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Introduction 

This book comprises a set of three 'programmed texts' designed to help 
you in learning the fundamental principles of statics, kinematics and 
kinetics. You may have encountered similar texts elsewhere, but if you 
have not, you should understand that they are designed to be read, one 
Frame at a time, in order, without skipping, and without looking 
ahead at subsequent Frames out of order. Moreover, you should not 
attempt to work through Programme 3 (Kinetics) until you have 
thoroughly covered the work of Programmes I and 2 (Statics and 
Kinematics). When working through the texts you might find it helpful 
to have a card or a sheet of paper, to cover up the Frames ahead of you, 
so that you do not see answers to any of the questions asked before you 
have had time to work out the answer yourself. Wherever questions are 
asked, or exercises set, it is very important that you attempt to answer 
the questions, or go through the exercises, before reading on; this is 
how you will learn. If you make any mistakes (and you almost certainly 
will) you should hopefully find out your errors from the subsequent 
Frames. Try to understand clearly the reason for your mistake. If you 
cannot do this, then make a note, and get some help from your lecturer 
as soon as you get the opportunity. 

To work through these texts, you will need 

I. A ruler, or draughtsman's scale 
2. A protractor 
3. A set-square 
4. A 2H (or equivalent) pencil 
5. A pen and paper 
6. A calculator. 

You should get guidance from your lecturers about when you 
should read these texts, but you should understand that they are 
designed as revision for A-level or equivalent work, so that ideally, you 
should have completed working through them before you start on the 
first year of a Degree course in Engineering. Like most students, you 
have probably been accepted for a Degree course while feeling that you 
did not perform as well as you had hoped on your A-levels. You may 
have been lucky enough to scrape a Grade C in Physics or Applied 
Mathematics and still have only a very vague notion of centroids, or 
moments of inertia. Here is a chance to catch up. 

vii 
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The study of Engineering Mechanics is largely concerned with 
examining forces and the effects that they produce. One important 
effect offorce is to produce an acceleration. This aspect of force will be 
examined in programme 3, called 'Elementary Kinetics'. Sir Isaac 
Newton showed that force is a phenomenon which causes, or tends to 
cause, acceleration of a body. These words, 'tend to cause', need 
explanation. Why is it that forces sometimes cause acceleration and 
sometimes not? To help answer this question, let's look at a body 
subjected to two very simple, but different force situations. 

(b) 

In sketch (a) a man has just fallen from an aeroplane. It is clear that 
while he is falling, he is accelerating; that is, his speed of fall is 
increasing. The force causing this acceleration is his weight-the pull of 
the earth on his body. It must be this force, because there are only two 
forces acting on his body: his weight, and the resistance of the air. The 
air resistance acts in an upward direction, opposite to the direction of 
motion, and has the effect not of actually slowing him down, but of 
slowing down the rate at which his speed of fall is increasing-his 
acceleration, in other words: his acceleration gets less the further he 
falls. So, in this example, his weight causes his body to accelerate 
downwards. 

Now look at sketch (b). The same man (who, we have to admit, is 
rather unlucky) is now hanging from a gallows. His weight still acts 
upon his body (no doubt much to his regret). But this time, it is not 
causing his body to accelerate. This reason is clear; his body is being 
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pulled down by the pull of the earth, but also it is being pulled up by the 
rope around his neck. And the two pulls are equal and opposite. 

Forces, then, produce an acceleration on a body only when they are 
not balanced out, or cancelled, by other forces. In such cases we say that 
a resultant force exists. The determination of the effects of a resultant 
force on the motion of a body forms the study of Kinetics, and this is 
also dealt with in Programme 3, 'Elementary Kinetics'. The foundation­
stone of Kinetics is the three Laws of Motion established by Sir Isaac 
Newton in the seventeenth century. The first of these laws states that if a 
body is not subjected to a resultant force, it will be at rest, or in a state of 
uniform straight-line motion. The word 'static' means 'at rest', and 
Statics began as the study of forces acting on bodies at rest, such as 
buildings and bridges. But the word has now come to have a wider 
meaning, and you should think of Statics as the general study of force 
systems. As such, it becomes an essential prerequisite of Kinetics. 

We can begin with the simplest possible force system which can be in 
equilibrium. Obviously, a single force cannot be in equilibrium; a body 
subjected to a single force must accelerate. But two forces can be in 
equilibrium. Our friend of the previous Frame is in equilibrium, 
hanging from the gallows. (We are, of course, referring to the forces 
acting on his body, and not to his mental state.) So make use of him as 
an example, and deduce what conditions are necessary in order that two 
forces shall be in equilibrium. Before you plunge in with a hasty answer, 
let me remind you that three conditions are necessary. 

The conditions for two forces to be in equilibrium are 

1. The two forces must have the same magnitude 
2. They must act in opposite directions 
3. They must act along the same straight line-that is, they must be 

collinear. 

Now think of some examples of two-force systems which conform to 
two of these conditions but not to all three. 
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In example (a) the forces are opposite and collinear but not equal. In (b) 
they are equal and opposite but not collinear. In (c) they are equal and 
collinear but not opposite in direction. In none of these cases, therefore, 
does equilibrium exist; the three conditions are all required. You might 
be tempted to think that (b) represents equilibrium, but you can 
probably see that if you applied a pair of equal forces to a body in this 
manner, it would turn. (This is one way that a pair of tugs might turn a 
liner in dock.) Such an arrangement of equal parallel forces is called a 
couple. 

Before we can consider the conditions for the equilibrium of three or 
more forces acting at a point, we have to state a very important 
principle of statics known as the Parallelogram Law, or the law of 
composition of forces. This law was formulated by Stevinus in the 
sixteenth century. We shall state the law without proof, although it is 
probable that in your previous work in Mechanics you have en­
countered an experimental proof or verification of the law. The law is 
stated in Frame 5. 

The Parallelogram Law states 

"If two forces acting at a point 0 are represented by lines OA and 
OB, where OA and OB are proportional in length to the magnitudes 
of the forces, and their directions are those of the forces, the effect of 
the two forces is the same as that of a single force represented in 
magnitude and direction by a line OC, where OC forms the diagonal 
of the parallelogram of which OA and OB form adjacent sides" 
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In the example following, a body is subjected to forces of 2 kN and 
3 kN in the directions shown. The effect of these forces is the same as 
that of a single force R, which is determined by drawing the 
parallelogram and measuring the length of the diagonal. OA is drawn 2 
units long to represent 2 kN, in the direction of this force, and similarly, 
OBis made 3 units long in the corresponding direction. OC is the 
resulting diagonal of the parallelogram produced by drawing AC and 
BC parallel to OB and OA respectively. In this example, the length of 
OC scales approximately 4.36 kN and the angle IX measures ap­
proximately 37°C. The single force R represented by vector OC is called 
the resultant of the two forces. 

B ____________ C 

I 

I 
I 

I 

O~~--L..----" A 
2 kN 

I 
I 

I 
I 

I 

i 
I 

I 

I 
I 

OA measures 2 units 
OB measures 3 units 
OC scales 4.36 units 

Now make use of this same principle to find the resultant of the 
following two forces 

~ '" ~o-----...;)o~ 

and check your work against the solution in the Frame following. 
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The parallelogram, drawn to scale, should look like this 

OC should scale 6.63 kN and the angle oc should measure 105°. Your 
own solution may not agree exactly with these values. The accuracy of 
the answer to a problem solved by a graphical method depends partly 
upon the skill and care of the solver, and partly on the problem itself. 
Taking reasonable care, you should obtain the answers stated with an 
error of not more than about 1 per cent. At the other extreme, looking 
ahead to the problem of Frame 12, and the comments in Frame 14, the 
same degree of skill and care expended upon a graphical solution of this 
problem could result in a percentage error very much greater than this. 

Returning to the problem of this present frame, you may have 
noticed that you did not need to draw the complete parallelogram. The 
length and direction of OC can be found simply by completing the 
triangle OAC. BC need not be drawn at all. 

Again using exactly the same technique, find the resultant of these two 
forces 

~
kN 

90° 
6 kN 

Just draw the triangle, or 'half-parallelogram' OAC; do not bother to 
draw BC. 
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181 

Completing the triangle OAC gives OC = 10 kN at DC = 53° to the 
direction of the 6 kN force. In this case, the values can be calculated 
from the trigonometry of the right-angled triangle, thus 

R = ..}62 +82 = lOkN 

DC = tan- 1 G) = 53.1° 

This example serves to introduce the principle of Resolution of 
Forces. The Parallelogram Law enables us to determine a single force 
which replaces two others. Resolution is just the opposite; a single force 
is replaced by two components. The reason for doing this will appear 
shortly. When forces are resolved in this manner, we always calculate 
two components which are at right-angles to each other. As a first 
exercise, find the two components of the 45 kN force shown below, 
along the two directions OX and OY. 

V~5kN 
35° o x 
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45 kN is the resultant of the two components F x and F y' From the 
triangle OAe 

F x = 45 cos 35° = 36.86 kN 

Fy = 45 sin 35° = 25.81 kN 

Now repeat this exercise, except that 45 kN is replaced by F, and 35° is 
replaced by 0, thus 

y 

o """--'-'------x 

The required components are 

Fx = F cos 0 
Fy=sinO 

All this work on single forces and resultants doesn't seem to have 
much to do with Statics. But now look back to Frame 5 where we found 
the resultant of forces of 2 kN and 3 kN. 

--- - -- ----- - c 

, 
I 

I , 
I 

I 
I 

, , 
I 

/ Resultant R = 4.36 kN 

, 
, 

I 

O'C-~ __ ---fA 
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Now if we add to the 2 kN and 3 kN forces a third force of 4.36 kN 
acting in the opposite direction to R, this would cancel the two forces, 
and the system of three forces would then be in equilibrium. The 
additional force required in order to produce equilibrium of a force 
system is called the equilibrant, and it is, of course, equal in magnitude 
to the resultant, and opposite in direction. Thus, the force system 

3 kN 

4.36 kN 
must be in equilibrium. 

But these three forces can still be represented by a triangle which is 
geometrically identical to triangle OAC of Frame 5, reproduced above 

c 

O"'----"""2:-:'k":":N-' 

The difference is, that the line CO (read in that order, not OC) now 
represents a third force, acting in that direction, and not a resultant 
force, as OC did before. The arrow on CO indicating the direction of 
the force is seen to follow the same direction as the other two arrows 
around the triangle. This leads us to the statement of the next 
fundamental principle of Statics-the Triangle of Forces. 

"Three co-planar forces in equilibrium acting at a point may be 
represented in magnitude and direction by the three sides of a 
triangle" 

Use this principle now to find graphically the magnitude and direction 
of a third force to be added to these two 

250 kN 

to establish equilibrium. Remember that your completed triangle must 
have the arrows all running the same way round the triangle. 
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~B120 
1400 

O~A~--'----

The solution is drawn above. OA is drawn first, 250 units long, to a 
convenient scale. Then AB is drawn, representing the force of 120 kN. It 
is drawn at 1400 to the direction ofOA. The arrows on these two force 
'vectors' must run the same way round-in this example, anti­
clockwise-round the triangle. BO completes the triangle. Scale 
measurement gives a value of 176 units, and its direction (with respect 
to OA) is given by angle tX which measures approximately 260 • So the 
following system of three forces 

120 kN 

___ ~~-?~~ ____ ~~250kN 

176 kN 

will be in equilibrium. 
(If your solution agreed with these figures to within 3 or 4 per cent of 
error, this may be considered sufficiently accurate for a graphical 
exercise.) 

The principle ofthe Triangle of Forces may now be extended to the 
more general Polygon of Forces. Thus 

"A number of co-planar forces acting at a point, if in equilibrium, can 
be represented, in magnitude and direction, by the sides of a closed 
polygon" 

The principle may be extended to deal with force systems which are 
not in equilibrium. In the same manner that a 'triangle' can be drawn 
for two forces, and can then be used either to determine the resultant, or 
the equal and opposite equilibrant, so an 'open-sided' polygon can be 
drawn for any number of co-planar forces. To illustrate this, consider 
three forces acting at a point. 
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The resultant of forces F 1, and F 2 can be found by drawing the 'open' 
triangle oab, giving the force R 1. So F 1 and F 2 can be replaced by the 
single force R1 • The resultant of Rl and F 3 is found by drawing the 
'open' triangle obc, giving R2 which is the resultant, therefore, of all 
three forces. It is not necessary to determine R1; the 'open' polygon 
oabc can be drawn straight away to determine oc, the resultant vector 
of the three forces, or co, the equilibrant. Clearly the argument may be 
extended to include any number of forces. 

Programme 1: Elementary Statics 11 
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The system of five forces shown here is approximately in equilibrium. 

15 

________ ~~~~~--------~12 

Verify this graphically by drawing a polygon of forces. Choose a 
suitable scale, remembering that too small a scale means loss of 
accuracy. The smallest scale you should choose should be 1 cm == 4 
units. It should be realised that you may draw the polygon taking the 
forces in any order-which incidentally means that in this exercise 
there are 24 possible polygons. However, the solution given in the next 
frame starts with the I2-unit force and takes them in order anti­
clockwise around the point, so for a start you might do well to do the 
same. You may also find it helpful, when drawing the sides of the 
polygon, to calculate the angle between one force and the next. For 
example, the angle between the I2-unit force and the I5-unit force is 
45°(as shown); the angle between the I5-unit force and the next 8-unit 
force is 65°, and so on. 
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18 

15 

O~------~C------a~:---L---

If you choose to draw in a different order, here are sketches of four of 
the 24 possible polygons. 

~/\8 18A 
~~15 

12 ~8 8 

12 

o 10 15 
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Graphical methods are useful, and there are several types of problem 
where they constitute the only practical solution. But they have 
disadvantages. As you have found, they are time-consuming. Also, they 
can be inaccurate. The graphical determination of the resultant of a 
force system can be very inaccurate if the value of the resultant is small 
in comparison with the values of the forces themselves. To give an 
example: a very accurate calculation of the resultant of the 5-force 
system of Frame 12 (which we stated was 'approximately in equilib­
rium') indicates that it has a resultant of magnitude 0.083 units. If it 
were necessary for any reason to know this value accurately, the 
drawing of a force polygon would not reveal it at all. So we need a 
method of calculating the resultant of a force system, and for this, we 
make use of the principle of Resolution, which we introduced in Frame 
7. 

The resultant of a number offorces acting along a straight line is easy 
to calculate; we simply evaluate the algebraic sum of the forces in one 
direction. Thus, the resultant of the following three forces 

6.5 
( 

3.5 .. 4.5 ,. 

is (3.5 + 4.5 - 6.5) = + 1.5 units to the right. To solve a force system by 
resolution, we choose two directions which are mutually perpendicular, 
and we then resolve each force into two components along these two 
directions. The algebraic sum of all the components in each of the two 
directions is then determined; this gives the two components of the 
required resultant force. From these, the magnitude and direction of 
the resultant is calculated. The following simple example illustrates the 
method. We require the resultant of the two forces 

y 

o~a_N ___ X 
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We have chosen the directions ox and oy. There is no need to resolve 
the 10 N force; it already lies along the ox direction. Making use ofthe 
principles of Frames 7 to 9, calculate the two components of the 12 N 
force. 

For the 12 N force 

Fx = 12 cos 60° = 6.00 N 

Fy = 12 sin 60° = 10.39 N 

So the system now comprises 

VI 

i 10.39 N 

o~1O_N __ ~)o6..:..:N __ x 

which can be simplified, on adding the x-forces, to 

t 10.39 N 

L16N 

Find the magnitude and direction of the resultant of these two 
components. Look back to Frame 7 if you are stuck. 
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Sketching the 'triangle' (which is right-angled) 

10.39 

R = ../(16)2 + (10.39)2 = 19.08 N 

ex = tan ---1 (10.39) 
16 

= 33.00° 

The choice of x and y axes is arbitrary. It is a mistake to think that you 
must always resolve 'horizontally and vertically'. In solving some 
problems, this could give you a lot of unnecessary work. Let us now go 
back and solve the previous problem again, but this time taking the 
x-axis in the direction of the 12 N force, and the y-axis at right-angles to 
it. You should get the same value for the resultant R, and it should be in 
the same direction. The solution follows, in case you run into difficulty. 

Resultant force in x-direction: 
Resultant force in y-direction: 
Sketching the triangle 

F" = 12+ 10 cos 60° = 17.00 N 
Fy = -10 sin 60° = -8.66 N 
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R = .j (17)2 + (8.66)2 = 19.08 N 

II _ -1 (8.66) 
I' - tan -

17 
= 27.000 

So the inclination of the resultant R to the horizontal is (60 - 27) = 33 0 

which is the same answer as previously. 
Here is another problem. Find the resultant of the four forces shown. 

The choice of x and y axes should be clear in this case. The solution is 
given in the next frame, and Frame 19 follows this with some 'drill' 
examples. 

50 N 

20 N 

15 N 
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V,\o sin 600 L 0 

/ 50 cos 60 

/20 

/,'\ 
This choice of x and y axes means that only the vertical force of SO N 
needs to be resolved. 

F x = 20 + SO cos 60° - 15 = + 30 N 

Fy = SO sin 60° -SO = -6.70 N 

The negative value of Fy indicates that it is in the opposite direction to 
that assumed-that is, it is downwards. Drawing the final triangle 

R = ,J(30)2 + (6.70)2 = 30.74 N 

1 (6.70) IX = tan- 30 = 12.59° 

The resultant force is therefore inclined upwards to the horizontal at an 
angle of (30 -12.59) = 17.41°. 

You may have solved this problem differently, possibly by choosing a 
different set of x and y axes; for example, you may have chosen 
horizontal and vertical axes. Also, you may have reached the correct 
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answers. But if you have done so, you will almost certainly find that 
your working is more complicated than the solution given here. It is a 
good thing to learn (if you haven't learned already) that there is no 
single 'right' way to solve a problem, but there are easy ways and less 
easy ways. 
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'Drill' exercises: forces acting at a point 
1. Determine the magnitude and direction of the resultant of two 

forces acting at the same point, of magnitudes 64 Nand 96 N, 
angularly displaced relatively by 60°. 
Ans. 140 N at 23S to 96 N force. 

2. Forces of 200 Nand 160 N act at a point at a relative angle of 120°. 
Calculate the magnitude and direction of a third force required to 
produce equilibrium with these forces. 
Ans. 183 Nat 130.8° to 200 N force. 

3. Forces of 4,5 and 4.5 N act at a point in relative directions of 0° ,45° 
and 135°. Determine the magnitude and direction of their 
resultant. 
Ans. 8.01 N at 12° to 5 N force. 

4. Forces of 8, 5, 6 and 6 kN act at relative angles of 0°,90°, 120° and 
210°. Determine the magnitude and direction of the resultant. 
Ans. 7.2 kN at 1.6° to 5 kN force. 

5. A street lamp weighing 100 N hangs from an initially horizontal 
wire stretched between posts 10 m apart. The weight of the lamp 
causes the wire to sag 0.2 m at the centre. Calculate the tension in 
the wire. 
Ans. 1251 N. 

6. A body of mass 20 kg hangs from two strings which are inclined to 
the horizontal at angles of 30° and 45° respectively. Calculate the 
tensions in the strings. 
Ans. 176 Nand 143.6 N. 

7. Three forces, A, Band C, act at a point at respective angles of 0°, 
135° and 270°. The magnitude of A is 200 N. Given that the three 
forces are in equilibrium, calculate the values of Band C. 
Ans. 282.8 Nand 200 N. 

8. A body of mass 5 kg hangs from two cords of lengths 3! m and 
4! m. The other ends of the cords are attached to a vertical board to 
points at the same level and 5! m apart. Calculate the tensions in 
the two strings. 
Hint: a graphical solution is the simplest. 
Ans. 38.0 Nand 28.4 N. 

9. ABeD is a rectangle. AB is 3 m, BC is 4 m. E is a point on BC 21 m 
from B. Forcesof6, 8, 10 and 12 kN actalongAB,AE,ACandAD 
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respectively. Determine the magnitude and direction of their 
resultant. 
Ans. 30.9 kN at 53.4° to AB. 

10. Bodies of weight, 3 kN and 4 kN are connected by a light cord 
which passes over pulleys on a vertical board as shown. A third 
body of 6 kN is attached to the cord. Calculate the angles (X and P 
when the bodies take up a position of equilibrium. Neglect friction. 

t 
3 kN 

} 
6 kN 

+ 

D 
t 

4 kN 

Hint: draw the force triangle for the three forces at the junction of 
the cords. Solve either graphically or by calculation, using the sine 
and cosine formulae. 
Ans. 36.3° and 26.4°. 
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Now have a look at this simple force problem. 

A beam is to be used as a lever to lift a load of 2 kN by means of a force 
F applied at the end as shown. Calculate the value of F, neglecting the 
weight of the beam itself. 

You may know that this problem can be solved by taking moments of 
forces about the hinge-point at the left-hand end. Although this is a 
simple problem, it is different from any that we have so far examined, 
because the forces concerned do not all pass through a single point, 
with the result that the methods we have so far used cannot be 
employed to solve this problem. 

When writing an equation of moments, we must note that the force 
F, if acting alone, would cause the beam to turn anti-clockwise, whereas 
the weight of the load would cause it to turn the other way. Moments, 
like forces, must carry positive or negative signs, according to direction. 
Since the beam is in a state of equilibrium, the total moment is zero. 
Arbitrarily calling an anti-clockwise moment positive 

F x 1 - 2 x 0.2 = 0 
giving 

F = 0.4 kN 
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We must think of a moment of a force as its turning effect with respect 
to a particular point. The magnitude of a moment is calculated by 
multiplying the value of the force by the perpendicular distance from 
the point to the line of action of the force. If the force F were applied to 
the beam at a distance of only 0.5 m from the hinge, the value of 
the moment would thereby be halved, and to ensure equilibrium, the 
magnitude of F would thus have to be doubled in order to raise the 
same load. Similarly, if the weight were to be moved out to a distance of 
0.4 m from the hinge, the moment of the weight would be doubled, and 
again, F would have to be doubled to compensate. 

You must pay particular attention to the method of calculating 
moment, as set out in the previous paragraph. A very common error 
associated with this type of problem is to consider the point of 
application of the force rather than its line of action. But if you think 
about it, you should see the fallacy of this. Imagine the force F to be 
applied by tying a rope to the beam and pulling the end of the rope. 
Regardless of whether the length of the rope was 0.1 m, 1 m or 10 m, 
you would need to apply a force of 0.4 kN to raise the load. What is 
important is that the rope be vertical, not how long it was. Although the 
point of application offorce F (the end of the rope) changes, the line of 
action of F (a vertical line through the end of the beam) remains 
unaltered, and therefore the value of F remains the same. 

Bearing this very important principle in mind, see if you can now 
calculate the value of the force F required to raise the weight in the 
example below. 

1m 
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/ 
Hinge .c-/_---. __ l_m ____ ~ 

(a) 

t F cos 40· 

Hinge--l-------~ 
F sin 40· 

(b) 

In diagram (a) the required perpendicular distance between the line of 
action of F and the hinge, shown as y, is 1 cos 40°, so that we can write 
the moment equation 

F x 1 cos 40 = 2 x 0.2 

:. F = 0.522 kN 

Diagram (b) suggests an alternative solution. Here, the force F has 
been resolved into horizontal and vertical components (see Frame 8). 
The line of action of the horizontal component actually passes through 
the hinge, and so has a moment of zero about it. The vertical 
component, F cos 40°, being perpendicular to the beam, has a moment 
of (F cos 40° x 1), giving us the same answer as before. 

In this next example, the jib of a simple crane is held at an angle of 40° 
to the horizontal by means of a horizontal tie-wire attached 6 m from 
the base as shown. Calculate the tension in the tie-wire when the crane 
supports a load of 2000 kg. Neglect the weight of the jib itself. 
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F 

I 
I 

(2oo0g) N 

--4 
Calling the tensile force in the wire F, we write an equilibrium equation 
of moments of the two forces with respect to the point P, the foot of the 
jib, recalling that the weight of a body, in newtons, is its mass, in 
kilograms multiplied by g (9.81) 

F x 6 sin 40° -2000g x 8 cos 40° = 0 

F = (2000g x ~cot400)N 
=Jl~l~~N 

You should take note of the fact that the force diagram above is 
simplified, because the forces acting on the jib also include a force 
exerted upon it by the mounting at the foot P. But since we are writing a 
moment equilibrium equation with respect to P, the moment of this 
third force above P must be zero, and we can thus solve the problem 
without needing to know this force. 
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Summarising what we have covered so far: when a number of forces act 
at a point, problems may be analysed by drawing the polygon of forces, 
or by resolution. When forces do not act at one point, a solution may 
sometimes be obtained by taking moments of forces a~ut some point. 
(This is the case for the problems in the last four. frames.) But these 
latter problems have been deliberately kept simple; they have been 
chosen specifically so that they can be solved by a moment equation. 
But suppose now we want a complete solution to this later kind of 
problem. For example, suppose that in addition to the tension in the 
stay-wire of the jib of the last frame, we want to know the magnitude 
and direction of the forces exerted on the jib by the anchor-bracket at 
the base P. Then we need to make use of the two conditions required for 
equilibrium, which are stated here. 

1. There shall be no resultant force on the body. 
2. The sum of moments of all forces acting on the body, with respect 

to any point must be zero. 

We shall now look at a type of problem in which all the forces are 
parallel. Here is one. 

4N 6N 2N 

Ai l l l 
:i:E 

.. B\ :1. ~I. 2m 3m 2m .\ 1 .. 1 m •.• 

A light bar ABCDE carries three loads as shown, and rests on two 
knife-edge supports at the ends A and E. Determine the values of the 
upward reaction forces at A and E. 

We can call the two reaction forces RA and RE• Our force system 
becomes 
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Since all the forces are parallel, we do not need to resolve any forces, 
and there is even less point in drawing a force polygon-which, in any 
case, would be just a single straight line. Our first condition of 
equilibrium can be stated in terms of an equation of vertical equilib­
rium, namely 

RA + RE = 4 + 6 + 2 = 12 N 

Because the forces are not all acting at a single point, this equation by 
itself is insufficient to solve the problem. A second equation, making use 
of the Moment principle is required. You may obtain such an equation 
by taking moments of the forces about any point. But the solution is 
made simpler by using some discretion. By choosing your point 
carefully, the working is made much simpler. Think about this and then 
write down a Moment equation. The working continues in the next 
frame. 
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Observe the result of taking moments about the point E. 

RA x 8 - 4 x 7 - 6 x 5 - 2 x 2 = 0 

(Note here, as previously, that moment can be positive or negative, and 
in this equation, we have arbitrarily chosen to represent a moment with 
a clockwise sense as positive, and vice versa.) 

You can see that by choosing point E, the force RE does not come 
into the equation: the moment of RE about E is RE X 0 = O. The 
equation may thus be solved. 

RA = i(4 x 7 + 6 x 5 + 2 x 2) = 71 N 

A second equation could now be written, taking moments this time 
about point A, and from this we could find the value of RE• But we do 
not need to do this, as we have the equation at the end of Frame 24, 
from which 

The next problem is slightly more difficult, but exactly the same 
principles are required. Find the values of the reaction forces at points 
Band F. 

4N 6N 6N 2N aN 

G 
A~====~============~========~~======~ 

Begin by taking moments about point F. Call clockwise moments 
positive. Then write the equation of vertical equilibrium (note that the 
load at C is upwards). 
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Taking moments of all forces about F 

- 4 x 71 + R8 x 6 + 6 x 41- 6 x 21- 2 x 1 + 8 x 2 = 0 

from which 

R8 = i (4 x 71- 6 x 41 + 6 x 21 + 2 x 1 - 8 x 2) = 3 N 

Writing the equation of vertical equilibrium 

R8+RF = 4 -6+6+2+8 = 14 

:. RF = 14 -3 = 13i N 

For our next exercise, go back to the three loads on the bar in Frame 
24. But instead of the bar being supported at A and E, imagine it to be 
balanced at a single point. The problem is to locate this point-the 
point at which the bar would balance on a single knife-edge. We may 
call the point F, and assume it to be at a distance X from A. Our force 
system is thus 

Begin with a moment equation about A. 

A ____ 4~t~:~ ____ _r6~t~:~-----------lLN~D---
II---.. --,-,--x -----t':" 
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RF X X = 4 x 1 + 6 x 3 + 2 x 6 = 34 

This cannot be solved as it stands, but a second equation of vertical 
equilibrium can be written. 

RF = 4+6+2 = 12 

:. X=34 =2im 
12 -

In the earlier problems, the solution was made simpler by a careful 
choice of which point to take moments about. But in this case it is not 
important. You can verify the solution above by solving the problem 
again, but this time assuming the point F to be a distance Y from B, and 
then taking moments about B. You can thus show that Y = 1 i- m which 
locates F in the same position as before. --
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The last several examples have all been cases of force systems in 
equilibrium. We can now extend the principle of moments to include 
the determination of the resultant of a number of parallel forces which 
are not in equilibrium. To do this, we need to modify the two 
statements made in Frame 24. In finding the resultant of a system of 
parallel forces, the following conditions apply. 

1. The magnitude of the resultant is equal to the algebraic sum of the 
forces. 

2. The moment of the resultant with respect to some point is equal to 
the algebraic sum of the moments of all the forces with respect to 
the same point. 

The word 'algebraic' in these statements reminds you that both force 
and moment have signs. If an upward-acting force is designated 
positive, then a downward-acting one must be negative. Similarly, if 
force directed to the left is positive, then force to the right must be 
negative. And, as we have seen, if we call a clockwise moment positive 
we must take care to call an anti-clockwise moment negative. 

The first of the two statements above enables you to calculate the 
magnitude of the resultant; the second enables you to determine its line 
of action. 

Let's look again at the example in Frame 24, and determine the 
resultant of the three downward-acting loads on the beam. (You should 
see that we cannot find the resultant of all the forces acting on the beam, 
because this will be zero, the beam being in eqUilibrium.) We shall call 
the resultant R, and shall assume that its line of action is a distance X 
from point A. On the diagram below, we show the force between C and 
D, but of course we do not know this; this is just a guess 

R 
4N 6N I 2N 

A,-__ ~!~B~ ______ ~l~c~ ______ ~YL! __ ~l~D __ __ t 1m.l. 2m X .1. 3m I .i 
·1 

Solve the problem by taking moments about point A. 
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The moment equation about A is 

R x X = 4 x 1 + 6 x 3 + 2 x 6 = 34 

and, from the first condition stated in Frame 28 

from which 
R = 4+6+2 = 12 

34 ~ 
X=-=26 m 

12 -

This answer may be familiar; it is the same as that obtained to the 
problem in Frame 27. But in that case, we were finding the single 
upward force required on the loaded beam to produce equilibrium, 
whereas here, we are finding the resultant ofthe three loads. As we have 
seen in several examples so far, the resultant of any force system will 
always be equal in magnitude to the force required to produce 
equilibrium, will be opposite in direction, and will lie along the same 
straight line. 

Using exactly the same technique, now see if you can determine the 
resultant of the five loads on the beam in Frame 25. Assume that its line 
of action is a distance X from the end A of the beam. The full solution 
follows in Frame 30. 

R 4N 6N 
I 6N 2N 

At c! I !o !E * I: .1. I J. 
:l-

aN 

~ __ ~~~~~~ __ ~tG 
3 m .1 3m 2m 1~ m 

X .1. y 

The equation of moments about A is 

RxX=4xO-6x3+6x5+2x6!+8x9! = 101 N 
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Equating R to the algebraic sum of forces 

giving 
R = 4-6+6+2+8 = 14 

101 ..1.. 
X=-=714 m 

14 

which locates the resultant between E and G, ; m to the right of E, and 
not between C and 0 as guessed in the diagram. 

Again, you can verify this solution by solving the problem again, 
taking moments about another point. If, for example you take 
moments about point E, you should be able to show that the line of 
action of R is again; m to the right ofE. If you use the same diagram as 
the one above, calling the required distance Y, as shown, you would get 
a negative value for Y. You can give yourself as much practice as you 
need by solving the problem by taking moments about any other point 
you wish. 

It is a mistake to think that parallel force systems must always consist of 
vertical forces only. Find the resultant of these three forces. Assume the 
line of action of the resultant, R, to be a distance Y from point A as 
shown. 

A 
12 N 

:>. E 
M B 

--~R 

8N 

E 
N 

14 N 
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Taking moments about A 

R x Y = 12 x 0 + 8 x 3 -14 x 5 = -46 

Equating R to algebraic sum 

Thus 
R = 12+8-14 = +6N 

-46 
Y=--= -71m 

6 -

The negative sign now tells us that the line of action of R is above 
A-perhaps a rather surprising result. 

Sometimes we may have a combination of horizontal and vertical 
forces. In the problem that follows, we have eight forces acting at the 
corners of a rectangle ABeD which is 4 m by 6 m. We require the 
resultant of all eight forces. 

aN 

1. ') aN 

6m· 

E 
'<t 

10 N ...: r ~ 14 N 

3N 
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We solve this by determining the resultants of the system of horizontal 
forces, and of the vertical force system, separately. Call these respect­
ively RH and Rv. Calculate the values of these, and find their lines of 
action by assuming the line of action of RH to be a distance X above D, 
and that of Rv to be a distance Y to the right of A. You should find 
that X = It m and Y = 4, m but the complete working is given in 
Frame 33. 
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6 N R 8 N 

6 N+- t;:-A~ _____ -I-_....,4---=:.;8t ~8 N 
y 

10N~~L--~----------JtC~14N 

4 N 3 N 

Considering all horizontal forces 

RH = 8 -6+14-10 = ±-6N 

Now considering all vertical forces 

Rv=6-4+8-3=±JN 

The moment equation for all horizontal forces about point C is 

RH X X = 8 x 4 - 6 x 4 + 14 x 0 -10 x 0 = ± 8 N I~L 

X=+8=+8=+lim 
RH +6 --

The moment equation for all vertical forces about D is 

Rv x Y = 8 x 6 - 3 x 6 + 6 x 0 - 4 x 0 = ± 30.N m 

. +30 +30 .. y=-=--= +~m 
Rv +7 --

Now that we know the magnitudes of the two components of the 
resultant force, we can find the force by compounding the components 
using Pythagoras, as we did in the problem in Frames 15 and 16. 

R= .JR~+R~= .J62+72=9.22~L 

and its direction is defined in terms of the angle () on the above diagram, 
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where 

(J = tan -1 Rv = tan- 12 = 49.4° 
RH 6--

and this resultant passes through the point P. 
This result must be clearly understood. The resultant force of9.22 N 

is an imaginary force, and point P is an imaginary point; there is 
nothing significant about its co-ordinates. A force is defined by three 
things: its magnitude, its direction, and its line of action. When the first 
two are known, the line of action can be found by knowing anyone 
point through which the line of action must pass. To illustrate this 
point, let's assume that the resultant force R passes through a point Q 
situated on CD. Assume as before that it has a direction (J to the 
horizontal. Begin by resolving R into components RH and Rv thus 

D 
I. x' I 

RH , Rv and Rand (J can be determined exactly as before, and of course 
the values will be as before. We now require the value of distance X'. 
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x' may be calculated from a moment equation about point D 

Rv x x' = 6 x 4 + 8 x 6 - 8 x 4 - 3 x 6 = 22 

.,2222 1 .. x =--=-=37 m R. 7 

and an examination of the previous solution at the end of Frame 33 and 
a simple calculation will show that the line of action of R is exactly the 
same as before. As with so many of these Statics exercises, you can give 
yourself extra practice by solving the same problem in different ways. 
You can, for example, solve the problem again but this time assume that 
R passes through a certain point on the line AB, and calculate its 
distance from A. This is not done for you, but for your information, the 
point on AB through which R passes is a distance of ~ m from A 
(which of course lies on AB produced). 

