap-
plied.

The sound field of two sources in general, using (3.13), is given by

p =
jω%

4π

{
Q1

e−jkR

R
+Q2

e−jkr

r

}
. (3.17)

Due to the linearity of the wave equation, the sound field is simply the sum
of the two components.

The main properties of the totals field can certainly be shown in a few
pertinent examples. For this purpose, a color-coded scheme is used to illustrate
the overall sound levels corresponding to each source combination for equally
large sources at different distances a in Figures 3.7 through 3.10. ’Small,’
’medium,’ and ’large’ distances a – relative to the wavelength – are plugged
into various distances expressed as a/λ = 0.25, a/λ = 0.5, a/λ = 1 and
a/λ = 2. The location of the sources is denoted by the two pink-colored dots.
Figures 3.11 through 3.14 depict the case of two identically large sources
(magenta and green dots) opposite to one another at the same distance.

The tendencies illustrated in the aforementioned figures can be easily ex-
plained. At the shortest distance h = 0.25λ between two equally large sources,
the sources (almost) behave as if they were ’at the same place.’ The total field
is, in principle,6 dB brighter than the fields of each source alone. If the sources
are pulled farther apart (or the frequencies diverge at the same distance ac-
cordingly), the first signs of interference become apparent. At h = 0.5λ, the
individual pressures along the middle axis joining both sources virtually dis-
appear at a sufficient distance from each source. In this case, the totals field
is obviously much smaller than the components it is comprised of.
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Fig. 3.7. Sound field for two equally large sources, h = λ/4

Fig. 3.8. Sound field for two equally large sources, h = λ/2
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Fig. 3.9. Sound field for two equally large sources, h = λ

Fig. 3.10. Sound field for two equally large sources, h = 2λ
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Fig. 3.11. Sound field for two opposite but equally large sources, h = λ/4

Fig. 3.12. Sound field for two opposite but equally large sources, h = λ/2



78 3 Propagation and radiation of sound

Fig. 3.13. Sound field for two opposite but equally large sources, h = λ

Fig. 3.14. Sound field for two opposite but equally large sources, h = 2λ



3.4 Sound field of two sources 79

This phenomenon can also be described as ’destructive interference.’ This
case only results in a ’residual sound field’ because the distance decreases at
a slightly different rate of 1/R than of 1/r. This difference continues to di-
minish with increasing distance from the sources. That means that the field
as observed from the outside in grows steadily darker. Of course, the sound
pressure on the mid-plane between both sources inevitably reaches twice the
amount as the individual pressures of each source. If the frequency continues
to increase to h = λ, a global interference pattern ensues, consisting of al-
ternating ’bright’ and ’dark’ bands. This pattern becomes more prominent as
the distance further increases, such as at a distance of h = 2λ.

The equally large opposing sources represented by the magenta and green
dots behave in a similar manner. Upon an initial examination, very small dis-
tances between the sources lead to the impression that the sources are located
in the same place in this case as well. The field sum is therefore globally ’close
to zero’. The residual sound field therefore only occurs due to the fact that the
sources cannot actually occupy the same space at the same time. Naturally,
in this case, the partial pressures in the mid-plane between the sources will
always add up to zero, likewise resulting in the residual sound being concen-
trated mainly on the adjoining axis in sources at a very small distance to one
another for sources close to one another. Of course, at increasing frequencies
(or at increasing distance between the sources) interference immediately crops
up again, albeit with different aspects. Thus we see ’constructive’ interference
at the source axis for h = λ/2. This leads to an elimination of the opposite
signs of the sources at precisely one-half wavelength apart in the dispersion
of the sound components. For this reason, within such spatial dimensions and
under these circumstances, the total field amounts to about double of each
partial field. If the sources move even farther apart, an increasingly distinc-
tive band of alternating bright and dark tones reappears, similar to the case
of the equally large sources described above, only the location of the bands is
reversed, as shown in Figures 3.10 and 3.14.

The principles and effects described above should be understood in light of
their overall implications. Now the sound field varies greatly from field point to
field point within close proximity to both sources r < h. At times, one source
factors in greater than the other, or vice versa, depending on the distance.
For this reason, it makes sense to construct a ”far-field approximation” for
eq.(3.17). As can be seen in the following, far-field conditions allow for a simple
quantitative description.

Although equation (3.17) is correct, it is a little too complex. In close
vicinity to the two sources r < h, the sound field changes rapidly between
different field points. At one point the source at the closer distance dominates
the sound field, at another point it might be the other source, due to the
dependence on distance. For that reason, a ‘far-field approximation’ is defined
for (3.17). As can quickly be shown in the following, this provides us with
simple and easy results for far-field calculations.
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The first simplification of (3.17) is based on the consideration that the
amplitude decrease for increasing distances is roughly the same for r � h and
both sources. Therefore, we can presume 1/r ≈ 1/R, leading us to

pfar ≈
jω%

4πR
{
Q1e−jkR +Q2e−jkr

}
.

Despite the fact that 1/r ≈ 1/R also implies r ≈ R, the phase relations e−jkr

and e−jkR are subject to closer investigation, the interference can be defined
as ’constructive’ or ’destructive’ or ’somewhere in between’ in terms of phase.
This is simply recognized by the transformation

pfar ≈
jω%

4πR
e−jkR

{
Q1 +Q2e−jk(r−R)

}
. (3.18)

The phase function appearing in the last brackets depends on the difference of
the two distances relative to wavelength. Despite the fact that r and R can be
nearly equal in order of magnitude (as assumed in the amplitude decrease),
they can be different, however, by as much as one entire wavelength. It is
this relatively small difference that determines the actual value of the phase
function e−jk(r−R).

To clarify this even more, r is expressed with the aid of a cosine theorem
in terms of R and ϑ

r2 = R2 + h2 − 2Rh cosϑ,

or
r2 −R2 = (r −R)(r +R) = h2 − 2Rh cosϑ,

which can be solved for the sought difference

r −R =
h2

r +R
− 2Rh
r +R

cosϑ .

In the far-field R� h, a first order approximation can be determined where
terms with (h/R)2 and higher order terms are omitted:

r −R ≈ −h cosϑ (3.20)

Equation (3.18) is thus approximated by

pfar ≈
jω%

4πR
e−jkR

{
Q1 +Q2ejkh cosϑ

}
= p1

{
1 +

Q2

Q1
ejkh sinϑN

}
, (3.21)

where p1 denotes the sound pressure of the first source alone (the case Q2 = 0).
Sound fields are reasonably described by a ‘global’ quantity and a field dis-

tribution in all directions given by the sound pressure. The term in brackets in
(3.21) describes the beam pattern of the source pair. Since only the difference
from one angle to another is of interest, the scale can be set arbitrarily. For a
measure of the ‘source strength’ it is unwise to concentrate on a single point
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or a certain direction; the radiated net power P is used as a global measure
instead. It is calculated by

P =
1

2%c

2π∫
0

π∫
0

|pfar|2R2 sinϑdϑ (3.22)

(see also (3.15)). After inserting (3.21)

P = P1

{
1 +

(
Q2

Q1

)2

+ 2
Q2

Q1

sin (kh)
kh

}
(3.23)

where P1 is the radiated power of Q1 alone. The ratio Q2/Q1 in (3.23) is
assumed to be real. (One difficulty in calculating (3.23) is the solution of

I =

π∫
0

cos(kh cosϑ)sinϑdϑ .

The substitution u = cosϑ,du = − sinϑdϑ leads to a simplification of the
integral.)

Treating source attributes separately on the basis of low and high frequen-
cies likewise simplifies the discussion of source behavior as follows.

Low frequencies h/λ � 1

At low frequencies, based on (3.21) and using ejx ≈ 1 + jx (|x| � 1), it can
be stated that

pfar ≈ p1

{
1 +

Q2

Q1
(1 + jkh sinϑN)

}
. (3.24)

As long as the angle-dependent part of 1+Q2/Q1 is non-zero, i.e. a dipole with
Q2 = −Q1, the two source strengths can roughly be added: at low frequencies,
the sources act as if they were put ‘in the same place’:

pfar ≈ p1

(
1 +

Q2

Q1

)
The sound power using (3.23) and sin(kh)/kh ≈ 1 becomes

P ≈ P1

(
1 +

Q2

Q1

)2

.

In the case of identical sources Q2 = Q1, the sound pressure is twice the sound
pressure of the single source

pfar ≈ 2p1 (3.25)

and the sound power is fourfold the power of the single source
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P ≈ 4P1 . (3.26)

On the other hand, in the case of a dipole source Q2 = −Q1, based on (3.24)
we obtain

pfar(dipole) ≈ −jkhp1 sinϑN (3.27)

and based on (3.23),

P (dipole) ≈ 2P1

{
1− sin (kh)

kh

}
≈ P1

(kh)2

3
(3.28)

(with sin(x)/x ≈ 1 − x2/6 for |x| � 1). The dipole has an cardioid beam
pattern at low frequencies, as shown on the left side of Fig. 3.15, the so-called
‘figure-8 pattern’. The corresponding particle displacement is also shown in
Fig. 3.15. The three-dimensional extension is developed by rotating the char-

Fig. 3.15. Beam pattern (left) and particle displacement (right) of a dipole. Source
distance λ/2

acteristics around the axis, where the sources are attached (the term ‘double-
sphere characteristics’ would actually be more appropriate). The sound power
radiated from the dipole at low frequencies is less than that of a single
monopole source

Lw(dipole) = Lw(single) + 10 lg
(kh)2

3
. (3.29)

If the sound power difference were expressed in numbers, it would be not
very large anyway if unrealistic small distances or far too low frequencies
are neglected. For h/λ = 0.125, it amounts to 10 lg((kh)2/3) = −6.8 dB; the
power produced by the dipole is about 6 dB smaller than that of the single
sources. If the point sources are assumed to represent technical sound sources
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of finite expanse, they must only have small dimensions in order to reduce
the power, even at the low frequencies actually favorable to power reductions.
At 170 Hz with λ = 2 m, it is λ/8 = 0.25 m; the distance of the two sources
(and therefore the source dimensions) must be smaller than 25 cm in order to
achieve a power reduction of 6 dB. Larger distances would result in a smaller
sound power level difference (at the same frequency).

The situation described above is one of the reasons that the expectations
with respect to ‘active noise control’ should be exercised with caution – at
least in the case of free-field radiation. Even if – for demonstration purposes
– loudspeakers with opposite phase are used at low frequencies, their center
points are usually spaced more than a quarter of a wavelength apart. The
resulting noise reduction is – in terms of perceived changes – not very large.
Moreover, this low frequency experiment often tempts the engineer to over-
drive the loudspeakers, leading to inflated driving voltages, as low frequencies
are also more difficult to perceive. As a consequence, the loudspeakers produce
non-linear distortion at higher frequencies, where active control is ineffective
anyway. Higher frequencies are more perceptible. However, active control per-
formance may not be audible at all.

High frequencies h � λ

At high frequencies, the beam pattern rapidly changes with varying angle ϑN

and alternates uniformly between the sound pressure maxima

|pfar|2max = |p1|2
(

1 +
∣∣∣∣Q2

Q1

∣∣∣∣)2

(3.30a)

and the sound pressure minima

|pfar|2min = |p1|2
(

1−
∣∣∣∣Q2

Q1

∣∣∣∣)2

. (3.30a)

The reason is the interference of two fields whose magnitudes are added in
the antinodes (maxima) and subtracted in the nodes (minima).

The net radiated power for kh� 1, according to (3.23), is

P ≈ P1

{
1 +

(
Q2

Q1

)2
}

= P1 + P2 . (3.31)

At high frequencies (in contrast to low frequencies), the sound powers of the
individual sources are added to find the net power of the source pair. This
fact is equivalent to the directivity changes already mentioned, where maxima
and minima alternate and can be found in pairs. Therefore the mean square
of the sound pressure is

p2 =
1
2
|pfar|2max +

1
2
|pfar|2min = |p1|2

(
1 +

∣∣∣∣Q2

Q1

∣∣∣∣)2

,
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which also results in (3.31), because the mean square of the sound pressure
and the radiated sound power are proportional quantities.

In the case of identical sources Q2 = Q1 – as well as for equal and op-
posite sources Q2 = −Q1 – the sound power is doubled. It thus follows that
the addition of a secondary source with opposite phase for active noise con-
trol purposes may not only be ineffective, but may additionally represent a
disadvantage. In achieving the minimum radiated sound power, it is therefore
better to omit the ‘active’ source.

This also becomes clear, when the ratio of the two source strengths V =
Q2/Q1 that leads to the minimum radiated power, is determined. Using V in
(3.23) yields

P

P1
= 1 + V 2 + 2V

sin (kh)
kh

,

which, after differentiating, yields the optimum ratio ‘with minimum net
power’

Vopt =
Q2

Q1

∣∣∣∣
opt

= − sin (kh)
kh

. (3.32)

As is obvious from (3.32), the optimum source strength ratio is achieved for
Q2 = −Q1. With increasing frequency, the optimum ratio gets smaller, and
can even have the same sign as the ‘primary source’. At high frequencies, Vopt

tends to zero.
An illustration of these principles is given in Fig. 3.16a using the calculated

radiated power from (3.23) for Q2 = Q1, for Q2 = −Q1 and for the optimum
case (with respect to active noise control), where Q2 = −Q1 sin(kh)/kh, ac-
cording to (3.32). At lower frequencies, the components of the two sources are
added, allowing an increase of 6 dB compared to the single source for Q2 = Q1,
and a decrease of power for equal but opposite sources Q2 = −Q1. The phase
relation becomes unimportant at high frequencies: the net power is always
equal to the sum of the individual powers. The particle displacement for two
different cases is shown in Fig. 3.16b for illustration.

The aforementioned principles can also be extended to a larger number of
sources. The net power for N sources at low frequencies is given by

Ptot =
N∑
i=1

Qi
jω%

4πR
e−jkR (3.33a)

(all source distances are small compared to the wavelength λ)

and at high frequencies,

Ptot =
N∑
i=1

Pi (3.33a)

(all distances are large compared to λ).
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Fig. 3.16. (a) Frequency response functions of the power radiated by two sources

Fig. 3.16. (b) Particle displacement of two equal sources at a distance 2λ. Left:
Sources in antiphase. Right: Sources in phase

3.5 Loudspeaker arrays

Consider a combination of arbitrary omnidirectional coherent sources which
are aligned along one axis. The only practical realization of such one-dimen-
sional chain of sources are loudspeaker arrays, as depicted in Fig. 3.17. For
the sake of simplicity, the velocity characteristics on the source surface are
described by a continuous function v(z). The array has a width b which is
always small compared to the wavelength.
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Fig. 3.17. Loudspeaker array

The contribution of the infinitesimal small source element to the sound
pressure at the field point, also depicted in Fig. 3.17, is given by

dp =
jω% b v(zQ)

4πr
e−jkrdzQ , (3.34)

and thus the total sound pressure is

p =
jω% b

4π

l/2∫
−l/2

v(zQ)
e−jkr

r
dzQ , (3.35)

where l is the length of the array and r is the distance between the source
and the field point (x, z)

r =
√

(z − zQ)2 + x2 .

It is assumed that each source element forms a volume velocity source. There-
fore, the loudspeakers have to be built into an enclosure (a box), to prevent
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a short circuit of the mass (described in the last section). The sound field
given by (3.35) is again cylindrically symmetric with respect to the ϕ-axis
(Fig. 3.17).

At large distances from the source, (3.35) takes on a clearer form. To
derive the far-field approximation using (3.35), the same procedure is used as
outlined in the last section.

r −R = −zQ cosϑ = −zQ cos(90◦ − ϑN) = −zQ sinϑN (3.36)

is written instead of (3.20) for the source element located at zQ (using the
center distance R as depicted in Fig. 3.17), where the terms with zQ

2 (and
higher order terms) have already been omitted. The frequency range at which
the latter can be neglected will be explained in more detail in Sect. 3.5.4 ‘Far
Field Conditions’. Moreover, distances R� l are the focal point here, where
the decrease of amplitude per distance 1/r ≈ 1/R is roughly the same for all
source elements. In the far field (3.35) becomes

pfar =
jω% b

4πR
e−jkR

l/2∫
−l/2

v(zQ)ejkzQ sinϑNdzQ . (3.37)

The expression in front of the integral depicts sound waves whose amplitudes
are inversely proportional to the distance and thus decrease with increasing
distance. The integral describes the power outflow of the space-dependent
source and the field distribution along the different radiation angles. It should
also be noted that the integral represents the Fourier transform of the source
velocity.

The relationship between beam pattern and source array geometry and
how they are influenced by design criteria is more clearly shown using a con-
crete example. First, consider the simplest case, where all loudspeakers are in
phase and driven with the same amplitude v(zQ) = v0 = const.

3.5.1 One-dimensional piston

For the one-dimensional piston described by v(zQ) = v0, using its net volume
velocity of Q = v0bl, (3.37) results in

pfar =
jω%Q

4πR
e−jkR

1
l

l/2∫
−l/2

[cos(kzQ sinϑN) + j sin(kzQ sinϑN)] dzQ .

Due to symmetry, the imaginary part of the integral can be dropped and

pfar = pQ

sin
(
k l2 sinϑN

)
k l2 sinϑN

= pQ

sin
(
π l
λ sinϑN

)
π l
λ sinϑN

(3.38)
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is obtained, where pQ is the sound pressure of the ‘compact’ source (with
equal volume velocity)

pQ =
jω%Q

4πR
e−jkR . (3.39)

It is easier to discuss the result in (3.38) by first discussing the general char-
acteristics of the so called ‘sinc-function’ sin(πu)/πu appearing on the right.
The beam pattern is obtained by substituting u = l/λ sinϑN and taking the
interval |u| ≤ l/λ from the sinc-function. Varying ϑN by −90◦ ≤ ϑN ≤ 90◦

spans the interval −l/λ ≤ u ≤ l/λ, resulting in the beam pattern.
The ‘radiation function’ G(u) = sin(πu)/πu which can be used to pro-

duce all beam patterns using the appropriate intervals, is shown in Figs. 3.18
and 3.19, where Fig. 3.18 shows the function itself (for subsequent calcula-
tions). Fig. 3.19 depicts a representation of the corresponding level. The main
attributes of G(u) are:

• for u = 0 the function value is G(0) = 1
• G(u) consists of alternating positive and negative half-periods of a sine

wave under the envelope function 1/u
• the level representation shows a structure which consists of a main lobe (at

the origin u = 0) followed by side lobes (with the centers u = ±(n+ 0.5),
n = 1, 2, 3, . . .).

Fig. 3.18. Linear representation of the sinc-function
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Fig. 3.19. Level (logarithmic) representation of the sinc-function

Fig. 3.20. (a) Beam pattern (left) and particle displacement (right) of a loudspeaker
array for l/λ = 0.5

Some examples of the resulting beam patterns are given in Figs. 3.20 (a),
(b), and (c) for different ratios of array length and wavelength. At low fre-
quencies l� λ (l/λ = 0.5, as shown in Fig. 3.20 (a)) a nearly omnidirectional
radiation results using the interval |u| < 0.5 as shown in Fig. 3.19. A small
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Fig. 3.20. (a) Beam pattern (left) and particle displacement (right) of a loudspeaker
array for l/λ = 2

Fig. 3.19. (c) Beam pattern (left) and particle displacement (right) of a loudspeaker
array for l/λ = 4

reduction of a few dB can only be detected at the edges ϑN ≈ 90◦. In the case
of the still considerably low ‘mid’ frequency range l/λ = 2 (l = 1.5 m would
result in λ = 0.75 m and a frequency of f = 227 Hz) the interval |u| < 2 be-
comes relevant. The pattern shows a preference towards an angle of ϑN = 0◦,
followed by a side lobe at ϑN = 45◦, which is 13.5 dB below the main lobe.
The ‘dip’ is located at l/λ sinϑN = 1, which is at sinϑN = 1/2 or at ϑN = 30◦.
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Finally, at high frequencies l/λ = 4 (l = 1.5 m would result in λ = 37 cm and
a frequency of nearly 1000 Hz) the beam pattern shows a sharp grouping to
the front, with a thin main lobe, followed by three side lobes on each side.
The corresponding particle displacement is also shown in Figs. 3.20.

For practical purposes, the sound pressure of the main lobe which is p(ϑN =
0◦) = p0 (see (3.38)) is mainly of interest. The radiated power in that case
is only of marginal significance, hence we have left it out of the discussion at
hand.

3.5.2 Formation of main and side lobes

Sometimes the formation of main and side lobes, as occurs in the one-
dimensional piston, is undesirable. Take, for example, loudspeakers installed
in an auditorium to positioned to address the audience seats while ensuring
that the microphone in the room does not pick up any radiated sound in
order to avoid feedback. In other implementations, certain areas are to be
supplied with sound without interfering with other areas (such as during an-
nouncements at train stations). So, applications exist, where side lobes are
disturbing and must be suppressed; the following will discuss a method to
obtain this effect.

The underlying basic idea of side lobe suppression can be deduced from
the simple relationship between time signals and their spectral composition. If
the ‘square-formed’ step-function at the edges of the piston is transformed to
the time domain, discontinuities, which would be audible as ‘cracks’, occur in
time signal. These two signal discontinuities are responsible for the broadband
characteristics of the square signal. As a matter of fact, the sinc function
sin(πu)/πu can be interpreted as the frequency spectrum of the time signal,
where u = fT (T = period of the signal). It is now fairly easy to reduce
the higher frequencies which correspond to the side lobes: the discontinuity
at the edges has to be transformed to a gradually smoother transition. A
signal of the form f(t) = cos2(πt/T ) for −T/2 < t < T/2 certainly has
a narrower bandwidth than a square wave signal. When transferred to the
space representation of the speaker array, a velocity of cos2-form is expected
to yield a suppression of the side lobes.

For this reason, the following discussion will examine the velocity gradient

v(zQ) = 2v0 cos2 π
zQ

l
. (3.40)

The factor of 2 causes a net volume velocity of

Q = b

l2∫
−l/2

v(zQ)dzQ = v0bl

at which is equal to that of the one-dimensional piston.



92 3 Propagation and radiation of sound

The radiated sound field in large distances can again be calculated using
(3.37):

pfar = pQ
1
l

l/2∫
−l/2

2 cos2
(
π
zQ

l

)
ejkzQ sinϑNdzQ .

With the aid of

2 cos2 α = 1 + cos 2α = 1 +
1
2
(
ej2α + e−j2α

)
this results in

pfar = pQ
1
l

l/2∫
−l/2

{
ejkzQ sinϑN +

1
2

ej(k sinϑN+ 2π
l )zQ +

1
2

ej(k sinϑN− 2π
l )zQ

}
dzQ .

Using the symmetry properties again, the three integrals can easily be solved
and

pfar = pQ

{
sin
(
π l
λ sinϑ

)
π l
λ sinϑ

+
1
2

[
sin
(
π
(
l
λ sinϑ+ 1

))
π
(
l
λ sinϑ+ 1

) +
sin
(
π
(
l
λ sinϑ− 1

))
π
(
l
λ sinϑ− 1

) ]}
(3.41)

is obtained for the sound pressure in the far field. It makes sense to first
analyze the typical radiation function as was done in the last section:

G(u) =
sin (πu)
πu

+
1
2

sin (π(u+ 1))
π(u+ 1)

+
1
2

sin (π(u− 1))
π(u− 1)

(3.42)

The different beam patterns varying with frequency are simply obtained from
intervals l/λ sinϑN taken from the function characteristics G(u).

The principal characteristics of G(u) are easily summarized. The three
components – one un-shifted sinc function and two sinc functions, one shifted
by 1 to the right and one shifted by 1 to the left and each multiplied by 1/2 –
are depicted in Fig. 3.20. ‘At first sight’ the change in the sum as compared to
the central sinc-function alone, which is related to the one-dimensional piston,
becomes apparent:

• the width of the main lobe is doubled by the summation and
• the components in the area of the side lobes gradually add up to zero, the

farther the distance of the side lobes is from the main lobe, the more the
summation acts as a suppression of the side lobes.

These effects are again summarized in the graph of G(u) in Fig. 3.21
(linear) and in Fig. 3.22 (level). The area under the side lobes in Fig. 3.21 is
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Fig. 3.20. The three components of the typical radiation function G(u) in (3.42)

Fig. 3.21. Linear representation of G(u)

reduced significantly compared to the ‘single’ sinc function in Fig. 3.18. The
consequences resulting for the levels can be seen, when comparing Fig. 3.22
with Fig. 3.19.

The description of the resulting beam patterns is actually superfluous:
they consist of intervals of G(u) drawn into a polar diagram. Nevertheless,
examples are given in Figs. 3.23a, b and c using the same parameters as for
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Fig. 3.22. Logarithmic (level) representation of G(u)

the piston in Fig. 3.20. In the mid and high frequency range the suppression
of the side lobes can be observed clearly, while at the same time the main
lobe is broadened. The corresponding particle displacement is also shown in
Figs. 3.23a–c.

Fig. 3.23. (a) Beam pattern (left) and particle displacement (right) with formed
lobes for l/λ = 0.5
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Fig. 3.23. (b) Beam pattern (left) and particle displacement (right) with formed
lobes for l/λ = 2
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Fig. 3.23. (c) Beam pattern (left) and particle displacement with formed lobes for
l/λ = 4

There are several other known spatial signal dependencies which result in
a suppression of the side lobes. What they all have in common is that the
reduction of the side lobes is always inherently linked to producing a broader
main lobe. The differences between the individual signal characteristics play
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a minor role in the ‘beam forming’ of loudspeaker arrays. They are masked
by the unavoidable tolerances and inaccuracies.

3.5.3 Electronic beam steering

It is of practical interest, however, if the main lobe can be steered into a
specified direction with the aid of an electronic control device for each source
element of the array. Electronic beam steering can be achieved as described
in the following.

Fig. 3.24. Loudspeaker array with each element driven by a delay line

As a matter of fact, the setup which is needed to achieve the desired effect
can be easily constructed. The voltages driving the loudspeakers need to be
delayed in respect to one another by a time ∆t, as shown in Fig. 3.24. The
ith-loudspeaker (counting from the bottom) receives the signal u(t − i∆t).
The same applies for the velocity signals of the loudspeaker membranes. The
velocity of a source located further up is a delayed version of the velocity of
the first source, depending on its location. Altogether, the loudspeaker array,
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whose elements are driven by an array of equal time delays, acts as a wave
guide. Ideally, given that the source elements are small, the velocity of the
attached source in z can be described by

v(z, t) = f

(
t− z + l/2

cs

)
(3.43)

where f(t) is the velocity time characteristics at the lower far end of the array

v(−l/2, t) = f(t) (3.44)

A spatial function is described in (3.43) which ‘progresses with time’. The
space-time characteristics represent that of a wave. The constant cs in (3.43)
is the propagation speed of the wave along the loudspeaker array; thus it is

cs = ∆z/∆t, (3.45)

where ∆z is the distance between two elements (Fig. 3.24) and (as mentioned)
∆t is the corresponding time delay.

Assuming that the speakers are solely driven by pure tones

f(t) = Re
{
v1ejωt

}
and using

f(z, t) = Re
{
v(z)ejωt

}
we obtain the well-known wave characteristics

v(z) = v1e−j
ω
cs

(z+l/2) = v0e−j
ω
cs
z (3.46)

for the array velocity wave. As with any harmonic wave form, the ratio ω/cs
can be expressed in terms of the source wavenumber ks

ks = ω/cs . (3.47)

This wavenumber ks (and cs) already contains the ‘spatial period’, the so
called ‘source wavelength’ denoted by

λs =
cs
f

=
2π
ks

. (3.48)

It should be noted that so far, we have only discussed the properties of the
composed source array, and not its radiation. cs, ks and λs are thus properties
of the source which need to be distinguished from the properties of the medium
c, k and λ (i.e. propagation speed, wave number and wavelength in air).

The radiation of the sound source defined above can be easily calculated
with the aid of (3.37)

pfar = pQ
1
l

l/2∫
−l/2

ej(k sinϑN−ks)zQdzQ = pQ

sin
(
kl
2 sinϑN − ksl

2

)
kl
2 sinϑN − ksl

2

(3.49)
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(again, pQ = jω%blv0e−jkR/4πR is the pressure of the ‘compact’ source).
To analyze (3.49), the simplest method, as it was already outlined in the

previous two sections, is to explain the ‘typical’ radiation function

G(u) =
sin (π(u− l/λs))
π(u− l/λs)

. (3.50)

The radiation is described by the interval |u| < l/λ. Equation (3.50) simply
represents a sinc function shifted to the right by l/λs. An example is given in
Fig. 3.25 for l/λs = 2. The crucial question is this: does the interval |u| < l/λ,
which is ‘visible’ in the radiation pattern, include the maximum of the sinc
function shifted to u = l/λs or not?

Fig. 3.25. G(u) according to (3.50) for l/λs = 2

Source wavelength λs < air wavelength λ

If the source wavelength λs is smaller than the wavelength in air, the maximum
value of the sinc function is located outside the visible interval |u| < l/λ. The
radiation pattern is described here only by its side lobes; if λs is significantly
less than λ, a very weak sound radiation results which is distributed over
several equal-ranking side lobes – depending on the source wavelength l/λ .

The fact that short-wave sources produce a weak radiation will be ex-
plained in the last chapter of this book more detailed. The most interesting
application of electronically steered loudspeaker arrays prove that only long
wave arrays λs > λ and thus cs > c can be implemented in practice.
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Source wavelength λs > air wavelength λ

The main lobe of the long wave source λs > λ in the typical radiation function
G(u) shifted by u = l/λs is always located in the interval visible to the beam
pattern. The main radiation angle ϑM using

l

λ
sinϑM =

l

λs

results in
sinϑM =

λ

λs
=

c

cs
. (3.51)

Thus, the loudspeaker array defined in the beginning has the same main ra-
diation angle direction for all frequencies. The width of the main lobe and
the number of side lobes only depend on the source length expressed in air
wavelengths. If l/λ � 1, the steered beam pattern is nearly omnidirectional
(Fig. 3.26(a)); for the mid frequencies (Fig. 3.26(b)) and high frequencies
(Fig. 3.26(c)) the beam pattern exists in larger portions of G(u). The corre-
sponding particle displacement is also shown in Figs. 3.26a–c.

Beam formation (as described in the previous section) and beam steering
can of course be combined.
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Fig. 3.26. (a) Steered beam pattern (left) and particle displacement for λs/λ = 2
and l/λ = 0.5
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Fig. 3.26. (b) Steered beam pattern (left) and particle displacement for λs/λ = 2
and l/λ = 2
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Fig. 3.26. (c) Steered beam pattern (left) and particle displacement (right) for
λs/λ = 2 and l/λ = 4

3.5.4 Far-field conditions

The discussions outlined in the previous sections were performed in the ‘far-
field’. In order to maintain the train of thought in the theoretical discussion



3.5 Loudspeaker arrays 101

of sound propagation and radiation, we have deferred until now a more detail
inquiry into the pre-existing conditions under which a far-field can exist. The
answer to this question of far-field conditions is not only a matter of cognitive
completeness but must be verified by experiment, as has the physical phe-
nomena described in the previous sections. We proceed with a discussion of
the measurement parameters that apply to the far-field.

Firstly, it has to be reiterated that an essential condition for far field
approximation (3.37) was the assumption that all sources have about the
same decrease of amplitude per decrease of distance. It directly follows from
this assumption, that the distance R between the source elements and the
field point has to be large compared to the array length l. The first far field
condition thus is given by

R� l . (3.52)

Secondly, it has to be reminded that the expression defining the phase
r−R (as a function of the location zQ of a source element) was approximated
by its linear term only. In order to explore all the conditions eliminating gross
errors, it is necessary to approximate to the quadratic term and examine its
effects. For the triangle formed by R, r and zQ, as shown in Fig. 3.17,

r(zQ) ≈
√
R2 + z2

Q − 2RzQ cosϑ

applies. The customary Taylor series (truncated at the quadratic term includ-
ing z2

Q) is

r ≈ r(0) + zQ
dr

dzQ

∣∣∣∣
zQ=0

+
z2

Q

2
d2r

dz2
Q

∣∣∣∣
zQ=0

.

The coefficients, calculated by the derivatives, are r(0) = R,

dr
dzQ

=
zQ −R cosϑ

r
, hence

dr
dzQ

∣∣∣
zQ=0

= − cosϑ ,

and

d2r

dz2
Q

=
r − (zQ −R cosϑ) dr

dzQ

r2
, hence

d2r

dz2
Q

∣∣∣
zQ=0

=
R−R cos2 ϑ

R2
=

sin2 ϑ

R
,

resulting in

r ≈ R− zQ cosϑ+
z2

Q sin2 ϑ

2R
.

In a second order approximation the phase function is given by

e−jkr = e−jkRejkzQ cosϑe−j
kz2Q sin2 ϑ

2R .

To approximate the exponential function with z2
Q as the argument by 1 (as

implied for the far-field approximation (3.37)), the condition
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kz2
Q sin2 ϑ

2R
� π/4

has to be met for all ϑ and zQ. Because the maximum of zQ is l/2 and the
maximum of sinϑ is 1, the condition is met when

2π
λ

l2

4
1

2R
� π/4,

or in simplified form,
l

λ
� R

l
. (3.53)

Equation (3.53) defines the second condition which has to be met to make
the far-field approximation (3.37) usable. Allowing a phase error of π/4, ‘�’
in (3.53) can be replaced by ‘<’.

Thirdly, the term ‘far-field’ is based on the pre-existing condition that
the impedance z = p/vR (vR = radial component of the velocity) must be
the same as the impedance of the plane progressive wave %c. Thus, ‘far-field’
also implies that the intensity can be determined solely based on pressure
measurements. By using

vR =
j

ω%

∂p

∂R

in (3.37),
p

vR
=

%c

1 + j
kR

is obtained. The third condition for the far-field requires, using

R� λ , (3.54)

that the distance R has to be large compared to the wavelength. Because
kR ≈ 6.3 for R = λ, the deviation from %c is small, if ‘�’ is replaced by ‘>’
in (3.54), too.

Summarizing again, it can be stated that the field point R is in the far-field
if all three conditions

R � l (3.52)
R

l
� l

λ
(3.53)

R � λ (3.54)

are met. Usually, a tolerable error is acceptable in (3.53) and (3.54) if the
pre-existing condition ‘much larger’ is replaced by the less rigorous constraint
‘larger’.

The meaning of (3.52) through (3.54) for the admitted measurement range
quickly becomes clear, if once assumes a given source in a constant distance
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R. The latter is specified in such a way that according to (3.52) R� l is ful-
filled. For instance, let R = 5 m and l = 1 m. Equation (3.53) then states that
with increasing frequency, the far-field conditions are not fulfilled by a certain
limiting frequency. In the given example R = 5 m and l = 1 m, (3.53) is only
valid for λ > 20 cm, thus for frequencies below 1700 Hz. Equation (3.54), on
the other hand, states that the wavelength has to be smaller than 5 m; the
frequency range for the far-field therefore starts f = 68 Hz and higher. Gener-
ally (3.53) and (3.54) define the band limits, within which far-field conditions
are met. Equation (3.52) is related to a geometrical condition.

The far-field conditions (3.52) to (3.54) can easily be transferred to the
sources in the following sections, where l corresponds to the largest of the
source dimensions then.

3.6 Sound radiation from plane surfaces

One is often interested in the sound radiation of large, vibrating surfaces, like
walls, ceilings and windows in buildings and plates, which could represent, for
example, the chassis of a machinery or vibrating parts of vehicles, aircrafts
and trains. There is a large number of examples of sources which consist of
prolated plane surfaces, providing reason enough to expand the discussion of
one-dimensional sources to two-dimensional sources.

The method used is exactly the same as in section 3.5: the vibrating sur-
face is split into infinitesimally small volume velocity sources, whose sound
pressures are summed through integration at the field point. One major dif-
ference to the one-dimensional, narrow array has to be kept in mind. The
sound field due to a single source element is reflected at the larger surface
of the plane. This becomes clear, when imagining a vibrating element of the
surface in an otherwise rigid, motionless surface, where the spherical waves of
the infinitesimal source are totally reflected. The reflection of the sound field
of one individual source element at all the others was neglected from our pre-
vious discussion of loudspeaker arrays. This omission was justified, however,
because the array width b was always assumed to be small compared to the
wavelength and thus consisting of a non-reflecting array.

When dealing with sound radiation of extended surfaces, the reflection at
the source surface itself has to be taken into account. Because the reflected
field of surfaces of finite expansion depends on its nature and its dimensions as
well as on the location of the small volume velocity source element of interest,
the discussion of the radiating surface of finite expanse in the ‘free-field’ would
be far too complicated. If infinite surfaces are considered, these dependencies
disappear. Independent of its location, each source element experiences the
same total reflection at the infinite surface. It will be assumed in the following
that the velocity vz(x, y) pointing in the z-direction is known and given on the
whole surface z = 0. This does not, on the other hand, exclude the discussion
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of vibrating surfaces of finite expanse. They are only regarded as a part of an
otherwise motionless rigid, infinite baffle with vz = 0.

The contribution of one source element in the baffle to the sound field can
be determined with the aid of a simple theoretical experiment. Imagine a small
volume velocity source placed in front of a reflector z = 0 in a distance z. The
reflected sound field can be regarded as originating from a mirror source at
the point −z behind the baffle. The total sound field is therefore produced by
sources at z and −z. If the original source is moved back to the baffle, it can
be seen that the reflection causes a doubling of the source or a doubling of
the sound pressure respectively. Yet the contribution dp of the infinitesimally
small volume velocity source with the volume velocity v(xQ, yQ)dxQdyQ is
given analogue to (3.34)

dp =
jω%v(xQ, yQ)

2πr
e−jkrdxQdyQ , (3.55)

where r describes the distance between the source center and the field point

r =
√

(x− xQ)2 + (y − yQ)2 + z2 . (3.56)

The total sound pressure due to all the source elements is thus

p(x, y, z) =
jω%

2π

∞∫
−∞

∞∫
−∞

v(xQ, yQ)
e−jkr

r
dxQdyQ . (3.57)

Equation (3.57) is known as the ‘Rayleigh integral’. As already mentioned, it
refers to the velocities given in the whole z = 0-plane. For vibrating surfaces of
finite expanse, the Rayleigh-integral assumes that these are a part of a rigid,
motionless surface. Equation (3.57) can therefore only be applied proviso and
with restrictions to the radiation of vibrating surfaces such as, for example,
train wheels, free and un-boxed vibrating loudspeakers, etc. The Rayleigh
integral is still a useful approximation for the actual sound field in such cases,
where the dimensions of the radiating surface in the high frequency range are
already large compared to the wavelength. At low frequencies, the short circuit
of the mass between the front and the rear of the surface (z > 0 and z < 0)
plays a major role in the radiation, and this short circuit is prevented by the
baffle implicitly contained in (3.57). The Rayleigh integral will therefore lead
to wrong predictions for free sources ‘without baffle’ at low frequencies.

The Rayleigh integral can be controlled analytically only in rare cases (an
example with a closed solution of (3.57) at least for the center axis around
z = 0 is given in what follows). In contrast, a simple and lucid far-field ap-
proximation can again be deduced from (3.57). The spherical coordinates used
to describe the field point are given as is generally known as

x = R sinϑ cosϕ
y = R sinϑ sinϕ
z = R cosϑ
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(R: distance of the point (x, y, z) from the origin,
ϑ: angle between the z-axis and the ray between origin and field point
ϕ: angle between the x-axis and the ray projected to the z = 0-plane).

First of all, the assumption of a surface of finite extent is required for the
far-field approximation, indicated here by an integral with finite limits

p(x, y, z) =
jω%

2π

ly/2∫
−ly/2

lx/2∫
−lx/2

v(xQ, yQ)
e−jkr

r
dxQdyQ . (3.58)

As discussed in Sect. 3.5.4, the far-field conditions are assumed as

R� l, R� λ and R/l� l/λ

(l = max(lx, ly)). Again, 1/r ≈ 1/R (R = distance of the center points) is
assumed in the far-field and can be written in front of the integral. For r

r2 = (x− xQ)2 + (y − yQ)2 + z2 = x2 + y2 + z2 + x2
Q + y2

Q − 2(xxQ + yyQ)

≈ R2 − 2(xxQ + yyQ) ,

is obtained, because x2
Q and y2

Q can be neglected under far field conditions.
Using spherical coordinates, we obtain

r2 −R2 = (r −R)(r +R) = −2R(xQ sinϑ cosϕ+ yQ sinϑ sinϕ) ,

or (with r +R = 2R neglecting small quadratic terms),

r −R = −(xQ sinϑ cosϕ+ yQ sinϑ sinϕ) .

The far-field approximation for the radiation of plane surfaces therefore be-
comes

pfar(R,ϑ, ϕ) =
jω%

2πR
e−jkR (3.59)

ly/2∫
−ly/2

lx/2∫
−lx/2

v(xQ, yQ)ejk(xQ sinϑ cosϕ+yQ sinϑ sinϕ)dxQdyQ

(the double integral on the right represents the twofold Fourier transform of
the source velocity).

For most source models of interest, (3.59) can easily be solved and can
be reduced to products of beam patterns already discussed for loudspeaker
arrays. For a square piston, for example, with v = v0 for |x| ≤ lx/2, |y| ≤ ly/2
and v = 0 everywhere else (with Q = v0lxly),

pfar =
jω%Q

4πR
e−jkR

sin
(
π lxλ sinϑ cosϕ

)
π lxλ sinϑ cosϕ

sin
(
π
ly
λ sinϑ cosϕ

)
π
ly
λ sinϑ cosϕ
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is obtained. Similar results are obtained when assuming sources which have a
wave-formed shape.

It particularly follows from (3.59) at low frequencies klx � 1 and kly � 1
that

pfar '
jω%

4πR
e−jkR

ly/2∫
−ly/2

lx/2∫
−lx/2

v(xQ, yQ)dxQdyQ . (3.60)

In a first order approximation, the sound field is therefore proportional to the
net volume velocity of the source. For sources with a wave-formed shape, minor
details possibly determine the net volume velocity and thus the radiation, as
discussed earlier.

Finally, it should be mentioned that by definition the impedance %c is
present in the far-field. Hence, the intensity is given by

I =
1

2%c
|pfar|2 . (3.61)

The sound power can therefore be calculated by integrating over a semi-sphere:

P =
1

2%c

π/2∫
0

2π∫
0

|pfar|2R2 sinϑdϕdϑ . (3.62)

3.6.1 Sound field on the axis of a circular piston

In arriving at the far-field approximation in the previous sections, great impor-
tance was attached to the conditions applying for it. It is certainly of interest
to assess what effects can be expected if the far-field conditions are not met.
The following discussions will answer this question by means of an example.
The sound pressure on the center axis of a circular piston (velocity v0 = const.
at r < b) is calculated from the Rayleigh integral (3.57) (see Fig. 3.27).

Expressed in polar coordinates

xQ = RQ cosϕQ

yQ = RQ sinϕQ

dxQdyQ = dS = RQdRQdϕQ

equation (3.57) becomes

p =
jω%v0

2π

2π∫
0

b∫
0

e−jkr

r
RQdRQdϕQ , (3.63)

where r =
√
R2

Q + z2 represents the distance between the source element RQ

and the field point on the z-axis. The radius of the piston is denoted by b.
Equation (3.63) is synonymous with
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p = jω%v0

b∫
0

e−jk
√
R2

Q+z2√
R2

Q + z2
RQdRQ . (3.64)

With aid of the substitution

u =
√
R2

Q + z2

du =
RQdRQ√
R2

Q + z2

RQ = 0 : u = z

RQ = b : u =
√
b2 + z2

equation (3.63) can easily be solved, as in

p = jω%v0

√
b2+z2∫
z

e−jkudu = %cv0

(
e−jkz − e−jk

√
b2+z2

)
,

or

p = %cv0e−j2πz/λ
{

1− e−j2π
(√

(b/λ)2+(z/λ)2−z/λ
)}

. (3.65)

Fig. 3.27. Location of the circular piston in a polar coordinate system with a
description of the quantities

Obviously, the sound pressure can have zeros on the z-axis. The location
of the zeros p(z0) = 0 is obtained by√

(b/λ)2 + (z0/λ)2 − z0/λ = n .
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It follows that

(n+ z0/λ)2 = n2 + (z0/λ)2 + 2nz0/λ = (b/λ)2 + (z0/λ)2

or

z0/λ =
(b/λ)2 − n2

2n
. (3.66)

In (3.66) n passes through the values n = 1, 2, 3, . . . as long as positive values
for z0/λ are obtained. For example,

• for b/λ = 1 a single zero z0/λ = 0(n = 1) at the center of the piston itself
is obtained and

• b/λ = 4 results in the zeros z0/λ = 7.5 (n = 1), z0/λ = 3 (n = 2),
z0/λ = 1.1667 (n = 3) and z0/λ = 0 (n = 4)

(some examples of the axial level distribution are shown in Fig. 3.28). The
zero with the largest distance from the source for n = 1 is approximately
given by

zmax/λ ≈
1
2

(b/λ)2 . (3.67)

In the range z < zmax axial nodes p = 0 are present, with a number of
(approximately) b/λ.

Now a sound field structure with pressure nodes and antinodes in the
direction of the measured distance (the z-direction, in that case) is a contra-
diction to the assumption of a far-field. As (3.60) shows, the far-field can be
considered as the range of distances between source elements, where the only
dependency on R is the amplitude decrease by 1/R (and therefore the level
falls off at 6 dB per doubling of distance). According to (3.60) the structure of
alternating minima and maxima along the distance axis is impossible in the
far-field.

Thus, the range z < zmax is outside of the far-field. Only for

z � zmax =
1
2
b2

λ

or for
b

λ
� z

b
(3.68)

‘far-field conditions’ apply. Equation (3.68) is identical to (3.53) which was
derived earlier.

On the other hand, based on the preceding discussions, the predictable
effects can be shown if too small of a measurement distance z is selected,
violating (3.68). The measured circumferential level can show sound pressure
minima which are actually present for a particular distance but do not appear
at other, larger distances. The measured beam pattern is therefore untypical
for other distances and thus quite meaningless. Only beam patterns measured
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Fig. 3.28. (a) Space dependence of the sound pressure level along the center axis
z in front of the circular piston for b/λ = 0.5

Fig. 3.28. (b) Space dependence of the sound pressure level along the center axis
z in front of the circular piston for b/λ = 2

in the far-field no longer fluctuate, and this can be understood as being the
aim of the far-field definitions.

Finally, the far-field approximation related to (3.64) is derived. If z � b is
implied, then
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Fig. 3.28. (c) Space dependence of the sound pressure level along the center axis
z in front of the circular piston for b/λ = 4

√
z2 + b2 = z

√
1 + (b/z)2 ≈ z

(
1 +

1
2
b2

z2

)
= z +

1
2
b2

z2

is valid and the far field approximation becomes

pfar ≈ %cv0e−j2πz/λ
{

1− e−jπ
b2
λz

}
.

If, according to (3.68), b2 � λz, using e−jx ≈ 1 − jx can be applied to
determine the far-field pressure

pfar =
j%cv0b

2π

λz
e−j2πz/λ =

jω%πb2v0

2πz
e−j2πz/λ . (3.69)

Equation (3.69) is identical to the result in (3.59) for ϑ = 0 (which denotes
the z-axis).

3.7 Summary

The sound pressure level decreases by 6 dB with the doubling of the distance
for point sources, and by 3 dB for line sources. Small volume velocity sources
create a sound field with spheres as wave fronts. Combined sources result in
interferences which create beam patterns. The latter may change according
to the distance from the source. Only in the far-field which is defined by the
three conditions r >> l, r >> λ and r/l >> l/λ can the beam pattern remain
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uninfluenced by the distance to the source. In the case of a dipole, the beam
pattern consists in a (rotating) eight. In-phase vibrating sources with large
surface areas, such as loudspeaker arrays, etc., create beam patterns, which,
depending on the size and wavelength, consist of a main lobe followed by side
lobes. This structure can be specifically altered by weighting the elements.
By introducing time delays to loudspeaker control signals, the main lobe is
shifted to some desired angle. Such wave-formed radiators produce sound
fields along their edges only, given that the source’s wavelength λs is shorter
than that of the surrounding medium λ, or λs < λ. For sources with long
wavelengths, λs > λ, the entire surface of the source is part and parcel to the
entire acoustical process. The directivity of the main lobe is characterized by
a plane wave radiated into an oblique direction which can be derived from
sin ϑ = λ/λs.

3.8 Further reading

To deepen the contents of this chapter, it is particularly recommended to read
Chap. 5 in the book (in German) by Meyer and Neumann ”Physikalische und
Technische Akustik” (Vieweg Verlag, Braunschweig 1967) and Chap. 7 on
sound radiation from structures in the book by Lothar Cremer and Manfred
Heckl ”Structure Borne Sound”, translated by B.A.T. Petersson (Springer,
Berlin and New York 2004).

3.9 Practice exercises

Problem 1

A sound pressure level of 50 dB(A) has already been registered at an emission
control center coming from a neighboring factory. A pump is planned for
installation 50m away from the emission control center. The pump can only
emit up to LP = 53.3 dB(A), so that the overall sound level does not exceed
55 dB(A). How high can the A-weighted sound power level of the pump be in
this case? See Problem 1 from the Practice Exercises in Chapter 1.

Problem 2

A small valve emits a volume flow Q(t) according to the sketch in Figure
3.29. Find the time-dependent sound pressure square at 10m distance for
Q0 = 1m3/s and for the signal slope times of TF = 0.01 s, 0.0316 s and 0.1 s.
How high is the sound pressure level here?
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Fig. 3.29. Time-dependent volume flow in Problem 2

Problem 3

A suspended loudspeaker can produce a considerable decibel level of 100 dB
heard from 2m away. How great is the emitted sound power and power level?
How great is the efficiency rate if the electrical power input is 50W?

Problem 4

A loudspeaker array has a space-dependent particular velocity as shown in
the diagram in Figure 3.30(l=array length). Find the beam patterns for all
frequencies.

Problem 5

Far-field measurements are to be taken of a sound source extending to 1m
(50 cm, 2m). To satisfy the geometric requirements R >> l, the measurements
are taken at a distance of R = 5 l, or R = 5m (2, 5m, 10m).

a) If in the remaining far-field conditions, the condition ’>>’ (’much larger
than’) is replaced with ’five times greater than’: in which frequency range
can the far-field measurements be taken?

b) Otherwise, if the ’>>’ (’much larger than’) condition is replaced by ’twice
as large as’: in which frequency range can the far-field measurements be
taken?
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Fig. 3.30. Space-dependent particular speed of sound in Problem 4

Problem 6

A sound pressure level of 84 dB(A) is measured 10m away from a finite line
source (train) which is 100m long. How high is the sound pressure level mea-
sured at distances of 20m, 200m and 400m?

Problem 7

Four sound sources are arranged on coordinate axes as shown in the following
diagram.

Fig. 3.31. Arrangement of four sound sources with relative phase shifts
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The sources’ volume flows have the same absolute value; however, they
vary relative to one another clockwise in phase by 90◦, as shown in the di-
agram. Determine the spatial sound pressure. State the particle motion in
the film using the parameters 2h/λ = 0.25; 0.5; 1 and 2. Take the following
circumstances into account:

Assume a line source, where the field can be defined by

p = Ae−jkr/
√
r

(where r is the distance between the source point and field point). In contrast
to point sources, the interference pattern is unaffected. The only effect is a
slower reduction in amplitude from the source to the field.

Rather than analyzing the particle velocity by differentiation, the particle
velocity can be approximated by calculating the difference of pressure using
the proportionalities

vx ∼ p(x+ λ/100, y)− p(x, y)

and
vy ∼ p(x, y + λ/100)− p(x, y) .

Also take into consideration that the dimension of the source (and thereby
the velocity scale) is completely arbitrary.

Problem 8

The displacement of a piston ξ (with surface area S) of a small loudspeaker
in a box is brought about my electronic means:

• ξ = 0 for t < 0,
• for 0 < t < TD is ξ = ξ0 sin2 (π2

t
TD

) and
• for t > TD is ξ = ξ0.

What is the time- and space-dependent sound pressure in the entire space?

Problem 9

Determine the sound pressure emanating from the circular piston with radius
b in a reverberant wall in far-field.

Problem 10

The objective is to investigate the sound radiation of the plate and bending
vibration of the form

v(x, y) = v0 sin (nπx/lx) sin (mπy/ly)
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(Plate dimensions lx and ly, resonator in reverberant wall, source area in
0 < x < lx and 0 < y < ly), where both wavelengths

λx =
2lx
n

and
λy =

2ly
m

are small relative to the sound source wavelengths in air λ (λx << λ and
λy << λ). How great is the sound pressure approximately in the far-field,
when the cross-sectional measurements lx and ly are likewise very small in
relation to the sound wavelengths in air?

Problem 11

Where do the pressure nodes lie on the axis just before a circular piston with
a diameters b/λ = 3.5; 4.5 and 5.5?

Problem 12

A pair of sound emitters consists of two sources with volume flows Q1 and
Q2 = −(1 + jkh)Q1, whereby h describes the distance of the sources to one
another. Find the directivity pattern of the source pair for low frequencies
kh << 1.
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Structure-borne sound

4.1 Introduction

Vibrations and waves in solid structures, like, for example, vibrations in plates
and beams, walls, ships and buildings, etc., are summarized by the term
‘structure-borne sound’. Structure-borne sound has major importance with
respect to solving noise control problems: the air-borne sound into (or from)
the aforementioned solid structures is caused by motion in the structure’s sur-
face. In many cases it is the structure-borne sound that is responsible for the
resulting sound in air (or sound in liquids). Even the transmission through
walls, ceilings and windows, etc. is essentially a structural problem.

A vital and fundamental difference exists between sound waves in air and
sound waves in structures. A gas (or a liquid) reacts with a change in pressure
if its volume is changed. A mere change of the geometrical shape of the gas
mass has no influence on the pressure at all (apart from losses due to friction).
The boundaries between elements of volume in a gas therefore only transmit
forces normal to their surface.

As illustrated by means of a simple example, a bendable thin beam (such
as a ruler),- solid structures not only try to resist a compression of the volume
they fill, but also a deformation of their shape. The boundaries in solid struc-
tures therefore transmit tangential forces, or shear tension, as well. By means
of the example, the bendable beam, the existence of forces normal to its axes
can easily be observed: these shear forces keep the beam in its bendable shape.
It would otherwise be impossible for it to stay in this shape.

Instead of only the normal component of the tension, which appears in
gases, three components of forces have to be taken into account at the bound-
aries when dealing with elements of volume in solid structures (Fig. 4.1). Just
as one uses the force exerted onto the surface (pressure) for the purposes of
definition in the case of airborne sound, one uses tension to formulate the the
force laws under the circumstance of structure-borne sound. The tension is
equal to the ratio of force to surface area. Furthermore, a distinction has to be
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Fig. 4.1. Normal tension and shear tension on the element of volume in a solid
structure

made between normal tension (normal to the imaginary boundary) and shear
tension (tangential to the boundary).

All external tension components result in an elastic deformation of the
structure which reacts with a resilient oscillation to its equilibrium position
when the external tension is removed. The observed oscillation can be ex-
plained by a continuous conversion of potential energy which is stored in a
change of shape and volume, into kinetic energy of the involved masses and
vice versa. This ‘reciprocal transformation’ of the stored energy is not only
taking place continually with time, but is also spatially distributed in such
a way that vibrations occur as waveforms. In beams, for instance, the three-
axial state of tension leads to different sorts of waves for each direction of
motion. In beams

• bending waves, where the displacement is normal to the beam axis and
therefore also normal to the propagation direction of the wave (Fig. 4.2a),

• the likewise transverse torsional waves, produced by torsion of the beam
cross-section and

• the longitudinal waves caused by strain, where the displacement mainly
appears along the beam axis (Fig. 4.2b)

occur.
The circumstances become even more complicated by the fact that bending

waves with displacement can occur in both of the directions pointing normal
to the beam axis. Only in the case of circular cross-sections (or quadratic
cross-sections) do both types of bending waves show the same behavior. As
can easily be observed in a beam with a flat, prolated cross-section (a ruler),
the bending stiffness generally depends on the direction of the tension.

In addition, there are many more waveforms in beams and plates if the
finite cross-sectional dimensions are taken into account. In the same manner

τxy

τzy

x

z

y

σx

σy

σz

τzx

τyx

τxz

τyz



4.1 Introduction 119

as in air-borne sound, cross-sectional distributions of the sound (so-called
modes) develop, each having an individual wave form (an example is given in
Fig. 4.3). The waves mentioned above are only a special case of modes. It is
quite obvious that the full breadth of structure-borne waves which can occur
in beams and plates cannot be dealt with here. The interested reader should
especially refer to the book ”Structure Borne Sound” by Lothar Cremer and
Manfred Heckl (translated by B.A.T. Petersson, Springer, Berlin and New
York 2004) for a detailed description of the wave forms. Here, it is sufficient
to limit the explanation to the bare necessities.

Fig. 4.2. (a) Bending waves and (b) longitudinal waves in beams

Fig. 4.3. Higher order wave (mode) in a thick plate

In engineering acoustics, the propagation of bending waves is mainly of
interest because this wave form – also occurring in laterally extended plates
– is the most essential one for a simple reason: the plate displacements are
normal to the plate (or beam) surface and will preferably result in a radiation
of air-borne sound rather than longitudinal strain or torsional waves with
their motion mainly tangential to the surface. In addition to that, a second
reason for the dominating role of bending waves can be deduced by intuition.
Bending provides a much smaller resistance to the external exciting force (in
most practically relevant cases) as does the reaction ot strain, for example. It
can therefore be assumed that bending waves are more easily excitable and
are thus the dominating type of vibration.

The discussion of bending waves starts with the simplest case of beams.
The obtained results will be transferred to plates which are more relevant in
practice.

(a)

(b)
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4.2 Bending waves in beams

Fig. 4.4. Elastic bending of a beam. (a) Displacement and bending angle.
(b) tension and resulting momentum

Static bending of beams and plates has understandably been a consider-
ably important topic in the statics of structures and has been elucidated in
past studies. One can therefore refer to the results of static bending science
and readily use it here. The kinetic quantities are described by the beam dis-
placement ξ(x) and the bending angle β(x) (Fig. 4.4a). Only small bending
angles are of interest here, to which

∂ξ

∂x
= tanβ ≈ β (4.1)

applies. Apart from these, the normal tension and the shear tension in the
beam cross-section are also important. If it is assumed, as is conventional in

x

undeformed

neutral fibre
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displacement

bending angle β(x)
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beam

neutral area

stress

resul t ing momentum
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static bending science, that the shear tension increases linearly from a (shear
tension free) neutral beam fibre (Fig. 4.4a and 4.4b). The shear tension εx
can be summarized in a resulting moment M , which acts on the neutral fiber

M =
∫
S

εxydS .

The stronger the beam is flexed by bending the larger this bending moment
becomes. A reasonable assumption is

M ∼ 1
rk

,

where rk is the radius of the flexed circle at the corresponding beam point.
For small displacements

1
rk

=
∂2ξ

∂x2

applies, as is generally known. Using the proportional constant B, we obtain

M = −B ∂
2ξ

∂x2
(4.2)

where the sign of M is specified in such a way that M and ξ have equal
signs for waves of the form ξ = ξ0cos(kx−ωt). The constant B is accordingly
called the bending stiffness. It not only contains the specific stiffness of the
material E, but it is also dependent on the geometry of the cross-section.
It was graphically shown above that the latter is included in the bending
stiffness. Bending science shows that (Fig. 4.5a)

B = E

∫
S

y2dydz = EI (4.3)

is given. The specific stiffness E is called elastic modulus, also known as
Young’s modulus. It may be determined from the stiffness s of a material
block which can be regarded as a spring, having the cross-sectional area S
and the thickness h (Fig. 4.5b). If the block is loaded with the force F , then
it is compressed by ∆x according to Hook’s law:

F = s∆x =
ES

h
∆x (4.4)

The elastic modulus E = sh/S therefore may be determined from the stiffness
of a probe and its dimensions.

The quantity I, describing the geometry of the cross-section, is called the
second moment of area. In this book, only rectangular cross-sections are of
interest. Using the beam thickness h (pointing towards the direction of the
exciting force) and the width b, I is obtained for the
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Fig. 4.5. (a) Definition of the second moment of area (b) Measurement setup for
determination of the elastic modulus E

Rectangular cross-section

I =
bh3

12
.

A second example, using the radius a, is mentioned for the
Circular cross-section

I =
π

4
a4 .

Other values for the second moment of area can be found, for example in
Dubbel’s book ”Taschenbuch für den Maschinenbau” (Springer, Berlin 2001),
which is also a very useful book for acousticians.

Similar to summarizing the normal tension in a bending moment, a shear
force can be assigned to the shear tension τ , pointing in the direction of the
displacement:

beam
cross sect ion
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F =
∫
S

τxydydz . (4.5)

Fig. 4.6. Free body diagram of a beam element

As static bending science shows, the shear force, acting tangentially on the
cross-section and pointing downwards, results in

F = −∂M
∂x

(4.6)

when using the bending moment. Due to ‘actio=reactio’, the transversal force
pair F (x + ∆x) and −F (x) now acts on the free body of the beam element
(Fig. 4.6) with the length ∆x. If an external force Fa = F ′a∆x is taken into
account, pointing in the direction of the displacement (e.g. the beam is excited
by a hammer-blow) and uniformly distributed along the length ∆x, Newton’s
law requires that

∆x%Sξ̈ = F (x)− F (x+ ∆x) + ∆xF ′a .

Or, after proceeding to the limiting case ∆x→ 0,

m′ξ̈ +
∂F

∂x
= F ′a , (4.7)

where m′ is the beam mass and F ′a is the external force per corresponding
unit length. (4.6) and (4.2) specify

∂F

∂x
= −∂

2M

∂x2
= B

∂4ξ

∂x4
,

and therefore the equation

m′ξ̈ +B
∂4ξ

∂x4
= F ′a

is finally obtained from (4.7) for bending waves. It is similar only to the
wave equation in gases inasmuch as the second time derivative appears. The

F(x)
F(x+Δx)

-F(x)
-F(x+Δx)

F a'

Δx
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principal differences between bending waves and air waves become apparent,
when pure tones

ξ(x, t) = Re
{
ξ(x)ejωt

}
are considered. For complex amplitudes, the wave equation for bending waves
becomes

∂4ξ

∂x4
− m′

B
ω2ξ =

F ′a
B

,

for the displacement, or

∂4v

∂x4
− m′ω2

B
v =

jωF ′a
B

(4.8)

for the velocity v = jωξ, respectively. Using (4.1), (4.2) and (4.6), the more
seldom needed angular velocity w = dβ/dt, the bending moment M and the
shear force F are given by

w =
∂v

∂x
, (4.9)

M = − B
jω

∂2v

∂x2
and (4.10)

F =
B

jω

∂3v

∂x3
. (4.11)

Angular velocity, moment and shear force can be calculated from the velocity
accordingly.

4.3 Propagation of bending waves

The main characteristics of bending waves can be explained using the basic
ansatz for waves

v = v0e−jkBx

in the homogeneous differential equation

∂4v

∂x4
− m′

B
ω2v = 0 , (4.12)

which is valid outside of local external forces. Inserting the ansatz into (4.12)
yields the bending wavenumber

k4
B =

m′

B
ω2 . (4.13)

Using

kB =
2π
λB

=
ω

cB
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the bending wavelength becomes

λB = 2π 4

√
B

m′
1√
ω

(4.14)

and the propagation speed of bending waves becomes

cB = 4

√
B

m′
√
ω . (4.15)

Fig. 4.7. Impulse response of the beam velocity. (a) Space characteristics for con-
stant time. (b) Time characteristics for constant position

Thus, a bending wavelength λB is obtained which only decreases with the
square-root of increasing frequency and has a frequency-dependent propaga-
tion speed. These facts illustrate the fundamental difference between air waves

(a)

(b)
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and bending waves. If, instead of pure tones, we consider time dependencies
consisting of several spectral components, the frequency-dependent propaga-
tion speed causes the spectral components to ‘run away from each other’ the
larger the distance is that they traverse and the more their frequencies diverge.
This also means that the spectral composition at two different positions on
the beam is different and it follows that, at two different positions, totally
different time characteristics of the beam velocity are found. The time signal
is distorted along the propagation direction of the bending wave.

This effect is called dispersion. It can be recognized, for example, in the
‘impulse response’ (i.e. the beam velocity, if the beam at x = 0 is excited
at t = 0 by a short hammer blow). An example of this effect is shown in
Fig. 4.7 above. The higher frequency components of a broadband excitation
arrive before the lower ones, the instantaneous frequency at the arrival point
decreases gradually. The space characteristics for a constant time behave ac-
cordingly: higher frequencies have travelled a larger distance than the lower
components (Fig. 4.7b). The curves shown in Figure 4.7 are depicted in the
graphic representation of the solution to Problem 8 in Chapter 13.

4.4 Beam resonances

Beam segments are affected by resonance vibrations much the same way as
finite gas volume segments confined on all sides are, if virtually no wave energy
is lost at the terminations. Resonance frequencies and types of vibrations that
occur in beam segments depend on how the beam is suspended or mounted at
the ends. A distinction is made between beams bilaterally supported, mounted
or suspended beams:

• The supported bearing consists of a beam resting at one point. This im-
pedes displacement, so that v = 0. The bearing absorbs the bending force,
but not the bending momentum. Thus the beam bending momentum di-
minishes to M = 0. Beams can be also supported by fastening them to
any type of moveable hinge.

• In the case of a beam mounted at its end, both force and momentum are
absorbed by its bearing. The frequency oscillator is now not able to move
or rotate at it its point of bearing. Therefore, the velocity and angular
velocities of the beam are v = 0 and w = 0, respectively.

• In the case of a beam that is freely moving at its end, neither its directional
nor its rotational motion is hindered. That is, neither force nor momentum
is absorbed. For this reason, M = 0 and F = 0 are true for suspended
beams.

A mathematical consideration of beam resonances generally necessitates an
ansatz for beam velocity consisting of four linear-independent solutions of the
bending wave function (4.8). Because – as mentioned before – it is necessary to
find the non-stimulated vibrations, we will consider the homogenous bending
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wave equation (F ′a = 0 in eq.(4.8)). The purpose of the ansatz is to satisfy
the constraints at the ends of the beam, resulting, of course, in a system of
four equations. Symmetrical constructions simplify the analysis a bit. Such
constructions consist of beam segments characterized by the same constraints
at both ends. Here, one can make a separate distinction between point- and
axis-symmetric wave forms. As shown in the following, this allows us to only
use two equations to describe this situation. However, both have to be solved
twice. The beam ends exist in this scenario at the points x = −l/2 and
x = +l/2.

For axis-symmetric wave forms, the sound velocity is

vg = A1 cos kBx+A2 ch kBx (4.16)

and for point-symmetric wave forms the sound velocity is

vu = A1 sin kBx+A2 sh kBx . (4.17)

A1 and A2 are constants, ch and sh indicate the hyperbolic cosine and sine.
In the following, we will consider the three previously mentioned cases of
bilaterally supported, mounted, or suspended beams.

4.4.1 Supported beams

Axis-symmetric wave forms of bilaterally supported beams

The bearing constraints v(l/2) = 0 and M(l/2) = 0 for a beam supported at
the end x = l/2 are

A1 cos kBl/2 +A2 ch kBl/2 = 0 (4.18)

and, because the momentum is proportional to the second-order spatial deriva-
tive of the velocity according to eq.(4.10):

A1 cos kBl/2−A2 ch kBl/2 = 0 . (4.19)

By subtracting both equations, we obtain A2 = 0. In order to provide the pre-
existing condition of non-stimulated vibration that is not zero, the constant
A1 can also not be zero, A1 6= 0. Therefore, the resonance condition exists in
cos kBl/2 = 0. This results in kBl/2 = π/2 + nπ or

kBl = (2n+ 1)π (4.20)

(n = 0, 1, 2, ...). For the resonance frequencies we use kB = 4
√
m′ω2/B to

obtain

f = (2n+ 1)2 π

2l2

√
B

m′
. (4.21)
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The shape of the wave form function in the resonance is referred to as a mode.
For the modes, we use the ansatz (4.16) where kBl/2 = π/2 + nπ and A2 = 0
to obtain

vg,mod = cos ((2n+ 1)π
x

l
) . (4.22)

Wave modes are scalable. For this reason, we can arbitrarily set A1 = 1.

Point-symmetric wave forms of bilaterally supported beams

The parameters v(l/2) = 0 and M(l/2) = 0 for the beam supported at the
end x = l/2 result in

A1 sin kBl/2 +A2 sh kBl/2 = 0 (4.23)

and – since, as in the above, the momentum is proportional to the second-order
spatial derivative of the velocity according to eq.(4.9):

A1 sin kBl/2−A2 sh kBl/2 = 0 . (4.24)

Again, we obtain A2 = 0 by subtracting both equations. In order to define
the pre-existing condition of a non-stimulated vibration that is not zero, the
constant A1 must also have a value other then zero, A1 6= 0. Therefore, the
resonance constraint exists in sin kBl/2 = 0. This results in kBl/2 = nπ or

kBl = 2nπ (4.25)

(n = 1, 2, ...). This leads to the definition of the resonance frequencies in

f = (2n)2 π

2l2

√
B

m′
. (4.26)

According to the ansatz (4.17) where kBl/2 = nπ and A2 = 0, the modes
exist in

vu,mod = sin (2nπ
x

l
) . (4.27)

Here, too, we can scale the modes to A1 = 1 for the sake of simplicity.

Summary of bilaterally supported beams

The kBl pertaining to the resonances are alternately even- and odd-numbered
multiples of π according to equations (4.20) and (4.25). In sum:

kBl = mπ (4.28)

Due to kB = 4
√
m′ω2/B, the resonance frequencies altogether result in

f = m2 π

2l2

√
B

m′
(4.29)
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Fig. 4.8. Vibration modes of bilaterally supported beams

where m = 1, 2, 3, ..., and whereby odd-numbered m indicate axis-symmetric
modes with forms as given in eq.(4.22) and even-numbered m indicate point-
symmetric modes with forms given in eq.(4.27). As seen above, the distance
between two resonances increases quadratically. The number of resonance inci-
dences in a given finite frequency band decrease as the center frequency of the
band increases. Unlike one-dimensional gaseous wave guides, the frequency
density decreases for bilaterally supported beams. In addition, the bending
resonance frequencies are inversely proportional to the square of the length
of the wave guide l. This is also different from sound travelling through air,
where the resonance frequencies are inversely proportional to the length itself.

Figure 4.8 provides a visual overview of the first four vibration modes.

4.4.2 Bilaterally mounted beams

Axis-symmetric wave Forms for bilaterally mounted beams

The criteria v(l/2) = 0 and w(l/2) = 0 for a beam mounted at its end x = l/2
result in

A1 cos kBl/2 +A2 ch kBl/2 = 0 (4.30)

and (because the angular velocity is proportional to the spatial derivative of
the velocity according to eq.(4.9)):

A1 sin kBl/2−A2 sh kBl/2 = 0 . (4.31)

Non-zero solutions A1 and A2 only exist when the determinant of the ho-
mogenous system of both equations vanishes. Only then do non-stimulated
vibrations – resonances – occur. For this reason, the equation which defines
the resonance frequencies is

cos kBl/2 sh kBl/2 + sin kBl/2 ch kBl/2 = 0 , (4.32)

or in
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tg kBl/2 = −th kBl/2 (4.33)

(tg=tangent, th = hyperbolic tangent). (4.33) is a transcendent equation for
the values kBl/2, which characterize the resonances. It can easily be depicted
graphically or solved for its approximation. This fact will be discussed in more
detail in the mathematical considerations for the odd-numbered vibration
forms.

Point-symmetric vibration forms for bilaterally mounted beams

The criteria v(l/2) = 0 and w(l/2) = 0 apply for odd-numbered wave forms
in a beam mounted at its end at x = l/2

A1 sin kBl/2 +A2 sh kBl/2 = 0 (4.34)

and (because the angular velocity is proportional to the spatial derivative of
the velocity according to eq.(4.9)):

A1 cos kBl/2 +A2 ch kBl/2 = 0 . (4.35)

Non-zero solutions A1 and A2 are again only possible if the determinant of the
homogenous system of both equations vanishes. Only then do non-stimulated
vibrations – resonances – occur. For this reason, the equation which defines
the resonance frequencies is

sin kBl/2 ch kBl/2− cos kBl/2 sh kBl/2 = 0 , (4.36)

or
tg kBl/2 = th kBl/2 . (4.37)

Summary of bilaterally mounted beams

When applying equations (4.33) and (4.37), the resonances can be derived
from the point where the tangent function intersects with the positive and
the negative hyperbolic tangents, alternately (refer to Figure 4.9). At the
first point of intersection which has the smallest argument kBl/2, the tangent
hyperbole already is close to the value 1. We can use the resonance criterium

tg kBl/2 = ±1 (4.38)

to achieve quite a close approximation. The equation results in

kBl/2 = 3π/4; 5π/4; 7π/4; ...

(as can be seen in Figure 4.9) or

kBl = (2m+ 1)π/2 (4.39)
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Fig. 4.9. Graphic solution of the eigenvalue equations (4.33) and (4.37)

(m = 1, 2, ...). For the resonance frequencies, it follows that

f = (m+
1
2

)2 π

2l2

√
B

m′
. (4.40)

For all practical considerations, the application of the above approximation is
adequate. An even more precise assessment of the first point of intersection
between the tangent and hyperbolic tangent for m = 1 produces the more
accurate value kBl = 1.506π instead of kBl = 1.5π. The margin of error for
the lowest resonance frequency is therefore less than 1 percent.

The axis-symmetric modal forms can be obtained by solving the eq.(4.31)
for A2 and subsequently applying eq.(4.16) to the ansatz:

vg,mod = cos kBx+
sin kBl/2
sh kBl/2

ch kBx . (4.41)

Since these modes consist of axis-symmetric vibrations in resonance, we pro-
ceed by inserting the values kBl/2 = 3π/4; 7π/4; 11π/4.... Again, it has been
scaled to A1 = 1.

The odd-numbered modal forms can be obtained by solving eq.(4.35) for
A2 and subsequently plugging eq. (4.17) into the ansatz:

vu,mod = sin kBx−
cos kBl/2
ch kBl/2

sh kBx . (4.42)

Since these modes are point-symmetric vibrations in resonance, we use the
values kBl/2 = 5π/4; 9π/4; 13π/4.... Here too, it was scaled to A1 = 1.

The first four modal forms are depicted in Figure 4.10.
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Fig. 4.10. Vibration modes of bilaterally mounted beams

4.4.3 Bilaterally suspended beams

The resonances of bilaterally suspended beams can be deduced using the same
criteria as for bilaterally mounted beams, if the formulae in the equations
(4.16) and (4.17) are applied for the bending momentum rather than the
vibrational speed, that is, if (4.16) and (4.17) are replaced by

Mg = A1 cos kBx+A2 ch kBx (4.43)

and, for the point-symmetric forms of the beam velocity,

Mu = A1 sin kBx+A2 sh kBx. (4.44)

The constraint F (l/2) = 0 is synonymous with the first spatial derivative
being eliminated at the onset of the momentum. Along with the parame-
ter M(l/2) = 0, this results in the equations (4.30) and (4.31) for the axis-
symmetric case, and (4.34) and (4.35) for the point-symmetric case. For this
reason, the resonance frequencies of bilaterally suspended beams are equal to
those of bilaterally mounted beams. This also means that (4.39) (and of course
(4.40)) apply to the resonance frequencies for bilaterally suspended beams.

The vibration forms (as represented in the vibrational speed) are, of course,
not identical to those for mounted beams. The suspended vibration modes are
derived from the two-fold integration of equation (4.41) and result in

vg,mod = cos kBx−
sin kBl/2
sh kBl/2

ch kBx, (4.45)

(where kBl/2 = 3π/4; 7π/4; 11π/4...) and by integrating equation (4.42) twice,

vu,mod = sin kBx+
cos kBl/2
ch kBl/2

sh kBx (4.46)

(where kBl/2 = 5π/4; 9π/4; 13π/4...). Figure 4.11 shows the first four modes
here as well.
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Fig. 4.11. Vibration modes of bilaterally suspended beams

4.5 Bending waves in plates

As can be shown with similar investigations as for the one-dimensional beam,
the bending wave equation for homogeneous plates is given by

∂4v

∂x4
+ 2

∂4v

∂x2∂y2
+
∂4v

∂y4
− m′′

B′
ω2v =

jωp

B′
(4.47)

where p denotes an external force of area (e.g. a pressure) acting on the plate.
This time m′′ represents the mass per unit area

m′′ = %h (4.48)

(% is the plate density and h the thickness) which is obtained using the bending
stiffness of the beam (for a rectangular cross-section) per unit length in the
same way as the bending stiffness of the plate

B′ =
E

1− µ2

h3

12
. (4.49)

The denominator containing Poisson’s ratio µ accounts for the fact that plate
elements of volume are somewhat stiffer than beam elements. Whereas the
material of the beam can elude laterally to a small extent (normal to the
beam and the direction of displacement), this possibility is not given in the
plate. Depending on the material, it is approximately µ ≈ 0.3, so that µ2 � 1
is negligible in so far that material parameters can be specified accurately.

In the case of one-dimensional wave propagation of the plate motion, ex-
cited, for instance, by a line force or an impinging sound wave, the bending
wave equation becomes

1
k4

B

d4v

dx4
− v =

jp

m′′ω
, (4.50)

with
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k4
B =

m′′

B′
ω2 (4.51)

(these equations could also easily be derived by dividing the beam equa-
tion (4.8) by the beam width). Therefore the same dependencies for free
bending waves

v = v0e−jkBx ,

which occur at a distance far enough from exciting forces, are obtained, as in
the case of beams. Bending wavelength and propagation speed are

λB = 4

√
B′

m′′
2π√
ω

(4.52)

cB = 4

√
B′

m′′
√
ω . (4.53)

The propagation speed of bending waves in plates is also frequency-dependent
and the transmission of the displacement is dispersive. The wavelength is
likewise inversely proportional to the square-root of the frequency. As a matter
of principle, a radial symmetric sound field produced by a point force has the
same wave form as plane waves in plates.

Due to energy balance, the amplitude has to be inversely proportional to
the square-root of the distance r from the source. For not-too-short distances,
it is

v =
A√
r

e−jkBr .

In the course of the discussion of bending waves in beams, the basic physical
principles were of interest, whereas this time the focus shall be the relation-
ships and the order of magnitudes which can be found in practice. It should
first be stated that the use of the bending stiffness is not very handy in prac-
tical calculations. It is thus replaced by the ratio m′′/B′, which consists of
more useful material parameters, while at the same time µ2 � 1 is neglected:

m′′

B′
=
%h12
Eh3

=
12
c2Lh

2
(4.54)

where

cL =

√
E

%

is the longitudinal wave propagation speed in beams, consisting of the same
material, as can be shown. cL, thickness h and mass of area m′′ are most
commonly used for the acoustic description of plates. The influence of the
material (expressed as cL), thickness h and frequency f cannot be overlooked
directly in (4.52) and (4.53), because the parameters B′ and m′′ not only
depend on the material but also on the thickness. The dependencies can clearly
be shown by inserting (4.54) into (4.52) and (4.53). We thus obtain the handy
equations
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Table 4.1. Commonly used material parameters

Density % cL η
(kg/m3) (m/s)

Aluminium 2700 5200 ≈ 10−4

Steel 7800 5000 ≈ 10−4

Gold 19300 2000 3 10−4

Lead 11300 1250 10−3 . . . 10−1

Copper 8900 3700 2 10−3

Brass 8500 3200 10−3

Concrete, light 600 1700 10−2

Concrete, dense 2300 3400 5 10−3

Bricks (+mortar) 2000 2500–3000 10−2

Plywood 600 3000 10−2

Oak 700–1000 1500–3500 10−2

Spruce 400–700 1200–2500 10−2

Plaster 1200 2400 8 10−3

Beaverboard 600–700 2700 10−2

Perspex 1150 2200 3 10−2

Sand, light 1500 100–200 10−1

Sand, dense 1700 200–500 10−2

Glass 2500 4900 2 10−3

λB ≈ 1.35

√
hcL
f

and for the propagation speed

cB ≈ 1.35
√
hcLf .

to describe bending wavelength, respectively.
The parameters for the materials most commonly used in practice are

given in Table 4.1. The loss factors correspond to pure internal damping, thus
radiation losses and the damping at the connections of some compounds (e.g.
bolt connections) have to be added when appropriate.

