

Data-Centric Systems and Applications

Series editors

M.J. Carey
S. Ceri

Editorial Board

A. Ailamaki
S. Babu
P. Bernstein
J.C. Freytag
A. Halevy
J. Han
D. Kossmann
I. Manolescu
G. Weikum
K.-Y. Whang
J.X. Yu

More information about this series at
http://www.springer.com/series/5258

http://www.springer.com/series/5258

Minos Garofalakis � Johannes Gehrke �

Rajeev Rastogi
Editors

Data Stream Management

Processing High-Speed Data Streams

Editors
Minos Garofalakis
School of Electrical and
Computer Engineering
Technical University of Crete
Chania, Greece

Johannes Gehrke
Microsoft Corporation
Redmond, WA, USA

Rajeev Rastogi
Amazon India
Bangalore, India

ISSN 2197-9723 ISSN 2197-974X (electronic)
Data-Centric Systems and Applications
ISBN 978-3-540-28607-3 ISBN 978-3-540-28608-0 (eBook)
DOI 10.1007/978-3-540-28608-0

Library of Congress Control Number: 2016946344

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2016
The fourth chapter in part 4 is published with kind permission of © 2004 Association for Computing
Machinery, Inc.. All rights reserved.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.springer.com
http://www.springer.com/mycopy

Contents

Data Stream Management: A Brave New World 1
Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi

Part I Foundations and Basic Stream Synopses

Data-Stream Sampling: Basic Techniques and Results 13
Peter J. Haas

Quantiles and Equi-depth Histograms over Streams 45
Michael B. Greenwald and Sanjeev Khanna

Join Sizes, Frequency Moments, and Applications 87
Graham Cormode and Minos Garofalakis

Top-k Frequent Item Maintenance over Streams 103
Moses Charikar

Distinct-Values Estimation over Data Streams 121
Phillip B. Gibbons

The Sliding-Window Computation Model and Results 149
Mayur Datar and Rajeev Motwani

Part II Mining Data Streams

Clustering Data Streams . 169
Sudipto Guha and Nina Mishra

Mining Decision Trees from Streams . 189
Geoff Hulten and Pedro Domingos

Frequent Itemset Mining over Data Streams 209
Gurmeet Singh Manku

v

vi Contents

Temporal Dynamics of On-Line Information Streams 221
Jon Kleinberg

Part III Advanced Topics

Sketch-Based Multi-Query Processing over Data Streams 241
Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi

Approximate Histogram and Wavelet Summaries of Streaming Data . . 263
S. Muthukrishnan and Martin Strauss

Stable Distributions in Streaming Computations 283
Graham Cormode and Piotr Indyk

Tracking Queries over Distributed Streams 301
Minos Garofalakis

Part IV System Architectures and Languages

STREAM: The Stanford Data Stream Management System 317
Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz,
Mayur Datar, Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and
Jennifer Widom

The Aurora and Borealis Stream Processing Engines 337
Uğur Çetintemel, Daniel Abadi, Yanif Ahmad, Hari Balakrishnan,
Magdalena Balazinska, Mitch Cherniack, Jeong-Hyon Hwang,
Samuel Madden, Anurag Maskey, Alexander Rasin, Esther Ryvkina,
Mike Stonebraker, Nesime Tatbul, Ying Xing, and Stan Zdonik

Extending Relational Query Languages for Data Streams 361
N. Laptev, B. Mozafari, H. Mousavi, H. Thakkar, H. Wang, K. Zeng,
and Carlo Zaniolo

Hancock: A Language for Analyzing Transactional Data Streams . . . 387
Corinna Cortes, Kathleen Fisher, Daryl Pregibon, Anne Rogers, and
Frederick Smith

Sensor Network Integration with Streaming Database Systems 409
Daniel Abadi, Samuel Madden, and Wolfgang Lindner

Part V Applications

Stream Processing Techniques for Network Management 431
Charles D. Cranor, Theodore Johnson, and Oliver Spatscheck

High-Performance XML Message Brokering 451
Yanlei Diao and Michael J. Franklin

Fast Methods for Statistical Arbitrage 473
Eleftherios Soulas and Dennis Shasha

Contents vii

Adaptive, Automatic Stream Mining . 499
Spiros Papadimitriou, Anthony Brockwell, and Christos Faloutsos

Conclusions and Looking Forward . 529
Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi

Data Stream Management: A Brave New World

Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi

1 Introduction

Traditional data-management systems software is built on the concept of persis-
tent data sets that are stored reliably in stable storage and queried/updated several
times throughout their lifetime. For several emerging application domains, how-
ever, data arrives and needs to be processed on a continuous (24× 7) basis, without
the benefit of several passes over a static, persistent data image. Such continuous
data streams arise naturally, for example, in the network installations of large Tele-
com and Internet service providers where detailed usage information (Call-Detail-
Records (CDRs), SNMP/RMON packet-flow data, etc.) from different parts of the
underlying network needs to be continuously collected and analyzed for interest-
ing trends. Other applications that generate rapid, continuous and large volumes of
stream data include transactions in retail chains, ATM and credit card operations in
banks, financial tickers, Web server log records, etc. In most such applications, the
data stream is actually accumulated and archived in a database-management system
of a (perhaps, off-site) data warehouse, often making access to the archived data
prohibitively expensive. Further, the ability to make decisions and infer interesting

M. Garofalakis (B)
School of Electrical and Computer Engineering, Technical University of Crete,
University Campus—Kounoupidiana, Chania 73100, Greece
e-mail: minos@softnet.tuc.gr

J. Gehrke
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399, USA
e-mail: johannes@microsoft.com

R. Rastogi
Amazon India, Brigade Gateway, Malleshwaram (W), Bangalore 560055, India
e-mail: rastogi@amazon.com

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_1

1

mailto:minos@softnet.tuc.gr
mailto:johannes@microsoft.com
mailto:rastogi@amazon.com
http://dx.doi.org/10.1007/978-3-540-28608-0_1

2 M. Garofalakis et al.

Fig. 1 ISP network monitoring data streams

patterns on-line (i.e., as the data stream arrives) is crucial for several mission-critical
tasks that can have significant dollar value for a large corporation (e.g., telecom
fraud detection). As a result, recent years have witnessed an increasing interest in
designing data-processing algorithms that work over continuous data streams, i.e.,
algorithms that provide results to user queries while looking at the relevant data
items only once and in a fixed order (determined by the stream-arrival pattern).

Example 1 (Application: ISP Network Monitoring) To effectively manage the op-
eration of their IP-network services, large Internet Service Providers (ISPs), like
AT&T and Sprint, continuously monitor the operation of their networking infras-
tructure at dedicated Network Operations Centers (NOCs). This is truly a large-scale
monitoring task that relies on continuously collecting streams of usage information
from hundreds of routers, thousands of links and interfaces, and blisteringly-fast
sets of events at different layers of the network infrastructure (ranging from fiber-
cable utilizations to packet forwarding at routers, to VPNs and higher-level trans-
port constructs). These data streams can be generated through a variety of network-
monitoring tools (e.g., Cisco’s NetFlow [10] or AT&T’s GigaScope probe [5] for
monitoring IP-packet flows), For instance, Fig. 1 depicts an example ISP monitoring
setup, with an NOC tracking NetFlow measurement streams from four edge routers
in the network R1–R4. The figure also depicts a small fragment of the streaming
data tables retrieved from routers R1 and R2 containing simple summary informa-
tion for IP sessions. In real life, such streams are truly massive, comprising hundreds
of attributes and billions of records—for instance, AT&T collects over one terabyte
of NetFlow measurement data from its production network each day!

Typically, this measurement data is periodically shipped off to a backend data
warehouse for off-line analysis (e.g., at the end of the day). Unfortunately, such
off-line analyses are painfully inadequate when it comes to critical network-
management tasks, where reaction in (near) real-time is absolutely essential. Such
tasks include, for instance, detecting malicious/fraudulent users, DDoS attacks, or
Service-Level Agreement (SLA) violations, as well as real-time traffic engineering
to avoid congestion and improve the utilization of critical network resources. Thus,

Data Stream Management: A Brave New World 3

it is crucial to process and analyze these continuous network-measurement streams
in real-time and a single pass over the data (as it is streaming into the NOC), while,
of course, remaining within the resource (e.g., CPU and memory) constraints of the
NOC. (Recall that these data streams are truly massive, and there may be hundreds
or thousands of analysis queries to be executed over them.)

This volume focuses on the theory and practice of data stream management,
and the difficult, novel challenges this emerging domain introduces for data-
management systems. The collection of chapters (contributed by authorities in the
field) offers a comprehensive introduction to both the algorithmic/theoretical foun-
dations of data streams and the streaming systems/applications built in different
domains. In the remainder of this introductory chapter, we provide a brief summary
of some basic data streaming concepts and models, and discuss the key elements of
a generic stream query processing architecture. We then give a short overview of the
contents of this volume.

2 Basic Stream Processing Models

When dealing with structured, tuple-based data streams (as in Example 1), the
streaming data can essentially be seen as rendering massive relational table(s)
through a continuous stream of updates (that, in general, can comprise both in-
sertions and deletions). Thus, the processing operations users would want to per-
form over continuous data streams naturally parallel those in conventional database,
OLAP, and data-mining systems. Such operations include, for instance, relational
selections, projections, and joins, GROUP-BY aggregates and multi-dimensional
data analyses, and various pattern discovery and analysis techniques. For several of
these data manipulations, the high-volume and continuous (potentially, unbounded)
nature of real-life data streams introduces novel, difficult challenges which are not
addressed in current data-management architectures. And, of course, such chal-
lenges are further exacerbated by the typical user/application requirements for con-
tinuous, near real-time results for stream operations. As a concrete example, con-
sider some of example queries that a network administrator may want to support
over the ISP monitoring architecture depicted in Fig. 1.

• To analyze frequent traffic patterns and detect potential Denial-of-Service (DoS)
attacks, an example analysis query could be: Q1: “What are the top-100 most fre-
quent IP (source, destination) pairs observed at router R1 over the past week?”.
This is an instance of a top-k (or, “heavy-hitters”) query—viewing the R1 as
a (dynamic) relational table, it can be expressed using the standard SQL query
language as follows:

Q1: SELECT ip_source, ip_dest, COUNT(*) AS frequency
FROM R1
GROUP BY ip_source, ip_dest
ORDER BY COUNT(*) DESC
LIMIT 100

4 M. Garofalakis et al.

• To correlate traffic patterns across different routers (e.g., for the purpose of dy-
namic packet routing or traffic load balancing), example queries might include:
Q2: “How many distinct IP (source, destination) pairs have been seen by both R1
and R2, but not R3?”, and Q3: “Count the number of session pairs in R1 and R2
where the source-IP in R1 is the same as the destination-IP in R2.” Q2 and Q3 are
examples of (multi-table) set-expression and join-aggregate queries, respectively;
again, they can both be expressed in standard SQL terms over the R1–R3 tables:

Q2: SELECT COUNT(*) FROM
((SELECT DISTINCT ip_source, ip_dest FROM R1
INTERSECT
SELECT DISTINCT ip_source, ip_dest FROM R2

) EXCEPT
SELECT DISTINCT ip_source, ip_dest FROM R3)

Q3: SELECT COUNT(*)
FROM R1, R2
WHERE R1.ip_source = R2.ip_dest

A data-stream processing engine turns the paradigm of conventional database
systems on its head: Databases typically have to deal with a stream of queries over
a static, bounded data set; instead, a stream processing engine has to effectively
process a static set of queries over continuous streams of data. Such stream queries
can be (i) continuous, implying the need for continuous, real-time monitoring of
the query answer over the changing stream, or (ii) ad-hoc query processing requests
interspersed with the updates to the stream. The high data rates of streaming data
might outstrip processing resources (both CPU and memory) on a steady or intermit-
tent (i.e., bursty) basis; in addition, coupled with the requirement for near real-time
results, they typically render access to secondary (disk) storage completely infeasi-
ble.

In the remainder of this section, we briefly outline some key data-stream man-
agement concepts and discuss basic stream-processing models.

2.1 Data Streaming Models

An equivalent view of a relational data stream is that of a massive, dynamic,
one-dimensional vector A[1 . . .N]—this is essentially using standard techniques
(e.g., row- or column-major). As a concrete example, Fig. 2 depicts the stream
vector A for the problem of monitoring active IP network connections between
source/destination IP addresses. The specific dynamic vector has 264 entries captur-
ing the up-to-date frequencies for specific (source, destination) pairs observed in IP
connections that are currently active. The size N of the streaming A vector is de-
fined as the product of the attribute domain size(s) which can easily grow very large,
especially for multi-attribute relations.1 The dynamic vector A is rendered through

1Note that streaming algorithms typically do not require a priori knowledge of N .

Data Stream Management: A Brave New World 5

Fig. 2 Example dynamic
vector modeling streaming
network data

a continuous stream of updates, where the j th update has the general form 〈k, c[j]〉
and effectively modifies the kth entry of A with the operation A[k]←A[k] + c[j].
We can define three generic data streaming models [9] based on the nature of these
updates:

• Time-Series Model. In this model, the j th update is 〈j,A[j]〉 and updates arrive
in increasing order of j ; in other words, we observe the entries of the streaming
vector A by increasing index. This naturally models time-series data streams,
such as the series of measurements from a temperature sensor or the volume of
NASDAQ stock trades over time. Note that this model poses a severe limitation
on the update stream, essentially prohibiting updates from changing past (lower-
index) entries in A.

• Cash-Register Model. Here, the only restriction we impose on the j th update
〈k, c[j]〉 is that c[j] ≥ 0; in other words, we only allow increments to the entries
of A but, unlike the Time-Series model, multiple updates can increment a given
entry A[j] over the stream. This is a natural model for streams where data is
just inserted/accumulated over time, such as streams monitoring the total packets
exchanged between two IP addresses or the collection of IP addresses accessing
a web server. In the relational case, a Cash-Register stream naturally captures the
case of an append-only relational table which is quite common in practice (e.g.,
the fact table in a data warehouse [1]).

• Turnstile Model. In this, most general, streaming model, no restriction is im-
posed on the j th update 〈k, c[j]〉, so that c[j] can be either positive or negative;
thus, we have a fully dynamic situation, where items can be continuously inserted
and deleted from the stream. For instance, note that our example stream for moni-
toring active IP network connections (Fig. 2) is a Turnstile stream, as connections
can be initiated or terminated between any pair of addresses at any point in the
stream. (A technical constraint often imposed in this case is that A[j] ≥ 0 always
holds—this is referred to as the strict Turnstile model [9].)

The above streaming models are obviously given in increasing order of general-
ity: Ideally, we seek algorithms and techniques that work in the most general, Turn-

6 M. Garofalakis et al.

stile model (and, thus, are also applicable in the other two models). On the other
hand, the weaker streaming models rely on assumptions that can be valid in certain
application scenarios, and often allow for more efficient algorithmic solutions in
cases where Turnstile solutions are inefficient and/or provably hard.

Our generic goal in designing data-stream processing algorithms is to compute
functions (or, queries) on the vector A at different points during the lifetime of the
stream (continuous or ad-hoc). For instance, it is not difficult to see that the exam-
ple queries Q1–Q3 mentioned earlier in this section can be trivially computed over
stream vectors similar to that depicted in Fig. 2, assuming that the complete vec-
tor(s) are available; similarly, other types of processing (e.g., data mining) can be
easily carried out over the full frequency vector(s) using existing algorithms. This,
however, is an unrealistic assumption in the data-streaming setting: The main chal-
lenge in the streaming model of query computation is that the size of the stream vec-
tor, N , is typically huge, making it impractical (or, even infeasible) to store or make
multiple passes over the entire stream. The typical requirement for such stream pro-
cessing algorithms is that they operate in small space and small time, where “space”
refers to the working space (or, state) maintained by the algorithm and “time” refers
to both the processing time per update (e.g., to appropriately modify the state of the
algorithm) and the query-processing time (to compute the current query answer).
Furthermore, “small” is understood to mean a quantity significantly smaller than
�(N) (typically, poly-logarithmic in N).

2.2 Incorporating Recency: Time-Decayed and Windowed Streams

Streaming data naturally carries a temporal dimension and a notion of “time”. The
conventional data streaming model discussed thus far (often referred to as landmark
streams) assumes that the streaming computation begins at a well defined starting
point t0 (at which the streaming vector is initialized to all zeros), and at any time
t takes into account all streaming updates between t0 and t . In many applications,
however, it is important to be able to downgrade the importance (or, weight) of older
items in the streaming computation. For instance, in the statistical analysis of trends
or patterns over financial data streams, data that is more than a few weeks old might
naturally be considered “stale” and irrelevant. Various time-decay models have been
proposed for streaming data, with the key differentiation lying in the relationship
between an update’s weight and its age (e.g., exponential or polynomial decay [3]).
The sliding-window model [6] is one of the most prominent and intuitive time-decay
models that essentially considers only a window of the most recent updates seen
in the stream thus far—updates outside the window are automatically “aged out”
(e.g., given a weight of zero). The definition of the window itself can be either time-
based (e.g., updates seen over the last W time units) or count-based (e.g., the last W

updates). The key limiting factor in this streaming model is, naturally, the size of the
window W : the goal is to design query processing techniques that have space/time
requirements significantly sublinear (typically, poly-logarithmic) in W [6].

Data Stream Management: A Brave New World 7

Fig. 3 General stream query processing architecture

3 Querying Data Streams: Synopses and Approximation

A generic query processing architecture for streaming data is depicted in Fig. 3. In
contrast to conventional database query processors, the assumption here is that a
stream query-processing engine is allowed to see the data tuples in relations only
once and in the fixed order of their arrival as they stream in from their respective
source(s). Backtracking over a stream and explicit access to past tuples is impossi-
ble; furthermore, the order of tuples arrival for each streaming relation is arbitrary
and duplicate tuples can occur anywhere over the duration of the stream. Further-
more, in the most general turnstile model, the stream rendering each relation can
comprise tuple deletions as well as insertions.

Consider a (possibly, complex) aggregate query Q over the input streams and
let N denote an upper bound on the total size of the streams (i.e., the size of the
complete stream vector(s)). Our data-stream processing engine is allowed a certain
amount of memory, typically orders of magnitude smaller than the total size of its
inputs. This memory is used to continuously maintain concise synopses/summaries
of the streaming data (Fig. 3). The two key constraints imposed on such stream
synopses are:

(1) Single Pass—the synopses are easily maintained, during a single pass over the
streaming tuples in the (arbitrary) order of their arrival; and,

(2) Small Space/Time—the memory footprint as well as the time required to up-
date and query the synopses is “small” (e.g., poly-logarithmic in N).

In addition, two highly desirable properties for stream synopses are:

(3) Delete-proof—the synopses can handle both insertions and deletions in the up-
date stream (i.e., general turnstile streams); and,

(4) Composable—the synopses can be built independently on different parts of the
stream and composed/merged in a simple (and, ideally, lossless) fashion to obtain
a synopsis of the entire stream (an important feature in distributed system settings).

8 M. Garofalakis et al.

At any point in time, the engine can process the maintained synopses in order
to obtain an estimate of the query result (in a continuous or ad-hoc fashion). Given
that the synopsis construction is an inherently lossy compression process, exclud-
ing very simple queries, these estimates are necessarily approximate—ideally, with
some guarantees on the approximation error. These guarantees can be either de-
terministic (e.g., the estimate is always guaranteed to be within ε relative/absolute
error of the accurate answer) or probabilistic (e.g., estimate is within ε error of the
accurate answer except for some small failure probability δ). The properties of such
ε- or (ε, δ)-estimates are typically demonstrated through rigorous analyses using
known algorithmic and mathematical tools (including, sampling theory [2, 11], tail
inequalities [7, 8], and so on). Such analyses typically establish a formal tradeoff
between the space and time requirements of the underlying synopses and estimation
algorithms, and their corresponding approximation guarantees.

Several classes of stream synopses are studied in the chapters that follow, along
with a number of different practical application scenarios. An important point to
note here is that there really is no “universal” synopsis solution for data stream
processing: to ensure good performance, synopses are typically purpose-built for
the specific query task at hand. For instance, we will see different classes of stream
synopses with different characteristics (e.g., random samples and AMS sketches)
for supporting queries that rely on multiset/bag semantics (i.e., the full frequency
distribution), such as range/join aggregates, heavy-hitters, and frequency moments
(e.g., example queries Q1 and Q3 above). On the other hand, stream queries that
rely on set semantics, such as estimating the number of distinct values (i.e., set
cardinality) in a stream or a set expression over a stream (e.g., query Q2 above), can
be more effectively supported by other classes of synopses (e.g., FM sketches and
distinct samples). A comprehensive overview of synopsis structures and algorithms
for massive data sets can be found in the recent survey of Cormode et al. [4].

4 This Volume: An Overview

The collection of chapters in this volume (contributed by authorities in the field)
offers a comprehensive introduction to both the algorithmic/theoretical foundations
of data streams and the streaming systems/applications built in different domains.
The authors have also taken special care to ensure that each chapter is, for the most
part, self-contained, so that readers wishing to focus on specific streaming tech-
niques and aspects of data-stream processing, or read about particular streaming
systems/applications can move directly to the relevant chapter(s).

Part I focuses on basic algorithms and stream synopses (such as random sam-
ples and different sketching structures) for landmark and sliding-window streams,
and some key stream processing tasks (including the estimation of quantiles, norms,
join-aggregates, top-k values, and the number of distinct values). The chapters in
Part II survey existing techniques for basic stream mining tasks, such as clustering,
decision-tree classification, and the discovery of frequent itemsets and temporal dy-
namics. Part III discusses a number of advanced stream processing topics, including

Data Stream Management: A Brave New World 9

algorithms and synopses for more complex queries and analytics, and techniques for
querying distributed streams. The chapters in Part IV focus on the system and lan-
guage aspects of data stream processing through comprehensive surveys of existing
system prototypes and language designs. Part V then presents some representative
applications of streaming techniques in different domains, including network man-
agement, financial analytics, time-series analysis, and publish/subscribe systems.
Finally, we conclude this volume with an overview of current data streaming prod-
ucts and novel application domains (e.g., cloud computing, big data analytics, and
complex event processing), and discuss some future directions in the field.

References

1. S. Chaudhuri, U. Dayal, An overview of data warehousing and OLAP technology. ACM SIG-
MOD Record 26(1) (1997)

2. W.G. Cochran, Sampling Techniques, 3rd edn. (Wiley, New York, 1977)
3. E. Cohen, M.J. Strauss, Maintaining time-decaying stream aggregates. J. Algorithms 59(1),

19–36 (2006)
4. G. Cormode, M. Garofalakis, P.J. Haas, C. Jermaine, Synopses for massive data: samples,

histograms, wavelets, sketches. Found. Trends® Databases 4(1–3) (2012)
5. C. Cranor, T. Johnson, O. Spatscheck, V. Shkapenyuk, GigaScope: a stream database for net-

work applications, in Proc. of the 2003 ACM SIGMOD Intl. Conference on Management of
Data, San Diego, California (2003)

6. M. Datar, A. Gionis, P. Indyk, R. Motwani, Maintaining stream statistics over sliding windows.
SIAM J. Comput. 31(6), 1794–1813 (2002)

7. M. Mitzenmacher, E. Upfal, Probability and Computing: Randomized Algorithms and Proba-
bilistic Analysis (Cambridge University Press, Cambridge, 2005)

8. R. Motwani, P. Raghavan, Randomized Algorithms (Cambridge University Press, Cambridge,
1995)

9. S. Muthukrishnan, Data streams: algorithms and applications. Found. Trends Theor. Comput.
Sci. 1(2) (2005)

10. NetFlow services and applications. Cisco systems white paper (1999). http://www.cisco.
com/

11. C.-E. Särndal, B. Swensson, J. Wretman, Model Assisted Survey Sampling (Springer, New
York, 1992). Springer Series in Statistics

http://www.cisco.com/
http://www.cisco.com/

Part I
Foundations and Basic Stream Synopses

Data-Stream Sampling: Basic Techniques
and Results

Peter J. Haas

1 Introduction

Perhaps the most basic synopsis of a data stream is a sample of elements from the
stream. A key benefit of such a sample is its flexibility: the sample can serve as in-
put to a wide variety of analytical procedures and can be reduced further to provide
many additional data synopses. If, in particular, the sample is collected using ran-
dom sampling techniques, then the sample can form a basis for statistical inference
about the contents of the stream. This chapter surveys some basic sampling and in-
ference techniques for data streams. We focus on general methods for materializing
a sample; later chapters provide specialized sampling methods for specific analytic
tasks.

To place the results of this chapter in context and to help orient readers having a
limited background in statistics, we first give a brief overview of finite-population
sampling and its relationship to database sampling. We then outline the specific
data-stream sampling problems that are the subject of subsequent sections.

1.1 Finite-Population Sampling

Database sampling techniques have their roots in classical statistical methods for
“finite-population sampling” (also called “survey sampling”). These latter methods
are concerned with the problem of drawing inferences about a large finite population
from a small random sample of population elements; see [1–5] for comprehensive

P.J. Haas (B)
IBM Almaden Research Center, San Jose, CA, USA
e-mail: phaas@us.ibm.com

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_2

13

mailto:phaas@us.ibm.com
http://dx.doi.org/10.1007/978-3-540-28608-0_2

14 P.J. Haas

discussions. The inferences usually take the form either of testing some hypothesis
about the population—e.g., that a disproportionate number of smokers in the popu-
lation suffer from emphysema—or estimating some parameters of the population—
e.g., total income or average height. We focus primarily on the use of sampling for
estimation of population parameters.

The simplest and most common sampling and estimation schemes require that
the elements in a sample be “representative” of the elements in the population. The
notion of simple random sampling (SRS) is one way of making this concept precise.
To obtain an SRS of size k from a population of size n, a sample element is selected
randomly and uniformly from among the n population elements, removed from the
population, and added to the sample. This sampling step is repeated until k sample
elements are obtained. The key property of an SRS scheme is that each of the

(
n
k

)

possible subsets of k population elements is equally likely to be produced.
Other “representative” sampling schemes besides SRS are possible. An impor-

tant example is simple random sampling with replacement (SRSWR).1 The SRSWR

scheme is almost identical to SRS, except that each sampled element is returned to
the population prior to the next random selection; thus a given population element
can appear multiple times in the sample. When the sample size is very small with
respect to the population size, the SRS and SRSWR schemes are almost indistinguish-
able, since the probability of sampling a given population element more than once
is negligible. The mathematical theory of SRSWR is a bit simpler than that of SRS,
so the former scheme is sometimes used as an approximation to the latter when ana-
lyzing estimation algorithms based on SRS. Other representative sampling schemes
besides SRS and SRSWR include the “stratified” and “Bernoulli” schemes discussed
in Sect. 2. As will become clear in the sequel, certain non-representative sampling
methods are also useful in the data-stream setting.

Of equal importance to sampling methods are techniques for estimating popu-
lation parameters from sample data. We discuss this topic in Sect. 4, and content
ourselves here with a simple example to illustrate some of the basic issues involved.
Suppose we wish to estimate the total income θ of a population of size n based on
an SRS of size k, where k is much smaller than n. For this simple example, a natural
estimator is obtained by scaling up the total income s of the individuals in the sam-
ple, θ̂ = (n/k)s, e.g., if the sample comprises 1 % of the population, then scale up
the total income of the sample by a factor of 100. For more complicated population
parameters, such as the number of distinct ZIP codes in a population of magazine
subscribers, the scale-up formula may be much less obvious. In general, the choice
of estimation method is tightly coupled to the method used to obtain the underlying
sample.

Even for our simple example, it is important to realize that our estimate is
random, since it depends on the particular sample obtained. For example, sup-
pose (rather unrealistically) that our population consists of three individuals, say
Smith, Abbas, and Raman, whose respective incomes are $10,000, $50,000, and

1Sometimes, to help distinguish between the two schemes more clearly, SRS is called simple ran-
dom sampling without replacement.

Data-Stream Sampling: Basic Techniques and Results 15

Table 1 Possible scenarios, along with probabilities, for a sampling and estimation exercise

Sample Sample income Est. Pop. income Scenario probability

{Smith,Abbas} $60,000 $90,000 1/3

{Smith,Raman} $1,010,000 $1,515,000 1/3

{Abbas,Raman} $1,050,000 $1,575,000 1/3

$1,000,000. The total income for this population is $1,060,000. If we take an SRS

of size k = 2—and hence estimate the income for the population as 1.5 times the
income for the sampled individuals—then the outcome of our sampling and esti-
mation exercise would follow one of the scenarios given in Table 1. Each of the
scenarios is equally likely, and the expected value (also called the “mean value”) of
our estimate is computed as

expected value = (1/3) · (90,000)+ (1/3) · (1,515,000)+ (1/3) · (1,575,000)

= 1,060,000,

which is equal to the true answer. In general, it is important to evaluate the accuracy
(degree of systematic error) and precision (degree of variability) of a sampling and
estimation scheme. The bias, i.e., expected error, is a common measure of accuracy,
and, for estimators with low bias, the standard error is a common measure of pre-
cision. The bias of our income estimator is 0 and the standard error is computed as
the square root of the variance (expected squared deviation from the mean) of our
estimator:

SE = [
(1/3) · (90,000 − 1,060,000)2 + (1/3) · (1,515,000 − 1,060,000)2

+ (1/3) · (1,575,000 − 1,060,000)2]1/2 ≈ 687,000.

For more complicated population parameters and their estimators, there are often no
simple formulas for gauging accuracy and precision. In these cases, one can some-
times resort to techniques based on subsampling, that is, taking one or more random
samples from the initial population sample. Well known subsampling techniques for
estimating bias and standard error include the “jackknife” and “bootstrap” methods;
see [6]. In general, the accuracy and precision of a well designed sampling-based es-
timator should increase as the sample size increases. We discuss these issues further
in Sect. 4.

1.2 Database Sampling

Although database sampling overlaps heavily with classical finite-population sam-
pling, the former setting differs from the latter in a number of important respects.

16 P.J. Haas

• Scarce versus ubiquitous data. In the classical setting, samples are usually ex-
pensive to obtain and data is hard to come by, and so sample sizes tend to be
small. In database sampling, the population size can be enormous (terabytes of
data), and samples are relatively easy to collect, so that sample sizes can be rel-
atively large [7, 8]. The emphasis in the database setting is on the sample as a
flexible, lossy, compressed synopsis of the data that can be used to obtain quick
approximate answers to user queries.

• Different sampling schemes. As a consequence of the complex storage for-
mats and retrieval mechanisms that are characteristic of modern database sys-
tems, many sampling schemes that were unknown or of marginal interest in the
classical setting are central to database sampling. For example, the classical lit-
erature pays relatively little attention to Bernoulli sampling schemes (described
in Sect. 2.1 below), but such schemes are very important for database sampling
because they can be easily parallelized across data partitions [9, 10]. As another
example, tuples in a relational database are typically retrieved from disk in units
of pages or extents. This fact strongly influences the choice of sampling and es-
timation schemes, and indeed has led to the introduction of several novel meth-
ods [11–13]. As a final example, estimates of the answer to an aggregation query
involving select–project–join operations are often based on samples drawn indi-
vidually from the input base relations [14, 15], a situation that does not arise in
the classical setting.

• No domain expertise. In the classical setting, sampling and estimation are often
carried out by an expert statistician who has prior knowledge about the population
being sampled. As a result, the classical literature is rife with sampling schemes
that explicitly incorporate auxiliary information about the population, as well as
“model-based” schemes [4, Chap. 5] in which the population is assumed to be a
sample from a hypothesized “super-population” distribution. In contrast, database
systems typically must view the population (i.e., the database) as a black box, and
so cannot exploit these specialized techniques.

• Auxiliary synopses. In contrast to a classical statistician, a database designer of-
ten has the opportunity to scan each population element as it enters the system,
and therefore has the opportunity to maintain auxiliary data synopses, such as an
index of “outlier” values or other data summaries, which can be used to increase
the precision of sampling and estimation algorithms. If available, knowledge of
the query workload can be used to guide synopsis creation; see [16–23] for ex-
amples of the use of workloads and synopses to increase precision.

Early papers on database sampling [24–29] focused on methods for obtaining
samples from various kinds of data structures, as well as on the maintenance of
sample views and the use of sampling to provide approximate query answers within
specified time constraints. A number of authors subsequently investigated the use
of sampling in query optimization, primarily in the context of estimating the size of
select–join queries [22, 30–37]. Attention then shifted to the use of sampling to con-
struct data synopses for providing quick approximate answers to decision-support
queries [16–19, 21, 23]. The work in [15, 38] on online aggregation can be viewed

Data-Stream Sampling: Basic Techniques and Results 17

as a precursor to modern data-stream sampling techniques. Online-aggregation al-
gorithms take, as input, streams of data generated by random scans of one or more
(finite) relations, and produce continually-refined estimates of answers to aggre-
gation queries over the relations, along with precision measures. The user aborts
the query as soon as the running estimates are sufficiently precise; although the
data stream is finite, query processing usually terminates long before the end of the
stream is reached. Recent work on database sampling includes extensions of online
aggregation methodology [39–42], application of bootstrapping ideas to facilitate
approximate answering of very complex aggregation queries [43], and development
of techniques for sampling-based discovery of correlations, functional dependen-
cies, and other data relationships for purposes of query optimization and data inte-
gration [9, 44–46].

Collective experience has shown that sampling can be a very powerful tool, pro-
vided that it is applied judiciously. In general, sampling is well suited to very quickly
identifying pervasive patterns and properties of the data when a rough approxima-
tion suffices; for example, industrial-strength sampling-enhanced query engines can
speed up some common decision-support queries by orders of magnitude [10]. On
the other hand, sampling is poorly suited for finding “needles in haystacks” or for
producing highly precise estimates. The needle-in-haystack phenomenon appears in
numerous guises. For example, precisely estimating the selectivity of a join that re-
turns very few tuples is an extremely difficult task, since a random sample from the
base relations will likely contain almost no elements of the join result [16, 31].2 As
another example, sampling can perform poorly when data values are highly skewed.
For example, suppose we wish to estimate the average of the values in a data set
that consists of 106 values equal to 1 and five values equal to 108. The five out-
lier values are the needles in the haystack: if, as is likely, these values are not in-
cluded in the sample, then the sampling-based estimate of the average value will be
low by orders of magnitude. Even when the data is relatively well behaved, some
population parameters are inherently hard to estimate from a sample. One notori-
ously difficult parameter is the number of distinct values in a population [47, 48].
Problems arise both when there is skew in the data-value frequencies and when
there are many data values, each appearing a small number of times. In the for-
mer scenario, those values that appear few times in the database are the needles
in the haystack; in the latter scenario, the sample is likely to contain no dupli-
cate values, in which case accurate assessment of a scale-up factor is impossible.
Other challenging population parameters include the minimum or maximum data
value; see [49]. Researchers continue to develop new methods to deal with these
problems, typically by exploiting auxiliary data synopses and workload informa-
tion.

2Fortunately, for query optimization purposes it often suffices to know that a join result is “small”
without knowing exactly how small.

18 P.J. Haas

1.3 Sampling from Data Streams

Data-stream sampling problems require the application of many ideas and tech-
niques from traditional database sampling, but also need significant new innova-
tions, especially to handle queries over infinite-length streams. Indeed, the un-
bounded nature of streaming data represents a major departure from the traditional
setting. We give a brief overview of the various stream-sampling techniques consid-
ered in this chapter.

Our discussion centers around the problem of obtaining a sample from a win-
dow, i.e., a subinterval of the data stream, where the desired sample size is much
smaller than the number of elements in the window. We draw an important distinc-
tion between a stationary window, whose endpoints are specified times or specified
positions in the stream sequence, and a sliding window whose endpoints move for-
ward as time progresses. Examples of the latter type of window include “the most
recent n elements in the stream” and “elements that have arrived within the past
hour.” Sampling from a finite stream is a special case of sampling from a station-
ary window in which the window boundaries correspond to the first and last stream
elements. When dealing with a stationary window, many traditional tools and tech-
niques for database sampling can be directly brought to bear. In general, sampling
from a sliding window is a much harder problem than sampling from a stationary
window: in the former case, elements must be removed from the sample as they
expire, and maintaining a sample of adequate size can be difficult. We also consider
“generalized” windows in which the stream consists of a sequence of transactions
that insert and delete items into the window; a sliding window corresponds to the
special case in which items are deleted in the same order that they are inserted.

Much attention has focused on SRS schemes because of the large body of existing
theory and methods for inference from an SRS; we therefore discuss such schemes in
detail. We also consider Bernoulli sampling schemes, as well as stratified schemes
in which the window is divided into equal disjoint segments (the strata) and an SRS

of fixed size is drawn from each stratum. As discussed in Sect. 2.3 below, stratified
sampling can be advantageous when the data stream exhibits significant autocor-
relation, so that elements close together in the stream tend to have similar values.
The foregoing schemes fall into the category of equal-probability sampling because
each window element is equally likely to be included in the sample. For some ap-
plications it may be desirable to bias a sample toward more recent elements. In the
following sections, we discuss both equal-probability and biased sampling schemes.

2 Sampling from a Stationary Window

We consider a stationary window containing n elements e1, e2, . . . , en, enumerated
in arrival order. If the endpoints of the window are defined in terms of time points
t1 and t2, then the number n of elements in the window is possibly random; this fact
does not materially affect our discussion, provided that n is large enough so that

Data-Stream Sampling: Basic Techniques and Results 19

sampling from the window is worthwhile. We briefly discuss Bernoulli sampling
schemes in which the size of the sample is random, but devote most of our attention
to sampling techniques that produce a sample of a specified size.

2.1 Bernoulli Sampling

A Bernoulli sampling scheme with sampling rate q ∈ (0,1) includes each element
in the sample with probability q and excludes the element with probability 1 − q ,
independently of the other elements. This type of sampling is also called “bino-
mial” sampling because the sample size is binomially distributed so that the prob-
ability that the sample contains exactly k elements is equal to

(
n
k

)
qk(1 − q)n−k .

The expected size of the sample is nq . It follows from the central limit theorem
for independent and identically distributed random variables [50, Sect. 27] that, for
example, when n is reasonably large and q is not vanishingly small, the deviation
from the expected size is within ±100ε % with probability close to 98 %, where
ε = 2

√
(1 − q)/nq . For example, if the window contains 10,000 elements and we

draw a 1 % Bernoulli sample, then the true sample size will be between 80 and 120
with probability close to 98 %. Even though the size of a Bernoulli sample is ran-
dom, Bernoulli sampling, like SRS and SRSWR, is a uniform sampling scheme, in
that any two samples of the same size are equally likely to be produced.

Bernoulli sampling is appealingly easy to implement, given a pseudorandom
number generator [51, Chap. 7]. A naive implementation generates for each ele-
ment ei a pseudorandom number Ui uniformly distributed on [0,1]; element ei is
included in the sample if and only if Ui ≤ q . A more efficient implementation uses
the fact that the number of elements that are skipped between successive inclusions
has a geometric distribution: if �i is the number of elements skipped after ei is in-
cluded, then Pr{�i = j} = q(1 − q)j for j ≥ 0. To save CPU time, these random
skips can be generated directly. Specifically, if Ui is a random number distributed
uniformly on [0,1], then �i =
logUi/ log(1 − q)� has the foregoing geometric
distribution, where
x� denotes the largest integer less than or equal to x; see [51,
p. 465]. Figure 1 displays the pseudocode for the resulting algorithm, which is exe-
cuted whenever a new element ei arrives. Lines 1–4 represent an initialization step
that is executed upon the arrival of the first element (i.e., when m = 0 and i = 1).
Observe that the algorithm usually does almost nothing. The “expensive” calls to
the pseudorandom number generator and the log() function occur only at element-
inclusion times. As mentioned previously, another key advantage of the foregoing
algorithm is that it is easily parallelizable over data partitions.

A generalization of the Bernoulli sampling scheme uses a different inclusion
probability for each element, including element i in the sample with probability qi .
This scheme is known as Poisson sampling. One motivation for Poisson sampling
might be a desire to bias the sample in favor of recently arrived elements. In gen-
eral, Poisson sampling is harder to implement efficiently than Bernoulli sampling
because generation of the random skips is nontrivial.

20 P.J. Haas

// q is the Bernoulli sampling rate
// ei is the element that has just arrived (i ≥ 1)
// m is the index of the next element to be included (static variable initialized to 0)
// B is the Bernoulli sample of stream elements (initialized to ∅)
// � is the size of the skip
// random() returns a uniform[0,1] pseudorandom number

1 if m= 0 then //generate initial skip
2 U ← random()

3 � ←
logU/ log(1 − q)�
4 m← �+ 1 //compute index of first element to insert
5 if i = m then //insert element into sample and generate skip
6 B ← B ∪ {ei}
7 U ← random()

8 � ←
logU/ log(1 − q)�
9 m← m+�+ 1 //update index of next element to insert

Fig. 1 An algorithm for Bernoulli sampling

The main drawback of both Bernoulli and Poisson sampling is the uncontrollable
variability of the sample size, which can become especially problematic when the
desired sample size is small. In the remainder of this section, we focus on sampling
schemes in which the final sample size is deterministic.

2.2 Reservoir Sampling

The reservoir sampling algorithm of Waterman [52, pp. 123–124] and McLeod and
Bellhouse [53] produces an SRS of k elements from a window of length n, where k

is specified a priori. The idea is to initialize a “reservoir” of k elements by inserting
elements e1, e2, . . . , ek . Then, for i = k + 1, k + 2, . . . , n, element ei is inserted in
the reservoir with a specified probability pi and ignored with probability 1 − pi ;
an inserted element overwrites a “victim” that is chosen randomly and uniformly
from the k elements currently in the reservoir. We denote by Sj the set of elements
in the reservoir just after element ej has been processed. By convention, we take
p1 = p2 = · · · = pk = 1. If we can choose the pi ’s so that, for each j , the set Sj is
an SRS from Uj = {e1, e2, . . . , ej }, then clearly Sn will be the desired final sample.
The probability that ei is included in an SRS from Ui equals k/i, and so a plausible
choice for the inclusion probabilities is given by pi = k/(i ∨ k) for 1 ≤ i ≤ n.3 The
following theorem asserts that the resulting algorithm indeed produces an SRS.

Theorem 1 (McLeod and Bellhouse [53]) In the reservoir sampling algorithm with
pi = k/(i∨ k) for 1 ≤ i ≤ n, the set Sj is a simple random sample of size j ∧ k from
Uj = {e1, e2, . . . , ej } for each 1 ≤ j ≤ n.

3Throughout, we denote by x ∨ y (resp., x ∧ y) the maximum (resp., minimum) of x and y.

Data-Stream Sampling: Basic Techniques and Results 21

Proof The proof is by induction on j . The assertion of the theorem is obvious for
1 ≤ j ≤ k. Assume for induction that Sj−1 is an SRS of size k from Uj−1, where
j ≥ k + 1. Fix a subset A⊂ Uj containing k elements and first suppose that ej /∈A.
Then

Pr{Sj = A} = Pr{Sj−1 = A and ej not inserted}

=
(

j − 1

k

)−1
j − k

j
=

(
j

k

)−1

,

where the second equality follows from the induction hypothesis and the indepen-
dence of the two given events. Now suppose that ej ∈A. For er ∈ Uj−1 −A, let Ar

be the set obtained from A by removing ej and inserting er ; there are j − k such
sets. Then

Pr{Sj = A} =
∑

er∈Uj−1−A

Pr{Sj−1 = Ar, ej inserted, and er deleted}

=
∑

er∈Uj−1−A

(
j − 1

k

)−1
k

j

1

k
=

(
j − 1

k

)−1
j − k

j
=

(
j

k

)−1

.

Thus Pr{Sj = A} = 1/
(
j
k

)
for any subset A ⊂ Uj of size k, and the desired result

follows. �

Efficient implementation of reservoir sampling is more complicated than that
of Bernoulli sampling because of the more complicated probability distribution of
the number of skips between successive inclusions. Specifically, denoting by �i

the number of skips before the next inclusion, given that element ei has just been
included, we have

fi(m)
def= Pr{�i = m} = k

i − k

(i − k)m+1

(i + 1)m+1

and

Fi(m)
def= Pr{�i ≤m} = 1 − (i + 1 − k)m+1

(i + 1)m+1
,

where xn̄ denotes the rising power x(x + 1) · · · (x + n − 1). Vitter [54] gives an
efficient algorithm for generating samples from the above distribution. For small
values of i, the fastest way to generate a skip is to use the method of inversion: if
F−1

i (x) = min{m : Fi(m) ≥ x} and U is a random variable uniformly distributed
on [0,1], then it is not hard to show that the random variable X = F−1

i (U) has the
desired distribution function Fi , as does X′ = F−1

i (1−U); see [51, Sect. 8.2.1]. For
larger values of i, Vitter uses an acceptance–rejection method [51, Sect. 8.2.4]. For
this method, there must exist a probability density function gi from which it is easy

22 P.J. Haas

to generate sample values, along with a constant ci—greater than 1 but as close to
1 as possible—such that fi(
x�) ≤ cigi(x) for all x ≥ 0. If X is a random variable
with density function g and U is a uniform random variable independent of X, then
Pr{
X� ≤ x | U ≤ fi(
X�)/cigi(X)} = Fi(x). That is, if we generate pairs (X,U)

until the relation U ≤ fi(
X�)/cigi(X) holds, then the final random variable X,
after truncation to the nearest integer, has the desired distribution function Fi . It can
be shown that, on average, ci pairs (X,U) need to be generated to produce a sample
from Fi . As a further refinement, we can reduce the number of expensive evaluations
of the function fi by finding a function hi “close” to fi such that hi is inexpensive to
evaluate and hi(x) ≤ fi(x) for x ≥ 0. Then, to test whether U ≤ fi(
X�)/cigi(X),
we first test (inexpensively) whether U ≤ hi(
X�)/cigi(X). Only in the rare event
that this first test fails do we need to apply the expensive original test. This trick is
sometimes called the “squeeze” method. Vitter shows that an appropriate choice for
ci is ci = (i + 1)/(i − k + 1), with corresponding choices

gi(x) = k

i + x

(
i

i + x

)k

and hi(m) = k

i + 1

(
i − k + 1

i +m− k + 1

)k+1

.

Note that

Gi(x) =
∫ x

0
gi(u) du = 1 −

(
i

i + x

)k

,

so that, if V is a uniform random variable, then G−1
i (1 − V) = i(V −1/k − 1) has

density function gi . Thus it is indeed easy to generate sample values from gi .
Figure 2 displays the pseudocode for the overall algorithm; see [54] for a perfor-

mance analysis and some further optimizations.4 As with the algorithm in Fig. 1,
the algorithm in Fig. 2 is executed whenever a new element ei arrives.

Observe that the insertion probability pi = k/(i ∨ k) decreases as i increases
so that it becomes increasingly difficult to insert an element into the reservoir. On
the other hand, the number of opportunities for an inserted element ei to be sub-
sequently displaced from the sample by an arriving element also decreases as i

increases. These two opposing trends precisely balance each other at all times so
that the probability of being in the final sample is the same for all of the elements in
the window.

Note that the reservoir sampling algorithm does not require prior knowledge of n,
the size of the window—the algorithm can be terminated after any arbitrary number
of elements have arrived, and the contents of the reservoir are guaranteed to be an
SRS of these elements. If the window size is known in advance, then a variation
of reservoir sampling, called sequential sampling, can be used to obtain the desired
SRS of size k more efficiently. Specifically, reservoir sampling has a time complexity
of O(k + k log(n/k)) whereas sequential sampling has a complexity of O(k). The

4We do not recommend the optimization given in Eq. (6.1) of [54], however, because of a potential
bad interaction with the pseudorandom number generator.

Data-Stream Sampling: Basic Techniques and Results 23

// k is the size of the reservoir and n is the number of elements in the window
// ei is the element that has just arrived (i ≥ 1)
// m is the index of the next element ≥ ek to be included (static variable initialized to k)
// r is an array of length k containing the reservoir elements
// � is the size of the skip
// α is a parameter of the algorithm, typically equal to ≈ 22k

// random() returns a uniform[0,1] pseudorandom number

1 if i < k then //initially fill the reservoir
2 r[i]← ei

3 if i ≥ k and i = m

4 //insert ei into reservoir
5 if i = k //no ejection needed
6 r[k]← ei

7 else //eject a reservoir element
8 U ← random()

9 I ← 1 +
kU� //I is uniform on {1,2, . . . , k}
10 r[I]← ei

11 //generate the skip �

12 if i ≤ α then //use inverse transformation
13 U ← random()

14 find the smallest integer � ≥ 0 such that

15 (i + 1 − k)�+1/(i + 1)�+1 ≤ U //evaluate F−1
i (1 −U)

16 else
17 repeat //use acceptance–rejection + squeezing
18 V ← random()

19 X ← i(V −1/k − 1) //generate sample from gi via inversion
20 U ← random()

21 if U ≤ hi(
X�)/cigi(X) then break
22 until U ≤ fi(
X�)/cigi(X)

23 � ←
X�
24 //update index of next element to insert
25 m← i +�+ 1

Fig. 2 Vitter’s algorithm for reservoir sampling

sequential-sampling algorithm, due to Vitter [55], is similar in spirit to reservoir
sampling, and is based on the observation that

F̃ ij (m)
def= Pr{�̃ij ≤ m} = 1 − (j − i)m+1

jm+1
,

where �̃ij is the number of skips before the next inclusion, given that element en−j

has just been included in the sample and that the sample size just after the inclusion
of en−j is |S| = k − i. Here xn denotes the falling power x(x − 1) · · · (x − n + 1).
The sequential-sampling algorithm initially sets i ← k and j ← n; as above, i rep-
resents the number of sample elements that remain to be selected and j represents
the number of window elements that remain to be processed. The algorithm then
(i) generates �̃ij , (ii) skips the next �̃ij arriving elements, (iii) includes the next

24 P.J. Haas

arriving element into the sample, and (iv) sets i ← i − 1 and j ← j − �̃ij − 1.
Steps (i)–(iv) are repeated until i = 0.

At each execution of Step (i), the specific method used to generate �̃ij depends
upon the current values of i and j , as well as algorithmic parameters α and β .
Specifically, if i ≥ αj , then the algorithm generates �̃ij by inversion, similarly to
lines 13–15 in Fig. 2. Otherwise, the algorithm generates �̃ij using acceptance–
rejection and squeezing, exactly as in lines 17–23 in Fig. 2, but using either c1 =
j/(j − i + 1),

g1(x) =
{

i
j
(1 − x

j
)i−1 if 0 ≤ x ≤ j ;

0 otherwise,

and

h1(m) =
{

i
j
(1 − m

j−i+1)i−1 if 0 ≤ m ≤ j − i;
0 otherwise,

or c2 = (i/(i − 1))((j − 1)/j),

g2(x) = i − 1

j − 1

(
1 − i − 1

j − 1

)m

,

and

h2(m) =
{

i
j
(1 − i−1

j−m
)m if 0 ≤m ≤ j − i;

0 otherwise.

The algorithm uses (c1, g1, h1) or (c2, g2, h2) according to whether i2/j ≤ β or
i2/j > β , respectively. The values of α and β are implementation dependent; Vitter
found α = 0.07 and β = 50 optimal for his experiments, but also noted that setting
β ≈ 1 minimizes the average number of random numbers generated by the algo-
rithm. See [55] for further details and optimizations.5

2.3 Other Sampling Schemes

We briefly mention several other sampling schemes, some of which build upon or
incorporate the reservoir algorithm of Sect. 2.2.

Stratified Sampling

As mentioned before, a stratified sampling scheme divides the window into disjoint
intervals, or strata, and takes a sample of specified size from each stratum. The

5As with the reservoir sampling algorithm in [54], we do not recommend the optimization in
Sect. 5.3 of [55].

Data-Stream Sampling: Basic Techniques and Results 25

Fig. 3 (a) A realization of reservoir sampling (sample size = 6). (b) A realization of stratified
sampling (sample size = 6)

simplest scheme specifies strata of approximately equal length and takes a fixed size
random sample from each stratum using reservoir sampling; the random samples are
of equal size.

When elements close together in the stream tend to have similar values, then the
values within each stratum tend to be homogeneous so that a small sample from a
stratum contains a large amount of information about all of the elements in the stra-
tum. Figures 3(a) and 3(b) provide another way to view the potential benefit of strat-
ified sampling. The window comprises 15 real-valued elements, and circled points
correspond to sampled elements. Figure 3(a) depicts an unfortunate realization of
an SRS: by sheer bad luck, the early, low-valued elements are disproportionately
represented in the sample. This would lead, for example, to an underestimate of the
average value of the elements in the window. Stratified sampling avoids this bad sit-
uation: a typical realization of a stratified sample (with three strata of length 5 each)
might look as in Fig. 3(b). Observe that elements from all parts of the window are
well represented. Such a sample would lead, e.g., to a better estimate of the average
value.

Deterministic and Semi-Deterministic Schemes

Of course, the simplest scheme for producing a sample of size k inserts every mth el-
ement in the window into the sample, where m= n/k. There are two disadvantages
to this approach. First, it is not possible to draw statistical inferences about the entire
window from the sample because the necessary probabilistic context is not present.
In addition, if the data in the window are periodic with a frequency that matches
the sampling rate, then the sampled data will be unrepresentative of the window as
a whole. For example, if there are strong weekly periodicities in the data and we
sample the data every Monday, then we will have a distorted picture of the data val-
ues that appear throughout the week. One way to ameliorate the former problem is
to use systematic sampling [1, Chap. 8]. To effect this scheme, generate a random
number L between 1 and m. Then insert elements eL, eL+m, eL+2m, . . . , en−m+L

into the sample. Statistical inference is now possible, but the periodicity issue still

26 P.J. Haas

remains—in the presence of periodicity, estimators based on systematic sampling
can have large standard errors. On the other hand, if the data are not periodic but
exhibit a strong trend, then systematic sampling can perform very well because,
like stratified sampling, systematic sampling ensures that the sampled elements are
spread relatively evenly throughout the window. Indeed, systematic sampling can
be viewed as a type of stratified sampling where the ith stratum comprises elements
e(i−1)m+1, e(i−1)m+2, . . . , eim and we sample one element from each stratum—the
sampling mechanisms for the different strata are completely synchronized, however,
rather than independent as in standard stratified sampling.

Biased Reservoir Sampling

Consider a generalized reservoir scheme in which the sequence of inclusion proba-
bilities {pi : 1 ≤ i ≤ n} either is nondecreasing or does not decrease as quickly as
the sequence {k/(i ∨ k) : 1 ≤ i ≤ n}. This version of reservoir sampling favors in-
clusion of recently arrived elements over elements that arrived earlier in the stream.

As illustrated in Sect. 4.4 below, it can be useful to compute the marginal proba-
bility that a specified element ei belongs to the final sample S. The probability that
ei is selected for insertion is, of course, equal to pi . For j > i ∨ k, the probability
θij that ei is not displaced from the sample when element ej arrives equals the prob-
ability that ej is not selected for insertion plus the probability that ej is selected but
does not displace ei . If j ≤ k, then the processing of ej cannot result in the removal
of ei from the reservoir. Thus

θij = (1 − pj)+ pj

(
k − 1

k

)
= k − pj

k

if j > k, and θij = 1 otherwise. Because the random decisions made at the succes-
sive steps of the reservoir sampling scheme are mutually independent, it follows that
the probability that ei is included in S is the product of the foregoing probabilities:

Pr{ei ∈ S} = pi

n∏

j=(i∨k)+1

k − pj

k
. (1)

Similar arguments lead to formulas for joint inclusion probabilities: setting αi,j =
∏j

l=i (k − pl)/k and βi,j = ∏j
l=i (k − 2pl)/k, we have, for i < j ,

Pr{ei, ej ∈ S} =

⎧
⎪⎨

⎪⎩

piαi+1,j−1pj ((k − 1)/k)βj+1,n if k ≤ i < j ;
αk+1,j−1pj ((k − 1)/k)βj+1,n if i < k < j ;
βk+1,n if i < j ≤ k.

(2)

If, for example, we set pi ≡ p for some p ∈ (0,1). Then, from (1),

Pr{ei ∈ S} = p

(
k − p

k

)n−(i∨k)

.

Data-Stream Sampling: Basic Techniques and Results 27

Thus the probability that element ei is in the final sample decreases geometrically
as i decreases; the larger the value of p, the faster the rate of decrease.

Chao [56] has extended the basic reservoir sampling algorithm to handle arbitrary
sampling probabilities. Specifically, just after the processing of element ei , Chao’s
scheme ensures that the inclusion probabilities satisfy Pr{ej ∈ S} ∝ rj for 1 ≤ j ≤ i,
where {rj : j ≥ 1} is a prespecified sequence of positive numbers. The analysis of
this scheme is rather complicated, and so we refer the reader to [56] for a complete
discussion.

Biased Sampling by Halving

Another way to obtain a biased sample of size k is to divide the window into L

strata of m = n/L elements each, denoted Λ1,Λ2, . . . ,ΛL, and maintain a running
sample S of size k as follows. The sample is initialized as an SRS of size k from Λ1;
(unbiased) reservoir sampling or sequential sampling may be used for this purpose.
At the j th subsequent step, k/2 randomly-selected elements of S are overwritten by
the elements of an SRS of size k/2 from Λj+1 (so that half of the elements in S are
purged). For an element ei ∈ Λj , we have, after the procedure has terminated,

Pr{ei ∈ S} = k

m

(
1

2

)L−(j∨2)+1

.

As with biased reservoir sampling, the halving scheme ensures that the probabil-
ity that ei is in the final samples falls geometrically as i decreases. Brönnimann et
al. [57] describe a related scheme when each stream element is a d-vector of 0–1
data that represents, e.g., the presence or absence in a transaction of each of d items.
In this setting, the goal of each halving step is to create a subsample in which the
relative occurrence frequencies of the items are as close as possible to the corre-
sponding frequencies over all of the transactions in the original sample. The scheme
uses a deterministic halving method called “epsilon approximation” to achieve this
goal. The relative item frequencies in subsamples produced by this latter method
tend to be closer to the relative frequencies in the original sample than are those in
subsamples obtained by SRS.

3 Sampling from a Sliding Window

We now restrict attention to infinite data streams and consider methods for sampling
from a sliding window that contains the most recent data elements. As mentioned
previously, this task is substantially harder than sampling from a stationary win-
dow. The difficulty arises because elements must be removed from the sample as
they expire so that maintaining a sample of a specified size is nontrivial. Following
[58], we distinguish between sequence-based windows and timestamp-based win-
dows. A sequence-based window of length n contains the n most recent elements,

28 P.J. Haas

whereas a timestamp-based window of length t contains all elements that arrived
within the past t time units. Because a sliding window inherently favors recently ar-
rived elements, we focus on techniques for equal-probability sampling from within
the window itself. For completeness, we also provide a brief discussion of general-
ized windows in which elements need not leave the window in arrival order.

3.1 Sequence-Based Windows

We consider windows {Wj : j ≥ 1}, each of length n, where Wj = {ej , ej+1,

. . . , ej+n−1}. A number of algorithms have been proposed for producing, for each
window Wj , an SRS Sj of k elements from Wj . The major difference between the
algorithms lies in the tradeoff between the amount of memory required and the de-
gree of dependence between the successive Sj ’s.

Complete Resampling

At one end of the spectrum, a “complete resampling” algorithm takes an indepen-
dent sample from each Wj . To do this, the set of elements in the current window is
buffered in memory and updated incrementally, i.e., Wj+1 is obtained from Wj by
deleting ej and inserting ej+n. Reservoir sampling (or, more efficiently, sequential
sampling) can then be used to extract Sj from Wj . The Sj ’s produced by this algo-
rithm have the desirable property of being mutually independent. This algorithm is
impractical, however, because it has memory and CPU requirements of O(n), and n

is assumed to be very large.

A Passive Algorithm

At the other end of the spectrum, the “passive” algorithm described in [58] obtains
an SRS of size k from the first n elements using reservoir sampling. Thereafter, the
sample is updated only when the arrival of an element coincides with the expiration
of an element in the sample, in which case the expired element is removed and the
new element is inserted. An argument similar to the proof of Theorem 1 shows that
each Sj is a SRS from Wj . Moreover, the memory requirement is O(k), the same as
for the stationary-window algorithms. In contrast to complete resampling, however,
the passive algorithm produces Sj ’s that are highly correlated. For example, Sj and
Sj+1 are identical or almost identical for each j . Indeed, if the data elements are
periodic with period n, then every Sj is identical to S1; this assertion follows from
the fact that if element ei is in the sample, then so is ei+jn for j ≥ 1. Thus if S1 is
not representative, e.g., the sampled elements are clustered within W1 as in Fig. 3(a),
then each subsequent sample will suffer from the same defect.

Data-Stream Sampling: Basic Techniques and Results 29

Subsampling from a Bernoulli Sample

Babcock et al. [58] provide two algorithms intermediate to those discussed above.
The first algorithm inserts elements into a set B using a Bernoulli sampling scheme;
elements are removed from B when, and only when, they expire. The algorithm
tries to ensure that the size of B exceeds k at all times by using an inflated Bernoulli
sampling rate of q = (2ck logn)/n, where c is a fixed constant. Each final sample
Sj is then obtained as a simple random subsample of size k from B . An argument
using Chernoff bounds (see, e.g., [59]) shows that the size of B lies between k and
4ck logn with a probability that exceeds 1 − O(n−c). The Sj ’s are less dependent
than in the passive algorithm, but the expected memory requirement is O(k logn).
Also observe that if Bj is the size of B after j elements have been processed and
if γ (i) denotes the index of the ith step at which the sample size either increases or
decreases by 1, then Pr{Bγ(i)+1 = Bγ(i)+1} = Pr{Bγ(i)+1 = Bγ(i)−1} = 1/2. That
is, the process {Bγ(i) : i ≥ 0} behaves like a symmetric random walk. It follows that,
with probability 1, the size of the Bernoulli sample will fall below k infinitely often,
which can be problematic if sampling is performed over a very long period of time.

Chain Sampling

The second algorithm, called chain sampling, retains the improved independence
properties of the Sj ’s relative to the passive algorithm, but reduces the expected
memory requirement to O(k). The basic algorithm maintains a sample of size 1,
and a sample of size k is obtained by running k independent chain-samplers in
parallel. Observe that the overall sample is therefore a simple random sample with
replacement—we discuss this issue after we describe the algorithm.

To maintain a sample S of size 1, the algorithm initially inserts each newly ar-
rived element ei into the sample (i.e., sets the sample equal to S = {ei}) with prob-
ability 1/i for 1 ≤ i ≤ n. Thus the algorithm behaves initially as a reservoir sam-
pler so that, after the nth element has been observed, S is an SRS of size 1 from
{e1, e2, . . . , en}. Subsequently, whenever element ei arrives and, just prior to arrival,
the sample is S = {ej } with i = j +n (so that the sample element ej expires), an el-
ement randomly and uniformly selected from among ej+1, ej+2, . . . , ej+n becomes
the new sample element. Observe that the algorithm does not need to store all of the
elements in the window in order to replace expiring sample elements—it suffices
to store a “chain” of elements associated with the sample, where the first element
of the chain is the sample itself; see Fig. 4. In more detail, whenever an element
ei is added to the chain, the algorithm randomly selects the index K of the ele-
ment eK that will replace ei upon expiration. Index K is uniformly distributed on
i + 1, i + 2, . . . , i + n, the indexes of the elements that will be in the window just
after ei expires. When element eK arrives, the algorithm stores eK in memory and
randomly selects the index M of the element that will replace eK upon expiration.

To further reduce memory requirements and increase the degree of independence
between successive samples, the foregoing chaining method is enhanced with a

30 P.J. Haas

Fig. 4 Chain sampling (sample size = 1). Arrows point to the elements of the current chain,
the circled element represents the current sample, and elements within squares represent those
elements of the chain currently stored in memory

reservoir sampling mechanism. Specifically, suppose that element ei arrives and,
just prior to arrival, the sample is S = {ej } with i < j+n (so that the sample element
ej does not expire). Then, with probability 1/n, element ei becomes the sample ele-
ment; the previous sample element ej and its associated chain are discarded, and the
algorithm starts to build a new chain for the new sample element. With probability
1− (1/n), element ej remains as the sample element and its associated chain is not
discarded. To see that this procedure is correct when i < j + n, observe that just
prior to the processing of ei , we can view S as a reservoir sample of size 1 from the
“stream” of n − 1 elements given by ei−n+1, ei−n+2, . . . , ei−1. Thus, adding ei to
the sample with probability 1/n amounts to executing a step of the usual reservoir
algorithm, so that, after processing ei , the set S remains an SRS of size 1 from the
updated window Wi−n+1 = {ei−n+1, ei−n+2, . . . , ei}. Because the SRS property of
S is preserved at each arrival epoch whether or not the current sample expires, a
straightforward induction argument formally establishes that S is an SRS from the
current window at all times.

Figure 5 displays the pseudocode for the foregoing algorithm; the code is ex-
ecuted whenever a new element ei arrives. In the figure, the variable L denotes a
linked list of chained elements of the form (e, l), where e is an element and l is
the element’s index in the stream; the list does not contain the current sample ele-
ment, which is stored separately in S. Elements appear from head to tail in order of
arrival, with the most recently arrived element at the tail of the list. The functions
add, pop, and purge add a new element to the tail of the list, remove (and return the
value of) the element at the head of the list, and remove all elements from the list,
respectively.

We now analyze the memory requirements of the algorithm by studying the max-
imum amount of memory consumed during the evolution of a single chain.6 Denote
by M the total number of elements inserted into memory during the evolution of the
chain, including the initial sample. Thus M ≥ 1 and M is an upper bound on the
maximum memory actually consumed because it ignores decreases in memory con-
sumption due to expiration of elements in the chain. Denote by X the distance from
the initial sample to the next element in the chain, and recall that X is uniformly
distributed on {1,2, . . . , n}. Observe that M ≥ 2 if and only if X < n and, after the

6See [58] for an alternative analysis. Whenever an arriving element ei is added to the chain and
then immediately becomes the new sample element, we count this element as the first element of a
new chain.

Data-Stream Sampling: Basic Techniques and Results 31

// n is the number of elements in the window
// ei is the element that has just arrived (i ≥ 1)
// L is a linked list (static) of chained elements (excluding sample) of the form (e, l)

// S is the sample (static, contains exactly one element)
// J is the index of the element in the sample (static, initialized to 0)
// K is the index of the next element to be added to the chain (static, initialized to 0)
// random() returns a uniform[0,1] pseudorandom number

1 if i =K //add ei to chain
2 add(ei , i,L) //insert (ei , i) at tail of list
3 V ← random()

4 K ← i +
nV � + 1 //K is uniform on i + 1, . . . , i + n

5 if i = J + n //current sample element is expiring
6 (e, l) ← pop(L) //remove element at head of list. . .
7 S ←{e} //. . . to become the new sample element
8 J ← l

9 else //sample element is not expiring
10 U ← random()

11 if U ≤ 1/(i ∧ n) then //insert ei into sample
12 S ←{ei}
13 J ← i

14 purge(L) //start new chain
15 V ← random()

16 K ← i +
nV � + 1

Fig. 5 Chain-sampling algorithm (sample size = 1)

initial sample, none of the next X arriving elements become the new sample ele-
ment. Thus Pr{M ≥ 2 |M ≥ 1,X = j} ≤ (1− n−1)j for 1 ≤ j ≤ n. Unconditioning
on X, we have

Pr{M ≥ 2 | M ≥ 1} ≤
n∑

j=1

1

n

(
1 − 1

n

)j

= 1 −
(

1 − 1

n

)n+1
def= β.

The same argument also shows that Pr{M ≥ j + 1 | M ≥ j} ≤ β for j ≥ 2, so that
Pr{M ≥ j} ≤ βj−1 for j ≥ 1. An upper bound on the expected memory consump-
tion is therefore given by

E[M] =
∞∑

j=1

Pr{M ≥ j} ≤ 1

1 − β
≈ e.

Moreover, for j = α lnn with α a fixed positive constant, we have

Pr{M ≥ j + 1} = ej lnβ = n−c,

where c =−α lnβ ≈−α ln(1 − e−1). Thus the expected memory consumption for
k independent samplers is O(k) and, with probability 1 − O(n−c), the memory
consumption does not exceed O(k logn).

32 P.J. Haas

Fig. 6 Stratified sampling for a sliding window (n= 12, m = 4, k = 2). The circled elements lying
within the window represent the members of the current sample, and circled elements lying to the
left of the window represent former members of the sample that have expired

As mentioned previously, chain sampling produces an SRSWR rather than an SRS.
One way of dealing with this issue is increase the size of the initial SRSWR sample
S′ to |S′| = k + α, where α is large enough so that, after removal of duplicates, the
size of the final SRS S will equal or exceed k with high probability. Subsampling can
be then be used, if desired, to ensure that the final sample size |S| equals k exactly.
Using results on “occupancy distributions” [60, p. 102] it can be shown that

Pr
{|S|< k

} =
k−1∑

j=1

j∑

i=0

(−1)i
(

n

n− j

)(
j

i

)(
1 − n− j + i

n

)k+α

, (3)

and a value of α that makes the right side sufficiently small can be determined
numerically, at least in principle. Assuming that k < n/2, a conservative but simpler
approach ensures that Pr{|S| < k} < n−c for a specified constant c ≥ 1 by setting
α = α1 ∧ α2, where

α1 = (c − 1) lnn+ (k + 1) lnk − (k − 1) ln 2

ln(n/k)

and

α2 = c lnn+ (
2ck lnn+ c2 ln2 n

)1/2
.

This assertion follows from a couple of simple bounding arguments.7

Stratified Sampling

The stratified sampling scheme for a stationary window can be adapted to obtain
a stratified sample from a sliding window. The simplest scheme divides the stream
into strata of length m, where m divides the window length n; see Fig. 6. Reservoir
sampling is used to obtain a SRS of size k < m from each stratum. Sampled elements
expire in the usual manner. The current window always contains between l and l+1
strata, where l = n/m, and all but perhaps the first and last strata are of equal length,

7We derive α1 by directly bounding each term in (3). We derive α2 by stochastically bounding
|S| from below by the number of successes in a sequence of k + α Bernoulli trials with success
probability (n− k)/n and then using a Chernoff bound.

Data-Stream Sampling: Basic Techniques and Results 33

namely m. The sample size fluctuates, but always lies between k(l − 1) and kl.
This sampling technique therefore not only retains the advantages of the stationary
stratified sampling scheme but also, unlike the other sliding-window algorithms,
ensures that the sample size always exceeds a specified threshold.

3.2 Timestamp-Based Windows

Relatively little is currently known about sampling from timestamp-based windows.
The methods for sequence-based windows do not apply because the number of el-
ements in the window changes over time. Babcock et al. [58] propose an algorithm
called priority sampling. As with chain sampling, the basic algorithm maintains an
SRS of size 1, and an SRSWR of size k is obtained by running k priority-samplers in
parallel.

The basic algorithm for a sample size of 1 assigns to each arriving element a
random priority uniformly distributed between 0 and 1. The current sample is then
taken as the element in the current window having the highest priority; since each
element in the window is equally likely to have the highest priority, the sample is
clearly an SRS. The only elements that need to be stored in memory are those el-
ements in the window for which there is no element with both a higher timestamp
and a higher priority because only these elements can ever become the sample ele-
ment. In one simple implementation, the stored elements (including the sample) are
maintained as a linked list, in order of decreasing priority (and, automatically, of in-
creasing timestamp). Each arriving element ei is inserted into the appropriate place
in the list, and all list elements having a priority smaller than that of ei are purged,
leaving ei as the last element in the list. Elements are removed from the head of the
list as they expire.

To determine the memory consumption M of the algorithm at a fixed but arbitrary
time point, suppose that the window contains n elements em+1, em+2, . . . , em+n for
some m ≥ 0. Denote by Pi the priority of em+i , and set Φi = 1 if em+i is currently
stored in memory and Φi = 0 otherwise. Ignore zero-probability events in which
there are ties among the priorities and observe for each i that Φi = 1 if and only if
Pi > Pj for j = i + 1, i + 2, . . . , n. Because priorities are assigned randomly and
uniformly, each of the n− i+1 elements em+i , em+i+1, . . . , em+n is equally likely to
be the one with the highest priority, and hence E[Φi] = Pr{Φi = 1} = 1/(n− i + 1).
It follows that the expected number of elements stored in memory is

E[M] = E

[
n∑

i=1

Φi

]

=
n∑

i=1

E[Φi] = H(n) = O(lnn),

where H(n) is the nth harmonic number. We can also obtain a probabilistic bound
on M as follows. Denote by Xi the number of the i most recent arrivals in the
window that have been inserted into the linked list: Xi = ∑n

j=n−i+1 Φj . Observe

34 P.J. Haas

that if Xi = m for some m ≥ 0, then either Xi+1 = m or Xi+1 = m+ 1. Moreover,
it follows from our previous analysis that Pr{X1 = 1} = 1 and

Pr{Xi+1 = mi + 1 | Xi = mi,Xi−1 = mi−1, . . . ,X1 = m1}
= Pr{Φn−i = 1}
= 1/(i + 1)

for all 1 ≤ i < n and m1,m2, . . . ,mi such that m1 = 1 and mj+1 − mj ∈ {0,1} for
1 ≤ j < i. Thus M = Xn is distributed as the number of successes in a sequence of n

independent Poisson trials with success probability for the ith trial equal to 1/i. Ap-
plication of a simple Chernoff bound together with the fact that lnn < H(n) < 2 lnn

for n ≥ 3 shows that Pr{M > 2(1 + c) lnn} < n−c2/3 for c ≥ 0 and n ≥ 3. Thus, for
the overall sampling algorithm the expected memory consumption is O(k logn) and,
with high probability, memory consumption does not exceed O(k logn).

3.3 Generalized Windows

In the case of both sequence-based and timestamp-based sliding windows, elements
leave the window in same order that they arrive. In this section, we briefly con-
sider a generalized setting in which elements can be deleted from a window W in
arbitrary order. More precisely, we consider a set T = {t1, t2, . . .} of unique, distin-
guishable items, together with an infinite sequence of transactions γ = (γ1, γ2, . . .).
Each transaction γi is either of the form +tk , which corresponds to the insertion of
item tk into W , or of the form −tk , which corresponds to the deletion of item tk
from W . We restrict attention to sequences such that, at any time point, an item ap-
pears at most once in the window, so that the window is a true set and not a multiset.
To avoid trivialities, we also require that γn =−tk only if item tk is in the window
just prior to the processing of the nth transaction. Finally, we assume throughout that
the rate of insertions approximately equals the rate of deletions, so that the number
of elements in the window remains roughly constant over time.

The authors in [61] provide a “random pairing” (RP) algorithm for maintaining a
bounded uniform sample of W . The RP algorithm generalizes the reservoir sampling
algorithm of Sect. 2.2 to handle deletions, and reduces to the passive algorithm of
Sect. 3.1 when the number of elements in the window is constant over time and
items are deleted in insertion order (so that W is a sequence-based sliding window).

In the RP scheme, every deletion from the window is eventually “compensated”
by a subsequent insertion. At any given time, there are 0 or more “uncompensated”
deletions. The RP algorithm maintains a counter cb that records the number of “bad”
uncompensated deletions in which the deleted item was also in the sample so that
the sample size was decremented by 1. The RP algorithm also maintains a counter
cg that records the number of “good” uncompensated deletions in which the deleted
item was not in the sample so that the sample size was not affected. Clearly, d =
cb + cg is the total number of uncompensated deletions.

Data-Stream Sampling: Basic Techniques and Results 35

// cb is the # of uncompensated deletions that have been in the sample
// cg is the # of uncompensated deletions that have not been in the sample
// γi is the transaction that has just arrived (i ≥ 1)
// M is the upper bound on sample size
// W and S are the window and sample size, respectively
// random() returns a uniform[0,1] pseudorandom number

1 if γi =+t then //an insertion
2 if cb + cg = 0 //execute reservoir-sampling step
3 if |S| < M

4 insert t into S

5 else if random() < M/(|W | + 1)

6 overwrite a randomly selected element of S with t

7 else //execute random-pairing step
8 if random() < cb/(cb + cg)

9 cb ← cb − 1
10 insert t into S

11 else
12 cg ← cg − 1
13 else //a deletion
14 if t ∈ S

15 cb ← cb + 1
16 remove t from S

17 else
18 cg ← cg + 1

Fig. 7 Random-pairing algorithm (simple version)

The algorithm works as follows. Deletion of an item is handled by removing the
item from the sample, if present, and by incrementing the value of cb or cg, as ap-
propriate. If d = 0, i.e., there are no uncompensated deletions, then insertions are
processed as in standard RS. If d > 0, then we flip a coin at each insertion step,
and include the incoming insertion into the sample with probability cb/(cb + cg);
otherwise, we exclude the item from the sample. We then decrease either cb or cg,
depending on whether the insertion has been included into the sample or not. Con-
ceptually, whenever an item is inserted and d > 0, the item is paired with a randomly
selected uncompensated deletion, called the “partner” deletion. The inserted item is
included into the sample if its partner was in the sample at the time of its dele-
tion, and excluded otherwise. The probability that the partner was in the sample is
cb/(cb + cg). For purposes of sample maintenance, it is not necessary to keep track
of the precise identity of the random partner; it suffices to maintain the counters cb

and cg.
Figure 7 displays the pseudocode for the simplest version of the RP algorithm,

which is executed whenever a new transaction γi arrives. As with classic reservoir
sampling, the basic algorithm of Fig. 7 can be speeded up by directly generating
random skip values; see [61] for such optimizations, as well as a correctness proof
and a technique for merging samples.

36 P.J. Haas

Note that, if boundedness of the sample size is not a concern, then the following
simple Bernoulli sampling scheme can be used to maintain S. First fix a sampling
rate q ∈ (0,1). For an insertion transaction γi = +tk , include tk in S with proba-
bility q and exclude tk with probability 1 − q . For a deletion transaction γi =−tk ,
simply remove tk from S, if present.

In a variant of the above setting, multiple copies of each item may occur in both
the window W and the sample S, so that both W and S are multisets (i.e., bags).
When sampling from multisets, relatively sophisticated techniques are required to
handle deletion of items. An extension of Bernoulli sampling to multisets is given
in [62], and the authors in [63–65] provide techniques for maintaining a uniform
sample D of the distinct items in a multiset window W and, for each item in D, an
exact value (or high-precision estimate) of the frequency of the item in W .

4 Inference from a Sample

This section concerns techniques for drawing inferences about the contents of a win-
dow from a sample of window elements. As discussed in Sect. 1, such techniques
belong to the domain of finite-population sampling. A complete discussion of this
topic is well beyond the scope of this chapter, and so we cover only the most basic
results; see [1–5] for further discussion. Our emphasis is on methods for estimating
population sums and functions of such sums—these fundamental population param-
eters occur frequently in practice and are well understood. The “population” is, of
course, the set of all elements in the window.

4.1 Estimation of Population Sums and Functions of Sums

We first describe techniques for estimating quantities of the form θ = ∑
ei∈W h(ei),

where W is the window of interest, assumed to be of length n, and h is a real-valued
function. We then discuss estimation methods for window characteristics of the form
α = g(θ1, θ2, . . . , θd), where d ≥ 1. Here g : �d �→ � is a specified “smooth” func-
tion and each θj is a population sum, i.e., θj = ∑

ei∈W hj (ei) for some function
hj . Some examples of these estimands are as follows, where each element ei is a
sales-transaction record and v(ei) is the dollar value of the transaction.

1. Let h(ei) = v(ei). Then θ is the sum of sales over the transactions in the window.
2. Let h be a predicate function such that h(ei) = 1 if v(ei) > $1000 and h(ei) = 0

otherwise. Then θ is the total number of transactions in the window that exceed
$1000.

3. Let θ be as in example 1 above, and let g(θ) = θ/n. Then α = g(θ) is the average
sales amount per transaction in the window. If θ is as in example 2 above, then α

is the fraction of transactions that exceed $1000.

Data-Stream Sampling: Basic Techniques and Results 37

4. Suppose that an element not only records the dollar value of the transaction, but
also enough information to compute the relative position number of the element
within the window (the element in relative position 1 being the first to have ar-
rived). Let 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn be a sequence of nondecreasing weights.
If h(ei) = wiv(ei), then θ is a weighted sum of sales that favors more recent
arrivals.

5. Let h1(ei) = v(ei) if v(ei) > $1000 and h1(ei) = 0 otherwise, and let h2 be as
in example 2 above. Also let θ1 and θ2 be the population sums that correspond
to h1 and h2. If g(x, y) = x/y, then α = g(θ1, θ2) is the average value of those
transactions in the window that exceed $1000.

6. Let h1(ei) = v(ei) and h2(ei) = v2(ei). Also let g(x, y) = (y/n)− (x/n)2. Then
α = g(θ1, θ2) is the variance of the sales amounts for the transactions in the
window.

As discussed in Sect. 1.1, any estimate θ̂ of a quantity such as θ should be sup-
plemented with an assessment of the estimate’s accuracy and precision. Typically,
θ̂ will be (at least approximately) unbiased, in that E[θ̂] = θ , i.e., if the sampling ex-
periment were to be repeated multiple times, the estimator θ̂ would equal θ on aver-
age. In this case, the usual measure of precision is the standard error,8 defined as the
standard deviation, or square root of the variance, of θ̂ , SE[θ̂] = E1/2[(θ̂−E[θ̂])2]. If
the distribution of θ̂ is approximately normal and we can compute from the sample
an estimator ŜE[θ̂] of SE[θ̂], then we can go further and make probabilistic state-
ments of the form “with probability approximately 100p %, the unknown value θ

lies in the (random) interval [θ̂ − zpŜE[θ̂], θ̂ + zpŜE[θ̂]],” where zp is the (p+1)/2
quantile of a standard (mean 0, variance 1) normal distribution. That is, we can
compute confidence intervals for θ . A number of estimators θ̂ , including the SRS-
based expansion estimator discussed below, have approximately a normal distribu-
tion under mild regularity conditions. These conditions require, roughly speaking,
that (i) the window length n be large, (ii) the sample size k be much smaller than
n but reasonably large in absolute terms, say, 50 or larger, and (iii) the popula-
tion sum not be significantly influenced by any one value or small group of values.
Formal statements of these results take the form of “finite-population central limit
theorems” [4, Sects. 3.4 and 3.5].

4.2 SRS and Bernoulli Sampling

For an SRS S of size k, the standard estimator of a population sum is the obvious one,
namely the expansion estimator θ̂ = (n/k)

∑
ei∈S h(ei); cf. the example in Sect. 1.1.

8For a biased estimator θ̂ , the usual precision measure is the root mean squared error, defined as

RMSE[θ̂] = E1/2[(θ̂ − θ̂)2]. It is not hard to show that RMSE = (bias2 + SE2)1/2, so that RMSE
and SE coincide for an unbiased estimator.

38 P.J. Haas

Similarly, the estimator of the corresponding population average is the sample aver-
age α̂ = θ̂/n = (1/k)

∑
ei∈S h(ei). Both of these estimators are unbiased and consis-

tent, in the sense that they converge to their true values as the sample size increases.
For Bernoulli sampling with sampling rate q , the sample size k is random, and there
are two possible estimators of the population sum θ : the expansion estimator (with
k equal to the observed sample size) and the estimator θ∗ = (1/q)

∑
ei∈S h(ei). The

estimator θ∗ is unbiased; the estimator θ̂ is slightly biased,9 but often has signifi-
cantly lower variance than θ∗, and is usually preferred in practice. The variance of
θ̂ is given by Var[θ̂] = (n2/k)(1 − f)σ 2 under SRS (exactly) and under Bernoulli
sampling (approximately), where f = k/n is the sampling fraction and

σ 2 =
∑

ei∈W(h(ei)− (θ/n))2

n− 1
(4)

is the variance10 of the numbers {h(ei) : ei ∈ W }. An unbiased estimator of
Var[θ̂], based on the values in the sample, is V̂ar[θ̂] = (n2/k)(1 − f)σ̂ 2, where
σ̂ 2 = (1/(k − 1))

∑
ei∈S(h(ei)− (θ̂/n))2. To obtain corresponding variance formu-

las for the sample average α, simply multiply by n−2, i.e., Var[α̂] = (σ 2/k)(1− f)

and V̂ar[α̂] = (σ̂ 2/k)(1 − f). To obtain expressions for standard errors and their
estimators, take the square root of the corresponding expressions for variances.

4.3 Stratified Sampling

Here we consider the simple stratified sampling scheme for a stationary window
discussed in Sect. 2.3. Our results also apply to the stratified sampling scheme for
sliding windows in Sect. 3.1, at those times when the window boundaries align with
the strata boundaries; the modifications required to deal with arbitrary time points
can be derived, e.g., from the results in [1, Chap. 5]. Suppose that our goal is to
estimate an unknown population sum θ . Also suppose that there are L equal-sized
strata, with m = n/L elements per stratum, and that we obtain an SRS of r = k/L

elements from each stratum. Denote by Λj the set of elements in the j th stratum and
by Sj the elements of Λj that are in the final sample. The usual expansion estimator
θ̂ is unbiased for θ , and

Var[θ̂] = m

(
n

k
− 1

) L∑

j=1

σ 2
j ,

9The bias arises from the fact that the sample can be empty, albeit typically with low probability.
10We follow the survey-sampling literature, which usually takes the denominator in (4) as n − 1
instead of n because this convention leads to simpler formulas.

Data-Stream Sampling: Basic Techniques and Results 39

where σ 2
j = (1/(m− 1))

∑
ei∈Λj

(h(ei)− (θj /m))2 and θj = ∑
ei∈Λj

h(ei). An un-

biased estimator of Var[θ̂] is

V̂ar[θ̂] = m

(
n

k
− 1

) L∑

j=1

σ̂ 2
j ,

where σ̂ 2
j = (1/(r − 1))

∑
ei∈Sj

(h(ei)− (θ̂j /m))2 and θ̂j = (m/r)
∑

ei∈Sj
h(ei).

Observe that if the strata are highly homogeneous, then each σ 2
j is very

small, so that Var[θ̂] is very small. Indeed, it can be shown [1, Sect. 5.6] that if
m

∑L
j=1((θj /m) − (θ/n))2 ≥ (1 − (m/n))

∑L
j=1 σ 2

j , then the variance of θ̂ under
stratified sampling is less than or equal to the variance under simple random sam-
pling. This condition holds except when the stratum means are almost equal, i.e.,
if the data are even slightly stratified, then stratified sampling yields more precise
results than SRS.

4.4 Biased Sampling

When using a biased sampling scheme, we can, in principle, recover an unbiased
estimate of a population sum by using a Horvitz–Thompson (HT) estimator; see,
for example, [3], where these estimators are called π -estimators. The general form
of an HT-estimator for a population sum of the form θ = ∑

i∈W h(ei) based on a
sample S ⊆ W is θ̂HT = ∑

i∈S(h(ei)/πi), where πi is the probability that element
ei is included in S. Assume that πi > 0 for each ei , and let Φi = 1 if ei ∈ S and
Φi = 0 otherwise, so that E[Φi] = πi . Observe that

E[θ̂] = E

[∑

i∈W

h(ei)Φi/πi

]
=

∑

i∈W

h(ei)E[Φi]/πi = θ, (5)

so that HT-estimators are indeed unbiased. Similar calculations [3, Result 2.8.1]
show that the variance of θ̂ is given by

Var[θ̂] =
∑

i∈W

∑

j∈W

(
πij

πiπj

− 1

)
h(ei)h(ej),

where πij is the probability that elements ei and ej are both included in S. (Take
πii = πi for i ∈ W .) When using biased reservoir sampling, for example, the prob-
abilities πi and πij can be determined from (1) and (2). (In this case, and in others
arising in practice, it can be expensive to compute the πi ’s and πij ’s.) Provided that
πij > 0 for all i, j , an unbiased estimator of Var[θ̂] is given by

V̂ar[θ̂] =
∑

i∈S

∑

j∈S

(
1

πiπj

− 1

πij

)
h(ei)h(ej).

40 P.J. Haas

It can be shown [3, Result 2.8.2] that if the sampling scheme is such that the final
sample size is deterministic and each πij is positive, then alternative forms for the
variance and variance estimator are given by

Var[θ̂] = 1

2

∑

i∈W

∑

j∈W

(πiπj − πij)

(
h(ei)

πi

− h(ej)

πj

)2

and

V̂ar[θ̂] = 1

2

∑

i∈S

∑

j∈S

(
πiπj

πij

− 1

)(
h(ei)

πi

− h(ej)

πj

)2

.

The latter variance estimator is known as the Yates–Grundy–Sen estimator; unlike
the previous variance estimator, it has the advantage of always being nonnegative
if each term (πiπj /πij) − 1 is positive (but is only guaranteed to be unbiased for
fixed-size sampling schemes). Most of the estimators discussed previously can be
viewed as HT-estimators, for example, the SRS-based expansion estimator: from (1)
and (2), we have πi = k/n and πij = k(k − 1)/(n(n− 1)) for all i, j .

In general, quantifying the effects of biased sampling on the outcome of a subse-
quent data analysis can be difficult. When estimating a population sum, however, the
foregoing results lead to a clear understanding of the consequences of biased sam-
pling schemes. Specifically, observe that, by (5), the sample sum θ̂ = ∑

ei∈S h(ei)

is, in fact, an unbiased estimator of the weighted sum θ = ∑
ei∈W πih(ei).