To complete this part of the programme, let us add two further 
complications; firstly, let us have forces which are not parallel to the 
sides of the rectangle, and secondly do not let them all be at the corners. 
Find the magnitude and line of action of the resultant of this system of 
eight forces. 

E 
M 

3N 

D~ 

8N--~·~F--------------------------~E~ 
6m 

6N 5N 
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Begin by redrawing the force system, with all inclined forces resolved 
into components along the horizontal and vertical directions. You can 
then find the resultant horizontal component, the resultant vertical 
component, and the magnitude and direction of the resultant. 
Although the working is shown in Frame 35, the answers to this part of 
the solution are: RH = 8.48 N to the right; Rv = 14.99 N upwards; 
R = 17.22 N at 60S to the horizontal. 
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1351 
4 cos 30° 5 sin 60° 2 cos 45° 

4 Sil~~:_>,J A J J 2 sin 45° 
~~----------~~~--~~ 

5 cos 60° 

3 sin 30° 

D~3cos30° 

8~t!-:-------------------='C- 5.;050" 

t5 cos 50° 

The resultant, RH, of the six horizontal forces (assumed acting left to 
right) is 

RH = 4 sin 30° + 5 cos 60° + 2 sin 45° - 3 cos 30° + 8 - 5 sin 50° 

= 2.00 + 2.50 + 1.41 - 2.60 + 8.00 - 3.83 

= + 8.48 N (that is, to the right, as assumed) 

The resultant vertical force Rv (assumed acting upwards) is 

Rv = - 4 cos 30° + 5 sin 60° + 2 cos 45° - 3 sin 30° + 5 + 5 cos 50° + 6 

= - 3.46 + 4.33 + 1.41 -1.50 + 5.00 + 3.21 + 6.00 

= + 14.99 N (that is, upwards as assumed) 

Assuming RH to lie along a line at distance Y above EF 

RH x Y = (4 sin 30° + 5 cos 60° + 2 sin 45°) x 4 - 3cos 30° x 1 

= 5.91 x 4 - 2.6 x 1 

= 21.04Nm 

. 21.04 
.. Y = -- = 2.48 m 8.48 -----
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Assuming Rv to lie along a line at distance X to the right of AF 

Rv x X = 5 sin 60° x 4 + (2 cos 45° - 3 sin 30° + 5 + 5 cos 50°) x 6 

= 4.33 x 4+8.12 x 6 

= 66.04Nm 

. 66.04 
.. X = 14.99 = 4.41 ~_ 

The simplified force system is thus 

i 
I 

p/\e 
-

4.41 m 

The total resultant, R is given by R = -/ R~ + R~ = -/8.482 + 14.992 

=E)2~_ 

and angle () is given by () = tan -1 (14.99) = 60.500 
8.48 -----
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A particular example of the action of parallel forces is to be found in the 
consideration of the weight of a body. Let us imagine a system which 
consists very simply of a number of separate bodies, having various 
masses, ml , m2 etc., concentrated at points, and attached to a light bar 
of negligible mass. Thus 

m, 

• 
The weights of these bodies act vertically downwards, and thus 
comprise a number of parallel forces. We may make use of the methods 
outlined in Frame 28 to determine the resultant of the various weights. 
The point through which the resultant weight of a body passes is called 
its centre of gravity. There are several very practical reasons why it may 
be important to know where this is located. To give just one example, 
cargo must be loaded on board a ship or aircraft in such a manner as to 
ensure that the centre of gravity of the loaded craft lies on the fore-and­
aft axis. 

The weight of a body, in newtons, is calculated by multiplying its 
mass, in kilograms, by 9.81 (g). So the system of parallel forces 
comprising the weights of the masses on our bar is like this 

I- x -I 
+ !m,9 tm29 

jG I m39 lm49 

~ 
x, RI 

-I .1 i 
.1 .I 

X2 

X3 

X4 

If we assume the resultant weight R to have its line of action a distance x 
to the right of an arbitrary point P, we can apply the Moment principle 
of Frame 28, thus 

R x x = mig x Xl +m2g x X2 +m3g x X3 +m4 g x X4 etc. 
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But, from the Force principle of Frame 28, we know that R is the 
algebraic sum of all the weights. So 

R = mlg+m2g+m3g+m4g etc. 
Thus 

or more concisely 

_ l:(mx) 
x = l:(m) (noting that 9 cancels throughout) 

this last expression being in a general form, to allow for any number of 
bodies, and not just four as shown in our example. Have a go at using 
the formula to find the distance of the centre of gravity of the following 
system from the left-hand end. 

4.kg 2 ,kg 3 kg 8 kg 5 kg , 

• , + + , 
1 .. 0.2 m. i • a.3m .. I .. 0.4 m ..I· 0.3m ~ 
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Since the problem is to find the distance of the centre of gravity, G, from 
the left-hand end, we locate our point P at this point, and measure all 
our distances from there. So the expression for x is 

_ 1: (mx) 4xO+2xO.2+3x0.5+8xO.9+5x1.2 
x = -- = ----------------

1:(m) 4+2+3+8+5 

15.1 
=--

22 

= 0.686m 

This locates the centre of gravity 0.186 m to the right of the 3 kg body, 
and if a cord were attached to the bar at that point, it could be lifted 
without tilting. 

Now you should see from this example, and also from the general 
expression for x, that in locating the centre of gravity of a body, we do 
not actually need to know the various weights of the component parts. 
You recall that in the derivation in the previous frame, g actually 
cancelled out. The formula for x is thus seen to be not merely a formula 
for locating a resultant weight, but also an indication of the manner in 
which the mass of a system is distributed. (We should get the same 
answer to the above problem if the system of masses were on the moon, 
where all the weights would be different from the earth-values-Qr even 
if the bar were located in a weight-free field.) For this reason, we rarely 
use the term 'centre of gravity' but use instead the expression 'centre of 
mass' or, more simply, just 'mass centre'. 
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The previous problem was idealised considerably; we conveniently 
assumed that all the mass was concentrated at points, and also, that the 
mass of the bar itself was negligible. But mass in real life is not 
concentrated at a point, and real bars have a definite mass. So our next 
stage is to learn how to take this into account. Look at the following 
illustrations of some simple bodies, and state where you consider the 
mass centre of each to be located. 

(a) is a thin uniform rod of length L. (b) is a thin uniform plate, of 
breadth B and depth D. (c) is similar to (b) but the thickness is now not 
negligible; it has a width W. Finally, (d) is a short length of a hollow 
cylinder, of length L. 
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~ 
(a) iN 

(d) 

The mass centre of the thin rod (a) will be at its mid-point. For the thin 
rectangular plate, it will be at the geometric centre of the rectangular 
face. For (c), the cuboidal block, the mass centre will lie at the 
geometrical centre-that is, on the intersection of the three axes of 
symmetry. In the case of the cylinder (d), the mass centre lies on the 
cylindrical axis, half way along. 

The general rule that we can formulate from these examples is that 
whenever a uniform body has an axis of symmetry, the mass centre 
must lie on this axis. 

When we come to look at non-uniform bodies, if we can divide them 
up into a number of uniform bodies whose mass centres can be located, 
as in the four examples above, by simple inspection, we proceed to find 
the mass centre of the whole body by treating each part as if it were a 
single mass concentrated at its mass centre. Here is an example. A steel 
shaft of length 31 m comprises a section of length 2 m which is 40 mm 
diameter, coupled to a section of length 11 m of diameter 50 mm. 

:~mm 
1 

~mm~ 
1 

dla. dla. 

2m .. I. l~m .I 
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This is equivalent to 

Calling the material density p(kg/m3), the masses are 

Taking our arbitrary point P at the left-hand end, as shown 

1t 1t 
_ I: (mx) 4(402 x 1O-6)2p x 1 + 4(502 x 1O-6)1!p x 21 
x = -- = ----------------

I:(m) 

Cancelling the common terms i, p and 10 - 6 

402 X 2 x 1 + 502 X 11 x 2.3 x = 2 4 = 1.944 m 
402 x 2 + 502 x 1! ----

and again, you can 'drill' yourself by solving this problem by choosing 
point P at the right-hand end of the shaft instead of the left. 
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In the previous exercise, we knew that the mass centre G must lie on the 
shaft axis because this is an axis of symmetry. We now need a method of 
locating G when we do not have an axis of symmetry. Suppose, for 
example, that we require to locate the mass centre of a thin metal plate 
shaped thus 

I 

It may help, to begin with, to go back to Frame 3S and to consider the 
actual weights of the two rectangles making up this body. We know 
that the centre of gravity of each rectangle will be at its geometric 
centre. If we choose a point 0 (at the corner of the plate) and take 
moments about this point of the two component weights, we can 
evaluate x, the distance of the line of action of the resultant weight from 
o. Thus 

1-----1--+--'--+--' --- x 

mg x x = ml g x Xl + m2g x X2 

. _ mlxl +m2x2 I: (mx) 
.. x = = ~(m) as before 

ml +m2 '" 
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But of course, this gives us only the distance x of the line of action of 
the resultant weight from point 0; it does not actually locate the mass 
centre G. To do this we have to turn the plate round through 90° 

o r-------, -- y 

~" 
G, ' 
-t"1 
~--' 

~~ 

t=JJ 
~' 

y 

and repeat the process. This procedure will give us the x and y 
co-ordinates of the mass centre. It is not normally necessary actually to 
redraw the body, as we have done here. We simply show it in a 
co-ordinate x-y system. In this case, the x and y axes coincide with the 
two long edges of the plate, but of course the choice of axes is arbitrary. 
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Here is an example to try your skill on. 

YI 

I" 
2m 

"I 
r-

2m 
I" " 

2m I 
I I I E 
I - I 
I I 

~o I I 

The o-x-y framework has already been chosen for you; also, the two 
dotted lines suggest how the plate should be 'split up' for calculation. 
First of all, calculate X, the x co-ordinate of the mass centre, G. Call the 
density of the plate material p and the thickness t. (You should realise 
by this stage that these terms are going to cancel out.) The value you 
should get for x is 2.429 m. The calculation is done in Frame 42. 
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, 

-~'-
I -~'-

I 
, 

I -~~ I 
I 

I I 
o , __ x 

~ J X, 

X, 

_ l:(mx) 
x = l:(m) 

= 

pt(2 x 4)1 + pt(2 x 1)3 + pt(2 x 2)5 
pt(2 x 4) + pt(2 x 1) + pt(2 x 2) 

pt(8 + 6 + 20) 

pt(8 + 2 +4) 

= 2.429 m -------
Now repeat the procedure, but this time taking the y co-ordinates of 
G 1 , G 2 and G 3 to obtain y, the yeo-ordinate ofG. The answer is 1.5 m. 
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Here is the calculation for y. 

_ l:(my) 
y = l:(m) 

x 

pt(2 x 4)2 + pt(2 x 1>! + pt(2 x 2)1 
pt(2 x 4) + pt(2 x 1) + pt(2 x 2) 

16+ 1 +4 
8+2+4 

= 1.5m 

An interesting observation resulting from this calculation is that the 
mass centre of a body does not necessarily lie within the material of the 
body itself. 

E 
III -

You can now give yourself as much exercise as you need with this one 
example. You can divide the figure into a different arrangement of 
rectangles. For example 
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CD 

and you should still get the same values for x and y. Or again, you can 
choose a different set of x-y axes. If you do, you will not get the same 
values of x and y, but the actual position of G within the figure should, 
of course, be the same. One thing you must always remember: values of 
x and y may be positive or negative. Suppose, for example, you solve 
this problem using the division into rectangles suggested in the left­
hand sketch above, and that you choose x and y axes thus 

y.----, 

• G1 

---x 
OL-______ ~ 

In calculating y, you must put in a value of minus 0.5 m for the 
y co-ordinate of G 2 , because it lies on the other side of the x-axis. 
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It is a relatively simple step forward from here to locate the mass centre 
of a 'solid irregular body with no axes of symmetry. 

IZ 

5 

All dimensions in em 

Find the three co-ordinates, x, y and z of the mass centre of the body 
shown above, with reference to the x-y-z axes shown. These axes 
coincide with the three 'rear edges' of the body. A hole in a solid body 
can be treated as a negative mass. The 2 em by 2 em cutaway can be 
treated in the same manner, and this is how it is done in the solution 
given in the following frame, but there are other ways of subdividing 
the body. Four subdivisions will be required, and in order that you can 
check your work, you may prefer to use the method of subdivision used 
in the solution given. This is (1) the 2 em by 2 em by 5 em rectangular 
prism on the top; (2) the 4 em by 1 em by 8 em rectangular prismatic 
base; (3) the 'negative' 2 em by 2 em cutaway on the corner; (4) the 
'negative' 1 em diameter hole. You should expect by now that the 
density of p of the material will cancel out, and it has not been included 
in the following solution. To save you anxiety, all co-ordinates of all the 
submasses will be positive, using the axes shown. 
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_ (2 x 5 x 2)1 + (4 x 8 x 1)2 - (2 x 2 x 1)1 - (n/4 x 12 X 1)3 
x = -=----=---=-:---:-:-::---:-:--:=----=-----:-:----:-'-:-:----:-;;----:-:-

(2x5x2) +(4x8x1) -(2x2x1) -(n/4x12x1) 

_ 27.644 _ 1644 
- 47.215 -. em 

_ (2 x 5 x 2)2! + (4 x 8 x 1)4 - (2 x 2 x 1)7 - (n/4 x 12 x 1)6 
y = (2 x 5 x 2) + (4 x 8 x 1) - (2 x 2 x 1) - (n/4 x 12 x 1) 

= 145.288 = 3077 
47.215 . em 

_ (2 x 5 x 2)2 x (4 x 8 x 1>! - (2 x 2 x 1>! - (n/4 x 12 x 1)! 
z=-----:----------~--~-:-

(2x5x2) +(4x8x1) -(2x2x1) -(n/4x12x1) 

= 53.607 = 1138 
47.215 . em 

Programme 1,' Elementary Statics 55 

 45



Now we have to learn how to locate the mass centre of a body which 
cannot be subdivided into circles and rectangles and other very simple 
shapes. How, for example, do we find the position of the mass centre of 
a thin flat semicircular plate? In such cases, we have to resort to the use 
of the calculus, and if you have not learned how to use this, you will 
have to skip this frame. Here is the plate, shown with a set of co­
ordinate axes, o-x-y, with 0 being the centre of the semicircle. 

y 

---+--------~o+-~------~----x 

We know that the mass centre must lie on the axis of symmetry, which is 
the y-axis, so we have to determine y only. Consider an 'increment' at 
distance y from the x-axis, of thickness by. 

y 

-y 

~--------~o~~------~----x 

If the length of this strip is b, its mass will be pt x b x by where p and t 
are respectively the density of the plate material and the thickness. The 
mass of the whole plate will be pt x 1nR2. With circular functions, it is 
usually more convenient to have a variable 8 than a variable y (which 
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would lead to some awkward integrals, with 'substitutions' required). 
From the figure above, we can see that 

Hence 

Also 

y=RsinO 

dy 
- = RcosO 
dO 

b = 2 x R cosO 

The 'limits' of 0 will be from zero to !n (that is, 90°) 

_ I:(c5m x y) I:(pt(2R cos 0) (R cos 0 dO) (R sin 0)) 
y = I: (c5m) = pt x !nR2 

1"/2 
_ pt x Jo 2R3 sin 0 cos2 OdO 

- pt x !nR2 

=- (-cos2 0)d(cosO) 4R 1"/2 
n 0 

= 4: [ -i cos3 0 J:/2 

= 4: {( -i cos3 n/2) - ( -i cos3 O)} 

4R 

3n 
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The work of Frame 46 is verging outside the area of 'Elementary 
Statics' and you should not be too concerned if you find it a bit too 
much for you at this stage. But even if you cannot follow the working, 
you can make use of the result to extend your capacity to calculate the 
position of the mass centre of an irregular body; you should now be 
able to deal with semicircular parts and semicircular holes or cutaways. 
While on the same topic, what about the mass centre of a thin flat 
triangular sheet? We can locate this without actually using the calculus, 
and you may have done this previously yourself. If we mentally divide a 
triangular sheet into a number of thin strips parallel to the base, we 
know that the mass centre of each strip will be at its mid-point. 

~, ~ ........... 
I M > 

The mass centres of all these strips lie on a straight line joining the apex 
A to the mid-point of the base, M. This line is called a median. So the 
mass centre of the whole plate lies somewhere on the median. If we now 
tum our triangle round and make another edge the 'base', we can draw a 
second median, and the same reasoning will apply. So the mass centre 
of the triangular plate must lie on the intersection of the medians. Some 
fairly elementary geometry would be needed to prove (which we shall 
not do here) that the medians of a triangle intersect at a point one-third 
the way along the length. We can now locate our mass centre. 
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Now see if you can make use of this new information to find the 
x co-ordinate (x) of the thin plate shown below. Use the method 
employed in Frame 40 together with some very elementary geometry of 
similar triangles. Look at the next frame for the solution. 

'I 

~[I""~----O.8m ---"'I~~_X 
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-f' 

x, 
0.6 m 

_ I: (mx) mixi +m2x2 
x=--=-----

I:(m) ml +m2 

The distance Xl for the rectangle is 0.3 m (half the width). Construct the 
perpendiculars, AN and G2 P. It can then be seen that x2 = 0.6 m plus 
the length of perpendicular G 2 P. We see two similar triangles, MG2P 
and MAN. We know that MG2 is one-third ofMA. Therefore G 2 P will 
be one-third of AN and AN is 0.4 m. 

_ pt(O.4 x 0.6)0.3 + pt(1 x 0.4 x 0.4)(0.6 + i x 0.4) 
x = '--'--------:-::-:-----,::'-:::..:.:::....-:-;----=--:-'-'--=--::-==---~ 

pt(O.4 x 0.6) + pt(1 x 0.4 x 0.4) 

0.072 + 0.08 x 0.6333 
= 

0.24+0.08 

= 0.3833 m 

You should not find the geometry too difficult to determine the value of 
y, although it is not quite so simple as that of the above calculation. A 
brief solution follows, in case you have difficulty. 

60 Elementary Engineering Mechanics 

 48



pt(O.4 x 0.6)0.2 + pt<! x 0.4 x 0.4)(0.1 +1 x 0.1) y=---'-------'----'---=---:-----_...:..-_-'-
pt(0.4 x 0.6) + pt(! x 0.4 x 0.4) 

= 0.1917 m 

Using calculus, it is possible to show that the mass centre of a solid 
uniform right cone is located at a distance of one-quarter of its height 
from the base (and, of course, on its central axis). We shall not prove 
this, but we can use the result to find the position of the mass centre of a 
truncated cone, such as a tapered shaft. 

1501 
L ~ 

~E-------------}~ rL a.8m ,.I 
Make use of the information given at the end of the previous frame to 
calculate the position of the mass centre of the tapered shaft shown 
above. Treat it as two complete cones, the second being a 'negative' 
cone. Before you begin your calculations, it is often a good plan to have 
a guess at the answer. In this case, if the shaft were the same length but 
of constant diameter, instead of being tapered, we know that the mass 
centre would be in the middle-that is, 0.4 m from the left-hand end. 
Tapering means that there will be more mass to the left of centre than to 
the right; the mass centre will thereby be shifted somewhat to the left of 
centre. Your answer, therefore, must be less than 0.4 m. If it turns out to 
be more, look back to find where your mistake was. Furthermore, if the 
shaft were of the same length and tapered to a point at the right-hand 
end, then we know that the mass centre would then be;\ x 0.8 = 0.2 m 
from the left-hand end. The shaft as it is means that there is more mass 
to the right of centre than there would have been if it had tapered to a 
point; this will shift the mass centre a little to the right of 0.2 m. Our 
answer, therefore, must lie between 0.2 m and 0.4 m. 
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r== G, -----r -----G2-----_ r-x' -T-- X-2 -. ~L=-.r;~-~ 

The sides will converge together at distance a from the right-hand end. 
From similar triangles 

a a+0.8 .. 04 
0.05 = ~ gmng a = . m 

G l is the mass centre of the whole cone; G2 is the mass centre of 
the dotted 'negative' cone. Recall that volume of a cone is !(base 
area) x height. 

Xl = HO.8 +a) = 0.3 m; X2 = 0.8 +!a = 0.9 m 

_ :E(mx) mlxl +m2x2 
X = -- = --=--=---=-..::. 

:E(m) ml +m2 

1 1t 1 1t 
P x "3 X 4(0.15)2 x 1.2 x 0.3 - P x "3 X 4(0.05)2 x 0.4 x 0.9 

1 1t 1 1t 
P x"3 X 4(0.15)2 x 1.2 - P"3 x 4(0.05)2 x 0.4 

Ca I . - _ 0.152 x 1.2 x 0.3 - 0.052 x 0.4 x 0.9 
nee hng x - 0.152 x 1.2 -0.052 x 0.4 

= 0.0081-0.0009 = 0.2769 m 
0.027 - 0.001 
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Now if you look back at all the examples concerning the mass centre of 
thin flat plates-Frames 42, 43, 46, 48 and 49-you will have noticed 
that the density p and the thickness t have always cancelled out in the 
expressions for x and y. We shall re-examine the problem by 
considering the mass centre of any flat plate, in general terms, instead of 
a specific problem. 

y 

-¥-
.6A 

x 

x 

0 x 

Again, call the plate material density p and the thickness t. Consider 
an incremental mass of surface area t5A. The mass of this 'element' 
is pt x t5A. 

_ l:(t5m x x) 
x = l:(t5m) 

l:(pt x t5A x x) 

l:(pt x t5A) 

l:(t5A x x) 

l: (t5A) 

In Frame 37 we found that the position of the 'centre of gravity' was 
independent of the actual weight of a body, and for this reason, we 
adopted the more general term 'mass centre'. Now we see that in the 
case of a thin flat lamina or plate, the position of the mass centre is 
actually independent of the mass! It has become only a function of the 
shape of the plate. The quantity 

_ l:(t5A x x) 
x = l:(t5A) 
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can now be evaluated for any prescribed area and may have nothing at 
all to do with force, weight or mass. It can be merely a geometric 
quantity, or property, of a closed figure. In such a case, it is unrealistic to 
speak of 'centre of gravity' or 'centre of mass', and instead we use the 
term 'centroid'. If you need to define 'centroid', you may say that it is the 
point on a surface at which the resultant force would act if the surface 
were subjected to a uniformly distributed force over the whole surface. 
But it is unsatisfactory to have to use the concept of force to define a 
merely geometric property of a figure, and it is better to define the 
centroid merely in terms of the expression above. Thus 

"The centroid of a closed figure is a point, distant x from an arbitrary 
axis such that 

_ l:(bA x x) " 
x = l:(bA) 

You will find in later work that the importance of centroids arises when 
calculating the stress in a beam subjected to bending; and also when 
analysing the force of fluid pressure on a fiat surface. 

Calculations are not necessary to know that the centroids of regular 
symmetrical figures are located at the geometric centre--on axes of 
symmetry. We can also make use of the result of Frame 47 and state 
that the centroid of a triangle is located at the intersection of the 
medians, at the one-third point. 

E 
M 

'I B A~ ________ ~ ______ ~. 1 4m 

"" G, 

o '--________________ -'--__________________ .''"': ___ x 

ci. .ID 
Bm 
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It is quite clear from the contents of the previous frame that the 
calculation for the locations of centroids is very similar to that for 
locations of centres of mass. Determine, therefore, the values of x and y 
for the trapezium shown here. The figure has already been divided into 
two triangles for you, and the medians drawn. You may need help by 
looking back to Frame 48. You should obtain answers of x = 3~ m and 
y = 1! m. Frame 54 shows the working. 

_ A1x1 +A2X2 
X = ........:..---'----'-

Al +A2 

Gx8x~xix4+Gx4x~x~+!x~ 
(! x 8 x 3) + (~ x 4 x 3) 

32+24 
12+6 

=3~m 

_ (~ x 8 x 3) x 1 x 3 + (~ x 4 x 3) x j x 3 
y = 12+6 

12+ 12 
12+6 

= 11m 
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We shall bring the theoretical work of this programme to a close with a 
consideration of the properties of an area bounded by a parabola. The 
following sketch shows a parabola of the general form y = kx2• 

y 

y=kX2 
D 

y 

0 x 

I: Il.-

..I 8 

The vertex of such a parabola will be at the origin, o. We begin by 
calculating the area under the curve, shown hatched, from x = 0 to 
x = B. At this point, the 'height' of the area is D. The area = l;(bA) 
= l;(y x bX) = l;(kx2 X bx). Integrate and insert the limits. You should 
find that A = iBD. See the next frame. 

A = l;(bA) = l;(y x bX) = l;(kx2 X bX) 

= 1B kx2dx 

= Bkx3 ]g 

=ikB3 

k can be eliminated from this expression: when x = B, y = D. Thus 

y = kx2 

:. D = kB2 
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k=~ B2 

A = ~kB3 = ~(; )B3 = ~ BD 

Now follow the usual procedure and determine x, the distance of the 
centroid from the y-axis. The answer is iB. Working is in the next 
frame. 

_ I:(I5Axx) 
x = I: (I5A) 

I:(y x I5x x x) 

A 

= rB (kx2 x x)dx 

..10 !BD 

k[ix4 ]g 
!BD 

(D/B2)(~~) 

!BD 

=iB 
Now let us complete the rectangle and examine the shape that is left 
when the area under the parabola is removed. 

y 

, ' 

D 

o,c...:..;~ _______ --L_...L-__ X 

8 

Find the value of x for this figure. No need to integrate. Treat the 
shaded area as a rectangle B x 0 and a 'negative' parabola. Then 

Ax = A1x1 -A2X2 

from which you should be able to show that x = tB. 
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The area A is the area of the rectangle minus the area of the parabola 
just determined. 

A = BD-!BD =iBD 
Ax = A1Xl -A2 x 2 

_ (BD)!B-(1BD)lB 
X= iBD 

,B2D-iB2D 
= 

fBD 

=iB 

The properties of these two parabolic shapes are extremely useful 
when the deflections of beams are calculated using the method of 
Moment-Area. It is very important to remember that the values that we 
have determined apply only to parabolic shapes in which the v~rtex is 
located at the origin o. 

This completes the work of this programme. Some 'drill' examples 
follow in Frame 59, covering the work since Frame 20, and this is 
followed by a few general revision examples, in Frame 60, covering the 
whole programme. 

'Drilf exercises: parallel forces, mass centre, centroid 
1. A light rigid rod carries three concentrated loads as shown in Fig. 1. 

Determine the support reaction forces at A and D. 
Ans. 25.45 kN and 62.55 kN. 

2. The parallel-force system shown in Fig. 2 is in equilibrium. 
Determine the values of the forces F 1 and F 2. 

24 kN 48 kN 16 kN 

A t t 0 f 
f. 4m:1 4m CI3m.12~IE 

Fig. 1 

18 N 

t 
1.3mJ. 4m .. l. 4m.l. 6m 

Fig. 2 
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3. Determine the resultant of the parallel-force system shown in 
Fig. 3 and the location of its line of action. 
Ans. 80 kN, 5 m from left-hand end. 

4. A steel beam of uniform section has a mass per unit length of 
4 kg/m. It carries concentrated loads as shown in Fig. 4 and is 
supported by a prop at A and a steel wire hanger at C. Calculate the 
forces in the prop and the hanger. 
Ans. 21.72 kg wt (213.1 N) and 50.28 kg wt (493.2 N). 

24 kN 40 kN 16 kN 

J } -} 
~. 6m .1 .. 4m,,1 

Fig.3 

5. Calculate the magnitude, direction and point of location of the 
resultant of the eight forces shown in Fig. 5, acting at the corners of 
the square ABCD, which measures 4 m by 4 m. 
Ans. 20.81 Nat 35.2° to right of vertical, passing through a point 
1.41 m to right of AD and 1.33 m above CD. 

6. ABCD is a rectangle, AB = 6 m and BC = 4 m. E lies on AB; 
AE = 4 m. F lies on BC; BF = 2 m. G lies on CD; CG = 2 m. 
Forces of 10 N, 12 Nand 8 N act at A in the respective directions 
AB, AF, AG. A single force of 6 N acts at B in the direction GB. A 
single force of 8 N acts at C in the direction EC. Forces of 2 Nand 
4 N act at G in the respective directions GE and GC. A single force 
of 10 N acts at D in the direction DC. Determine the magnitude 
and direction of the resultant of the eight forces and calculate 
where its line of action passes through CD. 
Ans. 48.19 N at 11.05° below horizontal. Intersects DC produced 
13.17 m from D. 

7. Locate the mass centre of the light rod carrying the four 
concentrated masses shown in Fig. 6. 
Ans. 3.667 m from left-hand end. 

8 N 10 N 

J Bt+-4N DN 

2 N C 
D -+10N 

t t 

4 kg 12 kg 

• • 
6 kg 8 kg 

• • 
Fig.6 

3N 4N 

Fig.5 
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8. A steel shaft has the dimensions shown in Fig. 7. Determine the 
location of the mass centre. 
Ans. 83.96 cm from left-hand end. 

40<1> 

80 

All dimensions in em 

Fig. 7 

9. A steel shaft 1.5 m long has a circular cross-section tapering 
uniformly from 20 mm diameter at one end to 50 mm diameter at 
the other end. Calculate the distance of the mass centre from the 
smaller end. 
Ans.0.952m. 

10. Prove that the mass centre of a uniform solid hemisphere is located 
at a distance of i of the radius from the centre. 

11. Prove that the mass centre of a thin uniform hemispherical shell is 
located at a distance of! the radius from the centre. 

12. Determine the co-ordinates x and y of G, the centroid of the figure 
shown in Fig. 8. 
Ans. x = 35.56 em; y = 17.78 cm. 

13. Locate the centroid of the figure shown in Fig. 9. Assume the 
centroid of a semicircle to be a distance of 4R/31t from the centre. 
Ans. x = 130.94 mm; y = 69.39 mm. 

All dimensions in em 

Fig. 8 
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14. Prove that the centroid of a half-ellipse of major axis 2a and minor 
axis 2b is located at a distance of 4a/31t from the centre. The 
equation for the ellipse is 

x2 y2 
a2 + b2 = 0 

and the substitution x = a sin () and y = b cos () will be found useful. 

1601 
Revision examples 

1. (a) Given that the force system shown in Fig. 1 is in equilibrium, 
determine the values of the forces F 1 and F 2. 

(b) Given that F 1 = F 2 = 0, determine the magnitude and direction 
of the resultant of the system. 
Use a graphical method. 
Ans. See Problem 2. 

2. Solve Problem 1 analytically. 
Hint: to determine F 1 , resolve all forces in directions parallel to, and 
perpendicular to, F 2. Write the equation of equilibrium along the 
direction perpendicular to F 2. Determine F 2 similarly. 
Ans. (a) F 1 = 4.956 N; F 2 = 1.587 N. (b) R = 4.249 N at 32.19° 
below horizontal. 

3. A uniform beam AB has a mass of 450 kg and is 2.5 m long. It 
supports a hanging mass of 65 kg at the end B and is hinged to a 
fixed support at A. A light steel wire is connected at C, 1.1 m from A. 
This passes over a small fixed pulley at 0 which is 1.4 m vertically 
above A, and from there to a winding drum. Figure 2 shows the 
arrangement. Calculate the force required in the wire to raise the 
loaded beam (a) when it is horizontal, as shown, (b) when it has 
been raised 30° above the horizontal. 
Hint: for solution to (b), solve the triangle ACD using cosine and 
sine formulae. 
Ans. (a) 8.22 kN. (b) 5.898 kN. 
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12 N 

aN 

.~====~c~====~a 

I. 1.1 m .1 
65 kg 

Fig. 2 

Fig. 1 

4. (a) For the system of parallel forces shown in Fig. 3, if 
P =4 kN and Q = 6 kN, find the magnitude and the line of action 
of the resultant force. 
(b) If the whole system is in equilibrium, determine values of P 
and Q. 
Ans. (a) 14 kN down at 4~ m from left-hand end. (b) 12! kN; 
Hi kN. 

10 kN P 6kN Q a kN 

~ 1 ~ t ~ 
2m yl ~ ... 3m .. I ... 3m .1 .. 3m 

..I 

Fig.3 

5. ABCDEF is a regular hexagon oflength of side a. Forces act at A of 
10 N in the direction AB, 8 N in the direction AC, 5 N in the 
direction of AD and 4 N in the direction of AE. A force of 6 N acts at 
B in the direction of CB. A force of 8 N acts at C in the direction of 
CF. A force of 12 N acts at D in the direction CD. A force of7 N acts 
at E in the direction ED. A force of 10 N acts at F in the direction 
EF. Determine the magnitude and direction of the resultant force of 
the system, and state where it crosses line DE. 
Ans. 9.910N 63.46° below horizontal; 3.014a from E on ED 
produced. 

6. Determine the three co-ordinates x, y and z for the component 
shown in Fig. 4. The 1.2 em diameter hole in the stepped 
portion passes through the full depth of the step. 
Ans. x = 1.457 cm; y = 1.194 em; Z = 0.883 cm. 

72 Elementary Engineering Mechanics 



7. A concrete column has the form of a truncated cone with a 
cylindrical hole along its axis. The column has a length of 3 m, and 
the diameter tapers from 1.4 m at the base to 0.7 m at the top. The 
central hole has a diameter of 0.4 m. Calculate the height of the mass 
centre above the base. The volume of a complete cone is <! base area) 
x height, and the mass centre of a uniform solid cone is one-quarter 
the height above the base. 
Ans. 1.1263 m. 

8. A parabola has the equation: 

y = 1.5x2 +2 

Calculate the area under the curve from x = 2 to x = 4 and calculate 
the distance of the centroid of this area from the y-axis. 
Ans. 32 units; 3.1875 units. 
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Kinematics is concerned with the motion of bodies. It is not to be 
confused with Kinetics, which is the study of the motion of bodies in 
relation to the forces causing and affecting the motion: this is dealt with 
in programme 3. Kinematics deals only with the motion itself, and 
establishes certain rules and formulae for dealing with the problems 
associated with motion. 

The concept of motion involves displacement-in fact, displacement 
is motion. If we state that a body is displaced 4 metres from a given 
point, we are saying that it has moved that distance from the point. 
Displacement may be measured in any convenient unit of length: 
metres, light-years, microns, miles, kilometres, are five examples. But 
for many years, scientific and engineering bodies have adopted the S.I. 
system of units. (S.1. stands for 'Systeme International'). In this system, 
the three fundamental quantities that will concern us-Length, Time 
and Mass-are always measured respectively in metres (abbreviated to 
Om'), seconds (abbreviated to's') and kilograms (abbreviated to 'kg'). 
(There are four other fundamental quantities which need not concern 
us.) You must, therefore, accustom yourself to working with the 
fundamental unit of the metre. Originally (in 1795) the metre was 
defined by the National Assembly of France to be one ten-millionth 
part of the distance along a meridian from the north pole to the 
equator. Metal 'standards' were made, as accurately as the conditions of 
the time permitted. It was eventually recognised to be impractical to 
refer back to the original definition, and in 1872 the decision was taken 
that the metal standard itself should be the definition of the metre. The 
standard metre was thus defined as the distance between two engraved 
lines on a platinum-iridium bar which was located at the International 
Bureau of Weights and Measures, at sevres, in the suburbs of Paris. 
Most developed countries accepted this definition, and retained their 
own standards, which were accurate copies of the Paris standard, and 
which were periodically returned to Paris for comparison with the 
original. This definition ofthe metre is thus seen to be arbitrary, in that 
it was determined only by the distance between two marks on a bar. 