The longitudinal propagation speeds of different materials do not differ
very much, as can be seen in Table 4.1: the range of 2000 m/s to 5000 m/s is
roughly covered, whereas the range of thicknesses used in acoustics is a lot
larger. Metal sheets of 0.5 mm thickness in vehicles are of the same interest
as concrete walls of 0.5 m thickness, which represents a considerable ratio
of 1:1000. The range of wavelengths is accordingly large. For 1000 Hz, for
instance,

λB(0.5 mm metal sheet) = 7 cm
λB(25 cm light concrete) = 90 cm
for comparison: λ0(air) = 34 cm
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is obtained. As it becomes obvious by the examples, shorter wavelengths than
in air occur in thin plates and longer wavelengths in thick plates.

The differences between ‘long-wave’ and ‘short-wave’ components for the
transmission loss are of major importance, as it will be explained in Chap. 8
of this book. Generally, the property ‘shorter wavelength than air’ (or ‘longer
wavelength than air’) can be assigned to a frequency interval. The two wave-
lengths λ0 (for air) and λB (for the bending waves)

λ0 = c/f and λB ≈ 1.35

√
hcL
f

are equal at a typical ‘critical’ frequency fcr. Taking the square of the wave-
lengths and setting both equations to be equal shows that

fcr =
c2

1.82hcL

is obtained for the critical frequency fcr. This is also called ‘limiting frequency’
or ‘coincidence frequency’. For frequencies

• f < fcr below the critical frequency, the bending waves are shorter than
the air waves, for frequencies

• f > fcr above the critical frequency, the bending waves are longer than
the air waves.

Some examples of the critical frequency are given in the following table:

Plate consisting of fcr(Hz)

0.5 mm metal sheet 25000
4 mm glass 3000
5 cm plaster 530
25 cm heavy concrete 75

Here, it is clear that thick and massive walls and ceilings have a limiting
frequency at the lower edge of the frequency range of interest, whereas the
critical frequencies of windows and metal sheets are located at the upper edge.

Thin walls built, for example, into flats or offices, have a limiting frequency
right in the middle of the frequency range of interest, thus they can suffer from
poor transmission loss.

4.5.1 Plate vibrations

As is the case with beams, the vibrations and modal forms of plates are also
dependent on the material their bearings consist of. With the exception of
the scenario described below, where a plate is supported on all sides by its
bearing, handling problems with plate resonance is by no way an easy task.



4.5 Bending waves in plates 137

Usually, finding workable solutions entails complex and lengthy quantitative
considerations, which have filled pages in lengthy treatises especially devoted
to discussing this problem. Readers interested in more in-depth information on
this topic are encouraged to take a look at Leissa, A.W.: ’Vibration of Plates’,
Office of Technology Utilization, National Aeronautics and Space Administra-
tion, Washington 1969 and Blevins, R. D.: ’Formulas for natural frequency and
mode shape’, Van Nostrand Reinhold, New York 1979. The latter work also
contains sections discussing the vibration of beams, in particular, combined
with various factors affecting the left and right ends.

For plates supported on all four edges x = 0, y = 0, x = lx and y = ly,
modal forms exist in

v = sin (nxπx/lx) sin (nyπy/ly) (4.55)

(nx = 1, 2, 3, ... and ny = 1, 2, 3, ...). The plate dimensions are defined by lx
and ly, the plate surface is therefore S = lxly. The plate modes (1,1), (1,2)
and (2,2) are shown in Figures 4.12, 4.13 and 4.14.
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Fig. 4.12. Vibration mode nx = 1 and ny = 1

The resonance frequencies are obtained by plugging the modal forms into
the bending wave equation (homogenous with p = 0) (4.47):

k4
B =

m′′

B′
ω2 = (

nxπ

lx
)4 + 2(

nxπ

lx
)2(

nyπ

ly
)2 + (

nyπ

ly
)4 = [(

nxπ

lx
)2 + (

nyπ

ly
)2]2 ,

(4.56)
therefore

f =
π

2
[(
nx
lx

)2 + (
ny
ly

)2]

√
B′

m′′
. (4.57)
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Fig. 4.13. Vibration mode nx = 1 and ny = 2

Fig. 4.14. Vibration mode nx = 2 and ny = 2

The resonance frequencies can be easily represented in graph form by
taking the root of the last equation, thereby obtaining a grid point for each
frequency root. These grid points exist in a constant eigenfrequency grid with
grid edge lengths (Figure 4.15) √
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and √
π

2
4

√
B′

m′′
1
ly
.

Every grid node pertains to the root of each resonance frequency.

Fig. 4.15. Resonance grid of bending vibrations on plates supported at all edges

This graphical representation allows a simple estimation of the total reso-
nance frequencies ∆N present in a single frequency band ∆f . To do this, one
must determine the number N of existing resonances within the interval 0 to
f , which is roughly equal to the ratio of one quarter of a circle with a radius
of
√
f to the surface area of a grid element, that is

N =
π
4 f

π
2

√
B′

m′′
1
lxly

=
1
2
fS

√
m′′

B′
. (4.58)

The differential quotient ∆N/∆f can be roughly substituted by

∆N

∆f
≈ dN

df
=

1
2
S

√
m′′

B′
,

thereby resulting in

 f 
0,5

(π/2)1/2 (B'/m'')1/4

lx

(π/2)1/2 (B'/m'')1/4

ly
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∆N =
1
2
S

√
m′′

B′
∆f . (4.59)

Furthermore, for practical calculations, it makes more sense to express the
relationship of m′′ and B′ in terms of the longitudinal wave speed cL and the
thickness of the plate h according to eq.(4.54). This subsequently yields

∆N =
1, 73S
hcL

∆f . (4.60)

Different than beams, the resonance density of plates is a frequency-inde-
pendent constant. For instance, for sheet metal (cL = 5000m/s) that is 1mm
thick and which has a surface area 1m2, one obtains ∆N ≈ 0.35∆f/Hz.
Thus, independent of the band’s mid-frequency, the bandwidth ∆f = 100Hz
will always contain ∆N = 35 resonances. A resonance occurs at roughly every
3Hz. If the surface of the plate is reduced to a tenth of its original dimensions
at S = 0, 1m2, there will only be about 3.5 resonances in a 100Hz–bandwidth,
and the average resonance intervals will be approx. every 30Hz.

For other types of bearings, the resonance frequencies detune at the edges
of the plate (as is the case for suspended, unmounted plates). However, even
in such cases, the number of resonances ∆N in a sufficiently large band ∆f
remains in large part unchanged. This is why one can also use eq. (4.60) to
estimate plate resonances regardless of the particular type of bearing arrange-
ment.

4.6 Summary

The most essential structure-borne sound waves constitute bending waves oc-
curring on plate and beam structures. As opposed to wave propagation in
gases and liquids, flexural wavelengths depend on the frequency, growing pro-
portionally to the square root of f . For mechanical sound signals consisting
of multiple frequencies, each spectral component is transported at different
speeds, leading to a dispersion effect in the signal shape. Due to this disper-
sion, bending wavelengths are inversely proportional to the square root of the
frequency. As a result, bending wavelengths λB below a certain critical fre-
quency fcr are smaller than sound wavelengths in air λ. Conversely, λB > λ
is true for all f above fcr. This fact plays an important role in both bending
wave phenomena as well as sound insulation in plate-like structures such as
walls, ceilings, windows, etc. (see Chapters 3 and 8). The threshold frequency
is inversely proportional to the thickness of the building material fcr ∼ 1/h.
The critical frequency is high for thin building materials and low for thick
materials.

Resonance occurs in beam and plate structures of finite lengths, given that
only a small amount of energy is lost beyond the material’s boundaries. Res-
onance frequencies depend on the material’s bearings. In beams, the distance
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between resonance frequencies increases with increasing frequency, that is, the
density of resonances decreases. In plate structures, the resonance density is a
constant, independent of frequency. The vibration patterns of the resonances
are referred to as modes.

4.7 Further reading

Undoubtedly the work ”Structure Borne Sound” by Lothar Cremer and Man-
fred Heckl (translated by B.A.T. Petersson, Springer, Berlin and New York
2004) is highly recommended for those dealing with the subject mentioned in
the title. The book by Blevins, R. D.: ”Formulas for natural frequency and
mode shape” (Van Nostrand Reinhold, New York 1979) is also recommended
for further reading in resonance processes and modal patterns.

4.8 Practice exercises

Problem 1

Find the coincidental critical frequencies for

• Plaster plates, 8 cm thick (cL = 2000m/s),
• window panes, 4mm thick and for
• a door panel made out of oak wood (cL = 3000m/s), 25mm thick.

Problem 2

Find the first 5 resonance frequencies of aluminum beams with a thickness of
5mm, and 50 cm and one 100 cm long. Consider two cases: bilaterally sup-
ported and bilaterally mounted.

Problem 3

Find the four lowest resonance frequencies

• of a window pane 4mm thick, measuring 50 cm by 100 cm,
• a 10 cm–thick plaster wall (cL = 2000m/s), measuring 3m by 3m and
• a 2mm–enforced steel plate, measuring 20 cm by 25 cm.

Problem 4

Find the resonance frequencies and the modal patterns of the mounted beam
to the left and the supported beam to the right.
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Problem 5

A force acting normal to a beam of infinite length (or a beam with a ’wave cap-
turer’ on both ends) induces bending vibrations, which resonate harmoniously
with time, in the middle of the beam at x = 0. Graph the space-dependent
beam velocity and beam displacement at the times t/T = n/20 (T=duration
of a period, n = 0, 1, 2, 3...20) in the interval −1 < x/λB < 1. Give an account
of the vibrations for the velocity v(x = 0, t) and the beam’s displacement
ξ(x = 0, t) at the point of the beam just below the point of induction x = 0.
When do v(x = 0, t) and ξ(x = 0, t) finally reach their maxima in a period
0 < t < T?

Problem 6

Find the sound velocity of an infinitely long beam induced to bending wave
vibrations at its middle (x = 0) by a time-dependent sinusoidal concentrated
force at an amplitude F0, as a function of a field point x on the beam.



5

Elastic isolation

The most common solution to problems due to vibration impact into buildings
or the ground, is to isolate the machinery, engines or other aggregates from
their bearing foundations by spring elements. Applications for this technique,
called elastic decoupling, are:

• mounting machinery on single springs to decouple them from the building
(Fig.5.1)

• sub-ballast mats for train or subway rails in close vicinity of houses to
reduce the vibration impact (Fig. 5.2) and

• the floating concrete floor, nowadays almost always used in buildings
(Fig. 5.3, see also Chap. 8 on transmission loss)

The aforementioned examples span a wide range of applications and technical
solutions.

Fig. 5.1. Machine bearing on single springs
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Fig. 5.2. Elastic decoupling of the rails against the track sub-structure on a thick
plate

Fig. 5.3. Structure of a floating concrete floor for noise impact level reduction

It is, for instance, reasonable (instead of using a single point machine bear-
ing as in Fig. 5.1) to mount an aggregate or machinery on a solid foundation
(a couple of centimeters of concrete) and then decouple it on the whole sur-
face against the foundation using a soft elastic layer. Technical appliances
(like cooling aggregates) are often composed of several sub-structures jointed
by cables and tubes, instead of representing a ‘compact structure’. Not only
for this reason, but also to increase the mass, mounting the machinery on a
heavy foundation seems to be reasonable. The whole diversity of applications
is also indicated by the variety of spring elements and elastic plates. A small
survey of spring elements is presented in Fig. 5.4.

The discussions in this chapter will attempt to answer questions pertaining
to elastic bearings, not only with respect to the basic principles, but also with
respect to practical applications. The following section provides information
about the basic principles by introducing the simplest possible model. The
physical effects originally left out of the discussion will be investigated in order
to gain a more realistic insight as to the expected level reduction. Finally some
questions of practical interest will be answered such as how elastic bearings
are designed and what are the conditions under which they make sense at all?
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Fig. 5.4. Examples of spring elements

5.1 Elastic bearings on rigid foundations

The simplest model used to describe elastic decoupling consists of modelling
the machinery (the engine, the aggregate, the train,. . . ) as an inert mass which
is excited by an alternating force F , bringing it to oscillation. It rests upon
a rigid, stationary foundation to which it is connected by a spring (Fig. 5.5).
The actual relevance of the foundation compliance under consideration will
first be explained in Sect. 5.3. The inherent inner damping of the spring is
accounted for by assuming the presence of a viscous damper.

Three external forces acting on the mass are

• the exciting force F ,
• the resetting spring force Fs in opposite direction to F and
• the likewise resetting damping force Fr.

According to Newton’s law, the sum of the aforementioned forces results
in an accelerated motion of the mass

mẍ = F − Fs − Fr , (5.1)

where x represents the displacement of the mass (ẋ: the velocity, ẍ: the ac-
celeration) counting into the direction of the force F . The resulting resetting
forces Fs and Fr are defined by
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Fig. 5.5. Model for the calculation of the insertion loss of elastic bearings on a rigid
foundation

• Hook’s law (s = stiffness of the spring), result in

Fs = sx (5.2)

• and, assuming a damping force proportional to the velocity, in

Fr = rẋ, (5.3)

where r is the damping coefficient.

The equation of the oscillating mass is thus given by

mẍ+ rẋ+ sx = F . (5.4)

Assuming pure tones
x(t) = Re

{
xejωt

}
(underlining the complex pointer x is omitted for simplicity)

−mω2x+ jωrx+ sx = F , (5.5)

is obtained or of course

x =
F

s−mω2 + jωr
. (5.6)

When assessing the benefit of the elastic bearing, the force FF acting on the
foundation is mainly of interest. It is composed of the spring force and the
damping force and is given by

FF = Fs + Fr (5.7)

F s
F r mass  m

damper rspring s

force F

F s F r

r igid foundation
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or, using (5.2) and (5.3) and assuming pure tones again,

FF = (s+ jωr)x (5.8)

or, using (5.6),

FF =
s+ jωr

s−mω2 + jωr
F . (5.9)

To evaluate the success of the ‘elastic bearing’ compared to the ‘rigid founda-
tion’ the ratio V is used as a measure

V =
fondation force, rigid

foundation force, elastic
=
FF(s→∞)
FF(s)

, (5.10)

which according to (5.9) yields

V =
s−mω2 + jωr

s+ jωr
. (5.11)

Finally, the insertion loss (i.e. the level difference of the foundation force
‘without’ minus ‘with’ elastic bearing) is defined as

RE = 10 lg |V |2 . (5.12)

RE is a decibel measure for the success of the elastic bearing.
Obviously, the resonance frequency

ω0 =
√

s

m
(5.13)

plays an important role when interpreting the ratio V (and thus the insertion
loss). In the lossless case r = 0 the mass displacement x can take infinite
values according to (5.6) at the resonance ω = ω0. Also, the ratio V clearly
behaves totally differently at low frequencies ω � ω0 than at high frequencies
ω � ω0.

(5.11) can be reformed by dividing the numerator and denominator by s,
yielding a ratio of frequencies:

V =
1− ω2

ω2
0

+ jη ω
ω0

1 + jη ω
ω0

. (5.14)

The damping coefficient r is herein expressed as a dimensionless loss factor

η =
rω0

s
. (5.15)

As will be explained in one of the following sections, the loss factor can easily
be determined by measurements. It was thus reasonable to replace the quan-
tity ‘damping coefficient r’, which is somewhat difficult to assess, by a quantity
which is well measurable. The loss factor η for common springs or elastic layers
(apart from a few exceptions) takes on values in the range 0.01 < η < 1.

Generally, four frequency ranges need to be considered when discussing
the validity of (5.14):
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1. Low frequencies ω � ω0

The elastic bearing is still ineffective: according to (5.14) V ≈ 1 and thus
RE ≈ 0 dB.

2. Mid to high frequencies (ω � ω0, but also ω � ω0/η)
In this frequency range it is

V ≈ −ω
2

ω2
0

and thus

RE = 10 lg
ω4

ω4
0

= 40
ω

ω0
. (5.16)

The insertion loss rapidly increases with increasing frequency at 12 dB per
octave and can take on considerable values (e.g. RE = 36 dB three octaves
above the resonance frequency).

3. Highest frequencies
The presence of damping reduces this steep gradient at the highest fre-
quencies ω � ω0/η (and ω � ω0). Here, it is only

V = j
ω

ω0

1
η
,

leading to

RE = 20 lg
(
ω

ω0

1
η

)
= 20 lg

(
ω

ω0

)
− 20 lg η (5.17)

for the insertion loss. RE increases by only 6 dB/octave and depends on
the loss factor. The larger η is, the smaller RE is.

4. Resonance range ω ≈ ω0

In close vicinity to the resonance frequency, the elastic bearing performs
poorly compared to rigid coupling to the foundation. For ω = ω0 it is

V =
jη

1 + jη
,

which, for small loss factors η � 1, also implies

RE ' 20 lg η . (5.18)

At resonance, the insertion loss is therefore negative. Therefore, the dete-
rioration implicit in the insertion loss is greater the smaller the loss factor
η is.

A summary of the aforementioned details can be found in the frequency
response function of RE shown in Fig. 5.6. Here, RE is calculated for the
various loss factors η according to (5.14) (and (5.12)) over the frequency ratio
ω/ω0. The tendencies described earlier can be observed:
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Fig. 5.6. Theoretical insertion loss on a rigid foundation, calculated for η = 0.01,
0.0316, 0.1 and 0.316

• no effect below the resonance frequency,
• deterioration at the resonance, moderated by the increasing loss factor,
• steep ascent of RE at 12 dB/octave in a frequency range which gets nar-

rower with increasing η, and, finally,
• deviation to an ascent of only 6 dB/octave, where an increasing loss factor

decreases the insertion loss.

It is evident that an increasing loss factor alleviates the disadvantages
in the vicinity of the resonance, on the one hand, yet on the other hand,
it limits the advantages at the high frequencies. The latter high frequency
deterioration due to the loss factor of the spring is in practice only of minor
interest: such large sound reductions, as calculated here, are seldom obtained
in practice. The main reason for that is the fact that real foundations have
a finite compliance. This effect and its influence on the insertion loss will be
investigated in more detail in the next section.

As already mentioned, the limitation due to damping found at higher
frequencies is irrelevant in everyday practice. Often larger loss factors are
preferred in applications where the machine (the engine, the aggregate, etc.)
operates at a frequency far above the resonance. It has to be kept in mind
during the process of turning on or off the machine, it passes through the
resonance frequency domain. The displacement, which occurs at resonance, is
specified, using (5.6) and (5.15), by

x(ω = ω0) =
F

jω0r
=

F

jηs
. (5.19)
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The displacement by all means needs to have a limit; otherwise the aggregate
can ‘bounce’ and possibly damage the plant.

It should finally be noted that the extent to which damping influences
the insertion loss is determined by the assumed effect of viscous damping, as
represented by 5.3. Other assumptions about the type of damping (e.g. so-
called relaxation damping) can also be made. In addition, it is often prudent,
whenever the cause of viscosity is unknown, to analyze the damping by way
of complex spring stiffness. If this is the case, one can formulate 5.5) as

−mω2x+ s(1 + jη)x = F (5.20)

instead. As it is obvious, the frequency dependence of the damping force is
dropped. This leads to a different insertion loss than that given in Fig. 5.6,
especially at the highest frequencies. It should be clear by now that theoreti-
cal results strongly depend on the assumptions made beforehand. If another,
perhaps even more optimistic evaluation of elastic bearings can be found some-
where else (e.g. in company catalogues), it may in fact be based on different
assumptions, but most certainly not on metaphysical miracles.

5.2 Designing elastic bearings

From the acoustician’s point of view, the practical design of spring elements
is a simple task: the larger the ratio of operating frequency(-ies) ω to the
resonance frequency ω0 is, the greater the success of the solution will be. For
this reason, an attempt is made to tune the resonance frequency as low as
possible, preferably to 0 Hz.

Obviously, this is impossible. The machine (or whatever vibrating source
it may be) needs to hover in order to achieve this, due to s = 0. As a matter
of fact, the practical design of springs or elastic layers is dominated by ‘non-
acoustic’ conditions. Such conditions may be:

a) Static spring loads

The springs have to be designed in such a way that they are able to carry their
bearing weight statically. For high-grade springs or elastic layers, the manu-
facturer usually states the load limits of his product range. Some examples
are given in Table 5.1.

The material described above is intended for use in bearings covering a
surface area (similar to that in Fig. 5.7). As is generally known, the static
pressure pstat in this arrangement results in

pstat =
Mg

S
(5.21)
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Table 5.1. Description of the product range SYLOMER (according to technical
data of the manufacturer)

Product type G L P

Thickness (mm) 12/25 12/25 12/25
Density (kg/m3) 150 300 510
Load limit (N/mm2) 0.01 0.05 0.2
Loss factor 0.23 0.2 0.16
E modulus (N/mm2) 0.18 0.35 2.2

to 0.36 to 1.1 to 3.6

Fig. 5.7. Measurement setup to determine the elastic modulus E and the loss factor
η of an elastic layer with surface area S

(M = total mass, S = bearing surface, g = ground acceleration 10 m/s2). If, for
instance, M = 1000 kg and S = 1 m2 it is therefore pstat = 10000 kg m/(s2m2)
= 104 N/m2 = 10−2 N/mm2.

Thus, the type G had to be chosen from the product range in Table 5.1.
It can also be verified by the resonance frequency if the so-defined bearing is
acoustically reasonable. First, the stiffness of the elastic layer must be calcu-
lated using the elastic modulus E and the thickness d

s =
ES

d
, (5.22)

and thus arriving at the resonance frequency of

f0 =
1

2π

√
s

M
=

1
2π

√
ES

Md
. (5.23)

mass M

rigid foundation

elastic layer
under test

shaker

force transducer
accelerometer

electr.
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In the aforementioned example (M = 1000 kg, S = 1 m2, type G from Ta-
ble 5.1, with d=25 mm and E = 0.2 N/mm2), the resonance frequency would
approximately be f0 = 14 Hz.

It only makes sense to use this specific isolation if the operating frequencies
f are at least one octave above the resonance frequency. The lowest possible
operating frequency can often be determined from the rotation frequency of
the machine, for example. Otherwise, its frequency components have to be
determined by measurements.

The resonance frequency can be shifted toward lower frequencies, if nec-
essary, by adding multiple elastic layers. This is equivalent to increasing the
thickness. However, the stability of the whole structure puts a limit on this:
the layer thickness can only be a small percentage of the smallest dimension.

b) Operating conditions

Some devices are only required to perform very small motions. This is the case,
for example, for medical lasers or magnetic resonance scanners, but also for
certain printing machinery or in the production of semi-conductors. Of course,
the allowed motion certainly have to be taken into account. Most problems of
that kind can be solved by mounting the device on a large add-on mass and
elastically bearing both together.

Railway vehicles are likewise required to meet the highest safety standards.
Train rails on sub-ballast mats, for example, should not ‘statically’ sink by a
certain designated amount.

We are also often confronted with the task of scrutinizing limited available
data for industrial implementation or the establishment of general safeguards.
The elastic modulus (or Young’s modulus) E can be determined by way of
static experiments, where the sample surface S (of thickness d) is uniformly
loaded with a mass M , and the resulting static displacement xstat is measured.
As is generally known, the force equation is given by

sxstat = Mg , (5.24)

or, using (5.22),

E =
Mgd

xstatS
= pstat

d

xstat
, (5.25)

where pstat again denotes the static pressure (for the measurement setup).
If the static load is unknown or if the manufacturer’s data has only been

subject to a cursory review. Most materials allow for a change of their thick-
ness by a maximum of 5% to 10% under static load, whereby it is always
safest to assume the 5%. To fulfill this criterium, the required elastic modulus
E, according to (5.25), is given by

Eerf = 20pstat (5.26)
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(where pstat now refers to the actual application and not the experimental
setup).

The material must have at least this elastic modulus Eerf in order to
remain stable over a long period. Equation (5.26) represents a quite realistic
dependence between the static load pstat and the material parameter E, as
shown in the examples in Table 5.1. The elastic moduli of the materials are
roughly 10 to 20 times larger than the static load limits.

It should finally be mentioned that the elastic modulus of a sample can
also be determined by measuring the resonance frequency with a setup as
shown in Fig. 5.7. According to (5.13) it is

s =
ES

d
= Mω2

0 . (5.27)

5.3 Influence of foundations with a compliance

Before the influence of the foundation compliance on the sound reduction
of the elastic bearing can be discussed, the compliance itself has to be de-
scribed by a technical quantity. It is typically described in terms of foundation
impedance, which will be explained in the following.

5.3.1 Foundation impedance

Foundation impedance zF is defined as the ratio of a force FF, exciting the
foundation at a fixed point, to the velocity vF, occurring at the same point

zF =
FF

vF
. (5.28)

zF is inversely proportional to the ‘mobility’ of the foundation, as can easily
be shown by solving (5.28) for vF

vF =
FF

zF
.

Given a constant exciting force FF, ‘small motion’ is obtained for large magni-
tudes of zF, whereas small magnitudes of zF lead to large foundation velocities.
In this chapter, displacements will be calculated. Therefore, the dependence
between foundation velocity vF and foundation displacement xF (for pure
tones) is given by

vF = jωxF , (5.29)

resulting in the subsequent dependence

FF = jωzFxF. (5.30)
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Generally, the complex impedance may result in a complicated frequency
response function which can be specified by measurement if necessary. If, for
instance, the foundation represents a simple resonator itself (which might be
the case for certain cornerstone foundations in buildings, for instance) the
equation of motion (similar to (5.5)) is given by[

jmFω +
sF

jω
+ rF

]
vF = FF , (5.31)

and yields a foundation impedance

zF = jmFω +
sF

jω
+ rF . (5.32)

Examining such (or even more complicated) frequency response functions of
the foundation impedance with respect to the design of elastic bearings could
prove to be a valuable task for practical problems. To elaborate on the basic
principles, it may be far more reasonable to restrict the discussion to certain
‘impedance types’. Therefore, only impedances with mass characteristics zF =
jωmF and with spring characteristics zF = sF/jω will be investigated in the
following.

5.3.2 The effect of foundation impedance

First, the equation of motion has to be set up to be able to describe the effect
of finite foundation impedance, as was done in Sect. 5.1, where this time we
assume a model including a mobile foundation (Fig. 5.8).

As usual, the inertia force has to be compensated by the sum of the exciting
force and the resetting spring and damping forces. Equation (5.1) for the mass
displacement x therefore remains the same and is given by

mẍ = F − Fs − Fr . (5.33)

But this time, the spring force is proportional to the difference of the mass
displacement x and foundation displacement xF

Fs = s(x− xF) , (5.34)

and in the same way for the damping force

Fr = r(ẋ− ẋF) . (5.35)

The equation of motion (5.1) thus results in

mẍ+ r(ẋ− ẋF) + s(x− xF) = F . (5.36)

The force FF acting on the foundation is of primary interest here and it is
given by
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FF = Fs + Fr = s(x− xF) + r(ẋ− ẋF ) . (5.37)

Using complex amplitudes, (5.36) and (5.37) yield

−mω2x+ (s+ jωr)(x− xF) = F (5.38)

and
FF = (s+ jωr)(x− xF) , (5.39)

where the foundation compliance according to (5.30) is additionally described
by

FF = jωzFxF . (5.40)

Fig. 5.8. Model arrangement for the calculation of the insertion loss of elastic
bearings with compliant foundation

Equations (5.38) to (5.40) mathematically form a set of linear equations
with the three unknown quantities x, xF and FF. They can be solved using
the standard procedures. The result for FF is especially of major interest.
Without excluding other solving procedures, the author suggests the following
procedure as being simple and thus reasonable:

1. Add mω2xF on both sides of (5.38), obtaining the result[
−mω2 + s+ jωr

]
(x− xF) = F +mω2xF

2. Express xF by FF using (5.40)

[
−mω2 + s+ jωr

]
(x− xF) = F +

mω2

jωzF
FF = F − jmω

zF
FF

F s
F r mass  m

damper rspring s

force F

F s F r

foundat ion with impedance z
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3. According to (5.39) this results in

FF =
s+ jωr

s−mω2 + jωr

[
F − jmω

zF
FF

]
Solving this for FF finally yields

FF =
s+ jωr

(s+ jωr)
(

1 + jmω
zF

)
−mω2

F (5.41)

Again, the advantage gained by the elastic bearing and thus the ratio V
is of interest here. This is given by

V =
FF(s→∞)
FF(s)

and the insertion loss is again given by

RE = 10 lg |V |2 .

From (5.41) it follows that

FF(s→∞) =
F

1 + jωm
zF

,

resulting in the ratio V of

V = 1−
mω2

s+jωr

1 + jωm
zF

, (5.42)

or, if, for the sake of clarity, the resonance frequency (of the rigid foundation)
ω0 and the loss factor η are inserted with the aid of (5.13) and (5.15) ,

ω2
0 = s/m and η =

rω0

s
,

V = 1− ω2

ω2
0

1(
1 + j ωmzF

) 1(
1 + jη ω

ω0

) (5.43)

is obtained.
This somewhat lengthy calculation (which, by the way, fortunately yields

(5.14) for zF →∞ as a check) shows some remarkable results:

a) The foundation impedance with mass Characteristics,
zF = jωmF

is
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V = 1− ω2

ω2
0

(
1 + m

mF

) 1
1 + jη ω

ω0

. (5.44)

The finite foundation impedance acts as if detuning the resonance frequency
towards higher frequencies, producing the same results as in the case of rigid
foundations

V = 1− ω2

ω2
res

1
1 + jη ω

ω0

, (5.45)

where the resonance frequency depends on the mass (i.e. the device) and the
foundation:

ω2
res = s

(
1
m

+
1
mF

)
. (5.46)

Here, the interpretations for the different frequency ranges, as given in
Sect. 5.1, are also valid.

b) The foundation impedance with spring characteristics,
zF = sF/jω

is

V = 1− ω2

ω2
0

(
1− ω2m

sF

) 1
1 + jη ω

ω0

. (5.47)

Naturally, a second resonance effect occurs in this case, because the mass (i.e.
the mechanical device) and the foundation already form a resonator with the
mass foundation resonance frequency

ω2
mF =

sF

m
, (5.48)

therefore resulting in

V = 1− ω2

ω2
0

(
1− ω2

ω2
mF

) 1
1 + jη ω

ω0

. (5.49)

For practical applications, it is a safe assumption that the elastic bearing is
much softer than the foundation, i.e.

s� sF

and thus
ωmF � ω0 .

The interesting conclusion which can be drawn from (5.49) is the fact that the
ratio V becomes independent of the frequency for high frequencies ω � mF

(and small spring losses η ≈ 0):
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V ' 1 +
ω2

mF

ω2
0

= 1 +
sF

s
≈ sF

s
. (5.50)

The insertion loss is given solely by the ratio sF and s:

RE ≈ 20 lg
sF

s
. (5.51)

An elastic bearing consisting of a spring, or an elastic layer, which has a
stiffness of 10% of the foundation’s stiffness, therefore has an insertion loss
of 20 dB. Theoretically, the insertion loss, according to (5.51), could even
decrease with increasing frequency for sufficiently large η.

The low frequency range is easily explained. At the lowest frequencies, it
is again

RE ≈ 0 dB , (5.52)

followed by the resonance area with a negative RE.
Strictly speaking, the resonance frequency is now given by

ω2
A = ω2

0

(
1− ω2

A

ω2
mF

)
(5.53)

and is therefore
1
ω2

A

=
1
ω2

0

+
1

ω2
mF

. (5.54)

Often it is ω2
mF � ω2

0 , so that, using ωA ≈ ω0, the detuning only plays a
minor role.

In contrast, RE tends to infinity at the ‘mass-foundation resonance’
ω ≈ ωmF. The reason for that is simple: without the elastic bearing, mass
and foundation are at resonance; the force F (s → ∞) acting on the foun-
dation becomes infinite, because no damping was assumed in the spring of
the foundation. As the foundation force FF now stays finite due to the elastic
bearing, they both seem to cause an ‘infinitely large improvement’.

The characteristics in Fig. 5.9 account for a foundation damping in the
calculation of V in (5.49) by additionally assuming a complex spring stiffness

sF → sF(1 + jηF) (5.55)

and therefore also a complex resonance frequency

ω2
mF → ω2

mF(1 + jηF) (5.56)

which were used to calculate RE = 10 lg |V |2.
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Fig. 5.9. Insertion loss for a foundation with spring characteristics, calculated for
η = 0.01 and ηfoundation = 0.5

Fig. 5.10. Insertion loss of the sub-ballast mat Sylodyn CN235. Experiment: average
over several positions and train types; southbound trains (triangles), northbound
trains (circles). Calculation for dynamic stiffness of s′′ = 0, 022 N/mm3 (solid line)
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Fig. 5.11. Measured impact noise reduction (i.e. insertion loss) of a floating concrete
floor. The ceiling structure consists of 50 mm cement floor on 0.2 mm PE foil on
35 mm solid foam plate on 120 mm reinforced concrete

To summarize, it can be stated that the foundation impedance has a con-
siderable influence on the insertion loss. More exact statements on the effect
of an elastic bearing require detailed knowledge of zF. More generally, it can
be stated that the actual characteristics at higher frequencies are roughly lo-
cated between a frequency-independent line and a straight line with a slope
of 12 dB/octave.

Experimental values, as shown in Fig. 5.10 and 5.11, behave accordingly.
The slope of 12 dB/octave, valid only for a rigid foundation, is never actually
achieved.

The example in Fig. 5.10 indicates that it represents a foundation with
spring characteristics. The frequency response in Fig. 5.11 does not indicate a
particular frequency response of a characteristic impedance – but a ‘floating’
concrete floor (a cement floor, resting upon an elastic layer, placed between the
raw ceiling and the cement, see Fig. 5.3) does achieve quite a large insertion
loss.

As final practical piece of advice, it suffices to say that either the details
of any given problem have to be analyzed more accurately, or one should be
aware of far too unrealistic promises about the effect of elastic bearings.
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5.4 Determining the transfer path

Even for sufficiently heavy or rigid foundations the application of elastic bear-
ings is not reasonable in any situation. This is the case, for example, whenever
the sound field as observed from any given vantage point, is not produced by
a force acting on the foundation of the machine.

A typical situation which can often be found in buildings is sketched in
Fig. 5.12. An appliance mounted on one floor that produces unwanted high
noise levels in another room. Will an additional elastic decoupling of the device
be useful in that case?

Fig. 5.12. The two transfer paths under consideration

To answer this question, it has to be kept in mind that the sound trans-
mission (as sketched in Fig.5.12) can take two different paths:

1. Structure-borne vibrations are excited in the ceiling by an induced force
and are transmitted to the flanking components, i.e. walls and ceilings.
The wall motions of the ‘receiving room walls’ radiate air-borne sound.
For simplicity this transfer path is called the ‘structure-borne path’.

2. Simultaneously most of the devices directly radiate air-borne sound into
the ‘source room’ where they are located. This air-borne sound also acts
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on the adjoining walls as an exciting force (actually a spatially distributed
pressure). Vibrations of the walls and ceilings are thereby produced, which
are transmitted through the building and radiate into the receiving room.
This transfer path is called the ‘air-borne path’.

It should be obvious that an elastic bearing can only reduce the noise in
the receiving room if the sound field transmitted along the structure-borne
path is notably larger than that which is transmitted along the air-borne path.
If necessary, the question of which of the two paths dominates a particular
acoustic situation has to be verified by measurements.

The simplest test is to turn the machine off and put a loudspeaker into
the source room in order to produce an artificial sound field. The measured
level differences ∆LM (i.e. the level in the receiving room minus the level
in the source room while operating the machine) and ∆LL (i.e. the level in
the receiving room minus the level in the source room while operating the
loudspeaker) can be used to deduce the transfer path. If ∆LM is considerably
larger than ∆LL the transmission of structure-borne sound predominates that
of air-borne sound. Elastic decoupling of the machine against the foundation
makes sense in that case. The level reduction which can be expected by this
solution is a maximum of ∆LM−∆LL, because the air-borne path dominates
the transmission beyond this point.

If, in contrast, ∆LM is roughly equal to ∆LL, either both transfer paths
have about the same importance, or the air-borne sound dominates. An addi-
tional measurement is needed to distinguish these two cases. Artificial forces
are induced into the foundation of the machine using shakers or suitable ham-
mers. The source characteristics are taken from the velocity level on the foun-
dation. The level differences ∆LM (i.e. the level in the receiving room minus
the level in the source room while operating the machine) and ∆LS (i.e. the
level in the receiving room minus the level in the source room while operating
the shaker) are measured. If ∆LM is considerably larger than ∆LS, the air-
borne path has precedence over the structure-borne path. Elastic isolation is
absolutely useless in this case. Instead, the transmission loss between the two
rooms needs to be improved (e.g. by using soft bending shells, see Chap. 8).

5.5 Determining the loss factor

To determine the loss factor the frequency response function of the ratio of
the displacement x and the induced force F have to be measured. The ex-
perimental setup, requiring the use of an appropriate capturer, is depicted in
Fig. 5.7. According to (5.6), the ratio is expected to be

x

F
=

1
s

1
1− ω2

ω2
0

+ jη ω
ω0

(5.57)

(with ω0 based on (5.13) and η based on (5.15)). The presence of a broad res-
onance peak offers a significant advantage when measuring large loss factors.
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Fig. 5.13. Definition of half-bandwidth ∆f

The so-called half-bandwidth ∆ω is used (see also Fig. 5.13) as a scale for
the width of the peak: on the left and right side of the actual maximum of
the magnitude, two frequencies ω = ω0 + ∆ω/2 and ω = ω0 − ∆ω/2 exist,
where the magnitude |x/F |2 is half that of the maximum itself (as is generally
known, half the magnitude corresponds to a level difference of 3 dB to the
maximum). The frequency distance between these two points is referred to as
half-bandwidth.

The connection between half-bandwidth and the loss-factor according to
the aforementioned definition, is described by

1[
1−

(
ω0±∆ω/2

ω0

)2
]2

+
[
η ω0±∆ω/2

ω0

]2 =
1
2

1
η2

. (5.58)

For a first order approximation using ∆ω � ω0,

η
ω0 ±∆ω/2

ω0
≈ η

can be assumed, which keeps the error in η small. This results in[
1−

(
ω0 ±∆ω/2

ω0

)2
]

+ η2 ≈ 2η2 ,

or

1−
(
ω0 ±∆ω/2

ω0

)2

= ±η .
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Using (
ω0 ±∆ω/2

ω0

)2

= 1± ∆ω
ω0

1
4

(
∆ω
ω0

)2

≈ 1 +
∆ω
ω0

,

where again ∆ω/ω0 � 1 is assumed, it follows that

η =
∆ω
ω0

=
∆f
f0

, (5.59)

where the sign (η > 0) was chosen in a physically reasonable sense. Equa-
tion (5.59) indicates how the loss factor is calculated by the measured half-
bandwidth ∆f .

In carrying out measurements by digital means, using an FFT spectrum-
analyzer, it should be kept in mind that

• a typically rectangular window function with a main lobe as narrow as
possible is used and that

• at least six (or preferably more than ten) spectral lines are located within
the half-bandwidth. A sufficiently high resolution can be obtained by using
the FFT-zoom function, if necessary.

5.6 Dynamic mass

Machines, appliances, lathes, etc., cannot always be considered ’compact
masses.’ On the contrary, they can be subject to elastic deformations with
resonance properties. The ”moving,” dynamic mass, which is significant for
resonance frequencies of bearings, can therefore be far smaller than the total
static mass ”at rest”, as shown in the following.

Take a railway or subway car as an example of an elastic structure con-
sisting of spring parts. In order to ensure the comfort of the passengers, the
actual passenger car rests on spring suspensions mounted to the wheel axles.
To reduce the entry of vibrations into the ground, the track system is addi-
tionally insulated with elastic rail bearings or a sub-ballast mat. The entire
structure is basically comprised of two masses and two springs, as depicted
in Figure (5.14). In our example, the upper mass m1 represents the passen-
ger rail car, the spring s1 consists of the steel spring suspensions between it
and the wheel axles, the mass m2 encompasses the wheel axles themselves,
the tracks and the track bed. Finally, s2 represents the sub-ballast mat, the
bottom of which is to be considered rigid. The rolling impact occurs in the
contact between the wheel and railway, thereby exerting the stimulating force
on m2. The friction forces will be neglected for the purposes of simplification.
The equation of motion for Mass 1 suffices for the description of this scenario.
The equation is

m1ẍ1 = s1(x1 − x2), (5.60)
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Fig. 5.14. Model for the elastic bearing of structures consisting of spring parts

or, for pure tones at the frequency ω and complex amplitudes

m1ẍ1 = s1(x1 − x2), (5.61)

from which
x1 =

x2

1− ω2/ω2
1

(5.62)

with
ω1

2 =
s1

m1
(5.63)

can be derived. The frequency ω1, appearing in equation (5.63), exists in the
resonance frequency which the structural component m1 and s1 would have if
it were resting on a rigid foundation. This resonance, however, is usually set
very low for the sake of the passenger’s comfort. Therefore, it can at least be
assumed that ω >> ω1 is true for a frequency range large enough to ensure the
transmission of the vibrations into the ground. This also implies x1 << x2:
That is, the amplitude of the vibrations emitted by the upper mass m1 can
principally be disregarded in favor of the vibration amplitude of the second
mass m2. The upper mass m1 is practically motionless – in any case, producing
the desired effect for the passengers. It suffices to say that the systematically
decoupled mass m1 is virtually irrelevant in respect to the acoustical effect of
the elastic bearing s2. This can also be shown by the equation of motion for
mass m2 derived from

m2ẍ2 = x2(s1 − s2) + F, (5.64)

or in the frequency domain

mass m2

spring s2

force F

rigid foundation

mass m1

spring s1

x2

x1

displacement
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x2 =
F

s1 + s2 −m2ω2
. (5.65)

The force exerted on the foundation is therefore

FF = s2x2 =
F

(1− ω2/ω2
12)

s2

(s1 + s2)
, (5.66)

with
ω12 =

s1 + s2

m2
. (5.67)

In conclusion, the insertion loss

R = 10lg(F/FF )2 = 10lg(1− ω2/ω2
12)2 (5.68)

is solely based on the resonance frequency resulting from mass m2 and com-
bined spring element s1 + s2. The mass m1 does not exist from a dynamic
standpoint, because m2 is decoupled from the system by s1. This has a detri-
mental effect on the elastic bearing s2, as the spring layer has to be dimen-
sioned based on the ’static’ total mass m1 + m2. As mentioned previously,
the ratio of static displacement to spring thickness cannot exceed a certain
value. Unfortunately, this ’dynamically moving’ mass m2, which can be much
smaller by comparison, is the only one that is significant for the dynamic effect
of the insulation.

5.7 Conclusion

As usual, the previous remarks concerning elastic bearings are incomplete.
The most important effects which are not discussed here are named in the
following.

1. Vibrations of solid structures are not restricted to one degree of freedom
(translational motion along one axis), as was tacitly assumed here. Objects
can certainly perform one translational and one rotational vibration in
each of the three room axes. To avoid motion parallel to the foundation
and ‘rocking oscillations’, a low center of gravity is favorable, which can
be achieved, for instance, by an additional mass (e.g. mounting of engines
on concrete).

2. Machinery, devices, turning-lathes, etc. cannot always be regarded as
‘compact masses’. In contrast, they can suffer from elastic deformations
with resonance phenomena themselves. The ‘moved’ dynamic mass, valid
for the resonance frequency of the bearing, can therefore be considerably
smaller than the static mass.

3. Last, but not least, actual spring elements can form a waveguide them-
selves, where standing waves may occur at higher frequencies, resulting in
large dips in the insertion loss at their resonances.
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5.8 Summary

Elastic decoupling using springs or soft, elastic insulation between structure-
borne sound sources and foundations can greatly reduce the permeation of
structural noise into building foundations. Below the resonance frequency,
there is an insertion loss of the mass-spring system of about 0 dB. In the
resonance frequency, the insertion loss can have a negative value, depending
on the loss captured in by the spring. The mitigating effects only occur above
the resonance frequency. Here, the insertion loss increases with 12 dB per
octave. The main objective from the perspective of noise control is therefore
maintaining low resonance by using the softest springs possible. A rule of
thumb is to use springs which have a static depression of 5 to 10 percent of
the spring’s length or the layers thickness.

The structural foundation can have a considerable influence on the amount
of insertion loss. If the foundation has a mass character, the resonance fre-
quency shifts upward. If it has a spring characteristic, the insertion loss at-
tains a frequency-independent constant value once it exceeds the resonance
frequency. This value is defined by the stiffness ratio of the foundation to the
spring. The effects of elastic decoupling can also heavily depend on whether the
dynamically reverberating mass is actually much smaller than the remaining
mass of the structure-borne sound source. Before implementing elastic decou-
pling, it is highly recommended to verify that the structure-borne sound is
entering the foundation along the main transmission path to the area to be
insulated, or whether it is entering it along another route.

5.9 Further reading

The ”Handbook of Acoustical Measurements and Noise Control” (edited by
C. M. Harris, Acoustical Society of America, ASA, New York 1998) provides
additional information on elastic decoupling in Chapter 29. Furthermore, the
”Handbook” provides a valuable research tool to answer a wide variety of
questions in acoustics.

5.10 Practice exercises

Problem 1

A nuclear magnetic resonance tomograph has a mass of 1000 kg. It is resting
on four square legs, each measuring 30 cm by 30 cm. A flat bearing is to be
mounted on an elastic decoupling system, whereby the static depression of
the elastic bearing is 0.05 times the thickness of the layer. How large does the
bearing’s elasticity module have to be? How thick does the layer have to be
in order to guarantee a resonance frequency of 14Hz?
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Problem 2

How stiff does the spring have to be in the foundation structure of the NMRT
in Problem 1 to obtain a reduction in vibration emissions of 6 dB (10 dB,
20 dB) in the building?

Problem 3

During the operation of the NMRT, as described in the problems above, the
following octave levels emitted from both a transmission room and waiting
area (receiver room):

f/Hz Source level /dB Receiver level/dB

500 65.3 32.0
1000 64.4 31.4
2000 63.5 30.4

The NMRT is subsequently switched off. The following levels in the source
and receiver rooms are measured using a loudspeaker:

f/Hz Source level(L)/dB Receiver level(L)/dB

500 85.2 45.3
1000 86.4 45.2
2000 83.8 42.4

Does it make sense to mount the foundation to an elastic decoupler? If
yes, how much of a decibel reduction can be expected? How high is the non-
weighted emission level in the receiver room after introducing elastic decou-
plers?

Problem 4

Suppose a machine of mass M is decoupled from a foundation. If the founda-
tion is likewise a component of a mass, how much does the resonance frequency
have to be detuned as opposed to the case of a rigid foundation if the foun-
dation mass is double, four times, and eight times the mass to be decoupled?
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Problem 5

The ’resonance frequency ω0η of a damped resonator’ is the frequency at which
the frequency response |x/F |2 (see equation(5.6)) reaches its maximum. How
high is the damped resonance frequency? How much is the critical damping
where the resonance frequency reaches zero? Express the damping constant r
in terms of the loss factor η.
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Sound absorbers

When designing the acoustics of rooms, the problem of influencing the sound
reflections at the room boundaries often arises. In factory buildings, for exam-
ple, it is necessary to prevent noise emitted by machinery from travelling to
areas further away via reflections; one is interested in obtaining a sufficiently
high absorption at the walls. On the other hand, the sound for audiences in au-
ditoria like studios or concert halls must be enhanced by indirect reflections,
while simultaneously reducing reverberation caused by multiple reflections
which would otherwise make intelligibility more difficult.

Such design objectives can be achieved by implementing absorbent struc-
tures in the construction of walls and ceilings. These must contain standard-
ized reflection properties suitable for the purpose. The present chapter dis-
cusses such building structures and explains their impact on the airspace
surrounding them.

We will first begin this chapter by introducing the basic effects of normal
impingement of a plane sound wave onto either a reflective or an absorbent
wall structure or noise barrier. The acoustic properties of a wall are often
measured in experiments based on this specific case. We will first proceed
in determining the properties of the acoustic wall by testing the theory by
experiment as is customary in empirical investigation. properties.

6.1 Sound propagation in the impedance tube

In order to determine the reflection and absorption of a wall structure spec-
imen under the previously defined condition of normal sound incidence, it is
first necessary to produce a plane wave in a laboratory. Simply exposing a wall
area to sound would present certain difficulties in measuring the outcome, as a
plane wave can only be generated in small areas of space. Furthermore, the re-
sults would be difficult to reproduce, as they would depend on the positioning
and the direction of the sender.
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In contrast, unambiguous and easy to reproduce environmental conditions
can be achieved by capturing the sound in a one-dimensional continuum. This
can be done in a rigid tube, where the sound is internally guided and forced
to propagate along the tube axis. Such a tube, used to determine the acoustic
properties of a termination equipped with the sample, is called an impedance
tube, or Kundt’s tube (named after the acoustician Kundt implemented it to
prove the wave properties of sound). As long as the tube diameter is small
compared to the wavelength, it produces a plane sound wave, propagating
along the tube axis.

Fig. 6.1. Principle of propagating sound-rays in the tube

As the impedance tube is a widely used experimental device, this chap-
ter on ‘sound absorbers’ starts with a discussion of its basic principles us-
ing a simplified two-dimensional tube model, consisting of two rigid parallel
plates. In the following, we will consider how the results of the simplified two-
dimensional discussion can be applied to a more realistic three-dimensional
scenario.

Our initial subject of examination will be the rigid parallel plates at y = 0
and y = h. Transversal wave propagate to and from between these plates due
to continuous reflections running in a ‘zigzag course’ (as shown in Fig. 6.1).
This simple but appropriate association can be summarized by the following
equation:

p = p0e−jkxx
(
e−jkyy + rejkyy

)
(6.1)

The wave numbers in transverse direction ky and in the direction of prop-
agation kx are still unknown. The nature of kx and ky is the focus of the
following discussion, as these two quantities describe the principles of sound
propagation in a two-dimensional tube: ky determines the transverse distri-
bution, which is normal to the propagation direction, and kx defines how this
cross-distribution propagates along the tube. Reflections are not permitted
along the tube axis x because the basic principles of the sound transmitter
‘tube’ are of interest. Thus, the tube has to be regarded as being either ‘infinite
long’ or ‘terminated by an anechoic end’.

An expression can be easily derived for the transverse wave number ky,due
to the rigid boundaries at y = 0 and y = h. These two boundary conditions

r igid tube

loudspeaker
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require that the velocity normal to the boundaries y = 0 and y = h be equal
to zero, therefore

∂p

∂y

∣∣∣∣
y=0

=
∂p

∂y

∣∣∣∣
y=h

= 0

is given at the boundaries. The first boundary condition at y = 0 yields r = 1.
This transforms eq.(6.1) into

p = 2p0e−jkxx cos kyy .

The second boundary condition at y = h requires

sin kyh = 0 .

This so-called ’eigenvalue equation’ of the tube has the solutions

ky =
nπ

h
; n = 0, 1, 2, . . . . (6.2)

There are therefore only certain given wave numbers ky permissible for the
transverse distributions of the pressure in the tube. These are called ‘eigenval-
ues’ of the tube. Each eigenvalue has its own unique given pressure dependency
fn(y) which runs in the y−-direction

fn(y) = cos kyy = cos
(nπy
h

)
,

This pressure dependency is referred to as the ”‘eigenfunction”’ or ”‘mode”’
of the tube.The word ”‘mode”’ indicates the ”‘state.”’ The modes contain all
pressure states which can exist based on the boundary conditions of the tube.

Which of the n and which corresponding ky occur, cannot be determined
at this point. Therefore, one must initially permit all possibilities (allowing
for all their corresponding oblique wave directions). For this reason, we will
first introduce the reader to the general pressure ansatz, based on (6.1):

p =
∞∑
n=0

pn cos
(nπy
h

)
e−jkxx (6.3)

Cosinosoidal pressure distributions may develop along the y-axis are called
modes (i.e. ‘state’). They are characterized by pressure maxima (antinodes)
at the edges (due to the boundary conditions). The mode shapes for n = 0, 1,
2 and 3 are shown in Fig. 6.2. They are simply segments of the cosine function
transferred to the tube cross-section so that vanishing pressure derivatives (i.e.
pressure maxima) result at the edges.

As already mentioned, the principle nature of the propagation of individual
modes is mainly of interest, which are described by a corresponding wave
number kx which depends on the mode index n. The wave number is simply
obtained by using the two-dimensional wave equation
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Fig. 6.2. Transverse sound pressure distribution (two-dimensional tube)

∂2p

∂x2
+
∂2p

∂y2
+ k2p = 0,

which, with k = ω/c, requires

k2
x = k2 −

(nπ
h

)2

in (6.3). When evaluating the square root of kx, it is assumed that the wave
number kx either describes a sound propagation along the x-axis or a near-
field which decays exponentially farther away from the source:

kx =

+
√
k2 −

(
nπ
h

)2 ; |k| > nπ
h ,

−j
√(

nπ
h

)2 − k2 ; |k| < nπ
h

(6.4)

A sound field which increases exponentially further away from the sender is
physically not realistic. To be exact, it should be mentioned that positive and
real values are explicitly assumed under the square roots in (6.4).

Obviously, a limiting frequency

fn = n
c

2h
(6.5)

corresponds to a mode with the index n. Wave propagation with a correspond-
ing wave number kx occurs only for the corresponding transverse distribution.
Only at frequencies f > fn above the modal limiting frequency fn. This fact
is expressed by a real wave number kx.

In contrast, no sound radiation occurs at frequencies below the modal
limiting frequency f < fn. A quickly decaying sound field develops, vanishing
at a greater distance from the sender. This is expressed by a purely imaginary
wave number kx.

The fact that modes are unable to propagate below a certain frequency
is called the ‘modal cut-off’ with the ‘cut-off’-frequency fn. Below the lowest
limiting frequency

f1 = c/2h

(where the tube diameter h is equal to half the wavelength, λ1/2 = h) only a
sound field which consists of plane waves n = 0 can be detected in somewhat

n = 0 n = 1 n = 2 n = 3

rigid tube 
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close proximity to the sender. If the tube is only implemented below that
frequency limit, only plane waves can occur, regardless of the loudspeaker’s
shape and its local velocity distribution. This effect is used to measure ab-
sorber samples.

Even though determining the pressure coefficients pn is not necessarily
required for subsequent investigations, we will nevertheless carry out the sound
field calculations for the sake of thoroughness. The considerations required
here are indeed somewhat fundamental and so we will still mention them in
the following sections.

The key to the answer of the aforementioned problem is simply given by
the fact that the local characteristics of the sound field always depend on the
environment (in this case, the rigid plates), whereas the actual distribution
of the sound field also depends on the source. The same is true here. For
simplicity, let us assume a flat, prolated membrane at x = 0 which has a
velocity distribution v0(y). The velocity pointing in the x-direction, which
can be calculated based on the ansatz (6.3), has to be equal to the membrane
velocity v0(y) given at x = 0. This leads to

v0(y) =
j

ω%

∂p

∂x

∣∣∣∣
x=0

=
1
%c

∞∑
n=0

pn
kx
k

cos
(nπy
h

)
.

This equation can easily be solved to determine pn. Initially, we arbitrarily
select a pressure amplitude with the index m. Then we solve the above equa-
tion for pm as follows. First, both sides are multiplied by cos(mπy/h) and
integrated over y:

1
%c

∞∑
n=0

pn
kx
k

2
h

h∫
0

cos
(nπy
h

)
cos
(mπy

h

)
dy =

2
h

h∫
0

v0(y) cos
(mπy

h

)
dy

Due to

2
h

h∫
0

cos
(nπy
h

)
cos
(mπy

h

)
dy =


0, n 6= m

1, n = m 6= 0
2, n = m = 0

,

only one term of the sum with n = m remains. This term can actually be
solved for pm. For this particular pressure amplitude it is

pm =
2k
kx

%c

h

h∫
0

v0(y) cos
(mπy

h

)
dy ; m 6= 0

p0 =
%c

h

h∫
0

v0(y)dy

(kx = k for m = 0). Since m is arbitrary, it is irrelevant which m is used. Thus,
all pm can be calculated from the equation above. The method described is
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therefore referred to in mathematical terms as ‘eigenfunction expansion of the
loudspeaker velocity’.

Finally, it should be explicitly emphasized that the modal composition is
absolutely not determined by the modal cut-off; it is only a matter of the
source characteristics. The idea that modes cannot exist below the limiting
frequency is wrong: they only occur in the near-field, but this does not neces-
sarily mean that they do not exist. This error can be a grave one as Chap. 9
on silencers elaborates. Such a mistaken notion implies that some silencers
would possess ‘infinitely high’ attenuation – and that is not the case.

6.1.1 Tubes with rectangular cross sections

The simplest scenario for three-dimensional wave dispersion is in the tubes
with rectangular cross sections (four walls) . Again, pressure antinodes must
be present at the edges y = 0, a and z = 0, b. Therefore, two-dimensional
pressure modes exist in

p =
∞∑
n=0

∞∑
m=0

cos
(nπy

a

)
cos
(mπy

b

)
e−jkxx (6.6)

where a and b are the diameter measurements of the rectangular cross section.
The modes are simply products of transverse distributions. As is evident based
on the wave equation, the cut-off frequencies are given by

fnm =
c

2

√
n2

a2
+
m2

b2
, (6.7)

where the lowest frequency (f01 or f10, respectively) is given by the larger of
the two dimensions.

So basically, nothing has changed: the sound field can be composed of
modes in two dimensions as well as in three dimensions. Each mode has a
cut-on effect. The modal amplitudes are calculated from the source velocity.

6.1.2 Tubes with circular cross sections

And these facts also apply to cylindrical tubes with circular cross-sections.
Such tubes are almost always used in measurements. The sound field is also
composed of transverse distributions, where each of these has a modal cut-on
frequency. For the sound pressure

p =
∞∑
n=0

∞∑
m=1

pnm cos (nϕ) Jn
(
xnm

r

b

)
e−jkzz . (6.8)

Here, r, ϕ, z represent the coordinates of the circular cylinder and the z-
coordinate represents the axis of the rigid tube. The tube’s lining is defined by
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r = b. For the purposes of simplicity, only the pressure distribution symmetri-
cal to the x-axis cosnϕ are accounted for. Otherwise, in the most general case,
asymmetry can be expressed by adding the term sin(nϕ). Jn(x) denotes the
Bessel function of order n (with n = 0, 1, 2, · · · ) as shown in Figure 6.3 . The

Fig. 6.3. Bessel functions Jn(x) of the orders 0 to 8

factors xnm indicate the roots of the (first) derivative of the Bessel functions.
They are approximately represented in Figure 6.3. For example, the values for
the first zeros of the derivative of J0(x) are x01 = 0, x02 ≈ 3.8, and x03 ≈ 6.7
(the more precise values to the third decimal place can be found in the table
below.) Some modes Jn(xnmr/b) cos(nϕ) are listed in Figure 6.4. Based on
the wave equation, the following applies to wave numbers kz which describe
the sound propagation of the modes along the tube’s axis:

k2
z = k2 − (

xnm
a

)2 . (6.9)

If the right side of the equation is positive, the modes pertain to a propagating
wave with a real wave number. On the other hand, a negative term on the
right indicates the existence of a near-field with an imaginary wave number.
Therefore, the cut-on frequencies

fnm = xnm
c

2πa
, (6.10)

pertain to the modes. The numerical values listed in ascending order in Ta-
ble 6.2 can be substituted for xnm.

The lowest cut-on frequency is given by
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Fig. 6.4. Transverse sound pressure distribution in a circular duct (a) xn=3.832
(b) xn=4.201 (c) xn=5.331 (d) xn=7.016

Table 6.1. Cut-on frequencies

xnm 0 1,841 3,054 3,832 4,201 5,331 6,706 7,016

Table 6.2. Roots xnm of the Bessel functions in sequential order from smallest
to largest. The cut-on frequencies of circular cylindrical tubes can be derived from
these factors inserted into eq. (6.10).

f1 = 0.59
c

2a
(6.11)

which is roughly equal to that of a rectangular duct (f1 = 0.5c/b, b=width)
with the same cross-sectional area (b =

√
πa).

The sound field exists as a sum of modes also in circular cylindrical tubes.
Every mode has a cut-on effect. The cut-on effect of modal amplitudes are
calculated from the source here as well.

6.2 Measurements in the impedance tube

As the previous section has shown, the impedance tube is a mode filter; it
can be used below the lowest cut-off frequency to produce a plane wave. It
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represents a measurement device which can be used to characterize partially
absorbing and partially reflecting structures at normal sound incidence.

Fig. 6.5. Experimental setup for the determination of absorption coefficient and
impedance in the tube

The tube is terminated by the sample under investigation (e.g. a sheet of
fibers on a rigid surface) at one end (Fig. 6.5). The resulting sound field in
the tube, when excited using pure tones, consists of one component travelling
toward the sample, as well as one reflected component

p = p0

{
e−jkx + rejkx

}
, (6.12)

where r is the pressure reflection coefficient, which is equal to the ratio of the
sound pressures p−/p+ of the wave travelling in the positive direction

p+ = p0e−jkx (6.13)

and the wave travelling in the negative direction

p− = p0rejkx (6.14)

at the position x = 0 of the sample. Generally, the reflection can also include
a phase shift between the two wave components which results in a reflection
coefficient

r = Rejϕ (6.15)
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(R is real), which is a complex number. In (6.12), a wave field is expressed
by the sum of two waves travelling in opposite directions, where the reflected
component p− (due to R ≤ 1) can have a smaller amplitude. This includes
the case of incomplete reflection. To illustrate the space dependence of the
sound field, the positive wave p+ is decomposed into a totally reflected part
plus a remainder:

p+ = p0re−jkx + p0(1− r)e−jkx .

The total sound field

p = p0r
(
e−jkx + ejkx

)
+ p0(1− r)e−jkx = 2p0r cos(kx) + p0(1− r)e−jkx

is therefore composed by the sum

p = ps + pf

of a standing wave

ps = 2p0r cos(kx) (6.17a)

and a wave travelling in x-direction

pf = p0(1− r)ejkx . (6.17a)

The combination of standing and progressive waves is seen in the ripple of the
locally measured rms-value (root mean square). When there is total reflection
r = 1, the sound field is dominated by the standing wave only, with the
rms-value p̃

r = 1 : p̃2 = 2p2
0 cos2(kx)

(see also Fig. 6.5) which represents a space dependence with large fluctuations.
Without any reflection r = 0, the wave field is only given by the progressive
wave

r = 0 : p̃2 =
p2

0

2
with a constant local rms-value. A ripple p̃min/p̃max develops in the spatial
dependency between these two extrema ripple. This is explained by the com-
bination of standing and progressing waves. Obviously, the ripple p̃min/p̃max

of the space dependence of p̃(x) is a direct measure of the reflection coefficient
which can thus be determined from the measurement of this pressure ratio.

6.2.1 Mini-max procedure

The measurement procedure can be deduced easily. First, the space depen-
dence of the squared rms-value is calculated from (6.12)
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p̃2 =
1
2
|p|2 =

1
2
pp∗ =

1
2
p2

0

(
e−jkx +Rej(kx+ϕ)

)(
ejkx +Re−j(kx+ϕ)

)
=

1
2
p2

0

[
1 +R2 + 2R cos(2kx+ ϕ)

]
. (6.18)

The maximum values obviously occur at 2kx + ϕ = 0,±2π,±4π, . . . . The
maxima are then given by

p̃2
max =

1
2
p2

0

(
1 +R2 + 2R

)
=

1
2
p2

0(1 +R)2 . (6.19a)

The minima occur at 2kx+ϕ = ±π,±3π, . . .. The sound pressure minima are
given by

p̃2
min =

1
2
p2

0

(
1 +R2 − 2R

)
=

1
2
p2

0(1−R)2 . (6.19a)

Thus, the ratio of the extrema µ becomes

µ =
p̃min

p̃max
=

1−R
1 +R

, (6.20)

or
R =

1− µ
1 + µ

. (6.21)

Equation (6.21) directly states the measurement procedure for determining
the reflection coefficient. By moving a microphone probe along the tube-axis
(Fig. 6.5) the minima and maxima of the rms-value can easily be detected.
Since only the ratio is of interest, it is not necessary to calibrate the micro-
phone.

Instead of the reflection coefficient R, the loss factor β is often specified for
the characterization of samples. It is defined by the ratio of the sound power
flowing through the sample surface P β and the incident sound power P+

β =
P β
P+

.

In general, the sound power P , which is lost from the tube, is composed of
a loss component Pα which actually results from sound energy being trans-
formed into heat, as well as a component P τ whose value may also contain
sound energy transmitted to the exterior (e.g. an open or ‘nearly open’ tube).

P β = Pα + P τ .

Similar to the loss factor β, the definitions are

• the absorption coefficient α = Pα/P+ and
• the transmission coefficient τ = P τ/P+
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Obviously, it is
β = α+ τ .

As a matter of fact, only the net loss β, and not the causes α and τ , can be
determined by the aforementioned measurements procedures in the impedance
tube. For most applications, however, the interpretation is quite simple:

• For absorbing samples with a rigid termination, β = α; these are the
samples of practical interest.

• For thin and light terminations without an absorbing sheet, β = τ .

The latter are seldom found in practice; they are mentioned here for com-
pleteness.

The relationship between the reflection coefficient R and the loss factor β
can be deduced from the energy balance equation

P+ = P β + P− ,

where P− denotes the reflected sound power. For plane progressive waves it
is

P− = R2P+

and, using the definition of β, it follows that

P+ = βP+ +R2P+

or
β = 1−R2 . (6.22)

After inserting (6.21), the relationship between β and the ripple parameter µ
is finally defined:

β =
2

1 + 1
2

(
µ+ 1

µ

) . (6.23)

As shown earlier, the loss factor (and the magnitude of the reflection coef-
ficient) can be calculated from the ripple of the local space dependency of the
sound pressure rms-value. To measure the phase ϕ of the reflection coefficient,
the position of the relative local extrema has to be determined. Since, in prac-
tice, the minima are usually easier to locate than the maxima, the location
xmin of the first minimum, found in front of the sample, is used, for which

2kxmin + ϕ = ±π

or

ϕ = π

(
|xmin|
λ/4

± 1
)

(6.24)

is given, (note that xmin < 0 due to the chosen origin of the coordinate sys-
tem). The complex reflection coefficient r = Rejϕ is therefore also known.
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When using the measurement technique described above to measure the ab-
sorption coefficient, it should be kept in mind that the closest minimum to
the sample is used to determine µ. The reason is due to the unavoidable losses
which are caused by the damping of the sound wave along the direction of
propagation. A small amount of internal damping in air is often the physical
cause, not to mention the energy which is also lost to the exterior. The tube
wall, of course, has a high, but obviously finite transmission loss. Thus, there
is always some sound energy that escapes through the walls (for example,
this effect is prevalent in large, self-made wooden rectangular measurement
tubes). Both losses reduce the apparent reflection coefficient, the larger the
distance of the sound radiated by the sender. Therefore, in any given sample,
a larger absorption coefficient is measured than actually exists, and the re-
sulting observed absorption coefficient is larger, the farther the measurement
point is from the sample surface.

For a tube with a rigid termination, the apparent reflection coefficient at
the point x would therefore be measured at

R = 1−∆R|x|

a reduced value at x by a loss factor of ∆Rx in the tube. It seems to be
realistic to assume small damping effects per tube length ∆R. According to
(6.19) and (6.19), these minor damping effects are specified by

p2
max =

1
2
p2

0 (1 + 1−∆R|x|)2 ≈ 2p2
0

p2
min =

1
2
p2

0 (1− (1−∆R|x|))2 ≈ 1
2
p2

0∆R2x2 .

In practice, the damping in the tube can only be identified at the minima.
The minimum rms-values are located on a straight line along x

pmin = p0∆Rx/
√

2 .

The maxima remain virtually independent of the losses.

6.3 Wall impedance

The quantities discussed in the previous section and the corresponding mea-
surement technique addresses the question of the acoustic impact of an ‘actu-
ally present wall structure’. Using the descriptions given so far, it is impossible
to draw conclusions for specific wall structures with respect to their effect.

A quantity describing the specific behavior of a reflecting device is the wall
impedance z. It is simply defined by the ratio of the sound pressure and the
sound velocity at the wall surface x = 0:

z =
p(0)
v(0)

. (6.25)
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It will be discussed in Sect. 6.5 as to how a specific arrangement can be
described by its wall impedance. In the present section, we consider the rela-
tionship between the ‘old and new quantities’.

The relationship between the quantity z which describes the structure and
the active quantity β (or α or τ , respectively) can be clarified easily. Choosing
the coordinate system so that that the origin is located at the wall surface,

p = p0

(
e−jkx + rejkx

)
(6.26)

and
v =

j

ω%

∂p

∂x
=
p0

%c

(
e−jkx − rejkx

)
(6.27)

are given in the domain x < 0 in front of the wall. The wall impedance is thus
related to the reflection coefficient by

z

%c
=

1 + r

1− r
. (6.28)

As already mentioned, in the case of absorbent structures, the absorption
coefficient is almost always used instead of the reflection coefficient. Therefore,
Therefore, the relationship between the loss factor β and the wall impedance
z can now be specified by solving (6.28) for r

r =
z
%c − 1
z
%c + 1

and β is calculated by

β = 1− |r|2 =
4Re {z/%c}

[Re {z/%c}+ 1]2 + [Im {z/%c}]2
. (6.29)

It should be obvious now why (6.29) is called the ‘matching law’. A large loss
factor is clearly achieved for the matching case z = %c, where β = 1. This case
can be realized by either using a complete absorbent arrangement α = 1 (and
τ = 0) or by using a simple (non-reflecting) and infinitely elongated tube with
τ = 1 (α = 0). As is clear that an imaginary part of the impedance is always
‘detrimental to absorption’. β has a maximum if the imaginary part of z is
equal to zero Im{z} = 0. When discussing wall impedances in the following
sections, the complex frequency response function in the complex impedance
plane will be represented graphically. Each frequency yields a certain com-
plex number, corresponding to a point in the z/%c-plane. If the frequency is
changed, the point travels along a curve called a phasor curve. If the lines
of constant loss factor in the complex wall impedance plane are known, the
frequency response function of β can be deduced from the array of curves
β = const. and the phasor curve.

The lines β = const. in the wall impedance plane are obtained by the fol-
lowing simple discussion. The real and imaginary part of z/%c are represented
in short form by x and y in (6.29) for the sake of brevity:
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x = Re{z/%c}, y = Im{z/%c} (6.30)

and (6.29) result in

(x+ 1)2 − 4
β
x+ y2 = 0 . (6.31)

If this is compared to the general equation of a circle

(x− xc)2 + (y − yc)2 = a2

(xc, yc: coordinates of the center point, a = radius of the circle) it can be seen
that the transformed equation (6.31)(

x−
(

2
β
− 1
))2

+ y2 =
4
β

(
1
β
− 1
)

describes circles. Lines with β = const. are therefore circles with their center
points located on the real axis and the coordinates of the center point

xc =
2
β
− 1 (6.32)

and the radius

a =

√
4
β

(
1
β
− 1
)
. (6.33)

Some lines β = const. for β = 0.5, 0.55, 0.6 . . . 0.9 and 0.95 are shown in

Fig. 6.6. Circles with a constant absorption coefficient in the impedance plane
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Fig. 6.6 (here, it it assumed that α = β, as it will also be assumed in what
follows). Obviously, the circles surround each other; the center point moves
to the right with decreasing β, while the radius increases. The curves with
β = const. are also called ‘appollonic circles’. In the case of β = 1 the circle
‘degenerates’ to a point at z/%c = 1, resulting in β = 0 at the imaginary axis.

6.4 Theory of locally reacting absorbers

The terms for the description of sound-reflecting and sound-absorbing struc-
tures were already explained in the previous sections. The physical structures
and the absorption coefficient they can possess will be investigated in this
section.

The absorbent material in particular, which is used for the purpose of
sound absorption, plays an important role herein. Typically, porous and fi-
brous material is implemented. It is composed of many fibers or cells (for ex-
ample glass- or mineral-wool, cocos fiber, felt, wood-shaving or porous cellular
foam). The main property of a plate, which is composed of such a material,
is the resistance rs which it opposes to the air flowing through it. This results
in a pressure difference

p1 − p2 = rsU = ΞdU (6.36)

between the front and the back, which is proportional to the resistance rs and
the speed U of the uniform flow. The flow resistance for the same material is
certainly larger, the larger the thickness d of the plate is. We need a constant
to describe a material independent of the material’s dimensions in terms of
its specific flow resistance (or ‘flow resistivity’). This is defined as

Ξ =
rs

d
.

According to (6.36), the physical unit of Ξ is

dim (Ξ) =
Ns
m4

= 10−3 Rayl
cm

, (6.37)

which is often given in Rayl/cm according to the unit conversion already
shown, whereas the flow resistance is given in Rayl (1 Rayl =10 N s/m3). The
range which is of technical interest for the flow resistivity is about 5 Rayl/cm <
Ξ < 100 Rayl/cm. The actual value primarily depends on the ‘density’ of the
fibers in the material, but also depends on parameters like the position of the
fibers relative to the flow.

The physical principle behind the pressure difference along the thickness of
the material is friction, which the air particles experience while moving along
the absorber skeleton. This friction comes about due to the viscosity of the
air in very thin ducts which becomes irrelevant in larger duct cross-sections.
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Thus, (6.36) can also be interpreted as a force balance equation, where the
right side represents the damping force (per unit area) opposite to the external
force (per unit area).

Fig. 6.7. Balance of forces in a cube of absorbing material filled with gas

It is of course the viscous damping in the pores and small ducts, which
enables porous and fibrous materials to achieve substantial sound absorption
in air. Kinetic energy is transformed to heat and this portion of energy is in-
evitably extracted from the sound field (the thermal conduction from the air
to the fibers only plays an additional role at low frequencies.) It is already ob-
vious by now that using porous is effective if they are used in areas, where the
amplitudes of the particle velocity are large. If, on the other hand absorbers
are located in areas of small velocity amplitudes (e.g. thin absorber sheets in
front of a rigid wall), only a small absorption can be expected. It is this simple
principle that partially explains the effect of most of the absorber structures
and their design rules, which will be described in further detail later on.

In deriving the basic equations for the sound propagation in a porous
medium, we consider an element of volume S∆x (Fig. 6.7) located in a con-
tinuous medium. For the case of absorbent material, when using the force
balance equation (2.22) for the fiber-free gas which has already been derived
in Sect. 2.2.1 (see p. 28), an additional damping force needs to be brought
into consideration. If it is assumed that (6.36) also applies to oscillatory flow,
the damping force is Ξ∆xSv. It acts in the opposite direction of the velocity
v. It is therefore

%∆xS
∂v

∂t
= S [p(x)− p(x+ ∆x)]−Ξ∆xSv . (6.38)

In the limits ∆x→ 0, this results in

%
∂v

∂t
= −∂p

∂x
−Ξv . (6.39a)

As a matter of fact, there is a little inaccuracy in (6.39). The force balance
equation (6.36) explicitly pertains to the damping force of the speed in air in
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front of (and behind) a thin sheet of porous material. The damping term Ξv
thus denotes an ‘external’ velocity ve, which is not exactly the same as the
internal velocity vi in the porous material. Since the air is squeezed in between
the fibers, vi has to be slightly larger than ve to ensure flow continuity. In
contrast, the inertia force per unit volume %∂v/∂t refers to the actual (average)
air motion between the fibers, in other words, to the ‘internal’ velocity vi. The
corrected balance equation (6.39) is therefore given by

%
∂vi

∂t
= −∂p

∂x
−Ξve . (6.39a)

A uniform description should either use vi or ve. Since we are mainly
interested in the coupling of the absorber to the external sound field in air,
we specify the external velocity ve for our description. This has the advantage
that these can all be calculated based on ‘external’ velocities; for the conditions
at the boundaries between air and porous medium, it is only required that
the (external) velocities be equal on both sides of the boundary.

Based on the assumption suggested in the ‘Rayleigh model’ of the ab-
sorber material that the fibers of the skeleton are stretched and in parallel,
the ‘internal’ and ‘external’ velocity are related by the porosity σ (σ < 1)

σ =
volume of air in the absorber
total volume of the absorber

.

Using this assumption, the porosity is equal to the ratio of the total surface of
the air ducts at the boundary toward the unbounded air and the total surface
area of the absorber. Based on mass conservation it is ve = σvi.

If it is taken into account that some ducts in the absorber are ‘blind’,
using a structure coefficient κ (κ > 1), we obtain a smaller external velocity
compared to the internal velocity

ve =
σ

κ
vi .

Equation (6.39) therefore leads to

κ%

σ

∂ve

∂t
= −∂p

∂x
−Ξve . (6.39)

and unless otherwise specified, σ = κ = 1 has always been used in the exam-
ples discussed here in order to be able to begin with the basics.

For a complete description of the processes, a description of the compres-
sion in the absorber material is required. If the skeleton of the fibers is assumed
to be rigid, it is similar to the case without absorbent material

∂vi

∂x
=

1
σ

∂ve

∂x
= − 1

%c2
∂p

∂t
. (6.40)



6.4 Theory of locally reacting absorbers 189

Fig. 6.8. Pockets and dead ends in the absorber material (principle)

Here, ve = σvi is also used because the spring characteristics of small volumes
depend on the enclosed amount of air, but not on its distribution (within the
structure).

For pure tones and complex amplitudes, the field equations (6.39) and
(6.40) become

ve = − 1
jω%κ/σ +Ξ

∂p

∂x
(6.41)

and
∂ve

∂x
= −jωσ

%c2
p . (6.42)

Combining (6.41) and (6.42) results in the wave equation of the porous
medium

∂2p

∂x2
+ k2

(
κ− j Ξσ

ω%

)
p = 0 . (6.43)

As usual k = ω/c is the wave number in air. The solutions to the wave equation
in the absorber material

p = p0e±jkax , (6.44)

using the complex wave number of the absorber

ka = k
√
κ

√
1− j Ξσ

ω%κ
, (6.45)

represent attenuated waves. If ka is split into its real and imaginary part

ka = kr − jki

(where kr and ki are positive real numbers) the pressure of (6.44)

p = p0e±jkrxe±kix (6.46)
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is now attenuated along the propagation direction in both cases. The sound
propagation speed ca

ca =
ω

kr

and the level distribution along the propagation direction (now in the positive
x-direction)

D(x) = −20 lg e−kix = 8.7kix

are used as characteristic quantities of the waves. The level therefore decreases
along the propagation direction. To present an illustration, the level along a
certain thickness d of the material

D(d) = 8.7kid

can, for instance, be cited as a characteristic value.
The most important facts expressed in the complex wave number ka can

easily be observed at frequency ranges below and above the folding frequency

ωf =
Ξσ

%κ
(6.47)

if they are treated separately. The folding frequency ‘typically’ lies in an in-
terval of about 500 Hz < ff < 5000 Hz for the range of 5 Rayl/cm < Ξ <
50 Rayl/cm.

For ω � ωf it is

ka ≈ k
√
κ

√
−j ωf

ω
=

1− j√
2
k
√
κ

√
ωf

ω

and

ca = c

√
2
κ

√
ω

ωf
. (6.48a)

The propagation speed is frequency-dependent. Therefore, the wave propaga-
tion is dispersive.