4.5 Functions of Population Sums

Suppose that we wish to estimate α = g(θ), where θ = (θ1, θ2, . . . , θd) is a vector
of population sums corresponding to real-valued functions h1, h2, . . . , hd . We as-
sume that there exists an unbiased and consistent estimator θ̂j for each θj , and we
write θ̂ = (θ̂1, θ̂2, . . . , θ̂d). We also assume that g is continuous and differentiable
in a neighborhood of θ and write ∇g = (∇1g,∇2g, . . . ,∇dg) for the gradient of g.
A straightforward estimate of α is α̂ = g(θ̂), i.e., we simply replace each popula-
tion sum θj by its estimate and then apply the function g. The estimator α̂ will in
general be biased if g is a nonlinear function. For example, Jensen’s inequality [50,
Sect. 21] implies that E[α̂] ≥ α if g is convex and E[α̂] ≤ α if g is concave. The
bias decreases, however, as the sample size increases and, moreover, α̂ is consistent
for α since g is continuous. The variance of α̂ is difficult to obtain precisely. If the
sample size is large, however, so that with high probability θ̂ is close θ , then we can
approximate Var[α̂] by the variance of a linearized version of α obtained by taking
a Taylor expansion around the point θ . That is,

Var[α̂] ≈ Var

[

g(θ)+
d∑

j=1

aj (θ̂j − θj)

]

=
d∑

i=1

d∑

j=1

aiaj Cov[θ̂i , θ̂j],

Data-Stream Sampling: Basic Techniques and Results 41

where ai = ∇ig(θ) and Cov[θ̂i , θ̂j] denotes the covariance of θ̂i and θ̂j . We es-
timate Var[α̂] by V̂ar[α̂] = ∑d

i=1
∑d

j=1 âi âj
ˆCov[θ̂i , θ̂j], where âi = ∇ig(θ̂) and

ˆCov[θ̂i , θ̂j] is an estimate of Cov[θ̂i , θ̂j]. The exact formula for the covariance es-
timator depends on the specific sampling scheme and population-sum estimator.
Typically, assuming that θ̂1, θ̂2, . . . , θ̂d are computed from the same sample, such
formulas are directly analogous to those for the variance. For example, for the ex-
pansion estimator under SRS, we have

ˆCov[θ̂i , θ̂j] = n2(1 − f)

k

1

k − 1

∑

el∈S

(
hi(el)− (θ̂i/n)

)(
hj (el)− (θ̂j /n)

)
,

where f = k/n and θ̂j = (n/k)
∑

ei∈S hj (ei) for each j . For stratified sampling
with L strata of length m,

ˆCov[θ̂i , θ̂j] = m

(
n

k
− 1

) L∑

q=1

1

r − 1

∑

el∈Sq

(
hi(el)− (θ̂i,q/m)

)(
hj (el)− (θ̂j,q)/m

)
,

where, as before, each stratum comprises m = n/L elements, Sq is the SRS of size
r = k/L from the qth stratum, and θ̂s,q = (m/r)

∑
el∈Sq

hs(el) for each s and q . In
general, we note that for any sampling scheme (possibly biased) such that the size
of the sample S is deterministic and each πij is positive, the linearization approach
leads to the following Yates–Grundy–Sen variance estimator:

V̂ar[α̂] = 1

2

∑

i∈S

∑

j∈S

(
πiπj

πij

− 1

)(
zi

πi

− zj

πj

)2

,

where zl = ∑L
j=1 ∇j g(θ̂)hj (el) for each el ∈ S; see [4, Sect. 4.2.1].

Acknowledgements The author would like to thank P. Brown, M. Datar, and Rainer Gemulla
for several helpful discussions. D. Sivakumar suggested the idea underlying the bound α2 given in
Sect. 3.1.

References

1. W.G. Cochran, Sampling Techniques, 3rd edn. (Wiley, New York, 1977)
2. L. Kish, Survey Sampling (Wiley, New York, 1965)
3. C.E. Särndal, B. Swensson, J. Wretman, Model Assisted Survey Sampling (Springer, New

York, 1992)
4. M.E. Thompson, Theory of Sample Surveys (Chapman & Hall, London, 1997)
5. S.K. Thompson, Sampling (Wiley, New York, 2002)
6. B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap (Chapman & Hall, New York,

1993)
7. R. Gemulla, W. Lehner, Deferred maintenance of disk-based random samples, in Proc. EDBT.

Lecture Notes in Computer Science (Springer, Berlin, 2006), pp. 423–441

42 P.J. Haas

8. A. Pol, C.M. Jermaine, S. Arumugam, Maintaining very large random samples using the geo-
metric file. VLDB J. 17(5), 997–1018 (2008)

9. P.G. Brown, P.J. Haas, Techniques for warehousing of sample data, in Proc. 22nd ICDE
(2006)

10. P.J. Haas, The need for speed: speeding up DB2 using sampling. IDUG Solut. J. 10, 32–34
(2003)

11. S. Chaudhuri, R. Motwani, V.R. Narasayya, Random sampling for histogram construction:
how much is enough? in Proc. ACM SIGMOD (1998), pp. 436–447

12. D. DeWitt, J.F. Naughton, D.A. Schneider, S. Seshadri, Practical skew handling algorithms
for parallel joins, in Proc. 19th VLDB (1992), pp. 27–40

13. P.J. Haas, C. König, A bi-level Bernoulli scheme for database sampling, in Proc. ACM SIG-
MOD (2004), pp. 275–286

14. W. Hou, G. Ozsoyoglu, B. Taneja, Statistical estimators for relational algebra expressions, in
Proc. Seventh PODS (1988), pp. 276–287

15. P.J. Haas, J.M. Hellerstein, Ripple joins for online aggregation, in Proc. ACM SIGMOD
(1999), pp. 287–298

16. S. Acharya, P. Gibbons, V. Poosala, S. Ramaswamy, Join synopses for approximate query
answering, in Proc. ACM SIGMOD (1999), pp. 275–286

17. S. Acharya, P. Gibbons, V. Poosala, Congressional samples for approximate answering of
group-by queries, in Proc. ACM SIGMOD (2000), pp. 487–498

18. S. Chaudhuri, G. Das, M. Datar, R. Motwani, V.R. Narasayya, Overcoming limitations of
sampling for aggregation queries, in Proc. Seventeenth ICDE (2001), pp. 534–542

19. S. Chaudhuri, R. Motwani, V.R. Narasayya, On random sampling over joins, in Proc. ACM
SIGMOD (1999), pp. 263–274

20. S. Ganguly, P.B. Gibbons, Y. Matias, A. Silberschatz, Bifocal sampling for skew-resistant join
size estimation, in Proc. ACM SIGMOD (1996), pp. 271–281

21. V. Ganti, M.L. Lee, R. Ramakrishnan, ICICLES: self-tuning samples for approximate query
answering, in Proc. 26th VLDB (2000), pp. 176–187

22. P.J. Haas, A.N. Swami, Sampling-based selectivity estimation using augmented frequent value
statistics, in Proc. Eleventh ICDE (1995), pp. 522–531

23. C. Jermaine, Robust estimation with sampling and approximate pre-aggregation, in Proc. 29th
VLDB (2003), pp. 886–897

24. W. Hou, G. Ozsoyoglu, B. Taneja, Processing aggregate relational queries with hard time
constraints, in Proc. ACM SIGMOD (1989), pp. 68–77

25. F. Olken, D. Rotem, Simple random sampling from relational databases, in Proc. 12th VLDB
(1986), pp. 160–169

26. F. Olken, D. Rotem, Random sampling from B+ trees, in Proc. 15th VLDB (1989), pp. 269–
277

27. F. Olken, D. Rotem, Maintenance of materialized views of sampling queries, in Proc. Eighth
ICDE (1992), pp. 632–641

28. F. Olken, D. Rotem, Sampling from spatial databases, in Proc. Ninth ICDE (1993), pp. 199–
208

29. F. Olken, D. Rotem, P. Xu, Random sampling from hash files, in Proc. ACM SIGMOD (1990),
pp. 375–386

30. P.J. Haas, J.F. Naughton, S. Seshadri, A.N. Swami, Selectivity and cost estimation for joins
based on random sampling. J. Comput. Syst. Sci. 52, 550–569 (1996)

31. P.J. Haas, J.F. Naughton, A.N. Swami, On the relative cost of sampling for join selectivity
estimation, in Proc. Thirteenth PODS (1994), pp. 14–24

32. P.J. Haas, A.N. Swami, Sequential sampling procedures for query size estimation, in Proc.
ACM SIGMOD (1992), pp. 1–11

33. W. Hou, G. Ozsoyoglu, E. Dogdu, Error-constrained COUNT query evaluation in relational
databases, in Proc. ACM SIGMOD (1991), pp. 278–287

34. R.J. Lipton, J.F. Naughton, Query size estimation by adaptive sampling, in Proc. Ninth PODS
(1990), pp. 40–46

Data-Stream Sampling: Basic Techniques and Results 43

35. R.J. Lipton, J.F. Naughton, D.A. Schneider, Practical selectivity estimation through adaptive
sampling, in Proc. ACM SIGMOD (1990), pp. 1–11

36. R.J. Lipton, J.F. Naughton, D.A. Schneider, S. Seshadri, Efficient sampling strategies for rela-
tional database operations. Theor. Comput. Sci. 116, 195–226 (1993)

37. K.D. Seppi, J.W. Barnes, C.N. Morris, A Bayesian approach to database query optimization.
ORSA J. Comput. 5, 410–419 (1993)

38. J.M. Hellerstein, P.J. Haas, H.J. Wang, Online aggregation, in Proc. ACM SIGMOD (1997),
pp. 171–182

39. C. Jermaine, A. Dobra, S. Arumugam, S. Joshi, A. Pol, A disk-based join with probabilistic
guarantees, in Proc. ACM SIGMOD (2005)

40. C.M. Jermaine, S. Arumugam, A. Pol, A. Dobra, Scalable approximate query processing with
the DBO engine, in Proc. ACM SIGMOD (2007), pp. 725–736

41. C. Jermaine, A. Dobra, A. Pol, S. Joshi, Online estimation for subset-based SQL queries, in
Proc. 31st VLDB (2005), pp. 745–756

42. G. Luo, C. Ellman, P.J. Haas, J.F. Naughton, A scalable hash ripple join algorithm, in Proc.
ACM SIGMOD (2002), pp. 252–262

43. A. Pol, C. Jermaine, Relational confidence bounds are easy with the bootstrap, in Proc. ACM
SIGMOD (2005)

44. P.G. Brown, P.J. Haas, BHUNT: automatic discovery of fuzzy algebraic constraints in rela-
tional data, in Proc. 29th VLDB (2003), pp. 668–679

45. I.F. Ilyas, V. Markl, P.J. Haas, P.G. Brown, A. Aboulnaga, CORDS: automatic discovery of
correlations and soft functional dependencies, in Proc. ACM SIGMOD (2004), pp. 647–658

46. P. Brown, P. Haas, J. Myllymaki, H. Pirahesh, B. Reinwald, Y. Sismanis, Toward automated
large-scale information integration and discovery, in Data Management in a Connected World,
ed. by T. Härder, W. Lehner (Springer, New York, 2005)

47. M. Charikar, S. Chaudhuri, R. Motwani, V.R. Narasayya, Towards estimation error guarantees
for distinct values, in Proc. Nineteenth PODS (2000), pp. 268–279

48. P.J. Haas, L. Stokes, Estimating the number of classes in a finite population. J. Am. Stat.
Assoc. 93, 1475–1487 (1998)

49. M. Wu, C. Jermaine, A Bayesian method for guessing the extreme values in a data set, in Proc.
33rd VLDB (2007), pp. 471–482

50. P. Billingsley, Probability and Measure, 2nd edn. (Wiley, New York, 1986)
51. A.M. Law, Simulation Modeling and Analysis, 4th edn. (McGraw-Hill, New York, 2007)
52. D.E. Knuth, The Art of Computer Programming, vol. 2: Seminumerical Algorithms (Addison-

Wesley, Reading, 1969)
53. A.I. McLeod, D.R. Bellhouse, A convenient algorithm for drawing a simple random sample.

Appl. Stat. 32, 182–184 (1983)
54. J.S. Vitter, Random sampling with a reservoir. ACM Trans. Math. Softw. 11, 37–57 (1985)
55. J.S. Vitter, Faster methods for random sampling. Commun. ACM 27, 703–718 (1984)
56. M.T. Chao, A general purpose unequal probability sampling plan. Biometrika 69, 653–656

(1982)
57. H. Brönnimann, B. Chen, M. Dash, P.J. Haas, Y. Qiao, P. Scheuermann, Efficient data reduc-

tion methods for on-line association rule discovery, in Data Mining: Next Generation Chal-
lenges and Future Directions, ed. by H. Kargupta, A. Joshi, K. Sivakumar, Y. Yesha (AAAI
Press, Menlo Park, 2004)

58. B. Babcock, M. Datar, R. Motwani, Sampling from a moving window over streaming data, in
Proc. 13th SODA (2002), pp. 633–634

59. T. Hagerup, C. Rub, A guided tour of Chernoff bounds. Inf. Process. Lett. 33, 305–308 (1990)
60. W. Feller, An Introduction to Probability Theory and Its Applications, 3rd edn., vol. 1 (Wiley,

New York, 1968)
61. R. Gemulla, W. Lehner, P.J. Haas, Maintaining bounded-size sample synopses of evolving

datasets. VLDB J. 17(2), 173–202 (2008)
62. R. Gemulla, W. Lehner, P.J. Haas, Maintaining Bernoulli samples over evolving multisets, in

Proc. Twenty Sixth PODS (2007), pp. 93–102

44 P.J. Haas

63. G. Cormode, S. Muthukrishnan, I. Rozenbaum, Summarizing and mining inverse distributions
on data streams via dynamic inverse sampling, in Proc. 31st VLDB (2005), pp. 25–36

64. G. Frahling, P. Indyk, C. Sohler, Sampling in dynamic data streams and applications, in Proc.
21st ACM Symp. Comput. Geom. (2005), pp. 142–149

65. P.B. Gibbons, Distinct sampling for highly-accurate answers to distinct values queries and
event reports, in Proc. 27th VLDB (2001), pp. 541–550

Quantiles and Equi-depth Histograms
over Streams

Michael B. Greenwald and Sanjeev Khanna

1 Introduction

A quantile query over a set S of size n takes as input a quantile φ,0 < φ ≤ 1, and
returns a value v ∈ S whose rank in the sorted S is φn. Computing the median,
the 99-percentile, or the quartiles of a set are examples of quantile queries. Many
database optimization problems involve approximate quantile computations over
large data sets. Query optimizers use quantile estimates to estimate the size of inter-
mediate results and choose an efficient plan among a set of competing plans. Load
balancing in parallel databases can be done by using quantile estimates. Above all,
quantile estimates can give a meaningful summary of a large data set using a very
small memory footprint. For instance, given any data set, one can create a data struc-
ture containing 50 observations that can answer any quantile query to within 1 %
precision in rank.

Based on the underlying application domain, a number of desirable properties
can be identified for quantile computation. In this survey, we will focus on the fol-
lowing three properties: (a) space used by the algorithm; (b) guaranteed accuracy to
within a pre-specified precision; and (c) number of passes made.

It is desirable to compute quantiles using the smallest memory footprint possible.
We can achieve this by dynamically storing, at any point in time, only a summary of
the data seen so far, and not the entire data set. The size and form of such summaries

M.B. Greenwald
Arista Networks, Inc., 5453 Great America Parkway, Santa Clara, CA 95054, USA
e-mail: greenwald@cis.upenn.edu

S. Khanna (B)
Dept. of Computer and Info. Science, University of Pennsylvania, 3330 Walnut Street,
Philadelphia, PA 19104, USA
e-mail: sanjeev@cis.upenn.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_3

45

mailto:greenwald@cis.upenn.edu
mailto:sanjeev@cis.upenn.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_3

46 M.B. Greenwald and S. Khanna

are determined by our a priori knowledge of the types of quantile queries we expect
to be able to answer. We may know in advance that the client intends to ask for a sin-
gle, specific quantile. Such a single quantile summary is parameterized in advance
by the quantile, φ, and a desired precision, ε. For any 0 < φ ≤ 1, and 0 ≤ ε ≤ 1, an
ε-approximate φ-quantile on a data set of size n is any value v whose rank, r∗(v), is
guaranteed to lie between n(φ − ε) and n(φ + ε). For example, a 0.01-approximate
0.5-quantile is any value whose rank is within 1 % of the median.

Alternatively, we may know that the client is interested in a range of equally-
spaced quantile queries. In such cases we summarize the data by an equi-depth
histogram. An equi-depth histogram is parameterized by a bucket size, φ, and a pre-
cision, ε. The client may request any, or all, φ-quantiles, that is, elements of ranks,
φn,2φn, . . . , n. We say that H(φ, ε) is an ε-approximate equi-depth histogram with
bucket width φ if for any i = 1 to 1/φ, it returns a value viφ for the iφ quantile, where
n(iφ − ε) ≤ r∗(viφ) ≤ n(iφ + ε).

Finally, we may have no prior knowledge of the anticipated queries. Such
ε-approximate quantile summaries are parameterized only by a desired precision, ε.
We say that a quantile summary Q(ε) is ε-approximate if it can be used to answer
any quantile query to within a precision of εn. There is a close relation between
equi-depth histograms and quantile summaries. Q(ε) can serve as an equi-depth
histogram H(φ, ε) for any 0 < φ ≤ 1. Conversely, an equi-depth histogram H(φ, ε)

is a φ-approximate quantile summary, provided only that ε ≤ φ/2.
The rest of this chapter is organized as follows. In Sect. 2, we formally intro-

duce the notion of an approximate quantile summary, and some simple operations
that we will use to describe various algorithms for maintaining quantile summaries.
Section 3 describes deterministic algorithms for exact selection and for computing
approximate quantile summaries. These algorithms give worst-case deterministic
guarantees on the accuracy of the quantile summary. In contrast, Sect. 4 describes
algorithms with probabilistic guarantees on the accuracy of the summary.

2 Preliminaries

We will assume throughout that the data is presented on a read-only tape where
the tape head moves to the right after each unit of time. Each move of the tape
head reveals the next observation (element) in the sequence stored on the tape. For
convenience, we will simply say that a new observation arrives after each unit of
time. We will use n to denote both the number of observations (elements of the data
sequence) that have been seen so far as well as the current time. Almost all results
presented here concern algorithms that make a single pass on the data sequence. In
a multi-pass algorithm, we assume that at the beginning of each pass, the tape head
is reset to the left-most cell on the tape. We assume that our algorithms operate in
an RAM model of computation. The space s(n) used by an algorithm is measured
in terms of the maximum number of words used by an algorithm while processing
an input sequence of length n. This model assumes that a single word can store

Quantiles and Equi-depth Histograms over Streams 47

max{n, |v∗|} where v∗ is the observation with largest absolute value that appears in
the data sequence.

The set-up as described above concerns an “insertion-only” model that assumes
that an observation once presented is not removed at a later time from the data se-
quence. This is referred to as the cash register model in the literature [7]. A more
general setting is the turnstile model [17] that also allows for deletion of observa-
tions. In Sect. 5, we will consider algorithms for this more general setting as well.
We note here that a simple modification of the model above can be used to capture
the turnstile case: the ith cell on the read-only tape contains both the ith element in
the data sequence and an additional bit that indicates whether the element is being
inserted or deleted.

An order-statistic query over a data set S takes as input an integer r ∈ [1..|S|] and
outputs an element of rank r in S. We say that the order-statistic query is answered
with ε-accuracy if the output element is guaranteed to have rank within r ± εn. For
simplicity, we will assume throughout that εn is an integer. If 1/ε is an integer,
then this is easily enforced by batching observations 1/ε at a time. If 1/ε is not an
integer, then let i be an integer such that 1/2i+1 < ε < 1/2i . We can then replace
the ε-accuracy requirement by ε′ = 1/2i+1 which is within a factor of two of the
original requirement.

2.1 Quantile Summary

Following [10], we define a quantile summary for a set S to be an ordered set Q =
{q1, q2, . . . , q�} along with two functions rminQ and rmaxQ such that

(i) q1 ≤ q2 ≤ · · · ≤ q� and qi ∈ S for 1 ≤ i ≤ �.
(ii) For 1 ≤ i ≤ �, each qi has rank at least rminQ(qi), and at most rmaxQ(qi)

in S.
(iii) Finally, q1 and q� are the smallest and the largest elements, respectively,

in the set S, that is, rminQ(q1) = rmaxQ(q1) = 1, and rminQ(q�) =
rmaxQ(q�) = |S|.

We will say that Q is a relaxed quantile summary if it satisfies properties (i) and
(ii) above, and the following relaxation of property (iii): rmaxQ(q1) ≤ ε|S| and
rminQ(q�) ≥ (1 − ε)|S|.

We say that a summary Q is an ε-approximate quantile summary for a set S if
it can be used to answer any order statistic query over S with ε-accuracy. That is,
it can be used to compute the desired order-statistic within a rank error of at most
ε|S|. The proposition below describes a sufficient condition on the function rminQ

and rmaxQ to ensure an ε-approximate summary.

Proposition 1 ([10]) Let Q be a relaxed quantile summary such that it satis-
fies the condition max1≤i<�(rmaxQ(qi+1) − rminQ(qi)) ≤ 2ε|S|. Then Q is an
ε-approximate summary.

48 M.B. Greenwald and S. Khanna

Proof Let r = �φ|S|�. We will identify an index i such that r − ε|S| ≤ rminQ(qi)

and rmaxQ(qi) ≤ r + ε|S|. Clearly, such a value qi approximates the φ-quantile to
within the claimed error bounds. We now argue that such an index i must always
exist.

Let e = maxi (rmaxQ(qi+1)−rminQ(qi))/2. Consider first the case r ≥ |S|−e.
We have rminQ(q�) ≥ (1 − ε)|S|, and therefore i = � has the desired property.
We now focus on the case r < |S| − e, and start by choosing the smallest index j

such that rmaxQ(qj) > r + e. If j = 1, then j is the desired index since r + e <

rmaxQ(q1) ≤ ε|S|. Otherwise, j ≥ 2, and it follows that r − e ≤ rminQ(qj−1).
If r − e > rminQ(qj−1) then rmaxQ(qj) − rminQ(qj−1) > 2e; a contradic-
tion since e = maxi (rmaxQ(qi+1) − rminQ(qi))/2. By our choice of j , we have
rmaxQ(qj−1) ≤ r + e. Thus i = j − 1 is an index i with the above described prop-
erty. �

In what follows, whenever we refer to a (relaxed) quantile summary as
ε-approximate, we assume that it satisfies the conditions of Proposition 1.

2.2 Operations

We now describe two operations that produce new quantile summaries from existing
summaries, and compute bounds on the precision of the resulting summaries.

The Combine Operation

Let Q′ = {x1, x2, . . . , xa} and Q′′ = {y1, y2, . . . , yb} be two quantile summaries.
The operation combine(Q′,Q′′) produces a new quantile summary Q = {z1, z2,

. . . , za+b} by simply sorting the union of the elements in two summaries, and defin-
ing new rank functions for each element as follows; w.l.o.g. assume that zi corre-
sponds to some element xr in Q′. Let ys be the largest element in Q′′ that is not
larger than xr (ys is undefined if there is no such element), and let yt be the small-
est element in Q′′ that is not smaller than xr (yt is undefined if there is no such
element). Then

rminQ(zi) =
{
rminQ′(xr) if ys undefined;
rminQ′(xr)+ rminQ′′(ys) otherwise,

rmaxQ(zi) =
{
rmaxQ′(xr)+ rmaxQ′′(ys) if yt undefined;
rmaxQ′(xr)+ rmaxQ′′(yt)− 1 otherwise.

Lemma 1 Let Q′ be an ε′-approximate quantile summary for a multiset S′,
and let Q′′ be an ε′′-approximate quantile summary for a multiset S′′. Then

Quantiles and Equi-depth Histograms over Streams 49

combine(Q′,Q′′) produces an ε-approximate quantile summary Q for the mul-
tiset S = S′ ∪ S′′ where ε = n′ε′+n′′ε′′

n′+n′′ ≤ max{ε′, ε′′}. Moreover, the number of ele-
ments in the combined summary is equal to the sum of the number of elements in Q′
and Q′′.

Proof Let n′ and n′′ respectively denote the number of observations covered by Q′
and Q′′. Consider any two consecutive elements zi, zi+1 in Q. By Proposition 1, it
suffices to show that rmaxQ(zi+1) − rminQ(zi) ≤ 2ε(n′ + n′′). We analyze two
cases. First, zi, zi+1 both come from a single summary, say elements xr , xr+1 in Q′.
Let ys be the largest element in Q′′ that is smaller than xr and let yt be the smallest
element in Q′′ that is larger than xr+1. Observe that if ys and yt are both defined,
then they must be consecutive elements in Q′′:

rmaxQ(zi+1)− rminQ(zi) ≤
[
rmaxQ′(xr+1)+ rmax

Q
′′ (yt)− 1

]

− [
rminQ′(xr)+ rminQ′′(ys)

]

≤ [
rmaxQ′(xr+1)− rminQ′(xr)

]

+ [
rmaxQ′′(yt)− rminQ′′(ys)− 1

]

≤ 2
(
n′ε ′ + n′′ε′′

) = 2ε
(
n′ + n′′

)
.

Otherwise, if only ys is defined, then it must be the largest element in Q′′; or if
only yt is defined, it must be the smallest element in Q′′. A similar analysis can be
applied for both these cases as well.

Next we consider the case when zi and zi+1 come from different summaries, say,
zi corresponds to xr in Q′ and zi+1 corresponds to yt in Q′′. Then observe that
xr is the largest element smaller than yt in Q′ and that yt is the smallest element
larger than xr in Q′′. Moreover, xr+1 is the smallest element in Q′ that is larger
than yt , and yt−1 is the largest element in Q′′ that is smaller than xr . Using these
observations, we get

rmaxQ(zi+1)− rminQ(zi) ≤
[
rmaxQ′′(yt)+ rmaxQ′(xr+1)− 1

]

− [
rminQ′(xr)+ rminQ′′(yt−1)

]

≤ [
rmaxQ′′(yt)− rminQ′′(yt−1)

]

+ [
rmaxQ′(xr+1)− rminQ′(xr)− 1

]

≤ 2
(
n′ε′ + n′′ε′′

) = 2ε
(
n′ + n′′

)
. �

Corollary 1 Let Q be a quantile summary produced by repeatedly applying the
combine operation to an initial set of summaries {Q1,Q2, . . . ,Qq} such that Qi

is an εi -approximate summary. Then regardless of the sequence in which combine
operations are applied, the resulting summary Q is guaranteed to be (maxq

i=1 εi)-
approximate.

50 M.B. Greenwald and S. Khanna

Proof By induction on q . The base case of q = 2 follows from Lemma 1. Otherwise,
q > 2, and we can partition the set of indices I = {1,2, . . . , q} into two disjoint sets
I1 and I2 such that Q is a result of the combine operation applied to summary
Q′ resulting from a repeated application of combine to {Qi |i ∈ I1}, and sum-
mary Q′′ results from a repeated application of combine to {Qi |i ∈ I2}. By induc-
tion hypothesis, Q′ is maxi∈I1 εi -approximate and Q′′ is maxi∈I2 εi -approximate.
By Lemma 1, then Q must be maxi∈I1∪I2 εi = maxi∈I εi -approximate. �

The Prune Operation

The prune operation takes as input an ε′-approximate quantile summary Q′ and a
parameter K , and returns a new summary Q of size at most K + 1 such that Q is
an (ε′ + (1/(2K)))-approximate quantile summary for S. Thus prune trades off
slightly on accuracy for potentially much reduced space. We generate Q by querying
Q′ for elements of rank 1, |S|/K,2|S|/K, . . . , |S|, and for each element qi ∈Q, we
define rminQ(qi) = rminQ′(qi), and rmaxQ(qi)= rmaxQ′(qi).

Lemma 2 Let Q′ be an ε′-approximate quantile summary for a multiset S. Then
prune(Q′,K) produces an (ε′ + 1/(2K))-approximate quantile summary Q for S

containing at most K + 1 elements.

Proof For any pair of consecutive elements qi, qi+1 in Q, rmaxQ(qi+1) −
rminQ(qi) ≤ (1

K
+ 2ε′)|S|. By Proposition 1, it follows that Q must be (ε′ + 1/

(2K))-approximate. �

3 Deterministic Algorithms

In this section, we will develop a unified framework that captures many of the
known deterministic algorithms for computing approximate quantile summaries.
This framework appeared in the work of Manku, Rajagopalan, and Lindsay [14],
and we refer to it as the MRL framework. We show various earlier approaches for
computing approximate quantile summaries are all captured by this framework, and
the best-possible algorithm in this framework computes an ε-approximate quantile
summary using O(log2(εn)/ε) space. We then present an algorithm due to Green-
wald and Khanna [10] that deviates from this framework and reduces the space
needed to O(log(εn)/ε). This is the current best known bound on the space needed
for computing an ε-approximate quantile summary. We start with some classical
results on exact algorithms for selection.

Quantiles and Equi-depth Histograms over Streams 51

3.1 Exact Selection

In a natural but a restricted model of computation, Munro and Patterson [16] estab-
lished almost tight bounds on deterministic selection with bounded space. In their
model, the only operation that is allowed on the underlying elements is a pairwise
comparison. At any time, the summary stores a subset of the elements in the data
stream. They considered multi-pass algorithms and showed that any comparison-
based algorithm that solves the selection problem in p passes requires Ω(n1/p)

space. Moreover, there is a simple algorithm that can solve the selection problem in
p passes using only O(n1/p(logn)2−2/p) space. We will sketch here the proofs of
both these results. We start with the lower bound result.

We focus on the problem of determining the median element using space s. Fix
any deterministic algorithm and let us consider the first pass made by the algorithm.
Without any loss of generality, we may assume that the first s elements seen by the
algorithm get stored in the summary Q. Now each time an element x is brought
into Q, some element y is evicted from the summary Q. Let U(y) denote the set of
elements that were evicted from Q to make room for element y directly or indirectly.
An element z is indirectly evicted by an element y in Q if the element y′ evicted to
make room for y directly or indirectly evicted the element z. Clearly, x will never
get compared to any elements in U(y) or the element y. We set U(x) = U(y)∪ {y}.
The adversary now ensures that x is indistinguishable from any element in U(x)

with respect to the elements seen so far. Let z1, z2, . . . , zs be the elements in Q

after the first n/2 elements have been seen. Then
∑s

i=1 |U(zi)| = n/2 − s, and by
the pigeonhole principle, there exists an element zj ∈ Q such that |zj ∪ U(zj)| ≥
n/(2s). The adversary now adjusts the values of the remaining n/2 elements so as
to ensure that the median element for the entire sequence is the median element of
the set U(zj)∪ {zj }. Thus after one pass, the problem size reduces by a factor of 2s

at most. For the algorithm to succeed in p passes, we must have (2s)p ≥ n, that is,
s = Ω(n1/p).

Theorem 1 ([16]) Any p-pass comparison-based algorithm to solve the selection
problem on a stream of n elements requires Ω(n1/p) space.

Recently, Guha and McGregor [12], using techniques from communication com-
plexity, have shown that any p-pass algorithm to solve the selection problem on a
stream of n elements requires Ω(n1/p/p6) bits of space.

The Munro and Patterson algorithm that almost achieves the space bound given
in Theorem 1 proceeds as follows. The algorithm maintains at all times a left and
a right “filter” such that the desired element is guaranteed to lie between them. At
the beginning, the left filter is assumed to be −∞ and the right filter is assumed to
be +∞. Starting with an initial bound of n candidate elements contained between
the left and the right filters, the algorithm in each pass gradually tightens the gap
between the filters until the final pass where it is guaranteed to be less than s. The
final pass is then used to determine the exact rank of the filters and retain all candi-
dates in between to output the appropriate answer to the selection problem. The key
property that is at the core of their algorithm is as follows.

52 M.B. Greenwald and S. Khanna

Lemma 3 If at the beginning of a pass, there are at most k elements that can lie
between the left and the right filters, then at the end of the pass, this number reduces
to O((k log2 k)/s).

Thus each pass of the algorithm may be viewed as an approximate selec-
tion step, with each step refining the range of the approximation achieved by
the preceding step. We describe the precise algorithmic procedure to achieve this
in the next subsection. Assuming the lemma, it is easy to see that by choos-
ing s = Θ(n1/p(logn)2−2/p), we can ensure that after the ith pass, the number

of candidate elements between the filters reduces to at most n
p−i
p log

2i
p n. Setting

i = p − 1, ensures that the number of candidate elements in the pth pass is at most
n1/p(logn)2−2/p .

3.2 MRL Framework for ε-Approximate Quantile Summaries

A natural way to construct quantile summaries of large quantities of data is by merg-
ing several summaries of smaller quantities of data. Manku, Rajagopalan, and Lind-
say [14] noted that all one-pass approximate quantile algorithms prior to their work
(most notably, [1, 16]) fit this pattern. They defined a framework, referred from here
on as the MRL framework, in which all algorithms can be expressed in terms of
two basic operations on existing quantile summaries, NEW and COLLAPSE. Each
algorithm in the framework builds a quantile summary by applying these opera-
tions to members of a set of smaller, fixed size, quantile summaries. These fixed
size summaries are referred to as buffers. A buffer is a quantile summary of size
k that summarizes a certain number of observations. When a buffer summarizes k′
observations we define the weight of the buffer to be � k′

k
�.

NEW fills a buffer with k new observations from the input stream (we assume that
n is always an integer multiple of k). COLLAPSE takes a set of buffers as input and
returns a single buffer summarizing all the input buffers.

Each algorithm in the framework is parameterized by b, the total number of
buffers, and k, the number of entries per buffer, needed to summarize a sample
of size n to precision ε, as well as a policy that determines when to apply NEW and
COLLAPSE. Further, the authors of [14] proposed a new algorithm that improved
upon the space bk needed to summarize n observations to a given precision ε. In
light of more recent work, it is illuminating to recast the MRL framework in terms
of rminQ and rmaxQ for each entry in the buffer.

A buffer of weight w in the MRL framework is a quantile summary of kw ob-
servations, where k is the number of (sorted) entries in the buffer. Each entry in the
buffer consists of a single value that represents w observations in the original data
stream. We associate a level, l, with each buffer. Buffers created by NEW have a
level of 0, and buffers created by COLLAPSE have a level, l′, that is one greater than
the maximum l of the constituent buffers.

Quantiles and Equi-depth Histograms over Streams 53

NEW takes the next k observations from the input stream, sorts them in ascending
order, and stores them in a buffer, setting the weight of this new buffer to 1. This
buffer can reproduce the entire sequence of k observations and therefore rmin and
rmax of the ith element both equal i, and the buffer has precision that can satisfy
even ε = 0.

COLLAPSE summarizes a set of α buffers, B1,B2, . . . ,Bα , with a single buffer B ,
by first calling combine(B1,B2, . . . ,Bα), and then1 prune(B, k−1). The weight
of this new buffer is

∑
j wj .

Lemma 4 Let B be a buffer created by invoking COLLAPSE on a set of α buffers,
B1,B2, . . . ,Bα , where each buffer Bi has weight wi and precision εi . Then B has
precision ≤ 1/(2k − 2)+ maxi{εi}.

Proof By Corollary 1, repeated application of combine creates a temporary sum-
mary, Q, with precision maxi{εi} and αk entries. By Lemma 2, B = prune(Q,

k − 1) produces a summary with an ε that is 1/(2k − 2) more than the precision
of Q. �

We can view the execution of an algorithm in this framework as a tree. Each node
represents the creation of a new buffer of size k: leaves represent NEW operations
and internal nodes represent COLLAPSE. Figure 1 represents an example of such a
tree. The number next to each node specifies the weight of the resulting buffer. The
level, l, of a buffer represents its height in this tree.

Lemma 4 shows that each COLLAPSE operation adds at most 1/(2k) to the pre-
cision of the buffer. It follows from repeated application of Lemma 4 that a buffer
of level l has a precision of l/2k. Similarly, we can relate the precision of the final
summary to the height of the tree.

Corollary 2 Let h(n) denote the maximum height of the algorithm tree on an in-
put stream of n elements. Then the final summary produced by the algorithm is
(h(n)/(2k))-approximate.

We now apply the lemmas to several different algorithms, in order to compute
the space requirements for a given precision and a given number of observations we
wish to summarize.

The Munro–Patterson Algorithm

The Munro–Patterson algorithm [16] initially allocates b empty buffers. After k

new observations arrive, if an empty buffer exists, then NEW is invoked. If no empty
buffer exists, then it creates an empty buffer by calling COLLAPSE on two buffers of

1The prune phase of COLLAPSE in the MRL paper differs very slightly from our prune.

54 M.B. Greenwald and S. Khanna

Fig. 1 Tree representations
of Munro–Patterson
algorithm for b = 3, and 5.
Note that the final state of the
algorithm under a root
consists of the pair of buffers
that are the children of the
root. The shape and height of
a tree depends only on b, and
is independent of k, but the
precision, ε, and the number
of observations summarized,
n, are both functions of k

equal weight. Figure 1 represents the Munro–Patterson algorithm for small values
of b.

Let h = �log(n/k)�. Since the algorithm merges at each step buffers of equal
weight, it follows that the resulting tree is a balanced binary tree of height h where
the leaves represent k observations each, and each internal node corresponds to
k2i observations for some integer 1 ≤ i ≤ h. The number of available buffers b

must satisfy the constraint b ≥ h since if n = k2h − 1, the resulting summary re-
quires h buffers with distinct weights of 1,2,4, etc. By Corollary 2, the resulting
summary is guaranteed to be h/2k-approximate. Given a desired precision ε, we
need to satisfy h/2k ≤ ε. It is easy to verify that choosing k = �(log(2εn))/(2ε)�
satisfies the precision requirement. Thus the total space used by this algorithm is
bk = O(log2(εn)/ε).

The Alsabti–Ranka–Singh Algorithm

The Alsabti–Ranka–Singh Algorithm [1] allocates b buffers and divides them,
equally, into two classes. The first b/2 buffers are reserved for the leaves of the
tree. Each group of kb/2 observations are collected into b/2 buffers using NEW,
and then COLLAPSEed into a single buffer from the second class. This process is
repeated b/2 times, resulting in b/2 buffers with weight b/2 as children of the root.
After the last such operation, the b/2 leaf buffers are discarded.

The depth of the Alsabti–Ranka–Singh tree (see Fig. 2) is always 2, so by Corol-
lary 2, k ≥ 1/ε. We need k(b/2)2 ≥ n to cover all the observations. Given that b

increases coverage quadratically and k only linearly, it is most efficient to choose
the largest b and smallest k that satisfy the above constraints if we wish to minimize
bk. The smallest k is 1/ε, hence (b/2)2 ≥ εn, so b ≥√

εn/4, and bk = O(
√

n/ε).

The Manku–Rajagopalan–Lindsay Algorithm

It is natural to try to devise the best algorithm possible within the MRL framework.
It is easy to see that, for a given b and k, the more leaves an algorithm tree has,

Quantiles and Equi-depth Histograms over Streams 55

Fig. 2 Tree representation of Alsabti–Ranka–Singh algorithm. For any specific choice of b1
and b2, for b1 �= b2, the tree for b = b1 is not a subtree of b = b2. The precision, ε, and the
number of observations summarized, n, are both functions of k

the more observations it summarizes. Also, from Corollary 2, the shallower the tree,
the more precise the summary is. Clearly, for a fixed b it is best to construct the
shallowest and widest tree possible, in order to summarize the most observations
with the finest precision.

However, both algorithms presented above are inefficient in this light. For ex-
ample, Alsabti–Ranka–Singh is not as wide as possible. After the algorithm fills
the first b/2 buffers, it invokes COLLAPSE, leaving all buffers empty except for one
buffer with precision 1/(2k) summarizing bk/2 observations. However, there is no
need for it to call COLLAPSE at that point—there are b/2 empty buffers remaining.
If it deferred calling COLLAPSE until after filling all b buffers, the results would
again be all buffers empty except for one buffer with precision 1/(2k), but this time
summarizing bk observations. Even worse, after b/2 calls to COLLAPSE, Alsabti–
Ranka–Singh discards the b/2 “leaf buffers”, although if it kept those buffers, and
continued collecting, it could keep on collecting, roughly, a factor of b/2 times as
many observations with no loss of precision.

The Munro–Patterson algorithm does use empty buffers greedily. However, it
is not as shallow as possible. Munro–Patterson requires a tree of height logβ to
combine β buffers because it only COLLAPSEs pairs of buffers at a time instead of
combining the entire set at once. Had Munro–Patterson called COLLAPSE on the
entire set in a single operation, it would end with a buffer with logβ/(2k) higher
precision (there is a loss of precision of 1/(2k) for each call to COLLAPSE).

The new Manku–Rajagopalan–Lindsay (MRL) algorithm [14] aims to use the
buffers as efficiently as possible—to build the shallowest, widest tree it can for a
fixed b. The MRL algorithm never discards buffers; it uses any buffers that are
available to record new observations. The basic approach taken by MRL is to keep
the algorithm tree as wide as possible. It achieves this by labeling each buffer Bj

with a level Lj , which denotes its height (see Fig. 3). Let l denote the smallest value
of Lj for all existing, full, buffers. The MRL policy is to allocate new buffers at
level 0 until the buffer pool is exhausted, and then to call COLLAPSE on all buffers
of level l. More specifically, MRL considers two cases:

• Empty buffers exist. Call NEW on each and assign level 0 to them.
• No empty buffers exist. Call COLLAPSE on all buffers of level l and assign the

output buffer a level L of l + 1.

56 M.B. Greenwald and S. Khanna

Fig. 3 Tree representation of Manku–Rajagopalan–Lindsay algorithm

If level l contains only 2 buffers, then COLLAPSE frees only a single buffer which
NEW assigns level 0. When that buffer is filled, it is the only buffer at level 0. Calling
COLLAPSE on a single buffer merely increments the level without modifying the
buffer. This will continue until the buffer is promoted to level l, where other buffers
exist. Thus MRL treats a third case specially:

• Precisely one empty buffer exists. Call NEW on it and assign it level l.

Proposition 2 In the tree representing the COLLAPSEs and NEWs in an MRL al-
gorithm with b buffers, the number of leaves in a subtree of height h, L(b,h), is(

b+h−2
h−1

)
.

Proof We will prove by induction on h that L(b,h) = (
(b−1)+(h−1)

h−1

)
.

For h = 1 the tree is a single node, a leaf. So, for all b,L(b,1) = 1 = (
b−1

0

)
.

Assume that for all h′ < h, for all b, that L(b,h′) = (
(b−1)+(h′−1)

h′−1

)
.

L(b,h) is equal to
∑b

i=1 L(i,h − 1). To see this, note that we build the hth
level by finishing a tree of (b,h − 1), then collapsing it all into 1 buffer. Now we
have b − 1 buffers left over to build another tree of height h − 1. When we fin-
ish, we collapse that into a single buffer, and start over building a tree of height
h − 1 with b − 2 buffers, and so on, until we are left with only 1 buffer, which
we fill. At that point we have no free buffers left and so we collapse all b buffers
into the single buffer that is the root at height h. By the induction hypothesis, we

know that L(b,h − 1) = (
(b−1)+(h−2)

h−2

)
. Therefore, L(b,h) = ∑b

i=1

(
(i−1)+(h−2)

h−2

)
,

or L(b,h) = ∑b−1
i=0

(
(i+(h−2)

h−2

)
. But by summation on the upper index, we have

L(b,h) = ∑b−1
i=0

(
(i+(h−2)

h−2

) = (
(b−1)+1+h−2

h−1

) = (
(b−1)+(h−1)

h−1

)
. �

The leaf buffers must include all n observations, so by Proposition 2, b, k, and
h must be chosen such that kL(b,h) = k

(
b+h−2
h−1

) ≥ n. The summary must be
ε-approximate, so by Corollary 2, h/(2k) ≥ ε′. We must choose b, k, and h to sat-
isfy these constraints while minimizing bk. Increasing h (up to the point we would
violate the precision requirement) increases space-efficiency because larger h cov-

Quantiles and Equi-depth Histograms over Streams 57

ers more observations without increasing the memory footprint, bk. The largest h

that bounds the precision of the summary to be within ε, is h = 2εk.
Now that h can be computed as a function of k and ε, we can focus on choosing

the best values of b and k to minimize the space bk required. We first show that
if a pair b, k is space-efficient—meaning that no other pair b′, k′ could cover more
observations in the same space bk—then k = O(b/ε).

The number of observations covered by the MRL algorithm for a pair b, k is
kL(b,2εk). L(b,h) is symmetric in b and h (e.g., L(b,h) = L(h,b)). The sym-
metry of L implies that k ≥ b/(2ε) (else we could have used our space more ef-
ficiently by swapping b and 2εk (b′ = 2εk, k′ = b/2ε) yielding the same values of
L(b′,2εk′). b′k′ = bk implying that our space requirements were equivalent, but the
larger value of k′ would mean that we cover more observations (as long as ε < 0.5).
Consequently, we would never choose k < b/(2ε) if we were trying to minimize
space.)

On the other hand, if we choose k too large relative to b, we would again use
space inefficiently. Assume, for contradiction, that a space-efficient b, k existed,
such that k > 15b/ε. But, if so, we could more efficiently choose k′ = k/2 and
b′ = 2b, using the same space but covering more observations. b′ and k′ would cover
more observations because k/2

(2b+εk
εk

)
> k

(
b+2εk

2εk

)
, when k > 15b/ε. It follows

that if a pair b, k is space-efficient, then k is bounded by b/(2ε) ≤ k ≤ 15b/ε.
If k = O(b/ε), then we need only find the minimum b such that b

2ε

(2b−2
b−1

) ≈ n.

Roughly, b = O(log(2εn)), and k = O(1
2ε

log(2εn)), so bk = O((1/(2ε))×
log2(2εn)).

3.3 The GK Algorithm

The new MRL algorithm was designed to be the best possible algorithm within
the MRL framework. Nevertheless, it still suffers from some inefficiencies. For a
given memory requirement, bk, the precision is reduced (that is, ε is increased) by
three factors. First, each time COLLAPSE is called, combining the α buffers together
increases the gap between rmin and rmax of elements in that buffer by the sum
of the gaps between the individual rmin and rmax in all the buffers—because
algorithms do not maintain any information that can allow them to recover how the
deleted entries in each buffer may have been interleaved. Second, each COLLAPSE

invokes the prune operation, which increases ε by 1/(2k). Finally, as is true for
all algorithms in the MRL framework, MRL keeps no per-entry information about
rmin and rmax for individual entries. Rather, we must assume that every entry in
a buffer has the worst rmax− rmin.

We next describe an algorithm due to Greenwald and Khanna [10] that over-
comes some of these drawbacks by not using combine and prune. It yields an
ε-approximate quantile summary using only O((log εn)/ε) space.

58 M.B. Greenwald and S. Khanna

The GK Summary Data Structure

At any point in time n, GK maintains a summary data structure QGK(n) that consists
of an ordered sequence of tuples which correspond to a subset of the observations
seen thus far. For each observation v in QGK, we maintain implicit bounds on the
minimum and the maximum possible rank of the observation v among the first n

observations. Let rminGK(v) and rmaxGK(v) denote respectively the lower and
upper bounds on the rank of v among the observations seen so far. Specifically,
QGK consists of tuples t0, t1, . . . , ts−1 where each tuple ti = (vi, gi,�i) consists of
three components: (i) a value vi that corresponds to one of the elements in the data
sequence seen thus far, (ii) the value gi equals rminGK(vi) − rminGK(vi−1) (for
i = 0, gi = 0), and (iii) �i equals rmaxGK(vi)− rminGK(vi). Note that v0 ≤ v1 ≤
· · · ≤ vs−1. We ensure that, at all times, the maximum and the minimum values are
part of the summary. In other words, v0 and vs−1 always correspond to the minimum
and the maximum elements seen so far. It is easy to see that rminGK(vi)= ∑

j≤i gj

and rmaxGK(vi) = ∑
j≤i gj +�i . Thus gi +�i − 1 is an upper bound on the total

number of observations that may have fallen between vi−1 and vi . Finally, observe
that

∑
i gi equals n, the total number of observations seen so far.

Answering Quantile Queries

A summary of the above form can be used in a straightforward manner to provide
ε-approximate answers to quantile queries. Proposition 1 forms the basis of our
approach, and the following is an immediate corollary.

Corollary 3 If at any time n, the summary QGK(n) satisfies the property that
maxi (gi + �i) ≤ 2εn, then we can answer any φ-quantile query to within an εn

precision.

Overview

At a high level, our algorithm for maintaining the quantile summary proceeds as
follows. Whenever the algorithm sees a new observation, it inserts in the summary
a tuple corresponding to this observation. Periodically, the algorithm performs a
sweep over the summary to “merge” some of the tuples into their neighbors so as to
free up space. The heart of the algorithm is in this merge phase where we maintain
several conditions that allow us to bound the space used by QGK at any time. We next
develop some basic concepts that are needed to precisely describe these conditions.

Quantiles and Equi-depth Histograms over Streams 59

Tuple Capacities

When a new tuple ti is added to the summary at time n, we set its gi value to be 1
and its �i value2 to be
2εn� − 1. All summary operations maintain the property
that the �i value never changes. By Corollary 3, it suffices to ensure that at all
times greater than 1/2ε, maxi (gi + �i) ≤ 2εn. (For times earlier than 1/2ε the
summary preserves every observation, the error is always zero, and �i = 0 for all i.)
Motivated by this consideration, we define the capacity of a tuple ti at any time n′,
denoted by cap(ti , n

′), to be
2εn′� − �i . Thus the capacity of a tuple increases
over time. An individual tuple is said to be full at time n′ if gi +�i =
2εn′�. The
capacity of an individual tuple is, therefore, the maximum number of observations
that can be counted by gi before the tuple becomes full.

Bands

Tuples with higher capacity correspond to values whose ranks are known with
higher precision. Intuitively, high capacity tuples are more valuable than lower ca-
pacity tuples and our merge rules will favor elimination of lower capacity tuples
by merging them into larger capacity ones. However, we will find it convenient
to not differentiate among tuples whose capacities are within a small multiplica-
tive factor of one another. We thus group tuples into geometric classes referred
to as bands where, roughly speaking, a tuple ti is in a band α if cap(ti , n) ≈ 2α .
Since capacities increase over time, the band of a tuple increases over time. We
will find it convenient to ensure the following stability property in assigning bands:
if at some time n we have band(ti , n) = band(tj , n), then for all times n′ ≥ n, we
have band(ti , n

′) = band(tj , n
′). We thus use a slightly more technical definition of

bands. Let p =
2εn� and α̂ = �log2 p�. Then we say band(ti , n) is α if

2α−1 + (
p mod 2α−1) ≤ cap(ti , n) < 2α + (

p mod 2α
)
.

If the � value of tuple ti is p, then we say band(ti , n) is 0. It follows from the
definition of band that at all times the first 1/(2ε) observations, with � = 0, are
alone in bandα̂ .

We will denote by band(ti , n) the band of tuple ti at time n, and by bandα(n) all
tuples (or equivalently, the capacities associated with these tuples) that have a band
value of α. The terms (p mod 2α−1) and (p mod 2α) above ensure the following
stability property: once a pair of tuples is in the same band, they stay together from
there on even as band boundaries are modified. At the same time, these terms do not
change the underlying geometric grouping in any fundamental manner; bandα(n)

contains either 2α−1 or 2α distinct capacity values.

2In practice, we set � more tightly by inserting (v,1, gi + �i − 1) as the tuple immediately pre-
ceding ti+1. It is easy to see that if Corollary 3 is satisfied before insertion, it remains true after
insertion, and that
2εn�−1 is an upper bound on the value of �i . For the purpose of our analysis,
we always assume the worst-case insertion value of �i =
2εn� − 1.

60 M.B. Greenwald and S. Khanna

Proposition 3

1. At any point in time n and for any α, α̂ > α ≥ 1, the number of distinct capacity
values that can belong to bandα(n) is either 2α−1 or 2α .

2. If at some time n, any two tuples ti , tj are in the same band, then for all times
n′ ≥ n, this holds true.

3. At any point in time, n, and for any α, α̂ ≥ α ≥ 0, the number of distinct capacity
values that can belong to bandα(n) is ≤ 2α .

Proof To see claim 1, if p mod 2α < 2α−1, then p mod 2α = p mod 2α−1, and
bandα(n) contains 2α − 2α−1 = 2α−1 distinct values of capacity. If p mod 2α ≥
2α−1, then p mod 2α = 2α−1 + (p mod 2α−1), and bandα(n) contains 2α distinct
capacity values.

To see claim 2, consider any bandα(n). Each time p increases by 1, if p mod
2α /∈ {0,2α−1}, then both p mod 2α−1 and p mod 2α increase by 1 and thus the
range of bandα(n) shifts by 1. At the same time, capacity of each tuple changes by
1 and thus the set of tuples that belong to bandα(n) stays unchanged.

Now suppose when p increases by 1, p mod 2α = 2α−1. It is easy to verify that
for any value of p, there is at most one value of α that satisfies the equation p mod
2α = 2α−1. Then the left boundary of the band α decreases by 2α−1 − 1 while
the right boundary increases by 1. The resulting band now captures all tuples that
belonged to old bands (α − 1) and α. Also, for all bands β where 1 ≤ β < α (and
hence p mod 2β = 0), the range of the band changes from [2β − 1,2β+1 − 1) to
[2β−1,2β). Thus all tuples in the old band β now belong together to the new band
β + 1. Finally, all bands γ > α satisfy p mod 2γ /∈ {0,2γ−1}, and hence continue to
capture the same set of tuples as observed above.

Thus once a pair of tuples is present in the same band, their bands never diverge
again.

Claim 3 holds for both band0 and bandα̂—they both contain precisely one
distinct capacity value. For all other values of α, claim 3 follows directly from
claim 1. �

A Tree Representation

In order to decide on how tuples are merged in order to compress the summary,
we create an ordered tree structure, referred to as the quantile tree, whose nodes
correspond to the tuples in the summary. The tree structure creates a hierarchy based
on tuple capacities and proximity. Specifically, the quantile tree T(n) at time n is
created from the summary QGK(n) = 〈t0, t1, . . . , ts−1〉 as follows. T(n) contains a
node Vi for each ti along with a special root node R. The parent of a node Vi is the
node Vj such that j is the least index greater than i with band(tj , n) > band(ti , n).
If no such index exists, then the node R is set to be the parent. The children of each
node are ordered as they appear in the summary. All children (and all descendants)
of a given node Vi correspond to tuples that have capacities smaller than that of

Quantiles and Equi-depth Histograms over Streams 61

ε = 0.001,N = 7000, 2εN = 14

�-range Capacity Band
0 14 3
1–8 6–13 2
9–12 2–5 1
13 1 0

Fig. 4 (a) Tuple representation. (b) Tuples labeled only with band numbers. (c) Corresponding
tree representation

tuple ti . The relationship between QGK(n) and T(n) is represented pictorially in
Fig. 4. We next highlight two useful properties of T(n).

Proposition 4 Each node Vi in a quantile tree T(n) satisfies the following two
properties:

1. The children of each node Vi in T(n) are always arranged in non-increasing
order of band in QGK(n).

2. The tuples corresponding to Vi and the set of all descendants of Vi in T(n) form
a contiguous segment in QGK(n).

Proof To see property 1, consider any two children Vj and Vj ′ of Vi with j < j ′.
Then if band(tj ′ , n) > band(tj , n), Vj ′ and not Vi would be the parent of node Vj

in T(n).
We establish property 2 by contradiction. Consider a node Vi that violates the

property. Let k be the largest integer such that Vk is a descendant of Vi , and let j

be the largest index less than k such that Vj is a descendant of Vi while Vj+1 is

62 M.B. Greenwald and S. Khanna

not. Also, let j < � < k be the largest integer such that V� is not a descendant of Vi .
Clearly, Vi must be the parent of Vk , and some node Vx where x > � must be the
parent of Vj .

If band(t�, n) < band(tk, n), then one of the nodes V�+1, . . . , Vk must be the par-
ent of V�—a contradiction since each of these nodes is a descendant of Vi by our
choice of �. Otherwise, we have band(t�, n) ≥ band(tk, n). Now if band(t�, n) ≥
band(ti , n), then Vj ’s parent is some node Vx′ with x′ ≤ �. So it must be that
band(tk, n) ≤ band(t�, n) < band(ti , n). Consider the node Vy that is the parent
of V� in T(n). By our choice of V�, we have k < y < i. Since band(Vy,n) >

band(V�, n), it must be that Vy is the parent of Vk and not Vi . A contradiction! �

Operations

We now describe the various operations that we perform on our summary data struc-
ture. We start with a description of external operations:

External Operations

QUANTILE(φ) To compute an ε-approximate φ-quantile from the summary
QGK(n) after n observations, compute the rank, r = �φ(n − 1)�. Find i such that
both r − rminGK(vi) ≤ εn and rmaxGK(vi)− r ≤ εn and return vi .

INSERT(v) Find the smallest i, such that vi−1 ≤ v < vi , and insert the tuple
(v,1,
2εn� − 1), between ti−1 and ti . Increment s. As a special case, if v is the
new minimum or the maximum observation seen, then insert (v,1,0).

INSERT(v) maintains correct relationships between gi , �i , rminGK(vi) and
rmaxGK(vi). Consider that if v is inserted before vi , the value of rminGK(v) may
be as small as rminGK(vi−1)+ 1, and hence gi = 1. Similarly, rmaxGK(v) may be
as large as the current rmaxGK(vi), which in turn is bounded to be within
2εn� of
rminGK(vi−1). Note that rminGK(vi) and rmaxGK(vi) increase by 1 after insertion.

Internal Operations

COMPRESS() The operation COMPRESS repeatedly attempts to find a suitable
segment of adjacent tuples in the summary QGK(n) and merges them into the
neighboring tuple (i.e., the tuple that succeeds them in the summary). We first
describe how the summary is updated when for any 1 < x ≤ y, tuples tx, . . . , ty are

merged together into the neighboring tuple ty+1. We replace gy+1 by
∑y+1

j=x gj and
�y+1 remains unchanged. It is easy to verify that this operation correctly maintains
rminGK(ty+1) and rmaxGK(ty+1) values for all the tuples in the summary. Dele-
tion of tx, . . . , ty does not alter the rminGK() and rmaxGK() values for any of the
remaining tuples and the merge operation above precisely maintains this property.

Quantiles and Equi-depth Histograms over Streams 63

COMPRESS()
for i from s − 2 to 0 do

if ((band(ti , n) ≤ band(ti+1, n)) &&
(g∗

i + gi+1 +�i+1 < 2εn)) then
gi+1 = gi+1 + g∗

i ;
Remove ti and all its descendants;

end if
end for

end COMPRESS

Fig. 5 Pseudocode for COMPRESS

Initial State
QGK ←∅; s = 0; n= 0.

Algorithm
To add the (n+ 1)st observation, v, to summary QGK(n):

if (n≡ 0 mod 1
2ε

) then
COMPRESS();

end if
INSERT(v);
n = n+ 1;

Fig. 6 Pseudocode for the algorithm

COMPRESS chooses the segments to be merged in a specific manner, namely,
it considers only those segments that correspond to a tuple ti and all its descen-
dants in the tree T(n). By Lemma 4, we know that ti and all its descendants cor-
responds to a segment of adjacent tuples ti−a, ti−a+1, . . . , ti in QGK(n). Let g∗

i

denote the sum of g-values of the tuple ti and all its decendants in T(n), that is,
g∗

i = ∑i
j=i−a gj . To maintain the ε-approximate guarantee for the summary, we

ensure that a merge is done only if g∗
i + gi+1 +�i+1 ≤ 2εn. Finally, COMPRESS

ensures that we always merge into tuples of comparable or better capacity. The
operation COMPRESS terminates if and only if there are no segments that satisfy
the conditions above. Figure 5 describes an efficient implementation of the COM-
PRESS operation, and Fig. 6 depicts the pseudocode for the overall algorithm.

Note that since COMPRESS never alters the � value of surviving tuples, it fol-
lows that �i of any quantile entry remains unchanged once it has been inserted.

COMPRESS inspects tuples from right (highest index) to left. Therefore, it first
combines children (and their entire subtree of descendants) into parents. It combines
siblings only when no more children can be combined into the parent.

Analysis

The INSERT as well as COMPRESS operations always ensure that gi +�i ≤ 2εn.
As n always increases, it is easy to see that the data structure above maintains an
ε-approximate quantile summary at each point in time. We will now establish that

64 M.B. Greenwald and S. Khanna

the total number of tuples in the summary QGK after n observations have been seen
is bounded by (11/2ε) log(2εn).

We start by defining a notion of coverage. We say that a tuple t in the quantile
summary QGK covers an observation v at any time n if either the tuple for v has been
directly merged into ti or a tuple t that covered v has been merged into ti . Moreover,
a tuple always covers itself. It is easy to see that the total number of observations
covered by ti is exactly given by gi = gi(n). The lemmas below highlight some
useful properties concerning coverage of observations by various tuples.

Lemma 5 At no point in time, a tuple t with a band value of α covers a tuple t ′
which if it were alive, would have a band value strictly greater than α.

Proof Note that the band of a tuple at any time n is completely determined by its �

value. Since the � value never changes once a tuple is created, the notion of band
value of a tuple is well-defined even if the tuple no longer exists in the summary.

Now suppose at some time n, the event described in the lemma occurs. The
COMPRESS subroutine never merges a tuple ti into an adjacent tuple ti+1 if the
band of ti is greater than the band of ti+1. Thus the only way in which this event can
occur is if it at some earlier time m < n, we had band(ti ,m) ≤ band(ti+1,m), and at
the current time n, we have band(ti , n) > band(ti+1, n). Consider first the case when
band(ti ,m) = band(ti+1,m). By Proposition 3, it cannot be the case that at some
later time n, band(ti , n) �= band(ti+1, n). Now consider the case when band(ti ,m) <

band(ti+1,m). Then �i > �i+1, and hence band(ti , n)≤ band(ti+1, n) for all n. �

Lemma 6 At any point in time n, and for any integer α, the total number of obser-
vations covered cumulatively by all tuples with band values in [0..α] is bounded by
2α/ε.

Proof By Proposition 3, each bandβ(n) contains at most 2β distinct values of �.
There are no more than 1/2ε observations with any given �, so at most 2β/2ε

observations were inserted with � ∈ bandβ . By Lemma 5, no observations from
bands > α will be covered by a node from α. Therefore, the nodes in question can
cover, at most, the total number of observations from all bands ≤ α. Summing over
all β ≤ α yields an upper bound of 2α+1/2ε = 2α/ε. �

The next lemma shows that for any given band value α, only a small number of
nodes can have a child with that band value.

Lemma 7 At any time n and for any given α, there are at most 3/2ε nodes in
T(n) that have a child with band value of α. In other words, there are at most 3/2ε

parents of nodes from bandα(n).

Proof Let mmin and mmax respectively denote the earliest and the latest times at
which an observation in bandα(n) could be seen. It is easy to verify that

mmin = 2εn− 2α − (2εn mod 2α)

2ε
and

Quantiles and Equi-depth Histograms over Streams 65

mmax = 2εn− 2α−1 − (2εn mod 2α−1)

2ε
.

Thus, any parent of a node in bandα(n) must have �i < 2εmmin.
Fix a parent node Vi with at least one child in bandα(n) and let Vj be the right-

most such child. Denote by mj the time at which the observation corresponding to
Vj was seen.

We will show that at least a (2ε/3)-fraction of all observations that arrived after
time mmin can be uniquely mapped to the pair (Vi,Vj). This in turn implies that
no more than 3/2ε such Vi ’s can exist, thus establishing the lemma. The main idea
underlying our proof is that the fact that COMPRESS did not merge Vj into Vi

implies there must be a large number of observations that can be associated with the
parent-child pair (Vi,Vj).

We first claim that g∗
j (n) + ∑i−1

k=j+1 gk(n) ≥ g∗
i−1(n). If j = i − 1, it is trivially

true. Otherwise, the tuple ti−1 is distinct from tj , and since Vj is a child of Vi

(and not Vi−1), we know that band(ti−1, n) ≤ band(tj , n). Thus no tuple among
t1, t2, . . . , tj could be a descendant of ti−1. Therefore,

∑i−1
k=j+1 gk(n) ≥ g∗

i−1(n) and
the claim follows.

Now since COMPRESS did not merge Vj into Vi , it must be the case that
g∗

i−1(n)+ gi(n)+�i > 2εn. Using the claim above, we can conclude that g∗
j (n)+

∑i−1
k=j+1 gk(n)+gi(n)+�i > 2εn. Also, at time mj , we had gi(mj)+�i < 2εmj .

Since mj is at most mmax, it must be that

g∗
j (n)+

i−1∑

k=j+1

gk(n)+ (
gi(n)− gi(mj)

)
> 2ε(n−mmax).

Finally, observe that for any other such parent–child pair, Vi′ and Vj ′ , the obser-
vations counted above by (Vj ,Vi) and (Vj ′ ,Vi′) are distinct. Since there are at most
n−mmin total observations that arrived after mmin, we can bound the total number
of such pairs by

n−mmin

2ε(n−mmax)

which can be verified to be at most 3/2ε. �

We say that adjacent tuples (ti−1, ti) constitute a full pair of tuples at time n′, if
gi−1 + gi +�i >
2εn′�. Given such a full pair of tuples, we say that the tuple ti−1
is a left partner and ti is a right partner in this full pair.

Lemma 8 At any time n and for any given α, there are at most 4/ε tuples from
bandα(n) that are right partners in a full pair of tuples.

Proof Let X be the set of tuples in bandα(n) that participate as a right partner in
some full pair. We first consider the case when tuples in X form a single contigu-
ous segment in QGK(n). Let ti , . . . , ti+p−1 be a maximal contiguous segment of

66 M.B. Greenwald and S. Khanna

bandα(n) tuples in QGK(n). Since these tuples are alive in QGK(n), it must be the
case that

g∗
j−1 + gj +�j > 2εn i ≤ j < i + p.

Adding over all j , we get

i+p−1∑

j=i

g∗
j−1 +

i+p−1∑

j=i

gj +
i+p−1∑

j=i

�j > 2pεn.

In particular, we can conclude that

2
i+p−1∑

j=i−1

g∗
j +

i+p−1∑

j=i

�j > 2pεn.

The first term in the LHS of the above inequality counts twice the number of
observations covered by nodes in bandα(n) or by one of its descendants in the
tree T(n). Using Lemma 6, this sum can be bounded by 2(2α/ε). The second term
can be bounded by p(2εn−2α−1) since the largest possible � value for a tuple with
a band value of α or less is (2εn− 2α−1). Substituting these bounds, we get

2α+1

ε
+ p

(
2εn− 2α−1) > 2pεn.

Simplifying above, we get p < 4/ε as claimed by the lemma. Finally, the same
argument applies when nodes in X induce multiple segments in QGK(n); we simply
consider the above summation over all such segments. �

Lemma 9 At any time n and for any given α, the maximum number of tuples possi-
ble from each bandα(n) is 11/2ε.

Proof By Lemma 8, we know that the number of bandα(n) nodes that are right
partners in some full pair can be bounded by 4/ε. Any other bandα(n) node either
does not participate in any full pair or occurs only as a left partner. We first claim that
each parent of a bandα(n) node can have at most one such node in bandα(n). To see
this, observe that if a pair of non-full adjacent tuples ti , ti+1, where ti+1 ∈ bandα(n),
is not merged then it must be because band(ti , n) is greater than α. But Proposition 4
tells us that this event can occur only once for any α, and therefore, Vi+1 must be the
unique bandα(n) child of its parent that does not participate in a full pair. It is also
easy to verify that for each parent node, at most one bandα(n) tuple can participate
only as a left partner in a full pair. Finally, observe that only one of the above two
events can occur for each parent node. By Lemma 7, there are at most 3/2ε parents
of such nodes, and thus the total number of bandα(n) nodes can be bounded by
11/2ε. �

Theorem 2 At any time n, the total number of tuples stored in QGK(n) is at most
(11/2ε) log(2εn).

Quantiles and Equi-depth Histograms over Streams 67

Proof There are at most 1 +
log 2εn� bands at time n. There can be at most 3/2ε

total tuples in QGK(n) from bands 0 and 1. For the remaining bands, Lemma 9
bounds the maximum number of tuples in each band. The result follows. �

4 Randomized Algorithms

We present here two distinct approaches for using randomization to reduce the space
needed. The first approach essentially samples the input elements, and presents the
sample as input to a deterministic algorithm. The second approach uses hashing to
randomly cluster the input elements, thus reducing the number of distinct input el-
ements seen by the quantile summary. The sampling-based approaches presented
here work only for the cash-register model. The hashing-based approach, on the
other hand, works in the more general turnstile model that allows for deletion of el-
ements. However, this latter approach requires that we know the number of elements
in the input sequence in advance.

4.1 Sampling-Based Approaches

Sampling of elements offers a simple and effective way to reduce the space needed
to create quantile summaries. In particular, the space needed can be made indepen-
dent of the size of the data stream, if we are willing to settle for a probabilistic
guarantee on the precision of the summary generated. The idea is to draw a random
sample from the input, and run a deterministic algorithm on the sample to gener-
ate the quantile summary. The size of the sample depends only on the probabilistic
guarantee and the desired precision for the summary. The following lemma from
Manku et al. [14] serves as a basis for this approach.

Lemma 10 ([14]) Let ε, δ ∈ (0,1), and let S be a set of n elements. There exists an
integer p = Θ(1

ε2 log(1
εδ

)) such that if we sample p elements from S uniformly at
random, and create an ε/2-approximate quantile summary Q on the sample, then
Q is an ε-approximate summary for S with probability at least 1 − δ.

If the length of the input sequence is known in advance, we can easily draw a
sample of size p as required above, and maintain an ε/2-approximate quantile sum-
mary Q on the sample. Total space used by this approach is O(1

ε
log(εp)), giving

us the following theorem.

Theorem 3 For any ε, δ ∈ (0,1), we can compute with probability at least 1− δ, an
ε-approximate quantile summary for a sequence of n elements using O(1

ε
log(1

ε
)+

1
ε

log log(1
εδ

)) space, assuming the sequence size n is known in advance.

68 M.B. Greenwald and S. Khanna

When the length of the input sequence is not known a priori, one approach is to
use a technique called reservoir sampling (discussed in detail in another chapter in
this handbook) that maintains a uniform sample at all times. However, the elements
in the sample are constantly being replaced as the length of the input sequence
increases, and thus the quantile summary cannot be constructed incrementally. The
sample must be stored explicitly and the observations can be fed to the deterministic
algorithm only when we stop, and are certain the elements in the sample will not be
replaced. Since the sample size dominates the space needed in this case, we get the
following theorem.

Theorem 4 For any ε, δ ∈ (0,1), we can compute with probability at least 1− δ, an
ε-approximate quantile summary for a sequence of n elements using O(1

ε2 log(1
εδ

))

space.

Manku et al. [15] used a non-uniform sampling approach to get around the large
space requirements imposed by the reservoir sampling. We state their main result
below and refer the reader to the paper for more details.

Theorem 5 ([15]) For any ε, δ ∈ (0,1), we can compute with probability at least
1 − δ, an ε-approximate quantile summary for a sequence of n elements using
O(1

ε
log2(1

ε
)+ 1

ε
log2 log(1

εδ
)) space.

4.2 The Count-Min Algorithm

The Count-Min (CM) algorithm [4] is a randomized approach for maintaining
quantiles when the universe size is known in advance. Suppose all elements are
drawn from a universe U = {1,2, . . . ,M} of size M . The CM algorithm uses
O(1

ε
(log2 M)(log(

logM
εδ

))) space to answer any quantile query with ε-accuracy with
probability at least 1 − δ. This is in contrast to the O(1

ε
log(εn)) space used by the

deterministic GK algorithm. The two space bounds are incomparable in the sense
that their relative quality depends on the relation between n and M . In addition
to being quite simple, the main strength of the CM algorithm is that it works in the
more general turnstile model, provided all element counts are non-negative through-
out its execution. We start with a description of the basic data structure maintained
by the CM algorithm and then describe how the data structure is adapted to handle
quantile queries. A key concept underlying the CM data structure is that of universal
hash families.

Universal Hash Families

For any positive integer m, a family H= {h1, . . . , hk} of hash functions where each
hi :U →[1..m] is a universal hash family if for any two distinct elements x, y ∈U ,

Quantiles and Equi-depth Histograms over Streams 69

we have

Prhi∈H
[
hi(x) = hi(y)

] ≤ 1/m.

The set of all possible hash functions h : U →[1..m] is easily seen to be a hash fam-
ily, but the number of hash functions in this family is exponentially large. A beautiful
result of Carter and Wegman [3] shows that there exist universal hash families with
only O(M2) hash functions that can be constructed in polynomial-time. Moreover,
any function in the family can be described completely using O(logM) bits.

We are now ready to describe the basic CM data structure.

Basic CM Data Structure

An (ε0, δ0) CM data structure consists of a p × q table T where p = �ln(1/δ0)�
and q = �e/ε0�, and a universal hash family H such that each h ∈H is a function
h : U → [1..q]. We associate with each row i ∈ [1..p] a hash function hi chosen
uniformly at random from the hash family H. The table is initialized to all zeroes at
the beginning. Whenever an update (x, cx) arrives for some x ∈ U , we modify for
each 1 ≤ i ≤ p:

T
[
i, hi(x)

] = T
[
i, hi(x)

]+ cx.

At any point in time t , let C(t) = (C1, . . . ,CM) where Cx denotes the sum
{∑ cx | (x, cx) arrived before time t}. When the time t is clear from context, we
will simply use C.

Given a query for Cx , the CM data structure outputs the estimate Ĉx =
min1≤i≤p T [i, hi(x)]. The lemma below gives useful properties of the estimate
Ĉ(x).

Lemma 11 Let x ∈ U be any fixed element. Then at any time t , with probability at
least 1 − δ0:

Cx ≤ Ĉx ≤ Cx + ε0‖C‖1.

Proof Recall that by assumption, Cy ≥ 0 for all y ∈ U at all times t . It is then easy
to see that Ĉx ≥ Cx at all times since each update (x, cx) leads to increment of
T [i, hi(x)] by cx for each 1 ≤ i ≤ p. In addition, any element y such that hi(y) =
hi(x) may contribute to T [i, hi(x)] as well but this contribution is guaranteed to be
non-negative by our assumption.

We now bound the probability that Ĉx > Cx + ε0‖C‖1 at any time t . Fix an
element x ∈ U and an i ∈ [1..p]. We start by analyzing the probability of the event
that T [i, hi(x)] > Cx + ε0‖C‖1. Let Zi(x) be a random variable that is defined to
be |{∑y∈U\{x} Cy | hi(y) = hi(x)}|. Since hi is drawn uniformly at random from a
universal hash family, we have

E
[
Zi(x)

] =
∑

y∈U

Pr
[
hi(y) = hi(x)

]
Cy ≤

∑
y∈U\{x} Cy

q
≤ ε0‖C‖1

e
.

70 M.B. Greenwald and S. Khanna

Then by Markov’s inequality, we have that

Pr
[
T

[
i, hi(x)

]
> Cx + ε0‖C‖1

] ≤ Pr
[
T

[
i, hi(x)

]
> ε0‖C‖1

] ≤ 1

e
.

Thus

Pr
[

min
1≤i≤p

T
[
i, hi(x)

]]
> Cx + ε0‖C‖1 ≤

(
1

e

)ln(1/δ0)

≤ δ0. �

CM Data Structure for Quantile Queries

In order to support quantile queries, we need to modify the basic CM data structure
to support range queries. A range query R[�, r] specifies two elements �, r ∈ U and
asks for

∑
�≤x≤r Cx . Suppose we are given a data structure that can answer with

probability at least 1 − δ every range query to within an additive error of at most
ε‖C‖1. Then this data structure can be used to answer any φ-quantile query with
ε-accuracy with probability at least 1− δ. The idea is to perform a binary search for
the smallest element r ∈ U such that R̂[1, r] ≥ φ‖C‖. We output the element r as
the φ-quantile. Clearly, it is an ε-accurate φ-quantile with probability at least 1− δ.

We now describe how the basic CM data structure can be modified to support
range queries. For clarity of exposition, we will assume without any loss of gen-
erality that M = 2u for some integer u. We will define a collection of CM data
structures, say, CM0,CM1, . . . ,CMu such that CMi can answer any range query of
the form R[j2i + 1, (j + 1)2i] with an additive error of at most ε‖C‖1

(u+1)
. Then to an-

swer a range query R[1, r] for any r ∈ [1..M], we consider the binary representation
of r . Let i1 > i2 > · · ·> ib denote the bit positions with a 1 in the representation. In
response to the query R[1, r], we return

R̂[1, r] = R̂
[
1,2i1

]+ R̂
[
2i1 + 1,2i1 + 2i2

]+ · · ·
+ R̂

[
2i1 + · · · + 2ib−1 + 1,2i1 + · · · + 2ib−1 + 2ib

]

where R̂[2i1 + · · · + 2ij−1 + 1,2i1 + · · · + 2ij−1 + 2ij] is the value returned by CMij

in response to the query R[2i1 + · · · + 2ij−1 + 1,2i1 + · · · + 2ij−1 + 2ij]. Since each
term in the RHS has an additive error of at most ε‖C‖1

(u+1)
, we know that

R[1, r] ≤ R̂[1, r] ≤ R[1, r] + ε‖C‖1.

The Data Structure CMi

It now remains to describe the data structure CMi for 0 ≤ i ≤ u. Fix an i ∈ [0..u],
and let ui = u − i. Define Ui = {xi,1, . . . , xi,2ui } to be the universe underlying the
data structure CMi . The element xi,j ∈ Ui serves as the unique representative for

Quantiles and Equi-depth Histograms over Streams 71

all elements in U that lie in the range [j2i + 1, (j + 1)2i]. Thus each element in U

is covered by a unique element in Ui . The data structure CMi is an (ε0, δ0) CM data
structure over Ui where ε0 = ε

(u+1)
and δ0 = δ

(u+1)
. Whenever an update (x, cx)

arrives for x ∈ Ui , we simply add cx to the unique representative xi,j ∈ Ui that
covers x.

The following is an immediate corollary of Lemma 11.

Corollary 4 Let j ∈ [1..2u−i) be a fixed integer. The data structure CMi can be
used to answer the query R[j2i + 1, (j + 1)2i] within an additive error of ε0‖C‖1
with probability at least 1 − δ0.

To answer a range query R[1..r], we aggregate answers from up to (u + 1)

queries (to the data structures CM0, CM1, . . . , CMu), each with an additive error
of ε0‖C‖1 with probability at least 1 − δ0. Using union bounds, we can thus con-
clude that with probability at least 1 − (u+ 1)δ0 = 1 − δ, the total error is bounded
by (u+ 1)ε0‖C‖1 = ε‖C‖1.

Application to Quantile Queries

In order to answer every φ-quantile query to within ε-accuracy, it suffices to
be able to answer φ-quantile queries for φ-values restricted to be in the set
{ε/2, ε,3ε/2, . . . } with ε/2-accuracy. Given any arbitrary φ-quantile query, we can
answer it by querying for a φ′-quantile and returning the answer, where

φ′ =
⌈

φ

(ε/2)

⌉
(ε/2).

It is easy to see that any (ε/2)-accurate answer to the φ′-quantile is an ε-accurate
answer to the φ-quantile query.

In order to answer every quantile query to within an additive error of ε‖C‖1 with
probability at least 1 − δ, each CMi data structure is created with suitably chosen
parameters ε0 and δ0. Since any single range query requires aggregating together at
most (u+ 1) answers, and there are 2/ε quantile queries overall, it suffices to set

ε0 = ε

(u+ 1)
and δ0 = δ

(u+ 1)
· 2

ε
.

The space used by each CMi data structure for this choice of parameters
is O(1

ε
(logM)(log(u

εδ
))). Hence the overall space used by this approach is

O(1
ε
(log2 M)(log(

logM
εδ

))).
The CM algorithm strongly utilizes the knowledge of the universe size. In ab-

sence of deletions, stronger space bounds can be obtained by exploiting the knowl-
edge of the universe size. For instance, the q-digest summary of Shrivastava et
al. [18] described in Sect. 5.3 is an ε-approximate quantile summary that uses only
O(1

ε
logM) space. Moreover, the precision guarantee of a q-digest is deterministic.

72 M.B. Greenwald and S. Khanna

However, the strength of the CM algorithm is in its ability to handle deletions. To
see another interesting example of an algorithm that uses randomization to handle
deletions, the reader is referred to the RSS algorithm [8, 9].

5 Other Models

So far we have considered deterministic algorithms with absolute guarantees and
randomized algorithms with probabilistic guarantees mainly in the setting of the
cash register model [7]. However, quantile computations can be considered under
different streaming models. We have seen in Sect. 4.2 that the cash register model
can be extended to the turnstile model [17], in which the stream can include both
insertions and deletions of observations. We can also consider settings in which the
complete dataset is accessible, at a cost, allowing us to perform multiple (expensive)
passes. Settings in which other features of this model have been varied have been
studied as well. For example, one may know the types of queries in advance [15],
or exploit prior knowledge of the precision and range of the data values [4, 8, 18].

While algorithms from two different settings cannot be directly compared, it is
still worth understanding how they may be related. In this section, we will briefly
consider a small sample of alternative models where the ideas presented in this
chapter are directly applicable—either used as black box components in other algo-
rithms, or adapted to a new setting with relatively minor modifications—and com-
pare the modified algorithms to other algorithms in the literature. In each setting,
we first briefly present an algorithm that follows naturally from the ideas presented
in this chapter, then present an algorithm from the literature specifically designed
for the new setting. Some of these models will be covered in more depth in later
chapters in this book.

5.1 Deletions

In many database applications, a summary is stored with large data sets. For queries
in which an approximate answer is sufficient, the query can be cheaply executed
over the summary rather than over the entire, large, dataset. In such cases, we need to
maintain the summary in the face of operations on the underlying data set. This set-
ting differs from our earlier model in an important way: both insertion and deletion
operations may be performed on the underlying set. We focus here on well-formed
inputs where each deletion corresponds uniquely to an earlier insertion. When dele-
tions are possible, the size of the dataset can grow and shrink. The parameter n can
no longer denote both the number of observations that have been seen so far and the
current time. In the turnstile model we will, instead, denote the current time by t and
let n = n(t) denote the current number of elements in the data set, and m = m(t)

will denote max1≤i≤t n(i).

Quantiles and Equi-depth Histograms over Streams 73

The difficulty in guaranteeing precise responses to quantile queries in the turn-
stile model lies in recovering information once it has been discarded from the sum-
mary. In particular, when there are only insertions, the error allowed in the ranks of
elements in the summary grows monotonically. But when deletions occur, we may
need to greatly refine the rank information for existing elements in the summary.
For instance, if we insert n elements in a set, then the allowed error in the rank of
any observation is εn. But now if we delete all but 1/ε of the observations, then
the ε-approximate property now requires us to know the rank and value of each
remaining element in the set exactly!

However, we can deal with similarly useful, but more tractable, problems by
investigating slightly more relaxed settings. Gibbons, Matias, and Poosala [5, 6]
were the first to present an algorithm to maintain a form of quantile summary in the
face of deletions in the case where multiple passes over the data set are possible,
although expensive. In situations where a second pass is impossible, we relax the
requirement that we return a value v that is (currently) in S. In this latter setting, we
can gain some further traction by weakening the guarantees we offer. Deterministic
algorithms can temper their precision guarantees as a function of the input pattern
(performing better on “easy” input patterns, and worse on “hard” patterns), and
randomized algorithms can offer probabilistic, rather than absolute, guarantees.

Deterministic Algorithms with Input Dependent Guarantees

We first extend the GK [10] algorithm in a natural way to support a DELETE(v)

operation. We will see that for certain input sequences we can maintain a guarantee
of ε-precision in our responses to quantile queries—even in the face of deletions.

DELETE(v) Find the smallest i, such that vi−1 ≤ v < vi . (Note that i may be
1 if the minimum element was already deleted.) To delete v we must update
rmaxGK(vj) and rminGK(vj) for all observations stored in the summary. For
all j > i, rminGK(vj) and rmaxGK(vj) are reduced by 1. Further, we know
that rmaxGK(vj−1) < rmaxGK(vj). If our estimate of rmaxGK((vj)) is reduced,
such that rmaxGK(vj−1) = rmaxGK(vj), then decrement rmaxGK(vj−1) by 1.
Deletion of an observation covered by vi is implemented by simply decrement-
ing gi . This decrements all rminGK(vj) and rmaxGK(vj), for j > i, as required.
The pseudocode in Fig. 7 that decrements �i−1 maintains the invariant that
rmaxGK(vj−1) < rmaxGK(vj). Finally, vi is removed from the summary if gi = 0
and i was not one of the extreme ranking elements (i = 0, or i = s − 1).

Because we do not delete vi until all observations covered by the tuple are also
deleted, it is no longer the case that all vi ∈ QGK are members of the underlying set.

At time t , a GK summary QGK(ε) will never delete a tuple if the resulting gap
would exceed 2εn(t). By Proposition 1, the precision of the resulting summary is
the maximum, over all i, of (rmaxQGK(ε)(vi+1) − rminQGK(ε)(vi))/(2n(t)). In
the simple setting without deletions, the actual precision of QGK(ε) is always ≤ ε.
Unfortunately, it is impossible to bound this precision in the face of arbitrary input in

74 M.B. Greenwald and S. Khanna

DELETE(v)

gi = gi − 1
if (gi = 0) and

((i �= s − 1) or (i �= 0)) then
Remove ti from Q

end if
for j = (i − 1) to 0

if (�j ≥ (gj+1 +�j+1))
then �j = �j − 1
else break

end if
end for

Fig. 7 Pseudocode for DELETE

the setting of the turnstile model. In particular, after deletions, QGK(ε′) may not have
precision ε′ in the turnstile model. However, in many cases, application-specific
behavior can allow us to bound the maximum rmaxGK(vi+1) − rminGK(vi) and
hence construct summaries with guaranteed ε precision.

Example: Bounded Deletions

Perhaps the simplest example of application-specific behavior is when we know, in
advance, some bound on the impact of deletions on the size of the data set. Let α < 1
denote a known fixed lower bound, such that for any time t , n(t) > αm(t). If QGK(ε′)
is an ε′-approximate quantile summary, then COMPRESS will never delete a tuple
if the resulting gap would exceed 2ε′n(t). Given that at all time t, n(t) ≤ m(t), we
know that for all tuples rmaxGK(vi+1)− rminGK(vi) ≤ 2ε′m(t), and the precision
at time t is then bounded above by ε′m(t)/n(t). n(t) > αm(t), and therefore the
precision ε′m(t)/n(t) ≤ ε′/α. Consequently, if we choose ε′ = αε, then a summary
QGK(ε′) has precision ε even after deletions. This loose specification is too broad
to derive specific bounds on the size of our data structures. We proceed now to a
concrete example in which analysis of the application-specific behavior allows us to
demonstrate stronger limits on the size and precision of the resulting summary.

Example: Session Data

The AT&T network monitors the distribution of the duration of active calls over
time [8] through the collection of Call Detail Records (CDRs). The start-time of
each call is inserted into the quantile summary when the call begins. When the call
ends it is no longer active and the start-time is deleted from the summary. At any
time there is one observation in the set for each active call, and the duration of the
call is simply the difference between the current time and the stored start time of

Quantiles and Equi-depth Histograms over Streams 75

the call. (The median duration is the current time minus the start time of the median
observation in the set.)

We first show that the size of the GK summary structure will be constant.
Session data arrives at the summary in order of start time. Consequently, new ob-

servations are monotonically increasing (although deletions may occur in arbitrary
order). Each new observation is a new maximum, and we know its rank exactly.

Proposition 5 If the input sequence is monotonically increasing, the data structure
QGK(ε) uses only O(1/ε) space.

Proof The exact rank of each newly arriving observation is always known. Hence,
the � value of each tuple in the summary is always 0. It then follows that all tuples
are siblings in the tree representation. Consequently, after we run COMPRESS, each
tuple except the leftmost tuple is a right partner of a full tuple pair, and gi−1 + gi +
�i > 2εn(t) in QGK(ε). Thus if there are (k + 1) tuples in QGK(ε), then summing
over the k full tuple pairs we get

∑k
i=1(gi−1 +gi +�i) ≥ k(2εn(t)). Since

∑
�i =

0 and
∑

gi ≤ n(t), we get 2n(t) ≥ k(2εn(t)), and k ≤ 1
ε

. Since we run COMPRESS
after 2/ε new observations are added, QGK(ε) contains O(1/ε) tuples at all times t ,
regardless of the size of n(t). �

Proposition 5 tells us only about the size of QGK. By Proposition 1, QGK will have
precision ε′ at time t if the difference in rank between any two consecutive stored
tuples, rmaxGK(vi+1)−rminGK(vi), is ≤ 2ε′n(t). In our example, the expected dif-
ference in rank follows from the observation that phone calls (for example, the trace
data from [8]) are typically modeled as having exponentially distributed lifetimes.

Proposition 6 For sessions with exponentially distributed lifetimes and monotoni-
cally increasing arrivals, for a given ε, the expected difference in rank between con-
secutive tuples in QGK(ε) at time t is ≤ 2εE(n(t)), where E(n(t)) is the expected
number of elements in S at time t .