In 1960 this arbitrary definition of the standard metre was ab­
andoned, and at the present time the metre is defined in terms of the 
wavelength of krypton-86. It is still, however, an arbitrary definition in 
that it does not depend upon any other scale of measurement (such as 
time or mass). In Dimension theory, length is stated to be a 
fundamental dimension. 
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Displacement is a vector. A vector quantity is one which requires 
both magnitude and direction to define it completely. To state that an 
aircraft has travelled 100 kilometres from its base does not tell us where 
it is: we also require to know the direction in which it went. In this 
program, however, the vector nature of displacement need not concern 
us. 
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Velocity is the rate of change of displacement-the change of 
displacement in unit time. Again, various units are employed. 
Kilometres per hour, miles per hour, metres per second, knots, are all 
common and accepted units of velocity. But since we are to be 
committed to the use of the S.I. system of units, and velocity is defined 
in terms oflength and time, the correct units for velocity must be metres 
per second, usually abbreviated to mis, or m s -1. Velocity stated in any 
other units must first be converted to metres per second before being 
used in calculations. When a body travels in a straight line with a 
constant velocity v, it is easy to see that the distance x travelled in time t 
is given by 

x = v x t 

and in using this simple formula, you have to take care that your units 
are consistent. If an aircraft travels on a straight course at 600 miles per 
hour for four hours, we can see, using this formula, that the distance 
travelled is 2400 miles, and it would be pedantic to insist on converting 
the speed to metres per second and the time to seconds in order to solve 
such a trivial problem. But we do not study dynamics to solve trivial 
problems, and as a general rule, you should always convert all data to 
the basic units of the S.I. system. The examples in the following frame 
will afford some practice for you. 

Velocity is also a vector. To state that a ship is 450 miles south-east of 
New York and travelling at 18 knots does not fully define its motion; 
the additional information that it is travelling due east completes the 
picture. When we are concerned with motion in a straight line only, 
the vector nature of velocity need not concern us, except to the extent 
that we must be aware that a body travelling along a straight path may 
travel either way, warning us that we must be alive to the necessity of 
using positive and negative signs. Looking further ahead to Frame 51, 
when motion along a circular path is examined, we shall see that the 
vector nature of velocity becomes important. 

We referred in Frame 1 to Dimension theory. This is a convenient 
point to expand a little on this topic. A 'Dimension' is best thought of as 
any quantity which must be measured, as distinct from being calcu­
lated. For example, once we have agreed on a definition of a standard 
metre, we shall need some device to measure length, such as a metre 
rule, a micrometer or a surveyor's chain, which directly or indirectly 
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relates to our standard metre. Similarly, having defined one second of 
time, we need watches, clocks or atomic clocks, to measure it. Length 
(L) and Time (T) are thus two fundamental Dimensions used in 
mechanics. But when we come to Velocity, we find that no additional 
measurement is required; we calculate velocity from measured length 
and time. The Dimension of velocity is accordingly said to be derived, as 
distinct from fundamental. It may be consoling to learn that in 
mechanics, so far as we are concerned, the fundamental dimensions are 
limited to three: Length (L), Time (T) and Mass (M). All other 
quantities are derived from these three. For example, the dimensions of 
velocity would be LIT. Equations of mechanics must always be correct 
as to dimensions; that is, the dimensions of one side of the equation 
must be the same as those of the other. Taking the very simple equation 
above, the dimensions of x, the displacement, must be L. The resulting 
dimension of the right-hand side are (LIT) x T = L. The equation is 
thus dimensionally correct. 
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Speed is similar to velocity, and is measured in the same units, but it is 
not a vector. It is simply the magnitude of velocity. (In mathematical 
terms, it is the 'modulus' ofthe velocity vector.) In this programme, this 
distinction between speed and velocity need not concern us. 

You must be capable of converting quantities from anyone system of 
units to any other. Although nearly all textbooks on mechanics present 
all their calculations in the S.1. system, you cannot expect real problems 
always to be so conveniently ordered. Conversion of units may appear 
simple; indeed, it is, but it is one area in which students are prone to 
make absurd mistakes, usually because students are not noted for 
critically examining the results of their calculations. A student has been 
known to write quite happily that a time of 2! hours is the same as 
0.0006944 seconds, and to fail completely to see the absurdity of the 
statement, until it is pointed out to him. 

The following conversion factors should suffice for your needs. 

1 hour = 3600 seconds (:~~u: ) 

1 minutes = 60 seconds (16~:n) 

( 1609.34m) 
1 mile = 1609.34 metres 1 mile 

1 yard = 0.9144 metres (o'~~:dm ) 

( 0.3048 m) 
1 foot = 0.3048 metres 1 ft 

( 0.0254m) 
1 inch = 0.0254 metres 1 in 

The expressions to the right of each conversion factor are called Unity 
brackets. They afford a simple and (almost) foolproof way of 
converting from one system to another. You employ the brackets either 
as they are, or the other way up, according to what unit you are 
converting to; by writing the units themselves in addition to the 
numbers, you so arrange your expression that all the unwanted units 
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cancel out. Here is the calculation for converting 15 miles per hour to 
metres per second. 

. .mile' ( 1.heur) ( 1609.34 m ) 
15 mIle/hour = 15 heur x 3600 s x 1 mile 

= 6.7056 m/s 

Notice how the first unity bracket has been inverted, so that 'hour' 
cancels 'hour' on the bottom line of 15 miles per hour, and how 'mile' is 
cancelled by 'mile' on the bottom line of the second unity bracket. 

For practice, do the following conversions yourself. The answers (to 
four places of decimals, where necessary) are given in brackets. 

Convert 

20 mile/hour to m/s 
60 ft/s to m/s 
45 kilometres/hour to m/s 
8 metres/minute to inches/s 
840 mm/min to m/s 
840 mm/min to mile/hour 
60 mile/hour to feet per second 

(8.9408 m/s) 
(18.288 m/s) 
(12.5 m/s) 
(5.2493 in/s) 
(0.014 m/s) 
(0.0314 mile/hour) 
(88 ft/s) 

Velocity is not always constant. Although the average velocity during a 
car journey might be 28 miles per hour, the actual velocity at any time 
might be anything from 70 miles per hour to zero. (It could even be 
negative, if the driver had forgotten something, and had to go back!) 
The rate of change of velocity is called acceleration. Negative acceler­
ation (that is, slowing down) is called retardation, or sometimes, rather 
inelegantly, deceleration. Since velocity is a vector, it follows that 
acceleration also must be a vector, but again, this need not concern us in 
this program. 

Acceleration is the rate of change of velocity, or the change of 
velocity divided by the time taken. Its units must therefore be 

(metres per second) per second 

This is usually written as m/sl, or, preferably, ms- 2• 

Here is a little problem. A car starts from rest. It increases speed at a 
steady rate and attains 54 kilometres per hour (km/h) in 6 seconds. 
What is its acceleration? Have a try at working it out. The solution 
follows in the next frame. 
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54000 
54 km/h = 54 x 1000 m/h = 60 x 60 m/s = 15 m/s 

The acceleration, a, is therefore given by 

15 metres per second 2 -2 
a= = .5ms 

6 seconds 

But of course, all problems cannot be solved so simply from first 
principles. 

Consider this next problem. 
A car is travelling at 8 m/s and after 3 seconds its speed is 14 m/s. 

What distance does it cover in the 3 seconds? 
You should be able to work out in your head that the acceleration is 

2 m s -2 (a speed increase of 6 m/s in 3 s) but the question un­
fortunately does not ask this. See if you can work out the required 
distance before consulting Frame 6. 

You may have reasoned something along the following lines 

"The car starts at 8 m/s and increases to 14 m/s. So its average speed 
will be 11 m/s. So in the three seconds, it will travel (11 x 3) = 33 m" 

This is a reasonable approach to the solution of the problem, but it begs 
the question: "What do we mean by 'average'?" To save you some 
anxiety at this point, it is only fair to state that the problem as stated 
cannot be solved. Information should have been given about how the 
speed increased. For example, the question could have been put 

"A car increases its speed uniformly from 8 m/s to 14 m/s is 3 s ... " 
etc. 

and with this information, the argument about average speed is valid. 
Let us look at two sketches of graphs of velocity against time, the first 
graph showing a uniform rate of increase, and the second a non­
uniform increase. 
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The first graph shows thatthe average speed will be·!<8 + 14) = 11 m/s. 
We cannot calculate the average speed for the second case, because we 
do not know exactly how the speed varies. We could say approximately 
that the speeds at 0, 1,2 and 3 seconds are 8, 3, 4 and 14 mis, giving an 
approximate average of 1(8 + 3 +4+ 14) = 71 mis, and that con­
sequently the distance covered would be approximately 
(71 x 3) = 21a m. We shall look more closely at the problem of non­
uniform change of speed in the next frame. 

Now although we shall not concern ourselves in this programme with 
problems involving non-uniform speed change (or 'variable acceler­
ation', to use the more correct terminology) we shall find it valuable to 
consider such a state of affairs. Imagine yourself as a co-driver in a car 
rally. While your partner is driving, you are recording the speed of the 
car at regular intervals-say, every 5 seconds. After 60 seconds, your 
record may look like this: 

Time (s) 0 5 10 15 20 25 30 35 40 45 50 55 60 

Speed (m/s) 12 14 16 17 17 15 14 12 11 8 5 7 10 

How would you make use of this record to estimate how far you have 
travelled during the 60 seconds? See if you can formulate a procedure 
before reading on. 
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181 
You might argue that during the first 5 seconds the approximate speed 
was 12 mis, and so you travelled approximately (12 x 5) = 60 m. 
Similarly, during the second 5 seconds, you travelled (14 x 5) = 70 m, 
and so on. You can see that this would not be an exact calculation. It 
might be more accurate, for instance, to assume a mean speed for the 
first 5 seconds of 13 mls (the average ofthe initial and final speeds for 
the period of 5 seconds). But either calculation would give you a fairly 
accurate estimate of the total distance covered. Using the first method, 
the total distance works out at 740 m and the second method gives 
735 m-not a big difference. You can check these figures yourself. 

Here is a velocity-time graph for this journey. 
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You can see that the first calculation of(12 x 5) m is the area ofthe first 
columnofthegraph,shaded,andmarked 1 . (14 x 5)istheareaofthe 
second column, and so on. The little areas between the tops of the 
columns and the curve are errors arising out of the assumption that 
12 mls is the speed for the whole 5 seconds. Imagine you were able to 
record speed every second instead of every 5 seconds. The first 5-second 
period would then look like 

15 

Time,s 
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and you can see that the 'errors'-the bits between the tops of the 
columns and the curve-are now much less over the 5 seconds than 
they were. So if you could obtain a continuous reading of velocity with 
time, and draw the graph, the area under the graph would give you the 
exact distance travelled. 

The conclusion reached in Frame 8 is very important, and you will 
almost always find that the sketching of a velocity-time graph will be a 
great help in solving problems oflinear kinematics. If you look back to 
the first of the two graphs of Frame 6, the area under this graph will be 
Base x Mean height = 3 x 1<8 + 14) = 33 m, which is the answer 
required. 

We can use this knowledge to derive some useful equations relating 
velocity, time, displacement and acceleration. We can begin by drawing 
a velocity-time graph for a body which starts ofT with a velocity u, and 
increases uniformly to a velocity v in a time t. 

?: ·u 
o 

Q; 

v-

> u-

Time 

Derive a formula for the velocity v after time t, in terms of u, a and t. 
Remember that a is the increase of velocity in unit time. 
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a is the increase of velocity in unit time. So the increase in time t = (at). 
So the final velocity will be u + (at). So our formula is 

v = u+at (1) 

Now make use of the principle stated in Frame 8 to derive a second 
formula. 

Distance = area under velocity-time graph. Therefore 

x = t x !(u+v) 
or 

x=!t(u+v) 

There is another way we can reckon the area under the graph. 

~ 

~ u~----------------~ > 

Time 

(2) 

The increase of velocity in time t is (at) as we found in Frame 10. So we 
can divide the area into a rectangle and a triangle. Express the area as 
the sum of these two to get our third formula. 
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The area of the rectangle is (u x t). 
The area of the triangle is ! x t x (at). 
Adding the two 

x = ut +! x t x (at) 
or 

x = ut+!atl (3) 

A fourth formula can be found by taking any two of the ones we have 
got, and eliminating t from them. Do this. One solution is given in 
Frame 13, but the same formula can be obtained using any two of the 
three formulae. 
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Taking formulae (1) and (2) 

v = u+at 
x = It(u+v) 

. v-u 2x 
.. t=--=--

a u+v 

:.2ax=(v-u)(v+U)=V2 _U2 

:. v2 = u2 + 2ax 

For convenience the four formulae are reproduced below: 

v = u+at 
x = It(u +v) 
x = ut+!at2 

v2 = u2 +2ax 

(4) 

(1) 

(2) 

(3) 

(4) 

It is probable that you have seen these formulae before, although you 
may have used a different notation. Learners are frequently puzzled as 
to which formula to use; there seem to be so many. If we set them up in 
the form of a table 

u v x a t 

No.1 / / / / 
No.2 / / / / 
No.3 / / / / 
No.4 / / / / 

you can now see that each formula connects a different four of the five 
variables. (You could obtain a fifth formula by eliminating u from any 
two of the above, but four are enough for us.) As to which formula to 
use to solve any problem, the rule is: list all the quantities given, 
together with the quantity required, and use the formula which relates 
all these. 
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If you have done calculus, you can derive the formulae starting with 

dv 
a=-

dt 

and integrating. This is done in Frame 14. If you have not yet learned to 
use this powerful method, it does not matter. Just skip Frame 14 and go 
straight on to Frame 15. 
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dv 
a=-

dt 

:. v = at+C1 

Writing 'initial condition': when t = 0, v = initial velocity u. Therefore 

u=axO+C1 ; :. C1 =U 
v = u+at 

dx 
V=-

dt 

. dx 
.. -=u+at 

dt 

fdX = f(u+at)dt 

:. x = ut+!at2 +C2 

When t = 0, x = Xo. But this is always assumed to be O. 

:. 0 = 0+0+C2 ; :. C2 = 0 

(1) 

:. x = ut+!at2 (3) 

Rewriting a = :~ as 'function of a function' 

dv dv dx dv 
a=-=-x-=-xv 

dt dx dt dx 

fadx = fVdV 

:. ax=!v2 +C3 

When x = Xo = 0, v = u 

:.0=!U2 +C3 ; C3 =-1u2 

:. ax = !v2 _!u2 

:. v2 = u2 +2ax (4) 
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From (1) and (3) 

v-u 
a=-­

t 

(v-u) x = ut+!t -t-

x = !(u+v)t (2) 

Now that we have the four formulae, let us see how they are used to 
solve problems of motion. Look at this problem. 

Problem A car travels a distance of 48 min 8 seconds with an initial 
velocity of 12 m/s. Calculate the acceleration. 

Select the correct formula, using the rule given in Frame 13. This was: 
list the quantities given, and the quantity required, and find the formula 
which includes all these. 

We are given the initial velocity u (12 m/s), the displacement x (48 m) 
and the time t (8 s). We are asked for the acceleration a. The formula 
relating these four variables is Formula (3) 

x = ut +!at2 

Substituting 
48 = 12 x 8 +! x a x 82 

. 48-96 -2 
.. a = 1 = -1.5 m s 

2 x64 -----

The acceleration is negative; the car is therefore slowing down. This 
becomes obvious when we realise that if it travelled for 8 seconds at the 
initial speed of 12 m/s it would cover a distance of (8 x 12) = 96 m. 
Since it travels only 48 m, the average speed must be less than the initial 
value of 12 m/s. 

Now calculate the final velocity. This is another problem, requiring a 
different formula. 
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You could use Formula (1) 

v = u + at = 12 + (-1.5)8 = 0 mjs 

Or you may use Formula (4): 

v2 = u2 +2ax = 122+2(-1.5)48 = 144-144 = Omjs 

:. v = Omj~ 

Or you may use Formula (2) 

x = !t(u+v) 
48 =! x 8(12+v) 

. 96 
.. v = 8" -12 = 0 mjs 

The last solution is the 'correct' one because the other two make use of 
the value of a calculated before, and if we had made a mistake in the 
calculation of a the subsequent calculations would also have been 
wrong. 

Here is another problem for you to try-i>r rather, three problems in 
one. 

Problem A car with constant acceleration passes a point at 8 mjs 
and then passes a second point 1 km distant at 20 mjs. Determine (a) 
the average speed; (b) the time taken; (c) the acceleration. 

Part (a) you can do in your head; no formula is needed. Select the 
appropriate formula to solve (b). Then solve part (c) taking care, 
preferably, to avoid using the result of part (b). You may, of course, use 
this if you wish, but there is always the risk that your calculated 'time 
taken'might be wrong. The next frame contains the solution for you to 
check your attempt against. 
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(a) The average velocity is, simply: ! (8 + 20) = 14 m/s. 

(b) Given: u (8 m/s), v (20 m/s), x (1000 m). Required: t. 
Use Formula (2) 

x = !t(u+v) 

1000 = ! t(8 + 20) 

. 2000 
.. t = 2s = 71.43 s 

(c) Given: u, v, x. Required: a. 
Use Formula (4) 

v2 = u2 +2ax 
202 = 82 + 2a x 1000 

400 -64 336 -2 
a = 2000 = 2000 = 0.168 m s 

Sometimes motion occurs in two or more stages. 

Problem A vehicle starts from rest and reaches a maximum speed v 
with a constant acceleration of 1.25 m s - 2. It then comes to rest with 
a uniform retardation of 1.875 m s - 2. The total distance travelled is 
150 m. Find the maximum velocity v and the total time taken. 

There are no general rules for the solution of this type of problem but it 
is always a good plan to make a sketch ofthe velocity-time graph. You 
may also learn something by sketching an acceleration-time graph. 
Call the time to reach maximum speed t 1 and the time to return to rest 
t 2 • Total distance covered will be the area under the velocity-time 
graph. Use Formula (1) twice-to relate vand t 1 , and to relate vand t2 • 

Frame 21 gives the complete solution. 
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The acceleration during the time t 1 has a constant value of 1.25 m s - 2; 

this part of the acceleration-time graph is thus the horizontal straight 
line, and because the velocity increases, this acceleration is positive. 
During the second period t2 the acceleration has a constant negative 
value of 1.875 m s -2. This explains the form of the acceleration-time 
graph. Also, acceleration is the time-derivative of velocity; thus velocity 
is the time-integral of acceleration. So that the area under an 
acceleration-time graph will give the change of velocity in that time, in 
the same manner that the area under a velocity-time graph gives the 
displacement in that time. 

Displacement = area under velocity-time graph 

150 = !(t1 +t2)V 
:. V(tl +t2) = 300 (1) 

Applying Formula (1) to both stages 

0= v-1.875t2 

Substituting these values in equation (1) 

",( v v) _ 300 
v 1.25 + 1.875 -

v2 (O.8 + 0.533) = 300 

:. v = .J225 = 15 mls 
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Substituting 

V 15 
tl = 1.25 = 1.25 = 12 s 

v 15 
t2 = 1.875 = 1.875 = ~ 

Total time = 20 s 

The next problem is slightly harder, but you can solve it using 
practically the identical procedure to that just used, that is, obtain one 
equation from the area under the graph, and two more by making use 
of Formula (1) on both stages of the motion. 

Problem A vehicle accelerates uniformly from rest at 2 m s - 2 to a 
velocity v. It then accelerates at 1.4 m s - 2 to a final velocity of 34 m/s. 
The total distance travelled is 364 m. Calculate the value of v and the 
times taken for the two stages of the journey. 

The required answers are 16 mis, 8 sand 12 s. The solution follows. 
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Here is the complete solution. 

34 

~ Ii 
E 

Ol<--____ --+-_______ -+-Time 

I. t, .. I .. .1 

Equating the area under the graph to the total distance travelled 

~6t1 +~(6+34)t2 = 364 

Using Formula (1) 

Substituting for t1 and t2 

1,,(6) 1" 3 )(34-6) 2V 2 +2(V+ 4 1.5 = 364 

Multiplying by 12 

362 + 4(342 - 62) = 4368 

362 + 4624 - 4iJ2 = 4368 

6 = J4624 -4368 = 16 mls 

34-16 
t2 = = 12 s 

1.5 -
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An alternative solution would be to use Formula (4) on both stages of 
the motion, calculating the displacements Xl and Xl for the two stages. 
The sum of these displacements is 364 m. If you think you need 
practice, do this yourself, but a solution is not given. 

Here is one last problem before we go on to the 'drill' exercises. No 
hints at all are now given. See how you get on with it. 

Problem A car starts from rest and reaches a maximum velocity v 
with a constant acceleration of 2 m s - l. It travels at this maximum 
speed for a time, and then retards at a constant rate of 3 m s - 1 to rest. 
The total distance travelled is 945 m and the total time taken is 60 s. 
Calculate the maximum velocity v and the times for the three stages 
of the journey. 

A complete solution follows. But do not forget that it is not the only 
possible solution. 
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Always sketch the velocity-time graph 

v - -- - _ --."...-____ -.. 

olL-_____ -I-____ +--_.....L. Time 

I .. t, .. I .. 

Use Formula (2) three times 

For stage 1: 

For stage 2: 

For stage 3: 
Adding these 

Using Formula (1) 

For stage 1: 

For stage 3: 

Xl = 1(0+6)t l ; 

X 2 = -!(6+6)t2; 

X3 = H6+0)t3 ; 

Substitute these values in equation (a) 

• I. t3 .1 

Xl = l 6t l 

X2 = 6t2 

X3 = l 6t3 

(]2 " 62 5v2 " 
945 = 4"+vt2 +"6 = 12+ v(60-t l -t3 ) 

945 = 562 + 6 (60 - ~ -~) 
12 2 3 

Multiply by 12 

11340 = 562 +7206-1062 = 7206-562 
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Re-arranging 

vl - 144v + 2268 = 0 

Substituting in eqns (b) 

v = 72 ± .J 5184 - 2268 

= 72±54 

= 18 mls or 126 mls 

18 
tl = - = 9 s; 2 -

18 
t3 = - = 6s 3 -

tl = 60-(9+6) = 45 s 

This completes the solution, but some remarks follow in Frame 26. 
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Two points arise out of this problem. The first concerns the 
determination of v. We obtain this by solving a quadratic equation. You 
will have seen that we took the value of 18 m/s as the correct value, and 
rejected 126 m/s. Why? Well, a value of 126 would certainly be a 
legitimate solution so far as the algebra were concerned, but when we 
evaluate tl and t2 , we should find that we obtained 63 sand 42 s 
respectively, leaving a value of t2 of -45 s.1t is clearly impossible that 
the car should travel at this speed over the second stage of the journey 
for a negative time, and so, we reject this part of the solution. 
Nevertheless, one should always investigate the two answers to the 
solution of a quadratic equation, as frequently they may have a real 
physical interpretation, and, indeed, be both essential solutions to the 
problem. This is particularly true in the case of freely falling bodies, 
which we shall look at next. In this particular problem, the second value 
of v of 126 m/s does, oddly enough, have a physical significance. 
Although there can be no such thing as 'negative time' in this context, 
you will find out, if you care to check, that the conditions of the 
problem will be met if the car travels for 63 s with acceleration 2 m s - 2; 
then travels in the opposite direction at 126 m/s for 45 s, and finally 
travels forwards again for 42 s, retarding at 3 m s - 2. 

The second point arising is that, with rather involved problems of 
this sort, it is good practice to check your answers. In this case, let us 
check that with the values of v, t l , t2 and t3 calculated, the actual 
distance covered will be correct. 

Adding 

Xl = 1Vtl = 1 x 18 x 9 = 81 m 
X 2 = vt2 = 18 x 45 = 810 m 
X3 = 1Vt3 = 1 x 18 x 6 = 54 m 

Total distance = 945 m 

You now need practice, and Frame 27 contains ten exercises for you 
to work on. Do not be too discouraged if you find that they take you a 
long time, or even if there are some that you cannot do, and need to ask 
for help. And remember that there may be two or three ways of solving 
a problem: all of them may be 'right' but some ways will be easier than 
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others. It is also fair to tell you that although this is an 'elementary' text, 
you should not assume that the problems at this stage are necessarily 
going to be easy. You may even find that some of your lecturers cannot 
do some of them straight away, without a bit of preparation. 
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'Drill' exercises: motion in a straight line 

1. A vehicle moves at 5 m/s with an acceleration of 1.2 m s - 2. 

Calculate its velocity after 10 s, and the distance travelled. 
Ans. 17 m/s; 110 m. 

2. A train can retard at a maximum rate of 2 m s - 2. Find the shortest 
distance and time to bring it to rest from a speed of 95 km/hour. 
Ans. 174.1 m; 13.19 s. 

3. A body with initial speed 5 m/s and uniform acceleration moves 
600 m in 70 s. Calculate the acceleration, and the maximum speed. 
Ans. 0.102 ms- 2; 12.14 m/s. 

4. Two signals on a railway are 950 m apart. A train passes the first 
one at a speed of 96 km/hour with uniform retardation, and it 
passes the second one after 40 s. Find the retardation, and the final 
velocity, in km/hour. 
Ans. -0.1458 ms- 2; 75 km/hour. 

5. A car travels with constant retardation, and passes a point at 
16 m/s, and a second point 500 m distant, at 4 m/s. Find the average 
speed, the time taken, and the retardation. 
Ans. 10 m/s; 50 s; 0.24 m s - 2. 

6. The cage of a mine hoist descends part of the shaft with an 
acceleration of 1 ms - 2 and the remainder of the distance with a 
retardation of 2 m s - 2. The total time taken for the descent is 60 s. 
Find the shaft depth and the maximum speed. 
Ans. 1200 m; 40 m/s. 

7. Three points on a track are spaced at 50 m intervals. A car with 
uniform acceleration passes them, taking 8 s to travel from the first 
to the second, and 7 s from second to third. Determine the 
acceleration, and the speeds at each of the three points. 
Ans. 0.119 ms- 2; 5.77 m/s; 6.73 m/s; 7.56 m/s. 

8. The cage of a hoist takes 9 s to descend the shaft. For the first 
quarter of the distance, it accelerates uniformly, and for the last 
quarter, it retards uniformly, the middle section being covered at 
uniform speed. The shaft depth is 40 m. The rate of retardation is 
the same as the acceleration. Determine this acceleration, and the 
maximum speed. 
Ans. 2.22 m s - 2; 6.667 m/s. 
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9. An elevator can accelerate at 2 ms- 2 and can retard at 6 ms- 2 • 

Find the least time for it to ascend 40 m (a) if the maximum speed is 
4 m/s, (b) if the maximum speed is unlimited. In the latter case, what 
will be the maximum speed? 
Ans. 11.33 s; 7.3 s; 10.95 m/s. 

10. A vehicle travels 4.8 km in 5 minutes. For the first stage, it 
accelerates at 1.6 m s - 2 from rest, and reaches a maximum velocity 
D, at which speed it covers the second stage. For the third stage, it 
retards uniformly at 2.5 m s - 2 to rest. Calculate the times for each 
stage, and the maximum velocity. 
Ans. 10.28 s; 283.1 s; 6.58 s; 16.45 m/s. 
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The equations derived for the solution of problems of straight-line 
motion can be used to analyse the motion of bodies subjected to the 
force of gravity. Objects close to the surface of the earth, and subjected 
only to their own weight, are observed to have an acceleration which is 
approximately constant, at all points on the earth, and which is 
independent of the mass of the body itself. This acceleration is 
approximately 9.81 ms- 2, and it is always directed vertically down­
wards, whether the body is moving upwards or downwards. Thus, such a 
body moving upwards will slow down in speed, while a body moving 
downwards will increase in speed. The reason for this phenomenon will 
become clearer when we look at Elementary Kinetics. The value of this 
acceleration does actually vary a small amount; it is, for example, 
slightly less at the equator than it is at the poles, but this difference is 
very small, and for most engineering claculations (and for all calcu­
lations in this programme) the figure of 9.81 m s - 2 is considered to be 
sufficiently accurate. The symbol g is used for this particular value of 
acceleration. 

You must never forget that this 'constant' acceleration is really only 
an approximation; the true value of acceleration varies inversely as the 
distance of the body from the earth's centre. Thus, it would be wrong to 
assume that the acceleration of a satellite such as Telstar was 9.81 m s - 2 

because it is at a considerable height above the earth's surface-several 
thousand kilometres, in fact. At this distance, the acceleration due to 
gravity is approximately only 0.25 m s - 2. In all problems that we 
consider in this programme, however, we may assume our bodies to be 
close enough to the earth's surface to justify assuming a constant value 
for g of 9.81 ms- 2 • 

You should note particularly in the first paragraph of this frame the 
words 'subjected only to their own weight'. Now objects falling or 
rising close to the earth's surface are not subject only to their own 
weight; there will be in addition some resistance due to the motion 
through the air. The effect of air resistance on the motion of a stone 
falling from a building is likely to be very slight, and may justifiably be 
neglected in most cases. But on the other hand, to neglect the effect of 
air resistance on a man descending from a plane by parachute would be 
absurd. Even without a parachute, the air would have a very 
pronounced effect on the motion of his body. Without air resistance, 
the constant acceleration would cause the speed of fall of a body to 
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increase continuously until the body reached the earth. But air 
resistance increases as the speed of fall increases, and eventually 
(assuming a body has plenty of space in which to fall) a falling body 
attains a speed at which the air resistance exactly equals its weight, and 
the acceleration then is zero. The body now travels at this constant 
speed, which is called the terminal velocity. With a parachute, the 
terminal velocity is (fortunately) quite low; without a parachute, for a 
human body, the terminal velocity is approximately 120 miles per hour; 
for a brick, or a bomb, it would, of course be a good deal higher than 
this. In all problems in this programme, we shall ignore or neglect the 
effect of air resistance on the motions of bodies, but ignoring or 
neglecting something is no excuse for forgetting its existence. 

For bodies in free 'fall' (in which is included bodies moving upwards 
as well) we must always remember to use a sign convention when using 
our four formulae. 

Problem A missile is projected vertically upwards with an initial 
velocity of 80 m/s. Neglecting air resistance, calculate the time for it 
to reach a height of 200 m and calculate the velocity at this point. 

List the quantities given, and the quantity required, not forgetting that 
the acceleration will now be 9.81 m s - 2. Select the correct formula and 
substitute the data. Remember that there are two problems here; just 
concentrate first on solving the time. As we forecast at the end of the 
previous frame, you will need to adopt a sign convention, and you 
should therefore call all upward-directed quantities positive, and 
downward-directed ones negative. (So what will your acceleration be?) 
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1301 
We have been given the initial velocity u (80 m/s), the distance x (200 m) 
and we assume the acceleration a (9.81 ms- 2). We are asked to find the 
time t. 

The correct formula will therefore be Formula (3): x = ut +lat2• 

Having regard to signs 

Substituting 

Simplifying 

u = +80m/s 
x = +200m 

a = -9.81 ms- 2 

200 = 80t+!( -9.81)t2 

200 = 80t -4.905t2 

t2 - 16.31 t + 40.77 = 0 

:. t = 8.155 ± ,.)66.5 -40.77 = 8.155 ± 5.072 

The two solutions are t1 = 3.083 sand t2 = 13.227 s. 

It should be clear to you at this stage why there are two answers for t, 
but if it isn't, proceed with the second part of the problem, which is to 
calculate the velocity. Choose the 'correct' equation-that is, an 
equation which does not need to make use of the values of t just 
calculated: they could be wrong! The solution is completed in the next 
frame. 

To determine the velocity, we are again given u, x and a and we require 
v. Accordingly, Formula (4) is indicated. 

v2 = u2 +2ax 
= 802 + 2( -9.81)200 

= 6400-3924 

= 2476 
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:. v = ± 49.759 mls 

This gives the two solutions, 

Vl = +49.759 mls and V2 = -49.759 m/s. 

The first solution tells us that the missile is moving upwards, and the 
second that it is moving downwards. The explanation for two answers 
for t is now clear. The time of 3.083 s is the time to reach a height of 
200 m on the way up; the time of 13.227 s is the time for the missile to 
pass the same point on its way back down again. 

This example illustrates an important point concerning problems of 
motion due to gravity. It is not necessary to divide the problem into two 
parts~ne up and one down-as students are frequently prone to do. 

Now use the same data to calculate the maximum height reached by 
the missile. Choose your formula correctly. 

Given: u, a and, of course, v, which must be zero at the maximum height. 
And x, the height, is required. We use Formula (4). 

v2 = u2 +2ax 

0= 802 + 2( -9.81)x 

6400 
x = 2 x 9.81 = 326.2 m 

You should appreciate that this answer must be considered as highly 
theoretical, because we have not included any effect of air resistance, 
which would be quite considerable in such a case. The actual maximum 
height reached would be substantially less than the figure calculated. 
But you have to learn to walk before you learn to run, and the 
mathematics required to allow for the effect of resistance of the air 
would be far too complex for us at this stage. 

Frame 33 contains a further eight 'drill' examples which you should 
be able to attempt. Do not forget the reminder at the end of the 
previous frame--do not divide your problem into two parts. This 
applies particularly in the cases of Examples 3, 5 and 6. Examples 7 and 
8 are more complex; it is not just a matter of selecting a formula and 
substituting. You will need a strategy for solving problems of this type, 
and you may need some help with these two. 

Programme 2: Elementary Kinematics 107 

 32



'Drill' exercises: motion under gravity 
1. A stone falls from the top of a cliff of height 150 m. What will be its 

velocity after 2 seconds? How far will it have fallen in 4 seconds? 
How long will it take to reach the cliff foot? What then will be its 
velocity? 
Ans. 19.62 m/s; 78.48 m; 5.53 s; 54.25 m/s. 

2. A body is projected vertically upwards with an initial speed of 
40 m/s. Calculate the time elapsed for the speed to fall to 10 mis, the 
time for it to reach its maximum height, and the maximum height. 
Ans. 3.058 s; 4.077 s; 81.55 m. 

3. A missile is projected vertically upwards from the top of a tower of 
height 30 m with an initial velocity of 27 m/s. How long will it take 
to reach the ground? 
Hint: x = minus 30 m. 
Ans. 6.453 s. 

4. Careful measurement shows that the time of fall of a stone from the 
top of a tower is 2.4 seconds. Calculate the height of the tower, and 
the final velocity of the stone. 
Ans. 28.25 m; 23.544 m/s. 

5. A missile is fired vertically upwards from a gun with an initial 
velocity of 160 m/s. Calculate the maximum height it will reach, the 
time to reach this height, and the time to reach a height of 500 m. 
Ans. 1304.8 m; 16.31 s; 3.5 sand 29.12 s. 

6. A projectile fired vertically upwards is observed to reach a maximum 
height of 120 m. Calculate its initial velocity and the time elapsed 
before it returns to the ground. 
Ans. 48.52 m/s; 9.89 s. 

7. A projectile is fired vertically upwards with an initial velocity of 
80 m/s. A second projectile is fired exactly one second later from the 
same point with an initial velocity of 100 m/s. Calculate the velocity 
of each projectile when they are both at the same height. Calculate 
this height, and the time elapsed from the instant of release of the 
first projectile, to the instant they attain the same height. 
Ans. 45.47 mls up; 75.28 mls up; 220.8 m; 3.52 s. 

8. A projectile is fired vertically downwards from the top of a tower 
with an initial velocity of 20 m/s. At the same instant, a second 
projectile is fired vertically upwards from the base of the tower with 
an initial velocity of 50 m/s. Calculate the time elapsed before they 

108 Elementary Engineering Mechanics 

 33



meet, the height at which they meet, and the respective velocities. 
Calculate the height and velocity of the second projectile when the 
first one reaches the ground. The height of the tower is 300 m. 
Ans. 4.286 s; 124.2 m; 62.04 m/s down; 7.95 m/s up; 123.05 m; 
9.25 m/s down. 
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We now come to the kinematics of bodies which rotate instead of 
moving along straight paths: bodies such as rotating wheels and electric 
motors. This type of motion will call angular motion (as distinct from 
the linear motion of bodies moving along straight paths). When an 
electric motor is switched on, it attains a certain speed in a certain time. 
Clearly there is some displacement-the rotor moves. There is also 
velocity-the rotor is spinning. And finally, there must be 
acceleration-the rotor's speed has changed. But we cannot make use 
of the same methods of analysis used for linear motion. To begin with, 
we cannot measure the displacement of the rotor in metres, because 
although the motor armature is obviously moving, it does not move 
bodily-that is, the armature remains in one place, and turns about a 
fixed point. Our problem reduces to measuring displacement in some 
other fashion. 