For ω � ωf it is

ka ≈ k
√
κ

(
1− j 1

2
ωf

ω

)
= k
√
κ− j σ

2
√
κ

Ξ

%c
.

Here, the wave propagation is non-dispersive:

ca =
c√
κ
. (6.48a)

The absorber attenuation D(d) for ω � ωf is given by

D(d) =
4.35σ√

κ

Ξd

%c
. (6.49)
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The attenuation D(d) is constant for f > ff . It can assume considerably large
values. As will be demonstrated in the following sections, typically porous
sheets are applied in practice. These have a damping coefficient Ξd/%c which
varies between the interval 0.25 < Ξd/%c < 8. This results in an attenuation
of up to 35 dB along the sheet thickness for all frequencies above f > ff .

The wall structures under consideration in the following sections some-
times require calculation of the velocity in the absorbent material according
to (6.41) using the solution of the pressure ansatz. It is then more convenient
to express the denominator in (6.41) in terms of the wave number ka according
to (6.45)

j
ωκ

σ
+Ξ = j

ω%κ

σ

(
1− j σΞ

ω%κ

)
= j

ω%κ

σ

k2
a

κk2
,

and (6.41) resulting in

ve =
jσk

%ck2
a

∂p

∂x
. (6.50)

6.5 Specific absorbent structures

6.5.1 The ‘infinitely thick’ porous sheet

As shown above, it is easy to obtain large internal attenuation in a porous
material. On the other hand, high absorption of a sound wave incident on the
absorber surface cannot necessarily be achieved because this is a matter of
matching between the two media and not of locally effective level reduction. It
is by no means true that, if the level rapidly decreases along the propagation
direction in the material, the contact surface to the unbounded air becomes
non-reflecting. After all, the sound field must be able to penetrate the ab-
sorber in the first place in order to guarantee a high absorption. If faulty or
insufficient matching results in the sound field already being reflected at the
absorber’s surface, an extremely high internal level reduction is useless. Ad-
justing the wall impedance which corresponds to the impinging sound wave
is key for effective absorption.

A structure of academic importance is the porous hemisphere, which is
simple and easy to understand. The ‘infinitely thick’ sheet of porous material
can also be replaced by a sheet of finite thickness if the thickness and the
attenuation are sufficiently large, making a reflection at the back irrelevant.
The porous hemisphere can thus be regarded as a limiting case.

The discussion of the hemisphere is fairly simple, because no reflection
occurs in the absorber. Therefore, we only need to take into account a single
wave propagating in the x-direction

p = p0e−jkax .

With the aid of (6.50), the characteristic impedance of the porous medium is
obtained:
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za =
p

ve
=
%c

σ

ka

k

At the boundary x = 0, separating air and absorber, the sound pressure
and the (‘external’) velocity have to be equal

pair(0)
vair(0)

=
p(0)
ve(0)

thus the wall impedance z∞ which is effective for the given sound field in air
is equal to the characteristic impedance za in the absorbent medium

z∞ = za = %c

√
κ

σ

√
1− j Ξσ

ω%κ
= %c

√
κ

σ

√
1− j ωf

ω
. (6.51)

Apart from the porosity σ and the structure coefficient κ, the effect of the
porous hemisphere is determined solely by the ratio of frequency to folding
frequency.

Fig. 6.9. (a) Phasor representation of the impedance of the porous hemisphere

The phasor curve can be easily drawn.

a) At low frequencies ω � ωf it is

z∞ ≈ %c
√
κ

σ

√
ωf

ω
e−jπ/4 .

The phasor representation in the complex plane consists of a straight line
inclined at a −45◦ angle with the real axis (see Fig. 6.9a).
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Fig. 6.9. (b) Absorption coefficient of the porous hemisphere

b) At high frequencies ω � ωf it is

z∞ ≈ %c
√
κ

σ

(
1− j 1

2
ωf

ω

)
The straight phasor representation line begins to curve and approaches a point
on the real axis which corresponds to the maximum absorption. For σ = κ = 1
the high-frequency impedance is nearly matched. It is approximately %c.

The absorption at ω = ωf is actually already high. For ω = ωf , using
1− j =

√
2e−jπ/4 and therefore

√
1− j =

√√
2e−jπ/4 = 4

√
2e−jπ/8 ≈ 1.2e−jπ/8 ,

the corresponding impedance results in

z∞(ω = ωf) ≈ 1.2%c
√
κ

σ
e−jπ/8 ,

which is a point very close to the real axis (see Fig. 6.9a) with a very large
absorption coefficient. The exact calculation using the matching law (6.29)
gives an absorption coefficient α(ω = ωf) = 0.93 (calculated using σ = κ = 1).
Even for ω/ωf = 0.1, the absorption coefficient is larger than 0.6 (see also
Fig. 6.9b). Such high absorption coefficients (at such low frequencies) cannot
be achieved using porous sheets of finite thickness, as will be shown in what
follows.
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6.5.2 The porous sheet of finite thickness

The simplest construction used to absorb incident sound is a sheet of porous
material, mounted on a rigid wall (Fig. 6.10a). The frequency response func-
tion of the absorption coefficient α is roughly estimated by a simple illustra-
tion. Since the reflection at the rigid wall implies a velocity node at the wall
(Fig. 6.10a), the absorber layer is likewise affected by an area of small velocity
if the layer thickness is small compared to the wavelength.

Fig. 6.10. (a) Left: Space characteristics of sound pressure and sound velocity in
front of a rigid reflector. Right: Absorbent sheet in front of a rigid wall

At low frequencies, α is very small, because an absorber transforms ki-
netic energy into heat. Only if the first velocity maximum, which is located a
quarter-wavelength in front of the wall, migrates into the absorber, are there
areas of large velocity amplitude inside the absorbent material and the ab-
sorption coefficient increases. If the wavelength becomes slightly smaller, the
porous sheet is a slightly more inefficient. The minimum is located at about
d = λ/2. After that, α increases again up to d = 3λ/4, and so on. Behind the
first maximum, weak alternating characteristics are obtained which gradually
approach the value of α of the porous sheet of infinite thickness.

For the calculation of the absorption coefficient or the wall impedance,
respectively, an approach is needed which requires that the sound field is
composed of opposite progressive waves with a reflection coefficient r = 1 at
the back rigid wall

p = p0

{
e−jka(x−d) + ejka(x−d)

}
(6.52)

v =
kσ

%cka
p0

{
e−jka(x−d) − ejka(x−d)

}
, (6.53)

where, additionally, the sound velocity was determined by the pressure, using
(6.50). The sound velocity already satisfies the boundary condition v(x =
d) = 0.
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Fig. 6.10. (b) Characteristics of the hyperbolic tangent tanh(x)

The effective impedance for the external sound field in air is again (due to
the identity of pressure and velocity on both sides of the boundary x = 0 to
the air) given by

z =
p(0)
v(0)

= −j %c
σ

ka

k
cot(kad) = −jz∞ cot(kad) . (6.54)

We will begin our initial discussion of the characteristics of a porous sheet of
finite thickness shall starting with the case of low frequencies |kad| � 1. In a
first-order approximation, using cot(kad) ≈ 1/kad, these are given by

z ≈ −j %c
σ

1
kd

= −j %c
2

σd

1
ω
. (6.55)

In (6.55) the pure impedance of a spring, which is caused by the air enclosed
in the skeleton of the absorber, is described by the spring stiffness %c2/σd.
The first order approximation results in no absorption at all due to α = 0.
Only a second order approximation can determine (tiny) small absorption
coefficients α 6= 0. At low frequencies the phasor representation starts at the
negative imaginary axis, which is crossed as the phasor representation moves
toward the origin.

At higher frequencies, cot(kad) is more consequently expressed in terms of
exponential functions, using

cot(kad) =
cos(kad)
sin(kad)

= j
ejkad + e−jkad

ejkad − e−jkad
= j

1 + e−j2kad

1− e−j2kad
,
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Fig. 6.10. (c) Phasor representations of the impedance of a porous layer in front
of a rigid wall

and (6.54) results in

z = z∞
1 + e−j2kad

1− e−j2kad
. (6.56)

One can better imagine the phasor representation by assuming that the fre-
quency range is above the folding frequency ω > ωf . Here,

kad = kd
ka

k
= kd

(
1− j 1

2
Ξ

ω%

)
= kd− j 1

2
Ξd

%c

can be used and (6.56) results in

z = z∞
1 + e−j2kde−Ξd/%c

1− e−j2kde−Ξd/%c
. (6.57)

It is of interest to consider points where the fraction on the right side is real.
We distinguish here between two different cases e−j2kd = +1 and e−j2kd = −1:

a) At frequencies where

d

λ
=

1
4

+
n

2
, n = 0, 1, 2, . . .

is given, the impedance results in

z = z∞
1− e−Ξd/%c

1 + e−Ξd/%c
= z∞ tanh

(
1
2
Ξd

%c

)
, (6.58)
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due to 2kd = 4πd/λ = π+2πn. As shown in the previous section, z∞ = %c can
be assumed for ω > ωf . Thus, (6.58) denotes points on the real axis, where
the distance to the origin is reduced by a factor tanh(Ξd/2%c) compared to
%c (Fig. 6.10b recalls the characteristics of the hyperbolic tangent tanh(x)).

b) At frequencies where

d

λ
=
n

2
, n = 1, 2, 3, . . .

is given, the impedance results in

z = z∞
1 + e−Ξd/%c

1− e−Ξd/%c
=

z∞

tanh
(

1
2
Ξd
%c

) (6.59)

due to 2kd = 4πd/λ = 2πn. In (6.59) points on the real axis are denoted,
where the distance to the origin compared to %c is increased by the factor
1/ tanh(Ξd/2%c)

Fig. 6.10. (d) Absorption coefficient of a porous sheet in front of a rigid wall

As can be seen in Fig. 6.10c, the points will be alternately crossed, de-
pending on ‘case a’ or ‘case b’, respectively, with increasing frequency, where
(apart from small differences not considered above) phasor representations
similar to a circle are overlaid repeatedly. Using the previous considerations,
and from Fig. 6.10c and 6.10d, it follows that

• a smaller resistance Ξd/%c results in a lower folding frequency, but pro-
duces an absorption coefficient, alternating with frequency and
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• a larger resistance Ξd/%c results in a smoother absorption coefficient α ≈ 1
above the folding frequency, but the folding frequency is very high.

As Fig. 6.10 clearly also shows, the ‘optimum compromise’ between the
contrary requirements of ‘low folding frequency’ and a ‘smooth, high-frequency
α ≈ 1’ is given by Ξd/%c = 2.

Good absorbent structures should roughly follow this optimum. The acous-
tic efficiency is α > 0.6 in the frequency range above about d/λ = 0.1. If an
absorption coefficient of α = 0.6 at 340 Hz is required, it can just be achieved
by a sheet of 10 cm thickness. Tuning absorbers towards even lower frequencies
would require a substantially larger sheet thickness. As a matter of principle,
porous sheets are therefore absorbers which are useful in the high frequency
range.

6.5.3 The porous curtain

For absorption at lower frequencies using porous sheets, less material is re-
quired if a thin layer is mounted as a curtain in a certain distance to a wall
(Fig. 6.11a).

Fig. 6.11. (a) Porous curtain in front of a rigid wall

The absorption coefficient for this arrangement can also be estimated
graphically. It will be large only if the porous layer is roughly located at
a maximum of the velocity in the sound field in front of the wall. The maxima
are therefore located at

αmax : λ

(
1
4

+
n

2

)
= a .

The corresponding frequencies are given by

f =
c

a

(
1
4

+
n

2

)
. (6.60)
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αmin : λ
n

2
= a .

The corresponding frequencies are given by

f =
c

a

n

2
. (6.61)

The peaks become broader, the larger the curtain thickness d is.
Thin absorbent layers will be assumed in the following calculation. The

pressure difference p1−p2 of the sound pressure p1 in front of the curtain and
p2 behind it, can be estimated similar to (6.36) by the flow resistance

p1 − p2 = Ξdv . (6.62)

It was assumed that the layer is rigid itself: v denotes the velocity in the front
and in the back of the curtain. The impedance of the air gap z2 = p2/v is
known from the previous section (using σ = 1 and kad = kd in (6.54)):

z2 =
p2

v
= −j%c cot(ka) (6.63)

and by using the impedance of the complete with the aid of (6.62): structure
is obtained

z =
p1

v
= Ξd+

p2

v
= Ξd− j%c cot(ka) . (6.64)

Fig. 6.11. (b) Phasor representation of the impedance of a porous curtain
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Fig. 6.11. (c) Absorption coefficient of a porous curtain

The phasor representation (Fig. 6.11b) is parallel to the imaginary axis
which is overlaid several times, due to the periodicity of the cotangent func-
tion. As usual, α has a maximum if the phasor representation crosses the real
axis. This is the case for

cot(ka) = 0 ; therefore ka =
π

2
+ nπ ,

which is equal to (6.60). The maxima are given by

αmax =
4Ξd%c(

Ξd
%c + 1

)2 =
4

Ξd
%c + %c

Ξd + 2
. (6.65)

The maxima remain equal if the ratio Ξd/%c is substituted by its inverse.
By relocating the phasor representation in (Fig. 6.11b), it becomes obvious

that

• a small resistance Ξd/%c has a narrow peak in the absorption. Changing
the frequency away from cot(kad) = 0 crosses along several different curves
α = const.;

• a large resistance Ξd/%c has a broader peak in the absorption. Changing
the frequency away from cot(kad) = 0 nearly does not cross any other
curves α = const.

Summarizing, it can be stated that resistances Ξd/%c, which are the inverse
of each other, have the same maximum in the absorption coefficient, but have
peaks with very different widths (see also Fig. 6.11c). To eliminate any doubt,
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a resistance will probably be chosen which is too large. Due to the space they
take up (which equals that of the porous sheet of finite thickness) porous
curtains are also usable exclusively at higher frequencies.

6.5.4 Resonance absorbers

An effective low-frequency absorber is obtained when a mass is added to the
porous curtain. As will be shown in the following, the additional mass char-
acteristics compensate the spring characteristics given by the cotangent in
(6.64). Given the same demand for space, a wall impedance ‘without an imag-
inary component’ is created at a lower frequency than without the additional
mass. This is the advantage of the resonance absorber.

Fig. 6.12. Resonance absorber (schematic)

The wall impedance of the structure depicted in Fig. 6.12 can be deter-
mined using the inertia law. The pressure difference in the front and behind
the mass is given by

p1 − p2 = jωm′′v (6.66)

(m′′ = mass per unit area), and this results in

z =
p1

v
= jωm′′ +

p2

v
= jωm′′ + z2 ,

where z2 represents the impedance of the porous curtain (6.64). For the porous
curtain including the additional mass, it is

z = jωm′′ − j%c cot(ka) +Ξd . (6.67)

The characteristics of the phasor representation are the same as for the porous
curtain (Fig. 6.11b), but this time the frequencies are assigned differently.
Instead of the maxima cot(kd) = 0 of the absorption coefficient for the porous
curtain, the maxima for the resonance absorber are given by:

cot(ka) = cot
ωa

c
=
ωm′′

%c
. (6.68)
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The transcendental equation (6.68) used to determine the frequency points
with α = αmax can easily be solved graphically. This equation involves the
intersections of the cotangent and a straight line with a gradient proportional
to m′′. As shown in Fig. 6.13, the frequencies with a maximum α are lower,
the larger the mass per unit area m′′ is. As already mentioned, this is the main
advantage of the resonance absorber compared to simple porous curtains. By
using an additional mass, the absorption coefficient can be tuned to lower
frequencies, especially the first maximum, without changing the depth of the
structure. A typical frequency response function of the absorption coefficient
of a resonance absorber is shown in Fig. 6.14. A comparison with Fig. 6.11c
shows a noticeable shift in the maxima, whereas their height αmax remains
unchanged. Just as in the case of the porous curtain,

αmax =
4

Ξd
%c + %c

Ξd + 2

is given by (6.67).

Fig. 6.13. Graphical determination of the frequencies with maximum absorption

The lowest maximum is mainly relevant for practical purposes. Under the
assumption that the wavelength is large compared to the depth a of the air
gap, the cotangent function can be replaced by its reciprocal argument. In
the frequency range of the lowest maximum, the impedance is approximately
given by

z = Ξd+ j

(
ωm′′ − %c2

ωa

)
. (6.69)
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Fig. 6.14. Absorption coefficient of a resonance absorber (calculated using Ξd/%c =
1 and m′′/%a = 2)

The tuning frequency of the maximum absorption is equal to the resonance
frequency

ωres =

√
%c2

am′′
(6.70)

of the simple mass-spring-oscillator, comprised of mass per unit area m′′ and
the air spring with the stiffness %c2/a.

The required tuning frequency is the product of the depth of the gap a
and the mass per unit area m′′. It is therefore equivalent to either producing
lightweight mass linings with a larger air gap, or to heavy linings that demand
less space. It should be kept in mind that the choice has a consequence for
absorption bandwidth. What is the effect of an exciting frequency which differs
from the resonance frequency on the absorption coefficient? This question can
easily be answered by simply allowing small changes around the resonance
frequency. The imaginary part of the impedance in (6.69) can be expressed
by the first term of the Taylor series

ωm′′ − %c2

ωa
= (ω − ωres)

d(ωm′′ − %c2/ωa)
dω

∣∣∣∣
ω=ωres

= (ω − ωres)
(
m′′ +

%c2

ω2
resa

)
= 2m′′(ω − ωres) , (6.71)

consequently resulting in
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α =
4Ξd%c(

Ξd
%c + 1

)2

+
[

2m′′

%c (ω − ωres)
]2 . (6.72)

Usually, the bandwidth of the maximum is expressed by the frequency distance
∆ω of two points, one to the left and one to the right of the maximum, where
the absorption coefficient has fallen to half of the maximum value

α(ω = ωres ±∆ω/2) =
1
2
αmax .

The absorption coefficient is equal to half the maximum value if the two terms
in the denominator of (6.72) are equal, resulting in[

2m′′

%c
(ωres ±∆ω/2− ωres)

]2

=
[
Ξd

%c
+ 1
]2

,

or
∆ω =

Ξd+ %c

m′′
. (6.73)

Therefore, the half-bandwidth is inversely proportional to the mass per unit
area m′′. For that reason, if a broad bandwidth is preferred, small masses are
typically used. A slightly larger air gap must be allowed in order to be able
to tune to lower frequencies.

Fig. 6.15. (a) Absorption coefficients of resonance absorbers (calculated using
m′′ω0/%c = 2)

The dependence of the (lowest) maximum absorption coefficient on its
parameters is again summarized in Fig. 6.15.
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Fig. 6.15. (b) Absorption coefficients of resonance absorbers (calculated using
Ξd/%c = 1)

As can be clearly seen (and observed in (6.73)):

• the peaks with constant m′′ become broader for larger flow resistances
Ξd/%c. The maxima are equal for reciprocal flow resistances.

• the peaks with constant Ξd/%c are narrower, the larger m′′ is.

The order of magnitude of the applicable mass linings is relatively small
(compared to windows, sheet metals or even walls). This will be illustrated by
means of an example, where a resonance absorber shall be tuned to 200 Hz.
The acoustician would like to use a large air gap a in order to be able to use a
small mass and to broaden the bandwidth. For other reasons, he is certainly
not allowed to ‘steal’ a lot of the room’s volume (an exception to this might be
the ceiling of high rooms). It is therefore assumed that the air gap is restricted
to a depth of 10 cm (for a porous curtain or an absorbent sheet, 40 cm would
ultimately be necessary!). This results in

m′′ = %c2/ω2
resa,

which is a value of approximately m′′ = 0.850 kg/m2. The half-bandwidth
approximately results in ∆f = 150 Hz. The absorber is therefore ‘efficient’ in
a range of about 125 Hz to 275 Hz. Halving the mass (and therefore doubling
the bandwidth and the air gap a as well) would be more beneficial from the
acoustician’s point of view. Thus, resonance absorbers also have a substantial
demand for space if they are supposed to be effective at low frequencies in a
wide bandwidth.
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Small amounts of air oscillating in the small holes of perforated plates are
intended to compensate for the small mass linings. As depicted in Fig. 6.16,
the absorbent structure is constructed of a rigid plate with holes that lead to
the absorber’s backing; the plate is mounted at a certain distance from a rigid
wall.

The force balance equation for uniform mass distribution

p1 − p2 = jωm′′v

must be substituted by an equation which applies to the case of holes.

Fig. 6.16. Resonance absorber with perforated plates

The mass, corresponding to an individual hole, is focused here. The forces
p1SL and p2SL act on either side of the mass (SL is the cross-sectional area
of the hole). The inertia law therefore requires

p1 − p2 =
M

SL
jωvM (6.74)

where M is the mass moved in the hole and vM its velocity. Apart from the
movement of the air mass, which is located in the volume of the hole, volumes
of adjacent air in front of and behind it will move along with the mass. For
circular holes with radius b, it can be assumed that the correction, which is
established by this fact, is given by a semi-sphere with a radius equal to the
radius of the hole on both sides of the hole. Thus

M = %

(
πb2W +

4π
3
b3
)
,

or
M

SL
= %

(
W +

4
3
b

)
(6.75)

where W is the ‘thickness of the hole’ or the plate thickness. Now it has to
be taken into account that the ‘external’ velocity v in the sound field and the
velocity in the hole vM may differ significantly. The mass impinging onto the
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perforated plate during the time interval of one second is ‘forced’ through the
total perforated surface area SLtot included in S. Based on mass conservation,
it follows that

SLtotvM = Sv ,

or
vM =

S

SLtot
v =

v

σ
, (6.76)

where σ represents the ratio of the hole area to the plate surface area:

σ = Surface area of the holes/Total surface area .

After inserting (6.75) and (6.76) in (6.74) it becomes

p1 − p2 = jω
%
(
W + 4

3b
)

σ
v . (6.77)

The previous conditions concerning resonance absorbers still apply when
calculating the ‘effective mass’ per unit area of the perforated plate only, based
on the data, which yields

m′′ =
%(W + 4b/3)

σ
(6.78)

As can be seen, the moved mass m′′ is not equal to the mass stored in the
holes, as is sometimes erroneously assumed. Since σ is always considerably
smaller than 1 (typically σ between 0.1 and 0.3), the effective mass m′′ is a
lot larger than %W .

It should be mentioned that, in contrast to the previous considerations,
the end-correction is actually defined by ‘the 1.25-fold of a sphere’. In better
accordance with most practical setups, (6.78) is replaced by

m′′ =
%(W + 5b/3)

σ
(6.79)

The example of σ = 0.1, W = b = 1 cm with m′′ = 350 g/m2 shows that the
required mass linings are easy to produce.

There are a variety of setups for resonance absorbers. The aforementioned
example of a perforated plate with a backing absorber material is often used
in acoustic ceilings, because these allow for enough buffer for low frequency
tuning. Other constructions, for instance, consist of a cellular foam with a
coated surface, which acts as the additional mass. Foil absorbers have been
used for many years. The sound field in air induces them to perform membrane
and bending vibrations, thereby extracting energy from the sound field. They
can also be tuned to the lowest frequencies.
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6.6 Oblique sound incidence

In practice, sound waves rarely ever impinge normally to the absorber’s sur-
face. In fact, diffuse sound incidents coming from all directions are the more
realistic assumption for actual rooms. For this reason, we will proceed to ex-
amine how oblique sound incidents affect sound absorption.

Fig. 6.17. A system consisting of an absorbent layer in front of a partition separated
by a segmented cavity can be assessed as locally effective, since cross coupling is
suppressed in the y-direction.

The answer is simple, presuming locally effective absorbent structures.
By definition, in structures such as these, transients in the y-direction never
occur. In the case of porous sheets in front a rigid partition at a sufficient
distance, this requires the segmentation of the cavity region in likewise rigid
partitions (see Figure 6.17). Only then can coupling between the separated
parallel cavities be eliminated. If there is no segmentation, an oblique field
likewise propagates in the cavity that are in the presence of skew wave in-
cidence, causing the effect to no longer be strictly local. The systems shown
in the scheme in Figure 6.17 can therefore be understood as locally effective
and therefore, once again, can be described by a space-dependent impedance.
Even absorbent sheets mounted directly to rigid partitions can be understood
as locally reactive, as long as their internal attenuation is large in respect to
sufficiently high flow resistance.
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In the case of a wave impinging upon the absorbent system below the angle
ϑ

pein = p0e−jkxcosϑ+jkysinϑ, (6.80)

the net field comprised of sound incident and reflected components is com-
posed of

p = p0(e−jkxcosϑ+jkysinϑ + rejkxcosϑ+jkysinϑ). (6.81)

= p0ejkysinϑ(e−jkxcosϑ + rejkxcosϑ)

The space-dependent wall impedance z is derived from

z =
p
j
ω%

∂p
∂x

=
ρc

cosϑ

1 + r

1− r
, (6.82)

leading to the definition

r =
z
% ccosϑ− 1
z
% ccosϑ+ 1

. (6.83)

All preceding considerations for normal sound incidents apply here as well.
The only difference from skew incidences is that the wall impedance is multi-
plied by cosϑ. According to eq.(6.83), impedance effects which are compara-
tively large in respect to the structural adjustment implemented are mitigated,
as can be seen in the absorption coefficient of the porous sheet in Figure 6.18.
Too small impedances, on the other hand, are further reduced, and the ab-
sorption coefficient diminishes with decreasing incidence angle (Figure 6.19).

A tendency similar to porous sheets is exhibited by porous layers mounted
directly to a rigid substrate. The particular properties of such structures are
somewhat more complex, because in this case, real and imaginary components
of the impedance are influenced by the flow resistance. As shown in Figures
6.20 and 6.21, at high levels of flow resistance, absorption only increases with
incidence angle at very low frequencies, while sound absorption is somewhat
hindered at high frequencies. At low levels of flow resistance, the absorption
properties decrease along with the incidence angle.

In conclusion, in order to reconstruct diffuse sound incidence, it is recom-
mended to take the mean of the absorption coefficient over several incidence
angles.
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Fig. 6.18. Absorption coefficient of porous curtain with Ξd/ρc = 2 for oblique
sound incidence.

Fig. 6.19. Absorption coefficient of porous curtain with Ξd/ρc = 0.5 for oblique
sound incidence.
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Fig. 6.20. Absorption coefficient of porous layer with Ξd/ρc = 5 for oblique sound
incidence.

Fig. 6.21. Absorption coefficient of porous layer with Ξd/ρc = 1 for oblique sound
incidence.

6.7 Summary

Measurements of the absorption coefficient of normal sound incidences in wall
structures are taken in an impedance tube. The lowest cut-on frequency of
the higher transverse modes in the tube determines the upper limit of the
frequency range for that technique. The measurement is based on the principle
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that the sound field is comprised of both progressive and standing waves,
which are dependent on the reflection factor of the test sample at the end of
the tube. A completely sound absorbent termination produces only progressive
waves. In the case of partial reflection, the test sample produces a local sound
pressure space-dependence with minima and maxima. The ratio of pressure
minimum to pressure maximum represents the scale of the wall absorption
coefficient. A ratio that is close to zero indicates low sound absorption while
a ratio close to one correlates to a high absorption coefficient.

The wall impedance z was introduced in order to describe the properties
of wall structures. z is equal to the ratio of pressure and particle velocity
along the wall’s surface. The ’matching law’ describes the correlation between
absorption coefficient α and wall impedance z. It says that the imaginary
components of the wall impedance are detrimental to absorption and that
α = 1 only becomes valid where z = ρc holds. A high internal damping
property within the absorber material is only effective if some portion of the
external sound field is able to permeate the material without being reflected
at the wall’s surface.

Low frequency sound absorption is only partially achieved by using porous
layers. Resonance absorbers can provide a certain degree of improvement in
this situation.

6.8 Further reading

A whole series of questions and problems arise which cannot all be handled
in one textbook. Just to mention a few examples:

• What happens at oblique sound incidence? Is it necessary to take coupling
effects parallel to the surface into account?

• Is it always correct to assume a rigid absorber skeleton, or is it required
to take their elastic properties into account?

• How are micro-perforated structures, which are sometimes implemented,
treated?

• What are the design rules for membrane and foil absorbers?

The answers to these (and other) questions are discussed in other books.
Many, mainly theoretical problems are treated in the work ‘Schallabsorber’
of F.P. Mechel. Practical hints, and even descriptions of individual products
are included in the book by H.V. Fuchs ’Schallabsorber und Schalldämpfer’
(Springer, Berlin and Heidelberg, 2007). Finally, the corresponding chapter
in the ‘Taschenbuch der Technischen Akustik’ (i.e. Handbook of Engineering
Acoustics) is a rich source of knowledge on sound absorption. Numerous other
references, which can be used to get more detail on this topic, can be found
there as well.
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6.9 Practice exercises

Problem 1

Refer to the diagrams for an overview of the space and time dependencies of
the sound pressure in the impedance tube. Its terminations have a reflection
coefficient of r = 0, 25, r = 0, 5 and r = 0, 75, respectively. Graph each space-
dependency under the condition of harmonic periodic oscillations for the times
t = nT/20 (n = 0, 1, 2, 3, ...;T=duration of a period).

Problem 2

Calculate the frequency response of the absorption coefficient and impedance
of a sound system encased in an 8 cm–thick material made out of a mixture
of wood fiber and cement, and located just before the tube’s rigid termina-
tion (total sound reflection). The table indicates measurements of maximum
level Lmax, minimum level Lmin and the distance |xmin| of the first pressure
minimum from the object’s surface.

Frequency/Hz Lmax/dB Lmin/dB |xmin|/cm

200 76.9 62.1 34.3
300 70.3 62.5 20
400 75.8 72.2 18
500 71.2 62.7 19.5
600 64.5 52.5 15
700 71 56.1 12.3
800 72.3 56.3 10
900 66.9 52.3 8.8
1000 70.2 56.6 7.3
1100 73.4 61.4 6.5
1200 76 67.3 5.5
1300 76.5 69.4 5.7
1400 71.6 64.2 5.7
1500 56.9 50.4 5.3
1600 61.1 52.2 4.8
1700 60.5 51.1 4.4
1800 65.6 54.7 3.9

Problem 3

Calculate the absorption coefficient, the phase ϕ of the reflection factor,
and the location of the first minimum when measuring the following wall
impedances in the impedance tube:

• z/% c = 1 + j,
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• z/% c = 2 + j,
• z/% c = 1 + 2j,
• z/% c = 3 + j, and
• z/% c = 1 + 3j.

Problem 4

How great are the values of the wall impedance and the absorption coefficient
of one layer of porous material with the following specifications:

• Ξ = 104Ns/m4, σ = 0.97, κ = 2,
• Ξ = 104Ns/m4, σ = 0.97, κ = 1,
• Ξ = 2 104Ns/m4, σ = 0.97, κ = 2, and
• Ξ = 2 104Ns/m4, σ = 0.97, κ = 1,

each layer with a thickness of 10 cm and installed right in front of a rigid wall
at the frequencies of 200Hz, 400Hz, 800Hz, and 1600Hz?

Problem 5

Suppose the absorption coefficients from Problem 4 are to be specified for
aquatic silencers (cwater = 1200m/s, %water = 1000 kg/m3). State the drag
and layer thicknesses required to achieve these absorption coefficient values,
without changing the porosity σ or structure coefficient κ.

Problem 6

A resonance absorber is to be tuned to resonance frequencies of 250Hz,
350Hz, and 500Hz, respectively, with a relative bandwidth of 0.5 = ∆f/fres.
How deep do the cavity and the lining of the mass have to be in order to obtain
α = 1 in the resonance frequency itself?

Problem 7

The thinnest lining from Problem 6 (m′′ = 0, 51kg/m2) is to be achieved by
implementing a very thin perforated plate (thickness W is negligibly small).
The holes make up 0.05 (0.1) of the surface. How large do the radii of the hole
have to be?

Problem 8

How far do the circular holes have to be apart if they are to comprise 0.05
(0.1)? Assume an equidistant arrangement of the holes in a grid pattern.



6.9 Practice exercises 215

Problem 9

State the lowest cut-on frequencies of tubes with a square cross-section and
diameters of 5 cm and 7 cm (6 cm and 9 cm), respectively.

Problem 10

Show the dependency of the absorption coefficient, in the case of oblique
sound with an angle of incidence for a thick porous absorber (hemisphere)
with Ξ = 104Ns/m4, σ = 0, 9 and frequencies of 1000Hz and 500Hz each,
using an array of curves with the parameter κ = 1, 2, 4, 8 and 16.

Problem 11

A perforated plate is covered with the most circular holes possible so that the
average distance between the holes is equal to the diameter of each hole. How
great is the maximum hole coverage on the plate? Again, assume a grid-like
arrangement of equidistant holes.

Problem 12

How great is the damping of the highest modes (n > 1) in an impedance tube
terminated by two parallel, rigid plates, if the modes are excited by frequencies
below their cut-on frequencies?

Problem 13

State the lowest cut-on frequencies of tubes with a diameters of 5 cm, 10 cm
and 15 cm each.

Problem 14

In a thick layer made out of absorber material, a damping effect of 1 dB/cm
(= level decrease over a distance of 1 cm) is measured using a sensor. The
frequency is higher than the absorber’s folding frequency ωf , the porosity is
measured at σ = 0.95, and the structural coefficient at κ = 2. How great is
the material’s drag for the given length? Express the value in Rayl/cm.
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Fundamentals of room acoustics

A reverberation can be heard in an enclosed room if a sound source, which was
in operation for a longer period, is suddenly turned off. Its duration depends
on the room volume and the room’s interior design; the reverberation time
is short in small rooms and in rooms which have large absorbing surfaces.
Large volumes with less absorption have reverberation times which can easily
extend to a couple of seconds. During a period of 2 s, for instance, the sound
travels a distance of nearly 700 m and hits the room surfaces several times;
the sound waves are reflected several times at the walls under different angles.
Each reflection at a (rigid) plane surface can be regarded as coming from a
sound source which is mirrored at the wall. To represent multiple reflections,
higher order mirror sources have to be assigned to the mirror sources as well.

Fig. 7.1. Mirror sources in a rectangular room
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For a rectangular room, a ‘starry sky’ of substitute sources is obtained,
which is depicted in Fig. 7.1 for one plane. The three-dimensional extension
is derived similarly. The sound field in the room can be replaced by the sum
of the sound waves starting at the same time at the source and all the mirror
sources. The delays between the individual sound waves are expressed by the
distances of the mirror sources to the observation point.

Fig. 7.2. Time series of reflections in a room enclosed by plane walls

If the original sound source emits a short impulse, an echogram is obtained
as shown in Fig. 7.2. Only for the first few reflections is the arrival time of the
impulses mainly determined by the actual distance of sender and receiver and
their position in the room. For higher order reflections (analogue to higher
order mirror sources) the differences become more and more blurred, because
the dimensions of the room become irrelevant at great distances to the mirror
sources. The number N of the impulses which have arrived at the time t
(t = 0 corresponds to the sending time of the source) can be estimated by
the number of mirror sources located in a sphere with the radius r = ct. The
number of reflections is roughly equal to the ratio of the sphere volume Vk
and the room volume V

N =
Vs

V
=

4π
3

(ct)3

V
. (7.1)

For a (not even very large) room volume of V = 200 m3, about 800 000
reflections result in the first second.

As can be seen from (7.1) and Fig. 7.2, the density of the incident impulses

∆N
∆t
≈ dN

dt
= 4πc

(ct)2

V
(7.2)

increases with time, whereas the magnitude of the incident energy impulses
decreases, due to the larger distance of the mirror sources

Ein ≈
1

(ct)2
.
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The time average of the detected energy E at one point in the room is given
by the product of the number of impulses, arriving in a time interval and their
magnitude

E = Ein
∆N
∆t

= const .

The energy density will soon reach a constant value in time. The same ap-
plies to spatial energy distribution: the more the room dimensions decrease
compared to the distances of the mirror sources, the smaller the effect of the
position of the observation point. The spatial and temporal energy distribu-
tion are therefore expected to have constant characteristics.

Experience teaches that even in very reverberant rooms the same sound
intensity can be observed at each room position not too close to the source;
however, the reverberation always decays with time. The reason for that is
given by the attenuation the sound waves undergo due to damping effects
along the propagation route and absorption at the walls (and the room fur-
nishing). The following discussions on sound propagation in rooms must there-
fore essentially take losses into account. This does not, however, change the
fact that the sound field is uniformly spatially distributed. Such a sound field
– graphically denoted as ‘diffuse’ – will likewise exist in the initial ‘statistical’
approximation for the case of low damping. In accordance with the model
derived by the aid of mirror sources, the diffuse sound seems to arrive from all
directions at each room position. Therefore, a diffuse sound field is understood
as a field which is uniformly distributed with respect to the incidence angles
as well as the distributed sound level.

Of course, such an ‘ideal-diffuse’ sound field in rooms are, once again, hy-
pothetical; real rooms certainly differ from this idealized case. The larger the
absorption in a room and at the walls is, the more the actual relationships will
contradict the assumptions made. For non-uniformly distributed absorbers –
e.g. large absorption at the walls, but not at the floor and the ceiling – the
assumption of uniform directivity is not fulfilled. A so-called ‘fluttering echo’
will occur in this example. On the other hand, assuming uniform statistical
distribution will at least provide a general assessment of sound fields in rooms,
an approximation which is otherwise difficult and tedious to determine using
more precise methods. At least in the case of a rectangular room with its
simple parallel boundaries, some basic statements can be made for the case
of total reflection at the walls, using wave theory. If partial sound absorption
occurs and even if it is spatially distributed and dominated by larger objects
in the room, objects which can scatter or diffract the sound, a ‘rigorous’ cal-
culation by means of wave theory is impossible due to its complexity. Some
simplified investigations will thus be made under the aforementioned assump-
tions in the following. It should be clear by now that the simplifications in
detail – e.g. for spatial distribution – are only reasonable when regarded sta-
tistically. A spatial average is actually implied when discussing a constant
sound level distribution of a diffuse sound field. This spatial average is what
need to be determined by taking multiple measurements at multiple positions.
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Before beginning the discussion, which will be based on the assumption of
uniform distributions in space and time, we will illustrate the complexity of
the wave theory for the simple, lossless rectangular room. For a room with the
dimensions lx, ly and lz, the boundary conditions require a sound pressure of
the form

p(x, y, z) =
∞∑

nx=0

∞∑
ny=0

∞∑
nz=0

pnxnynz cos
(
nxπx

lx

)
cos
(
nyπy

ly

)
cos
(
nzπz

lz

)
,

because pressure maxima must be present at all boundary surfaces. Each of
the spatial, three-dimensional modes is related to a resonance frequency

k =
ω

c
=

√(
nxπx

lx

)2

+
(
nyπy

ly

)2

+
(
nzπz

lz

)2

which is obtained based on the wave equation. The resonances can be rep-
resented graphically in a ‘frequency room’ by means of a three-dimensional
grid (Fig. 7.3), where each cube element of the grid has the dimensions c/2 lx,
c/2 ly and c/2 lz. The number M of the resonance frequencies, which occur up
to a certain frequency f , is approximately given by the volume of an eighth
of a sphere with the radius f , divided by the volume of a cube

M =
π
6 f

3

c3

8lxlylz

=
4π
3

(
f

c

)3

V . (7.3)

In a (small) room volume of V = 200 m3, we already find about 800 resonances
at just a frequency of 340 Hz! The density of the so-called eigenfrequencies is
given by

∆M
∆f

≈ dM
df

=
4π
c

(
f

c

)3

V . (7.4)

In this example M/f = 60/Hz for f = 1000 Hz. About 60 resonances can
be found in an interval of 1 Hz bandwidth for f = 1000 Hz. These numbers
illustrate very well that only the assumption of statistical distributions can
provide a reasonable overview on sound fields in enclosed rooms.

A diffuse sound field, which by definition constitutes a (roughly) constant
sound level distribution and a sound incidence uniformly distributed over all
incidence angles, can only be produced with the aid of broadband signals.
Harmonic excitation in a lightly damped room inevitably results in standing
waves with distinct nodes and antinodes. Only if multiple standing waves are
excited at the same time, can they form a spatially independent, diffuse sound
field.

Usually, a relationship between the signal bandwidth ∆f and the room
volume V must be established in such a way that
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Fig. 7.3. Resonance grid: graphical representation of the resonance frequencies.
Each node on the grid represents a resonance frequency

∆M/∆f ≈ 1/Hz

is fulfilled when using octave or third-octave bands for signal excitation. Equa-
tion (7.4) then specifies the permitted frequency range for the measurement,
which is given by

f ≥
√

1
Hz

c3

4πV
≈ 1800 Hz√

V/m3
.

For V = 200 m3, for example, it would only be possible to measure above
about 125 Hz. For instance, the practical implications of using the condition
∆M/∆f > 1/Hz are especially evident when taking measurements on the
bandwidth of third-octave band noise, which is typically the bandwidth used
in room-acoustic measurements. As is generally known, it is ∆f = 0.23fm (fm

= center frequency). The condition therefore requires that in the third-octave
band with fm = 125 Hz at least M = 30 (fm = 200 Hz: at least M = 50)
resonances must be present.

7.1 Diffuse sound field

The sound processes in a room can be imagined as a leaking container filled
with water (Fig. 7.4). The water supply pipe, after being switched on, fills

fre
quency

 f

c/2lx

c/2ly

c/2
l z
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the container with water in the same way as the sound source fills the room
with acoustic energy until a certain balance is achieved. The balanced level
(water or sound level) can be explained by a compensation of the inflow by the
outflow exiting through the ’leaks,’ which are energy loss through absorption
in the room. If the source is switched off after attaining the balanced, steady
state, the level falls off again. The water, or the acoustic energy respectively,
flows out.

Fig. 7.4. Analogy between water level in a leaking container and the acoustic energy
in a room

A time characteristic of the diffuse sound field, as schematically shown in
Fig. 7.5, is expected, which for obvious reasons is described by dividing it into
the intervals ‘onset’, ‘steady state’ and ‘reverberation’. The three intervals can
be described by an energy balance which is equal to a mass balance in the
container analogy. As the mass inflow during the time ∆t is divided between
the change of the water level and the outflow, which occurs at the same time,
the sound power P flowing in from the sender during ∆t is composed of the
change of energy ∆E stored in the room and the sound power loss PL flowing
out during ∆t:

P∆t = V∆E + PL∆t , (7.5)

where E denotes the spatial energy density and V the volume of the room.
It seems to be reasonable to assume that the power loss PL is proportional

to the momentarily stored energy EV . As in the water analogy, the more
sound (water) flows out, the higher the water level is at the moment. This is
easily verified by seeing what happens with a container filled with water and
which has a leak at the bottom. Thus, it is also

PL = γEV (7.6)

energy
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power inf low P

container V

absorbing
surface

outlet
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zz
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Fig. 7.5. Schematic time characteristics of a diffuse sound field

where γ is a ‘room loss factor’ related to the absorbing surface. In the water
analogy, γ would describe the properties and the position of the outlets, i.e.
the outflow surface.

Using (7.5) and (7.6) in the limiting case ∆t → 0, we obtain the energy
balance

dE
dt

=
P

V
− γE. (7.7)

The analogy of the ‘container’ room is expressed in (7.7) by means of an equa-
tion. However, the energy density cannot be determined by direct measure-
ments of the sound pressure. Therefore the relation between sound pressure
and energy density needs to be clarified. Under the assumption of uniformly
distributed incidence angles, it can be stated that the sound velocity in a
short-term time- and space-average equals zero. Therefore, mainly potential
energy is stored in the room. Thus

E =
p̃2

%c2
, (7.8)

where p̃ denotes the rms-value of the sound pressure in the diffuse field.
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7.1.1 Reverberation

If the power inflow of the container ‘room’, or, in other words, the power
inflow of the sound energy is switched off, the room is gradually emptied.
The duration of this process depends on the outlet surface area, expressed in
the loss factor γ. Large outlet surface areas result in a quick outflow, whereas
small areas result in a slow outflow with a long duration. It is therefore obvious
that the way to quantify the loss properties of the room is to calculate the
reverberation time.

For the sender switched off at t = 0, (7.7) yields the astonishing fact that
the sound energy exponentially decays with

E = E0e−γt (7.9)

after switch-off. According to (7.8) the rms-value of the sound pressure be-
comes

p̃2(t) = p̃2(0)e−γt ,

and the sound pressure level

L(t) = 10 lg
p̃2

p2
0

= L(t = 0)− γt10 lg e . (7.10)

The level falls linearly with time. As can be seen from the example in Fig. 7.6,
these time characteristics of the level can also be found in experiments in
sufficiently diffuse sound fields.

Fig. 7.6. Level-time characteristics of a reverberation process

The so far undetermined loss factor γ can now be calculated based on
the slope of the decay line in the level-time characteristics. However, we do
not use the ‘mathematical slope’ of the curve, since experimental data is very
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seldom smooth enough that a differentiation would lead to a reasonable result.
Rather, we utilize what is known as the reverberation time T to determine the
time needed for the energy fall to a millionth of its initial value after switching
off the sender. This is equivalent to the time it takes for the level to drop by
60 dB. According to (7.10) it is

60 = γT10 lg e ,

or
γ =

13.8
T

. (7.11)

Calculating the time is a actually quite a simple experiment. One only
needs to graph the level-time characteristics using a plotter once the source
is switched off. Typically, only half the reverberation time (30 dB difference)
is used for the measurements rather than using the whole level difference of
60 dB. Otherwise, it would be necessary to maintain too great of a distance
to the actual or electrical noise interferences (which can be discerned in Fig-
ure 7.6). As already mentioned, the sound absorption can significantly depend
on the frequency. Therefore, the measurements have to be performed for sev-
eral frequency bands, usually octave or third-octave bands. An example of the
frequency characteristics of the reverberation time in a reverberation room is
given in Fig. 7.7. The purpose of this will be discussed later.

Fig. 7.7. Frequency characteristics of the reverberation time in the reverberation
room of the Institute of Engineering Acoustics, Polytechnical University of Berlin
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7.1.2 Steady-state conditions

The reverberation decay is used to characterize the losses of the room. How-
ever, for the acoustical engineer, the central question is how losses affect the
sound intensity in the room and how the latter can be influenced by changing
the room attributes. An intuitive approach to the problem is conceptualizing
‘continuously operated sources’ representing the so-called steady state.

After an initial onset of the reverberation, which is not of interest here,
the energy content of the room does not change anymore, the steady state
condition is reached at

dE
dt

= 0 .

The power inflow from the sender is needed just to compensate the losses.
According to (7.7), (7.8) and (7.11), we need

P

V
= γE =

13.8
T

E =
13.8
T

p̃2

%c2
(7.12)

With the aid of (7.12) the sound pressure level can be calculated by the room
attributes volume V , reverberation time T and source power P .

It is of interest for several reasons to adjust the reverberation time of the
room to a certain value. The design goal may be to use high absorption in order
to make a room quiet. This is especially true for rooms which are intended
for a certain purpose (like offices and factory halls). In many other cases, a
reverberation time is targeted which fulfills certain requirements for ’good
audibility’ – which may vary depending on the particular intended purpose
of the room. Concert halls, for instance, should have a reverberation time of
about 2 s, whereas lecture rooms should have a T of about 0.5 s.

The relationship between the reverberation time and the absorbers present
in the room must be examined when adjusting the reverberation time, as it
is the absorbers which primarily influence the reverberation time. First, all
absorbent surfaces in the room are split into separate areas with constant
uniform attributes. Then the sound power Pin impinging on an area S from
one partial room or hemisphere is considered (if an object has a back and a
front – like a person, for example – it is assumed to have two or more separate
areas). If the absorbing attributes of the surface are known and expressed in
the absorption coefficient, the absorbed power Pab can be calculated using the
incident sound power

Pab = αPin . (7.13)

If the absorption coefficient of a structure depends on the incident angle, the
average value of all angles is used for α.

Where the angle of the surface under consideration is positioned in ’the
starry sky’ of mirror sources in Fig. 7.1 is irrelevant. Only the contribution of
half the sources to the single-sided power incidence matters. For the sake of
simplicity, the sound pressure of this half space of sources is denoted by p1/2.
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If the sound would impinge only at a certain angle ϑ, measured normal to the
surface, the power flow onto the surface would be related to the total sound
pressure of the relevant half space of sources by

Pϑ = SJϑ = S
p̃2

1/2

%c
cosϑ . (7.14)

Since a diffuse sound field is assumed, sound impinges uniformly from all
directions. The average over all incidence angles has to be taken into account
to obtain the relationship between the sound power impinging on the surface
and the sound pressure. Since cosϑ ranges uniformly between zero and unity,
the average can be set to cosϑ = 1/2 and for the diffuse field, we obtain

Pin =
p̃2

1/2

2%c
S. (7.15)

Fig. 7.8. Sound intensity impinging uniformly on the surface S from a half space

It is also fairly easy to express the sound pressure only produced by one
half of the sources by the total sound pressure of the diffuse field. As shown
earlier in Sect. 3.4, coherent sound sources can be regarded as incoherent as
well, if the distance is large compared to the wavelength and the squared
sound pressure is understood as a spatial average, given that the squared
sound pressure of half the sources is therefore half that of all sources

p̃2
1/2 =

1
2
p̃2 . (7.16)

The one-sided sound power incidence Pin on the surface S is thus given by
the sound pressure in a diffuse sound field

Pin =
p̃2S

4%c
. (7.17)

The sound power extracted from the sound field by that surface is therefore
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Pab = αPin =
p̃2

4%c
αS .

Finally, we evaluate all individual surfaces Si of the room which come into
question. Altogether, it follows that

Pab =
p̃2

4%c
A , (7.18)

where A is already taken as the sum of all individual absorbing surfaces

A =
∑
i

αiSi . (7.19)

The quantity A, resulting from the product of all individual surfaces and
their corresponding absorption coefficients, is called ‘equivalent absorption
area’. Since the absorbent effect can also be imagined as being replaced with
a smaller area with the absorption coefficient α = 1, the term ‘open window
area’ is also quite common for A. The relationship to the reverberation time
T results from the discussion of the steady state condition in the room, where
the sound power inflow P from the source is equal to the total absorbed sound
power Pab. In comparing (7.12) to (7.18), we arrive at the Sabine equation for
reverberation time, named after its discoverer Sabine:

13.8V
cT

=
A

4

Typically, we use the ‘dimensionless’ form which applies to air

T/s = 0.163
V/m3

A/m2
. (7.20)

The proportionality between reverberation time and room volume con-
tained in the Sabine equation corresponds to the graphical representation.
It is quite obvious that a large volume V reacts with a larger reverberation
time than a smaller volume, if both are equipped with the same equivalent
absorption area A.

The example of the ‘cubic room’ V = 200 m3 (length a = 5.85 m) also
illustrates that realistic reverberation times can be calculated using the Sabine
equation. If all surfaces of the cube 6a2 are assumed to have a small absorption
α = 0.05, the reverberation time is T = 3.3 s. Important is that the total
energy transformation of sound into heat which occurs in the room and at
the boundary surfaces is entirely accounted for in the equivalent absorption
area A. Actually, a finite reverberation time would even be detected in rooms
with total reflection on all the walls due to the (negligible but existing) losses
along the propagation paths. Therefore A may be divided into two parts

A = Aα +AL (7.21)
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where Aα represents the part which can be intentionally adjusted utilizing
absorbent surfaces, and AL, the inevitable loss in the medium air. For most
practical applications the propagation losses AL can be neglected. It should
only be mentioned that the inevitable loss is larger, the larger the addressed
volume is:

AL/m2 = ν V/m3 (7.23)

Here, ν is a ‘material parameter’ which mainly depends on the frequency and
the air humidity. An empirical equation provides an approximation

ν =
80
ϕ/%

(
f

kHz

)2

10−3 , (7.24)

where ϕ specifies the relative humidity in air in percent. Without any other
absorption in the room, the maximum possible reverberation time is given by

Tmax = 0.163V/AL = 0.163/ν = 80/(f/kHz)2,

assuming a humidity of ϕ = 40% (which is typically present in interior rooms).
It is easy to see that the given natural limiting reverberation time can only
play a role at higher frequencies.

The initially posed question of the qualitative relationship between the
sound pressure in the steady state and the absorption in the room remains to
be answered. The answer can be found in the fact that the power inflow P
under steady state conditions is equal to the power Pab which is lost at the
same time. It is to say that, based on (7.18)

Pab
P0

=
p̃2

4p2
0

A

m2

(where P0=p2
0/%c 1 m2 is the characteristic value of the sound power, and p0

the characteristic value of the sound pressure) and thus the sound pressure
level L and the source power level Lp are described by

L = Lp − 10 lgA/m2 + 6 dB . (7.25)

Therefore, the spatial average of the sound pressure can be calculated
for a given source power, based on a known absorption area. Obviously, the
diffuse field level in rooms can be reduced by 3 dB by doubling the absorption
area. Equipping the room with additional absorption only guarantees positive
results in level reduction if the original reverberation times were relatively
long. Shorter reverberation times (in the range of about 1 s) only rarely provide
any elbow room for additional level reductions.

Equation (7.25) can also be used to determine the radiated sound power
of a source (e.g. a machine) by measuring the averaged sound pressure level
of the room, if the reverberation time of the experimental room is known. In
order to meet the requirements of a diffuse field, a room with a substantially
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Fig. 7.9. Space characteristics of a sound field in two rooms of equal volume with
the absorption areas A1 and 2A1

large and easily reproduced reverberation time must be used for sound power
measurements in a reverberation room. Therefore, a certain distance from the
source has to be maintained in order to measure the individual sound pres-
sure levels required for the spatial average. In close vicinity to the source the
direct field dominates the sound pressure level compared to the reverberant
field which is (almost entirely) composed of reflections; a local sound pressure
gradient depending on the distance r as shown in Fig. 7.9 should result. The
transition point depends on the level of the diffuse field. For small absorbent
areas, it can reach within close vicinity to the source. An estimate of the tran-
sition point can be derived by using the free-field equation which is valid for
the direct-field P = 4πr2p2

dir/%c, and (7.18) P = Ap2
diff/4%c. If the ‘rever-

beration radius’ rr is defined in such a way that it denotes the distance from
the source where the sound pressure of direct and diffuse field are equal, we
obtain 4πr2

r = A/4, or

rr =
1
7

√
A. (7.26)

For distances r > rr the total sound field is dominated by the diffuse com-
ponent, for r < rr it is dominated by the direct-field. Thus, measurements
explicitly requiring a diffuse field must always be taken outside of the rever-
beration radius.

In ‘rooms with distributed communication’, such as cafés and restaurants,
it is very important to keep in mind that the ‘typical conversation partners’
are not bombarded with sound primarily coming from the diffuse field, which
means other conversations or interfering noise. In such a bad acoustical situa-
tions, each individual often solves the problem intuitively by raising the own
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sound intensity gradually in order to be better understood. Such rooms are
only bearable, because of the good times one has in them. Nonetheless, with
respect to acoustics, they are small catastrophes. Perhaps a sort of ‘individ-
uality radius’ rI would be an appropriate measure in that case, defined as
follows. Suppose there are N persons in the room, speaking with the same
sound power at the same time. The power NP of these N incoherent sources
produces the sound pressure

p2
diff = 4%cNP/A

in the diffuse field. The individuality radius is now defined as the distance at
which the direct field produced by each individual speaker

p2
dir = %cP/4πr2

is equal to the diffuse field of N persons

rI =
1
7

√
A

N
.

If ‘undisturbed conversation’ is desired at a radius of about 0.4 m, an absorp-
tion area of about 8 m2 per person is required (A = 8N m2 in total), a fairly
high requirement. For restaurants in which tables are not too close to each
other this can be realized by covering the whole ceiling with absorption. Pop-
ular pubs full of guests leave little room for the acoustician. This is changed
very little by the fact that N guests provide about N m2 of absorption area.
In the limiting case of a huge number of persons, their absorption area of
A = N m2 takes precedence over the room furnishing. It thus follows that
rI = 14 cm, with the corresponding consequences.

7.1.3 Measurement of the absorption coefficient in the
reverberation room

It is often required for the application of absorbent linings for room acous-
tic purposes to determine their absorption coefficient under the condition of
sound impinging from many distributed directions in the laboratory. These
measurements can be taken in an empty reverberation room which has the
reverberation time

Tempty = 0.163V/Aempty (7.27)

(T in s, V in m3, A in m2). All possible losses of the empty reverberation room,
including those occurring during propagation, are accounted for in Aempty. If,
subsequently, an absorbing area A is introduced to the room (the area should
be about 10 m2 for a typical reverberation room of V = 200 m3), the absorbing
area is increased to

A = Aempty + ∆A, (7.28)
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if it is correctly assumed that lining only a part of the surface of the reverber-
ation room with absorbent surfaces is insufficient. In the example of a room
with V = 200 m3, a boundary surface of S = 200 m2 and a sample area of
10 m2 for the absorber, strictly speaking, Aempty would have to be corrected
by 5%. However, the reverberation times cannot be determined that precisely,
the measurement uncertainty is usually considerably larger. The ‘coverage er-
ror’ can therefore be safely neglected. The measured reverberation time, which
is related to the absorption area enlarged by the sample, is given by

T = 0.163V/ (Aempty + ∆A) . (7.29)

Hence, the absorption area of the sample

∆A = 0.163
V

T
−Aempty = 0.163V

(
1
T
− 1
Tempty

)
(7.30)

is obtained by measuring the reverberation times T and Tempty with and
without the sample. The absorption coefficient can thus be calculated by

α =
∆A
S

(where S is the sample surface).
It is possible that absorption coefficients α > 1 are found and these typ-

ically cannot physically occur, the reason being that the condition of the
spatially uniform distribution is not stringently met. Along the edges of the
material samples, which always have a finite thickness, diffraction effects sur-
face, leading to pressure accumulation near the edges, even when the edges
are covered by rigid, reflecting plates. In this way, we slightly overestimate
the actual absorption coefficient in our calculations.

The above measurements should be taken under consideration of Norm EN
ISO 354: ’Acoustics - Measuring Sound Absorption in Reverberation Cham-
bers’ (2003).

7.2 Summary

Under conditions of sufficient signal bandwidth and low absorption, a diffuse
sound field will develop in closed rooms. At distances from the source that
lie beyond the reverberation radius, the diffuse field level present there will
be about the same everywhere. The sound incidence is equal emanating from
all directions. Here, the sound energy is characterized by equal spatial distri-
bution and reacts similarly to a liquid in a leaking container. An increase in
sound power input leads to an increase in contained energy and therewith an
increase in overall sound level in the room, resulting in a stationary equilib-
rium, wherein the sound pressure level is still dependent on the ’acoustic leaks’
inherent in the properties of the room. These leaks can be quantified in the
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’equivalent absorption area’ or the ’open window area’, values which contain
all significant loss mechanisms in the room. As the equivalent absorption area
doubles, the sound level in the room decreases in a balanced steady state by
3 dB.

After a source is switched off, the sound level decreases linearly with time.
The absorption area is proportional to the gradient in the level-time character-
istics. This relationship is used to measure the losses in the room, expressed
by the reverberation time T . This indicates the time that it takes for the
level to decrease by 60 dB. The relationship between reverberation time and
absorption area is expressed through the Sabine equation A = 0, 163V/T
(absorption area A in m2, volume V in m3, T in s). The equation indicates
how the reverberation time of a room can be specifically adjusted. It can also
be used to determine the absorption area based on the reverberation times
measured in a given room.

7.3 Further reading

The work ”Room Acoustics” by Heinrich Kuttruff (Elsevier Science Publish-
ers, London 1991) contains a highly instructive and interesting store of knowl-
edge on room acoustics. Furthermore, it is very easy to read and comprehen-
sibly written.

7.4 Practice exercises

Problem 1

Determine the sound power in a source where the level has been measured
in the diffuse sound field of a reverberation chamber with V = 200 m3. The
locally averaged levels (a moving microphone was used to take the measure-
ments) are listed with their corresponding reverberation times in the following
table.

f/Hz Lthird−octave/dB T/s

400 78.4 5
500 80.6 4.8
630 79.2 4.1
800 80 3.6
1000 84.4 3.6
1250 84.2 3.5

How high is the A-weighted sound pressure level? How high is the sound
power level registered in third-octaves? How high is the A-weighted sound
power level of the source (the A-weight is given in Problem 1 of Chapter 1)?
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The same sound source is introduced in a living room with V= 100 m3 and
an (average) reverberation time of 0.8 s. How high is the A-weighted sound
pressure level in this room? How large is the corresponding reverberation
radius?

Problem 2

The following reverberation times have been measured in a café with a floor
space of 110 m2 and 3 m–high walls:

f/Hz T/s

500 3.8
1000 3.2
2000 2.8

How large are the equivalent absorption areas and the reverberation radii?
How would the reverberation times and the diffuse sound pressure levels
change, given the same source, if the entire ceiling of the room were to be
outfitted with an absorber with absorption coefficients α = 0.6 at 500Hz,
α = 0.8 at 1000Hz and α = 1 at 2000Hz?

Problem 3

In a reverberation chamber with V = 200m3, a sample area of 10m2 in
an absorbent structure is measured. The reverberation times in the empty
chamber (control) and in the chamber containing the sample are:

f/Hz Tempty/s Tsample/s

500 5.8 3.2
630 5.2 2.8
800 4.8 2.3
1000 4.6 2.0

How large are the absorption areas and absorption coefficients of the ab-
sorbent sample system?

Problem 4

Calculate the first ten resonance frequencies of a square room with the di-
mensions 6m, 5m and 4m.

How many resonance frequencies are in one octave band for the center
frequencies 200Hz, 400Hz and 800Hz?
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Problem 5

In a room with V = 1000 m3, a reverberation time of 1.8 s is registered at
mid-frequency. A machine produces a given sound pressure level L1 in the
room’s diffuse field. By how much must the room’s equivalent absorption area
be adjusted in order to preserve the existing sound level when operating N
similar sources?

Problem 6

A sound pressure level of 100 dB has been registered in the diffuse field of a
room with V = 500m2. How great is the energy density and the overall energy
stored in the room? How long would a light bulb with the power of 1Watt
burn if one could supply it electrically with this same amount of energy?

Problem 7

Two rooms with the volumes V1 and V2 are joined by a door opening with
the area ST when the door is open. When the door – which has high sound
insulation – is closed, the equivalent absorption areas A1 and A2 are able to
be determined by the reverberation times already given. A sound source with
the power level LP is present in Room 1 when the joining door ST is open.

a) How much is the difference in levels ∆L = L1 − L2 between both rooms
b) How great is the sound pressure level L1 in Room 1?

Find the values for V1 = 200m3, V2 = 100m3, A1 = 20m2, A2 = 16m2 and
LP = 95 dB.

Problem 8

In a room with a volume of 80m3, the following reverberation times listed
in the table below are measured in third-octave intervals. A sound source is
present in the room. Its third-octave levels LP are also listed in the table. How
high are the A-weighted sound pressure levels in the room? The A-weighted
values are given in the last column of the table to make the calculations for
this problem easier.
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f/Hz T/s LP /dB ∆i/dB

400 1.8 78 -4.8
500 1.6 76 -3.2
630 1.4 74 -1.9

800 1.2 75 -0.8
1000 1.0 74 0
1250 1.0 73 0.6
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Building acoustics

This chapter deals with sound transmission between rooms in a building (or
from the outside into the building). This is a topic of significant practical
importance which concerns noise control of indoor rooms with respect to traffic
noise and residential noise. Noise, penetrating a room from the exterior, can
have two possible reasons:

1. There are forces which exert a direct effect on walls and ceilings such a
neighbor walking on a floor in the apartment above or operating a machine
in a building. Such forces induce vibrations in building structures and
structure-borne sound develops which is transported to other floors. The
vibrating structures excite the surrounding air and radiate sound. This
sound development mechanism can be summarized by the terms ‘force –
structure-borne sound – airborne sound’ (Fig. 8.1).

2. The airborne sound in a room, such as speech or the operation of consumer
electronic devices or machinery, in respect to the surrounding walls and
ceilings also represents an exciting force which is now spatially distributed.
It no longer represents a point force as described above. Vibrations are
also generated in the structures. The transfer path can be described by
‘airborne sound – structure-borne sound – airborne sound’ (Fig. 8.1).

What both forms of excitation in the rooms of buildings have in common
is that the sound is not necessarily transmitted via the ‘direct’ path (Fig 8.2).
The propagation of vibrations can take multiple paths because adjacent par-
titions are able to mutually exchange vibration energy. In addition to the
direct transfer path, which leads from the partition wall (or the ceiling) to the
adjacent room, there are many other transfer paths, so-called flanking paths.
Generally speaking, it is basically impossible to even be able to determine the
dominant path without taking measurements first. The direct partition wall,
for instance, can have such high sound insulation that the path with flanking
transmission represents the dominating path. Therefore additional acoustic
improvements made to the partition wall will not necessarily achieve better
results in the total sound insulation.

 
M. Möser, Engineering Acoustics, DOI 10.1007/978-3-540-92723-5_8,  
© Springer-Verlag Berlin Heidelberg 2009  
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Fig. 8.1. Transmission and generation of airborne sound in buildings

Fig. 8.2. Sound transfer paths: Ff: flanking–flanking, Fd: flanking–direct,
Dd: direct–direct, Df: direct–flanking

These remarks show that the problem of sound transmission in buildings
is in fact quite complex. Only the basic principles, of course, can be discussed
here. Thus, the following considerations focus on sound transmission through
the direct partition wall. In many, but not all cases can the main transfer path
be characterized in this way. Windows, for example, are the weak point in the
sound insulation towards the exterior, and usually the transmission through
other partitions can be neglected. Apart from some extreme requirements, it
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can be assumed that for heavy flanking structures (e.g. walls with a mass
per unit area of more than 300 kg/m2) that the direct path is also the most
important one. According to tradition, we will first begin this chapter with
an introduction to the methods which are commonly used in measuring sound
insulation of building partitions.

8.1 Measurement of airborne transmission loss

Fig. 8.3. Experimental setup for measuring the transmission loss of a partition wall
between two rooms

In the determination of transmission loss, the sample is constituted by a
partition wall between two rooms (Fig. 8.3), which will be henceforth referred
to as the source and receiving rooms. As explained in more detail in Chap. 7 on
room acoustics, the sound pressure level present in a room, not only depends
on the sound power incidence, but also on the acoustic design of the room.
If only the level difference between source and receiving room were used as a
gauge for sound insulation of a wall with respect to the airborne sound, the
resulting value would not only characterize the wall attributes, but also the
room properties as well. For this reason, as a basic principle, the sound power
transmission coefficient τ is principally used to describe the wall properties

τ = PE/PS . (8.1)

The transmission coefficient represents the ratio of the power PE, passing
through the receiving side, and the power incidence PS on the source side. If
diffuse sound fields are assumed on both sides of the partition element, the
incident sound power, according to (7.17), is given by
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PS =
p̃S

2S

4%c
,

where pS represents the rms-value of the sound pressure in the source room
and S, the surface area of the partition (for a description refer to Fig. 8.3).
Under steady-state conditions the power inflow in the receiving room is equal
to the absorbed sound power (7.18)

PE =
p̃E

2AE

4%c
,

where AE represents the equivalent absorption area of the receiving room.
The sound power transmission coefficient

τ =
p̃E

2

p̃S
2

AE

S
(8.2)

is a component of the transmission loss R (or otherwise known as the sound
reduction index)

R = 10 lg 1/τ = LS − LE − 10 lg
AE

S
(8.3)

which by definition results in large values of R in the case of small transfers.
The sound pressure levels in the source and receiving room LS and LE are, of
course, spatially averaged mean values (which means the level of the squared
sound pressure in a spatial average). For the reasons already discussed, the
reverberation time has to be measured in the receiving room. The reverbera-
tion time is required to calculate the equivalent absorption area with the aid
of the Sabine equation.

As the examples in Figs. 8.8, 8.9 and 8.10 show, the transmission losses
of partitions are frequency dependent. They show a more or less increasing
tendency toward higher frequencies. Thus, measurements are performed with
varying frequency, normally in octave or third-octave increments. Typically,
noise in the appropriate bandwidths is used as the test signal. The frequency
response of R measured in the so-called frequency range of ‘building acoustics’,
which is between 100 Hz and 3.15 kHz, is obtained. Higher frequencies are of
minor importance because, as a matter of fact, the sound reduction is large.
At lower frequencies, there is a rapid decline in the sensitivity of the ear,
making measurements difficult and less accurate.

Basically, transmission loss is clearly described by its frequency response
which is represented by a certain number of values. For several reasons, it is
prudent to transform this ‘multiplicity of values’ into one ‘single value’ which
subsumes ‘the’ transmission loss by means of at least a single number. Com-
paring different partition elements with respect to their sound transmission is
certainly much easier then.

The measured curve R is compared to the reference curve B as follows.
The characteristic curve is shifted in 1 dB-steps towards the measured curve



8.2 Airborne transmission loss of single-leaf partitions 241

until the ‘sum of negative differences’ of the measured curve compared to the
reference curve is smaller than 32 dB (Fig. 8.4):

average negative difference =
1
N

∑
negative differences

Only negative differences are counted (where the shifted reference curve is
located above the measured curve). Positive differences are not considered.
The 500Hz - point of the shifted characteristic curve specifies the so-called
’measured’ transmission loss Rw. . If the characteristic curve, as in a spe-
cial case experimental results, were not able to be shifted for example, then
Rw = 52 dB (Bild 8.4). Positive differences are not taken into account. The
mentioned sum of negative differences is roughly equal to the ‘average nega-
tive difference’ of 2 dB for N = 16, which represents the number of measured
frequency bands.

Shifting the reference curve in 1 dB-steps is performed until the right one
is found by trial and error. This is simplified by computers nowadays. If the
reference curve is shifted downwards, the result is negative (AIM < 0 dB);
upward shifts count positive. Some examples are presented in Fig. 8.4.

Thus, RW represents the ‘average’ transmission loss in the ‘mid’-frequency
range. If AE ∼ S is assumed in (8.3) (which is approximately valid for ‘typical’
conditions in dwellings and for walls, but not for windows), the level difference
can roughly be approximated by

LS − LE = RW . (8.4)

This – not even very accurate – estimation is often required in practice.
The actual noise impact in a room when transmission loss and the external
impact sound level are both known is a question which often arises. The ap-
proximation in (8.4) can be quite off if the frequency response R of the trans-
mission loss significantly deviates from the reference curve and the ‘dominant’
frequency is substantially below 500 Hz. (8.3) is used for making more accu-
rate assessments of the receiving room level LE, where the frequency response
of LS, R and, as a matter of principle, AE must be known. The response
function of LE obtained in this way can be transformed into single values
(such as dB(A), etc). In everyday engineering practices, the aforementioned
is seldom known (or too expensive to measure). (8.4) gives at least an initial
approximation.

8.2 Airborne transmission loss of single-leaf partitions

As already mentioned at the beginning, sound transmission through a wall
or a ceiling of a room (henceforth called the source room) into another room
(henceforth called the receiving room) is based on simple chain of events: the
incoming air wave elastically ‘bends’ the wall. The wall vibrations act as a
sound source in the receiving room.
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Fig. 8.4. Definition of the weighted sound reduction index RW. The diagram shows
the transmission loss R plotted versus frequency f . B: reference curve, Bv: shifted
reference curve, M: measured values, U: negative differences of M−Bv (from : K.
Gösele and E. Schröder: Schalldämmung in Gebäuden, Chap. 8 in ”Taschenbuch der
Technischen Akustik”, Springer, Berlin and Heidelberg 2004, edited by G. Müller
and M. Möser)

A model, as simple as possible, shall reveal the influence of the wall pa-
rameters (mass, thickness, bending stiffness. . . ) on airborne transmission loss.

As depicted in Fig. 8.5, the model consists of three elements:

1. The ‘source room’ 1, regarded in this case as a half space filled with air –
The sound field is given by a wave incident from the angle ϑ

pa = p0e−jkx cosϑejkz sinϑ (8.5)

and a reflected sound field

pr = rp0ejkx cosϑejkz sinϑ . (8.6)

The resulting sound field in room 1 consists of the two elements
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p1 = pa + pr = p0ejkz sinϑ
(
e−jkx cosϑ + rejkx cosϑ

)
. (8.7)

2. The ‘receiving room’ 2 also regarded as a half space filled with air – For
simplicity’s sake, it is assumed that the space dependence of the incident
wave pa with respect to the z-direction exists in (8.5). The sound power
radiated into the receiving room is therefore described by

p2 = τp0e−jkx cosϑejkz sinϑ , (8.8)

where τ represents the sound power transmission coefficient.
3. Finally, the wall is induced by the pressure difference p1(0, z) − p2(0, z)

to vibrations which represent solutions to the bending wave equation (see
(4.47) in Chap. 4.5, p. 133)

1
k4

B

d4vW

dz4
− vW =

j

m′′ω
(p1(x = 0, z)− p2(x = 0, z)) . (8.9)

Fig. 8.5. Model used to calculate the transmission loss of a single-leaf partition. pa:
incident sound field, pr: reflected sound field, p1 = pa + pr: total sound field in front
of the wall, p2: transmitted sound field

If it is also assumed that the wall vibrates with respect to the z-axis ‘in the
same direction as the sound field incidence’

vW = v0ejkz sinϑ . (8.10)

It follows from (8.9) using (8.7) and (8.8) that

v0 =
1 + r − t

k4

k4
B

sin4 ϑ− 1
jp0

m′′ω
(8.11)
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is true for the amplitude v0 of the wave in the wall vW. The sought-after but
still unknown quantities are the reflection coefficient r and the sound pressure
transmission coefficient t, since they describe the sound fields in front of the
wall and behind it. These quantities are determined by taking advantage of
the simple fact that the velocities on both sides of the wall are equal to the
wall velocity vW

v1(x = 0) =
j

ω%

∂p1

∂x

∣∣∣∣
x=0

= vW (8.12)

and

v2(x = 0) =
j

ω%

∂p2

∂x

∣∣∣∣
x=0

= vW . (8.13)

Equations (8.12) and (8.13) are equivalent to
p0

%c
cosϑ(1− r) = v0 (8.14)

and
t
p0

%c
cosϑ = v0 . (8.15)

Thus t = 1− r, or
r = 1− t . (8.16)

Using Equations (8.11) and (8.15), we finally arrive at

t cosϑ =
j%c

m′′ω

1 + r − t
k4

k4
B

sin4 ϑ− 1
. (8.17)

Next, r is eliminated, according to (8.16), and the sound pressure transmission
coefficient

t =
2j%c
m′′ω(

k4

k4
B

sin4 ϑ− 1
)

cosϑ+ 2j%c
m′′ω

(8.18)

obtained, which is used to determine the sound power transmission coefficient

τ = |t|2

and the airborne transmission loss

R = 10 lg 1/τ .

When interpreting the result (8.18), the ratio of bending wavelength λB

and air wavelength λ is of particular significance. The bracketed term in the
denominator of (8.18) is(

k4

k4
B

sin4 ϑ− 1
)

=
(
λ4
B

λ4
sin4 ϑ− 1

)
=
(
f2

f2
cr

sin4 ϑ− 1
)
.

Below the coincidence frequency λB � λ (corresponding to f � fcr) this
term is nearly independent of the incidence angle ϑ and roughly equal to −1.
Within the frequency range f > fcr (λB > λ) on the other hand, the term in
brackets strongly is linked to ϑ. It particular, it can also become zero. This is
the cases f � fcr and f > fcr must be defined.
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a) Frequency range below the critical frequency f � fcr

is for this case,

t ≈
2j%c
m′′ω

2j%c
m′′ω − cosϑ

. (8.19)

The ratio c/m′′ is almost always a very small number. The specific impedance
is %c = 400 kg/m2s, so even for only 100 Hz and m′′ = 10 kg/m2 it is m′′ =
6300 kg/m2s. If we assume that the grazing incidence, ϑ = 90◦, with t = 1,
rarely occurs,

τ = |t|2 ≈
(

2%c
m′′ω

)2 1
cos2 ϑ

(8.20)

and

R = 10 lg
(
m′′ω

2%c

)2

+ 10 lg cos2 ϑ (8.21)

can be written. If we additionally assume diffuse sound incidence from all
directions, an average incidence angle of ϑ = 45◦ can be inserted into (8.21),
resulting in

R = 10 lg
(
m′′ω

2%c

)2

− 3 dB. (8.22)

Equation (8.22) is called the ‘mass law’ or ‘Berger’s mass law’ . It states that
R increases at 6 dB per octave and also with 6 dB per doubling of mass.

Obviously, the bending stiffness of the wall is unimportant in the frequency
range f � fcr. The walls are therefore called ‘flexible walls’. Usually, a parti-
tion or a wall is ‘flexible’ if the critical frequency is above the frequency range
of interest.

b) Frequency range above the critical frequency f > fcr

Above the critical frequency, a specific ‘critical’ incidence angle ϑcr exists,
resulting in a total transmission t = 1 of the sound field (that is, for the
simplest case). For ϑ = ϑcr using

sinϑcr =
kB

k
=

λ

λB
=

√
fcr

f
, (8.23)

the wall seems to be ‘acoustically transparent’. The reason for this result is
given by the fact that the incident sound field in air and the wall vibration
are perfectly matched for ϑ = ϑcr. The trace wavelength λs of the sound field
in air, directly located upon the wall (see Fig. 8.6),

λs = λ/ sinϑ (8.24)
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matches the bending wavelength for ϑ = ϑcr

for ϑ = ϑcr : λs = λ/ sinϑcr = λB . (8.25)

This effect is called ‘coincidence effect’. Obviously, it also occurs above the
lowest coincidence frequency. The latter is often simply called the ‘limiting
frequency’ or ‘critical frequency’.

Fig. 8.6. A sound field at oblique incidence with the wavelength λ in its propagation
direction produces a sound pressure with the wavelength λs = λ/ sinϑ at the wall
plane x = 0

In the previously described (and simplified) model, a sound transmission
of t = 1 is obtained for ϑ = ϑcr, in accordance with (8.18). Apart from the fact
that this points to an important physical effect in the transmission of sound,
the result t = 1 might not be satisfactory in practice. It is impossible to observe
total transmission through a wall even under ideal measurement conditions.
The simplest explanation is internal damping, which is always present in the
partition. Similar to the derivation of the complex spring stiffness in Chap. 5,
the losses of the wall can be expressed by a complex bending stiffness

B′ → B′ (1 + jη) (8.26)

where η is the loss factor of the wall. Therefore, the bending wave number
likewise becomes complex

k4
B =

m′′

B′
ω2 → m′′

B′(1 + jη)
ω2 =

k4
B

1 + jη
. (8.27)

Equation (8.18) then becomes

λ

λ s

incidence

ϑ

wall
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t =
2j%c
m′′ω(

λ4
B

λ4 sin4 ϑ (1 + jη)− 1
)

cosϑ+ 2j%c
m′′ω

. (8.28)

At coincidence ϑ = ϑcr (using λB sinϑ/λ = 1) it is therefore

t(ϑ = ϑcr) =
2%c
m′′ω

2%c
m′′ω + η cosϑcr

. (8.29)

At sufficiently large frequencies, the sound transmission now depends on the
loss factor.

To simulate more realistic conditions, omnidirectional and uniform ‘diffuse’
sound incidence is assumed. This situation is described by the averaged sound
power transmission coefficient

τ̄ =
1
π/2

π/2∫
0

τ (ϑ) dϑ =
1
π/2

π/2∫
0

|t (ϑ)|2 dϑ (8.30)

and the corresponding transmission loss

R = −10 lg τ̄ . (8.31)

The integration in (8.30) can only be approximated analytically. This some-
what lengthy procedure for approximating the solution of the integral will be
described in the next subsection. Readers who are not interested in the details
may skip over this section and the following equations numbered with (I) with-
out missing substantial information and may safely proceed to equation (8.44)
on p. 249.