Proof Fix any i. Let t ′ denote the most recent time at which COMPRESS
deleted any tuples that lay between vi and vi+1. Let �r denote the difference
(rmaxGK(vi+1) − rminGK(vi)) at time t ′. �r must have been ≤ 2εn(t ′). Let
d = d(t ′, t) denote the total number of deletions that occurred between times t ′
and t . Then n(t) ≥ n(t ′)− d .

The exponential distribution is “memoryless”—all calls are equally likely to ter-
minate within a given interval. Therefore, if the probability that a call terminates
within the interval [t ′, t] is p, then the expected value of the total number of dele-
tions, d , during [t ′, t] is pn(t ′). Similarly, the expected value of the number of
deletions falling between vi and vi+1 during [t ′, t] is p�r . At time t the expected
value of (rmaxGK(vi+1) − rminGK(vi)) is (1 − p)�r . The expected value of n(t)

is ≥ (1−p)n(t ′). Given that �r ≤ 2εn(t ′), we have (1−p)�r ≤ 2ε(1−p)n(t ′) ≤
2εn(t).

By Proposition 5, the size of QGK(ε) will be O(1/ε). �

76 M.B. Greenwald and S. Khanna

To be more concrete, in the CDR trace data described in [8], the RSS summary
has ε = 0.1 precision, and has a maximum memory footprint of 11K bytes. As-
suming that we store 12 bytes per tuple, the GK algorithm, in the same memory
footprint, should be able to store more than 900 tuples. We expect the typical gap be-
tween stored tuples to be commensurate with a precision of roughly 0.0011—about
100 times more accurate than the RSS summary. This demonstrates the potential
payoff of domain-specific analysis, but it is important to recall that this analysis
provides no guarantees in the general case.

Probabilistic Guarantees Across All Inputs

The GK algorithm above exploited structure that was specific to the given example.
However, more adversarial cases are easy to imagine. An adversary, for example,
can delete all observations except for those that lie between two consecutive tuples
in the summary. In such cases either there can be no precision guarantee (we will
not be able to return even a single observation from the data set) or else the original
“summary” must store every observation—providing no reduction in space. Thus,
when details of the application are not known, algorithms such as GK are unsatis-
factory. Even when the expected behavior of an application is known, there may be
a chance that the input sequence is unexpectedly adversarial.

Fortunately, there is a much better approach than aiming for absolute guarantees
in the face of deletions. Randomized algorithms that summarize the number of ob-
servations within a range of values (c.f. RSS [8] or CM [4]) can give probabilistic
guarantees on precision and upper bounds on space for any application, without re-
quiring case by case analysis. The Count-Min algorithm is described in Sect. 4.2.
Assuming that observations can take on any one of M values, then CM summarizes
a sample in space O(1

ε
(log2 M)(log(

logM
εδ

))). This summary is ε-approximate with
probability at least 1 − δ.

5.2 Sliding Window Model

In some applications, we need to compute order statistics over the W most recent
observations, rather than over the entire stream. When W is small enough to fit into
memory, it suffices to store the last W observations in a circular buffer and compute
the statistics exactly. However, when W is itself very large, then we must summarize
a sliding window of the most recent W elements of the stream. A sliding window is a
case where observations are being deleted in a systematic fashion based on the time
of arrival. The chief difficulty in such sliding window quantile summaries compared
to the summaries over entire streams is that, as the window slides, we need to remove
observations from the summary—as in the turnstile model. However, unlike the
strict turnstile model where the deletions are delivered to the summary from an
external source (and, we presume, are properly paired to an undeleted input), we do

Quantiles and Equi-depth Histograms over Streams 77

not have a complete ordered record of observations, and hence do not know what
value needs to be deleted at any given time. On the other hand, deletions in the
sliding window model are not arbitrarily distributed; they have a nice structure that
can be exploited.

Sliding windows may be either fixed or variable size. In a fixed sliding window
of size W , each newly arrived observation (after the first W arrivals) is paired with
a deletion of the oldest observation in the window. Thus, in the steady state, the
window always covers precisely W elements. Variable sized sliding windows de-
couple the arrivals from deletions—at any point in time either a new observation
arrives or the oldest observation is deleted. A long string of arrivals increases the
size of the window; a long string of deletions can reduce the size of the window.
(We may sometimes exploit an upper bound on the size of the variable window, if
such a bound is known in advance.)

Fixed Size Windows

We can implement a trivial fixed sliding window summary with precision ε by divid-
ing the input stream into blocks of εW/2 consecutive observations. We summarize
each block with an ε/2 precision quantile summary. The block summarizing the
most recent data is under construction. We add each new arrival to it until it con-
tains εW/2 observations, and is considered complete. Once the block is complete,
it is no longer modified.3 We store only the summaries of the last 2/ε blocks. When
a single observation in a block exits the window (it is “deleted”), we mark that
block expired, and do not include it in our combined summary. These block sum-
maries cover at most the last W , and at least the last W − εW/2, observations. By
Corollary 1, the combined summary has a precision of ε/2. If the most recent block
has only just been started, and covers a very few observations, then our combined
summary is missing up to εW/2 observations. In the worst case, all the missing ob-
servations have values that lie between our current estimate and the true φ quantile
of interest. Even so, they could increase the error in rank by at most εW/2, keeping
the total error below εW , ensuring that our combined sliding window summary has
precision ε. The summary for each individual block uses O(1

ε
log(ε2W)) space, and

the aggregate uses O(1
ε2 log(ε2W)) space.

Arasu and Manku [2] employ the same basic structure of maintaining a set of
summaries over fixed size windows in the input stream, but use a more sophisticated
approach improves upon the space bound achieved by the simple algorithm above.
Their algorithm suffers a blowup of only a factor of O(log(1/ε)) for maintaining a
summary over a window of size W , compared to a blowup of Ω(1/ε) in the simple
implementation. When ε is small (say 0.001), this improvement is significant.

Arasu and Manku use a data structure with L+ 1 levels where each level covers
the stream by blocks of geometrically increasing sizes. At each point in time, exactly

3Lin et al. [13] use a variant of this simple approach, but construct εW/4 size blocks, and call
prune on completed blocks.

78 M.B. Greenwald and S. Khanna

Fig. 8 Graphical representation of levels in Arasu–Manku algorithm

one block in each of the L+1 levels is under construction. Each block is constructed
using the GK algorithm until it is complete. It may seem that summarizing the entire
window in L + 1 different ways, with L + 1 sets of blocks, would increase the
required space, but, in fact, the total space requirement is reduced due to two basic
observations.

First, once a block is complete, we can call prune to reduce the required space
to O(1/ε). Second, for a given precision, larger blocks summarize the data stream
more efficiently than smaller blocks—each stored tuple covers more observations.
On the other hand, small blocks result in fewer lost observations when we discard
the oldest block. The Arasu–Manku algorithm summarizes the window by com-
bining non-overlapping blocks of different sizes. It summarizes most of the win-
dow, efficiently, using large blocks with fine precision (saving space due to the large
block size). We can summarize the tail end of the window using coarser precision
smaller blocks (saving space by the coarse precision), and bounding the number of
lost observations at the very end of the window to the size of the smallest block we
use.

Specifically, [2] divides the input stream into blocks in L + 1 different ways,
where L = log2 (4/ε). Each decomposition is called a level, and the levels are la-
beled 0 through L. As we go up each level the block size, denoted by N�, doubles

to 2�εW/4, and the precision, denoted by ε�, is halved to 2(L−�)ε
2(L+1)

. This structure is
graphically depicted in Fig. 8.

Proposition 7 The Arasu–Manku window algorithm can summarize a fixed window
of the W most recent observations, using at most L+1 non-overlapping blocks from
its summary structure.

Proof The most recent observations are covered by the level L block currently under
construction. For any 0 ≤ � ≤ L, let η� denote the number of observations that need
to be “covered” by blocks from level 0 through �. We start by defining ηL−1 to be

Quantiles and Equi-depth Histograms over Streams 79

the number of observations not covered by a level L block; clearly, ηL−1 < W . If
ηL−1 ≥ W/2, then we can include a level L − 1 block of size W/2 to cover W/2
additional observations, and set ηL−2 = ηL−1 − W/2 < W/2. Otherwise, ηL−2 =
ηL−1 < W/2. It is easy to see ηL−� < W2−�+1, and consequently at most one block
from each level will be used. There are L+ 1 levels. �

Lemma 12 The Arasu–Manku window algorithm implements an ε-approximate
quantile-summary of a fixed window of the W most recent observations.

Proof Let A denote the combined summary of non-overlapping blocks. From the
analysis in the proof of Lemma 1, the maximum gap between consecutive stored
observations in A is

∑L
�=0 îlNlε�, where î� is 1 if a block from level � is present

in A, and 0 if it is not. But

N�εl = 2lε

(
W

4

)
2L−� ε

2(L+ 1)
= ε

(
W

4

)
2L ε

2(L+ 1)
,

a value that is independent of l. Since 2L = 4/ε, this can be simplified to εW
2(L+1)

.

Consequently, the maximum gap is simply εW
2(L+1)

times the number of blocks used
in A. By Proposition 7, there are at most L+ 1 blocks in A.

Therefore, the maximum gap is at most (L+ 1) εW
2(L+1)

, or εW/2.
An upper bound on the number of unsummarized observations in the window is

just the smallest block size in the summary, namely N0 = εW/4. Combining this
with the precision of A allows us to answer order-statistic queries with precision
3ε/4 (which is less than ε). �

Lemma 13 The Arasu–Manku algorithm can answer quantile queries with ε pre-
cision over a fixed window of W elements in O(1

ε
log 1

ε
logW) space.

Proof There are at most 2L−� complete blocks at each level, and those are pruned
to O(1/ε�) space. There are L = O(log 1/ε) levels; the complete blocks therefore
use

L∑

�=1

(
2L−l

ε�

)
=

L∑

�=1

(
2L−�(2(2L+ 2))

ε2L−�

)
= 2L(2L+ 2)

ε
= O

(
L2

ε

)
.

So the aggregate space used by the completed blocks at all levels is O(1
ε

log2 1
ε
).

At each level �, there is also at most one block that is still under construction. At
its largest, just before it is completed, that block uses O(1

εl
log ε�N�) space in the

worst case. Expanding ε� (also, as noted above, ε�N� = εW
2(L+1)

) yields that the space

used by a level � block in construction is O(2�−L 2(L+1)
ε

log εW
2(L+1)

). Summing over
all levels � gives us a geometric series whose sum is

80 M.B. Greenwald and S. Khanna

O

(
2(L+ 1)

ε
log

εW

2(L+ 1)

)
= O

(
2(log 4

ε
+ 1)

ε
log

εW

2(L+ 1)

)

= O

(
1

ε
log

1

ε
logW

)
.

The combined space is just the sum of the completed blocks and the blocks un-
der construction, namely O(1

ε
log 1

ε
logW + 1

ε
log2 1

ε
), which can be simplified to

O(1
ε

log 1
ε

logW) since the case when W < 1
ε

can be trivially solved using O(1
ε
)

space. �

Variable Size Windows

Although the algorithms described above assume that W is fixed, they can be ex-
tended in a straightforward way to handle variable sized windows. At any point in
time we assume that the maximum window size is some W . If the actual window
size differs from W by more than a factor of 2, then we alter our assumed window
size to 2W or W/2, and update our data structures accordingly.

We first consider the case of a sliding window whose size has grown. We increase
our assumed window size to 2W . That this is generally possible follows from the
calculation of the maximum gap between the minimum and maximum rank of two
consecutive stored tuples in the combined summary. If we have an ε-approximate
summary of a window of size W , then the maximum such gap is of size 2εW . If
the window size is increased to 2W , then that data structure can answer queries to a
precision of ε/2.

In particular, for the trivial fixed window algorithm described earlier, as the win-
dow size grows, we do not alter the block size or the precision per block. We con-
tinue to add enough blocks of size εW/2 to summarize our entire window. When
the number of blocks increases to 4/ε (corresponding to a window size of 2W), we
simply merge every adjacent pair of blocks into a single block of size εW .

Extending the Arasu–Manku summary to accommodate a window that has grown
beyond W is just as easy. Recall that the number of levels, L, is a function of ε and
not W . So as W changes, the number of levels remain constant. However, a block
at level l is now twice the size as before. We already have blocks of the required
size of the new level l in the old level l + 1 summary. Fortunately, those blocks
are twice as precise as needed. To proceed with a new W of twice the size, then, we
simply discard the level 0 blocks, and rename each level l as level l−1. To construct
level L, the highest level, we simply duplicate the old level L. Although the nominal
size of those blocks were of size W , the expired block is of no consequence, and the
block that is under construction is truncated to the current window size—which is
guaranteed to be less than or equal to W − 1.

We now consider the case of a sliding window whose size has shrunk signifi-
cantly. It is easy to see that we can accommodate any size window smaller than
W by accepting a space blowup of at most a factor of O(logW). We can treat any

Quantiles and Equi-depth Histograms over Streams 81

fixed window summary as a black box, and simultaneously maintain summaries for
window sizes W,W/2,W/4, and so on. Each time the actual window size halves,
we can discard the summary over the largest window.

Lin et al. [13] consider another variant of the sliding window model. In their
“n of N” model, we once again summarize a fixed window consisting of the W lat-
est observations. However, a query for the φ-quantile can be qualified by any integer
w ≤ W such that the returned value must be the observation with rank wφ of the
most recent w observations. It should be clear that the variable window extension
to the Arasu–Manku algorithm must also be able to answer such queries with pre-
cision ε. If not, the algorithm would not be able to accurately answer subsequent
quantile queries after the window shrank by W −w consecutive deletions.

5.3 Distributed Quantile Summaries

The summary algorithms for streaming data described so far consider a setting in
which the data can be observed at a centralized location. In such a setting, the GK
algorithm is more space-efficient than algorithms in the combine and prune fam-
ily.

However, in some settings the input stream is not observable at a single location.
The aggregate quantile summary over a data set must then be computed by merging
summaries over each of the subsets comprising that total set. For example, it may be
desirable to split an input stream across different nodes in a large cluster, in order to
process the input stream in parallel. Alternatively, in sensor networks whose nodes
are organized into a tree, nodes may summarize the data in their subtree in order to
avoid the communication costs of sending individual sensor readings to the root. In
such cases, each site produces a summary of a subset of the stream and then passes
the summary to another location where it is merged with summaries of other subsets
until the entire stream is summarized. Algorithms that are built out of combine and
prune can be extended naturally to such settings.

Nodes in sensor networks are typically resource-scarce. In particular, they have
very limited memory and must conserve power. Summary algorithms over sensor
networks must therefore optimize transmission cost between nodes (communica-
tion costs are the dominant drain on power). Nodes in sensor networks typically
send their sensor readings up to the root through a tree-shaped topology. In order to
reduce the transmission cost, each node may aggregate the data from their children
and summarize it before passing it on. In this book, Chap. VI.1 (“Sensor Networks”,
by Madden) describes sensor networks in more detail. Section 1.3 of [11] discusses
the relation between streaming data and sensor networks. We briefly discuss here
two summary algorithms over sensor networks (more details are available in the
corresponding papers). Both Greenwald and Khanna [11] and Shrivastava et al. [18]
support efficient ε-approximate quantile queries over sensor networks. Both can be
characterized as applications of combine. One (see [11]) uses prune to manage
communication costs, while the other (see [18]) uses a variant of COMPRESS.

82 M.B. Greenwald and S. Khanna

A General Algorithm Using combine and prune

A simple algorithm to build quantile summaries over sensor networks collects the
summaries of all the children of a node, and applies combine to produce a sin-
gle summary that is sent to the parent. The operation prune is then applied to
reduce the size of the data transmitted up the tree. Unfortunately, each application
of prune to reduce the input to a buffer of size K can result in a loss of preci-
sion of up to 1/(2K). If the network topology is a tree of large depth, then either
the aggregate loss of precision is too high, or else K must be very large and little
reduction of communication costs can be achieved. Consequently, a slightly more
complex strategy is required.

The general approach of the algorithms in [11] is to decouple the combining tree
from the sensor network routing tree. The parent of a node in the combining tree
may not be the immediate parent in the routing tree—rather the parent may be any
ancestor at an arbitrary height up the tree. Physical nodes in the sensor network pass
all summaries up through their parents in the routing tree until they hit the node that
is considered the parent in the combining tree. The combining tree, and not the rout-
ing topology, controls the number of combine and prune operations executed by
the algorithm. Intuitively, the goal of this algorithm is to build the widest, shallow-
est, such tree subject to minimizing the worst case amount of data sent from a child
to its parent in the underlying physical topology. The paper shows that, regardless
of topology, an ε-approximate quantile summary can be constructed over a sensor
network with n nodes using a maximum per-node transmission cost of O(log2 n/ε).
Let h, the “height” of the sensor network, denote the number of hops from the root
of the network to the farthest leaf node. If h is known, then an embedding with a
maximum per-node transmission cost of O((logn log h

ε
)/ε) is achievable. Finally, if

h is known to be smaller than logn, then the maximum per-node transmission cost
can be bounded by O(h/ε).

Optimized Algorithm When the Range of Values Is Known

Shrivastava et al. [18] study a slightly different setting in which observations can
only take on integer values in the range [1..M], where M is known in advance.
Further, there is no requirement that the value v, returned by a quantile query, must
be an element of S. Their algorithm is therefore able to pursue a different strategy.
Rather than calling prune, which may lose precision on every call, it calls a variant
of COMPRESS, which reduces the size of the summary as much as it can, while still
preserving the precision. Thus their COMPRESS’ operation, which we will describe
shortly, can be performed after each call to combine, at each node in the network.

The basic strategy is to construct a summary Q, called a q-digest, that consists of
a sparse binary tree over the data range 1..M . Each node b in the tree, referred to as
a “bucket”, maintains a count b.g that represents observations that fell between the
minimum and maximum value of the bucket. Each bucket has two children, covering
the lower and upper halves of its range. To keep the summary small, COMPRESS’

Quantiles and Equi-depth Histograms over Streams 83

Fig. 9 An example q-digest, Q. Each non-empty bucket is labeled by g, the count of observations
within that bucket. Q has M = 16, n = 32, and ε = 0.25. It follows from these values that if the
aggregate count in two siblings and their parent is ≤ (32 × (0.25))/4 = 2, then COMPRESS’ will
delete the two children and merge them into their parent. If n were 48, then the allowed aggregate
count would be 3. In such a case, [1..4] could be merged into [1..8], and both [13..14] and [15..16]
could be merged together into [13..16]. [9..10] and [11..12] would be merged into [9..12]. This
would open up the subtree under [9..12]. After the next insertion (assuming it did not lie in the
range [9..12]), then the 2 observations in [9] would be moved up into [9..10], and both [11] and
[12] merged into [11..12]

moves observations in underpopulated buckets up the tree, to levels where larger
ranges can be covered less precisely by fewer buckets. Buckets with a count of 0 are
elided.

The combine operation when applied to a pair of such summaries simply sums
the counts in corresponding buckets. Insertion of a new sensor value v into a sum-
mary Q is implemented by combine(Q,Q′), where Q′ is a new summary consist-
ing of only the single bucket [v] with count = 1. COMPRESS’ is called after each
combine operation.

The precise behavior of COMPRESS’ is a depth-first tree-walk starting at the
leaves. It checks to see whether a bucket can be merged into its parent. When visiting
a bucket (other than the root, which has no sibling or parent), it sums up the count of
observations in the bucket, its sibling bucket, and its parent’s bucket. If the bucket
has a sum ≤
 εn

logM
�, then COMPRESS’ deletes the bucket, and adds the count to

its parent.

Proposition 8 The maximum count in any non-leaf node in Q is εn
logM

.

Proof Non-leaf nodes only cover new observations by either COMPRESS’ deleting
their children, or by combine taking two q-digests and merging two correspond-
ing buckets. The first case trivially maintains the bound because COMPRESS’ will
never delete a pair of children if the sum of the children and their parent exceeds

εn
logM

. In the second case, when combine combines two q-digests containing n1
and n2 observations, respectively, the combined digest contains n = n1 + n2 ob-
servations. Prior to combine the two corresponding buckets contained fewer than
εn1/ log(M) and εn2/ log(M) observations, respectively. After summing they con-
tain fewer than ε(n1+n2)

logM
= ε(n)

logM
observations, and the proposition holds. �

We can use Q to answer quantile queries over S. The minimum rank of a value
v in the data set S is computed by adding 1 to the cumulative counts in all of the
buckets that contain only values less than v. The maximum rank of v is computed

84 M.B. Greenwald and S. Khanna

by adding to the minimum rank, the sum of the counts in all non-leaf buckets whose
minimum value is less than v, but whose maximum value is greater than or equal
to v. For example, in Fig. 9, the minimum rank of the value 5 is 12, because 5
could be the first value after the 6 instances of 3, the 4 instances of 4, and the single
observation that lies somewhere within [1,4]. The two observations within [1,8] and
the single observation within [1,16] may be values that are greater than or equal
to 5, and hence cannot be counted in the minimum possible rank. On the other hand,
there may be values that precede 5, and hence could increase the rank of 5 to be as
high as 15.

Theorem 6 A q-digest Q(ε) summarizing a dataset S is an ε-approximate quantile
summary using at most 3 log(M)/ε buckets, regardless of the size of |S|.

We first establish the upper bound on the size of Q. Let k denote the number of
surviving non-zero buckets in Q. For b ∈ Q, let b.g be the count of observations
in b, and let s(b) denote the sibling of bucket b in Q, and p(b) denote its parent
in Q. Every non-empty bucket b obeys b.g + s(b).g + p(b).g > εn

logM
. Each bucket

can appear at most once as a left sibling, once as a right sibling, and at most once
as a parent. Summing this inequality over all k surviving buckets, we get 3n ≥∑

b∈Q(b.g + s(b).g + p(b).g) > k εn
logM

. Therefore, 3 log(M)/ε > k.
We next show that Q(ε) is an ε-approximate quantile summary. We observe that

at most one bucket at each level of the tree can overlap the leaf bucket containing v.
The height of the tree (excluding the leaves) is logM , and by Proposition 8, each
non-leaf bucket contains at most εn

logM
observations, so the cumulative gap between

minimum and maximum rank is at most εn. The biggest gap between the minimum
rank of a stored value v in Q and the maximum rank of its successor, v′, is therefore
2εn, and by Proposition 1, Q is an ε-approximate quantile summary.

6 Concluding Remarks

We presented here a broad range of algorithmic ideas for computing quantile sum-
maries of data streams using small space. We highlighted connections among these
ideas, and how techniques developed for one setting sometimes naturally lend them-
selves to a seemingly different setting. While the past decade has seen significant
advances in space-efficient computation of quantile summaries, some fundamen-
tal questions remain unresolved. For instance, in the cash-register model, it is not
known if the space bound of O(log(εn)/ε) achieved by the GK algorithm [10] on
a stream of length n is the best possible for any deterministic algorithm. When the
elements are known to be in the range of [1..M] for some positive integer M , is
the O(log(M)/ε) bound achieved by the q-digest algorithm [18] optimal? In either
setting, only a trivial lower bound of Ω(1/ε) on space is known. Similarly, when
randomization is allowed, what is the best possible dependence of space needed on
ε and δ? It appears that progress on these questions would require significant new
ideas that may help advance our understanding of space-bounded computation as a
whole.

Quantiles and Equi-depth Histograms over Streams 85

References

1. K. Alsabti, S. Ranka, V. Singh, A one-pass algorithm for accurately estimating quantiles for
disk-resident data, in Proceedings of the Twenty-Third International Conference on Very Large
Data Bases, ed. by M. Jarke et al., Los Altos, CA 94022, USA (Morgan Kaufmann, San Mateo,
1997), pp. 346–355

2. A. Arasu, G.S. Manku, Approximate counts and quantiles over sliding windows, in Proceed-
ings of the 23rd ACM Symposium on Principles of Database Systems (PODS 2004), Paris,
France (2004), pp. 286–296

3. J.L. Carter, M.N. Wegman, Universal classes of hash functions, in Proceedings of the Ninth
Annual ACM Symposium on Theory of Computing, ed. by M. Jarke et al., Los Altos, CA
94022, USA (ACM, Colorado, 1977), pp. 106–112

4. G. Cormode, S. Muthukrishnan, An improved data stream summary: the Count-Min sketch
and its applications, in Proceedings of Latin American Theoretical Informatics (LATIN’04)
(2004)

5. P.B. Gibbons, Y. Matias, V. Poosala, Fast incremental maintenance of approximate histograms,
in Proc. 23rd Int. Conf. Very Large Data Bases, VLDB, ed. by M. Jarke, M.J. Carey, K.R. Dit-
trich, F.H. Lochovsky, P. Loucopoulos, M.A. Jeusfeld (Morgan Kaufmann, San Mateo, 1997),
pp. 466–475

6. P.B. Gibbons, Y. Matias, V. Poosala, Fast incremental maintenance of approximate histograms.
ACM Trans. Database Syst. 27(3), 261–298 (2003)

7. A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, M.J. Strauss, Surfing wavelets on streams: one-
pass summaries for approximate aggregate queries, in Proceedings of the 27th Intl. Conf. Very
Large Data Bases, VLDB, ed. by P.M.G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamo-
hanarao, R.T. Snodgrass, Rome, Italy (2001), pp. 79–88

8. A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, M.J. Strauss, How to summarize the universe:
dynamic maintenance of quantiles, in Proceedings of the 28th Intl. Conf. Very Large Data
Bases, VLDB, Hong Kong, China (2002), pp. 454–465

9. A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, M.J. Strauss, Domain-driven data synopses for
dynamic quantiles. IEEE Trans. Knowl. Data Eng. 17(7), 927–938 (2005)

10. M. Greenwald, S. Khanna, Space-efficient online computation of quantile summaries, in Pro-
ceedings of the 2001 ACM SIGMOD Intl. Conference on Management of Data (2001), pp. 58–
66

11. M.B. Greenwald, S. Khanna, Power-conserving computation of order-statistics over sensor
networks, in Proceedings of the 23rd ACM Symposium on Principles of Database Systems
(PODS 2004), Paris, France (2004), pp. 275–285

12. S. Guha, A. McGregor, Lower bounds for quantile estimation in random-order and multi-pass
streaming, in International Colloquium on Automata, Languages and Programming (2007)

13. X. Lin, H. Lu, J. Xu, J.X. Yu, Continuously maintaining quantile summaries of the most recent
n elements over a data stream, in Proceedings of the 20th International Conference on Data
Engineering (ICDE04), Boston, MA (IEEE Comput. Soc., Los Alamitos, 2004), pp. 362–374

14. G. Singh Manku, S. Rajagopalan, B.G. Lindsay, Approximate medians and other quantiles
in one pass and with limited memory. SIGMOD Rec. 27(2), 426–435 (1998) (ACM Special
Interest Group on Management of Data) SIGMOD’98, Seattle, WA

15. G. Singh Manku, S. Rajagopalan, B.G. Lindsay, Random sampling techniques for space effi-
cient online computation of order statistics of large datasets, SIGMOD Rec. 28(2), 251–262
(1999) (ACM Special Interest Group on Management of Data) SIGMOD’99, Philadelphia,
PA

16. J.I. Munro, M.S. Paterson, Selection and sorting with limited storage. Theor. Comput. Sci. 12,
315–323 (1980)

86 M.B. Greenwald and S. Khanna

17. S. Muthukrishnan, Data streams: algorithms and applications (2003). Unpublished report (in-
vited talk at SODA03), available at http://athos.ruthers.edu/~muthu/stream-1-1.ps

18. N. Shrivastava, C. Buragohain, D. Agrawal, S. Suri, Medians and beyond: new aggregation
techniques for sensor networks, in Proceedings of the 2nd ACM Conference on Embedded
Network Sensor Systems (SenSys’04), Baltimore, MD (2004), pp. 239–249

http://athos.ruthers.edu/~muthu/stream-1-1.ps

Join Sizes, Frequency Moments,
and Applications

Graham Cormode and Minos Garofalakis

1 Introduction

In this chapter, we focus on a set of problems chiefly inspired by the problem of esti-
mating the size of the (equi-)join between two relational data streams. This problem
is at the heart of a wide variety of other problems, both in databases/data streams
and beyond. Given two relations, R and S, and an attribute a common to both rela-
tions, the equi-join between the two relations, R �� S, consists of one tuple for each
r ∈ R and s ∈ S pair such that r.a = s.a. Estimating the join size between pairs of
relations is a key component in designing an efficient execution plan for a complex
SQL query that may contain arbitrary combinations of selection, projection, and
join tasks; as such, it forms a critical part of database query optimization [15]. The
results can also be employed to provide fast approximate answers to user queries,
to allow, for instance, interactive exploration of massive data sets [12]. The ideas
discussed in this chapter are directly applicable in a streaming context, and, addi-
tionally, within traditional database management systems where: (i) relational tables
are dynamic, and queries must be tracked over the stream of updates generated by
tuple insertions and deletions; or, (ii) relations are truly massive, and single-pass
algorithms are the only viable option for efficient query processing. Knowing the
join size is also a important problem at the heart of a variety of other problems,
such as building histogram and wavelet representations of data, and can be applied

G. Cormode (B)
Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
e-mail: G.Cormode@warwick.ac.uk

M. Garofalakis
School of Electrical and Computer Engineering, Technical University of Crete,
University Campus—Kounoupidiana, Chania 73100, Greece
e-mail: minos@softnet.tuc.gr

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_4

87

mailto:G.Cormode@warwick.ac.uk
mailto:minos@softnet.tuc.gr
http://dx.doi.org/10.1007/978-3-540-28608-0_4

88 G. Cormode and M. Garofalakis

to problems such as finding frequent items and quantiles, and modeling spatial and
high-dimensional data.

Many problems over streams of data can be modeled as problems over (implicit)
vectors which are defined incrementally a continuous stream of data updates. For ex-
ample, given a stream of communications between pairs of people (such as records
of telephone calls between a caller and callee), we can capture information about the
stream in a vector, indexed by the (number of the) calling party, and recording, say,
the number of calls made by that caller. Each new call causes us to update one entry
in this vector (i.e., incrementing the corresponding counter). Queries about specific
calling patterns can often be rendered into queries over this vector representation:
For instance, to find the number of distinct callers active on the network, we must
count the number of non-zero entries in the vector. Similarly, problems such as com-
puting the number of calls made by a particular number (or, range of numbers), the
number of callers who have made more than 50 calls, the median number of calls
made and so on, can all be posed as function computations over this vector. In an
even more dynamic setting, such streaming vectors could be used to track the num-
ber of active TCP connections in a large Internet Service Provide (ISP) network
(say, per source IP address); thus, a TCP-connection open (close) message would
have to increment (respectively, decrement) the appropriate counter in the vector.

Translating the join-size problem into the vector setting, we observe that each
relation can essentially be represented by a frequency-distribution vector, whose ith
component counts the number of occurrences of join-attribute value i in the relation.
(Without loss of generality, we assume the join attributes to range over an integer
domain [U] = {1, . . . ,U}, for some large U .1) The join size |R �� S| between two
streaming relations R and S corresponds to computing the inner-product of their
frequency-distribution vectors, that is, the sum of the product of the counts of i in
R and S over all i ∈ [U]. A special case of this query is the self-join size |R �� R|:
the size of the join between a relation R and itself. This is the sum of the squares of
the entries in the corresponding frequency-distribution vector, or, equivalently, the
square of its Euclidean (i.e., L2) norm.

The challenge for designing effective and scalable streaming solutions for such
problems is that it is not practical to materialize this vector representation; both the
size of the input data stream and the size of the “universe” from which items in
the stream are drawn can grow to be very large indeed. Thus, naive solutions that
employ O(U) space or time over the update stream are not feasible. Instead, we
adopt a paradigm of based on approximate, randomized estimation algorithms that
can produce answers to such queries with provable guarantees on the accuracy of
the approximation while using only small space and time per streaming update.

Beyond join-size approximations, efficiently estimating such vector inner-
products and norms has a wide variety of applications in streaming computation
problems, including approximating range-query aggregates, quantiles, and heavy-
hitter elements, and building approximate histograms and wavelet representations.

1While our development here assumes a known upper bound on the attribute universe size U , this
is not required: U can be learned adaptively over the stream using standard tricks (see, e.g., [13]).

Join Sizes, Frequency Moments, and Applications 89

We briefly touch upon some of these applications later in this chapter, while later
chapters also provide more detailed treatments of specific applications of the tech-
niques. Our discussion in this chapter focuses on efficient, sketch-based streaming
algorithms for join-size and self-join-size estimation problems, based on two influ-
ential papers by Alon, Matias, and Szegedy [3], and Alon, Gibbons, Matias, and
Szegedy [2]. The remainder of the chapter is structured as follows.

2 Preliminaries and Problem Formulation

Let x be a (large) vector being defined incrementally by a stream of data updates.
We adopt the most general (so-called, “turnstile” [20]) model of streaming data,
where each update in the stream is a pair (i, c), where i ∈ [U] is the index of the
entry being updated and c is a positive or negative number denoting the magnitude
of the update; in other words, the (i, c) update sets x[i] = x[i] + c. Allowing c

values to be either positive or negative implies that x vector entries can decrease as
well as increase. Thus, this model allows us to easily represent the “departure” of
items (e.g., closed TCP connections) as well as their arrival.

Definition 1 (Join Size) The (equi-)join size of two streaming relations with
frequency-distribution vectors x and y (over universe [U]) is exactly the inner prod-
uct of x and y, defined as x · y = ∑U

i=1 x[i]y[i].

(We use the terms “join size” and “inner product” interchangeably in the remain-
der of this chapter.) The special case of self-join size (i.e., inner-product of a vector
with itself) is closely related to the notion of frequency moments of a data distri-
bution, which can be defined using the same streaming model and concepts. More
specifically, let x denote the frequency-distribution vector for a stream R of items
(from domain [U]); that is, x[i] denotes the number of occurrences of item i in
the R stream. Then, the pth frequency moment of stream R is given by Fp(x) =
∑U

i=1 x[i]p .
Observe that F1 is simply the length of the stream R (i.e., the total number of

observed items), and can be easily computed with a single counter. F0 is the number
of distinct items in the R stream (the size of the set of items that appear), and is the
focus of other chapters in this volume. F2, the second frequency moment, is also
known as the repeat rate of the sequence, or as “Gini’s index of homogeneity”—it
forms the basis of a variety of data analysis tasks, and can be used to compute the
surprise index [14] and the self-correlation of the stream.

We extend the definition of frequency moments to the arrival vector model. Now,
Fp(x) = ∑U

i=1 x[i]p ; thus, Fp(x) = ‖x‖p
p , where ‖ ·‖p denotes the Lp vector norm

(see also the chapter of Cormode and Indyk later in this volume). In particular, F2(x)

is the self-join size of a relation whose characteristic vector is x, and
√

F2(x) is
the L2, or Euclidean, norm of the vector x.

90 G. Cormode and M. Garofalakis

We give the definition of other relevant functions:

Definition 2 The vector distance between two vectors x and y, both of dimension-
ality U is given by ‖x − y‖2 =√

F2(x − y).

Definition 3 An (ε, δ)-relative approximation of a value X returns an answer x such
that, with probability at least 1 − δ,

(1 − ε)X ≤ x ≤ (1 + ε)X.

Definition 4 (k-Wise Independent Hash Functions) A family of hash functions H
mapping items from X onto a set Y is said to be k-wise independent if, over random
choices of h ∈H, we have

Pr
[
h(x1) = h(x2)= · · · = h(xk)

] = 1

|Y |k .

In other words, for up to k items, we can treat the results of the hash function as
independent random events, and reason about them correspondingly. Here, we will
make use of families of 2-wise (pairwise) independent hash functions, and 4-wise
independent hash functions. Such hash functions are easy to implement: the family
H2 = {ax+b modP mod |Y |}, where P is a prime and a and b are picked uniformly
at random from {0, . . . ,P −1} is pairwise independent onto {0, . . . , |Y | − 1} [5, 19].
More generally, the family

Hk =
{

k−1∑

i=0

cix
i modP mod |Y |

}

is k-wise independent for cis picked uniformly from {0, . . . , |Y | − 1} [23]. Various
efficient implementations of such functions have been given, especially for the case
of k = 2 and k = 4 [21, 22].

3 AMS Sketches

In their 1996 paper, Alon, Matias and Szegedy gave an algorithm to give an (ε, δ)-
approximation of the self-join size. The algorithm computes a data structure, where
each entry in the data structure is computed through an identical procedure but with
a different 4-wise independent hash function for each entry. Each entry can be used
to find an estimate of the self-join size that is correct in expectation, but can be
far from the correct value. Carefully combining all estimates gives a result that is
an (ε, δ)-approximation as required. The resulting data structure is often called an
AMS (or,“tug-of-war”) sketch, since the data structure concisely summarizes, or
‘sketches’ a much larger amount of information.

Join Sizes, Frequency Moments, and Applications 91

UPDATE(i, c, z)
Input: item i, count c, sketch z

1: for j = 1 to w do
2: for k = 1 to d do
3: z[j][k]+ = hj,k(i) ∗ c

ESTIMATEF2(z)
Input: sketch z

1: Return ESTIMATEJS(z, z)

ESTIMATEJS(x, y)
Input: sketch x, sketch y

Output: estimate of x · y
1: for j = 1 to w do
2: avg[j] = 0;
3: for k = 1 to d do
4: avg[j]+ = x[j][k] ∗ y[j][k]/w;
5: Return(median(avg))

Fig. 1 AMS algorithm for estimating join and self-join size

To build one element of the sketch, the algorithm takes a 4-wise hash function
h : [1..U] → {−1,+1} and computes Z = ∑U

i=1 h(i)x[i]. Note that this is easy to
maintain under the turnstile streaming model: initialize Z = 0, and for every update
in the stream (i, c) set Z = Z + c ∗ h(i). This algorithm is given in pseudocode as
UPDATE in Fig. 1.

3.1 Second Frequency Moment Estimation

To estimate the self-join size, we compute Z2.

Lemma 1 E(Z2) = F2(x)

Proof

E
(
Z2) = E

((
U∑

i=1

h(i)x[i]
)2)

= E

(
U∑

i=1

h(i)2x[i]2
)

+ E
∑

1≤i<j≤U

2h(i)h(j)x[i]x[j]

=
U∑

i=1

x[i]2 + 0 = F2(x).

The proof relies critically on the properties of h: h(i)2 = 1 for all i, but since h is
4-wise independent then the outcomes h(i) = h(j) and h(i) = −h(j) are equally
likely (for j �= i) and so in expectation h(i)h(j) is zero. �

Lemma 2 Var(Z2) ≤ 2F2(x)2.

92 G. Cormode and M. Garofalakis

Proof

Var
(
Z2) = E

(
Z4)− E

(
Z2)2

= E

((
U∑

i=1

h(i)x[i]
)4)

−
(

U∑

i=1

x[i]2
)2

= E

((
U∑

i=1

h(i)4x[i]4 +
∑

1≤i<j≤U

6h(i)2h(j)2x[i]2x[j]2

+
∑

i,i �=j �=k

12h(i)2h(j)h(k)x[i]2x[j]x[k]

+
∑

1≤i �=j≤U

4h3(i)h(j)x[i]3x[j]

+
∑

1≤i<j<k<l≤U

12h(i)h(j)h(k)h(l)x[i]x[j]x[k]x[l]
)

−
(

U∑

i=1

x[i]4 +
∑

1≤i<j≤U

2x[i]2x[j]2
)

=
U∑

i=1

x[i]4 +
∑

1≤i<j≤U

6x[i]2x[j]2

−
(

U∑

i=1

x[i]4 +
∑

1≤i<j≤U

2x[i]2x[j]2
)

= 4
∑

1≤i<j≤U

x[i]2x[j]2
)

≤ 2F 2
2 .

�

This shows that each estimate is correct in expectation and has bounded variance.
Again, in expectation many of the cross-terms (e.g., h(i)h(j)h(k)h(l)) are zero, by
the 4-wise independence of the hash function h. In order to give tight guarantees
about the accuracy of this procedure, we make use of a few statistical results about
the average and median of random variables.

Fact 1 (Variance Reduction) Let Xi be independent and identically distributed ran-
dom variables. Then

Var

(
w∑

i=1

Xi

w

)

= 1

w
Var(X1).

Join Sizes, Frequency Moments, and Applications 93

In other words, taking the average of w copies of an estimator reduces the variance
by a factor of w.

Fact 2 (The Chebyshev Inequality) Given a random variable X,

Pr
[∣∣X − E(X)

∣∣ ≥ k
] ≤ Var(X)

k2
.

Fact 3 (Application of Chernoff Bounds) Let R be a range of values R =
[Rmin..Rmax], and let Yi be d = 4 log 1/δ independent and identically distributed
random variable such that Pr[Yi /∈ R] ≤ 1

8 . Then

Pr
[(

mediand
i=1 Yi

)
/∈R

] ≤ δ,

that is, if there is constant probability that each Yi falls within the desired range R,
then taking the median of O(log 1/δ) copies of Yi reduces the failure probability
to δ.

For details of these facts, see a standard text such as [19]. For the final fact,
observe that we can define an indicator variable for each Yi that is 0 if Yi falls
within the range R and is 1 otherwise. The expectation of the sum of these indicator
variables is 1

2 log 1/δ. However, if the median of the Yis is not within range, then at
least half the Yis must have fallen outside the range; hence the sum of the indicator
variables must be at least 2 log 1/δ. Applying Chernoff bounds gives the derived
result.

We can now apply these facts to show the accuracy of the estimation procedure
for F2:

Theorem 1 An (ε, δ)-approximation of F2, the self-join size, can be computed in
space O(1

ε2 log 1/δ) machine words in the streaming model. Each update takes time

O(1
ε2 log 1/δ).

Proof Applying the Chebyshev inequality to the average of w = 16
ε2 copies of the

estimate Z generates a new estimate Y such that

Pr
[|Y − F2| ≤ εF2

] ≤ Var(Y)

ε2F 2
2

= Var(Z)

cε2F 2
2

= 2F 2
2

(16/ε2)ε2F 2
2

= 1

8
.

Hence, applying the Chernoff bound result from Fact 3 to the median of 4 log 1/δ

copies of the average Y gives the probability of the results being outside the range
of εF2 from F2 as δ. The space required is that to maintain O(1

ε2 log 1/δ) copies
of the original estimate. Each of these requires a counter and a 4-wise independent
hash function, both of which can be represented with a constant number of machine
words under the standard RAM model. �

94 G. Cormode and M. Garofalakis

In summary, this shows that an (ε, δ)-approximation of F2 can be computed using
space that is essentially independent of the size of the stream or the dimensionality
of the vector. The complete algorithm is given in Fig. 1.

3.2 Vector Difference Estimation

The results for self-join size estimation can be applied to the problem of measuring
the distance between two vectors. The result follows almost as an immediate corol-
lary of the previous theorem, combined with the structure of the sketch. Observe that
the difference between x and y as given in Definition 2 can be thought of as the self-
join size of a single vector whose ith entry is x[i]−y[i]. The sketch of this vector is
given by

∑
i h(i)(x[i] − y[i]). This can be rewritten as

∑
i h(i)x[i] −∑

i h(i)y[i].
In other words, the sketch of the difference is the difference of the sketches. Thus,
by subtracting the sketches and then applying the estimation procedure we can get
an (ε, δ)-approximation of the difference between the vectors.

This relies on the linearity of the sketching operation: any linear transforma-
tion (scaling, addition, subtraction, etc.) to the original vector can be applied on the
sketch and the result is the sketch of the modified vector. This was used implicitly
to show that the sketch can be updated dynamically under streaming updates. Such
linearity properties have also been used in a variety of techniques for streaming data
based on sketches. See the discussion in Sect. 4 for some examples.

3.3 Join Size Estimation

Lemma 3 Let Zx be an entry of a sketch computed for the vector x, and let Zy be
an entry of a sketch computer for y using the same hash function. The estimate is
correct in expectation, i.e., E(Zx ∗Zy)= x · y.

Proof

E(Zx ∗Zy) = E

(
U∑

i=1

h(i)2x[i]y[i] +
∑

1≤i �=j≤U

h(i)h(j)x[i]y[j]
)

=
U∑

i=1

x[i]y[i] + 0 = x · y.
�

Lemma 4 Var(Zx ∗Zy) ≤ F2(x)F2(y).

Join Sizes, Frequency Moments, and Applications 95

Proof

Var(Zx ∗Zy) = E
(
Z2

xZ
2
y

)− E(ZxZy)
2

= E

(
U∑

i=1

h(i)4x[i]2y[i]2 +
∑

1≤i �=j≤U

h(i)2h(j)2x[i]2y[j]2

+
∑

1≤i<j≤U

4h(i)2h(j)2x[i]y[i]x[j]y[j]
)

− (x · y)2

=
U∑

i=1

(
x[i]y[i])2 +

∑

1≤i �=j≤U

(
x[i]y[j])2

+
∑

1≤i<j≤U

4x[i]y[i]x[j]y[j]

−
(∑

1≤i≤U

(
x[i]y[i])2 +

∑

1≤i<j≤U

(
2x[i]y[i]x[j]y[j])

)

≤
∑

1≤i<j

(
x[i]y[j])2 + 2

∑

1≤i<j≤U

(
2x[i]y[i]x[j]y[j])

≤
U∑

i=1

x[i]2
U∑

j=1

y[j]2 +
(

U∑

i=1

x[i]y[i]
)2

≤ 2
U∑

i=1

x[i]2
U∑

j=1

y[j]2 = 2F2(x)F2(y).
�

Applying the Chebyshev Inequality to the average of w = 16
ε2 copies of this esti-

mate, and then taking the median of d = 4 log 1/δ such averages, as in the proof of
Theorem 1, allows us to state the following theorem:

Theorem 2 Using space O(1
ε2 log 1/δ) space we can output an estimate of x ·y so

that

Pr
[∣∣(x · y)− est

∣∣ ≤ ε
√

F2(x)F2(y)
] ≥ 1 − δ.

Note that for the special case of when x = y, then the above Theorem 2 re-
duces to Theorem 1. However, this is not an (ε, δ)-approximation since in general√

F2(x)F2(y) > (x · y). In order to get such an approximation, we need to increase
w by a factor of (x · y)2/(F2(x)F2(y)). This may be possible if we have a priori
bounds on these quantities, but since we are trying to approximate x · y, we cannot
know this quantity exactly in advance. In general, we cannot hope for much stronger
results due to the following negative result:

96 G. Cormode and M. Garofalakis

Theorem 3 Guaranteeing an (ε, δ)-approximation of (x · y) requires Ω(U) space
in the worst case.

Proof We reduce from the problem of testing whether two sets have any element in
common, and use the communication complexity of this problem to argue a space
bound for the streaming problem.

Consider two arbitrary sets X and Y , both of which are subsets of [1..U]. There
are two people who wish to collaborate to compute a function of X and Y : X is
held by one party and Y by the other. A well-known result from communication
complexity states that determining whether there exists i such that i ∈ X ∧ i ∈ Y

requires communication between the two parties that is linear in U , even under
a probabilistic model [18]. This is known as the disjointness problem, since the
answer is either that the sets are disjoint (i.e., X ∩ Y = ∅) or not disjoint.

First, we show that if we can approximate join size, then we can answer disjoint-
ness queries. Let x[i] = 1 ⇐⇒ i ∈ X, and zero otherwise; similarly, let y[j] =
1 ⇐⇒ j ∈ Y , otherwise y[j] = 0. Now observe that (X∩Y = ∅) ⇐⇒ (x ·y = 0).
Hence, computing the join size exactly means that we can answer disjointness
queries. More strongly, any approximation of x ·y also allows us to answer disjoint-
ness queries, since to approximate x · y = 0 we must output ‘0’, and if x · y �= 0,
then no approximation can correctly output ‘0’. Thus any algorithm that approxi-
mates x · y must use Ω(U) bits of communication if x is held by one party and y

by the other.
Now, we show how this bound applies to the streaming context. Suppose all of x

arrives in the stream first, and then y arrives in the stream next. Consider the state
(memory contents) held by any streaming algorithm to approximate x ·y after x has
been seen. Imagine sending all the state to another copy of the algorithm which then
receives the stream y. If the algorithm correctly approximates x · y, then the size of
the data communicated must be Ω(U) bits. Hence, the space used by the algorithm
must be at least Ω(U) bits. �

Nevertheless, the results obtained by this estimation procedure in practice often
give very good estimates of the join size between relations. In particular, it tends to
significantly outperform solutions based on sampling, which do not give the guar-
antee of being correct in expectation.

4 Applications and Extensions

The generality of the join size aggregate and the simplicity and flexibility of the
sketching technique, means that the sketching method has been used as the basis of
a wide variety of other streaming algorithms. Rather than attempt to give a compre-
hensive survey of such techniques, we outline a few examples to illustrate the ways
that this data structure has been applied and modified.

Join Sizes, Frequency Moments, and Applications 97

4.1 Point Estimation, Range Queries and Wavelets

The problem of point estimation is, given a vector x specified as a data stream, to
accept queries which specify a particular entry, i, and to return an estimate of x[i].
Clearly, one cannot give exact answers, or guarantee very fine accuracy since to do
so would allow one to recover the whole vector in the worst case. However, they can
be well approximated as a corollary of the previous theorem.

Corollary 1 Point queries can be answered using the same sketch structure in space
O(1

ε2 log 1/δ) with error less than ε
√

F2(x) with probability at least 1 − δ.

Proof Observe that a point query can be specified as a join size query, x · Ii , where
Ii[i] = 1, and Ii[j] = 0 for j �= i. Applying Theorem 2, we find that we can an-
swer point-estimation queries with error at most ε

√
F2(x) with probability at least

1 − δ. �

This is quite a strong guarantee, since typically we make require accuracy in
terms of εF1(x), and for any x,

√
F2(x) ≤ F1(x). Point Estimation is at the heart

of many algorithms for finding “heavy hitters”: items in the data stream which oc-
cur very frequently. (This is explored further in a chapter by Charikar later in this
volume.)

In a similar way, one can answer arbitrary range queries of the form R(i, j) =∑j
k=i x[k] by reducing this to an inner product with a vector I

j
i , where I

j
i [k] =

1 ⇐⇒ i ≤ k ≤ j and zero elsewhere. However, the error increases linearly with
|j − i + 1|, making the accuracy too weak for large ranges. A standard approach is
then to decompose any arbitrary range into at most O(logU) dyadic ranges, each
of which has length a power of two, and begins at a multiple of its own length.
Each dyadic range query can be treated as a point query, and hence arbitrary range
queries can be answered to the same accuracy as point queries, with a blow-up in
space polynomial in logU (see, for example, [13]).

Computing approximate (Haar) wavelet coefficients and approximate histogram
summaries [9] can also make use of point, range and related queries, and hence tech-
niques to approximate the wavelet coefficients of a signal presented in a streaming
fashion make extensive use of sketch data structures. (More details of the methods
used and the results obtained are given in a chapter by Muthukrishnan and Strauss
later in this volume.)

4.2 Faster Implementations Using Hashing

One potential disadvantage of the sketching scheme is the time cost to process each
update. For w = O(1

ε2) and d = O(log 1/δ) copies of the estimate, we must up-
date wd entries in the sketch for every update. For small values of ε this can be
a large overhead, and means that such an approach does not easily scale to very

98 G. Cormode and M. Garofalakis

high speed data stream environment without special purpose hardware. However,
a simple hashing trick has been applied to increase the speed significantly [6–8, 22].
Instead of keeping w copies of the estimate and taking the average of their estimates,
the key idea is to use a second hash function f which maps each item i onto [1..w],
and only updating the estimate f (i). To produce an estimate of the join or self-join
size, the sum of the estimates is used instead of the average. Mathematically this
gives the same expectation and variance as the original method, but requires only
O(d) estimates to be modified for each update instead of O(wd). This means that
the cost is essentially independent of the accuracy parameter ε, and depends only
on log 1/δ, which is typically quite small in practice.

4.3 Multidimensional and Spatial Data

We have so far phrased the discussion in terms of join sizes and large vectors. How-
ever, one can model other structures with sketches. By appropriate linearization, one
can make a sketch of a large matrix of values, and similar higher dimensional struc-
tures. Such modeling is necessary in order to estimate the size of multi-way joins
(see the chapter of Dobra et al. in this volume).

More generally, one can also apply the sketching technique to summarize spatial
data. Now, the input consists of (a stream of) objects in low dimensional space (say,
two or three dimensions). The notion of a spatial join is to count the number of
object pairs that fall within a certain (specified as part of the query) distance of each
other. Other natural queries are to ask for the approximate number of points falling
within a given range, e.g., a rectangular or cuboid region.

Sketch data structures have been applied to these problems [10]. The key tech-
nique is to build sketches from the query specifications in such a way that the ap-
proximate join size between the query sketch and data sketch is an unbiased estima-
tor for the answer to the query. For example, suppose the input consists of a set of
one-dimensional ranges [a . . . b]. To answer the query of how many intervals con-
tain a given point c, we can simple pose the point query Ic. To count how many
ranges overlap with a query range, we can compute the sum of how many of the
ranges contain each end point of the query range, and how many of the end points
of the ranges are contained within the query range. Assuming that the query end
points do not coincide with points of the input,2 this query returns exactly twice the
number of intersections, and so can be approximated correctly in expectation.

In order to bound the error from using sketches, and ensure that updates are fast to
process, ranges are not represented directly, but using the “dyadic range decomposi-
tion” described in Sect. 4.1. This approach can be generalized from one dimensional
data to points and rectangles in the plane and in three dimensional space, etc. This
shows some nice features of the sketching approach: it is sufficiently general that it

2This assumption can be removed with some careful manipulation; see [10].

Join Sizes, Frequency Moments, and Applications 99

can be applied to a variety of different streaming scenarios. Using techniques such
as the dyadic range decomposition, these ideas can be implemented efficiently and
with bounded error per update.

4.4 Further Extensions and Applications

We outline some of the many other applications in data streams that sketch-based
techniques have found:

• Vector L1 Difference. For some applications, rather than the L2 distance be-
tween two vectors,

√
F2(x − y), it is necessary to compute the L1 difference,∑U

i=1 |x[i] − y[i]|. This can be reduced to F2 by representing the vectors in
unary notation, since L1(x − y) = F2(x − y) if x and y are binary (zero/one)
vectors. However, in order to compute this transformation efficiently, new meth-
ods are needed to quickly compute the sum of 4-wise hash functions, rather than
explicitly creating the unary representation of large vector entries [11].

• Triangle Counting in Graphs. Many data streams represent graphs, presented
as streams of edges, and the streaming challenge is to compute properties of the
induced graphs. The number of triangles, also known as the clustering coefficient,
occurs in a variety of applications, but seems challenging to compute when the
edges forming each triangle can be arbitrarily interleaved in the stream. However,
by a careful transformation, the number of triangles can be expressed as a function
of appropriately defined frequency moments F0,F1 and F2 [4]. New techniques
are required to efficiently update the sketches as each edge requires a large num-
ber of updates to be applied, but these updates can be described concisely as a
range of values.

• Change Detection. In many large scale monitoring applications, the fundamental
question is whether the current observations are in line with predicted behavior,
or whether they appear to be at odds with what was expected. Such applications
are generally known as “change detection”. A general approach was suggested
in [17]: build sketches of recent data, and then apply various standard modeling
techniques to combine these into a sketch of the predicted behavior. The new
data can then be observed, and tested against the prediction: either in terms of
individual item counts or by comparing the whole stream. This approach relies
crucially on the linearity properties of the sketch transformation, so the predicted
sketch can be obtained by applying the prediction model to the historical sketches.
Thus, the whole method can be carried out in small space and at high speeds in
the streaming model.

• Quantiles under insertions and deletions. The problem of tracking quantiles
over a stream of input items drawn from [1..U] is, given φ, return an item whose
rank is (approximately) φN . Various techniques have been proposed for this prob-
lem when the stream consists of insertions of items only. However, when the in-
put stream may also contain deletions of items that have previously appeared,
these techniques do not apply. Observe that the quantiles query can be restated

100 G. Cormode and M. Garofalakis

as a range query: if we can estimate how many items fall in the range [1..R],
then we can binary search for the value of R whose range contains φN points.
This range query can be answered using the techniques of Sect. 4.1. The reduc-
tion to dyadic ranges makes updates and queries reasonably fast, and the error is
bounded by ε logU

√
F2(x). Because deletions can be processed as negative up-

dates to sketches, it is easy to see that deletion operations are handled correctly.
Full details of this approach to finding quantiles using sketches are in [7, 13].

• Tracking Queries over Distributed Streams. Large-scale stream processing ap-
plications rely on continuous, event-driven monitoring, and are often inherently
distributed, with several remote monitor sites observing their local, high-speed
data streams and exchanging information through a communication network.
This distribution of the data naturally implies critical communication constraints
that typically prohibit continuously centralizing all the streaming updates, due
to volume and speed of the streams that can easily overwhelm the underlying
network. Monitoring queries over such distributed streams raises a host of new
challenges. A property of AMS sketches that makes them particularly interest-
ing in this setting is that, due to their linear nature, they are naturally compos-
able through simple vector addition. In other words, given two “parallel” AMS
sketches (built using the same 4-wise hash functions) over two different streams,
the sketch of the combined stream (i.e., the union of the two streams) is simply
the component-wise summation of their sketches. More details on the distributed
streaming model and results can be found in a chapter by Garofalakis later in this
volume.

5 Concluding Remarks

The original paper describing the sketching technique discussed here was published
in 1996 [3], and showed the F2 application. A subsequent paper in 1999 [2] extended
the results to join and self-join size. The original “AMS” paper considers a broad
range of problems based on the frequency moments, and has come to be viewed as
one of the foundational works on data streams, even though this term is not explicitly
used by the authors. In addition to the results on F2, the authors also give space
efficient algorithms for all frequency moments Fk , k ∈N , and lower bounds for the
problems showing that, for k ≥ 6, space polynomial in n is required. This led to
a sequence of papers in the theoretical computer science computer science which
has focussed on improving the upper and lower bounds for the frequency moments
problem for k ≥ 3, culminating in recent results showing essentially tight upper and
lower bounds for these problems.

The result can also be thought of in terms of embedding vectors into lower di-
mensional spaces. The Johnson–Lindenstrauss lemma [16] proved that their exists
embeddings of vectors in Euclidean space into a Euclidean space of (smaller) di-
mension O(1

ε2 log 1
δ
) which preserves distances up to a (1 ± ε) factor. We can view

the sketch technique here as an explicit embedding into a Euclidean-like space (the

Join Sizes, Frequency Moments, and Applications 101

operations of averaging and median finding mean that we cannot treat the sketches
as vectors in Euclidean space), which is computable in a data stream setting with
small space and limited (four-wise) randomness. The results of Achlioptas [1] show
that, if we assume full randomness, then we can also operate in Euclidean space.

Lastly, several efficient implementations of sketch data structures have been
made and published on the Internet (e.g., http://www.cs.rutgers.edu/~muthu/
massdall-code-index.html). These can be freely modified and used as the basis of
more complex data stream algorithms.

References

1. D. Achlioptas, Database-friendly random projections, in Proceedings of ACM Principles of
Database Systems (2001), pp. 274–281

2. N. Alon, P. Gibbons, Y. Matias, M. Szegedy, Tracking join and self-join sizes in limited stor-
age, in Proceedings of the Eighteenth ACM Symposium on Principles of Database Systems
(1999), pp. 10–20

3. N. Alon, Y. Matias, M. Szegedy, The space complexity of approximating the frequency mo-
ments, in Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Com-
puting. (1996), pp. 20–29. Journal version in: J. Comput. Syst. Sci. 58, 137–147 (1999)

4. Z. Bar-Yossef, R. Kumar, D. Sivakumar, Reductions in streaming algorithms, with an applica-
tion to counting triangles in graphs, in Proceedings of the 13th Annual ACM-SIAM Symposium
on Discrete Algorithms (2002), pp. 623–632

5. J.L. Carter, M.N. Wegman, Universal classes of hash functions. J. Comput. Syst. Sci. 18(2),
143–154 (1979)

6. M. Charikar, K. Chen, M. Farach-Colton, Finding frequent items in data streams, in Proceed-
ings of the International Colloquium on Automata, Languages and Programming (ICALP)
(2002), pp. 693–703

7. G. Cormode, S. Muthukrishnan, An improved data stream summary: the count-min sketch and
its applications, in Latin American Informatics (2004), pp. 29–38

8. G. Cormode, M. Garofalakis, Approximate continuous querying over distributed streams.
ACM Trans. Database Syst. 33(2) (2008)

9. G. Cormode, M. Garofalakis, P.J. Haas, C. Jermaine, Synopses for massive data: samples,
histograms, wavelets, sketches. Found. Trends® Databases 4(1–3) (2012)

10. A. Das, J. Gehrke, M. Riedewald, Approximation techniques for spatial data, in Proc. of the
2004 ACM SIGMOD Intl. Conference on Management of Data (2004)

11. J. Feigenbaum, S. Kannan, M. Strauss, M. Viswanathan, An approximate L1-difference algo-
rithm for massive data streams, in Proceedings of the 40th Annual Symposium on Foundations
of Computer Science (1999), pp. 501–511

12. M. Garofalakis, P.B. Gibbons, Approximate query processing: taming the terabytes, in 27th
Intl. Conf. on Very Large Data Bases, Rome, Italy (2001). Tutorial

13. A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, M. Strauss, How to summarize the universe: dy-
namic maintenance of quantiles, in Proceedings of the International Conference on Very Large
Data Bases (2002), pp. 454–465

14. I.J. Good, Surprise indexes and p-values. J. Stat. Comput. Simul. 32, 90–92 (1989)
15. Y.E. Ioannidis, S. Christodoulakis, Optimal histograms for limiting worst-case error propaga-

tion in the size of join results. ACM Trans. Database Syst. 18(4), 709–748 (1993)
16. W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mapping into Hilbert space. Contemp.

Math. 26, 189–206 (1984)
17. B. Krishnamurthy, S. Sen, Y. Zhang, Y. Chen, Sketch-based change detection: methods, eval-

uation and applications, in Proceedings of the ACM SIGCOMM Conference on Internet Mea-
surement (2003), pp. 234–247

http://www.cs.rutgers.edu/~muthu/massdall-code-index.html
http://www.cs.rutgers.edu/~muthu/massdall-code-index.html

102 G. Cormode and M. Garofalakis

18. E. Kushilevitz, N. Nisan, Communication Complexity (Cambridge University Press, Cam-
bridge, 1997)

19. R. Motwani, P. Raghavan, Randomized Algorithms (Cambridge University Press, Cambridge,
1995)

20. S. Muthukrishnan, Data streams: algorithms and applications, in Proceedings of the 14th An-
nual ACM-SIAM Symposium on Discrete Algorithms (2003)

21. M. Thorup, Even strongly universal hashing is pretty fast, in Proceedings of the 11th Annual
ACM-SIAM Symposium on Discrete Algorithms (2000), pp. 496–497

22. M. Thorup, Y. Zhang, Tabulation based 4-universal hashing with applications to second mo-
ment estimation, in Proceedings of the 15th Annual ACM–SIAM Symposium on Discrete Al-
gorithms (2004), pp. 615–624

23. M.N. Wegman, J.L. Carter, New hash functions and their use in authentication and set equality.
J. Comput. Syst. Sci. 22(3), 265–279 (1981)

Top-k Frequent Item Maintenance over Streams

Moses Charikar

1 Introduction

In this chapter, we consider the problem of finding the most frequent items in a data
stream. Given a data stream a1, a2, . . . , an, where each ai ∈ {1, . . . ,m}, we would
like to identify the items that occur most frequently in one pass over the data stream
using a small amount of storage space. Such problems arise in a variety of settings.
For example, a search engine might be interested in gathering statistics about its
query stream and in particular, identifying the most popular queries. Another appli-
cation is to detecting network anomalies by monitoring network traffic.

Throughout this chapter, for ease of exposition, we will assume that the elements
of the data stream are integers in [1,m]. In general, the items in the data stream could
be more complex objects (e.g., queries to a search engine). However, such complex
objects can always be mapped to integers by hashing or other means. Hence without
loss of generality, we may assume that the data stream elements are in fact integers.

The brute-force approach to finding frequent elements would involve maintaining
counters for every distinct element seen so far. However, this requires far too much
storage—linear in the number of distinct elements. In fact, if we insist on determin-
ing the most frequent element exactly, using linear storage is unavoidable. Think
of the problem of determining the most frequent element in a data stream where
all elements are distinct except for one. Determining the one element that repeats
requires linear storage. We will prove this formally later. However, if we allow the
algorithm some slack and accept some error in the results produced, then ingenious
solutions that require limited space are possible We will discuss several algorithmic
approaches developed to solve this problem. In addition to allowing some errors in
the output, we will also consider randomized algorithms. Such algorithms will also

M. Charikar (B)
Computer Science Department, Stanford University, Stanford, CA 94305, USA
e-mail: moses@cs.stanford.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_5

103

mailto:moses@cs.stanford.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_5

104 M. Charikar

have a small failure probability δ, which can usually be made arbitrarily by increas-
ing the storage space. We will guarantee that the randomized produces an output
within the guaranteed error bounds with probability 1 − δ.

First we introduce some notation we will use throughout this chapter. For item i,
let mi denote the number of occurrences of item i in the data stream. Let n be the
total size of the data stream. n = ∑

i mi . We define the frequency of item i to be the
fraction mi/n.

We consider different variants of the frequent items problem:

1. Hot items. Given an integer k, we would like to identify all items that occupy
more than 1/k fraction of the data stream. In general, the algorithms we describe
for this problem return all hot items, but also return certain items that are not hot.
These could be eliminated in a second pass over the data, or it might be the case
that such false positives do not affect the application adversely.

2. Top k items with error. Given an error bound, we would like to determine the
top k items with a small error in the item counts. The goal of the algorithm is to
return a subset F of k items such that for any pair of items i ∈ F , j /∈ F , mj −mi

is less than a certain error bound. Here the error bound might be of the form εN ,
or may be a more complicated function of the distribution of the mi ’s.

The algorithms we describe to solve such problems will typically maintain
data structures which can be used to estimate the item counts with small error.
These estimated counts can be used to maintain the approximate top k items in
one pass over the data stream.

One desirable property that some of the algorithms we describe have is that they
can handle item insertions as well as deletions. In our exposition, we mainly focus
on the insertions only setting, but we will point out possible extensions to handle
deletions.

We describe a variety of different approaches that have been proposed to solve
these problems. Our goal is to give a flavor of the various techniques that have
been used in this area. In Sect. 2, we describe random sampling based approaches.
In Sect. 3, we look at some deterministic approaches. In Sect. 4, we describe ap-
proaches that maintain approximate frequency counts for all items by maintaining
multiple counters. Finally, in Sect. 5, we show lower bounds on the space require-
ments for streaming algorithm that identify frequent items.

2 Random Sampling Methods

Given a random sample of size O(1/ε2 log(1/δ)), one can determine item frequen-
cies up to an additive error of ε fraction of the total count of all items with probabil-
ity 1 − δ. Consider a random sample of size S = O(1/ε2 log(1/δ)). For item i, let
p̂i denote the fraction of the sample occupied by item i. Let pi denote E[p̂i]. Then
pi = mi/n. Then |p̂i − pi | ≤ ε with probability 1 − δ. This is an easy consequence
of Chernoff bounds. In fact, a random sample of the data stream can be maintained

Top-k Frequent Item Maintenance over Streams 105

in one pass over the data using reservoir sampling. So this gives a simple random-
ized method to identify frequent items. In the following sections, we will improve
on this basic technique.

2.1 Sticky Sampling

Manku and Motwani [8] proposed a method called sticky sampling to identify fre-
quent items. This improves on the space requirements of the basic random sampling
approach. Their method guarantees that with high probability all items with counts
at least n/k are identified correctly, no items with counts less than (1/k − ε)n are
reported, and further all estimated frequencies are less than the true frequencies by
at most εn. If an algorithm has this guarantee on its output, it is said to maintain an
ε-deficient synopsis.

We give a brief overview of the ideas behind Sticky Sampling, but do not go into
details since the performance of this algorithm is superseded by the deterministic
methods we will describe next. The idea behind their approach is to maintain a
random sample of the data stream, where the sampling rate is adapted to the length
of the stream seen so far. Sampling at rate r refers to placing elements in the random
sample with probability 1/r . Multiple copies of the same item in the sample are
represented using a counter for the item. Let t = 1

ε
log(k/δ). The first 2t elements

are sampled at rate r = 1, then next 2t are sampled at rate r = 2, the next 4t elements
are sampled at rate r = 4, and so on. As the sampling rate is changed, the old sample
is updated to reflect the new sampling rate. This may result in reducing item counter
values—if reduced to 0, the corresponding item is removed from the sample.

Manku and Motwani show that the space requirement for this algorithm is
2
ε

log(k/δ) in expectation and it computes an ε-deficient synopsis with probability
1 − δ.

3 Deterministic Methods

Misra and Gries [9] proposed a method to find all items of frequency greater than
1/k in one pass. This is a generalization of a well known linear time algorithm to
find a majority element in an array. It is interesting to note that Misra and Gries
studied this problem and proposed this algorithm several years before the notion
of streaming algorithms was developed. Much later, their result was rediscovered
by two sets of authors: Karp, Papadimitriou and Shenker [7] and Demaine, López-
Ortiz and Munro [5], who both also gave a more efficient implementation than the
one proposed by Misra and Gries.

The idea behind the algorithm is to maintain a table of elements and associated
counters and update this as the stream is read. Every element occurs at most once in
the table and at any point of time, there are at most k distinct elements in the table.

106 M. Charikar

In the end, all elements with frequency strictly larger than 1/k are guaranteed to
be present in the table. Additional elements may be present as well. These could be
identified and eliminated by performing a second pass over the data.

Initially, the algorithm starts with an empty table T . When a new element x of the
stream is read, we first check to see if x is present in the table T . If so, we increment
its counter by 1. If not, we add the element counter pair (x,1) to T . Finally, if there
are k distinct elements in T , we subtract 1 from each of their associated counters
and any elements with counter value 0 are eliminated from the table.

Claim Any element with frequency strictly larger than 1/k will be present in the
table T at the end of the data stream.

Proof We can view the algorithm as maintaining a multiset of elements as follows.
Every element of the data stream is added to the current multiset. If there are k

distinct elements present currently, one copy of each of the k distinct elements is
removed from the multiset. Suppose x is an element which occurs strictly more
than n/k times in the data stream. For each of these occurrences of x, a copy of x is
added to the multiset maintained by the algorithm and some of these copies might
be deleted later. We claim that at most n/k copies are deleted. Note that whenever
x is deleted from the multiset, one copy is deleted at a time and this is accompanied
by the deletion of k − 1 elements other than x. Since the stream has n elements in
all, at most n/k copies of x can be deleted. Thus, at least one copy of x survives in
the multiset maintained by the algorithm. �

We mention that this algorithm can easily be adapted to produce an ε-deficient
synopsis (mentioned in the previous section) using a table size of 1/ε. Any item
i that occurs more than mi = fi × n times in the data stream will have at least
(fi − ε)n copies in the table T constructed thus. The modified algorithm reports all
items with more than (1/k−ε)n copies in T . This includes items with actual counts
greater than n/k, and no items with count less than (1/k − ε)n.

We also mention that another deterministic approach called Lossy Counting was
proposed by Manku and Motwani [8]. In fact the algorithm is similar in several as-
pects to another algorithm proposed by Misra and Gries [9] for identifying items
of frequency greater than 1/k. However, Misra and Gries were unable to analyze
the space requirements of this algorithm, while Manku and Motwani showed that
their Lossy Counting algorithm requires space k log(N/k). Although the worst case
space requirements of this algorithm are worse than the deterministic algorithm pre-
sented earlier, Manku and Motwani point out that Lossy Counting may perform bet-
ter in practice depending on the distribution of items in the data stream. We omit the
details of the Lossy Counting algorithm and refer the interested reader to [8].

4 Randomized Multiple Counter Methods

Several methods have been proposed where the algorithm maintains a collection of
counters incrementally as it scans the data stream. Every element of the data stream

Top-k Frequent Item Maintenance over Streams 107

causes an update to several counters. Collectively, the set of counters can be used
to estimate the number of times a data item has been seen so far. In other words,
the algorithm maintains a data structure that estimates the number of occurrences so
far for any data item. These estimates have additive errors which can be bounded as
a function of the characteristics of the data stream. Ideally, if we had exact counts
as we scanned the data stream, this could be used to maintain an exact list of the
k most frequent items in the data stream. Similarly, the noisy estimates from the
approximate counting data structure can be used to maintain an approximate list of
the most frequent elements.

The guarantee provided by such an algorithm is that the frequency of any of the k

elements reported by the algorithm is at least the frequency of the kth most frequent
element minus the error guarantee of the count data structure. In addition to the ad-
ditive errors, the data structures also have a failure probability δ for a single query,
i.e., with probability δ, we cannot say anything meaningful about the estimate pro-
duced. In using such a approximate counting data structure for estimating frequent
items, we will need to query the data structure for every element of the data stream.
In order to be conservative, if any of these queries fails, we will say that the fre-
quent item estimation has failed. If we want failure probability δ′ overall, we set the
failure probability for an individual query to be δ = δ′/n. By the union bound, the
probability that any one of the n queries to the data structure fails is at most nδ = δ′.
In the subsequent analysis, the time and space requirements of the data structures is
expressed in terms of the failure probability δ of an individual query. Typically, the
dependence on δ is of the form log(1/δ). In order to translate this into a failure prob-
ability δ′ for the overall frequent items computation, we need to substitute δ = δ′/n.
This usually gives a dependence of the form log(n/δ′) = (logn+ log(1/δ′)).

The first two data structures we present are the Count-Min sketch and the Count
Sketch. The Count-Min sketch was actually developed after the Count Sketch, but
is simpler to explain and analyze. It also has some common features with the Count
Sketch, so we present it first. All the algorithms we present have the property that
they maintain synopsis data structures consisting of a collection of counters that are
additive. Thus element deletions can be handled by performing the reverse opera-
tion to that performed when adding an element—decreasing a counter instead of in-
creasing it. While the first two data structures (the Count-Min sketch and the Count
Sketch) permit updates to the data structure to reflect deletions, the data structure
itself does not contain information that allows the identification of frequent items. In
other words, approximate counts can be obtained, but the determination of frequent
items requires some additional information to be stored. In one pass over the data,
frequent items can be identified while performing updates to the data structure in an
insertions only scenario. This can be done by maintaining a heap containing the top
k elements seen so far and their estimated counts from the synopsis data structure.
When a new element of the stream is encountered, the synopsis data structure is up-
dated. If the new element is already in the heap, its count is incremented. Otherwise,
we obtain an estimate of its count from the synopsis data structure. If this estimate
exceeds the smallest estimated count in the heap, the new element is added to the
heap and the element with the smallest count is evicted.

108 M. Charikar

Fig. 1 The array of counters
used by the Count-Min sketch
data structure, and its
maintenance algorithms.
Shaded cells indicate the
counter values incremented
for an item i

With both inserts and deletes, a separate pass would be required to actually iden-
tify the frequent items. The last approach we describe produces a data structure that
can be updated with insertions and deletions of elements, but also allows identifica-
tion of candidate frequent elements.

4.1 Count-Min Sketch

The Count-Min Sketch was introduced by Cormode and Muthukrishnan [4]. The
data structure (see Fig. 1) consists of a two-dimensional array of counters with
width w and depth d , i.e., there are w × d counters count[i, j] for 1 ≤ i ≤ w and
1 ≤ j ≤ d . Each of the counters is initially set to zero. The data structure takes two
parameters ε and δ that control the error guarantee, w = � 2

ε
� and d = �log 1

δ
�. In ad-

dition, d hash functions h1, . . . , hd : {1, . . . ,m}→ {1, . . . ,w} are chosen uniformly
at random from a pairwise independent family.

When a new item i is seen, one counter in each row is incremented, where
the counter in row j is determined by hj . In other words, count[j,hj (i)] is in-
cremented by 1. At any point of time, the estimated count for item i is given by
m̂i = minj count[j,hj (i)]. The following theorem gives guarantees on the esti-
mates m̂i .

Theorem 1 Let mi be the number of times item i occurs in the data stream and let
n denote the total number of items seen so far. Then, mi ≤ m̂i and with probability
at least 1 − δ, m̂i ≤ mi + εn.

Proof Consider the indicator variable Ii,j,k which is 1 iff i �= k and hj (i) = hj (k),
and 0 otherwise. By the pairwise independence of hash functions hj ,

E[Ii,j,k] = Pr
[
hj (i) = hj (k)

] ≤ ε

2
.

Top-k Frequent Item Maintenance over Streams 109

The last inequality follows from the fact that the range of hj is has size at
least 2/ε. Define random variable Xi,j to be Xi,j = ∑m

k=1 Ii,j,kmk . Note that
count[j,hj (i)] = ai +Xi,j . Clearly, m̂i = minj count[j,hj (i)] ≥ mi . For the other
direction, note that

E[Xi,j] = E

(
m∑

k=1

Ii,j,kmk

)

≤
m∑

k=1

mk E[Ii,j,k] ≤ ε

2
n

by linearity of expectation. By the Markov inequality,

Pr[m̂i > mi + εn] = Pr
[∀j count

[
j,hj (i) > mi + εn

]]

= Pr[∀j mi +Xi,j > mi + εn]
= Pr

[∀j Xi,j > 2 E[Xi,j]
]
< 2−d ≤ δ. �

4.2 Count Sketch

The Count Sketch was introduced by Charikar, Chen and Farach-Colton [2]. These
techniques are particularly suited to heavy-tailed distributions and significantly out-
perform other methods discussed for such distributions, e.g., for Zipfian distribu-
tions with exponent less than 1. Before we go into the details of the data structure
and its analysis, we give a simpler scheme for estimating the most frequent element.
This will serve as a motivation for the full construction later.

Estimating the Most Frequent Element

Consider the following scheme for estimating the count of the most frequent ele-
ment. We maintain a single counter c that is initially zero. We pick a hash function
s : {1, . . . ,m}→ {+1,−1} from a pairwise independent family. When item i is seen,
we add s(i) to the counter. At any point of time, the counter value is

∑m
i=1 mis(i),

where mi is the number of occurrences of item i so far. The estimate m̂i of the count
of i is simply s(i)× c.

Lemma 1 E[m̂i] = mi and Var[m̂i] = (
∑m

j=1(mj)
2)− (mi)

2.

Proof Note that E[s(i)s(j)] = 0 for i �= j by the pairwise independence of s. This
is the crucial fact underlying the analysis.

m̂i = s(i)

m∑

j=1

mjs(j),

E[m̂i] =
m∑

j=1

mj E
[
s(i)s(j)

] = mi.

110 M. Charikar

The last equality follows from the pairwise independence of s. Now, we analyze the
variance of m̂i :

(m̂i)
2 =

(

s(i)

m∑

j=1

mjs(j)

)2

,

E
[
(m̂i)

2] =
∑

j,k

mjmk E
[
s(j)s(k)

]

=
∑

j

(mj)
2 +

∑

j �=k

mjmk E
[
s(j)s(k)

] =
∑

j

(mj)
2,

Var[m̂i] = E
[
(m̂i)

2]− (
E[m̂i]

)2 =
∑

j

(mj)
2 −m2

i . �

In general, the variance of this estimator may be too high. This is easily addressed
by taking multiple independent copies of the estimator and averaging them. Suppose
we take d independent copies of this estimator and return the average of their values.
Then the following lemma shows that the estimate obtained is tightly concentrated
around the mean, where the concentration can be made tighter by increasing d .

Lemma 2 Let m̂i
d be the estimator obtained by averaging d independent copies

of the estimator above. If the variance of each individual estimator is V , then
E[m̂i

d] = mi , Var[m̂i
d] = V/d and further, with probability 1 − δ, |m̂i

d − mi | <√
(V/d) log(1/δ).

Notice that the error guarantee depends on the sum of the squares of the counts
of the items. This makes this technique especially attractive for heavy tailed distri-
butions where the most frequent element occupies a relatively small fraction of the
data stream. Consider, for example, a Zipfian distribution with exponent 1/2. In this
case, the most frequent element occupies an O(1/

√
m) fraction of the data stream.

In order to detect this, the other methods we discussed would require Ω(
√

m) space.
However, the method discussed would identify the most frequent element with high
probability using only O(logm) space.

Estimating the Top k Elements

We now adapt the ideas presented in the previous section to identifying the top k

elements. The main obstacle in doing this is that the error of the estimator presented
previously might be too high for identifying the lowest frequency element we are
interested in—the kth most frequent element. The problem is that the variance is
affected by the sum of squares of the counts of the top k items. To address this issue,
we replace each counter by a row of counters, producing a two-dimensional array
of counters. Each item will now update exactly one counter in every row, chosen
by a hash function. By doing this, we ensure that high frequency elements typically
update different counters in a row. Consider the kth high frequency element that was

Top-k Frequent Item Maintenance over Streams 111

Fig. 2 The array of counters
used by the Count Sketch data
structure, and its maintenance
algorithms. Shaded cells
indicate the counter values
modified for an item i

potentially problematic before. The counter it is assigned to in every row is typically
not affected by any other high frequency element, i.e., none of the other top k items
are assigned to the same counter. Thus, the variance associated with this counter is
usually not high. Note that we cannot guarantee this, but we can pick the number of
counters in each row to be large enough so that this happens with high probability.
However, there is still a small probability that the counter in a row is tainted by other
high frequency elements. If we average counter values in each row as before, a small
number of tainted counters could affect the final estimate adversely. To get around
this problem, we take the median of the counters assigned to an element in every
row. As long as less than half the rows have tainted counters, the median estimator
will be good.

The data structure (see Fig. 2) consists of a two-dimensional array of coun-
ters with width w and depth d , i.e., there are w × d counters count[i, j] for
1 ≤ i ≤ w and 1 ≤ j ≤ d . d = O(log(1/δ)) where δ is a parameter that specifies
the desired error probability. w controls the additive error in the frequency esti-
mates, however the dependence is somewhat complex. w must be set large enough
to make the additive error acceptably small. Each of the counters is initially set
to zero. d hash functions h1, . . . , hd : {1, . . . ,m} → {1, . . . ,w} are chosen uni-
formly at random from a pairwise independent family. In addition, d hash functions
s1, . . . , sd : {1, . . . ,m}→ {+1,−1} are chosen uniformly at random from a pairwise
independent family.

When a new item i is seen, one counter in each row is incremented or decre-
mented, where the counter in row j is determined by hj . The value sj (i) is added
to counter count[j,hj (i)]. At any point of time, the estimated count for item i

is computed as follows. The estimated count of item i for row j is given by
m̂i(j) = sj (i) × count[j,hj (i)]. The overall estimates count for item i is given by
m̂i = medianj m̂i(j). It will be convenient to express the error guarantee in terms of
the following parameter γ ,

γ =
√∑

i>w/8(mi)2

w
. (1)

112 M. Charikar

The following theorem gives guarantees on the estimates m̂i .

Theorem 2 With probability 1 − δ, |m̂i −mi | ≤ 8γ .

Proof We will first prove that with constant probability, the counter in any row
provides a good estimate of mi . Then, we will use this to show that the median of
counter values over all rows is a good estimator.

Let Aj(i) be the set of items that map to the same counter that item i maps to
in the j th row if the data structure, i.e., Aj(i) = {i′ : i′ �= i, hj (i

′) = hj (i)}. Let
A>

j (i) be the elements of Aj(i) other than the w/8 most frequent elements. Let

vj (i) = ∑
i′∈Aj (i)(mi′)2. v>

j (i) is defined analogously for A>
j (i).

We first claim that E[m̂i(j)] = mi and Var[m̂i(j)] = vj (i):

count
[
j,hj (i)

] = misj (i)+
∑

i′∈Aj (i)

mi′sj
(
i′
)
,

m̂i(j) = sj (i)× count
[
j,hj (i)

] = mi +
∑

i′∈Aj (i)

mi′sj
(
i′
)
sj (i),

E
[
m̂i(j)

] = mi +
∑

i′∈Aj (i)

mi′ E
[
sj

(
i′
)
sj (i)

] = mi,

Var
[
m̂i(j)

] = E
[(

m̂i(j)−mi

)2] = E

[∑

i1,i2∈Aj (i)

mi1mi2sj (i1)sj (i2)

]

=
∑

i′inAj (i)

(mi′)
2 +

∑

i1,i2∈Aj (i),i1 �=i2

mi1mi2 E
[
sj (i1)sj (i2)

]

=
∑

i′inAj (i)

(mi′)
2 = vj (i).

Further, we claim that

E
[
v>
j (i)

] =
∑

i′>w/8(mi′)2

w
.

Note that

v>
j (i) =

∑

i′∈Aj (i),i′>w/8

(mi′)
2,

E
[
v>
j (i)

] =
∑

i′>w/8,i′ �=i

(mi′)
2 Pr

[
i′ ∈Aj(i)

]

≤
∑

i′>w/8

(mi′)
2 × (1/w),

where the last inequality follows from the pairwise independence of hj .
We will say that m̂i(j) is good if |m̂i(j)−mi | ≤ 8γ . Now we show that this hap-

pens with probability strictly greater than 1/2. To do this, we define three bad events

Top-k Frequent Item Maintenance over Streams 113

and show that each of them occurs with small probability. If none of them occur,
then the estimator m̂i(j) is good. Since the probability that any element i′ is present
in Aj(i) is 1/w (by pairwise independence of hj), the probability that Aj(i) con-
tains any of the top w/8 elements is at most 1/8 (by the union bound). Call this event
COLLISIONSj (i). Note that if COLLISIONSj (i) does not occur, then A>

j (i) = Aj(i)

and v>
j (i) = vj (i). Since E[v>

j (i)] =
∑

i′>w/8(mi′)2

w
, the probability that v>

j (i) is

greater than 8
∑

i′>w/8(mi′)2

w
is less than 1/8 by Markov’s inequality. Call this event

HIGH-VARIANCEj (i). Note that if COLLISIONSj (i) and HIGH-VARIANCEj (i)

both do not occur then Var[m̂i(j)] = vj (i) = v>
j (i) ≤ 8

∑
i′>w/8(mi′)2

w
. By Cheby-

shev’s inequality,

Pr
[∣∣m̂i(j)−mi

∣∣ >

√
8 Var

[
m̂i(j)

]]
< 1/8.

Call this last event LARGE-DEVIATIONj (i). The probability of each of the three bad
events we defined is at most 1/8. By the union bound, with probability at least 1 −
1/8−1/8−1/8 = 5/8, none of the events COLLISIONSj (i), HIGH-VARIANCEj (i),
LARGE-DEVIATIONj (i) occur. In this case,

∣∣m̂i(j)−mi

∣∣ ≤
√

64

∑
i′>w/8(mi′)2

w
= 8γ.

To finish the proof, we need to show that |m̂i −mi | ≤ 8γ with probability at least
1 − δ. Recall that m̂i = medianj m̂i(j). If an index j ∈ [1, d] satisfies the property
that m̂i(j) is good, then we call j a good index. If we can show that more than
d/2 indices j ∈ [1, d], are good with high probability, this would imply the required
error bound for m̂i . This follows easily from Chernoff bounds, since the expected
number of good indices is 5d/8 and d = Ω(log(1/δ)). �

4.3 Group-Testing Approaches

Cormode and Muthukrishnan [3] gave an algorithm for identifying frequent items
based on group-testing ideas. The goal is to identify all items which occur with
frequency larger than 1/k. The techniques presented here are applicable to data
streams with both insert and delete operations.

To motivate the technique, we first describe a scheme to find a majority element,
i.e., an element with frequency more than 1/2. Consider the elements 1, . . . ,m rep-
resented in binary. Let r = �log2 m� for each bit position j ∈ {1, . . . , r}, we consider
the subset of items Sj consisting of all elements that have a 1 in bit position j . Also
define S0 to be the set of all items. We maintain r + 1 counters C0, . . . ,Cr , initially
zero, where Cj is the total count of all elements in set Sj . Clearly these counters
can be maintained incrementally in one scan of the data stream, by incrementing
appropriate counters when an element is added and decrementing counters when an

114 M. Charikar

element in deleted. (We will assume that the total number of deletions of an element
never exceed the number of insertions.)

How do we identify a majority element using these counters? Suppose there is
a majority element x. Each bit of the binary representation of this element can be
deduced from the set of counters maintained. Note that C0 is the total count of all
elements in S0, i.e., all the elements. Consider the j th bit of the majority element x.
If this bit is 1, then x ∈ Sj . Then the value of Cj exceeds C0/2. If this bit is 0,
then x /∈ Sj . Then the value of Cj is less than C0/2. Thus comparing the value Cj

to C0/2 enables us to identify the j th bit of the majority element. Note that this
scheme operates correctly if there is indeed a majority element. If no such element
exists, it will still report a majority element, i.e., it comes up with false positives.

Now we adapt this scheme to identify elements whose frequency exceeds 1/k.
Note that there are fewer than k such elements—call them hot items. The main idea
is to divide the elements into a small number of (overlapping) subsets and run a
modification of the majority identification scheme for each subset. The collection
of subsets is constructed in such a way that for every hot item x, there is a subset
for which x is the majority element. To achieve this goal, for every hot item x, we
ensure that there is a good set S containing x such that the total count of items
(other than x) in S is less than 1/k fraction of the total count of all elements. If such
a good set S exists, indeed x will be the majority element for that set S and will be
identified.