This is not difficult. We already have two familiar methods of 
measuring angular displacement: the degree and the revolution. In 
order to come to a decision on a suitable method of measuring angular 
displacement, we shall examine the relationship between linear and 
angular motion. Although our motor armature does not move bodily, a 
point on its circumference moves; it moves in a circular path about the 
centre of rotation. Furthermore, such a point will move with a certain 
linear speed (so many metres per second) at any instant. And if we 
choose an instant during the time the rotor is speeding up, such a point 
will have also a specific value of linear acceleration. This same argument 
can be applied also to any other point on the armature; it does not apply 
only to points on the circumference. In fact, the only points to which it 
does not apply are points on the axis of rotation. The distance travelled, 
the speed of travel and the acceleration are all dependent on the radius 
of the point chosen. The bigger the radius, the more the distance 
travelled. (It is salutary to remember that as a consequence of the 
rotation of the earth, each of us travels approximately 25000 kilometres 
each day in a circular path about the earth's axis, at a speed of 
approximately 300 m/s. Even this pales into insignificance when it is 
realised that our motion along the earth's orbit round the sun is 
accomplished at the spanking pace of about 30 kilometres per second.) 

So we can begin by considering the motion of a point P along a 
circular track. 

110 Elementary Engineering Mechanics 

 34



x 

R 

The point P moves a distance x around the circle, whose radius is R. 
The are, of length x, subtends an angle of Il. degrees. Calculate x in 
terms of Il. and R. 

If the wheel had made one complete revolution, of 360 degrees, the 
point P would have travelled the full circumference of the circle, and the 
corresponding distance travelled would have been (2nR). So, for an 
angle of Il. degrees, the distance x will be given by 

Il. 
x = 2nRx-

360 

You can use this simple formula to calculate that the distance around 
the earth corresponding to one degree of angle, assuming the earth's 
radius to be 3958 miles, is 69.08 miles. The distance corresponding to 
one minute of angle (one-sixtieth of a degree) is therefore 1.1513 miles, 
or 6080 feet. This distance is called the nautical mile, and a ship's speed 
is always stated in nautical miles per hour, called knots. 

Now suppose that instead of defining the angle in degrees, we define 
it in revolutions. Derive a formula relating x to R and the number of 
revolutions, N (N, of course, can be less than 1). 
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As in the previous frame, in one complete revolution, the value of x 
would be (27tR). So our formula will be 

x = 27tR x N 

So conversion from angular to linear quantities is not difficult, 
whichever unit we choose to use. But it can be made even simpler. Both 
our formulae contain the terms (27t). If we change our unit of angular 
displacement to an angle consisting of (1/27t) revolutions, or ap­
proximately 57.3 degrees, then for one complete revolution, as before, 
the distance covered will be (27tR). So for one unit of this new angular 
unit, which we call the radian, the corresponding distance is 

(21tR) 
x=--=R 

21t 

This indicates another way of defining a radian of angular displace­
ment. The radian is the angle subtended by an arc equal to 1 radius. The 
general formula relating linear displacement to angular displacement 
now becomes 

x=Rx9 

where 9 is now the angle, in radian measure. 
Thus, the adoption of what at first appears to be a rather odd and 

unfamiliar unit of angular measure results in a very simple formula 
relating linear and angular displacement. And we shall see in the 
following frame that the same simple relationship applies also to linear 
and angular velocity, and to linear and angular acceleration. 

In Frame 2, we introduced the concept of Dimensions, and the 
necessity for an equation of mechanics (or for that matter, an equation 
of any other field of science) to be correct as to dimensions. The 
equation 

x=Rx9 

may appear at first sight to contradict this principle. The dimension of 
x, the displacement, is clearly L. Similarly, R, a radius, also must have 
the dimension L. Then how can the equation balance when L on the 
right-hand side is multiplied by something' else? Well, it does, because 
the dimensions of 9, an angle, do not exist; it is said to be dimensionless. 
Whether an angle is measured in degrees, or radians, or even whole 
revolutions, it is defined as a numerical fraction of a complete 
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rotation-that is a circle. If you are changing from the old imperial 
system offeet and inches to the metric system, you have to throwaway 
your foot rule, and buy a metre rule, but you can still use your 
protractor; a degree is one-three-hundred-and-sixtieth of a circle in any 
system of units, and a radian is a full circular angle divided by 2x. 

Since the distance around the circumference of a circle is 2x x R, it 
follows that an angle of one radian includes a portion of circumference 
of this distance divided by 2x-that is R. This gives us another 
definition of a radian; the angle subtended at the centre of a circle by a 
circumferential distance of one radius. And in general 

that is 

gl . d. arc of circumference 
an e m ra lans = d. 

x 
(}=­

R 

ra lUS 

which is a transposition of the formula above. 
This is the time to remind you that henceforward, in all calculations 

involving angular measure, you must always express angular quantities 
in radians. 
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So we know now that the angle (} (in radians) subtended by a circular 
arc of radius R and length x is given by 

(}=~ 
R 

x=(}xR 

Linear and angular velocity can be similarly related. Imagine the 
point P in the diagram of Frame 34 to be moving with a linear velocity 
v. The radius from the centre to P will then sweep across at an angular 
velocity which we shall call (J) (omega) radians per second. 

w 
-0+ R 

A 1 1 · displacement (} 
ngu ar ve OClty (J) = ---. ---

tIme t 

. 1. x Lmear ve OClty v = -
t 

But x = (} x R 
. (} x R 
.. V=--=(J)xR 

t 

Now suppose that point P moves from P I to P 2 at an increasing speed, 
being VI at PI and V2 at P 2. It will have a linear acceleration a given by 

V2 -VI 
a=---

t 

The angular speed of the radius joining P to the centre will correspond­
ingly increase in magnitude: that is, there will be an angular 
acceleration. We shall call this acceleration IX (alpha). The units will be 
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(radians per second) per second, or, rad s - 2. We can calculate the 
angular speeds W 1 and W2 at points P 1 and P2 

Substituting for V2 and Vl in the expression above for a 

w2 R -w1R 
a = --=---=--

t 

a=a.xR 

You must be quite clear that the acceleration a is the linear 
acceleration due to the change of speed along the circular path. The 
direction of this acceleration (recalling that acceleration is a vector 
quantity) is either forwards or backwards along the track, according to 
whether the speed is increasing or decreasing; either way, its direction is 
tangential to the track. We shall see later that there will also be a 
centripetal acceleration, which arises out of the change of direction of 
the velocity of P, as it moves round the circular track. 
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The three formulae are repeated here, by way of summary. 

x=(JxR 
v=roxR 
a=ctxR 

This is a good point to stop and remind you that angular measurement 
in radians is a convenient unit for purposes of calculation, and is an 
essential if the above formulae are to be used. Ordinary people dealing 
with rotating machinery do not need to use the unit; indeed, it is 
probable that most people have never heard of it. Car drivers 
understand each other perfectly when speaking of engine speeds of 
6000 revs per minute. A machine operator is no doubt quite capable of 
drilling twelve holes in a plate, on a circle at intervals of 30 degrees, and 
he might well down tools and take steps to initiate a strike ifhis drawing 
called for twelve holes spaced at an interval of 0.5236 radians. The 
circular scale on his machine would in any case be engraved in degrees 
and subdivisions thereof. So from now onwards, whenever you have to 
deal with angular motion in your work, remember that the units of 
angular displacement, velocity and acceleration must always be 
expressed in radians. 

Since angular speed is very frequently expressed in revolutions per 
minute, it will be convenient to have a formula to hand for converting 
this into radians per second, or for converting the answer to a 
calculation in radians per second back to revolutions per minute. 
Calling the speed in revolutions per minute N, and the speed in radians 
per second ro, see if you can obtain such a formula. 

( d/) N (rev/min) 2 
rora s = 60 x 1t 

So the required formula is 
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Conversion from degrees to radians and the reverse is often necessary. 
Since each revolution of 360 degrees contains 21t radians, the conver­
sion formula will be 

21t 1t 
Orad = Odeg x 360 = Odeg X 180 

Have a go at the following simple conversions; the working is 
completed in Frame 40. 

(a) Convert 11 revolutions to radians. 
(b) Convert 60 degrees to radians. 
(c) Convert 4 radians to revolutions. 
(d) Convert 3.1416 radians to revolutions. 
(e) Convert 120 rev/min to rad/s. 
(f) Convert 8.56 rad/s to rev/min. 
(g) Convert 0.00007272 rad/s to rev/day. 

Conversions 

1t 1t 
(a) Orad = Odeg X 180 = (11 x 360) x 180 = 9.425 rad 

1t 1t 
(b) Orad = Odeg X 180 = 60 x 180 = 1.047 rad 

180 180 
(c) Odeg = Orad X - = 4 x -Orev = Odeg -;- 360 = 0.637 rev 

1t 1t 

180 180 
(d) Odeg = Orad X - = 3.1416 X -Orev = Odeg -;- 360 = 0.5 rev 1t 1t ----

21tN 21t X 120 
(e) co = 60 = 60 = 12.566 rad/s 

60 30 . 
(f) N = co x - = 8.56 x - = 81.742 rev/mm 

21t 1t 

30 30. 
(g) N = co x - = 0.00007272 x - rev /mm 

1t 1t 

30 
= 0.00007272 x - x 60 x 24 rev/day 

1t 

= 1.00 rev/day 

(The last answer is clearly the speed of revolution of the earth.) 
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Let's return to the three formulae listed at the beginning of Frame 38. 
Here they are again 

x=(}xR 
v=())xR 
a=a.xR 

For an application of these formulae, consider the following problem. 

Problem A simple hoist consists of a load raised by a rope which is 
wound on to a drum of diameter 2.5 m. The load starts from rest and 
is raised with constant acceleration a distance of 8 m in 4.5 seconds. 
Determine (a) the number of revolutions the drum makes; (b) the 
drum speed at the end of the 4.5 seconds; (c) the angular acceleration 
of the drum. 

Attempt this problem yourself first; do not work from first principles 
when solving part (a) but use the first of the three formulae. And before 
attempting (b) and (c) you may have to go back to Frame 13 and revise 
your linear kinematics. That is, calculate the velocity and acceleration 
of the load, and then use the second and third of the three above 
formulae. The complete solution is found in the following frame. 

The distance moved by the rope will be the same distance moved by a 
point on the rim of the drum. 

(a) x=(}xR 
8 = (} x H x 2.5) 

6.4 
(} = 6.4 rad = 21t rev = 1.019 rev 

(b) We require the velocity of the load after 41 s (see Frame 13) 

x = !(u+v)t 

8 = !(0+v)4! 
. 2x8 
.. v = 41 = 3.556 m/s 
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The velocity of the rope will be the same as the velocity of the rim of the 
drum. 

v 3.556 
(J) = Ii = H x 2.5) = 2.845 rad/s 

(c) We require the acceleration of the load. 

x = ut+!at2 

8 = 0+!a(4!)2 

8 x 2 -2 
a = (41)2 = 0.790ms 

a 0.790 
(X = Ii = H x 2.5) = 0.632 rads 

Here is a second problem. 

Problem A car has a uniform acceleration. It passes one check­
point at 10 m/s and a second check-point 12 seconds later at 34 m/s. 
Calculate the number of revolutions made by the wheels between the 
two points, the angular acceleration of the wheels, and the angular 
speeds of the wheels at the two points. The wheel radius is 0.34 m and 
it is assumed that the wheels do not slip. 

The problem is very similar to the previous one, although it may not 
appear so at first sight. But if you imagine a car standing on a moving 
belt, with the wheels turning at such a speed that the car itself is 
stationary, it becomes clear that the distance moved by the belt is the 
same as the peripheral distance moved by the wheel rim. The belt 
velocity and acceleration will also be the same as the velocity and 
acceleration of the wheel rim. Now to bring the belt to rest, the car 
would have to move at the speed of the belt in the opposite direction, 
with an acceleration equal to that of the belt, again in the opposite 
direction. So our simple linear/angular conversion formulae apply. 

The solution is not given for this problem, but the answers you 
should obtain are: 123.58 revs; 5.88 rad s -2; 29.41 rad/s; 100 rad/s. 
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1441 
We now need a set of formulae for the solution of problems of angular 
motion similar to the four we obtained for linear motion, starting at 
Frame 9. We can use the same arguments to obtain these formulae, and 
we shall find that they will be in all respects exactly analogous to the 
earlier ones. We begin, then, by imagining a body rotating with angular 
acceleration (assumed constant) and we draw a graph of angular 
velocity against time. We shall call the initial velocity £00 and the 
acceleration ex. Our graph will look like this; 

Q1-------------t:---Time 

Derive an expression for the angular velocity £0 after a time t. The 
reasoning is exactly the same as in Frame 9 in case you have trouble. 

cx is the increase of angular velocity in unit time. So the increase in time t 
will be (ext). So the final velocity will be £00 + (ext). So the formula will be 

£0 = £00 + ext (1) 

We need not repeat the argument of Frame 8 to show that the area 
under a graph of angular velocity against time will give the displace­
ment. So make use of this principle to obtain the second formula. 
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Displacement = area under velocity-time graph 

() = t x !(roo + ro) 

or () = ! t(roo + ro) (2) 

We can alternatively divide the area into a triangle and a rectangle. 

'-_________ --+_ Time 

The increase of angular velocity in time t will be (ext). Express the area as 
the sum of a rectangle and a triangle to obtain Formula (3). 

The rectangular area is (roo x t) and the triangle is <! x t x (ext». Adding 

() = root + !ext l (3) 

Take any two of the formulae and eliminate t to obtain the last formula. 
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From formulae (1) and (2) 

w=wo+rxt 
() = !t(wo + w) 

w-wo 2(} 
t=---=---

rx wo+w 
:. 2rx(} = (w -wo)(w+wo) = W 2 -w5 
:. W 2 = W~ + 2rx(} (4) 

Here are the four formulae for angular kinematics, written out 
together 

w = wo+rxt 
() = !t(wo + w) 
() = wot + !rxt2 

W 2 = W~ +2rx(} 

(1) 

(2) 

(3) 

(4) 

You can see that all four formulae are exactly analogous to the four 
formulae for linear kinematics, and have been derived in the same 
manner. For the solution of problems of linear motion, it is necessary, 
or at least very desirable, to remember all four formulae. But provided 
you can remember these, you can use them to write down, at sight, the 
corresponding four formulae for angular motion, without the extra 
trouble of having to remember four more formulae. 

This second group of formulae can, of course, be derived using the 
calculus, in the same way that we did in Frame 14, but we have not 
bothered to do this. 

One word of warning. Although the linear and angular formulae are 
analogous, they are not, term for term, identical as to dimensions. 
Linear displacement has the dimension oflength, but angular displace­
ment is dimensionless. (This is clear from the formula at the beginning 
of Frame 37: the dimensions of () are I xl R I which is Length + Length.) 
You can show for yourself that the dimensions of angular velocity will 
be T- 1 and angular acceleration T- 2 • 

Problems of angular kinematics tend to be generally simpler than 
those of linear kinematics, and a single example (given in the next 
frame) should be sufficient exercise for tqe oresent. 
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Problem A large machine operates on the following 3-stage cycle. 
(a) Starting from rest and increasing to a working speed of 

15 rev/min in 45 seconds. 
(b) Running at working speed for 4 minutes. 
(c) Shutting off and coming to rest with an angular retardation of 

0.008 rad s - 2. 

The machine is required to be overhauled after each complete 5000 
revolutions. How many cycles of operation may be allowed between 
overhauls? If the cycles are repeated continuously without a break 
between, what will be the time between overhauls? 

The solution follows in Frame 50. But meanwhile, try to solve this by 
yourself. Remember the following points. 

1. Sketch the velocity-time graph. 
2. For each part of your solution, list what you have been told, and 

also what you want, and choose the formula which connects these 
quantities. 

3. Wherever possible, avoid making use of an answer calculated in 
one part for the solution of another part. 

4. Remember: radians, not revs! 
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1501 

IL-__ --L ______ --I-___ ~Time 

We can call the three stages 1,2 and 3, the three corresponding times 
t 1 , t2 and t 3 , and the corresponding angular displacements 01 , O2 and 
03 , For the first part of the problem, it is clear that we require 01> O2 

and (}3' 

Stage 1: use Formula (2) (Frame 48) 

o = 1 t(wo + w) 

Stage 2: simply 

01 = 1 x 45(0+ 15 :02'1t) rad 

'It 1 
= 1 x 45 x 2" x 2'1t rev = 5.625 rev 

Orcv = 4 x 15 = 60 rev 

Stage 3: Formula (4) 

w2 = w~ + 21%0: 0 = C5:0 2'1t Y + 2( -0.008)03 

03 = (i Y x 2 x ~.008 x 2~ rev = 24.54 rev 

01 +02 +03 = 90.17 rev 

number of cycles = :: = 55.45 cycles, that is, 55 cycles 

tl = 45 s; t2 = 4 x 60 = 240 s 
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Stage 3: Formula (1) 
w = wo+a.t 

15 x 2n 
0= 60 -0.008t3 

n 
t3 = 2 x 0008 = 196.3 s 

tl +t2 +t3 = 481.3 s 

time between overhauls = 55 x 481.3 s = 2656.5 s 

We stated in Frame 2 that velocity was a vector quantity. In our work 
up to this point, this has not been of significance, but now we have to 
take into account this special property of velocity. When a body is 
moving around a circular path, it is undergoing an acceleration. This 
does not mean that it must be increasing or decreasing speed (although 
it may be doing that as well). Even though the speed around the path 
may be constant, the body is still accelerating, and this type of 
acceleration is called centripetal acceleration. 

It must be realised that, being a vector, velocity changes not only if its 
magnitude changes, but also if its direction changes. Now when a body 
travels round a curved path, its direction is continually changing, even 
though its speed may remain constant, and therefore it is accelerating. 
If you feel inclined to object to this, you must realise that acceleration 
does not mean merely slowing down or speeding up; it means change of 
velocity, and a change of direction is just as significant as a change of 
magnitude. To evaluate a directional change of velocity, you must be 
able to sketch simple velocity vector diagrams. You may have had some 
practice in this sort of work previously, but it will not take long to go 
through it again. It is simpler to begin with displacement because this is 
easier to visualise. Suppose we add two displacements: 1 metre at 0 
degrees and 2 metres at 90 degrees. What will be the resulting total 
displacement? Work it out and check in the next frame. 
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163.430 ~ 
~T 1 m 

2m 

You may 'add' the displacements in either order; whichever way you do 
it, the resulting displacement R will be 2.236 metres at 63.43 degrees. 
Notice that the two displacement components are added 'end-to­
end'-the arrows denoting direction must run the same way---or, more 
correctly, the tail of one vector must be attached to the head of the 
other. The following 'addition' is wrong 

The arrow on the resultant R is in the opposite sense to the arrows on 
the components. This should be clear if you consider what we are trying 
to do. If you walk 1 mat 0° (due north) and then 2 m at 90° (due east) 
you will arrive at the same point that you would have if you had walked 
a distance of 2.236 m in a direction 63.43° east of north. If you reversed 
the arrow on the vector R, you would have a diagram representing the 
addition of three displacements which would bring you back to your 
starting-point. 

Exactly the same rules apply to the addition of velocities. This is 
hardly surprising, as velocity is displacement per unit time. So, as a 
simple exercise, determine the resultant of two velocities, the first being 
4 mls at 0°, and the second 6 mls at 270°. There is no need to draw 
accurately; a sketch will suffice. You should obtain an answer of 
7.21 mls at 303.7°. The next frame shows the working. 
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1531 
6 m/s 

6 m/s 

The length of the resu!t!ilg vector R is 7.21 m/s. The angle ex is 56.3°, so 
that the compass direction of R would be 303.7°. (This situation would 
arise if a ship sailed northwards in a sea with a westerly drift, or if an 
aeroplane flew in a cross-wind.) 

Now let's turn the problem round. At a certain instant, a body has a 
velocity of 10 mls at 90°. After 2 seconds, its velocity has changed to 
10 mls at 100°. What was the change of velocity? 

Here, we are given the original velocity, and the final ('resultant') 
velocity, and we require to find the change. Use the simple statement: 

Initial velocity + change = final velocity 

and from the diagram representing this statement you should be able to 
show that the change of velocity was 1.743 mls at 185°. The problem is 
solved in the following frame for you. 
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The 'change' is added to the initial velocity; so the 'change' vector is 
added 'tail-to-head' to the initial velocity. The arrow on the resulting 
new velocity will go the opposite way round the triangle to the other 
two. Thus 

(1) is the initial velocity; (2) is the resultant, or final velocity. So (3) must 
be the change of velocity. Notice the importance of having the correct 
directions of the arrows. If you attempted this exercise yourself and got 
it wrong, the chances are that you mistakenly added the two velocities, 
10 mls at 90° and 10 mls at 100°. Either by very careful scale-drawing 
and measurement, or by simple trigonometry, you should find that the 
change of velocity is 1.743 mls at 185°. Since this change took 2 
seconds, the average acceleration is 

1.743 -2 
aav = -2- = 0.872 m s 

Now imagine a car travelling at 10 mls around a circular track, and 
suppose that in 2 seconds it travels round a 10° arc of the track, thus 

R 
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Draw the velocity vectors for the car at the two points PI and P2 and 
thus determine the change of velocity which occurs during these 2 
seconds. Remember: do not add the velocities; the velocity at point P 2 is 
the resultant of the velocity at point P I and the velocity change. 

The vector diagram you should get is, of course, exactly the same as the 
one in Frame 54. 

~. 10° 85° 
~V = 1.743 m/s 

vp2 = 10 m/s Y 

and the change ofvelocity, xy, will be 1.743 mls at 85° to the direction of 
vp . So the average acceleration of the car during this period will be 

I 2 
0.872 m s- . 

But we do not want to have to draw diagrams ofthis sort every time 
we encounter motion along a circular track; neither do we want to 
know the average acceleration during a short period of time. What we 
require is the instantaneous acceleration, at a given point, at an instant 
of time. We can work round to this, firstly by assuming a track velocity v 
instead of 10 mis, and secondly assuming an arc along the track of () 
instead of 10°. 

Sketch the velocity vectors for points PI and P 2 and try to calculate 
from your diagram (a) the change of velocity, (b) the time taken for this 
change, and (c) an expression for the average acceleration during this 
time. 
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Your diagram should look like this. It is, of course, very similar to the 
previous one in shape. 

To determine xy we can construct a perpendicular 

~' ----
y 

Then 
xy = 2(v sin (!6» 

The distance P 1 P 2 around the curve = 0 x R (not forgetting that 0 is in 
radians). So the time taken will be OR/v. So average acceleration is 

change of velocity 2v sin (! 0) 
-----"----- = 

time OR/v 
2v2 sin (! 0) 

= 
RO 

This is still not yet quite what is required; it is still the average 
acceleration over a finite displacement. But it is interesting at this point 
to calculate the acceleration for various values of O. Do this for yourself 
for values of 6 of 10°,5°,3° and 1 0. Do not forget that 6 on the bottom 
line must be in radians. 
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15s1 
For 0 = 10°, the acceleration a is 

2v2 sin 5° v2 

a = (10 x 1t/180) = 0.99873 R 

and you can show by similar calculations that the remaining acceler­
ations are 

It is quite clear from these figures that the closer to zero we make 0, 
the closer the coefficient of (v2 / R) approaches 1. We can see therefore 
that as 0 approaches zero, the instantaneous acceleration, or the 
limiting value of the expression-in other words, the centripetal 
acceleration-is 
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We can arrive at this expression for centripetal acceleration in another 
way, by considering a small sector of the circle 

xy is the arc of the circle subtended by the small angle O. Now if we 
construct a perpendicular from y to M, then we can say 

. 0 yM sm =-
R 

Also, in radian measure 

But it is clear from the diagram, firstly that xy is very nearly the same 
length as yM (it is not easy to show the different lines even in this 
diagram), and secondly that the smaller we make the angle 0, the closer 
to each other the two lengths become. When angle 0 is very small, it 
therefore becomes true to say 

o ~ sin 0 

(remembering, as always, that 0 is in radian measure). For example, sin 
50 on a calculatoris (to six places)O.087156, and 50 converted to radians 
is, as you can check for yourself, 0.087266; a difference of ap­
proximately 0.1 per cent, and if you compare the sine and the angle in 
radians for 10 you will find a difference of approximately 0.006 per cent. 
This approximation for small angles is very common in mathematical 
analysis; you have almost certainly met it before. So if we now re­
examine the expression in Frame 57 for average acceleration 

2vl sin (! 0) 
a .. v = RO 

we can say, because we assume 0 to be very small 
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2vl x (!6) 
aav ~ R6 

vl 

and although this is an approximation for small values of 6, it becomes 
exact 'in the limit' as 6 approaches zero. 

The diagram of Frame 57 shows the change of velocity, xy, to be 
almost perpendicular to the vector v, and the smaller we make 6, the 
closer it approaches perpendicularity. (In the limit, the isosceles 
triangle has an apex angle of zero and equal base angles of 90°.) The 
conclusion is that the direction of the centripetal acceleration is 
perpendicular to the direction of the tangential velocity, and directed 
inwards, towards the centre of the path. 

Using the relationship (see Frame 38) v = roR, we can express 
centripetal acceleration alternatively by 

(roR)l 1 
ao=--=ro R 

R 

This form is convenient when dealing with rotating bodies such as 
wheels and rotors, whereas the first form is applicable to such problems 
as vehicles on circular tracks, planets revolving round suns, etc., where 
the linear speed of the body is more likely to be known, or required, 
than its angular speed. 

160 I 
We can summarise the work from Frame 51. 

1. When a body travels with constant speed v on a circular path of 
radius R, it undergoes a centripetal acceleration of magnitude vl / R. 

2. When a body turns about an axis with a constant angular speed ro, a 
point within the body at a radius R undergoes a centripetal 
acceleration of magnitude rol R. 

3. The centripetal acceleration is always directed towards the centre of 
curvature of the curved path. 
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Try this example before going on to the 'drill' examples at the end of the 
programme. 

Problem A car travels at a constant speed of 80 km/hour around a 
circular track of mean radius 90 m. Calculate the magnitude of the 
centripetal acceleration. Given that the car wheels have a radius of 
0.3 m, evaluate the centripetal acceleration of a point on the rim of a 
wheel, relative to the wheel centre. 

The first part is a simple application of the first formula (Frame 58) but 
do not forget that all units must be converted to metres and seconds 
and their derivatives. For the second part, refer to Frame 38, second 
formula, and recall that the linear speed of a point on the rim of a wheel 
will be the same as the speed of the car (assuming there is no slip of the 
wheel on the road). 

80 x 1000 
v = 60 x 60 = 22.22 m/s 

a = 22.222 = 5.486 m S-2 
o 90 --------

v 22.22 
w = -- = -0 3 = 74.07 rad/s 

Rwheel • 

ao = w2R = (74.07)2 x 0.3 = lM5.~m~~_~ 
This example serves to show that wheels and rotors which turn at high 
speeds can undergo very high values of acceleration. This becomes 
important when we examine the forces required to produce these 
accelerations. 

This concludes the work of this programme. Frame 63 comprises 
'drill' exercises on angular motion and centripetal acceleration, and 
Frame 64 concludes with some general revision examples for the whole 
programme. 
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'Drill' exercises: angular motion; motion in a circular path 

1. A wheel rotates at 150 rev/min. It comes to rest in 10 minutes with 
uniform retardation. Calculate this retardation, and the total 
number of revolutions made by the wheel in coming to rest. 
Ans. -0.0262 rad S-2; 750 rev. 

2. A vehicle has wheels of diameter 0.85 m. Calculate the angular 
velocity of the wheels when the vehicle travels at 24 km/hour. Also 
evaluate the centripetal acceleration of a point on the rim of a wheel. 
If the vehicle comes to rest in a distance of 28 m with uniform 
retardation, calculate the corresponding angular retardation of a 
wheel, and the number of revolutions made by a wheel in coming to 
rest. 
Ans. 15.69rad/s; 104.6ms- 2; 1.867rads- 2; 10.49rev. 

3. A motor rotates at 5000 rev/min. It slows to rest uniformly 10 
seconds after being switched off. Calculate the angular retardation, 
and the number of revolutions made by the armature in coming to 
rest. 
Ans. 52.36 rad S-2; 416.7 rev. 

4. A design safety rule for high-speed cast-iron wheels states that the 
maximum linear speed of a point on the rim must be 1.6 km per 
minute. Use this rule to calculate the maximum speed, in rev/min, of 
wheels of diameter (a) 1.2 m, (b) 80 mm. In each case, calculate the 
centripetal acceleration of a point on the rim. Calculate the 
maximum allowable diameter of a wheel required to run at 
3600 rev Imino 
Ans. 424.4 rev/min; 1185.2ms- 2 ; 6366 rev/min; 17.778ms- 2; 

141 mm. 
5. A flywheel is uniformly accelerated from rest to 1500 rev/min in 12 

seconds. The diameter is 1.24 m. Calculate (a) the angular acceler­
ation, (b) the angle turned through in reaching the final speed, (c) the 
maximum linear velocity of a point on the rim, (d) the tangential 
acceleration of a point on the rim, (e) the maximum centripetal 
acceleration of a point on the rim. 
Ans. (a) 13.09rads- 2 • (b) 150 rev. (c) 97.39m/s. (d) 8.12ms- 2• 

(e) 15.298 m S-2. 

6. A wheel is accelerated uniformly from rest at 7 rad S-2 for 20 
seconds. It then turns at constant speed for 150 seconds. It then 
comes uniformly to rest in a further 15 seconds. Calculate (a) the 
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maximum speed, in rev/min, (b) the total revolutions made, (c) the 
final retardation. 
Ans. (a) 1337 rev/min. (b) 3732.2 rev. (c) 9.33 rad S-l. 

7. At a certain instant, a car is travelling round a circular track of mean 
radius 80 m with a speed of 25 m/s and a forward acceleration of 
3.5 m s - 1. What is the total acceleration of the car at this instant? 
Hint: vector sum offorward and centripetal accelerations, which are 
at right-angles. 
Ans. 8.5607 m s - 1. 

8. The wheels of a car are 0.55 m diameter. The car starts from rest and 
attains a speed of 80 kmjhour in 32 seconds. It travels at this speed 
for 45 seconds. It is then brought to rest uniformly at 2.4 m s - 1. 

Calculate the total time for the journey, and the number of 
revolutions of the wheels for each stage of the journey. 
Ans. 86.26 s; 205.8, 578.8 and 59.5 rev. 

9. Calculate the centripetal acceleration of (a) a point on the earth's 
surface at the equator, assuming the earth's radius to be 4000 miles, 
(b) the earth itself due to its motion around the sun, assuming a 
circular path of radius 93 million miles. 
Ans. (a) 0.034 m S-l; (b) 0.00594 m S-2. 

General revision example 

1. A motor cycle and car start from the same point at the same time, 
and travel along the same straight track. The cyclist accelerates 
uniformly at 1.4 m s - 2 to a maximum speed of 60 km/hour; the car 
accelerates uniformly at 0.6 m s - 2 to a maximum speed of 
80 kmjhour. Calculate the time taken for the car to overtake the 
cyclist, and the distance travelled in this time. 
Ans. 56.24 s; 838.3 m. 

2. A vehicle travels from A to B a total distance of 2 km. It starts from 
rest at A with acceleration 0.6 m s - 2 for a time t 1. It then travels at 
constant speed for a further time t2.1t finally comes to rest at B after 
an additional time t3 , having retarded at 1.8 m S-2. The total time 
taken is 120 seconds. Calculate the three times, and the speed over 
the second part of the journey. 
Ans. 34.32 s; 74.25 s; 11.43 s; 20.59 m/s. 

3. Two points A and B on a straight track are 800 m apart. Two 
vehicles start at the same instant, one travelling from A to B and the 
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other from B to A. The one leaving A accelerates from rest at 
0.5 m S-2 until it attains a maximum speed of 48 km/hour. The 
vehicle leaving B accelerates from rest at 2.4 m s - 2, reaching a 
maximum speed of 40 km/hour. Calculate the distance from A 
where the vehicles meet, and the time taken. 
Ans. 369.5 m; 41.06 s. 

4. A shell is projected vertically from a gun with an initial velocity of 
250 m/s. It is required to explode at a height of 1700 m. Calculate the 
time at which the fuse should be set, so that the shell explodes on its 
way up, Neglect air resistance. 
Ans. 8.08 s. 

5. A projectile is fired vertically upwards from the top of a tower of 
height 40 m with an initial velocity of 80 m/s. At the same instant, a 
second projectile is fired vertically upwards from the base of the 
tower with an initial velocity of 100 m/s. Determine the time elapsed 
before they are at the same height, and calculate this height. 
Ans. 2 s; 180.38 m. 

6. A body is dropped from rest from the top of a tower of height 50 m. 
After 2 seconds, a projectile is fired vertically upwards from the base 
of the tower with an initial velocity of 20 m/s. Calculate the height at 
which they meet. 
Ans. 12.45 m. 

7. A satellite may be assumed to have a circular orbit around the earth 
at a radius (to the earth's centre) of 9000 miles. One complete orbit 
takes 41 hours. Calculate the speed of the satellite in m/s and the 
magnitude of the centripetal acceleration. If the satellite is SUbjected 
to a linear retardation of 0.014 m s - 2, calculate how many orbits it 
will make before its speed is reduced by 10 per cent, assuming its 
orbital path is unaltered. 
Ans. 5.618 km/s; 2.179 m S-2; 2.35 orbits. 

8. The armature of an electric motor reaches a speed of 5000 rev/min in 
10 s from rest. This speed is maintained for 30 s. The power is then 
switched off and the armature comes to rest in a further 90 s. Find 
the angular acceleration and retardation, and the number of turns 
that the armature makes during each phase of the motion. Calculate 
also the angular velocity during the second phase. 
Ans. 52.4rads- 2; 5.82 rad S-2; 416.7, 2500 and 3750 turns; 
523.6 rad/s. 
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We may as well begin with a definition. Kinetics is the study of the 
effects of forces on the motion of bodies; the whole of this programme 
is devoted to this topic. Now it is probably clear that such a topic covers a 
considerable area of work. (Even if you hadn't realised this, the 
thickness of this particular programme would be a sufficient indication. 
And this is only 'Elementary Kinetics'.) Nevertheless, it will be helpful 
to appreciate at the beginning that the principles of kinetics are simple, 
and that all of the work stems from Newton's Second Law of Motion. 
There are various ways of stating this Law, but the following will suffice 
for us. 

"The acceleration of a body is proportional to the resultant force 
acting on it, and the direction of the acceleration will be the same as 
the direction of the resultant force" 

We shall come back to this in the next frame, but for the purpose of this 
introduction it will be sufficient to state it, and to draw some 
conclusions from it. Consider first the word 'resultant'. You will know 
already that it is possible for a body to have several forces acting on it, 
and yet not be in a state of acceleration. When this is so, the resultant of 
the forces acting on the body is zero; in other words, the body is in a 
state of equilibrium. A kinetic problem therefore usually begins with an 
examination of the forces acting on a body, to determine whether a 
resultant exists, and if so, what its value is, and what its direction is. 
Putting it another way, the study of kinetics requires a previous 
thorough study of statics. 

Now consider the word 'acceleration'. This is defined as a change of 
the velocity of a body. A body subjected to a force system which is not 
in equilibrium will have its velocity changed-either in magnitude, or in 
direction, or in both. The corollory is that if the velocity of a body is 
known to be changing, then it must be subjected to a resultant force. In 
order that velocity changes can be perceived and calculated, a previous 
knowledge of kinematics is necessary. Thus, the study of kinetics 
requires a previous study of kinematics. 