Approximating transmission loss above the Critical Frequency

The integral (8.30) can only be approximately calculated given with the fol-
lowing two prerequisites:

1. The frequency range under consideration is ‘far above’ the critical fre-
quency, f � fcr. Hence, it is λB � λ.

2. It is assumed that angles in the range ϑ ≈ ϑcr dominate the value of the
integral.

Using

sinϑcr =
λ

λB
, (8.32)

it follows from λB � λ that ϑcr is a small angle. Thus, cosϑ ≈ cosϑcr ≈ 1
can be used. Furthermore, the imaginary part of the denominator in (8.28) is

j

[
2%c
m′′ω

+ η
λ4

B

λ4
sin4 ϑ cosϑ

]
≈ j

[
2%c
m′′ω

+ η

]
(8.33)
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because sinϑ ≈ sinϑcr ≈ λ/λB and cosϑ ≈ 1 can be inserted in this case. It
is therefore approximately

τ̄ =
τ0
π/2

π/2∫
0

dϑ(
λ4

B
λ4 sin4 ϑ− 1

)2

+
[

2%c
m′′ω + η

]2 , (8.34)

abbreviating using

τ0 =
(

2%c
m′′ω

)2

. (8.35)

For sufficiently large frequencies it is

η � 2%c
m′′ω

and thus the averaged transmission coefficient becomes

τ̄ =
τ0
π/2

π/2∫
0

dϑ(
λ4

B
λ4 sin4 ϑ− 1

)2

+ η2

. (8.36)

Using the variable substitution

u =
λB

λ
sinϑ

du =
λB

λ
cosϑdϑ ≈ λB

λ
dϑ

dϑ ≈ λ

λB
du

it results in

τ̄ =
τ0
π/2

λ

λB

λB/λ∫
0

du
(u4 − 1)2 + η2

. (8.37)

As already mentioned, it is assumed that only the angles in the range ϑ ≈ ϑcr

are critical. This is equivalent to using the range u ≈ 1 and approximately
results in

u4 − 1 =
(
u2 − 1

) (
u2 + 1

)︸ ︷︷ ︸
≈2

≈ 2
(
u2 − 1

)
= 2 (u− 1) (u+ 1)︸ ︷︷ ︸

≈2

≈ 4 (u− 1)

(8.38)
where one obtains

τ̄ =
τ0
π/2

λ

λB

λB/λ∫
0

du
16 (u− 1)2 + η2

=
τ0
π/2

λ

λB

1
16

λB/λ∫
0

du
(u− 1)2 + (η/4)2 .

(8.39)
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Finally, using the substitution y = u−1 with du = dy, we obtain the tabulated
integral

τ̄ =
τ0
8π

λ

λB

λB/λ−1∫
−1

dy
y2 + (η/4)2 , (8.40)

which can be looked up in an integral table. This yields

τ̄ =
τ0
8π

λ

λB

1
η/4

[
arctan

(
4
η

(
λB

λ
− 1
))

+ arctan
(

4
η

)]
(8.41)

(where arctan is the inverse tangent). For small η and due to λB � λ, both
arctan-terms have the value π/2. This results in

τ̄ = τ0
λ

λB

1
2η

. (8.42)

If τ0 and
λ

λB
=

√
fcr

f
(8.43)

are inserted, we arrive at the simple and clear result of

τ̄ =
(

2%c
m′′ω

)2
√
fcr
f

1
2η

(8.44)

for the sound power transmission coefficient. The transmission loss for fre-
quencies above the critical frequency f > fcr is thus given by

R = 10 lg
(
m′′ω

2%c

)2

+ 5 lg
f

fcr
+ 10 lg 2η . (8.45)

Here, the gradient of the transmission loss R rises at a higher slope than
it does in the range, with f < fcr at 7.5 dB per octave. R is influenced by the
loss factor of the wall. No statement is made here regarding the actual reason
for the losses. The loss factor consists of all loss effects which in fact occur,
from internal damping to vibration energy transport to adjacent partitions.

A summary of the frequency characteristics of the transmission loss of
single-leaf partitions below and above the critical frequency is given in Fig. 8.7.
Approaching the critical frequency, the two methods described above fail to
predict the behavior of the transmission loss. The asymptotes in Fig. 8.7 were
arbitrarily connected. Hence, it is obvious that the transmission loss ‘drops’
in that frequency range, and that this effect depends on the loss factor (and –
as can be shown – on the wall dimensions not to be taken into account here).

Some practical examples are shown in Figs. 8.8, 8.9 and 8.10. The charac-
teristics have a similar structure as theoretically predicted. In particular, the
drop at the coincidence can be discerned quite well. It is conspicuous that the
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Fig. 8.7. Predicted frequency response of the transmission loss of a single-leaf par-
tition

Fig. 8.8. Transmission loss of a window pane, m′′ = 15 kg/m2, fcr = 2500 Hz

coincidence drops more drastically the higher the critical frequency is. Theo-
retical investigations on walls with finite dimensions confirm this assumption.

The correlation between theory and practice is not always as strong as
shown in Figs. 8.8 to 8.10. There are a lot of other factors which reduce the
measured transmission loss in respect to the theory, for instance,
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Fig. 8.9. Transmission loss of a brick wall, m′′ = 400 kg/m2, fcr = 130 Hz

Fig. 8.10. Transmission loss of a plaster wall, m′′ = 60 kg/m2, fcr = 350 Hz

• leakage (important for doors and windows),
• internal inhomogeneities (e.g. cracks in the masonry, but also a brick struc-

ture with local resonances as in lightweight hollow building blocks),
• resonances in the thickness of the wall (where the front and back of the

wall are not uniformly moving, thus invalidating the bending wave theory),
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• porous construction materials, where sound transmission is more likely
to occur through the pores than through the skeleton (for example, a
concrete wall – especially aerated concrete – has a substantially higher
sound reduction if the surface is plastered).

For these and other reasons – it is often required in practice to rely on
experience as opposed to the above equations. Some indications for that are
given in Fig. 8.11, which illustrates the transmission loss of walls and single-
leaf structures for the most commonly used materials.

The ’plateau’ in the graph describes the transitions between partitions,
from those which are flexible over the entire frequency range (i.e. a very high
critical frequency with a very small mass) to stiff partitions where the critical
frequency decreases with the thickness (and thus with the mass). Consult the
literature for field reports to find answers to questions on specific problems.

Fig. 8.11. Weighted sound reduction index RW, depending on the mass per unit
area, for commonly used building materials (from: K. Gösele and E. Schröder:
Schalldämmung in Gebäuden, Chap. 8 in ”Taschenbuch der Technischen Akustik”,
Springer, Berlin and Heidelberg 2004, edited by G. Müller and M. Möser)

8.3 Double-leaf partitions (flexible additional linings)

A simple and cheap method to increase the transmission loss of a wall is to
cover it with a second, additional lining (an additional lining made of plaster
boards costs about as much as an expensive carpet). As the discussions in the
previous section show, the additional lining cannot be installed in the first wall:
a small additional mass per unit area would only result in a negligible increase
of the transmission loss. The second partition has to be mounted separately.
Generally, space usage should remain minimal. Therefore, we assume a cavity
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between the two partitions, where the thickness d is small compared to the
wavelength. The air in the cavity acts as a spring with the stiffness per unit
area

s′′ =
%c2

d
(8.46)

(where d is the width of the cavity). The pressure pi in the cavity between the
two partitions is thus given by

pi =
s′′

jω
(v1 − v2) (8.47)

(see also Fig 8.12). Indeed, this implies that the transverse coupling of the
volume elements in the cavity parallel to the walls can be neglected. Other-
wise standing waves would occur parallel to the lining. The aforementioned
assumption of a ‘pure stiffness’ already implies a cavity is already implied
which is damped with mineral wool. The flow resistance of the damping ma-
terial acts as a transverse decoupling of the ‘flat room’ between the walls.

Generally, the additional lining will be thin. It can also be assumed that
the critical frequency is above the frequency range of interest. As explained in
the previous section, the dynamic bending of the wall is unimportant in this
case. The flexible additional lining only reacts to an exciting pressure in the
cavity with an inertia force. This can be expressed as

pi = jωm′′2v2, (8.48)

wherem′′2 is the mass per unit area of the additional lining. It was also assumed
in (8.48) that the sound pressure in the ‘receiving room’, located to the right
of the additional lining (Fig. 8.12), is a lot smaller in order of magnitude than
pi

|p2(x = 0)| � |pi| .
Furthermore, if only heavy, solid ‘original walls’ (with the index 1) are implied,
it can be assumed that their vibrations are not substantially influenced by
the additional lining. Therefore the results obtained earlier in this chapter
pertaining to single-leaf partitions can be adopted for the vibrations of wall 1
in a first-order approximation.

Using (8.15), (8.10) results in

v1 =
p0

%c
t1 cosϑejkz sinϑ (8.49)

where, according to (8.18),

t1 =
2j%c
m′′1ω(

k4

k4
1

sin4 ϑ− 1
)

cosϑ+ 2j%c
m′′1ω

. (8.50)

This represents the sound pressure transmission coefficient of the ‘single-leaf
partition’ 1 without the additional lining.
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Fig. 8.12. Model for the calculation of the transmission loss of a double-leaf par-
tition. pa: incident sound field, pr: reflected sound field, p1 = pa + pr: total sound
field in front of the wall, p2: transmitted sound field, pi: sound pressure in the filled
cavity

The vibrations v2 of the additional lining can now easily be calculated.
Inserting (8.47) into (8.48) results in

jωm′′2v2 =
s′′

jω
(v1 − v2)

or
v2 =

v1

1− ω2m′′2
s′′

=
v1

1− ω2

ω2
0

. (8.51)

The air spring in the cavity s′′ and the mass of the additional lining m′′2
constitute a simple resonator with the resonance frequency ω0, which is given
by

ω2
0 =

s′′

m′′2
.

At ω = ω0, the additional lining could theoretically perform infinitely large
vibrations because of the lack of damping. Adding a loss factor to the spring
stiffness would prevent this.

If (8.49) is inserted into (8.51), we obtain

v2 =
p0

%c

t1

1− ω2

ω2
0

cosϑejkz sinϑ (8.52)

For sound pressure radiated by the additional lining into the receiving room,
we take the same basic approach as in (8.8)

p2 = tp0e−jkx cosϑejkz sinϑ, (8.53)
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where this time, t represents the sound pressure transmission coefficient of the
double-leaf partition (transmission of the incident sound field p0). As before,
t adheres to the condition

j

ω%

∂p2

∂x

∣∣∣∣
x=0

= v2 .

It is simply

t =
t1

1− ω2

ω2
0

(8.54)

and thus

R = 10 lg
1
τ

= 10 lg
1
t2

= 10 lg
(

1− ω2

ω2
0

)2

+ 10 lg
1
τ1

(8.55)

or

R = R1 + 10 lg
(

1− ω2

ω2
0

)2

(8.56)

where R1 denotes the transmission loss of the single-leaf partition (with the
index 1).

In a first-order approximation, the transmission loss of the double-leaf
partition is composed of the sum of the transmission loss of the heavier wall
and a frequency-dependent term, which will be referred to as the improvement
of the additional lining RE

R = R1 +RE (8.57)

with

RE = 10 lg
(

1− ω2

ω2
0

)2

. (8.58)

It is clear that the additional lining

• is ineffective below the resonance ω � ω0 where RE = 0,
• decreases the transmission loss at the resonance ω = ω0 (of course, the

magnitude depends on the loss factor of the spring) and
• gains a real advantage of RE ≈ 40 lg(ω/ω0) at resonances above ω � ω0,

rising at a gradient of 12 dB per octave.

For the purposes of scaling it can be said that from a noise control perspective,
the resonance frequency should be ‘as low as possible’. It follows from

f0 =
1

2π

√
%c2

m′′2d
≈ 60 Hz√

m′′2
kg/m2

d
m

that it is better to use heavy additional linings at a large distance d from the
original single-leaf partition. Using m′′2 = 10 kg/m2 and d = 10 cm = 0.1 m as
an example results in f0 = 60 Hz, proving that tuning the resonance below
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Fig. 8.13. Improvement ∆R due to a flexible additional lining mounted in front of
a plaster wall (80 mm). m′′2 = 4 kg/m2, cavity width 65 mm damped with mineral
wool

the ‘frequency range of building acoustics’ (which usually starts at 100 Hz)
can be achieved with a reasonable effort.

Experience with flexible additional linings shows that the estimation de-
scribed above for the improvement of transmission loss tends not to be so
bad, provided that the cavity is damped with enough mineral wool and that
no fixed connections (so-called structure-borne sound bridges) between the
linings exist. Fig. 8.13 shows a measured improvement. Fairly high values are
obtained for RE which at least in the mid-frequency range adhere to (8.58).

Flexible additional linings (usually plaster boards of more than 10 mm
thickness) are the most important means of the acoustician during the re-
development of buildings. For light-weight double-leaf partitions (which also
includes double-glazed windows) the rough estimates made above more or
less agree with experience gained in practice. The reason for this is partially
given by effects not discussed here. For instance, cavity damping does not take
place in double-glazed windows. In the case of nearly equal partitions, it can
no longer be assumed that one is vibrating independently of the other. The
importance of cavity damping is shown in experiments with double-leaf plas-
ter structures (Fig. 8.14). The lack of absorption allows the sound reduction
to decrease dramatically. Therefore, in the case of windows, attempts were
made to focus the damping at the frame by equipping the edges of the cavity
with absorbent material (Fig. 8.15), which ultimately produced appreciable
improvements. Other experiments testing the influence of the cavity on sound
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Fig. 8.14. Transmission loss of a double-leaf plaster partition (fcr = 3000 Hz) with
and without mineral wool in the cavity

transmission were carried out with helium (Fig. 8.16) which shows similar
effects.

Fig. 8.15. Improvement made by lining the cavity edges of a double-glazed window
frame (5 mm and 8 mm glass, cavity width 24 mm) with 50 mm mineral wool
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Fig. 8.16. Transmission loss of a double-glazed window with 8 mm and 4 mm glass,
16 mm cavity filled with an air-helium mixture

Such effects and other details important in practice unfortunately cannot
be extensively treated here. Yet, it is possible to derive some construction
criteria and dependencies based on the above discussions and practical expe-
rience. In order to obtain a high transmission loss, it is prudent to

• use a large total mass and distribute it non-uniformly over the lining if
possible (i.e. avoid partitions with the same mass),

• consider a large cavity width for the design,
• damp the whole cavity with absorbent material, if possible,
• avoid leakage (sometimes the window frame may be more important than

the pane), and
• by all means avoid structure-borne sound bridges (i.e. connections between

the partitions).

The last item particularly should be stressed in the actual construction
process. Additional linings must be mounted on separate studs, only soft-
resilient mountings are allowed on the ‘original wall’ in order to improve the
static stability of the structure. Sound bridges relocate the critical frequency
of the whole structure in such a way that the transmission loss can be lower
than without the additional lining! Often, existing connections between orig-
inal wall and additional lining are underestimated, resulting in an additional,
worsening resonance effect directly in the middle of the critical frequency
range. This ill effect is sometimes caused by mounting facings too tightly to
a house wall.
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8.4 Impact sound reduction

Sound impact in building acoustics is understood as the air-borne sound ra-
diated by a wall or a ceiling, when the ceiling of another room is induced
to structure-borne vibrations by walking, moving of chairs, operating kitchen
equipment or similar. It is thus not only the sound radiation into the room
under the ceiling. It is, for example, quite common to determine the ‘impact
sound level’ in the flat above a restaurant and recommend solutions to reduce
it, whenever it is required to do so.

8.4.1 Measuring impact sound levels

A standardized source of force used to excite the corresponding floor enables
the unified classification of impact noise radiated by a structure. This source
is generated by the so-called tapping machine (Fig. 8.17). It consists of five
hammers (each weighing 500 g), mechanically lifted by a motor, which fall
onto the floor from a defined height one after another (tapping frequency
5 Hz). This process is repeated periodically as long as the motor operates
(and makes an enormous racket). The impact sound levels LE are measured
in the receiving room (in spatially averaged octave or third-octave bands).

Fig. 8.17. Tapping machine used to measure the normalized impact sound level

Since the absorption of the room has to be taken into account (the impact
noise sounds quieter in a highly damped room than in a lightly damped room),
the normalized impact sound level

Ln is given by
Ln = LE + 10 lgAe/A0 , (8.59)

where Ae is the equivalent absorption area of the receiving room. The reference
value is A0 = 10 m2, thus, LE is scaled to a room with an absorption area of
Ae = 10 m2.
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Fig. 8.18. Definition of the normalized impact sound level Lnw drawn versus
frequency. B: reference curve, Bv: shifted reference curve, M: measurement, Ü:
positive difference of M with respect to Bv (from :K. Gösele and E. Schröder:
Schalldämmung in Gebäuden, Chap. 8 in ”Taschenbuch der Technischen Akustik”,
Springer, Berlin and Heidelberg 2004, edited by G. Müller and M. Möser)

In order to specify sound impact protection levels,, the third-octave band
impact sound levels are weighted with a reference curve. This follows the same
principle as the determination of the AIM from the transmission loss R by
shifting the impact sound reference curve, here (Fig. 8.18). The shift in dB
denotes the impact protection margin. The details are standardized in ISO 140
and ISO 717.

The TSM is still a well-cited resource nowadays. Hence, the weighted stan-
dard impact sound level Lnw is usually used which is given by

Lnw = 63− TSM . (8.60)

8.4.2 Improvements

Some normalized impact sound levels of bare floors are shown in Fig. 8.19.
They range approximately from 70 dB to 90 dB. It is clear that the level falls
off at 10 dB per doubling of mass (a physical explanation for this effect is given
in the book ”Structure Borne Sound” by Lothar Cremer and Manfred Heckl
(translated by B.A.T. Petersson, Springer, Berlin and New York 2004)).

Compared to the minimum requirement found in DIN 4109 (impact sound
level < 63 dB) the values of the bare floors are far too high. Yet, there are some
simple solutions which improve impact noise protection with some justifiable
effort without significantly increasing the mass. The order of magnitude of
the improvements is shown in Table 8.1.
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Table 8.1. Normalized impact sound level reduction of single-leaf bare floors and
corresponding mass per unit area (from: K. Gösele and E. Schröder: Schalldämmung
in Gebäuden, Chap. 8 in ”Taschenbuch der Technischen Akustik”, Springer, Berlin
and Heidelberg 2004, edited by G. Müller and M. Möser)

Coatings

Linoleum, PVC-coating without base 3 to 7 dB
Linoleum on 2 mm Cork 15 dB
PVC-floor with 3 mm felt 15 to 19 dB
Needled felt 18 to 22 dB
Carpet, thick 25 to 35 dB

Floating floors

Cement layer
on corrugated board 18 dB
on hardened foam board, stiff about 18 dB
on hardened foam board, soft about 25 dB
on mineral fibre boards 27 to 33 dB

The coatings can be regarded as an ‘elastic layer’ mounted onto the floor.
Together with the thudding mass M of the tapping machine hammers or the
foot of a walking person, they form a mass-spring-system with the resonance
frequency

ω2
res =

s

M

As in double-leaf partitions, decoupling goes into effect above the reso-
nance frequency, explaining the improved results of soft elastic layers. Since a
short pulse of a force uniformly contains all frequencies, a substantial amount
of spectral energy is affected by decoupling if the resonance frequency is low
enough. Thus, the improvement is high.

It is noteworthy in these remarks that the impinging force itself determines
the result. Thus, the tapping machine does not simulate the walking on a floor
very precisely, since the masses involved in walking are certainly larger. The
improvements achieved with the tapping machine only vaguely correspond to
those achieved by level reduction, which is actually perceived using different
force excitation mechanisms are used. On the other hand, the tapping machine
represents a practical compromise, because the noise from falling objects, the
excitation of the ceiling by loudspeaker boxes, etc. also constitute the impact
sound level.

In the class of floating floors in Table 8.1, the decoupling effect of a res-
onator has become a construction rule for floors. As sketched in Fig. 5.3, an
elastic layer carrying a mass per unit area (usually a cement floor) is built
on top of the raw floor. The level reduction similar to that in airborne sound
reduction is given by

∆L = 20 lg
(

ω

ωres

)2
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Fig. 8.19. Weighted normalized impact sound level of heavy, single-leaf bare
floors shown versus their mass per unit area (from : K. Gösele and E. Schröder:
Schalldämmung in Gebäuden, Chap. 8 in ”Taschenbuch der Technischen Akustik”,
Springer, Berlin and Heidelberg 2004, edited by G. Müller and M. Möser). The filled
circles represent ceilings with a hollow structure, the empty circles represent ceilings
made of reinforced concrete

where ωres is the resonance frequency

ω2
res =

s′′

m′′2

(s′′: stiffness per unit area of the elastic layer, m′′2 : mass per unit area of the
floating floor).

The experimental data of an example is shown in Fig. 8.20. The con-
struction rules are similar to those for the improvement of the transmission
loss with flexible additional linings. Structure-borne sound bridges have to be
avoided. One should bear in mind that the floating floor (the cement layer)
has no connections to the flanking walls. This can be ensured by hoisting the
elastic layers at the flanking walls or by using insulating stripes at the edges.

The thorough and careful placement of the isolating layer is even more
important. Holes develop very easily and are filled during cementation. These
form sound bridges, rendering improvement ineffective. The intrusion of ce-
ment at the joints of the webs can be avoided by a flushed covering of the
plastic foil before filling it with cement or by overlapping the webs during the
placement. Sometimes problems arise by heating pipes which are installed in
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Fig. 8.20. Impact sound level reduction of a floating floor

the isolating layer. During the construction process, mandatory use of soft-
coated pipes is a given.

It should finally be mentioned that ceilings suspended underneath the
excited component are a lot less effective than floating floors. With respect
to the suspended ceiling, which acts as a flexible additional partition, the
transmission is not mitigated by the likewise exciting flanking walls; for a
correctly constructed floating floor the flanking transmission is also reduced.
Therefore, suspended ceilings only promise to be successful for light-weighted
bare floors with heavy flanking walls.

8.5 Summary

Air-borne transmission loss of single-leaf structures such as walls, ceilings, and
windows, is determined by specifying the first trace match or coincidence effect
between the air wave hitting the structure at an oblique angle of incidence and
the plate-bending wave above a critical frequency fcr. The trace matching or
coincidence effect does not occur at frequencies below the critical frequency
f < fcr, referred to as simply the critical frequency or the coincidental critical
frequency, because the bending waves are shorter than the air waves. Elastic
tensions in the wall or partition are therefore irrelevant, as the partition only
reacts to excitation by air waves with inert forces. The transmission loss R is
only dependent on the ratio of the mass impedance of the wall jωm” to the
specific resistance of the surrounding medium % c. Therefore, R increases by
6 dB per doubling of frequency or mass.
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In frequencies above the critical frequency f > fcr, the bending wave-
length is greater than the air wavelength. This condition leads to the occur-
rence of a trace match between the wave types present at the incidence angle
sin ϑ = λ(air)/λ(bending). The simplest theoretical model, not taking into
account losses in the wall, reflects the unhindered passage of the sound wave
striking at this given incidence angle. If, on the other hand, these losses are
taken into account and the intensities are averaged over all sound incidence
trajectories for the purposes of modelling diffuse sound field conditions, the
resulting transmission loss increases by 7.5 dB per octave and is dependent
on the loss factor η. For values close to the critical frequency fcr itself, the
transmission loss contains a deviation, which is flatter for low critical fre-
quencies and more pronounced for higher ones. The critical frequency itself is
inversely proportional to the thickness h of the partition structure, fcr ∼ 1/h
(see Chapter 4).

Wall structures can be improved for the purposes of better sound insula-
tion using flexible additional linings, each elevated on separate bearings. The
improvement first becomes noticeable above the spring-mass resonance fre-
quency of the resonator given by the cavity between the walls and the lining.
Theoretically, the mitigating effect increases thereafter by 12 dB per octave.
Impact sound can be reduced, for instance, by installing floating floors.

It is necessary to determine the average source and receiving sound levels
as well as the equivalent absorption area (derived from the reverberation time
in the receiving room) in order to measure air-borne transmission loss. This
is because the levels occurring in the receiving room are not only dependent
on the transmission loss through the wall, but also on the room loss. For
this same reason, in order to specify impact sound level standards, initial
level measurements have to be corrected in order to take into account the
equivalent absorption area of the receiving room.

8.6 Further reading

A helpful and valuable support to this chapter is provided by A.C.C. Warnock
and W. Fasold: ”Sound Insulation: Airborne and Impact”, Chap. 93 in ”Ency-
clopedia of Acoustics” (editor Malcolm Crocker, John Wiley, New York 1997)

Please note the measurement standards DIN EN ISO 140 ”Measurement
of sound insulation in buildings and of building elements”.

In addition, two German books are recommended for further reading:
Gösele/Schüle/Künzel: ”Schall. Wärme. Feuchte.” (Bauverlag, Wiesbaden
1997) and W. Fasold, E. Sonntag and H. Winkler: ”Bauphysikalische Entwurfs-
lehre” (Verlag für Bauwesen, Berlin 1987).
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8.7 Practice exercises

Problem 1

Find the frequency-dependent transmission loss of a wall with 10m2 surface
if the following sound pressure levels are measured in the source and receiving
room. The reverberation time of the receiving room (V = 140m3) is also given
below .

f/Hz LS/dB LE/dB TE/s

400 78.4 48.2 2
500 76.6 43.8 1.,8
630 79.2 42.2 1.7
800 80.0 41 1.6
1000 84.4 40 1.6
1250 83.2 40.6 1.5

Problem 2

How high is the resonance frequency of a double-leaf partition with an addi-
tional lining, which has a surface mass of 12, 5 kg/m2 (25 kg/m2) at a distance
of 5 cm (in 10 cm) from the original wall, which is much heavier?

Problem 3

How much is the transmission loss of the steel plate of a car (0.5mm thick)
at 100Hz (200Hz, 400Hz, 800Hz)? First, find the coincidence critical fre-
quency.

Problem 4

How much is the transmission loss of a heavy cement wall which is 35 cm thick
with a loss factor of η = 0.1 at 200Hz, 400Hz, 800Hz and 1600Hz?

Problem 5

A window with an area of 3m2 and a transmission loss of 30 dB is set into
a wall which has an area of 15m2 (without any other windows) and a trans-
mission loss 60 dB. How much is the combined transmission loss?

If the window were to take up a larger amount of the wall’s surface at 50
percent, how large would the combined transmission loss be?
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Problem 6

The following transmission losses have been measured for a double-pane win-
dow (9/16/13mm) at third-octave intervals:

Frequency/Hz Rthirdoctave/dB reference curve/dB

100 29.4 33
125 36.9 36
160 41.8 39
200 38.2 42
250 42.4 45
315 40.9 48
400 39.4 51
500 41.9 52
630 46.6 53
800 44.5 54
1000 42.4 55
1250 43.8 56
1600 47.1 56
2000 51.0 56
2500 49.6 56
3150 39.9 56

How great is the weighted transmission loss Rw ?
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Silencers

Generally speaking, silencers are technical devices which attenuate a sound
field travelling through them along its propagation path.

The most commonly known silencer is used in vehicles. It consists of pipes
filled with gas which connect the engine with a ‘pot’ or several pots with each
other. It finally ends in an outlet, the so-called exhaust pipe. Basically, such a
silencer consists of a pipeline with sudden changes in the cross-sectional area.

Silencers are also frequently used in heating, ventilation and air-condition-
ing systems. Nearly every duct used for ventilating concert halls, operas and
other auditoria (like congress halls) is equipped with silencers. In a lot of
industrial plants, where, for instance, air-gas mixtures are transported in pipes
by way of blowers, severe noise problems arise which can at least partially be
solved by appropriate ‘acoustic treatment’ of the sound transmission inside
the pipes.

Mainly, two basic principles can be considered to reduce the sound prop-
agation along tubes and ducts. Either rigid tubes are used, like in vehicle ex-
haust pipes, where the cross-section along the tube-axis is suddenly expanded
or reduced. As a matter of principle, such constructions simply take effect by
reflecting the sound at their inlet, since the dissipation of sound energy into
heat is neither desired nor of major importance.

The second, alternative basic principle is exemplified by tubes, where the
walls of the tube represent an arbitrary acoustical surface which, for exam-
ple, is characterized by absorbent linings. The required effect of such ‘lined
silencers’ can be described by the sound energy which is lost into the wall
lining of the tube. One may be tempted to describe this principle by the term
‘absorbent silencers’. A more detailed investigation of the subject in the fol-
lowing will shortly reveal that the main effect of lined silencers is not always
attained by absorption. Even the case of an acoustically soft lining with z = 0
results in a high silencing effect which is obviously not produced by absorption:
no sound power penetrates a surface z = 0, as is generally known. Therefore,
it can be deduced that even lined silencers can work by means of reflection,
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verifying that absorbent duct linings are not always the main contributing
physical factor behind insertion loss.

For these reasons the common classifications made of reflecting and ab-
sorbing silencers is not very precise. The actual effective principle behind the
attenuation is only inadequately described by this distinction, because the
dominating effect of these two ‘types of silencers’ is not necessarily the dissi-
pation of sound energy into heat. Even the term ‘silencer’ might be misleading
if it is used equivalently in the sense of ‘damping’ or ‘attenuation’. The terms
‘damping’ and ‘attenuation’ shall be used in a more colloquial meaning in this
chapter, simply as a level reduction along a distance. As already mentioned,
the reason for this is not always dissipation.

9.1 Changes in the cross-section of rigid ducts

The discussions in this section focus on ducts with a small cross-sectional area
or on correspondingly low frequencies: the cross-section of the duct is assumed
to be always small compared to the wavelength. Some typical applications are
therefore

• exhaust pipes of vehicles, the radius of the pipe is approximately 5 cm and
• the low frequency buzzing tone (100 Hz) of a fan in a ventilation system

with a width of 30 cm to 50 cm.

9.1.1 Abrupt change in cross-section

The simplest way to realize a reflector for a one-dimensional waveguide is to
build abrupt changes into the cross-section of a duct (Fig. 9.1).

Fig. 9.1. Abrupt change in cross-sectional area

Reflection and transmission can be determined by some simple consider-
ations. To do this, consider in the left (semi-infinite) branch of the duct an
incoming wave, originating from the source, and a wave reflected at the change
in the cross-section

p1 = p0

(
e−jkx + rejkx

)
(9.1)

with the particle velocity

S 2
S 1

inc idence
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v1 =
j

ω%

∂p1

∂x
=
p0

%c

(
e−jkx + rejkx

)
. (9.2)

The right branch of the duct is assumed to be non-reflecting, therefore only
one transmitted wave

p2 = tp0e
−jkx (9.3)

and
v2 = t

p0

%c
e−jkx (9.4)

occurs. The still unknown reflection coefficient r and the likewise unknown
pressure transmission coefficient t can be determined by the two boundary
conditions at the surface x = 0 of the change of cross-section. On both sides
of the boundary x = 0, the pressure is the same

1 + r = t, (9.5)

and the mass, flowing through the cross-sectional area in a time interval on
the left side %S1v1(0), and the mass, flowing through the cross-sectional area
on the right side %S2v2(0) are equal to

S1v1 (0) = S2v2 (0) , (9.6)

or using (9.2) and (9.4),
(1− r)S1 = tS2 . (9.7)

Equations (9.5) and (9.7) formulate the consequences of the boundary condi-
tions with respect to transmission and reflection. If inserted into one another,
they result in the pressure transmission coefficient

t =
2

1 + S2
S1

(9.8)

and the reflection coefficient

r = t− 1 =
1− S2/S1

1 + S2/S1
. (9.9)

The acoustic effect of silencers is characterized by the transmitted sound
power. Therefore, the power transmission coefficient is mainly of interest

τ =
transmitted power

incident power
=
S2p

2
0 |t|

2

S1p2
0

=
S2

S1
|t|2 =

4S2
S1

1 + 2S2
S1

+
(
S2
S1

)2 . (9.10)

The expression for the power transmission coefficient becomes a little clearer
if it is multiplied by S1/S2:

τ =
4

S2
S1

+ S1
S2

+ 2
(9.11)
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The insertion loss R related to an unchanged duct with S2 = S1 results in

R = 10 lg 1/τ = 10 lg
1
4

(
S2

S1
+
S1

S2
+ 2
)
. (9.12)

Thus, an expansion of the cross-section has the same effect as a contraction
if the ratio of the larger to the smaller cross-section stays the same. This also
implies that the insertion loss during excitation ‘from the left’ or ‘from the
right’ is the same.

Fig. 9.2 shows the characteristics of R versus the ratio of the cross-sections.
The achievements are not very large in spite of the considerable effort. For
circular ducts with a ratio of 1:2 in the radii and thus a ratio of 1:4 in the
cross-sectional areas, only R = 1.9 dB is obtained. A ratio of 1:4 in the radii
and of 1:16 in the cross-sectional areas is needed to achieve an insertion loss
of R = 6.5 dB, representing a considerable effort. Beginning our discussion

Fig. 9.2. Insertion loss of a single abrupt change in cross-sectional area

in subsequent sections, it should be noted that the reflection coefficient r,
according to (9.9), becomes negative for expanding ducts with S2 > S1 (which
corresponds to a soft reflection in principle), whereas it takes positive values
for contracting ducts S2 < S1 (which corresponds to a rigid reflection in
principle).

9.1.2 Duct junctions

A single duct branching off from a system of ducts can be regarded as a simple
change in cross-sectional area. (Figure (9.3).
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Fig. 9.3. Duct with junction

Tube branches often occur in practice and provide an excellent introduc-
tion to the following treatment of lined ducts. There are certainly enough rea-
sons to discuss duct branches in the following sections. To simplify things, as-
sume that there are no abrupt changes in the cross-sectional area of a straight
duct. That is, the pipe branches to the left and to the right of the bifurcation
all possess the same cross-sectional area S. In the case of lower frequencies
where only the basic modes are present in the duct branches, the inlets to the
partitions 1 and 2 to the left and to the right of the bifurcation have to be
the same as in the previous section

p1 = p0

(
e−jkx + rejkx

)
. (9.13)

For the particle velocity, using v = j
ω%

∂p
∂x and k = ω/c, it follows that

v1 =
p0

%c

(
e−jkx − rejkx

)
. (9.14)

Once again, assume that the right duct branch is anechoic, producing
solely the transmitted wave

p2 = tp0e
−jkx (9.15)

with
v2 = t

p0

% c
e−jkx. (9.16)

Consider both anechoically terminated duct segments in the branch along the
y-axis (in this case, with input impedance zA = pA(y = 0)/vA(y = 0) = % c) as
well as finitely long segments with rigid terminations at y = lA. For the rigid
termination at y = lA, the input impedance of the branch (see Chapter 6)
is zA = pA(y = 0)/vA(y = 0) = −j% c ctg(klA). In other words, in this case,
we assume that the input impedance zA of the diverging branch is known,
whereby both extreme cases are particularly relevant. The two unknowns, the
reflection factor r at the inlet and the transmission factor t at the extension,
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result from transitions occurring at the joints x = 0 and y = 0. All three
pressures must be equal

p1(0) = pA(0) = p2(0) . (9.17)

Again, the result is
1 + r = t . (9.18)

Based on the conservation of mass, the volume flowing into the joint Sv1(0)
is equal to the sum of all volume flows out SAvA(0) + Sv2(0):

Sv1(0) = SAvA(0) + Sv2(0) . (9.19)

Divided by Sp1(0), one obtains

v1(0)
p1(0)

=
SA
S

vA(0)
p1(0)

+
v2(0)
p1(0)

=
SA
S

vA(0)
pA(0)

+
v2(0)
p2(0)

, (9.20)

using eq.(9.17). The expression pA(0)/vA(0) is equal to the input impedance
zA of the duct branch. The ratio p2(0)/v2(0) describes the impedance % c in
the extension 2, meaning

v1(0)
p1(0)

=
1
% c

1− r
1 + r

=
SA
S

1
zA

+
1
% c

, (9.21)

or when applying eq.(9.18),

2− t
t

=
SA
S

% c

zA
+ 1 . (9.22)

Finally, we obtain the transmission factor t

t =
1

1 + 1
2
SA
S

1
zA/% c

. (9.23)

The following section mainly deals with the cases of primary interest that
were described above: a duct junction where one branch is in itself anechoically
terminated, and the other one which has a dead-end termination.

Junction of anechoically-terminated ducts

As mentioned previously, if the branch with a cross-sectional area of SA is
anechoically terminated at its end, the input impedance of the branch zA is,
, zA = % c. So, according to (9.23), the transmission factor t only depends on
the surface area ratio SA/S

t =
1

1 + 1
2
SA
S

. (9.24)
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Fig. 9.4. Insertion loss of the junction

If all three duct branches have an equal cross-sectional area of SA = S, the
sound fields in the extension of the straight duct are the same as in the branch.
The fact that the sound field branches off is simply the result of conservation
principles , completely uninfluenced by the angles between the branch, its
extension and the inlet duct. For this reason, the waves dispersed after the
junction are identical. tA = t = 2/3 for SA = S, the insertion loss is therefore
R = 10lg(1/t2) = 3, 5 dB (tA = transmission loss of the branch).

The insertion loss resulting in the other surface ratios is shown in 9.4.
Take into consideration, however, that for larger surface area ratios SA/S,
the condition that no higher modes do not exist, even at lower frequencies, no
longer needs to be met. In that case, the general theory derived here would
no longer apply.

Junction of duct segments with reflective terminations

In the case of duct junctions to a segment with rigid termination at a length
of lA, the input impedance of this dead-end termination (see Chapter 6.5) is

zA
% c

= −j ctg(klA). (9.25)

This describes the impedance frequency response of what is known as the ’λ/4
resonator,’ which shows roots for

klA = π/2 + nπ

(n=0,1,2,...), or the equivalent,
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lA = λ/4 + nλ/2. (9.26)

These roots indicate resonances. As a rule, impedance values of z = 0 signal
that the structure thus described is ’easy to oscillate’ to any extent. The
transmission factor of the duct extension

t =
1

1− j 1
2
SA
S

1
ctg(klA)

(9.27)

is also zero in the resonance frequencies indicated by (9.26). This implicates
a complete blocking of the resonances in the diverging duct extension! In
contrast, the impedance zA in the ’anti-resonances’ between two resonances
grows infinitely large. This is why, in theory, the duct branch can in theory
be omitted and replaced by a rigid surface whose transmission factor is t = 1.
The bandwidth of the valve ratio around the resonance frequencies depends
on the relationship between the cross-sectional areas SA/S, as can be seen in
Figure (9.5). That the duct branch blocks all of its resonances lends itself to

Fig. 9.5. Effect of duct branches as exemplified in a λ/4 resonator

the fact that cross-sectional dependencies in the sound pressure along the x
axis of the deviating branch were cut off to begin with. The following section
on lined ducts, which can also be used to produce a wall impedance of zero,
will proceed to examine the spatial dependency of the sound field, which has
been left out of the discussion so far. These space-dependencies result in high,
but finite insertion losses.

This section concludes with a final short mention of two intersecting ducts
(Figure 9.6). We will assume, for the sake of simplicity that all duct branches
are rigidly terminated and all cross-sectional areas are equal. In such cases,
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identical wave fields with identical transmission factors t develop in all three
branches. Because all pressures are the same at the intersecting point,

1 + r = t (9.28)

applies, where r indicates the reflection factor in the inlet duct. The divergence
of the volume flow requires that

1− r = 3t m (9.29)

resulting in t = 1/2. The insertion loss at the duct intersection is obviously
only 6 dB.

Fig. 9.6. Duct intersection

9.1.3 Expansion chambers

Simple abrupt changes in the cross-sectional area are not very effective. With
the simple combination of two reflectors, forming a chamber of length l
(Fig. 9.7), the effect can be increased substantially, as will be shown in the
following discussion.

The sound field at the inlet branch is likewise composed of travelling and
reflecting waves:

p1 = p0

(
e−jkx + rejkx

)
. (9.30)

Thus follows that for the sound propagation speed with v = j
ω%

∂p
∂x and k =

ω/c,
v1 =

p0

% c

(
e−jkx − rejkx

)
. (9.31)
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Fig. 9.7. Expansion chamber

Of course a similar approach using waves travelling in opposite directions
could be made for the expansion chamber. Yet, the following calculation is
somewhat easier if a linear combination

p2 = p0 (α sin kx+ β cos kx) (9.32)

is used, with

v2 =
jp0

%c
(α cos kx− β sin kx) (9.33)

as a solution to the wave equation.
The outlet 3 represents, once again, an anechoic termination. Therefore,

only the transmitted wave

p3 = p0te−jk(x−l) (9.34)

exists, with
v3 =

p0

%c
te−jk(x−l) . (9.35)

The boundary conditions p1 = p2 and S1v1 = S2v2 at the reflector x = 0 yield

1 + r = β (9.36)

and
S1 (1− r) = jαS2 . (9.37)

Using p2 = p3 and S2v2 = S3v3 at x = l results in

α sin kl + β cos kl = t (9.38)

and
S2 (α cos kl − β sin kl) = −jtS3 . (9.39)

Equations (9.36) to (9.39) represent a set of linear equations with the four
unknown variables α, β, t and r. Since mainly the transmission loss is of
interest, (9.38) and (9.39) are solved for α and β

α = t

[
sin kl − j S3

S2
cos kl

]
(9.40)

β = t

[
cos kl + j

S3

S2
sin kl

]
. (9.41)

S 2
S 1

inc idence

S 3

ref lector 1 ref lector 2
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The reflection coefficient is eliminated, using (9.36) and (9.37):

β + jα
S2

S1
= 2 . (9.42)

Inserting (9.40) and (9.41) into (9.42) finally yields the pressure transmission
coefficient t

t

[
cos kl + j

S3

S2
sin kl + j

S2

S1

(
sin kl − j S3

S2
cos kl

)]
= 2

or
t =

2

cos kl
(

1 + S3
S1

)
+ j sin kl

(
S3
S2

+ S2
S1

) , (9.43)

respectively. The power transmission coefficient τ is the ratio of transmitted
and incident sound power, and therefore given by

τ =
S3

S1
|t|2 =

4S3
S1

cos2 kl
(

1 + S3
S1

)2

+ sin2 kl
(
S3
S2

+ S2
S1

)2 . (9.44)

For a simple interpretation it is suggested to assume that the cross-sectional
area of inlet and outlet are equal using S3 = S1. This results in

τ =
4

4 cos2 kl + sin2 kl
(
S1
S2

+ S2
S1

)2 .

This expression can still be simplified even more:

τ =
4

4 + sin2 kl

{(
S1
S2

+ S2
S1

)2

− 4
} =

1

1 + 1
4

(
S1
S2
− S2

S1

)2

sin2 kl
. (9.45)

Thus, the insertion loss amounts to

R = 10 lg 1/τ = 10 lg

{
1 +

1
4

(
S1

S2
− S2

S1

)2

sin2 kl

}
. (9.46)

The insertion loss of the expansion chamber is frequency-dependent – in
contrast to the abrupt change in cross-sectional area (see also Figs. 9.8
and 9.9a,b,c). It has a periodic shape, where alternating minima and max-
ima

R = Rmin = 0 dB for kl = 0, π, 2π, . . .

and
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Fig. 9.8. Insertion loss of an expansion chamber for different ratios of cross-sectional
areas

R = Rmax = 10 lg

{
1 +

1
4

(
S1

S2
− S2

S1

)2
}

for kl =
π

2
,

3π
2
,

5π
2
, . . . (9.47)

occur. The maxima take on higher values this time. For example, Rmax =
6.5 dB for S2/S1 = 4 (simple change in cross-section: R = 1.9 dB) and Rmax =
18.1 dB for S2/S1 = 16 (simple change in cross-section: R = 6.5 dB).

The frequencies fn, where the maxima R = Rmax are located, are given
by

fn =
1
4
c

l
,

3
4
c

l
,

5
4
c

l
, . . . (9.48)

the corresponding wavelengths λ = c/fn are given by

l =
1
4
λ,

3
4
λ,

5
4
λ, . . . . (9.49)

At the maxima the length of the expansion chamber is an uneven multiple of
a quarter wavelength. It can be graphically shown that the frequencies with
‘maximum effect’ result from the condition ‘length = λ/4 +nλ/2’. The maxi-
mum effect can be expected if the wave which is reflected at the outlet of the
chamber and reflected again at the chamber inlet (thus already reflected twice)
is out of phase with the actually incident wave at the chamber inlet. Since
the travelled distance of the double-reflected wave is 2l and an opposite phase
constitutes a shift of λ/2 + nλ, it likewise follows from this discussion that
l = λ/4 + nλ/2. Overall, the expansion chamber represents a silencer which
can be tuned in frequency by the chamber length and where the maximum in-
sertion loss can be influenced by the ratio of the cross-sectional areas. But the
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‘fairly good’ effect of the silencer is limited to certain frequency intervals. Usu-
ally, the first low-frequency maximum n = 0 is mainly of interest in practice.
The effective bandwidth can be described by the distance ∆f = f1+ − f1− of
the two frequencies f1− and f1+ which are located to the left and to the right
of the maximum, where R = Rmax − 3 dB. Apart from the minima R = 0 dB
and for ratios S2/S1 of the cross-sections which are not too close to the value
S2/S1 = 1, the insertion loss can be approximated by

R ≈ 10 lg

{
sin2 kl

(
S1

S2
− S2

S1

)2
}
− 6 dB .

f1+ and f1− are thus given by

sin2

(
2π f1±l

c

)
=

1
2

or, of course,
2π f1+l

c
=

3π
4

and
2π f1−l

c
=
π

4
.

It is therefore

∆f = f1+ − f1− =
(

3
8
− 1

8

)
c

l
=

1
4
c

l
= f1 . (9.50)

The 3-dB bandwidth is then equal to the center frequency f1 (frequency of
the first maximum).

Figs. 9.9a,b,c show that theory and experiment correlate fairly well.
The small shift in frequency between the calculated and measured curves

can be explained by the fact that the ‘acoustic length’ of expansion chambers
is slightly smaller than the geometric length (the end correction would extend
the in- and outlets and thus reduce the chamber length).

The following example shows that a fairly good effect can be achieved
by a ‘silencer without absorption’. Implementing a duct diameter of 5 cm
and a realistic chamber diameter of 20 cm with a chamber length of 25 cm
can achieve an insertion loss of 18 dB at 340 Hz, which decreases to 15 dB at
170 Hz and 510 Hz. The same characteristics are also found in the range of
850 Hz to 1190 Hz (center frequency: 1020 Hz).

It is obvious that the gap in the frequency band around 680 Hz can be
closed by a second chamber, as depicted in Fig. 9.10. The next section is
therefore dedicated to the combining chambers.

9.1.4 Chamber combinations

A silencer is consists of N pipe elements with different cross-sectional areas
Si, i = 1, 2, . . . N and one inlet and one outlet pipe. Naturally, the theoretical
discussion consists of two steps:
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Fig. 9.9. (a) Calculated and measured insertion loss of an expansion chamber
S2/S1 = 4, l = 5 cm

Fig. 9.9. (b) Calculated and measured insertion loss of an expansion chamber
S2/S1 = 4, l = 10 cm

1. The transmission at an abrupt change in cross-sectional area and
2. The transmission along a duct element with a constant cross-section

0 500 1000 1500 2000 2500
0

2

4

6

8

10

Frequency f [Hz]

In
se

rt
io

n 
lo

ss
 R

 [d
B

] calculated

measured

0 500 1000 1500 2000 2500
0

2

4

6

8

10

Frequency f [Hz]

In
se

rt
io

n 
lo

ss
 R

 [d
B

] calculated

measured



9.1 Changes in the cross-section of rigid ducts 281

Fig. 9.9. (c) Calculated and measured insertion loss of an expansion chamber
S2/S1 = 4, l = 15 cm

Fig. 9.10. Silencer consisting of several expansion chambers

A coordinate xi is associated with each duct element i, where xi = 0 defines
the inlet and xi = li defines the outlet (see Fig. 9.11). Sound pressure and
velocity at the inlet are thus denoted by pi(0) and vi(0) and by pi(li) and
vi(li) at the outlet.

The outlet pipe of the silencer (the element N + 1 which is semi-infinite)
is assumed to be non-reflecting. Its impedance is therefore given by
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Fig. 9.11. Definitions for the description of transmission along a tube segment

zN+1 (0) =
pN+1 (0)
vN+1 (0)

= %c . (9.51)

With the aid of the aforementioned boundary conditions at a change in cross-
sectional area,

pi (li) = pi+1 (0)

and
Sivi (li) = Si+1vi+1 (0) ,

the impedance at the end of a duct element with a given order can be deter-
mined by the impedance of the consecutive element as

zi (li) =
pi (li)
vi (li)

=
Si
Si+1

pi+1 (0)
vi+1 (0)

=
Si
Si+1

zi+1 (0) . (9.52)

Starting with the last outlet, as exhibited by (9.51), we can calculate the final
impedance zN (lN ) in the last duct element with the aid of (9.52). The next
step consists of calculating the ratio of the field quantities z = p/v at the
inlet of the duct element zN (0) based on the ratio at the end zN (lN ). The
procedure is repeated thereafter, using (9.52) to calculate zN−1(lN−1) from
zN (0), and zN−1(0) from zN−1(lN−1), until the inlet of the duct is reached.

The last step is ot calculate the correlation between zi(0) and zi(li). This
is done using the approach

pi (xi) = αi cos k (xi − li) + βi sin k (xi − li) . (9.53)

By Inserting xi = li shows that αi is simply the sound pressure at li,
αi = pi(li), and, due to

vi (xi) =
j

ω%

∂pi
∂xi

= − j

%c
{αi sin k (xi − li)− βi cos k (xi − li)} , (9.54)

βi is proportional to the velocity in xi = li

S i

xi
0 li

p i(0
),

v i(0
)

p i(l
i),

v i(l
i)

S iS i-1S i-1
S i+1
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jβi
%c

= vi (li) .

At each arbitrary position xi in the ith duct element, sound pressure and
velocity, pi(xi) and vi(xi) can completely be expressed by the field quantities
at the end of the duct element xi = li

pi (xi) = pi (li) cos k (xi − li)− j%cvi (li) sin k (xi − li)

and
vi (xi) = − j

%c
pi (li) sin k (xi − li) + vi (li) cos k (xi − li) .

The impedance at the inlet of the duct element zi(0) = pi(0)/vi(0) can now
easily be calculated by the impedance at the end of the duct element zi(li) =
pi(li)/vi(li):

zi (0)
%c

=
zi(li)
%c cos kli + j sin kli
jzi(li)
%c sin kli + cos kli

(9.55)

As already mentioned, one ‘calculates one’s way’ along the silencer ‘from the
back to the front’. By alternately applying (9.52) and (9.55), one finally ends
up at the inlet of the first duct element z1(0). The final step is given by the
basic approach for the (semi-infinite) inlet duct

pE = p0

(
e−jkx1 + rEe

jkx1
)

(9.56)

vE =
p0

%c

(
e−jkx1 − rEejkx1

)
, (9.57)

where the same coordinate system as in the first duct element 1, x1 is used.
As usual, the x1-axis meets the end of the inlet duct at x1 = 0. It is

zE (0)
%c

=
1 + rE
1− rE

=
So
S1

z1 (0)
%c

(9.58)

or

rE =
So
S1

z1(0)
%c − 1

So
S1

z1(0)
%c + 1

. (9.59)

The energy balance equation requires

τ = 1− |rE|2 . (9.60)

The insertion loss is, once again, R = −10 lg τ . Calculated examples are shown
in Fig. 9.12 which targets a broadband effect. Utilizing the above procedure,
ducts that exhibit an arbitrary axial change in the cross-sectional area can be
calculated as shown in Fig. 9.13. S = S(x) The continuous characteristics of
S(x) are decomposed into multiple small ‘steps’ (see Fig. 9.13). The theoretical
prediction as well as the practical measurement of such ‘structured tubes’ show
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Fig. 9.12. Effect of a silencer consisting of three duct elements as depicted in
Fig. 9.10 using S1 = S3 = S5 and S2 = S4 = 4S1

that a pretty good effect can be achieved at ratios of the cross-sectional areas
pretty close to unity. Fig. 9.14b shows the result based on a sample. Fig. 9.14a
shows the theoretical prediction of the step function S(x) shown in Fig. 9.13.

Only in rare cases can the fairly large but very narrow-banded insertion
loss actually be used in practise. It pays off to only use pure tones, whose
frequency is not subject to changes (such as those caused by the speed of an
engine, for instance). The frequency with the maximum effect results from
λw = λ/2 (wall period=air wavelength/2), so that only high, sometimes mid-
frequencies can be considered for the sake of economy.

9.2 Lined ducts

This section deals with silencers which are realized by lining the duct wall with
an appropriately chosen impedance. In practice, usually a wider duct has to be
split into several smaller ducts, as shown in Fig. 9.15. In ventilation systems,
for instance, large amounts of fresh air need to be transported. Since, on the
other hand, only ducts with a small distance between the limiting boundaries
provide large attenuation, constructions like the splitter attenuator (Fig. 9.15)
are often required.

The basic principle of such attenuator constructions shall be explained
here. The two-dimensional duct is treated as the simplest possible model
(∂/∂z = 0 in Fig. 9.18), where the wall at y = 0 is a rigid plate and the
parallel wall at y = h is given by the impedance in air.

Before discussing the model configuration it is reasonable to recapitulate
the information outlined in the previous Chap. 6 on the simplest special case –
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Fig. 9.13. Duct with variable cross-section (top) and reconstruction of the area
function by a step function (bottom)

Fig. 9.14. (a) Calculated insertion loss of a structured tube for ε = 0.25. Total
length: 5λw

the rigid-walled duct – and to augment the knowledge gained in the previous
chapter with respect to the attenuation that occurs. After that, the ‘new’
simplest case is treated: the duct lining at y = h with a soft impedance
z = 0. As will be seen, this would represent a highly effective silencer. Yet,
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Fig. 9.14. (b) Measured insertion loss of a structured tube for ε = 0.25. Total
length: 5λw

Fig. 9.15. Sketch of a splitter attenuator

the realization of z = 0 is difficult indeed. Nevertheless, it is worth discussing
it here, because it clarifies some basic principles. Afterward, we will conduct
an approximation for general impedances, which will finally be compared to
the exact solution of the problem.

9.2.1 Ducts with rigid walls

The duct with rigid walls was already discussed in Chap. 6. It is therefore
sufficient to recapitulate the results which are summarized in (6.3) and (6.4)
(see p. 173). The sound pressure is composed of cosine-shaped transverse
distributions – the modes. Each mode has a certain wave number kx in the
propagation direction along the duct axis, which specifies its propagation. The
sound pressure is given by
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p =
∞∑
n=0

pn cos
nπy

h
e−jkxx . (9.61)

The modal amplitudes pn must be determined by the sound source (if they
are of interest). This requires a detailed knowledge of the source (which is
often not available). Each mode has a different wave number kx along the
propagation direction, which is calculated by inserting the members of (9.61)
into the wave equation (see also (6.4), p. 174). Combined with the fact that a
non-reflecting sound field always decays exponentially with increasing distance
from the source, the resulting equations for the modal wave numbers come
out to be:

kx =

+
√
k2 −

(
nπ
h

)2 ; |k| ≥ nπ
h

−j
√(

nπ
h

)2 − k2 ; |k| ≤ nπ
h

(9.62)

The mode n = 0 is characterized by a purely real wave number kx = k0.
The lowest mode n = 0 – the plane wave – is basically transmitted without
attenuation. Generally, the imaginary part of a wave number (regardless of its
nature) describes the damping of the characterized waveform. By decomposing
it into a real and an imaginary part

kx = kr − jki, (9.63)

the field of this wave form behaves in the manner of

p ∼ e−jkxx = e−jkrxe−kix . (9.64)

The corresponding level distribution

L = 10 lg |p|2 ∼ 10 lg e−2kix = −kix 20 lg e = −8.7kix (9.65)

falls linearly with x. Usually, the damping is characterized by the level differ-
ence Dh along an element of the x-axis whose length is equal to the duct’s
cross-section. The modal damping, which is also called ‘duct attenuation’, is
generally given by

Dh = 8.7kih . (9.67)

In the rigid-walled duct, the modes n > 0 are damped by

Dh = 8.7
√

(nπ)2 − (kh)2 (9.68)

(for frequencies below the cut-off frequency, see Chap. 6). Therefore, at low
frequencies kh� n, the duct attenuation is approximately given by

Dh ≈ 8.7nπ = 27.3n (9.69)

which indicates very high modal damping. The mode n = 1 is attenuated
by 27.3 dB (n = 2: 54.6 dB) per duct width along the duct. Therefore, after
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4 duct widths away from the source, this mode is reduced by more than 100 dB
(n = 2: 200 dB)!

A practical application is realized in the section on the measurement tech-
nique the impedance tube, where higher modes interfere, while the lowest
mode n = 0 is desirable. When implementing them in silencers, the rigid wall
would only be useful if the source does not excite the lowest mode n = 0.
This would require specialized source configurations which would probably
play little role in noise control applications. General statements, quoting the
‘feasibility’ for each source, can only be made using the ‘worst case’ which is
given by the mode of lowest damping. Thus, here and in the following sec-
tions, we consider the lowest modal damping Dh of the modes. For ducts with
rigid walls, the lowest damping is simply given by Dh = 0 dB. Such ducts are
certainly not very useful as silencers.

9.2.2 Ducts with soft boundaries

As will be shown in the following, a simple soft lining with the boundary
condition

p(y = h) = 0 (9.70)

achieves a highly effective silencer.
The transverse modes are again approached by cosine distributions due to

the boundary condition ∂p/∂y = 0 at y = 0:

p ∼ cos qy (9.71)

Based on the boundary condition (9.70) at the impedance plane y = h, the
eigenvalues q are now

qh = π/2 + nπ for n = 0, 1, 2, 3, . . . . (9.72)

The sound field is therefore

p =
∞∑
n=0

pn cos((π/2 + nπ)
y

h
)e−jkxx . (9.73)

The transverse modes of the form cos((π/2 + nπ) yh ) are shown in Figure
9.16.

The modal wave numbers kx result from the wave equation

kx =


+

√
k2 −

(
(n+1/2)π

h

)2

; |k| ≥ (n+1/2)π
h

−j
√(

(n+1/2)π
h

)2

− k2 ; |k| ≤ (n+1/2)π
h

. (9.74)

In ducts with soft boundaries, all modes have thus a non-zero cut-on frequency
given by
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Fig. 9.16. Sound pressure transverse modes in a two-dimensional insulation-lined
duct, above z = 0 and z →∞ below.

fn =
n+ 1/2

2h
. (9.75)

After all, the lowest cut-on frequency is 1700 Hz for a duct width of 5 cm.
At frequencies below that, the modes do not propagate. All transverse dis-
tributions represent exponentially decaying near-fields. This is also now valid
for the mode n = 0 with the lowest cut-on frequency. At low frequencies
kh� λ/2, it is approximately

Dh = 8.7(n+ 1/2)π = 13.7 + 27.3n, (9.76)

according to (9.67) and (9.74).
In the worst case, at n=0, the total sound field at low frequencies falls

at 13.7 dB per duct width along the duct. For practical applications, this is
an exceedingly high value which is only slightly below the maximum possible
value ofDh,max = 19.1 dB (see the section after the next for more information).

It would therefore be highly desirable for practical applications to realize a
soft surface in a frequency range as broad as possible. However, it is not easy
to create a surface with the impedance z = 0 after all. As it was explained in
Sect. 6.5.4 on resonance absorbers, this can only be realized by an undamped
structure in the shape of a resonator, which has the impedance

z = jωm′′ − s′′/jω

with a zero-crossing z = 0 at the resonance frequency ωres =
√
s′′/m′′. In

contrast, finite impedance values are obtained at frequencies below or above
the resonance frequency with stiffness characteristics (Im{z} < 0) or with
mass characteristics (Im{z} > 0). Ultimately, the question of practical interest
is, which corresponding damping Dh can be obtained by a duct whose walls
are lined by resonators and how broad in frequency this effect is.

For frequencies f above the lowest cut-on frequency f > f0 the mode
n = 0 changes to an non-attenuated wave. If the frequency is still below the
cut-on frequency of the next consecutive mode n = 1, at a certain distance to
the source, a diffuse transverse distribution of sound pressure levels occurs,
as shown in Figure 9.17 (of course, given that this mode is, in fact, excited
by the source.) It is clear that the sound field is radiated in the form of an
acoustic ray or sound beam. The level decreases at the middle of the beam

n = 0 n = 1 n = 2 n = 3
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at y = 0 - at the rigid duct wall - in the direction of the soft side. For a
duct lined on both sides with soft walls, the maximum of the beam would
be located in the middle, between the surfaces of the boundaries. Above the
lowest cut-on frequency, a sound beam develops, whereby the beam virtually
passes the boundaries’ surface without touching them. The transmitted sound
power is therefore concentrated at the middle of the channel.

From a principle standpoint, it is worth noting that the soft boundaries do
not incur any loss of energy below the lowest cut-on frequency, due to the very
high damping in the duct Dh. Naturally, no power penetrates the soft surface
p(y = h) = 0. In other words, the duct lining does not extract any internal
energy from the sound field. Therefore, because of the reflections occurring at
the inlet, even ducts with soft linings will work.

Fig. 9.17. Sound level L(y) = 10 lg |cos(πy/2h)| of the lowest mode

9.2.3 Silencers with arbitrary impedance boundaries

This section deals with a two-dimensional attenuator model. As it is shown
in Fig. 9.18 it contains a rigid plate at y = 0 and a parallel plane at y = h
with the impedance z. The field quantities at y = h are thus given by

p (y = h) = zvy (y = h) . (9.77)

The beginning of the considerations is an approximation, which shows not
only the tendencies of the working principle, but often yields viable results
in the order of magnitude. As every approximation it has its limitations; the
following section tries to indicate, what lies beyond.
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Fig. 9.18. Model arrangement for calculating duct attenuation by impedance
bounding with z

Approximation for the lowest mode

The main difference between a rigid boundary and a boundary with a fi-
nite impedance is simply given by the fact that a mass flow penetrates the
impedance plane in the latter case; for z →∞ this is impossible. To account
for this effect, it makes sense to use the ‘acoustic’ mass conservation law (2.53)
(see p. 39)

∂vx
∂x

+
∂vy
∂y

= − jω
%c2

p . (9.78)

For small duct widths h� λ and for the lowest mode, the differential quotient
∂vy/∂y in (9.78) can be replaced by the difference quotient

∂vx
∂x

+
vy (h)− vy (0)

h
= − jω

%c2
p . (9.79)

For large impedances z, the transverse pressure distribution will approxi-
mately remain constant. Under such conditions, the velocity can be expressed
by the pressure and the impedance as

vy (h) = p/z . (9.80)

Using vy(0) = 0, (9.79) results in

∂vx
∂x

= −
(
jω

%c2
+

1
zh

)
p . (9.81)

As already mentioned, p/zh accounts for the mass penetrating the impedance
plane (per unit time and per unit area).

The force balance equation

vx =
j

ω%

∂p

∂x
(9.82)

is indeed independent of the impedance at the boundary. It can be used to
express the velocity in (9.81) in terms of the sound pressure. Differentiating
(9.82) with respect to x, one arrives at
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j

ω%

∂2p

∂x2
= −

(
jω

%c2
+

1
zh

)
p,

or simplified,
∂2p

∂x2
+
ω2

c2

(
1− j 1

z
%ckh

)
p = 0 . (9.83)

Equation (9.83) represents a one-dimensional wave equation for the sound
pressure. It provides a simplified representation of the propagation of the
lowest mode for ‘large’ impedances z and small duct dimensions h� λ. What
exactly is meant by ‘large z’ can principally be explained by the more exact
calculation presented in the next section.

The statements regarding duct attenuation contained in (9.83) are con-
firmed by the corresponding wave number kx, as it amounts to

kx = k

√
1− j

z
%ckh

. (9.84)

As already explained the damping is contained in the imaginary part of the
wave number kx = kr − jki (see (9.64) and (9.65)) and given by Dh = 8.7kih.

For the practical construction of wall structures, absorbent linings of
porous material in front of a rigid wall or a boundary lined with resonators
are commonly used. Several preliminary remarks on the effect of these three
possible impedance types are beneficial for the proceeding discussions of the
attenuation produced by these two constructions. In the case of the (nearly)
lossless resonator the impedance is always imaginary, with a negative imagi-
nary part in the stiffness-controlled region below the resonance frequency and
with a positive imaginary part in the mass- controlled region above the res-
onance frequency. For porous sheets with not too small of a flow resistance,
the impedance tends towards (positive) real values with increasing frequency.

First and foremost, either imaginary impedances with a positive or nega-
tive imaginary part or real impedances are essentially relevant in practice.

a) stiffness-controlled impedance z = −j|z|

For stiffness-controlled impedances, the wave number

kx = k

√
1 +

1
|z|
%c kh

(9.85)

is always real; the duct is undamped.
In the stiffness-controlled region, the wall lining is completely useless. From

a physical point of view it should be noted that the speed of sound cx in the
duct is reduced compared to the unbounded propagation. From kx = ω/cx it
follows that
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cx =
c√

1 + 1
|z|
%c kh

. (9.86)

A realization would be a (thin) layer of porous material which always acts like
a spring at low frequencies (see Sect. 6.5.2, p. 194)

z

%c
= − j

kd

(d: layer thickness). In that particular case, the propagation speed becomes

cx =
c√

1 + d
h

. (9.87)

b) mass-controlled impedance z = j|z|

Impedances with mass characteristics result in a duct wave number

kx = k

√
1− 1

|z|
%c kh

. (9.88)

The wall lining only causes duct attenuation if the argument of the square-root
is negative, i.e.

|z|
%c
kh < 1 . (9.89)

Basically, impedances with mass characteristics increase with increasing fre-
quency. Thus, a band limit is denoted by (9.89), where the duct attenuation
is non-zero only below it.

Averaged over time, no sound power penetrates the surface when the wall
impedance is imaginary. Attenuation is not achieved by extracting energy to
the wall. The working principle behind attenuation, similar to the case of ducts
with soft boundaries, is to generate a lowest mode incapable of propagation.

c) Real Impedances z = |z|

Real impedances at the duct wall result in a duct wave number

kx = k

√
1− j 1

|z|
%c kh

, (9.90)

which always leads to damping. Furthermore, if, instead of a ‘large impedance’

|z|
%c
kh > 1

is postulated, (9.90) can be approximated by
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kx ' k

(
1− j 1

2
1
|z|
%c kh

)
. (9.91)

Equation (9.91) correctly represents the transition to the rigid boundary with
increasing |z|; when |z|/%c increases the damping decreases. In contrast, it
cannot be deduced from (9.91) that for small |z|, one can obtain any arbitrary
Dh. The calculations leading to (9.91) explicitly required large impedances.

Based on the basic principles explained pertaining to the three types of
impedances the frequency characteristics of the attenuation can be estimated
for the purposes of practical constructions. As already mentioned, either ab-
sorbent linings with a rigid termination or linings using resonators can be
implemented in practice. Both will be discussed in the next section. Here, the
boundaries are fluid. The initially discussed porous layer moves into the realm
of a resonator at small flow resistance.

a) Boundaries with absorbent linings

The frequency characteristics of the impedance of a porous layer of thickness
d with a rigid termination

z

%c
= −j ka

k
cot(kad) (9.92)

with the wave number

ka = k

√
1− j Ξ

ω%

in the porous material were already discussed extensively in Sect. 6.5.2. To
recapitulate the facts presented there with respect to the duct attenuation
(see also Fig. 6.10, p. 194), we will provide some calculated samples given in
Figs. 9.19a,b,c, as seen in (9.84), where the flow resistance Ξd/%c and the layer
thickness d are varied. These serve as an illustration of the basic principles
introduced in the following.

As already mentioned, the wall impedance acts as a spring at low fre-
quencies d� λ, due to cot(kad) ≈ 1/kad it is z/%c− j/kd. Therefore, at low
frequencies, no duct attenuation is expected for a duct with an absorbent wall
lining, thus Dh ≈ 0 dB (see also Figs. 9.19a,b,c). The onset of the damping
effect begins when the impedance with d ≈ λ/4 crosses the real axis. As it
can be seen from Fig. 6.10, the impedance at this frequency point is small for
a small flow resistance Ξd/%c. For this reason, the duct attenuation has an
abrupt onset with high values for low Ξd/%c. In the limiting case Ξ = 0, it is
z = 0 and thus Dh = 13.5 dB. With increasing flow resistance the attenuation
decreases, as described in (9.91).

The additional frequency characteristics of Dh are easily discussed. One
octave above the first λ/4-resonance, the impedance takes on higher values
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Fig. 9.19. (a) Duct attenuation Dh of a duct lined with an absorbent layer d/h = 2.
The values at the curves specify Ξd/%c

Fig. 9.19. (b) Duct attenuation Dh of a duct lined with an absorbent layer d/h = 4.
The values at the curves specify Ξd/%c

for d ' λ/2, the smaller the flow resistance is (compare Fig. 6.10). The atten-
uation is smaller here, the smaller Ξd/%c is. As a rule of thumb, the frequency
characteristics of Dh are repeated after that. In it’s continued progression, the
impedance completes a circle, so that a ‘quasi-periodic’ structure is obtained,

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

9

10

h/λ

D
uc

t a
tte

nu
at

io
n 

D
h

[d
B

] 1

2

4 8

0 0.1 0.2 0.3 0.4 0.5
0

1

2

3

4

5

6

7

8

9

10

h/λ

D
uc

t a
tte

nu
at

io
n 

D
h

[d
B

]

1

2

4 8



296 9 Silencers

as is also shown in Figs. 9.19a,b,c. Although the large and narrow-banded
maximum values of Dh at the smallest flow resistance are not quite accurate
(they occur at low impedances, where (9.84) actually no longer holds), the
basic principle can be observed. Either a fairly high attenuation in a narrow
band (up to Dh ≈ 13.5 dB at points z = 0) can be achieved and one has to be
satisfied with smaller values of Dh outside of these bands; or one uses a com-
paratively small, but broadband attenuation Dh for medium flow resistances
Ξd/%c.

Fig. 9.19. (c) Duct attenuation Dh of a duct lined with an absorbent layer d/h = 8.
The values at the curves specify Ξd/%c

‘Comb filters’, realized by lightly damped resonators, are useless for broad-
band noises: it is not very useful to filter a small bandwidth of the signal and
let the ‘remaining bulk’ of it pass without any reduction. Applications using
lightly damped resonators only occur in some special cases where tonal noise
disturbances are present, which contain a single frequency component only.
The next section will discuss this possible case in more detail, where, for in-
stance, only the first tonal component of fan noise (e.g. in the ventilation of
subterranean garages) has to be reduced.

On the other hand, a lot of silencers have to meet the requirements of a
broad frequency band. Ventilation ducts of a concert hall, for example, have to
be free of external noise; also, silencers of vehicles (car mufflers, for example)
must be designed for broadband attenuation, due to the continuously altering
engine speed. In such cases a medium flow resistance with values ‘not too
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large and not too small’ has to be provided in the wall lining, which ranges
approximately in the interval 2 ≤ Ξd/%c ≤ 4.

This design criterion can slightly change if the wall linings are not formed
by one rigid wall and one impedance plane parallel to it. Some remarks on
arbitrary duct cross sections can be found at the end of this section.

b) Resonator linings

We will consider two methods of outfitting duct linings with resonators. One
way is to use an array of pipes, as shown in Fig. 9.20. For this, the pipe
elements must have the same length and be open at the side adjoining the duct
wall and be rigidly terminated at the other end. The resonance phenomenon
associated with the lowest resonance frequency occurs if the length of the pipe
segment is one-quarter the wavelength. This is why we will subsequently refer
to this structure as a λ/4 resonator.

Another method to do this is to isolate the aforementioned pipe elements
using mass linings m′′ on their open sides form the duct. This can mean
installing perforated plates (See the section on 6.5.4). This construction allows
for the tuning of lower resonance frequencies for the same duct length a. In
other words, mass linings can save installation space a for longer duct systems
which would otherwise have to be more widely constructed to provide the same
insulation for the same resonance frequency without a lining.

λ/4 Resonators

The wall impedance produced is given in the same way as in (9.92) by

z

%c
= −j cot(kd) (9.93)

where k now represents the wave number in air.
The characteristics of the attenuationDh in the limiting case of a small flow

resistance result from the previous section and have already been mentioned
there. These are narrow-banded characteristics with an effect at the resonance
ka = kRa = π/2 of the duct with the absorbent layer, where Dh = 13.7 dB.
The upper limit of the bandwidth kE can be deduced by (9.84) and (9.93)

kx = k

√
1 +

1
kh cot(kd)

= k

√
1 +

tan(kd)
kh

.

The upper band limit kE is reached, when the duct wavelength becomes real,
i.e.

tan kEd = −kEh = −h
d
kEd . (9.94)

The last conversion in (9.94) was done so that it would be more compatible
to a graphical solution to this so-called transcendental equation. As Fig. 9.21
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Fig. 9.20. Photograph of a duct wall lined with resonators which are realized by
rigidly terminated pipes of depth d

shows, kEd is given by the point of intersection between the tangent function
tan kEd and the straight line −h/d kEd. The smaller the gradient of the line
is (i.e., the ratio h/d), the farther the intersection located to the right and the
larger the bandwidth are. Naturally, the maximum bandwidth is at most an
octave wide due to kE = 2kR.

The straight line depicted as an example in Fig. 9.21 is given by h/d = 1.
The intersection can easily be seen in the graph at kEa/π ≈ 0.65 Thus, we
can determine the effective bandwidth by

fE
fR

=
kEa

kRa
=

0.65π
0.5π

≈ 1.3.

As a matter of fact, a suitable silencer for the case of a = h does not yet
exist, because the cut-on frequency of a soft-lined duct at the mode n = 0
corresponds to the resonance frequency of the pipe elements. That there has
yet to be any suitable solutions for a = h can also be verified by the maximum
damping Dmax in the resonance frequency, which can estimated based on
eq.(9.74) (with n = 0) as follows:

Dmax = 8.7kih = 8.7h

√( π
2h

)2

− k2 = 8.7

√
π2

4
− (kh)2 =

8.7

√
π2

4
− (ka)2

h2

a2
= 8.7

π

2

√
1− h2

a2
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Fig. 9.21. Graphical solution of the transcendental equation (9.94)

Fig. 9.22. Measured attenuation frequency characteristics according to the setup
in Fig. 9.20. Experiments by T. Kohrs

(due to ka=π/2 in the resonance frequency.) For h = a, the maximum damp-
ing is clearly Dmax=0. Once a = 2h, the highest possible damping (13.7 dB)
with Dmax = 11.9 dB has been attained.
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The attenuation Dh, measured in the experimental arrangement pictured
in Fig. 9.20, is shown in Fig. 9.22. It can be seen that the connecting line
representing a straight line between the ‘acoustically soft’ point at the reso-
nance frequency and the 0 dB-point at the upper band limit already results
in a useful approximation.

Outfitting duct linings with resonators is evidently useful only in the case
of small-banded noise interference. It does not work well for broad-banded
noise control. Noise control measures are accommodated by first determining
which frequency is to be reduced as well as the duct length a. The duct width
h is adjusted depending on the bandwidth needed (which can be deduced
by investigating the speed variation or temperature differences in summer
vs. winter). Since large installation spaces are required for low frequencies,
they are, in effect, undesirable. An example would be an installation space
of a = 85 cm which would be required for noise reduction at a resonance
frequency of 100Hz. The structures described in the next section are also
designed to save construction space.

Resonators with mass linings

Tuning the resonance frequency by means of pipe lengths smaller than a = λ/4
can be achieved by covering the pipe elements with a mass lining m′′ (see also
Sect. 6.5.4, p. 201). In that case

z

%c
kh = j

(
ωm′′

%c
− c

ωd

)
kh = j

(
ω2m′′d

%c2
− 1
)
h

d
= j

(
ω2

ω2
res

− 1
)
h

d

is given. In estimating the bandwidth, it can be assumed that the impedance
at the upper band limit is sufficiently large and that

kx = k

√
1− j 1

z
%ckh

= k

√√√√ 1− 1(
ω2

ω2
res
− 1
)
h
d

is given. The band limit ωE is then denoted by(
ω2

E

ω2
res

− 1
)
h

d
= 1

or by
ωE

ωres
=

√
d

h
+ 1 . (9.95)

To complete our discussion of ducts attenuated by wall linings, other duct
cross-sections will be treated (Fig. 9.23). When applying the mass conservation
principle to a small duct element of length ∆x, rather than (9.79), we arrive
at the general equation
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∂vx
∂x

+
U

S
vn = − jω

%c2
p. (9.96)

Here, S is the cross-sectional area of the duct and U is the circumference lined
with the impedance. If vn = p/z is inserted, one obtains

∂vx
∂x

= −
(
jω

%c2
+

1
zS/U

)
p . (9.97)

In eq.(9.81), zh is substituted for zS/U . This is the only change that has
been made, transforming eq.(9.84) to

kx = k

√
1− j

z
% ck

S
U

. (9.98)

All previous deliberations can be reworked the same way.
Thus, zh is replaced by zS/U , but apart from that, everything else stays

the same and all considerations made earlier are transferrable. Two cases men-
tioned earlier may serve as a double-check: the rigid surface and the surface
equipped with z, where S/U = h is obtained, using S = hl and U = l (l
is the lined transverse length). If linings are present on both surfaces with
U = 2l, we thus obtain S/U = h/2. It has the same effect as halving the
impedance. The attenuation is thereby approximately doubled. For a duct
with a double-sided soft lining, for instance, the maximum duct attenuation
becomes Dh,max ≈ 27 dB.

Fig. 9.23. Definition of the quantities in (9.97)

For circular cross-sections of radius b with a complete lining along the
circumference, it is S = πb2 and U = 2πb, thus S/U = b/2.

impedance z

circumferential
part  U

cross sect ion S

rigid circumferential part

vn
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Finally, it is worth mentioning that duct damping can be estimated by
the absorption coefficient of the duct lining, albeit in a largely simplified
form (defined only for normal sound incidence). In everyday practice, porous
sheets are generally used for duct linings. For higher frequencies and greater
drag resistance Ξd (d=sheet thickness), the corresponding wall impedance is
basically real (see the chapter on sound absorbers, particularly Figure 6.10
therein). In practice, one can apply eq.(9.91) and obtain

kx ' k

(
1− j 1

2
1

|z|
% ck

S
U

)
. (9.99)

For the level decrease along a given segment l lengthwise as in eq.(9.67),

Dl = 8, 7kil = 4, 35
l

|z|
%c k

S
U

. (9.100)

On the other hand, based on the matching law eq.(6.29), one arrives at

α =
4Re {z/% c}

[Re {z/% c}+ 1]2 + [Im {z/% c}]2
≈ 4Re {z/% c}

[Re {z/% c}+ 1]2
≈

4|z|/%c
(|z|/%c+ 1)2

≈ 4
|z|/%c

(9.101)

in the case of real impedances, if larger impedance ratios |z|/%c exist. The
’Piening formula’, named after its author, is derived from eq.(9.100) and
eq.(9.101):

Dl ≈ 1, 1
Ul

S
α (9.102)

This formula serves as an initial orientation for roughly estimating the ex-
pected effects of attenuators.

Exact calculation with arbitrary impedances

In nearly all practical applications, conducting approximations for the duct
attenuation discussed in the previous section is sufficiently precise. One either
strives for broadband attenuation and thus a wall impedance with a high
impedance, or one implements a narrow-banded but highly effective resonator
lining which starts with high and ‘soft’ attenuation at the resonance and then
rapidly decreases in the direction of the upper band limit. Since it might not
be enough to simply rely on approximations and since the following exact
calculation of the sound field between two parallel planes y = 0 (with v = 0)
and y = h (with the impedance z) is not very difficult, we will proceed to
discuss calculations with arbitrary impedances in the following.