In order to control false positives, we would like to ensure that items that are
reported by this scheme have high frequency. Ideally, we would like to guarantee
that all items reported have frequency at least 1/k. We relax this slightly to say that
for each item reported by this scheme, with high probability, it has frequency at least
(1 − ε)/k. In order to ensure this, before reporting x as a hot item, we check that
the count of each set containing x is at least 1/k fraction of the total count. Clearly,
this condition will be satisfied if x is a hot item. Suppose x has frequency less than
(1 − ε)/k. Consider a subset S containing x. We say that S is light for x if the total
count of all items (other than x) in S is less than ε/k. Now if x has frequency less
than (1 − ε)/k and a set S is light for x, then x will not be reported as a hot item
(because the count of elements in S is less than 1/k fraction of the total count).
To control false positives, we would like to ensure that for any item x, there is at
least one light set for x. (Note that requiring the existence of a light set is a stronger
condition than requiring the existence of a good set.)

How do we construct such a collection of subsets? In fact, the subsets are con-
structed by a randomized algorithm which ensures the above properties with high
probability. In other words, for any set of at most k hot items, the randomized con-
struction of subsets ensures that with probability 1− δ, every hot item x has a good
subset S containing it. In addition, for any item x, we ensure that with high prob-
ability, there is a light set for x. This implies that for each item reported by this
scheme, with high probability, it has frequency at least (1 − ε)/k.

Roughly speaking, the subsets are constructed at random by placing elements
in them with probability ε/2k. This has the effect that the expected count of all
elements in the set is a ε/2k fraction of the total count. More precisely, the subsets

Top-k Frequent Item Maintenance over Streams 115

are constructed using the universal hash functions given by Carter and Wegman. We
fix a prime p ∈ [m,2m], draw a uniformly and at random from [1,p − 1] and b

uniformly and at random from [0,p − 1]. Let W = 2k/ε for ε ≤ 1 (assume that ε

is chosen do that W is an integer). Consider the hash function ha,b(x) = ((ax +
b modp)modW). This hash function satisfies the property that

Proposition 1 Over all choices of a and b, for x �= y, Pr[ha,b(x) = ha,b(y)] ≤
ε/2k.

We use this hash function family to define the subsets Sa,b,i = {x|ha,b(x) = i}. Note
that there are 2k/ε such sets for every choice of a and b, and every element belongs
to one of the 2k/ε sets. For every pair of items, for randomly chosen a and b, the
probability that both items are in the same set Sa,b,i is at most ε/2k. In fact, we
choose log(k/δ) such pairs a, b and construct 2k/ε sets corresponding to each of
them. This gives a total of (2k/ε) log(k/δ) sets.

We show that this construction has the desired probabilities with high probability.

Lemma 3 With probability at least 1 − δ, every hot item belongs to at least one
good subset.

Proof Consider a hot item x. For a random choice of a, b, suppose x ∈ Sa,b,i .
The expected total count of other items that land into the same set as Sa,b,i is at
most an ε/2k fraction of the total count of all items. Now, with probability at most
ε/2 ≤ 1/2, the total count of all such elements is greater than a 1/k fraction of the
total count—this follows from Markov’s inequality. In other words, with probability
at least 1/2, the total count of all elements other than x that fall into Sa,b,i is at most
a 1/k fraction of the total count. Thus, the set Sa,b,i is good for x with probability
at least 1/2 (over the random choice of a, b). Since we pick log(k/δ) independent
random a, b pairs, the probability that none of them yield a good set for x is at most
(1/2)log(k/δ) = δ/k. We consider this a failure for the hot item x. Now, there are at
most k hot items. By the union bound, the probability that there is a failure for any
of the hot items is at most k × (δ/k) = δ. Hence, with probability at least 1 − δ,
every hot item belongs to at least one good subset. �

Lemma 4 For any item x, with probability 1 − δ/k, there is a light set for x.

Proof Consider an item x. We will show that there is no light set for x with proba-
bility at most δ/k. The proof is very similar to the previous one. For a random choice
of a, b, suppose x ∈ Sa,b,i . The expected total count of other items that land into the
same set as Sa,b,i is at most an ε/2k fraction of the total count of all items. Now,
with probability at most 1/2, the total count of all such elements is greater than a
ε/k fraction of the total count—from Markov’s inequality. Thus, the set Sa,b,i is
light for x with probability at least 1/2 (over the random choice of a, b). Since we
pick log(k/δ) independent random a, b pairs, the probability that none of them is
light for x is at most (1/2)log(k/δ) = δ/k. �

116 M. Charikar

We now put all the pieces together and describe the operation of the final al-
gorithm. We pick T = log(k/δ) random pairs a, b as described before. These im-
plicitly define (2k/ε) log(k/δ) subsets of items. For each such subset, we maintain
1 + �logm� counters similar to the majority identification scheme discussed ear-
lier. For each subset, we have one counter corresponding to each bit position and
one corresponding to all the items in the subset. In addition, we have one common
counter C for the total count of all the items 1, . . . ,m. The purpose of this common
counter is to help reduce false positives.

When an item x is encountered, we determine the T sets it belongs to by eval-
uating the hash function ha,b(x) for the T pairs a, b. For each such set, we update
the 1 + �logm� counters for that set to reflect an insertion or a deletion of x as the
case may be. In addition, we update the common counter C for all items.

As explained before, the subset construction ensures that with high probability,
every hot item is contained in a good subset. If indeed a hot item is contained in a
good subset x, it is the majority element in that subset and will be detected correctly
by the majority detection scheme for that subset. The potential problem is that sev-
eral items other than the hot items may also be reported. The subset construction
ensures that for every item x, with high probability, there is a light set for x. Recall
that before reporting a hot item, we check that the count for each set containing the
item is at least a 1/k fraction of the total count. This ensures that for every item
reported, with high probability, the frequency is at least (1 − ε)/k.

In order to further alleviate false positives, we can perform some simple tests to
eliminate some of the sets which are not good. For every subset S, recall that we
maintain a set of counters C0, . . . ,Cr . In addition, we have a common counter C. If
S is a good set, we claim that for every j ∈ [1, r], exactly one of Cj and C0 − Cj

must be greater than C/k. We first explain why the failure of this condition implies
that S is not a good set. If neither of Cj and C0 − Cj is greater than C/k then
clearly S does not contain a hot item. Further, if both of them are greater than C/k,
then either S contains two hot items, or S contains only one hot item but the sum of
counts of the remaining items is greater than a 1/k fraction of the total count. In all
these cases, S is not a good set.

5 Lower Bounds

In this section, we describe lower bounds on the space requirements for comput-
ing frequent elements exactly. These bounds were obtained by Alon, Matias and
Szegedy [1] using a theorem from communication complexity. Informally, commu-
nication complexity studies a setting where two parties A with input x and B with
input y want to jointly compute a function f (x, y). Communication complexity
measures the minimum number of bits that need to be exchanged by A and B in
order to compute f (x, y). This is a commonly used paradigm to show lower bounds
on the space requirements of streaming algorithms. Imagine the input stream to be
broken into two parts—the first half x and the second half y. Then the final output

Top-k Frequent Item Maintenance over Streams 117

of the streaming algorithm is a function of both x and y—call this f (x, y). Con-
sider two players A and B as follows: A runs the algorithm on x (the first half of the
input) and B runs the algorithm on y (the second half of the input) using the output
produced by A. The size of the storage space controls the communication from A
to B (there is no communication in the other direction). Hence, a lower bound on
the communication complexity of f (x, y) is a lower bound on the storage space
required by the algorithm.

We first give a simple counting argument to show that a deterministic algorithm
that outputs the most frequent element (exactly) requires Ω(m) space. This illus-
trates the basic idea underlying the lower bound for randomized algorithms.

Theorem 3 Any deterministic algorithm to produce the most frequent element ex-
actly requires Ω(m) bits of storage.

Proof Suppose we have a deterministic algorithm to determine the most frequent
element using s bits. We will show that s ≥ m. Consider the input stream to be
constructed as follows: Let S be a set of m/2 elements from [1,m], and let x1, x2
be a pair of elements from [1,m] such that exactly one of x1, x2 is in S. The input
consists of the elements of S in arbitrary order followed by the elements x1, x2. The
input is constructed so that one of x1 or x2 is the most frequent element in the data
stream (depending on which of x1, x2 ∈ S) since this element occurs twice and all
other elements occur at most once. We claim that any deterministic algorithm that
correctly identifies the repeated element for all inputs of the form (S, x1, x2) must
use Ω(m) bits. Consider the state of the storage after the m/2 elements of S have
been seen. We claim that the state of the storage must be different for every possible
set S. This would imply that 2s ≥ (

m
m/2

)
, and hence s = Ω(m).

Why should the state of the storage be different for every set S? Suppose the
state is the same for two distinct sets S1, S2. Then consider x1 ∈ S1 − S2 and
x2 ∈ S2 − S1. The input (S1, x1, x2) has x1 as the most frequent element, while
the input (S2, x1, x2) has x2 as the most frequent element. Consider the operation
of the algorithm on the two inputs (S1, x1, x2) and (S2, x1, x2). By our assumption,
after either S1 or S2 is processed initially, the state of the storage is the same. Be-
yond this point, the algorithm sees the same input (x1, x2). Hence the final output
of the algorithm is the same for both inputs. This means that the algorithm makes a
mistake on one of the inputs. �

The basic idea in the above proof was to construct the input from two sets: a set
S of m/2 elements and a two element set {x1, x2} which intersects S in exactly one
element. Determining the most frequent element for this data stream amounts to
computing the intersection of these two sets. A lower bound on the storage space
can be derived by considering a communication complexity setting with two play-
ers, A and B, where player A has the first set, player B has the second set and
the goal is to compute the intersection of the two sets. We showed that computing
this intersection correctly for all such inputs requires Ω(m) bits of communication
from A to B. This in turn means that a deterministic algorithm for frequent elements

118 M. Charikar

needs Ω(m) bits of storage space. How about randomized algorithms for computing
frequent elements? The same proof idea works—one can construct inputs by con-
catenating the elements of two sets such that estimating the most frequent element
for those inputs amounts to computing the intersection of the two sets. A theorem of
Kalyanasundaram and Schnitger [6] shows that computing such an intersection re-
quires Ω(m) bits of communication.1 Alon, Matias and Szegedy [1] used the result
of [6] to show the following bound for randomized algorithms.

Theorem 4 Any randomized algorithm to produce the most frequent element cor-
rectly with high probability requires Ω(m) bits of storage.

We also describe an argument along similar lines given by Karp, Shenker and
Papadimitriou [7], which shows that any streaming algorithm that computes hot
items exactly, i.e., identifies exactly the set of items with counts exceeding n/k,
must use Ω(m log(n/m)) space. In this proof, we assume that n > 4m > 16k.

Theorem 5 Any streaming algorithm that identifies exactly, the set of items with
counts exceeding n/k, needs Ω(m log(n/m)) bits of storage in the worst case.

Proof We will construct a large set K of sequences of length n containing m distinct
items such that no item occupies more than 1/k fraction of the sequence. Consider
the operation of the streaming algorithm on the sequences in K . We claim that the
streaming algorithm must reach a distinct memory configuration for each of the
sequences in K . Suppose to the contrary, there are two distinct sequences P and Q

that result in the same configuration. Then there must be some element x that occurs
a different number of times in P and Q. It is then possible to construct a sequence
R that can be appended to P and Q, such that exactly one of the sequences PR

and QR have x as a hot item, i.e., an item that occupies more than 1/k fraction
of the sequence. Since the algorithm reached the same memory configuration on
processing P and Q, it must produce the same output for the sequences PR and
QR and hence is incorrect on some input.

This argument implies that the storage space used by the algorithm is Ω(log |K|).
In fact such as set K can be constructed such that |K| ≥ (
(n/2m)�)m−1. This im-
plies a lower bound of Ω(m log(n/m)) on the storage space. �

References

1. N. Alon, Y. Matias, M. Szegedy, The space complexity of approximating the frequency mo-
ments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

1Strictly speaking, their lower bound applies to the decision problem of checking whether the two
sets intersect or not. However, it is easy to transform pairs of sets into an input for the frequent items
algorithm such that the most frequent item is different depending on whether the sets intersect or
not.

Top-k Frequent Item Maintenance over Streams 119

2. M. Charikar, K. Chen, M. Farach-Colton, Finding frequent items in data streams. Theor. Com-
put. Sci. 312(1), 3–15 (2004)

3. G. Cormode, S. Muthukrishnan, What’s hot and what’s not: tracking most frequent items dy-
namically, in Proceedings of PODS (2003), pp. 296–306

4. G. Cormode, S. Muthukrishnan, An improved data stream summary: the count-min sketch and
its applications, in Proceedings of LATIN (2004), pp. 29–38

5. E.D. Demaine, A. López-Ortiz, J.I. Munro, Frequency estimation of internet packet streams
with limited space, in Proceedings of ESA (2002), pp. 348–360

6. B. Kalyanasundaram, G. Schnitger, The probabilistic communication complexity of set inter-
section. SIAM J. Discrete Math. 5(4), 545–557 (1992)

7. R.M. Karp, S. Shenker, C.H. Papadimitriou, A simple algorithm for finding frequent elements
in streams and bags. ACM Trans. Database Syst. 28, 51–55 (2003)

8. G.S. Manku, R. Motwani, Approximate frequency counts over data streams, in Proceedings of
VLDB (2002), pp. 346–357

9. J. Misra, D. Gries, Finding repeated elements. Sci. Comput. Program. 2, 143–152 (1982)

Distinct-Values Estimation over Data Streams

Phillip B. Gibbons

1 Introduction

Estimating the number of distinct values in a data set is a well-studied problem
with many applications [1–34]. The statistics literature refers to this as the prob-
lem of estimating the number of species or classes in a population (see [4] for a
survey). The problem has been extensively studied in the database literature, for a
variety of uses. For example, estimates of the number of distinct values for an at-
tribute in a database table are used in query optimizers to select good query plans.
In addition, histograms within the query optimizer often store the number of distinct
values in each bucket, to improve their estimation accuracy [29, 30]. Distinct-values
estimates are also useful for network resource monitoring, in order to estimate the
number of distinct destination IP addresses, source-destination pairs, requested urls,
etc. In network security monitoring, determining sources that send to many distinct
destinations can help detect fast-spreading worms [12, 32].

Distinct-values estimation can also be used as a general tool for duplicate-
insensitive counting: Each item to be counted views its unique id as its “value”,
so that the number of distinct values equals the number of items to be counted.
Duplicate-insensitive counting is useful in mobile computing to avoid double-
counting nodes that are in motion [31]. It can also be used to compute the number
of distinct neighborhoods at a given hop-count from a node [27] and the size of the
transitive closure of a graph [7]. In a sensor network, duplicate-insensitive counting
together with multi-path in-network aggregation enables robust and energy-efficient
answers to count queries [8, 24]. Moreover, duplicate-insensitive counting is a build-
ing block for duplicate-insensitive computation of other aggregates, such as sum and
average.

P.B. Gibbons (B)
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: gibbons@cs.cmu.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_6

121

mailto:gibbons@cs.cmu.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_6

122 P.B. Gibbons

stream S1: C, D, B, B, Z, B, B, R, T, S, X, R, D, U, E, B, R, T, Y, L, M, A, T, W
stream S2: T, B, B, R, W, B, B, T, T, E, T, R, R, T, E, M, W, T, R, M, M, W, B, W

Fig. 1 Two example data streams of N = 24 items from a universe {A,B, . . . ,Z} of size n = 26.
S1 has 15 distinct values while S2 has 6

More formally, consider a data set, S, of N items, where each item is from a
universe of n possible values. Because multiple items may have the same value,
S is a multi-set. The number of distinct values in S, called the zeroth frequency
moment F0, is the number of values from the universe that occur at least once in S.
In the context of this chapter, we will focus on the standard data stream scenario
where the items in S arrive as an ordered sequence, i.e., as a data stream, and the
goal is to estimate F0 using only one pass through the sequence and limited working
space memory. Figure 1 depicts two example streams, S1 and S2, with 15 and 6
distinct values, respectively.

The data structure maintained in the working space by the estimation algorithm
is called a synopsis. We seek an estimation algorithm that outputs an estimate F̂0,
a function of the synopsis, that is guaranteed to be close to the true F0 for the stream.
We focus on the following well-studied error metrics and approximation scheme:

• relative error metric—the relative error of an estimate F̂0 is |F̂0 − F0|/F0.
• ratio error metric—the ratio error of an estimate F̂0 is max(F0/F̂0, F̂0/F0).
• standard error metric—the standard error of an estimator Y with standard de-

viation σY (F0) is σY (F0)/F0.
• (ε, δ)-approximation scheme—an (ε, δ)-approximation scheme for F0 is a ran-

domized procedure that, given any positive ε < 1 and δ < 1, outputs an estimate
F̂0 that is within a relative error of ε with probability at least 1 − δ.

Note that the standard error σ provides a means for an (ε, δ) trade-off: Under
distributional assumptions (e.g., Gaussian approximation), the estimate is within
ε = σ,2σ,3σ relative error with probability 1 − δ = 65 %, 95 %, 99 %, respec-
tively. In contrast, the (ε, δ)-approximation schemes in this chapter do not rely on
any distributional assumptions.

In this chapter, we survey the literature on distinct-values estimation. Section 2
discusses previous approaches based on sampling or using large space synopses.
Section 3 presents the pioneering logarithmic space algorithm developed by Flajo-
let and Martin [13], as well as related extensions [1, 11]. We also discuss practical
issues in using these algorithms in practice. Section 4 presents an algorithm that pro-
vides arbitrary precision ε [17], and a variant that improves on the space bound [2].
Section 5 gives lower bounds on the space needed to estimate F0 for a data stream.
Finally, Sect. 6 considers distinct-values estimation in a variety of important scenar-
ios beyond the basic data stream set-up, including scenarios with selection predi-
cates, deletions, sliding windows, distributed streams, and sensor networks. Table 1
summarizes the main algorithms presented in this chapter.

Distinct-Values Estimation over Data Streams 123

Table 1 Summary of the main algorithms presented in this chapter for distinct-values estimation
over a data stream of values

Algorithm Comment/Features

Linear counting [33] linear space, very low standard error

FM [13], PCSA [13] log space, good in practice, standard error

AMS [1] realistic hash functions, constant ratio error

LogLog [11], Super-LogLog [11] reduces PCSA synopsis space, standard error

Coordinated sampling [17] (ε, δ)-approximation scheme

BJKST [2] improved space bound, (ε, δ)-approximation scheme

2 Preliminary Approaches and Difficulties

In this section, we consider several previously studied approaches to distinct-values
estimation and the difficulties with these approaches. We begin with previous algo-
rithms based on random sampling.

2.1 Sampling-Based Algorithms

A common approach for distinct-values estimation from the statistics literature (as
well as much of the early work in the database literature until the mid-1990s) is
to collect a sample of the data and then apply sophisticated estimators on the dis-
tribution of the values in the sample [4, 5, 19–22, 25, 26]. This extended research
focus on sampling-based estimators is due in part to three factors. First, in the ap-
plied statistics literature, the option of collecting data on more than a small sample
of the population is generally not considered because of its prohibitive expense.
For example, collecting data on every person in the world or on every animal of
a certain species is not feasible. Second, in the database literature, where scanning
an entire large data set is feasible, using samples to collect (approximate) statistics
has proven to be a fast and effective approach for a variety of statistics [6]. Third,
and most fundamental to the data streams context, the failings of existing sampling-
based algorithms to accurately estimate F0 (all known sampling-based estimators
provide unsatisfactory results on some data sets of interest [5]) have spurred an on-
going focus on devising more accurate algorithms.

F0 is a particularly difficult statistic to estimate from a sample. To gain intuition
as to why this is the case, consider the following 33 % sample of a data stream of
24 items:

B,B,T ,R,E,T ,M,W.

Given this 33 % sample (with its 6 distinct values), does the entire stream have 6
distinct values, 18 distinct values (i.e., the 33 % sample has 33 % of the distinct
values), or something in between? Note that this particular sample can be obtained
by taking every third item of either S1 (where F0 = 15) or S2 (where F0 = 6) from

124 P.B. Gibbons

for i := 0, . . . , s − 1 do M[i] := 0
foreach (stream item with value v) do

M[h(v)] := 1
let z := |{i :M[i] = 0}|
return s ln s

z

Fig. 2 The linear counting algorithm [33]

Fig. 1. Thus, despite sampling a large (33 %) percentage of the data, estimating F0
remains challenging, because the sample can be viewed as fairly representative of
either S1 or S2—two streams with very different F0’s. In fact, in the worse case,
all sampling-based F0 estimators are provably inaccurate: Charikar et al. [5] proved
that estimating F0 to within a small constant factor (with probability > 1

2) requires
(in the worst case) that nearly the entire data set be sampled (see Sect. 5).

Thus, any approach based on a uniform sample of say 1 % of the data (or oth-
erwise reading just 1 % of the data) is unable to provide good guaranteed error
estimates in either the worst case or in practice. Highly-accurate answers are possi-
ble only if (nearly) the entire data set is read. This motivates the need for an effective
streaming algorithm.

2.2 Streaming Approaches

Clearly, F0 can be computed exactly in one pass through the entire data set, by
keeping track of all the unique values observed in the stream. If the universe is
[1..n], a bit vector of size n can be used as the synopsis, initialized to 0, where bit i is
set to 1 upon observing an item with value i. However, in many cases the universe is
quite large (e.g., the universe of IP addresses is n = 232), making the synopsis much
larger than the stream size N ! Alternatively, we can maintain a set of all the unique
values seen, which takes F0 log2 n bits because each value is log2 n bits. However,
F0 can be as large as N , so again the synopsis is quite large. A common approach
for reducing the synopsis by (roughly) a factor of log2 n is to use a hash function h()

mapping values into a Θ(n) size range, and then adapting the aforementioned bit
vector approach. Namely, bit h(i) is set upon observing an item with value i. Whang
et al. [33], for example, proposed an algorithm, called linear counting, depicted in
Fig. 2. The hash function h() in the figure maps each value v uniformly at random
to a number in [0, s − 1]. They show that using a load factor F0/s = 12 provides
estimates to within a 1 % standard error. There are two limitations of this algorithm.
First, we need to have a good a priori knowledge of F0 in order to set the hash table
size s. Second, the space is proportionate to F0, which can be as large as n. Note that
the approximation error arises from collisions in the hash table, i.e., distinct values
in the stream mapping to the same bit position. To help alleviate this source of error,
Bloom filters (with their multiple hash functions) have been used effectively [23],
although the space remains Θ(n) in the worst case.

Distinct-Values Estimation over Data Streams 125

for i := 0, . . . ,L− 1 do M[i] := 0
foreach (stream item with value v) do {

b := the largest i ≥ 0 such that the i rightmost bits in h(v) are all 0
M[b] := 1

}
let Z := min{i : M[i] = 0} // i.e., the least significant 0-bit in M

return
 2Z

0.77351 �

Fig. 3 The FM algorithm [13], using only a single hash function and bit vector

The challenge in estimating F0 using o(n) space is that because there is insuffi-
cient space to keep track of all the unique values seen, it is impossible to determine
whether or not an arriving stream value increases the number of distinct values seen
thus far.

3 Flajolet and Martin’s Algorithm

In this section, we present Flajolet and Martin’s (FM) pioneering algorithm for
distinct-values estimation. We also describe a related algorithm by Alon, Matias,
and Szegedy. Finally, we discuss practical issues and optimizations for these algo-
rithms.

3.1 The Basic FM Algorithm

Over two decades ago, Flajolet and Martin [13] presented the first small space
distinct-values estimation algorithm. Their algorithm, which we will refer to as the
FM algorithm, is depicted in Fig. 3. In this algorithm, the L = Θ(log(min(N,n)))

space synopsis consists of a bit vector M initialized to all 0, where N is the num-
ber of items and n is the size of the universe. The main idea of the algorithm is
to let each item in the data set select at random a bit in M and set it to 1, with
(quasi-)geometric distribution, i.e., M[i] is selected with probability (≈) 2−(i+1).
This selection is done using a hash function h that maps each value v uniformly
at random to an integer in [0,2L − 1], and then determining the largest b such
that the b rightmost bits in h(v) are all 0. In this way, each distinct value gets
mapped to b = i with probability 2−(i+1). For the vector length L, it suffices to
take any number > log2(F0)+ 4 [13]. As F0 is unknown, we can conservatively use
L = log2(min(N,n))+ 5.

The intuition behind the FM algorithm is as follows. Using a hash function en-
sures that all items with the same value will make the same selection; thus the final
bit vector M is independent of any duplications among the item values. For each
distinct value, the bit b is selected with probability 2−(b+1). Accordingly, we expect

126 P.B. Gibbons

Item value v Hash Function 1 Hash Function 2 Hash Function 3
b M[·] b M[·] b M[·]

15 1 00000010 1 00000010 0 00000001
36 0 00000011 1 00000010 0 00000001
4 0 00000011 0 00000011 0 00000001

29 0 00000011 2 00000111 1 00000011
9 3 00001011 0 00000111 0 00000011

36 0 00001011 1 00000111 0 00000011
14 1 00001011 0 00000111 1 00000011
4 0 00001011 0 00000111 0 00000011

Z = 2 Z = 3 Z = 2

Estimate F̂0 =
 2(2+3+2)/3

0.77351 � = 6

Fig. 4 Example run of the FM algorithm on a stream of 8 items, using three hash functions. Each
M[·] is depicted as an L = 8 bit binary number, with M[0] being the rightmost bit shown. The
estimate, 6, matches the number of distinct values in the stream

M[b] to be set if there are at least 2b+1 distinct values. Because bit Z − 1 is set but
not bit Z, there are likely greater than 2Z but fewer than 2Z+1 distinct values. Flajo-
let and Martin’s analysis shows that E[Z] ≈ log2(0.77351 ·F0), so that 2Z/0.77351
is a good choice in that range.

To reduce the variance in the estimator, Flajolet and Martin take the average over
tens of applications of this procedure (with different hash functions). Specifically,
they take the average, Z̄, of the Z’s for different hash functions and then compute

2Z̄/0.77351�. An example is given in Fig. 4.

The error guarantee, space bound, and time bound are summarized in the follow-
ing theorem.

Theorem 1 ([13]) The FM algorithm with k (idealized) hash functions produces
an estimator with standard error O(1/

√
k), using k · L memory bits for the bit

vectors, for any L > log2(min(N,n)) + 4. For each item, the algorithm performs
O(k) operations on L-bit memory words.

The space bound does not include the space for representing the hash functions.
The time bound assumes that computing h and b are constant time operations. Sec-
tions 3.3 and 3.4 will present optimizations that significantly reduce both the space
for the bit vectors and the time per item, without increasing the standard error.

3.2 The AMS Algorithm

Flajolet and Martin [13] analyze the error guarantees of their algorithm assuming
the use of an explicit family of hash functions with ideal random properties (namely,
that h maps each value v uniformly at random to an integer in the given range). Alon,
Matias, and Szegedy [1] adapted the FM algorithm to use (more realistic) linear

Distinct-Values Estimation over Data Streams 127

Consider a universe U = {1,2, . . . , n}. Let d be the smallest integer so that 2d > n

Consider the members of U as elements of the finite field F = GF(2d),
which are represented by binary vectors of length d

Let a and b be two random members of F , chosen uniformly and independently
Define h(v) := a · v + b, where the product and addition are computed in the field F

R := 0
foreach (stream item with value v) do {

b := the largest i ≥ 0 such that the i rightmost bits in h(v) are all 0
R := max(R,b)

}
return 2R

Fig. 5 The AMS algorithm [1], using only a single hash function

hash functions. Their algorithm, which we will call the AMS algorithm, produces an
estimate with provable guarantees on the ratio error. We discuss the AMS algorithm
in this section.

First, note that in general, the final bit vector M returned by the FM algorithm
in Sect. 3.1 consists of three parts, where the first part is all 0’s, the third part is
all 1’s, and the second part (called the fringe in [13]) is a mix of 0’s and 1’s that
starts with the most significant 1 and ends with the least significant 0. Let R (Z) be
the position of the most (least) significant bit that is set to 1 (0, respectively). For
example, for M[·] = 000101111, R = 5 and Z = 4. Whereas the FM algorithm uses
Z in its estimate, the AMS algorithm uses R. Namely, the estimate is 2R . Figure 5
presents the AMS algorithm. Note that unlike the FM algorithm, the AMS algorithm
does not maintain a bit vector but instead directly keeps track of the most significant
bit position set to 1.

The space bound and error guarantees for the AMS algorithm are summarized in
the following theorem.

Theorem 2 ([1]) For every r > 2, the ratio error of the estimate returned by the
AMS algorithm is at most r with probability at least 1 − 2/r . The algorithm uses
Θ(logn) memory bits.

Proof Let b(v) be the value of b computed for h(v). By the construction of h(), we
have that for every fixed v, h(v) is uniformly distributed over F . Thus the probabil-
ity that b(v) ≥ i is precisely 1/2i . Moreover, for every fixed distinct v1 and v2, the
probability that b(v1) ≥ i and b(v2) ≥ i is precisely 1/22i .

Fix an i. For each element v ∈ U that appears at least once in the stream, let
Wv,i be the indicator random variable whose value is 1 if and only if b(v) ≥ i.
Let Zi = ∑

Wv,i , where v ranges over all the F0 elements v that appear in the
stream. By linearity of expectation and because the expectation of each Wv,i is
1/2i , the expectation E[Zi] of Zi is F0/2i . By pairwise independence, the vari-
ance of Zi is F0

1
2i (1− 1

2i) < F0/2i . Therefore, by Markov’s Inequality, if 2i > rF0

then Pr[Zi > 0] < 1/r , since E[Zi] = F0/2i < 1/r . Similarly, by Chebyshev’s In-
equality, if r2i < F0 then Pr[Zi = 0] < 1/r , since Var[Zi] < F0/2i = E[Zi] and

128 P.B. Gibbons

hence Pr[Zi = 0] ≤ Var[Zi]/(E[Zi]2) < 1/E[Zi] = 2i/F0. Because the algorithm
outputs F̂0 = 2R , where R is the maximum i for which Zi > 0, the two inequalities
above show that the probability that the ratio between F̂0 and F0 is not between 1/r

and r is smaller than 2/r , as needed.
As for the space bound, note that the algorithm uses d = O(logn) bits represent-

ing an irreducible polynomial needed in order to perform operations in F , O(logn)

bits representing a and b, and O(log logn) bits representing the current maximum
R value. �

The probability of a given ratio error can be reduced by using multiple hash
functions, at the cost of a linear increase in space and time.

Corollary 1 With k hash functions, the AMS algorithm uses O(k logn) memory
bits and, for each item, performs O(k) operations on O(logn)-bit memory words.

The space bound includes the space for representing the hash functions. The time
bound assumes that computing h(v) and b(v) are constant time operations.

3.3 Practical Issues

Although the AMS algorithm has stronger error guarantees than the FM algorithm,
the FM algorithm is somewhat more accurate in practice, for a given synopsis
size [13]. In this section we argue why this is the case, and discuss other impor-
tant practical issues.

First, the most significant 1-bit (as is used in the AMS algorithm) can be set
by a single outlier hashed value. For example, suppose a hashed value sets the ith
bit whereas all other hashed values set bits ≤ i − 3, so that M[·] is of the form
0001001111. In such cases, it is clear from M that 2i is a significant overestimate
of F0: it is not supported by the other bits (in particular, both bits i − 1 and i − 2
are 0’s not 1’s). On the other hand, the least significant 0-bit (as is used in the FM
algorithm) is supported by all the bits to its right, which must be all 1’s. Thus FM is
more robust against single outliers.

Second, although the AMS algorithm requires only ≈ log logn bits to represent
the current R, while the FM algorithm needs ≈ logn bits to represent the current
M[·], this space savings is insignificant compared to the O(logn) bits the AMS
algorithm uses for the hash function computations. In practice, the same class of
hash functions (i.e., h(v) = a · v+ b) can be used in the FM algorithm, so that it too
uses O(logn) bits per hash function.

Note that there are common scenarios where the space for the hash functions is
not as important as the space for the accumulated synopsis (i.e., R or M[·]). For
example, in the distributed streams scenario (discussed in Sect. 6), an accumulated
synopsis is computed for each stream locally. In order to estimate the total number of
distinct values across all streams, the current accumulated synopses are collected.

Distinct-Values Estimation over Data Streams 129

Mj [·]’s: 00001111, 00001011, 00000111, 00010111, 00011111, 00001111
Interleaved: 000000000000000000000110110011101111111111111111

End-encoded: 11011001110, 16

Fig. 6 Example FM synopsis compression, for k = 6 and L= 8

Thus the message size depends only on the accumulated synopsis size. Similarly,
when distinct-values estimation techniques are used for duplicate-insensitive ag-
gregation in sensor networks (see Sect. 6), the energy used in sending messages
depends on the accumulated synopsis size and not the hash function size. In such
scenarios, the (log logn)-bit AMS synopses are preferable to the (logn)-bit FM
synopses.

Note, however, that the size of the FM accumulated synopsis can be significantly
reduced, using the following simple compression technique [8, 13, 27]. Recall that
at any point during the processing of a stream, M[·] consists of three parts, where
the first part is all 0’s, the second part (the fringe) is a mix of 0’s and 1’s, and the
third part is all 1’s. Recall as well that multiple M[·] are constructed for a given
stream, each using a distinct hash function. These M[·] are likely to share many bits
in common, because each M[·] is constructed using the same algorithm on the same
data. Suppose we are using k hash functions, and for j = 1, . . . , k, let Mj [·] be the
bit vector created using the j th hash function. The naive approach of concatenating
M1[·], M2[·], . . . , Mk[·] uses k · L bits (recall that each Mj [·] is L bits), which is
≈ k log2 n bits. Instead, we will interleave the bits, as follows:

M1[L− 1],M2[L− 1], . . . ,Mk[L− 1],M1[L− 2], . . . ,
Mk[L− 2], . . . ,M1[0], . . . ,Mk[0],

and then run-length encode the resulting bit vector’s prefix and suffix. From the
above arguments, the prefix of the interleaved bit vector is all 0’s and the suffix
is all 1’s. We use a simple encoding that ignores the all 0’s prefix, consisting of
(i) the interleaved bits between the all 0’s prefix and the all 1’s suffix and (ii) a count
of the length of the all 1’s suffix. An example is given in Fig. 6. Note that the
interleaved fringe starts with the maximum bit set among the k fringes and ends
with their minimum unset bit. Each fringe is likely to be tightly centered around the
current log2 F0, e.g., for a given hash function and c > 0, the probability that no
bit larger than log2 F0 + c is set is (1 − 2−(log2 F0+c))F0 ≈ e−1/2c

. At any point in
the processing of the stream, a similar argument shows that the interleaved fringe
is expected to be fewer than O(k logk) bits. Thus our simple encoding is expected
to use fewer than log2 log2 n + O(k log k) bits. In comparison, the AMS algorithm
uses k log2 log2 n bits for its accumulated synopsis, although this too can be reduced
through compression techniques.

The number of bit vectors, k, in the FM algorithm is a tunable parameter trading
off space for accuracy. The relative error as a function of k has been studied empiri-
cally in [8, 13, 24, 27] and elsewhere, with <15 % relative error reported for k = 20
and <10 % relative error reported for k = 64, on a variety of data sets. These studies

130 P.B. Gibbons

for j := 1, . . . , k and i := 0, . . . ,L− 1 do Mj [i] := 0
foreach (stream item with value v) do {

x := h(v) mod k // Note: k is a power of 2
b := the largest i ≥ 0 such that the i rightmost bits in
h(v)/k� are all 0
Mx [b] := 1

}
Z̄ := 1

k

∑k
j=1 min{i : Mj [i] = 0}

return
 k
0.77351 2Z̄�

Fig. 7 The PCSA algorithm [13]

show a strong diminishing return for increases in k. Theorem 1 shows that the stan-
dard error is O(1/

√
k). Thus reducing the standard error from 10 % to 1 % requires

increasing k by a factor of 100! In general, to obtain a standard error at most ε we
need k = Θ(1/ε2). Estan, Varghese and Fisk [12] present a number of techniques
for further improving the constants in the space vs. error trade-off, including using
multi-resolution and adaptive bit vectors.

Both the FM and AMS algorithms use the largest i such that the i rightmost
bits in h(v) are all 0, in order to create an exponential distribution onto an integer
range. A related, alternative approach by Cohen [7] is to (i) use a hash function
that maps uniformly to the interval [0,1], (ii) maintain the minimum hashed value
x seen thus far in the stream S (i.e., x = minv∈S{h(v)}), and then (iii) return 1

x
− 1

as the estimate for F0. The intuition is that if there are F0 distinct values mapped
uniformly at random to [0,1], then we may expect them to divide the interval into
F0+1 relatively evenly-spaced subintervals, i.e., subintervals of size 1

F0+1 . As [0, x]
is the first such subinterval, x = 1

F0+1 , and hence 1
x
−1 is used as the estimate for F0.

As with the FM and AMS algorithms, the error guarantee can be improved by taking
multiple hash functions and averaging. Empirically, this approach is not as accurate
as the FM algorithm for a given synopsis size [27].

3.4 Improving the Per-Item Processing Time

The FM algorithm as presented in Sect. 3.1 performs O(k) operations on memory
words of ≈ log2 n bits (recall Theorem 1) for each stream item. This is because a
different hash function is used for each of the k bit vectors. To reduce the processing
time per item from O(k) to O(1), Flajolet and Martin present the following variant
on their algorithm, called Probabilistic Counting with Stochastic Averaging (PCSA).

In the PCSA algorithm (see Fig. 7), k bit vectors are used (for k a power of 2) but
only a single hash function h(). For each stream item with value v, the log2 k least
significant bits of h(v) are used to select a bit vector. Then the remaining L− log2 k

bits of h(v) are used to select a position within that bit vector, according to an
exponential distribution (as in the basic FM algorithm). To compute an estimate,
PCSA averages over the positions of the least significant 0-bits, computes 2 to the

Distinct-Values Estimation over Data Streams 131

for j := 1, . . . , k do Rj := 0
foreach (stream item with value v) do {

x := h(v) mod k // Note: k is a power of 2
b := the largest i ≥ 0 such that the i rightmost bits in
h(v)/k� are all 0
Rx := max(Rx, b)

}
Z̄ := 1

k

∑k
j=1 Rj

return
(0.79402k − 0.84249)2Z̄�

Fig. 8 The LogLog algorithm [11]

power of that average, and divides by the bias factor 0.77351. To compensate for
the fact that each bit vector has seen only 1/k’th of the distinct items on average,
the estimate is multiplied by k.

The error guarantee, space bound, and time bound are summarized in the follow-
ing theorem.

Theorem 3 ([13]) The PCSA algorithm with k bit vectors and an (idealized) hash
function produces an estimator with standard error 0.78/

√
k, using k · L memory

bits for the bit vectors, for any L > log2(min(N,n)/k) + 4. For each item, the
algorithm performs O(1) operations on (log2 n)-bit memory words.

The space bound does not include the space for representing the hash function.
The time bound assumes that computing h and b are constant time operations. Al-
though some of the operations use only L-bit words, the word size is dominated by
the log2 n bits for the item value v.

Durand and Flajolet [11] recently presented a variant of PCSA, called the LogLog
algorithm, that reduces the size of the accumulating synopsis from logn to log logn.
(As in FM and PCSA, the size of the hash function is not accounted for in the
space bound.) The algorithm, depicted in Fig. 8, differs from PCSA by maintaining
the maximum bit set (as in AMS) and using a different function for computing the
estimate. The analysis in [11] gives the bias correction factor (0.79402k−0.84249),
where k is the number of maximums (i.e., Rj ’s) maintained. With k maximums,
the standard error is shown to be 1.30/

√
k (assuming idealized hash functions).

This is higher than with the PCSA algorithm (supporting our earlier argument that
the least-significant 0-bit is more accurate than the most-significant 1-bit), but the
synopsis size is smaller (when ignoring the hash function space and not using the
compression tricks in Sect. 3.3).

Durand and Flajolet [11] also present a further improvement, called Super-
LogLog, that differs from LogLog in two aspects. First, it discards the largest 30 %
of the estimates, in order to decrease the variance. As discussed in Sect. 3.3, us-
ing the maximum bit set is subject to overestimation caused by outlier bits be-
ing set. By discarding the largest estimates, these outliers are discarded. Note
that a different correction factor is needed in order to compensate for this addi-
tional source of bias [11]. Second, it represents each maximum Rj using only

132 P.B. Gibbons

L = log2(log2(n/k) + 3) bits, and again corrects for the additional bias. The error
guarantee, space bound, and time bound are summarized in the following theorem.

Theorem 4 ([11]) The Super-LogLog algorithm with k maximums and an (ideal-
ized) hash function produces an estimator with standard error 1.05/

√
k, using k ·L

memory bits for the maximums, where L = �log2�log2(min(N,n)/k) + 3��. For
each item, the algorithm performs O(1) operations on (log2 n)-bit memory words.

The space bound does not include the space for representing the hash function.
The time bound assumes that computing h and b are constant time operations.
Although some of the operations use only L-bit words, the word size is domi-
nated by the log2 n bits for the stream value v. The standard error 1.05/

√
k for

Super-LogLog is higher than the 0.78/
√

k error for PCSA. Comparing the synopsis
sizes (ignoring the hash functions), super-LogLog uses a fixed ≈ k log2 log2(n/k)

bits, whereas PCSA using the compression tricks of Sect. 3.3 uses an expected
≈ log2 log2 n+O(k logk) bits.

4 (ε, δ)-Approximation Schemes

None of the algorithms presented thus far provides the strong guarantees of an (ε, δ)-
approximation scheme. In this section, we present two such algorithms: the Coordi-
nated Sampling algorithm of Gibbons and Tirthapura [17], and an improvement by
Bar-Yossef et al. [2] that achieves near optimal space.

4.1 Coordinated Sampling

Gibbons and Tirthapura [17] gave the first (ε, δ)-approximation scheme for F0.
Their algorithm, called Coordinated Sampling, is depicted in Fig. 9.

In the algorithm, there are k = Θ(log(1/δ)) instances of the same procedure,
differing only in their use of different hash functions hj (). For each instance, the
hash function is used to assign each potential stream value to a “level”, such that half
the values are assigned to level 0, a quarter to level 1, etc. The algorithm maintains
a set of the ≈ τ distinct stream values that have the highest levels among those
observed thus far. More specifically, it keeps track of the minimum level �j such
that there are at most τ distinct stream values with level at least �j , as well as the
set, Sj , of these stream values.

As in the AMS algorithm (Sect. 3.2), any uniform pairwise independent hash
function can be used for hj (); for example, linear hash functions can be used. Let
bj (v) be the value of b computed in the algorithm for hj (v). Following the argument
in Sect. 3.2, we have that Pr{bj (v) = �} = 1

2�+1 and Pr{bj (v) ≥ �} = 1
2� for � =

0, . . . , logn−1. Hence, Sj is always a uniform random sample of the distinct stream

Distinct-Values Estimation over Data Streams 133

for j := 1, . . . , k do { �j := 0, Sj := ∅ }
foreach (stream item with value v) do {

for j := 1, . . . , k do {
b := the largest i ≥ 0 such that the i rightmost bits in hj (v) are all 0
if b ≥ �j and (v, b) /∈ Sj do {

Sj := Sj ∪ {(v, b)}
// if Sj is too large, discard the level �j sample points from Sj

while |Sj | > τ do {
Sj := Sj − {(v′, b′) : b′ = �j }
�j := �j + 1

}
}

}
}
return medianj=1,...,k(|Sj | · 2�j)

Fig. 9 The Coordinated Sampling algorithm [17]. The values of k and τ depend on the desired
ε and δ: k = 36 log2(1/δ) and τ = 36/ε2, where the constant 36 is determined by the worst case
analysis and can be much smaller in practice

values observed thus far, where each value is in the sample with probability 2−�j .
Thus, Coordinated Sampling uses |Sj | ·2�j as the estimate for the number of distinct
values in the stream. To ensure that the estimate is within ε with probability 1 − δ,
it computes the median over Θ(log(1/δ)) such estimates.

Each step of the algorithm within the “for” loop can be done in constant (ex-
pected) time by maintaining the appropriate data structures, assuming (as we have
for the previous algorithms) that computing hash functions and determining b are
constant time operations. For example, each Sj can be stored in a hash table Tj of
2τ entries, where the pair (v, b) is the hash key. This enables both tests for whether
a given (v, b) is in Sj and insertions of a new (v, b) into Sj to be done in constant
expected time. We can enable constant time tracking of the size of Sj by maintain-
ing an array of logn + 1 “level” counters, one per possible level, which keep track
of the number of pairs in Sj for each level. We also maintain a running count of
the size of Sj . This counter is incremented by 1 upon insertion into Sj and decre-
mented by the corresponding level counter upon deleting all pairs in a level. In the
latter case, in order to quickly delete from Sj all such pairs, we leave these deleted
pairs in place, removing them lazily as they are encountered in subsequent visits
to Tj . (We need not explicitly mark them as deleted because subsequent visits see
that their level numbers are too small and treat them as deleted.)

The error guarantee, space bound, and time bound are summarized in the follow-
ing theorem. The space bound includes the space for representing the hash functions.
The time bound assumes that computing hash functions and b are constant expected
time operations.

Theorem 5 ([17]) The Coordinated Sampling algorithm provides an (ε, δ)-approx-
imation scheme, using O(

logn log(1/δ)

ε2) memory bits. For each item, the algorithm
performs an expected O(log(1/δ)) operations on (log2 n)-bit memory words.

134 P.B. Gibbons

Proof We have argued above about the time bound. The space bound is O(k · τ)

memory words, i.e., O(
logn log(1/δ)

ε2) memory bits.
In what follows, we sketch the proof that Coordinated Sampling is indeed an

(ε, δ)-approximation scheme. A difficulty in the proof is that the algorithm decides
when to stop changing levels based on the outcome of random trials, and hence may
stop at an incorrect level, and make correspondingly bad estimates. We will argue
that the probability of stopping at a “bad” level is small, and can be accounted for
in the desired error bound.

Accordingly, consider the j th instance of the algorithm. For � ∈ {0, . . . , logn}
and v ∈ {1, . . . , n}, we define the random variables X�,v such that X�,v = 1 if v’s
level is at least � and 0 otherwise. For the stream S, we define X� = ∑

v∈S X�,v for
every level �. Note that after processing S, the value of �j is the lowest numbered
level f such that Xf ≤ τ . The algorithm uses the estimate 2f ·Xf .

For every level � ∈ {0, . . . , logn}, we define B� such that B� = 1 if 2�X� /∈
[(1− ε)F0, (1+ ε)F0] and 0 otherwise. Level � is “bad” if Bl = 1, and “good” oth-
erwise. Let E� denote the event that the final value of �j is �, i.e., that f equals �.
The heart of the proof is to show the following:

Pr
{
Given instance produces an estimate not in

[
(1 − ε)F0, (1 + ε)F0

]}
<

1

3
. (1)

Let P be the probability in Eq. (1). Let �∗ denote the first level such that
E[X�∗] ≤ 2

3τ . The instance produces an estimate not within the target range if Bf

is true for the level f such that Ef is true. Thus,

P =
logn∑

i=0

Pr{Ei ∧Bi} <

�∗∑

i=0

Pr{Bi} +
logn∑

i=�∗+1

Pr{Ei}. (2)

The idea behind using the inequality to separate the Bi terms from the Ei terms is
that the lower levels (until �∗) are likely to have good estimates and the algorithm is
unlikely to keep going beyond level �∗.

As in the proof for the AMS algorithm (Theorem 2), we have that for � =
0, . . . , logn− 1,

E[X�] = F0

2�
, (3)

and

var[X�]< F0

2�
. (4)

We will now show that
�∗∑

i=0

Pr{Bi} <
6

ε2τ
. (5)

To see this, we first express Pr{Bi} in terms of Eq. (3): Pr{Bi} = Pr{|Xi − F0
2i | ≥

ε
F0
2i }. Then, from Eq. (4) and using Chebyshev’s inequality, we have Pr{Bi} < 2i

F0ε
2 .

Distinct-Values Estimation over Data Streams 135

Hence,
∑�∗

i=0 Pr{Bi} <
∑�∗

i=0
2i

F0ε
2 = 2�∗+1

F0·ε2 Now, because �∗ is the first level such

that F0
2�∗ ≤ 2

3τ , we have that F0 > 2�∗−1 · 2
3τ . Thus,

∑�∗
i=0 Pr{Bi} < 2�∗+1

F0·ε2 < 6
ε2τ

,
establishing Eq. (5).

Next, we will show that

logn∑

i=�∗+1

Pr{Ei} <
6

τ
. (6)

To see this, we first observe that
∑logn

i=�∗+1 Pr{Ei} = Pr{X�∗ > τ }, because the

Ei ’s are mutually exclusive. Because E[X�∗] < 2
3τ , we have Pr{X�∗ > τ } <

Pr{X�∗ − E[X�∗] > τ
3 }. By Chebyshev’s inequality and Eq. (4), this latter proba-

bility is less than 9
τ 2 · F0

2�∗ . Plugging in the fact that 2
3τ > E[X�∗] = F0

2�∗ , we obtain
∑logn

i=�∗+1 Pr{Ei} < 9
τ 2 · 2τ

3 , establishing Eq. (6).

Plugging into Eq. (2) the results from Eqs. (5) and (6), and setting τ = 36/ε2, we

have P < 1
6 + ε2

6 < 1
3 . Thus, Eq. (1) is established.

Finally, the median fails to be an (ε, δ)-estimator of F0 if at least k/2 instances
of the algorithm fail. By Eq. (1), we expect < k/3 to fail, and hence by Cher-
noff bounds, the probability the algorithm fails is less than exp(−k/36). Setting
k = 36 log(1/δ) makes this probability less than δ, completing the proof of the the-
orem. �

4.2 Improving the Space Bound

Bar-Yossef et al. [2] showed how to adapt the Coordinated Sampling algorithm in
order to improve the space bound. Specifically, their algorithm, which we call the
BJKST algorithm, stores the elements in Sj using less space, as follows. Instead
of storing the pair (v, b), as in Coordinated Sampling, the BJKST algorithm stores
g(v), for a suitably chosen hash function g(). Namely, g() is a (randomly chosen)
uniform pairwise independent hash function that maps values from [0..n− 1] to the
range [0..R − 1], where R = 3((logn + 1)τ)2. Thus only O(log logn + log(1/ε))

bits are needed to store g(v). The level b for v is represented implicitly by storing
the hashed values as a collection of balanced binary search trees, one tree for each
level.

The key observation is that for any given instance of the algorithm, g() is applied
to at most (logn+1) ·τ distinct values. Thus, the choice of R ensures that with prob-
ability at least 5/6, g() is injective on these values. If g() is indeed injective, then
using g() did not alter the basic progression of the instance. The alternative occurs
with probability at most 1/6. To compensate, the BJKST algorithm uses a larger τ ,
namely, τ = 576/ε2, such that the probability of a bad estimate can be bounded by
1/6. Because 1

6 + 1
6 = 1

3 , a result akin to Eq. (1) can be established. Finally, taking
the median over k = 36 log(1/δ) instances results in an (ε, δ)-approximation.

136 P.B. Gibbons

The error guarantee, space bound, and time bound are summarized in the follow-
ing theorem. The space bound includes the space for representing the hash functions.
The time bound assumes that computing hash functions and b are constant expected
time operations.

Theorem 6 ([2]) The BJKST algorithm provides an (ε, δ)-approximation scheme,
using O((1

ε2 (log(1/ε) + log logn) + logn) log(1/δ)) memory bits. For each item,
the algorithm performs O(log(1/δ)) operations on (log2 n)-bit words plus at most
O(

log(1/δ)

ε2) operations on (log2(1/ε)+ log2 log2 n)-bit words.

5 Lower Bounds

This section presents five key lower bound results for distinct-values estimation.
The first lower bound shows that observing (nearly) the entire stream is essential

for obtaining good estimation error guarantees for all input streams.

Theorem 7 ([5]) Consider any (possibly adaptive and randomized) estimator for
the number of distinct values F0 that examines at most r items in a stream of N

items. Then, for any γ > e−r , there exists a worst case input stream such that with
probability at least γ , the ratio error of the estimate F̂0 output by the estimator is at

least
√

N−r
2r

ln 1
γ

.

Thus when r = o(N), the ratio error is non-constant with high probability. Even
when 1 % of the input is examined, the ratio error is at least 5 with probability
> 1/2.

The second lower bound shows that randomization is essential for obtaining low
estimation error guarantees for all input streams, if we hope to use sublinear space.
For this lower bound, we also provide the proof, as a representative example of how
such lower bounds are proved.

Theorem 8 ([1]) Any deterministic algorithm that outputs, given one pass through
a data stream of N = n/2 elements of U = {1,2, . . . , n}, an estimate with at most
10 % relative error requires Ω(n) memory bits.

Proof Let G be a family of t = 2Ω(n) subsets of U , each of cardinality n/4 so that
any two distinct members of G have at most n/8 elements in common. (The exis-
tence of such a G follows from standard results in coding theory, and can be proved
by a simple counting argument.) Fix a deterministic algorithm that approximates F0.
For every two members G1 and G2 of G let A(G1,G2) be the stream of length n/2
starting with the n/4 members of G1 (in a sorted order) and ending with the set of
n/4 members of G2 (in a sorted order). When the algorithm runs, given a stream of
the form A(G1,G2), the memory configuration after it reads the first n/4 elements
of the stream depends only on G1. By the pigeonhole principle, if the memory has

Distinct-Values Estimation over Data Streams 137

less than log2 t bits, then there are two distinct sets G1 and G2 in G, so that the
content of the memory after reading the elements of G1 is equal to that content after
reading the elements of G2. This means that the algorithm must give the same final
output to the two streams A(G1,G1) and A(G2,G1). This, however, contradicts
the assumption, because F0 = n/4 for A(G1,G1) and F0 ≥ 3n/8 for A(G2,G1).
Therefore, the answer of the algorithm makes a relative error that exceeds 0.1 for at
least one of these two streams. It follows that the space used by the algorithm must
be at least log2 t = Ω(n), completing the proof. �

The third lower bound shows that approximation is essential for obtaining low
estimation error guarantees for all input streams, if we hope to use sublinear space.

Theorem 9 ([1]) Any randomized algorithm that outputs, given one pass through a
data stream of at most N = 2n items of U = {1,2, . . . , n}, a number Y such that Y =
F0 with probability at least 1 − δ, for some fixed δ < 1/2, requires Ω(n) memory
bits.

The fourth lower bound shows that Ω(logn) memory bits are required for ob-
taining low estimation error.

Theorem 10 ([1]) Any randomized algorithm that outputs, given one pass through
a data stream of items from U = {1,2, . . . , n}, an estimate with at most a 10 %
relative error with probability at least 3/4 must use at least Ω(logn) memory bits.

The final lower bound shows that Ω(1/ε2) memory bits are required in order to
obtain an (ε, δ)-approximation scheme (even for constant δ).

Theorem 11 ([34]) For any δ independent of n and any ε, any randomized al-
gorithm that outputs, given one pass through a data stream of items from U =
{1,2, . . . , n}, an estimate with at most an ε relative error with probability at least
1 − δ must use at least Ω(min(n,1/ε2)) memory bits.

Thus we have an Ω(1/ε2 + logn) lower bound for obtaining arbitrary relative
error for constant δ and, by the BJKST algorithm, a nearly matching upper bound
of O(1/ε2(log(1/ε)+ log logn)+ logn).

6 Extensions

In this section, we consider distinct-values estimation in a variety of important sce-
narios beyond the basic data stream set-up. In Sects. 6.1–6.5, we focus on sampling,
sliding windows, update streams, distributed streams, and sensor networks (ODI),
respectively, as summarized in Table 2. Finally, Sect. 6.6 highlights three additional
settings studied in the literature.

138 P.B. Gibbons

Table 2 Scenarios handled by the main algorithms discussed in this section

Algorithm Cite & section Sampling
distinct

Sliding
windows

Update
streams

Distributed
streams

ODI

FM [13]; Sect. 3.1 no no no yes yes

PCSA [13]; Sect. 3.4 no no no yes yes

FM with log2 space Sects. 6.2, 6.3 no yes yes yes no

AMS [1]; Sect. 3.2 no no no yes yes

Cohen [7]; Sect. 3.3 no no no yes yes

LogLog [11]; Sect. 3.4 no no no yes yes

Coordinated sampling [17]; Sect. 4.1 yes no no yes yes

BJKST [2]; Sect. 4.2 no no no yes yes

Distinct sampling [16]; Sect. 6.1 yes no no yes yes

Randomized wave [18]; Sect. 6.2 yes yes no yes yes

l0 sketch [9]; Sect. 6.2 no no yes yes no

Ganguly [14]; Sect. 6.3 yes no yes yes no

CLKB [8]; Sect. 6.5 no no no yes yes

6.1 Sampling Distinct

In addition to providing an estimate of the number of distinct values in the stream,
several algorithms provide a uniform sample of the distinct values in the stream.
Such a sample can be used for a variety of sampling-based estimation procedures,
such as estimating the mean, the variance, and the quantiles over the distinct val-
ues. Algorithms that retain only hashed values, such as FM, PCSA, AMS, Cohen,
LogLog, BJKST, l0 Sketch (Sect. 6.2) and CLKB (Sect. 6.5), do not provide such
samples. In some cases, such as Cohen, the algorithm can be readily adapted to
produce a uniform sample (with replacement): For each instance (i.e., each hash
function) of the algorithm, maintain not just the current minimum hashed value but
also the original value associated with this minimum hashed value. As long as two
different values do not hash to the same minimum value for a given hash function,
each parallel instance produces one sample point. In contrast, Coordinated Sam-
pling, Randomized Wave (Sect. 6.2) and Ganguly’s algorithm (Sect. 6.3) all directly
provide a uniform sample of the distinct values.

Gibbons [16] extended the sampling goal to a multidimensional data setting that
arises in a class of common databases queries. Here, the goal is to extract a uniform
sample of the distinct values in a primary dimension, as before, but instead of re-
taining only the randomly selected values V , the algorithm retains a “same-value”
sample for each value in V . Specifically, for each v ∈ V , the algorithm maintains
a uniform random sample chosen from all the stream items with value v. A user-
specified parameter t determines the size of each of these same-value samples; if
there are fewer than t stream items with a particular value, the algorithm retains
them all. The algorithm, called Distinct Sampling, is similar to Coordinated Sam-
pling (Fig. 9) in having logn levels, maintaining all values whose levels are above

Distinct-Values Estimation over Data Streams 139

select count(distinct target-attr) select count(distinct o_custkey)
from Table from orders
where P where o_orderdate ≥ ‘2006-01-01’

(a) (b)

Fig. 10 (a) Distinct values query template; (b) Example query

a current threshold, and incrementing the level threshold whenever a space bound
is reached. However, instead of retaining one (v, b) pair for the value v, it starts by
retaining each of the first t items with value v in the primary dimension, as well as
a count, nv , of the number of items in the stream with value v (including the current
item). Then, upon observing any subsequent items with value v, it maintains a uni-
form same-value sample for v by adding the new item to the sample with probability
t/nv , making room by discarding a random item among the t items currently in the
sample for v. Figure 10 gives an example of the type of SQL query that can be well
estimated by the Distinct Sampling algorithm, where target-attr in Fig. 10(a) is the
primary dimension and the predicate P is typically on one or more of the other di-
mensions, as in Fig. 10(b). The estimate is obtained by first applying the predicate to
the same-value samples, in order to estimate what fraction of the values in V would
be eliminated by the predicate, and then outputting the overall query estimate based
on the number of remaining values.

6.2 Sliding Windows

The sliding windows setting is motivated by the desire to estimate the number of
distinct values over only the most recent stream items. Specifically, we are given
a window size W , and the problem is to estimate the number of distinct values
over a sliding window of the W most recent items. The goal is to use space that is
logarithmic in W (linear in W would be trivial). Datar et al. [10] observed that the
FM algorithm can be extended to solve the sliding windows problem, by keeping
track of the stream position of the most recent item that set each FM bit. Then, when
estimating the number of distinct values within the current sliding window, only
those FM bits whose associated positions are within the window are considered to
be set. This increases the space needed for the FM algorithm by a logarithmic factor.

Gibbons and Tirthapura [18] developed an (ε, δ)-approximation scheme for the
sliding windows scenario. Their algorithm, called Randomized Wave, is depicted
in Fig. 11. In the algorithm, there are k = Θ(log(1/δ)) instances of the same pro-
cedure, differing only in their use of different hash functions hj (). Any uniform,
pairwise independent hash function can be used for hj (). Let bj (v) be the value of
b computed in the algorithm for hj (v).

Whereas Coordinated Sampling maintained a single uniform sample of the dis-
tinct values, Randomized Wave maintains ≈ logW uniform samples of the distinct
values. Each of these “level” samples corresponds to a different sampling probabil-
ity, and retains only the τ = Θ(1/ε2) most recent distinct values sampled into the

140 P.B. Gibbons

// Note: All additions and comparisons in this algorithm are done modulo W ′
W ′ := the smallest power of 2 greater than or equal to 2W

pos := 0
for j := 1, . . . , k do {

initialize Vj to be an empty list // value list
for � := 0, . . . , log(W ′) do

initialize Lj (�) to be an empty list // level lists
}
// Process the stream items
foreach (stream item with value v) do {

pos := pos + 1
for j := 1, . . . , k do {

if the tail (v′,p′) of Vj has expired (i.e., p′ = pos −W)
discard (v′,p′) from Vj and from any level list Lj ()

b := the largest i ≥ 0 such that the i rightmost bits in hj (v) are all 0
for � := 0, . . . , b do {

if v is already in Lj (�)

remove current entry for v and insert (v,pos) at the head of Lj (�)

else do {
if |Lj (�)| = τ then discard the pair at the tail of Lj (�)

insert (v,pos) at the head of Lj (�)

}
}
if v is in Vj

remove current entry for v from Vj

insert (v,pos) at the head of Vj

}
}
// Compute an estimate for a sliding window of size w ≤ W

s := max(0,pos −w + 1) // [s,pos] is the desired window
for j := 1, . . . , k do {

�j := min level such that the tail of Lj (�j) contains a position p ≤ s

cj := number of pairs in Lj (�j) with p ≥ s

}
return medianj=1,...,k(cj · 2�j)

Fig. 11 The Randomized Wave algorithm [18]. The values of k and τ depend on the desired ε and
δ: k = 36 log2(1/δ) and τ = 36/ε2, where the constant 36 is determined by the worst case analysis
and can be much smaller in practice

associated level. (In the figure, Lj(�) is the level sample for level � of instance j .)
An item with value v is selected into levels 0, . . . , bj (v), and stored as the pair
(v,pos), where pos is the stream position when v most recently occurred.

Each level sample Lj (�) can be maintained as a doubly linked list. The algo-
rithm also maintains a (doubly linked) list Vj of all the values in any of the level
samples Lj (), together with the position of their most recent occurrences, ordered
by position. This list enables fast discarding of items no longer within the sliding
window. Finally, there is a hash table Hj (not shown in the figure) that holds triples
(v,Vptr,Lptr), where v is a value in Vj , Vptr is a pointer to the entry for v in Vj ,

Distinct-Values Estimation over Data Streams 141

and Lptr is a doubly linked list of pointers to each of the occurrences of v in the
level samples Lj (). These triples are stored in Hj hashed by their value v.

Consider an instance j . For each stream item, we first check the oldest value v′
in Vj to see if its position is now outside of the window, and if so, we discard it.
We use the triple in Hj(v

′) to locate all occurrences of v′ in the data structures;
these occurrences are spliced out of their respective doubly linked lists. Second, we
update the level samples Lj for each of the levels 0 . . . bj (v), where v is the value
of the stream item. There are two cases. If v is not in the level sample, we insert it,
along with its position pos, at the head of the level sample. Otherwise, we perform a
move-to-front: splicing out v’s current entry and inserting (v,pos) at the head of the
level sample. In the former case, if inserting the new element would make the level
sample exceed τ elements, we discard the oldest element to make room. Finally,
we insert (v,pos) at the head of Vj , and if v was already in Vj , we splice out the
old entry for v. Because the expected value of bj (v) is less than 2, v occurs in an
expected constant number (in this case, 2) of levels. Thus, all of the above operations
can be done in constant expected time.

Let (v′,p′) denote the pair at the tail of a level sample Lj (�). Then Lj (�) con-
tains all the distinct values with stream positions in the interval [p′,pos] whose
bj ()’s are at least �. Thus, similar to Coordinated Sampling, an estimate of the num-
ber of distinct values within a window can be obtained by taking the number of
elements in Lj (�) in this interval and multiplying by 2�, the inverse of the sampling
probability for the level.

The error guarantee, space bound, and time bound are summarized in the follow-
ing theorem. The space bound includes the space for representing the hash functions.
The time bound assumes that computing hash functions and b are constant expected
time operations.

Theorem 12 ([18]) The Randomized Wave algorithm provides an (ε, δ)-approx-
imation scheme for estimating the number of distinct values in any sliding window
of size w ≤ W , using O(

logn logW log(1/δ)

ε2) memory bits, where the values are in
[0..n). For each item, the algorithm performs an expected O(log(1/δ)) operations
on max(logn,2 + logW)-bit memory words.

Note that by setting W to be N , the length of the stream, the algorithm provides
an (ε, δ)-approximation scheme for all possible window sizes.

6.3 Update Streams

Another important scenario is where the stream contains both new items and the
deletion of previous items. Examples include estimating the current number of dis-
tinct network connections, phone connections or IP flows, where the stream contains
both the start and the end of each connection or flow. Most of the distinct-values

142 P.B. Gibbons

algorithms discussed thus far are not designed to handle deletions. For example, al-
gorithms that retain only the maximum of some quantity, such as AMS, Cohen and
LogLog, or even the top few highest priority items, such as Coordinated Sampling
and BJKST, are unable to properly account for the deletion of the current maxi-
mum or a high priority item. Similarly, once a bit i is set in the FM algorithm, the
subsequent deletion of an item mapped to bit i does not mean the bit can be unset:
there are likely to have been other un-deleted stream items that also mapped to bit i.
In the case of FM, deletions can be handled by replacing each bit with a running
counter that is incremented on insertions and decremented on deletions—at a cost
of increasing the space needed by a logarithmic factor.

Update streams generalize the insertion and deletion scenario by having each
stream item being a pair (v,�), where � > 0 specifies � insertions of the value
v and � < 0 specifies |�| deletions of the value v. The resulting frequency fv =∑

(v,�)∈S � of value v is assumed to be nonnegative. The metric F0 is the number of
distinct values v with fv > 0. The above variant of FM with counters instead of bits
readily handles update streams. Cormode et al. [9] devised an (ε, δ)-approximation
scheme, called l0 sketch, for distinct-values estimation over update streams. Unlike
any of the approaches discussed thus far, the l0 sketch algorithm uses properties
of stable distributions, and requires floating point arithmetic. The algorithm uses
O(1

ε2 log(1/δ)) floating point numbers and O(1
ε2 log(1/δ)) floating point operations

per stream item.
Recently, Ganguly [14] devised two (ε, δ)-approximation schemes for up-

date streams. One uses O(1
ε2 (logn + logN) logN log(1/δ)) memory bits and

O(log(1/ε)· log(1/δ)) operations to process each stream update. The other uses
a factor of (log(1/ε)+ log(1/δ)) times more space but reduces the number of oper-
ations to only O(log(1/ε)+ log(1/δ)). Both algorithms return a uniform sampling
of the distinct values, as well as an estimate.

6.4 Distributed Streams

In a number of the motivating scenarios, the goal is to estimate the number of dis-
tinct values over a collection of distributed streams. For example, in network mon-
itoring, each router observes a stream of packets and the goal is to estimate the
number of distinct “values” (e.g., destination IP addresses, source–destination pairs,
requested urls, etc.) across all the streams. Formally, we have t ≥ 2 data streams,
S1, S2, . . . , St , of items, where each item is from a universe of n possible values.
Each stream Si is observed and processed by a party, Pi , independently of the other
streams, in one pass and with limited working space memory. The working space
can be initialized (prior to observing any stream data) with data shared by all parties,
so that, for example, all parties can use the same random hash function(s). The goal
is to estimate the number of distinct values in the multi-set arising from concatenat-
ing all t streams. For example, in the t = 2 streams in Fig. 1, there are 15 distinct
values in the two streams altogether.

Distinct-Values Estimation over Data Streams 143

In response to a request to produce an estimate, each party sends a message
(containing its current synopsis or some function of it) to a Referee, who outputs the
estimate based on these messages. Note that the parties do not communicate directly
with one another, and the Referee does not directly observe any stream data. We are
primarily interested in minimizing: (i) the workspace used by each party, and (ii) the
time taken by a party to process a data item.

As shown in Table 2, each of the algorithms discussed in this chapter can be read-
ily adapted to handle the distributed streams setting. For example, the FM algorithm
(Fig. 3) can be applied to each stream independently, using the exact same hash
function across all streams, to generate a bit vector M[·] for each stream. These
bit vectors are sent to the Referee. Because the same hash function was used by
all parties, the bit-wise OR of these t bit vectors yields exactly the bit vector that
would have been produced by running the FM algorithm on the concatenation of the
t streams (or any other interleaving of the stream data). Thus, the Referee computes
this bit-wise OR, and then computes Z, the least significant 0-bit in the result. As in
the original FM algorithm, we reduce the variance in the estimator by using k hash
functions instead of just 1, where all parties use the same k hash functions. The
Referee computes the Z corresponding to each hash function, then computes the
average, Z̄, of these Z’s, and finally, outputs
2Z̄/0.77351�. The error guarantees
of this distributed streams algorithm match the error guarantees in Theorem 1 for
the single-stream algorithm. Moreover, the per-party space bound and the per-item
time bound also match the space and time bounds in Theorem 1.

Similarly, PCSA, FM with log2 space, AMS, Cohen, and LogLog can be adapted
to the distributed streams setting in a straightforward manner, preserving the error
guarantees, per-party space bounds, and per-item time bounds of the single-stream
algorithm.

A bit less obvious, but still relatively straightforward, is adapting algorithms that
use dynamic thresholds on what to keep and what to discard, where the threshold
adjusts to the locally-observed data distribution. The key observation for why these
algorithms do not pose a problem is that we can match the error guarantees of the
single-stream algorithm by having the Referee use the strictest threshold among
all the local thresholds. (Here, “strictest” means that the smallest fraction of the
data universe has its items kept.) Namely, if � is the strictest threshold, the Referee
“subsamples” the synopses from all the parties by applying the threshold � to the
synopses. This unifies all the synopses to the same threshold, and hence the Referee
can safely combine these synopses and compute an estimate.

Consider, for example, the Coordinated Sampling algorithm (Fig. 9). Each party
sends its sets S1, . . . , Sk and levels �1, . . . , �k to the Referee. For j = 1, . . . , k, the
Referee computes �∗j , the maximum value of the �j ’s from all the parties. Then, for
each j , the Referee subsamples each of the Sj from the t parties, by discarding from
Sj all pairs (v′, b′) such that b′ < �∗j . Next, for each j , the Referee determines the
union, S∗

j , of all the subsampled Sj ’s. Finally, the Referee outputs the median over

all j of |S∗
j | · 2l∗j . The error guarantees, per-party space bound, and per-item time

bound match those in Theorem 5 for the single-stream algorithm [17]. The error

144 P.B. Gibbons

guarantees follow because (i) S∗
j contains all pairs (v, b) with b ≥ �∗j across all t

streams, and (ii) the size of each S∗
j is at least as big as the size of the Sj at a party

with level �j = �∗j (i.e., at a party with no subsampling), and this latter size was
already sufficient to get a good estimate in the single-stream setting.

6.5 Order- and Duplicate-Insensitive (ODI)

Another interesting setting for distinct-values estimation algorithms arises in robust
aggregation in wireless sensor networks. In sensor network aggregation, an aggre-
gate function (e.g., count, sum, average) of the sensors’ readings is often computed
by having the wireless sensor nodes organize themselves into a tree (with the base
station as the root). The aggregate is computed bottom-up starting at the leaves of
the tree: each internal node in the tree combines its own reading with the partial
results from its children, and sends the result to its parent. For a sum, for example,
the node’s reading is added to the sum of its children’s respective partial sums. This
conserves energy because each sensor node sends only one short message, in con-
trast to the naive approach of having all readings forwarded hop-by-hop to the base
station.

Aggregating along a tree, however, is not robust against message loss, which is
common in sensor networks, because each dropped message loses a subtree’s worth
of readings. Thus, Considine et al. [8] and Nath et al. [24] proposed using multi-path
routing for more robust aggregation. In one scheme, the nodes organize themselves
into “rings” around the base station, where ring i consists of all nodes that are i hops
from the base station. As in the tree, aggregation is done bottom-up starting with the
nodes in the ring furthest from the base station (the “leaf” nodes). In contrast to the
tree, however, when a node sends its partial result, there is no designated parent.
Instead, all nodes in the next closest ring that overhear the partial result incorporate
it into their accumulating partial results. Because of the added redundancy, the ag-
gregation is highly robust to message loss, yet the energy consumption is similar to
the (non-robust) tree because each sensor node sends only one short message.

On the other hand, because of the redundancy, partial results are accounted for
multiple times. Thus, the aggregation must be done in a duplicate-insensitive fash-
ion. This is where distinct-values estimation algorithms come in. First, if the goal
is to count the number of distinct “values” (e.g., the number of distinct temperature
readings), then a distinct-values estimation algorithm can be used, as long as the
algorithm works for distributed streams and is insensitive to the duplication and ob-
servation re-ordering that arises in the scheme. An aggregation algorithm with the
combined properties of order- and duplicate-insensitivity is called ODI-correct [24].
Second, if the goal is to count the number of sensor nodes whose readings satisfy a
given boolean predicate (e.g., nodes with temperature readings below freezing), then
again a distinct-values estimation algorithm can be used, as follows. Each sensor
node whose reading satisfies the predicate uses its unique sensor id as its “value”.
Then the number of distinct values in the sensor network is precisely the desired

Distinct-Values Estimation over Data Streams 145

count. Thus any distributed, ODI-correct distinct-values estimation algorithm can
be used.

As shown in Table 2, most of the algorithms discussed in this chapter are ODI-
correct. For example, the FM algorithm (Fig. 3) is insensitive to both re-ordering
and duplication: the bits that are set in an FM bit vector are independent of both the
order in which stream items are processed and any duplication of “partial-result” bit
vectors (i.e., bit vectors corresponding to a subset of the stream items). Moreover,
Considine et al. [8] showed how the FM algorithm can be effectively adapted to use
only O(log logn) bit messages in this setting. Similarly, most of the other algorithms
are ODI-correct, as can be proved formally using the approach described in [24].

6.6 Additional Settings

We conclude this chapter by briefly mentioning three additional important settings
considered in the literature.

The first setting is distinct-values estimation when each value is unique. This
setting occurs, for example, in distributed census taking over mobile objects
(e.g., [31]). Here, there are a large number of objects, each with a unique id. The goal
is to estimate how many objects there are despite the constant motion of the objects,
while minimizing the communication. Clearly, any of the distributed distinct-values
estimation algorithms discussed in this chapter can be used. Note, however, that the
setting enables a practical optimization: hash functions are not needed to map val-
ues to bit positions or levels. Instead, independent coin tosses can be used at each
object; the desired exponential distribution can be obtained by flipping a fair coin
until the first heads and counting the number of tails observed prior to the first head.
(The unique id is not even used.) Obviating the need for hash functions eliminates
their space and time overhead. Thus, for example, only O(log logn)-bit synopses
are needed for the AMS algorithm. Note that hash functions were needed before
to ensure that the multiple occurrences of the same value all map to the same bit
position or level; this feature is not needed in the setting with unique values.

A second setting, studied by Bar-Yossef et al. [3] and Pavan and Tirthapura [28],
seeks to estimate the number of distinct values where each stream item is a range
of integers. For example, in the 4-item stream [2,5], [10,12], [4,8], [6,7], there are
10 distinct values, namely, 2, 3, 4, 5, 6, 7, 8, 10, 11, and 12. Pavan and Tirthapura
present an (ε, δ)-approximation scheme that uses O(

logn log(1/δ)

ε2) memory bits, and
performs an amortized O(log(1/δ) log(n/ε)) operations per stream item. Note that
although a single stream item introduces up to n distinct values into the stream, the
space and time bounds have only a logarithmic (and not a linear) dependence on n.

Finally, a third important setting generalizes the distributed streams setting from
just the union (concatenation) of the data streams to arbitrary set-expressions among
the streams (including intersections and set differences). In this setting the number
of distinct values corresponds to the cardinality of the resulting set. Ganguly et
al. [15] showed how techniques for distinct values estimation can be generalized to
handle this much richer setting.

146 P.B. Gibbons

References

1. N. Alon, Y. Matias, M. Szegedy, The space complexity of approximating the frequency mo-
ments. J. Comput. Syst. Sci. 58, 137–147 (1999)

2. Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, L. Trevisan, Counting distinct elements
in a data stream, in Proc. 6th International Workshop on Randomization and Approximation
Techniques (2002), pp. 1–10

3. Z. Bar-Yossef, R. Kumar, D. Sivakumar, Reductions in streaming algorithms, with an ap-
plication to counting triangles in graphs, in Proc. 13th ACM-SIAM Symposium on Discrete
Algorithms (SODA) (2002)

4. J. Bunge, M. Fitzpatrick, Estimating the number of species: a review. J. Am. Stat. Assoc. 88,
364–373 (1993)

5. M. Charikar, S. Chaudhuri, R. Motwani, V. Narasayya, Towards estimation error guaran-
tees for distinct values, in Proc. 19th ACM Symp. on Principles of Database Systems (2000),
pp. 268–279

6. S. Chaudhuri, R. Motwani, V. Narasayya, Random sampling for histogram construction: how
much is enough? in Proc. ACM SIGMOD International Conf. on Management of Data (1998),
pp. 436–447

7. E. Cohen, Size-estimation framework with applications to transitive closure and reachability.
J. Comput. Syst. Sci. 55, 441–453 (1997)

8. J. Considine, F. Li, G. Kollios, J. Byers, Approximate aggregation techniques for sensor
databases, in Proc. 20th International Conf. on Data Engineering (2004), pp. 449–460

9. G. Cormode, M. Datar, P. Indyk, S. Muthukrishnan, Comparing data streams using Hamming
norms (how to zero in), in Proc. 28th International Conf. on Very Large Data Bases (2002),
pp. 335–345

10. M. Datar, A. Gionis, P. Indyk, R. Motwani, Maintaining stream statistics over sliding windows.
SIAM J. Comput. 31, 1794–1813 (2002)

11. M. Durand, P. Flajolet, Loglog counting of large cardinalities, in Proc. 11th European Symp.
on Algorithms (2003), pp. 605–617

12. C. Estan, G. Varghese, M. Fisk, Bitmap algorithms for counting active flows on high speed
links, in Proc. 3rd ACM SIGCOMM Conf. on Internet Measurement (2003), pp. 153–166

13. P. Flajolet, G.N. Martin, Probabilistic counting algorithms for data base applications. J. Com-
put. Syst. Sci. 31, 182–209 (1985)

14. S. Ganguly, Counting distinct items over update streams, in Proc. 16th International Symp. on
Algorithms and Computation (2005), pp. 505–514

15. S. Ganguly, M. Garofalakis, R. Rastogi, Tracking set-expression cardinalities over continuous
update streams. VLDB J. 13, 354–369 (2004)

16. P.B. Gibbons, Distinct sampling for highly-accurate answers to distinct values queries and
event reports, in Proc. 27th International Conf. on Very Large Data Bases (2001), pp. 541–
550

17. P.B. Gibbons, S. Tirthapura, Estimating simple functions on the union of data streams, in Proc.
13th ACM Symp. on Parallel Algorithms and Architectures (2001), pp. 281–291

18. P.B. Gibbons, S. Tirthapura, Distributed streams algorithms for sliding windows, in Proc. 14th
ACM Symp. on Parallel Algorithms and Architectures (2002), pp. 63–72

19. P.J. Haas, J.F. Naughton, S. Seshadri, L. Stokes, Sampling-based estimation of the number
of distinct values of an attribute, in Proc. 21st International Conf. on Very Large Data Bases
(1995), pp. 311–322

20. P.J. Haas, L. Stokes, Estimating the number of classes in a finite population. J. Am. Stat.
Assoc. 93, 1475–1487 (1998)

21. W.C. Hou, G. Özsoyoǧlu, B.K. Taneja, Statistical estimators for relational algebra expressions,
in Proc. 7th ACM Symp. on Principles of Database Systems (1988), pp. 276–287

22. W.C. Hou, G. Özsoyoǧlu, B.K. Taneja, Processing aggregate relational queries with hard time
constraints, in Proc. ACM SIGMOD International Conf. on Management of Data (1989),
pp. 68–77

Distinct-Values Estimation over Data Streams 147

23. A. Kumar, J. Xu, J. Wang, O. Spatscheck, L. Li, Space-code bloom filter for efficient per-flow
traffic measurement, in Proc. IEEE INFOCOM (2004)

24. S. Nath, P.B. Gibbons, S. Seshan, Z. Anderson, Synopsis diffusion for robust aggregation
in sensor networks, in Proc. 2nd ACM International Conf. on Embedded Networked Sensor
Systems (2004), pp. 250–262

25. J.F. Naughton, S. Seshadri, On estimating the size of projections, in Proc. 3rd International
Conf. on Database Theory (1990), pp. 499–513

26. F. Olken, Random sampling from databases. PhD thesis, Computer Science, UC, Berkeley
(1993)

27. C.R. Palmer, P.B. Gibbons, C. Faloutsos, ANF: a fast and scalable tool for data mining in
massive graphs, in Proc. 8th ACM SIGKDD International Conf. on Knowledge Discovery and
Data Mining (2002), pp. 81–90

28. A. Pavan, S. Tirthapura, Range-efficient computation of F0 over massive data streams, in Proc.
21st IEEE International Conf. on Data Engineering (2005), pp. 32–43

29. V. Poosala, Histogram-based estimation techniques in databases. PhD thesis, Univ. of
Wisconsin-Madison (1997)

30. V. Poosala, Y.E. Ioannidis, P.J. Haas, E.J. Shekita, Improved histograms for selectivity estima-
tion of range predicates, in Proc. ACM SIGMOD International Conf. on Management of Data
(1996), pp. 294–305

31. Y. Tao, G. Kollios, J. Considine, F. Li, D. Papadias, Spatio-temporal aggregation using
sketches, in Proc. 20th International Conf. on Data Engineering (2004), pp. 214–225

32. S. Venkataraman, D. Song, P.B. Gibbons, A. Blum, New streaming algorithms for high speed
network monitoring and Internet attacks detection, in Proc. 12th ISOC Network and Dis-
tributed Security Symp. (2005)

33. K.Y. Whang, B.T. Vander-Zanden, H.M. Taylor, A linear-time probabilistic counting algo-
rithm for database applications. ACM Trans. Database Syst. 15, 208–229 (1990)

34. D. Woodruff, Optimal space lower bounds for all frequency moments, in Proc. 15th ACM-
SIAM Symp. on Discrete Algorithms (2004), pp. 167–175

The Sliding-Window Computation Model
and Results

Mayur Datar and Rajeev Motwani

1 Sliding-Window Model: Motivation

In this chapter, we present some results related to small space computation over
sliding windows in the data-stream model. Most research in the data-stream model
(see, e.g., [1, 10, 11, 13–15, 19]), including results presented in some of the other
chapters, assume that all data elements seen so far in the stream are equally impor-
tant and synopses, statistics or models that are built should reflect the entire data set.
However, for many applications this assumption is not true, particularly those that
ascribe more importance to recent data items. One way to discount old data items
and only consider recent ones for analysis is the sliding-window model: Data ele-
ments arrive at every instant; each data element expires after exactly N time steps;
and, the portion of data that is relevant to gathering statistics or answering queries
is the set of last N elements to arrive. The sliding window refers to the window of
active data elements at a given time instant and window size refers to N .

1.1 Motivation and Road Map

Our aim is to develop algorithms for maintaining statistics and models that use space
sublinear in the window size N . The following example motivates why we may not

M. Datar (B)
Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA, USA
e-mail: mayur@google.com

R. Motwani
Department of Computer Science, Stanford University, Stanford, CA, USA
e-mail: rajeev@cs.stanford.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_7

149

mailto:mayur@google.com
mailto:rajeev@cs.stanford.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_7

150 M. Datar and R. Motwani

be ready to tolerate memory usage that is linear in the size of the window. Consider
the following network-traffic engineering scenario: a high speed router working at
40 gigabits per second line speed. For every packet that flows through this router we
do a prefix match to check if it originates from the stanford.edu domain. At
every instant, we would like to know how many packets, of the last 1010 packets,
belonged to the stanford.edu domain. The above question can be rephrased as
the following simple problem:

Problem 1 (BASICCOUNTING) Given a stream of data elements, consisting of 0’s
and 1’s, maintain at every time instant the count of the number of 1’s in the last N

elements.

A data element equals one if it corresponds to a packet from the stan-
ford.edu domain and is zero otherwise. A trivial solution1 exists for this problem
that requires N bits of space. However, in such a scenario as the high-speed router,
where on-chip memory is expensive and limited, and particularly when we would
like to ask multiple (thousands) such continuous queries, it is prohibitive to use
even N = 1010 (window size) bits of memory for each query. Unfortunately, it is
easy to see that the trivial solution is the best we can do in terms of memory us-
age, unless we are ready to settle for approximate answers, i.e., an exact solution
to BASICCOUNTING requires Θ(N) bits of memory. We will present a solution to
the problem that uses no more than O(1

ε
log2 N) bits of memory (i.e., O(1

ε
logN)

words of memory) and provides an answer at each instant that is accurate within a
factor of 1 ± ε. Thus, for ε = 0.1 (10 % accuracy) our solution will use about 300
words of memory for a window size of 1010.

Given our concern that derives from working with limited space, it is natural to
ask “Is this the best we can do with respect with memory utilization?” We answer
this question by demonstrating a matching space lower bound, i.e., we show that
any approximation algorithm (deterministic or randomized) for BASICCOUNTING

with relative error ε must use Ω(1
ε

log2 N) bits of memory. The lower bound proves
that the above mentioned algorithm is optimal, to within constant factors, in terms
of memory usage.

Besides maintaining simple statistics like a bit count, as in BASICCOUNTING,
there are various applications where we would like to maintain more complex statis-
tics. Consider the following motivating example:

A fundamental operation in database systems is a join between two or more re-
lations. Analogously, one can define a join between multiple streams, which is pri-
marily useful for correlating events across multiple data sources. However, since the
input streams are unbounded, producing join results requires unbounded memory.
Moreover, in most cases, we are only interested in those join results where the join-
ing tuples exhibit temporal locality. Consequently, in most data-stream applications,
a relevant notion of joins that is often employed is sliding-window joins, where tu-
ples from each stream only join with tuples that belong to a sliding window over

1Maintain a FIFO queue and update counter.

The Sliding-Window Computation Model and Results 151

the other stream. The semantics of such a join are clear to the user and also such
joins can be processed in a non-blocking manner using limited memory. As a result,
sliding-window joins are quite popular in most stream applications.

In order to improve join processing, database systems maintain “join statistics”
for the relations participating in the join. Similarly, in order to efficiently process
sliding-window joins, we would like to maintain statistics over the sliding windows,
for streams participating in the join. Besides being useful for the exact computation
of sliding-window joins, such statistics could also be used to approximate them.
Sliding-window join approximations have been studied by Das, Gehrke and Ried-
wald [6] and Kang, Naughton and Viglas [16]. This further motivates the need to
maintain various statistics over sliding windows, using small space and update time.

This chapter presents a general technique, called the Exponential Histogram (EH)
technique, that can be used to solve a wide variety of problems in the sliding-window
model; typically problems that require us to maintain statistics. We will showcase
this technique through solutions to two problems: the BASICCOUNTING problem
above and the SUM problem that we will define shortly. However, our aim is not to
solely present solutions to these problems, rather to explain the EH technique itself,
such that the reader can appropriately modify it to solve more complex problems
that may arise in various applications. Already, the technique has been applied to
various other problems, of which we will present a summary in Sect. 5.

The road map for this chapter is as follows: After presenting an algorithm for the
BASICCOUNTING problem and the associated space lower bound in Sects. 2 and 3,
respectively, we present a modified version of the algorithm in Sect. 4 that solves
the following generalization of the BASICCOUNTING problem:

Problem 2 (SUM) Given a stream of data elements that are positive integers in the
range [0..R], maintain at every time instant the sum of the last N elements.

A summary of other results in the sliding-window model is given in Sect. 5,
before concluding in Sect. 6

2 A Solution to the BASICCOUNTING Problem

It is instructive to observe why naive schemes do not suffice for producing approx-
imate answers with a low memory requirement. For instance, it is natural to con-
sider random sampling as a solution technique for solving the problem. However,
maintaining a uniform random sample of the window elements will result in poor
accuracy in the case where the 1’s are relatively sparse.