So, before you become too deeply immersed in this present 
programme, you are reminded that you should have already worked 
through the two programmes 'Elementary Statics' and 'Elementary 
Kinematics'. In Statics, you will particularly require to be fiuent in the 
technique of force resolution. 
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Having got this advice over, you may now put this text away until 
you have dealt with the earlier ones, or, if you are in the happy position 
of having already done this, you may turn over to Frame 2. 
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Understanding Dynamics is not and never can be, a mere learning of 
formulae. Nevertheless, a formula can do much to shorten and simplify 
the work of analysis. It is our job in this frame to reduce Newton's 
Second Law to a simple and workable formula. 

Experimental work at the time of Newton showed that the 
acceleration of bodies subjected to forces varied according to two 
things. Firstly, acceleration was seen to vary directly with the force; that 
is, double the force on a body produced double the acceleration, and so 
on. (You may have seen this yourself, using the apparatus known as 
Fletcher's Trolley.) Secondly, it was seen that some bodies 'resisted 
acceleration' more than others; the same force acting on two bodies 
produced different values of acceleration. Bodies possessed a property 
called Inertia; this was the property of 'staying put', so to speak, when 
acted on by a force. Inertia was not merely a matter of size. A football, 
for example, will resist the action of a kick far less than a sphere of 
concrete of the same size-as I hope you are prepared to believe 
without proof! Neither is it directly a property of weight. Both the 
football and the concrete sphere might be weightless out in space, but if 
you tried to kick them both, you would damage your foot on the 
concrete just the same as if you were earthbound. We call this property 
of resisting force Mass (which is really just another word for inertia) 
and classical experiment (such as Fletcher's Trolley) shows that 
acceleration is inversely proportional to mass (that is, the same force 
acting on double the mass will produce half the acceleration, and so on). 

Combining these two relationships, we can now write a formula 

F 
a=Kx-

m 

where a is the acceleration of a body, F is the resultant force acting on it, 
m is its mass, and K is a constant. 

Now we come to units of measurement. With acceleration, using the 
S.I. system, we are committed to the use of the metre for length and the 
second for time. One unit of acceleration is thus one metre per second 
per second, or, briefly, m s - 2. Mass is measured in kilograms, and this is 
an arbitrary unit. By this, we mean that its value does not depend on 
anything else that we have previously defined, as acceleration depends 
on length and time (both of which are arbitrary units). One kilogram of 
mass is defined as the mass of a piece of platinum kept at the 
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International Bureau of Standards near Paris. (Originally, a kilogram 
was defined as the mass of 1000 cubic centimetres of water, but this 
definition is now obsolete.) 

At this point, we define the unit of force, which we so choose, to make 
the constant K in our formula equal to 1: we define unit force as the 
force required on one kilogram mass to cause an acceleration of 
1 m s - 2. This unit of force, as you probably know, is called the newton 
(abbreviated to N). Committing ourselves to these units, we rewrite our 
formula 

F 
a=­

m 

and we may bring this frame to a close by re-arranging the formula in its 
most general and familiar form, without fractions 

I.F=mxa 

the purpose of the I. (Greek capital letter 'sigma') being to remind 
ourselves that the force we are concerned with is the resultant of a 
system of forces. 
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Confusion sometimes arises because people have become accustomed 
to measuring force in kilograms. You know, of course, that the weight 
of a body is the gravitational pull exerted on it by the earth. A body 
of mass 10 kg is 'heavy' because the earth pulls it downwards-with a 
force of 10 kg, we would say. Newton's Law of Gravitation tells us that, 
provided a body is close to the earth, its weight is directly proportional 
to its mass. Thus, it has come to be established that weighing a body is a 
convenient and accurate way of measuring its mass, and, ordinarily, 
there is no real need to distinguish between weight and mass. I am not 
seriously concerned whether the mass of my body is 75 kg, or whether I 
weigh 75 kg. When I buy 2 kg of potatoes, it is of no importance to me 
whether the mass of the potatoes is 2 kg or whether the earth attracts 
them with a force of 2 kg. But we have begun the study of kinetics with a 
formula, and a definition of the unit of force; our formula requires that 
force shall be measured in newtons, not kilograms. Now it is a fact of 
experimental observation that, again provided they are close to the 
earth's surface, all bodies fall with the same acceleration (if the effects of 
air resistance are eliminated); this value of acceleration is about 
9.81 m S-2. 

Now if a body having a mass of exactly 1 kg falls downwards with an 
acceleration of 9.81 m s -2 due only to the downward pull of its own 
weight, that weight must be 9.81 newtons (since a force of 1 newton, by 
definition, would produce an acceleration of 1 m s - 2). Thus, the weight 
W, in newtons, on earth, of any body of mass m kilograms, can be 
simply calculated from the formula 

W=mxg 

wherein g has the particular value of9.81 m S-2. (Remember that this 
formula relating weight and mass applies only in cases where the body 
is fairly close to the earth's surface. Do not make the mistake of using it 
to calculate, say, the weight of a satellite orbiting the earth at a height of 
35,000 km. Even at the modest height of about 200 km, there would be 
a measurable reduction of weight.) 

The whole of this programme will be based on this system of units: 
mass will always be in kilograms (kg), length will always be in metres 
(m), time will always be in seconds (s), and force will always be stated, 
and will be calculated, in newtons (N). This forms part of the S.I. 
system; the system has gained very wide acceptance, and most 
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textbooks now use it. Nevertheless, you should always be aware of 
other systems of units, and should not be nonplussed if you encounter 
problems in which the data are not given in S.I. units. The cgs system, 
for example, takes the gram as the unit of mass, and the centimetre as 
the unit of length. (The second remains as the unit of time.) In this 
system, unit force-the force to accelerate 1 gram at 1 em s - 2-is called 
the dyne (which, as you can show for yourself, has a value of 10-' 
newtons). Also, in some older English textbooks, you may come across 
the pound as unit mass and the foot unit of length, the second 
remaining the unit of time. Since g in this system is 32.2 ft S-2, unit 
force, called the poundal, is (1/32.2) times the weight ofthe pound mass. 

To summarise so far, problems of kinetics are approached using the 
general formula 

I.F=mxa 

In this formula 

I. F is the resultant force on the body, measured in newtons (N) 
m is the mass of the body, measured in kilograms (kg) 
a is the acceleration of the body, measured in metres per second 

per second (m S-2). 
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We can now begin to solve problems using our general formula 

I:.F=mxa 

Here are three bodies, each subjected to simple force systems. 

6N 48 N 

i i 
G~ 
(a) 

1~G~20N 

(b) t 
~i:40kN ~60° 
(e) 20 kN 12 N 

Calculate the acceleration for each of these three bodies. Find the value 
only; do not bother about its direction. You can assume that the forces 
shown comprise all the forces acting on the body. So you should begin 
by calculating the magnitude of the resultant force, and then substitute 
in the formula. The answers are 

(a) 7.21 m S-2; (b) 7.38 m S-2; (c) 0.2646 m S-2 

and if you have difficulty arriving at these answers, a bit of revision of 
your statics might be necessary; refer to 'Elementary Statics', Frames 13 
to 17. In any case, the solutions are given in the next frame. 
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(a) 

(b) 

(c) 

6N 

t ;-fR 

1~4N 

Resultant R = ../42 + 62 = 7.21 N 

I:.F=mxa 

48 N 

:. 7.21 = 1 x a 
a=7.21ms- 2 

12N I 20N 
~~ 

~ 
12 N 

R = ../362 + 82 = 36.88 N 

I:.F=mxa 

36.88 = 5 x a 
:. a = 7.38 m S-2 

V;;:40kN _ 

\20kN 

40 kN 20 cos 600 kN 
~ -----':>~ 

to sin 600 kN 

R = ../502 +17.322 = 52.92kN 

I:.F=mxa 

52.92 x 103 = (200 X 103)a 

:. a = 0.2646 m S-2 
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I hope you were able to remember the rules for combining forces which 
we covered in 'Elementary Statics'. You now begin to see, I hope, the 
importance of being able to determine the resultant of a number of 
forces. The three examples of the last frame were very simple; certain 
forces were shown acting on a body, and all you had to do was to cal­
culate the magnitude of the acceleration. You might have noticed that 
no stipulations were made as to the size ofthe body, or the locations of 
the forces acting on it; the forces were treated as though they all passed 
through one point. When this is done, the body is said to be treated as a 
particle. Later, we shall consider the location of the forces when we look 
at the dynamics of rigid bodies. 

If we think now about some real engineering problems, as distinct 
from the three simple examples of Frame 4, we find two important 
differences. Firstly, in real problems, nobody tells you what all the 
forces are; you have to find out for yourself what forces are acting on a 
body. We shall look at this aspect shortly. Secondly (and this time, this 
is an advantage), the nature of the problem is usually such that we 
should know something about the direction ofthe acceleration. To give 
a simple example: if we are examining the dynamics of a train on a track, 
or a vehicle on a road, we know that the direction of the acceleration 
must be along the track, or along the road; the train or the vehicle is not 
likely to start digging into the earth, or cruising up into the air! To be a 
little more accurate in this statement: we may not know the direction of 
the acceleration, but we do know its line of action. Later examples will 
make this quite clear. In Frame 7, we shall consider carefully all the 
forces which we are likely to encounter when analysing the kinetics of a 
body. 

So far as this elementary text is concerned, all our bodies will be on, or 
near to, the earth, and therefore, they will be acted upon by their weight, 
which will act vertically downwards. Next, if a body lies on a surface 
(for example, a road or a rail), the surface will exert a force on the body. 
When the surface is smooth, this force will have a direction per-
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pendicular to the surface-we call it a reaction. When the surface is not 
smooth, the reaction will be inclined to the perpendicular, and in such 
cases, we resolve the force into a perpendicular component and a 
tangential component, which latter we call a friction force. And we 
recall that, generally, a friction force acts in such a direction as to 
prevent, or partially prevent motion. Now if a body has a rope or a wire 
tied to it (for example, the cage of a lift), the rope or the wire exerts a 
pull, or a tension force, on the body. A tension-not a thrust; you 
cannot tie a rope on to a body and use the rope to push it away from 
you. If, on the other hand, a stiff rod or bar is attached to a body (such 
as a towing-bar on a trailer), this rod can exert either a tension or a 
thrust on the body. (When you are climbing a hill, towing your 
camping-trailer behind you, the tow-bar will most likely be in tension, 
but if you are going downhill with the brakes on, it will almost certainly 
be in compression, exerting a thrust on the car. It is, indeed, for this very 
reason that you have a bar, and not a rope. With a tow-rope, there 
would always be the possibility that the trailer could move up and 
collide with the back of the car.) For a powered vehicle, there will 
always be a driving force from the engine -called the tractive force. We 
must analyse this in detail in the next frame. Finally, if the body is 
moving in a fluid-water or air-this may exert a force on the body, by 
means offluid pressure. There are many other forces, such as magnetic 
and electrostatic forces, but they are not very significant in mechanical 
problems. 

181 
By way of preparation for problem-solving, stop at this point, and 
think very carefully exactly how a car engine drives the car along the 
road. What is absolutely necessary for the engine to be effective (apart 
from the obvious answer, 'petrol')? And while on this subject, how does 
a propeller-driven aircraft work? And a jet-plane? And a steamship? All 
these are examples of power-driven vehicles, which are propelled by a 
tractive force. This is provided indirectly by the engine, but in order to 
analyse such a vehicle kinetically, we must know the actual mechanism 
whereby the engine provides the tractive force. You may not know the 
answers to these questions, but it will help you if you try and work out 
for yourself what is happening before reading on. 
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You will probably know that the car engine connects to the driving­
wheels (by means of a gearbox and a clutch). You certainly know that 
the driving wheels rest on the ground. The wheel axles are given a 
forward twist, or torque, by the engine. But because the wheels are on 
the ground, when the axle is twisted, the bottom of a driving wheel 
pushes backwards against the road. At this stage, you recall Newton's 
Third Law: "Every force produces an equal and opposite reaction." If 
the wheel is pushing backwards on the road, the road is pushing forward 
on the wheel. It is this forward push of the road on the wheel which 
constitutes the real tractive force. It now becomes clear, I hope, that 
what is absolutely necessary for the engine to be effective isfriction. You 
may have experienced the exasperation resulting from trying to drive a 
car along an icy road; the engine is in perfect order, but cannot be used 
to propel the car. Students often find this confusing, because they have 
been taught earlier that "friction opposes motion." But in the case of a 
wheel-driven vehicle, it is friction that is necessary to produce the 
motion. 

A propeller-driven aircraft operates differently; the propeller pushes 
backwards against the air. So, again, we invoke Newton's Third Law; 
the air must push forward against the aircraft. A consequence of this is 
that such craft operate less efficiently at high altitudes, where the air 
density is less. A jet-plane, in contrast, pushes a mass of effluent 
backwards at very high velocity; the engine thrust is the equal and 
opposite reaction force exerted by the effluent on the aircraft. This is 
independent of the density of the air; thus, a jet-plane operates more 
effectively at high altitudes, because the resistance of the air to the 
aircraft's motion is less as the density reduces. A steamship operates in 
the same manner as a propeller-driven aircraft, except that the propeller 
pushes against water instead of air. 

We shall end this frame with a check-list of all the forces we are likely 
to meet when examining the motion of bodies: the forces discussed in 
Frame 7. 

1. Weight 
2. Surface normal reaction 
3. Surface friction reaction 
4. Rope or wire tension (pull only) 
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5. Bar tension or compression (pull or push) 
6. Tractive force 
7. Fluid pressure (including wind or water resistance). 

Let's look at a problem now-a slightly more realistic one than the 
simple exercises of Frame 4. 

Example 

A wagon of mass 250 kg rests on a smooth rail having a slope of 5° as 
shown. Find its acceleration. 

Look back to the check-list at the end of the previous frame. We have 
to find all the forces acting on the wagon. How many do you reckon? 
Put down all the forces you think we need. Then read on to Frame 11. 
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1. .j Weight. Obviously the wagon has weight; its value is (250g) 
N. 

2. .j Surface normal reaction. The wagon rests on the rail; 
therefore the rail must exert a force on the wagon (we do not 
know its value). 

3. x Surface friction. No mention is made of friction in the 
statement of the problem. If we were required to take it into 
account, we should have been given information about its 
value. In any case, when a problem refers to a 'smooth rail', or 
a 'smooth track', it means that we are expected to neglect 
friction. 

4, 5. x There are no ropes, wires or bars attached to the wagon. 
6. x It is a wagon, not a self-driven vehicle. So there is no tractive 

force. 
7. x As the wagon moves, it will encounter resistance due to the 

air. But since we are given no information about the 
magnitude of the resistance, we shall be expected to assume it 
to be negligible-that is, zero. 

The next stage is to draw a simple diagram of the wagon, showing the 
two forces that we have decided are acting on it. This diagram is called a 
free-body diagram. Its purpose is to show all the forces which are seen to 
be acting on the body, correct as to magnitude, if known, and direction, 
and also to show the line of action, and the direction (if known) of the 
acceleration. From here forward, always begin the solution of a kinetic 
problem by drawing the free-body diagram. In this particular problem, 
such a procedure may seem trivial and unnecessary, but as problems 
increase in complexity, you will begin to see how essential this practice 
is. 

The free-body diagram looks like this 

a <:------

Notice: only the body and the forces are shown, not the track. 
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For a very simple diagram, there are several things that we have to say 
about this. Firstly, if a force is known to exist but we do not know its 
value, we give it a letter. In this case, we call the normal reaction force R. 
Secondly, it must be obvious that the line of action of the acceleration 
must be along the direction of the track. (As we pointed out earlier, it 
cannot be up into the air or down into the track.) And in this particular 
case, the acceleration must be down the slope, not up it. We shall meet 
problems later in which we shall not be able to state with certainty 
which way the acceleration acts. In such cases, we shall have to guess. 
Finally, notice the arrow representing the acceleration; this is dotted, 
deliberately to distinguish it from the two force-arrows. It is simpler to 
use a pen of a distinguishing colour for forces-I always use a red pen 
for forces-but this is not possible in a printed text. 

Now, we have two forces acting on the body, and we know that the 
acceleration is directed down the 5° slope. The resultant of the two 
forces must therefore also be directed down the slope. We could 
construct a force 'polygon' such that the resultant is in the correct 
direction, thus 

250g 
R 

But it is much simpler to make use of the principle of force resolution. 
We can resolve the forces along two directions, one being the direction of 
the acceleration and the other being perpendicular to it. Thus 

2509 sin 5° q,J50 a-<:-----~ kg 

R 

~ 250g cos S° 
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We now write the general equation of motion l: F = m x a, having 
regard to the direction of a which is known to be down the slope. The 
equation is 

250g sin 5° = 250 x a 
from which 

a = g sin 5° = 0.855 m S-2 

and you will note that we have arrived at the answer without having had 
to determine the force R. If we were required to find this, we could write 
an equation of equilibrium in the direction perpendicular to the 
acceleration 

R -250g cos 5° = 0 

giving a value for R of 2443.2 N. An equation of equilibrium may be 
considered as a special case of the equation l: F = m x a when the value 
of acceleration a is zero: thus, l: F = O. 

Now let's look at an example involving a few more forces. 

Example A truck of mass 2 tonnes is driven up a 12° slope by a 
tractive force of 4.2 kN. Resistance to motion due to the air is 
estimated at 450 N. Calculate the acceleration of the truck. 

Your approach should be exactly as in Frame 11. Sketch a free-body 
diagram of the truck, showing (a) all the forces and (b) the acceleration. 
Do not confuse the acceleration with the force. (Why not use my 
method of reserving a red pen to indicate forces?) The line of action of 
the acceleration is clearly along the direction of the slope, and you may 
assume it to be up the slope. (We will come back to this point at the end 
of the solution.) Go through the force check-list carefully (Frame 9). 
You should find four forces. By the way, you should know that 1 tonne 
is 1000 kg. 
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Your free-body diagram should look like this 

Compare this carefully with your attempt and find out where you went 
wrong (if at all). When you have sorted things out, go ahead and write 
the equation of motion. Do not look at Frame 15 first; have a go 
yourself, and then check in Frame 15. 

The equation is 

4200 - 450 - 2000g sin 12° = 2000 a 

and since a is the only unknown term, we can determine it. The 
calculation is 

(4200 -450-2000 x 9.81 sin 12°) 
a = 2000 

= -0.1646 m S-2 

How are we to interpret this negative answer? The problem states that 
the truck is driven up the slope, and the negative value for a suggests 
that the acceleration is down the slope. Well, of course, this is quite 
possible; the truck may be moving up the slope, but its speed is 
reducing. This example serves to illustrate the principle that if the 
direction of the acceleration is unknown, or at best, not immediately 
obvious, we may assume it, and if our assumption is incorrect, this will 
be shown by a negative value. 
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We need to clear up one point about resolution. In the two examples so 
far, we have resolved forces along the two directions, one being the 
direction of the acceleration, and the other being perpendicular to it. 
Do we have to do this? The answer is, "No, not necessarily." The choice 
of directions is a matter of convenience. Look back to Frame 11. 
Suppose that instead of resolving along the slope and perpendicular to 
it, we chose instead to resolve horizontally and vertically. After all, we 
have some justification for this; the force of 250g N is already vertical. 
We then have to resolve force R into vertical and horizontal com­
ponents. But we must now remember that the acceleration a is also a 
vector, and this also must be resolved. So our diagram becomes 

I 
I 
I 
I 

a sin 5°'" 

a cos 5° ~- - -- B .... <E---- R sin 5° 

~ 250g 

iR cos 5° 

Now we have to write two equations of motion 

R sin 5° = 250(a cos 5°) (1: F = m x a horizontally) 

250 - R cos 5° = 250(a sin 5°) (1: F = m x a vertically) 

and these two simultaneous equations must be solved, by eliminating R 
to find a. If you do this, you will end up with the same value for a which 
we found in Frame 12, but of course you will have had to do a lot more 
work. So for a general working rule, you should always choose the line 
of action of the acceleration as one of the directions for resolution. 

Here is another simple example. 

Example A locomotive with train has a total mass of 420 Mg. 
Calculate the required tractive force to drive it up a slope of 1 in 150, 

156 Elementary Engineering Mechanics 

 16



starting from rest and attaining a speed of 12 m/s in a distance of 
SO m. Neglect any resistance to motion due to the air. 

The problem is simple, but you need to brush up your elementary 
kinematics. See if you can solve it yourself. The answer is 632.3 kN. The 
solution is shown in the next frame. By the way, a slope of 1 in 150 
always means (in this programme, anyway) that the sine of the angle of 
slope is 1/150. 

You will most probably have seen that the acceleration is not stated, but 
that information is given to enable you to calculate it. The kinematic 
equation you need is 

Substituting 
122 = 0 + 2 x a x SO 

which gives a value for a of 1.44 m s - 2. This time, there is no doubt; the 
acceleration is definitely up the slope. Your free-body diagram is 
therefore 

_2 
a=1,44m S 

----""" 

and the equation of motion is 

F - 420,OOOg sin (J = 420,OOOa 

_ 20000 44 420 ()()() x 9.81 
F - 4, x 1. + 150 

= 632.3 kN 
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Let us introduce friction forces now. You need to recall what are 
sometimes called the 'Laws of dry friction'. For our purposes, these can 
be condensed to two. 

1. Friction always acts in a direction that tends to oppose motion. 
2. The friction force is proportional to the normal reaction force 

between the surfaces in contact. 

Friction is a reaction force: it comes into existence only when another 
force tries to move a body. If a wooden block is at rest on a horizontal 
table, with no other forces acting upon it but its own weight, and the 
equal and opposite upward reaction force of the table, a friction force 
will not exist. But if in addition, a small sideways force is applied to the 
block, insufficient to move it, the table will exert an equal and opposite 
force, so that equilibrium is maintained. The table can do this because it 
is not perfectly smooth, but has tiny bumps and hollows on its surface 
which interfere with similar bumps and hollows on the undersurface of 
the block. If the sideways force on the block is steadily increased, the 
block will eventually begin to move, because the sideways friction force 
between table and block has a limited maximum value (determined by 
the natures of the two surfaces in contact, and the normal, or 
perpendicular, reaction force between them). This limited maximum 
value, F, can be calculated from the simple formula 

F~J.txR 

J.t (the Greek letter 'mu') is called the coefficient of friction. Its value is 
dependent, as we have seen, on the nature and roughness of the two 
surfaces in contact. R is the normal reaction force between the two 
surfaces. The sign ~ ('less than or equal to') is a reminder that the 
friction force will be equal to J.t x R only if the body is actually sliding 
across the surface, or is just about to do so, when the friction force will 
have its maximum possible value. As we have seen, it can, of course, be 
less than this value. 

Friction forces are an area of mechanics where accuracy is difficult to 
achieve. A coefficient of friction cannot be calculated: it can only be 
determined experimentally. Tables of friction coefficients are to be 
found in textbooks and engineering handbooks, and may be used in 
order to calculate forces in particular circumstances. But a wise 
calculator will assume a wide possible margin of error-say, ± 20 per 

158 Elementary Engineering Mechanics 

 18



cent at least-in his calculations. Another phenomenon complicates 
the picture. If we go back to our simple block on the table, and steadily 
increase the sideways force until the block begins to slide, we should in 
aU probability find that it would also begin to accelerate, because it is 
found that in most cases, less force is needed to keep a body sliding than 
to start it sliding. This peculiarity has earned the engaging name of 
'sticktion'. So engineers treat friction forces sceptically and with 
caution, and if it is necessary to know them with accuracy, they always 
resort to experiment. 

Here is a simple friction example, which you should be able to solve 
unaided. Follow the rules: draw a free-body diagram and show all the 
forces. You should find three forces. The answer is 4.803 m S-2. 

Example A body of mass 20 kg is placed on an inclined surface 
having a slope of 40°. The friction coefficient between body and 
surface of plane is 0.2. Calculate the acceleration of the body. 
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Here is the free-body diagram, and the working. 

Down the slope: 

Across the slope: 

Substitute for R: 

20g N 

20g sin 40° -0.2R = 20a 

20g cos 40° = R 

20g sin 40° - 0.2(20g cos 40°) = 20a 

Cancel 20 and re-arrange 

a = g(sin 40° -0.2 cos 40°) 

= 4.803 ms- 2 

I hope you had no difficulty in indicating the direction of the 
acceleration down the slope. Of course, it would not matter if you had 
shown it as acting up the slope; you would finish up with a negative 
value for a. But the friction force must be shown acting upwards; a body 
placed on a slope will tend to slide down, and friction will try to stop it. 
Be sure you understand and correct any mistakes you made. 
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Now we'll complicate the problem a little. 

Example A body of mass 30 kg is projected up an inclined plane of 
slope 35° with an initial speed of 12 m/s. The coefficient of friction is 
0.15. Calculate (a) how far up the slope it travels before coming to 
rest, (b) how long it takes to reach the highest point, (c) how much 
longer it takes to return to its starting-point and (d) how fast it is 
travelling when it gets there. 

The point to note here is that this is really two problems. When the 
body is moving up the slope, the friction force will act downwards. But 
when it begins to come down, the direction offriction reverses, and acts 
up the plane. So the acceleration of the body will be different coming 
down from what it was going up. Attempt the first part only to begin 
with. Draw a free-body diagram, and calculate the acceleration. You 
should find this to be 6.832 m s - 2 acting down the plane. Then you will 
need to recall your kinematic equations to find the distance and the 
time taken. The answers should be 10.538 m and 1.756 s. 
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Here is the free-body diagram and the working for the first part of the 
example. 

Down plane: 

Across plane: 

30gN 

30gsin35°+0.15R = 30a 
30g cos 35° = R 

Substituting and re-arranging as for the previous example 

30g sin 35° + O.l5(30g cos 35°) = 30a 

To find distance 

and the time 

a = g(sin 35° + 0.15 cos 35°) 

= 6.832 ms- 2 

v2 = u2 +2ax 
0= 122 + 2( - 6.832)x 

144 
x = 2 x 6.832 = 10.538 m 

v = u+at 

o = 12 + ( - 6.832) t 

. 12 
.. t = -- = 1.756 s 

6.832 --

Observe carefully (especially if you made mistakes) that when we apply 
the kinematic equations, we take the direction up the slope as positive; 
hence the acceleration must be reckoned negative. 
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The technique for solving the second part of the problem is the same, 
but of course the friction force now acts up the plane. The value of the 
acceleration should be 4.421 m s - 2, the time to descend to the starting­
point 2.183 s, and the speed at the bottom 9.653 m/s. The distance 
travelled down the plane is, of course, the value of x calculated above. 

Frame 22 shows all the working. 

30gN 

Down plane: 30g sin 35° -0.15R = 30a 

Across plane: 30g cos 35° = R 

30g sin 35° - 0.15(30g cos 35°) = 30a 

a = g(sin 35° -0.15 cos 35°) 
= 4.421 ms- z 

The body begins to slide down the plane with this acceleration, and has 
to travel the distance x = 10.538 m. 

To find time: 

To find final velocity: 

x = ut+!at2 

10.538 = 0+1 (4.421)t2 

:. t = 
2 x 10.538 

4.421 = 2.183 s 

v2 = u2 +2ax 

= 0+2 x 4.421 x 10.538 

= 93.186 

v = 9.653m/s 
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Before looking at the next type of problem, you might need to prepare 
yourself by referring back to 'Elementary Kinematics', Frame 51 and 
following. This deals with the motion of a particle along a circular path, 
and introduces the concept of centripetal acceleration. Recapitulating 
the essence of this work: 

"When a body travels with constant speed v on a circular track of 
radius r, it undergoes a centripetal acceleration of magnitude v2lr. 
When a body turns about an axis with constant angular speed 0), a 
point on the body at a radius r undergoes a centripetal acceleration of 
magnitude 0)2r. The centripetal acceleration is always directed 
towards the centre of curvature of the curved path" 

Looking at this from the standpoint of kinetics, we know that the 
acceleration of a body requires a force. Consequently, whenever we 
observe a body moving in a circular path, we must look for the force 
causing the centripetal acceleration. This is called the centripetal force. 
Centripetal force must be exerted on a body by means of some other 
body; by Newton's Third Law, the first body must therefore exert an 
equal and opposite reaction, and this reaction is called the centrifugal 
force. For example, if you stand in a vehicle which moves round a bend, 
you feel a push on your body, pushing you round the bend. But your 
body pushes in the opposite direction outwards against the vehicle. 
This reverse push of your body on the vehicle is the centrifugal force. Of 
course, when considering the forces acting on your body, the centrifugal 
force must not be included-<>nly the centripetal force. 

Imagine a small body of mass m at the end of a light string of length L, 
the other end of the string being attached to a fixed point; the body 
moves at a constant angular speed 0) in a horizontal circle. Such an 
arrangement is called a conical pendulum. 
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Since the body is moving in a circular path, it must have a centripetal 
acceleration directed towards the centre of rotation. This is shown on 
the free-body diagram of the body, when at the outermost part of the 
circle. The diagram also discloses the weight of the body, and the string 
tension, T, as the only two significant forces, air resistance being 
neglected. 

mg 

The diagram offers two equations 

Horizontally, I:.F = m x a: 

Vertically, I:.F = 0: 

Eliminate T: 

:. TsinO = m x Q)2r 

:. TcosO = mg 

", Q)2r 

tanO=~ 

From the system triangle: 
r 

tan 0 =­
h 

L h 
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h is called the height of the pendulum. It is seen that h gets smaller as w 
increases. This principle was used in the Watt engine governor; a ball on 
the end of a light rod was driven in a circular path by the engine shaft, 
and as the speed increased, the outward movement of the ball caused 
fuel to be shut off from the engine, thus limiting the speed. For a 
relatively slow engine this worked quite well, but as speeds began to get 
higher, the device was less useful. You can easily show for yourself that 
for a rotation speed of 300 rev/min the value of h would be only 
9.9 mm. Such a simple type of governor is now a historical curiosity 
only, and has been replaced by more sophisticated devices, such as 
spring-loaded governors of the Hartnell type. 

Notice that the actual centripetal force on the body is the horizontal 
component of the string tension. The other end of the string pulls 
outwards on the fixed string support; this is the centrifugal force. 

Now we must examine the dynamics of a vehicle travelling around a 
circular track. 

Example A car of mass 800 kg travels at a constant speed of 10 m/s 
around a circular track of mean radius 40 m. The track surface is 
horizontal. Examine the forces acting on the car. 

Here is the complete free-body diagram, looking at the car end-on. 

F 
[3----+ .. ;' 

> t 
R 

~800gN 
If you refer to your check-list in Frame 9, you can account for the 
downward weight of the car, and also for the vertical upward reaction 
R. We know that the car must have a centripetal acceleration. (The 
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diagram is intended to represent the rear view of the car turning to the 
right.) So the acceleration must be horizontally to the right. A force F is 
shown, acting to the right. Now we know that there must be a right­
directed force on the car, because it has a right-directed acceleration. 
But in drawing the free-body diagram, this is not sufficient evidence. 
Forces must be included because they can be explained in terms of the 
constraints on the body-that is the things which are actually touching 
it or exerting forces on it. So, although the acceleration tells you that 
there must be a force F to the right, you also have to justify this force, by 
stating exactly what is providing it. To put it another way, it is not 
sufficient to say, as learners are prone to do, "There must be a force 
because of the acceleration." This is to turn Newton's Second Law 
upside down. Forces cause acceleration; they are not caused by 
acceleration. So, having decided that there must be a force to the right 
to provide the acceleration which we know is there, the next question 
which you must answer is "What is actually providing that force?" 

The answer to the previous question is "Friction". A car cannot travel 
round a curve on a flat road unless there is sufficient friction between 
tyres and road, as all car drivers will know-especially those who have 
tried to drive a car under icy conditions. We deduced in Frame 9 that a 
friction force is necessary to accelerate a car forwards or backwards. It 
is equally necessary here to accelerate it sideways. 

Our free-body diagram discloses two equations 

v2 102 
Horizontally, 1:.F = m x a: F = 800 x - = 800 x - = 2000 N 

r 40 

Vertically 1:.F = 0: R = 800 g = 7848 N 

Let's find out in the next example how fast the car can go without 
slipping. 

Programme 3: Elementary Kinetics 167 

 26



Example Calculate the greatest speed at which the car of the 
previous example (Frame 25) may travel around the circular track if 
the friction coefficient between road and tyres is 0.4. 

We need not redraw the free-body diagram; the forces will be as 
previously, except that since the friction force must now have its 
maximum possible value, we replace F by J.I. R. Friction force can always 
be less than J.I. R but can never be greater. The speed v is now unknown. 
So the first equation of Frame 26 becomes 

and the second 

v2 
J.l.R = 800x­

r 

R = 800 g = 7848 N as before 

Substituting in the first equation for R and for the stated values 

v2 
0.4 x 7848 = 800 x 40 

. . _ 0.4 x 7848 x 40 _ 12 53 / 
., v - 800 -. m s 

and if the driver attempted to take the curve faster than this, he would 
sideslip. 
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Now we shall examine the case of a banked track. 

Example A car of mass 800 kg travels at a constant speed of20 m/s 
around a circular track of mean radius 40 m. The track surface is 
banked inwards at an angle of 40°. Evaluate all the forces acting on 
the car. 

The same three forces act as in the diagram of Frame 25, but this time, 
the friction and the normal reaction will not be horizontal and vertical. 

This time, see if you can write the two correct equations. Resolve 
horizontally and vertically, and not along the track and perpendicular 
to it. Do you understand why? If not, refer back to Frame 16. 
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Your equations should be 

Horizontally, 

~F = mxa: 
202 

R sin 40° + F cos 40° = 800 x 40 = 8000 

Vertically, r.F = 0: R cos 40° -Fsin40° = 800g 

although it is possible that you may not have them in this exact form. 
We require forces F and R. The algebra is more formidable than in 

the previous example. If we move the terms containing F to the right­
hand sides of the equations, we can then divide one equation by the 
other, and thus eliminate R. 

If. sin 40° 8000 - F cos 40° 
~ cos 40° - 800g + F sin 40° 

800g tan 40° + F sin 40° tan 40° = 8000 - F cos 40° 

F(sin 40° tan 40° + cos 40°) = 8000 - 800g tan 40° 

From the first equation 

F = 8000 - 800g tan 40° 
sin 40° tan 40° + cos 40° 

= 1.91B·1LN 
8000 - F cos 40° 

R=------
sin 40° 

R = 11_154.2 ~ 

You have probably already realised that we are now able to drive round 
the bend at a greater speed than the limiting speed of 12.53 m/s without 
slipping. In fact, for slipping to occur at this particular speed, the value 
of J.l would have to be as low as 0.097 (this is the fraction F / R calculated 
from the two results above). 

Now solve the last part of this example 

Example Calculate the greatest speed at which this car may travel 
around the banked circular track if J.l = 0.4. 
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1301 
The two equations will now be 

Dividing: 

V2 
R sin 40° + Il R cos 40° = 800-

r 

Rcos40° -IlRsin40° = 800g 

sin 40° + 0.4 cos 40° = v2 = 1 865 
cos 40° - 0.4 sin 40° rg . 

v = v'1.865 x 40 x 9.81 

= 27.05m/s 

When the track is banked, the free-body diagram shows that the 
centripetal force is provided partly by the frictional force F and partly 
by a component of the normal reaction R; this is the purpose of 
banking the track. The vehicle can travel very much faster around a 
banked track than it can around a flat track, assuming the same friction 
coefficient. This fact is exploited in the design of racing tracks. 
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'Drill' exercises: dynamics of particles 
1. A body of mass 400 kg is located on an inclined plane of slope 35°. 