The boundary condition ∂p/∂y = 0 for y = 0 requires the basic approach
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Fig. 9.24. Measured transmission loss (level difference between inlet and outlet
using an anechoic termination) of a circular silencer (inner diameter 50 mm) with
an absorbent lining of mineral wool (thickness 100 mm). Experiments by J. Feldmann

p = A cos(kyy)e−jkxx (9.103)

for the modes of the transverse distribution. The wave numbers ky follow from
the boundary condition in the z = h plane p(h) = zv(h)

cos(kyh) = −jkyz
ω%

sin kyh = −jkyh
z/%c

kh
sin kyh

or
− j(kyh) tan(kyh) =

kh

z/%c
. (9.104)

Equation (9.104) forms the so-called eigenvalue equation for sound propaga-
tion in ducts. The solutions to (9.104) indicate all appearing transverse wave
numbers ky. The resulting axial wave numbers kx are based on the wave
equation, which, for (9.103), requires

kxh =
√

(kh)2 − (kyh)2
. (9.105)

The modal wave properties are included in kx, in particular,

Dh = −8.7 Im{kxh} .

The special cases already dealt with need to be found in the eigenvalue equa-
tion. Indeed, for z → ∞ (9.104) tends to sin kyh = 0 and thus to kyh = nπ
(n = 0, 1, 2, . . .). This cross-check for z = 0, using cos kyh = 0, also results in
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the eigenvalues kyh = π/2 + nπ (n = 0, 1, 2, . . .) equal to the result derived
earlier.

These examples reveal some aspects about the basic principles included
in (9.104): this transcendental equation has not only one but many (infinite)
solutions. The propagation is generally described by a multitude of modes,
where the wave numbers are general solutions for (9.104). If the modal am-
plitudes are unknown, the duct attenuation is always calculated by the mode
with the smallest attenuation Dh which is called the ‘principal mode’.

The approximation already discussed in the previous section for the low-
est mode results from (9.104) also applies for a large impedance. Under the
assumption of |z/%c| � kh in (9.104) for the lowest mode, tan kyh ≈ kyh can
be approximated and

(kyh)2 = j
kh

z/%c

is obtained and thus

kxh =

√
(kh)2 − j kh

z/%c

results in the same way as in (9.84). The only case, sometimes relevant in
practice, but not yet dealt with here, are small imaginary impedances which
occur close to resonance, whenever the walls are lined with resonators. For
the lowest mode and |z/%c| � kh

kyh =
π

2
+∆

(|∆| � π/2) can be assumed. Equation (9.104) is then approximately given
by

−j
(π

2
+∆

) sin
(
π
2 +∆

)
cos
(
π
2 +∆

) ≈ j π2 +∆

sin∆
≈ j

π
2 +∆

∆
= j

(
1 +

π

2
1
∆

)
=

kh

z/%c
.

The last equation is solved for ∆,

∆ = −
π
2

1 + j kh
z/%c

and the transverse wave number ky finally results in

kyh =
π

2
+∆ ≈ π

2

j kh
z/%c

1 + j kh
z/%c

=
π

2
1

1− j z/%ckh

≈ π

2

(
1 + j

z/%c

kh

)
.

The last step incorporated 1/(1−x) ≈ 1+x for |x| � 1, resulting in the axial
wave number

kxh =

√
(kh)2 − π2

4

(
1 + j

z/%c

kh

)2

(9.106)
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or for sufficiently low frequencies kh� λ/2,

kxh ≈ −j
π

2

(
1 + j

z/%c

kh

)
=
π

2

(
z/%c

kh
− j
)
.

The duct attenuation is thus given by

Dh = −8.7 Im {kxh} = 13.5
[
1− Im

{
z/%c

kh

}]
. (9.107)

To derive (9.107) an approximation of the tangent around its pole is used,
which implies – as already mentioned – small impedance values. ‘Approxi-
mations close to poles’ are always very sensitive to small changes and thus
(9.107) quickly lose their validity with increasing impedance. In any case,
small absolute values assist in estimating the effect of different impedances.

Obviously, the duct attenuation decreases with increasing (small) mass-
like impedance z = j|z|. In contrast, Dh increases with increasing (small)
spring-like impedance and can obviously be larger than Dh = 13.5 dB (as in
the sound field with z = 0).

On the other hand, no duct attenuation at all (Dh = 0) can be expected
for a larger stiffness impedance. Dh must therefore increase up to a maximum
value for an increasing magnitude of the stiffness impedance and subsequently
decrease rapidly and tend toward zero. Obviously, an optimum impedance
Dh,opt exists in the stiffness region of the impedance.

The question regarding the optimum impedance can simply be answered
using a graphical representation of the eigenvalue equation

− jw tanw = β (9.108)

which is first briefly discussed in general.
For simplicity, w = kyh and β = kh/(z/%c) was defined in (9.104). Equa-

tion (9.108) describes a transcendental equation, where β is given and solu-
tions of w are needed. The easiest way to find these solutions is often a table of
the complex function F (w) = −jw tan(w), which can be computer-generated
fairly easily. A matrix of complex function values F can be calculated, for in-
stance, where the imaginary part of w = wr + jwi is kept constant in one row,
while the real part wr is systematically varied with the column number. In this
way, we obtain a table description of F (w), where the rows yield the function
values for wi = const., and the columns for wr = const. For a given value of β
finding F (w) = β in the table would result in the solution to the eigenvalue
equation. It is, by the way, recommended to actually use this technique in a
numerical program.

The properties of the matrix can also be represented graphically. The
complex values of F (w), for example, which are obtained by wi = const. and
a variable wr in one row of the matrix, can be connected by a line in the
graph. Thus, lines wi = const. are obtained in the complex plane which are
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Fig. 9.25. Lines wi = const.

plotted in Fig. 9.25. Along one line, wi = const., wr is varied, increasing in the
arrow direction in the range 0 ≤ wr ≤ π (the end of the curve wr = π may be
outside of the depicted plot range). The curves wi = const. can intersect with
each other: this only means that the eigenvalue equation (9.108) has several
solutions. If a larger interval of wr than the one used here were to be specified,
the complex plane would be crossed multiple times.

The graphical representation of F (w) must also enable the determination
of the solution to the problem of the optimum impedance. It is firstly stated
that due to

kxh =
√

(kh)2 − w2 ≈ −jw = wi − jwr

(for kh� |w|) the real part wr of the solution w dominates the duct attenu-
ation which is approximately given by

Dh ≈ 8.7wr .

As already mentioned, the curves wi = const. intersect each other. The inter-
section denotes two modes w = w1 = wr1 + jwi and w = w2 = wr2 + jwi with
different attenuations for the corresponding value of β. Yet, w1 is the value of
w, where the curve passes the point of intersection in the arrow direction for
the first time, w2 is the value, where the curve passes the point of intersection
for the second time. Thus, wr1 < wr2 is given. The duct attenuation Dh is
always calculated using the mode with the lowest attenuation which is thus
given by Dh ≈ 8.7wr1.

If the development of the array of curves wi = const. is pursued for in-
creasing wi, it can be observed that the ‘loop’, which is carried by the curves
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as they return to the point of intersection, becomes increasingly narrower.
With increasing wi, wr1 also increases, while wr2 decreases simultaneously.
Finally the loop collapses to a point. The latter is called the winding point,
where w1 = w2 is given and both w-values fall together. The winding point
yields the maximum possible duct attenuation Dh,opt: surely, wr1 can increase
further, but simultaneously wr2 must drop below the optimum value and the
smallest possible attenuation would thus decrease.

The winding point w1 = w2 obviously represents two zeros of

G(w) = β + jw tanw . (9.109)

In Fig. 9.25,

βopt ≈
kh

zopt/%c
= 2 + j 1.6 (9.110)

can be approximated as the winding point. Thus, the optimum impedance
becomes

zopt

%c
' h

λ
(1.9− j 1.5) , (9.111)

which is given by a small stiffness impedance with an additional real part of
about the same value.

The resulting maximum attenuation Dh,opt for z = zopt can not be simply
looked up in Fig. 9.25 without further action. The maximum attenuation is
wr,opt = 2.1, leading to the obvious conclusion Dh,opt = 8.7wr,opt = 18.3 dB.

As mentioned, the condition for the two zeros of (9.109) can be found in
the winding point. As in a real equation, this is the case if

G(w) = 0 (9.112)

and
dG (w)

dw
= 0 (9.113)

are met. After applying some elementary algebra, (9.113) leads to

sin 2w = 2w . (9.114)

The solution of (9.114) can now be easily solved numerically. It is given to the
third digit of accuracy as

wopt = 2.19 + j1.12, (9.115)

which results in the optimum attenuation Dh,opt = 19.1 dB.
The question of the maximum possible value is always interesting from

a scientific point of view. In practice, the discussed optimum impedance is
entirely meaningless. It could only be realized in a narrow band close to the
resonance of a resonator.

In conclusion, an additional remark should be made as to the numeri-
cal solution to the eigenvalue function (9.108), which will not prove to be
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too difficult. Solving functions that contain poles using numerical methods is
cumbersome. To avoid this problem, we transform the eigenvalue function to

H(w) = jw sinw + β cosw = 0. (9.116)

This function can be examined for its roots and be easily programmed. It
is sufficient to examine a narrow band of about 0 < wi < 5 above the real axis.
This band must contain all the roots and the higher modes, because beyond
the band for larger values of wi, j sinw = − cosw holds. It is enough to base
the numerical root findings simply on the rms-value |H(w)|.

9.3 Summary

Duct silencers work based on the principles of reflection and absorption. Pure
reflection silencers are abrupt changes in cross-section, bifurcations and cham-
ber insertion (as in mufflers). If there are imaginary wall impedances, pure
reflectors can also be constructed by lined silencers.

Generally, that high insertion losses in a narrow band, or, alternatively,
smaller ones in a broader frequency band, are apparently obtained with the
same amount of effort. Some examples of narrow-band silencers are ducts
with periodically changing cross-sections along the length at a small hub,
which it becomes wider or narrower, the wall lining with slightly attenuated
resonators, and the optimal lining impedance occurring only at a single fre-
quency point. Wide-band but smaller damping effects Dh are obtained at
boundary impedances from absorbent linings with about Ξd/%c = 4. There-
fore, significant level reductions can only be achieved with proper silencer
length.

9.4 Further reading

F.P. Mechel dedicated an important part of his work ‘Schallabsorber’ to the
subject of absorbent and reactive duct linings.

9.5 Practice exercises

Problem 1

A cylindrical chamber silencer with circular terminations (without absorbent
linings) is to be used to produce a minimum insertion loss of 7 dB between
200Hz and 600Hz. What dimensions does the pot have to have (diameter
and length) if it is to be inserted in a pipe that is 5 cm in diameter? What is
the lowest cut-on frequency of the pot?
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Problem 2

The low-frequency attenuation Da of a duct with a square cross-section and
length a along the edges, which has an impedance % c (2% c) along the entire
girth, has been determined. What is the attenuation Db for a circular cross-
section with a radius b?

Problem 3

The wall of a silencer has been outfitted on one side with non-damped res-
onators to reduce network noise (at a frequency of 50Hz). The depth of the
resonator is 50 cm (1m). What mass lining is required for it?

Problem 4

Suppose a network frequency shifts around 50Hz by 5Hz, either to 55Hz
or 45Hz. How would the wall impedance defined in Problem 2 change? How
would these changes affect the duct attenuation? How great is the maximum
possible duct attenuation? For this problem, assume that the duct cross-
section measures h = 0, 25m.
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Noise barriers

Everyone recalls their own experience at attempting to do away with inter-
fering noise by trying to put a barrier between the source and one’s ear. One
tries to escape a pneumatic hammer or a lawn mower behind the next house.
Wenn hiking in a quite forest, for example, one quickly takes another path
over the next hill, whenever a lumberjack is heard cutting into the stillness
with his chain saw.

Likewise, everyone knows how fruitless such attempts to escape noise can
be. Although the source is screened by large objects, the noise still gets around
to the ear more or less attenuated. Obviously, the sound diffracts around the
barrier and thus deviates from the straight propagation. The physical effect
is therefore called ‘diffraction’.

In our noisy environment. is a a major question as to how acoustic screens
(buildings, walls, dams. . . ), either already existing or to be newly constructed,
can be used to prevent noise impact (and thereby, protect one’s long-term
health) and what level of reduction can be achieved. In Germany alone, the
length of noise barriers along roads and railway tracks adds up to thousands
of kilometers. How effective they are and what level reductions they provide
are certainly typical problems which belong to the basic subjects of engineer-
ing acoustics. For this reason dealt with in this chapter. However, not all
phenomena of diffraction can be discussed here.

One aspect of diffraction not discussed here, for instance, is dependent on
the shape of the barrier, an effect not discussed here. The following will con-
centrate on the basic principles by discussing the most simple arrangements
like the diffraction at the rigid, semi-infinite screen, onto which a plane wave
impinges obliquely (Fig. 10.1). The problem of diffraction was discussed in the
context of light about 100 years ago by Sommerfeld in his book ”‘Lectures
on Theoretical Physics”’ (Sommerfeld, A.: ”Lectures on Theoretical Physics”,
Akademische Verlagsgesellschaft, Leipzig 1964). The quantitative examination
of diffraction phenomena is relatively new, compared to the great physical dis-
coveries in this century, such as exemplified by the work of Albert Einstein.
Until recently, the topic has not necessarily been fully integrated into the
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foundations course for acoustical engineering, perhaps partly because much
of this topic can be comprehensibly and easily expressed using equations, as
the following sections show.

10.1 Diffraction by a rigid screen

The model arrangement which underscores the following discussions is intro-
duced in Figure 10.1. The model consists of a volume line source at a distance
of a in front of the end of a semi-infinite screen which simultaneously con-
stitutes the origin of the coordinate system. The coordinates of the circular
cylinder are used here, the angle ϕ mathematically counts as positive in re-
lation to the upper side of the arbitrarily thin acoustic screen. The angle ϕ
only spans the interval 0 ≤ ϕ ≤ 360◦; values outside of the defined interval
are excluded.

Fig. 10.1. Geometrical quantities at the edge of the rigid screen. Diffraction angle
β = ϕ− π − ϕ0
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The location of the source is defined by the angle ϕ0. Let us proceed to
discuss the two-dimensional case. There are no changes along the axis normal
to the plotting plane (∂/∂z = 0). The area within the cylinder with radius a
is defined as ’subspace 1’. The area beyond the radius of the cylinder r > a is
defined as ’subspace 2’.

The wave equation for the sound pressure takes on the following structure
in the cylinder coordinate system:

r2 ∂
2p

∂r2
+ r

∂p

∂r
+
∂2p

∂ϕ2
+ k2r2p = 0 (10.1)

(k = ω/c = 2π/λ = wave number of free waves). The wave equation for
the cylindrical coordinate system can be found in numerous mathematical
reference resources.

The solution functions in the direction of ϕ are now applied to create
standing waves propagating in the circumferential direction, so that the con-
straints on the screen’s upper and lower edges (∂p/∂ϕ = 0 for ϕ = 0 and
for ϕ = 360◦) are fulfilled. Obviously, all possible ϕ dependencies must be
accounted for by

p ∼ R(r) cos (nϕ/2) (10.2)

(n=0,1,2,3,..), because it is precisely these cosine gradients which fulfill the
required parameters for the upper and lower edge of the rigid screen. This
simplifies the wave equation to the general differential equation

r2 ∂
2R

∂r2
+ r

∂R

∂r
+ (k2r2 − (n/2)2)R = 0 . (10.3)

The solutions to these so-called Bessel differentials are made up of the Bessel
functions Jn/2(kr) and the Neumann functions Nn/2(kr), with partial-number
orders of n/2. For the first ten orders n, the functions are shown in the Figures
10.2 and 10.3. The functions are listed in a table and also appear as a standard
routine in MATLAB.

The figures depict the overall sine functions with gradually decreasing am-
plitudes. This characteristic can also be seen in the following approximations
for large arguments x:

Jn/2(x) '
√

2
πx

cos (x− nπ/4− π/4) (10.4)

and

Nn/2(x) '
√

2
πx

sin (x− nπ/4− π/4) (10.5)

It is plain to see that progressive waves are made up of sums of Bessel and
Neumann functions. The so-called Hankel functions of the first and second
type are defined as both
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H
(1)
n/2(x) = Jn/2(x) + jNn/2(x) (10.6)

Fig. 10.2. Bessel functions Jn/2(x)

Fig. 10.3. Neumann functions Nn/2(x)
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and
H

(2)
n/2(x) = Jn/2(x)− jNn/2(x) . (10.7)

Obviously, the first type of Hankel function basically describes waves travelling
inward in a coordinate system in the direction of −r and the second type of
Hankel function describes a wave travelling outward in the direction of +r.

An important difference between Neumann and Bessel functions is the fact
that the former has poles in x = 0 , which behave like ln(x) for n = 0, and
otherwise like x−n/2. On the other hand, the Bessel functions contain finite
values (J0(0) = 1, Jn/2(0) = 0).

Now we must outline several theoretical projections regarding the sound
pressure for the subspaces shown in Figure 10.1.

Subspace 1

In subspace 1 between the wall’s edge and the circle with the radius a where
the source is located, the pressure cannot grow without bound at the barrier’s
edge. On the contrary, the sound field must have finite values everywhere
(except for at the source itself). For this reason, we cannot use the Neumann
functions for our ansatz here. Instead, for subspace 1 we use the ansatz

p1 =
∞∑
n=0

an/2Jn/2(kr) cos (nϕ/2) (10.8)

Here, the dimensions an/2 are unknown coefficients which are yet to be defined
based on the constraints of the separation plane between the subspaces and
the source.

Subspace 2

The wave field in subspace 2 can only consist of waves travelling in the direc-
tion of +r. It is impossible for infinity to deflect a sound field. Since no other
reflectors are present, isolated standing waves cannot occur either. Therefore,
the ansatz below must be formulated for subspace 2:

p2 =
∞∑
n=0

bn/2H
(2)
n/2(kr) cos (nϕ/2) (10.9)

As mentioned before, the coefficients an/2 and bn/2 must now be derived
from the constraints on the circle with the radius. To this end, the circle is
circumnavigated one time inside r = a in subspace 1 in the r = a−ε direction
and one time outside of r = a in subspace 2 in the r = a+ ε directions (each
time with a very small ε → 0). In so doing, the same pressures result at the
same location ϕ, precisely at ϕ = ϕ0. Indeed, the sound field can grow very
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large at this juncture, but because the assumed omnidirectional sound source
produces equal sound pressure at both sides, the pressures p1(a − ε, ϕ0) and
p2(a + ε, ϕ0) are equal, regardless of how large they actually are. In sum,
without any constraints,

p1(a, φ) = p2(a, φ) (10.10)

holds. Even for the r-unidirectional sound velocity vr, the same values must
be present at every location ϕ on both circles, therefore vr1 = vr2. The
exception to this, of course, is the location of the source, which produces
equally large sound velocities at both sides in opposite directions. This fact
leads us to the conclusion, that for an arbitrarily small point source at any
distance to the source on both circles, both sound velocities at the location
of the source differ by an infinitely large amount. The difference function
vr2−vr1 is therefore equal to zero everywhere, except for the location ϕ = ϕ0.
In ϕ = ϕ0 the difference function is infinitely large. Such a function, which
is zero everywhere but infinite at a single point is known as the Dirac delta
function δ(ϕ− ϕ0). Therefore, we can say that

vr1(a, ϕ)− vr2(a, ϕ) = Q0δ(ϕ− ϕ0) . (10.11)

Here, Q0 signifies a source dimension whose meaning will be elaborated in the
following sections.

We only need some basic calculations to find the coefficients an/2 and bn/2
based on the constraints eq.(10.10) and eq.(10.11). The simplest approach
is perhaps to use the constraint of equal pressures in r = a to reformulate
the equations. This constraint is already fulfilled by the newly formulated
equations

p1 =
∞∑
n=0

dn/2Jn/2(kr)H(2)
n/2(ka) cos (nϕ/2) (10.12)

and

p2 =
∞∑
n=0

dn/2H
(2)
n/2(kr)Jn/2(ka) cos (nϕ/2). (10.13)

The difference function vr1(a, ϕ)− vr2(a, ϕ), resulting from the restructuring
based on vr = j/(ω%) ∂p/∂r, becomes

j

%c

∞∑
n=0

dn/2[H(2)
n/2(ka)J ′n/2(ka)−H ′(2)

n/2(ka)Jn/2(ka)] cos (nϕ/2) = Q0δ(ϕ−ϕ0).

(10.14)
′ denotes the derivative according to the argument (that is, ∂/∂kr). The brack-
ets can be simplified

[H(2)
n/2J

′
n/2 −H

′(2)
n/2Jn/2] = j[Jn/2N ′n/2 − J

′
n/2Nn/2] =

2j
πka

(10.15)

(in the last step, an addition theorem for Bessel and Neumann functions
was used. For more information, refer to Taschenbuch der Mathematik, z.B.
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Abramowitz, M. (Hrsg.); Stegun, I. A.(Hrsg.): ’Handbook of Mathematical
Functions’, 9th Dover Printing, New York 1972). Finally, this gives us

∞∑
n=0

dn/2 cos (nϕ/2) = −πkaQ0

2
δ(ϕ− ϕ0) (10.16)

as the resulting conditional equation for the coefficients dn/2. This can be
solved easily, as shown in the following using a specific unknown dm/2. To
do this, both sides are multiplied by cos (mϕ/2) and then integrated over the
interval 0 < ϕ < 2π. This leaves us with the integrals on the left-hand side

2π∫
0

cos (nϕ/2) cos (mϕ/2)dϕ .

such integrals are always equal to zero, except for the case n = m, where

2π∫
0

cos2 (mϕ/2)dϕ =

{
π, m 6= 0
2π, m = 0

applies. This leaves us only with the summand from the sum in eq.(10.16)
with n = m, which is

dm/2 = −kaQ0

2εm
cos (mϕ0/2) , (10.17)

and abbreviating,

εm =

{
1, m 6= 0
2, m = 0

.

Eq.(10.17) applies to any coefficient dm/2 and thereby for every index m.
Eq(10.17) therefore contains all coefficients dm/2.

Thereby, the sound field in the entire room can be described by both

p1 = −kaQ0

2

∞∑
n=0

1
εn
Jn/2(kr)H(2)

n/2(ka) cos (nϕ/2) cos (nϕ0/2) (10.18)

and

p2 = −kaQ0

2

∞∑
n=0

1
εn
H

(2)
n/2(kr)Jn/2(ka) cos (nϕ/2) cos (nϕ0/2). (10.19)

First, the source size Q0 has to be considered. This is most easily done by
examining a special case scenario by rotating the source at the angle of ϕ0 =
180◦. The rigid screen now turns its side of zero thickness toward the source,
making the screen acoustically invisible from the standpoint of the source.
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The sound field is therefore distributed in such as a way as if no rigid screen
even existed, creating a special-case scenario where the source’s undisturbed
sound field exists ”in the open air”. The best way to describe the source is,
of course, by the sound pressure the sound field creates at a distance a from
the source. This pressure is located at the origin of the coordinate system and
will henceforth be referred to as pQ(0). This should make clear that pQ(0)
only stands for the source pressure that exists in the origin. Since only the
zero-order Bessel function affects the sum for p1 based on Jn/2(0) = 0 for
n > 0, with J0(0) = 1,

−kaQ0

4
H

(2)
0 (ka) = pQ(0)

applies. The results are then applied to eq.(10.18) and eq.(10.19). The local
sound pressure distribution is therefore

p1 = pQ(0)
∞∑
n=0

2
εn
Jn/2(kr)

H
(2)
n/2(ka)

H
(2)
0 (ka)

cos (nϕ/2) cos (nϕ0/2) (10.20)

and

p2 = pQ(0)
∞∑
n=0

2
εn
Jn/2(ka)

H
(2)
n/2(kr)

H
(2)
0 (ka)

cos (nϕ/2) cos (nϕ0/2) . (10.21)

Although these equations are certainly sufficient to describe the sound
field, they are quite complex and can, in any case, be proved using computer
programs. The following step-by-step simplifications are intended to aid in
the understanding of the statements these equations make.

An initial examination should be based on the extreme case of a far-away
sound source. The sound incident should simply be regarded as a plane pro-
gressive wave impinging at an oblique incidence angle ϕ0. The approximations
made by equations(10.4) and (10.5) result in the following for the Hankel func-
tion of the second order:

H
(2)
n/2(x) '

√
2
πx
e−j(x−nπ/4−π/4) (10.22)

transforming (10.20) into

p(r, ϕ) = p1 = pQ(0)
∞∑
n=0

2ejnπ/4

εn
Jn/2(kr) cos (nϕ/2) cos (nϕ0/2) (10.23)

The application of eq.(10.23) becomes more exact with ever increasing dis-
tance to the source. Given the outlying case, where the source is at an infinite
distance and only a plane wave is present, this approximation then becomes
the correct and exact solution. The subspace 2 has now expanded without
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bound into infinity and has therefore become irrelevant. p1 is now replaced
by p in the eq.(10.23), which indicates the sound field in the entire room. We
will use this abbreviation hereafter.

We can now express the sound pressure in simpler terms, due to the fact
that a seemingly unimportant parameter (the distance to the source) has
been eliminated. However, this mathematical model still does not produce
self-evident and comprehensible results. Moreover, the convergence of the se-
ries to the right is primarily dependent on the distance defined r. Precisely
at the large distances useful for calculations in practice (such as residential
areas near streets with noise barriers), the numerical calculations become ex-
tremely complicated because the Bessel functions of increasing orders only
become negligible (small) when the order becomes larger than the argument
kr. This is reason enough to consult the reference tables in the relevant refer-
ence resources for other ways to describe the problem. In fact, other options
for expressing the right-hand expansion term by way of so-called Fresnel in-
tegrals are explored in the highly-recommended work of authors Gradshteyn,
Ryzhik: Table of Integrals, Series and Products (Academic Press, New York
1965), on page 973, Nr. 8.511.5. Ultimately, using the equations given in this
reference is up to the reader. After performing simple calculations, we obtain

p (r, ϕ) = pQ (0)
1 + j

2

{
ejk0r cos(ϕ−ϕ0)φ+ + ejk0r cos(ϕ+ϕ0)φ−

}
, (10.24)

whereby

φ+ =
1− j

2
+ C

(√
2k0r cos

ϕ− ϕ0

2

)
− jS

(√
2k0r cos

ϕ− ϕ0

2

)
(10.25)

and

φ− =
1− j

2
+ C

(√
2k0r cos

ϕ+ ϕ0

2

)
− jS

(√
2k0r cos

ϕ+ ϕ0

2

)
(10.26)

are used for a better representation of the sound pressure. The functions which
are defined herein are defined by

C (x) =

√
2
π

x∫
0

cos
(
t2
)
dt (10.27)

and

S (x) =

√
2
π

x∫
0

sin
(
t2
)
dt (10.28)

These are known as Fresnel integrals. Their characteristics are shown in
Fig. 10.4 (the code of a MATLAB program for the calculation of C and S is
printed in the appendix of this chapter for the use in the public domain).
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Fig. 10.4. Fresnel integrals S(x) and C(x)

Representing sound pressure using Fresnel integrals has some advantages
over the Bessel series expansion in eq.(10.23). The Fresnel integrals are not
only simply to program (see the appendix to this chapter), but they can
also be quite accurately approximated for the more practically relevant large
distances r. Namely, they enable a direct and immediate assessment of sound
fields.

Obviously, C and S are functions which, for increasing argument, alternate
around 1/2 with decreasing amplitude and thus approximations for the Fresnel
integrals for x� 1 exist as

C (x) ' 1
2

+
1√
2πx

sin
(
x2
)

(10.29)

S (x) ' 1
2
− 1√

2πx
cos
(
x2
)
. (10.30)

For negative arguments, the symmetry following from the definitions (10.27)
and (10.28)

C (−x) = −C (x) (10.31)
S (−x) = −S (x) (10.32)

can be observed.
It should be explicitly stated that the permissible range for the circum-

ferential angle in (10.24) to (10.28) is restricted to 0 < ϕ < 2π. Angle values
outside of this interval, especially negative values, are excluded. They produce
errors in the results during the analysis. For the incidence angle ϕ0, positive
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values are also assumed. In (10.24), pQ(0) is understood as the sound pres-
sure, which the incident plane wave would produce without the screen (in the
free-field) at the coordinate origin r = 0 (see also (10.33)).

The incident wave is described by

pein = pQ (0) ejk(x cosϕ0+y sinϕ0) ,

or, with x = rcosϕ and y = rsinϕ for the coordinate systems (x, y) and (r, ϕ),
and due to cosϕ bycosϕ0 + sinϕ sinϕ0 = cos(ϕ− ϕ0),

pein = pQ (0) ejkr cos(ϕ−ϕ0) . (10.33)

Since the amplitude of a plane wave is spatially independent and is equal
to pQ(0) everywhere, the insertion loss of the semi-infinite screen is given by

RE = −10 lg
∣∣∣∣p (r, ϕ)
pQ (0)

∣∣∣∣ . (10.34)

The insertion loss can, of course, be different at different positions.
Instead of the mathematical proof by an exact calculation – which is ex-

tensive and honestly, a bit lengthy and dry – the results will be represented
graphically in order to at least deliver some plausibility. For that reason, we
calculate the displacement of the field points in the elastic continuum, which
consists of gas, instead, as in

ξx =
1
%ω2

∂p

∂x
; ξy =

1
%ω2

∂p

∂y
(10.35)

and drawn in a field pattern of points (Fig. 10.5 to 10.7). The deriva-
tives can be replaced approximately by difference quotients, for instance,
dp/dx ≈ (p(x + ∆x) − p(x))/∆x (∆x = λ/100 was used in the figures, a
choice which is also useful otherwise), where each p is calculated accord-
ing to (10.24). The resulting pattern of motion can be easily interpreted:
’too high density’ of points (compared to the equidistant pattern ‘without
sound’) indicates sound density and sound pressure above (or for ‘low den-
sity’, below) the atmospheric quantities, the distance between two areas of
high (low) compression indicates the wavelength. The sound field in Fig. 10.5
to 10.7 is shown for a constant (frozen) time; multiple snapshots (e.g. for
t/T = 0; 1/50; 2/50; . . . , 49/50, where T is the time period) in a series would
result in an animation which would document the time history of the wave
propagation.

The snapshot of the sound field produced in this way (Figures10.5 to 10.7)
show reasonable tendencies. Aside from the fact that this obviously deals with
waves occurring everywhere,

• the boundary conditions on both sides of the rigid screen are fulfilled,
• the reflection on top of the screen can be observed with resulting standing

waves in the area ϕ < π − ϕ0,
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• the total sound field in the ‘light zone’ consists of the undisturbed by-
passing incident plane wave and, finally,

• the diffracted wave expected in the shadow region can be observed.

Fig. 10.5. Particle motion in the sound field in front of semi-infinite screen, inci-
dence angle ϕ0 = 90◦

Fig. 10.6. Particle motion in the sound field in front of semi-infinite screen, inci-
dence angle ϕ0 = 60◦
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Fig. 10.7. Particle motion in the sound field in front of semi-infinite screen, inci-
dence angle ϕ0 = 45◦

Fig. 10.8. Color-coded depiction of insertion loss, incidence angle ϕ0 = 90◦

It can be said in terms of the shadow region that the visible dynamic of
this type of representation in particle motion snapshots as shown in Figures
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10.5 to 10.7 encompasses approximately 10 dB, which is why the insertion
losses of RE > 10 dB are not able to be adequately depicted this way. A
more ’readable’ diagram more accurately reflecting the insertion loss can be
seen in Figure 10.8, which provides a color-coded schema of the insertion loss
(whereby the coordinate system is simultaneously rotated so that the barrier
– shown here in pink – is ’upright’ and the sound incidence is impinging from
the left.)

As mentioned previously, one of the advantages of representing the sound
field using eq.(10.24) is the rather simple treatment of its approximation. This
discussion is not only to explore the primary subject of interest – shadow
region – but we will also examine the reflection domain, or ’light zone,’ and
finally, the shadow border, so that we can verify the result. The spatial zones
of interest here are shown in Figure 10.9. Since the area surrounding the edge
of the screen r ≈ 0 is of little interest, the parameter kr >> 1 applies to the
discussion which follows.

Fig. 10.9. (b) Assignment of the zones

The principal characteristics of the quantities φ+ and φ− are determined
by the sign of the argument in the corresponding Fresnel integral; they al-
ternate around the value 1/2 for positive arguments and around −1/2 for
negative arguments (see (10.31) and (10.32)).

If the argument of the Fresnel integral is denoted by u, which means u =√
2k0r cos(ϕ − ϕ0)/2 for φ+ and u =

√
2k0r cos(ϕ + ϕ0)/2 for φ−, it follows

from (10.29) to (10.32) that

φ ≈ 1− j for u > 0 and |u| � 1 (10.36a)
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φ ≈ je−ju
2

√
2π |u|

for u < 0 and |u| � 1 . (10.36a)

Using the simplifications mentioned in (10.36) and (10.36), the principal char-
acteristics of the sound field in the zones of interest are easily discussed.

a) Reflection zone

The reflection zone is characterized by

ϕ < π − ϕ0 .

Inside of it
ϕ− ϕ0

2
<
π

2
− ϕ0

and
ϕ+ ϕ0

2
<
π

2
are given. It follows that

cos
ϕ− ϕ0

2
> 0

and
cos

ϕ+ ϕ0

2
> 0 .

Hence, both arguments of the occurring Fresnel integrals are positive. The
approximation for φ+ as well as φ− is thus given by (10.36). Therefore, in the
reflection zone, according to (10.24) and using (1− j)(1 + j) = 2,

p (r, ϕ) ≈ pQ (0)
{

ejk0r cos(ϕ−ϕ0) + ejk0r cos(ϕ+ϕ0)
}

(10.37)

applies. The first term describes the incident field (see (10.33)), the second
term describes the field reflected at ϕ = 0.

b) Light zone

The ‘light zone’ describes the region in space, where the undisturbed incident
wave is an expected result occurrence. Here, it is

π − ϕ0 < ϕ < π + ϕ0,

and therefore
π

2
− ϕ0 <

ϕ− ϕ0

2
<
π

2
and

π

2
<
ϕ+ ϕ0

2
<
π

2
+ ϕ0 .
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For this reason
cos

ϕ− ϕ0

2
> 0

and
cos

ϕ+ ϕ0

2
< 0

are given. It is therefore φ+ ≈ 1− j, under the assumption of large distances
k0r � 1. In contrast, φ− is small according to (10.36) and can be neglected
in comparison to φ+. Consequently, the total sound field according to (10.24)
correctly consists of the incident wave alone

p (r, ϕ) = pQ (0) ejk0r cos(ϕ−ϕ0) .

The discussions in the reflection and light zone served more as a cross-
check of the equations derived earlier. The following discussion specifies the
benefit which can be expected by a screen.

c) Shadow border

Along the shadow border given by

ϕ = π + ϕ0 ,

which can also be written as
ϕ− ϕ0

2
=
π

2
,

it is
ϕ+ ϕ0

2
=
π

2
+ ϕ0 .

The argument of the Fresnel integrals for φ+ is likewise zero, due to cos(ϕ−
ϕ0)/2 = 0 and, using S = C = 0,

φ+ =
1− j

2
.

The argument of the Fresnel integrals for φ− is negative because of

cos
ϕ+ ϕ0

2
< 0 .

According to (10.36), φ− can again be neglected in comparison to φ+ and

p (r, ϕ) = pQ (0)
1
2

e−jk0r (10.38)

is obtained. Hence, at larger distances from the screen’s edge, half the sound
field incidence is obtained along the shadow border. This interesting fact could
be interpreted as the distant source being ‘half covered by the screen’, similar
to what happens during a sunset, when only half the sun is visible. With
increasing distance, the insertion loss along the shadow border tends to

RE = 6 dB . (10.39)
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d) Shadow region

In the shadow region, given by

ϕ > ϕ0 + π,

it is likewise
ϕ− ϕ0

2
>
π

2
and

ϕ+ ϕ0

2
>
π

2
+ ϕ0 .

In this case, the arguments of all Fresnel integrals are negative and, according
to (10.36),

φ+ ≈
je−j2k0r cos2

ϕ−ϕ0
2

√
2π
∣∣∣√2k0r cos (ϕ−ϕ0)

2

∣∣∣
and

φ− ≈
je−j2k0r cos2

ϕ+ϕ0
2

√
2π
∣∣∣√2k0r cos (ϕ+ϕ0)

2

∣∣∣
are given. Consequently, the sound pressure is given by

p = pQ (0)
j − 1
2
√

2π
e−jk0r√

2k0r

 1∣∣∣cos (ϕ−ϕ0)
2

∣∣∣ +
1∣∣∣cos (ϕ+ϕ0)

2

∣∣∣
 , (10.40)

(where cos(α) − 2 cos2(α/2) = cos(α) − (1 + cos(α)) = −1 was used in the
arguments of the exponential functions).

In discussing the shadow region, it becomes clear that the distance of a
point to the shadow border ϕ = ϕ0+π is crucial. For that reason, we introduce
what is termed the diffraction angle β. It simply counts relative to the shadow
border and is given by

ϕ = π + ϕ0 + β .

The two angle-dependent expressions in (10.40) become∣∣∣∣cos
ϕ− ϕ0

2

∣∣∣∣ = sin
β

2

and ∣∣∣∣cos
ϕ+ ϕ0

2

∣∣∣∣ = sin
(
β

2
+ ϕ0

)
.

Note, that for small diffraction angles, the approximations derived for the
shadow region are not valid (see the remarks on the shadow border above),
therefore, we assume ‘medium to large’ diffraction angles. For the angular
ranges of 30◦ < β < 120◦ and 0◦ < ϕ0 < 90◦, sin(β/2 + ϕ0) differs only
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slightly from sin(β/2). The second term in (10.40) can thus be approximated
by the first:

p ≈ pQ (0)
(j − 1)√

2π
e−jk0r

√
2k0r sin β

2

(10.41)

The insertion loss is then given by

RE = 10 lg
∣∣∣∣pQ(0)

v

∣∣∣∣2 ≈ 10 lg
(

4π2r sin2 β

2

)
. (10.42)

The term 2r sin2(β/2) can be interpreted geometrically. It is equal to the
difference U between the path which a sound ray takes from the distant source
to the field point, ‘bending’ over the screen edge, versus the ‘direct’ path of
the sound ray to the field point in the absence of the barrier (Fig. 10.10). This
path difference is called detour U and is, according to Fig. 10.10, given by

U = r −D = r − r cosβ = r (1− cosβ) = 2r sin2 β

2

and thus the insertion loss is given by

RE ≈ 10 lg
(

2π2U

λ

)
. (10.43)

Equation (10.43) is called ‘detour law’, because it states that the insertion
loss which is produced by sound protection screens only depends on the ratio
of detour and wavelength.

Fig. 10.10. Detour U = path over the edge r – direct path D

These days, practically all measurements of the effects of noise barriers are
still conducted with the aid of eq.(10.43) or other such methods of approxima-
tion. This guideline generally treats the detour in a somewhat more complex
manner, referring to the detour as the ’z value’. The detour law is also applied

β

β

r
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to sources with a finite distance to the wall. Detours will furthermore be eval-
uated in the following sections in terms of their geometry. Ground reflection
will be eliminated from the discussion.

According to eq.(10.43), the following basic tenets apply to noise barriers:

• The insertion loss is frequency-dependent. This effect is minimal at low
frequencies, more significant at higher frequencies.

• The highest noise barriers possible are required for greater detour effect.
• Low-lying sound sources, lying directly on the street or train tracks, are

more easily mitigated by way of shadow effects as sound sources at higher
altitudes.

In sum, the noise of truck tires is better shadowed than an open exhaust
pipe, which is farther from the ground. Noise emission from the walls of the
locomotive is greater than that of the attached coach trains, because the coach
only only experiences noise emission from the wheels on the track, whereas
the locomotive receives additional noise impact from the engine air box.

10.2 Approximation of insertion loss

Although the detour law likely represents one of the most fundamental aspects
of noise control, it does not provide very precise data regarding insertion loss.
The following approximation equation provides a more accurate estimation of
the information of insertion loss data

RE = 20 lg (
√

2πN
th(
√

2πN)
) + 5 dB . (10.44)

N is what is referred to as the Fresnel number

N = 2U/λ (10.45)

and th refers to the hyperbolic tangent. Eq.(10.44) is taken from the ’Hand-
book of Acoustic Engineering’ (Springer-Verlag, Berlin 2004, edited by G.
Müller and M. Möser).

The accuracy of the statement made by the approximation (10.44) can
be subsequently examined by comparing the approximation to the result of
the exact calculation based on equation (10.24). To do this, we choose an
independent quantity U/λ for a constant incidence angle ϕ0 and draw the
array of curves for the insertion loss, using the diffraction angle as parameter.
With the aid of (10.24) the necessary quantities for a numerical evaluation
are then obtained by both

r

λ
=
U

λ

1
2 sin2 β/2
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and ϕ = ϕ0 + π + β. The calculated array of curves is depicted in Fig. 10.11.
As can be seen, an maximum margin of error of 2 dB results in the interval
of the diffraction angles shown. To achieve more accurate results, it is either
necessary to execute the eq.(10.24) itself using a computer program or to use
the curves in Figure 10.12 as a reference (these curves are calculated with the
aid of eq.(10.24).

Fig. 10.11. Comparison of the detour law (10.43) with the exact calculation (10.24)

As can be seen in Figure 10.11, eq.(10.44) indicates a rather precise ap-
proximation even for small diffraction angles β. At the shadow border N = 0,
RE = 5 dB (because of th(x) = x for small x), based on eq.(10.44), approach-
ing the aforementioned correct value of 6 dB.

For Fresnel numbers N > 0.36, 0.9 < th(
√

2πN) ≤ 1, with less than 1 dB
margin of error for N > 0.36 if the hyperbolic tangent in (10.44) is set at 1.
At an accuracy level standard for the field of acoustics, the following applies
in the case of N > 0.36:

RE = 10 lg (2πN) + 5dB (10.46)

Determining the insertion loss is therefore reduced to simple geometric con-
siderations, which has qualitative and quantitative implications in practice
and which will be elaborated in the following. Figure (10.13) shows a typical
arrangement of source (aQ from the wall), an acoustic screen hS high (above
the source) and the position of impact E, which is hE above the source and
aE from the wall. The main sources are located in the roadway, hS and hE
indicates the heights relative to the street or train tracks. In respect to the
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Fig. 10.12. Insertion loss according to (10.24) for small diffraction angles

Fig. 10.13. Arrangement of source Q, noise barrier with height of hS and position
of impact (’receiver’)

pathway over the edge of the barrier K (=Emission path from Q to E over the
acoustic screen), the following results from applying the Pythagorean theorem
twice

K =
√
h2
S + a2

Q +
√

(hS − hE)2 + a2
E ,

and for the direct path

D =
√
h2
E + (aE + aQ)2 .

The detour U is U = K −D. In practice, noise impacted areas tend to be far
enough away so that aE >> hS applies. Typical distances aE are anywhere
from at least 100 or so meters and barrier heights which, in contrast, seldom
reach more than 5 meters. Therefore, aE >> hS almost always applies. The
expressions containing (hS − hE)2 and h2

E are therefore far smaller than a2
E ,

as long as hE does not greatly surpass the barrier height hS . If, for example,
aE = 20(hS − hE) were true, (hS − hE)2 = a2

E/400 would, of course, be a
comparatively tiny quantity, which would have very little impact on the corre-
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sponding radical. The quadratically small terms in the radicals can therefore
be eliminated, resulting in

K =
√
h2
S + a2

Q + aE

and
D = aE + aQ .

For large distances aE , the detour U is almost independent of the measured
distance aE and height hE , as evident in

U = K −D =
√
h2
S + a2

Q − aQ . (10.47)

The insertion loss is therefore almost exclusively defined by the source dis-
tance aQ and barrier height hS , while remaining virtually independent of the
specified position of impact E.

A realistic measurement of the insertion loss quantity can also be made
based on these considerations. Take a somewhat typical example of a 5m–wall
along a wide, three-lane highway. The width of each lane is approx. 3.5m.
The shoulder accounts for an additional 3m of distance from the edge of the
highway to the noise barrier. One can assume that the source is located in the
middle of the highway, at about 8m distance to the sound wall. This results
in a detour of 1.43m. The center frequency for traffic noise is approx. 1000Hz
with λ = 0.34m. The Fresnel number is thereby N = 8.44. Since the Fresnel
number is N > 0.36, we can use eq.(10.46), resulting in R = 22.2 dB.

It is also worth noting that, at a distance between the wall and the source
greater than aQ, the detour U monotonically attenuates. The noise barrier is
therefore more effective the closer the source is to the wall.

10.3 The importance of height in noise barriers

Of course, the question has been raised as to the advantages of building higher
noise barriers. All other factors notwithstanding, if a higher noise barrier is
built, h2 as opposed to the previous height h1, then

∆R = 10lg(
U2

U1
) (10.48)

shows the advantage for the insertion loss. U1 and U2 are the detours for h1

and h2, respectively. The advantage gained furthermore depends on the source
distance. The interval where the gain ∆R has to be, however, is not easy to
ascertain. A minimal gain only becomes apparent if the wall has already been
shown to be effective. This is always the case when the wall and the source
are not far apart, whereby, according to eq.(10.47), the detours are equal to
the heights, resulting in
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∆Rmin = 10lg(
h2

h1
) . (10.49)

Otherwise, where a is much greater than the height of the wall h, the following√
a2 + h2 ≈ a+

h2

2a
, (10.50)

is a good approximation for far-away sources, resulting in the detour U ≈
h2/2a. For this reason,

∆Rmax = 20lg(
h2

h1
) = 2∆Rmin (10.51)

applies.
As can be seen above, constructing higher noise barriers results in a greater

attenuation gain for sources at a greater distance to the wall as for those close
to the wall. However, the improvements are not all that significant for most
real scenarios. If, for example, a 6m– instead of a 5m–high wall is built, an
increase in attenuation has only been obtained somewhere between 0.8 dB
and 1.6 dB, depending on the location of the source. Even if the height of
the sound wall is doubled, the improvement will only be somewhere between
3 and 6 dB. The high insertion losses required in the construction of noise
barriers is quite expensive.

As outlined in the example in the previous section, noise barriers can guar-
antee roughly 20 dB insertion attenuation. Larger attenuations would require
truly gigantic wall structures. Noise barriers are an important aspect in noise
control, but cannot create wonders.

10.4 Sound barriers

The simple model of a barrier in the shape of a semi-infinite screen resulted
in a lucid description of the diffraction and reflection principles. But some
questions remained unanswered. For instance, can the calculations be readily
transferred to other geometric shapes like sound protection dams instead of
walls? The effect of wedge-shaped sound barriers can also be calculated the-
oretically. The derivation of the formulas would be beyond the scope of this
book, but a numerical evaluation is given in Fig. 10.14. (See Figures 10.14
and 10.15).
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Fig. 10.14. Insertion loss of wedge-shaped sound walls, computed for an incidence
angle ϕ0 = 600 and diffraction angle β = 600

Fig. 10.15. Reflection and diffraction of wedge-shaped sound walls

As shown in Figure 10.14 the aperture angle below 90◦ is only of minor
importance, because the detour law can readily be used for γ < 90◦. In con-
trast, the deviation from the detour law quickly becomes significant above
90◦. The insertion loss RE is worse in this case than it is for semi-infinite
screens. Aperture angles of more than 120◦ can be found on roofs and raised
dams. Compared to walls of the same height, a considerable influence of their
geometric shape on the insertion loss has to be taken into account.
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10.5 Absorbent noise barriers

In practice, noise barriers always have absorbent qualities along the side facing
the source. This section attempts to explain the advantages this feature has
for sound insulation.

As illustrated by the simple example below, an absorber mounted to the
sound wall is only effective when the relevant barriers are close to one another.
Such is the case when large vehicles, such as trains or a trucks, pass by. In other
words, that the distance between the barrier and the outside of these vehicles
is relatively short. Indeed, the actual large-scale sound emitters mentioned
above are located relatively low, as they mainly consist of the noise of the tire
traction against the surface of the highway. In the case of a reflecting noise
barrier, however, the sound field is sent upwards along a zig-zag path (see
Figure 10.16) before striking the edge of the barrier at an unfavorable angle
in terms of desired sound insulation effect. This effect leads to a virtual raising
of the sound source emission to the much higher level, far above the actual
location on the highway or train tracks. This causes a considerable reduction
in the desired attenuation effect.

Fig. 10.16. Main pathway of the sound propagation from the source to the barrier’s
edge for sound walls with or without source-side absorption

In the case of smaller vehicles passing by the barrier, the reflection off the
vehicle itself does not play much of a role. Multiple reflections can only occur
if noise barriers are built along both sides of the highway or train tracks. For
the most part, however, the distances are so great that the sound incidence
from the original sources as well as the reflective sources has a more or less
horizontal striking effect.

In the case of large noise emitters, the implementation of source-side ab-
sorbent noise barriers can prevent the so-called zigzag effect. A simulation
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calculation can illustrate the difference they make. Two examples are shown
in Figure 10.17. The simulation is drawn on the assumption that sound fields
resulting from reflective sources are diffracted on each wall. To keep it simple,
let us assume that the level of the source outdoors at a distance of 1 m is 100
dB. The center frequency of the traffic noise has thereby been measured at
500 Hz. The strong spatial dependency of the improvements achieved by the
absorption are plain to see here.

For more extreme cases, great improvements can be attributed to wall ab-
sorption. Sample measurements of the effect of absorbent linings in the shadow
region behind the wall are given in Figure 10.18. This figure shows the level
reductions obtained by the implementation of the source-side wall absorption
as compared to the level reductions of a simple reflective barrier. To mea-
sure the level reductions, sheet metal plates were mounted to the absorbent
wall lining. The level measurements of the wall covered by the sheet metal
plates were then compared with the levels without the plates. The measured
improvements were considerable as Figure 10.18 shows. The quantitative re-
lationship between the sound insulation results and sound absorption usage
were proven by these measurements. The highest absorption factor correlates
with the greatest level difference. Here, however, the distance between the
wall and the reflector (a passing truck) was only 1 m, whereby the wall and
the truck were both 4 m high. This is a typical situation which actually oc-
curs in the construction industry, but in other situations, the distances are
considerably greater.

As already mentioned, these significant improvements diminish when the
reflector and the noise barrier are close together (see the vehicle in Figure
10.16). For distances equal to the height of the wall, only the absorption itself
is attributable to a slight improvement of approx. 3 dB. Such improvements
directly correlated with the absorption only work for large vehicles, such as
trucks, but for small sources like passenger cars and motorcycles, the effect of
sound absorption on overall emission levels is quite minimal.
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Fig. 10.17. Sound pressure levels for fully absorbent (above) and fully reflective
(below) walls
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Fig. 10.18. Space-averaged third-octave level reduction (30 positions of measure-
ment) due to absorbent linings, measured behind a 3.5m–high wall as a truck passes
by (height of truck likewise 3.5m) 1m from the wall for three different absorbent
linings. Walls belonging to the Rieder family in Maishofen, Austria.

10.6 Transmission through the barrier

Finally, it is important to mention that noise penetration through sound walls
can itself play an instrumental role for barriers which themselves have insuf-
ficient attenuation properties. The sound supply behind the wall results from
the aforementioned diffraction as well as due to penetration through the bar-
rier itself. Overall, two transmission paths must be considered. They are de-
fined by the transmission factors τB along the diffraction path and τD along
the penetration path. According to this definition, the sound reduction index
corresponding to each path is

R = 10 lg(
1
τ

) . (10.52)

Since both paths are influenced by one and the same source, the net trans-
mission factor is

τges = τB + τD . (10.53)

This leads to the definition of the net sound reduction index in

Rges = 10 lg
1
τges

= 10 lg
1

τB + τD
= 10 lg

1
10−RB/10 + 10−RD/10

. (10.54)

A simpler notation for this is
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Rges = 10 lg
10RB/10

1 + 10(RB−RD)/10
= RB − 10 lg(1 + 10(RB−RD)/10) (10.55)

Accordingly, the penetration reduction index of RD = RB results in a marked
decline of 3 dB in the net effect compared to a well insulating barrier. For
RD = RB + 6 dB the net reduction factor is Rges = RB − 1 dB and finally,
for RD = RB + 10 dB, it is Rges = RB − 0.4 dB. As shown above, even the
slightest improvements in attenuation are often only feasible in conjunction
with considerable increase in the heights of the sound barriers. This under-
scores the importance of combating the loss of insulation through potential
noise penetration, aiming for approx. RD = RB + 6 dB.

10.7 Conclusion

Other important and frequently asked questions regarding the practical im-
plications and optimization of acoustic screens pertain to:

• Ground reflection
• Wind and weather
• Propagation attenuation over large distances
• Plant cover
• Unconventional geometry, such as overhangs
• and other influential factors not discussed here

10.8 Summary

The diffracted sound field in the geometric shadow behind a very long, rigid
and thin barrier behaves according to the ’detour law.’ This describes the fact
that the insertion loss of the wall is derived from the difference between the
’sound path over the edge of the screen’ and the ’direct path.’ In everyday
situations, losses exist, which depend only on the height of the wall and the
distance of the wall from the source. Insertion losses seldom surpass 20 dB.

Absorption material is installed on the source-side to prevent multiple re-
flections between the source and the noise barrier, which could impede optimal
sound protection.

The transmission loss of walls used as barriers should be at least 6 dB more
than the diffraction loss.

10.9 Further reading

To deepen your knowledge on this subject, it is recommended that you read
the work of E. Skudrzyk ”The Foundations of Acoustics” (Springer, Wien
1971). As a reference book for mathematical functions, the book by M.
Abramowitz and I.A. Stegun ”Handbook of Mathematical Functions” (9th
Dover Printing, New York 1972) is a great resource.
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10.10 Practice exercises

Problem 1

Calculate the sound levels reduced by increasing the height of noise barriers
from 4m to 5.5m, from 4m to 7.5m, from 5.5m to 7.5m and from 7.5m
to 10m. Note that the emission positions are far away (distances more than
one hundred meters) and the sources are out of sight range. The middle of a
three-lane freeway should be used to gauge the distance between the sources
(source distance from wall 6.7m, 10.5m and 15m, sources are on the freeway).
Assume that the main frequency of the traffic noise is 1000Hz.

Problem 2

How great are the insertion losses of noise barriers constructed at heights of
4m, 5.5m, 7.5m and 10m for distant emission stations out of sight range to
the sources? The sources are at distance of 6.7m, 10.5m and 15m from the
wall. Again, calculate using f = 1000Hz.

Problem 3

If one considers sources both close to and far away from the barrier, what is
the minimum as well as the maximum sound level reduction when increasing
noise barriers from 4m to 5.5m, from 4m to 7.5m, from 5.5m to 7.5m,
and from 7.5m to 10m, if the emission stations are far away (at distances of
several hundred meters) and not in sight range of the sources?

Problem 4

By how much does the overall transmission loss Rtotal differ from the diffrac-
tion loss RD, if the transit loss of the noise barrier is 6 dB less than RD?

Problem 5

As shown in the figure below (not to scale), a source and receiver are separated
by two different barriers. This situation occurs in everyday life where, for
instance, a railway runs alongside a street protected by noise barriers on both
sides. How great is the insertion loss if the main frequency emitted is 500Hz?

Problem 6

If we take the same arrangement from Problem 5 and omit one of the noise
barriers (4m high), by what amount does the insertion loss change at the
receiver?
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Fig. 10.19. Arrangement of source, receiver, and two barriers in Problem 5
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10.11 Appendix: MATLAB program for Fresnel integrals

function [cfrenl,sfrenl] = fresnel(xarg)
x=abs(xarg)/sqrt(pi/2);
arg=pi*(x^2)/2;
s=sin(arg);
c=cos(arg);

if x>4.4

x4=x^4;
x3=x^3;

x1=0.3183099 - 0.0968/x4;
x2=0.10132 - 0.154/x4;
cfrenl=0.5 + x1*s/x - x2*c/x3;
sfrenl=0.5 - x1*c/x - x2*s/x3;

if xarg<0
cfrenl=-cfrenl;
sfrenl=-sfrenl;

end

else

a0=x;
sum=x;
xmul=-((pi/2)^2)*(x^4);
an=a0;
nend=(x+1)*20;

for n=0:1:nend
xnenn=(2*n+1)*(2*n+2)*(4*n+5);
an1=an*(4*n+1)*xmul/xnenn;
sum=sum + an1;
an=an1;

end

cfrenl=sum;
a0=(pi/6)*(x^3);
sum=a0;
an=a0;
nend=(x+1)*20;

for n=0:1:nend
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xnenn=(2*n+2)*(2*n+3)*(4*n+7);
an1=an*(4*n+3)*xmul/xnenn;
sum=sum + an1;
an=an1;

end

sfrenl=sum;

if xarg<0
cfrenl=-cfrenl;
sfrenl=-sfrenl;

end

end
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Electro-acoustic converters for airborne sound

The basis of each scientific or engineering discipline is the measurement of
the quantities of interest. All physical effects mentioned in this book have
to be verifiable by experiment. Acoustic measurement techniques which can
prove the evidence of emission and impact is the daily bread of engineering
acoustics.

This is reason enough to have a closer look at the two most important
microphone types for air-borne sound, the condenser microphone and the
electrodynamic microphone which form the quintessence of each experimental
setup. There are, however, many more types, as for instance the bending
membrane piezoelectric oscillator which is found in telephone capsules, the
standard type electret condenser microphone in use today, the (old-fashioned)
carbon microphone and the electro-magnetic microphone. Yet, these are just
a few examples of a long list of microphone types. Several reasons can be given
for the choice of the two examples in this chapter:

1. The only type of microphone which meets the standard classification cri-
teria is the condenser microphone. It is indispensable for use conducting
absolute (sound) level measurements. Keep in mind that overestimated
sound levels may have severe legal and financial consequences. That is
why precision is the first priority. However, condenser microphones have
a very expendable production and are therefore not cheap.

2. In contrast, more economical microphones can be implemented for taking
relative measurements. If only level intervals (e.g. between two rooms)
when measuring the transmission loss or decay curves, when determin-
ing the reverberation time, are needed, low priced electrodynamic micro-
phones, less precise in absolute value, can also be used. Even for sound
studios, electrodynamic microphones can be sufficient.

3. And, finally, discussion can be spared with respect to many other mi-
crophone types, since all converters are similar in their mechanical con-
struction (or can be described in a similar way) and for (nearly) all of
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them, their frequency response, to a large extent, is determined by the
mechanical construction, as will be shown in the following.

Sound producing devices, such as the loudspeaker, also play a major role
in many measurement procedures as well. As pertains to loudspeakers, we
will focus on the most common type, the electrodynamic loudspeaker. The
genus for loudspeaker and microphone is the term ‘electro-acoustic converter’
which indicates acoustic energy being transformed into electric energy and
vice versa.

Basically, the principles of these and other converters discussed here are
reversible. These principles apply to microphones as well as to loudspeakers.

The coil of the electrodynamic loudspeaker, for instance, which is mounted
on the membrane, is forced to vibrate by alternating currents in a magnetic
field. In this way, sound is radiated by the membrane. The same device can
also serve as a microphone. The alternating forces of the sound pressure set
the membrane into motion, inducing a voltage in the voice coil. The specific
construction of the device is certainly designed for its purpose.

Naturally, the mechanical construction as well as the electrical circuit have
to be taken into account when discussing transducers. The mechanical princi-
ple is simply given by the fact that a relative motion between the membrane
and the housing is produced by both pressure and electro-magnetic forces.
As the mounting of the housing is either heavy or rigid it can be in any case
regarded as being at rest. Thus, only the absolute motion of the membrane
of mass m is of interest, which also includes the mass of the coil or any other
parts moving along with the membrane. The external force

F = Fp + Fe , (11.1)

acts on the membrane, where Fp represents the pressure force and Fe the
electro-magnetic force.

• For microphones Fe � Fp

• and for loudspeakers Fp � Fe

can be assumed. If the restoring electrical force would have the same or-
der of magnitude as the exciting pressure force, the sound receiver would be
completely ineffective. Likewise, a loudspeaker is essentially influenced by the
sound field it produces, not its radiation. Although restoring forces are always
present, these will not be handled in this discussion.

As already mentioned, all converters presented here mainly consist of a
mass (including possible additional moving masses). This mass is resiliently
mounted into a heavy, nearly immobile housing. The mechanical construction
therefore always represents a simple resonator which was already discussed in
detail in Chap. 5. According to the results of Sect. 5.1 ‘Elastic Bearings on a
Rigid Foundation’, the displacement x of a mass m which is excited by the
force F (see (5.6), p. 146) is given by
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x =
F

s−mω2 + jωr
=

F/s

1− ω2

ω2
0

+ jη ω
ω0

(11.2)

where, similar to Chap. 5.1,

ω0 =
√

s

m

represents the resonance frequency and

η =
rω0

s

represents the loss factor of the mechanical converter construction (see also
(5.13) and (5.15), p. 147).

As the next two sections will show, the converter principle of the condenser
microphone is the displacement x itself; the output voltage U is proportional
to the displacement U ∼ x. In contrast, electrodynamic microphones work on
the basis of the induction law, thus U ∼ v = jωx is given. It is this principal
difference in the two types which is ultimately responsible for their different
frequency response functions. As can be seen in Fig. 11.1, the frequency re-
sponse function of v/F = jωx/F is simply a ‘rotated’ version of x/F . The
frequency response function of Hx = x/F is constant below the resonance fre-
quency and falls at 12 dB/ per octave above that. In contrast, the frequency
response of Hv = jωx/F = jωHx rises at 6 dB per octave up to the resonance
frequency and falls at 6 dB per octave above it. It is this difference which
characterizes the typical frequency response functions of the corresponding
transducers, as will be shown in the following.

11.1 Condenser microphones

The essential element of this microphone type is a capacitor, whose one elec-
trode is a lightweight membrane whereas the other electrode is rigid and
heavy. An example for the construction of a condenser microphone is shown
in Fig. 11.4 (p. 354).

Its converter principle is that the capacity of the capacitor changes with
the membrane displacement x. As the capacity of a plate capacitor is inversely
proportional to the distance d of the plates

C0 ∼
1
d
, (11.3)

a reduction of the plate distance by x due to an incident sound wave results
in a capacity of

C ∼ 1
d− x

. (11.4)

Since the proportionality constant not written in (11.3) and (11.4) is the same,
it follows that
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Fig. 11.1. Frequency response function of a simple resonator. (a) Displacement and
(b) velocity

C = C0
d

d− x
= C0

1
1− x/d

(11.5)

where C0 is the capacity of the capacitor while the membrane is at rest.
First of all, in order to detect any electrical output signal, the microphone

capacitor has to be supplied with a DC-voltage. The principal electrical circuit
diagram is shown in Fig. 11.2. It consists of a closed circuit formed by a
capacitor, a resistor R and a supply voltage U0. The resistor R represents
the high input resistance of the amplifier which processes the extremely small

(a)

(b)
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AC-voltage. The capacity at rest is only about 10 pF (10−11 Farad), more is
technically not achievable. Common values for U0 lie in the range of 20 V
to 200 V which is limited by the possibility of a short-circuit between the
electrodes.

Fig. 11.2. Principle of a condenser microphone

The voltage across the closed circuit capacitor is given by the definition of
the term ‘capacity’ by

Uc =
Q

C
=

Q

C0

(
1− x

d

)
. (11.6)

The output voltage U , using the voltage mesh

Uc + U − U0 = 0

results in
U = U0 − Uc . (11.7)

A very simple estimation of the microphone frequency response function,
which fails only for the lowest frequencies, can be obtained by the follow-
ing consideration: if the output resistance R is considerably larger than the
reactance 1/jωC0 of the capacitor, the circuit operates in an ‘open loop’.
For R � 1/ωC0, i.e. for frequencies ω � 1/RC0, nearly no current flows
through the circuit. For this reason, the electric charge on the electrodes of
the capacitor can be regarded as ‘frozen’ and invariant. In the frequency range
ω � 1/RC0, using Q ≈ Q0 in (11.6),

Uc =
Q0

C0

(
1− x

d

)
= U0

(
1− x

d

)
(11.8)

is given (due to U0 = Q0/C0). According to (11.7), the output voltage U

U = U0
x

d

r igid electrode

U

U 0

membrane

x

d

I

U C

R
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is directly proportional to the membrane displacement x. With the aid of
(11.2), it can therefore be summarized that in the aforementioned frequency
range

U

p
=

U0
S
sd

1− ω2

ω2
0

+ jη ω
ω0

(11.9)

applies. It was assumed that the membrane force equals the product of pres-
sure and membrane area

F = pS , (11.10)

an assumption which is valid as long as the membrane cross-section is small
compared to the wavelength in air.

The frequency response function (11.9) is exclusively determined by that
of the mechanical structure Hx(ω) = x/F . Thus, Hx(ω) is most decisive for
the frequency response function of the microphone.

The assumption of a frozen charge on the capacitor is an approximation
not only for sufficiently high frequencies, but also for polarized types, where
piezo-ceramic layers are used instead of a capacitor. That is to say, they can
do without a supply voltage.

As already mentioned, (11.9) is only valid for frequencies ω � ωf , where
ωf is defined as

ωf = 1/RC0 . (11.11)

This ‘typical frequency’ ωf is very low for all condenser microphones, usually
around ff = ωf/2π ' 10 Hz. The relevant frequency range is sufficient for
accurately describing frequency response function of the microphone. On the
other hand, it is not complicated to take into account the charge which is flow-
ing to and from the electrodes. More generally the capacitor charge consists
of a static part Q0 and an alternating part q so that

Q = Q0 + q .

The voltage across the capacitor Uc, according to (11.6), is thus given by

Uc =
Q

c
=
Q0 + q

C0

(
1− x

d

)
≈ Q0

C0

(
1− x

d

)
+

q

C0
= U0 − U0

x

d
+

q

C0
.

The small quadratic term including xq was thereby neglected. The alternating
quantities are small compared to the static parts q � Q0 and x � d. Using
(11.7), the output voltage is given by

U = U0
x

d
− q

C0
.

Here, only alternating quantities occur. The alternating charge q can addi-
tionally be expressed by the alternating current in the circuit q = I/jω as

U = U0
x

d
− I

jωC0
,
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or, due to Ohm’s law I = U/R for the output resistor R,

U = U0

x
d

1 + 1
jωRC0

= U0

x
d

1− j ωkω
. (11.12)

The electrical construction of a condenser microphone acts as a high pass filter
with the folding (or typical) frequency ωf . For ω > ωf the frequency response
function is constant, for ω < ωf it rises with a gradient of 3 dB per octave
spanning from the low frequencies toward the folding frequency.

The total resulting frequency response function, when using F = pS in
(11.2) and using (11.12), is given by

Gup =
U

p
=

S
sdU0(

1− j ωkω
) (

1− ω2

ω2
0

+ jη ω
ω0

) . (11.13)

The frequency response represents a band pass which is limited by the electri-
cal folding frequency ωf at low frequencies and by the mechanical resonance
ω0 at high frequencies (Fig. 11.3). In the transfer range ωf � ω � ω0, the
sensitivity is given by

Gup,0 =
S

sd
U0 . (11.14)

The highest operating frequency is usually defined as the point where Gup is
1 dB larger than Gup,0. At this point it is∣∣∣∣ Gup

Gup,0

∣∣∣∣2 = 100.1 = 1.25 .

For sufficiently small η and due to ω � ωf , it follows that(
1− ω2

ω2
0

)2

=
1

1.25
= 0.8 ,

or
ω ' 0.3ω0 (11.15)

for the operation limit of the microphone. Some technical data of common
microphone types are given in Table 11.1.

The sensitivity, quoted in Table 11.1 is measured at the signal amplifier,
which is built into the microphone. Obviously, microphones with larger mem-
branes are more sensitive than those with smaller ones, where the ratio of
sensitivity roughly corresponds to the ratio of the surface areas. The main
difficulty of condenser microphones is the internal noise which stems from the
high-ohm resistor. The measurable sound levels (assuming 1 dB uncertainty)
are very high for small microphone types; they are not useful in detecting very
small sound levels. Here, more sensitive microphones with a large membrane
area must be used.
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Table 11.1. Technical data of condenser microphones

Diameter Sensitivity Frequency range Dynamic range
(mm) (mV/Pa) (Hz) (dB(A))

3.2 1 6.5 – 140 k 55 – 168
6.4 4 4 – 100 k 36 – 164
12.7 12.5 4 – 40 k 22 – 160
23.8 50 4 – 18 k 11 – 146

Fig. 11.3. Theoretical frequency response function of a condenser microphone. The
electrical folding frequency ωf is 7 octaves below the resonance frequency, here.
Calculated for η = 0.2, 0.4 and 0.8

As Table 11.1 shows, the resonance frequency decreases with increasing
membrane area. This tendency will be discussed in more detail here. The
theoretical resonance frequency amounts to

ω2
0 =

s

m
,

where the total stiffness s is composed of two parts

s = sE + sL . (11.16)

The stiffness sE represents the stiffness of the membrane bearing, sL that of
the air cushion between the electrodes and is given by

sL =
%c2S

d
. (11.17)
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During production, the membrane, a thin and prestressed metal foil, is laid
upon a supporting ring and affixed there. The stiffness sE is caused by the
internal strain of the membrane. The mass m of the membrane is slightly
smaller than the actual mass, because m pertains only to the mass in motion.

It is often cited that the stiffness of the air sL is larger than that of the
bearing stiffness sE. Since the mass for all sizes (using the same metal foil)
increases with the surface area

m = m′′S ,

however, the assumption sL � sE would lead to a resonance frequency

ω2
0 =

%c2S

dm′′S
=

%c2

m′′d
. (11.18)

This would mean that the resonance frequency should be independent of the
membrane area in contrast to experience. Table 11.1 proves a different line of
reasoning. It seems to be much more plausible that the bearing stiffness sE

dominates and is independent of the microphone size; in this case

ω2
0 =

sE

m′′S
(11.19)

is given. The resonance frequency would decrease inversely with the diameter
of the membrane as confirmed by the actual numbers in the table.

The assumption sL � sE is also underlined by the technical structure of a
condenser microphone as sketched in Fig. 11.4, because the perforation of the
backing electrode dramatically reduces the stiffness of the air cushion: if the
capacitor is compressed, the air escapes through the perforation and is not
compressed. The actual purpose of the perforation of the backing electrode is
not the reduction of the stiffness, but the attenuation of the resonance peak
due to friction losses which the viscous air undergoes when passing the holes.
The loss factor η is mainly a result of this effect. In contrast, the resonance
frequency is solely affected by the parameters of the membrane.

The frequency response function shown in Fig. 11.4 proves that the atten-
uation of the resonance can be achieved. A minor elevation of the resonance
frequency can be quite useful, especially when oblique sound incidence is con-
sidered (see the next section).

The highly sensitive microphone membrane would be destroyed by even the
smallest fluctuations of the atmospheric pressure, if there were no a connection
between the internal and external air. This coupling, achieved by a capillary,
can compensate for pressure difference. Essentially, the air in the capillary
acts as a mass mk in such a way that the pressure difference p between the
exterior and the air between the electrodes amounts to

∆p = jω
mk

SQ
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Fig. 11.4. Case study of a condenser microphone

(where SQ is the cross-sectional area of the capillary). At low frequencies the
pressure difference is compensated, ∆p ≈ 0. At high frequencies the interior of
the capsule is decoupled. At low frequencies, the sensitivity of the microphone
is reduced by the pressure compensation. Apparently, the electrical folding
frequency of the microphone depicted in Fig. 11.4 is considerably smaller
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than the folding frequency of the capillary (which represents a mechanical
high-pass filter).

The discussion on the dominating stiffness is only of scientific, but not of
practical interest, as it can be extracted from Table 11.1: all of the specified
quantities cover the frequency range of technical interest (ultrasound is the
only exception to this). In practice, the disadvantage of larger microphone
membranes compared to smaller ones is not determined by the decreasing
frequency range, but rather by the directivity which is already observable in
the mid-frequency range. This will be the subject of the next section.

11.2 Microphone directivity

Basically, two principle effects occur which lead to directivity of a microphone
at higher frequencies:

1. The microphone represents a reflector for the incident sound field. The
geometrical shape of the housing, the optional grip or protective mesh,
interfere with the field quantity to be measured. The reflection can differ
with the angle of acceleration, but will always result in a higher sound
pressure. The resulting sound pressure can have a maximum value of twice
that of the incident sound field. Thus, reflections at the microphone appear
as an increased sensitivity which is limited to 6 dB at most. Pressure
accumulations are therefore secondary phenomena which can be used to
make minor corrections to the frequency response by shaping its geometry.

2. Reflections off the body of the microphone do not explain the distinctive,
strongly angle-dependent sensitivities at high frequencies. Rapidly chang-
ing pick-up characteristics are based on the fact that the sound pressure
on the membrane is space-dependent. Only at low frequencies is the force
on the membrane the product pS. More generally, and especially at high
frequencies it is

F =
∫
S

p dS . (11.20)

For a corresponding small wavelength and oblique sound incidence, areas
of sound pressure with an opposite phase occur. The total force could
therefore be zero.

The consequences of the ‘pressure-integrating membrane effect’ (11.20) can
easily be calculated for a circular membrane if the reflection at the membrane
itself is neglected. A wave, impinging obliquely on the membrane, is assumed.
As shown in Fig. 11.5, the angle between the wave vector and the normal of
the membrane surface is denoted by ϑ. The wave in the sketched coordinate
system is described by

p = p0ejkx sinϑejkz cosϑ . (11.21)
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Fig. 11.5. Position of the circular membrane (radius b) in the coordinate system

Using x = r cosϕ, the pressure integral (11.20) becomes

F = p0

b∫
0

2π∫
0

ejkr sinϑ cosϕdϕrdr = p0

b∫
0

π∫
0

cos (kr sinϑ cosϕ) dϕrdr .

The inner integral results in the zero-order Bessel function and

F = 2p0

b∫
0

πJ0 (k sinϑ r) rdr

remains. This integral can also be found in an integral table (see e.g. [?], p. 634,
No. 5.52 1) and can be used to calculate the first order Bessel function.

F = πb2
2J1 (kb sinϑ)
kb sinϑ

p0 = Sp0
2J1 (kb sinϑ)
kb sinϑ

(11.22)

In the expression for microphone sensitivity, which is given by (11.13) for the
condenser microphone and by (11.29) for the electrodynamic microphone, S
has to be replaced by

S → S G (u) , (11.23)

using

G (u) =
2J1 (u)
u

(11.24)

and
u = kb sinϑ . (11.25)

All pick-up characteristics are obtained (in the same way as in Chap. 3
on radiation) by the limited range u = kb of the function G(u). The latter

circular membrane2b

x

y

z

x

z
incidence

ϑ
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Fig. 11.6. (a) Directivity function G(u) = 2J1(u)/u

Fig. 11.6. Pick-up characteristic for (b) umax = kb = 2.5 (c) umax = kb = 5
(d) umax = kb = 10

is shown in Fig. 11.6a together with three characteristic examples of pick-up
characteristics in Figs. 11.6b,c,d.

At low frequencies the incidence angle is unimportant. All directions have
the same microphone sensitivity. If the membrane dimensions and the wave-
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Fig. 11.7. Frequency response function of a condenser microphone for different
incidence angles. The electric folding frequency ωf is 7 octaves below the resonance
frequency, here. Calculated for η = 0.5 and b/λ = 0.4 at the resonance frequency.

length fall into the same order of magnitude, the angle dependencies are more
distinctive. Measured curves are included in Fig. 11.4.

The angle dependence at constant frequencies is drawn in Figs. 11.6b,c,d
for three different cases. Likewise, the frequency response for a constant in-
cidence angle could be drawn (examples are shown in Fig. 11.7). At high
frequencies, a frequency response function is obtained which varies for each
incidence angle. These frequency responses can be influenced up to a few dB
by reshaping the microphone (which influences the reflection at the micro-
phone housing) and by choosing a specific microphone sensitivity.

Microphones which have an ‘optimized smooth frequency response func-
tion’ at 0◦ incidence are called ‘free-field microphones’. If, in contrast, the 45◦

frequency response function is optimized, one speaks of a ‘diffuse-field micro-
phone’, where it is explicitly assumed that the average incidence angle in a
diffuse field is 45◦.

11.3 Electrodynamic microphones

For electrodynamic microphones, the physical principle of an AC-generator is
used. If loop conductors are placed perpendicular to a the lines in a magnetic
field, an electric voltage is induced in them. The most common construction
is the voice coil microphone (Fig. 11.10, p. 361), where a voice coil mounted
to the membrane moves through a circular gap in a magnet. Electrically, it
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can be regarded as a real voltage source with the internal resistance Ri + jωL
and an ideal voltage source Ui (induction voltage)

Ui = B`v . (11.26)

Here, B is the magnetic induction in the air gap, ` is the length of the con-
ductor and v is the velocity of the voice coil and the membrane. The circuit
is closed by a load Ra, where the converter voltage U is captured (Fig. 11.8).

Fig. 11.8. Electrical circuit diagram of the electrodynamic microphone

The converter voltage is given by

U = Ui − (Ri + jωL) I (11.27)

or, using (11.26) and I = U/Ra,

U =
RaB`

Ra +Ri + jωL
v . (11.28)

Thus, the converter voltage is proportional to the membrane velocity. The
converter coefficient U/p is obtained by expressing v = jωx by the force
F = pS, according to (11.2) (and using R = Ra +Ri):

U =
Ra/RB`S

jω
s(

1 + jω LR
) (

1− ω2

ω2
0

+ j ωω0
η
)p . (11.29)

Because the combined mass of the membrane and voice coil cannot be reduced
indefinitely, tuning the resonance to very high frequencies is impossible. In
fact, for all practical purposes, the resonance actually lies below the electric
folding frequency

ωf = R/L . (11.30)

At low frequencies ω � ω0 the frequency response function therefore starts
with a gradient ω (corresponding to 6 dB per octave), followed by a weak and
broad resonance peak due to the unusually chosen high damping. Between
ω0 and ωf , the frequency response falls at 1/ω (corresponding to −6 dB per
octave, Fig. 11.9). Such a frequency response would be unsuitable for a micro-
phone if there were no way to flatten out the response function by employing

U

I

R i

U i

jωL

R a
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Fig. 11.9. Theoretical frequency response of an electrodynamic microphone. The
electrical folding frequency is located 6 octaves above the resonance frequency. Cal-
culated for η = 0.2, 0.4 and 0.8

certain ‘tricks’. By coupling additional mechanical oscillators – for instance,
in the form of special cavities behind the membrane – resonance effects of a
certain bandwidth tuned to a particular bandwidth are obtained. To effec-
tively compensate the frequency response function along the entire frequency
range, several resonators are constructed by subdividing the air space in the
microphone housing into several volumes of different sizes. These tubes couple
the sub-volumes to the air stiffness which acts directly on the membrane. The
air in the tubes acts as the mass and the coupled volume acts as the stiffness.
The stiffness is brought about by the simple resonator produced this process.
The resonator’s resonance can be tuned by way of the tube length and the cor-
responding volume. The damping is provided by absorbent substances (felt)
and by labyrinths with large frictional surface areas (Fig. 11.10). In this way,
frequency response functions are obtained which suffice studio requirements.
The microphone type in Fig. 11.10 is obviously tuned to an ‘average’ sound
incidence of 45◦.
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Fig. 11.10. Specific type of an electrodynamic microphone
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11.4 Electrodynamic loudspeakers

The electrodynamic loudspeaker is the reversed counterpart to the electrody-
namic microphone. An external voltage laid across the voice coil creates an
electrical force

F = B`I (11.31)

where the current I is given by

I =
U

Ri +Ra + jωL
, (11.32)

using the impedance of the loudspeaker Ri + jωL and the internal resistance
Ra of the voltage source (Fig. 11.11).