Another approach is to maintain histograms. While the algorithm that we present
follows this approach, it is important to note why previously known histogram tech-
niques from databases are not effective for this problem. A histogram technique is
characterized by the policy used to maintain the bucket boundaries. We would like to
build time-based histograms in which every bucket summarizes a contiguous time

152 M. Datar and R. Motwani

Fig. 1 Sliding window model notation

interval and stores the number of 1’s that arrived in that interval. As with all his-
togram techniques, when a query is presented we may have to interpolate in some
bucket to estimate the answer, because some of the bucket’s elements may have ex-
pired. Let us consider some schemes of bucketizing and see why they will not work.
The first scheme that we consider is that of dividing into k equi-width (width of time
interval) buckets. The problem is that the distribution of 1’s in the buckets may be
nonuniform. We will incur large error when the interpolation takes place in buckets
with a majority of the 1’s. This observation suggests another scheme where we use
buckets of nonuniform width, so as to ensure that each bucket has a near-uniform
number of 1’s. The problem is that total number of 1’s in the sliding window could
change dramatically with time, and current buckets may turn out to have more or less
than their fair shares of 1’s as the window slides forward. The solution we present is
a form of histogram that avoids these problems by using a set of well-structured and
nonuniform bucket sizes. It is called the Exponential Histogram (EH) for reasons
that will be clear later. Before getting into the details of the solution we introduce
some notation.

We follow the conventions illustrated in Fig. 1. In particular, we assume that
new data elements are coming from the right and the elements at the left are ones
already seen. Note that each data element has an arrival time which increments by
one at each arrival, with the leftmost element considered to have arrived at time 1.
But, in addition, we employ the notion of a timestamp which corresponds to the
position of an active data element in the current window. We timestamp the active
data elements from right to left, with the most recent element being at position 1.
Clearly, the timestamps change with every new arrival and we do not wish to make
explicit updates. A simple solution is to record the arrival times in a wraparound
counter of logN bits and then the timestamp can be extracted by comparison with
counter value of the current arrival. As mentioned earlier, we concentrate on the
1’s in the data stream. When we refer to the kth 1, we mean the kth most recent 1
encountered in the data stream.

For an illustration of this notation, consider the situation presented in Fig. 1. The
current time instant is 49 and the most recent arrival is a zero. The element with

The Sliding-Window Computation Model and Results 153

arrival time 48 is the most recent 1 and has timestamp 2 since it is the second most
recent arrival in the current window. The element with arrival time 44 is the second
most recent 1 and has timestamp 6.

We will maintain histograms for the active 1’s in the data stream. For every
bucket in the histogram, we keep the timestamp of the most recent 1 (called times-
tamp for the bucket), and the number of 1’s (called bucket size). For example, in
our figure, a bucket with timestamp 2 and size 2 represents a bucket that contains
the two most recent 1’s with timestamps 2 and 6. Note that timestamp of a bucket
increases as new elements arrive. When the timestamp of a bucket expires (reaches
N + 1), we are no longer interested in data elements contained in it, so we drop
that bucket and reclaim its memory. If a bucket is still active, we are guaranteed that
it contains at least a single 1 that has not expired. Thus, at any instant there is at
most one bucket (the last bucket) containing 1’s that may have expired. At any time
instant we may produce an estimate of the number of active 1’s as follows. For all
but the last bucket, we add the number of 1’s that are in them. For the last bucket,
let C be the count of the number of 1’s in that bucket. The actual number of active
1’s in this bucket could be anywhere between 1 and C, so we estimate it to be C/2.
We obtain the following:

Fact 1 The absolute error in our estimate is at most C/2, where C is the size of the
last bucket.

Note that, for this approach, the window size does not have to be fixed a-priori
at N . Given a window size S (S ≤ N), we do the same thing as before except that
the last bucket is the bucket with the largest timestamp less than S.

2.1 The Approximation Scheme

We now define the Exponential Histograms and present a technique to maintain
them, so as to guarantee count estimates with relative error at most ε, for any ε > 0.
Define k = � 1

ε
�, and assume that k

2 is an integer; if k
2 is not an integer, we can replace

k
2 by � k

2� without affecting the basic results.
As per Fact 1, the absolute error in the estimate is C/2, where C is the size

of the last bucket. Let the buckets be numbered from right to left with the most
recent bucket being numbered 1. Let m denote the number of buckets and Ci denote
the size of the ith bucket. We know that the true count is at least 1 + ∑m−1

i=1 Ci ,
since the last bucket contains at least one unexpired 1 and the remaining buckets
contribute exactly their size to total count. Thus, the relative estimation error is at
most (Cm/2)/(1 + ∑m−1

i=1 Ci). We will ensure that the relative error is at most 1/k

by maintaining the following invariant:

Invariant 1 At all times, the bucket sizes C1, . . . ,Cm are such that for all j ≤ m,
we have Cj/〈2(1 +∑j−1

i=1 Ci) ≤ 1
k
〉.

154 M. Datar and R. Motwani

Let N ′ ≤ N be the number of 1’s that are active at any instant. Then the bucket
sizes must satisfy

∑m
i=1 Ci ≥ N ′. Our goal is to satisfy this property and Invariant 1

with as few buckets as possible. In order to achieve this goal we maintain buckets
with exponentially increasing sizes so as to satisfy the following second invariant.

Invariant 2 At all times the bucket sizes are nondecreasing, i.e., C1 ≤ C2 ≤ · · · ≤
Cm−1 ≤ Cm. Further, bucket sizes are constrained to the following: {1,2,4, . . . ,2m′ },
for some m′ ≤ m and m′ ≤ log 2N

k
+ 1. For every bucket size other than the size of

the first and last bucket, there are at most k
2 + 1 and at least k

2 buckets of that size.
For the size of the first bucket, which is equal to one, there are at most k + 1 and at
least k buckets of that size. There are at most k

2 buckets with size equal to the size
of the last bucket.

Let Cj = 2r (r > 0) be the size of the j th bucket. If the size of the last bucket is
1 then there is no error in estimation since there is only data element in that bucket
for which we know the timestamp exactly. If Invariant 2 is satisfied, then we are
guaranteed that there are at least k

2 buckets each of sizes 2,4, . . . ,2r−1 and at least
k buckets of size 1, which have indexes less than j . Consequently, Cj < 2

k
(1 +

∑j−1
i=1 Ci). It follows that if Invariant 2 is satisfied then Invariant 1 is automatically

satisfied, at least with respect to buckets that have sizes greater than 1. If we maintain
Invariant 2, it is easy to see that to cover all the active 1’s, we would require no more
than m ≤ (k

2 + 1)(log(2N
k

)+ 2) buckets. Associated with each bucket is its size and
a timestamp. The bucket size takes at most logN values, and hence we can maintain
them using log logN bits. Since a timestamp requires logN bits, the total memory
requirement of each bucket is logN + log logN bits. Therefore, the total memory
requirement (in bits) for an EH is O(1

ε
log2 N). It is implied that by maintaining

Invariant 2, we are guaranteed the desired relative error and memory bounds.
The query time for EH can be made O(1) by maintaining two counters, one for

the size of the last bucket (LAST) and one for the sum of the sizes of all buck-
ets (TOTAL). The estimate itself is TOTAL minus half of LAST. Both counters can
be updated in O(1) time for every data element. See the box below for a detailed
description of the update algorithm.

Example 1 We illustrate the execution of the algorithm for 10 steps, where at each
step the new data element is 1. The numbers indicate the bucket sizes from left to
right, and we assume that k

2 = 1.

32, 32, 16, 8, 8, 4, 2, 1, 1
32, 32, 16, 8, 8, 4, 4, 2, 1, 1, 1 (new 1 arrived)
32, 32, 16, 8, 8, 4, 4, 2, 1, 1, 1, 1 (new 1 arrived)
32, 32, 16, 8, 8, 4, 4, 2, 2, 1, 1 (merged the older 1’s)
32, 32, 16, 8, 8, 4, 4, 2, 2, 1, 1, 1 (new 1 arrived)
32, 32, 16, 8, 8, 4, 4, 2, 2, 1, 1, 1, 1 (new 1 arrived)
32, 32, 16, 8, 8, 4, 4, 2, 2, 2, 1, 1 (merged the older 1’s)
32, 32, 16, 8, 8, 4, 4, 4, 2, 1, 1 (merged the older 2’s)
32, 32, 16, 8, 8, 8, 4, 2, 1, 1 (merged the older 4’s)
32, 32, 16, 16, 8, 4, 2, 1, 1 (merged the older 8’s)

The Sliding-Window Computation Model and Results 155

Algorithm (Insert):

1. When a new data element arrives, calculate the new expiry time. If the
timestamp of the last bucket indicates expiry, delete that bucket and up-
date the counter LAST containing the size of the last bucket and the
counter TOTAL containing the total size of the buckets.

2. If the new data element is 0 ignore it; else, create a new bucket with size
1 and the current timestamp, and increment the counter TOTAL.

3. Traverse the list of buckets in order of increasing sizes. If there are k
2 +2

buckets of the same size (k + 2 buckets if the bucket size equals 1),
merge the oldest two of these buckets into a single bucket of double the
size. (A merger of buckets of size 2r may cause the number of buckets of
size 2r+1 to exceed k

2 +1, leading to a cascade of such mergers.) Update
the counter LAST if the last bucket is the result of a new merger.

Merging two buckets corresponds to creating a new bucket whose size is equal to
the sum of the sizes of the two buckets and whose timestamp is the timestamp of the
more recent of the two buckets, i.e., the timestamp of the bucket that is to the right.
A merger requires O(1) time. Moreover, while cascading may require Θ(log 2N

k
)

mergers upon the arrival of a single new element, a simple argument, presented in
the next proof, allows us to argue that the amortized cost of mergers is O(1) per
new data element. It is easy to see that the above algorithm maintains Invariant 2.
We obtain the following theorem:

Theorem 1 The EH algorithm maintains a data structure that gives an esti-
mate for the BASICCOUNTING problem with relative error at most ε using at
most (k

2 + 1)(log(2N
k

) + 2) buckets, where k = � 1
ε
�. The memory requirement is

logN + log logN bits per bucket. The arrival of each new element can be processed
in O(1) amortized time and O(logN) worst-case time. At each time instant, the
data structure provides a count estimate in O(1) time.

Proof The EH algorithm above, by its very design, maintains Invariant 2. As
noted earlier, an algorithm that maintains Invariant 2, requires no more than
(k

2 + 1)(log(2N
k

) + 2) buckets to cover all the active 1’s. Furthermore, the invari-
ant also guarantees that our estimation procedure has a relative error no more than
1/k ≤ ε.

Each bucket maintains a timestamp and the size for that bucket. Since we main-
tain timestamps using wraparound arrival times, they require no more than logN

bits of memory. As per Invariant 2, bucket sizes can take only one of the log 2N
k

+ 1
unique values, and can be represented using log logN bits. Thus, the total memory
requirement of each bucket is no more than logN + log logN bits.

On the arrival of a new element, we may perform a cascading merge of buckets,
that takes time proportional to the number of buckets. Since there are O(logN)

buckets, this gives a worst case update time of O(logN). Whenever two buckets are
merged, the size of the merged bucket is double the size of those that are merged.

156 M. Datar and R. Motwani

The cost of the merging can be amortized among all the 1’s that fall in the merged
bucket. Thus, an element that belongs to a bucket of size 2p , pays an amortized cost
1+ 1/2+ 1/4+ · · · + 1/2p ≤ 2. This is because, whenever it gets charged, the size
of the bucket it belongs to doubles and consequently the charge it incurs halves.
Thus, we get that the amortized cost of merging buckets is O(1) per new element,
in fact, O(1) per new element that has value 1.

We maintain counters TOTAL and LAST, which can be updated in O(1) time
for each new element, and which enable us to give a count estimate in O(1) time
whenever a query is asked. �

If instead of maintaining a timestamp for every bucket, we maintain a times-
tamp for the most recent bucket and maintain the difference between the times-
tamps for the successive buckets then we can reduce the total memory requirement
to O(k log2 N

k
).

3 Space Lower Bound for BASICCOUNTING Problem

We provide a lower bound which verifies that the algorithms is optimal in its mem-
ory requirement. We start with a deterministic lower bound of Ω(k log2 N

k
). We omit

proofs for lack of space, and refer the reader to [8].

Theorem 2 Any deterministic algorithm that provides an estimate for the BASIC-
COUNTING problem at every time instant with relative error less than 1

k
for some

integer k ≤ 4
√

N requires at least k
16 log2 N

k
bits of memory.

The proof argument goes as follows: At any time instant, the space utilized by
any algorithm, is used to summarize the contents of the current active window. For
a window of size N , we can show that there are a large number of possible input
instances, i.e., arrangements of 0’s and 1’s, such that any deterministic algorithm
which provides estimates with small relative error (i.e., less than 1

k
) has to differen-

tiate between every pair of these arrangements. The number of memory bits required
by such an algorithm must therefore exceed the logarithm of the number of arrange-
ments. The above argument is formalized by the following lemma.

Lemma 1 For k/4 ≤ B ≤ N , there exist L = (
B

k/4

)
log N
B
�

arrangements of 0’s and
1’s of length N such that any deterministic algorithm for BASICCOUNTING with
relative error less than 1

k
must differentiate between any two of the arrangements.

To prove Theorem 2, observe that if we choose B =√
Nk in the lemma above

then logL ≥ k
16 log2 N

k
. While the lower bound above is for a deterministic algo-

rithm, a standard technique for establishing lower bounds for randomized algo-
rithms, called the minimax principle [18], lets us extend this lower bound on the
space complexity to randomized algorithms.

The Sliding-Window Computation Model and Results 157

As a reminder, a Las Vegas algorithm is a randomized algorithm that always
produces the correct answer, although the running time or space requirement of the
algorithm may vary with the different random choices that the algorithm makes. On
the other hand, a Monte Carlo algorithm is a randomized algorithm that sometimes
produces an incorrect solution. We obtain the following lower bounds for these two
classes of algorithms.

Theorem 3 Any randomized Las Vegas algorithm for BASICCOUNTING with rel-
ative error less than 1

k
, for some integer k ≤ 4

√
N , requires an expected memory of

at least k
16 log2 N

k
bits.

Theorem 4 Any randomized Monte Carlo algorithm for BASICCOUNTING prob-
lem with relative error less than 1

k
, for some integer k ≤ 4

√
N , with probability at

least 1−δ (for δ < 1
2) requires an expected memory of at least k

32 log2 N
k
+ 1

2 log(1−
2δ) bits.

4 Beyond 0’s and 1’s

The BASICCOUNTING problem, discussed in the last two sections, is one of the
basic operations that one can define over sliding windows. While the problem in
its original form has various applications, it is natural to ask “What are the other
problems, in the sliding-window model, that can be solved using small space and
small update time?”. For instance, instead of the data elements being binary values,
namely 0 and 1, what if they were positive integers in the range [0..R]? Could we
efficiently maintain the sum of these numbers in the sliding-window model? We
have already defined this problem, in Sect. 1, as the SUM problem.

We will now present a modification of the algorithm from Sect. 2, that solves the
SUM problem. In doing so, we intend to highlight the characteristic elements of the
solution technique, so that readers may find it easy to adapt the technique to other
problems. Already, the underlying technique has been successfully applied to many
problems, some of which will be listed in the following section.

One way to solve the SUM problem would be to maintain separately a slid-
ing window sum for each of the logR bit positions using an EH from Sect. 2.1.
As before, let k = � 1

ε
�. The memory requirement for this approach would be

O(k log2 N logR) bits. We will present a more direct approach that uses less mem-
ory. In the process we demonstrate how the EH technique introduced in Sect. 2 can
be generalized to solving a bigger class of problems.

Typically, a problem in the sliding-window model requires us to maintain a func-
tion f defined over the elements in the sliding window. Let f (B) denote the func-
tion value restricted to the elements in a bucket B . For example, in case of the SUM

problem, the function f equals the sum of the positive integers that fall inside the
sliding-window. In case of BASIC COUNTING the function f is simply the number
of 1’s that fall inside the sliding-window. We note the following central ingredients
of the EH technique from Sect. 2 and adapt them for the SUM problem:

158 M. Datar and R. Motwani

1. Size of a Bucket. The size of each bucket is defined as the value of the function
f that we are estimating (over the sliding window), restricted to that bucket B ,
i.e., f (B). In the earlier case size was simply the count of 1’s falling inside the
bucket. For SUM, we define size analogously as the sum of integers falling inside
the bucket.

2. Procedure to Merge Buckets or Combination Rule. Whenever the algorithm
decides to merge two adjacent buckets, a new bucket is created with timestamp
equal to that of the newer bucket or the bucket to the right. The size of this
new bucket is computed using the sizes of the individual buckets (i.e., using
f (B)’s for the buckets that are merged) and any additional information that may
be stored with the buckets.2 Clearly, for the problem of maintaining the sum of
data elements, which are either 0’s and 1’s or positive integers, no additional in-
formation is required. By definition, the size of the new merged bucket is simply
the sum of the sizes of buckets being merged .

3. Estimation. Whenever a query is asked, we need to estimate the answer at that
moment based on the sizes of all the buckets and any additional information
that we may have kept. In order to estimate the answer, we may be required to
“interpolate” over the last bucket that is part inside and part outside the sliding
window, i.e., the “straddling” bucket.

Typically, this is done by computing the function value f over all buckets
other than the last bucket. In order to do this, we use the same procedure as in
the Merge step. To this value we may add the interpolated value of the function
f from the last bucket.

Again, for the problem of maintaining the sum of positive integers this task is
relatively straightforward. We simply add up the sizes of all the buckets that are
completely inside the sliding window. To this we add the “interpolated” value
from the last bucket, which is simply half the size of the last bucket.

4. Deleting the Oldest Bucket. In order to reclaim memory, the algorithm deletes
the oldest bucket when its timestamp reaches N + 1. This step is same irrespec-
tive of the function f we are estimating.

The technique differs for different problems in the particulars of how the steps
above are executed and the rules for when to merge old buckets and create new
ones, as new data elements get inserted. The goal is to maintain as few buckets as
possible, i.e., merge buckets whenever possible, while at the same time making sure
that the error due to the estimation procedure, which interpolates for the last bucket,
is bounded. Typically, this goal is achieved by maintaining that the bucket sizes
grow exponentially from right to left (new to old) and hence the name Exponential
Histograms (EH). It is shown in [8] that the technique can be used to estimate a gen-
eral class of functions f , called weakly-additive functions, over sliding windows. In

2There are problems for which just knowing the sizes of the buckets that are merged is not sufficient
to compute the size of the new merged bucket. For example, if the function f is the variance of
numbers, in addition to knowing the variance of the buckets that are merged, we also need to know
the number of elements in each bucket and mean value of the elements from each bucket, in order
to compute the variance for the merged bucket; see [4] for details.

The Sliding-Window Computation Model and Results 159

Fig. 2 An illustration of an Exponential Histogram (EH)

the following section, we list different problems over sliding windows, that can be
solved using the EH technique.

We need some more notation to demonstrate the EH technique for the SUM prob-
lem. Let the buckets in the histogram be numbered B1,B2, . . . ,Bm, starting from
most recent (B1) to oldest (Bm); further, t1, t2, . . . , tm denote the bucket timestamps;
see Fig. 2 for an illustration. In addition to the buckets maintained by the algorithm,
we define another set of suffix buckets, denoted B1∗ , . . . ,Bj∗ , that represent suffixes
of the data stream. Bucket Bi∗ represents all elements in the data stream that arrived
after the elements of bucket Bi , that is, Bi∗ = ⋃i−1

l=1 Bl . We do not explicitly main-
tain the suffix buckets. Let Si denote the size of bucket Bi . Similarly, let Si∗ denote
the size of the suffix bucket Bi∗ . Note, for the Sum problem Si∗ = ∑i−1

l=1 Sl . Let
Bi,i−1 denote the bucket that would be formed by merging buckets i and i − 1, and
Si,i−1 (Si,i−1 = Si +Si−1) denote the size of this bucket. We maintain the following
two invariants that guarantee a small relative error ε in estimation and small number
of buckets:

Invariant 3 For every bucket Bi , 1
2ε

Si ≤ Si∗ .

Invariant 4 For each i > 1, for every bucket Bi ,

1

2ε
Si,i−1 > Si−1∗ .

It follows from Invariant 3 that the relative error in estimation is no more
than Sm

2Sm∗ ≤ ε. Invariant 4 guarantees that the number of buckets is no more than

O(1
ε
(logN + logR)). It is easy to see the proof of this claim. Since Si∗ = ∑i−1

l=1 Sl ,
i.e., the bucket sizes are additive, after every �1/ε� buckets (rather �1/2ε� pairs of
buckets) the value of Si∗ doubles. As a result, after O(1

ε
(logN + logR)) buckets the

value of Si∗ exceeds NR, which is the maximum value that can be achieved by Si∗ .
We now present a simple insert algorithm that maintains the two invariants above as
new elements arrive.

Note, Invariant 3 holds for buckets that have been formed as a result of the merg-
ing of two or more buckets because the merging condition assures that it holds for
the merged bucket. Addition of new elements in the future does not violate the in-
variant, since the right-hand side of the invariant can only increase by addition of the

160 M. Datar and R. Motwani

Algorithm (Insert): xt denotes the most recent element.

1. If xt = 0, then do nothing. Otherwise, create a new bucket for xt . The
new bucket becomes B1 with S1 = xt . Every old bucket Bi becomes
Bi+1.

2. If the oldest bucket Bm has timestamp greater than N , delete the bucket.
Bucket Bm−1 becomes the new oldest bucket.

3. Merge step. Let k = 1
2ε

. While there exists an index i > 2 such that
kSi,i−1 ≤ Si−1∗ , find the smallest such i and combine buckets Bi and
Bi−1 using the combination rule described earlier. Note that Si∗ value
can be computed incrementally by adding Si−1 and Si−1∗ , as we make
the sweep.

new elements. However, the invariant may not hold for a bucket that contains a sin-
gleton nonzero element and was never merged. The fact that the invariant does not
hold for such a bucket, does not affect the error bound for the estimation procedure
because, if such a bucket were to become the last bucket, we know the exact times-
tamp for the only non zero element in the bucket. As a result there is no interpolation
error in that case.

Analogously to the variables TOTAL and LAST in Sect. 2.1, we can maintain
Sm + Sm∗ and Sm that enable us to answer queries in O(1) time. The algorithm for
insertion requires O(1

ε
(logN + logR)) time per new element. Most of the time is

spent in Step 3, where we make the sweep to combine buckets. This time is pro-
portional to number of buckets, (O(1

ε
(logN + logR))). A simple trick, to skip

Step 3 until we have seen Θ(1
ε
(logN + logR)) data points, ensures that the run-

ning time of the algorithm is amortized O(1). While we may violate Invariant 4
temporarily, we restore it after seeing Θ(1

ε
(logN + logR)) data points, by execut-

ing Step 3, which ensures that the number of buckets is O(1
ε
(logN + logR)). The

space requirement for each bucket (memory needed to maintain timestamp and size)
is logN + logR bits. If we assume that a word is at least logN + logR bits long,
equivalently the size required to count up to NR, which is the maximum value of
the answer, we get that the total memory requirement is O(1

ε
(logN + logR)) words

or O(1
ε
(logN + logR)2) bits. Please refer to [8] for a more complex procedure that

has similar time requirements and space requirement O(1
ε

logN(logN + logR))

bits. To summarize, we get the following theorem:

Theorem 5 The sum of positive integers in the range [0..R] can be estimated over
sliding windows with relative error at most ε using O(1

ε
(logN + logR)) words of

memory. The time to update the underlying EH is worst case O(1
ε
(logN + logR))

and amortized O(1).

The Sliding-Window Computation Model and Results 161

Similar to the space lower bound that we presented in Sect. 3, one can show a
space lower bound of Ω(1

ε
(logN+ logR)(logN)) bits for the SUM problem; see [8]

for details. This is asymptotically equal to the upper bound for the algorithm in [8]
that we mentioned earlier.

It is natural to ask the question: What happens if we do not restrict data elements
to positive integers and are interested in estimating the sum over sliding windows.
We show that even if we restrict the set of unique data elements to {1,0,−1}, to
approximate the sum within a constant factor requires Ω(N) bits of memory. More-
over, it is easy to maintain the sum by storing the last N integers which requires
O(N) bits of memory. We assume that the storage required for every integer is a
constant independent of the window size N . With this assumption, we have that
the complexity of the problem in the general case (allowing positive and negative
integers) is Θ(N).

We now argue the lower bound of Ω(N). Consider an algorithm A that provides
a constant-factor approximation to the problem of maintaining the general sum.
Given a bit vector of size N/2 we present the algorithm A with the pair (−1,1) for
every 1 in the bit vector and the pair (1,−1) for every 0. Consider the state (time
instance) after we have presented all the N/2 pairs to the algorithm. We claim that
we can completely recover the original bit vector by presenting a sequence of 0’s
henceforth and querying the algorithm on every odd time instance. If the current
time instance is T (after having presented the N/2 pairs) then it is easy to see that
the correct answer at time instance T + 2i − 1 (1 ≤ i ≤ N/2) is 1 iff the ith bit
was 1 and −1 iff the ith bit was 0. Since the algorithm A gives a constant factor
approximation its estimate would be positive if the correct answer is 1 and negative
if the correct answer was −1. Since the state of the algorithm after feeding the N/2
pairs enables us to recover the bit vector exactly for any arbitrary bit vector it must
be using at least N/2 bits of memory to encode it. This proves the lower bound. We
can state the following theorem:

Theorem 6 The space complexity of any algorithm that gives a constant factor ap-
proximation, at every instant, to the problem of maintaining the sum of last N inte-
gers (positive or negative) that appear as stream of data elements is equal to Θ(N).

5 References and Related Work

The EH technique that we demonstrate through solutions to the BASICCOUNTING

and SUM problem is by Datar, Gionis, Indyk and Motwani [8]. The space lower
bounds presented above are also from that paper. In the same paper, the authors char-
acterize a general class of weakly additive functions that can be efficiently estimated
over sliding windows, using the EH technique. Also see, Datar’s PhD thesis [7] for
more details.

As we have seen in other chapters from this book, it is often the case that input
data streams are best visualized as a high dimensional vector. A standard operation

162 M. Datar and R. Motwani

is to compute the lp norm, for 0 < p ≤ 2, of these vectors or the lp norm of the
difference between two vectors. In Chap., we have seen sketching techniques to es-
timate these lp norms using small space. It turns out that, when each data element in
the data stream represents an increment to some dimension of the underlying high
dimensional vector, the lp norm of a vector belongs to the class of weakly additive
functions mentioned above. Consequently, for the restricted case when the incre-
ments are positive, the EH technique in conjunction with the sketching technique,
can be adapted to the estimate lp norms over the sliding windows; see [7, 8] for
details.

Babcock, Datar, Motwani and O’Callaghan [4] showed that the variance of real
numbers with maximum absolute value R can be estimated over sliding windows
with relative error at most ε using O(1

ε2 (logN + logR)) words of memory. The

update time for the data structure is worst case O(1
ε2 (logN + logR)) and amortized

O(1). In the same paper, the authors look at the problem of maintaining k-medians
clustering of points over a sliding window. They present an algorithm that uses
O(k

τ 4 N2τ log2 N) memory3 and presents k centers, for which the objective function

value is within a constant factor (2O(1/τ)) of optimal, where τ < 1/2 is a parameter
which captures the trade-off between the space bound and the approximation ratio.

The update time for the data structure is worst case Õ(k2

τ 3 N2τ) and amortized Õ(k).
Both these algorithms are an adaptation of the EH technique, presented in Sect. 4
above.

In this chapter, we have focussed on the sliding-window model, that assumes that
the pertinent data set is the last N data elements, i.e., we focus on sequence-based
sliding-window model. In other words, we assumed that data items arrive at regular
time intervals and arrival time increases by one with every new data item that we
have seen. Such regularity in arrival of data items is seldom true for most real life
applications, for which arrival rates of data items may be bursty. Often, we would
like to define the sliding window based on real time. It is easy to adapt the EH
technique to such a time-based sliding-window model; see [7, 8] for details.

One may argue that the sliding-window model is not the right model to discount
old data, in the least not the only model. If our aim is to assign a smaller weight to
older elements so that they contribute less to any statistics or models we maintain,
we may want to consider other monotonically decreasing functions (time decayed
functions) for assigning weights to elements other than the step function (1 for the
last N elements and 0 beyond) that is implicit in the sliding-window model. A nat-
ural decay function is the exponentially decreasing weight function that was con-
sidered by Gilbert et al. [12] in maintaining aged aggregates: For a data stream
. . . , x(−2), x(−1), x(0), where x(0) is the most recently seen data element, λ-aging
aggregate is defined as λx(0) + λ(1 − λ)x(−1) + λ(1 − λ)2x(−2) + · · ·. Exponen-
tially decayed statistics as above are easy to maintain, although one may argue that
exponential decay of weights is not suited for all applications or is too restrictive.

3The space required to hold a single data point, which in this case is a point from some metric
space, is assumed to be O(1) words.

The Sliding-Window Computation Model and Results 163

We may desire a richer class of decay functions, e.g., polynomially decaying weight
functions instead of exponential decay. Cohen and Strauss [5] show how to maintain
statistics efficiently for a general class of time decaying functions. Their solutions
use the EH technique as a building block or subroutine, there by demonstrating the
applicability of the EH technique to a wider class of models that allow for time
decay, besides the sliding-window model that we have considered.

See [7] for solutions to other problems in the sliding-window model that do not
rely on the EH technique. These problems include maintaining a uniform random
sample (see also [3]), maintaining the min/max of real numbers, estimating the ratio
of rare4 elements to the number of distinct elements (see also [9]), and estimating
the similarity between two data streams measured according to the Jaccard coeffi-
cient for set similarity between two sets A,B: |A∩B|/|A∪B| (see also [9]).

Maintaining approximate counts of high frequency elements and maintaining ap-
proximate quantiles, are important problems that have been studied in database
research as maintaining end-biased histograms and maintaining equi-depth his-
tograms. These problems are particularly useful for sliding-window join process-
ing; they provide the necessary join statistics and can also be used for approximate
computation of joins. A solution to these problems, in the sliding-window model, is
presented by Arasu and Manku [2] and Lu et al. [17].

6 Conclusion

In this chapter, we have studied algorithms for two simple problems, BASICCOUNT-
ING and SUM, in the sliding-window model; a natural model to discount stale data
that only considers the last N elements as being pertinent. Our aim was to showcase
the Exponential Histogram (EH) technique that has been used to efficiently solve
various problems over sliding windows. We also presented space lower bounds for
the two problems above. See Table 1 for a summary of results in the sliding-window
model. Note that, for this summary, we measure memory in words, where a word
is assumed large enough to hold the answer or one unit of answer. For example, in
the case of BASICCOUNTING a word is assumed to be logN bits long, for SUM

word is assumed to be logN + logR bits long, for lp norm sketches we assume
that sketches can fit in a word, for clustering a word is assumed large enough to be
able to hold a single point from the metric space, and so on. Similarly, we assume
it is possible to do a single word operation in one unit of time while measuring time
requirements.

4An element is termed rare if it occurs only once (or a small number of times) in the sliding
window.

164 M. Datar and R. Motwani

Ta
bl

e
1

Su
m

m
ar

y
of

re
su

lts
fo

r
th

e
sl

id
in

g-
w

in
do

w
m

od
el

Pr
ob

le
m

Sp
ac

e
re

qu
ir

em
en

t
(i

n
w

or
ds

)
Sp

ac
e

lo
w

er
bo

un
d

(i
n

w
or

ds
w

he
n

av
ai

la
bl

e)
A

m
or

tiz
ed

up
da

te
tim

e
W

or
st

ca
se

up
da

te
tim

e

B
A

S
IC

C
O

U
N

T
IN

G
O

(
1 ε

lo
g
N

)
Ω

(
1 ε

lo
g
N

)
O

(1
)

Ω
(

1 ε
lo

g
N

)

S
U

M
O

(
1 ε

lo
g
N

)
Ω

(
1 ε

lo
g
N

)
O

(1
)

Ω
(

1 ε
(l

og
N

+
lo

g
R

))

V
ar

ia
nc

e
O

(
1 ε
2
(l

og
N

+
lo

g
R

))
Ω

(
1 ε

lo
g
N

)
O

(1
)

O
(

1 ε
2
(l

og
N

+
lo

g
R

))

l p
no

rm
sk

et
ch

es
O

(l
og

N
)

O
(1

)
O

(l
og

N
)

k
-m

ed
ia

n
cl

us
te

ri
ng

(2
O

(1
/
τ
)
-a

pp
ro

xi
m

at
io

n)
O

(
k τ
4
N

2τ
lo

g2
N

)
Ω

(
1 ε

lo
g
N

)
Õ

(k
)

Õ
(

k
2

τ
3
N

2τ
)

M
in

/M
ax

O
(N

)
Ω

(N
)

O
(l

og
N

)
O

(l
og

N
)

Si
m

ila
ri

ty
O

(l
og

N
)

O
(l

og
lo

g
N

)

(w
.h

.p
)

O
(l

og
lo

g
N

)

(w
.h

.p
.)

R
ar

ity
O

(l
og

N
)

O
(l

og
lo

g
N

)

(w
.h

.p
)

O
(l

og
lo

g
N

)

(w
.h

.p
.)

A
pp

ro
xi

m
at

e
co

un
ts

O
(

1 ε
lo

g2
1 ε
)

Ω
(1

/
ε
)

O
(l

og
(1

/
ε
))

O
(1

/
ε
)

Q
ua

nt
ile

s
O

(
1 ε

lo
g

1 ε
lo

g
N

)
Ω

((
1/

ε
)

lo
g(

ε
N

/
lo

g(
1/

ε
))

)
O

(l
og

(1
/
ε
)

lo
g(

ε
N

/
lo

g(
1/

ε
))

)
O

(1
/
ε

lo
g(

1/
ε
))

The Sliding-Window Computation Model and Results 165

References

1. N. Alon, Y. Matias, M. Szegedy, The space complexity of approximating the frequency mo-
ments, in Proc. of the 1996 Annual ACM Symp. on Theory of Computing (1996), pp. 20–29

2. A. Arasu, G. Manku, Approximate counts and quantiles over sliding windows. Technical re-
port, Stanford University, Stanford, California (2004)

3. B. Babcock, M. Datar, R. Motwani, Sampling from a moving window over streaming data, in
Proc. of the 2002 Annual ACM-SIAM Symp. on Discrete Algorithms (2002), pp. 633–634

4. B. Babcock, M. Datar, R. Motwani, L. O’Callaghan, Maintaining variance and k-medians over
data stream windows, in Proc. of the 2003 ACM Symp. on Principles of Database Systems
(2003), pp. 234–243

5. E. Cohen, M. Strauss, Maintaining time-decaying stream aggregates, in Proc. of the 2003
ACM Symp. on Principles of Database Systems (2003), pp. 223–233

6. A. Das, J. Gehrke, M. Riedwald, Approximate join processing over data streams, in Proc. of
the 2003 ACM SIGMOD Intl. Conf. on Management of Data (2003), pp. 40–51

7. M. Datar, Algorithms for data stream systems. PhD thesis, Stanford University, Stanford, CA,
USA (2003)

8. M. Datar, A. Gionis, P. Indyk, R. Motwani, Maintaining stream statistics over sliding windows.
SIAM J. Comput. 31(6), 1794–1813 (2002)

9. M. Datar, S. Muthukrishnan, Estimating rarity and similarity over data stream windows, in
Proc. of the 2002 Annual European Symp. on Algorithms (2002), pp. 323–334

10. J. Feigenbaum, S. Kannan, M. Strauss, M. Viswanathan, An approximate l1-difference algo-
rithm for massive data streams, in Proc. of the 1999 Annual IEEE Symp. on Foundations of
Computer Science (1999), pp. 501–511

11. A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, M. Strauss, Fast, small-space
algorithms for approximate histogram maintenance, in Proc. of the 2002 Annual ACM Symp.
on Theory of Computing (2002)

12. A. Gilbert, Y. Kotidis, S. Muthukrishnan, M. Strauss, Surfing wavelets on streams: one-pass
summaries for approximate aggregate queries, in Proc. of the 2001 Intl. Conf. on Very Large
Data Bases (2001), pp. 79–88

13. M. Greenwald, S. Khanna, Space-efficient online computation of quantile summaries, in Proc.
of the 2001 ACM SIGMOD Intl. Conf. on Management of Data (2001), pp. 58–66

14. S. Guha, N. Mishra, R. Motwani, L. O’Callaghan, Clustering data streams, in Proc. of the
2000 Annual IEEE Symp. on Foundations of Computer Science (2000), pp. 359–366

15. P. Indyk, Stable distributions, pseudorandom generators, embeddings and data stream compu-
tation, in Proc. of the 2000 Annual IEEE Symp. on Foundations of Computer Science (2000),
pp. 189–197

16. J. Kang, J.F. Naughton, S. Viglas, Evaluating window joins over unbounded streams, in Proc.
of the 2003 Intl. Conf. on Data Engineering (2003)

17. X. Lin, H. Lu, J. Xu, J.X. Yu, Continuously maintaining quantile summaries of the most recent
n elements over a data stream, in Proc. of the 2004 Intl. Conf. on Data Engineering (2004)

18. R. Motwani, P. Raghavan, Randomized Algorithms (Cambridge University Press, Cambridge,
1995)

19. J.S. Vitter, Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1), 37–57 (1985)

Part II
Mining Data Streams

Clustering Data Streams

Sudipto Guha and Nina Mishra

1 Introduction

Clustering is a useful and ubiquitous tool in data analysis. Broadly speaking, clus-
tering is the problem of grouping a data set into several groups such that, under
some definition of “similarity,” similar items are in the same group and dissimilar
items are in different groups. In this chapter, we focus on clustering in a streaming
scenario where a small number of data items are presented at a time and we cannot
store all the data points. Thus, our algorithms are restricted to a single pass. The
space restriction is typically sublinear, o(n), where the number of input points is n.

An important aspect of clustering is the definition of what constitutes a “cluster”
and what makes one clustering better than another. Certainly, we seek the best possi-
ble clustering of the data, but what defines the “best”? Typically, given a clustering
of the data we compute a function that maps the clustering into a number which
denotes the quality of the clustering, referred to as the objective function. And thus
the clustering problem becomes an optimization problem: find a clustering of the
best quality. This mapping of the clustering to an objective function is an important
issue—from the perspective of clustering in a streaming scenario where we have
incomplete information about the evolving dataset, we have to impose a restriction
that the problem remains meaningful. For example, if the cluster quality depends
on all the points that are assigned to a cluster then unless there is some way of

S. Guha (B)
Department of Computer Information Sciences, University of Pennsylvania, Philadelphia,
PA 19104, USA
e-mail: sudipto@cis.upenn.edu

N. Mishra
Computer Science Department, Stanford University, Stanford, CA 94305, USA
e-mail: nmishra@gmail.com

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_8

169

mailto:sudipto@cis.upenn.edu
mailto:nmishra@gmail.com
http://dx.doi.org/10.1007/978-3-540-28608-0_8

170 S. Guha and N. Mishra

representing that information in small space no stream clustering is feasible. More
specifically, we must be guaranteed that the clustering of the initial part of the stream
is consistent with the latter part. Towards this end, we assume that we are interested
in clustering data that arises from (semi) metric spaces, that is, there is a “distance”
function (defined formally later) which encodes the relationship between pairs of
points. The core property of “distance” is that once we compute the relationship
between two points, no subsequent information affects that relationship—although
subsequent information can determine if two points are to be in the same or different
clusters. We will assume that the objects to be clustered are presented one at a time
and in their entirety. We also assume the existence of an “oracle” or a “black-box”
distance function. The oracle distance allows us to simply store these points and
compute the distances between a pair of them on demand. There is no unique “cor-
rect” distance function and which function is the best suited in any given scenario
is debated vigorously. Since the thrust of this chapter is the investigation of general
techniques for clustering, we will not get into the issue of which distance function
is better. Another advantage of assuming a black-box distance function is that the
techniques will be relevant to a wide spectrum of data, with categorical, numerical,
string or binary attributes.

Due to the algorithm’s constraint on storage space, we also assume that the num-
ber of clusters is bounded by some given quantity k. There is considerable discus-
sion regarding whether it is reasonable to assume the parameter k. Some cluster-
ing objectives avoid the assumption by trading off inter-cluster distance with intra-
cluster distance. Others introduce a penalty term into the function such that the
quality of the clustering grows worse as the number of clusters increase. For many
applications, it is desirable to represent each cluster by a single object (which is
commonly referred to as a center, centroid or medoid). The quality of a single clus-
ter is some function of the similarity/dissimilarity of the objects to the corresponding
center. Center-based models are natural in a streaming scenario where it is imper-
ative that we store an implicit representation of each cluster since we cannot store
all of the objects in a cluster. In this case it is also natural that every object is im-
plicitly assigned to the nearest representative, thereby defining a partition. The list
of representatives specifies the clustering completely and is therefore a small-space
description of the clustering. For the streaming algorithms described in this chapter,
only this implicit representation of the clustering is produced. That is, the centers
are output (and a complete partitioning of the stream is not output, but could be
computed from the centers).

Approximation Guarantees

In this chapter, we will focus on algorithms that have guaranteed performance
bounds. The specific avenue we pursue is approximation algorithms where we de-
vise an algorithm with a proof that the algorithm performs provably close to the
optimum. A formal definition can be found in the next section. The fundamental
aspect of this approach is that approximation algorithms provide a guarantee, or a

Clustering Data Streams 171

certificate, of the quality of a clustering. Contrast this with a heuristic that works
“well” but can have arbitrarily worse performance. In this chapter, we seek algo-
rithms with a provable guarantee.

The goal of approximation is not only to understand the underlying mathematical
structure of the optimization, but also to provide a well-grounded starting point.
Every domain will have its own skew and it goes without saying that we should
target our heuristics towards exploiting the properties of the domain, but building
these heuristics on top of a basic structure given by an approximation algorithm
provides a solid foundation. Further, a 3-approximation guarantee implies that the
solution is no worse than 3 times the optimum—in practical situations, solutions
may be near indistinguishable from the optimal.

Overview and Organization

The challenge of the streaming scenario is to compute in small space and in a single
pass, if possible. Clustering is already a non-trivial problem without these restric-
tions and their presence narrows down the choices in designing algorithms. It is
interesting to note that clustering itself is a way of summarizing data and the algo-
rithms we will see in this chapter use different approaches to maintain the summary.

We begin by reviewing some basic definitions and preliminaries. We discuss the
k-center problem in Sect. 3 and the k-median problem in Sect. 4. The two cho-
sen algorithms demonstrate different techniques used in the context of streaming
algorithms. The first demonstrates a clustering algorithm similar to quantile estima-
tion on data streams where at all points we maintain a “proof” that the centers we
compute are near optimum. In this sense the algorithm is an online algorithm. In
the case of the k-median problem, we focus on a divide-and-conquer approach to
streaming algorithms. Another tool that is very effective at clustering streams is to
simply maintain a small random sample of the stream that is clustered whenever a
clustering of the entire stream is desired. Sampling is discussed in Sect. 5. Also,
many references to relevant papers are described in that section.

2 Preliminaries and Definitions

To define the types of data sets we consider in this chapter, we introduce the notion
of a (semi-)metric space.

Definition 1 For a set of points X and a distance measure D, we say that (X,D) is
a semi-metric if the following criteria are satisfied:

1. D(x,x) = 0 for all x ∈ X;
2. (Symmetry) D(x,y) = D(y,x) for all x, y ∈X;
3. (Triangle Inequality) D(x, z) ≤D(x,y)+D(y, z) for all x, y, z ∈X.

If we also have [D(x,y) = 0] ⇒ [x = y] then (X,D) defines a metric space.

172 S. Guha and N. Mishra

In reality, a semi-metric space can be viewed as a metric space with possible dupli-
cates. One common example of a metric space is the Euclidean distance for points

in R
d . We denote this metric space by (X,L2) where L2(x, y) =

√∑d
i=1(xi − yi)2

for X ⊂R
d . All data sets considered in this chapter are assumed to be metric spaces.

We describe two clustering objectives functions. These objectives serve as good
illustrations for how streams can be clustered. This chapter does not provide an
exhaustive list of objectives.

If we view the clusters as “balls”, the quality of the clustering can be thought of
as the largest radius of the “ball” required to cover all the objects of a cluster. As a
natural extension, the overall clustering objective is to choose k centers and find the
minimum radius r such that every point will belong to a “ball” of radius at most r

around these objects. If the centers are restricted to be points in the input data set
the clustering problem is known as the k-center problem. More formally,

Definition 2 (The k-Center Problem) Given an integer k and a set of points S from
a metric space (X,D) where |S| = n, the k-center problem seeks to find k represen-
tative points C = {c1, . . . , ck} ⊆ S such that

max
x∈S

min
ci∈C

D(ci, x)

is minimized.

Observe that if we specify the centers or representatives then each point should be
assigned to the cluster corresponding to the nearest center (the inner minimization
achieves this). The outer maximization identifies the largest radius required. In a
geometric setting, the definition can be relaxed to include any point in the space as
a possible center.

The k-center objective depends on only one number, the farthest distance from
any point to its nearest center, alternatively the radius of the “fattest” cluster. The
objective ignores the distance from all other points to their nearest center. Conse-
quently, if one outlier point is very far from the other points, that outlier will de-
termine the quality of the clustering (so that it does not really matter how the other
points are clustered).

An alternate objective, that is less sensitive to outliers, is to minimize the sum
of distances from points to nearest centers, known as the k-median problem. The
objective seeks to minimize the “average” radius of a ball required to cover all of
the points.

Definition 3 (The k-Median Problem) Given an integer k and a set S of n points
from a metric space (X,D), the k-median problem seeks to find k representative
points C = {c1, . . . , ck} such that we minimize

min
∑

x∈S

min
ci∈C

D(ci, x).

Clustering Data Streams 173

The k-median objective is closely related to the squared error distortion or
k-median-squared objective

min
∑

x∈S

min
ci∈C

D(ci, x)2

where the centers ci are typically the mean of all the points in the cluster i. In the
case that the objects to be clustered are points in R

d , the k-Means algorithm is often
used in practice to identify a local optimum solution.

As mentioned earlier, for most natural clustering objective functions, the opti-
mization problems turn out to be NP-hard. Therefore, we seek to design algorithms
that guarantee a solution whose objective function value is within a fixed factor of
the value of the optimal solution. We use the following definition of approximation
algorithms.

Definition 4 A ρ-approximation algorithm is defined for a minimization problem
to be an algorithm that gives an approximate solution which is at most ρ times the
true minimum solution. ρ is referred to as the approximation ratio or approximation
factor of the algorithm.

In fact, finding a 1.3-approximation algorithm for k-median is also NP-hard.
The provable approximation ratios for k-median are small constants. In the con-
text of streaming, given the one-pass, small-space restrictions, the approximation
ratio tends to be larger than the best known polynomial-time algorithms that do not
have such restrictions.

3 The k-Center Clustering on a Stream

In order to appreciate the difficulty that arises in clustering a data stream, we de-
scribe the non-streaming algorithms first. We begin with the FARTHEST POINT clus-
tering algorithm which is given in Fig. 1. The algorithm produces a collection of k

centers and a 2-approximation to the optimal clustering, i.e., finds a set of k centers
such that the maximum distance from a point to its nearest center is at most twice
as large as the optimal k-center clustering. The algorithm finds the collection via an
iterative process where the first center is chosen arbitrarily and subsequent centers
are selected by finding the point in the data set farthest from its closest center. Recall
again that a point here refers to an object in an arbitrary metric space, and not just
points in Euclidean space.

Suppose the algorithm had been run one more step. Suppose it would have chosen
ck+1 and the distance from ck+1 to the other centers would have been t . Then we
would have k+1 points, c1, . . . , ck, ck+1, such that the distance between any pair of
them is at least t (otherwise ck+1 should have preceded ck). Now by the pigeonhole
principle, at least two of these k + 1 points must belong to the same cluster. The
radius of the cluster in the optimal solution which contains two of the ci ’s is at

174 S. Guha and N. Mishra

FARTHEST POINT ALGORITHM

1. Input: Set of points (objects) S, distance metric (X,D), number of centers k

2. Output: Set of k centers
3. c1 ← any point in S

4. for i = 2 to k

(a) ci ← point in S farthest from c1, . . . , ci−1

5. Output c1, . . . , ck

Fig. 1 The FARTHEST POINT algorithm for k-center

least t
2 , otherwise the two points would be distance less than t apart. All that remains

is to observe that every point is within distance t from the chosen k centers, namely
c1, . . . , ck . Thus we have a 2-approximation.

Theorem 1 The FARTHEST POINT algorithm produces k centers that are a
2-approximation to the optimal k-center clustering.

An interesting and useful observation that follows from the argument just given
is that if the algorithm is run with k = n we get a canonical reordering of the ob-
jects such that the first k points define an approximate k-center solution for every
1 ≤ k ≤ n.

A 2-approximation algorithm is provably the best possible in case of the k-center
problem. As we explain next, the problem of finding a (2 − ε)-approximation for
0 < ε < 1 is NP-hard since the Dominating Set problem reduces to this problem.
Given a graph G = (V ,E), a subset of vertices S is a dominating set if each vertex
v in V is either in S or adjacent to some vertex in S. The Dominating Set prob-
lem is, given a graph G = (V ,E) and an integer k, to determine if there exists a
dominating set of size k. We can transform a graph G into a metric space by mak-
ing the distance between adjacent vertices 1 and the distance between non-adjacent
vertices 2. Observe that if G has a dominating set of size k, then there is a k-center
clustering with cost 1 and if G does not have a dominating set of size k, then there is
a k-center clustering of cost 2. Thus, if there was a (2− ε)-approximation algorithm
for k-center, we could use it to determine whether the graph has a dominating set of
size k. Since the dominating set problem is NP-hard, so is the problem of finding a
(2 − ε)-approximation to k-center.

Theorem 2 The problem of finding a (2 − ε)-approximation to the k-center clus-
tering problem is NP-hard for any 0 < ε < 1.

The FARTHEST POINT algorithm is not suitable for clustering a stream since it
is not possible to determine which point is farthest from one of the current centers
without reading and maintaining information about the entire stream. However, the
algorithm does demonstrate that the k centers discovered plus the next center that
would be chosen (had the algorithm been run one more step) serve as a witness to a

Clustering Data Streams 175

HIERARCHICAL AGGLOMERATIVE CLUSTERING (HAC)

1. Input: Set of points (objects) S, distance metric (X,D), number of centers k

2. Output: Set of k centers
3. Initially each point is a cluster (of size 1), and they are said to represent their cluster.
4. for i = 1 to n

(a) Pick the two closest clusters, e.g., the pair of representatives that are closest.
(b) Merge the two clusters and choose an appropriate representative of the combined

cluster.

5. Output the tree of clusters/dendogram.

Fig. 2 The structure of a typical hierarchical agglomerative algorithm

clustering—if we were to find k+ 1 objects separated by distance at least t by some
other method, we would still have an approximation algorithm for k-center.

One simple idea for a streaming k-center method is to always maintain k cluster
representatives, assign each incoming point to its nearest representative, and then
somehow update the cluster representative. The idea comes from one of the earliest
and frequently used methods for clustering, Hierarchical Agglomerative Clustering
(HAC), which we describe next.

HAC is a bottom-up algorithm that repeatedly merges the two closest clusters
(see Fig. 2). The algorithm produces a tree of clusters where each node is a cluster
consisting of subclusters defined by its children. The leaves of the tree correspond
to the individual points. The tree of clusters is often referred to as a dendogram.

One naive, greedy way that HAC can be extended to handle a data stream is as
follows. Always maintain k centers, and when a new point arrives, treat that point
as a new center and make some greedy decision as to how best to reduce the k + 1
centers down to k. In particular, the two closest centers could be merged and the
new center of the merged cluster is the old center with the larger radius. Regrettably,
this greedy algorithm does not have a good approximation ratio—we can construct
examples where the approximation ratio of the algorithm is 2k − 1.

Consequently, we will have to be more clever than greedy if we wish to find a
streaming k-center algorithm. By combining the ideas behind the FARTHEST POINT

algorithm and HAC, it is possible to obtain an algorithm with good approximation
ratio. The basic intuition comes from the following question: Suppose k = 2. If
we find three representatives equidistant from each other which two do we merge?
A natural answer is that all three clusters should be merged together. But what if
the distances are not the same? The main intuition is to merge the closest pair of
centers, but to extend the radius by a factor to account for the distances that are
close. This is shown in Fig. 3 where the centers a, b are the closest, and we proceed
to merge a, b, c and the new point together. Now, because we have increased the
radius of the clusters significantly, it stands to reason that we should merge the
centers d and e.

The overall algorithm is given in Fig. 4. The idea is to maintain a lower bound
r on the optimal solution of the k-center problem, then arbitrarily select any center
and merge all centers within distance r , repeating until all centers are covered. This

176 S. Guha and N. Mishra

Fig. 3 The intuition behind
the streaming k-center
algorithm

DOUBLING ALGORITHM

1. Input: Sequence of points (objects) S from a metric space (X,D) arriving one at a
time

2. Output: Set of k centers
3. Initially, the first k points are chosen as centers and r ← 0.
4. for every new point i

(a) Suppose the current centers are c1, . . . , c�.
(b) If i is within distance 4r from any center, assign i to that cluster (choose arbitrar-

ily if there are more than one).
(c) Otherwise,

i. if � < k make c�+1 = i, i.e., start a new cluster with i as a center.
ii. Otherwise

A. Let the smallest distance between any pair of points in the set C =
{c1, . . . , ck, i} be t .

B. r ← t
2 .

C. Pick a point from C and let this be a new center c′1. Remove all points
from C that are within distance 4r from this center c′1. All the clusters
(corresponding to the removed centers and possibly the singleton cluster
i) are merged into a cluster with center c′1.

D. The above step is repeated until C is empty. These centers are carried over
to handle the next point.

5. Output the remaining cluster centers.

Fig. 4 Stream k-center clustering, the DOUBLING ALGORITHM

parameter r will grow monotonically as we see more points. It can be shown that
the algorithm will have at most k centers at any point. Interestingly, the number of
centers may drop below k (there may even be just 1 center), but in such a case, it
can be shown that the algorithm’s performance is still close to optimal.

The reduction from k + 1 centers to at most k centers in Step 4(c)ii balances
between the greedy streaming HAC algorithm described above and the farthest point
algorithm. The step is reminiscent of center greedy since it greedily decides which
centers to merge. On the other hand, the lower bound on the radius given by the
farthest point algorithm is cleverly used to decide which centers to merge.

Clustering Data Streams 177

It can be shown that at any point of time if the centers are {c1, . . . , c�}, where
� ≤ k then the minimum pairwise distance is 4r . Thus, when we get to the situa-
tion where we have k + 1 points then the minimum pairwise distance, t , is greater
than 4r . Thus, when we set r ← t/2 the value or r at least doubles.

Now suppose the maximum radius of a cluster is R(r) for a particular value of
r during the run of the algorithm. When we set r ← t

2 , suppose the lower bound
changes from r ′ to r . The recurrence that describes the new maximum radius is

R(r) ≤ R
(
r ′

)+ 4r.

The equation follows from the fact that the center of one of the merged clusters (say
with center u) is at a distance 4r from the new center. Any point in that cluster of
u can be at most R(r ′) away from u. Thus the maximum radius of the new cluster
follows from the triangle inequality. The only guarantee we have is that r ′ ≤ r/2
and thus any function R() satisfying

R(r) ≤R(r/2)+ 4r

will upper bound the maximum radius of a cluster. The solution to the recurrence is
R(r) ≤ 8r . By inspection we get the following:

Theorem 3 The STREAM k-CENTER CLUSTERING algorithm given in Fig. 4 finds
an 8-approximation to the k-center streaming problem using O(k) space and
O(τnk) running time, where the cost of evaluating the distance between two ob-
jects is τ .

One way of viewing the above algorithm is that when we decide to merge clus-
ters, we increase the radius to be a bit more than the minimum required to reduce
the number of centers to k. In this process, we may have less than k centers. The
free centers are used to start new clusters if a new object is very far from the current
set of objects. In a sense, the algorithm provisions for the future, and incurs a cost
in the current solution. This is a very useful paradigm in streaming algorithms.

4 The k-Median Divide-and-Conquer Approach

Recall that the k-median objective is, given a set of objects S, to find a set C of me-
dians (centers) such that C ⊆ S, |C| ≤ k and

∑
x∈S minc∈C D(x, c) is minimized.

This objective is sometimes referred to as the discrete k-median problem since the
centers are restricted to be points in the data set. In the event that the objects come
from a continuous space, say (Rd ,L2), it is natural to ask whether it is possible to
identify centers C ⊂ R

d such that the average distance from a point to its nearest
center is minimized. This problem is known as the continuous k-median problem.
As it turns out, the best discrete solution is at most twice as large as the best con-
tinuous solution. Consequently, we henceforth address the discrete version of the
clustering problem.

178 S. Guha and N. Mishra

1-SWAP ALGORITHM

1. Input: Set of points S, distance metric d , number of centers k

2. Output: Set of k centers
3. Let C be a set of k centers from S.
4. While there exists a point x ∈ S and y ∈ C \S such that

∑
x∈S minc∈C\{x}∪{y} D(x, c)

is smaller than
∑

x∈S minc∈C D(x, c) by a factor of (1 + ε)

(a) C ← C \ {x} ∪ {y}
5. Output C

Fig. 5 The local search based SWAP algorithm

Theorem 4 For any collection C of k centers that are a continuous k-median solu-
tion of cost T , there exists a discrete k-median solution of cost 2T .

Proof Imagine a particular continuous cluster consisting of points x1, . . . , xp with
continuous center y. If we replace the continuous center y with the closest discrete
center, say xi , then the distance from any point to its nearest center at most dou-
bles since D(xj , xi)≤ (D(xj , y)+D(y,xi)) ≤ 2D(xj , y). Thus, summing over all
points (and all clusters), the total cost at most doubles. �

Also closely related to the discrete k-median objective is the k-median-squared
objective where the goal is to minimize the average squared distance from a point to
its nearest center. We delve more into this objective in Sect. 4.2. As before, we begin
by describing a non-streaming solution to the k-median problem. The algorithm
starts with an initial set of k centers and then repeatedly swaps one of the current
centers with a non-center if the clustering quality improves (see Fig. 5).

There are two important issues with respect to the Local Swap Algorithm, run-
ning time and clustering quality. If the initial set of centers are chosen via the FAR-
THEST POINT algorithm, then it can be shown that the algorithm’s running time
is polynomial in n and k. Note that we did not specify how the initial centers are
chosen in Step 3 of the Local Swap algorithm because any method may be used.
However, to ensure that the algorithm runs in polynomial time, one needs to start
with a solution that is not arbitrarily far from the optimum. If the FARTHEST POINT

algorithm is used as a starting point, then one can show that such a set of initial
centers is no more than a factor of n away from the optimal solution. This fact is
helpful in bounding the algorithm’s running time. In terms of final clustering qual-
ity, it can be shown that the algorithm finds a 5-approximation (ignoring ε-factors).
If the swap in Step 4 is performed with p points at a time then the algorithm can be
shown to be a (3 + 2/p)-approximation (again, ignoring ε-factors). The algorithm
does not lend itself to streaming data—multiple passes are essential to evaluate the
cost of the solution requiring that all points be stored. But maintaining all points in
main memory is not feasible in a streaming scenario.

We next describe a simple divide-and-conquer approach that yields a good
k-median clustering of a data stream. The basic idea is to break the stream into
pieces and cluster each piece. For each piece, the cluster centers and a count of the

Clustering Data Streams 179

k-MEDIAN STREAM ALGORITHM

1. Input: Data Stream S = x1, . . . , xn, distance metric d , number of centers k

2. Partition the stream into consecutive pieces P1, . . . Pm

3. For each piece Pi

(a) Cluster Pi

(b) In memory, maintain centers of Pi and the number of points (weight) assigned to
(nearest to) each center.

4. To output a clustering after any piece Pi , cluster the weighted centers of P1, . . . ,Pi .

Fig. 6 The STREAM algorithm

Fig. 7 An illustration of the algorithm STREAM, m = 3 pieces and k = 5 clusters

number of points assigned to each center is the only information retained. In other
words, the actual objects of the data stream that belong to the piece can be perma-
nently discarded. If at any point we need to produce a final clustering, we consider
the union of the (weighted) cluster centers collected from all the pieces seen so far.
We cluster this set of weighted points to obtain a good clustering.

Observe that the k-Median Stream Algorithm given in Fig. 6 is really just a gen-
eral framework in that the clustering in Steps 3(a) and 4 can be performed using any
clustering algorithm. Note that it is possible that the weighted centers maintained in
memory themselves exceed the size of memory. In such a case, we can cluster the
weighted centers and use those k weighted centers as a snapshot of the stream. We
illustrate the process in Fig. 7. For the sake of simplicity, the stream is partitioned
into three pieces.

In Fig. 7, the entire dataset is partitioned into three pieces. The shape of a point
(dot, circle or triangle) indicates the piece that the point belongs to—shown in
Fig. 7(a). Figure 7(b) shows the 5-clustering of the first piece and Fig. 7(c) of the

180 S. Guha and N. Mishra

Fig. 8 A single cluster and a particular piece

second piece. (The third piece alone is not shown.) The union of all the cluster
centers from the different pieces are shown in Fig. 7(d)—although the figure does
not show the weights, the union of centers mimic the distribution of points in the
original dataset quite well.

The importance of the natural divide and conquer algorithm is twofold. First,
we can bound the quality of the clustering achieved. Second, the space required by
the above algorithm is sublinear, i.e., o(n). The latter can be derived as follows.
Suppose we partition the stream into m equal pieces. While clustering Pi we only
need to store the piece Pi and the set of centers from the previous pieces. Thus the
space required is O(mk+ n

m
). Setting m=√

n/k the space requirement is O(
√

nk)

which is o(n) since typically k % n. The benefit carries over to the running time
as well. Most clustering algorithms with approximation guarantees require at least
quadratic time. The running time of the streaming algorithm, using such a quadratic-

time clustering subroutine, is O(m n2

m2) which is O(n1.5k0.5).
The quality of the clustering algorithm is given in the next theorem. The constants

in the theorem can be improved (see the Notes section at the end of the chapter). We
prove a weaker result that brings out the key ideas.

Theorem 5 If the stream is a sequence of points S and if an optimal algo-
rithm is used to identify the cluster centers in Steps 3(a) and 4 of the k-Median
Stream Algorithm, then for any i, the cluster centers output for P1, . . . ,Pi are an
8-approximation to the optimal clustering.

Moreover, if we use a α-approximation for the clustering substeps then the final
solution is a 2α(2α + 1)+ 2α-approximation algorithm.

Proof Sketch To see how the result is derived, consider a single cluster as in
Fig. 8(a). Consider all the objects in a particular piece Pi and the center of the
cluster as in Fig. 8(b), note that the center of the cluster c may not belong to this
piece. But if we were to choose the point u, which is closest to c among all points
of the piece, then the distance D(u,v) for any other point v can be bound by the
sum D(u, c) + D(c, v) which is at most 2D(c, v). Thus adding over all v, over
all clusters (equivalent to adding over all points in Pi), we can say that there is a
clustering that costs at most twice the cost of the particular piece Pi in the optimal

Clustering Data Streams 181

Fig. 9 The overall analysis

solution. This technique is known as a shifting argument—we show that there exists
a good solution if we consider some hypothetical point, and “shift” to the actual
point closest to the hypothetical one.

But we cannot control the clustering of the piece Pi , and the actual clustering may
merge parts of two clusters which contains points from Pi . What we can guarantee
is that the overall cost of the clustering substep, over all pieces, is at most 2OPT . If
we use an α-approximation algorithm the cost will be 2αOPT .

Now consider putting together the cluster centers from the pieces. Suppose our
clustering chose v as one of the centers. We will show that there exist hypothetical
k centers such that the cost of clustering the weighted centers is bounded by βOPT .
Thus, by the shifting argument, we guarantee a cost of 2βOPT .

Consider the center σ(v) in the optimal solution closest to v, this object may not
have been chosen as a center while clustering the pieces. Thus, σ(v) may not exist
as a weighted center and in that sense is “hypothetical”. Let σ(u) denote the center
to which u is assigned in the optimal solution. The situation is represented in Fig. 9.

Now the distance D(v,σ (v)) can be bounded above by the sum of D(v,u) +
D(u,σ (u)):

D
(
v,σ (v)

) ≤ D
(
v,σ (u)

) ≤D(v,u)+D
(
u,σ (u)

)
.

Assume that the number of objects in the cluster of v is wv . If we sum the above
equation over all u in the cluster of v we get:

wvD
(
v,σ (v)

) ≤
∑

u∈Cluster(v)

D(v,u)+D
(
u,σ (u)

)
.

Now if we were to sum over all v, then
∑

v

wvD
(
v,σ (v)

) ≤
∑

v

∑

u∈Cluster(v)

D(v,u)+
∑

u

D
(
u,σ (u)

)
.

The left hand side is the cost of clustering the weighted centers. The last term in
the right hand side is the cost of the optimal solution! The first term is the cost of
clustering the pieces, which is at most 2αOPT . Therefore, there exists a hypothetical
cost of (2α+1)OPT . This implies that there exists a solution of cost 2(2α+1)OPT .
But we cannot guarantee that we achieve that solution and we suffer a further α

factor due to the approximation.

182 S. Guha and N. Mishra

The total cost is 2αOPT , which we paid to cluster the pieces, plus the cost of
the weighted centers, which is (2α + 1)αOPT . One way to view it is that if the
point u was looking for a center to get assigned to, we send u to v accruing a cost of
2αOPT and then from v to the final center accruing a cost of clustering the weighted
centers. �

By a recursive application of the above theorem it also follows that with each
additional level of clustering, i.e., the pieces themselves are split using the two level
algorithm, the algorithm will give up an extra multiplicative factor for each step
of the process. The constants can be improved significantly by using a different
local search algorithm, see [9] in Step 3(a) of the STREAM algorithm. The recursive
algorithm gives a O(nk logn) time algorithm that uses space O(nε) and gives a

2O(1
ε
)-approximation algorithm in a single pass over the data. A full proof of the

above requires development of ideas from facility location problems, and thus is
omitted. Note that the space requirement can be further improved to (k logn)O(1)

while still achieving a constant factor approximation, see the Notes section.

4.1 Performance of the Divide-and-Conquer Approach

The above algorithm is a natural algorithm, and similar ideas of partially clustering
data have been used in practice. In one such algorithm, BIRCH [38], a cluster fea-
ture tree (CFTree) preclusters the data. The tree is a space partitioning tree and every
input point follows a path along the tree based on the membership of the point to
the two sides of the partition corresponding to a node. The tree is adjusted dynam-
ically and balanced so that roughly the same number of points are allocated to the
leaves. The leaf nodes maintain a summary and these summaries are the preclusters.
BIRCH then uses a standard clustering algorithm, HAC, k-Means (see Sect. 4.2),
etc., to complete the clustering. Most known preclustering algorithms are a similar
top down algorithm, i.e., points are classified into bins based on a decision tree.

The divide-and-conquer algorithm yields a bottom up preclustering. From the
point of view of the amount of information used by the algorithm, a bottom up
clustering has the advantage that the decision to group points in a cluster is taken
after a larger number of points are seen in the stream. It is quite natural to expect
that the above bottom up process yields a more robust (pre)clustering at the expense
of taking more time, compared to a top down process.

4.2 The k-Median-Squared Objective and the k-Means Algorithm

The k-median-squared objective function seeks to minimize the function∑
x∈X minc∈C D2(x, c) where |C| = k. This objective has a rich history dating

back to the beginning of Location Theory put forth by Weber in 1909 [37]. Many

Clustering Data Streams 183

known constant factor approximation algorithms for the k-median problem yield
a constant factor approximation for the sum of squares objective as well using
a “relaxed triangle inequality”. This relaxed triangle inequality states that for all
x, y, z, D2(x, z) ≤ 2(D2(x, y)+D2(y, z)). The reason this inequality holds is that
D2(x, z) ≤ (D(x, y) + D(y, z))2 ≤ 2(D2(x, y) + D2(y, z)). Note that there is no
known generic method for converting an approximation bound for k-median to an
approximation bound for k-median-squared. Rather, the relaxed triangle inequality
can sometimes be invoked in steps of the proof where the triangle inequality is used.

For historical reasons and because the algorithm is widely used, we describe the
k-Means algorithm or Lloyds algorithm, which attempts to solve the continuous
version of the k-median-squared objective. The algorithm starts with k tentative
centers. Each of the data objects are assigned to their nearest center. After all points
are assigned, the mean of all the points assigned to a center forms the new center
of the cluster. These k centers now serve as the new set of tentative centers. The
process repeats until the sum of squares does not go down any further (or much
further). The final k centers define the clustering.

The above is an iterative improvement algorithm, but is not guaranteed to con-
verge on arbitrary data. In fact, for poor placement of initial centers, there exists
situations where the algorithm provably finds solutions that are arbitrarily worse
than the optimum. For example, suppose that there are four two-dimensional points
(−M,−1), (−M,1), (+M,−1), (+M,1) to be 2-clustered and the initial centers
are (0,1) and (0,−1). In this case, the k-Means algorithm will output (0,1) and
(0,−1) as the final centers. The cost of this solution is 4M2 as opposed to the opti-
mal 4. Thus by pushing the points farther apart, i.e., increasing M , the ratio of the
k-means solution to the optimal solution is arbitrarily bad.

However, if the k-Means algorithm is properly seeded with a good collection of
initial centers, then the clustering quality is not arbitrarily worse than the optimal.
For a specific randomized method of selecting initial centers [4], it can be shown that
the expected cost of the initial centers (without running k-Means) is a O(log k)-
approximation. If k-Means is subsequently run with this choice of initial centers,
then the final clustering cost only improves.

5 Notes

The first approximation algorithm for the k-center clustering problem was provided
in [23]; the farthest point algorithm is presented in [18]. The problem is hard to
approximate up to a (2 − ε)-factor for general metric spaces, and this does not
improve significantly in case of geometric spaces. In [17], it is shown that k-center
is hard to approximate up to a factor of 1.82 in the plane.

The k-center stream clustering algorithm given in Sect. 3 is presented in [8].
While that algorithm gives an 8-approximation, a randomized version yields an im-
proved 2e-approximation. The authors also show that greedy algorithms for main-
taining a collection of k centers perform poorly. Finally, lower bounds demonstrate

184 S. Guha and N. Mishra

that no deterministic stream k-center clustering algorithm can achieve a bound of
better than (1 +√

2) for arbitrary metric spaces.
For the k-median problem several approximation algorithms were known [10, 25,

32]—the analysis of 1-swap (or p-swap) is due to [5]. The swap based algorithms
were introduced in [27] as ‘Partition Around Medoids’ (PAM) in the context of the
k-median-squared objective. Bicriterion approximation algorithms, i.e., algorithms
using slightly more than k medians were provided in [9, 29, 30]. Several of the
above algorithms extend naturally to the sum of squared distances objective func-
tion. Approximation algorithms specifically tuned for the squared error objective
were studied in [26] for arbitrary metric spaces. The running time of the approxima-
tion algorithm has been an issue—see the discussion on sampling based approaches
below.

In the Euclidean case, [28] gave a near linear time approximation scheme for the
k-median problem, based on a previous result by [3]. Using core-sets introduced
in [1], the running time has been further reduced to linear in n (plus a (

k logn
ε

)O(1)

term and a function dependent on k, ε, d) in [21]. The algorithm of [21] extends
to a similar result for the sum of squared objective as well. The authors of [15]
demonstrate that the Singular Value Decomposition of the n×d matrix representing
n points in R

d can be used to find a 2-approximation to the optimum for the sum of
squared objective.

The algorithm given in Sect. 4 is a slight variation of the first k-median stream-
ing algorithm presented in [19]. Their paper gives a 5-approximation for a simple
2-level algorithm, and in general, describes a one-pass 2O(1/ε)-approximation al-
gorithm that uses O(nε) space. Subsequently, in [12] a constant factor, one-pass,
randomized stream algorithm using (k logn)O(1) space is provided. In the sliding
window model a 2O(1/τ)-approximate k-median solution for the last N points using
O(k

τ 4 N2τ log2 N) space, where the parameter τ < 1/2 enables a tradeoff between
space and clustering quality, is given.

While we only discussed single-pass algorithms, there is certainly strong motiva-
tion for multi-pass algorithms. For instance, if data is stored in some slow but large
repository, a multi-pass algorithm may be desirable. In such a scenario, it may be
important to trade off resources required for preprocessing the data with resources
required for clustering the data. The boundary between “streaming” and “offline”
computation is then somewhat blurred.

The Sampling Approach

Given that random sampling is a powerful tool for stream processing and given
that a random sample can be maintained using Vitter’s reservoir sampling technique
(refer to Chap. 1), a natural question is can one effectively cluster a stream by simply
maintaining a random sample? The general answer is that a small random sample
can be shown to be descriptive of all the data.

For the k-center objective, if clustering is based on a random sample, then ob-
serve that it is not possible to obtain a constant-factor approximation of the entire

Clustering Data Streams 185

stream since there may be one point in the stream that is very far from every other
point in the stream. The probability that such a faraway point is in a small random
sample is very small. However, if the algorithm is allowed to ignore a small frac-
tion of the points, then constant factor approximations can be obtained via random
sampling [2] in a single pass. Clustering algorithms that discount a small fraction of
points are considered in [11] in greater detail.

For the k-median objective, in [24] a bicriteria approximation, which identifies
2k centers that are a constant factor approximation to the best k-median clustering,
was provided. The two-pass algorithm requires two samples of size Õ(

√
nk). In

[34], it is shown that the simple single-pass algorithm of drawing a random sample
and then running an approximation algorithm on the sample yields a good approxi-
mation to the best clustering of all the data. The sample size was shown to depend
polynomially on the ratio of the diameter of the data to the desired error and depend
logarithmically on n. Further sampling results can be found in [6, 14, 33], and the
references therein. Also, fast approximation algorithms for the k-median problem
have been devised through recursive sampling [31, 35].

As mentioned earlier, all the above assume that the distances form a semi-metric,
i.e., satisfy the triangle inequality and symmetry. Without the triangle inequality
assumption, it is NP-hard to find any constant factor approximation to most clus-
tering objectives including the k-center and k-median objectives [22, 36]. The same
holds for the k-center problem if the distances are asymmetric (but satisfy triangle
inequality) [13].

There are also many heuristics for clustering streams. BIRCH [38] compresses
a large data set into a smaller one via a CFTree (clustering feature tree) as we dis-
cussed earlier. CURE [20] uses sampling and multi-centroid representations to clus-
ter the data. Both of the above algorithms output the cluster centers in one pass.
Several papers, e.g., [7, 16], propose to repeatedly take k weighted centers (initially
chosen randomly with weight 1) and as much data as can fit in main memory, and
compute a k-clustering. The new k centers so obtained are then weighted by the
number of points assigned, the data in memory is discarded and the process repeats
on the remaining data. This algorithm places higher significance on points later in
the data stream.

References

1. P.K. Agarwal, S. Har-Peled, K.R. Varadarajan, Approximating extent measure of points.
J. ACM 51(4), 606–635 (2004)

2. N. Alon, S. Dar, M. Parnas, D. Ron, Testing of clustering. SIAM J. Discrete Math. 16(3),
393–417 (2003)

3. S. Arora, P. Raghavan, S. Rao, Approximation schemes for Euclidean k-medians and related
problems, in Proc. of STOC (1998), pp. 106–113

4. D. Arthur, S. Vassilvitskii, k-Means++: the advantages of careful seeding, in Proc. of SODA
(2007)

5. V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, V. Pandit, Local search heuristic
for k-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)

186 S. Guha and N. Mishra

6. S. Ben-David, A framework for statistical clustering with a constant time approximation algo-
rithms for k-median clustering, in Proc. of COLT (2004), pp. 415–426

7. P.S. Bradley, U.M. Fayyad, C. Reina, Scaling clustering algorithms to large databases, in Proc.
of KDD (1998), pp. 9–15

8. M. Charikar, C. Chekuri, T. Feder, R. Motwani, Incremental clustering and dynamic informa-
tion retrieval. SIAM J. Comput., 1417–1440 (2004)

9. M. Charikar, S. Guha, Improved combinatorial algorithms for the facility location and
k-median problems, in Proc. of FOCS (1999), pp. 378–388

10. M. Charikar, S. Guha, É. Tardos, D.B. Shmoys, A constant factor approximation algorithm
for the k-median problem. J. Comput. Syst. Sci. 65(1), 129–149 (2002)

11. M. Charikar, S. Khuller, D.M. Mount, G. Narasimhan, Algorithms for facility location prob-
lems with outliers, in Proc. of SODA (2001), pp. 642–651

12. M. Charikar, L. O’Callaghan, R. Panigrahy, Better streaming algorithms for clustering prob-
lems, in Proc. of STOC (2003), pp. 30–39

13. J. Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Kortsarz, R. Krauthgamer, J. Naor, Asym-
metric k-center is Ω(log∗ n) hard to approximate, in Proc. of STOC (2004), pp. 21–27

14. A. Czumaj, C. Sohler, Sublinear-time approximation for clustering via random sampling, in
Proc. of ICALP (2004), pp. 396–407

15. P. Drineas, A. Frieze, R. Kannan, S. Vempala, V. Vinay, Clustering large graphs via the singu-
lar value decomposition. Mach. Learn. 56, 9–33 (2004)

16. F. Farnstrom, J. Lewis, C. Elkan, True scalability for clustering algorithms, in SIGKDD Ex-
plorations (2000)

17. T. Feder, D.H. Greene, Optimal algorithms for appropriate clustering, in Proc. of STOC
(1988), pp. 434–444

18. T.F. Gonzalez, Clustering to minimize the maximum intercluster distance. Theor. Comput.
Sci. 38(2–3), 293–306 (1985)

19. S. Guha, N. Mishra, R. Motwani, L. O’Callaghan, Clustering data streams, in Proc. of FOCS
(2000), pp. 359–366

20. S. Guha, R. Rastogi, K. Shim, CURE: an efficient clustering algorithm for large databases, in
Proc. of SIGMOD (1998), pp. 73–84

21. S. Har-Peled, S. Mazumdar, On coresets for k-means and k-median clustering, in Proc. of
STOC (2004), pp. 291–300

22. D.S. Hochbaum (ed.), Approximation Algorithms for NP-Hard Problems (Brooks/Cole, Pa-
cific Grove, 1996)

23. D.S. Hochbaum, D.B. Shmoys, A unified approach to approximate algorithms for bottleneck
problems. J. ACM 33(3), 533–550 (1986)

24. P. Indyk, Sublinear time algorithms for metric space problems, in Proc. STOC (1999)
25. K. Jain, V. Vazirani, Approximation algorithms for metric facility location and k-median prob-

lems using the primal–dual schema and Lagrangian relaxation. J. ACM 48(2), 274–296 (2001)
26. T. Kanungo, D.M. Mount, N.S. Netanyahu, C.D. Piatko, R. Silverman, A.Y. Wu, A local

search approximation algorithm for k-means clustering, in Proc. of SoCG (2002), pp. 10–18
27. L. Kaufmann, P.J. Rousseeuw, Clustering by means of medoids, in Statistical Data Analysis

Based on the L1 Norm and Related Methods (Elsevier Science, Amsterdam, 1987), pp. 405–
416

28. S. Kolliopoulos, S. Rao, A nearly linear-time approximation scheme for the Euclidean
k-median problem, in Proc. of ESA (1999), pp. 378–389

29. M.R. Korupolu, C.G. Plaxton, R. Rajaraman, Analysis of a local search heuristic for facility
location problems. J. Algorithms 37(1), 146–188 (2000)

30. J.H. Lin, J.S. Vitter, Approximation algorithms for geometric median problems. Inf. Process.
Lett. 44, 245–249 (1992)

31. R. Mettu, C.G. Plaxton, Optimal time bounds for approximate clustering, in Proc. of UAI
(2002), pp. 344–351

32. R. Mettu, C.G. Plaxton, The online median problem. SIAM J. Comput. 32(3) (2003)

Clustering Data Streams 187

33. A. Meyerson, L. O’Callaghan, S. Plotkin, A k-median algorithm with running time indepen-
dent of data size. Mach. Learn. 56, 61–87 (2004)

34. N. Mishra, D. Oblinger, L. Pitt, Sublinear time approximate clustering, in Proc. of SODA
(2001)

35. M. Thorup, Quick k-median, k-center, and facility location for sparse graphs, in Proc. of
ICALP (2001), pp. 249–260

36. V. Vazirani, Approximation Algorithms (Springer, Berlin, 2001)
37. A. Weber, Über den Standort der Industrien (Theory of the Location of Industries) (University

of Chicago Press, Chicago, 1929). Translated in 1929 by Carl J. Friedrich from Weber’s 1909
text

38. T. Zhang, R. Ramakrishnan, M.L. Birch, An efficient data clustering method for very large
databases, in Proc. of SIGMOD (1996), pp. 103–114

Mining Decision Trees from Streams

Geoff Hulten and Pedro Domingos

1 Introduction

The massive data streams that occur in many domains today are a tremendous oppor-
tunity for data mining, but also pose a difficult challenge. Open-ended, high-volume
streams potentially allow us to build far richer and more detailed models than be-
fore. On the other hand, a system capable of mining streaming data as fast as it
arrives must meet a number of stringent design criteria:

• It must require small constant time per record, otherwise it will inevitably fall
behind the data, sooner or later.

• It must use only a fixed amount of main memory, irrespective of the total number
of records it has seen.

• It must be able to build a model using at most one sequential scan of the data,
since it may not have time to revisit old records, or disk space to store them.

• It must make a usable model available at any point in time, as opposed to only
when it is done processing the data, since it may never be done processing.

• Ideally, it should produce a model that is equivalent (or nearly identical) to the one
that would be obtained by the corresponding ordinary database mining algorithm,
operating without the above constraints.

We have developed a general framework for transforming data mining algorithms
into stream mining ones that satisfy these criteria [12]. The basic idea in our ap-
proach is to, at each step of the algorithm, use the minimum number of examples

G. Hulten
Microsoft Research, Redmond, WA, USA
e-mail: ghulten@microsoft.com

P. Domingos (B)
Department of Computer Science and Engineering, University of Washington, Seattle, WA, USA
e-mail: pedrod@cs.washington.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_9

189

mailto:ghulten@microsoft.com
mailto:pedrod@cs.washington.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_9

190 G. Hulten and P. Domingos

from the stream that (with high probability) produces approximately the same re-
sults as would be obtained with infinite data. We have applied this framework to
learning Bayesian network structure [12], k-means clustering [4], the EM algorithm
for mixtures of Gaussians [5], learning relational models [14], and learning in time-
changing domains [15]. In this chapter, we illustrate the use of our framework by
applying it to what is perhaps the most widely used form of data mining: decision
tree induction.

In Sect. 2, we present VFDT (Very Fast Decision Tree learner), our algorithm
for learning decision trees from massive data streams, and give theoretical bounds
on the quality of the trees it produces. In Sect. 3, we empirically evaluate VFDT on
a large collection of synthetic data sets. In Sect. 4 we apply VFDT to the task of
improving Web page caching. We conclude with a brief discussion of related work.

2 The VFDT System

The classification problem is generally defined as follows. A set of N training ex-
amples of the form (x, y) is given, where y is a discrete class label and x is a vector
of d attributes, each of which may be symbolic or numeric. The goal is to produce
from these examples a model y = f (x) that will predict the classes y of future ex-
amples x with high accuracy. For example, x could be a description of a client’s
recent purchases, and y the decision to send that customer a catalog or not; or x
could be a record of a cellular-telephone call, and y the decision whether it is fraud-
ulent or not. Decision trees address this problem as follows. Each internal node in
the tree contains a test on an attribute, each branch from a node corresponds to a
possible outcome of the test, and each leaf contains a class prediction. The label
y = DT (x) for an example x is obtained by passing the example down from the
root to a leaf, testing the appropriate attribute at each node and following the branch
corresponding to the attribute’s value in the example.

A decision tree is learned by recursively replacing leaves by test nodes, starting
at the root. The attribute to test at a node is chosen by comparing all the available
attributes and choosing the best one according to some heuristic measure. Classic
decision tree learners like ID3, C4.5 and CART [1, 19] assume that all training ex-
amples can be stored simultaneously in main memory, and are thus severely limited
in the number of examples they can learn from. Disk-based decision tree learn-
ers like SLIQ [17] and SPRINT [21] assume the examples are stored on disk, and
learn by repeatedly reading them in sequentially (effectively once per level in the
tree). While this greatly increases the size of usable training sets, it can become pro-
hibitively expensive when learning complex trees (i.e., trees with many levels), and
fails when data sets are too large to fit in the available disk space or when data is
arriving on an open-ended stream.

VFDT learns from massive open-ended data streams by noting with Catlett [2]
and others [8, 18] that, in order to find the best attribute to test at a given node,
it may be sufficient to consider only a small subset of the training examples that

Mining Decision Trees from Streams 191

are relevant to that node. Given a stream of examples, the first ones will be used to
choose the root test; once the root attribute is chosen, the succeeding examples will
be passed down to the corresponding leaves and used to choose the appropriate tests
there, and so on recursively. We solve the difficult problem of deciding exactly how
many examples are necessary at each node by using a statistical result known as the
Hoeffding bound (or additive Chernoff bound) [11]. Consider a real-valued random
variable r whose range is R. Suppose we have made n independent observations of
this variable, and computed their mean r . One form of Hoeffding bound states that,
with probability 1 − δ, the true mean of the variable is at least r − ε, where

ε =
√

R2 ln(1/δ)

2n
. (1)

The Hoeffding bound has the very attractive property that it is independent of the
probability distribution generating the observations. The price of this generality is
that the bound is more conservative than the distribution-dependent ones (i.e., it will
take more observations to reach the same δ and ε). Let G(·) be the heuristic measure
used to choose attributes (e.g., the measure could be information gain as in C4.5, or
the Gini index as in CART). Our goal is to ensure that, with high probability, the
attribute chosen using n examples (where n is as small as possible) is the same
that would be chosen using infinite examples. Assume G is to be maximized, let
Xa be the attribute with highest observed G after seeing n examples, and Xb be
the second-best. Let �G = G(Xa) − G(Xb) ≥ 0 be the difference between their
observed heuristic values. Then, given a desired δ, the Hoeffding bound guarantees
that Xa is the correct choice with probability 1 − δ if n examples have been seen at
this node and �G > ε. Thus a node needs to accumulate examples from the stream
until ε becomes smaller than �G. At this point the node can be split using the
current best attribute, and succeeding examples passed to the new leaves. The only
case in which this procedure does not yield a decision in finite time occurs when
�G is zero (or very close to it). In this case there is no n that will suffice to make
�G > ε. However, in this case we do not care which attribute is selected because
their performance on the metric we are interested in is the same. If we stipulate
a minimum difference τ below which we are indifferent, the procedure above is
guaranteed to terminate after seeing at most n = � 1

2 (R/τ)2 ln(1/δ)� examples. In
other words, the time required to choose an attribute is constant, independent of the
size of the data stream. This leads to the VFDT algorithm, shown in pseudocode in
Table 1. The pseudocode shown is only for discrete attributes; it can be extended to
numeric ones with the usual methods. The sequence of examples T may be infinite,
in which case the procedure never terminates, and at any point in time a parallel
procedure can use the current tree DT to make class predictions.

The most significant part of the time cost per example is recomputing G. VFDT
can reduce this cost by only checking for a winning attribute once for every �n

examples that arrive at a leaf. As long as VFDT processes examples faster than they
arrive, which will be the case in all but the most demanding applications, the sole
obstacle to learning arbitrarily complex models will be the finite RAM available.

192 G. Hulten and P. Domingos

Table 1 The VFDT algorithm

Inputs: A stream of iid samples T = {X1,X2, . . . ,X∞},
X, a set of discrete attributes,
G(·), a split evaluation function
δ, one minus the desired probability of choosing the correct attribute at

any given node,
τ , a user specified tie threshold,
f , a bound function (we use the Hoeffding bound, see Eq. (1)).

Output: DT , a decision tree.

Procedure VFDT (T ,X,G, δ, τ, f)
/* Initialize */
Let DT be a tree with a single leaf l1 (the root).
For each class yk

For each value xij of each attribute Xi ∈ X
Let nijk(l1)= 0. /* The sufficient statistics needed to calculate G at l*/

/* Process the examples */
For each example (x, y) in T

Sort (x, y) into a leaf l using DT .
For each xij in x such that Xi ∈ Xl

Increment nijk(l).
Label l with the majority class among the examples seen so far at l.
If the examples seen so far at l are not all of the same class, then

Compute G(Xi) for each attribute Xi ∈ Xl using the counts nijk(l).
Let Xa be the attribute with highest G.
Let Xb be the attribute with the second highest G.
Compute ε using f (.).
If G(Xa)−G(Xb) > ε or ε < τ , then

Replace l by an internal node that splits on Xa .
For each branch of the split

Add a new leaf lm, and let Xm = X − {Xa}.
For each class yk and each value xij of each attribute Xi ∈ Xm

Let nijk(lm)= 0.
Return DT .

VFDT’s memory use is dominated by the memory required to keep sufficient statis-
tics for all growing leaves. If d is the number of attributes, v is the maximum num-
ber of values per attribute, and c is the number of classes, VFDT requires O(dvc)

memory to store the necessary counts at each leaf. If l is the number of leaves in the
tree, the total memory required is O(ldvc). This is independent of the number of
examples seen, if the size of the tree depends only on the “true” concept and is inde-
pendent of the size of the training set. If VFDT ever exceeds the RAM available, it
temporarily deactivates learning at some leaves. In particular, if pl is the probability
that an arbitrary example will fall into leaf l, and el is the observed error rate at that
leaf on the training data that reaches it, then plel is an estimate of the maximum
error reduction achievable by refining the leaf. When available RAM is exhausted,
we disable the leaves with the lowest values for Plel . When a leaf is deactivated,
the memory it was using for its sufficient statistics is freed. A leaf can then be re-

Mining Decision Trees from Streams 193

activated if it becomes more promising than a currently active leaf. VFDT caches
training examples in RAM in order to make best use of all available memory in the
early part of a run (before RAM is filled by sufficient statistics). This is similar to
what batch learners do, and it allows VFDT to reuse training examples for decisions
on several levels of the induced tree.