The coefficient offriction between body and plane is 0.12. Calculate 
the acceleration of the body (a) when it moves up the plane, (b) when 
it moves down the plane. 
Ans. (a) -6.59 ms- 2 ; (b) +4.66 ms- 2 • 

2. A body of mass m is released from rest at the top of an inclined plane 
of slope 25°. It takes 2.1 seconds to move down a distance of 6 m. 
Calculate the coefficient of friction between body and plane. 
Ans.O.16. 

3. A wagon ascends a track of slope 10° for a distance of 24 m and then 
moves on to a horizontal track. Resistance to motion is equivalent to 
a friction coefficient of 0.04. Calculate the required initial speed of 
the wagon in order that it will travel 80 m along the horizontal track. 

T --, 

Ans. 12.77 m/s. 
4. A body of mass m rests on the horizontal floor of a truck. Jl between 

body and floor is 0.5. Calculate the least forward acceleration of the 
truck sufficient to cause the body to begin to slide backwards along 
the truck floor (a) when the truck travels along a straight level road, 
(b) when it travels up a straight 15° slope, (c) when it travels down a 
straight 15° slope. 
Ans. (a) 4.905 ms- 2 . (b) 2.199 ms- 2 . (c) 7.277 ms- 2 • 

5. Solve Problem 4 for the case when the floor of the truck is not 
horizontal, but is tilted backwards at an angle of 10°. 
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Hint: in all cases, the direction of acceleration of the body will be the 
same as that of the truck. 
Ans. (a) 2.918 ms- 2 • (b) 0.2795 ms- 2 • (c) 5.358 ms- 2 • 

6. A small body of mass m at the end of a light cord of length 1.2 m 
moves in a horizontal circular path, the other end of the cord being 
attached to a fixed point. (a) If the body completes 1.8 revolutions 
per second, determine the angle that the string makes with the 
vertical. (b) Calculate how many revolutions per second the body 
completes if the string tension is ten times the weight of the body. 
Ans. (a) 86.34°. (b) 1.44rev/s. 

7. A locomotive and train has a total mass of 480 Mg. Resistance to 
motion due to friction is estimated at 1.25 per cent of the total 
weight. The locomotive exerts a maximum tractive force of 125 kN. 
Calculate the minimum time for the train to accelerate from rest to a 
speed of 90 km/hour (a) along a level track, (b) up a slope of sin- 1 

0.01, (c) down a slope of sin -1 0.01. 
Ans. (a) 181.4 s. (b) 629.9 s. (c) 106.0 s. 

8. The rotor of a small gyroscope is designed to spin at 23,000 rev/min. 
A small quantity of the rotor metal of mass 1 milligram, at a radius 
of 25 mm, is accidentally removed. Calculate the resulting un­
balanced force exerted on the rotor shaft. 
Hint: treat the removed metal as a spinning body of 'negative' mass. 
Ans. 0.145 N. 

9. A car of mass 780 kg travels at constant speed around a circular 
track of mean radius 120 m. The track is banked inwards at an angle 
(J to the horizontal. The coefficient of friction between car and track 
is 0.46. 
(a) If the car speed is 140 km/hour, calculate the value of (J such that 

there will be no sideways friction force on the car. 
(b) If angle (J is 40°, calculate the maximum speed at which the car 

may travel safely. 
(c) If (J is 40° and the car speed is 140 km/hour, calculate the 

magnitudes of the sideways friction force, and the normal track 
reaction force, on the car. 

Hint: in (c) friction force is not Jl. R; call the force F. 
Ans. (a) 52.1°. (b) 179.7 km/hour. (c) 2611.9 N, 12180.4 N. 
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We now come to the subject of work. You may think that you know 
quite a lot about this subject, having reached this point in this text. But 
work has a definite meaning in kinetics. It is what is done by an engine, 
or a machine. In dynamic terms, in order that work can be done, a force 
has to be brought to bear on an object, and that object must move as a 
result. The greater the force, the more work done. Also, the more the 
movement, the more work done. So work is measured as the product of 
force and displacement. The unit of work (which we could call the 
newton metre) is actually called the joule. 

Work = (F x x)joules 

The movement must be in the direction of the applied force. If you hold 
a heavy weight in your hand but do not move, then kinetically you are 
doing no work. Even if you walk with this weight along a level path, 
again, you will do no work kinetically, because the movement is 
horizontal, whereas the applied force is vertical. Only when you begin 
to go uphill will you be doing actual kinetic work. 

Energy is that quality, possessed by a body, or by a substance, or by a 
system, which enables work to be done. You must be aware that energy 
exists in many forms. Coal and oil contain energy; a boiler containing 
high-pressure steam contains energy; the sun contains energy. Less 
immediately obviously, water in a dam or reservoir is a source of 
energy, because you can lead the water through pipes and arrange for it 
to drive turbines, which in turn can produce electrical energy. Moving 
water is similarly a source of energy, because it can drive a mill or 
similar machine. 

The principal forms of energy of interest to engineers are mechanical, 
electrical, thermal, nuclear, chemical and solar. Experiment has proved 
that energy is interchangeable in quantity. By this, we mean that if, for 
example, we do mechanical work to produce thermal energy, a certain 
amount of work will always produce exactly the same quantity of 
energy. The same principle applies in any other form of energy 
conversion: mechanical to electrical, electrical to thermal, and so on. 

The principle of Conserva:tion of Energy has nothing to do with 
saving energy. It is a principle repeatedly proved by many careful 
experiments, to the effect that you cannot create or destroy energy; you 
can only convert it into other forms. For our particular purpose in this 
text, we can state this principle in the form of an energy equation 
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Initial energy + Gain of energy - Loss of energy = Final energy 

A car travels along a road; it has energy by virtue of its motion. Some 
energy is added to the system, because fuel is being burned in the car. 
There is some loss of energy to the system because the car is having to 
do work against the resistance of the air. Ifwe could accurately measure 
these quantities, we could then state what the final energy must be. For 
example, if the energy added were more than the energy lost, the car 
must go faster. 

We must understand one further aspect of energy interchange 
clearly. Although a specific amount of energy might be available at one 
point, it is not always possible to convert all of it into another form. For 
example, we may wish to convert the chemical energy of oil into heat 
energy in the form of steam in a boiler. But we should be only partially 
successful, because we could not prevent quite a lot of heat going up the 
chimney. And if we then try to convert the energy in the steam into 
mechanical work, we should be lucky to get more than about one-third 
of it. From this emerges the concept of efficiency, which we may define 
as 

Effi . Amount of useful work obtained 
Clency = . 

Amount of energy avaIlable 
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In this text we are concerned only with mechanical energy; this is 
manifested in two forms-kinetic and potential energy. 

Kinetic energy is energy by virtue of the motion of a body. The 
example of moving water given in the previous frame constitutes 
kinetic energy. A moving vehicle possesses kinetic energy-because 
work has been done by a force in order to set it moving. We can derive 
an expression for this work done, so that we can henceforward calculate 
kinetic energy, in terms of the mass of a body and its velocity. 

Consider a body of mass rn acted upon by a constant force F, which 
acts for a distance x. 

__ v 

F~c:J 
.---- ---I 

I I 
I I 
I I 
I I 
, I 

I. x .1 

The gain of kinetic energy of the body must be equal to the work done 
by the force F. 

Gain of K.E. = F x x 

As a result, the body will be moving with velocity v. 

But, from Newton's Second Law: F = rn x a 

and, kinematically: v2 = u2 +2ax = O+2ax 
if the body starts from rest. 

v2 
x=-

2a 

v2 

Gain of K. E. = (rna) 2a = ! rnv2 

Potential energy is energy by virtue of the height of a body-above 
some arbitrary point. The water of a mountain lake can be made to do 
work, by piping it down to a turbine; the further down you can take it, 
the more work you can get it to do. 
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Consider a body of mass m being raised vertically by a force F at 
constant speed. If the speed is constant, the acceleration will be zero. 
The free-body diagram is 

a=O 

Because acceleration a = 0, 

+ 
I 
I 
I 
I 
I 

F 

i 
[J 
j 

mg 

F=mg 

Increase of energy = work done by F = mg x h 

.'. Potential energy = mgh 

In the next few frames we shall use these two formulae to solve simple 
problems, but just before doing so, it might help for us to rewrite the 
general equation of energy stated in Frame 32 thus 

Initial energy of a body + Work done on body - Work done by body 

= Final energy 
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Example A body of mass m is at rest at the top of an inclined track of 
slope 30°. It is released from rest and moves down the slope without 
friction. Calculate its speed after it has moved 20 m. 

7 
h 

7 

___________ -L-_ Datum 

In this example, no work is done on the body; it is not being driven, or 
pulled, or pushed. Neither is any work being done by the body; it is not 
required to overcome friction. So we can say 

Initial energy = final energy 

Since the body is at rest, initially, the energy can only be potential. At 
the lower point of the slope, it has lost this potential energy (if we 
consider the lower point as a 'datum' for estimating potential energy). 
But it has gained kinetic energy. Thus, 

Initial (potential) energy = final (kinetic) energy 

.'. mgh = lmv2 

:. v = J2gh 
,-----

= J2g x 20 sin 30° 

= 14.0~/s 

Let's slightly complicate the example. 

Example A body of mass 20 kg is at rest at the top of an incline of 
slope 30°. It is released from rest and moves down the slope against a 
friction force of 20 N. Calculate its speed after it has travelled 20 m. 
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Our energy equation now becomes 

Initial potential energy - work done by body = final kinetic energy 

and you should be able to arrive at the answer of 12.5 m/s without too 
much difficulty. Remember: work = force x displacement. The sol­
ution follows in Frame 35. 

1351 
mg x h - F x x = 1 mv2 

.'. 20 g (20 sin 30°) - 20 x 20 = 1 x 20 v2 

:. v = Jr-(2-00-g---2-~OO-)-X-2 = l.?.:~mL~ 

and the body is seen to be going slower than previously; we expect this, 
as it is being opposed by a friction force. 

You need to understand clearly that this is not the 'right' way to solve 
this problem; it is the simplest way. You could solve both these 
problems by drawing a free-body diagram, calculating the acceleration, 
and then using a kinematic equation, and if you think you would gain 
from this additional practice you should do this for yourself. In doing 
so, you will find that you have to do more work than we have done here 
in these last two frames. 
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Here is a different type of example. 

Example A small body of mass m hangs vertically at the end of a 
light string of length 11 m, the other end being attached to a fixed 
point. The body is displaced to one side so that the string makes an 
angle of 60° to the vertical; it is released from rest in this position. 
Calculate the velocity of the body when it reaches its initial 
position-that is, when the string is again vertical. Neglect any 
resistance. 

Here, we have no energy added; we are not pushing the body, but 
releasing it from rest. Similarly, no energy is lost, because no work 
against friction is to be assumed. The equation is therefore 

Initial (potential) energy = final (kinetic) energy 

You will require some elementary trigonometry to work out the height 
to which the body is raised. Take your datum for potential energy 
through the lowest point. The answer is 3.836 mis, and the working is 
shown in the following frame. 

I 

----1 T , 
h 

~v 
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Height: h = 1.5 -1.5 cos e = 1.5 (1 - cos 60°) = 0.75 m 

P.E. = K.E . 

... mgh = !mv2 

:. v = J2gh = J2 x 9.81 x 0.75 = 3.~~~_1!l~ 

There are two points of interest in this problem. Firstly, we find that the 
calculation for v follows exactly the same lines as the example of Frame 
34. Moreover, the answer we get is exactly the same as if the body had 
been allowed to drop vertically from rest through the same height h. In 
other words, the final velocity of the body is determined only by the 
vertical height of its fall, and does not depend on how it falls; it may fall 
vertically, or along a straight slope, or along a curved path. This 
suggests that an energy approach to a problem is most useful when we 
are interested only in the states at the beginning and the end of an event, 
and not in what happens in between. 

The second point of interest in this example is that a solution by 
drawing a free-body diagram and writing an equation of motion is, for 
our purposes, practically impossible. The difficulty lies in the circum­
stance that the equation of motion (and therefore the resulting 
acceleration) is dependent upon the position of the body-that is, the 
angle of the string. The Lour equations of kinematics, several of which 
we have used so far in this programme, are restricted to cases of 
constant acceleration, and therefore cannot be applied to this case. So 
this example is typical of a problem which is very easily solved by an 
energy equation, but which would be extremely difficult to solve by a 
direct application of Newton's Second Law. But the energy approach 
can go only so far. It cannot, for instance, tell us how long it takes the 
mass to travel from the highest to the lowest point. 
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Before embarking on the next set of 'Drill' exercises, turn back to 
Frame 20 and see if you can solve parts (a) and (d) using an energy 
approach. We'll restate the problem. 

Example A body of mass 30 kg is projected up an inclined plane of 
slope 35° with an initial speed of 12 m/s. The coefficient of friction 
between body and plane is 0.15. Calculate (a) how far up the slope it 
travels before coming to rest, (b) how fast it is travelling when it 
returns to its initial position. 

Start with the general equation at the end of Frame 33. The work done 
on the body will be zero, and the work done by the body will be the 
product offriction force and distance travelled. You will need to draw a 
free-body diagram in order to calculate the magnitude of the friction 
force. You already have the answer. You can check your work against 
the solution given in Frame 39. 
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R \ Perpendicular to plane: 1: F = 0 X\ .'. R = mgcosO 

~ Along plane F = p.R = p.mg cos 0 

F"~ 1\ 
mg 

(a) Initial (kinetic) energy - work done (friction) = final (potential) 
energy 

1mv2 - (friction) x x = mgh 
1 ';'v2 - x (p.';'g cos 0) = ';'g (x sin 35°) 

1 x 122 = x (9.81 sin 35° + 0.15 x 9.81 cos 35°) 

. 72 
.. x = ---------

9.81 (sin 35° + 0.15 cos 35°) 
= 10.538m 

(b) We can cut out the middle stage and work from the initial 12 m/s 
straight to the final state when the body returns to its starting point. 
There will thus be no change of potential energy. Simply 

Initial (kinetic) energy - work done (friction) = final (kinetic) energy 

We have calculated the distance up the plane in (a); the work done 
against friction will be force x twice this distance, as the friction force 
opposes motion both up and down. 

1';' x 122 -2x(p.rfJgcosO) = 1';'v2 

:. v2 = 122 -2 x 2 x 10.538 
x 0.15 x 9.81 cos 35° 

= 144 - 50.809 

= 93.191 

:. v = 9.653m/s 
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There is one further term in this section which you need to understand. 
Power is a measure of the speed at which work is done. A machine, or a 
source of energy such as a human body, can perform any amount of 
work, given sufficient time. I could, for example lift 1000 kg of coal 
from ground level up to a fourth-floor fiat (say, a height of 12 m) using a 
bucket and shovel only, if! am allowed as much time as I want. I should 
eventually complete a total of (1000 g x 12) = 117.7 kJ of work. But 
industry and modern society requires that work be done in certain 
limited times, and if I were required to complete this same task in, say, 
30 minutes, I should have to employ a machine, such as an elevator, or a 
crane, capable of an output of 117.7 kJ per 30 minutes, or 65.4J per 
second. 

The Joule per second is, then, the unit of power, and is given the more 
convenient name of the Watt. Since power is a measure of the speed of 
work being done, high-power machines are almost always fast 
machines; a slow machine, however large, is usually a low-power one. 
The early large steam engines of the Industrial Revolution which are 
still to be seen in museums have a much lower power rating than a small 
modern car. 

Power = work done per second 

= force x displacement per second 

= force x velocity 

:. W=Fxv 
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Example Calculate the power output of a car of mass 950 kg if it 
ascends a slope of sin - 1 0.2 at a steady speed of 30 mls against a 
resistance (due to friction and air) of 3 kN. 

The free-body diagram shows the weight, the normal reaction R, the 
resistance of 3 kN and the tractive force F. Because the speed is 
constant, the acceleration is zero. 

Along the track: I:.F = 0: ... F - 3000 - 950g sin 0 = 0 

:. F = 3000+950 x 9.81 x 0.2 

= 4863.9N 

W=Fxv 
= 4863.9 x 30 

:. W= 145.9kW 

The resistance force of 3 kN is a mere guess, but it is quite certain that at 
this speed, a large proportion of the tractive force is used to overcome 
the resistance due to the air. The search for car bodies having a low 
drag coefficient takes on more meaning when we look at this simple 
calculation. 

Now tackle the next series of 'Drill' examples in Frame 42. 
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'Drill' exercises: work, energy, power 
1. A freely falling body has at one point a downward velocity of 40 m/s. 

Calculate its velocity after it has fallen a further 40 m. Neglect air 
resistance. 
Ans. 48.83 m/s. 

2. A shell of mass 24 kg in a gun barrel is fired, and attains a velocity of 
450 mls at the end of the barrel. Calculate the magnitude of the 
average force (assumed constant) propelling it, given that the length 
of the barrel is 4 m and that it is directed vertically upwards. 
Calculate also (a) the maximum height above ground level reached 
by the shell and (b) the speed at which it strikes the ground on 
return. Assume an average constant resistance due to the air of 45 N. 
Ans. 607.7kN; 8669m; 370.8m/s. 

3. A truck of mass 8000 kg rolls at a constant speed of 40 mls along a 
horizontal rail. It then begins to ascend a slope of sin - 1 0.1. How far 
up the slope will it roll before coming to rest (a) neglecting any 
frictional resistance, (b) assuming a resistance due to friction of 
1/200th of the weight of the truck? 
Ans. (a) 815.49 m. (b) 776.7 m. 

4. Part of a simple 'hump-shunting' railway track comprises a slope of 
length L at an angle of 15° to the horizontal. Trucks reach the 
bottom of the slope at a speed of 7 m/s. The track exerts a frictional 
resistance against the truck of one-eightieth of its weight. Calculate 
the maximum length L of the track such that the speed of the truck 
at the top of the slope shall be at least 1.5 m/s. 

Ans.8.78m. 
5. The resistance to motion of a car of mass 850 kg is (1.2 v2 ) newton, 

where v is its velocity in m/s. Calculate the power output of the car at 
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speeds of 5, 15 and 30 mls (a) along a straight horizontal track, (b) 
ascending a slope of sin - 1 0.1. Calculate also the total work done by 
the tractive force over a distance of 1 km at all three speeds under 
conditions (a) and (b). 
Ans. (a) 150W; 4.05kW; 32.4kW. 30kJ; 270kJ; 1080kJ. 

(b) 4.32 kW; 16.56 kW; 57.42 kW. 863.8 kJ; 1103.8 kJ; 1913.8 kJ. 
6. A ballistic pendulum comprises a sand-box suspended by four 

vertical wires oflength 1.8 m. A bullet fired into the box is embedded 
in the sand and causes the box to swing sideways and upwards. The 
sand-box has a mass of 10 kg and the bullet a mass of 0.1 kg. It may 
be assumed that only 0.1 per cent of the energy of the bullet is used in 
moving the box; the rest is dissipated in the sand. If the wires swing 
through an angle of 18° after impact, estimate the velocity of the 
bullet just before it strikes the box. 

Ans.417.8m/s. 
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7. Water of density 1000 kgfm3 is to be raised by a pump from a 
reservoir through a vertical height of 12 m at a rate of 5 m3 Is. 
Calculate the required power of the pump. Neglect any energy loss 
due to friction. 
Ans. 588.6 kW. 

8. Water emerges from a fire-hose in a jet 50 mm diameter at a speed of 
20 m/s. Calculate the power of the pump required to produce this 
jet, and estimate the vertical height the jet would reach. The density 
of water is lOOOkgfm3• 

Hint: flow rate, kgfs = jet area x velocity x density. 
Ans. 7.854 kW; 20.39 m. 
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The term 'momentum' is frequently encountered in kinetics. It is 
defined simply as (mass x velocity), or (mv). Some textbooks give a 
qualitative definition of momentum as 'quantity of motion'. 
Momentum is concerned directly with Newton's Second Law, as we 
shall now see. 

The Second Law states 
F=mxa 

Using the kinematic equation v = u + at, we may rewrite this as 

In words 

v-u 
a=-­

t 

:. F = m(v-u) = mv-mu 
t t 

Force = rate of change of momentum 

and this is an alternative way of stating Newton's Second Law. This 
interpretation of the law is useful in solving kinetic problems in which a 
specific value of mass cannot be defined: an example is the force exerted 
by a jet of fluid striking a fixed surface. In this programme, we shall use 
this concept of momentum to examine the forces arising when bodies 
collide. In such a situation, the force of collision is often very large, and 
the time of contact very short, and both force and time are difficult to 
determine with accuracy. For this reason, the two quantities are 
coupled together, and the quantity (F x t) is called the impulse of the 
force. The equation above may be re-arranged 

(F x t) = mv - mu 
In words 

Impulse = change of momentum 
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Let us now consider the case of two bodies, having masses, mA and milo 
colliding and separating. 

(F x t) (F x t) 

(a) (b) 

Diagrams (a), (b) and (c) represent before, during and after collision, 
respectively. Collision will cause an impulse of magnitude (F x t) to the 
right on mB and an impulse of the same magnitude, to the left, on mAo 
Because we are considering a general case, we assume that all velocities 
are from left to right, and this will be our positive direction. Thus, the 
impulse on mB will be positive, while that on mA must be negative. The 
impulse equations for both bodies are 

- (F x t) = mAvA -mAuA; + (F x t) = mBvB -mBuB 

Eliminating (F x t) from these equations 

-mA(vA -uA) = +mB(vB-uB) 

Re-arranging 
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The equation obtained at the end of the previous frame is called an 
equation of Conservation of Momentum: the left-hand side is the total 
momentum of the system before the collision, while the right-hand side 
is the total momentum after collision. We can write the equation in 
words. 

"The total momentum of a system of bodies is unaltered by any 
internal force: an external force is required to change the momentum 
of the system" 

The important work here is 'system'; each body, considered separately, 
.; .. [f.:rs a change of momentum. 

Here is a simple example which you should be able to solve without 
difficulty. 

Example A truck of mass 1200 kg rolls along a straight level track 
at a constant speed of 4 m/s. It collides with a second truck of mass 
1600 kg, which is rolling at 3~ mls in the opposite direction. The 
trucks automatically lock together when they collide. Determine the 
common speed of the trucks after collision. 

Watch out: the velocity of the second truck before collision must be 
negative (if you assume that the velocity of the first is positive). And 
note also that VB must equal VA. The complete solution is given in the 
next frame, but attempt it yourself before reading on. 
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mAuA + mBuB = mAvA + mBvB 

1200 x 4 + 1600( - 3!) = 1200 VA + 1600 VB = 2800 VA 

4800-5600 
V A = --:2-=-8-=--00::---

= -Q.:~~~J_m/s 

The negative sign indicates that the direction of the first truck is 
reversed when they collide; the second truck continues in its initial 
direction, but at a reduced speed. 

Conservation of Momentum is in one way a somewhat unfortunate 
phrase, because it makes vou think of Conservation of Energy. It might 
be tempting to try and solve this truck problem by equating the total 
kinetic energy before collision to the total kinetic energy after collision. 
A very simple calculation shows that you cannot do this. 

Total K.E. before collision = 1:(1 mu 2) = ! x 1200 X 42 

+txl600x3P 
= 19,400 J 

Total K.E. after collision = 1:(1 mv2) = !(12oo + 16(0) (0.2857)2 

= 114.27 J 

You can see that a tremendous amount of energy has been lost to the 
system. Where has it gone? When bodies collide, there is always a loss of 
energy because some work is done in deforming the bodies. Sometimes, 
a deformed body partially or almost completely recovers its original 
form (a steel spring is a good example) and then, the energy of 
deformation is restored to the system. But when the deformation is 
irrecoverable (as, for example, when a football drops into soft mud), a 
lot of energy is lost to the system. We shall see how to handle this 
situation in the following frames. 
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Looking back at Frame 44, you can see that the equation of conser­
vation of momentum cannot, by itself, be used to determine the final 
velocities of bodies after collision; two unknown terms (VA and VB) 

cannot be found from a single equation. In the example we chose, we 
got round this difficulty by stating that the two final velocities were 
equal. But in general, some further iQformation is required concerning 
the nature of the collision. 

Imagine a polished steel ball, dropped vertically on to, respectively, a 
hard steel plate, a wooden table and a bed of plasticine. You can 
imagine that the height of rebound will vary considerably; in the first 
instance, it may rebound almost to the height from which it dropped; in 
the second instance, it certainly would not rebound so high; while in the 
final instance, it most probably would not rebound at all. In each case, 
the ratio of the velocity of rebound to the velocity of striking is 
different. This ratio is given the name Coefficient of Restitution and it 
can be found experimentally for various materials and various types of 
bodies in collision. It is denoted bye. So, by definition, when two bodies 
collide 

relative velocity of separating V A - VB 
e= =---

relative velocity of approach UA - UB 

and from what we have said, it should be clear that the greatest possible 
value of e must be 1, and its least possible value O. There is a very 
important warning necessary at this point. In the nature of bodies in 
collision, the velocity of separation must always be in the opposite 
direction to the approach velocity. (When the ball falls downwards, it 
always rebounds upwards.) So, when a value of e is used in problem 
solving, it must always be given a negative sign. 

In the following frame, we shall study a problem illustrating the use 
of this Coefficient of Restitution. 
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Example Two bodies, having masses of 4 kg and 12 kg and travelling 
along the same straight level path, have respective velocities of 8 mls 
right to left, and 2 mls left to right, when they collide. The coefficient of 
restitution, e, is - 0.75. Calculate the two final velocities and the energy 
lost due to the collision. 

You should be able to start the solution yourself. In order that you can 
check your attempt against the solution in the following frame, call the 
4 kg mass rnA and the 12 kg mass mB, and assume that a velocity right­
to-left is positive. Substituting in the momentum equation will then 
give you one equation involving v A and VB' 
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Using the momentum equation 

mAuA + mBuB = mAvA + mBvB 
4 x 8+ 12( -2) = 4VA+ 12vB 

Simplifying and re-arranging 

VA + 3VB = 2 (1) 

and you should have obtained this equation, or some variation on it, 
yourself. 

The remainder of the solution requires the application of the 
restitution equation 

VA -VB 
e=--­

UA-UB 

VA-VB 
-0.75 = 8 _( -2) 

Simplifying and re-arranging 

Rewriting (1): 

Subtracting: 

Substituting in (1): 

VA-V B= -7.5} 

vA+3vB = 2 

-4VB = -9.5 

VB = + 2.375 mls 

VA = 2 -3VB 
= 2 -7.125 

... !J..A.=_::- 5~~~~_l!lj~_ 

(2) 

Since VB is positve and V A negative, it is seen that both masses rebound in 
the opposite directions after collision. 

Loss of kinetic energy = !mAui + !mBui - (lmAvi) + !mBvi 

=! x 4 X 82 +! x 12 x 22 

-(! x 4 X 5.1252 +t x 12 x 2.3752) 
= 128 + 24 - (52.53 + 33.84) 

= 65.63 J ------
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1501 
Here is a problem of a different kind. 

Example Two steel balls of respective masses 4 kg and 12 kg just 
touch when hanging vertically from strings oflength 1.6 m. The smaller 
one is moved sideways until the string makes an angle of 60° to the 
vertical; it is then released from rest, and strikes the second ball, the 
coefficient of restitution of the impact being 1.0. Determine 
the maximum angle each string makes with the vertical on rebound. 
Show that there is no loss of energy to the system. 

First find the value of UA (UB is, of course, 0). You will find it helpful to 
look back to Frames 36 and 37. You should get a value of 3.962 m/s for 
UA. Then make use of the momentum equation and the restitution 
equation, to find VA and VB. Use the values obtained in an energy 
equation to find the heights of rebound (Frames 36 and 37 again) and 
thus the angles of the strings. The values of VB and V A should be 
+ 1.981 m/s and -1.981 m/s respectively. The complete solution 
follows. 
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Equating loss of P.E. to gain of K.E. (see Frames 36, 37) 

u_ 
mgh = mg x 1.6(1 -cos 60°) =! mui 

.". UA = J2 g x 1.6(I-cos600) 

.". UA = 3.962 mls 
Momentum: mAuA + mBuB = mAvA + mBvB 

4 x 3.962+ 12 x 0 = 4VA+ 12vB 

Simplifying 

Restitution: 

Simplifying: 

Rewriting (1): 

Subtracting: 

VA-VB 
e=-­

UA-UB 

VA -VB 

-1 = 3.962 -0 

VA -VB = -3.962 } 
VA + 3VB = 3.962 

-4VB = -7.924 

••• VB = ±1981 m/'§.. 

Substituting in (1): VA = 3.962 - 3 x 1.981 

.". VA = _-=J.,981 m/'§.. 
For the 4 kg ball 

Loss of K.E. = gain of P.E. 
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!mAvi = mAghA 

hA = v; = (-1.981)2 = 0.200 m 
2g 2g 

From diagram above: hA = 1.6(1 - cos 9) 

9A = cos-1 (1- hA) = cos-1 (1- 0.2) 
1.6 1.6 

For the 12 kg ball 

hB = v~ = (+ 1.981)2 = 0.200 m 
2g 2g 

... 1J..B..=.1~96° 

Initial P.E. = mAg x 1.6(1-cos600) 

= 4 x 9.81 x 1.6(1-0.5) 

= 31.392 J 

Final P.E. = mAghA + mBghB 
= 4 x 9.81 x 0.200 + 12 x 9.81 x 0.200 

= 31.392 J 

A restitution coefficient of 1 means that, although the balls deform 
under impact, they fully recover their form; in other words, the energy 
required to deform is fully restored when the bodies regain their 
original shape. (The word 'restitution' means restoring.) At the other 
end of the scale, a coefficient of restitution of 0 means that all the energy 
used in deforming is lost to the system. This does not mean that the final 
velocities of two masses must both be zero; it simply means that the 
relative velocity of separation after collision is zero- as was the case 
with the example of Frame 45. In such cases, we do not need to employ 
the restitution equation; we simply say that VA = VB. 

You ought now to be able to attempt the 'drill' examples in Frame 52. 
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'Drill' exercises: collision of two bodies 
1. Two trucks are located on a horizontal frictionless rail. Truck A has 

a mass of 120 kg and an initial velocity left-to-right of 8 m/s. Truck 
B has a mass of 180 kg. The trucks collide and lock together 
automatically on impact. Calculate the common velocity of the two 
trucks after collision, and also the energy lost to the system, when 
the initial velocity of Truck B is (a) 6 m/s left-to-right, (b) zero, (c) 
6 m/s right-to-left. 
Ans. (a) 6.8 m/s left-to-right, 144 J. (b) 3.2 m/s left-to-right, 2304 J. 
(c) 0.4 m/s right-to-left, 7056 J. 

2. The trucks of Problem 1 collide, with the same velocity conditions 
stated, but separate after collision, the coefficient of restitution of 
the impact being 0.8. Calculate the final velocities of the trucks, and 
the energy lost to the system, for all three cases. 
Ans. (a) 5.84 m/s left-to-right, 7.44 m/s left-to-right, 51.84 J. 

(b) 0.64 m/s right-to-left, 5.76 m/s left-to-right, 829.44 J. 
(c) 7.12 m/s right-to-left, 4.08 m/s left-to-right, 2540.16 J. 

3. Two bodies having masses of 40 kg and 80 kg collide when travelling 
along a straight path. The initial velocity of the smaller body is 5 m/ s 
left-to-right. Determine the initial velocity of the larger body in 
order that the smaller body rebounds from the collision with an 
equal and opposite velocity (that is, 5 m/s right-to-left): (a) if the 
coefficient of restitution of the impact is 1; (b) if the coefficient of 
restitution of the impact is 0.8. In case (b), calculate the energy lost to 
the system due to the collision. 
Ans. (a) 2.5 m/s right-to-left. (b) 3.333 m/s right-to-left, 333.33 J. 

4. A ballistic pendulum comprises a box filled with sand, hanging from 
four vertical wires, each 1.5 m long. The mass of the loaded box is 
50 kg. A bullet of mass 0.1 kg is fired horizontally into the box. The 
bullet stays embedded in the sand, and the impact causes the box to 
swing sideways and upwards, the four wires making a maximum 
angle of 11 0 to the vertical. Estimate the bullet velocity before 
impact. 
Hints: Use an energy equation to determine the velocity of 
box/bullet immediately after impact (see Frame 51); then use 
momentum equation to find initial velocity of bullet. 
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Ans. 368.39 m/s. 
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5. In a 'Newton's Cradle' apparatus, two steel balls, each of mass 1 kg, 
hang from vertical wires of length 0.5 m in such a manner that they 
are just touching when at rest. One ball is moved sideways and 
upwards, the wire making an angle () to the vertical, and is then 
released from rest from this position. Given that the coefficient of 
restitution of the resulting impact on the other ball is 1, show that 
the first ball will be brought to rest by the impact, and the second 
ball projected to the same angle of displacement as the first. If the 
angle () is 60° and the time of impact is assumed to be 0.01 seconds, 
estimate the average force of the impact. 
Ans. 221.5 N. 

6. A pile driver comprises a steel block of mass 400 kg. It is dropped 
from rest through a vertical height of 4 m on to the top of a vertical 
pile of mass 1500 kg, to drive it into the ground. Assuming that the 
driver does not rebound on impact, calculate the average resistance 
of the ground to the pile, given that the blow drives the pile a 
distance of 44 mm. Estimate the loss of energy to the system 
resulting from the impact. 
Hints: find common velocity of driver/pile using momentum 
equation; then write energy equation: initial K.E. + initial P.E. 
= work done against resistance. 
Ans. 93737 N; 12392 J. 
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1531 
Now we need a method of calculating the acceleration of a rotating 
body. This is the point at which to remind you that you need to be 
familiar with Frames 34 to 48 in the programme 'Elementary 
Kinematics'. By way of approach to this problem, look at this simple 
situation of a small body of mass m rotating at the end of a light rod of 
radius r 

If the angular speed of rotation is ro, the body will have a linear speed v 
given by v = ro r. The kinetic energy of the system will be! mv2 • But we 
need to determine the kinetic energy in terms of the angular speed, not 
the linear speed of m. Replacing v by (ror) we get 

K.E. = ! m(ro r) 2 

=! w 2(mr2) 

If instead of a single body of mass m, we have several bodies, all at 
different radii, we could calculate the kinetic energy of the system in the 
same way. 

m1 

r1 
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K.E. = 1ml (wrd 2 +1m2 (wr2)2+1m3(Wr3)2 

= 1w2(mld +m2r~ +m3rn 

We can express this more simply as 

K.E. = 1w2(I:(mr2)) 

The bracketed quantity (I: (mr2) ) is called the Moment of inertia of the 
system, and it is usually denoted by the letter I. So we can say even more 
briefly 

K.E. = 11w2 

If you compare this expression with the K.E. of a mass m having 
velocity v 

K.E. = 1mv2 

you see that the moment of inertia I replaces the mass m, while angular 
velocity replaces the linear velocity v. We begin to see I as a sort of 
'rotational mass' and indeed, this is not a bad way to think about 
moment of inertia, provided that you realise from the outset that it does 
not have the dimensions of mass. You may recall in Frame 2 of this 
program that we treated mass as 'resistance to acceleration'. We might 
therefore expect to see moment of inertia as 'resistance to angular 
acceleration', and this is exactly what we shall find in the following 
frame. 
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Look back at the simple single body system at the beginning of Frame 
53. To increase its speed we would have to apply a force. But unlike a 
simple body travelling along a straight line, the increase of speed would 
depend not only on how much force we applied, but also on where we 
apply it. Imagine a large wheel, say 3 or 4 metres diameter, mounted on 
a horizontal shaft. Suppose you have the task of turning the wheel 
round. You might attempt to twist the shaft with your hands, or you 
might apply a force at the rim of the wheel. I do not think you will need 
actually to try this to appreciate that the wheel would move much more 
readily in response to the force at the rim than to one at the shaft, even if 
the two forces were equal in magnitude. It is the moment of the force 
which changes the motion, rather than just the force itself. How do we 
estimate the work done by the moment of a force? Consider a force F 
which has a moment M about some point 0, and let the force move 
through a linear distance x. 