According to (11.2), the membrane velocity v is given by

v =
jωB`/s

(Ri +Ra + jωL)
(

1− ω2

ω2
0

+ j ωω0
η
)U . (11.33)

The velocity has the same frequency response function in principle as the
corresponding microphone (Fig. 11.9). Yet, the membrane velocity is not very
important. The sound pressure, produced in a certain distance, is far more
important.

Fig. 11.11. Circuit diagram of the electrodynamic loudspeaker

The radiation of a moving membrane is discussed in Chap. 3. The facts,
derived there, are recapitulated here. To suppress the short circuit of the
mass at low frequencies (which will make radiation worse), the loudspeakers
are mounted in a box (or a ‘large’ baffle). At low frequencies, they act as a
volume velocity source (Sect. 3.3, using (3.13), p. 71) with the resulting far
field pressure

p ≈ jω%Q

4πr
e−jkr =

jω%πb2v

4πr
e−jkr (11.34)

where b denotes the membrane radius. Thus, for b� λ

p =
−ω2%πb2B`/s

(Ri +Ra + jωL)
(

1− ω2

ω2
0

+ j ωω0
η
)U (11.35)
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is obtained. The electrical folding frequency tor the loudspeaker is also given
by

ωf =
Ri +Ra

L
(11.36)

which is a lot higher than the resonance frequency and is intentionally tuned
to lower frequencies. Equation (11.35) shows that the frequency response of
the sound pressure is constant in the frequency range ω0 < ω < ωf and given
by

p ≈ pB =
%πb2B`/s

Ri +Ra
.

toward the resonance frequency the frequency response function rises at 12 dB
per octave, above the resonance it falls at 6 dB per octave. The theoretically
resulting frequency response function is depicted in Fig. 11.12. Principally,
loudspeaker radiation has band-pass characteristics which are limited by the
mechanical resonance at the lower end and by the folding frequency at the
upper end.

Fig. 11.12. Theoretical frequency response function of an electrodynamic loud-
speaker. The electrical folding frequency is 6 octaves below the resonance frequency.
Calculated for η = 0.8 and in the far-field or for a given point at the center axis in
front of the loudspeaker

At higher frequencies – as mentioned in Chap. 3 – the directivity of the
radiation comes into play. A different frequency response p/U is obtained for
each radiation angle. Equation (11.34) is still valid at high frequencies under
free-field conditions on the center axis in front of the loudspeaker membrane.
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More generally, the sound pressure along the z-axis in front of the membrane,
using (3.64), can be described by

p = %cv0e−jkz
{

1− e−jk(
√
z2+b2−z)

}
.

The resulting frequency response function of the loudspeaker radiation for a
given field point on the z-axis is drawn in Fig. 11.12.

Fig. 11.13. Specific construction of an electrodynamic loudspeaker

In addition, the practically usable frequency range shrinks by the fact
that the loudspeaker membrane does not represent a uniformly vibrating sur-
face at higher frequencies. Eigenvibrations occur, similar to bending waves in
plates and beams which dynamically deform the membrane. The membrane
surface seems to ‘fall apart’ into oppositely vibrating source elements. The
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radiation efficiency thus decreases. Since the membrane must be light-weight
and thus cannot be very stiff (otherwise the mass impedance, effective above
the resonance, would be too large), its stiffness is only increased by shaping
the geometry and therefore tuning the first eigenvibration as high as possible.
For this reason, so-called NOPRO-membranes (‘non-projecting surfaces’) are
used.

Fig. 11.13 shows a practical construction of an electrodynamic loudspeaker
and the corresponding frequency response function. The band-pass character-
istics are roughly as predicted. The example is a type that is explicitly sold
as a broadband loudspeaker, and which can be implemented between 100 Hz
and 8 kHz. It should finally be noted that the efficiency of a loudspeaker is
very small and seldom amounts to more than 1%.

11.5 Acoustic antennae

For some microphone-assisted measuring tasks, the spatial distribution of the
sound sources become a primary issue. There are plenty of examples of how
this is applied. From a layperson’s perspective, one might wonder which part
of a passing vehicle contributes the most to the overall noise emission: is it
the wheels or the engine, or other parts of the car, such as the ventilator, the
exhaust, etc.? The use of ’acoustical antennae’ (or ’arrays’) in measurement
techniques can help provide the answers to such questions. Two examples of
how this is applied are shown in Figures 11.14 and 11.15.

Obviously, to produce these diagrams, a measuring instrument was re-
quired which is not only capable of pivoting in the direction where the mea-
surements are to be taken, but also one that is capable of suppressing unde-
sired directivities. This measuring instrument is referred to as the ’acoustic
antenna.’ This section will provide further insight into the functionality of this
measuring apparatus.

Electronically adjustable and pivotal arrangements for directing acoustic
transmission have already been discussed in the context of loudspeaker arrays
(see the section on 3.5). Multiple, spatially distributed microphones can be
considered an analogous set-up, which can likewise electronically adjust the
directivity pattern on the receiver end by means of panning. This electron-
ically adjustable pivoting effect is achieved by setting offset delays between
the individual microphones and sensor signals, as described in the following.
The similarity between the transmitter and receiver scenario furthermore cor-
responds to the capability of the ’acoustic antennae’ in adjusting receiving
signals by suppressing the side lobes, just like loudspeaker arrays.



366 11 Electro-acoustic converters for airborne sound

Fig. 11.14. Sound source distribution of a train passing at 240 km/h (measured
from ’acoustic-data’ using 29 microphones). SPL stands for the sound pressure level.
This diagram indicates that the main sound source is the tire-road traction, as well
as a significant contribution form the power collector on top of the train.

Fig. 11.15. Sound source distribution of a small truck passing at 120 km/h (mea-
sured from ’acoustic-data’). It is plain to see the significance of the tire-to-road
traction as the primary noise source.



11.5 Acoustic antennae 367

11.5.1 Microphone arrays

The simplest and most transparent arrangement consists of microphones
equidistant from one another in a row. The structure and its position in the
coordinate system is described in the following Figure11.16. This microphone
setup is simply referred to as a ’line array’ .

Fig. 11.16. Microphone array made up of equidistant sensors (symbolized by the
circles) with corresponding spherical coordinate system

The algorithm used to interpret the microphone signals is based on a self-
evident deliberation, namely, that when all microphone signals are in synch,
the rms-value Seff of the sum S of all microphone output signals is consider-
ably greater than if there were a delay between the signals. For a signal r(t)
with a ’shorter’ duration (for instance, a narrow rectangular function) in a
synchronized signal system the following applies

S2
eff (0) =

1
T

T∫
0

[Nr(t)]2dt = N2r2
eff ,

ϑ

ϕ

z

z

Δx

(x,y,z)

x

y
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where reff represents the rms-value of one signal r(t). If, however, the signals
are offset from one another by a mutually varying, non-zero delays time delays
τi 6= 0, Seff exists in

S2
eff (τ) =

1
T

T∫
0

[
N−1∑
i=0

r(t− τi)]2dt = Nr2
eff .

Expressed in levels, the rms-value of the non-delayed signals is thus 10lgN
greater than the rms level of the mutually offset, i.e. delayed signals, whereby
10lg[S2

eff (τ)/S2
eff (0)] = 10lgN .

This fact can be used to localize sound waves impinging on the microphone
array. For skew or oblique sound incidents along the line array at angles ϑin
and ϕin, the otherwise synchronized microphone signals are mutually offset
by delays in time periods τi dependent on ϑin. The rms-value of the sum
of the signals would therefore be comparatively small (S2

eff (0) = Nr2
eff as

shown above). However, when the signals are input into the computer (or
through delay lines) and appropriately offset in short time intervals, the ’large’
value S2

eff = N2r2
eff can only be determined in the special case where the

delay times produced by the oblique sound incidents are able to be virtually
reversed. The ’small’ value S2

eff = Nr2
eff applies to all other ’experimentally

induced’ virtual delays sent through each channel. Plotted over a variable
delay time, a maximum of a factor 10lgN present in the otherwise relatively
constant level gradient would therefore indicate that an oblique impinging
wave left precisely these delay times τi on the microphones.

Naturally, it still makes sense to express the delay times τ by the direction
of incidence. At a given point z on the z axis of the coordinate system shown
in Figure 11.16, the difference of delay relative to the origin is

τ =
z

c
cosϑ . (11.37)

(c = sound propagation speed). All positive values for τ ahead of the point
z = 0. The experimental delay times at each microphone position result from
varying all possible occurring ’experimental’ incidence angles in the interval
00 < ϑ < 1800. These microphone positions are used for the summation of
these values. The experimental incidence angles are now referred to as ’angles
of observance’ ϑ. The diagrams shown below are all plotted over this variable
angle.

To clearly justify the application of this algorithm for line arrays, the
presence of ’short’ time-dependent signals is customarily assumed. This pro-
cedure characterized in short by the operation ’delay and sum’ is a standard
procedure in practice.

For longer time signals, the measurement and evaluation results stemming
from the algorithm ’delay an sum’ is dependent on the structure and dura-
tion of the signal, since overlaps can be caused, according to the delay time.



11.5 Acoustic antennae 369

In theory, it is therefore, in light of our discussion regarding general cases
to decompose the signal in pure tones (see Chapter 13) and examine each
frequency component separately. Therefore, we will consider the effect of the
aforementioned algorithm over a variable frequency ω.

For assumed time-dependent sinusoidal signal structures, the delay over
time τ is generated by multiplying the complex amplitude with e−jωτ . Since,
as mentioned before, the signals present on the positive z axis are ahead in
time and therefore have to be reversed, the following now applies for the ’delay
and sum’ algorithm

S(ϑ) =
N−1∑
i=0

pi e
−jkzi cosϑ . (11.38)

It is plain to see that S(ϑ) now represents the sum of the complex (still phase-
shifted) series of the microphone amplitudes pi. For the sake of simplicity, the
notation is already in terms of sound pressure (the appropriate calibration
has already been made).

The basic shape of the directivity patterns is a simple matter when the
impinging sound field is assumed to be composed of an oblique impinging
wave at the angles ϑin and ϕin of the form

pin = p0e
jkz(z cosϑin+x cosϕin sinϑin+y sinϕin sinϑin) (11.39)

The wave produces at the microphone positions zi the sound pressures

pi = p0e
jkzi cosϑin . (11.40)

Such cases produce the signal sum

S(ϑ) = p0

N−1∑
i=0

e−jkzi(cosϑ−cosϑin) . (11.41)

For microphone line arrays consisting of microphones placed at equal distances
to one another zi,

zi = −l/2 + i∆x (11.42)

(i = 0, 1, 2, ..., N − 1, l= total length of the line array = ∆x(N − 1)) applies.
The signal sum then becomes

S(ϑ) = p0e
jkl/2

N−1∑
i=0

e−jk∆x i (cosϑ−cosϑin) . (11.43)

When applying the sum formula for geometric series

N−1∑
i=0

qi =
1− qN

1− q
(11.44)

using (11.43) with q = e−jk∆oneobtainsx(cosϑ−cosϑin)
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S(ϑ) = p0e
jkl/2 1− e−jk∆xN (cosϑ−cosϑin)

1− e−jk∆x(cosϑ−cosϑin)
. (11.45)

The absolute value allows this function to be expressed in a simpler notation if
e−j

k
2∆xN (cosϑ−cosϑin) is taken out of the numerator and e−j

k
2∆x(cosϑ−cosϑin)

is taken out of the denominator:

S(ϑ) = p0e
jkl/2 e

−j k2∆xN (cosϑ−cosϑein)

e−j
k
2∆x(cosϑ−cosϑein)

ej
k
2∆xN (cosϑ−cosϑin) − e−j k2∆xN (cosϑ−cosϑin)

ej
k
2∆x(cosϑ−cosϑin) − e−j k2∆x(cosϑ−cosϑin)

.

Using eja − e−ja = 2j sin a we obtain from the above the absolute value we
are primarily interested in

|S(ϑ)| = p0|
sin[k2∆xN (cosϑ− cosϑin)]
sin [k2∆x(cosϑ− cosϑin)]

|

= p0|
sin[πN ∆x

λ (cosϑ− cosϑin)]
sin[π∆xλ (cosϑ− cosϑin)]

| . (11.46)

Before interpreting the solution, it first makes sense to introduce the general-
ized variable

Ω =
∆x

λ
(cosϑ− cosϑein). (11.47)

The resulting function

G(Ω) = | sin[πNΩ]
sin[πΩ]

| (11.48)

is quite easily to analyze:

• G(Ω) is periodic with the period 1: it is G(Ω + 1) = G(Ω),
• G(Ω) possesses roots Ω = n/N (n = 1, 2, 3, ...) for each period N − 1 and
• at the location Ω = 0 G(0) = N (based pm sinx = x for small x).

A graphical representation of G, over one period, is illustrated in Figure 11.17.
The shape of the directivity patterns S(ϑ) can be discerned from the G(Ω)

gradient. Because the correlation of the angle of observance. ϑ and the vari-
ables Ω is described in eq.(11.47), the intervals in sections of the function G
exist in interval

Ωmin < Ω < Ωmax (11.49)

with
Ωmin = −∆x

λ
(1 + cosϑein)

and
Ωmax =

∆x

λ
(1− cosϑein) .
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Fig. 11.17. Directivity function G(Ω) for the generation of directivity patterns for
N=25 sensors

This interval cycles through by varying the angle of observance in interval
0 < ϑ < 1800 from top to bottom (that is, beginning at Ωmax for ϑ = 00).
The spanned interval’s width is ∆Ω = Ωmax − Ωmin = 2∆x/λ (see Figure
11.17).

The directivity patterns resulting from these discussions are shown in Fig-
ures 11.18 to 11.20 for ∆x/λ = 0.125, 0.25 and 0.5. As a general rule in respect
to directivity patterns, the angles ϑn and ϑin,n given in these diagrams are
accounted for relative to the normal directivity of the microphone line array,
resulting in ϑn = ϑ− 900 and ϑin,n = ϑin − 900.

The contrast and sharpness of each impinging wave can be assessed based
on the form of the results obtained. For application in practice, this means that
multiple sound sources are simultaneously present at varying signal strengths
and angles of incidence. In this case, the output signal generated by the ’de-
lay and sum’ algorithm, of course, likewise exists in a sum of the mutually
offset functions G(Ω), depending on the angle of incidence. If pronounced
singular maxima are found in the process, this indicates the presence of mul-
tiple sources. In such cases, the individual maxima – the so-called main lobes
– should be small. If additional ’weak’ sources are localized on the basis of
the presence of ’stronger’ ones, the level intervals between main and side lobes
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Fig. 11.18. Directivity pattern D(ϑn) over the angle of observance ϑn for ∆x/λ =
0.125, angle of incidence below ϑin,n = 30◦, calculated for N=25 sensors

should be as great as possible. Otherwise, the side lobes of the stronger source
will ’drown out’ the weaker source’s main lobe. Overall, a significant difference
between main and side lobes as well as a narrow main lobe are desirable.

The following principles, based on the directivity patterns and the equa-
tions given, guarantee that these two criteria for high-quality measurements
are met:

• The lower the frequency, that is, the smaller the ratio between sensor
distance and wavelength ∆x/λ, the smaller is the width of the interval to
be plotted over the angle. Accordingly, the lobes and especially the main
lobe are to be as wide as possible. The width decreases as the ratio ∆x/λ
increases and therefore, with increasing frequency. At lower frequencies,
the resolution is low. The resolution improves at higher frequencies.

• The best resolution in terms of the smallest main lobe width is obtained for
∆x/λ=0.5. Larger intervals spanned by varying ϑ should be eliminated,
as this would cover more than one period of G(Ω). This would result in
multiple main lobes becoming visible in the directivity pattern, making a
unique correlation with each angle of incidence impossible.

• The level interval between main and the smallest side lobe is 20lgN (based
on G(0) = N and G(1) = 0). The increase of the difference between main
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Fig. 11.19. Directivity pattern D(ϑn) over the angle of observance ϑn for ∆x/λ =
0.25, angle of incidence under ϑin,n = 30◦, calculated for N=25 sensors

and side lobes becomes more gradual for greater numbers of sensors N .
To guarantee significant improvements, this number should be doubled.

• The same is also true for the width of the main lobe ∆ΩHK = 2/N , which
only gradually gets smaller as N gets larger.

In conclusion, it should be stressed that microphone signals are indepen-
dent of ϕin (see eq.(11.40)). If the angle of incidence is rotated around the z
axis as shown in Figure 11.16, the microphone voltage remains unaffected. If
multiple impinging waves occur simultaneously at the same angle ϑin, but at
different angles ϕin, the signals present along the z axis exist in the sum of the
partial pressures. In terms of the circumferential direction ϕ, the microphone
array adds up to a total of all impinging elements.

Two-dimensional microphone arrangements are required to distinguish
sources and/or impinging sound elements from one another in terms of cir-
cumferential direction. For the purposes of this text book, it is sufficient to
introduce the basic idea of microphone antennae. The following section in-
cludes an initial reference to surface arrangements.
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Fig. 11.20. Directivity pattern D(ϑn) over the angle of observance ϑn for ∆x/λ =
0.5, angle of incidence under ϑin,n = 30◦, calculated for N=25 sensors

11.5.2 Two-dimensional sensor arrangements

The simplest two-dimensional expansion of the microphone array system
which allows for localization in the circumferential direction ϕ consists of
an system of two intersecting microphone line arrays at a 90◦-angle as shown
in Figure (11.21). Such a microphone arrangement is commonly known as a
’cross array’.

The simulation calculations for determining the array characteristics are
the same as for the line array: the time-delayed signals are added together.
Assuming pure tones, this corresponds, once again, to a phase-shift of the
complex amplitudes. The complex amplitude of the array output exists in

S(ϑ) =
N−1∑
i=0

pi e
−jk(zi cosϑ+xi cosϕ sinϑ) , (11.50)

where (xi, zi) indicates the microphone positions and pi, as described above,
the complex amplitude of the microphone signal at sensor i. The quantities ϑ
and ϕ provide a clear overview of the desired simulation results of the cross
array, which can be virtually reproduced ’photographically’. Do do this, a
’photo plane’ parallel to the array is outlined in the quantitative model. A
color-coded level value is assigned to every point on the photo plane. Each



11.5 Acoustic antennae 375

Fig. 11.21. Cross array consisting of equally-placed microphones

level value with its corresponding angle of incidence represented by a photo
point has previously been defined using the acoustic antenna. These cross
array diagrams are shown in Figures 11.22 and 11.23.

Fig. 11.22. Virtual photographic representation of the level gradient defined by the
cross array measurement. The small, light pink dot indicates the actual incidence
angle of the impinging plane wave. The black dots symbolize the cross array. The
distance between each microphone is ∆x/λ = 0.5. The level scale is given on the
right.
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Fig. 11.23. Virtual photographic representation of the level gradient defined by the
cross array measurement. The small light pink dot on the upper right indicates the
actual incidence angle of the impinging plane wave. The black dots symbolize the
cross array. The distance between each microphone is ∆x/λ = 0.5. The level scale
is given on the right.

A simple consideration explains the major features of the diagrams. The
cross array generates signal sums ϕ = 900 ’without delays’ ϑ = 900 (from
the observer’s perspective) for the normal sound incident of a progressive
wave impinging in the −y-direction (Figure 11.22). These signal sums exist
in 2N -multiples of each signal (identical to one another). Here, N indicates
the number of sensors per array. If the incidence angle is rotated ϕin 6= 900

ϕin = 900 around the z axis from ϑin = 900 in another direction ϑin = 900,
the sum of the sensors located along the z axis equal to N , and the sum of the
sensors located along the x axis close to zero. Thus the N -multiple signal is
now assigned to the observance angle ϑ = 900, ϕ = 900, even though the inci-
dence angle is actually entirely different. The level interval between the ’real’
incidence angle (as before, with the value 2N) and the normal angle of obser-
vance with the value N is therefore only 6 dB. This level difference between
the main and the next higher side lobe is quite small. The diagram in Figure
11.22 shows that the main lobe is generated from two perpendicular ’bright’
stripes, the brightness of which is also summed together. The point where the
stripes intersect indicates the position of the source. This principle applies,
of course, to oblique angles of incidence as well, as shown in Figure 11.23,
except for the stripes no longer form a line but instead, take on a rather com-
plex geometric shape. The cross array has two preferred directivities, treating
different incidence angles differently.
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In addition to the cross array, microphones are often arranged in a ring
(Figure 11.24). This arrangement is no longer characterized by a distinctive
directivity, treating all incidence angles the same.

Although normally ’facts and figures’ take precedence over beautiful pic-
tures in this book, Figure 11.26 illustrates the effect a photographic image can
on the outcome. We can see that the appearance of the image differs greatly
from the exact same scenario depicted in Figure 11.25. The only change was
the level interval.

Examples of cross and ring arrays were examined in this section. Of course,
other geometries and arrangements come into play, such as three-lined, spiral
and quadratic field arrays. Some of these are also used in practice. In addi-
tion, the microphones in a given arrangement do not all have to be the same
distance apart. If the microphone distances increase from inward outward,
the array increases. This method has the advantage of a better resolution,
especially for low frequencies.

Fig. 11.24. Ring-shaped arrangement of equally-placed microphones

The optimal level distributions for ring arrays are virtually photographed
for two examples in Figure 11.25. The diagram shows the area of the source
surrounded by a dark ring, providing a far better localization of the source
than the cross array.

Note that the visual quality of the image in the virtual photography is
strongly dependent on the level range used in imaging. The images appear
sharper and the source zones more concentrated if smaller level intervals are
used. Such tricks of the trade are understandably frequently implemented in
practice.
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Fig. 11.25. Virtual photographic imaging of the level gradient using a ring array.
The small pink dot indicates, here as well, the actual incidence angle. The small
dots symbolize the ring array. The distance between each microphone is ∆x/λ =
0.5. The level scale is given on the right.
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Fig. 11.26. The virtual photographic image of the level gradient produced by the
ring array looks like this when the given level gradient interval is decreased.
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11.6 Summary

The sound receivers discussed in this chapter are condenser and electrody-
namic microphones. The frequency responses of both types of microphones
are almost solely defined by their mechanical construction. Due to their char-
acteristic flat frequency response, exclusively condenser microphones are im-
plemented for high-precision measurements. The other types are sufficient
for taking relative measurements of level intervals or reverberation times, for
example. They may also serve as a more cost-effective option for audio equip-
ment. However, condenser microphones are the only option for measuring in-
tensity, whenever the phase response of microphones is essential, (see Chapter
2). The pick-up characteristic of microphones are primarily derived from the
fact that the net force impinging on the membrane is expressed as the sound
pressure integral over the membrane’s surface. This results in the formation
of a unidirectional effect of microphones, which is defined by a main and side
lobe structure, depending on the ratio of membrane diameter to wavelength.

The sound pressure frequency response of electrodynamic loudspeakers
has a band-pass characteristic. The frequency response of these is somewhat
constant in the transmission range. The main reason for this is due to the
fact that, at a certain distance to the volume source, the sound pressure is
proportional to both the time-dependent change in volume flow as well as
the acceleration of the membrane. The transmission range is limited by the
mechanical resonance (lower-bound) and by the electrical folding frequency
(upper-bound).

’Acoustic antennae’ consisting of an arrangement of a certain number of
spatially distributed microphones can be used to determine the sound pressure
level as a function of directivity. This can be done by summation of trans-
ducer’s output signals distributed over time. The pick-up characteristic of the
measuring device generally constructed in this way is similar to that of loud-
speaker arrays and possesses the same tendencies: wide main and side lobes for
smaller ratios of total converter dimensions to wavelength, and small-banded
lobe structures of high-resolution by small ratios of converter dimensions to
wavelength.

11.7 Further reading

The book ’Akustische Messtechnik’ (edited by the author M. Möser) provides
a valuable supplemental resource for elaboration of these topics. The original
in German will be published by Springer in 2009.
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11.8 Practice exercises

Problem 1

Which frequencies belong to the pick-up characteristic given in Figure 11.6 if
the membrane has a diameter of 25mm?

Problem 2

A recording accelerometer consists of a piezoelectric element which can be me-
chanically defined as an elastic layer (see the following schema). The underside
of the piezo element is rigidly affixed to the object. Let am be the object’s
acceleration. The elastic ceramic part is supporting a mass on top of it. The
output voltage U (after selecting an appropriate ’charging amplifier’ for a very
small charge flow) is proportional to the spring force Fs acting on the piezo
element U = EFs, whereby E signifies a converter element independent of
frequency. What is the frequency response function of U/am?

Fig. 11.27. Schema of a recording accelerometer for measuring structure-borne
sound

Problem 3

A microphone has a transmission factor of 10mV/Pa (1Pa = 1N/m2). An
alternating current of 20µV (rms-value) is measured at the output. The volt-
age has resulted solely from the internal noise of the microphone itself. How
high would the sound pressure level be if emitted from a microphone that is
ideal and noise-free, but otherwise of the same construction, and producing
the same amount of voltage at its output? Such a sound level is otherwise
known as the ’equivalent sound pressure level’.
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Problem 4

In general, at which angles of incidence ϑ lie breaks in the pick-up character-
istic of microphones with output voltage = 0

G(ω, ϑ) =
2J1 (kb sinϑ)
kb sinϑ

(b=membrane radius)? Specify the values for b/λ = 1; 2 and 3. How great
are the frequencies corresponding to each b/λ value for a microphone with a
diameter of 2b = 2.5 cm (2b = 1.25 cm)?
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Fundamentals of Active Noise Control

Methods in eliminating noise ’with noise’ were already described in the chapter
on sound propagation. Namely, noise power emissions can more or less be
reduced by placing two inversely phased sources at a small distance to one
another. In other words, one can refer to one of such a source pair as ’an
additional sound source introduced for the purpose of noise reduction.’ This
is the main idea behind what is known as active noise reduction, which is
also sometimes referred ’anti-noise.’ This term encompasses all major types of
noise reduction based on the use of electro-acoustic converters (as described
in Chapter 11). The disruptive, somehow unavoidable sound source is referred
to here as the ’primary’ source; additional electro-acoustic converters which
are intended for use as noise reducers are referred to as ’secondary’ sources.
The example of a noise reduction method outlined extensively in Section (3.4)
’Sound field of two sources’ shows, however, that such active methods only
work under ’favorable’ circumstances. Adding a second source only works in
the following special cases:

• An overall effective reduction of sound power emission can only be achieved
when the primary noise is composed of low frequencies. To actually im-
plement this reduction method, the frequencies have to be low enough for
sources which are placed at a small enough distance to one another, or the
primary sound emitter has to be very small in size.

• For higher frequencies, the secondary source may cancel out the primary
field at a specific point completely. This effect is, however, extremely lo-
calized. Inevitably, the power emission from two sources consists in the
sum of the partial performances (in the absence of the other source). For
high frequencies, the active method only makes sense if the objective is to
insulate a small area.

Such favorable special case conditions, either when there are low pitches or
when dealing with very small areas, can nevertheless be practically relevant.
Some application areas of active noise reduction are listed below:

M. Möser, Engineering Acoustics, DOI 10.1007/978-3-540-92723-5_12,  
© Springer-Verlag Berlin Heidelberg 2009  
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Fig. 12.1. Noise spectra of a turbo-propeller-driven aircraft without (NVS off)
and with (NVS on) active sound suppression. (taken from: J. Scheuren ’Aktive
Beeinflussung von Schall und Schwingungen’, Chapter 13 in G, Müller,G. and M.
Möser: Taschenbuch der Technischen Akustik, Springer-Verlag, Berlin 2004)

Fig. 12.2. Basic outline of noise control systems implemented in suppressing inter-
nal engine noise in automobiles. (taken from: J. Scheuren ’Aktive Beeinflussung von
Schall und Schwingungen’, Chapter 13 in G. Müller and M. Möser: Taschenbuch der
Technischen Akustik, Springer-Verlag, Berlin 2004)

• Only small areas to be insulated at low frequencies exist in environments
where it is important to protect the passenger’s ear, such as from propeller
noise in airplanes. Loudspeakers built into the headrests, for example, can
serve to specifically reduce the noise emitted by the propeller (see Figure
12.1).

• Similarly, engine noise in automobiles can be reduced either by mounting
similar types of loudspeakers or by introducing additional sources in close
proximity to the driver’s and passenger’s ear (see Figure 12.2).

• An especially effective method is the use of headphones, such as for pilots
in the cockpit. There are restrictions on the weight of the headphones of
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Fig. 12.3. Sound damping curve of a pilot’s headset with (a) and without (b) ac-
tive compensation (taken from: J. Scheuren ’Aktive Beeinflussung von Schall und
Schwingungen’, Chapter 13 in G. Müller and M. Möser: Taschenbuch der Technis-
chen Akustik, Springer-Verlag, Berlin and Heidelberg 2004)

course, alone due to reasons of the wearer’s comfort. This leads to poor
sound reduction for low frequencies. By reconstructing the inverse-phase
signal, the converse to the signal which is transmitted by the microphone
built into the ear cups of the headphones, and by suitable playback through
the microphone’s membrane, noise reduction can be greatly improved, even
for the very low-frequency drone (see Figure12.3). The signal from the
transmission tower is also incorporated into the signal.

• Sound propagation in channels also provides favorable conditions for active
noise reduction, at least at frequencies below the lowest cut-on frequency.
This is because the direction the sound field is travelling is apparent, and
the field consists of plane waves. Active noise dampers therefore provide a
reasonable alternative to their passive counterparts (Chapter 9).

• And finally, it should be noted that sound damping can be greatly im-
proved in the range of the mass-spring-mass resonance using the proac-
tive method of installing loudspeakers in double windows (see Figures 12.4
and 12.5 for basic construction and effect). The ’most favorable conditions’
are due to the fact that passive sound damping is poor near the charac-
teristically low tuned resonance. Active improvements are most effective
for small and light-weight windows. As already mentioned, among the ar-
eas of application are aircraft engineering and also automotive lightweight
construction .

The list of state-of-the-art applications in active noise control goes on. On
the other hand, broad-band active sound insulation is certainly not an option
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Fig. 12.4. Basic construction of a double window with optimized active noise
reduction features. (taken from: A. Jakob and M. Möser: Verbesserung der
Schalldämmwirkung von Doppelschalen durch aktive Minderung des Hohlraum-
feldes, DAGA 2000)

Fig. 12.5. Effect of the double window with optimized noise reduction (average
level in emission room); example of a test signal corresponding to the ignition and
warm-up of a helicopter. (taken from: A. Jakob, M. Möser, C. Ohly: Ein aktives
Doppelglas-Fenster mit geringem Scheibenabstand, DAGA 2002)

for large volumes. This text leaves little room for an extensive treatise on
the entire breadth of electronic and technical applications. More information
on the specific algorithms required for running processors can be obtained in
the supplementary literature recommended at the end of this chapter. The
following basic acoustic principles are listed below:

• The practical examples described above lead to the question of which
mechanisms limit the dimension of the desired effect. Overall, one can say
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that the amount of level reduction correlates with the inaccuracies inherent
in replicating the primary field in the image of the secondary source. If the
primary and secondary sound are not exact inverse opposites, their sum is
therefore a non-zero value. The replication error thus defines the dimension
of active level reduction. Perpendicularly propagating waves will be used
as an illustrative example of the effect of this error. Such waves add up to
a sound field sum of zero at one point. The ’error’ is simply represented
by ears or other ’receivers’ present in the field that are not located at
precisely the correct spot. This is the central issue in sound insulation for
small areas contained by large volumes, such as in the case of airplanes.

• From a basic standpoint, passive and active dampers both possess the same
basic characteristics: Both methods allow sound to not only be reflected,
but also to be absorbed.

• And finally, it is worth mentioning that secondary sound sources, as in
all the applications mentioned above, are not only capable of changing
the size of sound fields by means of interference and adding sound to
sound, but can also interfere directly in the process of emerging sound.
The latter is, however, only possible for a certain class of sound sources,
namely, those that are self-excited sources. There are many examples of
self-excited vibrations . We will mention just two, the tone of a resonator
in contact with air (blowing into a bottle) or flapping vibrations (such as a
cloth blowing in a strong wind). The section just preceding the summary of
this chapter outlines examples of physics and examples for self-excitations
and active methods of prevention.

12.1 The Influence of Replication Errors

The effects of active noise reduction, which are limited by the error in the
secondary replication of the primary sound field, can be easily quantified in
a simple model. Whatever the actual cause of the error, it can always be
attributed to the fact that the signals will slightly vary in amplitude and in
phase. The total pressure in complex notation (index p: primary, index s:
secondary) consists therefore of

ptotal = pp − ejΦps . (12.1)

The quantities pp and ps describe the amplitudes of the partial sounds. They
can be considered here as real and positive. Φ describes the phase error. In
the ’ideal case’ of complete cancellation due to wave interference, Φ = 0 and
ps = pp. The amplitude-absolute-value-square of the total field is

| p2
total |= (pp − ejΦps)(pp − e−jΦps) = p2

p + p2
s − 2pspp cos(Φ). (12.2)

The following therefore applies to
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∆L = 10 lg(p2
p/ | p2

total |) = −10 lg(1 +
p2
s

p2
p

− 2
ps
pp

cos(Φ)) (12.3)

the level reduction ∆L induced by the active method. The amplitude ratio
of the corresponding level difference between the primary and secondary field
levels can be expressed therein by

 Ldiff = Lp − Ls = 10 lg(p2
p/p

2
s) (12.4)

or
p2
s

p2
p

= 10−Ldiff/10 . (12.5)

The arrays of curves resulting from variations of Ldiff and Φ are depicted in
Figure 12.6. Only very small margins of tolerance result in significant level
reductions ∆L. For instance, one requires an amplitude error of less than
Ldiff = 0.5 dB and at most 4 degrees phase error to achieve a level reduction
of more than 25 dB. For level reductions of over 40 dB, even amplitude errors
of Φ = 0 may not exceed Ldiff = 0.1 dB (this correlates to a difference of only
one percent!) The more effective the desired active noise reduction procedure
is, the more precision is required, which is not technologically possible. The
limitations of noise reduction effects achieved by active methods is therefore
exclusively attributable to the errors always present in measurements of the
active replication of the primary field in the secondary field.

Fig. 12.6. Level reduction achieved in dependency of amplitude and phase errors
in the secondary field

In the arrangement described in Chapter 3 of two inverse-phased sources,
a finite distance between the two sources can be interpreted as the cause of
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the error. Only small distances relative to wavelength produce significant level
reductions. The effect is also spatially dependent.

12.1.1 Perpendicularly Interfering Waves

Another strongly spatially-dependent level reduction is obtained when re-
stricting the sound damping affect to only small areas, such as in the realm
of a passenger in an airplane or automobile. Qualitative statements regarding
the dimension of the insulated area can be made by assuming a simple model,
one where two sound waves are interfering at a 90-degree angle so that their
paths add up to zero at one point. If this main point of effect coincides with
the origin of the coordinate system and the directional wave paths encompass
the angles 45◦ to −45◦ around the y-axis, the sound field composed of both
advancing waves where ϑ = 45◦ is represented by both

ptotal = p0[e−jkx cos(ϑ)−jky sin(ϑ) − ejkx cos(ϑ)−jky sin(ϑ)] (12.6)

and
ptotal = −2jp0 sin[kx cos(ϑ)]e−jky sin(ϑ). (12.7)

This results in the amplitude-absolute-value-square of

|ptotal|2 = 4p2
0 sin2[kx cos(ϑ)]. (12.8)

The actively induced insertion loss is therefore

∆L = 10lg
|p0|2

|ptotal|2
= −10 lg[4 sin2[kx cos(ϑ)]], (12.9)

increasing with x � 0, because the partial sounds locally cancel each other
out without bound. It is evident here that the lines corresponding to the same
level reduction are lines x = const. A description of the spatial dimensions
of the effective areas could possibly be used to describe the boundaries of
such areas where a level reduction at least 6 dB to 12 dB – or more general
a multiple of 6 dB – has been reached everywhere. For the purposes of this
consideration, we set the argument in the logarithm of eq.(12.9) to a power
of two with even exponents

4 sin2[kx cos(ϑ)] = 2−2N . (12.10)

Because −10 lg(2−2N ) = 20N lg(2) = 6N , N = 1 denotes the 6 dB-boundary,
N = 2 the 12 dB-boundary (etc.). Obviously this means

sin[kx cos(ϑ)] = 2−(N+1). (12.11)

For N ≥ 1, the right side is always smaller than 1. This is why we can replace
the sin function on the left with its argument
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kx cos(ϑ) = 2−(N+1). (12.12)

Thus, using ϑ = 45◦, we finally obtain

x/λ =
1

π
√

2
1

2N+1
=

0,225
2N+1

. (12.13)

The zone characterized by N is sufficient, due to its symmetry of −x to x,
resulting in a zone ∆x which is twice as wide

∆x/λ =
0, 45
2N+1

. (12.14)

Even for the rather lax constraint that the level be reduced by at least 6 dB,
the width of an area – where this level reduction is to either be attained or
surpassed – only amounts to slightly more than one-tenth of a wavelength, so
about 34 cm at 100Hz, and only 3.4 cm at 1000Hz. Each time the level reduc-
tion requirement is increased by 6 dB, the zone is reduced by half. Therefore,
only 0.055 wavelengths remain to obtain a reduction of 12 dB. This example
dramatically underscores the aforementioned fact that active noise control is
quite often optimal for low frequency noise. In the case of medium- or high-
frequency noise reduction, airplane or automobile passengers would barely be
able to move around or turn their head to enjoy sufficient noise reduction at
such frequencies.

12.2 Reflection and Absorption

Active noise control methods are not only able to reflect impinging sound
waves. Moreover, secondary sources may absorb the primary incident power
flow, as in the passive case. This aspect will be elaborated in the following
sections. The simplest way to describe the phenomena of simultaneous reflec-
tion and absorption is to imagine a one-dimensional continuum, an air-filled
channel or duct to model actively-induced noise reduction. The frequency is
located below the lowest cut-on frequency of the first non-uniform mode.

Fig. 12.7. Principle sketch of a wave field made up of primary and secondary
components
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The pertinent model setup is shown in Figure 12.7. The depicted duct
categorically represents all such structures, such as a ventilation duct or a
flue, where the active source is installed along the side. The source is assumed
to radiate sound equally in all spatial zones to the left and to the right of it.
In other words, we assume an omnidirectional source. If its sound field is an
r-multiple of the impinging wave, the net field will be assigned spatial zones
to the left (zone 1, x < 0), and to the right of the source (zone 2, x > 0)

p1 = p0(e−jkx + rejkx) (12.15)

and
p2 = p0(1 + r)e−jkx . (12.16)

The ’downstream’ zone 2 is precisely that which is completely sound-insulated
by p2 = 0 given r = −1. In the ’upstream’ zone 1, a standing wave develops:
p1 = −2jp0 sin(kx). It is evident here that the secondary source functions as a
reflector. The dimension r can therefore be denoted as the actively induced re-
flection factor. The total obliteration of the waves through interference down-
stream where r = −1 is characteristic of ”‘soft”’ reflections, whereby the sound
pressure is solely reduced to the pressure of the medium (air) at the point of
reflection, with p2(0) = 0. Due to the affect exerted by the secondary source
on the net field, no net power is flowing the tube cross-sections to the left and
to the right of the source. Therefore, the secondary loudspeaker neither loses
nor receives energy to or from the channel in the process.

The power flow emanating from the secondary source does change for other
factors r, however. In general, it can be said that the power flowing from the
loudspeaker to the channel PL must equal the difference between both powers
to the right and to the left of the loudspeaker, which are transported in the
x-direction

PL = P2 − P1 . (12.17)

If, from the perspective of the secondary source, the net power flowing to the
right P2 is greater than the power flowing to the left P1 through the cross-
section, where P2 > P1, the loudspeaker is losing power to the channel. If, on
the contrary, P2 is less than P1, that is P2 < P1, the loudspeaker is absorbing
power from the channel and acts as an energy sink. For P1,

P1 =
Sp2

0

2%c
(1− |r|2) (12.18)

(S=Channel cross-sectional area), and for P2,

P2 =
Sp2

0

2%c
|1 + r|2 . (12.19)

It follows that the power introduced into the channel by the secondary source
can be described as
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PL =
Sp2

0

2%c
[|1 + r|2 − (1− |r|2)] . (12.20)

Of course, the secondary wave can be modulated according to amplitude or
phase, depending on the loudspeaker’s input signal. This can be expressed by
the complex factor r

r = Rejφ (12.21)

R refers to the absolute value, or amplitude, of r. Using

|1 + r|2 = (1 +Rejφ)(1 +Re−jφ) = 1 +R2 + 2R cos(φ) (12.22)

eq.(12.20) becomes

PL = 2P0(R2 +R cos(φ)) = 2P0R(R+ cos(φ)), (12.23)

where, for the sake of simplicity, the power of the incident wave alone

P0 =
Sp2

0

2%c
(12.24)

has been used. Obviously, the phase φ can either be adjusted to let the loud-
speaker introduce power into the channel or, for negative cosφ, allows the
loudspeaker to function as an energy sink . For φ = 180◦,

PL = −2P0R(1−R) (12.25)

is valid. As can be easily illustrated by differentiating the equation by R, the
maximum energy loss from the channel to the loudspeaker occurs at R = 1/2.
In this case,

PL,max = −P0/2 (12.26)

is true. Due to r=-1/2, the absorption incurred by the secondary source would
cause the sound field in zone 2 downstream of the loudspeaker to be divided
in half, leading to a level reduction of 6 dB. Sufficiently phase-modulated
loudspeakers, relative to the impinging field, can therefore be implemented
as energy sinks. The energy conservation law is not violated here, since loud-
speakers represent reversible converters, which either convert electrical into
acoustical energy, or vice versa, acoustical into electrical energy. The direction
of the power flow is therefore only a matter of the electrical and mechanical
conditions driving the loudspeaker. The foreign, or primary, sound field is the
one that the loudspeaker must counteract. If the net pressure in front of the
membrane is phase-shifted by 180◦ to the perpendicular velocity at the sur-
face of the membrane, the loudspeaker invariably acts as a sound absorber.

Theoretically, loudspeakers can also be used as generators supplying elec-
trical power to the network. In this case, however, the acoustic power is ex-
tremely negligible compared to the loss of electrical power caused by this



12.2 Reflection and Absorption 393

Fig. 12.8. Active noise reduction in a channel with two secondary sources

source’s internal electrical resistance. It is precisely this loss of electrical power
which initially must be compensated for in the operation of the loudspeaker.

An even more effective form of sound absorption than the method de-
scribed above is combining a secondary source with a reflection. Such con-
ditions even allow the full absorption of the primary wave. The advantage
compared to a pure reflection damper (defined as r = −1 in the above sec-
tions) is evident. The spatial zone downstream is likewise completely muted,
preventing standing waves, potentially susceptible to resonance occurrences,
from developing upstream. It is precisely this complete absorption which elim-
inates such resonances. The reflector can thus be passively – such as through
an open duct end – as well as actively induced by a secondary source. The
case of setting up a secondary loudspeaker as a reflector will be presented
here, as also shown in Figure 12.8.

To this end, the secondary loudspeaker pair to the left of the sum may not
produce a secondary sound field. A source combination can be set up which
does not emit any sound from one certain direction, using a delay line. The
secondary field in zone 1 to the left of both sources exists in

p1,sec = Ap0[ejkx +Bejk(x+l)], (12.27)

where A and B refer to the complex amplifications depicted in Figure 12.8.
The expression ejkl in the wave term for the left source simply states that the
sound emitted from this source reaches any location to the left of it if both
sources were to simultaneously emit a signal. If the left source is triggered
using

B = −e−jkl (12.28)

p1,sec = 0 will apply to the entire zone 1. In this case, the amplification B
represents an interconnection time delay. At the moment that a time delay
signal is transmitted from the right secondary source to the left secondary
source, the latter will reproduce the right secondary source’s field, inverse-
phased, so that overall, no secondary sound field can be emitted to the left.
Even outdoors, a source pair on a half-axis such as this would not produce
any field. An example is shown in Figure 12.9.
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Fig. 12.9. Outdoor sound emission of sound sources which together produce the
sound field p = 0 via time-delay drive to the right. The source distance in this
example is λ/4.

The only thing left to do is to select an overall drive A so that both sources
together compensate for the primary field approaching from the left in zone
3. The secondary field in zone 3 is

p3,sec = Ap0[e−jkx +Be−jk(x+l)] . (12.29)

Of course at this point, the sound requires more time to reach the receiver at
location x from the left source than from the right source, which explains the
delay term in parentheses in the second expression. Since B = −e−jkl once
again produces a time delay,

p3,sec = Ap0[e−jkx − e−j2kle−jkx] = Ap0e−jkx[1− e−j2kl] (12.30)

generally applies. The complex amplification A required to compensate the
primary wave pprim = p0e−jkx is therefore

A = − 1
1− e−j2kl

, (12.31)

in order to meet the condition p3,sec = −pprim. This amplification A obviously
cannot be applied to all frequencies, as the above equation requires infinite
amplification for 2kl = 2nπ, or, expressed in wavelength

l = nλ/2 . (12.32)

This fact provides an immediate explanation for the matter. For the frequen-
cies and wavelengths defined here, both secondary sources are either exactly
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inversely phased or exactly in phase. Therefore, the fields to the left and to
the right of them must be equal in amplitude. If, as intended, the secondary
sources combined emit no field to the left, they will not transmit any sound
field to the right either. However, in order to initiate a transmittal to the right
for the purpose of compensation, infinite amplification would be required. In
practice, this means that limits to a usable frequency range must be set.

It is evident that within a usable frequency band, the secondary source
structure as described above actually forms an active absorber. The approach-
ing wave impinging on the loudspeaker is not reflected, because the source pair
is not transmitting any signal whatsoever to zone 1. The impinging sound
power does not arrive in zone 3 either, because here, a complete muting has
taken place. This means that the impinging sound energy, as initially men-
tioned, has been completely absorbed. Simple calculations show that the right
sound source downstream takes on the role of a reflector, while the left source
functions as the absorber. Since standing waves always develop in front of
reflectors and since, on the contrary, standing waves are an indicator for re-
flectors, the left source has to be the absorber. The total wave field between
the sources in zone 2 causes the right source to act as a reflector. Here,

p2 = p0[e−jkx +Aejkx +ABe−jk(x+l)] = p0[e−jkx +A(ejkx − e−jk(x+2l))].
(12.33)

Following some simple calculations and after substituting for A, one obtains

p2 = p0
e−jkx − ejkx

1− e−j2kl
. (12.34)

The sound field between both secondary sources therefore exists in a standing
wave emerging from the soft reflection of the right loudspeaker, resulting in
p2(x = 0) = 0.

12.3 Active Stabilization of Self-Induced Vibrations

Under certain conditions, electro-acoustic sources can be used to intervene
in sound-producing mechanisms. This is an option for self-induced and self-
perpetuating vibrations. Such vibrations can not only be reduced, but even
eliminated.

There is a wide variety of types of self-excited vibrations. Sources for such
self-induced vibrations are all wind and string instruments, such as flutes, clar-
inets, saxophones, bassoons, violin, cello and contrabass. In addition, many
current-induced types of self-excitation include blowing over a bottle (known
as the Helmholtz resonator) or an airfoil, constructions such as smokestacks,
bridges, or ducts.

The most important aspect of self-induced vibrations can perhaps be illus-
trated using the example of aerodynamically induced self-excitation processes.
For objects around which air is flowing, the air flow paths form the perimeter
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of the body, as indicated in Figures 12.10 and 12.11. Symmetrical structures
are enveloped by equally dense flow paths above and below. According to the
Bernoulli law, the condensed flow paths result in underpressure. If the body
is at rest, the underpressures above and below are equal and the net force is
thus zero. The situation changes, however, if the body, such as a part of an

Fig. 12.10. Incident flow of a resting body (Sketch)

Fig. 12.11. Incident flow of a body travelling upward (Sketch)

oscillator, possesses its own velocity. If the velocity is directed upward, as Fig-
ure 12.11 shows, the flow paths become more dense above than those below,
causing the body to be pulled upward. If the velocity is directed downward,
the net force is likewise directed downward. Thus all external forces induced
point toward the same direction as the velocity of the body itself.

At this point, let us assume that the air-cushioned body is resting on
a spring bearing, for example, at the end of a beam, as shown in Figure
12.12. The mechanical structure essentially works as a simple resonator. The
body makes up the mass m, the elastic beam represents the spring stiffness
s. Suppose a small vibration already exists due to contingencies, for example.
As soon as the profile at the end of the beam surpasses its resting state
and is brought into motion at its momentary maximum velocity, it incurs an
external force in the same direction as the velocity. It is as if the body is
pushed at just the right moment, an impulse which reinforces the vibration

v=0

v
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Fig. 12.12. Resonator consisting of a beam (= spring-loaded bearing) and profile
(= mass) in the current. The circle representing the secondary force is also included
in the graph to serve as an illustration for subsequent discussions in this section.

at each cycle. This causes the amplitudes to increase as if they were ’growing
by themselves.’ The energy required for this process is obtained from energy
the reservoir ’current.’ One can use analogy of a child’s swingset, to which
one gives a push at precisely the right moment. A prototypical time graph
in Figure 12.13 depicts the excitation process. The fact that the amplitudes

Fig. 12.13. Time graph of a self-induced excitation vibration

do not continue to increase after the onset of the next excitation event can
be explained by its non-linear constraints. In the example of the body in
the current, the resistance the body encounters increases as the body moves
through the current. The inhibiting resistance force grows proportionally to a
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higher power of the profile’s velocity v, compensating the aerodynamic forces
at higher velocities. In this manner, the vibration reaches a periodic critical
cycle (which is no longer strictly sinusoidal due to its non-linearity).

The basic physical models we considered in the above can be summarized
in a characteristic curve showing the basic dependency of aerodynamic force
F (v) on the profile velocity (Figure 12.14).

Fig. 12.14. Dependency of aerodynamic force on the profile velocity

Because the product of force and velocity is equal to the vibrational power
exerted on the beam, the resonator takes up power, as long as this product
is larger than zero. This leads to an increase in the vibration for small am-
plitudes. Above a certain (non-linear) boundary, the energy supply is shut
off completely. At this point, the characteristic curve leaves the linear realm,
taking on negative values. No additional power is added to the net energy
balance during the course of a complete vibration cycle.

Equations can also easily describe this type of event, at least in its linear
portion. The general oscillation equation for resonators is

m
d2x

dt2
+ r

dx

dt
+ sx = F (v) + F0. (12.35)

F0 represents the small force induced by contingencies (such as by an eddy
passing by. This is the force needed for the onset of the vibration. As usual, m
represents the mass, s the stiffness of the oscillator and r the friction constant
which accounts for the attenuation.

If you just want to take the excitation event into consideration, the depen-
dency of the aerodynamic force F (v) can be substituted with the first term
of the Taylor series:
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F (v) ' raerov. (12.36)

As mentioned in the previous passage, the force and velocity point in the same
direction in the range of small vibrations. For this reason, the dimension raero
is therefore a real number and larger than zero. The equation of motion is
therefore

m
d2x

dt2
+ (r − raero)

dx

dt
+ sx = F0. (12.37)

It is evident here that the aerodynamic force acts as a friction term with
negative damping. Once again, this only describes the aforementioned energy
principle that a negative damper coefficient indicates that external energy
flows toward the oscillator. Obviously, an excitation event occurs when the
aerodynamic coefficient outweighs

instable: � raero > r. (12.38)

Because the self-excitation grows by itself, this is described as an ’instable’
process. By contrast, there is stability in the absence of vibrations for

stable: � raero < r. (12.39)

In this case, no excitation occurs in the first place, as the energy loss is
greater than the energy gain. Many everyday structures we encounter are
potential candidates for self-excited vibrations. These include constructions
such as bridges in wind, as well as airfoils in aircrafts. These structures only
remain stable due to the existence of sufficient damping effect. Aerodynamic
forces may certainly possess more complex properties than in the simplified
(laminar) examples described above. Nevertheless, what all current-induced
self-excitations have in common is that they tap into the vibrational energy
of the current by means of a self-regulating mechanism, as a whole bringing
about negative attenuation. Ribbons or cloths flapping in the wind, as well
as wind-induced waves on water are all self-excited phenomena, whereby only
the forces and displacement are local events.

In the field of acoustical engineering, the Helmholtz resonator perhaps
represents one of the most important examples of self-induced sound. The
physical processes can be considered akin to a beam with a profile. The air
mass in the opening or bottle neck experiences by way of the air current a
force pushing it up or down, as long as its velocity is likewise pointing up
or down, respectively. The larger the velocity of the air mass, the larger this
force. Therefore, the same basic rules governing the effect of aerodynamic
force on the profile velocity expressed by the characteristic curve shown in
Figure 12.14 apply to the occurrence of sound in Helmholtz resonators. As an
aside, the outward transmittal propagation of the sound is simply a byproduct
of the excitation event and contributes only negligibly to the damping effect.
The level is much greater inside the resonator than outside in the free field.

The idea of attenuating this or other self-excitations using electro-acoustical
sources and thereby eliminating them makes sense. The discussions carried out
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in this chapter prove that this is possible. As shown above, converters can also
be used as mechanical energy absorbers, causing electrically-induced attenu-
ation in a self-excited structure. Oscillators are implemented for this purpose
in excited beams with profiles (Figure 12.12). To ensure that the right oscil-
lation frequency for the secondary force is met, the exciter is addressed by
a sensor signal that has been processed by an amplifier and a phase-shifter.
Loudspeakers addressed by a microphone signal serve to extract the sound
energy of Helmholtz resonators (Figure 12.15).

Fig. 12.15. Helmholtz resonator, composed of an air cavity (responsible for the stiff-
ness) and an opening (contains the oscillating mass) with electro-acoustical feedback
path consisting of microphone, amplifier, phase-shifter, and loudspeaker for active
stabilization

Precision is not the object when extracting vibrational energy in an electro-
acoustical absorption circuit. As long as only the energy loss due to the sec-
ondary forces is greater than the energy gain invoked by the self-excitation
event, the vibration is completely extinguished, preventing the excitation pro-
cess from happening in the first place. If loudspeakers or oscillators are intro-
duced once the critical cycle has begun, the vibration, as in any attenuation
process, gradually subsides, depending on the occurring loss dimensions. The
simple calculations utilizing the resonator model in eq. (12.35) show that ’ac-
curate replications’ play virtually no role here at all. This time, only the ac-
tively induced force is subtracted from the right-hand side (arbitrarily assigned
a negative value so that a 0◦ phase-shift indicates the best case scenario):

m
d2x

dt2
+ r

dx

dt
+ sx = F (v)− Fact + F0 (12.40)

As in the above, once can substitute both forces with a linear approximation
if the vibrational amplitudes are small, for F (v) with eq.(12.36), and for the
other force Fact, with
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Fact ' ractv. (12.41)

The following applies for the range of small amplitudes, (already notated
as ω for pure tones):

(jωm+
s

jω
+ r − raero + ract)v = F0. (12.42)

The main difference between the above and eq.(12.37) is that, while r and raero
are real and positive values, ract is a complex value determined by amplifier
and phase-shifter,

ract = RactejΦ, (12.43)

where Ract, of course, represents the absolute value of ract. Thus eq.(12.42) -
split up into real and imaginary components - exists in

([jωm+
s

jω
+ jRact sin(Φ)] + [r − raero +Ract cos(Φ)])v = F0. (12.44)

As is generally known, the root of the imaginary component indicates the
resonance frequency of the impedance (its value is the entire value given inside
the parentheses). The resonance frequency is thus derived from

ωm− s

ω
+Ract sin(Φ) = 0. (12.45)

Obviously, the complete system possesses a different resonance frequency, de-
pending on phase-shift and amplification, than that of just its purely mechan-
ical passive component. By coupling the passive component with an active cir-
cuit, one produces a new mechanical-electrical hybrid , a mechanical-electrical
hermaphrodite structure, whose properties are determined by mechanical as
well as electrical parameters. The stability properties of the hybrid oscilla-
tor can be derived from the positive or negative sign of the impedance-real
component. If this is larger than zero, it becomes stable. This is the case for

Ract cos(Φ) > raero − r , (12.46)

or, expressed without dimensions, for

Ract/r >
raero/r − 1

cos(Φ)
. (12.47)

If eq.(12.47) is not satisfied, instability ensues, with its characteristic self-
perpetuating accumulating process. The stability boundary indicates the
boundary between the zones of stability and instability in the (Ract/r, Φ)
level. The borderline is depicted in Figure 12.16 for some values of raero/r.
As mentioned before, errors only arise if the stability boundary is crossed.
Changes in parameters that occur within the stable zone are irrelevant. This
lends to some flexibility in choosing the phase and amplification to eliminate
the oscillations. The effects and principles described above have been shown
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Fig. 12.16. Stability chart of actively induced vibrational obliteration

Fig. 12.17. Amplitude spectra on internal microphone

in experiments with Helmholtz resonators. Figure 12.17 shows two typical
spectra using the structure shown in Figure 12.15. Shown here are the am-
plitude spectra on the microphone inside the resonator. The level here can
be as high as 140 dB! This results in a wide scope of the parameters for the
amplification of the electro-acoustical circuit, as shown in Figure 12.18. The
level reductions attained for each resonance frequency are shown here. These
are given relative to a loudspeaker that has been shut off.

The amplitude spectra in Figure 12.17 show technically and perceptually
effective active attenuation obtained using the predetermined parameters. At
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Fig. 12.18. Level reduction in the resonance frequency

the same time, an accentuation of the existing wide-banded noise can occur
in another frequency range as well. Therefore, parameters which provide a
’favorable environment’ in terms of stabilization for the self-excited vibration
can certainly have negative effects on other sound components. Problems can
particularly arise if two different oscillation modes with different resonance
frequencies are involved in the self-excitation process. Under certain condi-
tions, controlling one mode can actually bring out the destabilization of an
other. As seen in the spectrum in such a case, one peak is reduced while
another grows above the noise.

12.4 Summary

Active methods which utilize the principle of interference are only suitable
for application in noise control if the space and/or time-dependent properties
of the primary noise field to be reduced have a simple structure. A typical
scenario calling for the application of such active noise control methods is
engine noise in small areas to be protected (such as a motorist’s ear or a pilot’s
noise-deterrent head phones). Sound reduction provisions can entail either
the reflection or the absorption of the sound field incidence present at the
relevant point. Replicating the secondary sound field as accurately as possible
is essential in producing significant sound level reductions. If, for example,
the direction of propagation cannot be determined, the noise reduction will
be severely limited at some points in space, depending on the frequency.

Since electro-acoustic sources can also be utilized as sound energy sinks,
such sources can be implemented in order to control accumulating, self-
induced sound and reverberation processes. Stabilizing the otherwise instable
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process in this manner eliminates the problem entirely. Errors in the parame-
ters of the secondary circuit are only detrimental when they cross the bounds
of the broad stability area.

12.5 Further Reading

The chapter ’Aktive Beeinflussung von Schall und Schwingungen’ by Joachim
Scheuren (Chapter 13 in G. Müller and M. Möser: Handbuch der Technischen
Akustik, Springer, Berlin 2004) is recommended for an informative overview
of this topic. A supplemental and in-depth exploration of the algorithms and
control strategies is offered in Hansen and Snyder’s book ’Active Control of
Noise and Vibration’, E and FN SPON, London 1997.

12.6 Practice Exercises

Aufgabe 1

Two waves are propagating opposite to one another in a one-dimensional wave
guide, a rigid tube. Show the general condition that the net power inside the
tube consists solely of the power difference between the waves propagating
in the +x-direction and in the −x-direction. Account for all powers in the
positive x-direction in terms of the time-averaged power.

Problem 2

A single loudspeaker mounted on the side of a one-dimensional wave guide,
as shown in Figure 12.7, can be used as a sound absorber. How large is the
resulting maximum absorption coefficient? How does the secondary source
have to accordingly be operated? In the optimal case, how great is the net
power flow to the right and to the left from the secondary source, and into
the secondary source itself?

Problem 3

As shown in the following outline, the sound field of the primary volume
velocity source Q0 is to be actively reduced by introducing two large secondary
volume sources with the volume velocity flows −βQ0, each at a distance of h
to the primary source. How great is the total sound power emitted from all
three sources in dependence of both β (a real value) and kh? In addition, find
the frequency response function of the sound power, if the net volume velocity
flow of all three sources together amounts to zero (β = 1/2).

Finally, determine the amplification factor β for the case of the smallest
possible power resulting from all three sound sources together.
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Fig. 12.19. Arrangement of primary sourceQ0 and both secondary opposing sources



13

Aspects and Properties of Transmitters

It actually goes without saying that an essential cornerstone of a book on
acoustical engineering would be a section devoted to the basic properties of
transmitters. The previous chapters served as an extensive treatise on the en-
tire scope of transmitters, whether they are microphones, loudspeakers, sound
damper channels, walls, elastic bearings. All of these constructions transmit
a time-dependent stimulus signal and in the process, change the signal. As
transmitters are often referred to as ’systems,’ this chapter could otherwise
be titled ’The Basics of System Theory’.

In general, a transmitter, or system, can be understood as any mechanism
which can create an output signal out of the distortion of the original time-
dependent input signal. The excitation signal x(t) already is referred to as
’input signal’ and can be considered the cause of a time-dependent process
producing the output signal from the input signal. The output signal y(t) for
a given input signal can therefore be understood as the ’effect’. The specific
selection of input x(t) and output y(t) depends on the circumstances, the
intention of the analysis, and - last but not least - on the observer. For example,
it makes most sense to consider the sound pressure time-dependency at the
line-in of a microphone as the input signal and the microphone voltage as
the output signal; but it is perfectly conceivable to use the electrical time-
dependent current in the circuit as the output, for example. If one carries out
a local analysis of a loudspeaker, the voltage supply going into the loudspeaker
is typically defined as the input and the local membrane velocity or membrane
acceleration is usually defined as the output. If one is looking for the radiated
signal, one might then consider the sound pressure signal at a given point as
the output. If, for whatever reason, the air-borne particle velocity should be
of interest, this could also be chosen as the output signal.

The operation L will henceforth describe the exact manner in which the
transmitter transforms the input into the output signal:

y(t) = L[x(t)] . (13.1)

M. Möser, Engineering Acoustics, DOI 10.1007/978-3-540-92723-5_13,  
© Springer-Verlag Berlin Heidelberg 2009  
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This allows the assignment of any distortion of any input signal x(t) to any
output y(t) brought about by any constraint L. As an example, there is a
given filter which distorts any periodic triangular signal to its corresponding
sine function (of the same frequency).

Many transmitters are mentioned in this book, an additional example is
a rectifier. Every one of us who has a mains connection at home has more or
less as many rectifiers as electrical devices. A rectifier is a type of signal filter
which transforms an alternating current into direct current voltage. A similar
transmitter is a squaring device, which will be used as an example later in
this chapter.

13.1 Properties of Transmitters

13.1.1 Linearity

Transmitters can be linear or non-linear. Systems are referred to as linear
when the principle of superposition holds. That means,

L[c1x1(t)] + L[c2x2(t)] = c1L[x1(t)] + c2L[x2(t)] (13.2)

is true for any signal x1(t) and x2(t) and corresponding constants c1 and c2.
The reaction of the transmitter to a linear combination of signals is equal to
the sum of the partial reactions.

Nearly all transmitters mentioned in this book behave as linear systems,
given that the input signals remain within the same limits. For instance, air-
borne sound transmission is linear below approximately 130 dB. For very high
sound levels beyond 140 dB, however, sound propagation in air becomes non-
linear. Also electro-acoustic converters are linear at low excitation levels. Only
at high sound pressures non-linearities occur in microphones. Non-linearities
occur in loudspeakers somewhat more often when their input voltage is set at
high levels for the sake of high-volume output, especially in more economical
loudspeaker systems.

A simple example of a non-linear transmitter is the squaring device y(t) =
x2(t). This example already points out that non-linear systems change the
signal frequency of a harmonic input signal. For x(t) = x0 cosωt is

y(t) = x2(t) = x2
0 cos2 ωt =

x2
0

2
(1 + cos 2ωt) . (13.3)

The output signal thus consists of a constant component as well as an output
at double the input frequency. Overall, this entails the general consequence
of a non-linearity. That is, each input frequency results new frequencies in
the output. Even though this is often the case, new resulting frequencies do
not always have to be multiples of the input frequencies, as is the case with
squaring devices. As a matter of fact, frequencies can be halved or result in
fractions of the input signal frequency, for example.
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As demonstrated above, the transition between the linear and non-linear
realm of a transmitter is fluid as opposed to abrupt. For this reason, speci-
fication measurements are always given for the degree of non-linearity. The
best known type of non-linearity is the so-called distortion factor. This con-
sists of the amplitude ratio of the sum of the amplitudes of all the harmonic
frequencies not in the fundamental frequency (all the frequencies not existing
in the input signal) to the sum of the amplitudes contained of the input fre-
quency. Rather than simply categorizing a transmitter as ’linear,’ specifying
the distortion factor as a function of input amplitude and input frequency is
much more precise. The distortion factor is often quite small, however. The
example of air-borne sound transmission below 100 dB is just one of many
such examples addressed in this book.

Studio technicians who used the old-fashioned tape recorders will remem-
ber adjusting the amplification before recording in order to set the distortion
factor to approximately 0.03.

13.1.2 Time Invariance

A transmitter is referred to as time-invariant when any time delay τ produces
an equal delay in the system reaction L[x(t)]. For any x(t) and τ

y(t− τ) = L[x(t− τ)] (13.4)

applies, presuming y(t) = L[x(t)] for the non-delayed system.
Almost all transmitters mentioned in this book not only exhibit linear be-

havior, but also can be assumed to be time-invariant. Time-variant systems
are systems where their parameters undergo noticeable changes after a certain
amount of time. For instance, the temperature can change in a sound studio,
and therefore the speed of sound in the room changes too; sound propagation
in rooms is thereby a time-variant transmission. However, the rise in temper-
ature usually takes place so slowly that time-invariance is presumed for short
time intervals of just a few minutes each for measurements of such sound
events.

The only time-variant system actually addressed in this book is sound
transmission where the transmitter and receiver are moving relative to one
another (refer to the section on sound propagation in moving medium). This
is because the duration of the sound event’s travel from the location of the
sound source and the microphone is time-dependent itself. This time-variant
effect is known as the Doppler shift in the signal frequency. Not only non-
linear systems, but also time-variant systems exert changes on the input signal
frequency. Such transmissions are thus characterized by a change in the input
frequency.

On the other hand, experience seems to show that linear and time-invariant
transmitters have a consistent frequency. If the signal input of a linear and
time-invariant system consists of a harmonic signal (a cosine function) at a
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given frequency, the output produces a likewise harmonic signal at the same
frequency. This resulting signal may differ from the input solely in amplitude
and phase. This quality is implicit in nearly every example offered in this
book. Indeed, it can be shown that the law of frequency consistency described
here applies to all linear and time-invariant transmitters. This will be proven
in the following section.

13.2 Description using the Impulse Response

The simplest way to describe the effect of an inhomogeneous system is to
theoretically divide it into many (in the extreme case, into infinitely many)
indivisible parts, analyzing the effect of each of these minuscule components
separately. For example, this analytical method is used to examine the gravity
field of an inhomogeneous body. The object is divided into infinitely small
cubes with constant density. The gravity field can thus be determined for
each of these small cubes, whereby the whole is of course the sum of these
parts (this comes down to describe the total field using an integral).

Describing the transmission of a linear and time-invariant system is done
the same way. The input signal is first divided up into its most basic and
indivisible components. Then, one examines the transmission of these parts
and finally constructs the output signal by way summation these components
together. This last step utilizes the prerequisites of systematic linearity and
time-invariance.

For didactical reasons, we will use finite components in the following anal-
ysis first; arbitrarily narrow components will be considered a little later.

First one must identify the component itself, consisting in the rectangular
function r∆T (t) shown in Figure 13.1 , whose value is 1/∆T inside the interval
−∆T/2 < t < ∆T/2. Outside of this interval, this function’s value is r∆T (t) =
0. The integral over r∆T (t) is thereby independent of ∆T equal to 1, as long
as the integration area fully contains the interval −∆T/2 < t < ∆T/2 (a, b >
∆T/2):

b∫
−a

r∆T (t)dt = 1. (13.5)

The decomposition of the input signal x(t) into a step function consisting of
a series of shifted components results in the approximation function

x∆T (t) =
∞∑

n=−∞
x(n∆T )r∆T (t− n∆T ) (13.6)

(see Figure 13.2), which, of course, is only a rough estimate of the original
function x(t) for finite ∆T . Only after considering the bound ∆T → 0 can we
approach an accurate model, because only then the definition of ’indivisible’
components actually has been made.
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Fig. 13.1. Step function r∆T (t)

Fig. 13.2. Original signal x(t) and its reconstruction x∆T (t) using step functions

If the necessary prerequisite condition of a linear and time-invariant trans-
mitter is to be fulfilled, calculating the transmission of x∆T (t) is simple, as
long as the reaction of the system to a single rectangular function r∆T (t) is
known. This information must be assumed to be given, therefore

h∆T (t) = L[r∆T (t)] (13.7)

is known. Due to linearity and time-invariance
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y∆T (t) = L[
∞∑

n=−∞
x(n∆T )r∆T (t− n∆T )] =

∞∑
n=−∞

x(n∆T )L[r∆T (t− n∆T )]

=
∞∑

n=−∞
x(n∆T )h∆T (t− n∆T ) (13.8)

apply for the system response to the input x∆T (t).
When ∆T → 0 the rectangular function approaches the infinitely narrow

Dirac delta function:
lim
∆T→0

r∆T (t) = δ(t) (13.9)

which only has an infinitely large value other than zero at t = 0. This delta
function meets the criteria of not being able to be divided further. The integral
over the delta function exists and is equal to 1 (a, b > 0):

b∫
−a

δ(t)dt = 1. (13.10)

The delta function is also referred to as a special function due to its unusual
appearance.

As ∆T gets smaller, the individual rectangular functions r∆T (t − n∆T )
come closer together, and thereby increasing in density. In the limiting case
∆T → 0 the components r∆T (t − n∆T ) are infinitely close to one another,
causing the discrete delay time n∆T to cross over into the realm of the contin-
uous variable τ : n∆T → τ . Summation in the equation for y∆T (t) results in an
integration, the discrete distance ∆T between two rectangular functions then
becomes the infinitely small element dτ . This leads to the exact description
of the system output:

y(t) =

∞∫
−∞

x(τ)h(t− τ)dτ . (13.11)

Obviously, h(t) denotes the response of the transmitter to the delta-shaped
input,

h(t) = lim
∆T→0

h∆T (t) = lim
∆T→0

L[r∆T (t)] = L[ lim
∆T→0

r∆T (t)] = L[δ(t)] . (13.12)

The system response h(t) to the delta impulse at the input is known as the
impulse response.

The integral on the right side of eq.(13.11) is referred to as the convolution
integral, because the integration variable appears in h(t− τ) with a negative
sign. This inversion of the order can be imagined by folding a sheet of paper
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at τ = t. The name ’convolution’ is simply an allusion to this technique of
’folding’ the function. It’s purpose on the other hand is to decompose the
input signal into indivisible delta-function parts

x(t) =

∞∫
−∞

x(τ)δ(t− τ)dτ , (13.13)

which enables the calculation of the transmitter output as shown above. The
operation on the right-hand side of eq.(13.11), which is applied to the in-
put signal x(t) and the impulse response h(t), is known as ’convolution.’ The
output signal of a linear and time-invariant transmitter is equal to the convo-
lution of the impulse response and the input signal. The input signal and the
impulse response are mutually interchangeable, meaning that

y(t) =

∞∫
−∞

x(τ)h(t− τ)dτ =

∞∫
−∞

h(τ)x(t− τ)dτ , (13.14)

can also be used, as can be shown by substituting the variables in eq.(13.11)
(one can replace u = t − τ with du = −dτ and again, just use τ to express
u). The convolution is invariant against the interchange of the signals to be
convolved. Therefore, a transmitter’s input signal and the impulse response
are also interchangeable without affecting the output.

The crux of the preceding discussions is the decomposition of signals in
maximally dense delta impulses which have infinitely narrow intervals. In or-
der for its integral to be other than zero, its value must be infinitely large in
the middle of the function. This way of thinking can be compared to decom-
posing any type of series function. The only difference is that in the case of
Convolution, integration instead takes place over infinitely narrow elements,
as opposed to summation of discrete elements. The purpose of representing
signals by use of a delta comb function as also described in eq.(13.13) is that
the transmitter output can now be directly derived from such input calcula-
tions. This is of course done directly by way of decomposition (13.13) without
the intermediate step of using the step function, as described for better un-
derstanding at the beginning of this section:

y(t) = L[

∞∫
−∞

x(τ)δ(t− τ)dτ ] . (13.15)

Due to the required linearity, the sequential order of integration and the L
operation can be reversed:

y(t) =

∞∫
−∞

L[x(τ)δ(t− τ)]dτ =

∞∫
−∞

x(τ)L[δ(t− τ)]dτ . (13.16)
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Due to assumed time invariance, this once again results, of course, in

y(t) =

∞∫
−∞

x(τ)h(t− τ)dτ .

Convolution integral and impulse response h(t) both describe the trans-
mission in the time domain, where the effect of many input impulses ’squeezed
together’ is summed up at the output. The main disadvantage of this method
is the overall complexity of the impulse response in terms of characterizing
the transmission. For instance, the reaction of a room receiving the signal of
an explosion coming from an emitter which has been transmitted via a single-
layered thin wall is a type of ’extended’ impulse; in actuality, the impulse re-
sponse exists in a very rapidly diminishing exponential function (h(t) ∼ e−t/T
with T = m′′/%c for perpendicular sound incidence and for t ≥ 0, for t < 0
is of course h(t) = 0 (for further explanation please see Chapter 8). Although
the sound transmission can certainly be correctly ascertained through math-
ematical calculations, the assessment of this physical phenomenon is in fact
quite difficult to attain based on the impulse response.

Describing the transmission with the help of the frequency response func-
tions to be discussed in the following sections provide a conclusive means of
dealing with signal tone distortions in the transmission.

13.3 The Invariance Principle

We already presumed in the last section that linear and time-invariant trans-
mitters will transmit a harmonic (or sinusoidal) input signal without distorting
it. The output signal is comprised of a harmonic signal of the same frequency.
Only its amplitude and phase have been changed by the transmitter, while
signal structure remains the same after the transmission.

The convolution integral shows that this presumed principle is universal
(13.14). This assumes an input signal

x(t) = Re{x0e
jωt} (13.17)

which has the complex amplitude x0. The corresponding output that results
is according to eq.(13.14)

y(t) =

∞∫
−∞

h(τ)Re{x0e
jω(t−τ)}dτ = Re{x0e

jωt

∞∫
−∞

h(τ)e−jωτdτ} . (13.18)

The last integral is only dependent on the signal frequency ω, and in particular
not dependent on t. Defined by
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H(ω) =

∞∫
−∞

h(τ)e−jωτdτ , (13.19)

it can be abbreviated to

y(t) = Re{H(ω)x0e
jωt} , (13.20)

which proves the previous assumption of the invariance principle: if the input
is harmonic with the frequency ω, the output will also be harmonic with the
same frequency. The transmission is thus completely defined by describing
its change in amplitude |H| and phase ϕ, which are denoted in the complex
transmission factor

H(ω) = |H|ejϕ . (13.21)

13.4 Fourier Decomposition

It is an attractively simple and intuitive idea to reduce the transmission of
signals of other forms to its closest harmonic proximity. To do this, one can
express the given signal function of a system, such as the input x(t), using a
function series of the form Form:

x(t) =
∑
n

xne
jωnt (13.22)

If this is possible, meaning, that its contained frequencies ωn and their cor-
responding complex amplitudes xn have been defined, describing such trans-
mission processes becomes quite simple. According to the invariance principle,
and its precondition of linearity, the output must be composed of the same
frequencies as the input, whereby only their respective amplitudes are altered
during the transmission:

y(t) =
∑
n

H(ωn)xnejωnt (13.23)

Depending on the input signal, different frequencies with their corresponding
amplitudes occur, each unique to their given signal. If several should be defined
at once, then the complex-valued transmission factor H will have to be known
for all those frequencies. To this end, we use the frequency response H(ω).
H(ω) is referred to as the transmission function, in order to denote that the
frequency is a continuous variable used to describe the transmission over its
entire spectrum. Using the frequency response to describe the transmission
function can be easily interpreted as follows. If one imagines the input broken
up into frequencies - or qualitatively described as tone colors - one can simply
interpret the transmission as tone color distortion. For instance, a sound signal
transmitted over a wall sounds quieter and more muffled in the receiver space
because the transmission function is small at higher frequencies.
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Interpreting transmissions as tone color distortions presupposes that ar-
bitrary signals can actually be described using a function series containing
harmonic components, as is the prerequisite for eq.(13.22).

The following section will focus on the particulars of such signals which
can be described by their Fourier decomposition, as will as discuss the prop-
erties of these types of signals. To reiterate the basic idea, eq.(13.22) is an
expression of the ability to approximate a given, known signal x(t) by way of
a function series. The elements of such function series exist harmonic, sinu-
soidal signals containing (many) different frequencies. The invariance principle
of transmission lets us use simple methods to describe what is already given.

13.4.1 Fourier Series

The discussion of Fourier decomposition can begin with the simplest case,
where the function to be decomposed is periodic itself with the period T .
The advantage to this assumption is that the frequencies contained therein
are already given. The still unspecified frequencies ωi in eq.(13.22) are, in
this case, known from the beginning. The components occurring in eq.(13.22)
contain the periods Tn

ωn =
2π
Tn

. (13.24)

A series expansion of a periodic function T can only contain components
which are characterized by periods Tn as multiples within T . All periods of
any component which occurs within the equation can be defined as

Tn =
T

n
. (13.25)

For the purposes of the discussion, we will define a ’model function’ which
only consists of the components into which the function will ultimately be
decomposed. Thus, we specify:

xM (t) =
N∑

n=−N
Ane

j2πn t
T (13.26)

As can be seen, initially N positive as well as negative frequencies ωn have
been permitted in this function.

It only remains to specify the coefficients An in such a way that the model
function xM (t) ’matches’ the given signal x(t). There are at least two different
ways to proceed accordingly, in specifying the unknown amplitudes An in the
given signal x(t), so that the error diminishes as N increases in xM (t). The
standard quadratic deviation used to minimize this error is usually defined as

E =
1
T

T∫
0

|x(t)− xM (t)|2dt . (13.27)
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This method is known as the method of least squares. This more formal pro-
cedure will not be discussed here, the method is described in detail in many
works which serve as treatises on Fourier sums. Instead, we will proceed to
introduce a much more handy method to specify the unknown amplitudes An.
They now are calculated in such a way, that the model xM (t) and the original
x(t) coincide completely in 2N + 1 points inside a period T :

xM (i∆t) = x(i∆t) (13.28)

for
i = 0, 1, 2, 3, ...2N

The increment ∆t used here is defined by

∆t =
T

2N + 1
. (13.29)

Figure 13.3 serves as a visual aid to better outline this method.

Fig. 13.3. Alignment of xM (t) along x(t) at the sampling points t = i∆t, where
xM (i∆t) = x(i∆t).