2.1 Quality Guarantees

A key property of the VFDT algorithm is that it is possible to guarantee under realis-
tic assumptions that the trees produced by the algorithm (as long as no decisions are
made by reaching the ‘indifference threshold’ n = � 1

2 (R/τ)2 ln(1/δ)�) are asymp-
totically arbitrarily close to the ones produced by a batch learner (i.e., a learner that
uses all the examples to choose a test at each node). In other words, the incremental
nature of the VFDT algorithm does not significantly affect the quality of the trees
it produces. In order to make this statement precise, we need to define the notion
of disagreement between two decision trees. Let P(x) be the probability that the
attribute vector (loosely, example) x will be observed, and let I (·) be the indicator
function, which returns 1 if its argument is true and 0 otherwise.

Definition 1 The extensional disagreement �e between two decision trees DT1 and
DT2 is the probability that they will produce different class predictions for an ex-
ample,

�e(DT1,DT2) =
∑

x

P(x)I
[
DT1(x) �= DT2(x)

]
.

Consider that two internal nodes are different if they contain different tests, two
leaves are different if they contain different class predictions, and an internal node
is different from a leaf. Consider also that two paths through trees are different if
they differ in length or in at least one node.

Definition 2 The intensional disagreement �i between two decision trees DT1 and
DT2 is the probability that the path of an example through DT1 will differ from its
path through DT2,

�i(DT1,DT2) =
∑

x

P(x)I
[
Path1(x) �= Path2(x)

]

where Pathi (x) is the path of example x through tree DTi .

Two decision trees agree intensionally on an example iff they are indistin-
guishable for that example: the example is passed down exactly the same se-
quence of nodes, and receives an identical class prediction. Intensional disagree-
ment is a stronger notion than extensional disagreement, in the sense that ∀DT1,DT2

�i(DT1,DT2) ≥ �e(DT1,DT2).

194 G. Hulten and P. Domingos

Let pl be the probability that an example that reaches level l in a decision tree
falls into a leaf at that level. To simplify, we will assume that this probability is
constant, i.e., ∀l pl = p, where p will be termed the leaf probability. This is a real-
istic assumption, in the sense that it is typically approximately true for the decision
trees that are generated in practice. Let V FDTδ be the tree produced by the VFDT
algorithm with desired probability δ given an infinite sequence of examples T , and
DT∗ be the asymptotic batch decision tree induced by choosing at each node the
attribute with true greatest G (i.e., by using infinite examples at each node). Let
E[�i(V FDTδ,DT∗)] be the expected value of �i(V FDTδ,DT∗), taken over all
possible infinite training sequences. We can then state the following result.

Theorem 1 If V FDTδ is the tree produced by the VFDT algorithm with desired
probability δ given infinite examples (Table 1), DT∗ is the asymptotic batch tree,
and p is the leaf probability, then E[�i(V FDTδ,DT∗)] ≤ δ/p.

Proof For brevity, we will refer to intensional disagreement simply as disagreement.
Consider an example x that falls into a leaf at level lv in V FDTδ , and into a leaf at
level ld in DT∗. Let l = min{lh, ld}. Let PathV (x) = (NV

1 (x),NV
2 (x), . . . ,NV

l (x))

be x’s path through V FDTδ up to level l, where NV
i (x) is the node that x goes

through at level i in V FDTδ , and similarly for PathD(x), x’s path through DT∗. If
l = lh then NV

l (x) is a leaf with a class prediction, and similarly for ND
l (x) if l = ld .

Let Ii represent the proposition “PathV (x) = PathD(x) up to and including level i,”
with I0 = True. Notice that P(lv �= ld) is included in P(NH

l (x) �= ND
l (x)|Il−1),

because if the two paths have different lengths then one tree must have a leaf where
the other has an internal node. Then, omitting the dependency of the nodes on x for
brevity,

P
(
PathV (x) �= PathD(x)

)

= P
(
NV

1 �= ND
1 ∨NV

2 �= ND
2 ∨ · · · ∨NV

l �= ND
l

)

= P
(
NV

1 �= ND
1 |I0

)+ P
(
NV

2 �= ND
2 |I1

)+ · · · + P
(
NV

l �= ND
l |Il−1

)

=
l∑

i=1

P
(
NV

i �= ND
i |Ii−1

) ≤
l∑

i=1

δ = δl. (2)

Let V FDTδ(T) be the VFDT tree generated from training sequence T . Then
E[�i(DTδ,DT∗)] is the average over all infinite training sequences T of the prob-
ability that an example’s path through V FDTδ(T) will differ from its path through
DT∗:

E
[
�i(V FDTδ,DT∗)

]

=
∑

T

P (T)
∑

x

P(x) I
[
PathV (x) �= PathD(x)

]

=
∑

x

P(x) P
(
PathV (x) �= PathD(x)

)

=
∞∑

i=1

∑

x∈Li

P (x) P
(
PathV (x) �= PathD(x)

)
(3)

Mining Decision Trees from Streams 195

where Li is the set of examples that fall into a leaf of DT∗ at level i. According to
Eq. (2), the probability that an example’s path through V FDTδ(T) will differ from
its path through DT∗, given that the latter is of length i, is at most δi (since i ≥ l).
Thus

E
[
�i(V FDTδ,DT∗)

] ≤
∞∑

i=1

∑

x∈Li

P (x)(δi) =
∞∑

i=1

(δi)
∑

x∈Li

P (x). (4)

The sum
∑

x∈Li
P (x) is the probability that an example x will fall into a leaf of DT∗

at level i, and is equal to (1 − p)i−1p, where p is the leaf probability. Therefore,

E
[
�i(V FDTδ,DT∗)

]

≤
∞∑

i=1

(δi)(1 − p)i−1p = δp

∞∑

i=1

i(1 − p)i−1

= δp

[∞∑

i=1

(1 − p)i−1 +
∞∑

i=2

(1 − p)i−1 + · · · +
∞∑

i=k

(1 − p)i−1 + · · ·
]

= δp

[
1

p
+ 1 − p

p
+ · · · + (1 − p)k−1

p
+ · · ·

]

= δ
[
1 + (1 − p)+ · · · + (1 − p)k−1 + · · ·] = δ

∞∑

i=0

(1 − p)i = δ

p
. (5)

This completes the demonstration of Theorem 1. �

An immediate corollary of Theorem 1 is that the expected extensional disagree-
ment between V FDTδ and DT∗ is also asymptotically at most δ/p (although in this
case the bound is much looser). Another corollary is that there exists a subtree of
the asymptotic batch tree such that the expected disagreement between it and the
tree learned by VFDT on finite data is at most δ/p. In other words, if δ/p is small
then VFDT’s tree learned on finite data is very similar to a subtree of the asymp-
totic batch tree. A useful application of Theorem 1 is that, instead of δ, users can
now specify as input to the VFDT algorithm the maximum expected disagreement
they are willing to accept, given enough examples for the tree to settle. The latter is
much more meaningful, and can be intuitively specified without understanding the
workings of the algorithm or the Hoeffding bound. The algorithm will also need an
estimate of p, which can easily be obtained (for example) by running a conventional
decision tree learner on a manageable subset of the data.

3 Empirical Evaluation of VFDT on Synthetic Data

A system like VFDT is only useful if it is able to learn more accurate trees than
a conventional system, given similar computational resources. It should be able to

196 G. Hulten and P. Domingos

use the examples that are beyond a conventional system’s ability to process to learn
better models. In this section, we test this empirically by comparing VFDT with
C4.5 release 8 [19], the incremental decision tree learner ITI [23], and our imple-
mentation of SPRINT [21] on a series of synthetic data streams. Using synthetic
data streams allows us to freely vary the relevant parameters of the learning process
and more fully explore the capabilities of our system. In Sect. 4, we describe an
evaluation on a real-world data set.

We first describe the data streams used for our experiments. They were created
by randomly generating decision trees and then using these trees to assign classes to
randomly generated examples. We produced the random decision trees by starting
from a tree with a single leaf node (the root) and repeatedly replacing leaf nodes
with nodes that tested randomly selected attributes. After the first three levels of the
tree each selected leaf had a probability of f of being pre-pruned instead of replaced
by a split. Any branch that reached a depth of 18 was pruned at that depth. Class
labels were assigned to leaves randomly (with uniform probability). We then gener-
ated a stream of 50 million training examples for each tree by sampling uniformly
from the instance space, assigning classes to the examples according to the corre-
sponding synthetic tree, and adding class and attribute noise by flipping each with
probability n. We also generated 50,000 separate testing examples for each concept
using the same procedure. We used nine parameter settings to generate trees: ev-
ery combination of f in {12 %,17 %,23 %} and n in {5 %,10 %,15 %}. We also
used six different random seeds for each of these settings to produce a total of 54
data streams. On average the trees we generated using this method contained about
100,000 nodes. Every domain we experimented with had two classes and 100 binary
attributes. We ran our experiments on a cluster of five Pentium III/1 GHz machines
with 1 GB of RAM, all running Linux. We reserved nine of the data streams, one
from each of the parameter settings above, to tune the algorithms’ parameters.

We will now briefly describe the learning algorithms used in our experiments:

• C4.5—The standard program for learning decision trees from data that fits in
RAM. We used the reserved data streams to tune C4.5’s ‘-c’ (prune confidence
level) parameter, and found 5 % to achieve the best results.

• ITI—An incremental decision tree learner for data sets that fit in RAM. We tuned
ITI’s ‘-P’ parameter, which controls the complexity of the trees ITI learns. This
parameter specifies a minimum number of examples of the second most common
class that must be present in every leaf. We found 50 to give the best results.

• SPRINT—An algorithm designed to learn decision trees from data sets that can fit
on disk, but are too large to load into RAM. We used our own implementation of
SPRINT for these experiments, which shares code with our VFDT implementa-
tion. SPRINT pruned its trees using the same code as VFDT’s post-prune option,
and both algorithms used the same pruning criteria: reserving 5 % of training
data for pruning. Once pruning was fixed, our implementation of SPRINT had no
tunable parameters.

• VFDT—We tried three forms of pruning: no-pruning, pre-pruning (no split is
made unless it improves G(·) by at least 0.005), and post-pruning (each training
sample from the stream was reserved with 5 % probability for pruning until a

Mining Decision Trees from Streams 197

Fig. 1 Average runtimes (zoom)

maximum of 2 million examples were reserved; a copy of the tree was pruned
with this data using standard reduced error pruning before generating each point
in the following graphs). We used a �n (the number examples to accumulate
before checking for a winner) of 1,000 for all experiments. We used the reserved
data streams to tune VFDT’s two remaining parameters, τ and δ. We found the
best setting for post-pruning to be τ = 0.05, δ = 1−7; the best for no-pruning to
be τ = 0.1, δ = 1−9; and the best for pre-pruning to be τ = 0.1, δ = 1−5.

The incremental systems, VFDT and ITI, were allowed to learn from the streams
directly. We ran ITI on the first 100,000 examples in each stream, because it was
too slow to learn from more. We ran VFDT on the entire streams and limited its
dynamic memory allocations to 600 MB (the rest of the memory on our computers
was reserved for the data generating process and other system processes). For the
batch systems, C4.5 and SPRINT, we sampled several data sets of increasing size
from the data streams and ran the learners on each of them in turn. C4.5 was run
on data sets up to 800 MB in size, which contained 2 million samples. We allowed
SPRINT to use up to 1.6 GB of data, or 4 million samples (about as much data as it
can process in the time it takes VFDT to process the entire 50 million samples).

Figures 1 and 2 show the runtime of the algorithms averaged over all 45 of the
data streams. The runtimes of all the systems seem to increase linearly with addi-
tional data. ITI and SPRINT were the slower of the systems by far; they were ap-
proximately two orders of magnitude slower than C4.5 and VFDT. ITI was slower
because of the cost of incrementally keeping its model up-to-date as every example
arrives, which in the worse case requires rebuilding the entire tree. This suggests that

198 G. Hulten and P. Domingos

Fig. 2 Average runtimes

such incremental maintenance is not viable for massive data streams. SPRINT’s was
slower because it needed to do a great deal of additional I/O to scan the entire train-
ing set once per level of the tree it learned. VFDT was approximately 3 times slower
than C4.5 (up to the point where C4.5 was not able to run on more data because it
ran out of RAM). VFDT used this additional time to: track its memory allocations;
swap searches into and out of memory; and manage example caches. Remember,
however, that C4.5 needed to be run once for every test point, while VFDT was
able to incrementally incorporate examples, and produce all test points with a single
pass over each of the data streams. Surprisingly, VFDT-pre was the slowest of the
VFDT algorithms. Looking deeper, we found that it learned smaller trees, usually
had a larger fraction of its searches active in RAM at a time, and thus spent more
time updating sufficient statistics and checking for winning searches than the other
VFDT variants.

Next, we compared the error rates of the models learned by the systems and Fig. 3
contains results. The final error rate achieved by each of the three VFDT systems
was better than the final error rate achieved by any of the non-VFDT systems. This
demonstrates that VFDT is able to take advantage of examples past those that could
be used by the other systems to learn better models. It is also interesting to note that
one of the VFDT systems had the best–or nearly the best–average performance after
any number of examples: VFDT-Pre with less than 100,000 examples, VFDT-None
from there to approximately 5 million examples; and VFDT-Post from there until
the end at 50 million examples. We also compared the systems on their ability to
quickly learn models with low error rate. Figure 4 shows the error rate the algo-

Mining Decision Trees from Streams 199

Fig. 3 Average test set error rate vs. number of training examples

Fig. 4 Average test set error rate vs. time

200 G. Hulten and P. Domingos

Fig. 5 Average number of nodes induced by the algorithms

rithms achieved on the y-axis and the time the algorithms took to achieve it on the
x-axis, it thus shows which algorithm is able to most quickly produce high quality
results. Notice that one of the VFDT settings had the best error rate after nearly
any amount of time, and that ITI and SPRINT were substantially less efficient than
VFDT according this metric.

Figure 5 shows the average number of nodes in the models learned by each of
the algorithms. The number of nodes learned seemed to scale approximately lin-
ear with additional training examples for all of the systems. C4.5 learned the most
nodes of any of the systems by several orders of magnitude; and VFDT-Post learned
the fewest nodes by an order of magnitude. Notice that SPRINT learned many more
nodes than VFDT-Post even though they used the same pruning implementation.
This occurred because SPRINT’s model contained every split that had gain on the
training data, while the splits in VFDT-Post’s tree were chosen, with high confi-
dence, by our method. VFDT’s simultaneous advantage with error rate and concept
size is additional evidence that our method for selecting splits is effective.

Figures 6 and 7 show how the algorithms’ performance varied with changes to
the amount of noise added (n) and to the size of the target concepts (f). Each data
point represents the average best error rate achieved by the respective algorithm on
all the runs with the indicated n and f . VFDT-Post had the best performance in
every setting, followed closely by VFDT-None. VFDT-Pre’s error rate was slightly
higher than SPRINT’s on the runs with the highest noise level and the runs with the
largest concepts. These results suggest that VFDT’s performance scales gracefully
as concept size or noise increases.

Mining Decision Trees from Streams 201

Fig. 6 Average performance by noise level

Fig. 7 Average performance by concept size

202 G. Hulten and P. Domingos

We calculated the rate at which VFDT is able to incorporate training examples
to determine how large a data stream it is able to keep up with in real time. VFDT-
None was able to learn from an average of 807 examples per second. Extrapolating
from this, we estimate it is able to learn from approximately 70 million examples
per day. Remember that these experiments were conducted on 1 GHz Pentium III
processors—hardware that is already modest by current standards. Further, if faced
with a faster data stream VFDT can be accelerated by increasing �n or by more
aggressively disabling learning at unpromising leaves. For example, using a version
of VFDT that did not cache examples or reactivate disabled leaves, we were able to
mine a stream of one billion examples in about one day.

In summary, our experiments demonstrate the utility of a tool like VFDT in par-
ticular and of our method for mining high-speed data streams in general: VFDT
achieves the same results as the traditional system, in an order of magnitude less
time; VFDT is then able to use additional time and data to learn more accurate
models, while traditional system’s memory requirements keep them from learning
on more data; finally, VFDT’s incremental nature allows it to smoothly refine its
model as more data arrives, while batch systems must be rerun from scratch to in-
corporate the latest data.

4 Application of VFDT to Web Data

We further evaluated VFDT by using it to mine the stream of Web page requests
emanating from the whole University of Washington main campus. The nature of
the data is described in detail in [25]. In our experiments, we used a one-week
anonymized trace of all the external Web accesses made from the university campus
in May 1999. There were 23,000 active clients during this one-week trace period,
and the entire university population is estimated at 50,000 people (students, faculty
and staff). The trace contains 82.8 million requests, which arrive at a peak rate of
17,400 per minute. The size of the compressed trace file is about 20 GB. Each
request in the log is tagged with an anonymized organization ID that associates
the request with one of the 170 organizations (colleges, departments, etc.) within
the university. One purpose this data can be used for is to improve Web caching.
The key to this is predicting as accurately as possible which hosts and pages will be
requested in the near future, given recent requests. We applied decision tree learning
to this problem in the following manner. We split the campus-wide request log into
a series of equal time slices T0, T1, . . . , Tt , We used time slices of 30 seconds,
1 minute, 5 minutes, and 15 minutes for our experiments. Let NT be the number
of time slices in a day. For each organization O1,O2, . . . ,Oi, . . . ,O170 and each of
the 244k hosts appearing in the logs H1, . . . ,Hj , . . . ,H244k , we maintain a count of
how many times the organization accessed the host in the time slice, Cijt . Then for
each time slice and host accessed in that time slice (Tt ,Hj) we generate an example
with attributes: C1,j t , . . . ,Cijt , . . . ,C170,j t , t modNT , and class 1 if any request is
made to Hj in time slice Tt+1 and 0 if not. This can be carried out in real time using

Mining Decision Trees from Streams 203

Table 2 Results of the Web experiments. ‘Match Time’ is the time it took VFDT to match C4.5’s
best accuracy. ‘VFDT Time’ is the time it took VFDT to do six complete scans of the training set

Data set C4.5 Error (%) VFDT Error (%) C4.5 Time (s) Match Time (s) VFDT Time (s)

30 s 37.70 36.95 % 60k 5k 247k

1 min 37.30 36.67 % 71k 6k 160k

5 min 33.59 33.23 % 61k 15k 72k

modest resources by keeping statistics on the last and current time slices Ct−1 and
Ct in memory, only keeping counts for hosts that actually appear in a time slice
(we never needed more than 30k counts), and outputting the examples for Ct−1 as
soon as Ct is complete. Testing was carried out on the examples from the last day
in each of the data sets. The ‘30 s’ data set had 10,850k training examples, 1,944k
testing examples and 46.0 % were class 0. The ‘1 min’ data set had 7,921k training
examples, 1,419k testing examples and 45.4 % were class 0. The ‘5 min’ data set
had 3,880k training examples, 696k testing examples and 52.5 % were class 0. The
‘15 min’ data set had 2,555k training examples, 454k testing examples, and 58.1 %
were class 0.

We ran C4.5 and VFDT on these data sets, on a 1 GHz machine with 1 GB of
RAM running Linux. We tested C4.5 on data sets up to 1.2M examples (roughly
800 MB; the remaining RAM was reserved for C4.5’s learned tree and system pro-
cesses). C4.5’s data sets were created by random sampling from the available train-
ing data. Notice that the 1.2M examples C4.5 was able to process is less than a
day’s worth for the ‘30 s’ and ‘1 min’ data sets and less than 50 % of the training
data in the remaining cases. We allowed VFDT to do six passes over the training
data–and thus incorporate each training example in its tree at six different places–
and we allowed it to use 400 MB of RAM. We tuned the algorithms’ parameters
on the ‘15 min’ data set. C4.5’s best prune confidence was 5 %, and VFDT’s best
parameters were: no-pruning, δ = 1−7, τ = 0.1, and �n = 300. We learned from
numeric attributes by maintaining a sorted list of the values seen and considering a
split between each pair of adjacent values with different classes. There were very
few distinct values for each attribute so this method did not use much time or RAM.

Table 2 summarizes the results of these experiments. VFDT was able to learn a
more accurate model than C4.5 on every data set. VFDT’s improvement over C4.5
was largest on the ‘30 s’ data set and was smallest on the ‘5 min’ data set. Notice that
C4.5 was able to use about 11 % of the ‘30 s’ data set and about 31 % of the ‘5 min’
data set. This supports the notion that VFDT’s performance improvement over a
traditional system will depend on the amount of additional data that it is able to
process past the point where the traditional system runs into a resource limit. VFDT
was also much faster than C4.5 in the following sense. We noted the accuracy of
the best model learned by C4.5 and the time it took it to learn it. We then examined
VFDT’s results to determine how long it took it to learn a model with that same
accuracy. We found that VFDT achieved C4.5’s best accuracy an order of magnitude
faster on the ‘30 s’ and ‘1 min’ data sets and 4 times faster on the ‘5 min’ data set.
Figures 8, 9, and 10 contain a more detailed picture of VFDT’s simultaneous speed

204 G. Hulten and P. Domingos

Fig. 8 Time vs. Error Rate on the ‘30 s’ data set

Fig. 9 Time vs. Error Rate on the ‘1 min’ data set

Mining Decision Trees from Streams 205

Fig. 10 Time vs. Error Rate on the ‘5 min’ data set

and accuracy advantage; they show the amount of learning time on a logarithmic
scale on the x-axis and the error rate of the model learned in the indicated amount
of time on the y-axis. VFDT has a more accurate model than C4.5 after nearly any
amount of learning time (the region where C4.5 has an advantage in Fig. 8 is only
about 1.6 % of the entire run). We attribute this to VFDT’s sampling method which
allows it to use just the right amount of data to make each decision, while C4.5 must
use all data for every decision.

5 Related Work

There has been a great deal of work on scaling up learning algorithms to very large
data sets. Perhaps the most relevant falls into the general framework of sequential
analysis [24]. Examples of relevant machine learning algorithms that use these ideas
include PALO [10], Hoeffding races [16], the sequential induction model [9], AdaS-
elect [3], and the sequential sampling algorithm [20]. The core idea in these is that
training samples should be accumulated (roughly) one at a time until some quality
criteria is met, and no longer. Our work extends these in several ways, including
providing stronger guarantees and finer-grained bounds, addressing memory issues,
caching training examples, etc. Further, we have conducted extensive empirical tests
of our framework on synthetic and real-world data sets, and we have applied it to a
wide variety of learning algorithms.

206 G. Hulten and P. Domingos

Our method bears an interesting relationship to recent work in computational
learning theory that uses algorithm-specific and run-time information to obtain bet-
ter loss bounds (e.g., [6, 22]). A first key difference is that we attempt to bound a
learner’s loss relative to the same learner running on infinite data, instead of rela-
tive to the best possible model (or the best possible from a given class). A second
key difference is that we make more extensive use of run-time information in our
bounds. These two changes make possible realistic bounds for widely-used learners,
as exemplified in this chapter.

BOAT [8] is a scalable, incremental decision tree induction algorithm that uses a
sampling strategy that allows it to learn several levels of a decision tree in a single
pass over training data. Perhaps the most closely related system to our approach
is the combination of BOAT with the DEMON framework [7]. DEMON was de-
signed to help adapt any incremental learning algorithms to work effectively with
data streams. DEMON assumes data arrives periodically in large blocks. Roughly,
DEMON builds a model on every interesting suffix of the data blocks that are in
a sliding window. For example, if the window contains n data blocks B1, . . . ,Bn,
DEMON will have a model for blocks B1, . . . ,Bn; a model for blocks B2, . . . ,Bn;
a model for B3, . . . ,Bn; etc. When a new block of data (block Bn+1) arrives, DE-
MON incrementally refines the model for B2, . . . ,Bn to quickly produce the n block
model for the new window. It then uses offline processing time to add Bn+1 to all
of the other models it is maintaining. DEMON’s advantage is its simplicity: it can
easily be applied to any existing incremental learning algorithm. The disadvantages
is the granularity at which it incorporates data (in periodic blocks compared to ev-
ery example for VFDT) and the overhead required to store (and update) all of the
required models.

6 Conclusion

In this chapter, we described VFDT, an incremental any-time decision tree induc-
tion algorithm capable of learning from massive data streams within stringent per-
formance criteria. The core of the algorithm samples from the data stream exactly
as much data as needed to make each induction decision. We evaluated VFDT with
extensive studies on synthetic data sets, and with an application to a massive real-
world data stream. We found that VFDT was able to outperform traditional systems
by running faster and by taking advantage of additional data to learn higher quality
models. A publicly available implementation of VFDT is available as part of the
VFML library [13].

References

1. L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees
(Wadsworth, Belmont, 1984)

Mining Decision Trees from Streams 207

2. J. Catlett, Megainduction: machine learning on very large databases. PhD thesis, Basser De-
partment of Computer Science, University of Sydney, Sydney, Australia (1991)

3. C. Domingo, R. Gavalda, O. Watanabe, Adaptive sampling methods for scaling up knowledge
discovery algorithms. Data Min. Knowl. Discov. 6, 131–152 (2002)

4. P. Domingos, G. Hulten, A general method for scaling up machine learning algorithms and
its application to clustering, in Proceedings of the Eighteenth International Conference on
Machine Learning, Williamstown, MA (Morgan Kaufmann, San Mateo, 2001), pp. 106–113

5. P. Domingos, G. Hulten, Learning from infinite data in finite time, in Advances in Neural
Information Processing Systems, vol. 14, ed. by T.G. Dietterich, S. Becker, Z. Ghahramani
(MIT Press, Cambridge, 2002), pp. 673–680

6. Y. Freund, Self bounding learning algorithms, in Proceedings of the Eleventh Annual Con-
ference on Computational Learning Theory, Madison, WI (Morgan Kaufmann, San Mateo,
1998)

7. V. Ganti, J. Gehrke, R. Ramakrishnan, DEMON: mining and monitoring evolving data, in
Proceedings of the Sixteenth International Conference on Data Engineering, San Diego, CA
(2000), pp. 439–448

8. J. Gehrke, V. Ganti, R. Ramakrishnan, W.-L. Loh, BOAT: optimistic decision tree construc-
tion, in Proceedings of the 1999 ACM SIGMOD International Conference on Management of
Data, Philadelphia, PA (ACM, New York, 1999), pp. 169–180

9. J. Gratch, Sequential inductive learning, in Proceedings of the Thirteenth National Conference
on Artificial Intelligence, Portland, OR (AAAI Press, Menlo Park, 1996), pp. 779–786

10. R. Greiner, PALO: a probabilistic hill-climbing algorithm. Artif. Intell. 84, 177–208 (1996)
11. W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Am. Stat.

Assoc. 58, 13–30 (1963)
12. G. Hulten, P. Domingos, Mining complex models from arbitrarily large databases in constant

time, in Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, Edmonton, Canada (ACM Press, New York, 2002), pp. 525–531

13. G. Hulten, P. Domingos, VFML—a toolkit for mining high-speed time-changing data streams
(2003). http://www.cs.washington.edu/dm/vfml/

14. G. Hulten, P. Domingos, Y. Abe, Mining massive relational databases, in IJCAI 2003 Work-
shop on Learning Statistical Models from Relational Data, Acapulco, Mexico (2003)

15. G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in Proceedings of the
Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
San Francisco, CA (ACM, New York, 2001), pp. 97–106

16. O. Maron, A. Moore, Hoeffding races: accelerating model selection search for classification
and function approximation, in Advances in Neural Information Processing Systems 6, ed. by
J.D. Cowan, G. Tesauro, J. Alspector (Morgan Kaufmann, San Mateo, 1994)

17. M. Mehta, A. Agrawal, J. Rissanen, SLIQ: a fast scalable classifier for data mining, in Pro-
ceedings of the Fifth International Conference on Extending Database Technology, Avignon,
France (Springer, Berlin, 1996), pp. 18–32

18. R. Musick, J. Catlett, S. Russell, Decision theoretic subsampling for induction on large
databases, in Proceedings of the Tenth International Conference on Machine Learning,
Amherst, MA (Morgan Kaufmann, San Mateo, 1993), pp. 212–219

19. J.R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann, San Mateo, 1993)
20. T. Scheffer, S. Wrobel, Incremental maximization of non-instance-averaging utility functions

with applications to knowledge discovery problems, in Proceedings of the Eighteenth Interna-
tional Conference on Machine Learning, Williamstown, MA (Morgan Kaufmann, San Mateo,
2001), pp. 481–488

21. J.C. Shafer, R. Agrawal, M. Mehta, SPRINT: a scalable parallel classifier for data mining,
in Proceedings of the Twenty-Second International Conference on Very Large Databases,
Bombay, India (Morgan Kaufmann, San Mateo, 1996), pp. 544–555

22. J. Shawe-Taylor, P.L. Bartlett, R.C. Williamson, M. Anthony, Structural risk minimization
over data-dependent hierarchies. Technical report NC-TR-96-053, Department of Computer
Science, Royal Holloway, University of London, Egham, UK (1996)

http://www.cs.washington.edu/dm/vfml/

208 G. Hulten and P. Domingos

23. P.E. Utgoff, An improved algorithm for incremental induction of decision trees, in Proceed-
ings of the Eleventh International Conference on Machine Learning, New Brunswick, NJ
(Morgan Kaufmann, San Mateo, 1994), pp. 318–325

24. A. Wald, Sequential Analysis (Wiley, New York, 1947)
25. A. Wolman, G. Voelker, N. Sharma, N. Cardwell, M. Brown, T. Landray, D. Pinnel, A. Karlin,

H. Levy, Organization-based analysis of Web-object sharing and caching, in Proceedings of
the Second USENIX Conference on Internet Technologies and Systems, Boulder, CO (1999),
pp. 25–36

Frequent Itemset Mining over Data Streams

Gurmeet Singh Manku

1 Problem Definition

We study the problem of computing frequent elements in a data-stream. Given sup-
port threshold s ∈ [0,1], an element is said to be frequent if it occurs more than
sN times, where N denotes the current length of the stream. If we maintain a list
of counters of the form 〈element, count〉, one counter per unique element encoun-
tered, we need N counters in the worst-case. Many distributions are heavy-tailed in
practice, so we would need far fewer than N counters. However, the number would
still exceed 1/s, which is the maximum possible number of frequent elements. If
we insist on identifying exact frequency counts, then Ω(N) space is necessary. This
observation motivates the definition of ε-approximate frequency counts : given sup-
port threshold s ∈ [0,1] and an error parameter ε ∈ (0, s), the goal is to produce a
list of elements along with their estimated frequencies, such that three properties are
satisfied:

I. Estimated frequencies are less than the true frequencies by at most εN .
II. All elements whose true frequency exceeds sN are output.

III. No element whose true frequency is less than (s − ε)N is output.

Example Imagine a statistician who wishes to identify elements whose frequency
is at least 0.1 % of the entire stream seen so far. Then the support threshold is s =
0.1 %. The statistician is free to set ε ∈ (0, s) to whatever she feels is a comfortable
margin of error. Let us assume she chooses ε = 0.01 % (one-tenth of s). As per
Property I, estimated frequencies are less than their true frequencies by at most
0.01 %. As per Property II, all elements with frequency exceeding s = 0.1 % will be

G.S. Manku (B)
Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA, USA
e-mail: manku@google.com

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_10

209

mailto:manku@google.com
http://dx.doi.org/10.1007/978-3-540-28608-0_10

210 G.S. Manku

output; there are no false negatives. As per Property III, no element with frequency
below 0.09 % will be output. This leaves elements with frequencies between 0.09 %
and 0.1 %—these might or might not form part of the output. On the whole, the
approximation has two aspects: high frequency false positives, and small errors in
individual frequencies. Both kinds of errors are tolerable in real-world applications.

2 One-Pass Algorithms

We present three algorithms for computing ε-approximate frequency counts. To
avoid floors and ceilings, we will assume that 1/ε is an integer (if not, we can scale
down ε to 2−r where r is an integer satisfying 2−r < ε < 2−r+1). The data structure
for all three algorithms is a list of counters of the form 〈element, count〉, initially
empty. At any time, ε-approximate frequency counts can be retrieved by identifying
those elements whose associated count exceeds (s − ε)N . The algorithms differ in
terms of the rules employed for creating, incrementing, decrementing and deleting
counters.

MISRA–GRIES ALGORITHM ([7]). Let e denote a newly-arrived element. If a
counter for e already exists, it is incremented. Otherwise, if there already exist 1/ε

counters, we repeatedly diminish all counters by 1 until some counter drops to zero.
We then delete all counters with count zero, and create a new counter of the form
〈e,1〉.

LOSSY COUNTING ([6]). Let e denote a newly-arrived element. If a counter for
e already exists, it is incremented. Otherwise, we create a new counter of the form
〈e,1〉. Whenever N , the current size of the stream, equals i/ε for some integer i, all
counters are decrement by one—we discard any counter that drops to zero.

STICKY SAMPLING ([6]). The algorithm is randomized, with δ denoting the prob-
ability of failure. The algorithm maintains r , the sampling rate, which varies over
the lifetime of the stream. Initially, r = 1. Let e denote the newly-arrived element.
If a counter for e exists, it is incremented. Otherwise, we toss a coin with proba-
bility of success r . If the coin toss succeeds, we create an entry of the form 〈e,1〉;
otherwise, we ignore e.

The sampling rate r varies as follows: Let t = 1
ε

log(s−1δ−1). The first 2t ele-
ments are sampled at rate r = 1, the next 2t elements are sampled at rate r = 1/2,
the next 4t elements are sampled at rate r = 1/4, and so on. Whenever the sampling
rate changes, we update existing counters as follows: For each counter, we repeat-
edly toss an unbiased coin until the coin toss is successful, decrementing the counter
for every unsuccessful outcome; if the counter drops to zero during this process, we
delete the counter. Effectively, the new list of counters is identical to exactly the list
that would have emerged, had we been sampling with the new rate from the very
beginning.

Frequent Itemset Mining over Data Streams 211

Theorem 1 MISRA–GRIES ALGORITHM allows retrieval of ε-approximate fre-
quency counts using at most 1

ε
counters.

Proof Consider a fixed element e. Whenever a counter corresponding to e is dimin-
ished by 1, 1/ε − 1 other counters are also diminished. Clearly, when N elements
have been seen, a counter for e could not have been diminished by more than εN . �

Theorem 2 LOSSY COUNTING allows retrieval of ε-approximate frequency counts
using at most 1

ε
log(εN) counters.

Proof Imagine splitting the stream into buckets of size w = 1/ε each. Let N = Bw,
where B denotes the total number of buckets that we have seen. For each i ∈ [1,B],
let di denote the number of counters which were created when bucket B − i+1 was
active, i.e., the length of the stream was in the range [(B − i)w + 1, (B − i + 1)w].
The element corresponding to such a counter must occur at least i times in buckets
B − i+1 through B; otherwise, the counter would have been deleted. Since the size
of each bucket is w, we get the following constraints:

j∑

i=1

idi ≤ jw for j = 1,2, . . . ,B. (1)

We prove the following set of inequalities by induction:

j∑

i=1

di ≤
j∑

i=1

w

i
for j = 1,2, . . . ,B. (2)

The base case (j = 1) follows from (1) directly. Assume that (2) is true for
j = 1,2, . . . , p − 1. We will show that it is true for j = p as well. Adding p − 1
inequalities of type (2) (one inequality each for i varying from 1 to p − 1) to an
inequality of type (1) (with j = p) yields

p∑

i=1

idi +
1∑

i=1

di +
2∑

i=1

di + · · · +
p−1∑

i=1

di

≤ pw +
1∑

i=1

w

i
+

2∑

i=1

w

i
+ · · · +

p−1∑

i=1

w

i
.

Upon rearrangement, we get p
∑p

i=1 di ≤ pw + ∑p−1
i=1

(p−i)w
i

, which readily sim-
plifies to (2) for j = p. This completes the induction step. The maximum number
of counters is

∑B
i=1 di ≤ ∑B

i=1
w
i
≤ 1

ε
logB = 1

ε
log(εN). �

Theorem 3 STICKY SAMPLING computes ε-approximate frequency counts, with
probability at least 1 − δ, using at most 2

ε
log(s−1δ−1) counters in expectation.

Proof The expected number of counters is 2t = 2
ε

log(s−1δ−1). When r ≤ 1/2, then
N = rt + rt ′, for some t ′ ∈ [1, t). It follows that 1

r
≥ t

N
. Any error in the estimated

212 G.S. Manku

Fig. 1 Number of counters for support threshold s = 1 %, error parameter ε = 0.1 %, and proba-
bility of failure δ = 10−4. Zipf denotes a Zipfian distribution with parameter 1.25. Uniq denotes a
stream with no duplicates. The bottom figure magnifies a section of the barely-visible lines in the
graph above

frequency of an element e corresponds to a sequence of unsuccessful coin tosses
during the first few occurrences of e. The probability that this error exceeds εN is
at most (1 − 1

r
)εN ≤ (1 − t

N
)−εN ≤ e−εt .

There are at most 1/s elements whose true frequency exceeds sN . The probabil-
ity that the estimate frequency of any of them is deficient by εN , is at most e−εt /s.
Since t ≥ 1

ε
log(s−1δ−1), this probability is at most δ. �

Each of the algorithms has its strengths that make it useful in different con-
texts. The MISRA–GRIES ALGORITHM has optimal worst-case space complexity
and O(1) amortized cost of update per element. The update cost has been improved
to O(1) worst-case by Karp et al. [5]. STICKY SAMPLING is useful for identifying
ε-approximate frequent counts over sliding windows (see Arasu and Manku [2]).
LOSSY COUNTING is useful when the input stream has duplicates and when the in-
put distribution is heavy-tailed, as borne out by Fig. 1. The kinks in the curve for
STICKY SAMPLING correspond to re-sampling. They are log10 2 units apart on the
X-axis. The kinks for LOSSY COUNTING correspond to N = i/ε (when deletions
occur). STICKY SAMPLING performs worse because of its tendency to remember
every unique element that gets sampled. LOSSY COUNTING, on the other hand, is
good at pruning low frequency elements quickly; only high frequency elements sur-

Frequent Itemset Mining over Data Streams 213

vive. For skewed distributions, both algorithms require much less space than their
worst-case bounds in Theorems 2 and 3. LOSSY COUNTING is superior to MISRA–
GRIES ALGORITHM for skewed data. For example, with ε = 0.01 %, roughly 2000
entries suffice, which is only 20 % of 1

ε
.

3 Frequent Itemset Mining

Let I denote the universe of all items. Consider a stream of transactions, where
each transaction is a subset of I . An itemset X ⊆ I is said to have support s if X

is a subset of at least sN transactions, where N denotes the length of the stream,
i.e., the number of transactions seen so far. The frequent itemsets problem seeks to
identify all itemsets whose support exceeds a user-specified support threshold s.

Frequent itemsets are useful for identifying association rules (see Agrawal and
Srikant [1] for a seminal paper that popularized the problem). Considerable work in
frequent itemsets has focused on devising data structures for compactly representing
frequent itemsets, and showing how the data structure can be constructed in a few
passes over a large disk-resident dataset. The best-known algorithm take two passes.

Identification of frequent itemsets over data streams is useful in a data-
warehousing environment where bulk updates occur at regular intervals of time,
e.g., daily, weekly or monthly. Summary data structures that store aggregates like
frequent itemsets should be maintained incrementally because a complete rescan of
the entire warehouse-database per bulk-update is prohibitively costly. The summary
data structure should be significantly smaller than the warehouse-database but need
not fit in main memory.

In a data stream scenario, where only one pass is possible, we relax the problem
definition to compute ε-approximate frequent itemsets: Given support threshold s ∈
(0,1) and error parameter ε ∈ (0, s), the goal is to produce itemsets, along with their
estimated frequencies, satisfying three properties:

I. Estimated frequencies are less than the true frequencies by at most εN .
II. All itemsets whose true frequency exceeds sN are output.

III. No itemset whose true frequency is less than (s − ε)N is output.

We now develop an algorithm based upon LOSSY COUNTING for tackling the
ε-approximate frequent itemsets problem. We begin by describing some modifica-
tions to LOSSY COUNTING.

3.1 Modifications to LOSSY COUNTING

We divide the stream into buckets of size 1/ε each. Buckets are numbered sequen-
tially, starting with 1. We maintain counters of the form 〈element, count, bucket_id〉,
where bucket_id denotes the ID of the bucket that was active when this counter was

214 G.S. Manku

created. At bucket boundaries, we check whether count+bucket_id ≤ εN . If so,
the counter is deleted. This is equivalent to our earlier approach of decrementing
counters at bucket boundaries and deleting those counters that drop to zero. The
maximum possible error in the estimated frequency of an element is given by its
bucket_id (which might be much less than εN). Furthermore, the algorithm con-
tinues to be correct even if we do not check the counters at each and every bucket
boundary. However, the longer we defer the checks, the larger the space require-
ments due to the presence of noise (low-frequency elements in recent buckets).

3.2 Frequent Itemsets Algorithm

The input to the algorithm is a stream of transactions. The user specifies two param-
eters, support threshold, s, and error parameter, ε. We denote the current length of
the stream by N . We maintain a data structure D consisting of a set of entries of the
form (set, f,�), where set is an itemset (subset of I), f is an integer representing
the estimated frequency of set, and � is the maximum possible error in f . Initially,
D is empty.

The stream is divided into buckets consisting of w = �1/ε� transactions each.
Buckets are labeled with bucket ids, starting from 1. We denote the current bucket
id by bcurrent. We do not process the stream transaction by transaction. Instead, we
fill available main memory with as many transactions as possible, and then process
the resulting batch of transactions together. Let β denote the number of buckets in
main memory in the current batch being processed. We update D as follows:

• UPDATE_SET. For each entry (set, f,�) ∈ D, update f by counting the occur-
rences of set in the current batch. If the updated entry satisfies f + � ≤ bcurrent,
we delete this entry.

• NEW_SET. If a set set has frequency f ≥ β in the current batch and set does not
occur in D, we create a new entry (set, f, bcurrent − β).

A set set whose true frequency fset ≥ εN , has an entry in D. Also, if an entry
(set, f,�) ∈D, then the true frequency fset satisfies the inequality f ≤ fset ≤ f +
�. When a user requests a list of items with threshold s, we output those entries in
D where f ≥ (s − ε)N .

It is important that β be a large number. The reason is that any subset of I that
occurs β + 1 times or more, contributes an entry to D. For small values of β , D is
polluted by noise (subsets whose overall frequency is very low, but which occur at
least β + 1 times in the last β buckets).

Two design problems emerge: What is an efficient representation of D? What is
an efficient algorithm to implement UPDATE_SET and NEW_SET?

Frequent Itemset Mining over Data Streams 215

3.3 Data Structure and Algorithm Design

We have three modules: TRIE, BUFFER, and SETGEN. TRIE is an efficient imple-
mentation of D. BUFFER repeatedly reads in batches of transactions into available
main memory and carries out some pre-processing. SETGEN then operates on the
current batch of transactions in BUFFER. It enumerates subsets of these transactions
along with their frequencies, limiting the enumeration using some pruning rules.
Effectively, SETGEN implements the UPDATE_SET and NEW_SET operations to
update TRIE. The challenge, it turns out, lies in designing a space-efficient TRIE

and a time-efficient SETGEN.

TRIE. This module maintains the data structure D outlined in Sect. 3.2. Concep-
tually, it is a forest (a set of trees) consisting of labeled nodes. Labels are of the form
〈item_id, f,�, level〉, where item_id is an item-id, f is its estimated frequency, � is
the maximum possible error in f , and level is the distance of this node from the root
of the tree it belongs to. The root nodes have level 0. The level of any other node
is one more than that of its parent. The children of any node are ordered by their
item-id’s. The root nodes in the forest are also ordered by item-id’s. A node in the
tree represents an itemset consisting of item-id’s in that node and all its ancestors.
There is a 1-to-1 mapping between entries in D and nodes in TRIE.

To make the TRIE compact, we maintain an array of entries of the form
〈item_id, f,�, level〉 corresponding to the pre-order traversal of the underlying
trees. This is equivalent to a lexicographic ordering of all the subsets encoded by the
trees. There are no pointers from any node to its children or its siblings. The level’s
compactly encode the underlying tree structure. Such a representation suffices be-
cause tries are always scanned sequentially, as we show later.

Tries are used by several Association Rules algorithms, hash tries [1] being a
popular choice. Popular implementations of tries require pointers and variable-sized
memory segments (because the number of children of a node changes over time).
Our TRIE is quite different.

BUFFER. This module repeatedly fills available main memory with a batch of
transactions. Each transactions is a set of item-id’s. Transactions are laid out one
after the other in a big array. A bitmap is used to remember transaction boundaries.
A bit per item-id denotes whether this item-id is the last member of some transaction
or not. After reading in a batch, BUFFER sorts each transaction by its item-id’s.

SETGEN. This module generates subsets of item-id’s along with their frequencies
in the current batch of transactions in lexicographic order. It is important that not
all possible subsets be generated. A glance at the description of UPDATE_SET and
NEW_SET operations reveals that a subset must be enumerated iff either it occurs
in TRIE or its frequency in the current batch exceeds β . SETGEN uses the following
pruning rule:

If a subset S does not make its way into TRIE after application of both
UPDATE_SET and NEW_SET, then no supersets of S should be considered.

216 G.S. Manku

This is similar to the Apriori pruning rule [1]. We describe an efficient implementa-
tion of SETGEN in greater detail later.

Overall Algorithm

BUFFER repeatedly fills available main memory with a batch of transactions, and
sorts them. SETGEN operates on BUFFER to generate sets of itemsets along with
their frequency counts in lexicographic order. It limits the number of subsets using
the pruning rule. Together, TRIE and SETGEN implement the UPDATE_SET and
NEW_SET operations.

3.4 Efficient Implementations

In this section, we outline important design decisions that contribute to an efficient
implementation.

BUFFER. If item-id’s are successive integers from 1 thru |I|, and if I is small
enough (say, less than 1 million), we maintain exact frequency counts for all items.
For example, if |I| = 105, an array of size 0.4 MB suffices. If exact frequency counts
are available, BUFFER first prunes away those item-id’s whose frequency is less than
εN , and then sorts the transactions, where N is the length of the stream up to and
including the current batch of transactions.

TRIE. As SETGEN generates its sequence of sets and associated frequencies,
TRIE needs to be updated. Adding or deleting TRIE nodes in situ is made difficult by
the fact that TRIE is a compact array. However, we take advantage of the fact that the
sets produced by SETGEN (and therefore, the sequence of additions and deletions)
are lexicographically ordered. Since our compact TRIE also stores its constituent
subsets in their lexicographic order, the two modules: SETGEN and TRIE work hand
in hand.

We maintain TRIE not as one huge array, but as a collection of fairly large-sized
chunks of memory. Instead of modifying the original trie in place, we create a new
TRIE afresh. Chunks belonging to the old TRIE are freed as soon as they are not
required. Thus, the overhead of maintaining two TRIEs is not significant. By the
time SETGEN finishes, the chunks belonging to the old trie have been completely
discarded.

For finite streams, an important TRIE optimization pertains to the last batch of
transactions when the value of β , the number of buckets in BUFFER, could be small.
Instead of applying the rules in Sect. 3.2, we prune nodes in the trie more aggres-
sively by setting the threshold for deletion to sN instead of bcurrent ≈ εN . This is
because the lower frequency nodes do not contribute to the final output.

Frequent Itemset Mining over Data Streams 217

SETGEN. This module is the bottleneck in terms of time. Therefore, it merits
careful design and run-time optimizations. SETGEN employs a priority queue called
Heap which initially contains pointers to smallest item-id’s of all transactions in
BUFFER. Duplicate members (pointers pointing to the same item-id) are maintained
together and they constitute a single entry in Heap. In fact, we chain all the pointers
together, deriving the space for this chain from BUFFER itself. When an item-id
in BUFFER is inserted into Heap, the 4-byte integer used to represent an item-id
is converted into a 4-byte pointer. When a heap entry is removed, the pointers are
restored back to item-id’s.

SETGEN repeatedly processes the smallest item-id in Heap to generate singleton
sets. If this singleton belongs to TRIE after UPDATE_SET and NEW_SET rules have
been applied, we try to generate the next set in lexicographic sequence by extend-
ing the current singleton set. This is done by invoking SETGEN recursively with a
new heap created out of successors of the pointers to item-id’s just removed and
processed. The successors of an item-id is the item-id following it in its transaction.
Last item-id’s of transactions have no successors. When the recursive call returns,
the smallest entry in Heap is removed and all successors of the currently smallest
item-id are added to Heap by following the chain of pointers described earlier.

3.5 System Issues and Optimizations

BUFFER scans the incoming stream by memory mapping the input file. This saves
time by getting rid of double copying of file blocks. The UNIX system call for mem-
ory mapping files is mmap(). The accompanying madvise() interface allows a
process to inform the operating systems of its intent to read the file sequentially.
We used the standard qsort() to sort transactions. The time taken to read and
sort transactions pales in comparison with the time taken by SETGEN, obviating the
need for a custom sort routine. Threading SETGEN and BUFFER would not help
because SETGEN is significantly slower.

Tries are written and read sequentially. They are operational when BUFFER is
being processed by SETGEN. At this time, the disk is idle. Further, the rate at which
tries are scanned (read/written) is much smaller than the rate at which sequential
disk I/O can be done. It is indeed possible to maintain TRIE on disk without any
loss in performance. This has two important advantages:

(a) The size of a trie is not limited by the size of main memory available. This
means that the algorithm can function even when the amount of main memory
available is quite small.

(b) Since most available memory can be devoted to BUFFER, we can work with tiny
values of ε. This is a big win.

Memory requirements for Heap are modest. Available main memory is con-
sumed primarily by BUFFER, assuming TRIEs are on disk. Our implementation
allows the user to specify the size of BUFFER.

218 G.S. Manku

On the whole, the algorithm has two unique features: there is no candidate gener-
ation phase, which is typical of Apriori-style algorithms. Further, the idea of using
compact disk-based tries is novel. It allows us to compute frequent itemsets under
low memory conditions. It also enables our algorithm to handle smaller values of
support threshold than previously possible.

Experimental evaluation over a variety of datasets is available in [6].

4 Applications and Related Work

Frequency counts and frequent itemsets arise in a variety of applications. We de-
scribe two of these below.

4.1 Iceberg Queries

The idea behind Iceberg Queries[4] is to identify aggregates in a GROUP BY of
a SQL query that exceed a user-specified threshold τ . A prototypical query on a
relation R(c1, c2, ..., ck, rest) with threshold τ is

SELECT c1, c2, ..., ck, COUNT(rest)
FROM R
GROUP BY c1, c2, ..., ck
HAVING COUNT(rest) ≥ τ

The parameter τ is equivalent to s|R| where s is a percentage and |R| is the size
of R. The frequent itemset algorithm developed in Sect. 3 runs in only one pass,
and out-performs the highly-tuned algorithm in [4] that uses repeated hashing over
multiple passes.

4.2 Network Flow Identification

Measurement and monitoring of network traffic is required for management of com-
plex Internet backbones. In this context, identifying flows in network traffic is an
important problem. A flow is defined as a sequence of transport layer (TCP/UDP)
packets that share the same source+destination addresses. Estan and Verghese [3]
recently proposed algorithms for identifying flows that exceed a certain threshold,
say 1 %. Their algorithms are a combination of repeated hashing and sampling,
similar to those by Fang et al. [4] for Iceberg Queries.

Frequent Itemset Mining over Data Streams 219

4.3 Algorithms for Sliding Windows

Algorithms for computing approximate frequency counts over sliding windows have
been developed by Arasu and Manku [2]. In a fixed-size sliding window, the size of
the window remains unchanged. In a variable-sized sliding window, at each time-
step, an adversary can either insert a new element, or delete the oldest element in
the window. When the size of the window is W , the space-bounds for a randomized
algorithm (based upon STICKY SAMPLING) are O(1

ε
log 1

εδ
) and O(1

ε
log 1

εδ
log εW)

for fixed-size and variable-size windows respectively. The corresponding bounds for
a deterministic algorithm (based upon MISRA–GRIES ALGORITHM) are O(1

ε
log2 1

ε
)

and O(1
ε

log2 1
ε

log εW), respectively. It would be interesting to see if any of these
algorithms can be adapted to compute ε-approximate frequent itemsets in a data
stream.

References

1. R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in Proc. of 20th Intl. Conf.
on Very Large Data Bases (1994), pp. 487–499

2. A. Arasu, G.S. Manku, Approximate counts and quantiles over sliding windows, in Proc. ACM
Symposium on Principles of Database Systems (2004)

3. C. Estan, G. Varghese, New directions in traffic measurement and accounting: focusing on the
elephants, ignoring the mice. ACM Trans. Comput. Syst. 21(3), 270–313 (2003)

4. M. Fang, N. Shivakumar, H. Garcia-Molina, R. Motwani, J. Ullman, Computing iceberg queries
efficiently, in Proc. of 24th Intl. Conf. on Very Large Data Bases (1998), pp. 299–310

5. R.M. Karp, C.H. Papadimitriou, S. Shenker, A simple algorithm for finding frequent elements
in streams and bags. ACM Trans. Database Syst. 28, 51–55 (2003)

6. G.S. Manku, R. Motwani, Approximate frequency counts over data streams, in Proc. 28th
VLDB (2002), pp. 356–357

7. J. Misra, D. Gries, Finding repeated elements. Sci. Comput. Program. 2(2), 143–152 (1982)

Temporal Dynamics of On-Line Information
Streams

Jon Kleinberg

1 Introduction

A number of recent computing applications involve information arriving contin-
uously over time in the form of a data stream, and this has led to new ways of
thinking about traditional problems in a variety of areas. In some cases, the rate and
overall volume of data in the stream may be so great that it cannot all be stored for
processing, and this leads to new requirements for efficiency and scalability. In other
cases, the quantities of information may still be manageable, but the data stream per-
spective takes what has generally been a static view of a problem and adds a strong
temporal dimension to it.

Our focus here is on some of the challenges that this latter issue raises in the
settings of text mining, on-line information, and information retrieval. Many infor-
mation sources have a stream-like structure, in which the way content arrives over
time carries an essential part of its meaning. News coverage is a basic example;
understanding the pattern of a developing news story requires considering not just
the content of the relevant articles but also how they evolve over time. Some of
the other basic corpora of interest in information retrieval—for example, scientific
papers and patents—show similar temporal evolution over time-scales that can last
years and decades. And the proliferation of on-line information sources and on-line
forms of communication has led to numerous other examples: e-mail, chat, discus-
sion boards, and weblogs (or “blogs”) all represent personal information streams
with intricate topic modulations over time.

This survey was written in 2004 and circulated on-line as a preprint prior to its appearance in this
volume.

J. Kleinberg (B)
Department of Computer Science, Cornell University, 4105B Upson Hall, Ithaca, NY 14853, USA
e-mail: kleinber@cs.cornell.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_11

221

mailto:kleinber@cs.cornell.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_11

222 J. Kleinberg

Indeed, all these information sources co-exist on-line—news, e-mail, discussion,
commentary, and the collective output of professional and research communities;
they form much of the raw material through which Internet users navigate and
search. They have also served to make the “time axis” of information increasingly
visible. One could argue that these developments have led to a shift in our working
metaphor for Internet and Web information, from a relatively static one, a “uni-
versal encyclopedia,” to a much more dynamic one, a current awareness medium
characterized by the complex development of topics over time-scales ranging from
minutes to years.

What are the right techniques for dealing with the temporal dynamics of informa-
tion streams? Some of the complexities inherent in such streams can be seen in the
paradigmatic examples of news and e-mail. Each provides a reader with a sequence
of documents exhibiting a braided and episodic character: braided, in the sense that
many parallel, topically coherent streams are merged and interwoven into the single
stream that the reader sees; and episodic, in the sense that topics generally grow
in intensity over a temporally coherent period, and then fade again. Despite these
twin sources of complexity, however, these information streams in their raw forms
lack any explicit organizing structure beyond the granularity of individual articles
or messages. Thus, a first step in working with such information streams is to de-
fine appropriate structures that abstract their intertwined topics, their multiple bursty
episodes, and their long-term trends.

In this survey we discuss a number of approaches that have been proposed in
recent years for working with the temporal properties of information streams. In
Sect. 2, we give an overview of some of the basic techniques; we begin with one of
the earliest systematic efforts on these problems, the Topic Detection and Tracking
initiative, and then go on to discuss three subsequent approaches—threshold-based
methods, state-based methods, and trend-based methods—that search for different
types of patterns in information streams. In Sect. 3, we discuss some recent applica-
tions of these techniques to the analysis of weblogs, queries to Web search engines,
and usage data at high-traffic Web sites. Finally, we conclude in Sect. 4 with some
thoughts on directions for further research.

Analyzing the temporal properties of these types of information streams is part of
the broader area of sequential pattern mining within the field of data mining, and can
be viewed as an application of time-series analysis, a fundamental area in statistics.
In order to keep the scope of this survey manageable, we have not attempted to cover
these more general topics; we refer the reader to the papers of Agrawal and Srikant
and of Mannila et al. [2, 28] for some of the foundational work on sequential pattern
mining, and to the text by Hand et al. [18] for further results in this area.

2 Techniques: Thresholds, State Transitions, and Trends

Topic Detection and Tracking

The Topic Detection and Tracking (TDT) research initiative represented perhaps
the first systematic effort to deal with the issues raised by text information streams.

Temporal Dynamics of On-Line Information Streams 223

Observing that it is tricky to pin down the underlying set of problems that need to
be solved, it sought to define a concrete set of tasks based on the general problem of
identifying coherent topics in a stream of news stories.

Allan et al. [5] and Papka [30] describe some of the initial considerations that
went into the formulation of these tasks. To begin with, the TDT researchers distin-
guished between the notion of a topic—a staple of information retrieval research—
and an event, the latter referring to a unique occurrence that happened at a specific
time. For example, “baseball” would be considered a topic, whereas “Game 6 of the
1975 World Series” would be considered an event. This kind of distinction is nat-
ural in the context of news coverage, although of course the conceptual boundary
between topics and events is quite flexible. Further refinements of these definitions
added other notions, such as activities.

Within this framework, one imagines a TDT system operating roughly as fol-
lows. Given a stream of news articles, the system should automatically recognize
those stories that discuss an event it has not seen before, and should begin tracking
each of these events so as to identify the sub-stream of further stories that discuss it.
Implicit in this description is a pair of basic tasks that can be evaluated separately:
new event detection, in which the goal is to recognize the first story to discuss an
event, and event tracking, in which the goal is to group stories that discuss the same
event. Other TDT tasks have been defined as well, including the segmentation of
a continuous stream of news text into distinct stories; this is a necessary prerequi-
site for many of the other tasks, and crucial for transcriptions of audio broadcasts,
where the boundaries between stories are not generally made explicit in a uniform
way. Finally, a distinction is made between the retrospective versions of these tasks,
in which the full corpus of news stories is available for analysis, and the on-line
versions, in which decisions must be made in real-time as news stories appear. One
challenge inherent in the detection and tracking tasks is that events can have very
different temporal “shapes”: an unexpected event like a natural disaster comes on
with a sharp spike, while an expected event like an election has a slow build-up and
potentially a quicker decay after the event is over.

A range of different techniques from information retrieval have been shown to
be effective on the TDT tasks, including clustering methods for event tracking that
trade off between content similarity and temporal locality. The volume edited by
Allan [4] covers much of the state of the art in this area. The general framework
developed for the TDT project has proved useful in a number of subsequent efforts
that have not directly used the TDT task descriptions. For example, recent work
on the Newsjunkie system [15] sought techniques for determining the novelty in
individual news stories, relative to previously seen stories concerned with the same
general topic or event; quantifying novelty in this sense can be viewed as a relaxation
of the task of new event detection.

Information Visualization

At roughly the same time as the TDT project, the information visualization commu-
nity also began investigating some of the issues inherent in text information streams

224 J. Kleinberg

[19, 29, 37]. The goal was to find visual metaphors by which users could navigate
large collections of documents with an explicit temporal dimension.

The ThemeRiver system [19] depicts a text collection that evolves over time, such
as a corpus of news stories, using a “river” metaphor: differently colored currents in
the river indicate different topics in the collection, and the currents vary in width to
indicate news stories that have a large volume of relevant articles at a particular point
in time. Note that this visualization approach nicely captures the view, discussed
above, of text information streams as a braided, episodic medium: the individual
“braids” appear in ThemeRiver as the colored currents, while the episodes stand out
as gradual or sudden widenings of a particular current.

Timelines and Threshold-Based Methods

Timelines are a common means of representing temporal data, appearing in com-
putational applications (see, e.g., [6, 31]) and familiar from more traditional print
media as well. Swan, Allan, and Jensen [33–35] considered the problem of creat-
ing timelines for document streams, again focusing on collections of news articles.
They framed the problem as a selection task: the construction of a timeline should
involve retrospectively identifying the small set of most significant episodes from a
large stream of documents, associating a descriptive tag with each one, and display-
ing these tagged episodes in their natural temporal order. Formalizing this notion
requires an implementable definition of episodes in a text stream, together with a
way of ranking episodes by significance.

Swan et al. base their definition of episodes on time-varying features in the text—
words, named entities, and noun features are all examples of possible features for
this purpose. Now, each feature has an average rate at which it appears in the cor-
pus; for a news stream, this would be the total number of occurrences of the feature
divided by the number of days represented in the corpus. An episode is then associ-
ated with a contiguous interval of time during which one of these features exceeds
its average rate by a specific threshold; Swan et al. determine this threshold on a
per-feature basis using a χ2 test, and group together consecutive days over which a
given feature exceeds its threshold. Thus, for example, if we were following news
articles early in a US Presidential election year, we might find that for a number
of days in a row, the word “Iowa” appears a significant factor more frequently than
it standardly does in the news, reflecting coverage of the Iowa caucuses. The most
significant episodes computed this way can then be included in the timeline, each
with a start and end time, and each associated with a specific word or phrase.

State-Based Methods

The number of occurrences of a given feature can be quite noisy, varying widely
from one day to the next even in the middle of an event in which the feature figures
prominently. Swan et al. observe that this poses difficulties in the construction of

Temporal Dynamics of On-Line Information Streams 225

intervals to represent episodes on a timeline; a feature being tracked may oscillate
above and below the threshold, turning something that intuitively seems like a single
long interval into a sequence of shorter ones, interrupted by the below-threshold
days. Thus, to continue our example from above, there may not be a single interval
associated with the word “Iowa” early in election coverage, but rather a set of short
ones separated by small gaps. This was also an observation in the development
of ThemeRiver, that Sundays and other days with lighter news coverage show up
as recurring “pinch points” in the representation of the stream. Swan and Allan
proposed heuristics to deal with this problem [34]; for example, one can merge two
intervals corresponding to the same feature if they are separated by only a single
day on which the feature was below threshold.

In [23], the author proposed a method for defining episodes in a stream of doc-
uments that deals with the underlying noise by explicitly positing a source model
for the words in the documents. The motivation comes from queueing theory, where
a bursty source of network traffic is often modeled as a probabilistic automaton: at
any given point in time, the automaton can be in one of several different states, the
rate at which traffic is generated is determined by this state, and transitions between
states are determined probabilistically [7, 13, 21].

In the case of documents, one can imagine each word to be a type of “traffic”
generated by its own source, modeled as an automaton. Some words are highly
“bursty” in the sense that their frequency spikes when a particular event is in the
news; in the probabilistic model, this corresponds to a contiguous interval of time
during which the automaton is in a state corresponding to a high rate of traffic. Such
word bursts are the intervals that correspond to discrete episodes in this model; one
can identify them using a Viterbi-style algorithm [32], taking the times at which
a given word occurs as input and computing the most likely sequence of states of
the automaton that is assumed to be generating it. Note the distinction with the
threshold-based methods described earlier: rather than associating episodes with
intervals when the observed rate of the word is consistently high, it associates them
with intervals in which the state of the underlying automaton has a high rate. Thus,
by modeling state transitions as relatively low-probability events, the bursts that are
computed by the algorithm tend to persist through periods of noise: remaining in a
single state through such a noisy period is viewed as more probable than performing
many transitions.

Moreover, an automaton with a large set of states corresponding to increasingly
rapid rates can expose the natural nested structure of word bursts: in the midst of an
elevated use of a particular term, the rate of use may increase further, producing a
“burst within a burst.” This nesting can in principle be iterated arbitrarily, yielding
a natural hierarchy. To continue our example of US presidential election coverage
in the news, one could imagine over a multi-year period seeing bursts for the word
“convention” in the summers of presidential election years, with two inner, stronger
bursts corresponding to the Democratic and Republican conventions.

A timeline for a document stream can be naturally constructed using a two-state
automaton associated with each word—a slower base state corresponds to the aver-
age rate of appearance of the word, while a burst state corresponds to a faster “burst

226 J. Kleinberg

rate.” Using just two states does not expose any nested or hierarchical structure, but
it makes it very simple to interpret the burst intervals. For each word, one computes
the intervals during which the automaton is in the burst state. Now, by definition, in
each such interval the automaton is more likely to be in the burst state than the base
state; we define the weight of the interval to be the factor by which the probability
of the burst state exceeds the probability of the base state over the course of the
interval. Essentially, the weight thus represents our “confidence” that the automaton
is indeed in the burst state. A timeline with a given number of items can simply be
defined to consist of the intervals with the highest weight.

This approach is considered in the context of several different kinds of document
streams in [23], including e-mail and titles of scientific papers. To give a sense for
the kind of timelines that can be constructed this way, Table 1 shows an example
from [23], the results of this method applied to the document stream consisting
of titles of all papers from the database conferences SIGMOD and VLDB, 1975–
2001. A two-state automaton is associated with each word, in which the burst state
has twice the rate of the base state, and the 30 burst intervals of highest weight
are depicted. Note that all words are included in the analysis, but, matching our
intuition, we see that stop-words do not occur on the list because they do not tend
to be very bursty. On the other hand, certain words appearing on the list do reflect
trends in language use rather than in technical content; for example, the bursts for
‘data,’ ‘base,’ and ‘bases’ in the years 1975–1981 in Table 1 arise in large part from
the fact that the term ‘database’ was written as two words in a significant number of
the paper titles during this period.

Table 1 is primarily just an illustrative example; Mane and Börner have used this
burst detection approach in a similar but much more extended way as part of a large-
scale scientometric analysis of topics in the Proceedings of the National Academy of
Sciences over the years 1982–2001 [27]. The bursty topics can be viewed as provid-
ing a small set of natural “entry points” into a much larger collection of documents;
for example, they provide natural starting points for issuing queries to the collection,
as well as the raw material for a clustering analysis of the content. As an instance of
the latter application, Mane and Börner computed a two-dimensional representation
of term co-occurrences for a collection of words and phrases selected to maximize a
combination of burstiness and frequency, and this representation was then evaluated
by domain experts.

Another observation based on the example in Table 1 is that the state-based model
has the effect of producing longer bursts than a corresponding use of thresholds;
although the burst state had twice the rate of the base state, most of the terms did not
maintain a rate of twice their overall average throughout the entire interval. Indeed,
only five terms in these paper titles appeared continuously at twice their average
rate for a period of more than three years. David Jensen makes the observation that
this kind of state-based smoothing effect may be more crucial for some kinds of text
streams than for others: using just the titles of papers introduces a lot of noise that
needs to be dealt with, while news articles tend to be written so that even readers
joining the coverage many days into the event will still be able to follow the context
[20].

Temporal Dynamics of On-Line Information Streams 227

Table 1 The 30 bursts of
highest weight using titles of
all papers from the database
conferences SIGMOD and
VLDB, 1975–2001

Word Interval of burst

data 1975 SIGMOD—1979 SIGMOD

base 1975 SIGMOD—1981 VLDB

application 1975 SIGMOD—1982 SIGMOD

bases 1975 SIGMOD—1982 VLDB

design 1975 SIGMOD—1985 VLDB

relational 1975 SIGMOD—1989 VLDB

model 1975 SIGMOD—1992 VLDB

large 1975 VLDB—1977 VLDB

schema 1975 VLDB—1980 VLDB

theory 1977 VLDB—1984 SIGMOD

distributed 1977 VLDB—1985 SIGMOD

data 1980 VLDB—1981 VLDB

statistical 1981 VLDB—1984 VLDB

database 1982 SIGMOD—1987 VLDB

nested 1984 VLDB—1991 VLDB

deductive 1985 VLDB—1994 VLDB

transaction 1987 SIGMOD—1992 SIGMOD

objects 1987 VLDB—1992 SIGMOD

object-oriented 1987 SIGMOD—1994 VLDB

parallel 1989 VLDB—1996 VLDB

object 1990 SIGMOD—1996 VLDB

mining 1995 VLDB—

server 1996 SIGMOD—2000 VLDB

sql 1996 VLDB—2000 VLDB

warehouse 1996 VLDB—

similarity 1997 SIGMOD—

approximate 1997 VLDB—

web 1998 SIGMOD—

indexing 1999 SIGMOD—

xml 1999 VLDB—

In a sense, one can view a state-based approach as defining a more general, “re-
laxed” notion of a threshold; the optimization criterion inherent in determining a
maximum-likelihood state sequence is implicitly determining how far above the
base rate, and for how long, the rate must be (in an amortized sense) in order for
the automaton to enter the burst state. Zhu and Shasha considered a more direct way
of generalizing the threshold approach [38]. For each possible length k, they allow
a user-defined threshold t (k); any interval of length k containing at least t (k) oc-
currences of the feature is declared to be a burst. Note that this means that a single

228 J. Kleinberg

feature can have overlapping burst intervals of different lengths. They then go on to
develop fast algorithms for enumerating all the bursts associated with a particular
feature.

Trend-Based Methods

Thus far we have been discussing models for episodes as regions of increased
density—words fluctuate in their patterns of occurrence, and we have been seek-
ing short intervals in which a word occurs an unusual number of times. Liebscher
and Belew propose a different structure of interest in a stream of documents: the
sets of words that exhibit the most pronounced rising and falling trends over the
entire length of the corpus [26]. For streams that are grouped over time into rela-
tively few bins—such as yearly tabulations of research papers like we considered
in Table 1—they apply linear regression to the set of frequencies of each term (first
averaging each value with its two neighbors). They also argue that less sparse data
would be amenable to more complex time-series analysis. Features with the most
positive slopes represent the strongest rising terms, while those with the most nega-
tive slopes represent the strongest falling terms.

In addition to summarizing long-range trends in the stream, Liebscher and Belew
also propose an application to temporal term weighting: if a user issues a query for
a particular term that rises significantly over time, early documents containing the
term can be weighted more heavily. The argument is that such early documents
may capture more fundamental aspects of a topic that later grew substantially in
popularity; without temporal weighting, it would be hard to favor such documents
in the results of a search. A similar approach can be applied to terms that decrease
significantly over time.

Two-Point Trends

A number of search engines have recently begun using the notion of rising and
falling terms to present snapshots of trends in search behavior; see, for example,
Google’s Zeitgeist and Ask’s Top Searches [8, 16]. The canonical approach for do-
ing this is to compare the frequency of each search term in a given week to its
frequencies in the previous week, and to find those for which the change has been
largest.

Of course, this definition depends critically on how we choose to measure
change. The tricky point here is that there are many natural ways to try quantify-
ing a trend involving just two data points—i.e., in the case of the search engine
application, the two data points are the frequencies of occurrence in the previous
week and the current week. To make this concrete, suppose we have text from two
different time periods, and we want to define the amount of change experienced by a
given word w. We define each occurrence of each word to be a token, and let n0 and
n1 denote the total number of token in the text from the first and second periods,

Temporal Dynamics of On-Line Information Streams 229

respectively. Let f0(w) and f1(w) denote the total number of occurrences of the
word w in the first and second periods, respectively, and define p0(w) = f0(w)/n0
and p1(w)= f1(w)/n1.

Now, two basic ways to rank words by the significance of their “falling” and “ris-
ing” patterns would be to measure absolute change or relative change. We define the
absolute change of w to be f1(w)−f0(w); we can also define the normalized abso-
lute change as f1(w)(n0/n1)− f0(w) to correct for the fact that the amount of text
from the first and second periods may differ significantly. Analogously, we define
the relative change of w to be f1(w)/f0(w) and the normalized relative change to be
(n0f1(w))/(n1f0(w)). Charikar et al. [10], motivated by the application to trend de-
tection at Google, discuss streaming algorithms for computing these types of change
measures on large datasets. While the exact methods for measuring change in search
frequency have not been made public, Ask Jeeves indicates that it ranks terms by a
variant of relative change, while Charikar et al. suggest that Google ranks terms by
a variant of absolute change.

If one thinks about it intuitively, absolute and relative change are each quite ex-
treme measures for this task, though in opposite directions. In order to be among
the most highly ranked for absolute change, a word must have a very high rate of
occurrence; this means that the lists of most significant risers and fallers will be
dominated by very common words, and even fluctuations in stop-word use can po-
tentially swamp more interesting trends. On the other hand, in order to be among
the most highly ranked for relative change, a word generally must occur extremely
rarely in one of the two periods and have a massive spike in the other; such trends
can often be artifacts of a particular transient pattern of usage. (As a degenerate case
of this latter issue, it is not clear how to deal with words that failed to occur in one
of the two periods.)

As an illustration of these issues, Table 2 shows the five most significant falling
and rising words from the text of weekly US Presidential radio addresses, with the
two periods consisting of the years 2002 and 2003. A ranking by normalized ab-
solute change mainly puts stop-words in the top few positions, for the reason sug-
gested above; mixed in with this are more topic-specific words that experienced
huge fluctuations, like “Iraq.” The ranking by relative change is harder to interpret,
but consists primarily of words that occurred very rarely in one year or the other.

Is there a principled way to interpolate between these two extremes, favoring
topic-specific words that experienced large changes and that, while relatively fre-
quent, were still not among the most overwhelmingly common words in the cor-
pus? Our proposal here is that the state-based models considered earlier provide a
very simple measure of change that performs such an interpolation. Recall that, in
ranking bursts produced by a two-state automaton, we used a weight function that
measured the probability of the burst relative to the probability of the automaton
having remained in its base state. For the present application, we can imagine per-
forming the following analogous calculation. Suppose that, after observing the first
period, we posit the following model for generating the words in the second period:
n1 tokens will be generated independently at random, with the j th token taking the
value w with probability p0(w). In other words, the observed word frequencies in

230 J. Kleinberg

Table 2 Most prominent
falling and rising words in
text of weekly US
Presidential radio addresses,
comparing 2002 to 2003

Normalized absolute change:

Falling words Rising words

to iraq

i are

president and

security iraqi

it of

Relative change:

Falling words Rising words

welfare aids

she rising

mexico instead

created showing

love government

Probabilistic generative model:

Falling words Rising words

homeland iraq

trade iraqi

security aids

senate seniors

president coalition

the first period are assumed to generate the tokens in the second period via a simple
probabilistic generative model.

Now, the significance of an increase in word w in the second period is based
simply on the probability that f1(w) tokens out of n1 would take the value w; given
the model just defined, this is equal to

(
n1

f1(w)

)
p0(w)f1(w)

(
1 − p0(w)

)n1−f1(w)
.

(Since this will typically be a very small quantity, we work with logarithms to per-
form the actual calculation.) By choosing the words with p1(w) > p0(w) for which
this probability is lowest, we obtain a list of the top rising terms; the analogous com-
putation produces a list of the top falling terms. The third part of Table 2 shows the
results of this computation on the same set of US Presidential radio addresses; while
we see some overlap with the previous two lists, the probabilistic generative model
arguably identifies words in a way that is largely free from the artifacts introduced
by the two simpler measures.

Of course, there are many other ways to interpolate between absolute and relative
change. The point is simply that a natural generative model can produce results
that are much cleaner than these cruder measures, and hence, without significantly

Temporal Dynamics of On-Line Information Streams 231

increasing the difficulty of the ranking computation, yield trend summaries of this
type that are potentially more refined.

3 Applications: Weblogs, Queries, and Usage Data

Weblogs

Personal home pages have been ubiquitous on the Web since its initial appearance;
they are the original example of spontaneous Web content creation on a large scale
by users who in many cases are not technically sophisticated. Weblogs (also re-
ferred to as blogs) can be viewed as a more recent step in the evolution of this style
of personal publishing, consisting generally of dated, journal-style entries with links
and commentary. Whereas a typical home page may be relatively static, a defining
feature of weblogs is this explicit temporal annotation and regular updating. A sig-
nificant sub-population of webloggers focus on news events, commenting on items
of interest that they feel are being ignored or misportrayed by traditional news or-
ganizations; in some cases, these weblogs have readerships of substantial size. As a
result, it is also natural to consider the space of weblogs as containing a stream of
news that parallels the mainstream news media, much more heterogeneous both in
focus and in authoring style.

All this makes it natural to apply the type of temporal analysis we have been
discussing to the information stream consisting of indexable weblog content. In one
of the first such applications to this domain, Dan Chan, motivated in part by the word
burst model of [23], implemented a word-burst tracker on his widely-used weblog
search site Daypop [11]. As we saw earlier with bursty topics from collections of
research papers [27], the Daypop application provides another basic example of the
way in which a list of bursty words can provide natural entry points into a corpus—
in this case to search for items of interest in current news and commentary. By
including word bursts computed both from weblog text and from headlines in the
mainstream news, the site allows one to identify both overlaps and differences in the
emphases of these two parallel media.

In a roughly concurrent study, Kumar et al. focused on a combined analysis
of weblog content and link structure [24]. Because so much of weblog discourse
takes place through reference to what other webloggers are reading and writing,
the temporal dynamics of the link structure conveys important information about
emerging topics and discussion. Kumar et al. work on the problem of identifying
subgraph bursts in this structure, consisting of a significant number of link appear-
ances among a small set of sites in a short period of time. They observe that this
poses greater computational challenges than the analogous search for bursty words:
whereas word bursts can be identified one word at a time, subgraph bursts need
a more global analysis, since they are not the result of activity at any one site in
isolation.

From a methodological point of view, one appealing feature of weblogs as a do-
main is the richness of the data; in principle, one can track the growth of a topic at an

232 J. Kleinberg

extremely fine-grained level, using both the detailed temporal annotations and the
links that webloggers use to indicate where they learned a piece of information. Adar
et al. [1] and Gruhl et al. [17] exploit this to determine not just whether a given topic
burst has occurred, but to some extent how and why it occurred. This involves mod-
eling the spread of the topic as a kind of epidemic on the link structure—identifying
the “seeds” of the topic, where it appeared earliest in time, and then tracing out the
process of contagion by which the topic spread from one weblog to another. Adar
et al. use this to define a ranking measure for weblogs, based on an estimate of their
ability to start such an epidemic process. Gruhl et al. attempt to learn parameters of
these epidemic processes, using an instance of the General Cascade Model for the
diffusion of information in social networks, proposed by Kempe et al. [22].

Search Engine Queries

The logs of queries made to a large search engine provide a rich domain for temporal
analysis; here the text stream consists not of documents but of millions of very
short query strings issued by search engine users. Earlier, we discussed a simple
use of query logs to identify the most prominently rising and falling query terms
from one week to the next. We now discuss two recent pieces of work that perform
temporal analysis of such logs for the purpose of enhancing and improving search
applications.

Vlachos et al. [36] study query logs from the MSN search engine, providing
techniques to identify different types of temporal patterns in them. For example, the
frequency of the query “cinema” has a peak every weekend, while the frequency
of the query “Easter” build to a single peak each spring and then drops abruptly.
Vlachos et al. apply a threshold-based technique to a moving average of the daily
frequencies for a given query in order to find the burst periods for the query, and they
propose a “query-by-burst” technique that can identify queries with burst periods
that closely overlap in time. Using Fourier analysis, they also build a representation
of the temporal periodicities in a query’s rate over time, and then apply time-series
matching techniques to identify other queries with very similar temporal patterns—
such similarity can be taken as a form of evidence in the identification of related
queries.

Diaz and Jones [12] also build temporal profiles, but they use the timestamps
of the documents returned in response to a query, rather than the timestamps of
the invocations of the query by users. Thus, in a corpus of news articles, a query
about a specific natural disaster will tend to produce articles that are tightly grouped
around a single date. Such temporal profiles become features of a query that can
be integrated into a probabilistic model of document relevance; experiments in [12]
show that the use of such features can lead to performance improvements.

Usage Data

On-line activity involves user behavior over short time-scales—browsing, search-
ing, and communicating—as well as the creation of less ephemeral written content,

Temporal Dynamics of On-Line Information Streams 233

including the text of pages and files on the Web. On-line information streams en-
code information about both these kinds of data, and the division between the two
is far from clear. While research paper archives and news streams clearly represent
written content, the written material in weblogs is quite closely tied to the usage
patterns of its authors—their recent history of reading and communication. The text
that is posted on forums and discussion boards also reflects the dynamics of visitors
to sites on a rapid time-scale; and search engine query logs also occupy a kind of
middle ground, consisting of text encoding the behavior of searchers at the site.

To conclude our survey of different application areas, we consider an on-line
information stream that encodes a basic form of usage data—the sequence of down-
loads performed by users at a high-traffic Web site. Many active Web sites are or-
ganized around a set of items that are available for purchase or download, using a
fairly consistent high-level metaphor: at an e-commerce site like amazon.com, or an
archive of research papers like arxiv.org, there is navigational structure at the front,
followed by a large set of “description pages, one associated with each item that is
available. Each description page provides the option to acquire the corresponding
item.

In joint work with Jon Aizen, Dan Huttenlocher, and Tony Novak [3], the author
studied the dynamics of download behavior at one such site, the Internet Archive,
which maintains a publicly accessible media collection consisting of old films, live
concerts, free on-line books, and other items available for download. The basic def-
inition in [3] is the “batting average” (henceforth, the BA) of an on-line item: the
number of acquisitions divided by the number of visits to the description page. Thus
a high BA is a reflection of item quality, indicating that a large fraction of users who
viewed the item’s description chose to download it. Note that this is different from
a simple “hit counter” which measures the raw number of item visits or downloads;
the BA addresses the more subtle notion of users’ reactions to the item description.

Suppose we want to measure fluctuations in the BA over time, looking for evi-
dence of bursty behavior in which the BA of an item changes suddenly; in order to
do this it is necessary to define a meaningful notion of the “instantaneous BA” of an
item as a function of time. Such an instantaneous BA must be synthesized from the
0–1-valued sequence of user download decisions: each entry in the usage log simply
reflects whether a particular chose to download the item or not. In [3], two different
methods are considered for determining an instantaneous BA from this sequence.
First, one can apply Gaussian smoothing, computing an average of each point in the
download sequence with its neighbors, weighted by coefficients that decay accord-
ing to a Gaussian function. Alternately, one can treat the download decisions as the
0–1-valued outputs of a Hidden Markov model (HMM), with hidden states repre-
senting underlying download probabilities; the maximum-likelihood state sequence
can then be taken to represent the item’s BA at each point in time. A large number of
states was used in the HMM computation, so as to densely sample the set of possi-
ble probabilities; in order to be able to handle long download sequences efficiently,
this required the use of an improved maximum-likelihood algorithm due to Felzen-
szwalb et al. [14] that took advantage of the structure of the state transitions so as to
run in time linear in the number of states, rather than quadratic. The HMM approach

http://amazon.com
http://arxiv.org

234 J. Kleinberg

Fig. 1 Tracking the batting average of a downloadable movie at the Internet Archive as a function
of time. The upper plot shows smoothing by averaging with a Gaussian sliding window; the lower
plot shows the maximum-likelihood state sequence in a Hidden Markov model

produces sharp, discrete changes in the BA while the Gaussian smoothing approach
yields more gradual changes; Fig. 1 illustrates this, showing the BA as a function of
time for each of these approaches applied to the same downloadable movie at the
Internet Archive. One can see how the sharp steps in the HMM plot approximately
line up with the more gradual curves in the Gaussian-smoothed plot.

Temporal Dynamics of On-Line Information Streams 235

Are these sharp steps useful in the context of the underlying application? In [3],
it is argued that the discrete breakpoints in the BA produced by the HMM in fact
capture a crucial feature of popularity dynamics at sites like the Internet Archive.
Specifically, the download properties of an item, as reflected in measures like the
BA, often change abruptly rather than gradually, due to the appearance of an external
link from some other high-traffic site—which suddenly drives in a new mix of users
with new interests—or due to on-site highlighting—for example, featuring the item
on a top-level page at the Internet Archive—which also raises the item’s visibility.
The addition of links or promotional text happens at a discrete point in time, and
experiments in [3] show that state transitions in the HMM align closely with the
times when these events happen. To continue with the plot in Fig. 1, for example,
the first two transitions in the HMM plot align with on-site highlighting performed
by the Internet Archive, the next two sharp drops correspond to the appearance of
links to the item’s description from high-traffic weblogs, and the final three drops
corresponds to technical problems on the Internet Archive site. Examples like this,
as well as the more systematic evaluation performed in [3], suggest how accurate
tracking of changes to an item’s BA can help in understanding the set of events both
on and off the site that affect the item’s popularity.

4 Conclusions

In studying the temporal dynamics of on-line information streams, an issue that
arises in many contexts is the problem of alignment: we want to align the “virtual”
events that we find in the stream with a parallel set of events taking place outside
the stream, in the “real world.” One sees this, for example, in aligning bursts in a
news stream or weblog index with current events; or in aligning interesting temporal
dynamics in search engine query terms with seasonal patterns, upcoming holidays,
names in the news, or any of a range of other factors that drive search behavior. It
would be interesting to formalize this alignment problem more fully, so that it can be
used both to refine the analysis of these streams and to better evaluate the analyses
that are performed. We have discussed some concrete examples of steps in this di-
rection above; these include the use of time-series matching techniques to compare
temporal profiles of different search engine queries [36], and the alignment of item
popularity with on-site highlighting and off-site referrers at the Internet Archive.
Another interesting piece of work in this direction is that of Lavrenko et al. [25],
which aligns financial news stories with the behavior of financial markets. They and
others make the point that the “virtual events” in the stream may not only follow as
consequences of real-world events, but may also influence them—as when an unex-
pected news story about a company leads to a measurable effect on the company’s
stock price.

Relatively little work has been done on designing algorithms for the problems
considered here in a “pure” streaming model of computation, where the data must
be produced in one or a small number of passes with limited storage. For some of

236 J. Kleinberg

the applications, it is not clear that the data requirements are substantial enough
that the use of such a streaming model will be necessary, but for other applications,
including the analysis of query logs and clickstreams, there is a clear opportunity for
algorithms developed in this style. The work of Ben-David et al. [9] and Charikar et
al. [10] take steps in this direction, considering different ways of measuring change
for streaming data.

Another direction that would be interesting to consider further is the problem of
predicting bursts and other temporal patterns, when the data must be processed in
real-time rather than through retrospective analysis. How early into the emergence
of a bursty news topic, for example, can one detect it and begin forming estimates
of its basic shape? This is clearly related to the problem of general time-series pre-
diction, though there is the opportunity here to use a significant amount of domain
knowledge based on the content of the text information streams being studied. Gath-
ering domain knowledge involves developing a more refined understanding of the
types of temporal patterns that regularly occur in these kinds of information streams.
We know, for example, that the temporal profiles of some search engine queries are
periodic (corresponding to weekends or annual holidays, for example) while others
look like isolated spikes; we know that some news stories build up to an expected
event while others appear suddenly in response to an unexpected one; but we do not
have a careful classification or taxonomy of the full range of such patterns. Clearly,
this would be very useful in helping to recognize temporal patterns as they arise in
on-line content.

Finally, it is worth noting that as the applications of these techniques focus not
just on news stories and professionally published documents but on weblogs, e-mail,
search engine queries, and browsing histories, they move into domains that are in-
creasingly about individual behavior. Many of these large data streams are personal;
their subject is us. And as we continue to develop applications that extract detailed
information from these streams—media players that have a more accurate picture of
your changing tastes in music than you do, or e-mail managers that encode detailed
awareness of the set of people you’ve fallen out of touch with—we will ultimately
have to deal not just with technical questions but with yet another dimension of the
way in which information-aware devices interact with our daily lives.

References

1. E. Adar, L. Zhang, L.A. Adamic, R.M. Lukose, Implicit structure and the dynamics of
blogspace. Workshop on the weblogging ecosystem, at the international WWW conference
(2004)

2. R. Agrawal, R. Srikant, Mining sequential patterns, in Proc. Intl. Conf. on Data Engineering
(1995)

3. J. Aizen, D. Huttenlocher, J. Kleinberg, A. Novak, Traffic-based feedback on the web. Proc.
Natl. Acad. Sci. 101(Suppl. 1), 5254–5260 (2004)

4. J. Allan (ed.), Topic Detection and Tracking: Event Based Information Retrieval (Kluwer Aca-
demic, Norwell, 2002)

Temporal Dynamics of On-Line Information Streams 237

5. J. Allan, J.G. Carbonell, G. Doddington, J. Yamron, Y. Yang, Topic detection and tracking
pilot study: final report, in Proc. DARPA Broadcast News Transcription and Understanding
Workshop (1998)

6. R. Allen, Timelines as information system interfaces, in Proc. International Symposium on
Digital Libraries (1995)

7. D. Anick, D. Mitra, M. Sondhi, Stochastic theory of a data handling system with multiple
sources. Bell Syst. Tech. J. 61 (1982)

8. J. Ask, Top searches at http://static.wc.ask.com/docs/about/jeevesiq.html?o=0
9. S. Ben-David, J. Gehrke, D. Kifer, Detecting change in data streams, in Proc. 30th Intl. Con-

ference on Very Large Databases (VLDB) (2004)
10. M. Charikar, K. Chen, M. Farach-Colton, Finding frequent items in data streams, in Proc. Intl.