The work done by the force = F x x. But the moment M of the force 
about 0 is F x r 

:. work done = (~)x 
But in angular measure, x = e x r 

:. work done = (~)(er) = Me 
Compare this with the expression for linear work done 

work done = F x x 
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and the expressions are seen as analogous, in that work = moment 
x displacement in the same way that work = force x displacement for 
linear work (although the dimensions of the analogous terms are not 
the same). 

So now imagine a moment M applied to our simple I-mass system, 
and let it displace the system through an angle O. As a result, let the 
angular speed increase from £0 1 to £02 , 

m 

/ 
/ 

,-, 
// 

Work done = increase of kinetic energy 

:. MO = !l(w~ -wD 

But from angular kinematics we know that w~ = wi + 2a.O 

:. MO = !1(2a.O) 

:·M=lxa. 

Compare this with F = m x a and again, we find the terms are 
analogous, and that we are justified in regarding the moment of inertia 
I as "resistance to angular acceleration." 
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So the fundamental equation of Newton's Second Law applied to 
rotating bodies is 

l:.M=lxa. 

(The I: serves to remind us that the left-hand side of the equation is the 
resultant moment of all forces acting on the body). 

Before looking at some examples, we need to explain another word 
which is common in engineering practice. 'Torque' is another word for 
'Twist'. In many engineering applications, and particularly in the 
transmission of mechanical power, rotating machinery often forms a 
useful way of conveying energy from one point to another. In an 
internal combustion engine such as is used in an automobile, the 
combustion of the fuel is caused to exert a force on a moving piston; this 
force is then caused, by the mechanism of a connecting-rod and a crank, 
to apply a twist, to torque, to the engine shaft. When the engine is used, 
to drive a vehicle, or a generator, or a pump, the person using it is not 
directly concerned with the detailed mechanism; it is sufficient that he 
knows the magnitude of the torque that the shaft is capable of 
producing (together, of course, with the speed). Similarly, when an 
engineer uses an electric motor to drive a machine, he does not need to 
know the magnitude of the electro-magnetic force between the rotating 
armature and the fixed stator; the torque and speed of the motor shaft 
are sufficient. Because torque is produced by a force applied in such a 
manner as to turn a shaft, it is measured in the same units as moment, 
and in the examples that follow, you can think of torque and moment as 
synonymous. 

It is interesting to observe that some modern developments have 
been successful in breaking through what might be termed the 'torque 
barrier'. When aircraft became practically possible, it was considered 
obvious that they should be driven by a rotating propeller. This was 
almost certainly a direct consequence of the influence of the automobile 
and the petrol engine; indeed, several early designs used modified car 
engines. But the jet engine by-passes this mode of transmission, which 
now appears as a clumsy and archaic method of propelling aircraft. We 
can observe a corresponding development in electric traction in the 
'linear motor' in which the tractive force on a vehicle is the direct 
electro-magnetic repulsion force between an armature and a 'flat' stator 
of indefinite length, fixed to the ground. 

204 Elementary Engineering Mechanics 

 55



We can now look at a simple example. 

Example A wheel, initially at rest, is subjected to a torque of 
magnitude 250 N m (newton-metres) and attains a speed of 
2200 rev/min in 8 seconds. Calculate the moment of inertia of the 
wheel. 

We can determine IX from the kinematic equation 

W2 = WI +IX X t 

2000 
21t x 6() = 0 + IX X 8 

. 21t X 2000 
.. IX= 60x8 

Now you do one. 

= 26.18 rad S-2 

. M 250 2 
.. I = a = 26.18 = 2.:~~2_~g l!1_ 

Example A wheel of moment of inertia 12 kgm2 is turning at 
850 rev/min. A braking torque reduces the speed to 200 rev/min in 
5.5 seconds. Calculate the magnitude of the torque. 

Your answer should be 148.5 N m. Check your work in the following 
frame. 
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0)2 = 0)1 + oct 
2n X 200 _ 2n X 850 55 

60 - 60 +oc X • 

. . oc = 2n:~ ~.~OO) = _ 12.376 rad s - 2 

M = Ioc = -12 X 12.376 

= -148.5Nm 

The negative sign is consistent with the information that the torque is a 
braking (that is, retarding) torque. 

Issl 
How are we to calculate moments of inertia? What is the mathematical 
procedure for evaluating the quantity ~ (mr2)? Consider a development 
of the three-body system of Frame 53; we shall extend this to an infinite 
number of infinitely small bodies all rotating about a fixed centre, that 
is, a continuous solid rotating body. 

Ifweexaminea very small 'element' of the body, ofmass cSm at a radius r 
(assuming the element to be small enough to be considered as all at the 
one radius~ our original definition of moment of inertia I can be 
modified to, 
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and henceforward, this more general expression should be taken as a 
standard definition of moment of inertia. 

One fairly simple method of evaluating I would be to divide a body 
into a number of actual elements. Provided that we make them small 
enough to be considered as being concentrated at one single radius, 
without too much obvious error, we could then 'sum up' all such 
elements to evaluate I. An example should make this clear. 

Example The diagram shows a half-section of a uniform steel wheel 
of outer and inner radii 0.2 m and 0.1 m, and width 0.3 m. The density 
of the steel is 7800 kg/m3. Evaluate the moment of inertia of the wheel 
by dividing into five rings, as shown, each of radial thickness 0.02 m, 
considering each 'element' as acting at its mean radius. 

I. 0.3 m .1 

For the outermost ring, the volume is 0.3 x 1t(0.22 -0.182) 

:. bm1 = 0.3n(0.22 -0.182) x 7800 = 55.87 kg 

The mean radius is -! (0.2 + 0.18) = 0.19 m 

:. bmlr~ = 55.87 x 0.192 = 2.017 kg m2 

The remaining calculations are not given in detail but are tabulated 
below. 

Inner radius Outer radius Mean radius I5mxr2 
Element (m) (m) 15 m (kg) (m) (kgm2) 

1 0.18 0.2 55.87 0.19 2.017 
2 0.16 0.18 49.99 0.17 1.445 
3 0.14 0.16 44.11 0.15 0.992 
4 0.12 0.14 38.23 0.13 0.646 
5 0.10 0.12 32.35 0.11 0.391 

I:(l5m) 220.55 kg I:(6mr2) 5.491 kgm 
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This procedure of dividing a body into 'elements' is, of course, tedious, 
but may occasionally be necessary when a wheel has an irregular shape 
of rim cross-section. When the cross-section is rectangular, as in the 
example, we can use calculus to derive a formula, and such a formula 
will then give us an accurate value for moment of inertia. You need to 
understand that the tabular calculation of the previous frame is not 
absolutely accurate, because assuming each element to have an effective 
radius equal to its mean radius is actually an approximation. (If it were 
not so, we could assume the whole wheel to be a single 'element' at an 
effective radius of 1 (0.1 + 0.2) = 0.15 m.) 

We can use calculus to prove that for a solid uniform wheel or disc of 
mass m and outer radius R, the moment of inertia 1 = t mr2. (We shall 
prove this in Frame 65.) Our example of Frame 58 can be treated as one 
solid disc taken out of the centre of another. Thus 

[j~E ___ -~=_ ~ ci 
______ ci E 

CD 

~--I-~--¥ 
I.. .1 

O.3m 

I. ..I I· .1 
O.3m 

So 
1=11 -12 

and since both 11 and 12 are solid discs, we can use the formula I 
= ~ mr2 to calculate them. Assuming the same value for density of 
7800kg/m 

I = 1 (7800 x 0.3 x 1t x 0.22 )0.22 - ~ (7800 x 0.3 x 1t x 0.1 2)0.1 2 

= 1 x 7800 X 0.31t (0.24 -0.1 4) 

= 5.51~_~gm2_ 
and our answer using the division into 5 'elements' is seen to be about 
0.4 per cent lower than the correct value. 
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Quite complex wheels can be analysed by treating them as assemblies 
of solid uniform discs. See if you can 'break down' the wheel shown in 
the section-<irawing below, into a system of simple discs. 

0.1 m ~.rl-D.-l m----r 
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Elements CD and Q) are 'positive' elements while a:l and @ are 
'negative'. Although there are really six elements making up this wheel, 
you can see that there are two pairs, so that we may calculate on the 
basis of four different elements. 

Taking the density of the wheel material as 7800 kg/m3 as before, 
and writing 

1= 11 -12 +13 -14 

calculate the mass and the moment of inertia of each of the four 
elements, and hence calculate I for the whole wheel of the previous 
frame. The total mass is 13,404 kg, and the total moment of inertia is 
10,314.8 kg m2 , (work to one place of decimals). If you fail to get these 
values, check carefully against the working shown in Frame 61. 
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m1 = 7800 x 0.5 x 1t X 1.22 

-m2 = -7800 x 0.2 x 1t X 1.02 

m3 = 7800 x 0.2 x 1t X 0.42 

-m4 = -7800 x 0.5 x 1t X 0.12 

Total mass 

11 = ! m1 R i = ! x 17643.2 X 1.22 

12 =!m2R~ =!(-4900.8)1.Q2 

13 = !m3R~ =! x 784.1 X 0.42 

14 = 1 m4R~ =! (-122.5)0.1 2 

Total moment of inertia 

17643.2 kg: 

= - 4900.8 kg: 

784.1 kg: 

= _-=!22.~ kg: 
13404.0 kg 

------

= 12703.1 kgm2 

= -2450.4 kgm2 

62.7 kgm2 

-O.6kgm2 

= -10314~8kgm2 
----------------

These two columns of results repay some study. Notice, for example 
that while the mass of element 4 is roughly one-sixth of that of element 
3, its moment of inertia is only about one-hundredth. This illustrates 
the principle that in order to have a large moment of inertia, a mass 
must be distributed at as large a radius as is possible. A flywheel is a 
special type of wheel, designed to absorb a large amount of energy. It is 
attached to the shaft of an engine (such as a car engine) to keep the 
speed fairly steady, when the driving torque is unsteady. Without a 
flywheel, a single-cylinder petrol engine would surge to a high speed 
throughout the driving stroke, and drop to inconveniently low speed 
during the three non-driving strokes. The flywheel keeps the speed 
steadier. Such a wheel has as much as possible of its mass distributed as 
far as possible from the axis of rotation. 
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The only really accurate way of calculating moment of inertia is by the 
use of calculus (and even this is of no use if the wheel has an irregular 
shape). But we can often make a shrewd guess at the value of 1. For 
example, if we have a thin ring rotating about its axis, say of outer 
radius 0.2 m and inner radius 0.18 m, it seems reasonable to assume 
that, dynamically, this would behave as though all the mass were at the 
mean radius of 0.19 m. (This is actually what we did in Frame 58, with 
the result that the calculated value of I was accurate to within 0.4 per 
cent). But the thicker the ring, the less accurate it becomes to assume a 
mean radius. You can see why this should be so by looking at a thick 
'thin'ring 

/-" 

/8\ \ -+- I 
\ / 
'- / --_/ 

It is clear that there is much more material on the outside of the mean 
radius than on the inside; assuming a mean radius will therefore give a 
value for the moment of inertia which is too low. (The answer of 
5.491 kg m calculated in Frame 58, although close to the correct value, 
is actually low, not high.) The thicker the ring, the greater the error in 
assuming a mean radius to calculate I. You can check for yourself that if 
we treat the ring of Frame 58 as a single 'element' at a mean radius of 
0.15 m, the resulting value of I would be 4.962 kgm: this is ap­
proximately 10 per cent lower than the correct value. Staying for a 
moment with this particular example, it is again easy to show, by 
working backwards, that if we had assumed an 'effective' radius of 
0.158 m instead of the mean radius of 0.15 m, we should get an accurate 
value for the moment of inertia. This 'effective' radius-the radius at 
which all the mass would have to be in order to yield the same value for 
moment of inertia as the actual wheel-is called the radius of gyration, 
and it is usually denoted by the letter k. 
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Assuming all the mass to be concentrated at a single radius k, we can 
say 

I=mP 
Use this formula to calculate k for the wheel shown in Frame 58, using 
the results in the table at the end of that frame. 

k=Jf= 

This is the value we suggested must be used in the previous frame, in 
order to calculate the moment of inertia accurately. 

Now look back to Frame 59, at the wheel illustrated at the end of the 
frame. The value of moment of inertia I was calculated for this wheel in 
Frame 61. Use the result to calculate k for this wheel. Your answer 
should be 0.877 m. 

Programme 3: Elementary Kinetics 213 

 63



k=Jf= 10314.8 = 0.877 m 
13404.0 -----

This is slightly over two-thirds of the outer radius of the wheel. 
It is quite common to specify the radius of gyration of a wheel instead 

of its moment of inertia. This has an advantage from a practical point of 
view. It is not difficult to determine the mass of a wheel, either by 
calculating it, or by weighing the wheel. And it is possible to estimate 
the value of radius of gyration with reasonable accuracy-say, within 
20 per cent of the correct figure, just by looking at the section of a wheel. 
Thus, the moment of inertia can be estimated, easily and quickly, if not 
absolutely accurately. Of course, if a really accurate value is required, a 
guess or estimate is not sufficient, and an accurate calculation must be 
made (using the calculus, or the method of Frame 58) or I must be 
determined from a dynamic experiment. 

For the student, the concept of radius of gyration is also useful in that 
it constitutes a useful check on calculated values of moment of inertia. 
For example, in Frame 59, we calculated a value of 5.513 kg m 2 for I for 
the wheel shown in Frame 58. We know (from Frame 58) that the mass 
is 220.55 kg. Thus 

k=Jf= 
which is somewhere about the mean radius, and as such, is likely to be 
right. So the corresponding value of I is also likely to be right. But 
suppose we had made a mistake in calculation, and obtained a value for 
I of 55.13 kgm2 instead of 5.513 kgm2 • This would yield a value for k 
of 0.5 m and this could not be correct: the 'effective' radius must clearly 
lie somewhere between the inner and outer boundaries of the wheel. 

To conclude this section, we shall now determine the moment of 
inertia of a solid uniform disc, using calculus. 
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Consider a thin incremental ring element as shown, of inner radius r 
and thickness ~r. Let the material density be p, and the width of the 
wheel be B. 

B 

The mass of the element, ~m = p x 211: r x ~r x B 

1= 1: (~m x r2) = 1: «p x 211:r x c5r x B)r2) 

= p x 211:B f: (r3)dr 

= p x 211:B [t~]~ 
= p x 211:B x 1 R4 

Total mass of wheel, m = p x 1I:R2 B 

:. I=! mR2 

Now work through the 'drill' examples on moment of inertia in Frame 
66 before continuing with the text. 
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'Drill' exercises: moment of inertia; rotating bodies 
1. A wheel has a moment of inertia of 120 kg m 2• Calculate the torque 

required to accelerate the wheel to a speed of 80 rev/min in 20 
revolutions. Calculate the retarding torque required to reduce the 
speed from 80 to 40 rev/min in 5 seconds. 
Ans. 33.51 N m; 100.53 N m. 

2. A wheel is mounted on a fixed axis, and is initially at rest. The axle 
has a radius of 28 mm; a cord wound round the axle is subjected to a 
constant force F = 15 N for a period of 7.2 seconds, during which 
time the wheel makes 8 complete revolutions. The force F is then 
removed, and the wheel makes a further 25 revolutions in coming to 
rest due to the friction at the axle. Calculate the moment of inertia of 
the wheel, and the magnitude of the friction torque, which may be 
assumed constant throughout. 

Ans. 0.164 kg m2 ; 0.1018 N m. 
3. The cross-section of a cylindrical wheel is shown. Calculate the 

moment of inertia of the wheel, and its radius of gyration, given that 
B = 0.3 m, Rl = 0.8 m,and R2 = (a) 0.1 m; (b) 0.3 m; (c) 0.75 m. Use 
the formula I = -! mR2 which applies to a solid uniform cylinder, 
and assume the material to have a density of 7800 kg/m. For each 
case, calculate the percentage error introduced by assuming a radius 
of gyration k equal to the mean radius, -!(R1 + R2)' 
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Ans. (a) 1505.18kgm2; k =0.57m; -37.7 per cent. (b) 1475.77kgm2; 

0.604m; -17.1 per cent. (c) 342.55kgm2; 0.775m; 0.103 per cent. 
4. Using only the formula I = 1 mR2 for the moment of inertia of a 

solid uniform cylinder about its axis, evaluate the moments of 
inertia of the four wheels shown in cross-section below, and their 
radii of gyration. Assume a density of 7800 kg per cubic metre for 
the wheel material in each case. 

0.05 m 

0.1 m 

0.1 

(e) 

~ 
(b) 

-e.-e. 
E E 

It) CD 
c:i c:i 

-e. -e. 
E E 

-+--'t--+ -.r co 
c:i c:i 

I. 0.3 m .1 
(d) 

Ans. (a) 47.84 kgm2; 0.325 m. (b) 54.12 kg m2; 0.326 m. 
(c) 36.02 kgm2; 0.221 m. (d) 25.84 kgm2; 0.237 m. 

5. A flywheel for an engine is to be designed to fluctuate ± 2 per cent 
about a mean speed of 280 rev/min and the corresponding fluctu­
ation of energy is required to be 450 J. Calculate the required 
moment of inertia of the wheel. If it is to be an annular ring, of outer 
radius R, inner radius 0.8 R, and width 0.2 R, of material of density 
7600 kg/m3 , calculate the value of R. 
Ans. 13.09 kg m2; 0.392 m. 
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In this section, you have to learn to analyse systems of bodies in which 
one body is connected to another in some way. Before laying down a 
procedure, we can attempt some simple examples. 

Example Two bodies having masses of 2 kg and 4 kg are connected 
by a light string passing round a light frictionless pulley as shown. 
Calculate the acceleration of each body. 

In this example, it must be obvious that if the system starts from rest, 
the heavier body will move downwards and the lighter one upwards, 
and that, therefore, the accelerations will be in the same directions­
that is, downwards for the right-hand body and upwards for the left­
hand one. Moreover, although this is not quite so obvious, the 
accelerations will always have these directions, no matter which way the 
bodies are moving. For example, we may apply a force upwards to the 
right-hand body, causing it to move upwards. When that initial force is 
removed, the accelerations will be determined by the forces acting on 
the system shown, and will thus be downwards for the right-hand body 
and upwards for the other. The right-hand body will therefore continue 
moving upwards, but with a reducing velocity; it will eventually come to 
rest, and will then begin to move downwards. One lesson to be learned 
from this situation is, not to confuse motion with acceleration. 

We require equations of motion for the two bodies. At this stage, 
refresh your memory in respect of free-body diagrams; look back to 
Frame 9 and the checklist. You should then be able to see that each 
body is SUbjected to two forces-weight and string tension. Weight acts 
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downwards in both cases, and string tension acts upwards in both cases 
(remember-a string cannot push). A common error at this stage, when 
considering the forces on the 4 kg mass, is to assume that the string 
tension is the weight of the 2 kg mass. If this were so, then the forces 
acting on the 2 kg mass would be (2 g) N downwards (weight) and (2 g) 
N upwards (tension). Thus there would be no resultant force, and 
therefore it could not accelerate. From this argument, we can draw two 
conclusions 

(a) the tension is less than the weight of the 4 kg mass 
(b) it is more than the weight of the 2 kg mass. 

For the present, we shall resist the temptation to assume that it is (3 g) 
N (half-way between both weights) and simply call it T. We have 
assumed, by the way, that it is the same tension on both ends of the 
string; this follows from the facts that it is a single string, and that the 
wheel is light and frictionless. We shall later be looking at cases wherein 
the tension varies in a single string. 

So, now draw the two free-body diagrams, showing on each one the 
arrow for the acceleration. Do not forget the earlier suggestion to use a 
red pen for force arrows, to distinguish from accelerations. Also write 
the two equations of motion. 

16s1 
T T 

aA t t 
I I 
I B EJt I 
I 
I 

~ t fa 

(2g) N 
(4g) N 

With the free-body diagrams correctly drawn, the writing of the two 
equations of motion becomes simple: that, of course, is the purpose of 
drawing the diagrams. So write the two equations, and solve the 
problem by eliminating T from them. And although the question does 
not ask for it, when you have calculated a, substitute back in either of 
the equations, and find T. You should obtain a value for a of 3.27 m s - 2 

and T should be 26.16 N. The working follows in the next frame. 
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For the 2 kg mass: 

For the 4 kg mass: 

Adding: 

Re-arranging (1): 

T-2g = 2a 

4g-T=4a 

4g-2g = 6a 
2 x 9.81 

a=-~-
6 

= 3.27 m S-2 

T= 2a+2g 
= 2(3.27 + 9.81) 

= 26.16 N 
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Simple? Perhaps so. If you didn't arrive at the correct answers, the 
important thing is that you find out what you did wrong. Now try this 
next problem from the beginning. 

Example 

A body of mass 20 kg rests on a smooth horizontal table. It is connected 
by a light string to a body of mass 10 kg which hangs freely, the string 
passing over a light frictionless pulley. Determine the acceleration of 
the bodies, and the string tension. 

Conditions are similar to the first problem; the acceleration is the same 
for both bodies, although not in the same direction. The string tension 
is the same. Have a go and check your work in the next frame. 
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Here are the free-body diagrams 

! 

T 

1 
nol 
~ 

J 
109 N 

I 
I 
I 
I 

'Y'a 

The weight and the table reaction are both shown on the free-body 
diagram for the larger body, because they are two of the forces acting, 
but we have not bothered to include values or letters, because we shall 
not need these forces to solve the problem. The two equations are 

For the 20 kg 

T= 20a (1) 
For the 10 kg 

109 -T = lOa (2) 

Adding: 

109 = 30a 
:. a = jg = 3.27 m s - 2 

Substituting in (1) 

T = 20 x 3.27 = 65.4 N 

In the two examples so far, the directions of the accelerations have 
been (we hope) obvious. But sometimes one cannot immediately 
decide, just by casual inspection, which way a body will accelerate (in 
other words, which will be the direction of the resultant force acting on 
it). Look at this next example. 

Example Determine the accelerations of the two bodies shown on the 
inclined planes, and the tension in the connecting string. Neglect all 
friction forces. 
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~ 20" 29 0 

In Frames 13 to 15 we solved a problem in which the acceleration was 
assumed to be in one direction and was shown (by a negative value) to 
be in the other. We can do the same with this problem, with one further 
reservation. It should be clear that the line of action of acceleration 
must be along the slope in each case. We may assume the acceleration of 
the right-hand body to be acting down the slope. If we are wrong, we 
shall get a negative value. But, having assumed this direction, we must 
assume that the acceleration of the other body will be up the slope: the 
two accelerations must be, as we say, compatible. There is no way, short 
of the string breaking, whereby the accelerations of both bodies can be 
down their respective slopes. 

With this proviso, go ahead and draw the diagrams, and write the 
equations. The string tension (T) will be constant throughout. 
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The diagrams 

The equations 

For the 28 kg: 

For the 18 kg: 

28gN 18g N 

T - 28g sin 20° = 28a 

18g sin 29° - T = 18a 

Adding: 18g sin 29° - 28g sin 20° = 46a 

Re-arranging: a = 9~!1 (18 sin 29° - 28 sin 20°) 

9.81 
= 46 (8.727 -9.577) 

a = -0.181 m S-2 

(1) 

(2) 

Substitute in (1): T = 28 (-0.181)+ 28 x 9.81 x 0.342 

:. T= 88.87 N 

The negative sign attached to a means that the acceleration is down the 
incline for the 28 kg mass and up for the 18 kg mass. 

224 Elementary Engineering Mechanics 

 72



The next example introduces friction forces. When friction is involved, 
care is necessary in order to determine the direction ofthe friction force 
in each case. Friction always acts in the opposite direction to the 
motion of a body; thus, if the direction of motion changes, the force 
system, and therefore the acceleration, changes. In any problem 
involving friction forces, therefore, the direction of motion must be 
clearly stated, or clearly implied. 

Example 

The 15 kg body rests on a plane inclined at 35° as shown. The coefficient 
of friction between body and plane is 0.24. A light string connects the 
body to a second body of mass 12 kg which is hanging freely. If the 
15 kg body is moving up the plane, calculate its acceleration. 

Draw the two free-body diagrams; assume the acceleration to be 
directed up the plane for the 15 kg body. Then write the two equations, 
as before. This time, you will find that you haven't enough information 
to find a; you will need a third equation-an equation of force 
equilibrium transverse to the 15 kg mass. Check your work in the 
following frame. 
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Here are the two free-body diagrams. Although the direction of 
acceleration is not actually known (we have only assumed it) the 
direction of the friction force is in no doubt-since the body moves up 
the plane, this force must act down it. 

T 

t I 

12kgDI 
I t ., a 

12gN 

The equations 

Along the plane: T - pR -15g sin 35° = 15a 
Across the plane: 

Hanging body: 

R = 15gcos35° 
12g -T= 12a 

Adding (1) and (3) and substituting for R in (1) at the same time 

12g-0.24(15gcos35°)-15gsin35° = 27a 

. 9.81 24 ° . ° .. a=2'f(12-0. (15cos35)-15sm35) 

= 0.1625 m S-2 

(1) 

(2) 

(3) 

If you would like to give yourself a little more practice, find the 
acceleration of this same system, but this time with the 15 kg body 
moving down the plane, not up. The solution is not given, but the 
answer you should get is 2.305 m s - 2 up the plane. 
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Example 

For the system of three bodies shown, the coefficient of friction 
between the 22 kg body and the plane is 0.32, and the body is moving 
down the plane. Determine the accelerations of the bodies, and the 
tensions in the strings. 

Start this one yourself. So that you can check your work, assume that 
the 22 kg body is accelerating down the plane. There are two separate 
strings in this problem, so you will have two different string tensions, Tl 
and T2• You must start by drawing the three free-body diagrams, and 
writing four equations. (You will need two equations for the 22 kg 
body. Check your diagrams in Frame 76 before proceeding. 
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Here are the diagrams 

12gN 22gN 18g N 

Note again the various points which we have encountered before. The 
acceleration a of the 22 kg body has been assumed to be down the 
plane; therefore, that of the 12 kg body, to be compatible, must be 
vertically downwards, and similarly, that of the 18 kg body must be 
vertically upwards. These directions may be wrong (we shall see by the 
later working that they are) but this will not matter provided that they 
are all compatible-that is, consistent with one another. Note also that 
string tension forces can only pull a body, they cannot push. 

Now write the equations, recalling that the resultant force on each 
body must be considered positive in the (assumed) direction of the 
acceleration. 

For 12 kg body: 12g -Tl = 12a 

For 22 kg body; along plane: 

Tl + 22g sin 25° -T2 -Jl.R = 22a 

and across plane: R = 22g cos 25° 

For 18 kg body: T2 -18g = 18a 

(1) 

(2) 

(3) 

(4) 

The rest is algebra. Find Tl from (1) and T2 from (4) and R from (3) and 
substitute appropriately in (2). The complete working follows. 
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Substituting in equation (2): 

(12g -12a) + 22g sin 25° - (18a + 18g) - Jl. x 22g cos 25° = 22a 

Re-arranging 

a(22 + 12 + 18) = 12g + 22g sin 25° -18g - Jl. x 22gcos 25° 

9.81 . 
a = 52(12 + 22 sm 25° -18 - 0.32 x 22 cos 25°) 

a = -0.582 ms- 2 

Substitute in (1): Tl = 12g -12a = 12 x 9.81-12( -0.582) = 124.7 N 
Substitute in (4): 

T2 = 18a+ 18g = 18( -0.582)+ 18 x 9.81 = 166.1 N 

How do we proceed when one of the bodies of a system is a rotating 
wheel? For an introduction to this type of problem, solve the following 
example. If you experience difficulty, go back and look at Frames 53 to 
66 and do a bit of revision. 

Example 

A wheel rotating about a fixed axis has a moment of inertia of 49 kg m2• 

A rope is wrapped around the axle of radius 75 mm and a force 
F = 72 N applied to the rope. Calculate the angular acceleration of the 
wheel. 
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Isol 
For rotating bodies r.M = 1 x (X 

r.M (72 x 75 x 10- 3) 
(X = -1- = 49 

= 0.1102 rad S-2 

Not too difficult. While on this particular example, see if you can now 
calculate the linear acceleration of a point P on the rope (perhaps you 
need to brush up your elementary kinematics). 
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Relating linear to angular acceleration 

a = ex x r = 0.1102 x 75 x 10- 3 = 0.008265 m S-2 

With this little bit of revision dealt with, we can now have a look at a 
typical simple problem of connected bodies, one of which is rotating. 

Example 

A body of mass m = 3.5 kg hangs by a light cord which is wound round 
a drum of moment of inertia I = 1.6 kg m2 at an effective radius 
R = 0.24 m. Calculate the angular acceleration of the drum and the 
linear acceleration of the mass. 
Draw free-body diagrams for both the drum and the hanging body. Be 
careful not to assume that the tension in the cord is equal to the weight 
of the body. On the free-body diagram for the drum, you should 
actually find three forces acting, but two of these (the weight, and the 
upward bearing reaction force) will have the line of action passing 
through the centre of the wheel. In determining l:(M), the resultant 
moment on the drum, only the cord tension has a moment about the 
drum centre. Derive your two equations of motion and check in the 
next frame. 
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T 

The equations: for the drum: 'EM = lao 
:. Tx R = lao 

for the hanging body: 'EF = ma 
:. mg-T= rna 

mg 

(1) 

(2) 

We can manipulate these equations, as we have previously done, to 
eliminate T, but this will still leave us with two unknown terms, a. and a. 
What can we do? The answer is suggested in Frame 80 when we 
calculated the linear acceleration of a point P on the rope; we can write 
a third equation relating a and a.. Thus 

Using elementary kinematics: a = a.R 
From equation (2): T = mg - ma 
Substitute in equation (1): 

Substitute for 'a': 

Re-arranging: 

Substitute in (3): 

(mg -ma)R = lao 
(mg - m x a.R)R = lao 

mgR = lao + ma.R2 
mgR 

a. = ----:-
l+mR2 
3.5 x 9.81 x 0.24 
(1.6 + 3.5 x 0.242 ) 

a. = 4.574 rad S-2 

a = a.R 
= 4.574 x 0.24 

a = 1.098 m S-2 
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Some rules for solution are now beginning to appear. 

1. Draw free-body diagrams for each separate body. 
2. Assume directions for all accelerations, linear and angular, but check 

that these are all compatible. 
3. Writeappropriateequationsofmotion(I:F = ma,I:M = IIX) for all 

bodies, taking the (assumed) direction of acceleration as positive in 
every case. 

4. Where necessary, write equations of equilibrium for bodies in 
directions transverse to the direction of acceleration. 

5. Write kinematic equations of compatibility relating all 
accelerations. 

6. Check that you have sufficient equations (as many equations as there 
are unknown terms) and then manipulate algebraically. 

Refer back to these rules when attempting the example in the next 
frame. 
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IS31 
Example 

mt = 12 kg 
m2 = 5 kg 
1= 1.4 kgm 
R = O.15m 
0=34° 

Bodies of masses mt and m2 are connected by a light cord which is 
wrapped around the drum which rotates about a fixed axis. The rope 
does not slip on the drum. Friction between mt and the inclined plane is 
negligible and there is no friction at the drum axis. Determine the linear 
acceleration of the two bodies, and the angular acceleration of the 
drum. 

A word of warning. The direction of acceleration of the bodies is not 
immediately obvious. So assume mt to accelerate up the plane. You 
must therefore assume the angular acceleration of the drum to be 
clockwise; an anti-clockwise acceleration is incompatible with the first 
assumption. The direction of acceleration of m2 must, clearly, be 
downwards. 

Another warning before you begin. Although the two bodies are 
connected by a single cord, you must not now assume that the tension 
will be the same throughout the cord, as we have so far done. We are 
told that the rope does not slip on the drum; therefore it must either be 
secured to it, or it must grip it by friction. In either case, this will cause a 
difference of tension between the rope ends either side of the drum. 
When you draw the free-body diagram of the drum, this becomes even 
more obvious. If the tensions were the same, there could be no resultant 
torque on the drum, and therefore it could not accelerate. So call the 
tensions Tt and T2 appropriately. You may find that your work is more 
systematic and orderly if you retain algebraic symbols throughout, and 
substitute numbers only at the end. This is what is done in the solution 
that follows. 
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/~\/' /T' A'" 
~ T, ~l 

T2 

For m1 
For drum: 

For m2: 

m,g 

Kinematically: 

Tl -m1gsinO = m1a 

T2R-TIR=Ia. 

m2g-T2 = m 2a 

a = a.R 

(1) 

(2) 

(3) 

(4) 

You may have found by now that you can obtain the correct equations 
without too must difficulty, but that you run into trouble afterwards, 
when you try to manipulate the equations. The more equations you 
have, the more the chance of trouble. Unfortunately, there are no firm 
rules to go by for this part of the work, and there is no substitute for 
experience in this type of work. In this present problem, equation (2) 
contains both Tl and T2 , and you can re-arrange equation (1) to make Tl 
the subject, and equation (3) to make T2 the subject. You can then 
substitute for Tl and T2 in equation (2). But only lots of practice will 
make you competent in this sort of calculation. 
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Issl 
From equation (1): 

From equation (3): 

T1 = m1a+m1g sinO 

T2 = m2g- m2a 

Substitute for Tl> T2 and IX in equation (2): 

R(m2g -m2a)-R(m1a+m1g sinO) = J x (aiR) 

Re-arranging: 

R x m2g-R x m1g sinO = J(aIR)+a x m1R+a x m2R 

. m2g -m1g sin 0 
.. a = 2 

JIR +m1 +m2 

9.81 (5 -12 sin 34°) 

1.4 
0.152 +12+5 

:. a = -0.2118 ms- 2 

the negative sign indicating that all accelerations are in the opposite 
directions to those assumed. 

From equation (4): 
a -0.2118 

IX=-= 
R 0.15 

:. IX= -1.412rads- 2 
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IS61 
One last example before you embark on the revision examples. 

Example 

A truck of mass m1 = 1250 kg is hauled up a slope of 15° by a simple 
hoist which consists of a compound drum, of radii 0.24 m and 0.32 m, 
total moment of inertia 250 kgmZ, and a counter-weight of mass mz, 
200 kg. The hauling rope is attached to the inner radius and the 
counter-weight to the outer, as shown. The hoist is operated by a motor 
(not shown) driving the axis of the drum. Calculate the magnitude of 
the driving torque required at the drum axis in order to pull the truck 
up the slope a distance of 10 m from rest in 8 seconds. Assume a 
resistance to motion of the truck of 800 N. 

Use your elementary kinematics first to calculate the linear acceler­
ation of the truck. Then draw the free-body diagrams. And do not 
forget to include, on the drum diagram, the motor driving torque; call 
this M, to avoid confusion with the rope tensions. Now because you 
calculate the truck acceleration numerically, you can use this to 
calculate the drum angular acceleration, and then the linear acceler­
ation ofmz. So when you come to the algebra, you will have only three 
equations to solve. 
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Kinematically, for ml: 

Drum: 

Hanging weight m2: 

10 = O+! x a1 x 8z 

:. a1 =0.3125ms- z 

ex = a1 = 0.3125 = 1.3021 rads- 2 

rj 0.24 

az = ex x ro = 1.3021 x 0.32 = 0.4167 ms- 2 

Now we know all the accelerations numerically, the equations of 
motion for the two masses can be solved completely-that is, Tl can be 
found from the equation for m1, and Tz from the equation for mz. (By 
the way, I hope you did not make the mistake of assuming the 
acceleration for mz to be the same as for mi.) The equation of motion 
for the drum can then be written, and M calculated. The work is 
completed in the next frame. 
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Issl 
The equations of motion are 

Tl -800 -mig sin 15° = m1al (1) 

.'. Tl = 1250 x 0.3125 + 800 

+ 1250 x 9.81 x 0.2588 

= 4364.16 N 

For m2: m2g -T2 = m2a (2) 

.'. T2 = 200 x 9.81-200 x 0.4167 

= 1878.66 N 

For drum: M +T2 x 0.32 -Tl x 0.24 = I x (l( (3) 

.'. M = 250 x 1.3021 

-1878.66 x 0.32 

+ 4364.16 x 0.24 

= 771.8 Nm 

You can see from the component figures making up this value for M 
that the presence of the counter-weight means that very much less 
torque is required from the driving motor to haul the truck up the 
slope. Nearly all hoists make use of this principle. Most of the load is 
balanced by a counter-weight; the driving motor is required to 
overcome only a small difference of loads, togehter with any friction 
effects, and, of course, the extra forces needed to accelerate the various 
components of the system. 