The 2N+1 conditional equations (13.28) now serve as the system of linear
equations derived from the model definition (13.26) to find the coefficients:

N∑
n=−N

Ane
j2π ni

2N+1 = x(i∆t) . (13.30)

As just mentioned, eq.(13.30) specifies the system of equations in order to find
the unknown coefficients An. Inserting values for the index i = 0, 1, 2, 3, ..., 2N
(13.30) produces 2N + 1 equations.
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This system of equations can now easily be solved for any chosen unknown
Am as outlined in the following. To do this, we multiply the i-th equation of
the system (13.30) with e−j2π

mi
2N+1 , giving

N∑
n=−N

Ane
j2π

(n−m)i
2N+1 = x(i∆t)e−j2π

mi
2N+1 . (13.31)

Next, we add all the 2N + 1 equations of this system:

2N∑
i=0

N∑
n=−N

Ane
j2π

(n−m)i
2N+1 =

2N∑
i=0

x(i∆t)e−j2π
mi

2N+1 , (13.32)

or
N∑

n=−N
An

2N∑
i=0

ej2π
(n−m)i
2N+1 =

2N∑
i=0

x(i∆t)e−j2π
mi

2N+1 . (13.33)

The inner sum on the left side constitutes a geometrical series with

2N∑
i=0

ej2π
(n−m)i
2N+1 = 0 , (13.34)

when n−m 6= 0. For n = m is

2N∑
i=0

ej2π
(n−m)i
2N+1 =

2N∑
i=0

1 = 1 + 1 + 1 + ... = 2N + 1 , (13.35)

All elements in the sum with the running index n on the left side of (13.33)
are therefore equal to zero, with the exception of the sole summand with
n = m. We can thus solve (13.33) for the unknown Am accordingly, using the
calculation steps described above, for which

Am =
1

2N + 1

2N∑
i=0

x(i∆t)e−j2π
mi

2N+1 . (13.36)

applies. Eq.(13.36) defines the solution to the system of equations (13.30)
for the uniquely specified unknown Am. As it is completely arbitrary, which
specific unknown Am is selected here, eq.(13.36) universally applies for all
unknowns Am. All amplitudes An of the model function eq.(13.26) are thus
derived from the original signal x(t) using eq.(13.36).

The above has shown that a given signal can be exactly replicated by
decomposing it into a finite but arbitrarily high amount of points by way
of the function series (13.26). The problem posed in this section is therefore
reasonable and solvable.

How well or badly a given signal x(t) can be replicated by its model xM (t)
can subsequently be shown in the following examples. The figures 13.4 through
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Fig. 13.4. Model of a deviated signal using N=8. Only one period of the periodic
signals x and xM is represented here.

Fig. 13.5. Model of a deviated signal using N=16. Only one period of the periodic
signals x and xM is represented here.

13.6 demonstrate the quality of the replicas using the example of a specific
signal consisting of three line segments, showing the difference between the
original x(t) and the model xM (t) for N = 8, N = 16 and N = 32. As these
graphs shown, the model is already quite accurate with 17 sampling points
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Fig. 13.6. Model of a deviated signal using N=32. Only one period of the periodic
signals x and xM is represented here. The differences between signal x and replicate
signal xM have been reduced to within the line width.

(N=8). For 65 points (M=32) the differences between x and xM are quite
difficult to discern. Apart from the exact likeness at the discrete sampling
points (where x and xM are always the same), the series also converges very
rapidly between the sampling points toward the signal representing its expan-
sion. There is an easy explanation for this. There are no significant changes
between the discrete points (the points t = i∆t) in the signal to be expanded.
The signal gradient is therefore ’flat.’ In mathematical terminology, such a sig-
nal is referred to as continuous. For continuous signals, as this example shows,
only a relatively small number of frequencies and sampling points 2N+1 are
required to sufficiently model a signal. Overall, the series converges ’rapidly’
toward the representative signal as N increases.

Conversely, signals which fluctuate dramatically between two signal points
are characterized by slow convergence of the series. The worst case scenario
is a function which has a break, in other words, is discontinuous. Examples
of such signals and their series expansions with different amounts of sampling
points are shown in Figures 13.7, 13.8 and 13.9. It is clear to see in these
examples that such signals require a lot more sampling points and expansion
terms to ensure a ’good’ image of x through the model function xM . The
reasons for this slow convergence with increasing N are given below:

• There are no sampling points for a finite N in the extreme case of an
infinitely rising curve, leading to a ’bad’ model of this section of the curve.
Ideally, only an infinite number of sampling points can replicate the section
of the curve accurately.
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• The function series (13.26) consists of element functions which in them-
selves constitute universally continuous functions. A signal obviously can-
not actually be modelled at points of discontinuity using a finite number
of continuous functions, rather theoretically, can only be accurately rep-
resented through an infinite number of series terms.

It is therefore evident in Figures 13.7 through 13.9 that the principle prob-
lem of modelling signals at their points of discontinuity persists, even with
increasing N . Increasing N improves the modelling of the continuous neigh-
boring branches of the function, but the fact remains that xM overshoots and
deviates at the mean value of the left- and right-hand threshold at the point
of discontinuity. (at the discontinuity t0 is xM (t0) = (x(t0− ε) +x(t0 + ε))/2,
as is clearly represented in Figure 13.7). Here, it can be seen that the series
converges at every point toward the signal, but the only improvement which
results is the narrowing of the ’problem zone’ where the discontinuity lies.
Only in the case of infinite summands in the series does this zone disappear
altogether.

Fig. 13.7. Modelling a discontinuous signal with N=16. Only one period of the
periodic signals x and xM is represented here.
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Fig. 13.8. Modelling a discontinuous signal with N=32. Only one period of the
periodic signals x and xM is represented here.

Fig. 13.9. Modelling a discontinuous signal with N=64. Only one period of the
periodic signals x and xM is represented here.
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Just before and after the point of discontinuity, which only occurs in a
narrow time interval when using an increasing finite N , results in overshooting
curves. This effect is known as Gibb’s phenomenon. As can also be discerned
in Figures 13.7 through 13.9, the number of N therefore does not influence
the maximum height of the overshot of the function whatsoever.

The question remains as to which form the eq.(13.36) takes on for the
amplitudes when the number of sampling points increases and eventually sur-
passes all bounds. At this point, the increment ∆t - the distance between two
sampling points - gets smaller and converges to zero. The discrete points i∆t
then become the continuous time t. The expression 1/(2N + 1) denotes the
ratio of the increment ∆t to the period duration T , 1/(2N + 1) = ∆t/T . The
increment ∆t becomes the infinitesimally small element of distance dt, and
the sum becomes an integral. This results in the limiting case of

An =
1
T

T∫
0

x(t)e−j2πn
t
T dt . (13.37)

This equation shows how the coefficients of the Fourier series representation
of a periodic signal x(t)s can be obtained. If an infinite amount of summands
are reflected in the series expansion of the signal, the model function xM
converges at every point t toward the given signal x. Therefore, the equation
above can be shortened to

x(t) =
∞∑

n=−∞
Ane

j2πn t
T (13.38)

The integrand in eq.(13.37) is periodic with T . This is why the integration
boundaries can be shifted arbitrarily, as long as the width of the interval
remains T . This can be particularly be expressed in this form,

An =
1
T

T/2∫
−T/2

x(t)e−j2π
nt
T . (13.39)

which will be used for the discussion in the following section.
Eq.(13.37) (or (13.39)) can also be referred to as the ’transform’ or ’map-

ping function’. The signal x is thereby mapped in the sequence An. Eq.(13.38)
therefore shows how the original x can be obtained form the map An; thus
lending to another name for this equation, the ’inverse transform’. An non-
mathematical analogy to this process of reverse mapping might be the rela-
tionship between a photo’s positive and its negative image. Naturally, by using
a good camera, the positive and negative pictures can be used interchange-
ably to produce the one or the other, and both contain the same information.
Fourier sum transformation works exactly the same way. The signal x is repre-
sented in An ’by other means’. No information is gained or lost. Nevertheless,
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the use of transformation makes sense. It enables the simple description of
transmission processes.

As is the case with our photo analogy, Fourier sum transformations are
mutually unique. Every periodic signal has exactly one representation An.

13.4.2 Fourier Transform

Of course, it should not only be possible to decompose periodic signals into
their frequency components, but also any other non-periodic signal as well.

Since practically all real signals have an end and a beginning, we are only
interested in non-recurring processes which are set to zero before and after
a certain given time interval. The principles discusses in the last section can
be applied when an arbitrary segment is taken out of a time signal (which
does not have to equal the duration of the entire signal) and be considered
as the specified period duration. This is shown in the Sketch 13.10. This
signal segment is virtually periodically repeated, so that it can be assigned an
amplitude spectrum as discussed in the previous section. Subsequently, the
period duration T is allowed to grow. That means that both dotted lines to
the right and to the of the middle line migrate outward, as shown in Figure
13.10. The next period comes increasingly later, and the preceding period
moves back further and further into the past. The most extreme case of an
infinite period duration is therefore the most accurate description of a signal
of finite length.

Fig. 13.10. ’Non-recurring’ time signal of finite length

When approaching T → 0 it must be noted that the distance ∆f = 1/T
of the frequencies n/T keeps getting smaller. The discrete frequencies then
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become a continuous frequency variable: n/T → f . The fact that all frequen-
cies must be permissible to describe any signal is self-explanatory. As opposed
to periodic signals, it is no longer necessary to emphasize certain frequencies
over others. The inclusion of all frequencies in the definition necessitates the
specification of a va continuous frequency variable f . As a short-cut we will
use the angular frequency ω = 2πf .

Using (13.39) this results in

lim
T→∞

An = lim
T→∞

1
T

T/2∫
−T/2

x(t)e−jωtdt . (13.40)

The limit value on the left side is in any case zero. Thus the integral contained
in a specified frequency ω converges toward a specific value. If the virtually
assigned period duration exceeds the beginning and end of the signal itself,
the value of the integral stops changing for values of T beyond this point.
Since this value is nevertheless divided by T , the total limit value approaches
zero. For this reason, the following discussions are not able to be applied to
the limiting case of An. It makes sense to use the product TAn, since this
value approaches a limit value but one that does not consistently result in
zero. The spectrum X(ω) of x(t) is therefore defined as

X(ω) = lim
T→∞

TAn =

∞∫
−∞

x(t)e−jωtdt . (13.41)

X(ω) is also known as the Fourier transform of x(t).
The next question to be examined is what constitutes the inverse trans-

formation rule. To examine this, we will apply the boundary to eq.(13.38):

x(t) = lim
T→∞

1
T

∞∑
n=−∞

TAne
j2πn t

T . (13.42)

The following variables are redefined:

• 2πn/T becomes the continuous frequency variable ω,
• TAn becomes X(ω),
• the frequency increment 1/T becomes the infinitesimally short distance df

using (1/T → df = dω/2π) and
• the summation becomes an integration.

This results in the universal inverse transformation rule:

x(t) =
1

2π

∞∫
−∞

X(ω)ejωtdω . (13.43)

Eq.(13.43) is also referred to as inverse Fourier transform.
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The basic concept and principles already discussed in the last section es-
sentially apply here, other than the fact that signals cannot be analyzed based
on their harmonic components by summing them over their discrete elements,
rather, the inverse analysis takes place using integration instead of summation.
For this reason, Fourier transformation is also referred to as an integral trans-
formation. As is the case with Fourier sums, Fourier transformation likewise
constitutes a unique and reversable mapping of a signal, in order to describe
a signal through integration, as with summation, based on pure tones of the
form ejωt. Likewise, we can use the photo analogy described above to also
better understand Fourier transformation.

For the sake of convenience, we will use short-cuts in the following dis-
cussions. For example, in order to reiterate that X(ω) refers to the Fourier
transform of x(t), from here on we will use the following notation:

X(ω) = F{x(t)} =

∞∫
−∞

x(t)e−jωtdt (13.44)

Likewise

x(t) = F−1{X(ω)} =
1

2π

∞∫
−∞

X(ω)ejωtdω , (13.45)

means that x(t) is the inverse transform of X(ω). Due to the unique mutual
reversability of such functions, the operations F and F−1 cancel each other
out, meaning

F−1{F{x(t)})} = x(t) (13.46)

and likewise
F{F−1{X(ω)}} = X(ω) . (13.47)

In conclusion, it is to be noted that the signal x(t) and the spectrum X(ω) do
not possess the same physical dimensions (the units). It is plain to see that
the following statement is true for the units:

Dim[X(ω)] = Dim[x(t)]s =
Dim[x(t)]

Hz
. (13.48)

For this reason, X(ω) is sometimes referred to as the amplitude density func-
tion.

13.4.3 The Transmission Function and the Convolution Law

The reason for the previous introduction to Fourier transformation was, as
mentioned, to construct an effective tool for describing the transmission of
linear and time-invariant systems through multiplication with the complex-
valued transmission function. Based on the principle of invariance, the Fourier
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representation of the input signal (13.43) implies that the output must always
have the form

y(t) =
1

2π

∞∫
−∞

H(ω)X(ω)ejωtdω . (13.49)

In the frequency domain, the transmission is described by the product of
the Fourier transform of the input and a transmission function H(ω) which
characterizes the transmitter. The Fourier transform Y (ω) of the output y(t)
is

Y (ω) = H(ω)X(ω) . (13.50)

The transfer function always allows the calculation of the output as long as
the input is known. In addition, it has already been discussed in the previous
sections that the impulse response of the the transmitter likewise provides a
complete description of the transmitter. The impulse response as well enables
the specification of the output based on the input and thus also provides
a complete description of the transmitter such as H(ω). The transmission
function along with the impulse response represent the very same thing and
therefore cannot be considered independent of one another. Rather, they have
a specific relationship to one another.

This relationship can be easily derived from the convolution integral
eq.(13.11). To do this, the integral is first Fourier transformed:

Y (ω) = F{y(t)} =

∞∫
−∞

∞∫
−∞

x(τ)h(t− τ)dτ e−jωtdt . (13.51)

The sequence of the component integrations is interchangeable, meaning that

Y (ω) =

∞∫
−∞

x(τ)

∞∫
−∞

h(t− τ) e−jωt dt dτ , (13.52)

or

Y (ω) =

∞∫
−∞

x(τ)e−jωτ
∞∫
−∞

h(t− τ) e−jω(t−τ) dt dτ , (13.53)

also apply. The inner integral exists in the Fourier transform of the impulse
response (a formal proof explaining this can be obtained using variable sub-
stitution u = t− τ), the remaining integral represents the transform X(ω) of
x(t). Therefore

Y (ω) = F{h(t)}X(ω) . (13.54)

Using (13.50), we find the relationship between impulse response h(t) and
transmission function H(ω):

H(ω) = F{h(t)} . (13.55)
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The transmission function is therefore the Fourier transform of the impulse
response.

From a mathematical standpoint, we showed in the above that convolution
in the time domain corresponds to multiplication in the frequency domain:

X(ω)H(ω) = F{
∞∫
−∞

x(τ)h(t− τ)dτ } , (13.56)

where, of course, X(ω) = F{x(t)} and H(ω) = F{h(t)} are Fourier pairs. This
relationship is known as the ’convolution law.’

The convolution law, in a slightly different form, also basically applies
to the product of two time signals. As the reader can easily see by inverse-
transforming the right-side of the ’convolution integral’ in the frequency do-
main, as outlined above, the following applies

x(t)g(t) = F−1{ 1
2π

∞∫
−∞

X(ν)G(ω − ν)dν} , (13.57)

where likewise x,X and g,G also represent Fourier pairs. Convolution in the
frequency domain corresponds to multiplication in the time domain. The only
difference here is that the factor 1/2π appears as an element in the convolution
integral.

13.4.4 Symmetries

The symmetrical properties of certain signals also belong to the body of basic
knowledge of Fourier transforms.

Real-valued Signals

The spectrum of a real-valued function x(t)

X(ω) =

∞∫
−∞

x(t)e−jωtdt .

converts into itself when ω is replaced by the value −ω and both sides of the
equation are considered conjugated complex (∗):

X∗(−ω) =

∞∫
−∞

x(t)e−jωtdt .

This obviously results in
X∗(−ω) = X(ω) . (13.58)
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The absolute spectrum is therefore axis-symmetric

|X(−ω)|2 = |X(ω)|2 , (13.59)

the real component of the spectrum is likewise axis-symmetric

Re{X(−ω)} = Re{X(−ω)} :, (13.60)

while the imaginary part is point-symmetric

Im{X(−ω)} = −Im{X(−ω)} :, (13.61)

This is true for any real signal regardless of its shape.

Real-valued and Axis-symmetric Signals

A signal which is axis-symmetric with xg(−t) = xg(t) has a real-valued spec-
trum, as is illustrated in the following simple discussions. In the integral

X(ω) =

∞∫
−∞

x(t)e−jωtdt =

∞∫
−∞

x(t)[cos(ωt)− j sin(ωt)]dt

the product x(t)sin(ωt) is a point-symmetric function, the integral over this
portion of the integrand is therefore zero . As a result, only the real-valued
transform remains

X(ω) =

∞∫
−∞

x(t)cos(ωt)dt

The imaginary part is equal to zero Im{X(ω)} = 0, the real part is of course
still axis-symmetric: Re{X(−ω)} = Re{X(ω)}

Real-valued and Point-symmetric Signals

A signal which is point-symmetric with xu(−t) = −xu(t) has a pure imaginary
spectrum. In the integral

X(ω) =

∞∫
−∞

x(t)[cos(ωt)− j sin(ωt)]dt

the product x(t)cos(ωt) is a point-symmetric function, the integral over this
portion of the integrand is therefore equal to zero. As a result, only the imag-
inary transform remains

X(ω) = −j
∞∫
−∞

x(t)sin(ωt)dt

The real part is equal to zero, Re{X(ω)} = 0, the imaginary part is of course
still point-symmetric: Im{X(−ω)} = −Im{X(ω)}
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Decomposition into Axis-symmetric and Point-symmetric
Components

In general, all real signals without specific symmetry properties can be decom-
posed into their axis- and point-symmetric counterparts using the following
method:

x(t) =
1
2

[x(t) + x(−t)] +
1
2

[x(t)− x(−t)] = xg(t) + xu(t) . (13.62)

Here
xg(t) =

1
2

[x(t) + x(−t)]

is of course the axis-symmetric and

xu(t) =
1
2

[x(t)− x(−t)]

the point-symmetric part.
The spectrum of xg(t) is real, the spectrum of xu(t) is pure imaginary.

Overall, one can ascertain that the Fourier transform of the axis-symmetric
signal component is equal to the real component of the entire spectrum of
x(t) :

Re{X(ω)} = F{xg(t)} . (13.63)

Likewise the point-symmetric signal component corresponds with the imagi-
nary part of the entire spectrum:

jIm{X(ω)} = F{xu(t)} (13.64)

(with z=Re{z}+ j Im{z} for every complex value z).

13.4.5 Impulse Responses and Hilbert Transformation

The aforementioned fact that axis- and point-symmetric signal components
pertain to the real and imaginary parts of the spectrum has intriguing impli-
cations for impulse response transforms. The latter consist of the reaction of
a transmitter to the delta function δ(t). The signal excitation begins therefore
at the time point t = 0. For this reason, the system response h(t) can only
be zero for negative time points as well. Based on the principle of causality
(’nothing comes from nothing’) the impulse response can likewise only begin
at t = 0 at the earliest. Consequently, for causal impulse responses

h(t < 0) = 0

is true. Now the signal, as with any signal, can be decomposed into its axis-
and point-symmetric components at either side of the impulse response:

h(t) = hg(t) + hu(t) .
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Naturally this necessitates that hg and hu have to be equal also in the negative
for all time points t < 0 as well. Only then is the impulse response likewise
causal. Therefore

hu(t < 0) = −hg(t < 0)

must apply. Due to the required symmetry properties of hg and hu the fol-
lowing applies for positive time points

hu(t > 0) = hg(t > 0) ,

or, summarized
hu(t) = sign(t) hg(t)

(sign(t > 0) = 1, sign(t < 0) = −1). Figure 13.11 underscores this fact with
a simple illustration. For negative time points, hu and hg are equal value, one
positive and one negative. Consequently, these values are identical for positive
time points. It follows that, for t > 0, hu = hg = h/2.

Fig. 13.11. Decomposition of the causal impulse response h(t) in axis-symmetric
part hg(t) and point-symmetric part hu(t) as exemplified in a swing-out transient

In sum, it has been shown that point-symmetric signal components, as
shown, can be ascertained from the axis-symmetric signal component, as long
as we are dealing with a causal impulse response. Because the transform of
the axis-symmetric part hg is equal to the real part Re{H(ω)} of the trans-
mission function H(ω) and the point-symmetric part hu corresponds to the
imaginary part Im{H(ω)} of the transmission function H(ω), the real and
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imaginary part of H are dependent on one another. Indeed, the relationship
between Re{H(ω)} and Im{H(ω)} can be easily discerned by first transform-
ing hu(t) = sign(t) hg(t)

jIm{H(ω)} = F{hu(t)} = F{sign(t) hg(t)}

then expressing hg(t) in terms of hg(t) = F−1{Re{H(ω)}}:

Im{H(ω)} = −jF{hu(t)} = −jF{sign(t)F−1{Re{H(ω)}}} . (13.65)

Eq.(13.65) states the relationship that the real and imaginary parts of the
transmission function must have toward one another for every causal (meaning
linear and time-invariant) transmitter. In measurement practice, it suffices
simply to compute the real part of the transmission function; the imaginary
part can be calculated based on the real part.

The order of operations on the right side of eq.(13.65) is known as the
’Hilbert transformation’ . Of course, this constitutes a transformation insofar
that a spectrum is calculated out of another. Hilbert transformations, however,
do not serve to represent a signal in a series of many other signals, as is the case
with Fourier transformations. On the contrary, Hilbert transformations state
a relationship Re{H(ω)} Im{H(ω)} in such a way so that the transmitter
described behaves in a causal manner.

Fourier analysis of measurement signals in the form of transmission func-
tions by nature define complex transmission functions and thereby entail a
certain redundancy. An interesting question could be if this redundancy can
be utilized to judge the results measuring a system’s effectiveness or other
factors.

13.5 Fourier Acoustics: Wavelength Decomposition

The use of Fourier transformation is not just limited to time dependencies
and their frequency decomposition. The labelling of the time variable with t
and the frequency variable with ω in equations (13.44) and (13.45) is just an
arbitrary decision to differentiate certain physical quantities. One could just
as well assign t a localized variable, a coordinate direction with the unit m
(meter) and ω could be designated as a variable defining wave numbers (with
the unit 1/m). In short, it doesn’t matter whether decomposition into har-
monics is applied to time functions or spatial functions. Only the significance
underlying the variable has been changed.

On the other hand, changing the meaning behind the label might cause
some lack of clarity. To avoid confusion, from here on the one-dimensional co-
ordinate axis will be referred to as x and the wave number as k. For the Fourier
transformation of a spatial function g(x) and its wave number spectrum G(k)
instead of (13.44) and (13.45)



13.5 Fourier Acoustics: Wavelength Decomposition 433

G(k) = F{g(x)} =

∞∫
−∞

g(x)e−jkxdx (13.66)

and

g(x) = F−1{G(k)} =
1

2π

∞∫
−∞

G(k)ejkxdk . (13.67)

will be used. Eq.(13.67) interprets the spatial function g(x) as consisting of
several wave functions G(k)ejkx; Eq.(13.66) specifies how the corresponding
amplitude density function G(k) can be derived from the space dependency
g(x).

The advantage gained by Fourier transformation of spatial functions is that
it can be used to directly express the universal solution for the wave equation,
also expressed in terms of a Fourier transform. To illustrate this fact and the
resulting implications, for the sake of simplicity we will first examine two-
dimensional fields in the following sections (∂/∂z = 0). The more universal,
three-dimensional case will be subsequently discussed. Furthermore, we will
presuppose the Helmholtz equation

∂2p

∂x2
+
∂2p

∂y2
+ k2

0p = 0 (13.68)

which results from the wave equation (2.55), when we are assuming either
complex amplitudes arising from sound field excitation with pure tones or
amplitude densities arising from time-dependent Fourier transformation for
all field quantities from this point on. The wave number of free waves will
hereto be referred to as k0 (with k0 = ω/c). A distinction has to be made,
however, between k0 and the wave number variable k in localized Fourier
transformations.

According to the analogy of (13.67), the following ansatz applies for the
case of sound pressure

p(x, y) = F−1{P (k, y)} =
1

2π

∞∫
−∞

P (k, y)ejkxdk , (13.69)

Thus, one expresses on every plane y = const. the localized sound pressure
through its wave number decomposition P (k, y), which of course may take on
a different gradient on every plane y = const., that is, be dependent on y.
Using the Helmholtz equation (13.68) one obtains

∂2P (k, y)
∂y2

+ (k2
0 − k2)P (k, y) = 0 . (13.70)

The solution of this typical differential can now quite easily be obtained:



434 13 Aspects and Properties of Transmitters

P (k, y) = P+(k)e−jkyy + P−(k)ejkyy . (13.71)

In so doing, the wave number ky is defined as follows:

ky =

{
+
√
k2

0 − k2 , k2
0 > k2

−j
√
k2 − k2

0 , k2 ≥ k2
0 .

(13.72)

As in many examples of this book, the sign after taking the square root has
been specified so that the sound field e−jkyy means either

• a wave travelling in the positive y-direction (k2
0 > k2) or

• a near field subsiding in the y-direction, exponentially decreasing (k2 >
k2

0).

The overall solution of the Helmholtz equation is, according to this definition

p(x, y) =
1

2π

∞∫
−∞

[P+(k)e−jkyy + P−(k)ejkyy)]ejkxdk . (13.73)

Moreover, it is to be assumed that neither sources nor reflectors exist in the
partial space y > 0; in this case, the wave can neither occur in the negative
y-direction nor in near-fields growing in the positive y-direction, leaving us
only with

p(x, y) =
1

2π

∞∫
−∞

P+(k)e−jkyyejkxdk (13.74)

for the sum field.
Eq.(13.74) primarily opens two kinds of areas of application which will be

discussed in the following.

13.5.1 Radiation from Planes

The ’classic’ application of wave decomposition of a spatial function described
in the following is in any case the measuring of sound emission of vibrating
surfaces or planes. The assumption when doing this is that the y components
of the local velocity vy(x) on a plane are known either through assuming or
measuring the absolute value and phase. For the sake of simplicity we will
suppose that the source element is located on the plane y = 0. The only
thing left to do now is to establish the relationship between the still unknown
amplitude density P+(k) in (13.74) and the source element velocity vy(x).
This can be done quite easily. First, the following velocity is construed using
the ansatz eq.(13.74). This is

vy(x, y) =
j

ω%

∂p

∂y
=

1
2π

1
%c

∞∫
−∞

ky
k0
P+(k)e−jkyyejkxdk . (13.75)
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For y = 0 the Fourier transform Vy(k) of the source velocity vy(x) must appear
as a term on the left-hand side, resulting in

Vy(k) =
1
%c

ky
k0
P+(k) , (13.76)

whereby the amplitude density P+(k) is derived from the source velocity.
Overall,

p(x, y) = %c
1

2π

∞∫
−∞

k0

ky
Vy(k)e−jkyyejkxdk , (13.77)

applies, whereby Vy(k), as previously mentioned, represents the Fourier trans-
form of vy(x):

Vy(k) =

∞∫
−∞

vy(x)e−jkxdx . (13.78)

For the complete interpretation of eq.(13.77), the wave number variable k
is also expressed through the designated wavelength variable λ with k = 2π/λ.
With this, we will reiterate the principles based on eq.(13.77) introduced in
Chapter 3 here below:

• Only long-waved source elements (with λ > λ0 (λ0=length of sound wave
in air) and therefore |k| < k0 have a real-valued wave number ky in the
y-direction according to eq.(13.72). Only such long-waved source elements
are emitted as skew waves and are thus apparent even at large distances
from the source.

• Short-waved source elements with λ < λ0 and |k| > k0 on the other hand
possess an imaginary wave number. The corresponding sound field element
possesses a near-field characteristic, and is only noticeable in the vicinity
of the source in y = 0, gradually diminishing outward until it ceases to
influence the sound field altogether at large distances from the source.

A long-waved source element λ > λ0 is emitted as a plane wave at a skew
angle

sinϑ = −λ0

λ
(13.79)

as can be seen when comparing the source element e−jkyyejkx with the overall
form of such a wave

p = p0e
−jk0xsinϑe−jk0ycosϑ (13.80)

The angle ϑ counts relative to the y-axis ’upward’, in other words, the wave
travels ’downward,’ as expressed trough the negative sign.

In the far-field (already elaborated in Chapter 3) only the long-waved wave
number elements |k| < k0 of the source are present, due to the fact that the
short-waved elements are solely concentrated in the source’s proximity and
then rapidly diminish. Only the ’visible’ portion corresponding to the long
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source wavelengths λ > λ0 exerts any influence at all on the emission at large
distances |k| < k0. A specific directivity is attributed to each wave number
component within the visible, long-waved portion segment. For this reason,
a direct relationship exists between the directivity pattern of a source and
Fourier transformation of the source velocity. In the eq.(3.37) introduced in
Chapter 3 for narrow source bands with the width b, the integral on the right-
hand side can then be expressed through the Fourier transform of the source
velocity:

pfern =
jω% b

4πR
e−jk0R

l/2∫
−l/2

vy(x)ejk0x sinϑdx =
jω% b

4πR
e−jk0R Vy(k = −k0 sinϑ) ,

(13.81)
where V signifies the sound velocity defined in eq.(13.78). The circumferential
distribution of the sound field is equal to the velocity transform, the emission
at large distances clearly constituting a physical ’Fourier transformer’. The
fundamental framework exists in the fact that a specific direction of travel is
assigned to every source wave number.

13.5.2 Emission of Bending Waves

First, we will omit the factors of a finite plate dimension and other effects such
as the amplitude decay at the point of induction from our considerations of the
fundamental aspects of sound emitting from a plate vibrating with bending
waves. The local sound velocity is described on the whole plane y = 0 as

vy(x) = v0e
−jkBx (13.82)

whereby kB = 2π/λB refers to the bending wave number (λB = bending wave-
length) (See Chapter 4 for more information on the fundamental properties
of bending waves and their transmission along plates). The Fourier transform
of this monochromatic event (monochromatic: consisting of only one wave
component) must possess the delta form. It is

Vy(k) = 2πv0δ(k + kB) , (13.83)

as can easily be discerned by substituting (13.83) in eq.(13.67). For the sound
pressure emanating from this source, using eq.(13.77) one obtains

p(x, y) = %cv0
k0

ky
e−jkyye−jkBx , (13.84)

where the wave number ky has been shortened to

ky =

{
+
√
k2

0 − k2
B k2

0 > k2
B

−j
√
k2
B − k2

0 k2
B ≥ k2

0 .
(13.85)

The basic qualities of this sound field in air produced by the monochro-
matic bending wave can generally be summarized in the following:
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• if the source wavelength (in this example: λB) is greater than the sound
wavelength in air λ0, a wave at the skew angle ϑ with sinϑ = −λ0/λB will
be emitted,

• for a source wavelength λB , which is shorter than the sound wavelength
in air λ0, is only present in a diminishing near field relative to the source
surface. This diminishing near field does not transport any power in the
time average.

That even in the presence of short bending waves below the coincidence critical
frequency many sound fields that are not equal to zero are visible at larger
distances from the emitting surface lends itself to the fact that in reality,
source surfaces have only finite dimensions.

The fact that a weak residual emission results from short-waved sources
of finite dimensions can be drawn from the simple concept which is outlined
in Figure 13.12. To provide a simpler example, short-waved source velocities
are depicted in the form of standing waves (standing waves result from the
sum of two waves travelling in opposite direction; a progressive wave can also
be understood as the sum of two standing waves).

If the distances of the inversely phased reverberating zones are small as
compared to the sound wavelength in air (i.e. when λB � λ0), this gives rise
to a pattern of de-facto sources with rapidly changing signs for both cases
depicted. ”‘Almost all”’ sound sources cancel out each other’s effects. The
point of each pair of opposing signs can be understood as ’at the same place
at the same time.’ The net volume flow emanating from such pairs is therefore
equal to zero. The motion field induced by the pair in the surrounding air
consists in mere shifts of mass. The shifting air mass lifted along with the
rising source zone is shoved to the side of the sinking source zone.

The residual sound emission for short-waved sources that ensues obviously
depends primarily on whether each local source contacts a neighboring source,
obliterating each other to zero. This already occurs in the middle of the source
element, but along the margins it is possible that some sources remain ”with-
out a partner.” As shown in Figure 13.12, the short-circuit of pairs in vibrating
sources ”‘with antinodes at the margins” is complete and the resulting sound
emission therefore very negligible. In the case of ”‘nodes at the margins”’,
source zones remain at the external regions of the source margin. These be-
have like volume sources. Compared to long-waved sources (where the entire
source surface plays a role in the emission event), the emission is still quite
negligible because ”‘most”’ source elements do not actually contribute to the
emission, as compared with the case of ”‘antinodes at the margins”’ the sound
field is however considerably greater, because this time, a net volume flow is
left over.

The sound field of a bending wave guide which has vibrational nodes at the
upper end and a vibrational antinode at the lower end is depicted in Figure
13.13. The particle displacement was derived from the specified local source
velocity using the methods described in Fourier acoustics. The upper margin
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Fig. 13.12. De-facto sources for short-waved source elements with vibrational antin-
ode or nodes at the margins.

Fig. 13.13. Sound field of a short-waved source with vibrational nodes at the up-
per, vibrational antinodes at the lower end. The vibrational node at the upper end
constitutes a volume source. Sound emanates with circular wave fronts surrounding
it. The antinode emits virtually nothing.

is an easily identifiable element of the sound field with its vibrational nodes
while the vibrational antinode emits much less sound.

13.5.3 Acoustic Holography

Another interesting application of sound field decomposition into wave func-
tions along a coordinate axis is what is known as ’acoustic holography’, which
we will describe below.

The concept can be described as follows. If one measures the space-
dependency of the sound pressure p(x, d) in terms of absolute value and phase
along an entire plane, such as in the y = d plane just before the source element,
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one can also ascertain its wave number spectrum:

P+(k, d) = F{p(x, d)} =

∞∫
−∞

p(x, d)e−jkxdx . (13.86)

After comparing eq.(13.86) with eq.(13.74) we obtain:

P+(k) = P+(k, d)ejkyd . (13.87)

By these means and incorporating eq. (13.74) we can compute the sound
field in the entire space, as long as the constraints are met: no reflectors or
sources in the reconstructive space existing in y > 0. Basically, it is possible
to take the measurements along just one plane and reconstruct the results for
all other planes, a concept akin to a hologram. Solely a numerical procedure
is required to do this. This procedure utilizes Fourier transformation and its
inverse process in numerical terms. The principle methods are not only limited
to the sound pressure, but can also be expanded to include the measurement
of pressure along one plane and sound velocity components in the entire room,
utilizing eq.(13.75).

The main problem in respect to acoustic holography constitutes those
source elements which have shorter wavelengths than those of the surround-
ing medium. These source elements are characterized by an imaginary wave
number ky in the y-direction, ky = −j | ky |, based on eq.(13.72). If the mea-
surements p(x, d) and likewise P+(k, d) contain small inconsistencies or errors,
these will weigh heavily in the short-waved source domain in eq.(13.87) due to
its multiplication with the exponential function e|ky|d. The space-dependencies
measured as such then contain intense, localized noise, limiting the quality of
the outcome considerably. This effect can be mitigated or avoided by taking
measurements in as small distances from the source’s surface d as possible, or
by omitting extremely short source wavelengths from the calculations.

13.5.4 Three-dimensional Sound Fields

All the aspects and procedures described above in the previous sections
in Fourier acoustics can easily be translated to the more realistic, three-
dimensional case of emissions originating from plane surfaces, if the two-
dimensional Fourier transform is applied to all occurring spatial functions.
The transformation now becomes

G(kx, ky) =

∞∫
−∞

∞∫
−∞

g(x, y)e−jkxxe−jkyydxdy (13.88)

and the inverse transformation is
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g(x, y) =
1

4π2

∞∫
−∞

∞∫
−∞

G(kx, ky)ejkxxejkyydkxdky . (13.89)

For the sake of simplicity, we will assume as we did in Chapter 3 that the
source lies on the plane z = 0 (x, y-plane) and has a known local velocity
vz(x, y) in the z-direction.

The sound field in the entire room z > 0 (where we once again presume the
absence of a reflector or any other sound source) is then ascertained similarly
as in (13.74) on the basis of

p(x, y, z) =
1

4π2

∞∫
−∞

∞∫
−∞

P+(kx, ky)e−jkzzejkxxejkyydkxdky . (13.90)

Thus, the double Fourier transform P+(kx, ky) of the sound pressure p(x, y, 0)
in the plane z = 0 related to the double Fourier transform Vz(kx, ky) of the
source velocity vz(x, y) (see eq.13.88 for a definition of transform) by way of

P+(kx, ky) = %c
k0

kz
Vz(kx, ky) (13.91)

Using the wave equation, the wave number kz in the z-direction becomes

kz =

+
√
k2

0 − (k2
x + k2

y) , k2
0 > k2

x + k2
y

−j
√

(k2
x + k2

y)− k2
0 , k2

x + k2
y ≥ k2

0 .
(13.92)

Furthermore, eq.(13.92) indicates that short-waved source elements k2
x+k2

y ≥
k2

0 only attract near field, while long-waved source components k2
x + k2

y < k2
0

are emitted in the form of a progressive wave travelling at a skew angle.
It is additionally possible to ascertain the sound velocity components by

differentiating eq.(13.90).
If one considers the source velocity vz(x, y) as given, the entire set of

formulas can then be used to measure the sound field in the half-space z > 0
before the source. The measurements of the sound pressure, according to
absolute value and phase, in a whole plane z = d, enables once again the
implementation of acoustic holography.

The Fourier acoustics discussed in this chapter are drawn from the fact
that arbitrary spatial functions can be mapped using a wave sum in the form of
the Fourier integral eq.(13.66). When applying the decomposition into source
wavelengths to the source velocity, the linearity of the emission process al-
lows for the analysis of each sound field brought about by each source wave
number separately. The sum field subsequently results simply from the ’sum
of parts’ – precisely derived from the integral over the corresponding wave
number spectra. This method can be generally described as the ’method of
decomposition into wavelengths’.
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This procedure can be compared to the description of a sound field using
the Rayleigh integral introduced in Chapter 3, the ’method of decomposition
into point sources,’

p(x, y, z) =
jω%

2π

∞∫
−∞

∞∫
−∞

vz(xQ, yQ)
e−jkr

r
dxQdyQ (13.93)

where r denotes the distance form source point to field point

r =
√

(x− xQ)2 + (y − yQ)2 + z2 (13.94)

It goes without saying that the methods of both ’decomposition into waves’
and ’decomposition into sources’ lead to the same results. Indeed, this fact
can be proven with the help of the convolution law. In the expression for the
sound pressure

p(x, y, z) =
1

4π2

∞∫
−∞

∞∫
−∞

%c
k0

kz
e−jkzzVz(kx, ky)ejkxxejkyydkxdky (13.95)

which results from substituting eq.(13.91) into eq.(13.90), the wave number
spectrum to be inverse transformed can be seen as the product of a ’typical
emission’ function H(kx, ky, z) with

H(kx, ky, z) = %c
k0

kz
e−jkzz (13.96)

and a ’typical source’ function Vz(kx, ky):

p(x, y, z) =
1

4π2

∞∫
−∞

∞∫
−∞

H(kx, ky, z)Vz(kx, ky)ejkxxejkyydkxdky . (13.97)

The ’typical emission function’ H(kx, ky, z) is nothing more than the (local-
ized) transmission function which defines how heavily a wavelength segment
of the source weighs into the overall emission. It is therefore evident that
Vz(kx, ky) describes the source itself by specifying its wavelength decomposi-
tion.

Sound pressure in space accordingly results from the inverse transforma-
tion of the product H(kx, ky, z)Vz(kx, ky). For this reason, p(x, y, z) can be
derived from convoluting the corresponding inverse transforms. If the inverse
transform of H(kx, ky, z) can be described as h(x, y, z) then

h(x, y, z) =
1

4π2

∞∫
−∞

∞∫
−∞

H(kx, ky, z)ejkxxejkyydkxdky . (13.98)
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is also true. The obvious definition of h(x, y, z) can be therefore construed
from the following discussion. For a delta shaped source vz(x, y) = δ(x)δ(y)
the Fourier transform of the source velocity exists in Vz(kx, ky) = 1. One
can assume p(x, y, z) = h(x, y, z) based on this specific case by comparing
eq.(13.97) and eq.(13.98). Obviously, following this logic, h(x, y, z) describes
the ’localized impulse response’, that is, the spatial reaction to a delta-shaped
source at the origin.

Finally, the spatial sound pressure must be obtainable by convoluting the
source velocity with the localized impulse response:

p(x, y, z) =

∞∫
−∞

∞∫
−∞

vz(xQ, yQ)h(x− xQ, y − yQ, z)dxQdyQ. (13.99)

In any case, the localized impulse response h(x, y, z) can be quite easily dis-
covered based on the discussions in Chapter 3. Since we are dealing with a
volume source vz(x, y) = δ(x)δ(y) emitting in a half-space z > 0 with the
volume flow Q = 1, using eq.(3.13)

h(x, y, z) =
jω%

2π
√
x2 + y2 + z2

e−jk
√
x2+y2+z2 , (13.100)

is true, whereby eq.(13.99) ultimately converges into the Rayleigh integral
(13.93). The Rayleigh integral, which precisely comprises the ’method of
source decomposition’ , can therefore be justified by means of the convolution
law pertaining to the ’method of wave decomposition’. Both methods give one
and the same result.

In conclusion, we would like to remark that the far field approximation
discussed in Chapter 3.6 contains the Fourier transform of the source velocity,
as is the case with ’one-dimensional’ sources. When comparing eq.(3.59) to
eq.(13.88) and applying them to the source velocity, we obtain namely

pfern(R,ϑ, ϕ) =
jω%

2πR
e−jkRVz(kx = − sinϑ cosϕ, ky = −k sinϑ sinϕ) ,

(13.101)
where (R,ϑ, ϕ) specifies the coordinate system of the spherical coordinates.
Naturally, this again only states that every combination of long wavelengths
(λx, λy) emitting from the source (with kx = 2π/λx and ky = 2π/λy) is
designated a specific trajectory which can be found in eq.(13.101).

13.6 Summary

Linear and time-invariant transmitters (LTI) follow the invariance law: in the
case of an input signal consisting of a pure tone, meaning a sinusoid time-
dependency, the output signal will always consist of a pure tone of the same
frequency. The transmission of pure tones
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• occurs therefore without distortion and
• can be fully described by the changes in amplitude and phase of the input

signal as a result of the transmission.

The signal-series scheme of pure tones of varying frequencies and complex
amplitudes provides a collection of simple and easy-to-understand tools for
describing the LTI transmission of any input signal, be it speech, engine noise,
music, etc., by integration of the tones at varying frequency. The mathematical
decomposition and composition procedures into pure tones and from pure
tones is known as the Fourier series expansion (for periodic functions), and
Fourier transformation for the non-periodic case. For both forms, a respective
clear inverse exists; that is, for each time-dependency there exists exactly one
corresponding transformed function, and vice versa.

In the frequency domain, every LTI transmission can be described by the
product of the input signal’s spectrum X(ω) (denoting the Fourier transform’s
input signal) and the transmission function H(ω): Y (ω) = H(ω)X(ω) is true
for the spectrum of the output signal Y (ω). The resulting shape of the trans-
mission function can thus be ascribed both the tone color characteristics of
the input signal and the filtering affects of the transmitter.

Fourier transform proves useful in examining sound emission from planes.
The source can thus be decomposed into multiple components of varying wave-
lengths. This composition is characteristic of the given source. Considering the
emission of individual components leads to the basic principle of sound emis-
sion:

• short source wavelengths, smaller than the wavelengths of the surrounding
medium, lead solely to near fields on the source’s surface,

• long-rippling source components are, at a certain angle dependent on both
wavelengths involved, emitted diagonally to the surface in the form of a
plane wave, which can therefore also be perceived in the far field.

Because exactly one well-defined angle of emission can be attributed to ev-
ery source wavelength, there is a direct correlation between the beam pattern
in the far field and the long-rippling range within the source wave number
spectrum. Above and beyond this very important discovery in Fourier acous-
tics, the latter has made acoustic holography – the method of mapping a
sound field, based on its measurements in a room, onto a surface (according
to amplitude and phase) – possible.

13.7 Further Reading

The author owes his knowledge of system theoretical fundamentals to a con-
siderable work by Rolf Unbehauen (Unbehauen, R.: ’Systemtheorie’, R. Old-
enbourg Verlag, München 1971), which also includes a treatment of Fourier
transformation.
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The journal article by Manfred Heckl (Heckl,M.: ’Abstrahlung von ebenen
Schallquellen’, ACUSTICA 37 (1977), S. 155 - 166) represents the first basic
step in the development of Fourier acoustics.

According to the author, the work Papoulis, A.:’The Fourier Integral and
Its Applications’, McGraw-Hill, New York 1963 provides the groundwork for
understanding Fourier transformation.

13.8 Practice Exercises

Problem 1

Calculate the amplitude spectrum An of the rectangular signal with period
T , which is defined within the period of −T/2 < t < T/2 by

x(t) =

{
1, |t| < TD/2
0, else

TD (TD < T ) is the duration of signal excitation within the period. How does
An converge?

Problem 2

One can generally assume that the principle convergence characteristics of
the amplitudes An behave like the rectangular signal in Problem 1 for all
discontinuous functions. Based on this assumption:

• How do An in a continuous signal – whose first derivative is discontinuous
– converge?

• How do An of a continuous signal with a continuous first derivative and a
discontinuous second derivative converge?

• How do An of a continuous signal converge with the first m continuous
derivatives, but with a discontinuous m+ 1-th derivative?

Comment on the results in respect to the number of numerically genuine
model xM for x.

Problem 3

Which physical unit characterizes the rectangular function r∆T (t) described
in Figure 13.1? Which physical unit characterizes the delta function δ(t)?
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Problem 4

Prove the ’energy law’, according to which
∞∫
−∞

|x(t)|2dt =
1

2π

∞∫
−∞

|X(ω)|2dω

is true. Proceed by using the convolution principle which applies to the prod-
uct of two time signals.

The left integral can be defined as the ’signal energy from time-function’,
and the right integral, the ’spectral signal energy’. Viewed in this way, the
energy law establishes a conservation principle.

Problem 5

Prove that the so-called auto-correlation function

a(t) =

∞∫
−∞

x(t+ τ)x∗(τ)dt

is the inverse transform of |X(ω)|2:

a(t) = F−1{|X(ω)|2}

Use the convolution principle which applies to the product of two spectra.
For the sake of universality, allow complex time functions. The conjugate

annotation ∗ is omitted for real-valued time functions.

Problem 6

Show that for every linear and time-invariant transmitter, the relationships

• between the complex amplitudes x and y of the input and output
• and between the Fourier transformed X(ω) and Y (ω) of the input and

outputs

are identical.

Problem 7

Calculate the impulse response for the particle displacement x of the mass for
a simple resonator (see Chapter 5) based on the transmission function

H(ω) =
X(ω)
F (ω)

=
1
s

1− ω2

ω2
0

+ jη ω
ω0

.

Here, ω0 =
√
s/m is the resonance frequency of the oscillator, η describes the

loss factor.
Tip: The simplest method for solving this problem is to use the residue

principle. Otherwise, use partial fraction expansion.
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Problem 8

Calculate the impulse response of the speed of a sound of a beam excited to
bending waves by a point force F ′a = F0δ(x)δ(t), in dependency of x on the
beam.

Note: F0 denotes the total impulse contained in the force function. Namely,
the unit of F0 is dim(F0) = Ns.

Tip: This problem is asking for the inverse transform of the transmission
function

V (ω) =
F0

4kB
√
m′B

(e−jkBx − je−kBx)

(only true for ω > 0), which is a direct result of the solution of the last
problem in Chapter 4, based on the aspects mentioned in Problem 6. Keep
in mind, that V (−ω) = V ∗(ω) must apply; otherwise, the impulse response
asked for would not be real. Refer to Chapter 4 to review the significance of
the dimensions as well as the wave number kB of bending waves.

Problem 9

Find the Fourier transform of the Gauss function

f(t) = f0e
−γt2 .

Problem 10

Find the far field beam pattern of a radiating strip with width b (b << λ0),
with the oscillation course

vy(x) = v0e
−|x|/x0 .

Problem 11

An oscillation of a radiator strip b wide (b << λ0) is given below:

vy(x) =
v0

2
[ej2πnx/l + εe−j2πnx/l]

(0 < x < l, l= length). Show, that for ε = 1 the oscillation has antinodes
at the edges x = 0 and x = l, and for ε = −1 the oscillation provides nodes
at the edges. The Fourier-transformed oscillation should serve as a tool for
qualitatively estimating the difference of the powers radiated for ε = 1 and
ε = −1.
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Problem 12

Find the Fourier-transformed amplitude-modulated signals

f1(t) = g(t)ejω0t

and
f2(t) = g(t) cosω0t :

Here, g(t) is an enveloping function, as a Gauss function, over the carrier
signal with frequency ω0.

Problem 13

This problem examines a one-dimensional, anechoic wave guide, on which a
sound and reverberation field v(x, t) with the (real) wave number k disperses,
k = k(ω) can be characterized by an arbitrary frequency dependency. For ex-
ample, it can defined as k ∼

√
ω for bending waves. An amplitude-modulated

oscillation gradient of
v(0, t) = g(t) cosω0t

occurs on the wave guide at the point x = 0. As in Problem 11, assume g(t)
is an enveloping function (e.g. a Gauss function), which, in addition, can be
assumed here to have a small-banded character. Describe approximately how
this signal propagates along the wave guide.



A

Level Arithmetics

A.1 Decadic Logarithm

The decadic logarithm is defined as the inversion of the calculation of a power
to the base 10. If the relation between two numbers x and y is given as

x = 10y (A.1)

then y is denoted as the decadic logarithm of x:

y = lg x . (A.2)

The facts expressed by (A.1) and (A.2) can also be described by the following
problem: for a given number x a second number with the name ‘logarithm of
x’ is searched for in such a way, that 10 to the power of the second number
results in x (x = 10lg(x)). Basically, nothing else is expressed except the fact
that taking the logarithm and ‘10 to the power of’ are operations which cancel
each other out.

Some values, directly following from (A.2), like

lg(10) = 1
lg(100) = 2
lg(10n) = n

also show that the logarithmic function displays the principal characteristics
of the sensitivity relation shown in Fig. 1.2.

Some simple calculation rules directly follow from the definition. For ex-
ample, a product of two numbers ab can be written as

ab = 10lg(ab)

which is equivalent to

10lg(a)10lg(b) = 10(lg(a)+lg(b)) = 10lg(ab)
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because a = 10lg(a) and b = 10lg(b) and thus the rule for the product results
in

lg(ab) = lg(a) + lg(b) . (A.3)

Likewise,
lg(a/b) = lg(a)− lg(b) (A.4)

and also
lg(ab) = b lg(a) . (A.5)

When migrating to another base, the 10 used above can be exchanged ar-
bitrarily with a different number. The logarithm of x to the base a is therefore
defined as

x = aloga(x) . (A.6)

The relation between two logarithms of different bases can be produced as
follows. For two bases a and b, according to (A.6) it is

aloga(x) = blogb(x) .

Using the operation loga it is

loga(aloga(x)) = loga(x) = loga(blogb(x)) = logb(x) loga(b) ,

hence
loga(x) = logb(x) loga(b) . (A.7)

Thus, all logarithmic functions have the same shape, independent of their base
(apart from the scaling on the abscissa).

The future acoustician should learn the value lg 2 = 0.3 by heart; it will
be useful very often.

A.2 Level Inversion

The level definition
L = 10 lg(p/p0)2

(where p0 = 2 10−5 N/m2 is the reference sound pressure) can be solved for
the square of the sound pressure by calculating 10L/10 and, due to 10lg(x) = x:(

p

p0

)2

= 10
L
10 . (A.8)

Certainly, the physical sound pressure can be regained from the level.
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A.3 Level Summation

Often, two levels have to be summarised to one. One simple example: two
vehicles produce the individual level L1 and L2 at a given position. How large
is the total sound level, if both vehicles are operated at the same time? Similar
problems are very often found. The vehicles substitutionally stand for the
radiation of two so-called incoherent signals. This means signals which do not
contain the same frequencies. It would be a great coincidence, if the engines
of two vehicles ran at exactly the same speed. It is nearly always justified to
assume incoherent signals. Sound incidents, originating from independently
operating technical devices and machines, and also speech signals are of course
incoherent amongst each other. This is clearly not the case if the same cause
is hidden behind the sound sources: electrical machines, for instance, which
are supplied from the same network, are of course coherent and contain the
same frequencies.

The simplest model for a signal containing two incoherent parts is given
by a total signal, composed of two different frequencies:

p = p1 cosω1t+ p2 cosω2t .

The squared root-mean-square which is generally given by

p2
eff =

1
T

T∫
0

p2(t)dt , (A.9)

thus results in

p2
eff =

1
T

T∫
0

(p2
1 cos2 ω1t+ p2

2 cos2 ω2t+ 2p1p2 cosω1t cosω2t) dt .

If, as already assumed, the frequencies ω1 and ω2 are not equal, the latter
integral is much smaller than the two first parts, due to cosω1t cosω2t =
(cos(ω1 − ω2)t+ cos(ω1 + ω2)t)/2, and the remainder is

p2
eff =

1
2
(
p2

1 + p2
2

)
= p2

eff,1 + p2
eff,2 . (A.10)

The squared rms-value of the total signal is the sum of the individual
squared rms-values.

More generally, the squared rms-value of a signal composed of N different
frequencies is given by

p2
eff =

N∑
i=1

p2
eff,i . (A.11)

The level summation is gained, using (A.11), by expressing all rms-values by
levels (and by using the reference sound pressure p0 = 2 10−5 N/m2)
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Lges = 10 lg p2
eff/p

2
0 = 10 lg

N∑
i=1

p2
eff,i/p

2
0 = 10 lg

N∑
i=1

10Li/10 . (A.12)

Equation (A.12) is called ‘law of level summation’. It states that the levels are
in fact not summed, but the individual levels must be transformed to squared
rms-pressure values, before they are added together to yield the total squared
rms-value.
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Complex Pointers

Appendix B serves two purposes:

• a short introduction into the definition of complex numbers and their cal-
culation rules and

• an explanation how and why complex numbers are used to describe acous-
tic processes.

B.1 Introduction to Complex Pointer Arithmetics

Complex numbers can be regarded as points in a plane, where one of the
two axes represents the straight line of real numbers (denoted by the x-axis,
here). Complex numbers are usually depicted graphically (as in Fig. B.1) as a
connecting line between the origin and the point; this line is called a ‘pointer’.

Fig. B.1. Representation of a complex number z in the complex plane

As in all number calculations the reason for their definition is given by
the resulting operational possibilities. All calculation rules and operations for
complex numbers can be derived by the purpose that an element, called ‘j’,
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should rotate an arbitrary pointer by 90◦ in a mathematically positive sense.
Thus, the y-axis, normal to the x-axis, evolves from the real number line
by a multiplication with j. A complex number is therefore composed of an
‘unrotated’ and a ‘rotated’ part:

z = x+ jy (B.1)

where x and y are real numbers.
The addition of complex numbers is performed in algebra as usual. In

mathematics apples are added to apples and pears to pears, so ‘unrotated’
and ‘rotated’ elements are summed individually. Using z1 = x1 + jy1 and
z2 = x2 + jy2, a sum of complex numbers results in

z1 + z2 = (x1 + x2) + j(y1 + y2) . (B.2)

All real quantities can also have negative parts, thus (B.2) also contains
the subtraction.

It follows from the definition ‘multiplication with j rotates by 90◦’ that j
multiplied by j results in the number −1:

j j = j2 = −1 . (B.3)

In the same way j3 = −j, j4 = 1, etc. The facts stated in (B.3) can also be
written as

j =
√
−1 . (B.4)

Thus, j is also called the ‘imaginary’ unit. The interval on the x-axis of the
complex number z (B.1) is called the real part of z, abbreviated by

x = Re{z} . (B.5)

The interval on the y-axis is called the imaginary part of z, abbreviated by

y = Im{z} (B.6)

which also yields
z = x+ jy = Re{z}+ jIm{z} . (B.7)

It is necessary to keep in mind that y denotes a real number. The absolute
value |z| of a complex number is the length of the pointer. According to
Pythagoras it follows from Fig. B.1 that

|z| =
√
x2 + y2 . (B.8)

The pointer can also be described by the absolute value and the angle,
which is enclosed with the real axis. Due to

x = |z| cosϕ (B.9)



B.2 Using Complex Pointers in Acoustics 455

and
y = |z| sinϕ (B.10)

it is
z = |z|(cosϕ+ j sinϕ) . (B.11)

The absolute value of the pointer cosϕ+ j sinϕ is unity.
Using the polynomial series expansion

cosϕ =
∞∑
n=0

(−1)n
ϕ2n

(2n)!
and sinϕ =

∞∑
n=0

(−1)n
ϕ2n+1

(2n+ 1)!

and

ejϕ =
∞∑
n=0

j2nϕ2n

(2n)!
+
∞∑
n=0

j2n+1ϕ2n+1

(2n+ 1)!
=
∞∑
n=0

(−1)n
ϕ2n

(2n)!
+ j

∞∑
n=0

(−1)nϕ2n+1

(2n+ 1)!

it can be stated that
cosϕ+ j sinϕ = ejϕ (B.12)

is valid. Equation (B.12) is very useful, if multiplications and divisions are
performed. It is

z1 = |z1|ejϕ1

and
z2 = |z2|ejϕ2 .

It then follows that
z1z2 = |z1||z2|ej(ϕ1+ϕ2) (B.13)

and likewise

z1/z2 =
|z1|
|z2|

ej(ϕ1−ϕ2) . (B.14)

According to (B.13), the complex multiplication of z1 with z2 results in a
rotation of z1 by ϕ2 and an ‘elongation’ of z1 by the factor |z2|.

The square root of a complex number z = |z|ejϕ is given by

√
z = ±

√
|z|ejϕ/2 . (B.15)

B.2 Using Complex Pointers in Acoustics

All transmission processes treated in this book have two basic attributes.

1. They are linear (for sufficiently small amplitudes); the principle of super-
position can be utilised.

2. The structures are time invariant.
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It can, for instance, be assumed that the speed of sound does not change
for sound radiation into the free field or that a total sound field is the sum of
the individual sound fields which in turn are caused by individual elements of a
loudspeaker voltage. For walls it can reasonably enough be assumed that mass
and bending stiffness do not change with time and that they react to sums of
forces, according to the principle of superposition. Similar considerations can
be made for all acoustic transducers treated in this book.

All linear and time-invariant transducers have in common that they al-
ways react to a sinusoidal excitation with a sine of the same frequency. If, for
example, a wall is excited with a sine wave, the same tone is audible on the
receiving side, which is attenuated in its amplitude and shifted in phase. A
microphone, assuming a pressure of the form p0 sinω0t, yields an output volt-
age with the same signal form and the same frequency; and a sound pressure
in an excited duct – to mention just a third example – always shows the same
signal shape of the sine with space-dependent amplitude and phase.

For all discussed transducers, their ‘output’ y(t)

y(t) = |H(ω)|x0 cos(ωt+ ϕH + ϕx) (B.16)

is a version of the ‘input’

x(t) = x0 cos(ωt+ ϕx) , (B.17)

which is phase-shifted by ϕH and ‘amplified’ by |H|. The output y denotes
the vibration reaction (the membrane displacement, the output voltage, the
sound pressure in the duct, etc.) and the input x denotes the excitation (the
loudspeaker voltage, the force, etc). The fact that the signal shape is not
changed during the transmission of pure tones is a special case only and by
no means an obvious property of linear, time-invariant structures and the sine-
shape. Other signal forms (triangle or square waves) are not transmitted with
the same shape; even the simple time derivation in the radiation of volume
velocity sources in Chap. 3.3 according to (3.14) results in a signal deforming,
where, for instance, a triangle shape is transformed to a square.

The special case that a sine wave is always transmitted unchanged, leads
to a very simple description: for pure tones the transmission is completely
described by an ‘amplification factor’ |H(ω)| (which can also be smaller than
unity or has a dimension) and by a phase shift ϕH.

It is suggested to describe the effects of transducers on their input signal
by a complex multiplication. To make this possible, the real time signals of
input and output have to be assigned complex amplitudes. This is done with
the aid of the so-called time convention

f(t) = Re{fejωt} (B.18)

where f is a complex amplitude, which is used for the description of a real
process f(t). Using
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f = |f |ejϕf , (B.19)

the time convention (B.18) maps the complex amplitude f to the real and
observable reality

f(t) = |f | cos(ωt+ ϕf) . (B.20)

Equation (B.18) allows the description of sinusoidal signals by complex am-
plitudes, where, according to (B.19), the signal amplitudes are made equal to
the absolute value of the complex amplitudes and the angle ϕf is made equal
to the phase of the signal.

This enables the description of the transmission by a complex multiplica-
tion. The operation

y = H x (B.21)

includes the complete description of the transmission. It contains the real
amplitude amplification |H| as well as the phase shift ϕH. As a matter of fact,
a check performed with

x = |x|ejϕx

y = |y|ejϕy

H = |H|ejϕH

for the time signals

y(t) = |x||H| cos(ωt+ ϕx + ϕH)

shows that y(t) is a version of the input which is amplified by |H| and phase-
shifted by ϕH.

The main advantage when using complex numbers is the use of clearer and
simpler calculation rules. A signal sum, for example, given by two pure tones

x(t) = x1 cos(ωt+ ϕ1) + x2 cos(ωt+ ϕ2) (B.22)

is a pure tone itself, with the total amplitude xtot and a total phase φtot

x(t) = xtot cos(ωt+ φtot) .

The actual values of xtot and φtot would not be easy to calculate without
complex numbers; the realization of the calculation needs certain skills and
some experience using addition theorems. In contrast, using pointers, it is a
breeze:

xtot = x1 + x2 (B.23)

with
x1 = x1ejϕ1 (B.24)

and
x2 = x2ejϕ2 . (B.25)
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Even the description of waves becomes very simple with the aid of the
definitions of complex amplitudes mentioned earlier. The wave, travelling in
positive direction, is described by

p = p0e−jkx . (B.26)

The only measurable quantity with a real-value is the time-space-characteris-
tics of the pressure, given by

p(x, t) = Re{pejωt} = Re{p0ej(ωt−kx)} = p0 cos(ωt− kx) (B.27)

(where k = ω/c is the wavenumber).
Generally, sound fields composed of pure tones can be described by com-

plex spatial functions.
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Solutions to the Practice Exercises

C.1 Practice Exercises Chapter 1

Problem 1

The pump level we are looking at is designated with LP . The following applies
to the total level Ltot

10Ltot/10 = 105,5 = 10LP /10 + 105.

resulting in
10LP /10 = 105,5 − 105

or
LP = 10lg(105,5 − 105) = 53, 3 dB(A) .

Problem 2

Both octave levels given are L(500Hz) = 81.1 dB and L(1000Hz) = 78, 8 dB.
For the non-weighted total level, L(lin) = 83.1 dB is true, and the A-weighted
total level comes out to be L(A) = 81.2 dB.

Problem 3

The octave levels increase by 3 dB each time the center-frequency doubles.
The non-weighted total level is found by

Ltot = 10lg(
N−1∑
i=0

10(L+i)/10) ,

where L refers to the third-octave level of the lowest third-octave. Using the
sum formula for geometric series, we obtain
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N−1∑
i=0

10i/10 =
10N/10 − 1
101/10 − 1

.

The total level is

∆L = 10lg
10N/10 − 1
101/10 − 1

above the third-octave level L of the lowest third-octave. For N=10, this
results in ∆L = 15.4 dB.

Problem 4

Octave levels are likewise equal to one another. They exceed the third-octave
levels by 4.8 dB. The total level is ∆L = 10 lg N above the third-octave level.
For N=10, the total level exceeds the third-octave level by 10 dB.

Problem 5

The energy-equivalent continuous noise level pertaining to a lengthy time
period of 16 hours of the train tracks alone is

Leq(train) = Leq(train, 2min)− 10 lg
120min
2min

=

Leq(train, 2min)− 17.8 = 57.2 dB(A).

According to the law of level addition, the long-term level of the street and
tracks together then amounts to Leq(total) = 59.2 dB(A).

Problem 6

The energy-equivalent continuous noise level for the reference time period
”daytime” can be found in

Leq(day) = Leq(30s)− 10lg
5min
30s

= 78− 10 = 68 dB(A) .

The energy-equivalent continuous noise level for the reference time period
”nighttime” can be found in

Leq(night) = Leq(30s)− 10lg
20min

30s
− 10lg

8hours
4hours

=

= 78− 16− 3 = 59 dB(A) .
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Problem 7

The actual measured level Lm results in

Lm = 10lg(10L/10 + 10LH/10) ,

whereby L is the actual level exclusively of the event of interest in this case.
LH is the level which solely pertains to the background noise. If LH is lower
than L by ∆L,

Lm = 10lg(10L/10 + 10(L−∆L)/10) = 10lg(10L/10(1 + 10−∆L/10)) =

= 10lg(10L/10) + 10lg(1 + 10−∆L/10) = L+∆LF

applies to LH = L − ∆L, whereby LF refers to the margin of error in the
measurement caused by the background noise level. This margin of error is
defined by

∆LF = 10lg(1 + 10−∆L/10)

The margin of error is

• for ∆L = 6 dB, ∆LF = 1 dB,
• for ∆L = 10 dB, ∆LF = 0.4 dB and
• for ∆L = 20 dB, ∆LF = 0.04 dB.

Problem 8

The last result in Problem 7 is solved for 10−∆L/10:

10−∆L/10 = 10∆LF /10 − 1 .

By logging both sides and multiplying them by 10, we obtain

∆L = −10lg(10∆LF /10 − 1) .

This results in the necessary intervals between noise disturbances for ∆LF =
0.1 dB, resulting in ∆L = 16.3 dB.

An error of measurement of 1 dB therefore requires a noise interval of 6 dB
(see Problem 7). A noise interval of 16.3 dB becomes necessary for measure-
ment errors of only 0.1 dB.

Problem 9

fo = 6
√

2fu

applies to out-of-band frequencies fo and fu for sixth-octaves, since 6 sixth-
octaves amount to an octave. For the center-frequencies,

fm = 2
√
fofu = 12

√
2fu
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applies, resulting in

∆f = fo − fu = ( 6
√

2− 1)fu .

for the bandwidth of the pass band. The center-frequencies therefore adhere
to the law

f (n+1)
m = 6

√
2f (n)
m ,

whereby f (n)
m refers to the center-frequency of the n-th filter.

Problem 10

The octave level Loct can be ascertained from the three third-octaves L1, L2

and L3 based on the law of level addition

Loct = 10lg(10L1/10 + 10L2/10 + 10L3/10) ,

or
10Loct/10 = 10L1/10 + 10L2/10 + 10L3/10 .

This leads to
10L3/10 = 10Lokt/10 − 10L1/10 − 10L2/10 ,

and consequently

L3 = 10lg(10Loct/10 − 10L1/10 − 10L2/10) ,

which can be used to check the ’uncertain’ third-octave level L3.
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C.2 Practice Exercises Chapter 2

Problem 1

The functions f1, f2 and f3 fulfill the wave equation, whereas f4 does not
constitute a solution to the given partial differential equation.

The following example can be used to prove this:

∂2f1

∂t2
= − 1

(t+ x/c)2
,

∂2f1

∂x2
= − 1

c2
1

(t+ x/c)2
,

and therefore
∂2f1

∂x2
=

1
c2
∂2f1

∂t2

the wave-equation is satisfied.

Problem 2

At equal pressure and an equal specific heat ration, the squares of the sound
velocities of various gases have an inverse relationship to their densities:

c2(gas)
c2(air)

=
%(air)
%(gas)

Therefore, we obtain the sound velocity for hydrogen c = 1290m/s, for oxygen
c = 323m/s, and for carbon dioxide c = 275m/s.

The elasticity modules are all identical based on E = % c2 = κp0 (p0 =
static pressure) and result in E = 1.4 105 kg/ms2 = 1.4 105N/m2.

The wavelengths for a frequency of 1000Hz are

• λ = 1.29m in hydrogen
• λ = 0.323m in oxygen
• λ = 0.275m in carbon dioxide and
• λ = 0.34m in air.

Problem 3

• Speed of sound = 10−4m/s = 0.1mm/s.
• Particle displacement = 0.16 10−6m at 100Hz,
• Particle displacement = 0.016 10−6m at 1000Hz.
• Sound intensity = 4 10−6W/m2, sound power = 16 10−6W .
• Sound pressure level = 20 lg(2 103) = 66 dB = intensity level.
• Power level = intensity level + 10 lg(S/1m2) = 72 dB.
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Problem 4

Based on equations(2.75) through (2.79), the following is true for N number
of equal surface sections Si:

P

P0
=

Si
1m2

N∑
i=1

p2
eff,i

p2
0

=
Si

1m2

N∑
i=1

10Li/10

Consequently, the following is true for the power level

Lw = 10 lg (
Si

1m2

N∑
i=1

10Li/10) = 10 lg (
N∑
i=1

10Li/10) + 10 lg (
Si

1m2
) .

Therefore, we obtain the solution Lw = 96.7dB(A).

Problem 5

The Mach numbers are 0.0408 (50 km/h); 0.0817 (100 km/h) and 0.1225
(150 km/h), resulting in the following receiver frequencies for source and re-
ceiver moving away from one another:

Receiver at rest in fluid Source at rest in fluid

960.8Hz 959.2Hz
924.5Hz 918.3Hz
890.1Hz 877.5Hz

If the source and receiver are moving toward one another, we obtain the
following receiver frequencies:

Receiver at rest in fluid Source at rest in fluid

1042.5Hz 1040.8Hz
1089.0Hz 1081.7Hz
1139.6Hz 1122.5Hz

Problem 6

The sound velocity of nitrogen (N2) is c = 349m/s at 293K (= 200 C), in
oxygen, c = 326.5m/s. Therefore, the sound travels slightly faster in ’stale
air.’
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Problem 7

Pressure-space dependency:

p = p0 sin kx

Speed space dependency:

v =
jp0

% c
cos kx

Resonance equation:
cos kl = 0

(l=length) or kl = π/2 + nπ with n = 0; 1; 2... and

f = (
1
4

+
n

2
)
c

l
.

The first three resonance frequencies are 340Hz, 1020Hz and 1700Hz.

Problem 8

The wavelengths in water are at 500Hz: λ = 2.4m, at 1000Hz: λ = 1.2m,
at 2000Hz: λ = 0.6m and at 4000Hz: λ = 0.3m.

Problem 9

Field and energy dimensions in the interval 0 < t − x/c < T (otherwise,
outside of this interval for t−x/c < 0 as well as for t−x/c > T all dimensions
are equal to zero):

v(x, t) = v0 sin
π(t− x/c)

T

p(x, t) = %0c v0 sin
π(t− x/c)

T

I(x, t) =
p2(x, t)
%0c

= %0c v
2
0 sin2 π(t− x/c)

T

E(x, t) =
p2(x, t)
%0c2

= %0 v
2
0 sin2 π(t− x/c)

T

The energy produced by the source EQ is – according to the amount of energy
exerted – is completely absorbed by the field. Therefore,

EQ = S

∫ ∞
0

E(x, t) dx = %0 v
2
0S

∫ c(t+T )

ct

sin2 π(t− x/c)
T

dx.

Using sin2 x = (1− cos 2x)/2 this becomes
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EQ =
%0 v

2
0

2
S

∫ c(t+T )

ct

1− cos
2π(t− x/c)

T
dx =

%0 v
2
0

2
ScT

The energy produced by the source, at a speed of v0 = 0.01m/s =
1 cm/s, with a wave guide diameter of 10 cm (with cylindrical surface area
S = π 0.052m2 and signal length of T = 0.01s) is thus EQ = 1.6 10−6Ws.

Problem 10

The following applies to the relationship between measured intensity IM and
actual intensity I according to the given problem

10lg
IM
I

= −2 (−3) ,

and therefore

sin k∆x
k∆x

= 10−0,2 (10−0,3) = 0.63 (0, 5) .

One obtains from the resulting table for the given sinc function sin k∆x/k∆x
the values k∆x = 0.5π (k∆x = 0.6π). Based on these values, the function
always complies with ∆x/λ < 1/4 = 0.25 (∆x/λ < 0.3). Using ∆x = 2.5 cm
we obtain the frequency threshold for these measurements of f = 3.4 kHz
(f = 4.1 kHz).

Problem 11

The phase tolerance ϕ must comply with

ϕ

2π
<
f∆x

5c
pp
ps
.

A reasonable phase tolerance within these bounds is obtained using f =
100Hz, ∆x = 5 cm and ps/pp = 10

ϕ

2π
< 0, 3 10−3 (0, 3 10−4) .

This corresponds to the phase error 0.11◦ (0.011◦) – expressed in degrees.

Problem 12

In the absence of pre-amplification using a microphone, a police car approaches
a receiver. The relationship between transmission frequency fQ and receiver
frequency fE1 can therefore be described by

fE1 =
fQ

1− |M |
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(M=Mach number). Subsequently, the source moves away from the receiver

fE2 =
fQ

1 + |M |
.

The result of both equations is

fE2

fE1
=

1− |M |
1 + |M |

,

or, expressed as a Mach number,

|M | =
1− fE2

fE1

1 + fE2
fE1

.

Using fE1 = 555.6Hz and fE2 = 454.6Hz, one obtains M = 0.1, correspond-
ing to a velocity of U = |M |c = 34m/s = 122.4 km/h. We see that at the
source frequency fQ and based on

fQ = fE1(1− |M |)

and
fQ = fE2(1 + |M |),

fQ = 500Hz is true.
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C.3 Practice Exercises Chapter 3

Problem 1

The A-weighted sound power level may not exceed a maximum possible value
of 95.3 dB(A) (pump on solid, reflective platform).

Problem 2

The change of the volume flow over time only has a non-zero value in the time
intervals 2 < t/TF < 3 and 7 < t/TF < 8, at which dQ/dt = const = Q0/TF .
The resulting gradient of the sound pressure square is shown in Fig. C.1. For
the value given in the graph pA,

pA =
%Q0

4πrTF

applies. For Q0 = 1m3/s and TF = 0, 01 s, we obtain pA = 0.95 N/m2

(pA = 0, 3 N/m2 for TF = 0.0316 s and pA = 0.095 N/m2 for TF = 0.1 s),
using % = 1.2 kg/m3. When defining the sound pressure level

L = 20 lg pA/p0 ,

using p0 = 2 10−5N/m2, the level corresponds to L(0.01 s) = 93.6 dB
within both non-zero-sound-pressure time intervals (L(0.0316 s) = 83.6 dB
and L(0, 1s) = 73.6 dB).

Fig. C.1. Time dependency of the sound pressure square
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Problem 3

The power level is 117 dB. The power is therefore equal to P = 1011.7 P0 =
0.5W . The efficiency coefficient therefore has a value of 0.01.

Problem 4

The sound pressure in the far-field is

pfern =
jω% b l v0

2πR
e−jkR

sin2 (kl4 sinϑN )
(kl4 sinϑN )2

=
jω% b l v0

2πR
e−jkR

sin2 (π l
2λsinϑN )

(π l
2λsinϑN )2

.

The directivity pattern exists in segments of the sin2(πu)/(πu)2 function,
which is constrained by u = ±l/(2λ).

Problem 5

Based on R = 5 l, 5 >> l/λ and 5 l >> λ apply to both remaining far-field
conditions

• a) λ > l results from the first condition, λ < l from the second. Values can
therefore only be measured for f = 340Hz (680Hz, 170Hz).

• b) 2.5 > l/λ or λ > l/2.5 results based on the first condition. λ < 2.5 l is
obtained based on the second condition. Measurable values can therefore
be obtained with the frequency interval f = 136Hz to f = 850Hz (in the
interval 272Hz to 1700Hz; in the interval 68Hz to 425Hz).

Problem 6

The level at a distance of 20m is measured at 3 dB less than that which is
measured at a distance of 10m. It is therefore 81 dB(A).

To calculate the level at a distances of 200m and 400m respectively, one
must first find the power level of the line source (mounted on a non-reflective
platform). It is Lw = 119 dB(A). Next, we find the pressure level of the point
sound source at a distance of 200m, which is 65 dB(A), leaving a remaining
level of 59 dB(A) measured at a distance of 400m.

Problem 7

The basic idea here is that the continuous phase shift from source to source
produces a virtual rotating source in a given period, emanating in a spiral
wave at lower frequencies, (see the following images which depict the solution
to this problem).
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Fig. C.2. Sound field of the sources for 2h/λ = 0.25

Fig. C.3. Sound field of the sources for 2h/λ = 0.5
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Locally distributed interferences occur at higher frequencies.

Fig. C.4. Sound field of the sources for 2h/λ = 1

Fig. C.5. Sound field of the sources for 2h/λ = 2

A routine written in Matlab, which can produce a short film of such an
event, is given below:
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clear all
xmax=3.;
abstand=0.5;
dx=2*xmax/60;
dy=dx;

for ix=1:1:61
x=-xmax + (ix-1)*dx;

for iy=1:1:61
y=-xmax + (iy-1)*dy;
x1=x-abstand/2;
x2=x+abstand/2;

[phi1,r1]=cart2pol(x1,y);
[phi2,r2]=cart2pol(x2,y);
[phi3,r3]=cart2pol(x,y-abstand/2);
[phi4,r4]=cart2pol(x,y+abstand/2);
p = j*(exp(-j *2*pi*r1)./sqrt(r1) - exp(-j *2*pi*r2)./sqrt(r2));
p = p + exp(-j *2*pi*r3)./sqrt(r3) - exp(-j *2*pi*r4)./sqrt(r4);

[phi1,r1]=cart2pol(x1,y+0.01);
[phi2,r2]=cart2pol(x2,y+0.01);
[phi3,r3]=cart2pol(x,y-abstand/2+0.01);
[phi4,r4]=cart2pol(x,y+abstand/2+0.01);
py = j*(exp(-j *2*pi*r1)./sqrt(r1) - exp(-j *2*pi*r2)./sqrt(r2));
py = py + exp(-j *2*pi*r3)./sqrt(r3) - exp(-j *2*pi*r4)./sqrt(r4);

[phi1,r1]=cart2pol(x1+0.01,y);
[phi2,r2]=cart2pol(x2+0.01,y);
[phi3,r3]=cart2pol(x+0.01,y-abstand/2);
[phi4,r4]=cart2pol(x+0.01,y+abstand/2);
px = j*(exp(-j *2*pi*r1)./sqrt(r1) - exp(-j *2*pi*r2)./sqrt(r2));
px = px + exp(-j *2*pi*r3)./sqrt(r3) - exp(-j *2*pi*r4)./sqrt(r4);

vx(iy,ix) = (p-px)*10;
vy(iy,ix) = (p-py)*10;

if r1<0.1
vx(iy,ix)=0;
vy(iy,ix)=0;

end
if r2<0.1

vx(iy,ix)=0;
vy(iy,ix)=0;

end
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if r3<0.1
vx(iy,ix)=0;
vy(iy,ix)=0;

end
if r4<0.1

vx(iy,ix)=0;
vy(iy,ix)=0;

end
end
end

r=0.1;
dphi=2*pi/99.
for i=1:1:100

phi=(i-1)*dphi;
x=r*cos(phi);
y=r*sin(phi);

xrefl(i)=x-abstand/2.;
yrefl(i)=y;

xrefl2(i)=x+abstand/2;
yrefl2(i)=y;

xrefl3(i)=x;
yrefl3(i)=y+abstand/2;

xrefl4(i)=x;
yrefl4(i)=y-abstand/2;
end

npoints=61;
M=particlequadru(vx,vy,npoints,xmax,
xrefl,yrefl,xrefl2,yrefl2,xrefl3,yrefl3,xrefl4,yrefl4);

% now the movie is shown:

function[M]=particlequadru(vx,vy,npoints,xmax,
xrefl,yrefl,xrefl2,yrefl2,xrefl3,yrefl3,xrefl4,yrefl4);

xmin=-xmax; ymin=xmin; ymax=xmax;

frames=50; scale=1;

point_style = ’k.’; [x,y]=meshgrid(1:npoints,1:npoints);
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command =’axis off’;

v=[vx,vy]; [vmaxval,vmaxpos]=mmax(abs(v));
[vmax,temppos]=max(real(v(vmaxpos)));
phase=angle(v(vmaxpos(temppos)));

dx=real(vx*exp(j*phase)); dy=real(vy*exp(j*phase));

figure(’Position’,[50 20 500 500],’color’,[1 1 1]);

%Scale movie
answer=’yes’; while answer==’yes’

cla;
plot(x+dx*scale,y+dy*scale,point_style,’Markersize’,5)
axis([-1 npoints+2 -1 npoints+2])
hold on
axis equal;
axis manual;
eval(command);
answer=questdlg(’Scale Particle Movement’, ...