Colloq. on Automata Languages and Programming (2002)
11. Daypop. http://www.daypop.com
12. F. Diaz, R. Jones, Using temporal profiles of queries for precision prediction, in Proc. SIGIR

Intl. Conf. on Information Retrieval (2004)
13. A. Elwalid, D. Mitra, Effective bandwidth of general Markovian traffic sources and admission

control of high speed networks. IEEE Trans. Netw. 1 (1993)
14. P. Felzenszwalb, D. Huttenlocher, J. Kleinberg, Fast algorithms for large-state-space HMMs

with applications to web usage analysis, in Advances in Neural Information Processing Sys-
tems (NIPS), vol. 16 (2003)

15. E. Gabrilovich, S. Dumais, E. Horvitz, NewsJunkie: providing personalized newsfeeds via
analysis of information novelty, in Proceedings of the Thirteenth International World Wide
Web Conference (2004)

16. Google. Zeitgeist at http://www.google.com/press/zeitgeist.html
17. D. Gruhl, R. Guha, D. Liben-Nowell, A. Tomkins, Information diffusion through blogspace,

in Proc. International WWW Conference (2004)
18. D. Hand, H. Mannila, P. Smyth, Principles of Data Mining (MIT Press, Cambridge, 2001)
19. S. Havre, B. Hetzler, L. Nowell, ThemeRiver: visualizing theme changes over time, in Proc.

IEEE Symposium on Information Visualization (2000)
20. D. Jensen, Personal communication (2002)
21. F.P. Kelly, Notes on effective bandwidths, in Stochastic Networks: Theory and Applications,

ed. by F.P. Kelly, S. Zachary, I. Ziedins (Oxford University Press, London, 1996)
22. D. Kempe, J. Kleinberg, E. Tardos, Maximizing the spread of influence through a social net-

work, in Proc. 9th ACM SIGKDD Intl. Conf. on Knowledge Discovery and Data Mining
(2003)

23. J. Kleinberg, Bursty and hierarchical structure in streams, in Proc. 8th ACM SIGKDD Intl.
Conf. on Knowledge Discovery and Data Mining (2002)

24. R. Kumar, J. Novak, P. Raghavan, A. Tomkins, On the bursty evolution of blogspace, in Proc.
International WWW Conference (2003)

25. V. Lavrenko, M. Schmill, D. Lawrie, P. Ogilvie, D. Jensen, J. Allan, Mining of concurrent text
and time series. KDD-2000 workshop on text mining (2000)

26. R. Liebscher, R. Belew, Lexical dynamics and conceptual change: analyses and implications
for information retrieval. Cogn. Sci. (Online) 1 (2003)

27. K. Mane, K. Börner, Mapping topics and topic bursts in PNAS. Proc. Natl. Acad. Sci.
101(Suppl. 1), 5287–5290 (2004)

28. H. Mannila, H. Toivonen, A.I. Verkamo, Discovering frequent episodes in sequences, in Proc.
Intl. Conf. on Knowledge Discovery and Data Mining (1995)

29. N. Miller, P. Wong, M. Brewster, H. Foote, Topic islands: a wavelet-based text visualization
system, in Proc. IEEE Visualization (1998)

30. R. Papka, On-line new event detection, clustering, and tracking. PhD thesis, Univ. Mass.
Amherst (1999)

31. C. Plaisant, B. Milash, A. Rose, S. Widoff, B. Shneiderman, LifeLines: visualizing personal
histories, in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(1996)

http://static.wc.ask.com/docs/about/jeevesiq.html?o=0
http://www.daypop.com
http://www.google.com/press/zeitgeist.html

238 J. Kleinberg

32. L. Rabiner, A tutorial on hidden Markov models and selected applications in speech recogni-
tion. Proc. IEEE 77 (1989)

33. R. Swan, J. Allan, Extracting significant time-varying features from text, in Proc. 8th Intl.
Conf. on Information Knowledge Management (1999)

34. R. Swan, J. Allan, Automatic generation of overview timelines, in Proc. SIGIR Intl. Conf. on
Information Retrieval (2000)

35. R. Swan, D. Jensen, TimeMines: constructing timelines with statistical models of word usage.
KDD-2000 Workshop on Text Mining (2000)

36. M. Vlachos, C. Meek, Z. Vagena, D. Gunopulos, Identifying similarities, periodicities and
bursts for online search queries, in Proc. ACM SIGMOD International Conference on Man-
agement of Data (2004)

37. P. Wong, W. Cowley, H. Foote, E. Jurrus, J. Thomas, Visualizing sequential patterns for text
mining, in Proc. IEEE Information Visualization (2000)

38. Y. Zhu, D. Shasha, Efficient elastic burst detection in data streams, in Proc. ACM SIGKDD
Intl. Conf. on Knowledge Discovery and Data Mining (2003)

Part III
Advanced Topics

Sketch-Based Multi-Query Processing
over Data Streams

Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi

We consider the problem of approximately answering multiple general aggregate
SQL queries over continuous data streams with limited memory. Our method ex-
tends the randomizing techniques of Alon et al. [2] that compute small “sketch”
summaries of the streams that can then be used to provide approximate answers to
aggregate queries with provable guarantees on the approximation error. By intelli-
gently sharing the “sketches” among multiple queries, the memory required can be
reduced. We provide necessary and sufficient conditions for the sketch sharing to
result in correct estimation and address optimization problems that arise. We also
demonstrate how existing statistical information on the base data (e.g., histograms)
can be used in the proposed framework to improve the quality of the approximation
provided by our algorithms. The key idea is to intelligently partition the domain of
the underlying attribute(s) and, thus, decompose the sketching problem in a way that
provably tightens our guarantees.

A. Dobra (B)
Department of Computer Science, University of Florida, Gainesville FL, USA
e-mail: adobra@cise.ufl.edu

M. Garofalakis
School of Electrical and Computer Engineering, Technical University of Crete,
University Campus—Kounoupidiana, Chania 73100, Greece
e-mail: minos@softnet.tuc.gr

J. Gehrke
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399, USA
e-mail: johannes@microsoft.com

R. Rastogi
Amazon India, Brigade Gateway, Malleshwaram (W), Bangalore 560055, India
e-mail: rastogi@amazon.com

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_12

241

mailto:adobra@cise.ufl.edu
mailto:minos@softnet.tuc.gr
mailto:johannes@microsoft.com
mailto:rastogi@amazon.com
http://dx.doi.org/10.1007/978-3-540-28608-0_12

242 A. Dobra et al.

1 Introduction

As apparent from the developments in the previous chapters, the strong incentive
behind data-stream computation has given rise to several (theoretical and practi-
cal) studies of on-line or one-pass algorithms with limited memory requirements
for different problems; examples include quantile and order-statistics computa-
tion [15, 20], estimating frequency moments and join sizes [2, 3], data clustering
and decision-tree construction [10, 17], estimating correlated aggregates [12], and
computing one-dimensional (i.e., single-attribute) histograms and Haar wavelet de-
compositions [14, 16]. Other related studies have proposed techniques for incremen-
tally maintaining equi-depth histograms [13] and Haar wavelets [21], maintaining
samples and simple statistics over sliding windows [7], as well as general, high-level
architectures for stream database systems [4].

None of the earlier research efforts has addressed the general problem of process-
ing general, possibly multi-join, aggregate queries over continuous data streams. On
the other hand, efficient approximate multi-join processing has received consider-
able attention in the context of approximate query answering, a very active area of
database research in recent years [1, 6, 11, 18, 19, 24]. The vast majority of exist-
ing proposals, however, rely on the assumption of a static data set which enables
either several passes over the data to construct effective, multi-dimensional data
synopses (e.g., histograms [19] and Haar wavelets [6, 24]) or intelligent strategies
for randomizing the access pattern of the relevant data items [18]. When dealing
with continuous data streams, it is crucial that the synopsis structure(s) are con-
structed directly on the stream, that is, in one pass over the data in the fixed order of
arrival; this requirement renders conventional approximate query processing tools
inapplicable in a data-stream setting. (Note that, even though random-sample data
summaries can be easily constructed in a single pass [23], it is well known that such
summaries typically give very poor result estimates for queries involving one or
more joins [1, 2, 6]1).

In this chapter, we tackle the hard technical problems involved in the approximate
processing of complex (possibly multi-join) aggregate decision-support queries over
continuous data streams with limited memory. Our approach is based on randomiz-
ing techniques that compute small, pseudo-random sketch summaries of the data as
it is streaming by. The basic sketching technique was originally introduced for on-
line self-join size estimation by Alon, Matias, and Szegedy in their seminal paper [3]
and, as we demonstrate in our work, can be generalized to provide approximate
answers to complex, multi-join, aggregate SQL queries over streams with explicit
and tunable guarantees on the approximation error. We should point out that the
error-bound derivation for multi-join queries is non-trivial and requires that certain
acyclicity restrictions be imposed on the query’s join graph.

Usually, in a realistic application, multiple queries need to be processed simulta-
neously over a collection of data-streams. In this chapter, we also address the prob-
lem of efficiently sharing and allocating memory for the concurrent queries—we

1The sampling-based join synopses of [1] provide a solution to this problem but only for the special
case of static, foreign-key joins.

Sketch-Based Multi-Query Processing over Data Streams 243

call our technique sketch sharing. We provide necessary and sufficient conditions for
multi-query sketch sharing that guarantee correctness of the resulting sketch-based
estimators. Since the problem of finding the optimal sketch sharing and memory al-
location turns out to be NP-hard, we provide a greedy algorithm to find reasonably
good solutions.

Another important practical concern that arises in the multi-join context is that
the quality of the approximation may degrade as the variance of our randomized
sketch synopses increases in an explosive manner with the number of joins involved
in the query. To this end, we propose novel sketch-partitioning techniques that take
advantage of existing approximate statistical information on the stream (e.g., his-
tograms built on archived data) to decompose the sketching problem in a way that
provably tightens our estimation guarantees.

2 Answering a Single Multi-Join Query

We begin by describing our sketch-based techniques to approximate the result of
a single multi-join aggregate SQL query over a collection of streaming relations
R1, . . . ,Rr . More specifically, we focus on approximating a multi-join stream query
Q of the form: “SELECT COUNT FROM R1,R2, . . . ,Rr WHERE E”, where E rep-
resents the conjunction of n equi-join constraints of the form Ri.Aj = Rk.Al (Ri.Aj

denotes the j th attribute of relation Ri , and we use dom(Ri.Aj) to denote its do-
main2). The extension to other aggregate functions, e.g., SUM, is fairly straightfor-
ward [9]; furthermore, note that dealing with single-relation selections is similarly
straightforward (simply filter out the tuples that fail the selection predicate from the
relational stream).

Our development also assumes that each attribute Ri.Aj appears in E at most
once; this requirement can be easily achieved by simply renaming repeating at-
tributes in the query. In what follows, we describe the key ideas and results based
on the join-graph model of the input query Q, since this will allow for a smoother
transition to the multi-query case (Sect. 3).

Given stream query Q, we define the join graph of Q (denoted by J (Q)), as
follows. There is a distinct vertex v in J (Q) for each stream Ri referenced in Q

(we use R(v) to denote the relation associated with vertex v). For each equality
constraint Ri.Aj = Rk.Al in E , we add a distinct undirected edge e = 〈v,w〉 to
J (Q), where R(v) = Ri and R(w) = Rk ; we also label this edge with the triple
〈Ri.Aj ,Rk.Al,Q〉 that specifies the attributes in the corresponding equality con-
straint and the enclosing query Q (the query label is used in the multi-query setting).
Given an edge e = 〈v,w〉 with label 〈Ri.Aj ,Rk.Al,Q〉, the three components of e’s
label triple can be obtained as Av(e), Aw(e) and Q(e). (Clearly, by the definition
of equi-joins, dom(Av(e)) = dom(Aw(e)).) Note that there may be multiple edges

2Without loss of generality, we assume that each attribute domain dom(A) is indexed by the set of
integers {1, . . . , |dom(A)|}, where |dom(A)| denotes the size of the domain.

244 A. Dobra et al.

Fig. 1 Example query join
graph

between a pair of vertices in the join graph, but each edge has its own distinct label
triple. Finally, for a vertex v in J (Q), we denote the attributes of R(v) that appear in
the input query (or, queries) as A(v); thus, A(v)= {Av(e) : edge e is incident on v}.

The result of Q is the number of tuples in the cross-product of R1, . . . ,Rr that
satisfy the equality constraints in E over the join attributes. Similar to the basic
sketching method [2, 3], our algorithm constructs an unbiased, bounded-variance
probabilistic estimate XQ for Q using atomic sketches built on the vertices of the
join graph J (Q). More specifically, for each edge e = 〈v,w〉 in J (Q), our algo-
rithm defines a family of four-wise independent random variables ξe = {ξe

i : i =
1, . . . , |dom(Av(e))|}, where each ξe

i ∈ {−1,+1}. The key here is that the equi-
join attribute pair Av(e), Aw(e) associated with edge e shares the same ξ family;
on the other hand, distinct edges of J (Q) use independently-generated ξ families
(using mutually independent random seeds). The atomic sketch Xv for each ver-
tex v in J (Q) is built as follows. Let e1, . . . , ek be the edges incident on v and,
for i1 ∈ dom(Av(e1)), . . . , ik ∈ dom(Av(ek)), let fv(i1, . . . , ik) denote the number
of tuples in R(v) that match values i1, . . . , ik in their join attributes. More for-
mally, fv(i1, . . . , ik) is the number of tuples t ∈ R(v) such that t[Av(ej)] = ij ,
for 1 ≤ j ≤ k (t[A] denotes the value of attribute A in tuple t). Then, the atomic
sketch at v is Xv = ∑

i1∈dom(Av(e1))
· · ·∑ik∈dom(Av(ek))

fv(i1, . . . , ik)
∏k

j=1 ξ
ej

ij
. Fi-

nally, the estimate for Q is defined as XQ = ∏
v Xv (that is, the product of the

atomic sketches for all vertices in J (Q)). Note that each atomic sketch Xv is again
a randomized linear projection that can be efficiently computed as tuples of R(v)

are streaming in; more specifically, Xv is initialized to 0 and, for each tuple t in the
R(v) stream, the quantity

∏k
j=1 ξ

ej

t[Av(ej)] ∈ {−1,+1} is added to Xv .

Example 1 Consider query Q = SELECT COUNT FROM R1,R2,R3 WHERE
R1.A1 = R2.A1 AND R2.A2 = R3.A2. The join graph J (Q) is depicted in
Fig. 1, with vertices v1, v2, and v3 corresponding to streams R1, R2, and R3,
respectively. Similarly, edges e1 and e2 correspond to the equi-join constraints
R1.A1 = R2.A1 and R2.A2 = R3.A2, respectively. (Just to illustrate our notation,
R(v1) = R1, Av2(e1) = R2.A1 and A(v2) = {R2.A1,R2.A2}.) The sketch con-
struction defines two families of four-wise independent random families (one for
each edge): {ξe1

i } and {ξe2
j }. The three atomic sketches Xv1 , Xv2 , and Xv3 (one for

each vertex) are defined as: Xv1 =
∑

i∈dom(R1.A1)
fv1(i)ξ

e1
i , Xv2 =

∑
i∈dom(R2.A1)∑

j∈dom(R2.A2)
fv2(i, j)ξ

e1
i ξ

e2
j , and Xv3 =

∑
j∈dom(R3.A2)

fv3(j)ξ
e2
j . The value of

random variable XQ=Xv1Xv2Xv3 gives the sketching estimate for the result of Q.

Our analysis in [9] showed that the random variable XQ constructed above
is an unbiased estimator for Q, and demonstrates the following theorem which
generalizes the earlier result of Alon et al. [2] to multi-join queries. (SJv =∑

i1∈dom(Av(e1))
· · ·∑ik∈dom(Av(ek))

fv(i1, . . . , ik)
2 is the self-join size of R(v).)

Sketch-Based Multi-Query Processing over Data Streams 245

Theorem 1 ([9]) Let Q be a COUNT query with n equi-join predicates such that
J (Q) contains no cycles of length > 2. Then, E[XQ] = Q and using sketching

space of O(
Var[XQ]·log(1/δ)

Q2·ε2), it is possible to approximate Q to within a relative

error of ε with probability at least 1 − δ, where Var[XQ] ≤ 22n
∏

v SJv .

3 Answering Multiple Join Queries: Sketch Sharing

We next turn our attention to sketch-based processing of multiple aggregate SQL
queries over streams. We introduce the basic idea of sketch sharing and demonstrate
how it can improve the effectiveness of the available sketching space and the qual-
ity of the resulting approximate answers. We also characterize the class of correct
sketch-sharing configurations and formulate the optimization problem of identify-
ing an effective sketch-sharing plan for a given query workload. We finally propose
a greedy heuristic for computing good sketch-sharing configurations with minimal
space overhead.

3.1 Sketch Sharing: Basic Concept

Consider the problem of using sketch synopses for the effective processing of a
query workload Q= {Q1, . . . ,Qq} comprising multiple (multi-join) COUNT aggre-
gate queries. As in the previous section, we focus on COUNT since the extension to
other aggregate functions is relatively straightforward; we also assume an attribute-
renaming step that ensures that each stream attribute is referenced only once in
each of the Qi ’s (of course, the same attribute can be used multiple times across
the queries in Q). Finally, as before, we do not consider single-relation selections,
since they can be trivially incorporated in the model by using the selection predi-
cates to define filters for each stream. The sketching of each relation is performed
using only the tuples that pass the filter; this is equivalent to introducing virtual rela-
tions/streams that are the result of the filtering process and formulating the queries
with respect to these relations. This could potentially increase the number of re-
lations and reduce the number of opportunities to share sketches (as described in
this section), but would also create opportunities similar to the ones investigated
by traditional MQO (e.g., constructing sketches for common filter sub-expressions).
Here, we focus on the novel problem of sharing sketches and we do not investigate
further how such techniques can be used for the case where selection predicates are
allowed. As will become apparent in this section, sketch sharing is very different
from common sub-expression sharing; traditional MQO techniques do not apply for
this problem.

An obvious solution to our multi-query processing problem is to build dis-
joint join graphs J (Qi) for each query Qi ∈Q, and construct independent atomic
sketches for the vertices of each J (Qi). The atomic sketches for each vertex of

246 A. Dobra et al.

Fig. 2 Example workload
with sketch-sharing potential

J (Qi) can then be combined to compute an approximate answer for Qi as de-
scribed in Sect. 2. A key drawback of such a naive solution is that it ignores the
fact that a relation Ri may appear in multiple queries in Q. Thus, it should be possi-
ble to reduce the overall space requirements by sharing atomic-sketch computations
among the vertices for stream Ri in the join graphs for the queries in our workload.
We illustrate this in the following example.

Example 2 Consider queries Q1 = SELECT COUNT FROM R1,R2,R3 WHERE
R1.A1 = R2.A1 AND R2.A2 = R3.A2 and Q2 = SELECT COUNT FROM R1,R3
WHERE R1.A1 = R3.A2. The naive processing algorithm described above would
maintain two disjoint join graphs (Fig. 2) and, to compute a single pair (XQ1,XQ2)

of sketch-based estimates, it would use three families of random variables (ξe1 , ξe2 ,
and ξe3), and a total of five atomic sketches (Xvk

, k = 1, . . . ,5).
Instead, suppose that we decide to re-use the atomic sketch Xv1 for v1 also

for v4, both of which essentially correspond to the same attribute of the same stream
(R1.A1). Since for each i ∈ dom(R1.A1), fv4(i) = fv1(i), we get Xv4 = Xv1 =∑

i∈dom(R1.A1)
fv4(i)ξ

e1
i . Of course, in order to correctly compute a probabilistic

estimate of Q2, we also need to use the same family ξe1 in the computation of Xv5 ;
that is, Xv5 = ∑

i∈dom(R1.A1)
fv5(i)ξ

e1
i . It is easy to see that both final estimates

XQ1 = Xv1Xv2Xv3 and XQ1 = Xv1Xv5 satisfy all the premises of the sketch-based
estimation results in [9]. Thus, by simply sharing the atomic sketches for v1 and v4,
we have reduced the total number of random families used in our multi-query pro-
cessing algorithm to two (ξe1 and ξe2) and the total number of atomic sketches
maintained to four.

Let J (Q) denote the collection of all join graphs in workload Q, i.e., all J (Qi)

for Qi ∈Q. Sharing sketches between the vertices of J (Q) can be seen as a trans-
formation of J (Q) that essentially coalesces vertices belonging to different join
graphs in J (Q). (We also use J (Q) to denote the transformed multi-query join
graph.) Of course, as shown in Example 2, vertices v ∈ J (Qi) and w ∈ J (Qj)

can be coalesced in this manner only if R(v) = R(w) (i.e., they correspond to the
same data stream) and A(v) = A(w) (i.e., both Qi and Qj use exactly the same
attributes of that stream). Such vertex coalescing implies that a vertex v in J (Q)

can have edges from multiple different queries incident on it; we denote the set of
all these queries as Q(v), i.e., Q(v) = {Q(e) : edge e is incident on v}. Figure 3(a)
pictorially depicts the coalescing of vertices v1 and v4 as discussed in Example 2.
Note that, by our coalescing rule, for each vertex v, all queries in Q(v) are guaran-
teed to use exactly the same set of attributes of R(v), namely A(v); furthermore, by
our attribute-renaming step, each query in Q(v) uses each attribute in A(v) exactly

Sketch-Based Multi-Query Processing over Data Streams 247

Fig. 3 Multi-query join graphs J (Q) for Example 2

once. This makes it possible to share an atomic sketch built for the coalesced ver-
tices v across all queries in Q(v) but, as we will see shortly, cannot guarantee the
correctness of the resulting sketch-based estimates.

Estimation with Sketch Sharing

Consider a multi-query join graph J (Q), possibly containing coalesced vertices (as
described above). Our goal here is to build atomic sketches corresponding to indi-
vidual vertices of J (Q) that can then be used for obtaining sketch-based estimates
for all the queries in our workload Q. Specifically, consider a query Q ∈Q, and let
V (Q) denote the (sub)set of vertices in J (Q) attached to a join-predicate edge cor-
responding to Q; that is, V (Q) = {v : edge e is incident on v and Q(e) = Q}. Our
goal is to construct an unbiased probabilistic estimate XQ for Q using the atomic
sketches built for vertices in V (Q).

The atomic sketch for a vertex v of J (Q) is constructed as follows. As be-
fore, each edge e ∈ J (Q) is associated with a family ξe of four-wise independent
{−1,+1} random variables. The difference here, however, is that edges attached to
node v for the same attribute of R(v) share the same ξ family since the same sketch
of R(v) corresponding to vertex v is used to estimate all queries in Q(v); this, of
course, implies that the number of distinct ξ families for all edges incident on v is
exactly |A(v)| (each family corresponding to a distinct attribute of R(v)). Further-
more, all distinct ξ families in J (Q) are generated independently (using mutually
independent seeds). For example, in Fig. 3(a), since Av1(e1) = Av1(e3) = R1.A1,
edges e1 and e3 share the same ξ family (i.e., ξe3 = ξe1); on the other hand,
ξe1 and ξe2 are distinct and independent. Assuming A(v) = {A1, . . . ,Ak} and
letting ξ1, . . . , ξ k denote the k corresponding distinct ξ families attached to v,
the atomic sketch Xv for node v is simply defined as Xv = ∑

(i1,...,ik)∈A1×···×Ak

fv(i1, . . . , ik)
∏k

j=1 ξ
j
ij

(again, a randomized linear projection). The final sketch-
based estimate for query Q is the product of the atomic sketches over all vertices in
V (Q), i.e., XQ = ∏

v∈V (Q) Xv .

248 A. Dobra et al.

Correctness of Sketch-Sharing Configurations

The XQ estimate construction described above can be viewed as simply “extract-
ing” the join (sub)graph J (Q) for query Q from the multi-query graph J (Q), and
constructing a sketch-based estimate for Q as described in Sect. 2. This is because,
if we were to only retain in J (Q) vertices and edges associated with Q, then the
resulting subgraph is identical to J (Q). Furthermore, our vertex coalescing (which
completely determines the sketches to be shared) guarantees that Q references ex-
actly the attributes A(v) of R(v) for each v ∈ V (Q), so the atomic sketch Xv can
be utilized.

There is, however, an important complication that our vertex-coalescing rule still
needs to address, to ensure that the atomic sketches for vertices of J (Q) provide
unbiased query estimates with variance bounded as described in Theorem 1. Given
an estimate XQ for query Q (constructed as above), unbiasedness and the bounds on
Var[XQ] given in Theorem 1 depend crucially on the assumption that the ξ families
used for the edges in J (Q) are distinct and independent. This means that simply
coalescing vertices in J (Q) that use the same set of stream attributes is insufficient.
The problem here is that the constraint that all edges for the same attribute incident
on a vertex v share the same ξ family may (by transitivity) force edges for the
same query Q to share identical ξ families. The following example illustrates this
situation.

Example 3 Consider the multi-query join graph J (Q) in Fig. 3(b) for queries Q1
and Q2 in Example 3. (J (Q) is obtained as a result of coalescing vertex pairs v1, v4
and v3, v5 in Fig. 2.) Since Av1(e1) = Av1(e3) = R1.A1 and Av3(e2) = Av3(e3) =
R3.A2, we get the constraints ξe3 = ξe1 and ξe3 = ξe2 . By transitivity, we have ξe1 =
ξe2 = ξe3 , i.e., all three edges of the multi-query graph share the same ξ family. This,
in turn, implies that the same ξ family is used on both edges of query Q1; that is,
instead of being independent, the pseudo-random families used on the two edges of
Q1 are perfectly correlated! It is not hard to see that, in this situation, the expectation
and variance derivations for XQ1 will fail to produce the results of Theorem 1, since
many of the zero cross-product terms in the analysis of [2, 9] will fail to vanish.

As is clear from the above example, the key problem is that constraints requiring
ξ families for certain edges incident on each vertex of J (Q) to be identical, can
transitively ripple through the graph, forcing much larger sets of edges to share
the same ξ family. We formalize this fact using the following notion of (transitive)
ξ -equivalence among edges of a multi-query graph J (Q).

Definition 1 Two edges e1 and e2 in J (Q) are said to be ξ -equivalent if either
(i) e1 and e2 are incident on a common vertex v, and Av(e1) = Av(e2); or (ii) there
exists an edge e3 such that e1 and e3 are ξ -equivalent, and e2 and e3 are ξ -equivalent.

Intuitively, the classes of the ξ -equivalence relation represent exactly the sets of
edges in the multi-query join graph J (Q) that need to share the same ξ family; that

Sketch-Based Multi-Query Processing over Data Streams 249

is, for any pair of ξ -equivalent edges e1 and e2, it is the case that ξe1 = ξe2 . Since,
for estimate correctness, we require that all the edges associated with a query have
distinct and independent ξ families, our sketch-sharing algorithms only consider
multi-query join graphs that are well-formed, as defined below.

Definition 2 A multi-query join graph J (Q) is well-formed iff, for every pair of
ξ -equivalent edges e1 and e2 in J (Q), the queries containing e1 and e2 are distinct,
i.e., Q(e1) �= Q(e2).

It is not hard to prove that the well-formedness condition described above is ac-
tually necessary and sufficient for individual sketch-based query estimates that are
unbiased and obey the variance bounds of Theorem 1. Thus, our shared-sketch es-
timation process over well-formed multi-query graphs can readily apply the single-
query results of [2, 9] for each individual query in our workload.

3.2 Sketch Sharing Problem Formulation

Given a large workload Q of complex queries, there can obviously be a large number
of well-formed join graphs for Q, and all of them can potentially be used to provide
approximate sketch-based answers to queries in Q. At the same time, since the key
resource constraint in a data-streaming environment is imposed by the amount of
memory available to the query processor, our objective is to compute approximate
answers to queries in Q that are as accurate as possible given a fixed amount of
memory M for the sketch synopses. Thus, in the remainder of this chapter, we focus
on the problem of computing (i) a well-formed join graph J (Q) for Q, and (ii) an
allotment of the M units of space to the vertices of J (Q) (for maintaining iid copies
of atomic sketches), such that an appropriate aggregate error metric (e.g., average
or maximum error) for all queries in Q is minimized.

More formally, let mv denote the sketching space allocated to vertex v (i.e., num-
ber of iid copies of Xv). Also, let MQ denote the number of iid copies built for the
query estimate XQ. Since XQ = ∏

v∈V (Q) Xv , it is easy to see that MQ is actually
constrained by the minimum number of iid atomic sketches constructed for each
of the nodes in V (Q); that is, MQ = minv∈V (Q){mv}. By Theorem 1, this implies

that the (square) error for query Q is equal to WQ/MQ, where WQ = 8Var[XQ]
E[XQ]2 is a

constant for each query Q (assuming a fixed confidence parameter δ). Our sketch-
sharing optimization problem can then be formally stated as follows.

Problem Statement

Given a query workload Q= {Q1, . . . ,Qq} and an amount of sketching memory M ,
compute a multi-query graph J (Q) and a space allotment {mv : for each node v in
J (Q)} such that one of the following two error metrics is minimized:

250 A. Dobra et al.

• Average query error in Q =
∑

Q∈Q
WQ

MQ
,

• Maximum query error in Q = maxQ∈Q{WQ

MQ
},

subject to the constraints: (i) J (Q) is well-formed; (ii)
∑

v mv ≤ M (i.e., the space
constraint is satisfied); and (iii) For all vertices v in J (Q), for all queries Q ∈Q(v),
MQ ≤ mv .

The above problem statement assumes that the “weight” WQ for each query
Q ∈ Q is known. Clearly, if coarse statistics in the form of histograms for the
stream relations are available (e.g., based on historical information or coarse a-priori
knowledge of data distributions), then estimates for E[XQ] and Var[XQ] (and, con-
sequently, WQ) can be obtained by estimating join and self-join sizes using these
histograms [9]. In the event that no prior information is available, we can simply set
each WQ = 1; unfortunately, even for this simple case, our optimization problem is
intractable (see Sect. 3.3).

In the following subsection, we first consider the sub-problem of optimally al-
locating sketching space (such that query errors are minimized) to the vertices of
a given, well-formed join graph J (Q). Subsequently, in Sect. 3.4, we consider the
general optimization problem where we also seek to determine the best well-formed
multi-query graph for the given workload Q. Since most of these questions turn out
to be NP-hard, we propose novel heuristic algorithms for determining good solu-
tions in practice. Our algorithm for the overall problem (Sect. 3.4) is actually an
iterative procedure that uses the space-allocation algorithms of Sect. 3.3 as subrou-
tines in the search for a good sketch-sharing plan.

3.3 Space Allocation Problem

In this subsection, we consider the problem of allocating space optimally given a
well-formed join graph J = J (Q) such that the average or maximum error is mini-
mized.

Minimizing the Average Error

The problem of allocating space to sketches in a way that minimizes the average
error turns out to be NP-hard even when WQ = 1. Given the intractability of the
problem, we look for an approximation based on its continuous relaxation, i.e., we
allow the MQ’s and mv’s to be continuous. The continuous version of the problem is
a convex optimization problem, which can be solved exactly in polynomial time us-
ing, for example, interior point methods [22]. We can then show that a near-optimal
integer solution is obtained by rounding down (to integers) the optimal continuous
values of the MQ’s and mv’s.

Since standard methods for solving convex optimization problems tend to be
slow in practice, we developed a novel specialized solution for the problem at hand.

Sketch-Based Multi-Query Processing over Data Streams 251

Our solution, which we believe has applications to a much wider class of problems
than the optimal space allocation problem outlined here, is based on a novel usage
of the Kuhn–Tucker optimality conditions (KT-conditions). We rewrite the problem
using the KT conditions, and then we solve the problem through repeated applica-
tion of a specific Max-Flow formulation of the constraints. Due to space limitations,
we omit a detailed description of the algorithm and the analysis of its correctness
(see [8] for details). Our results are summarized in the following theorem:

Theorem 2 There is an algorithm that computes the optimal solution to the
average-error continuous convex optimization problem in at most O(min{|Q|, |J |} ·
(|Q| + |J |)3) steps. Furthermore, rounding this optimal continuous solution results
in an integer solution that is guaranteed to be within a factor of (1 + 2|J |

M
) of the

optimal integer solution.

Minimizing the Maximum Error

It can be easily shown (see [8] for details) that the problem of minimizing the max-
imum error can be solved in time O(|J | log |J |) by the following greedy algorithm:
(i) take each mv proportional to maxQ∈Q(v){WQ}, (ii) round down each mv compo-
nent to the nearest integer, and (iii) take the remaining space s ≤ |J | and allocate
one extra unit of space to each of the nodes with the s smallest values for quantity
mv/maxQ∈Q(v){WQ}.

3.4 Computing a Well-Formed Join Graph

The optimization problem we are trying to solve is finding a well-formed graph
J (Q) and the optimal space allocation to the vertices of J (Q) such that the average
or maximum error is minimized. If we take WQ = 1 for all queries and minimize
the maximum error, this optimization problem reduces to the problem of finding a
well-formed join graph J (Q) with the minimum number of vertices; this problem
is NP-hard (see [8] for the proof) which makes the initial optimization problem
NP-hard as well.

In order to provide an acceptable solution in practice we designed a greedy
heuristic, that we call CoalesceJoinGraphs, for computing a well-formed join
graph with small error. The Algorithm CoalesceJoinGraphs iteratively merges
pair of vertices in J that causes the largest decrease in error, until the error cannot
be reduced any further by coalescing vertices. It uses the algorithm to compute the
average or maximum error (Sect. 3.3) for a join graph as a subroutine, which we
denote by ComputeSpace, at every step. Also, in order to ensure that graph J

always stays well-formed, J is initially set to be equal to the set of all the individual
join graphs for queries in Q. In each subsequent iteration, only vertices for identical
relations that have the same attribute sets and preserve the well-formedness of J are

252 A. Dobra et al.

coalesced. Well-formedness testing essentially involves partitioning the edges of J

into equivalence classes, each class consisting of ξ -equivalent edges, and then ver-
ifying that no equivalence class contains multiple edges from the same join query;
it can be carried out very efficiently, in time proportional to the number of edges
in J . The Algorithm CoalesceJoinGraphs needs to make at most O(N3) calls
to ComputeSpace, where N is the total number of vertices in all the join graphs
J (Q) for the queries, and this determines its time complexity.

4 Improving Answer Quality: Sketch Partitioning

In the proof of Theorem 1, to ensure (with high probability) an upper bound of ε on
the relative error of our estimate for a COUNT query Q with n equi-join predicates,
we require sketching space proportional to Var[XQ], where Var[XQ] ≤ 22n

∏
v SJv .

(Recall from Sect. 2 that SJv is the self-join size of the relation R(v) corresponding
to vertex v in J (Q).) Thus, an important practical concern for multi-join queries is
that our upper bound on the Var[XQ] and, therefore, the storage space required to
guarantee a given level of accuracy increases explosively with the number of joins
n in the query.

To deal with this problem, in this section, we propose novel sketch-partitioning
techniques that exploit approximate statistics on the streams to decompose the
sketching problem in a way that provably tightens our estimation guarantees. The
basic idea is that, by intelligently partitioning the domain of join attributes in the
query and estimating portions of Q individually on each partition, we can signif-
icantly reduce the storage required to compute each query estimate XQ within a
given level of accuracy. (Of course, our sketch-partitioning results are equally appli-
cable to the dual optimization problem; that is, maximizing the estimation accuracy
for a given amount of sketching space.)

The key observation we make is that, given a desired level of accuracy, the space
required is proportional to the product of the self-join sizes of relations R1, . . . ,Rr

over the join attributes (Theorem 1). Further, in practice, join-attribute domains are
frequently skewed and the skew is often concentrated in different regions for dif-
ferent attributes. As a consequence, we can exploit approximate knowledge of the
data distribution(s) to intelligently partition the domains of (some subset of) join
attributes so that, for each resulting partition p of the combined attribute space, the
product of self-join sizes of relations restricted to p is very small compared to the
same product over the entire (un-partitioned) attribute space (i.e.,

∏
v SJv). Thus,

letting XQ,p denote the sketch-based estimate for the portion of Q that corresponds
to partition p of the attribute space, we can expect the variance Var[XQ,p] to be
much smaller than Var[XQ].

Now, consider a scheme that averages over sp iid instances of the sketching es-
timate XQ,p for partition p, and defines the overall estimate XQ for query Q as
the sum of these averages over all partitions p. We can then show that E[XQ] = Q

and Var[XQ] = ∑
p

Var[XQ,p]
sp

. Clearly, achieving small self-join sizes and variances

Sketch-Based Multi-Query Processing over Data Streams 253

Var[XQ,p] for the attribute-space partitions p means that the total number of iid
sketch instances

∑
p sp required to guarantee the prescribed accuracy level of our

XQ estimator is also small. We formalize the above intuition in the following sub-
section and then present our sketch-partitioning results and algorithms for both
single- (Sect. 4.2) as well as multi-query (Sect. 4.3) environments.

4.1 Our General Technique

Consider once again the COUNT aggregate query Q from Sect. 2 with n equi-join
constraints over relations R1, . . . ,Rr . In general, our sketch-partitioning techniques
partition the domain of each join attribute Ri.Aj into mj ≥ 1 disjoint subsets de-
noted by Pj,1, . . . ,Pj,mj

. Further, the domains of a join-attribute pair Ri.Aj and
Rk.Al are partitioned identically (note that dom(Ri.Aj) = dom(Rk.Al)). This par-
titioning on individual attributes induces a partitioning of the combined (multi-
dimensional) join-attribute space, which we denote by P . Thus, mapping attribute
Ri.Aj to dimension j , we get that P = {(P1,l1 , . . . ,Pn,ln) : 1 ≤ lj ≤ mj }. Each ele-
ment p ∈ P identifies a unique partition of the global attribute space, and we repre-
sent by p[Ri.Aj] the partition of attribute Ri.Aj in p.

For each partition p ∈ P , we construct random variables XQ,p that estimate
Q on attribute values in partition p, in a manner similar to XQ in Sect. 2. Thus,
for each partition p, we construct atomic sketches Xv,p for vertices v of the join
graph J (Q). More specifically, for each edge e = 〈v,w〉 in J (Q), we have an in-
dependent family of random variables {ξe,p

l : l ∈ p[Av(e)]}. Let e1, . . . , ek be the
edges incident on v, and fv(i1, . . . , ik) be the number of tuples t ∈ R(v) such
that t[Av(ej)] = ij , for 1 ≤ j ≤ k. Then, the atomic sketch for partition p at v is
Xv,p = ∑

i1∈p[Av(e1)] · · ·
∑

ik∈p[Av(ek)] fv(i1, . . . , ik)
∏k

j=1 ξ
ej ,p
ij

. Variable XQ,p is

then obtained as the product of Xv,p’s over all the vertices, i.e., XQ,p = ∏
v Xv,p. It

is easy to verify that E[XQ,p] is equal to the number of tuples in the join result for
partition p and thus, by linearity of expectation, E[∑p XQ,p] = ∑

p E[XQ,p] = Q.
By independence across partitions, we have Var[∑p XQ,p] = ∑

p Var[XQ,p]. As
in [2, 9], to reduce the variance of our partitioned estimator, we construct iid in-
stances of each XQ,p. However, since Var[XQ,p] may differ widely across the parti-
tions, we can obtain larger reductions in the overall variance by maintaining a larger
number of copies for partitions with a higher variance. Let sp denote the number of
iid copies of the variable XQ,p maintained for partition p and let XQ be computed as
the sum of the averages of these sp copies of XQ,p over all the partitions. Then, since
averaging over iid copies does not alter the expectation, we get that E[XQ] = Q.

The success of our sketch-partitioning approach clearly hinges on being able to
efficiently compute Xv,p for each (vertex, partition) pair as data tuples are streaming
in. For every tuple t ∈ R(v) in the stream and for every partition p such that t

lies in p, we add to Xv,p the quantity
∏k

j=1 ξ
ej ,p
t[Av(ej)]. (Note that a tuple t in R(v)

typically carries only a subset of the join attributes, so it can belong to multiple
partitions p.) Our sketch-partitioning techniques make the process of identifying

254 A. Dobra et al.

the relevant partitions for a tuple very efficient by using the (approximate) stream
statistics to group contiguous regions of values in the domain of each attribute Ri.Aj

into a small number of coarse buckets (e.g., histogram statistics trivially give such
a bucketization). Then, each of the mj partitions for attribute Ri.Aj comprises a
subset of such buckets and each bucket stores an identifier for its corresponding
partition. Since the number of such buckets is typically small, given an incoming
tuple t , the bucket containing t[Ri.Aj] (and, therefore, the relevant partition along
Ri.Aj) can be determined very quickly (e.g., using binary or linear search). This
allows us to very efficiently determine the relevant partitions p for streaming data
tuples.

The total storage required for the atomic sketches over all the partitions is
O(

∑
p sp

∑
Ri .Aj

log |dom(Ri.Aj)|) to compute the final estimate XQ for query Q.3

Our sketch-partitioning approach still needs to address two very important issues:
(i) selecting a good set of partitions P ; and (ii) determining the number of iid copies
sp of XQ,p to be constructed for each partition p. Clearly, effectively addressing
these issues is crucial to our final goal of minimizing the overall space allocated to
the sketch while guaranteeing the required accuracy ε for XQ. Specifically, we aim
to compute a partitioning P and space allocation sp to each partition p such that the
estimate XQ has at most ε relative error and

∑
p∈P sp is minimized.

Note that, by independence across partitions and the iid characteristics of indi-

vidual atomic sketches, we have Var[XQ] = ∑
p

Var[XQ,p]
sp

. Given a attribute-space
partitioning P , the problem of choosing the optimal allocation of sp’s that mini-
mizes the overall sketch space while guaranteeing the required level of accuracy for
XQ can be formulated as a concrete optimization problem. The following theorem
describes how to compute such an optimal allocation.

Theorem 3 Consider a partitioning P of the join-attribute domains. Then, allocat-

ing space sp = 8
√

Var[XQ,p]∑p

√
Var[XQ,p]

ε2Q2 to each p ∈ P ensures that estimate XQ

has at most ε relative error, and
∑

p sp is minimum.

From the above theorem, it follows that, given a partitioning P , the optimal
space allocation for a given level of accuracy requires a total sketch space of:
∑

p sp = 8(
∑

p

√
Var[XQ,p])2

ε2Q2 . Obviously, this means that the optimal partitioning P
with respect to minimizing the overall space requirements for our sketches is one
that minimizes the sum

∑
p
√

Var[XQ,p]. Thus, in the remainder of this section, we
focus on techniques for computing such an optimal partitioning P ; once P has been
found, we use Theorem 3 to compute the optimal space allocation for each parti-
tion. We first consider the simpler case of a single query, and subsequently address
multiple join queries in Sect. 4.3.

3For the sake of simplicity, we approximate the storage overhead for each ξ family for partition
p by the constant O(

∑
Ri .Aj

log |dom(Ri .Aj)|) instead of the more precise (and less pessimistic)

O(
∑

Ri .Aj
log |p[Ri.Aj]|).

Sketch-Based Multi-Query Processing over Data Streams 255

4.2 Sketch-Partitioning for Single Query

We begin by describing our techniques for computing an effective partitioning P of
the attribute space for the estimation of COUNT queries Q over single joins of the
form R1 &'R1.A1=R2.A2 R2. Since we only consider a single join-attribute pair, for
notational simplicity, we drop the relation prefixes and refer to the attributes simply
as A1,A2. Also, we ignore the single join-edge in the join graph J (Q), and number
the vertices corresponding to relations R1 and R2 in J (Q) by 1 and 2, respectively.
Our partitioning algorithms rely on knowledge of approximate frequency statistics
for attributes A1 and A2. Typically, such approximate statistics are available in the
form of per-attribute histograms that split the underlying data domain dom(Aj) into
a sequence of contiguous regions of values (termed buckets) and store some coarse
aggregate statistics (e.g., number of tuples and number of distinct values) within
each bucket.

Binary Sketch Partitioning

Consider the simple case of a binary partitioning P of dom(A1) into two subsets P1
and P2; that is, P = {P1,P2}. Let fk(i) denote the frequency of value i ∈ dom(A1)

in relation Rk . For each vertex k (relation Rk), we associate with the (vertex, parti-
tion) pair (k,Pl) an atomic sketch Xk,Pl

= ∑
i∈Pl

fk(i)ξ
Pl

i , where l, k ∈ {1,2}. We
can now define XQ,Pl

= X1,Pl
X2,Pl

for l ∈ {1,2}. Then, from Theorem 1, we get
that the variance Var[XQ,Pl

] is as follows:

Var[XQ,Pl
] ≤

∑

i∈Pl

f1(i)
2
∑

i∈Pl

f2(i)
2. (1)

Theorem 3 tells us that the overall storage is proportional to
√

Var[XQ,P1] +√
Var[XQ,P2]. Thus, to minimize the total sketching space through partitioning,

we need to find the partitioning P = {P1,P2} that minimizes
√

Var[XQ,P1] +√
Var[XQ,P2]; that is, we aim to find a partitioning P that minimizes the function:

F(P)=
√∑

i∈P1

f1(i)2
∑

i∈P1

f2(i)2 +
√∑

i∈P2

f1(i)2
∑

i∈P2

f2(i)2. (2)

Clearly, a brute-force solution to this problem is extremely inefficient as it re-
quires O(2dom(A1)) time (proportional to the number of all possible partitionings
of dom(A1)). Fortunately, we can take advantage of the following classic theorem
from the classification-tree literature [5] to design a much more efficient optimal
algorithm.

Theorem 4 ([5]) Let Φ(x) be a concave function of x defined on some com-
pact domain D̂. Let P = {1, . . . , d}, d ≥ 2, and ∀i ∈ P let qi > 0 and ri be real

256 A. Dobra et al.

1 2 3 4

f1(i) 20 5 10 2

f2(i) 2 15 3 10

numbers with values in D̂ not all equal. Then one of the partitions {P1,P2} of P

that minimizes
∑

i∈P1
qiΦ(

∑
i∈P1

qiri∑
i∈P1

qi
)+∑

i∈P2
qiΦ(

∑
i∈P2

qiri∑
i∈P2

qi
) has the property that

∀i1 ∈ P1,∀i2 ∈ P2, ri1 < ri2 .

To see how Theorem 4 applies to our partitioning problem, let i ∈ dom(A1), and

set ri = f1(i)
2

f2(i)
2 , qi = f2(i)

2
∑

j∈dom(A1) f2(j)2 . Substituting in Eq. (2), we obtain

F(P)=
√∑

i∈P1

f2(i)2
∑

i∈P1

f2(i)2ri +
√∑

i∈P2

f2(i)2
∑

i∈P2

f2(i)2ri

=
∑

i

f2(i)
2
[√∑

i∈P1

qi

∑

i∈P1

qiri +
√∑

i∈P2

qi

∑

i∈P2

qiri

]

=
∑

i

f2(i)
2
[∑

i∈P1

qi

√∑
i∈P1

qiri
∑

i∈P1
qi

+
∑

i∈P2

qi

√∑
i∈P2

qiri
∑

i∈P2
qi

]
.

Except for the constant factor
∑

i∈dom(A1)
f2(i)

2 (which is always nonzero if
R2 �= φ), our objective function F now has exactly the form prescribed in Theo-
rem 4 with Φ(x) =√

x. Since f1(i) ≥ 0, f2(i) ≥ 0 for i ∈ dom(A1), we have ri ≥ 0,

qi ≥ 0, and ∀Pl ⊆ dom(A1),

∑
i∈Pl

qi∑
i∈Pl

qi ri
≥ 0. So, all that remains to be shown is that

√
x is concave on dom(A1). Since concaveness is equivalent to negative second

derivative and (
√

x)′′ = −1/4x−3/2 ≤ 0, Theorem 4 applies.
Applying Theorem 4 essentially reduces the search space for finding an optimal

partitioning of dom(A) from exponential to linear, since only partitionings in the
order of increasing ri ’s need to be considered. Thus, our optimal binary-partitioning
algorithm for minimizing F(P) simply orders the domain values in increasing or-
der of frequency ratios f1(i)

f2(i)
, and only considers partition boundaries between two

consecutive values in that order; the partitioning with the smallest resulting value
for F(P) gives the optimal solution.

Example 4 Consider the join R1 &'A1=A2 R2 of two relations R1 and R2 with
dom(A1) = dom(A2) = {1,2,3,4}. Also, let the frequency fk(i) of domain values
i for relations R1 and R2 be as follows:

Without partitioning, the number of copies s of the sketch estimator XQ to en-

sure ε relative error is given by s = 8Var[XQ]
ε2Q2 , where Var[XQ] ≤ 529 · 338+ 1652 ≤

206027 by Eq. (1). Now consider the binary partitioning P of dom(A1) into

Sketch-Based Multi-Query Processing over Data Streams 257

P1 = {1,3} and P2 = {2,4}. The total number of copies
∑

p sp of the sketch estima-

tors XQ,p for partitions P1 and P2 is
∑

p sp = 8(
√

Var[XQ,P1]+
√

Var[XQ,P2])2

ε2Q2 (by The-

orem 3), where (
√

Var[XQ,P1] +
√

Var[XQ,P2])2 ≤ (
√

6400 +√
6400)2 ≤ 25600.

Thus, using this binary partitioning, the sketching space requirements are reduced
by a factor of s∑

p sp
= 206027

25600 ≈ 7.5.

Note that the partitioning P with P1 = {1,3} and P2 = {2,4} also minimizes
the function F(P) defined in Eq. (2). Thus, our approximation algorithm based

on Theorem 4 returns the above partitioning P . Essentially, since r1 = 202

22 = 100,

r2 = 52

152 = 1/9, r3 = 102

32 = 100/9 and r4 = 22

102 = 1/25, only the three split points
in the sequence 4,2,3,1 of domain values arranged in the increasing order of ri
need to be considered. Of the three potential split points, the one between 2 and 3
results in the smallest value (177) for F(P).

K-ary Sketch Partitioning

We now describe how to extend our earlier results to more general partitionings
comprising m ≥ 2 domain partitions. By Theorem 3, we aim to find a partitioning
P = {P1, . . . ,Pm} of dom(A1) that minimizes

√
Var[XQ,P1] + · · · +√

Var[XQ,Pm],
where each Var[XQ,Pl

] is computed as in Eq. (1). Once again, we substitute the
variance formulas with the product of self-join sizes (Theorem 1); thus, we seek to
find a partitioning P = {P1, . . . ,Pm} that minimizes the function

F(P) =
√∑

i∈P1

f1(i)2
∑

i∈P1

f2(i)2 + · · · +
√ ∑

i∈Pm

f1(i)2
∑

i∈Pm

f2(i)2. (3)

A brute-force solution to minimizing F(P) requires an impractical O(mdom(A1))

time. Fortunately, we have shown the following generalization of Theorem 4 that
allows us to drastically reduce the problem search space and design a much more
efficient algorithm.

Theorem 5 Consider the function Ψ (P1, . . . ,Pm) = ∑m
l=1

∑
i∈Pl

qiΦ(

∑
i∈Pl

qi ri∑
i∈Pl

qi
),

where Φ , qi and ri are defined as in Theorem 4 and {P1, . . . ,Pm} is a partitioning of
P = {1, . . . , d}. Then among the partitionings that minimize Ψ (P1, . . . ,Pm) there
is one partitioning {P1, . . . ,Pm} with the following property π : ∀l, l′ ∈ {1, . . . ,m} :
l < l′ =⇒ ∀i ∈ Pl ∀i′ ∈ Pl′ ri < ri′ .

As described in Sect. 4.2, our objective function F(P) can be expressed

as
∑

i∈dom(A1)
f2(i)

2Ψ (P1, . . . ,Pm), where Φ(x) = √
x, ri = f1(i)

2

f2(i)
2 and qi =

f2(i)
2

∑
j∈dom(A1) f2(j)2 ; thus, minimizing F({P1, . . . ,Pm}) is equivalent to minimizing

Ψ (P1, . . . ,Pm). By Theorem 5, to find the optimal partitioning for Ψ , all we have

258 A. Dobra et al.

to do is to consider an arrangement of elements i in P = {1, . . . , d} in the order
of increasing ri ’s, and find m − 1 split points in this sequence such that Ψ for the
resulting m partitions is as small as possible. The optimum m − 1 split points can
be efficiently found using dynamic programming, as follows. Without loss of gen-
erality, assume that 1, . . . , d is the sequence of elements in P in increasing value
of ri . For 1 ≤ u ≤ d and 1 ≤ v ≤ m, let ψ(u,v) be the value of Ψ for the optimal
partitioning of elements 1, . . . , u (in order of increasing ri) in v parts. The equations
describing our dynamic-programming algorithm are:

ψ(u,1) =
u∑

i=1

qiΦ

(∑u
i=1 qiri∑u
i=1 qi

)
,

ψ(u, v) = min
1≤j<u

{

ψ(j, v − 1)+
u∑

i=j+1

qiΦ

(∑u
i=j+1 qiri

∑u
i=j+1 qi

)}

, v > 1.

The correctness of our algorithm is based on the linearity of Ψ . Also let p(u, v)

be the index of the last element in partition v − 1 of the optimal partitioning of
1, . . . , u in v parts (so that the last partition consists of elements between p(u, v)+1
and u). Then, p(u,1) = 0 and for v > 1, p(u, v) = arg min1≤j<u{ψ(j, v − 1) +
∑u

i=j+1 qiΦ(

∑u
i=j+1 qiri∑u
i=j+1 qi

)}. The actual best partitioning can then be reconstructed

from the values of p(u, v) in time O(m); essentially, the (m− 1)th split point of the
optimal partitioning is p(d,m), the split point preceding it is p(p(d,m),m − 1),
and so on. The space complexity of the algorithm is obviously O(md) and the time
complexity is O(md2), since we need O(d) time to find the index j that achieves
the minimum for a fixed u and v, and the function Φ() for sequences of consecutive
elements can be computed in time O(d2).

Sketch-Partitioning for Multi-Join Queries

When queries contain 2 or more joins, unfortunately, the problem of computing an
optimal partitioning becomes intractable [9]. However, if attribute value distribu-
tions within each relation are independent, then we can show that a simple approach
that combines the optimal (local) partitions for each individual join attribute yields
an optimal partitioning for the (global) multi-join attribute space. Thus, under this
assumption, we can use the dynamic programming algorithm described above to
compute the mj optimal partitions Pj,1, . . . ,Pj,mj

for each join attribute Ri.Aj ,
and P = {(P1,l1 , . . . ,Pn,ln) : 1 ≤ lj ≤ mj } is then our desired optimal partitioning
of the global attribute space.

Sketch-Based Multi-Query Processing over Data Streams 259

4.3 Sketch-Partitioning for Multiple Join Queries

In the previous subsections, we described how sketch partitioning can be used to re-
duce sketching space requirements for a single multi-join query. We now study how
we can incorporate these sketch partitioning ideas into the sketch sharing techniques
(from Sect. 3) to improve space utilization and answer accuracy when processing a
collection Q of queries.

Suppose that we could compute a single optimal partitioning P of the global
join attribute space for queries in Q using a variant our earlier proposed dynamic
programming algorithm. Then, we can simply use our sketch sharing techniques to
estimate the partial result Qp for each query, partition pair (Q,p), where Q ∈ Q
and p ∈ P . These estimates Qp for the various partitions can then be summed up
to derive the final estimate for query Q. Note that computing query estimates for a
partition p simply involves running our algorithms with attribute domains restricted
to lie within the partition p.

A major challenge here is to derive a single partitioning P that would be optimal
for all the queries in Q. The reason this is a non-trivial problem is that a join attribute
Ri.Aj may be paired with different attributes in the various queries, and each query
may induce a very different partitioning depending on the attributes being paired.
One possibility here is to compute multiple partitionings for Ri.Aj (one per query
that Ri.Aj appears in) and then try to massage them so that they become identical.
There may be other approaches as well, and we intend to explore these further as
part of future work.

5 Conclusions

In this chapter, we considered the problem of approximatively answering multiple
general aggregate SQL queries over continuous data streams with limited memory.
Our approach is based on computing small “sketch” summaries of the streams that
are used to provide approximate answers of complex multi-join aggregate queries
with provable approximation guarantees. When multiple queries need to be con-
currently processed, sketch sharing—the technique we proposed to reuse the space
between queries—can reduce the amount of memory required. We provided nec-
essary and sufficient conditions for sketch sharing to result in correct estimation,
and provided a greedy algorithm to solve the provably NP-hard problem of opti-
mally sharing the sketches and allocating the available space. Furthermore, since
the degradation of the approximation quality due to the high variance of our ran-
domized sketch synopses may be a concern in practical situations, we developed
novel sketch-partitioning techniques. Our proposed methods take advantage of ex-
isting statistical information on the stream to intelligently partition the domain of
the underlying attribute(s) and, thus, decompose the sketching problem in a way
that provably tightens the approximation guarantees.

260 A. Dobra et al.

References

1. S. Acharya, P.B. Gibbons, V. Poosala, S. Ramaswamy, Join synopses for approximate query
answering, in Proceedings of the 1999 ACM SIGMOD International Conference on Manage-
ment of Data, Philadelphia, Pennsylvania (1999), pp. 275–286

2. N. Alon, P.B. Gibbons, Y. Matias, M. Szegedy, Tracking join and self-join sizes in limited
storage, in Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, Philadelphia, Pennsylvania (1999)

3. N. Alon, Y. Matias, M. Szegedy, The space complexity of approximating the frequency mo-
ments, in Proceedings of the 28th Annual ACM Symposium on the Theory of Computing,
Philadelphia, Pennsylvania (1996), pp. 20–29

4. S. Babu, J. Widom, Continuous queries over data streams. ACM SIGMOD Rec. 30(3), 109–
120 (2001)

5. L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees
(Chapman & Hall, London, 1984)

6. K. Chakrabarti, M. Garofalakis, R. Rastogi, K. Shim, Approximate query processing using
wavelets, in Proceedings of the 26th International Conference on Very Large Data Bases,
Cairo, Egypt (2000), pp. 111–122

7. M. Datar, A. Gionis, P. Indyk, R. Motwani, Maintaining stream statistics over sliding win-
dows, in Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, San
Francisco, California (2002)

8. A. Dobra, M. Garofalakis, J. Gehrke, R. Rastogi, Sketch-based multi-query processing over
data streams. Manuscript available at www.cise.ufl.edu/~adobra/papers/sketch-mqo.pdf

9. A. Dobra, M. Garofalakis, J. Gehrke, R. Rastogi, Processing complex aggregate queries over
data streams, in Proc. of the 2002 ACM SIGMOD Intl. Conference on Management of Data,
Madison, Wisconsin (2002), pp. 61–72

10. P. Domingos, G. Hulten, Mining high-speed data streams, in Proceedings of the Sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Boston, Mas-
sachusetts (2000), pp. 71–80

11. M. Garofalakis, P.B. Gibbons, Approximate query processing: taming the terabytes in 27th
Intl. Conf. on Very Large Data Bases, Rome, Italy (2001). Tutorial

12. J. Gehrke, F. Korn, D. Srivastava, On computing correlated aggregates over continual data
streams, in Proceedings of the 2001 ACM SIGMOD International Conference on Management
of Data, Santa Barbara, California (2001)

13. P.B. Gibbons, Y. Matias, V. Poosala, Fast incremental maintenance of approximate histograms,
in Proceedings of the 23rd International Conference on Very Large Data Bases, Athens,
Greece (1997), pp. 466–475

14. A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, M.J. Strauss, Surfing wavelets on streams: one-
pass summaries for approximate aggregate queries, in Proceedings of the 27th International
Conference on Very Large Data Bases, Rome, Italy (2000)

15. M. Greenwald, S. Khanna, Space-efficient online computation of quantile summaries, in Pro-
ceedings of the 2001 ACM SIGMOD International Conference on Management of Data, Santa
Barbara, California (2001)

16. S. Guha, N. Koudas, K. Shim, Data streams and histograms, in Proceedings of the 2001 ACM
Symposium on Theory of Computing (STOC), Crete, Greece (2001)

17. S. Guha, N. Mishra, R. Motwani, L. O’Callaghan, Clustering data streams, in Proceedings of
the 2000 Annual Symposium on Foundations of Computer Science (FOCS) (2000)

18. P.J. Haas, J.M. Hellerstein, Ripple joins for online aggregation, in Proceedings of the 1999
ACM SIGMOD International Conference on Management of Data, Philadelphia, Pennsylvania
(1999), pp. 287–298

19. Y.E. Ioannidis, V. Poosala, Histogram-based approximation of set-valued query answers, in
Proceedings of the 25th International Conference on Very Large Data Bases, Edinburgh, Scot-
land (1999)

http://www.cise.ufl.edu/~adobra/papers/sketch-mqo.pdf

Sketch-Based Multi-Query Processing over Data Streams 261

20. G. Manku, S. Rajagopalan, B. Lindsay, Random sampling techniques for space efficient online
computation of order statistics of large datasets, in Proceedings of the 1999 ACM SIGMOD
International Conference on Management of Data, Philadelphia, Pennsylvania (1999)

21. Y. Matias, J.S. Vitter, M. Wang, Dynamic maintenance of wavelet-based histograms, in Pro-
ceedings of the 26th International Conference on Very Large Data Bases, Cairo, Egypt (2000)

22. S.M. Stefanov, Separable Programming. Applied Optimization, vol. 53 (Kluwer Academic,
Norwell, 2001)

23. J. Vitter, Random sampling with a reservoir. ACM Trans. Math. Softw. 11(1), 37–57 (1985)
24. J.S. Vitter, M. Wang, Approximate computation of multidimensional aggregates of sparse

data using wavelets, in Proceedings of the 1999 ACM SIGMOD International Conference on
Management of Data, Philadelphia, Pennsylvania (1999)

Approximate Histogram and Wavelet
Summaries of Streaming Data

S. Muthukrishnan and Martin Strauss

1 Introduction

We study a synopsis abstract data structure similar to an array abstract data type
commonly seen in textbooks. Specifically, we model an array A of N real values,
{i : 0 ≤ i < N} = [0,N). Like to an array, a user poses a point query, i.e., an index i,
and expects A[i] in return. Compared with an array, however, the modes for updat-
ing data values are restricted. First we consider only ordered and aggregated data:
the values A[0],A[1], . . . , are presented in order, followed by point queries.

After considering the basic abstract data type, we generalize in several directions:

• The user can pose range queries, i.e., a pair (�, r) of indices for which the ideal
answer is

∑
�≤i<r A[i]. This is more general than standard arrays that support

point queries.
• The data can be updated additively. That is, interspersed with point or range

queries are update commands of the form “add x to A[i],” where x may be pos-
itive or negative. Note that this is still less general than an array data type since
an update of the form “change A[i] to x,” which is supported by arrays, is not
supported here.

• The data may be multidimensional. That is, in dimension d , the index is a
d-tuple of integers. Ideally, multidimensional and single dimensional arrays are

S. Muthukrishnan supported by NSF ITR 0220280. M. Strauss supported in part by NSF
DMS-0354600 and NSF DMS-0510203.

S. Muthukrishnan (B)
Department of Computer Science, Rutgers University, Piscataway, NJ, USA
e-mail: muthu@cs.rutgers.edu

M. Strauss
Department of Computer Science and Engineering, University of Michigan, Ann Arbor, MI, USA
e-mail: martinjs@umich.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_13

263

mailto:muthu@cs.rutgers.edu
mailto:martinjs@umich.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_13

264 S. Muthukrishnan and M. Strauss

equivalent from the perspective of point queries, but are different under range
queries. Whether an array is considered to be single- or multi-dimensional also
matters to the approximate implementations we introduce below.

We will study approximate versions of the abstract data structure above. The
response to a point query i to instance A is not A[i] but R[i], where R is some
approximate representation for A. The error of this answer is R[i]−A[i]. We report
the quality of a representation as

∑
i |R[i] − A[i]|2, written ‖R − A‖2, where the

sum is over all queries. A approximate data structure can have any internal storage
format, but must lead to a vector R of length N—the vector of answers that it gives.

Traditionally, the advantage of implementing the approximate abstract data type
instead of the ideal abstract data type is that one can store an approximate repre-
sentation in much less space than the full data set. That is, the approximate data
structure is a summary.

We will be interested in two related types of sparse summaries, histograms and
Haar wavelets.

Histograms A B-bucket histogram of length N is a partition of [0,N) into intervals
[b0, b1) ∪ [b1, b2) ∪ · · · ∪ [bB−1, bB), where b0 = 0 and bB = N , together with a
collection of B heights hj , for 0 ≤ j < B , one for each bucket. On point query i,
the histogram answer is hj , where j is the index of the bucket containing i; that
is, the unique j with bj ≤ i < bj+1. In vector notation, we write χS for the vector
that is 1 on the set S and zero elsewhere. Thus the answer vector of a histogram is
R = ∑

0≤j<B hjχ[bj ,bj+1).
Thus, in building a B-bucket histogram, we want to choose B − 1 boundaries bj

and B heights hj that tend to minimize the sum square error ‖A − ∑
0≤j<B hj ×

χ[bj ,bj+1)‖2. Once we have chosen the boundaries, the best bucket height on an

interval I is the average of A over i. Put another way, let ψ = 1√|I |χI . Then ‖ψ‖ = 1

and the vector resulting in the best histogram that is a multiple of ψ is 〈A,ψ〉ψ ,
where 〈x, y〉 denotes the dot product.

Haar Wavelets We now define Haar wavelets concisely. First, we assume that N is
a power of 2. This restriction is easily overcome in our algorithms.

A useful term is the support of a vector v. The support of v denoted supp(v)

is {i : v[i] �= 0}. A dyadic subinterval of [0,N) is, intuitively, either [0,N) itself
or, recursively, a dyadic subinterval of [0,N/2) or of [N/2,N). Formally, it is an
interval of the form [k2j , (k + 1)2j), where j and k must be integers.

A Haar wavelet vector ψ of length N is either the vector 1√
N

χ[0,N) or
−1√|L∪R|χL + 1√|L∪R|χR , where L and R are the left and right halves of a dyadic

interval, respectively. (Note that 1√
N

χ[0,N) is anomalous; it doesn’t fit the pattern
of all other Haar wavelet vectors.) We typically drop the term “Haar.” There are
N wavelet vectors in all and they form an orthonormal basis, i.e., if ψ and ϕ are
wavelet vectors, then 〈ψ,ϕ〉 is 1 if ψ = ϕ and 〈ψ,ϕ〉 is zero, otherwise. The four
coarsest Haar wavelets (i.e., those with largest support) are pictured in Fig. 1.

Approximate Histogram and Wavelet Summaries of Streaming Data 265

Fig. 1 The four coarsest
Haar wavelets with
normalization modified for
visibility

A wavelet term is the index j of a wavelet vector ψj together with a (wavelet)
coefficient, cj . A B-term wavelet representation is a collection of B wavelet terms,
whose answer vector is

∑
j∈Λ cjψj , where |Λ| = B . In building a B-term wavelet

representation, we want to choose a set Λ of B wavelet indices and coefficients cj

for j ∈ Λ that tends to minimize the sum square error ‖A −∑
j∈Λ cjψj‖2.

Note that any signal is exactly represented by an N -bucket histogram, where
each bucket has size 1. Similarly, any signal is exactly represented by an N -term
wavelet representation. For signal A, define cj = 〈A,ψj 〉. Then one can show
that A = ∑

j cjψj , where the sum is over all the wavelet indexes. We therefore
refer to cj as the j th wavelet coefficient of A. One can also show (Parseval’s
equality) that ‖A‖2 = ∑

j c2
j . It follows that, for any set Λ of wavelet indices,

‖A‖2 = ‖A −∑
j∈Λ cjψj‖2 + ∑

j |cj |2. Since ‖A2‖ is constant, our goal of min-

imizing ‖A −∑
j∈Λ cjψj‖2 is achieved by choosing Λ to maximize

∑
j |cj |2,

provided the cj ’s are optimally chosen to be the corresponding wavelet coeffi-
cients of A. Similarly, if ψ = 1√|I |χI and c = 〈A,ψ〉, then the error ‖A − cψ‖2

is ‖A‖2 − c2.
The problem we address is as follows:

Problem Fix signal A of length N . Fix integer B and positive reals ε and δ. Find
a B-bucket histogram (or B-term wavelet representation, respectively) R such that,
except with probability δ,

‖A − R‖2 ≤ (1 + ε)‖A − Ropt‖2,

where Ropt is the optimal B-bucket histogram (or B-term wavelet representation,
respectively).

Occasionally we will also discuss approximation in the size of the summary.
That is, we will produce a histogram with B ′ > B buckets and compare its error
with the best B-bucket histogram. Here we will give an upper bound for B ′. If B ′ is
guaranteed to be at most αB , then we denote the overall guarantee as a (α,1 + ε)-
approximation. A similar approach can be used for wavelet representations, too.

The resources we use will depend quantitatively on N,B, ε, δ, and M , where M

is a bound on the largest data item in A, which we assume are integers (generally,

266 S. Muthukrishnan and M. Strauss

they are integer multiples of some smallest resolvable quantity). Several different
types of resources can be measured, depending on the nature of the data.

We will consider two different ways that data may be presented to our algorithm.

Ordered Aggregate Data

The data are presented in order, as A[0],A[1],A[2], . . . ,A[N − 1]. After the last
data item is presented, the algorithm outputs a histogram or wavelet representa-
tion and halts. Here the goal is to bound the total time and total space of the
algorithm. We present a deterministic construction that, for constants c1 and c2,
consumes total time bounded by c1N + (B log(N) log(M)/ε)c2 . For typical val-
ues of the parameters, the first term dominates; that is, the algorithm takes time
linear in N , independent of (small changes in) the other parameters. The space is
(B log(N) log(M)/ε)c2 , which is much less than N for typical settings of the pa-
rameters.

Dynamic Data

This is motivated by streaming data. Here we process an arbitrary sequence
of updates of the form “add x to A[i]” and “rebuild summary.” The time
to rebuild the histogram and the total space are both at most proportional to
(B log(N) log(M) log(1/δ)/ε)c2 . In many applications, the time to process an
update must be much less than the time to build a histogram. Indeed there
are algorithms that make update processing much faster without significant ef-
fect on the time to build a histogram and the total space. In this article, how-
ever, we give a construction that meets only the same general time bound of
(B log(N) log(M) log(1/δ)/ε)c2 as is satisfied for processing updates.

In what follows, we present techniques for various summaries. The techniques
presented earlier will not only be useful in their own right for building summaries,
but also be used as building blocks for more advanced techniques that are described
later.

2 Wavelet Summaries for Ordered Aggregate Data

We are given the data in an ordered aggregate stream,

A[0],A[1],A[2], . . . ,A[N − 1].
Our algorithm will consist of several stages. The first stage takes in the input stream
and outputs a stream of all N wavelet terms. The second stage takes a stream of all
wavelet terms and outputs just the B terms with largest coefficients.

Approximate Histogram and Wavelet Summaries of Streaming Data 267

Fig. 2 Computation of all Haar wavelet coefficients by a binary tree (right) of basic filters (left),
each of which computes the sum and difference of its inputs. When the second item (counting from
zero) is read, only the O(log(N)) basic filters in the path of 2, indicated by a double box, need to
be instantiated

2.1 Online Wavelet Transform

Our goal is to consume a stream of data and output a stream of all wavelet coeffi-
cients.

A basic filter reads in two elements at a time. It then outputs the sum and the
difference of these two elements.

Now, form an overall filter Φ by cascading combining N − 1 basic filters in a
binary tree. The sum output of each basic filter is the input of another basic filter and
the difference output of each basic filter is sent, after normalization, to an overall
output stream of Φ . The sum output of the basic filter at the root of the tree also
contributes to the output stream of Φ (see Fig. 2).

Each basic filter does O(1) work per input and uses O(1) space. There are N −1
basic filters in Φ , so the total time used by Φ is O(N). Finally, note that only
O(log(N)) basic filters need to be instantiated at any time, so Φ can be implemented
using space O(log(N)); see Fig. 2. It is straightforward to check that Φ computes
exactly the set of wavelet coefficients. (In fact, the output of Φ is often taken as the
definition of the wavelet coefficients, particularly for wavelets more general than
Haar wavelets, which are defined solely in terms of the two or more outputs of the
basic filters.)

2.2 Finding the Largest Terms

Given a sequence of wavelet terms, we want to keep just the B terms having largest
coefficient absolute values. This can be done as follows. Create a buffer of size 4B ,
and read the first B items into it. Now we maintain the invariant that our buffer has
between B and 3B items, including the B largest items seen so far. We proceed
as follows. Fill the buffer, by reading a number of items between B and 3B . Next,
ensure that the items all have unequal rank, e.g., by ordering them primarily by
coefficient size and secondarily by position in the buffer. Then find an approximate

268 S. Muthukrishnan and M. Strauss

median—an item whose rank is between the 25th and 75th percentile. (This can
be done deterministically in time O(B) (see [2]), or probabilistically by choosing
a few random elements and testing them against the entire buffer.) Finally, discard
buffer elements smaller than the approximate median, restoring the invariant. The
total time spent on this operation is O(B) and it consumes Ω(B) items, so the time
cost is O(1) per item, as desired.

2.3 Analysis

It is clear by construction that the overall algorithm meets our claims. In fact, a more
careful analysis shows that the worst-case work upon reading any item is at most
O(log(N)) for the first phase and O(B) for the second phase. By using buffers of
size O(B + log(N)), one can arrange that the worst-case time per item is at most
O(1). This entire algorithm first appeared in [5] and is also discussed and used
in [7].

3 Offline Histogram Algorithms

In this section, we show how to find optimal histograms in full space. We consider
histograms in one dimension that are optimal for point queries.

3.1 A Quadratic Time Exact Algorithm

The data is A. First, we build a structure for A from which, given � and r , we can
get, in time O(1), the height and error of an optimal 1-bucket histogram for A on the
interval [�, r). This can be done in time (and space) O(N) as follows: Stream over
the data and build the prefix arrays P(A) of A and P(A2) of A2, where P(A)[j] =∑

0≤i<j A[i] and P(A2)[j] = ∑
0≤i<j A2[i], for 0 ≤ j ≤ N . The optimal height

on interval [�, r) is h = 1
r−�

∑
�≤i<r A[i] = 1

r−�
[(∑i<r A[i]) − (

∑
i<� A[i])] and

the error is
∑

�≤i<r(A[i] − h)2 = (
∑

�≤i<r A[i]2)− 2h(
∑

�≤i<r A[i])+ (r − �)h2.
Thus both the height and error can be computed from �, r , and our structure in time
O(1), as claimed.

The algorithm uses dynamic programming. Fix m′ < N and � ≤ B . Assume that,
for each m < m′, we have found the optimal (�− 1)-bucket histogram on the prefix
of data indexed by [0, i). To find the best �-bucket histogram on [0,m′), we try
all m < m′ for the final boundary, and form a histogram by joining the best (�− 1)-
bucket histogram on [0,m) with the 1-bucket histogram on [m,m′). The time for this
step is therefore at most O(N), to try all values of m. Since this has to be repeated
for all m′ < N and all � ≤ B , the total time is O(N2B). The space is O(BN), to
store a table of a B-bucket histogram for each i.

Approximate Histogram and Wavelet Summaries of Streaming Data 269

This procedure works because we can decompose the error on an overall his-
togram into contributions from histogram fragments, in which the error attributed to
a fragment depends only on the data values local to that fragment. One can substi-
tute other error measures for sum square error in the overall algorithm. This dynamic
program explicitly appears in [4].

3.2 A Linear Time Approximation Algorithm

If B % N , one can get a much faster approximate result. Instead of asking, “for each
� and m, what is the error k of the best �-bucket histogram on [0,m)?” we ask, “for
each � and each k, what is the largest m such that there is an �-bucket histogram
on [0,m) with error approximately k?” Computationally, this formulation is better
because we can find m by binary search in log(N) iterations instead of exhaustively
in N iterations. We will need to define more precisely what is meant by “error
approximately k” and we will have to show that we can restrict the allowable values
for k to a small set (of size O(B/ε)).

As above, we first construct prefix arrays for A and A2. Construction takes time
O(N) and allows us to find, in constant time, the best height and error of a 1-bucket
histogram over any queried subinterval.

If Eopt denotes the error of an optimal histogram, assume that we know an E with
1
2Eopt ≤ E < Eopt. Note that, if the data values are integers and ‖A‖2 ≤M , then the
error is at least Ω(1) and at most M , and there are only O(log(M)) possible powers
of 2 in this range. We can find the right power of 2 for E in time multiplied by
log log(M) by binary search.

Let δ = Θ(εE/B) be a unit of error. Let � be an integer around 4E/δ, so that
2Eopt ≤ �δ < 4Eopt and so any (partial) histogram with error �δ can be discarded
as not nearly optimal. We will restrict errors to be non-negative integer multiples of
δ up to �δ.

Fix � ≤ B and integer k ≤ �. Suppose for each integer i ≤ � we know an m =
Mi,�−1 such that there is an (� − 1)-bucket histogram on [0,m) with error at most
(i + �− 1)δ and no histogram on [0,m+ 1) with error less than iδ. (Here we deem
the best histogram on [0,N + 1) to have error +∞.) We want to find an m′ = Mk,�

such that there is an �-bucket histogram on [0,m′) with error at most (k+�)δ and no
�-bucket histogram on [0,m′ + 1) with error at most kδ. To do this, try all possible
values of i, put m = Mi,�−1, and find, by binary search, the largest m′ such that
the one-bucket histogram on [m,m′) has error at most (k − i + 1)δ on [m,m′).
This combined with the best (�− 1)-bucket histogram on [0,m) with error at most
(i + � − 1)δ is an �-bucket histogram on [0,m′) with error at most (k + �)δ, as
desired. We can also compute the histograms themselves as we compute the Mk,�’s.

On the other hand, we need to show that there is no �-bucket histogram on
[0,m′ + 1) with error at most kδ. So suppose that the optimal �-bucket histogram
on [0,m′ + 1) has error η. This histogram has some penultimate boundary, m∗, and
there is some error E∗ on [0,m∗). Find integer i∗ such that (i∗ − 1)δ ≤ E∗ < i∗δ.

270 S. Muthukrishnan and M. Strauss

Then the error on [m∗,m′ + 1) is the error on [0,m′ + 1) less the error on [0,m∗),
which is at most η− (i∗ − 1)δ. Our dynamic programming algorithm will have con-
sidered (�−1)-bucket histograms on [0,Mi∗,�−1). By definition of Mi∗,�−1, there is
no (�− 1)-bucket histogram on [0,Mi∗,�−1 + 1) with error at most i∗δ. Since there
is an (� − 1)-bucket histogram on [0,m∗) with error at most i∗δ, it follows that
Mi∗,�−1 ≥m∗. If our algorithm attempted to extend the (�−1)-bucket histogram on
[0,Mi∗,�−1) by the bucket [Mi∗,�−1,m

′ + 1) ⊆ [m∗,m′ + 1), the error of the new
bucket would be at most η− (i∗ − 1)δ. Since the algorithm rejected m′ + 1 in favor
of m′, we must have η − (i∗ − 1)δ > (k − i∗ + 1)δ, or η > kδ, as desired.

Finally, when we have computed all Mi,�, we can find the least i such that
Mi,B < N . Then there is no B-bucket histogram on [0,N) ⊇ [0,Mi,B + 1) with
error iδ (i.e., Eopt > iδ) but, since Mi+1,B = N , we have found a B-bucket his-
togram on [0,N) with error at most ((i + 1)+B)δ ≤ Eopt + (B + 1)δ. If we make
δ = ε

B+1E ≤ ε
B+1Eopt, then our error will be at most (1 + ε)Eopt.

Note that, other than producing the prefix arrays P(A) and P(A2), the algorithm
runs in time polynomial in log log(M),B, log(N), and 1/ε. Similarly, other than
producing the prefix arrays, the algorithm requires space polynomial in B and ε to
store a B-bucket histogram for each of O(B/�) possible k’s. That is, this algorithm
meets our desired time bound of c1N + (B log(N) log(M)/ε)c2 but not our desired
space bound for dynamic data situations.

The algorithm above is somewhat reminiscent of those in [8, 9] where the authors
use it in the ordered aggregate mode.

4 Basic Histograms from Wavelet Representations

In this section, we discuss several relationships between histograms and wavelet
representations. We give a (O(log(N)),1)-approximation algorithm, a (9,1)-
approximation algorithm, and a (1,1 + ε)-approximation algorithm.

4.1 Wavelet Representations as Histograms

First note that any histogram element χI on interval I can be expressed as a
2 log(N)-term wavelet representation. This is because 〈χI ,ψ〉 = 0 unless supp(ψ)

intersects an endpoint of I . Each endpoint of I is in the support of log(N) + 1
wavelet vectors, but the two wavelet vectors with support [0,N) are double counted,
so only 2 log(N) terms remain. (See Fig. 3.)

On the other hand, any wavelet term is itself a 4-bucket histogram (i.e., a his-
togram with 3 boundaries), so a B-term wavelet representation can be viewed as a
(3B + 1)-bucket histogram.

It follows that the best 2 log(N)B-term wavelet representation R is at least as
good as the best B-bucket histogram. Also, R can be regarded as a (6 log(N)+ 1)-
bucket histogram. It follows that we can find a (O(log(N)),1)-approximation to

Approximate Histogram and Wavelet Summaries of Streaming Data 271

Fig. 3 The dot product between a wavelet and a histogram is zero unless the support of the wavelet
intersects a boundary of the histogram

the best B-bucket histogram in linear time using previously discussed algorithm for
computing the wavelet summary.

4.2 Wavelet Representations as Intermediate Summaries

Next, we consider the following algorithm: Given A, let R be the best 2 log(N)B-
term wavelet representation to A, as above. Thus, as above, ‖A − R‖2 ≤
‖A − Hopt‖2, where Hopt is the optimal B-bucket histogram for A. Next, let H
be the best B-bucket histogram to R. How good is H as a summary of A?

By the triangle inequality and by optimality of H for R, we have

‖A − H‖ ≤ ‖A − R‖ + ‖R − H‖
≤ ‖A − R‖ + ‖R − Hopt‖
≤ ‖A − R‖ + ‖R − A‖ + ‖A − Hopt‖
≤ 3‖A − Hopt‖,

whence ‖A − H‖2 ≤ 9‖A − Hopt‖2. Thus we have a (1,9)-approximation algorithm
to the best B-bucket histogram.

Now consider the cost to build H. It is easy to check that the boundaries of H can
be chosen from among the boundaries of R; this is proved in [7]. One can modify
the algorithm of Sect. 3.2 by building, in time linear in B log(N), a structure that
will answer, in time O(1), the value

∑
�≤i<r R[i]2 for � and r among the boundaries

of H.

4.3 Robust Representations

In Sect. 4.2, we used the triangle inequality to bound ‖A − H‖ by ‖A − R‖ +
‖R − H‖. This is not tight in the sense that ‖A − R‖ + ‖R − H‖ might actually
be as big as 3‖A − H‖. In this section, we will define and construct a robust repre-
sentation Rrob with the property that

{‖A − H‖2 ≈ ‖A − Rrob‖ + ‖R2
rob − H‖2,

‖A − Hopt‖2 ≈ ‖A − Rrob‖ + ‖R2
rob − Hopt‖2,

272 S. Muthukrishnan and M. Strauss

where, as above, H is optimal for Rrob and Hopt is optimal for A. This will allow
us to compare ‖A − H‖ with ‖A − Hopt‖, as above, but without giving up anything
to the triangle inequality. (Instead, we give up a lot less in the approximation to the
Pythagorean equality.)

The following theorem relates a wavelet representation to a histogram in a more
subtle manner.

Theorem 1 For some T ≤ O(1/(ε2 log(1/ε))) and any signal A, let Rrob be the
representation formed by greedily taking 2B log(N) wavelet terms at a time until
either

• we get 2T B log(N) terms, or
• taking an additional B log(N) wavelet terms improves (reduces) the residual

‖A − Rrob‖2
2 by a factor no better than (1 − ε′), where ε′ ≥ Ω(ε2).

Let H be the best B-bucket representation to Rrob. Then H is a (1,1 + ε)-
approximation to the best B-bucket histogram to A.

Proof Suppose Rrob has 2T B log(N) terms. Then

‖A − Rrob‖2
2 ≤

(
1 − ε′

)(T−1)∥∥A − R(B log(N))
∥∥2

2,

where R(B log(N)) is the best representation of B log(N) terms. By choice of T =
1+(1/ε′) log(25/ε2), we have (1−ε′)(T−1) ≈ ε2/25 and, by previous observations,
‖A − R(B log(N))‖ ≤ ‖A − Hopt‖, and

‖A − H‖2 ≤ ‖A − Hopt‖2 + 2‖A − Rrob‖2

≤ ‖A − Hopt‖2 + 2
(
1 − ε′

)(T−1)/2∥∥A − R(B log(N))
∥∥

2

≤ (1 + 2ε/5)‖A − Hopt‖,
so that ‖A − H‖2

2 ≤ (1 + ε)‖A − Hopt‖2
2 for sufficiently small ε.

Now suppose Rrob has fewer than 2T B log(N) terms, so that Rrob together with
any additional 2B log(N) terms has error at least (1−ε′)‖A − Rrob‖2

2. It follows that
the 2B log(N) terms in H or Hopt do not improve the square error of Rrob by more
than the factor (1 − ε′). Let Ĥ, regarded as a histogram or wavelet representation,
be the best linear combination of Rrob and H; our hypothesis is that ‖A − Ĥ‖2 ≥
(1− ε′)‖A − Rrob‖2 = ‖A − Rrob‖2 − ε′‖A − Rrob‖2. Note that, since Ĥ is the best
representation on a specified line (containing Rrob and H), it follows that there’s a
right angle at Ĥ, so that, as in Fig. 4, we have

‖Rrob − Ĥ‖2 = ‖Rrob − A‖2 − ‖A − Ĥ‖2

≤ ε′‖A − Rrob‖2

≤ (
ε2/9

)‖A − Rrob‖2.

That is, Rrob is much closer to Ĥ than either Rrob or Ĥ is to A. Then, as in Fig. 4,
angle A-Ĥ-H and angle A-Ĥ-Hopt are right angles and so A-Rrob-H and angle

Approximate Histogram and Wavelet Summaries of Streaming Data 273

Fig. 4 Illustration of histograms in Theorem 1. On the left, by optimality of Ĥ, there is a right angle
as indicated. On the right, since Rrob ≈ Ĥ, there are two near right angles at Rrob. Since H is no
farther from Rrob than Hopt is, we conclude H is almost as close to A as Hopt is. In fact, because the
angles at Rrob are not quite right angles, we can only conclude that ‖A − H‖ ≤ (1+ ε)‖A − Hopt‖

A-Rrob-Hopt are near right angles. By comparing triangles, noting that H is no far-
ther from Rrob than Hopt is, we conclude H is almost as close to A as Hopt is. That
is, ‖A − H‖ ≤ (1 + ε)‖A − Hopt‖. �

In the ordered aggregate data model, the properties we have proved above imme-
diately lead to an algorithm. We analyze the cost of constructing Rrob. While mak-
ing a single pass over the ordered aggregate data, in parallel, we find the biggest
2T B log(N) terms and we compute ‖A‖2. Both tasks can be done in time O(N)

and space O(T B log(N)). Next we build Rrob from our collection of 2T B log(N)

wavelet terms in the straightforward way. We will need to track ‖A − Rrob‖2 as Rrob
changes, but this can be done using the formula ‖A − Rrob‖2 = ‖A2‖ − ‖Rrob‖2.
Thus we obtain 1+ε approximation to the histogram in the ordered aggregate model
with space as desired. The cost to produce a histogram from a wavelet representation
is polynomial in B, log(N), and ε. This result appears in [7].

5 Histograms and Wavelets with Dynamic Data

In this section, we briefly consider data that is subject to dynamic update. We assume
that we have a synopsis data structure, called an “L2 count sketch,” parametrized by
N and η, that efficiently supports the following operations on a(n unordered) set S

of size N :

• UPDATES of the form “add x to a count C[i] for item i ∈ S”;
• Unparametrized “FIND” queries. The answer is a list containing all j where

C[j]2 ≥ η
∑

i C[i]2;
• “COUNT” queries about item i, for which the answer is C̃[i] such that |C̃[i] −

C[i]|2 ≤ η‖C‖2.

There are randomized implementations of L2 count sketches [3, 6] that need space
(log(N)/η)O(1) and time (log(N)/η)O(1) for either query. In particular, a FIND
query can only return (log(N)/η)O(1) values. (There is also mild but necessary de-
pendence on the range M of counts and on the failure probability of this randomized
object. We do not discuss that detail further.)

274 S. Muthukrishnan and M. Strauss

Given access to an L2 count sketch data structure with parameter η that depends
polynomially on B log(N)/ε, we now show how to modify the previous algorithms
to produce near-optimal histogram and wavelet representations.