Right. Now have a go at the 'drill' exercises for this section in 
Frame 89. 
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'Drill' exercises: connected systems 

Fig.l 

1. Bodies of masses ml and ml of magnitudes 3 kg and 4 kg, 
respectively, are connected by a light inextensible string which 
passes over a frictionless peg, as shown in Fig. 1 above. The system is 
released from rest, and exactly one second after release, a third body 
of mass 1! kg is added to ml' Calculate how far upwards ml travels 
from its initial position of rest before coming to rest again. Calculate 
also the total time elapsed before it returns to its initial position. 
Ans. 2.4022 m; 6.3136 s. 

2. Bodies of masses mh ml and m3, having respective magnitudes of 
4 kg, 6 kg and 5 kg, are connected by two light inextensible strings 
passing over frictionless pulleys, as shown in Fig. 2 above. ml lies on 
an inclined plane of slope 25°. The system is released from a state of 
rest. Calculate the acceleration of the system (a) if the plane is 
smooth, (b) if the coefficient of friction between ml and the plane is 
0.1, (c) if the coefficient of friction is 0.3. 
Ans. (a) 1.004 ms- l (ml downwards); (b) 0.6487 ms- l (ml down­
wards); (c) O. 

Fig. 3 Fig.4 

240 Elementary Engineering Mechanics 

 89



3. Bodies of masses ml> 12 kg and m2 10 kg are connected by a light 
string passing over a light frictionless pulley; m1 lies on an inclined 
plane of slope 40° while m2 hangs freely, as shown in Fig. 3 above. The 
friction coefficient between m1 and the plane is 0.1. m1 is given an 
initial downward velocity of 2 m/s. Calculate (a) the time for the 
system to come to rest, (b) the additional time for m1 to reach its 
starting-point, (c) its velocity when it reaches its starting-point. 
Ans. (a) 1.3991 s; (b) 2.1423 s; (c) 1.3061 m/s. 

4. Figure 4 above shows two bodies, of masses, m1 and m2' 2 kg and 
3 kg respectively, connected by a light inextensible string which 
passes over a light frictionless pulley. The bodies rest on inclined 
planes of slopes 20° and 40°. When the system is released from rest, 
m1 is observed to move up the plane, and travels a distance of2 min 
4.38 s. Assuming the coefficient of friction between body and plane 
to be the same for both planes, and assuming m1 moves with a 
constant acceleration, calculate the coefficient of friction. 
Ans.0.272. 

Fig.6 

Fig. 5 

5. Figure 5 above shows a simple wheel-and-axle type hoist. It consists 
of a wheel of radius 1.2 m mounted on an axle of radius 0.2 m, the 
moment of inertia of the whole assembly being 14 kgm2• m1 is the 
load which is to be lifted; this is attached to the axle. The weight of 
m2' which is attached to the wheel, causes the load to be raised. 
Friction may be assumed to be negligible throughout. If load m1 is 
28 kg, calculate the value of m2 sufficient to raise m1 a distance of 
10 m in 15 seconds. 
Ans. 5.54 kg. 
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6. Figure 6 above shows a simple wheel and axle turning about a fixed 
axis. A body of mass 1 kg is attached to a light inextensible string 
which is wound round the axle which has a radius of 12 Mm. The 
system is released from rest and the wheel begins to turn. The body 
is arranged to drop off after the wheel has completed exactly 12 
turns, and this occurs 4.8 seconds after release. The wheel makes an 
additional 9 complete turns before coming to rest due to friction at 
the axle. Determine the moment of inertia of the wheel. 
Hints: assume a frictional torque F acting on the wheel all the time. 
Use kinematic formulae to evaluate the angular accelerations before 
the body falls off, and after it has fallen off. (Ans. 6.545 rad s - 2 and 
8.7266 rads- 2.) Write equations of motion for wheel and body 
before, and for wheel after body falls off. Eliminate F from the 
equations. 
Ans. 0.00765 kgm2• 

7. A simple gravity-operated hoist is required to lower a load a vertical 
distance of 3.6 m. The hoist consists of a load-cage of mass 120 kg, a 
counter-weight of the same mass, a light connecting-rope, and a 
fixed pulley over which the rope passes, the moment of inertia of the 
pulley being 12.4 kg m2 and its effective radius 0.9 m. Calculate the 
maximum load that the cage can accept if its speed when it reaches 
the bottom is not to exceed 2 m/s. Neglect all friction forces. 
Ans. 15.33 kg. 

1901 
With one exception, the problems that we have examined so far have 
dealt with forces acting on bodies where the shape of the body is not 
relevant to the problem; so far as the problem has been concerned, we 
have been able to assume that the mass has been concentrated at a 
point. As we stated in Frame 6, the body was treated as a particle. The 
exception was the effect of forces acting on rotating bodies (Frames 53 
to 66). We now need to extend our work to include problems of forces 
acting 'On bodies wherein the shape of the body is important. For 
example, in Frame 28 we looked at the forces acting on a car which was 
travelling around a banked circular track. We must now be prepared to 
look at this problem in more detail. Part of the solution consisted in 
finding the reaction force R between car and road; in this section, we 
shall learn to calculate how this reaction is shared between the inner 
and outer wheels of the car. In such cases, we drop the term 'particle' 
and refer instead to a 'rigid body'. 
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As a starting point we consider a rigid body subjected to a single 
force F; the line of action of this force does not pass through the mass 
centre, G, of the body. 

To illustrate more clearly the effects of this force, we first include two 
equal and opposite forces, F, parallel to the original force and passing 
through the mass centre G. Since the forces are equal and opposite, they 
cancel out and, dynamically, the body will behave as if subjected to the 
single original force. 

F 
F 

We now split this 'system' into two components 

F 

(a) (b) 

(a) comprises a single force F, parallel to the original force, but now 
passing through G. (b) comprises a couple, of magnitude (F x h) where 
h is the perpendicular distance from G to the line of action of the 
original F. 

The single force F at G shown in (a) will produce a linear 
acceleration, a, of the body; this is given by 

F=mxa 

The couple (F x h) shown in (b) will produce an angular acceleration, oc, 
of the body; this is given by 

Fxh=Ioxoc 

where lois the moment of inertia of the body with respect to an axis 
through G. 
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Thus, in the general case of a rigid body subjected to a number of forces, 
when the line of action of the resultant force does not pass through the 
mass centre of the body, the body will undergo both linear acceleration 
and angular acceleration. Here is a simple illustration. A small boat 
floats on a lake, and you attach a rope to it to pull it ashore. If the boat 
were originally broadside-on to you, and you fix the rope to the bow (or 
the stern), when you pull the rope, the boat, in addition to moving 
towards the shore, will also turn, and it will continue to turn until the 
line of the rope passes through the mass centre of the boat-that is, 
when the boat is more or less pointing towards you. 

However, the simple problems we shall examine will be more 
constrained. As has been the case with all our previous problems, we 
shall always know the line of action of the linear acceleration (although 
we may not know its direction). And furthermore, we shall consider 
only cases where there will be no angular acceleration. 

We may now re-examine the familiar example of a vehicle travelling 
along a road, but we shall now consider the vehicle as a rigid body and 
not as a particle, as we have done so far, in, for example, Frames 25 to 
30. We shall draw a free-body diagram of, say, a car, taking into account 
its size and shape: when examining all the forces acting on the car, we 
have to take into account not only their direction, but also the points at 
which they act. Consider first a car being accelerated along a straight 
level track, and think of all the forces which must act on it. Here is a 
simple sketch of the car, shown as a car, instead of as a dot, or a 
rectangle. 

) ; ) ,; 
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List all the forces you can think of, neglecting resistance of the air. Do 
not forget that the car is being accelerated; the engine must therefore 
apply a tractive force to the body of the car. Refer back to Frame 9. 
Including the tractive force, you should list four forces. 

The forces comprise 
1. The weight of the car. Since we are now concerned with the points of 

application of the forces, we shall require to know the location of the 
mass centre of the car. 

2. The tractive force. If you clearly understood Frame 9, you will know 
that this force is exerted by the road, on the driving wheels of the car 
(in opposition to the thrust of the driving wheels on the road). The 
force must therefore act tangentially along the line of the road or 
track. It is irrelevant whether the car is driven by the rear wheels, the 
front wheels, or both front and rear; the line of action of the force 
will always be tangential to the wheels. 

3. There will be a normal reaction component of road thrust on wheels, 
for each pair of wheels (that is, front and rear). Previously, we have 
considered road reaction as a single force only. These two reactions 
make up the total of four forces acting. 
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Before we attempt a numerical example, we must consider the effect of 
these four forces on the car. Although we have seen that, in general 
terms, the effects of a force system on a rigid body will be a combination 
oflinear and angular acceleration, it should be realised that, apart from 
rather unusual and disastrous cases, the forces on a vehicle combine to 
produce linear acceleration only-forward or backward acceleration 
along the line of the track. Assuming this condition, we can conclude: 

(a) that the resultant force on the vehicle passes through the mass 
centre 

(b) that its line of action is parallel to the road or track 
(c) and that, in consequence of (b), the resultant component 

perpendicular to the line of the track must be zero. 

Conclusion (a) leads us to an even more significant conclusion: since the 
resultant force on the body passes through the mass centre, then the 
resultant moment of all forces about the mass centre must be zero. Be 
careful at this point to note that this condition applies to moments of 
forces about the mass centre. When a body is subjected to a resultant 
force through the mass centre, it should be clear that the moment of this 
force about any point which is not the mass centre need not be zero. In 
solving problems of forces on rigid bodies, students are prone to make 
the mistake of writing a moment eqUilibrium equation about a point 
other than the mass centre. 

Now we will solve a simple problem. 

Example A car has a mass of 850 kg. The distance between front 
and rear wheel centres is 2.7 m. The mass centre of the car is 1.2 m to 
the rear of the front wheel centre, and 0.9 m above the road level. 
Analyse the forces on the car when it accelerates forward along a 
straight level road at 2 m s - 2. 
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We have already considered the forces; here is the free-body diagram. 

E 
a> 
ci 

~ __ 2_.7_m __ .. 

__ ~a=2ms-2 

We do not need to resolve any of the forces. As with several earlier 
examples, we can write two equations 

Along track: (I:.F = m x a) F = 850 x 2 = 1700 N 

Across track: (I:.F = 0) Rl + R2 = 850 g 
(1) 

(2) 

Unlike earlier examples, these two equations are insufficient to 
determine all forces. This is where we need the equation of moment 
equilibrium. 

Moments about G: (assuming clockwise as positive) 

Rd2.7 -1.2) -R2 x 1.2 -F x 0.9 = 0 (3) 

Substituting for F from equation (1) and for R2 from equation (2): 

Rl x 1.5 - (850g - R1 )1.2 -1700 x 0.9 = 0 

1700 x 0.9 + 850 x 9.81 x 1.2 
.'. Rl = (1.5 + 1.2) 

From equation (2): 

= 4272.7 N 

R2 = 850 x 9.81 -4272.7 

= 4065.8 N 

Using the rules of simple statics, calculate what the values of front 
and rear wheel reaction forces would be if there were no acceleration 

Programme 3: Elementary Kinetics 247 

95



(for example, if the car were standing still). You should find that Rl 
would be 3706.0 Nand R2 4632.5 N. It can be seen that the effect of 
driving the car with a forward acceleration is to reduce the front-wheel 
reaction and increase the rear-wheel reaction. If you watch a car pull 
away from a standing start, you can see how the front lifts up. Similarly, 
when a car is braked suddenly, the front dips down. 

As an interesting follow-up to this example, try and solve the next 
one yourself. 

Example The car of the example of Frame 94 is subjected to a 
tractive force of 13897.5 N. Analyse the motion, and evaluate wheel 
reaction forces. 

The solution follows in Frame 96. 

1961 
You may by now have discovered the significance of the rather 
accurately prescribed value of F. 

We can use the same free-body diagram as previously (Frame 95). 
The equations are 

Along track (I:F = m x a): 
13897.5 = 850 x a 

:. a = 16.35 ms- 2 
------

Across track (I:F = 0): Rl + R2 = 850 g = 8338.5 

G..) F x 0.9 + R2 x 1.2 = Rl (2.7 -1.2) 

Substituting for F and for R2 

13897.5 x 0.9 + 1.2(8338.5 - Rd'= Rl x 1.5 

13897.5 x 0.9 + 8338.5 x 1.2 
:. Rl = 2.7 

= 8338.5 N ------
R2 = 0 

(1) 

(2) 

(3) 

This particular value for F of 13897.5 can be seen to be the limiting 
value for the condition that the car stays on the road. The front-wheel 
reaction force is reduced to zero, and the rear-wheel force equals the 
weight of the car. An increase of F would increase the anti-clockwise 
turning moment about G. The clockwise turning moment is provided 
by R1,and this cannot increase, because the value of Rl cannot increase 
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to more than the car's weight. So an increase of F above this figure 
would actually cause the car to turn over backwards-one of the 
disastrous results hinted at in Frame 94. Needless to add, this value of F 
is hypothetical; no ordinary vehicle is capable of providing a tractive 
force of such magnitude. There are examples, however, of certain high­
power sporting vehicles which could turn over. It is partly for this 
reason that high-speed sports cars are designed with a very low centre 
of mass. 

The problem can be extended to motion along a sloping track. 

Example The car of the example in Frame 94 is driven up a 15° 
slope with a forward acceleration of2 m S-2. Determine the tractive 
force and the magnitudes of front-wheel and rear-wheel reaction 
forces. 

Here is the free-body diagram. 

Attempt the three equations yourself before checking in Frame 97. 
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Observe that the weight, mg, must now be resolved in directions along, 
and perpendicular to, the track. 

Along track cr.F = m x a): F -mg sin 15° = m x a 

:. F = 850 x 2 

+850 x 9.81 x sin 15° 

=3~ 

Across track (IF = 0): Rl + R z = mg cos 15° 

= 850 x 9.81 x cos 15° 

= 8054.4 N 

GJ F x 0.9 + Rz x 1.2 = Rl (2.7 -1.2) 

Substituting for F and for Rz: 

3858.2 x 0.9 + 1.2(8054.4 - R 1) = Rl x 1.5 

3858.2 x 0.9 + 1.2 x 8054.4 
Rl = 2.7 

.'. Rl = ~~'§J.8_N 

. '. Rz = 8054.4 - 4865.8 

= 318!i,6 N 

Bearing in mind that applying brakes produces a negative 'tractive 
force', have a try at solving the next example yourself. 

Example The car of the previous example is coasting down a 20° 
slope when the brakes are applied to produce a retardation of 
2.8 m s - z. Determine the braking force, and the magnitudes of front 
and rear wheel reaction forces. 

The answers should be: F = 5231.9 N; Rl = 1738.5 N; Rz = 6097.1 N. 
The solution follows. 
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Since the car is being retarded, acceleration must be directed up the 
slope. The equations 

Along track (r.F = m x a): 

F - mg sin 20° = m x a 
F = m x a+mg sin 20° 

= 850 x 2.8 + 850 x 9.81 sin 20° 

= 5231.9 N --------
Across track (r.F = 0): 

Moments about G: 

Rl +R2 = 850gcos20° 

= 7835.6 N --------

F x 0.9 + Rl (2.7 -1.2) = R2 x 1.2 

Substituting for F and R2 : 

5231.9 x 0.9 + Rl x 1.5 = 1.2(7835.6 - R 1) 

1.2 x 7835.6 - 5231.9 x 0.9 
Rl = 2.7 

Rl = 1J)_~~_ N 

R2 = 7835.6 - 1738.5 = 6Q9_UJi 
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If you made any mistakes in your attempt, find out why and where you 
were wrong. You may have shown the 'braking force' incorrectly; 
possibly you showed it acting through the mass centre, G. Now in 
Frame 9 we discussed the actual mechanism by which a vehicle is driven 
along a road; the driving, or tractive force is applied to the vehicle as a 
friction force between wheels and road. One consequence of this was 
that, no matter how powerful its engine, a car's tractive force is limited 
to the maximum friction force possible between wheels and road; 
attempts to create more force would result in wheel slip. If you now 
think about the mechanism of stopping a car, it should be clear that the 
same conditions apply; the actual retarding force consists of a 
tangential friction force between wheels and road. So a car's braking 
system is only as effective as this maximum friction force; attempting to 
brake the car harder would result in the car, with wheels locked, sliding 
along the road. You can, of course, increase the friction force by 
increasing the normal reaction force between wheels and road, but you 
can do this only by adding to the mass of the car, with the result that the 
extra braking force would be used up in retarding the extra mass. 

In Frames 25 to 30 we looked at problems of vehicles travelling around 
circular tracks, but we treated the vehicle as a particle. In Frame 28, the 
free-body diagram shows the reaction force R between wheels and road 
as a single force. Furthermore, all three forces (R, weight and friction, 
F) were treated as through they all passed through a single point. To 
round off this part of the text, we shall now return to this problem of a 
car on a circular track, this time treating the car as a rigid body. For this 
purpose, we shall require to know the distance between near-side and 
off-side wheels, and the location of the mass centre, G. 

Example A car of mass 850 kg has a track width (that is, distance 
between near-side and off-side wheels) of 1.8 m. The mass centre is 
located centrally between wheels, at a height of 0.8 m above the 
ground. The car travels at constant speed of 24 m/s around a circular 
track of mean radius 45 m, and the track is banked towards the 
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centre at an angle of 35°. Assuming that the car does not slip, 
calculate all the forces acting on the car under these conditions. 

We shall draw a free-body diagram looking from the rear of the car, 
assuming that it is turning to the right. The forces will consist of 

1. The weight; vertically downwards, acting at G. 
2. A reaction force Rl between outer wheels and road, acting upwards, 

its direction being perpendicular to the track surface. (Actually, this 
force will comprise two separate forces, on front and rear wheels, 
but we may treat these as a single force.) 

3. A similar reaction force R2 between inner wheels and road. 
4. A friction force F between wheels and road, acting on the lowest 

point of the wheels, the line of action being parallel to the road 
surface. If the track were flat instead of being banked, the motion 
around the circle would result in a centripetal acceleration to the 
right; this must be provided by the sideways friction between wheels 
and road. We may therefore assume that the force acts from left to 
right-that is, down the slope of the banked track. 

The resulting free-body diagram is therefore like this 

v2 
--~­

r 

Notice, as with our earlier problems, that the direction of the 
centripetal acceleration is horizontal. 

Attempt to write the three equations before reading on. 
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Here are the three equations. 

Horiz. (I:F = m x a): 

Rl sin 35° + R2 sin 35° + F cos 35° = 850 x ~~2 = 10880 (1) 

Vert. (I:F = 0): 

R 1 cos 35° + R2 cos 35° = F sin 35° + 850 g (2) 

Moments about G: Rl x 0.9 = R2 x 0.9 + F x 0.8 (3) 

(Check for yourself that the left-hand side of equation (3) is a clockwise 
moment about G whereas the right-hand side consists of the two anti­
clockwise moments.) Re-arranging (1) and (2) and dividing one by the 
other: 

(R1 + R2)sin 35° 10880 - F cos 35° 
~~-:--=,c-----::-= = -=-:--:-::-::---:-::-:.--
(Rl + R2 )cos 35° F sin 35° + 850 g 

.'. tan 35° (F sin 35° + 8338.5) = 10880 - F cos 35° 

F(sin 35° tan 35° + cos 35°) = 10880 - 8338.5 tan 35° 

. F = 10880 - 8338.5 tan 35° 
. . sin 35° tan 35° + cos 35° 

Substituting in (2): 

Re-arranging (3): 

Subtracting: 

Substituting: 

:. F = 4129.6 N 

4129.6 sin 35° + 8338.5 
Rl +R2 = 350 cos 

:. Rl +R2 = 13071.0N 

0.8 
Rl - R2 = 4129.6 x 0.9 = 3670.2 N 

2R2 = 9400.8 N 

.'. R2 = 4700.4 N 

Rl = 13071.0 -4700.4 = 8370.6 N 
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11021 
To gain practice in this sort of calculation, repeat this example, but this 
time, assume a speed of 30 mls instead of 24 m/s. The form of the 
calculation will be exactly as above, and so it is not given here, but you 
should find that Ri is 12354.1 N, R2 is 4227.2 N andFis 9142.8 N. You 
can see, therefore, that the effect of increasing the speed is to increase F, 
to increase the outer-wheel reaction force Rio at the same time 
decreasing the inner-wheel reaction force R2 • It becomes clear that 
there must be a speed for which the value of R2 is zero. See if you can 
calculate this speed. Draw a new free-body diagram, generally similar 
to the one in Frame 100, but without the force R2 • Remember when 
calculating that the value of the speed v is now not known. The value 
you should obtain is 61.6 m/s. Write the three equations, as we have 
done in the previous frame, modified to conform to the new conditions. 
Then manipulate the equations to eliminate F and Ri . A solution 
follows in Frame 103. 
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Here is the free-body diagram 

And the equations 

Horiz. CEF = m x a): 

Vert. (tF = 0): 

Moments about G: 

From (3): 

v2 

Rl sin 35° + F cos 35° = 850 x 45 

Rl cos 35° = F sin 35° + 850 g 

Rl x 0.9 = F x 0.8 

F = 1.125R1 

Substitute in (1) and (2), re-arranging 

v2 

Rl sin 35° + 1.125 Rl cos 35° = 850 x 45 

Rl cos 35° -1.125 Rl sin 35° = 850 x 9.81 

Dividing, and cancelling Rl and 850 

sin 35° + 1.125 cos 35° v2 

cos 35° -1.125 sin 35° 45 x 9.81 

.'. v2 = 3795.9 

:. v = §1.6mjs 
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We may, if we wish, substitute back and determine the corresponding 
values of F and Rl but this is not required in the problem. 

We need to explore the meaning of this example a little more deeply. 
We have found that at this speed of 61.6 mis, the value of the inner­
wheel reaction will be zero. What happens if we prescribe a speed of, 
say, 65 m/s? Well, you may do this if you wish. Repeat the calculation of 
Frame 101 yet again, using the free-body diagram of Frame 100, and, 
indeed, writing the same three equations, except that v is now 65 instead 
of 24. Your answers should be: F = 60590.2 N; R 1 = 61771.7 N; 
R2 = -9166.6 N. Interpreting this result, we conclude that if this 
vehicle is to travel around the circular path as prescribed, the inner 
wheels must be held down on to the track with this force R2 • If the 
physical conditions do not permit this negative downward reaction 
force (as, with an ordinary vehicle, they do not), then the vehicle cannot 
move as prescribed, and something else will happen. We must approach 
the solution, assuming no force at the inner wheels; we should then find 
that forces F and Rl would combine to give a resultant anti-clockwise 
moment about G; in other words, the vehicle would tip over outwards, 
as we know would actually happen in fact. 
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Before leaving this type of problem, we must look at the force F. We 
established some distance back (Frame 26) that a car on a road requires 
friction between tyres and road to provide this sideways force. Banking 
the track means that we need rely less on friction to produce the 
centripetal acceleration, but in all our examples in this section, we have 
found that an inward force F was required. In every case, we have 
assumed that the force can be provided; this, of course, is no guarantee 
that it will be provided in a real situation. If the road were slippery, it 
might be impossible to provide a sideways force of the magnitude 
calculated, and again, the result would be that the vehicle would not 
move as assumed or prescribed. The force F must be limited by the 
friction conditions between road and wheels, and cannot exceed the 
value Il (R 1 + R2), where Il is the friction coefficient. So, when vehicles 
travel around circular tracks, we find that there are actually two 
conditions limiting the motion; the first is the possibility of tipping 
over, and the second is the possibility of side-slipping. 

If we refer back to the example solved in Frame 101, we obtained 
a value of 13071 N for Rl + R 2 • If we assume a value of 0.5 for 
Jl the maximum possible corresponding value for· F would be 
Jl(R 1 + R2 ) = 6535.5 N. The calculated value of 4129.6 N is therefore 
within the allowable limit, and the car would not side-slip. If, however, 
you return to Frame 103, and calculate the values of Rl and F, you will 
find that Rl = 47956.2 Nand F = 53950.6 N. For this to be possible, a 
friction coefficient of 1.125 is required-a most improbable value. So 
although we have shown that there is a limiting speed of 61.6 mls 
beyond which the car must tip over, there is actually a second and lower 
value oflimiting speed at which it would side-slip. This is not to say that 
a vehicle will always slip before it turns over; on a normal flat curve, 
tipping is usually much more likely than slipping. To round otT this 
section, before going on to the 'drill' examples, calculate the limiting 
speed of the vehicle, assuming a maximum friction coefficient of 0.5. 
Use the same free-body diagram as in Frame 100, except that F must be 
replaced by Il(R1 + R2). v, of course, is not known, and is to be found. 
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\105\ 
The equations will be very similar to the solution of Frame 101. 

Horiz. (l:F=mxa): 
v2 

(R1 + R2)sin 35° + 0.5 (R1 + R2)cos 35° = 850 x 45 (1) 

Vert. (l:F = 0): 

(R1 + R2)cos 35° -0.5(R1 +R2)in35° = 850g (2) 

In this case, a third equation is unnecessary. Dividing (1) by (2), and 
cancelling (R1 + R2 ) and also 850 

sin 35° + 0.5 cos 35° v2 

cos 35° - 0.5 sin 35° 45 g 

. .. v = 28.55 mjs 

This value, as we predicted, is higher than the 24 mjs assumed in Frame 
101, but less than the limiting tipping speed of 61.6 mjs. 

Now: DRILL! 
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'Drill' exercises: rigid bodies 
1. A car has a mass of 3100 kg. The distance between front and rear 

wheel centres is 3.7 m; the mass centre is 1.3 m above road level and 
1.1 m to the rear of the front-wheel centreline. Calculate the 
magnitudes of the rear and front wheel reaction forces when the car 
travels with a forward acceleration of 0.45 m s - 2: (a) up a slope of 
18°; (b) down a slope of 20°. Calculate also what value of forward 
acceleration up the 18° slope would result in both front and rear 
wheel reaction forces being equal, and determine the corresponding 
value of tractive force, and wheel reaction force. 
Ans. (a) 12390.6 N; 16532.0 N. (b) 5331.5 N; 23245.5 N. 
2.351 ms- 2; 16686.1 N; 14461.3 N. «a): F = 10792.5 N; (b): F = 
-9006.2 N; that is, braking.) 

2. A car has a mass of 1100 kg. The distance between front and rear 
wheels is 2.8 m and the mass centre is 0.9 m to rear of the front 
wheels, and 0.6 m above road level. If the coefficient of friction 
between road and wheels is 0.71, calculate the maximum forward 
acceleration possible (a) up a slope of sin -10.1, (b) down the same 
slope. For each case, determine the tractive force. Assume that only 
the rear wheels drive. 
Ans. (a) 1.646 ms- 2; F = 2890 N. (b) 3.608 ms- 2; F = 2890 N. 

3. A car has the specification given in Problem 2. It travels at 25 m/s 
down a slope of 8°. The coefficient of friction between wheels and 
road is 0.65. Calculate the least distance in which it can be brought to 
rest. Assume effective braking on all four wheels. Calculate also the 
wheel reaction forces while braking. 
Ans. 63.l4m (a = 4.949ms- 2), 1946.4N, 8739.6N. 

4. A car has a mass of 1250 kg. The distance between inner and outer 
wheels is 2.3 m and the mass centre is symmetrically between the 
wheels and 0.85 m above road level. The car travels at a constant 
speed of 20 m/s round a circular track of mean radius 45 m. 
Calculate the total outer and inner wheel reaction forces, and the 
sideways friction force on the car: (a) if the track is flat; (b) if it is 
banked inwards at 25° to the horizontal. 
Ans. (a) 10237.5 N, 2025.0 N; 11111.1 N. (b) 9711.0 N, 6093.8 N; 
4887.7 N. 

5. A car has a mass of 920 kg. The distance between inner and outer 
wheels is 2.1 m and the mass centre is centrally between the wheels 
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and 0.75 m above ground level. The car travels at constant speed 
around a circular track of mean radius 32m. 
(a) Calculate the speed such that the inner wheel reaction force 

would be zero (that is, the car is about to tip outwards), 
assuming that the car does not slip. 

(b) Calculate the speed such that the car begins to side-slip, 
assuming a friction coefficient between road and wheels of 0.62. 

Ans. (a) 33.60 m/s. (b) 19.97 m/s. 
6. A block rests on the 800r of a vehicle which is ascending a hill of 

slope 15°. The vehicle starts from rest and accelerates uniformly, 
reaching 15 mls in 50 seconds. Under these conditions, the block 
just begins to slide backwards along the 800r of the vehicle. 
Calculate what retardation would now be required on the vehicle in 
order to cause the block to slip forwards along the 800r of the 
vehicle. 
Ans. 5.378 m s -2 (JI. = 0.3). 

7. The figure shows a truck of 1550 kg mass, with some principal 
dimensions. It is pulled up a 20° slope by a cable attached at a point 
P which is at height h above the ground; the line of action of the 
cable is parallel to the ground. The force in the cable causes a 
forward acceleration of the truck of 2.1 m s -2. Calculate the force F. 
If h is 0.8 m, calculate the front and rear wheel reaction forces. Also 
determine what value of h would cause both front and rear wheel 
reaction forces to be equal. Neglect all friction forces. 

Ans. 8455.6 N; 1749.9 N. 12538.6 N; 0.162 m. 
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There is another approach to problems of kinetics, quite different from 
everything we have so far looked at. 

Imagine a body of mass m, subjected to a number of forces, F l' F 2' 

etc., as a result of which, it has an acceleration a in a certain direction. 
Thus 

Fl~ ___ :po- a 

G ----T 
m 

Furthermore, assume that there is no angular acceleration; the mass 
centre G accelerates as shown, but the body does not turn. We may 
draw several conclusions. 

1. Forces Flo F 2 etc. must have a resultant, R, which cannot be zero. 
2. The magnitude of R must be (m x a). 
3. R must have the same direction as the acceleration a. 
4. R must pass through the mass centre G (otherwise, it would also give 

rise to an angular acceleration: see Frame 90). 

Now suppose that another force were added to the system: that this 
new force were of magnitude R ( = m x a): that its point of application 
were G, the mass centre, but that its direction were opposite to the 
acceleration, a. Since such a force would be equal and opposite to the 
resultant R of the forces F 1 etc., it would produce static eqUilibrium of 
the body. We could then analyse the modified force system using the 
methods of statics; we would not need to resort to using the equation 
1: F = m x a, which we have had to do in all calculations so far in this 
programme. 

This principle of changing a 'dynamics' problem into a 'statics' 
problem by adding an extra force is known as D' Alembert's principle. 
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We may summarise the procedure 

1. Draw the free-body diagram, showing all real forces known to be 
acting on the body, and also the acceleration (so far as it is known, or 
can be assumed). 

2. Include a 'reversed effective force' on the diagram, of magnitude 
(m x a) and direction opposite to that of the acceleration a. When 
the body has no angular acceleration, the point of application of the 
force is the mass centre, G. 

3. Write sufficient equations of static equilibrium to solve for the 
unknown quantities. 

You should recall the principles of static equilibrium: 
(1) The resultant of all forces in any direction = 0 
(2) The sum of the moments of all forces about any point = 0 

The opening statement of this frame must be repeated. This is another 
approach to problems that you have hopefully, by now, learned already 
to solve. The reason for its inclusion in this problem is that you have 
very probably encountered it previously, and may have been puzzled 
that the work of the programme so far conflicts with what you 'learned' 
previously. The quote-marks are intended to suggest that although you 
may have been able to obtain correct answers to a few problems, you 
probably did not really understand exactly what you were doing! 
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A single example will be sufficient to illustrate the technique. We shall 
take the example of Frame 97. To save looking back, here is the 
example, restated. 

Example A car has a mass of 850 kg. The distance between front 
and rear wheel centres is 2.7 m. The mass centre is 1.2 m to the rear of 
the front wheel centre, and 0.9 m above road level. The car is coasting 
down a slope of 20° when the brakes are applied to produce a 
retardation of 2.8 m s - 2. Determine the braking force, and the 
magnitudes of the front and rear wheel reaction forces. 

We draw the free-body diagram. This will be identical to that of Frame 
98 but must now also include an extra 'force', acting at G, in the forward 
direction (because the acceleration is backwards) and of magnitude 
(m x a) = 850 x 2.8 = 2380 N. The word 'force' is in quote-marks 
because there is, of course, no real force acting here at all. It is a fictional 
force, included merely to solve the problem. For this reason, it is good 
technique to show it distinctly on the free-body diagram, so that it 
cannot be confused with the real forces, F, Rl> R2 and mg. 

An equation of static equilibrium down the slope will yield the value 
of F 

2380 + 850 g sin 20° - F = 0 

giving: F = 5231.9 N 

Writing equilibrium of moments about the point of contact between 
front wheel and road 
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Rl X 2.7 + 2380 x 0.9 = 850 g cos 20° x 1.2 - 850 9 sin 20° x 0.9 

giving: Rl = 1738.5 ~ 

Equilibrium across the slope 

Rl + R2 = 850 g cos 20° = 7835.6 N 

giving: R2 = 6097.1 N 

(Alternatively, Rl can be determined by a moment equation about the 
rear-wheel contact point.) 

The solution is simpler than that of Frame 98; there, we had to solve 
two simultaneous equations in Rl and R2 • Here, we have found each 
unknown from a single equation. Recall that in Frame 99, you were 
warned that you could write a moment equilibrium equation only with 
respect to G, the mass centre. Here, because we are solving a 'static' 
problem, we may write a moment equilibrium equation with respect to 
any convenient point. 
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This brings us to the end of a rather long programme. There are no 
'drill' examples for this final section. Remember, the use of 
D'Alembert's principle is an alternative method of solving kinetic 
problems, so if you would like some practice in using the technique, 
make use of the examples of Frame 106. 

For those problems involving a vehicle travelling round a circular 
track, you know that the centripetal acceleration is vl Jr, and that it is 
directed towards the centre of the curve. Your 'reversed effective force' 
will therefore be mv2 Jr, and will be directed radially outwards. Never 
forget that this 'force' is not a real force, but an imaginary or fictitious 
one. Most certainly, it is not the centrifugal force. Centrifugal force is a 
real force; not a fictitious one. In the case of a car on a circular track, the 
centrifugal force is the radially outward force exerted by the wheels of 
the car on the road. As such, it is not included in the system of forces 
shown on the free-body diagram, which purports to show only those 
forces acting on the body in question, and not the forces exerted by it on 
other bodies or constraints. 

It is usually when analysing the kinetics of bodies having circular 
motion that students are first introduced to this concept of a radially 
outward force of magnitude mv2 Jr, usually when they are perhaps too 
young and inexperienced to appreciate the rather sophisticated concept 
of making use of a fictitious force to translate a dynamics problem into 
a statics one. It must be made clear that even at this stage, it is not 
necessary for you to learn the technique. But if you have been 
introduced to the method earlier, without clearly understanding what 
you have been doing, it is certainly necessary for you to tidy up your 
ideas, and clarify your thinking. Later, in more advanced work, you 
may encounter problems wherein the use of D'Alembert's principle 
becomes almost essential. But in elementary work, you can easily 
manage perfectly well without it. 
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