’Continue Scaling?’, ...
’yes’,’no’,’yes’);

if strcmp(answer,’no’),break,end
prompt={’Multiplication Factor:’};
title=’Scale Particle Movement’;
lineNo=1;
def={num2str(scale)};
scale=inputdlg(prompt,title,lineNo,def);

if isempty(scale),break,end;
scale=str2num(char(scale));

end scale
%Plot single frames of movie and combine them
M=moviein(frames); for k=0:frames-1;

cla;
axis equal;
axis manual;
eval(command);
dx=real(vx*exp(j*2*pi/frames*k));
dy=real(vy*exp(j*2*pi/frames*k));
plot(x+dx*scale,y+dy*scale,point_style,’Markersize’,5)

% reflectors
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ax=(npoints-1)/(xmax-xmin);
bx=1-ax*xmin;
ay=(npoints-1)/(ymax-ymin);
by=1-ay*ymin;
xm=ax*xrefl + bx;
ym=ay*yrefl + by;
hp=plot(xm,ym);
set(hp,’LineWidth’,3.,’Color’,’k’)

xm=ax*xrefl2 + bx;
ym=ay*yrefl2 + by;
hp=plot(xm,ym);
set(hp,’LineWidth’,3.,’Color’,’k’)

xm=ax*xrefl3 + bx;
ym=ay*yrefl3 + by;
hp=plot(xm,ym);
set(hp,’LineWidth’,3.,’Color’,’k’)

xm=ax*xrefl4 + bx;
ym=ay*yrefl4 + by;
hp=plot(xm,ym);
set(hp,’LineWidth’,3.,’Color’,’k’)

M(:,k+1) = getframe;
end

%Play movie

answer=’yes’; while answer==’yes’
answer=questdlg(’’, ...

’Play it again ?’, ...
’yes’,’no’,’yes’);

if strcmp(answer,’no’),break,end
movie(M,8,30); % 8 times, 30 pics/sec

end

function [m,i]=mmax(a)
%MMAX Matrix Maximum Value.
% MMAX(A) returns the maximum value in the matrix A.
% [M,I] = MMAX(A) in addition returns the indices of
% the maximum value in I = [row col].
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% D.C. Hanselman, University of Maine, Orono ME 04469
% 1/4/95
% Copyright (c) 1996 by Prentice Hall, Inc.

if nargout==2, %return indices
[m,i]=max(a);
[m,ic]=max(m);
i=[i(ic) ic];

else,
m=max(max(a));

end

Problem 8

By reforming the equation sin2 x = 0.5 − 0.5 cos 2x, one can find the volume
flow of the source within the time interval 0 < t < TD:

Q(t) =
π

2
Sξ0
TD

sin (π
t

TD
)

Fig. C.6. Depiction of the solution to Problem 8. Signal dependencies ξ, Q, and p
for r/c = TD/4, each divided by its corresponding maximum.

According to the law of outdoor volume sources, we subsequently obtain
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p(r, t) =
π

8
%

r

Sξ0
T 2
D

cos (π
t− r/c
TD

)

for the time interval 0 < t < TD. For t < 0 and for t > TD is p = 0. All other
time dependencies are presented in the image above.

Problem 9

In the far-field, the sound pressure resulting from the circular piston exists in

pfern(R,ϑ, ϕ) =
jω% v0

2πR
e−jkR

b∫
−b

√
b2−x2

q∫
−
√
b2−x2

q

ejk(xQ sinϑ cosϕ+yQ sinϑ sinϕ)dyQdxQ ,

representing an integration over the circular surface. Due to rotation symme-
try (the sound field must be independent of the circumferential angle ϕ), it
is only necessary to consider half of the plane. We therefore choose ϕ = 0 for
our half-plane object of observation. This simplifies the far-field pressure to

pfern(R,ϑ, ϕ) =
jω% v0

2πR
e−jkR

b∫
−b

√
b2−x2

q∫
−
√
b2−x2

q

ejkxQ sinϑdyQdxQ .

Because the integrand of yq is independent, we obtain

pfern(R,ϑ, ϕ) =
jω% v0

πR
e−jkR

b∫
−b

ejkxQ sinϑ
√
b2 − x2

q dxQ =

=
jω% v0

πR
e−jkR

b∫
−b

[cos (kxQ sinϑ) + j sin (kxQ sinϑ)]
√
b2 − x2

q dxQ ,

or, due to symmetry, we obtain

pfern(R,ϑ, ϕ) =
2jω% v0

πR
e−jkR

b∫
0

cos (kxQ sinϑ)
√
b2 − x2

q dxQ .

The substitution u = xq/b exhibits

pfern(R,ϑ, ϕ) =
2jω% v0b

2

πR
e−jkR

1∫
0

cos (kbu sinϑ)
√

1− u2 du .
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The integral contained therein is listed in Gradshteyn’s table of integrals (refer
to Gradshteyn, I.S.; Ryzhik,I.: Table of Integrals, Series, and Products. Aca-
demic Press, New York and London 1965; page 953, Nr. 8.411.8 with ν = 1.
Note: Γ (3/2)Γ (1/2) = π/2 applies). Using this, we obtain

pfern(R,ϑ, ϕ) =
jω% v0b

2

R
e−jkR

J1(kb sinϑ)
kb sinϑ

,

whereby J1 refers to the first-order Bessel function. Check your calculations
for accuracy by defining a point on the z-axis (ϑ = 0). Use J1(x)/x = 1/2 for
small values of x and you should get the correct result given in eq.(3.69).

Notably, the directivity patterns of transmitters and receivers can possess
remarkably similar characteristics (see Chapter 11.2 for a reference of the
directivity patterns pertaining to this exercise).

Problem 10

It is only necessary to find the volume flowQ of the plate vibration to solve this
problem. In the first approximation, the short-waved arrays can be considered
to be omnidirectional volume sources. For the volume flow, one obtains

Q = v0

ly∫
0

lx∫
0

sin (nπx/lx) sin (mπy/ly) dx dy =

= v0
lxly
nmπ2

(cos (nπ)− 1)(cos (mπ)− 1) .

The volume flow is only a non-zero value if the orders n and m are both
uneven numbers, resulting in

Q = v0
4lxly
nmπ2

.

The sound pressure in the far-field consequently comes out to be

pfern =
jω%0Q

2πR
e−jkR .

Problem 11

• For b/λ = 3.5, we obtain the 3 pressure nodes at the locations z/λ = 5.625;
2.0625 and 0.5417 .

• For b/λ = 4.5, we obtain the 4 pressure nodes at the locations z/λ = 9.625;
4.0625; 1.875 and 0.5313 .

• For b/λ = 5.5, we obtain the 5 pressure nodes at the locations z/λ =
14.625; 6.5625; 3.5417; 1.7813 and 0.525.
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Problem 12

In the far-field (the only scenario where it makes sense to consider directivity
patterns), we obtain

pfar = p1[1 +
Q2

Q1
ejkhsinϑN ]

(p1 is the field of the source Q1 by itself), thus resulting in

pfar = p1[1− (1 + jkh)ejkhsinϑN ] .

With ez ∼= 1 + z for |z| << 1, one obtains

pfar = p1[1− (1 + jkh)(1 + jkhsinϑN )] ∼= −jkh(1 + sinϑN )p1 ,

whereby the summand of the second order (with (kh)2) can be disregarded.
The directivity pattern is kidney-shaped, characterized by a single nick at
ϑN = −90◦. A half-plane depiction is shown in Fig. C.7. Of course, the direc-
tivity pattern is symmetrical, implying

pfar(180◦ − ϑN ) = pfar(ϑN ) .

It should be noted that this does not violate the general principle that states
that for low frequencies, the sound field can be approximated using the sum
of all sources at a single location. The source sum and sound field are namely
both equal to zero in the first approximation.

Fig. C.7. Directivity pattern of the source pair
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C.4 Practice Exercises Chapter 4

Problem 1

The coincidence frequencies are

• for cement (gypsum) plates 8 cm thick (cL = 2000m/s), 397Hz,
• window panes 4mm thick, 3241Hz and for
• a door panel made of oak wood (cL = 3000m/s) 25mm thick, 847Hz.

Problem 2

The somewhat cryptic expression k
√
B/m′ can be more easily expressed in

terms of longitudinal wave velocity and beam thickness. With B = Eh3b/12
and m′ = % hb, the expression becomes

B

m′
=
Eh2

12%
= h2c2L/12 .

This allows us to find the resonance frequencies for aluminum using cL =
5200m/s

• for the mounted beam f = 0.45m2h cL/l
2 (m = 1, 2, 3, .) and

• for the bilaterally supported beam f = 0.45 (m + 0, 5)2h cL/l
2 (m =

1, 2, 3, .).

Next, we can find the resonance frequencies for the beam length of 1m

• for the mounted beam of f/Hz = 11.7; 46.8; 105.3; 187.2; 292.5 and
• for the bilaterally supported beam of f/Hz = 26.3; 73.1; 143.3; 236.9;

353.9.

The resonance frequencies are four times as great for the beam lengths of
50 cm.

Problem 3

Here, too, the bending resistance and plate mass can be expressed in terms
of longitudinal wave velocity and plate thickness:

f = 0.45[(
nx
lx

)2 + (
ny
ly

)2]h cL

By varying nx = 1; 2 and ny = 1; 2, we obtain the following resonance fre-
quencies:

• Window pane 4mm thick with dimensions 50 cm and 100 cm: 44.1Hz;
70.6Hz; 149.9Hz and 176.4Hz.

• 10 cm thick plaster wall (cL = 2000m/s) with dimensions 3m by 3m:
20Hz; 50Hz; 50Hz (double resonance) and 80Hz.

• 2mm enforced steel plate with dimensions 20 cm by 25 cm: 184.5Hz;
400.5Hz; 522Hz and 738Hz.
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Problem 4

The beam is resting in the interval of 0 ≤ x ≤ l and is bilaterally supported at
x = 0 (v = 0 and dv/dx = 0 at x = 0) and suspended at x = l (d2v/dx2 = 0
and d3v/dx3 = 0 at x = l). Since no symmetry exists, the speed in this case
must have four solution functions:

v = A sin kBx+B sh kBx+ C cos kBx+D ch kBx

Due to v(0) = 0, D = −C applies, and based on dv/dx = 0 at x = 0, it follows
that B = −A. Thus resulting in the remaining solutions for the speed:

v = A[sin kBx− sh kBx] + C[cos kBx− ch kBx]

Based on the constraint d2v/dx2 = 0 at x = l, it follows that

v = A[sin kBl + sh kBl] + C[cos kBl + ch kBl] ,

due to d3v/dx3 = 0, and subsequently,

v = A[cos kBl + ch kBl]− C[sin kBl − sh kBl] .

Resonance, in other words, vibration in the absence of excitation, occurs when
the determinants of the last two equations disappear:

[sin kBl + sh kBl][sin kBl − sh kBl] + C[cos kBl + ch kBl]2 = 0

This results in the resonance frequencies expressed as

cos kBl = − 1
ch kBl

.

This equation can be easily solved visually, as shown in Fig. C.8.
The lowest resonance frequency can obviously be accurately derived using

kBl/2π = 0.3, which is analogous to kBl/ = 0.6π (the exact value is kBl/ =
0.597π. This difference, of course, being negligible). All higher resonances can
be described as cos kBl = 0 and therefore, kBl = 3π/4 + nπ.

The modal forms exist in

v = [sin kBx− sh kBx] +
cos kBl + ch kBl

sin kBl − sh kBl
[cos kBx− ch kBx] ,

which can be substituted for the eigen values mentioned above kBl. The first
four modes are depicted in the following Fig. C.9.
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Fig. C.8. Graphical solution to the eigen value equation

Fig. C.9. Vibration modes of a beam supported below and suspended at the top

Problem 5

The onset of the beam speed to the right of the point force for x > 0 contains
a wave travelling to the right as well as a near-field diminishing in the x-
direction

v = v0(e−jkBx +Ae−kBx) .

The field must be symmetrical, meaning

v(−x) = v(x) .

As it vibrates, the beam is unable to crease under the point force, leading to
the conclusion that at x = 0,

β =
∂v
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is true. It follows then that A = −j and therefore

v = v0(e−jkBx − je−kBx)

applies for the complex pointer of the beam speed. The time and spatial
dependencies become, based on the time convention,

v(x, t) = v0Re{(e−jkBx − je−kBx)ejωt} .

The beam speed curves sought after in this problem are given in both figures
below, separated by half-periods for more visual clarity. The displacement
curves are equal due to ξ = v/jω, just phase-shifted in respect to the speed
by 90◦.

The speed at x = 0 is derived from

v(x, t) = v0Re{(1− j)ejωt} .

With
1− j =

√
2 e−j

π
4 ,

it becomes
v(x, t) = v0

√
2 cos (ωt− π

4
) .

The speed at x = 0 reaches its first maximum for all t/T = 1/8.
By integrating over time, the displacement ξ(x = 0) subsequently becomes

ξ(x, t) =
√

2v0

ω
sin (ωt− π

4
) .

The displacement at x = 0 therefore reaches its first maximum at t/T = 3/8.

Fig. C.10. Beam speed for Problem 4

−1 0 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x/λ
B

v/
v 0

t/T=0, 1/20, 2/20, ... ,10/20



484 C Solutions to the Practice Exercises

Fig. C.11. Beam speed for Problem 4

Problem 6

The first step to solving this problem is the same as the previous problem; it
entails applying the homogenous bending wave equation

∂4v

∂x4
− k4

Bv = 0 ,

which only takes into consideration a wave (travelling away from the source)
and a near-field (diminishing away from the source)

v(x) = vW e
−jkBx + vNe

−kBx .

This equation only applies to x > 0. Of course, in this scenario, a symmetrical
reverberation field v(−x) = v(x) develops. Since the beam likewise does not
bend in the middle, initially, the

∂v(x)/∂x = 0

must also applyfor x = 0. It then follows that vN = −jvW , simplifying the
statement, once again, to

v(x) = vW [e−jkBx − je−kBx] .

The bending force to the right of the point force in the beam F (x � 0) then
becomes
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F (x � 0) =
B

jω

∂3v

∂x3
= vW

2Bk3
B

ω
= vW

2ωm′

kB
,

using k4
B = m′ω2/B in the last step. The bending force to the left of the

initial point force is the same. Because the sum of all three forces equal zero,
it follows that

vW =
F0kB
4ωm′

.

The speed is obtain by substitution

v(x) =
F0kB
4ωm′

[e−jkBx − je−kBx] =
F0

4kB
√
m′B

[e−jkBx − je−kBx)] .

The following

F0kB
4ωm′

=
F0k

2
B

4kBωm′
=

F0ω

4kBωm′

√
m′

B
=

F0

4kB
√
m′B

is applied in the last step in order to express the answer to this problem in
terms of its frequency dependency.
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C.5 Practice Exercises Chapter 5

Problem 1

The nuclear magnetic resonance tomograph weighs 104N (accounting for the
acceleration of the earth at g = 10m/s2), the flat bearing’s surface is 0.36m2,
the pressure exerted upon this surface is therefore pstat = 2.8 104 N/m2 =
0.028N/mm2. The e-module must be 20 times as great as, thus requiring
E = 0.56N/mm2 = 56 104 N/m2.

The layer thickness needed can be best construed from the static depres-
sion

xstat = Mg/s

(M=mass) where the ratio s/M can be expressed as the the resonance fre-
quency

xstat =
g

ω2
res

.

Based on xstat = d/20, it follows that

d =
20g
ω2
res

≈ g

2f2
res

.

A layer thickness of 2.6 cm is therefore needed to achieve a resonance frequency
of 14Hz.

Problem 2

The decrease in level reduction is determined by

RE = 20 lg
sF
s
.

For a 6 dB-level decrease, the spring stiffness of the foundation must be double
the stiffness of the mounting itself s = ES/d = 7.8 106 N/m. To achieve a
10 dB reduction, the stiffness of the foundation must be 3.16 times greater,
and for 20 dB, the foundation stiffness must be 10 times greater than the
stiffness of the bearing.

Problem 3

When operating the tomograph (at Index T), the level difference was equal
to ’receiver level - transmitter level’:

f/Hz LE(T ) = transmitter level - receiver level dB

500 -33.3
1000 -33.0
2000 -31.1
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Running the loudspeakers produced the following level difference:

f/Hz LE(L) = receiver level - transmitter level dB

500 -39.9
1000 -41.2
2000 -41.4

As can be seen here, no significant sound level in the receiver room can
be attributed to the sound transport in air; rather, it originates primarily
from structure-borne transmission. Implementing an elastic bearing is there-
fore useful for reducing structure-borne transmission pathways. The effects of
such measures are mitigated, however, when the structure-borne sound trans-
mission has been reduced so much that airborne sound transmission takes
precedence. The maximum possible level reduction due to elastic decoupling
can therefore be summarized using ∆L = LE(T )− LE(L) producing the fol-
lowing results:

f/Hz LE(T )− LE(L) dB

500 6.6
1000 8.2
2000 10.3

The following would thus describe the level scenario in the receiver room
when the tomograph is in operation:

f/Hz Receiver level after elastic decoupling

500 25.4
1000 23.2
2000 20.1

The non-weighted net level would therefore come out to 28.2 dB.

Problem 4

The resonance frequency is multiplied by a factor of 1.22 (1.12: four times the
mass and 1.06: eight times the mass) compared to a fixed foundation.
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Problem 5

The attenuated resonance frequency ω0η can be found by setting the first
derivative of

| x
F
|2 =

1
(1− ω2/ω2

0)2 + (ηω/ω0)2

to zero in terms of ω. Insodoing, we obtain

ω0η = ω0

√
1− η2/2 ,

where ω0 represents the non-attenuated resonance, that is, the resonance for
η = 0. It is of course always the attenuated resonance frequency which factors
into real-life measurements. The critical attenuation is, of course, η =

√
2.
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C.6 Practice Exercises Chapter 6

Problem 1

The following three images depict the solution to this problem. Represented
here is the last duct segment, of which its length is equal to one wavelength.
The reflector is located at x = 0. Central to our investigation is a sinusoid
spatial dependency which travel from left to right as their amplitudes decrease
and increase (in other words, a gradual fade-in and fade-out). The enveloping
waves surrounding the curves and thus the spatial dependencies of the rms-
values can easily be discerned in the graph. With increasing reflection factor,
one can see how the larger the minima and maxima are, the farther apart
they are from one another.

Fig. C.12. Spatial dependency of the sound pressure for specific times t =
nT/20(n = 0, 1, 2, 3, ..., 19) and at a reflection factor of r = 0.25 (p0=amplitude
of the impinging wave alone).
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Fig. C.13. Spatial dependency of the sound pressure for specific times t =
nT/20(n = 0, 1, 2, 3, ..., 19) and for a reflection factor of r = 0.5 (p0=amplitude
of the impinging wave alone).

Fig. C.14. Spatial dependency of the sound pressure for specific times t =
nT/20(n = 0, 1, 2, 3, ..., 19) and for a reflection factor of r = 0.75 (p0=amplitude
of the impinging wave alone).
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Problem 2

The frequency response function of the absorption coefficient and wall impedance
of the structure consisting of an 8 cm–thick sheet made up of wood fiber and
cement mixture, constructed in front of a non-reflective termination:

Frequency/Hz α Re{z/%c} Im{z/%c}

200 0.52 1.52 -2.31
300 0.83 1.23 -0.98
400 0.96 1.40 -0.27
500 0.79 2.03 1.05
600 0.64 3.55 1.22
700 0.52 5.44 0.59
800 0.47 4.76 -2.71
900 0.53 4.05 -2.24
1000 0.57 2.32 -2.29
1100 0.64 2.09 -1.87
1200 0.79 1.54 - 1.16
1300 0.85 1.94 -0.69
1400 0.84 2.24 -0.41
1500 0.87 2.05 -0.34
1600 0.87 2.40 -0.86
1700 0.76 2.31 -1.10
1800 0.69 1.92 -1.61

Problem 3

The sought-after values are:

z/% c α ϕ |xmin|/λ

1+j 0.8 63.40 0.162
2+j 0.8 26.60 0.213
1+2j 0.5 45.00 0.188
3+j 0.706 12.50 0.233
1+3j 0.308 33.70 0.203

Problem 4

The following values can be calculated using the values c = 340m/s and
% = 1.21 kg/m3:
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for Ξ = 104 Ns/m4 and κ = 2

f/Hz z/% c α

200 0.84 - j 2.58 0.33
400 0.93 - j 0.97 0.78
800 1.49 + j 0.10 0.96
1600 1.05 - j 0.57 0.93

for Ξ = 104 Ns/m4 and κ = 1

f/Hz z/% c α

200 0.82 - j 2.71 0.31
400 0.86 - j 1.24 0.69
800 1.01 - j 0.42 0.96
1600 1.37 - j 0.49 0.94

for Ξ = 2 104 Ns/m4 and κ = 2

f/Hz z/% c α

200 1.65 - j 2.73 0.46
400 1.73 - j 1.30 0.76
800 1.92 - j 0.78 0.84
1600 1.42 - j 0.56 0.92

for Ξ = 2 104 Ns/m4 and κ = 1

f/Hz z/% c α

200 1.62 - j 2.85 0.43
400 1.61 - j 1.52 0.71
800 1.56 - j 0.97 0.83
1600 1.25 - j 0.74 0.89
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Problem 5

The length-specific drag resistance is only significant in how it relates to the
thickness of fluids; for water, a Ξ 826 times greater than for air must be
set. The layer thickness must must be assumed to grow proportionally to the
wavelengths and therefore increase along with the sound velocities. The layer
thicknesses for water must therefore be 3.53 as great as for air.

Problem 6

Based on α = 1 in the resonance frequency, an absorber materials with Ξd =
% c must be selected. The required surface mass can be ascertained by half-
value width required as expressed in

m′′ =
Ξd+ % c

2π∆f
=

% c

π∆f
.

Subsequently, the mass linings required can be calculated as 1.02 kg/m2 (for
fres = 250Hz and therefore ∆f = 125Hz), 0.73 kg/m2 (for fres = 350Hz
and therefore ∆f = 175Hz) and 0.51 kg/m2 (for fres = 500Hz and therefore
∆f = 250Hz) (with % c = 400 kg/m2s).

The cavity depth can be calculated by

a =
% c2

ω2
resm

′′ =
% c2

4π2f2
resm

′′ ,

or, by substituting the above equation for the mass lining

a =
c∆f

4πf2
res

=
c

8πfres
,

with ∆f/fres = 0.5 in the last step. This gives us a = 5.4 cm (fres = 250Hz),
a = 3.9 cm (fres = 350Hz) and a = 2.7 cm (fres = 500Hz).

Problem 7

Based on

b =
3
5
σL
m′′

%
,

we obtain b = 1.26 cm for σL = 0.05 and b = 2.53 cm for σL = 0.1.

Problem 8

Let the mid-point distance between two holes in a quadratic perforated grid
pattern be la. It follows that the surface covering can be described as
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σL =
πb2

l2a
,

and thereby

la = b

√
π

σL
.

The factor la/b =
√

π
σL

is 7.93 for σL = 0.05 (5.6 for σL = 0.1).

Problem 9

The lowest cut-on frequency can be calculated from the larger cross-section
measurements, resulting in 2429Hz (1889Hz).

Problem 10

Both diagrams illustrate the solution to this problem.

Fig. C.15. Absorption coefficient of a half-space f = 1000Hz for κ = 1, 2, 4, 8 and
16 (from top to bottom).



C.6 Practice Exercises Chapter 6 495

Fig. C.16. Absorption coefficient of a half-space f = 500Hz for κ = 1, 2, 4, 8 and
16 (from top to bottom).

Conclusion: large structural factors exhibit directionally selective absorp-
tion characteristics.

Problem 11

The maximum hole covering is σL = π/4 (refer to Problem 6, this time using
b = la/2).

Problem 12

See Chapter 9.2.1. for the answer to this problem.

Problem 13

The lowest cut-on frequencies of ducts with a circular cross-section are
4012Hz, 2006Hz and 1337Hz for a diameter of 5 cm, 10 cm and 15 cm when
using c = 340m/s and the approximation equation f1 = 0.59 c/d (d = diam-
eter).

Problem 14

Based on eq.(6.49):

D(d) =
4, 35σ√

κ

Ξd

% c

one obtains
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Ξ =
√
κ

4.35σ
D(d)
d

% c .

With % c = 400 kg/m2s, σ = 0.95, κ = 2 and D(d)/d = 1/1 cm, it follows that
Ξ = 13.7 103Ns/m4 = 13.7Rayl/cm.
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C.7 Practice Exercises Chapter 7

Problem 1

The A-weighted sound pressure level is 89 dB(A).
The simplest way to proceed is to find the absorption areas and then the

power levels using the Sabine formula. Insodoing, we obtain the following
results:

f/Hz A/m2 LP,thirdoctave/dB

400 6.5 80.5
500 6.8 82.9
630 8.0 82.2
800 9.1 83.6
1000 9.1 88
1250 9.3 87.9

The A-weighted sound power level is 92.5 dB(A).
With the absorption area of the living room A = 20.4 m2, the sound

pressure level is L = 85.4 dB(A) for the diffuse field in the living room.

Problem 2

Equivalent absorption areas and hall radii before renovation:

f/Hz A/m2 rH/m

500 14.2 0.54
1000 16.8 0.59
2000 19.2 0.63

Equivalent absorption areas, reverberation times and level reduction ∆L
after renovation when omitting the factor of covering any previous sound insu-
lation with the new fixtures (in other words, we assume an initially reflective
ceiling):

f/Hz A/m2 T/s ∆L/dB

500 80.2 0.7 7.5
1000 104.8 0.5 8
2000 129.2 0.4 8.3
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Problem 3

f/Hz ∆A/m2 α

500 4.6 0.46
630 5.4 0.54
800 7.4 0.74
1000 9.2 0.92

Problem 4

The first ten resonance frequencies are 28.3Hz, 34Hz, 42.5Hz, 44.3Hz,
51.1Hz, 54.4Hz, 56.7Hz, 61.4Hz, 66.1Hz and 68Hz, if c = 340m/s is
used.

As in Chapter 1, the third-octave bandwidth is ∆f = 0.23 fm. Conse-
quently, the number of resonances in the third-octave is equal to

∆M = 0.92πV
(
fm
c

)3

,

leading to the following:

• ∆M = 71 for the third-octave center frequency of 200Hz,
• ∆M = 565 for the third-octave center frequency of 400Hz and
• ∆M = 4518 for the third-octave center frequency of 800Hz.

Problem 5

Of course, it is N times the surface compared to simply operating one source.
The equilibrium is maintained as long as N times the outflow is guaranteed
for N times the inflow.

Problem 6

The sound pressure rms-value is 2N/m2, the energy density has a value of
2.94 10−5Ws/m3 using % c = 400 kg/m2s and c = 340m/s. The net stored
energy is 14.7 10−3Ws. The bulb would last for 0.0147 s, meaning it would
only briefly flicker on.

Problem 7

Start by using the power balance analysis for both rooms to solve this problem.
For room 1, the power flowing into the sum of the source power PQ and the
power flowing back to the room through the door opening in room 2 p2

2ST /4%c
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(p2: rms-value of the sound pressure in room 2). The power loss for room 1
can be ascertained by calculating the absorption area A1 and the area of the
door opening ST , resulting in p2

1(A1 + ST )/4%c (p1: rms-value of the sound
pressure in room 1). Therefore, in a state of equilibrium, we obtain

PQ +
p2

2ST
4%c

=
p2

1(A1 + ST )
4%c

.

The power supplied to room 2 by room 1 is p2
1ST /4%c. The sum of room

2’s absorption surface and the door opening constitutes the power loss, which
is consequently p2

2(A2 + ST )/4%c. The balance is therefore summarized in

p2
1ST
4%c

=
p2

2(A2 + ST )
4%c

.

The level difference between the two rooms can be ascertained using the
aforementioned equation

∆L = L1 − L2 = 10 lg (1 +A2/ST ) .

By solving the power balance for room 2 for p2
2 and the result substituted

into the power balance for room 1, we get

PQ =
p2

1A1

4%c
[1 +

ST
A1
{1− ST

ST +A2
}] .

Thus it follows that the definition equation for the sound pressure level in
room 1 is

L1 = LP − 10 lg
A1

m2
− 10 lg [1 +

ST
A1
{1− ST

ST +A2
}] + 6 .

It is clear that room volumes are irrelevant in finding the answer to this
problem. Using the values given in the problem, we obtain ∆L = 9.5 dB and
L1 = 87.6 dB.

Problem 8

First, find the equivalent absorption areas and then the A-weighted sound
pressure levels in third octaves LA,thirdoctave based on the Sabine formula.
The results are listed in the following table. The A-weighted net level of L =
77, 1 dB(A) is obtained from the third octave sound pressure levels after first
A-weighting, then using the level addition law.
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f/Hz A/m2 LA,thirdoctave/dB

400 7.24 70.6
500 8.15 69.7
630 9.31 68.4

800 10.87 69.8
1000 13.04 68.8
1250 13.04 68.4
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C.8 Practice Exercises Chapter 8

Problem 1

f/Hz LS - LE/dB A/m2 R/dB

400 30.2 11.4 29.6
500 32.8 12.7 31.8
630 37.0 13.4 35.7
800 39.0 14.3 37.4
1000 44.4 14.3 42.8
1250 42.6 15.2 40.8

Problem 2

With % = 1.21 kg/m3 and c = 340m/s one obtains the following resonance
frequencies:

• for the surface mass 12.5 kg/m2 at 5 cm distance fres = 75.3Hz,
• for the surface mass of 25 kg/m2 at 5 cm distance fres = 53.2Hz,
• for the surface mass of 12, 5 kg/m2 at 10 cm distance fres = 53, 2Hz and
• for the surface mass of 25 kg/m2 at 10 cm distance fres = 37.6Hz.

Problem 3

The very thin steel sheet metal results in extremely high coincidence frequen-
cies of 25.4 kHz (with longitudinal wave speed of steel being cL = 5000m/s).
At such given frequencies, steel can therefore be considered bendable. Given
the density of steel %steel = 7800 kg/m3, the surface mass can be calcu-
lated at m′′ = 3.9 kg/m2. If the critical impedance of air is defined by
% c = 400 kg/m2s, the transmission loss at 100Hz is only R = 6.7 dB (and
increases by 6 dB with each doubling frequency, therefore becoming 12.7 dB
at 200Hz, 18.7 dB at 400Hz, etc).

Problem 4

The critical coincidence frequency of the wall is quite low at 53.4Hz. The wall
is therefore considered rigid. The transmission loss of the wall is therefore
R = 57.9 dB with a mass of m′′ = 805 kg/m2 at 200Hz and increases by
7.5 dB per octave. It is therefore R = 65.4 dB at 400Hz, and R = 72, 9 dB,
at 800Hz and so forth.
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Problem 5

The transmission coefficient of the entire construction is derived from adding
the powers which are transmitted through the partial areas of the surface

Stotalτtotal = Swindowτwindow + Swallτwall .

Thus,

τtotal =
Swindow
Stotal

τwindow +
Swall
Stotal

τwall,

and finally, based on R = −10 lg(τ),

Rtotal = −10 lg(
Swindow
Stotal

10−Rwindow/10 +
Swall
Stotal

10−Rwall/10).

For a window with area 3m2 in an entire wall with an area of 18m2, we
obtain the total transmission loss of Rtotal = 37.8 dB.

For the window which takes up half the entire area, it is Rtotal = 33 dB.

Problem 6

The weighted transmission loss is Rw = 45 dB.
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C.9 Practice Exercises Chapter 9

Problem 1

For chamber silencers, the 3-dB width of the insertion loss peak and the
center frequency of the peak are the same. Therefore, we must find the center
frequency of 400Hz. As long as the maximum insertion loss in the center
frequency amounts to 10 dB, the conditions of this problem are fulfilled.

If the center frequency meets the condition l/λ = 1/4, the resulting cham-
ber length l based on λ = 0.85m is therefore l = 0.213m. The maximum of
the insertion loss factor then fulfills

10Rmax/10 = 1 +
1
4

(
S1

S2
− S2

S1
)2 .

Since Rmax = 10 dB are required, it follows that

S1

S2
− S2

S1
= 6 .

The solution to this quadratic equation in S2/S1 results in S2/S1 = 6.16 (or,
of course S2/S1 = 1/6.16 ). Since the surfaces S2 and S1 behave like the
squares of the diameters d2 and d1, d2 = 2.48 d1 = 12.4 cm must also apply.

Problem 2

First, we can approximate the imaginary component of the wave number at
low frequencies with a real impedance z as in

ki =
1
2
% c

zh
,

whereby, as outlined in the section ’Arbitrary change in cross-sectional area,’
h must be substituted by the ratio of circumference to cross-sectional area
S/U :

ki =
1
2

% c

zS/U

For the rectangular cross-section (the length of one side a) S/U = a/4, for
the cylindrical cross-section with radius b, S/U = b/2 applies. It thus follows
that

Da = 8.7kia = 17.4
% c

z

and
Db = 8.7kib = 8.7

% c

z
.

Using these deductions, we obtain Da = 17.4 dB and Db = 8.7 dB for z = % c.
For z = 2% c we arrive at Da = 8.7 dB and Db = 4.3 dB.
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Problem 3

The maximum obtainable damping, based on the condition z = 0 in the
resonance, is Dh(max) = 13.5 dB.

In order to measure the required mass lining, it is first necessary to deter-
mine that the cavity depth d of the resonator in the relevant frequency range
of approximately 50Hz remains much smaller than a quarter wavelength of
about 1.7m. For this reason, one can approximate the resonance frequency at

ω2
0 =

%c2

m′′d
.

The resulting mass lining m′′ is 2.83 kg/m2 (at cavity depth of 50 cm; at
100 cm: 1.42 kg/m2).

Problem 4

The impedance of the non-damped resonator can be described as follows:

z

% c
= j

ω0m
′′

% c
[
ω

ω0
− ω0

ω
]

(ω0 = resonance frequency). The factor ω0m
′′

% c is 2.22 (at cavity depth of 50 cm;
at 100 cm: 1.11).

If the frequency is reduced by 5 Hz to 45Hz, the impedance becomes a
stiffness impedance, causing the silencer to be completely ineffective.

If the frequency is increased by 5Hz to 55Hz, we obtain a mass impedance.
The bracketed term in the above equation then takes on a value of approxi-
mately 0.2. The channel wave number for mass impedances is

kx = k

√
1− 1

|z|
% ckh

= −jk
√

1
|z|
% ckh

− 1 ,

resulting in a damping Dh of

Dh = 8, 7kih = 8, 7kh

√
1
|z|
% ckh

− 1 .

The impedance is then equal to z/% c = j 0.44 for d = 0.5m (z/% c = j 0.22
for d = 0.5m). Applying kh = 0.25 for 55Hz and h = 0.25m one obtains
|z|kh/% c = 0.11 for d = 0.5m (and |z|kh/% c = 0.055 for d = 1m).

Based on this, we obtain the results Dh = 6.2 dB for d = 0.5m, and
Dh = 9 dB for d = 1m. Therefore, greater construction depth results in a
greater effective bandwidth.
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C.10 Practice Exercises Chapter 10

Problem 1

Based on the aforementioned approximation equation

RE = 20 lg (
√

2πN
th(
√

2πN)
) + 5 dB,

one obtains the following level reductions in dB by changing the height of a
sound reduction barrier:

Source distance: 6.7m 10.5m 15m

4m to 5.5m 2.5 2.6 2.7
4m to 7.5m 4.8 5.1 5.3

5.5m to 7.5m 2.3 2.5 2.6
7.5m to 10m 2.0 2.2 2.3

Problem 2

By applying the equation from the previous problem, we obtain the following
insertion loss values for the sound reduction barrier in dB:

Source distance: 6.7m 10.5m 15m

4m height 21.1 19.3 17.9
5, 5m height 23.6 22.0 20.6
7, 5m height 25.9 24.5 23.2
10m height 28.0 26.7 25.5

Problem 3

Minimum and maximum level reduction in dB by changing the height of a
sound reduction barrier:

Minimum Maximum

4m to 5.5m 1.4 2.8
4m to 7.5m 2.7 5.5

5.5m to 7.5m 1.3 2.7
7.5m to 10m 1.2 2.5
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Problem 4

Based on the previous exercises, it follows that Rges = RB − 7 dB.

Problem 5

The total pathway U can be logically obtained by the difference between the
sum of the 3 perimeters K1, K2 and K3 and the direct path D (see the
following graph)

U = K1 +K2 +K3 −D .

Fig. C.17. Perimeters K1, K2 and K3 and direct pathway D

The partial pathways can each be calculated based on right triangles,
resulting in

K1 =
√

22 + 22 m = 2.83m ,

K2 =
√

12 + 32 m = 3.16m ,

K3 =
√

52 + 32 m = 5.83m

and
D =

√
22 + 82 m = 8.25m .

The total perimeter therefore amounts to U = 3.57m, the Fresnel number is
N = 2U/λ = 10.5 for 500Hz. Using the equation mentioned in the solution
to Problem 1, we apply the above and arrive at RE = 23.2 dB.
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Problem 6

Without the smaller of both barriers, the perimeter pathway becomes

K = 2
√

52 + 32 m = 11, 66m ,

the direct pathway remaining D = 8.25m as in Problem 5. The detour path-
way is then U = 3.41m and the Fresnel number N = 2U/λ = 10.03 for
500Hz. The reduction in insertion loss ∆D can be calculated from the ration
of the Fresnel numbers

∆D = 10 lg
N(with)

N(without)
,

resulting in ∆D = 0.2 dB.
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C.11 Practice Exercises Chapter 11

Problem 1

The frequencies are

• kb = 2, 5: f = 10, 8 kHz,
• kb = 5: f = 21, 6 kHz and
• kb = 10: f = 43, 2 kHz.

Problem 2

As mentioned in the previous chapters, the spring force is defined by

Fs = s(x− xm) .

Here, the displacement x of the mass must be expressed through the spring
force. According to the law of inertia

m
d2x

dt2
= −Fs ,

or, expressed in terms of complex amplitudes,

x =
Fs
mω2

.

Thus follows that
Fs = Fs

s

mω2
− sxm ,

or
Fs(1−

s

mω2
) = −sxm .

Finally, we obtain the following for the spring force

Fs = − sxm
1− s

mω2

,

or, since the relation to the low end acceleration am = −ω2xm is relevant here

Fs = − sω2xm
ω2 − s

m

=
sam

ω2 − s
m

.

Naturally, we are solely concerned the relationship of the frequency ω to the
resonance frequency ω0 (with ω2

0 = s/m) here:

Fs =
−mam

1− (ω/ω0)2

For frequencies far below the resonance frequency, the spring force Fs =
−mam is frequency independent. The sensitivity of the transducer increases
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with the mass m. At resonance, the frequency response is determined by at-
tenuation. The frequencies far above the resonance frequency

√
s/m, Fs =

sam/ω
2 is true, in which case the frequency response of the transducer’s sen-

sitivity decreases by 12 dB/octave. Overall, the frequency response follows
the gradient as shown in Fig. 11.1 (upper section).The frequency responses of
a condenser microphone and acceleration capturer are therefore quite similar
to one another.

Problem 3

The equivalent sound pressure is 2 10−3N/m2, the equivalent sound pressure
level is therefore 40 dB.

Problem 4

First, we need to know the first roots of the function J1(u). By referring to
a table or simply by trying out different values using a computer programm
such as Matlab, one obtains J1(u) = 0 for u=3.83; 7.02; 10.2; 13.3 and 16.5.
The angle of breaks can be obtained using

sinϑ =
u

2πb/λ
,

where u crosses the aforementioned values – the roots of the function J1(u).
The following angles for breaks are:

• for b/λ=1: ϑ = 37.6◦;
• for b/λ=2: ϑ = 17.7◦; 34◦ and 54.3◦;
• for b/λ=3: ϑ = 11.7◦; 21.9◦; 32.8◦, 44.9◦ and 61.1◦.

The frequencies are

• for 2b = 2, 5 cm: 20.4 kHz (b/λ = 1); 40.8 kHz (b/λ = 2) and 61.2 kHz
(b/λ = 3);

• for 2b = 1.25 cm: 40.8 kHz (b/λ = 1); 81.6 kHz (b/λ = 2) and 102.4 kHz
(b/λ = 3);

The frequencies occupy various parts of the ultrasound spectrum.
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C.12 Practice Exercises Chapter 12

Problem 1

It has already been established that a sound field consists of both pressure

p = p+e
−jkx + p−e

jkx

and velocity

v =
1
% c

(p+e
−jkx − p−ejkx) .

The following describes the effective intensity:

I =
1
2
Re(pv∗) =

1
2% c

Re((p+e
−jkx + p−e

jkx)(p∗+e
jkx − p∗−e−jkx))

(Re = Real component of ∗: conjugate complex dimension). It thus follows
that

I =
1

2% c
(|p+|2 − |p−|2 +Re(p∗+p−e

j2kx − p+p
∗
−e
−j2kx))

Based on Re(z − z∗) = 0, we arrive at

I =
1

2% c
(|p+|2 − |p−|2) ,

which indicates what is to be shown.

Problem 2

This problem was actually already solved in Section 12.2. The absorption
coefficient must be defined in this case as α = −PL/P0 (PL is the additional
power resulting from the loudspeaker, P0 is the power resulting solely from
the primary impinging wave). The maximum possible absorption coefficient is
0.5. At x = 0, where the secondary source is located, the primary source must
therefore produce -0.5 times that of the primary wave. The sound pressure is
half of that and to the right of the case where no secondary source is present.
The power flowing to the right is therefore reduced to only a quarter of the
primary power P0 alone, P2 = P0/4. In the partial space x < 0, the power
flows, as seen in the x direction

P1 = P0(1− |r|2) ,

in the optimal case |r| = 0.5 producing a value of P1 = 3P0/4. The resulting
difference between P1 and P2 – P0/2 – is absorbed by the loudspeaker.
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Problem 3

Basically, sound power is most easily measured in the far-field. For this reason,
we first specify the far-field approximation for the net pressure. Apart from
quadratically minuscule dimensions, the distances between the field points
and the secondary sources in the far-field, based on the cosine law, are

r1 = R− h cosϑ

and
r2 = R− h cos (180◦ − ϑ) = R+ h cosϑ .

For the net pressure in the far-field, it thus follows that

p =
jω%Q0

4π
e−jkR

R
(1− β(ejkh cosϑ + e−jkh cosϑ))

or

p =
jω%Q0

4π
e−jkR

R
(1− 2β cos (kh cosϑ)) .

The resulting intensity in the far-field can thus be defined as

I =
1
2
|p|2

% c
=

1
2% c

(
ω%Q0

4πR
)2(1− 2β cos (kh cosϑ))2 .

The sound power P is derived by integrating over the spherical surface in the
far field (radius) R, resulting in

P =

2π∫
0

π∫
0

IR2sinϑ dϑ dϕ = 2π

π∫
0

IR2sinϑ dϑ .

After substituting I, we obtain

P = P0

π/2∫
0

(1− 2β cos (kh cosϑ))2sinϑ dϑ .

The last step in the calculations utilizes the fact that the power flowing
through the upper and lower half-spheres are symmetrical and thus equal.
The equation can be further simplified to

P0 =
1
% c

(ω%Q0)2

8π
.

P0 describes the power of the primary source alone, that is, the case β = 0).
The integral can be solved easily by using the variable substitution

u = cosϑ
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du = −sinϑ dϑ

Proceeding as such, we arrive at

P = P0

1∫
0

(1− 2β cos (khu))2 du .

Now it is prudent to use cos2x = (1 + cos2x)/2 in order to find

P/P0 = 1 + 2β2 − 4β
sin(kh)
kh

+ 2β2 sin(2kh)
2kh

.

This power, for the case β = 1/2 without net volume flow for all three sources
combined (Q0(1 − 2β) = 0), is shown in the following graph. The other two
curves shown are intended as a comparison to the case where only a single
contrary source is present (see Chapter 3). In the first contrasting case, the
secondary source is equal in negative value to the primary source, and the
second contrasting case indicates the optimum scenario of reduced power.

Fig. C.18. Reduction of the sound pressure level with one contrary source present
(the two curves at the top represent gradients at low frequencies) and for two con-
trary sources with β = 1/2

.

This result shows that improved effectiveness can be achieved within the
frequency band of the noise reduction by adding a secondary sound source,
but does not change the bandwidth, however.
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By setting the derivative of the power for β equal to zero, we arrive at the
case of the least power emitted. Such a case must fulfill

β =
sin(kh)
kh

1 + sin(2kh)
2kh

.
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C.13 Practice Exercises Chapter 13

Problem 1

The result is

An =
sin (nπTD/T )

2nπ
.

As a rule, the amplitudes behave ’in the manner of 1/n’. Fortunately, this
is not always true, as the numerator dictates that sign changes occur with
increasing n, which influences the convergence. Were An actually exact and
not just approximately proportional to 1/n, the function series would never
converge. It is already a known fact that the series

∞∑
n=1

1
na

(a > 0) is divergent for a ≤ 1 and converges only in the case of a > 1.

Problem 2

The series expansion of the signal under investigation is expressed as

x(t) =
∞∑

n=−∞
Ane

j2πn t
T

For the first derivative,

dx

dt
=
j2π
T

∞∑
n=−∞

nAne
j2πn t

T .

is true. Supposing x were continuous but the first derivative discontinuous,
however, the solution in the previous problem nAn ∼ 1/n would have to apply.
In such a case, An would behave in the manner of 1/n2. This accounts for
the main difference between the discontinuous case, shown in Figures 13.7 to
13.9 and the deviating curve, as illustrated by Figures 13.4 and 13.5. In the
discontinuous case, the break An converges as in 1/n, and in the deviating
case, the deviation in the curve occurs in the manner of 1/n2. The implications
for the number of corresponding summands in a good resolution of xM are
illustrated in a simple example. Suppose that the first one hundred summands
are taken into account (N = 100). At the discontinuity, the last summand
n = N exists in the order of 0.01 times the first summand. In the deviating
case, on the other hand, it will already have reached a multiple of 0.0001
times the first summand. This means, of course, that the expansion can be
terminated much sooner in the deviating case than in the discontinuous case.

For the second derivative



C.13 Practice Exercises Chapter 13 515

dx

dt
= (

j2π
T

)2
∞∑

n=−∞
n2Ane

j2πn t
T

is true. If the signal is continuous along with the first derivative, the second
derivative however discontinuous, An behaves like 1/n3. If the signal is dis-
continuous along with the first m derivatives, but the (m+ 1)-th derivative is
discontinuous, An will then behave like 1/nm+2.

Problem 3

For the physical dimension of the rectangular function r∆T (t)

Dim[r∆T (t)] =
1

Dim[t]
.

applies. This is of course also true for the delta function, which of course
represents the marginal case of the rectangular function

Dim[δ(t)] =
1

Dim[t]
.

Note that the delta function does not represent a dimensionless, but actually,
a heavily dimensioned function.

Problem 4

The law of the convolution of the product of two signals states that the trans-
form of the product of the time dependencies is equal to the convolution
integral of both spectra

∞∫
−∞

x(t)g(t)e−jωtdt =
1

2π

∞∫
−∞

X(ν)G(ω − ν)dν .

Based on this, we obtain for the integral over the product of both signals

∞∫
−∞

x(t)g(t)dt =
1

2π

∞∫
−∞

X(ν)G(−ν)dν .

In order to prove the assertion of the energy law , the spectrum of x∗(t) must
be defined (∗: complex conjugate). In order to find a general rule, we have
made complex time functions permissible. For real-valued time functions, the
conjugate sign ∗ is omitted. Based on

x(t) =
1

2π

∞∫
−∞

X(ω)ejωtdω,
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we arrive at

x∗(t) =
1

2π

∞∫
−∞

X∗(ω)e−jωtdω ,

or

x∗(t) =
1

2π

∞∫
−∞

X∗(−ω)ejωtdω

(which can also be expressed using the substitution u = −ω). Thus follows
that

∞∫
−∞

x(t)x∗(t)dt =
1

2π

∞∫
−∞

X(ν)X∗(ν)dν ,

verifying the assertion.

Problem 5

We approach this problem from the vantage point of the convolution law for
the product of two spectra

1
2π

∞∫
−∞

X(ω)H(ω)ejωtdω =

∞∫
−∞

x(τ)h(t− τ)dτ .

The next step is to find the Fourier inverse transform belonging to X∗(ω).
Based on

X(ω) =

∞∫
−∞

x(t)e−jωtdt, (C.1)

it follows that

X∗(ω) =

∞∫
−∞

x∗(t)ejωtdt , (C.2)

or

X∗(ω) =

∞∫
−∞

x∗(−t)e−jωtdt (C.3)

(which can also be shown informally using the substitution u = −t). The
inverse transform of X∗(ω) is therefore x∗(−t). We can thus conclude that

1
2π

∞∫
−∞

X(ω)X∗(ω)ejωtdω =

∞∫
−∞

x(τ)x∗(τ − t)dτ ,

which can also be written as



C.13 Practice Exercises Chapter 13 517

1
2π

∞∫
−∞

X(ω)X∗(ω)ejωtdω =

∞∫
−∞

x(τ + t)x∗(τ)dτ .

Problem 6

The task in this problem is to show that Fourier transforms and complex
amplitudes can likewise be used to compute measurements for linear and time-
invariant transmitters y(t) = L{x(t)}. The formal proof of this fundamental
aspect can be easily undertaken:

Complex Amplitudes

Using
x(t) = Re{xejωt}

and
y(t) = Re{yejωt},

we arrive at by substitution

Re{yejωt} = L{Re{xejωt}} = Re{xL{ejωt}} ,

or, of course,
yejωt = xL{ejωt} .

Fourier Transformation

Using

x(t) =
1

2π

∞∫
−∞

X(ω)ejωtdω

and

y(t) =
1

2π

∞∫
−∞

Y (ω)ejωtdω,

we obtain
∞∫
−∞

Y (ω)ejωtdω = L{
∞∫
−∞

X(ω)ejωtdω} =

∞∫
−∞

X(ω)L{ejωt}dω,

or, of course,
Y (ω)ejωt = X(ω)L{ejωt} .
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Problem 7

Due to causality, h(t < 0) = 0 applies; for t > 0,

h(t) =
ω2

0

sωd
e−ηω0t/2 sinωdt ,

whereby the attenuated resonance frequency ωd is defined by

ωd = ω0

√
1− η2/4

Problem 8

We begin with the general postulate

v(t) =
1

2π

∞∫
−∞

V (ω)ejωtdω =
1

2π

∞∫
−∞

[Re{V (ω)}+jIm{V (ω)}][cosωt+j sinωt]dω.

Based on the symmetries in the hint given in the problem

Re{V (−ω)} = Re{V (ω)}

and
Im{V (−ω)} = −Im{V (ω)},

the above equation becomes

v(t) =
1
π

∞∫
0

Re{V (ω)} cosωt− Im{V (ω)} sinωtdω .

This shows, once again, that the symmetries mentioned universally result in
a real-valued inverse transform.

In this particular case,

v(t) = F

∞∫
0

cos (αx
√
ω) cos (ωt) + sin (αx

√
ω) sin (ωt)√

ω
dω

+ F

∞∫
0

e−αx
√
ω sin (ωt)√
ω

dω

applies, whereby the abbreviations

α = 4

√
m′

B
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and
F =

F0

4πα
√
m′B

can be used to simplify the expressions. Using cosα cosβ + sinα sinβ =
cos (α− β),

v(t) = F

∞∫
0

cos (αx
√
ω − tω)√
ω

dω

becomes

+ F

∞∫
0

e−αx
√
ω sin (tω)√
ω

dω .

The variable substitution
√
ω = u with dω = 2udu and consequently dω/

√
ω =

2du yields
v(t) = F (I1 + I2),

with

I1 = 2

∞∫
0

cos (tu2 − αxu)du

and

I2 = 2

∞∫
0

e−αxu sin (tu2)du .

For the second integral, we employ −1 = j2 = jj:

I2 = 2

∞∫
0

ejj αxu sin (tu2)du = 2

∞∫
0

[cos (jαxu) + j sin (jαxu)] sin (tu2)du

=

∞∫
0

sin (tu2 − jαxu) + sin (tu2 + jαxu)du

+ j

∞∫
0

cos (tu2 − jαxu)− cos (tu2 + jαxu)du ,

which can be easily shown utilizing the corresponding addition theorems. The
integrals included in the I1 and I2 equations above are listed in a table (refer
to Gradshteyn, I.S.; Ryzhik, M. : Table of Integrals, Series and Products,
Academic Press, New York and London 1965, p. 397, numbers 3.693.1 and
3.693.2). The sought-after impulse response v(t) thus is

v(t) =
F0

2
√
πt
√
m′3B

cos (

√
m′

B

x2

4t
− π/4) .

A visual representation of the space and time dependency of these results can
be found in Fig. 4.7.
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Problem 9

We apply

F (ω) = f0

∞∫
−∞

e−γt
2
e−jωtdt =

= 2f0

∞∫
0

e−γt
2

cosωtdt

to this problem for reasons of symmetry. The integral is listed in a table (refer
to Gradshteyn, I.S.; Ryzhik, M. : Table of Integrals, Series and Products,
Academic Press, New York and London 1965, p. 480, number 3.987.1). Using
the integral, we obtain

F (ω) = f0

√
π

γ
e−ω

2/4γ .

Most notably,

• the transform of the Gauss function itself is a Gauss function. The signal
form remains, in principle, unchanged by the Fourier transformation and

• long-ranging, flat time dependencies (small γ) are narrow-banded while
rapidly changing time signals (large γ) produce wide-banded transforms.

f(t) is shown in the following graph. F (ω) possesses, as mentioned, the
same signal shape. Only the bandwidth changes. It increases with decreasing
T0 (=1/γ).

Fig. C.19. Gauss function e−γt
2

with γ = 1/T 2
0
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Problem 10

First, we calculate the Fourier transform of the beam velocity:

Vy(k) = v0

∞∫
−∞

e−|x|/x0e−jkxdx

Since the sin function produces a point-symmetrical function, we are left only
with

Vy(k) = 2v0

∞∫
0

e−x/x0coskx dx.

If the reader opts not to refer to the integral table, this can be transported to

Vy(k) = 2v0Re{
∞∫

0

e−x/x0ejkxdx},

resulting in

Vy(k) = 2v0x0Re{ 1
1− jkx0

} = 2v0x0Re{ 1 + jkx0

(1− jkx0)(1 + jkx0)
} =

2v0x0

1 + (kx0)2
.

This leaves us with the sound pressure in the far-field, according to eq.(13.81):

pfern =
jω% b

4πR
e−jk0R Vy(k = −k0 sinϑ) =

jω% b

4πR
e−jk0R

2v0x0

1 + (k0x0sinϑ)2
;

The following graph illustrates some beam characteristics for small and large
beam arrays.

Fig. C.20. Beam characteristic for near-field oscillating sources
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Problem 11

For ε = 1,

v = v0 cos
2nπx
l

applies. This gradient has maxima (’antinodes’) in x = 0 and x = l. For
ε = −1,

v = jv0 sin
2nπx
l

applies. This gradient has roots (’nodes’) in x = 0 and x = l.
The Fourier transform is therefore

V (k) =
jv0l

2
(e−jkl − 1)

kl(1 + ε) + 2nπ(1− ε)
(kl)2 − (2nπ)2

.

This wave number spectrum becomes very small for small values of k (|kl| <<
2nπ) in the case of ε = −1 versus ε = −1, based on the absolute value. For
small values of k,

|V (k)ε=−1| << |V (k)ε=1|

applies. This is why the power emission at low frequencies for ε = −1 is much
less.

Problem 12

F1(ω) =

∞∫
−∞

f1(t)e−jωtdt =

∞∫
−∞

g(t)e−j(ω−ω0)tdt = G(ω − ω0) ,

whereby G(ω) is simply the transform of the enveloping function g(t). The
transform of the product is therefore equal to that of the transform of the
enveloping function, simply shifted by ω0.

For F2(ω), based on cosx = (ejx + e−jx)/2,

F2(ω) =
1
2

[G(ω − ω0) +G(ω + ω0)]

is true.

Problem 13

As verified in the previous problem, the Fourier transform of the signal located
at x = 0 is

V (0, ω) =
1
2

[G(ω − ω0) +G(ω + ω0)] ,

whereby G(ω) constitutes the Fourier transform of the enveloping function
g(t).
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The components with the frequency ω propagate along the wave guide with
the wave number k(ω), validating the following for the Fourier transform at
any arbitrary spatial location:

V (x, ω) = V (0, ω)e−jk(ω)x

The signal v(x, t) of the oscillation results from inverse transformation to

v(x, t) =
1

2π

∞∫
−∞

V (x, ω)ejωtdω =
1

4π

∞∫
−∞

[G(ω−ω0)+G(ω+ω0)]e−jk(ω)xejωtdω.

Given that G(ω) invariably constitutes a small-banded function, only the fre-
quency components ω ≈ ω0 and ω ≈ −ω0 influence the integral.

ω ≈ ω0:

In the small, significant frequency band around ω0, k(ω) can be replaced by
the first two terms of the Taylor series

k(ω) ≈ k(ω0) + (ω − ω0)
dk

dω
|ω=ω0 .

By simplifying
k0 = k(ω0)

and
k′0 =

dk

dω
|ω=ω0 ,

we obtain
k(ω) ≈ k0 + ωk′0 − ω0k

′
0 .

The influence of this integration range on the integral v+(x, t) is therefore

v+(x, t) =
1

4π

∞∫
−∞

G(ω − ω0)e−jk0xe−jωk
′
0xejω0k

′
0xejωtdω

=
1
2
e−jk0xejω0k

′
0x

1
2π

∞∫
−∞

G(ω − ω0)ejω(t−k′0x)dω ,

which becomes, based on Problem 12,

1
2π

∞∫
−∞

G(ω − ω0)ejωtdω = g(t)ejω0t ,

therefore resulting in
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1
2π

∞∫
−∞

G(ω − ω0)ejω(t−k′0x)dω = g(t− k′0x)ejω0(t−k′0x) ,

and accordingly,

v+(x, t) ≈ 1
2
e−jk0xejω0k

′
0xg(t− k′0x)ejω0(t−k′0x) =

1
2
ej(ω0t−k0x)g(t− k′0x) .

ω ≈ −ω0:

Similarly, we can show

v−(x, t) ≈ 1
2
e−j(ω0t−k0x)g(t− k′0x) .

Net field:

For v(x, t) = v+ + v−, it follows, based on the above, that

v(x, t) ≈ cos(ω0t− k0x) g(t− k′0x) = cos(ω0(t− k0

ω0
x)) g(t− k′0x) .

This result can be interpreted as follows:

• The carrier signal cos(ω0t) disperses with the velocity of c0 = ω0/k0. This
is the propagation velocity of an arbitrarily small-banded pure tone. The
velocity c0 is referred to a the phase velocity.

• The enveloping wave g(t), on the other hand, propagates with a wave
velocity of cg = 1/k′0, which is accordingly governed by

cg =
1
dk
dω

|ω=ω0 .

The velocity cg is known as the group velocity. Because the carrier signal and
the enveloping signal are travelling at different speeds, the net signal is dis-
torted during the wave transport. The carrier signal and the enveloping signal
shift in opposite directions to one another along the propagation pathway.

For bending waves,
k = β

√
ω

(β is a constant). The phase velocity is

c0 =
ω

k
=
√
ω

β

and the group velocity is

cg =
1
dk
dω

=
2
√
ω

β
.
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For bending waves, the group velocity is double the phase velocity.
To further illustrate this point, an example of wave propagation along a

dispersive wave guide is shown in Fig. C.21. Represented here are both time
dependencies of a relevant field dimension occurring at two different locations
x = x0 and x = x0 + ∆x, such as the speed along a non-reflective bending
wave guide. For the sake of clarity, the enveloping waves are shown as well.
The carrier frequency does not propagate at the same speed as the enveloping
wave.

Fig. C.21. Two time signals along a dispersive wave guide

t

v(
t)

x =x
0

+ Δ xx =x
0



Index

λ/4-resonance, 294

A-filter, 10
characteristics, 10

A-weighted sound pressure level, 9, 10,
69

Abrupt change in cross-section, 268
Absorbent noise barrier, 335
Absorber, 171

attenuation, 191
locally reacting, 186
low-frequency, 201
porous, 187

Absorbers, 401
Absorbing

silencer, 267, 268
Absorption, 392
Absorption coefficient, 182, 228, 231,

232
Accuracy of replication, 402
Acoustic Antennae, 365
acoustic holography, 441
Acoustic screen, 311
Active field, 38
active level reduction, 389
Active noise compensation, 386
Active noise reduction, 385, 389
Active stabilization, 397
Additional lining, 252
Adiabatic, 20

equation of state, 21
linearised equation of state, 23

Aerodynamic force, 399

Air
column, 24
humidity, 229
stiffness, 196

Airborne
transmission loss, 244

Airborne sound transmission, 489
Aircraft engineering, 387
Aircraft noise, 385
Airfoil, 397
Alignment, in-phase, 37
Amplification factor, 458
Amplitude density, 437
Amplitude density function, 429, 436
Amplitude errors, 390
Angular velocity, 124
Anti-noise, 385
Arbitrary change in cross-sectional area,

283
Atmospheric pressure, 1, 6
Attenuation

of the resonance, 353
in ducts, 287
optimum in a duct, 307

Attenuator
splitter, 284

Automotive lightweight construction,
387

axis-symmetric, 432

Bandwidth, 7, 220
3-dB, 279
effective, 279



528 Index

half-bandwidth, 164, 204
Barrier, 311
Basic equations, 28
basic modes, 271
Bassoon, 397
Beam displacement, 120
Beam forming, 95
Beam pattern, 81

of a dipole, 83
of a loudspeaker array, 90
of main and side lobes, 94
steered, 101

Beam resonances, 127
Beam steering

electronic, 96
Beam vibration modes, 130, 132, 134
Bending

angle, 120
free waves, 134
moment, 121, 124
science, 121
static, 120
stiffness, 118, 121, 135

of the beam, 134
of the plate, 134

wave equation in beams, 124
wave equation in plates, 134
wave equation in walls, 243
wave propagation, 119, 124
wave propagation speed, 125
wavelength, 125, 135
waves, 118, 123, 124, 136

in beams, 120, 135
in plates, 134

Bending waves, 439
Berger’s mass law, 245
Bernoulli law, 397
Bessel function, 177
Bottle tone, 389
Boundary

soft, 288
Boyle-Mariotte equation, 18
Bridge, 397
Broadband signals, 7

Carbon dioxide, 465
causal, 433
Causality principle, 433
Cavity

damping of, 256
Cello, 397
Center frequency, 7
Chain of elements model, 24
Chamber

combinations, 279
silencer (expansion ch.), 276

Change
in cross-section, 268
in perception, 3

Circular piston, 107
clarinet, 397
Coherent, 453
Coincidence

dip, 250
frequency, 137, 244

coincidence critical frequency, 440
Coincidence effect, 246
Comb filter, 296
Complex amplitude, 34
Complex number, 455
Complex pointer, 455
Complex pointers, 34
Condenser microphone, 347
Conservation principle, 273
Conservative sound field, 40
Constraint, 127
Continuous, 421
Continuous sound level, 12
Contrabass, 397
Convergence property, 447
Converters, 345
Convolution, 415
Convolution integral, 415, 430
Convolution law, 429, 431, 444
Critical cycle, 399
Critical frequency, 137, 246
Cross array, 376
Cross coupling, 208
Cross-sectional area

arbitrary change, 283
Curves of equal loudness, 9
Cut-off

frequency, 287
Cut-off frequency, 174
cut-on effect, 178
Cylindrically symmetric sound field, 73

Damping
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of cavity, 256
dB(A), 10
Dead-end termination, 272
Decadic logarithm, 451
Decomposition, 433
Decomposition into wavelengths, 444
Delay line, 395
Delta comb, 415
Delta function, 414
Delta operator, 39
Density, 18, 22
Detour law, 328
Difference threshold, 6
Differential operators, 39
Diffraction, 311
Diffraction angle, 313
Diffuse field, 220, 221

level, 229
microphone, 358

Dilatation, 27
Dipole, 72
Dirac function, 414
Directivity, 67

of microphones, 355
Discontinuity, 424
Dispersion, 126
Distance form source point to field

point, 444
Distortion factor, 411
Divergence (div), 39
Doppler effect, 54
Doppler shift, 56
double Fourier transform, 443
Double window, 387
Double-glazed window, 256
Double-leaf partition, 252
Double-sphere characteristics, 83
Drag resistance, 495
Duct, 397

attenuation, 287, 304, 305
contraction, 270
expansion, 270
lined, 284

duct branch, 271
Duct branches, 271
Duct intersection, 274
Dynamic mass, 166

Echo

fluttering, 219
Effective mass per unit area, 207
Efficiency, 113
Eigenfrequency, 220

density of eigenfrequencies, 220
Eigenfunction, 173
Eigenvalue, 173

equation, 303
Eigenvibrations, 364
Elastic bearing, 149
Elastic decoupling, 147
Elastic deformation, 118
Elastic modulus, 27, 121, 153, 154
Electro-acoustic transducer, 345
Electro-acoustic transducers, 385
electrodynamic loudspeaker, 345, 362
electrodynamic microphone, 345, 358
Electronic beam steering, 96
Elongation, 27
Emission, 437
Emission of bending waves, 439
Emitting planes, 437
End correction, 279
Energy

density, 219
density of the sound field, 41
kinetic, 40
potential, 40

Energy law, 517
Energy reservoir, 398
Energy sink, 394
Energy-equivalent continuous sound

level, 12
Engine noise, 386
Equal loudness, 9
Equivalent absorption area, 228, 240
Equivalent sound pressure, 384, 511
Equivalent sound pressure level, 384,

511
Excitation process, 399
Expansion chamber, 276

Far field, 80, 113
approximation, 80, 106
condition, 102, 106

far field, 445
far field approximation, 445
Far-field, 471
Far-field condition, 471
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Feedback, 402
Figure-8 pattern, 83
Filter, 7
Flanking path, 237
Flanking transmission, 237
Flapping vibrations, 389
Flexible additional lining, 252
Flickering, 1

frequency, 2
Floating cement floor, 261
Flow paths, 397
Flow resistance, 186
Flute, 397
Fluttering echo, 219
Folding frequency, 190, 351
Force

of area, 134
shear, 117, 124

Foundation, 147, 155
compliance, 147, 155
impedance, 155

Fourier, 417
Fourier acoustics, 435
Fourier decomposition, 417
Fourier pair, 431
Fourier series, 418, 426
Fourier sums, 419
Fourier transform, 427, 428, 431
Fourier transform, inverse, 428
Fourier transformation, 429
Free bending waves, 134
Free field

microphone, 358
Frequency, 1

centre, 7
coincidence, 137, 244
components, 2
critical, 137, 246
cut-off, 174, 287
folding, 190, 351
limiting, 137, 246
resonance, 347
typical, 350

Frequency domain measurements, 45
Frequency range

of building acoustics, 240
Frequency response function, 3

of a microphone, 349
Frequency variable, 428

Fresnel integral, 319, 342
Friction constant, 400
Function series, 418, 421

Gas
temperature, 21

Geometric series, 461
Gibb, 426
Gibb phenomenon, 426
Gradient (grad), 39
Grazing incidence, 245
Group velocity, 526

Half-Bandwidth, 164, 204
Headphones, 386, 387
Hearing level, 1, 9
Hearing threshold, 6
Helmholtz equation, 436
Helmholtz resonator, 397
Hilbert Transformation, 433
Hilbert transformation, 435
Hollow building block, 251
Holography, 441
Holography, acoustic, 441
Hook’s law, 27, 121, 148
Hybrid, 403
Hydrogen, 465

Impact sound
level, 259
reduction, 259, 261

Impact sound level, 259
Impedance

mass, 293
of a spring, 196
optimum, 305, 307
real, 293
specific, 31
stiffness, 292
tube, 172
wall, 184

Impedance tube, 171
Impulse response, 412, 415, 431, 433,

434
In-phase alignment, 37
Incidence angle, 219, 244, 320, 357

critical, 245
Incident flow, 398
Incoherent signals, 453
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Inertia law, 28
Infrasound, 1
Input impedance, 271
Input signal, 409
Insertion loss, 149, 158, 269, 277

of semi-infinite screen, 321, 328, 331,
334

Instable, 401
Insulating stripe, 262
Integral transformation, 429
Intensity, 42
Intensity level, 465
Intensity measurements, 44
Interconnection time delay, 395
Internal noise, 351
Internal automobile engine noise, 385
Interval, 3
Invariance principle, 416
Inverse Fourier transform, 428
Inverse transform, 426, 428
Irrotational, 40
Isobar, 21
Isochor, 21
Isotherms, 19

Junction, 270, 273

Kinetic energy, 40
Kundt’s tube, 172

Law of compression, 29
Law of relative variation, 4
Leakage, 251, 258
Left-side limit, 424
Level

arithmetics, 451
inversion, 452
summation, 453

Light zone, 322, 325
Limiting frequency, 137, 246
Line array, 367
Line source, 68, 114, 471
Linear, 410
Linear level, 8
Linearity, 410
Lined duct, 284
Lined silencer, 267
Lining

soft, 288

Lobe
main, 92
side, 92

Localized impulse response, 445
Locally reacting absorber, 186
locally reactive, 209
Logarithm

decadic, 451
long-waved source elements, 438
Longitudinal wave propagation speed in

beams, 135
Loss factor, 149, 164, 181, 246, 353
Loudness, 1, 4, 9

perception, 4
Loudspeaker, 362

array, 73
Loudspeaker pair, 395
Low-frequency absorber, 201
Lowest mode, 287, 291

Mach number, 56, 466
Main lobe, 92
Mapping, 426
Mass

characteristics, 289
impedance, 293
per unit area, 207
short circuit of, 72, 105, 362

Mass law, 245
Berger’s, 245

mass-spring-mass resonance, 387
Matching, 192
Matching law, 184
Measured transmission loss, 241
Measurement

of sound power, 43
Microphone

condenser, 347
diffuse field, 358
electrodynamic, 358
free field, 358
frequency response function, 349
voice coil, 358

Microphone array, 367
Mirror source, 105, 217
Modal cut-off, 174
Modal damping, 287
Mode, 128, 173, 286

lowest, 287, 291
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principal, in ducts, 304
Moment, 121
monochromatic, 439
Monopole source, 70
mounted, 127
Moving medium, 53
Musical instrument, 2

Near-field, 289
near-field, 437
Negative damper coefficient, 401
Net volume flow, 440
Newton’s law, 27, 123, 147
Nitrogen, 466
Noise

internal, 351
Noise compensation, 386
Noise exposure, 1
Noise reduction, 385
Non-linearities, 410
Non-linearity, 59
Normal tension, 117, 120, 122
Normalized impact sound level, 259
Number

complex, 455

oblique sound incident, 208
Octave band

filter, 7
level, 8

Octave level, 461, 462
Omnidirectional radiation, 67
One-dimensional piston, 88
Optimum

attenuation, 307
impedance, 305, 307

Oscillation modes, 405
Output signal, 409
Overload protection, 5

Pair of sound incidents, 4
Particle displacement, 465
Particle motion, 58, 115
Partition

double-leaf, 252
single-leaf, 241
wall, 237

Pass band, 8
Perception

characteristics, 4
of loudness, 4, 5
of pitch, 3
of temperature, 5
of weight, 3, 5

Phase
function, 81
shift, 458

Phase errors, 390
Phase velocity, 526
Phase-shifter, 403
Phasor curve, 185
Phenomenon, Gibb, 426
Photo analogy, 427
pick-up characteristic

of microphones, 357
Piening formula, 302
Pipe elements, 279
Piston

circular, 107
one-dimensional, 88

Plane wave, 287
in plates, 135

Plate displacement, 119
Plate modes, 138
Plate resonance, 137
Plate resonance grids, 139
point-symmetric, 432
Pointer

complex, 455
Pointers, 34
Poisson’s ratio, 134
Porosity, 188
Porous

absorber, 187
curtain, 198
sheet, 292

of finite thickness, 194
of infinite thickness, 191

Potential energy, 40
Power, 42

density, 42
Power level, 113, 465, 471
Pressure, 18, 22

reflection coefficient, 180
Primary, 385
Primary source, 385
Principal mode, 304
Progressive waves, 29, 50
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Propagation
of bending waves, 119, 124
of sound, 67

Propagation speed, 25, 30, 97
in absorbers, 190
of bending waves, 125
of longitudinal waves in beams, 135

Propeller noise, 386
Pulsating sphere, 70

Quarter-wavelength resonance, 294

Radiation, 67
from plane surfaces, 104
of line sources, 68
of point sources, 67
of sound, 67
omnidirectional, 67

Radiation function, 90
Raised waves, 59
Rayleigh integral, 105, 107, 444
Rayleigh model, 188
Reactive field, 38
Real impedance, 293
Receiving room, 239
Rectangular duct, 176
Rectangular function, 412
Reference curve, 260
Reflecting silencer, 268
Reflection, 218, 355, 392

coefficient, 180, 269
zone, 325

Relative tonal impression, 3
Replication error, 389
Replication errors, 389
Residential noise, 237
Resistance force, 399
Resonance, 34, 37, 127
λ/4, 294
absorber, 201
frequency, 347
peak, 7
quarter-wavelength, 294

Resonance density in plates, 141
Resonance frequencies, 37
Resonance grid of bending vibrations,

139
Resonance grid of plates, 139
Resonance phenomena, 34

Resonator, 289, 292
lining, 297

Resonator in contact with air, 389
Reverberation, 224

radius, 230
room, 225, 231
time, 224, 225, 240

Reversible converter, 394
Right-side limit, 424
Rigid screen, 312
Ring arrays, 379
Ripple parameter, 182
Room acoustics, 217
Root mean square, rms-value, 6, 43,

180, 223, 453
Rotation (rot), 40

Sabine equation, 240
for reverberation time, 228

Saxophone, 397
Screen

semi-infinite, 333
Second moment of area, 121
Secondary, 385
Secondary replication, 389
Secondary source, 385
Self-excitation, 389
Self-excited vibrations, 389
Self-induced, 397
Self-induced excitation vibration, 399
Self-induced vibration, 397
Semi-infinite screen, 333
Sensitivity

angle-dependent, 355
of a condenser microphone, 351
of the human ear, 9

Shadow border, 326
Shadow region, 322, 323, 327
Shear force, 117, 124
Shear tension, 118, 120, 122
Short circuit

of mass, 72, 105, 362
Short-circuit, 440
short-waved source element, 438
Side lobe, 92

suppression, 93
Silencer, 267, 279

absorbing, 268
lined, 267
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reflecting, 268
Simple source, 70
Sinc function, 89
Single value, 240
Single-leaf partitions, 241
Smokestack, 397
Soft boundary, 288
Soft lining, 288
Solid structure, 117
Sound

of a musical instrument, 2
Sound absorber, 171, 394
Sound absorption, 395
Sound barrier

wedge-shaped, 333
Sound beam, 290
Sound density, 22
Sound field

cylindrically symmetric, 73
diffuse, 220, 221

Sound impact, 259
protection, 260

Sound intensity, 42, 465
Sound occurrence, 401
Sound power, 42, 465

measurement, 43
transmission coefficient, 239, 244,

269, 277
Sound power level, 470
Sound pressure, 1, 5, 6, 22

level, 5, 6
transmission coefficient, 244, 269

Sound pressure level, 465
Sound propagation, 67

in the impedance tube, 171
Sound propagation speed, 29
Sound radiation, 67

from plane surfaces, 104
of line sources, 68
of point sources, 67

Sound reduction index, 240
Sound speed, 23
Sound temperature, 22
Sound velocity, 25, 29
Source

line, 68
monopole, 70
of order zero, 70
simple, 70

volume velocity, 70, 104
Source decomposition, 445
Source element, 104
Source length, 68
Source room, 239
Source wavelength, 98
Source wavenumber, 98
Spatial period, 98
Specific heat, 465
Specific impedance, 31
Specific resistance, 31
Specific stiffness, 121
Spectral components, 7
Speed, 465
Speed of sound, 23
Spherical waves, 68
Spiral wave, 471
Splitter attenuator, 284
Spring

impedance, 196
stiffness, 27

Squaring device, 410
Stability, 401
Stability boundary, 404
Stability chart, 403
Standing wave, 29, 50
Standing waves, 34
Static bending, 120
Static bending science, 120, 123
Steady state, 222
Steady-state

conditions, 226
Step function, 413
Stiffness

characteristics, 289
impedance, 292
of a spring, 27
of enclosed air, 196
specific, 121

Stimulus, 3
Strain, 119

waves, 118, 119
Stripe

insulating, 262
Structure coefficient, 188
Structure-borne

sound, 117
sound bridge, 258, 262
wave, 119
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Structure-borne sound transmission,
489

Structured tube, 283
Substitute sources, 218
supported, 127
Suppression of side lobes, 93
suspended, 127
Swingset, 398
Symmetries, 431
System theory, 409

Tape recorder, 411
Tapping machine, 259
Temperature, 18, 22
tension

normal, 117, 120, 122
shear, 118, 120, 122

Test signal, 240
Third-octave band

filter, 7
level, 8

Third-octave level, 461, 462
Threshold stimulus, 4
Timbre, 1
Time convention, 34
Time domain, 45
Time signal, 3
Time-invariant, 411
time-invariant, 54
time-variant, 55
Torsional waves, 118, 119
Total level, 461
Total transmission, 246
Trace wavelength, 245
Traffic noise, 237
Transcendental equation, 297, 298, 304
Transducers, 3, 458
Transfer path, 161
Transformation, 426
Transmission

between rooms, 237
total, 246

Transmission coefficient, 182
sound power, 239, 243, 244, 269, 277
sound pressure, 244, 269

Transmission function, 429, 431
Transmission loss, 3, 137, 239, 247, 303

airborne, 244
of single-leaf partitions, 241

Transmitter, 409
transversal, 141
Typical frequency, 350

Ultrasound, 1
Universal gas constant, 19

Variation law, 4
Vector differential operators, 39
Vectorial intensity components, 44
Velocity, 25
Vibration equation, 400
Violin, 397
Voice coil microphone, 358
Volume flow, 112, 113
Volume velocity, 105

source, 70, 104

Wall impedance, 184
Water, 467
Water waves, 401
Wave, 30
Wave decomposition, 445
Wave equation, 29

of bending waves in beams, 124
of bending waves in plates, 134
of bending waves in walls, 243
of the porous medium, 189

Wave form, 119, 127
Wave number spectrum, 435
Wave number variable, 436
Wave resistance, 31
Wave speed, 25
wave sum, 443
Wavelength

bending, 125, 135
source, 98
trace, 245

Wavelength decomposition, 435
Wavenumber

source, 98
Waves

bending, 118, 123, 124, 136
in beams, 120, 135
in plates, 134

free bending, 134
plane, 287
plate plane, 135
spherical, 68
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strain, 118, 119

torsional, 118, 119

Weber, 3

Weber-Fechner-Law, 5

Wedge-shaped sound barrier, 333

White noise, 7

Winding point, 307
Window

double-glazed, 256

Young’s modulus, 121

Zero order source, 70
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