Recall that a signal is equivalently specified by its full set of O(N) wavelet co-
efficients. Given input of the form “add x to A[i],” we form O(log(N)) additive
updates to the wavelet coefficients of A. We then use the L2 count sketch on the
wavelet coefficients. That is how we process updates.

To build a summary in our algorithms above, we need to find the top few wavelet
terms. Using the L2 count sketch, we proceed as follows:

• Do a FIND query to find one or more wavelet index j with potentially large
coefficient.

• Do COUNT queries to get an approximation c̃j to the coefficient(s).
• Do an update of −cjψj ; that is subtract cj from the count of wavelet index j .

In general, we need to repeat this process several times to get enough wavelet
terms (O(T B log(N)) iterations will certainly suffice, though fewer iterations will
also work). If we find a coefficient approximation c̃j whose square is relatively
large, after we subtract it off, other coefficients (as well as the residual coefficient
cj − c̃j) will appear relatively larger—and, therefore, FIND and COUNT will be
more accurate—since the sum of squares of coefficients has shrunk.

Using just the L2 count sketch, we cannot get exact values for coefficients and
therefore we cannot compare terms whose coefficients are close in magnitude, and
we cannot choose the indices with largest coefficients. Nevertheless, one can show
that the error in coefficients is dominated by the unavoidable error ‖A − Ropt‖ and
we will only choose a suboptimal index j if it displaces another index j ′ whose
coefficient, cj ′ , is only marginally better than cj .

It follows that we can still build an Rrob with the property that

• taking an additional O(B log(N)) wavelet terms and changing all the coefficients
to their ideal values reduces the residual ‖A − Rrob‖2

2 by a factor no better than
(1 − ε′), where ε′ ≥Ω(ε2).

This property suffices for the rest of the constructions—we can either take the top
B terms for a wavelet representation or take the best B-term histogram to Rrob. The
cost in space, update time, and query time for building a representation this way
is as claimed. This follows from the cost guarantees assumed about the L2 count
sketch. What we have outlined is the procedure in [6].

6 Generalized Histograms

In this section, we discuss generalizing histograms slightly. First, we consider rep-
resentations that are piecewise linear instead of piecewise constant. Next, we show
how to find piecewise constant histograms that are optimal for range queries (de-
fined below) instead of point queries. Finally, we will discuss multidimensional his-
tograms.

Approximate Histogram and Wavelet Summaries of Streaming Data 275

Fig. 5 Linear multiwavelets. The four coarsest linear multiwavelets are graphed, the basic
four-by-four filter is given as a matrix, and the discrete versions of the coarsest eight linear multi-
wavelets are tabulated as rows. It is easy to see from symmetry that the linear multiwavelets form
an orthonormal basis after normalization

6.1 Piecewise-Linear Representations

A B-piece piecewise-linear representation of a vector on [0,N) consists of a par-
tition of [0,N) into B intervals and, for each interval, a height hj and a slope sj .
Thus a histogram is a piecewise-linear representation in which all slopes are zero.
The answer vector associated with a piecewise-linear representation is as follows.
To answer a query at position i, find the bucket j such that bj ≤ i < bj+1. Let
mj = (bj + bj+1 − 1)/2, an integer or half-integer, be the midpoint of the bucket.
Return the value hj + sj (i −mj). (For example, the midpoint of the 4-point bucket
[0,4)= {0,1,2,3} is 1.5.)

To build a near-optimal piecewise-linear representation, for ordered aggregate or
dynamic data, we follow the above outline but replace “Haar wavelets” with “linear
multiwavelets,” that we define next, based on [13]. Like the set of Haar wavelet
vectors of length N , the linear multiwavelet vectors form an orthonormal family
of N vectors. They consist of the appropriate scaling of the following functions.
Prototypical linear multiwavelets are graphed in Fig. 5.

• An anomalous linear multiwavelet vector χ[0,N). (This is called a constant. The
constant is also the one anomalous Haar wavelet vector.)

• An anomalous linear multiwavelet vector that takes the value i − (N − 1)/2 at
position i. (That is, the positive-slope normalized linear function of i that is or-
thogonal to χ[0,N). This is called a slope.)

• On each dyadic interval I = L∪R of size at least 4 consisting of left half L and
right half R with midpoint m, there is a linear multiwavelet that is a linear function
on each of L and R and has even symmetry with respect to m. By symmetry, this
linear multiwavelet is orthogonal to the slopes; the height is chosen so that it is
orthogonal to the constants, too. We call this a vee.

• On each dyadic interval I as above, find a vector that is linear on each of L and
R and is orthogonal to the constants, slopes, and the vee on I . This one is called
an odd. (It has odd symmetry about the midpoint of I . It is the only vector of the
four that is disconnected in the interior of its support.)

276 S. Muthukrishnan and M. Strauss

We now confirm that the above algorithms can be modified in a straightforward
way to produce piecewise-linear representations. We need to check each of the fol-
lowing easy facts.

• Each data index is in O(log(N)) dyadic intervals of length at least 4, so is in the
support of O(log(N)) linear multiwavelets.

• Each multiwavelet vector is a piecewise-linear vector of O(1) pieces.
• Each element of a piecewise linear representation (i.e., for each bucket j , the

vector that results from setting to zero all heights and slopes other than the j th
height and slope) is the linear combination of the O(log(N)) linear multiwavelets
whose support intersects an endpoint of the bucket.

• The transform that takes N data points to the N linear multiwavelet coefficients
is expressible as a tree of basic filters, like in the case of Haar wavelets. For
linear multiwavelets, the basic filters have four inputs and four outputs and act
according to the matrix in Fig. 5. The vee and odd are sent to the overall output
and the constant and slope become input to another basic filter. At the leaf-level of
the tree, we need special 2-input, 2-output filters that take individual data items as
inputs and compute a constant and a slope as input to the 4-input, 4-output basic
filters.

• We can build the best B-bucket piecewise-linear representation H to a sparse
linear multiwavelet representation Rrob using the technique of Sect. 3.2; the time
and space are comparable.

Finally, we note that these techniques can be used more directly to produce lin-
ear multiwavelet representations. While these are less common than Haar wavelets,
histograms, or piecewise-linear representations, they are a natural variant in our
context.

6.2 Range Queries

To this point, we have discussed only building histograms that are nearly optimal
for point queries. We now consider range queries. That is, at the user level, a query
is a pair of points (�, r) and the ideal answer is A[�, r) = ∑

�≤i<r A[i]. An answer
from a (piecewise-constant) histogram H would be H[�, r) = ∑

�≤i<r H[i]. The
sum square error of a histogram is

∑

�,r

∣∣A[�, r)− H[�, r)∣∣2
.

Note that, for any H, the empty query [�, �) is always answered perfectly as 0. We
take the convention that A[r, �) =−A[�, r). It then follows that we may equivalently
take the sum over all queries (�, r) or require that � < r or � ≤ r ; the sum square
error corresponds exactly.

Building histograms for range queries is less straightforward than building his-
tograms for point queries. For point or range queries, note that the data can es-
sentially fix the bucketing. For example, if the data alternates between runs of val-
ues between 0 and 10 and runs of values between 1,000,000 and 1,000,010, then

Approximate Histogram and Wavelet Summaries of Streaming Data 277

the bucketing must respect the runs of data—anything else would be awful. For
range queries, even for a fixed bucketing, it is not obvious how to choose the bucket
heights. This is because the optimal height for bucket j depends on other bucket
heights and data outside the bucket—for example, if buckets j − 1 and j + 1 under-
estimate the data, we may want bucket j to overestimate the data, to give net error
contribution zero of the three buckets to overflying queries. Within a single bucket,
there is a tension between making the bucket height equal to the average of the data
in the bucket (to avoid contributing error to overflying queries) and setting the height
to optimize within-bucket queries. For example, if the data in a bucket of size s is
all zero except for a −1 near an endpoint and a +1 near the center, then the average
data value in the bucket is 0. But roughly half the intra-bucket range queries have
answer +1, roughly half have answer 0, and O(s) of the Θ(s2) intra-bucket queries
have answer −1, so, from the perspective of intra-bucket queries, the ideal height
will be positive. Unlike the situation for point queries, we know of no polynomial
time algorithm, even using full space, that finds the optimal B-bucket histogram for
range queries.

Nevertheless, we can easily transform this problem so that the previously de-
scribed approximation algorithms will work on it. We will need the notion of a con-
nected piecewise-linear representation. The definition is standard for continuous-
domain functions; we will say that an integer-domain function is B-piece piecewise-
linear and connected if it is the integer sampling of a B-piece piecewise-linear
continuous-domain function. For example, 〈2,4,6,8,7,6,5〉 is a 2-piece piecewise-
linear connected representation whereas 〈1,2,3,8,7,6,5〉 is 2-piece piecewise-
linear but not connected.

To exploit the above algorithms, we take the original data, A, and transform to the
prefix array, P(A). Under this transform, a piecewise-constant representation trans-
forms to a piecewise linear connected representation and the square error summed
over all range queries (�, r) transforms to N times the sum square error over all
point queries. That is, to get a piecewise-constant representation that minimizes the
sum square error of range queries to A, we only need to find a piecewise linear
connected representation H that minimizes the sum square error of point queries to
P(A), then output �(H), where �(H)[i] = H[i + 1] − H[i]. (Thus � and P are
opposite operations.) Also note that, if the length of A is N , then the length of P(A)

is N + 1 and P(A)[0] is always 0.
Unfortunately, we do not know how to find optimal piecewise linear connected

representations—the transformed problem is completely equivalent to the original.
But we do know how to find nearly optimal representations from the larger class
general piecewise-linear B-bucket representations, not necessarily connected. So
the algorithm is

• Convert A to P(A), on the fly.
• Find a (near-) best piecewise linear representation H for P(A).
• Output �(H).

Formally, recall that, if |A| = N , then |P(A)| = N + 1 and P(A)[0] = 0; we find a
piecewise-linear representation only for the N values P(A)[1,N]. Furthermore, one

278 S. Muthukrishnan and M. Strauss

can show that if the bucket heights are optimal in the piecewise-linear representation
(it is easy to make both the heights and slopes optimal), then the correspondence is
preserved between the sum square error over point queries to piecewise-linear H
and the sum square error over range queries to �(H). Finally, we consider �(H).
Since H is not connected, �(H) is not necessarily a B-bucket piecewise-constant
representation, but it is a (2B − 1)-bucket piecewise-constant representation, where
the discontinuities in H each give rise to a bucket of size one in �(H). For example,
if H is given by 〈1,2,3,8,7,6,5〉, then �(H) is 〈1,1,5,−1,−1,−1〉.

Next, we consider the changes necessary to our algorithms in order to realize
the desired transform. It is easy to perform the � operation in post-processing on
a small object like H. As for pre-processing, in the ordered aggregate model, we
can easily convert A to P(A) in time O(1) per item by a pipe before proceeding to
compute linear multiwavelet coefficients. In the dynamic model, note that an update
to A[i] transforms to an update to each P(A)[j] for j > i, i.e., to the function
χ[i+1,N+1). In turn, this causes an update to several linear multiwavelets, but only
those whose support intersects an endpoint of [i + 1,N + 1], i.e., the O(log(N))

of the linear multiwavelets whose support contains i + 1. The rest of the algorithms
are unchanged.

It follows that we can get a

1. (2,1)-approximation algorithm in polynomial time and full space using the tech-
niques of Sect. 3.1;

2. (2,1 + ε)-approximation algorithm for ordered aggregate data in space
(B log(N) log(M)/ε)c2 and time c1N + (B log(N) log(M)/ε)c2 using the tech-
niques of Sect. 4.3; and a

3. (2,1 + ε)-approximation algorithm for dynamic data in time and space
(B log(N) log(M)/ε)c2 using the techniques of Sect. 5.

Finally, note that, because the resulting 2B-bucket histogram has alternate buck-
ets of size 1, we only need to store B boundaries and 2B heights. Arguably, the
storage requirement is only 1.5 times that of a general B-bucket histogram.

We now describe briefly a (1,1 + ε)-approximation in polynomial time and full
space using an offline algorithm. First we build a robust representation Rrob for
P(A) in linear time, as above. Then we want to find the best piecewise-constant
histogram for range queries to �(Rrob). We now show how to do this, modifying
the techniques of Sect. 3.2.

The dynamic program of Sect. 3.2 asked, “What is the greatest prefix [0,m)

that has a representation with � buckets and error budget approximately k (in units
of δ)?” Knowing the answer for a given � and all k lets us answer the question for
�+ 1 and all k. The computational cost depends on the range and precision needed
for the error budget; in Sect. 3.2, the error could be at most 2Eopt and units of
δ ≥ Ω(εEopt/B) suffice.

To generalize for range queries, we will need to track an additional quantity.
Specifically, define the sum suffix error of a partial histogram H on [0,m) to be∑

i<m(A[i,m) − H[i,m)). Observe that if we know the sum suffix error σ and
the sum square error E for a prefix [0,m), that, together with local information in

Approximate Histogram and Wavelet Summaries of Streaming Data 279

a potential new bucket [m,m′), suffices to compute the two quantities for the new
prefix [0,m′). Specifically, the new sum suffix error is a linear combination of σ , the
overflight error A[m,m′)−H[m,m′), and the sum suffix error σ ′

1 within the bucket
[m,m′); the new sum square error is a linear combination of E, the sum square
error of queries within [m,m′), and σ1π1, where π1 is the analogously-defined sum
prefix error within [m,m′). To see this, one can trace the contribution to the three
quantities of a single range query, whose endpoints may be in [0,m), [m,m′), or
[m′,N). The coefficients in the linear combinations mentioned above depend only
on m,m′, and N ; they account for the number of ranges making contributions.

So, by analogy with Sect. 3.2, we ask, “What is a prefix [0,m) that has a repre-
sentation with � buckets, sum suffix error budget approximately i, and sum square
error budget approximately j?” As above, j needs to take values up to O(Eopt)

in units of Ω((ε/B)Eopt). By the Cauchy–Schwartz inequality, one can show that
the sum suffix error is at most

√
2NEopt, since, otherwise, these at-most-N suffixes

would contribute more than 2Eopt to the total sum square error. Observe that the
sum suffix error ultimately contributes to the sum square error only by multiply-
ing a sum prefix error, which is also bounded by

√
2NEopt. It follows that we only

need precision Ω((ε/B)
√

Eopt/N) for sum suffix errors in order that the B quanti-
zation errors total O(B · ((ε/B)

√
Eopt/N) · √NEopt) = O(εEopt). Thus there are

O(
√

NEopt/((ε/B)
√

Eopt/N)) = O(BN/ε) possible values for i, a number poly-
nomial in BN/ε, as desired. Since there are B/ε possibilities for m and B pos-
sibilities for �, the total space is polynomial in B,N , and ε. Similarly, the time is
polynomial in B,N, ε, and log logM , where M is bound on the range of values. Im-
provements to the running time will be of great interest. These results for rangesum
appear in [11].

6.3 Multidimensional Histograms

Now we generalize the basic problem to multi-, say two-, dimensional arrays. The
first issue that arises is what is meant by a two-dimensional histogram summary.
One can think of partitions into rectangles, squares and other shapes, or covers (i.e.,
allow cells to overlap) in which case we have a variety of ways to interpret the ap-
proximation in overlapped areas. Histograms with overlapping cells are discussed
in [14] where the authors present polylogarithmic space algorithms, albeit with
Ω(N2) time. Here, we focus on partition-based histograms. Among these, there
are a number of variations depending upon how the partition is done. The natural
and general class is one of arbitrary partitioning into B axis-parallel rectangles.

Such two (and higher) dimensional problems are known to be NP-hard, but, in
two dimensions, a (O(1),1)-approximation can be computed in polynomial time
and space [10]. For example, the authors in [10] give an algorithm to produce the
best hierarchical histogram. A hierarchical histogram is one with a hierarchical
bucketing, i.e., in which the bucketing is obtained by repeatedly partitioning one
of the existing buckets into two pieces. Since any bucketing of B buckets in two

280 S. Muthukrishnan and M. Strauss

Fig. 6 A 5-bucket
non-hierarchical partition
refined (by dashed line) into a
6-bucket partition histogram.
The five hierarchical cuts may
be made in the order indicated

dimensions can be refined to a hierarchical bucketing of 4B buckets [1], a best
4B-bucket hierarchical histogram is at least as good as the best B-bucket general
histogram, so we get a (4,1)-approximation to the general problem; see Fig. 6.

In streaming context, consider N × N integer-valued signal A. One can solve
the B-bucket, (4,1 + ε)-approximate two dimensional histogram problem using
(B log‖A‖ log(N)/ε)O(1) space, per-item time, and time per hist query. For static
data, for constants c1 and c2, we can (4,1 + ε)-approximate the best B-bucket his-
togram in time c1N

2 + (B log‖A‖ log(N)/ε)c2 and space (B log‖A‖ log(N)/ε)c2 ,
making one pass over the data, with the order we specify to lay out A. Both the
results above are achieved by using techniques that have been developed in the con-
text one dimensional histograms [6, 7], combining them with techniques known for
offline multidimensional histogramming [10], and extending them. The technical
details are in [12].

References

1. F. d’Amore, P.G. Franciosa, On the optimal binary plane partition for sets of isothetic rectan-
gles. Inf. Process. Lett. 44(5), 255–259 (1992)

2. M. Blum, R. Floyd, V. Pratt, R. Rivest, R. Tarjan, Time bounds for selection. J. Comput. Syst.
Sci. 7, 448–461 (1972)

3. G. Cormode, S. Muthukrishnan, An improved data stream summary: the count-min sketch and
its applications, in LATIN (2004), pp. 29–38

4. H. Jagadish, N. Koudas, S. Muthukrishnan, V. Poosala, K. Sevcik, T. Suel, Optimal histograms
with quality guarantees, in Proc. of the 1998 Intl. Conf. on Very Large Data Bases (VLDB)
(1998), pp. 275–286

5. A. Gilbert, Y. Kotidis, S. Muthukrishnan, M. Strauss, Surfing wavelets on streams: one-pass
summaries for approximate aggregate queries, in Proc. of the 2001 Intl. Conf. on Very Large
Data Bases (VLDB) (2001), pp. 79–88

6. A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, M. Strauss, Fast, small-space
algorithms for approximate histogram maintenance, in Proc. STOC (2002), pp. 389–398

7. S. Guha, P. Indyk, S. Muthukrishnan, M. Strauss, Histogramming data streams with fast per-
item processing, in Proc. ICALP (2002), pp. 681–692

8. S. Guha, N. Koudas, K. Shim, Data-streams and histograms, in Proc. of the 2001 Annual ACM
Symp. on Theory of Computing (STOC) (2001), pp. 471–475

9. S. Guha, N. Koudas, Approximating a data stream for querying and estimation: algorithms and
performance evaluation, in Proc. of the 2002 Intl. Conf. on Data Engineering (ICDE) (2002),
pp. 567–576

10. S. Muthukrishnan, V. Poosala, T. Suel, On rectangular partitionings in two dimensions: algo-
rithms, complexity, and applications, in Proc. ICDT (1999), pp. 236–256

11. S. Muthukrishnan, M. Strauss, in Rangesum Histograms. Proc. ACM-SIAM SODA (2003),
pp. 233–242

Approximate Histogram and Wavelet Summaries of Streaming Data 281

12. S. Muthukrishnan, M. Strauss, Maintenance of multidimensional histograms, in Proc. FSTTCS
(2003), pp. 352–362

13. G. Strang, V. Strela, Orthogonal multiwavelets with vanishing moments, in Proc. SPIE, ed. by
H.H. Szu. Wavelet Applications, vol. 2242 (1994), pp. 2–9

14. N. Thaper, S. Guha, P. Indyk, N. Koudas, Dynamic multidimensional histograms, in Proc.
ACM SIGMOD Conference (2002), pp. 428–439

Stable Distributions in Streaming Computations

Graham Cormode and Piotr Indyk

1 Introduction

In many streaming scenarios, we need to measure and quantify the data that is seen.
For example, we may want to measure the number of distinct IP addresses seen over
the course of a day, compute the difference between incoming and outgoing trans-
actions in a database system or measure the overall activity in a sensor network.
More generally, we may want to cluster readings taken over periods of time or in
different places to find patterns, or find the most similar signal from those previ-
ously observed to a new observation. For these measurements and comparisons to
be meaningful, they must be well-defined. Here, we will use the well-known and
widely used Lp norms. These encompass the familiar Euclidean (root of sum of
squares) and Manhattan (sum of absolute values) norms.

In the examples mentioned above—IP traffic, database relations and so on—
the data can be modeled as a vector. For example, a vector representing IP traffic
grouped by destination address can be thought of as a vector of length 232, where the
ith entry in the vector corresponds to the amount of traffic to address i. For traffic be-
tween (source, destination) pairs, then a vector of length 264 is defined. The number
of distinct addresses seen in a stream corresponds to the number of non-zero entries
in a vector of counts; the difference in traffic between two time-periods, grouped by
address, corresponds to an appropriate computation on the vector formed by sub-
tracting two vectors, and so on. As is usual in streaming, we assume that the domain

G. Cormode (B)
Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
e-mail: G.Cormode@warwick.ac.uk

P. Indyk
Laboratory for Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: indyk@mit.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_14

283

mailto:G.Cormode@warwick.ac.uk
mailto:indyk@mit.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_14

284 G. Cormode and P. Indyk

of the data and the size of the data are too massive to permit the direct computation
of the functions of interest—which are otherwise mostly straightforward—and in-
stead, we must use an amount of storage that is much smaller than the size of the
data. For the remainder of this chapter, we put our description in terms of vectors,
with the understanding that this is an abstraction of problems coming from a wide
variety of sources.

Throughout, we shall use a and b to denote vectors. The dimension of a vector
(number of entries) is denoted as |a|.

Definition 1 The Lp norm (for 0 < p ≤ 2) of a vector a of dimension n is

‖a‖p =
(

n∑

i=1

∣∣a[i]∣∣p
)1/p

.

The L0 norm is defined as

‖a‖0 =
(

n∑

i=1

∣∣a[i]∣∣0

)

= ∣∣{i
∣∣a[i] �= 0

∣∣}∣∣

where 00 is taken to be 0.

These are vector norms in the standard sense: the result is non-negative, and zero
only when the vector is zero; and the norm of the sum of vectors is less than the sum
of their norms. For p > 0, the Lp norm guarantees that ‖ka‖p = k‖a‖p for any
scalar k. This does not hold for p = 0, so L0 is not a norm in the strict sense. These
norms immediately allow the measurement of the difference between vectors, by
finding the norm of the (component-wise) difference between them. To be precise,

Definition 2 The Lp distance between vectors a and b of dimension n is the Lp

norm of their difference,

‖a − b‖p =
(

n∑

i=1

∣∣a[i] − b[i]∣∣p
)1/p

.

The Lp distance encompasses three very commonly used distance measures:

• Euclidean distance, given by L2 distance, is the root of the sum of the squares of
the differences of corresponding entries.

• The Manhattan distance, given by the L1 distance, is the sum of the absolute
differences.

• The Hamming distance, given by the L0 distance, is the number of non-zero
differences.

In this chapter, we will show how all three of the distances can be estimated
for massive vectors presented in the streaming model. This is achieved by making

Stable Distributions in Streaming Computations 285

succinct sketches of the data, which can be used as synopses of the vectors they
summarize. This is described in Sect. 2. In Sect. 3, we discuss some applications
of these results, to the distinct elements problem, and to computing with objects
that can’t be modeled as simple vectors. Lastly, we discuss related work and new
directions in Sects. 4 and 5.

2 Building Sketches Using Stable Distributions

2.1 Data Stream Model

We assume a very general, abstracted model of data streams where our input arrives
as a stream of updates to process. We consider vectors a,b, . . . , which are presented
in an implicit, incremental fashion. Each vector has dimension n, and its current
state at time t is a(t) = [a(t)[1],a(t)[2], . . . ,a(t)[n]]. For convenience, we shall
usually drop t and refer only to the current state of the vector. Initially, a is the zero
vector, 0, so a(0)[i] is 0 for all i. Updates to individual entries of the vector are
presented as a stream of pairs. The t th update is (it , ct), meaning that

a(t)[it] = a(t − 1)[it] + ct ,

a(t)[j] = a(t − 1)[j], j �= it .

For the most part, we expect the data to arrive in no particular order, since it is
unrealistic to expect it to be sorted on any attribute. We also assume that each index
can appear many times over in the stream of updates. In some cases, ct s will be
strictly positive, meaning that entries only increase; in other cases, ct s are allowed
to be negative also. The former is known as the cash register case and the latter
the turnstile case [35]. Here, we assume the more general case, that the data arrives
unordered and each index can be updated multiple times within the stream.

2.2 Stable Distributions

Stable Distributions are a class of statistical distributions with properties that allow
them to be used in finding Lp norms. This allows us to solve many problems of
interest on data streams. A stable distribution is characterized by four parameters
(following [38]), as follows:

• The stability parameter α ∈ (0,2],
• The skewness parameter β ∈ [−1,1],
• The scale parameter γ > 0,
• The shift parameter δ.

286 G. Cormode and P. Indyk

Although there are different parameterizations of stable distributions, we shall
fix values of β,γ and δ for this discussion. This has the effect that the different
parameterization systems all coincide. We set β = 0, which makes the distribution
symmetric about its mode. Setting γ = 1 and δ = 0 puts the mode of the distribution
at 0 and gives a canonical distribution. Formally then, the distributions we consider
are symmetric and strictly stable, but we shall simply refer to them as stable.

Definition 3 A (strictly) stable distribution is a statistical distribution with param-
eter α in the range (0,2]. For any three independent random variables X,Y,Z

drawn from such a distribution, for scalars a, b, aX + bY is distributed as (|a|α +
|b|α)1/αZ.

These are called stable distributions because the underlying distribution remains
stable as instances are summed: the sum of stable distributions (with the same α)
remains stable. This can be thought of a generalization of the central limit theorem,
which states that the sum of distributions (with finite variance) will tend to a Gaus-
sian distribution. Note that, apart from α = 2, stable distributions have unbounded
variance.

Several well-known distributions are known to be stable. The Gaussian (normal)

distribution, with density f (x) = e−x2/2√
2π

, is strictly stable with α = 2. The Cauchy

distribution, with density f (x) = 1
π(1+x2)

, is strictly stable with α = 1. For all values
of α ≤ 2, stable distributions can be simulated by using appropriate transformations
from uniform distributions, as we will show later.

2.3 Sketch Construction

By applying the above definition iteratively, we find that

Corollary 1 Given random variables X1,X2, . . . ,Xn independently and identically
distributed as X, a strictly stable distribution with stability parameter α = p, and a
vector a, then S = a[1]X1 + a[2]X2 + · · · + a[n]Xn is distributed as ‖a‖p X.

From this corollary, we get the intuition for why stable distributions are helpful
in computing Lp norms and Lp distances: by maintaining the inner product of vari-
ables from α-stable distributions with a vector being presented in the stream, we
get a variable S which is distributed as a stable distribution scaled by the Lp norm
of the stream, where p = α. Maintaining this inner product as the vector undergoes
updates is straightforward: given an update (i, c), we simply add Xi · c to S. How-
ever, what we have so far is an equality in distribution; what we are aiming for is an
equality in value. To solve this problem, we proceed as follows.

Let med(X) denote the median of X, i.e., a value M such that Pr[X > M] = 1/2.
Then, for any s > 0, we have med(s · |X|) = s · med(|X|). In our case, med(|S|) =

Stable Distributions in Streaming Computations 287

Fig. 1 Plot of empirically
found median of stable
distributions varying stability
parameter p in the range 0
to 2

med(‖a‖p · |X|) = ‖a‖p med(|X|). Moreover, med(|X|) depends only on p and
can be precomputed in advance. For α = 1 and α = 2 then med(|X|) = 1. For other
values of α, med(|X|) can be found numerically: Fig. 1 shows a plot of the median
values found by simulation, where each point represents one experiment of taking
the median of 10,000 drawings, raised to the power 1

p
. Thus, in order to estimate

‖a‖p , it suffices to compute an estimate z of med(|S|), and then estimate ‖a‖p by
z

med(|X|) .
To estimate M = med(|S|), we take a vector sk[1] . . . sk[m] of independent sam-

ples of the random variable S. In other words, for each i, we “generate” m indepen-
dent samples x1

i , . . . , xm
i of the Xi , and then compute sk[j] = a[1]xj

1 +· · ·+a[n]xj
n .

We call this vector sk an α-stable sketch of the vector a. This can be viewed com-
putationally as maintaining each entry of the sketch as the inner product between
the vector and appropriately chosen random vectors, i.e., sk[j] = a · xj . The proce-
dure is presented in more detail in Fig. 2. Note that the vector sk can be computed
in a streaming fashion; in particular, the numbers x

j
i are not actually stored. It is

important that we get the same value for x
j
i every time it is accessed: this is done by

using a pseudo-random number generator that is initialized with i to give a stream
of values x

j
i . Then we use the following lemma (for the random variable Z = |S|,

the absolute value of S).

Lemma 1 For any one-dimensional random variable Z with continuous density, let
F(t) = Pr[Z ≤ t]. There is a constant C > 0 such that for m = C

ε2 log 2
δ
, if we take

m independent samples z1, . . . , zm of Z and set z to be the median element of the
sequence z1, . . . , zm, then

Pr

[
F(z) ∈

[
1

2
− ε,

1

2
+ ε

]]
> 1 − δ.

Proof Let t be such that F(t) = 1
2 − ε. If F(z) < F(t) = 1

2 − ε, then zi < t for

most zi ’s, and therefore |{i:zi≥t}|
m

< 1
2 . However, for each zi we have Pr[zi ≥ t] =

1
2 + ε. Therefore, from Chernoff bound [34] we know that there exists a constant

288 G. Cormode and P. Indyk

C > 0 such that

P1 = Pr

[
F(z) <

1

2
− ε

]
≤ exp

(
−ε2m

C

)
.

Using the same argument, we obtain

P2 = Pr

[
F(z) >

1

2
+ ε

]
≤ exp

(
−ε2m

C

)
.

By setting m = C

ε2 log(2/δ), we obtain P1 + P2 ≤ δ. �

Note that our goal is to obtain an approximation to the median M , i.e., the number
such that F(M) = 1

2 , while the above provides us (with probability 1 − δ) with z

such that F(z) ∈ [1
2 − ε, 1

2 + ε]. For general functions F , z could be a bad estimate
of M ; e.g., if F is “flat” around the point 1

2 . However, if the derivative F ′ of F

is bounded by 1
B

from below around 1
2 , then the above implies that z ∈ [M − Bε,

M +Bε], i.e., that z = (1 ±Bε)M , which is precisely what we want.
It suffices to verify if the derivative of the function F for the random variable |S|

is bounded away from 0 around 1
2 . For α = {1,2}, this can be verified analytically.

For other values of α, this can be verified computationally, e.g., by plotting F . It
should be noted that the lower bound for F ′(1

2) depends on α, and tends to ∞ as α

tends to 0.

2.4 Simulating Stable Distributions

When implementing this technique, we need to be able to generate values from
a stable distribution. These can be generated by using appropriate transformations
from uniform random distributions.

• For α = 1, we can use the Cauchy distribution, which is easy to draw from.
If U is a uniform random distribution returning values in the range [0,1], then
tan(π(U − 1

2)) is distributed with the Cauchy distribution.
• For α = 2, we can use the Normal distribution, which can be drawn from using the

Box–Muller transformation: If U and V are independently distributed uniformly
over [0,1], then

√−2 lnU cos(2πV) is distributed as a normal distribution.
• For all other values of α ∈ (0,2), stable distributions can be simulated using

the method of Chambers, Mallows and Stuck [6]. These take uniform distribu-
tions U,V onto the range [0,1] and output a value drawn from a stable distribu-
tion with parameter α �= 1. Set θ(U) = π · (U − 1

2). Then

stable(U,V,α) = sinαθ(U)

cos1/α θ(U)

(
cos(θ(U) · (1 − α))

− lnV

) 1−α
α

is distributed as a stable distribution with parameter α.

Stable Distributions in Streaming Computations 289

Algorithm to compute sketches of a stream

1: for 1 ≤ j ≤ m do
2: sk[j]← 0.0
3: for all tuples (i, c) do
4: initialize-random-seed(i)
5: for 1 ≤ j ≤ m do
6: u ← uniformly-random-from(0,1)

7: v ← uniformly-random-from(0,1)

8: x
j
i ← stable(u, v,α)

9: sk[j]← sk[j] + c · xj
i

10: return median(|sk[1]|, . . . , |sk[m]|)/med(|X|)
Fig. 2 Sketching algorithm

2.5 The Sketch Algorithm

The full algorithm to compute a sketch of a stream is given in Fig. 2. It works
as follows: lines 1–2 initialize the sketch vector to a vector of all zeros. Then for
each new tuple (i, c), we initialize a pseudo-random number generator with the
index i (line 4), so that when we draw random values (lines 6–7), these are pseudo-
random functions of i, the same every time the same value of i is seen in the stream.
Each successive call to the random number generator yields a new value, but the
sequence of values following each re-initialization is the same. Line 8 takes two
values in the range 0 to 1, and transforms them to yield a value drawn from a stable
distribution with parameter α. The j th entry of the sketch is updated, by adding on
the contribution of the update c times the stable value in line 9. This is repeated for
all m entries in the sketch. Lastly, to return an estimate of the norm of the vector, we
take the median of the (absolute) values of the sketch, and scale this by the median
of the stable distribution with parameter α.

We state a theorem that summarizes the properties of this algorithm.

Theorem 1 ([26]) In space O(1
ε2 log 1

δ
) we can compute an α-stable sketch of a

vector a presented in the turnstile streaming model. Using this sketch we can com-
pute an estimate of ‖a‖p for p = α that is accurate within a factor of 1 ± ε with
probability at least 1 − δ. Processing each update to the vector a takes time linear
in the size of the sketch, O(1

ε2 log 1
δ
).

This follows from the above lemma and the preceding discussion.
Note that to complete the proof we must also argue that we can replace truly

random samples x
j
i with values drawn using pseudo-random generators. The proof

of this relies on the pseudo-random generators of Nisan [37], and we refer the in-
terested reader to the details in [26]. In practice, it suffices to use standard random
number generators to generate uniform pseudo-random numbers, and use the trans-
forms given in the previous section.

290 G. Cormode and P. Indyk

2.6 Other Estimators

In the previous sections we used the median of sk[1], . . . , sk[m] to estimate the
norm of the stream vector. There are alternative estimators that one can use instead.
In particular, for the L1 norm, Li et al. [32] proposed the following bias-corrected
geometric mean estimator:

E = cosm

(
π

2m

) m∏

j=1

∣∣sk[j]∣∣1/m
.

This estimator is more accurate than the median estimator when the sample size
is small [32].

A similar estimator can be used to estimate the more general Lp norms, p ∈
(0,2]. Unlike the median estimator (which requires some computation to determine
the right parameters of the distribution function F), the geometric mean estimator
is computable using a simple analytical formula; see [31] for more details.

2.7 Combining Sketches

We now state a number of the properties of this sketching technique, which follow
immediately from the method of their construction. These show how the α-stable
sketches have application to a variety of circumstances.

Corollary 2

sk(a + b) = sk(a)+ sk(b),

sk(a − b) = sk(a)− sk(b).

These two facts follow immediately from the fact that the sketches are generated
as the inner product between the vector a and vectors of values drawn from random
distributions, x

j
i . So, the sketch of the sum of two vectors can be computed from

the sum of their sketches. This allows the distributed computation of sketches by
multiple parties: after agreeing in advance on a random number generator to use,
sketches of different data can be computed in parallel, and then the sketches com-
bined to get the sketch of the sum of the data. Similarly, the sketch of the difference
of two vectors, and hence the Lp distance between them, can be computed from
sketches of the original vectors. This allows large data sets to be compared by only
storing the short summarizing sketches of them.

Corollary 3

sk(c · a)= c · sk(a).

Stable Distributions in Streaming Computations 291

Also by the linearity of construction, the sketch of a vector a scaled by a scalar
c can be computed directly from the sketch of the original vector. This allows, for
example, a new day’s set of data to be compared against the average of the previous
weeks data: the sketch of the average is computed by summing the sketches of
seven days data, and scaling by 1

7 . Similarly, the popular exponential decay model
where we compute a weighted average of previous vectors a(0),a(1),a(2), . . . as
(1−λ)(a(0)+λa(1)+λ2a(2)+· · ·+λia(i)+· · ·) (0 < λ < 1) is easy to construct
iteratively. Suppose we have a sketch of the current vector sk, and wish to include a
as the new day’s data. Then we can set sk[j]← (1− λ)sk(a)[j] + λsk[j] for all j .

3 Application to Streaming Problems

In this section, we outline some of the applications within streaming and beyond
that stable distributions have been used to address. These include: estimating the
number of distinct items in a stream; as a way to track embeddings in small space;
and for geometric problems such as clustering and approximate nearest neighbor
searching.

3.1 L0 and Counting Distinct Items

Suppose we are shown a sequence of items, and want to know how many distinct
items there are in the sequence. This is a fundamental question in data stream anal-
ysis, and it has a large number of applications both in this form and for general-
izations of this problem. Assume that the each item is an integer in the range 1..n.
Then we could maintain a vector a where a[i] counts the number of occurrences
of item i. Arrivals of new items can be modeled as adding one to the appropriate
entry in the vector. In the turnstile streaming model, departures can be modeled as
subtracting one from the corresponding entry. The number of distinct items corre-
sponds to the L0 norm a, that is, the number of non-zero counts. The L0 norm is
somewhat more general than this, since it can also incorporate negative counts. Such
negative counts arise, for example, when we want to compare two vectors of counts,
and find in how many places the counts differ (the Hamming difference). Note that
stable distributions do not exist for α = 0, so we cannot directly apply the sketching
technique. Instead, we observe that for sufficiently small values of p, the Lp norm
approximates the L0 norm:

Theorem 2 ([11]) The L0 norm ‖a‖0 can be approximated by finding the Lp norm
of the integer valued vector a for sufficiently small p (0 < p ≤ ε

logU
) provided we

have an upper bound (U) on the size of each entry in the vector, so ∀i : |a[i]| < U .

Proof We show that the L0 norm of a vector can be well-approximated by∑
i |a[i]|p = ‖a‖p

p for a small value of p (p > 0). If, for all i we have that |a[i]| ≤U

292 G. Cormode and P. Indyk

Fig. 3 The “dominance norm” of multiple signals (left) computes the “area under the curve” of
the upper envelope of multiple signals (right)

for some upper bound U , then

‖a‖0 =
∑

i

∣
∣a[i]∣∣0 ≤

∑

i

∣
∣a[i]∣∣p ≤

∑

i

Up
∣
∣a[i]∣∣0

≤ Up
∑

i

∣∣a[i]∣∣0 ≤ (1 + ε)
∑

i

∣∣a[i]∣∣0 = (1 + ε)‖a‖0.

We use the fact that a[i] is an integer and ∀i : |a[i]| ≤U . The last inequality uses
Up ≤ (1 + ε) which follows if we set p ≤ ln(1+ε)

lnU
≈ ε

lnU
. �

From this, it follows that if we set the α of our sketches to be sufficiently small—
as small as the value of p indicated by the above analysis—and compute sketches
using stable distributions, then this can approximate the number of distinct items,
and more generally the L0 norm and L0 difference between vectors. Since by defi-
nition the stable distributions capture the Lp norm, we have to take no special action
when the vectors may contain negative values. Because the sketch is formed by a
linear projection of random vectors with the input data, they naturally and smoothly
accept updates of negative values.

When implementing this technique there are various technical details to deal
with. Values drawn from stable distributions with small stability parameters α tend
to grow very large, so even standard floating point formats are insufficient to handle
them. However, in practice it usually suffices to set α to be a sufficiently small con-
stant value. The experiments in [10] show that with α = 0.02, good approximations
to the L0 norm and the number of distinct items can be found.

3.2 Dominance Norms

The approach of using stable distributions to capture the L0 norm has been applied
to other problems: in [13], the so-called “dominance norm” of data is approximated
using stable distributions. The dominance norm is defined as

∑
i maxj ai,j for a

sequence of data items of the form (i, ai,j), intuitively giving the “worst-case in-
fluence” of a sequence of signal values. This definition is illustrated in Fig. 3: for

Stable Distributions in Streaming Computations 293

the three signals shown on the left, the dominance norm is computed by finding the
upper envelope of the signals (shown on the right), and taking the area under this
upper envelope.

One can approximate this computation by transforming the input into an instance
of computing L0 norms. Suppose that the signal values ai,j are integers. We can
(conceptually) replace each ai,j with a sequence of distinct items, ai,1, ai,2, . . . , ai,j .
Now observe that the number of distinct items in the transformed stream is exactly
the dominance norm. This shows that L0 is at the heart of the dominance norm.
However, this approach is not scalable: naively replacing ai,j from the input with
ai,j items means that the algorithm is exponentially slow in the size of the input.
Instead, we can make use of the properties of stable distributions to build an esti-
mator whose distribution is correct. The key idea is to round each ai,j to the closest
power of (1+ε), (1+ε)i , say, and to add i appropriately scaled values from a stable
distribution to build a sketch with the right distribution [13].

3.3 Application to Computing Embeddings

Not all objects can be naturally modeled as vectors. In dealing with massive items
that consist of text, geometric data, structured data or other objects, new methods
are needed to compare and measure them. However, the α-stable sketches for L1
and L2 distance are sufficiently flexible that they allow the following “embedding
approach”. Consider any set of objects X, with a distance functions D(q, r) defined
for any q, r ∈X.

Definition 4 A mapping f : X → Lp is called an embedding with distortion c, if
for any q, r ∈X, we have

D(q, r) ≤ ∥∥f (q)− f (r)
∥∥

p
≤ c ·D(q, r).

Here, we use Lp as shorthand for “a vector space with the vector Lp norm”.
This definition can be further extended to allow the inequalities to hold with certain
probability.

If the mapping f works for some p ∈ {0,1,2}, and if f can be computed in a
streaming fashion, then we can obtain a streaming algorithm for computing short
sketches of objects from the space X. That is, for any q, r ∈ X defined by a stream,
we can compute their sketches such that D(q, r) can be approximated given the
sketches. See [27, 33] for more on embeddings and their algorithmic applications.

The simplest example of this approach is given in [14], where it is shown that
biologically motivated distances on permutations can be approximated up to small
constant factors by encoding information about adjacent characters in the permuta-
tion as appropriate vectors in L1.

More involved is the method in [12] which shows that a distance between strings
can also be embedded into L1. Only local information about the sequence is used in

294 G. Cormode and P. Indyk

Fig. 4 Example parse tree for block edit distance text embedding

order to build the vector representation. The construction is more complex, since the
sequence is parsed into small blocks, which in turn are re-parsed at successive levels
in a hierarchy until a single item is left that represents the whole string. An example
parsing of a string is shown in Fig. 4: a tree is built whose leaves are the characters of
the string, and whose internal nodes represent selected substrings. The parsing can
be computed as successive characters are observed, and the increasingly long sub-
strings given by the internal nodes can be represented compactly with hash values.
These substrings can be thought of as defining dimensions of a high-dimensional
vector space. In the paper, it is shown that the L1 distance between two vectors
created by this process approximates an editing distance between the corresponding
strings. Since the parsing can be computed online, sketches for this distance can
be computed in small space using the α-stable approach. In total, O(logn log∗ n)

space is required to process a string of length n, and the embedding has distortion
O(logn log∗ n).

This approach is extended from string based data to tree structures (such as XML
documents) in [22]. Using a similar parsing approach, it is shown how an appropri-
ate editing distance on trees can be approximated up to a factor of O(log2 n log∗ n)

for trees with at most n nodes. Further, with a different kind of sketch based on sta-
ble distributions, the join size of a set of trees can be approximated. Here, the join
size is the number of pairs that are within a threshold distance of each other.

Another example of this approach is given in [28]. Consider a discrete d-dimen-
sional space {1, . . . ,�}d , and let P and Q be two subsets from that space. De-
fine M(P,Q) to be the cost of the matching between P and Q with minimum
cost: the cost of the matching is given by the sum of the distances between the
paired-up points. The value of M(P,Q) is a natural measure of a difference be-
tween two sets of points. Building on the work of Charikar [8], Indyk [28] showed
that M(·, ·) can be embedded into L1 with distortion O(log�), and that embedding
can be computed in small space. In fact, the embedding is quite simple. Let Gi ,
i = 1, . . . , t = log�, be square grids over �d with side length 2i−1, shifted by a
vector chosen uniformly at random from [0,�]d . For each cell c in Gi , let ni

P (c)

be the number of points in P that fall into c; note that ni
P can be viewed as a (high-

dimensional) vector. The embedding f maps P into (essentially) a concatenation
of vectors 20n0

P ,21n1
P , . . . ,2t nt

P . Observe that the embedding can be computed in
a streaming fashion: adding a point p to P can be implemented by incrementing
t positions in f (P) that correspond to cells containing p; deleting a point from P

Stable Distributions in Streaming Computations 295

can be implemented in an analogous way. Thus, the embedding can be naturally
combined with the sketching algorithm from the previous section.

It is worth mentioning that the above approximation factor O(log�) cannot be
much improved if one insists on proceeding through the L1 norm. Specifically, Naor
and Schechtman [36] showed that any such embedding must incur Ω(log�) distor-
tion. This lower bound may be tight for any approximation, and it will be interesting
to resolve this issue.

Finally, we mention that an analogous embedding into L0 gives a streaming al-
gorithm for estimating the cost of the minimum spanning tree of set of points P , up
to a factor of O(log�); see [28] for details.

3.4 Clustering and Nearest Neighbors

The sketch structure can be used as a “distance oracle”, giving dependable approxi-
mations of the distance between high dimensional vectors while keeping only a con-
stant amount of space for each object. They can therefore be applied to a number of
data indexing and data mining questions which rely on such distance computations,
replacing exact distance computations with approximations. For example, in order
to perform clustering on a set of high dimensional vectors that are defined by data
streams, we can keep sketches of the vectors, and then run the clustering algorithm
using those sketches. This approach was investigated in [11], where experimental
evidence was given that the clusterings found are of similar quality to those using
exact distance measurements. The idea of replacing exact distance computations
with approximate ones can be analyzed formally. For example, it is easy to show
that for the k-center objective function that using approximate distances changes
the approximation quality of the result from 2 to 2 + ε [9].

A more involved approach was taken in [16]. This showed that sketches us-
ing stable distributions could be fitted into the framework of ‘Locality Sensitive
Hash Functions’, and consequently can be used in the construction of Approximate
Nearest Neighbor search structures. Although this more generally applies to non-
streaming scenarios, the whole algorithm can be run on data presented in a stream-
ing format. The space that is needed is a function of the number of data points, rather
than a function of the total size of the input data.

4 Related Work

The sketch for L2, which is formed as the inner product between the vector a and
vectors r , each of whose entries is drawn independently from a Gaussian distri-
bution, can be seen as a weaker version of the well-known Johnson–Lindenstrauss
Lemma [30]. This states that such there exist embeddings of high dimensional vec-
tors in Euclidean space into a space with dimension O(1

ε2 log 1
δ
) which has distor-

tion 1 + ε with probability 1 − δ. Here, we have shown the result for a space where

296 G. Cormode and P. Indyk

we use the median operator to compute the distance. It has been shown that by tak-
ing the appropriately scaled L2 difference between such sketch vectors formed in
the same way also has this property (see, for example, [29]). What we also have
here is a version of this “weak Johnson–Lindenstrauss” lemma for L1 and L0. This
is about as strong as we may hope for, since it has been shown that it is not possi-
ble to create an approximate distance preserving of L1 into a lower dimensional L1
space [4]. Here, we use an L1-like operator: instead of computing the L1 norm of
the sketch as

∑
j |sk[j]|, we compute medj (|sk[j]|). 1

The fundamental work of Alon, Matias and Szegedy [2] (described in an earlier
chapter) initiated recent focus on computing norms of data streams. An algorithm
given therein computes the second frequency moment of a data stream, F2. As was
observed in [18], this directly gives a solution to finding the L2 norm and L2 dif-
ference between streams in the turnstile model. For most applications, the fact that
updates can be performed very quickly, and that the necessary four-wise indepen-
dent hash functions can be computed easily [39] means that this approach will be
preferable in many situations.

For computing the L1 difference, [18] shows how to modify the Alon–Matias–
Szegedy method using carefully constructed range-summable random variables.
However, this is under very strong restrictions on the data: each index can be seen
at most once for each vector. The approach here allows a much more general model
of the data, and is easier to compute. Similarly, [20] extended the above approach
to arbitrary Lp norms for p ∈ (0,2), but with the same disadvantages. The main
results described in this chapter on constructing sketches using stable distributions
(Sect. 2) appeared first in [26].

The distinct elements problem has attracted a great deal of study. In the arrivals
only (cash register) model, algorithms are known which are significantly faster than
the approach described here; see [3, 17, 19, 23, 24], and the discussions in elsewhere
in this book. In the more general problem of computing the L0 norm and L0 differ-
ence, where entries in the implicit vector defined by the stream can be negative, the
method using stable distributions is the only published solution. A detailed empir-
ical study of this approach, and a collection of ways to increase processing speed,
are given in [10].

In terms of the application of α-stable sketches to speeding up clustering, see
elsewhere in this book for details of much of the other work on clustering data
streams. Typically, the goal is typically to compute a representation of the optimal
clustering of a very large number of points in some arbitrary metric space, when
each point has a small representation. Here, we considered a somewhat different
scenario, where the number of points to cluster is not too large, but each point is
represented by a very high dimensional vector in some Lp normed space. Hence, the
two approaches are in some sense complementary and are not directly comparable.

1Observe that since we need the median operator, this is not a normed space. This is an important
restriction, since it means that one cannot immediately apply well-known techniques which work
on specific normed spaces, such as clustering or similarity search. In contrast, since the Johnson–
Lindenstrauss lemma does yield points in a lower dimensional metric space, all algorithms for
Euclidean space can be applied to the resulting transformed data.

Stable Distributions in Streaming Computations 297

There is a very large body of work on Stable Distributions in Statistics and related
areas. For pointers, see the books by Zolotarev [40, 42], and Nolan [38]. It is rea-
sonable to say that the applications of stable distributions to streaming computations
are far from exhausted.

5 Extensions and New Directions

Finally, we outline some potential areas for future research to extend the applications
of stable distributions to streaming computations.

• One obstacle to implementing sketch-based summarization of very high speed
data streams is that the time cost of maintaining sketches can be too expensive
in some situations. This derives in part from the cost of simulating stable distri-
butions using transforms from uniform distributions. The main cost comes from
having to update every entry in the sketch with every update. For L2 norms al-
ternative methods are known which are asymptotically faster than Ω(1

ε2 log 1
δ
)

per update; for example, see [7, 39] or the recent work on the “fast Johnson–
Lindenstrauss transform” [1]. Likewise, for the problem of approximating the
number of distinct items in the arrivals only (cash register) model, then faster up-
dates are possible. It remains an open problem to design algorithms to compute
L1 norms and L0 norms in the turnstile model, which have lower per-item update
cost. Note that one cannot expect lower space costs, since lower bounds of Ω(1

ε2)

have been shown [41].
• It is of interest to address the engineering question of how to incorporate stable

sketch computations into high speed data stream systems [15]. Various precompu-
tations may be possible to speed up the computations, using appropriate look-up
tables and so on. Techniques such as fixed point arithmetic may also be appropri-
ate for certain fixed Lp values (p = 1 or p = 2, say), where the generated values
do not grow too large. Other approaches may take advantages of skew in the data
to, for example, collect together multiple instances of the same vector entry being
updated, to further speed up the update time. There is a need to study in detail
many implementation issues such as these to make the use of stable sketches
within real situations a practical reality.

• The flexibility of this approach means that it is inviting to consider whether there
are similar methods to compute other quantities of interest on the stream. For ex-
ample, the “empirical entropy” of a sequence, given by

∑
i ai logai has a number

of applications, as does the “sum of logs”,
∑

i logai . Recently, progress has been
made on computing the empirical entropy of counts of items in the stream [5, 21],
it remains open to determine whether stable distributions or similar techniques
can also be applied to these problems.

• It is an intriguing fact that stable distributions exist only in the range α ∈ (0,2],
which corresponds to the range of Lp norms that can be approximated efficiently
(essentially in constant space) on the stream. Meanwhile, there are provable lower
bounds on the space required to estimate Lp norms for p > 2 that are polynomial

298 G. Cormode and P. Indyk

in n, the dimension of the vector. The connection between these facts may be
more than mere coincidence, and making this connection explicit could lead to
the development of stronger lower bounds, or lower bounds for other, related
problems.

• Many techniques using stable distributions make use of a natural range summ-
ability-like property of these distributions. That is, their defining feature is that
the sum of stable distributions is itself distributed stable. This results in care-
ful constructions of random variables such that the range sum of particular sub-
ranges of variables can be computed efficiently (exponentially more efficient than
directly computing the sum). Such constructions have been shown for α = 1 and
α = 2 [25]. It remains to generalize these techniques to general values of α, and
to show new applications.

• Finally, there is a large literature on stable distributions, resulting from their
study in statistics, economics and beyond. Applications of stable distributions
to streaming computations have only just begun to make use of the wealth of ex-
isting knowledge about these distributions, and it is very conceivable that there
are many other applications of these distributions to problems of practical interest
in streaming computations.

References

1. N. Ailon, B. Chazelle, Approximate nearest neighbors and the fast Johnson–Lindenstrauss
transform, in Proceedings of the ACM Symposium on Theory of Computing (2006)

2. N. Alon, Y. Matias, M. Szegedy, The space complexity of approximating the frequency mo-
ments, in Proceedings of the ACM Symposium on Theory of Computing (1996), pp. 20–29.
Journal version in J. Comput. Syst. Sci. 58, 137–147 (1999)

3. Z. Bar-Yossef, T.S. Jayram, R. Kumar, D. Sivakumar, L. Trevisian, Counting distinct elements
in a data stream, in Proceedings of RANDOM 2002 (2002), pp. 1–10

4. B. Brinkman, M. Charikar, On the impossibility of dimensionality reduction in L1, in IEEE
Conference on Foundations of Computer Science (2003), pp. 514–523

5. A. Chakrabarti, G. Cormode, A. McGregor, A near-optimal algorithm for computing the en-
tropy of a stream, in Proceedings of ACM-SIAM Symposium on Discrete Algorithms (2007)

6. J.M. Chambers, C.L. Mallows, B.W. Stuck, A method for simulating stable random variables.
J. Am. Stat. Assoc. 71(354), 340–344 (1976)

7. M. Charikar, K. Chen, M. Farach-Colton, Finding frequent items in data streams, in Proced-
ings of the International Colloquium on Automata, Languages and Programming (ICALP)
(2002), pp. 693–703

8. M.S. Charikar, Similarity estimation techniques from rounding algorithms, in Proceedings of
the ACM Symposium on Theory of Computing (2002), pp. 380–388

9. G. Cormode, Sequence distance embeddings. PhD thesis, University of Warwick (2003)
10. G. Cormode, M. Datar, P. Indyk, S. Muthukrishnan, Comparing data streams using Hamming

norms, in Proceedings of the International Conference on Very Large Data Bases (2002),
pp. 335–345. Journal version in IEEE Trans. Knowl. Data Eng. 15(3), 529–541 (2003)

11. G. Cormode, P. Indyk, N. Koudas, S. Muthukrishnan, Fast mining of tabular data via ap-
proximate distance computations, in Proceedings of the International Conference on Data
Engineering (2002), pp. 605–616

12. G. Cormode, S. Muthukrishnan, The string edit distance matching problem with moves, in
Proceedings of ACM–SIAM Symposium on Discrete Algorithms (2002), pp. 667–676

Stable Distributions in Streaming Computations 299

13. G. Cormode, S. Muthukrishnan, Estimating dominance norms of multiple data streams, in
Proceedings of the European Symposium on Algorithms (ESA). LNCS, vol. 2838 (2003)

14. G. Cormode, S. Muthukrishnan, S.C. S. ahinalp, Permutation editing and matching via embed-
dings, in Proceedings of 28th International Colloquium on Automata, Languages and Pro-
gramming, vol. 2076 (2001), pp. 481–492

15. C. Cranor, T. Johnson, O. Spatscheck, V. Shkapenyuk, Gigascope: a stream database for net-
work applications, in Proceedings of ACM SIGMOD International Conference on Manage-
ment of Data (2003), pp. 647–651

16. M. Datar, N. Immorlica, P. Indyk, V.S. Mirrokni, Locality-sensitive hashing scheme based on
p-stable distributions, in Symposium on Computational Geometry (2004)

17. C. Estan, G. Varghese, M. Fisk, Bitmap algorithms for counting active flows on high speed
links, in Proceedings of the Internet Measurement Conference (2003), pp. 153–166

18. J. Feigenbaum, S. Kannan, M. Strauss, M. Viswanathan, An approximate L1-difference al-
gorithm for massive data streams, in IEEE Conference on Foundations of Computer Science
(1999), pp. 501–511

19. P. Flajolet, G.N. Martin, Probabilistic counting, in IEEE Conference on Foundations of Com-
puter Science (1983), pp. 76–82. Journal version in J. Comput. Syst. Sci. 31, 182–209 (1985)

20. J. Fong, M. Strauss, An approximate Lp-difference algorithm for massive data streams, in
Symposium on Theoretical Aspects of Computer Science (STACS) (2000), pp. 193–204

21. S. Ganguly, B. Lakshminath, Estimating entropy over data streams, in Proceedings of the
European Symposium on Algorithms (ESA) (2006)

22. M. Garofalakis, A. Kumar, Correlating XML data streams using tree-edit distance embed-
dings, in Proceedings of ACM Principles of Database Systems (2003), pp. 143–154

23. P. Gibbons, Distinct sampling for highly-accurate answers to distinct values queries and event
reports, in Proceedings of the International Conference on Very Large Data Bases (2001),
pp. 541–550

24. P. Gibbons, S. Tirthapura, Estimating simple functions on the union of data streams, in ACM
Symposium on Parallel Algorithms and Architectures (SPAA) (2001), pp. 281–290

25. A. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, M. Strauss, Fast, small-space
algorithms for approximate histogram maintenance, in Proceedings of the ACM Symposium
on Theory of Computing (2002), pp. 389–398

26. P. Indyk, Stable distributions, pseudorandom generators, embeddings and data stream compu-
tation, in IEEE Conference on Foundations of Computer Science (2000), pp. 189–197

27. P. Indyk, Algorithmic aspects of geometric embeddings (invited tutorial), in IEEE Conference
on Foundations of Computer Science (2001), pp. 10–35

28. P. Indyk, Algorithms for dynamic geometric problems over data streams, in Proceedings of
the ACM Symposium on Theory of Computing (2004)

29. P. Indyk, R. Motwani, Approximate nearest neighbors: towards removing the curse of dimen-
sionality, in Proceedings of the ACM Symposium on Theory of Computing (1998), pp. 604–
613

30. W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mapping into Hilbert space. Contemp.
Math. 26, 189–206 (1984)

31. P. Li, Very sparse stable random projections, estimators and tail bounds for stable random
projections. Technical report (2006). arXiv:cs.DS/0611114

32. P. Li, T. Hastie, K.W. Church, Nonlinear estimators and tail bounds for dimension reduction
in L1 using Cauchy random projections. J. Mach. Learn. Res. (2007)

33. J. Matoušek, Lectures on Discrete Geometry (Springer, Berlin, 2002)
34. R. Motwani, P. Raghavan, Randomized Algorithms (Cambridge University Press, Cambridge,

1995)
35. S. Muthukrishnan, Data streams: algorithms and applications, in Proceedings of ACM–SIAM

Symposium on Discrete Algorithms (2003)
36. A. Naor, G. Schechtman, Planar earthmover is not in L1, in IEEE Conference on Foundations

of Computer Science (2006)

http://arxiv.org/abs/arXiv:cs.DS/0611114

300 G. Cormode and P. Indyk

37. N. Nisan, Pseudorandom generators for space-bounded computation. Combinatorica 12, 449–
461 (1992)

38. J. Nolan, Stable distributions. Available from http://academic2.american.edu/~jpnolan/stable/
chap1.ps

39. M. Thorup, Y. Zhang, Tabulation based 4-universal hashing with applications to second mo-
ment estimation, in Proceedings of ACM-SIAM Symposium on Discrete Algorithms (2004),
pp. 615–624

40. V.V. Uchaikin, V.M. Zolotarev, Chance and Stability: Stable Distributions and Their Applica-
tions (VSP, Utrecht, 1999)

41. D. Woodruff, Optimal space lower bounds for all frequency moments, in Proceedings of
ACM–SIAM Symposium on Discrete Algorithms (2004), pp. 167–175

42. V.M. Zolotarev, One Dimensional Stable Distributions. Translations of Mathematical Mono-
graphs, vol. 65 (Am. Math. Soc., Providence, 1983)

http://academic2.american.edu/~jpnolan/stable/chap1.ps
http://academic2.american.edu/~jpnolan/stable/chap1.ps

Tracking Queries over Distributed Streams

Minos Garofalakis

Effective Big Data analytics pose several difficult challenges for modern data man-
agement architectures. One key such challenge arises from the naturally streaming
nature of big data, which mandates efficient algorithms for querying and analyz-
ing massive, continuous data streams (that is, data that is seen only once and in a
fixed order) with limited memory and CPU-time resources. Such streams arise nat-
urally in emerging large-scale event monitoring applications; for instance, network-
operations monitoring in large ISPs where usage information from numerous sites
needs to be continuously collected and analyzed for interesting trends. In addition
to memory- and time-efficiency concerns, the inherently distributed nature of such
applications also raises important communication-efficiency issues, making it crit-
ical to carefully optimize the use of the underlying network infrastructure. In this
chapter, we provide a brief introduction to the distributed data streaming model
and the Geometric Method (GM), a generic technique for effectively tracking com-
plex queries over massive distributed streams. We also discuss several recently-
proposed extensions to the basic GM framework, such as the combination with
stream-sketching tools and local prediction models, as well as more recent devel-
opments leading to a more general theory of Safe Zones and interesting connections
to convex Euclidean geometry. Finally, we outline various challenging directions for
future research in this area.

M. Garofalakis (B)
School of Electrical and Computer Engineering, Technical University of Crete,
University Campus—Kounoupidiana, Chania 73100, Greece
e-mail: minos@softnet.tuc.gr

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_15

301

mailto:minos@softnet.tuc.gr
http://dx.doi.org/10.1007/978-3-540-28608-0_15

302 M. Garofalakis

1 Introduction

Traditional data-management systems are typically built on a pull-based paradigm,
where users issue one-shot queries to static data sets residing on disk, and the system
processes these queries and returns their results. For several emerging application
domains, however, data arrives and needs to be processed on a continuous (24 × 7)
basis, without the benefit of several passes over a static, persistent data image. These
continuous data streams arise naturally in new large-scale event monitoring applica-
tions that require the ability to efficiently process continuous, high-volume streams
of data in real time. Such monitoring systems are routinely employed, for instance,
in the network installations of large Telecom and Internet service providers where
detailed usage information (Call-Detail-Records (CDRs), SNMP/RMON packet-
flow data, etc.) from different parts of the underlying network needs to be contin-
uously collected and analyzed for interesting trends. Other examples include real-
time analysis tools for financial data streams, and event and operations monitoring
applications for enterprise clouds and data centers. As both the scale of today’s net-
worked systems and the volumes and rates of the associated data streams continue
to increase with no bound in sight, algorithms and tools for effectively analyzing
them are becoming an important research mandate.

Large-scale stream processing applications rely on continuous, event-driven
monitoring, that is, real-time tracking of measurements and events, rather than one-
shot answers to sporadic queries. Furthermore, the vast majority of these applica-
tions are inherently distributed, with several remote monitor sites observing their lo-
cal, high-speed data streams and exchanging information through a communication
network. This distribution of the data naturally implies critical communication con-
straints that typically prohibit centralizing all the streaming data, due to either the
huge volume of the data (e.g., in IP-network monitoring, where the massive amounts
of collected utilization and traffic information can overwhelm the production IP net-
work [13]), or power and bandwidth restrictions (e.g., in wireless sensornets, where
communication is the key determinant of sensor battery life [27]). Finally, an impor-
tant requirement of large-scale event monitoring is the effective support for tracking
complex, holistic queries that provide a global view of the data by combining and
correlating information across the collection of remote monitor sites. For instance,
tracking aggregates over the result of a distributed join (the “workhorse” operator
for combining tables in relational databases) can provide unique, real-time insights
into the workings of a large-scale distributed system, including system-wide corre-
lations and potential anomalies [7]. Monitoring the precise value of such holistic
queries without continuously centralizing all the data seems hopeless; luckily, when
tracking statistical behavior and patters in large scale systems, approximate answers
(with reasonable approximation error guarantees) are often sufficient. This often al-
lows algorithms to effectively tradeoff efficiency with approximation quality (e.g.,
using sketch-based stream approximations [7]).

Given the prohibitive cost of data centralization, it is clear that realizing so-
phisticated, large-scale distributed data-stream analysis tools must rely on novel

Tracking Queries over Distributed Streams 303

algorithmic paradigms for processing local streams of data in situ (i.e., locally at the
sites where the data is observed). This, of course, implies the need for intelligently
decomposing a (possibly complex) global data-analysis and monitoring query into
a collection of “safe” local queries that can be tracked independently at each site
(without communication), while guaranteeing correctness for the global monitor-
ing operation. This decomposition process can enable truly distributed, event-driven
processing of real-time streaming data, using a push-based paradigm, where sites
monitor their local queries and communicate only when some local query con-
straints are violated [7, 33]. Nevertheless, effectively decomposing a complex, holis-
tic query over the global collections of streams into such local constraints is far
from straightforward, especially in the case of non-linear queries (e.g., norms or
joins) [33].

The bulk of early work on data-stream processing has focused on developing
space-efficient, one-pass algorithms for performing a wide range of centralized
computations on massive data streams; examples include computing quantiles [21],
estimating distinct values [20], and set-expression cardinalities [16], counting fre-
quent elements (i.e., “heavy hitters”) [5, 11, 28], approximating large Haar-wavelet
coefficients [10], and estimating join sizes and stream norms [1, 2, 15]. Moni-
toring distributed data streams has attracted substantial research interest in recent
years [6, 30], with early work focusing on the monitoring of single values, and
building appropriate models and filters to avoid propagating updates if these are in-
significant compared to the value of simple linear aggregates (e.g., to the SUM of the
distributed values). For instance, [31] proposes a scheme based on “adaptive filters,”
that is, bounds around the value of distributed variables, which shrink or grow in re-
sponse to relative stability or variability, while ensuring that the total uncertainty
in the bounds is at most a user-specified bound. Still, in the case of linear aggre-
gate functions, deriving local filter bounds based on a global monitoring condition
is rather straightforward, with the key issue being how to intelligently distribute the
available aggregate “slack” across all sites [3, 9, 23].

In this chapter, we focus on recently-developed algorithmic tools for effectively
tracking a broad class of complex queries over massive, distributed data streams.
We start by describing the key elements of a generic distributed stream-processing
model and define a broad class of distributed query-tracking problems addressed by
our techniques. We then give an overview of the Geometric Method (GM) [24, 33]
for distributed threshold monitoring that lies at the core of our distributed query-
tracking methodology, and briefly discuss recent extensions to the basic GM frame-
work that incorporate stream sketches [17] and local prediction models [18, 19]. We
also summarize recent developments leading to a more general theory of Safe Zones
for geometric monitoring and interesting connections to convex Euclidean geome-
try [26]. Finally, we conclude with a brief discussion of new research directions in
this space.

304 M. Garofalakis

2 Distributed Data Streaming and the Geometric Method

In this section, we discuss some key concepts behind data-stream processing and the
distributed streaming model. We then introduce the Geometric Method (GM) [33],
a generic technique for query monitoring over distributed streams.

2.1 Data Streams and Distributed Streaming

Recent years have witnessed an increasing interest in designing data-processing al-
gorithms that work over continuous data streams, i.e., algorithms that provide results
to user queries while looking at the relevant data items only once and in a fixed order
(determined by the stream-arrival pattern). Such stream queries are typically contin-
uous, implying the need for continuous, real-time monitoring of the query answer
over the changing stream.

As discussed earlier in this volume, a data stream can be modeled as a mas-
sive, dynamic, one-dimensional vector v[1 . . .N] that, at any point in time, captures
the current state of the stream. (Multi-dimensional data can naturally be handled in
this abstract model by simply “unfolding” the corresponding multi-dimensional fre-
quency distribution on one vector dimension using standard techniques, e.g., row-
or column-major). The dynamic vector v is rendered through a continuous stream
of updates, where each update effectively modifies values in v—the nature of these
update operations gives rise to different data streaming models, such as time-series,
cash-register, and turnstile streams [29].

Data-stream processing algorithms aim to compute functions (or, queries) on the
stream vector v at different points during the lifetime of the stream (continuous or
ad-hoc). Since N can be very large, the typical requirement here is that these algo-
rithms work in small space (i.e., the state maintained by the algorithm) and small
time (i.e., the processing time per update), where “small” is understood to mean a
quantity significantly smaller than Θ(N) (typically, poly-logarithmic in N). Sev-
eral such stream-processing algorithms are known for various data-analysis queries
[1, 2, 5, 10, 11, 15, 16, 20, 21, 28].

The naturally distributed nature of large-scale event-monitoring applications im-
plies one additional level of complexity, in the sense that there is no centralized
observation point for the dynamic stream vector v; instead, v is distributed across
several sites. More specifically, we consider a distributed computing environment,
comprising a collection of k remote sites and a designated coordinator site. Streams
of data updates arrive continuously at remote sites, while the coordinator site is re-
sponsible for generating approximate answers to (possibly, continuous) user queries
posed over the collection of remotely-observed streams (across all sites). Following
earlier work in the area [3, 7, 9, 14, 31], our distributed stream-processing model
does not explicitly allow direct communication between remote sites; instead, as il-
lustrated in Fig. 1(a), a remote site exchanges messages only with the coordinator,

Tracking Queries over Distributed Streams 305

Fig. 1 (a) Distributed stream processing architecture. (b) Geometric method: estimate vector e,
drift vectors uj , convex hull enclosing current v (dotted outline), and bounding balls B(e+ 1

2 �vj ,
1
2‖�vj‖)

providing it with state information on its (locally-observed) streams.1 Note that such
a hierarchical processing model is, in fact, representative of a large class of appli-
cations, including network monitoring where a central Network Operations Center
(NOC) is responsible for processing network traffic statistics (e.g., link bandwidth
utilization, IP source–destination byte counts) collected at switches, routers, and/or
Element Management Systems (EMSs) distributed across the network.

Each remote site j ∈ {1, . . ., k} observes (possibly, several) local update streams
that incrementally render a local stream vector vj capturing the current local state
of the observed stream(s) at site j . All local stream vectors vj in our distributed
streaming architecture change dynamically over time—when necessary, we make
this dependence explicit, using vj (t) to denote the state of the vector at time t (as-
suming a consistent notion of “global time” in our distributed system). The unqual-
ified notation vj typically refers to the current state of the local stream vector.

We define the global stream vector v of our distributed stream(s) as any weighted
average (i.e., convex combination) of the local stream vectors {vj }, that is, v =
∑k

j=1 λjvj , where
∑

j λj = 1 and λj ≥ 0 for all j . (Again, to simplify notation,
we typically omit the explicit dependence on time when referring to the current
global vector.) Our focus is on the problem of effectively answering user queries (or,
functions) over the global stream vector at the coordinator site. Rather than one-time
query/function evaluation, we assume a continuous-querying environment which
implies that the coordinator needs to continuously maintain (or, track) the answers
to queries as the local update streams vj evolve at individual remote sites. There
are two defining characteristics of our problem setup that raise difficult algorithmic
challenges for our query tracking problems:

• The distributed nature and large volumes of local streaming data raise important
communication and space/time efficiency concerns. Naïve schemes that accurately
track query answers by forcing remote sites to ship every remote stream update to

1Of course, sites can always communicate with each other through the coordinator—this would
only increase communication load by a factor of 2.

306 M. Garofalakis

the coordinator are clearly impractical, since they can impose an inordinate bur-
den on the underlying communication infrastructure (especially, for high-rate data
streams and large numbers of remote sites). Furthermore, the voluminous nature
of the local data streams implies that effective streaming tools are needed at the
remote sites in order to manage the local stream vectors in sublinear space/time.
Thus, a practical approach is to adopt the paradigm of continuous tracking of
approximate query answers at the coordinator site with strong guarantees on the
quality of the approximation. This allows schemes that can effectively trade-off
space/time/communication efficiency and query-approximation accuracy in a pre-
cise, quantitative manner.

• General, non-linear queries/functions imply fundamental and difficult challenges
for distributed monitoring. For the case of linear functions, a number of approaches
have been proposed that rely on the key idea of allocating appropriate “slacks” to
the remote sites based on their locally-observed function values (e.g., [3, 23, 31]).
Unfortunately, it is not difficult to find examples of simple non-linear functions on
one-dimensional data, where it is basically impossible to make any assumptions
about the value of the global function based on the values observed locally at the
sites [33]. This renders conventional slack-allocation schemes inapplicable in this
more general setting.

2.2 The Geometric Method (GM)

Sharfman et al. [33] consider the fundamental problem of distributed threshold mon-
itoring, that is, determining whether f (v) < τ or f (v) > τ , for a given (general)
function f () over the global stream vector and a fixed threshold τ . Their key idea is
that, since it is generally impossible to connect the locally-observed values of f () to
the global value f (v), one can employ geometric arguments to monitor the domain
(rather than the range) of the monitored function f (). More specifically, assume that
at any point in time, each site j has informed the coordinator of some prior state of
its local vector v

p
j ; thus, the coordinator has an estimated global vector e = vp =

∑k
j=1 λjv

p
j . Clearly, the updates arriving at sites can cause the local vectors vj to

drift too far from their previously reported values v
p
j , possibly leading to a violation

of the τ threshold. Let �vj = vj −v
p
j denote the local delta vector (due to updates)

at site j , and let uj = e + �vj be the drift vector from the previously reported es-
timate at site j . We can then express the current global stream vector v in terms of
the drift vectors:

v =
k∑

j=1

λj

(
v

p
j +�vj

) = e +
k∑

j=1

λj�vj =
k∑

j=1

λj (e +�vj).

That is, the current global vector is a convex combination of drift vectors and, thus,
is guaranteed to lie somewhere within the convex hull of the delta vectors around e.

Tracking Queries over Distributed Streams 307

Figure 1(b) depicts an example in d = 2 dimensions. The current value of the global
stream vector lies somewhere within the shaded convex-hull region; thus, as long as
the convex hull does not overlap the inadmissible region (i.e., the region {v ∈ R

2 :
f (v) > τ } in Fig. 1(b)), we can guarantee that the threshold has not been violated
(i.e., f (v)≤ τ).

The problem, of course, is that the �vj ’s are spread across the sites and, thus, the
above condition cannot be checked locally. To transform the global condition into a
local constraint, we place a d-dimensional bounding ball B(c, r) around each local
delta vector, of radius r = 1

2‖�vj‖ and centered at c = e+ 1
2�vj (see Fig. 1(b)). It

can be shown that the union of all these balls completely covers the convex hull of
the drift vectors [33]. This observation effectively reduces the problem of monitor-
ing the global stream vector to the local problem of each remote site monitoring the
ball around its local delta vector.

More specifically, given the monitored function f () and threshold τ , we can
partition the d-dimensional space into two sets A = {v : f (v) ≤ τ } and A =
{v : f (v) > τ }. (Note that these sets can be arbitrarily complex, e.g., they may com-
prise multiple disjoint regions of Rd .) The basic protocol is now quite simple: Each
site monitors its delta vector �vj and, with each update, checks whether its bound-
ing ball B(e + 1

2�vj , 1
2‖�vj‖) is monochromatic, i.e., all points in the ball lie

within the same region (A or A). If this is not the case, we have a local threshold vi-
olation, and the site communicates its local �vj to the coordinator. The coordinator
then initiates a synchronization process that typically tries to resolve the local viola-
tion by communicating with only a subset of the sites in order to “balance out” the
violating �vj and ensure the monochromicity of all local bounding balls [33]. In
the worst case, the delta vectors from all k sites are collected, leading to an accurate
estimate of the current global stream vector, which is by definition monochromatic
(since all bounding balls have 0 radius).

The power of the GM stems from the fact that it is essentially agnostic of the spe-
cific (global) function f (v) being monitored.2 Note that the function itself is only
used at a remote site when checking the monochromicity of its local ball, which es-
sentially boils down to solving a minimization/maximization problem for f () within
the area of that ball. This may, of course, be complex but it also enables the GM to
effectively trade local computation for communication.

From Threshold Crossing to Approximate Query Tracking

Consider the task of monitoring (at the coordinator) the value of a function f () over
the global stream vector v to within θ relative error. (Our discussion here focuses
on relative error—the case of monitoring to within bounded absolute error can be

2The assumption that GM only monitors functions of the (weighted) average of local stream vectors
is not really restrictive: Numerous complex functions can actually be expressed as functions of
the average using simple tricks, such as adding additional dimensions to the stream vectors; see,
e.g., [4].

308 M. Garofalakis

handled in a similar manner.) Since all the coordinator has is the estimated value of
the global stream vector e = vp based on the most recent site updates v

p
j , our mon-

itoring protocol would have to guarantee that the estimated function value carries
at most θ relative error compared to the up-to-date value f (v) = f (v(t)), that is,
f (vp) ∈ (1 ± θ)f (v),3 which is obviously equivalent to monitoring two threshold
queries on f (v):

f (v) ≥ f (vp)

1 + θ
and f (v)≤ f (vp)

1 − θ
.

These are exactly the threshold conditions that our approximate function tracking
protocols will need to monitor. Note that f (vp) in the above expression is a con-
stant (based on the latest communication of the coordinator with the remote sites).
Similar threshold conditions can also be derived when the local/global values of
f () are only known approximately (e.g., using sketches [1, 2] or other streaming
approximations)—the threshold conditions just need to account for the added ap-
proximation error [17].

3 Enhancing GM: Sketches and Prediction Models

In this section, we give a brief overview of more recent work on extending the GM
with two key stream-processing tools, namely sketches and prediction models [17–
19].

3.1 GM and AMS Sketches

Techniques based on small-space pseudo-random sketch summaries of the data have
proved to be very effective tools for dealing with massive, rapid-rate data streams
in centralized settings [8]. The key idea in such sketching techniques is to repre-
sent a streaming frequency vector v using a much smaller (typically, randomized)
sketch vector (denoted by sk(v)) that (i) can be easily maintained as the updates in-
crementally rendering v are streaming by, and (ii) provide probabilistic guarantees
for the quality of the data approximation. The widely used AMS sketch (proposed
by Alon, Matias, and Szegedy in their seminal paper [2], also discussed in detail
earlier in this volume) defines the entries of the sketch vector as pseudo-random
linear projections of v that can easily maintained over the stream of updates. More
specifically, each entry of sk(v) is essentially a projection (i.e., an inner product) of
the v vector over a family of 4-wise independent pseudo-random variates that can
be easily maintained (using a simple counter) over the input update stream. Another
important property is the linearity of AMS sketches: Given two “parallel” sketches

3Throughout, the notation x ∈ (y ± z) is equivalent to |x − y| ≤ |z|.

Tracking Queries over Distributed Streams 309

(built using the same pseudo-random families) sk(v1) and sk(v2), the sketch of the
union of the two underlying streams (i.e., the streaming vector v1 + v2) is simply
the component-wise sum of their sketches, that is, sk(v1 + v2) = sk(v1)+ sk(v2).
This linearity makes such sketches particularly useful in distributed settings.

AMS sketch estimators can effectively approximate inner-product queries v ·u=∑
i v[i] · u[i] over streaming data vectors and tensors. As discussed earlier in this

volume, such inner products naturally map to several interesting query classes (e.g.,
join and multi-join aggregates, range and quantile queries, heavy hitters and top-k
queries, and approximate histogram and wavelet representations). The AMS esti-
mator function fAMS() computed over the sketch vectors of v and u is complex,
and involves both averaging and median-selection over the components of the
sketch-vector inner product [1, 2]. Formally, viewing each sketch vector as a two-
dimensional n×m matrix (where n = O(1

ε2), m= O(log(1/δ)) and ε, 1− δ denote
desired bounds on error and probabilistic confidence (respectively)), the AMS esti-
mator function is defined as

fAMS

(
sk(v),sk(u)

) = median
i=1,...,m

{
1

n

n∑

l=1

sk(v)[l, i] · sk(u)[l, i]
}

, (1)

and guarantees that, with probability ≥ 1 − δ, fAMS(sk(v), sk(u)) ∈ (v · u±
ε‖v‖‖u‖) [1, 2].

Moving to the distributed streams setting, note that our discussion of the GM
thus far has assumed that all remote sites maintain the full stream vector (i.e., em-
ploy Θ(N) space), which is often unrealistic for real-life data streams. In our recent
work [17], we have proposed novel approximate query tracking protocols that ex-
ploit the combination of the GM and AMS sketch estimators. The AMS sketch-
ing idea offers an effective streaming dimensionality-reduction tool that signifi-
cantly expands the scope of the original GM, allowing it to handle massive, high-
dimensional distributed data streams in an efficient manner with approximation-
quality guarantees. A key technical observation is that, by exploiting properties of
the AMS estimator function, geometric monitoring can now take place in a much
lower-dimensional space, allowing for communication-efficient monitoring. In fact,
we show that, using appropriate lower and upper bounds on fAMS(), we can monitor
a function in only m-dimensional space (where m = O(log(1/δ))). This is a cru-
cial optimization since sketch matrices are typically very “thin”, i.e., n) m, as n

depends quadratically on the sketching error ε, whereas m depends only logarith-
mically on the desired confidence δ. Another technical challenge that arises is how
to effectively test the monochromicity of bounding balls in this lower-dimensional
space with respect to threshold conditions involving the highly non-linear median
operator in the AMS estimator fAMS() (see Eq. (1)). We have proposed a number
of novel algorithmic techniques to address the technical challenges that arise, start-
ing from the easier cases of L2-norm (i.e., self-join) and range queries, and then
extending them to the case of general inner-product (i.e., binary-join) queries. Our
experimental study with real-life data sets demonstrates the practical benefits of our
approach, showing consistent gains in communication cost compared to state-of-
the-art methods.

310 M. Garofalakis

3.2 GM and Prediction Models

In other recent work [18, 19], we have proposed a novel combination of the geo-
metric method with local prediction models for describing the temporal evolution
of local data streams. (The adoption of prediction models has already been proven
beneficial in terms of bandwidth preservation in distributed settings [7].) We demon-
strate that prediction models can be incorporated in a very natural way in the geo-
metric method for tracking general, non-linear functions; furthermore, we show that
the initial geometric monitoring method of Sharfman et al. [24, 33] is only a special
case of our, more general, prediction-based geometric monitoring framework. Inter-
estingly, the mere utilization of local predictions is not enough to guarantee lower
communication overheads even when predictors are quite capable of describing lo-
cal stream distributions. We establish a theoretically solid monitoring framework
that incorporates conditions that can lead to fewer contacts with the coordinator. We
also develop a number of mechanisms, along with extensive probabilistic models
and analysis, that relax the previously introduced framework, base their function on
simpler criteria, and yield significant communication benefits in practical scenarios.

4 Towards Convex Safe Zones

In followup work to the GM, Keren et al. [24] propose a simple, generic geomet-
ric monitoring strategy that can be formally shown to encompass the original GM
scheme as a special case. Briefly, assuming we are monitoring the threshold con-
dition f (v) ≤ τ , the idea is to define a certain convex subset C of the admissible
region A = {v : f (v) ≤ τ } (i.e., a convex admissible subset), which is then used to
define Safe Zones (SZs) for the local drift vectors: Site j simply monitors the condi-
tion uj = e +�vj ∈ C. The correctness of this generic monitoring scheme follows
directly from the convexity of C, and our earlier observation that the global stream
vector v always lies in the convex hull of uj , j = 1, . . . , k: If uj ∈ C for all nodes j

then, by convexity, this convex hull (and, therefore v) lies completely within C and,
therefore, the admissible region (since C ⊆ A). (Note that the convexity of C plays
a crucial role in the above correctness argument.)

While the convexity of C is needed for the correctness of the monitoring scheme,
it is clear that the size of C plays a critical role in its efficiency: Obviously, a larger
C implies fewer local violations and, thus, smaller communication/synchronization
overheads. This, in turn, implies a fairly obvious dominance relationship over geo-
metric distributed monitoring schemes: Given two geometric algorithms A1 and A2
(for the same distributed monitoring problem) that use the convex admissible sub-
sets C1 and C2 (respectively), algorithm A1 is provably superior to A2 if C2 ⊂ C1.
Note that, in the simple case of linear functions f (), the admissible region A itself
is convex, and therefore one can choose C = A; however, for more complicated,
non-linear functions, A is non-convex and quite complex. Thus, finding a “large”
convex subset of A is a crucial component of effective geometric monitoring. This

Tracking Queries over Distributed Streams 311

Fig. 2 (a) An equivalent construction of CGM by intersecting half-spaces (shaded regions), de-
picted for two points, r1, r2 on A’s boundary. CGM is obtained by intersecting all such half-spaces.
(b) Construction of CGM when A is the unit disk. Three of the half-spaces whose intersection
equals CGM are depicted

is, of course, a very difficult optimization problem, in general; furthermore, unlike
the GM’s generic “bounding ball” geometric constraints, finding an effective convex
admissible subset depends very much on the specific function f () being monitored.

Interestingly, the bounding ball constraints of the GM can also be cast in terms
of a convex admissible subset (denoted by CGM) that can be mathematically shown
to be equivalent to the intersection of the (possibly, infinitely many) half-spaces
supported by hyperplanes defined by the points at the boundary of the admissible
region A (see Fig. 2(a)) [24]. As demonstrated in our recent work [26], while the
GM can achieve good results and is generic (i.e., can be directly applied to any mon-
itoring function), its performance can be far from optimal since its underlying SZ
CGM is often far too restrictive. In several practical scenarios, CGM can be drastically
improved by intersecting much fewer half-spaces in order to obtain provably larger
convex admissible subsets, giving significantly more efficient monitoring schemes.
As a simple example, consider the scenario depicted in Fig. 2(b): The monitored
function is f (v) = ‖v‖2 ≥ 1, which implies that the inadmissible region A is the
unit disk. Clearly, while the CGM defined by the intersection of the halfspaces for
all ri ’s on the boundary of the unit disk is a correct SZ, it is also far from optimal:
It is easy to see that the (single) half-space H(p, r1) supported by the hyperplane
through r1 is a better SZ, as it satisfies the necessary convexity property and strictly
contains CGM. In this case, just a single supporting hyperplane suffices to separate
the entire inadmissible region A from the current estimate/reference point p and,
thus, there is no need to further intersect with other half-spaces (H(p, r2), H(p, r3),
and so on).

In a nutshell, our proposed Convex Decomposition (CD) method [26] generalizes
the above observation—it works by identifying convex subsets of the inadmissible
region, and using them to define non-redundant collections of half-spaces that sepa-
rate these subsets from the admissible region. Our CD methodology can be applied
to several important approximate query monitoring tasks (e.g., norms, range aggre-
gates, and joins) giving provably larger SZs and substantially better performance

312 M. Garofalakis

than the original GM. Of course, the general problem of determining effective SZs
for arbitrary functions remains open.

5 Conclusions and Future Directions

We have given a brief introduction to the distributed data streaming model and
the Geometric Method (GM), a generic technique for effectively tracking complex
queries over massive distributed streams. We have also discussed recently-proposed
extensions to the basic GM framework, such as the combination with AMS stream
sketches and local prediction models, as well as recent developments leading to a
more general theory of Safe Zones for geometric monitoring and interesting con-
nections to convex Euclidean geometry. The GM framework provides a very power-
ful tool for dealing with continuous query computations over distributed streaming
data; see, for instance, [32] for a novel application of the GM to continuous moni-
toring of skyline queries over fragmented dynamic data.

Continuous distributed streaming is a vibrant, rapidly evolving field of research,
and a community of researchers has started forming around theoretical, algorithmic,
and systems issues in the area [30]. Naturally, there are several promising directions
for future research. First, the single-level hierarchy model (depicted in Fig. 1(a)) is
simplistic and also introduces a single point of failure (i.e., the coordinator). Ex-
tending the model to general hierarchies is probably not that difficult (even though
effectively distributing the error bounds across the internal hierarchy nodes can be
challenging [7]); however, extending the ideas to general, scalable distributed ar-
chitectures (e.g., P2P networks) raises several theoretical and practical challenges.
Second, while most of the proposed algorithmic tools have been prototyped and
tested with real-life data streams, there is still a need for real system implemen-
tations that also address some of the key systems questions that arise (e.g., what
functions and query language to support, how to interface to real users and appli-
cations, and so on). We have already started implementing some of the geometric
monitoring ideas using Twitter’s Storm/λ-architecture, and exploiting these ideas for
large-scale, distributed Complex Event Processing (CEP) in the context of the FER-
ARI project www.ferari-project.eu. Finally, from a more foundational perspective,
there is a need for developing new models and theories for studying the complex-
ity of such continuous distributed computations. These could build on the models
of communication complexity [25] that study the complexity of distributed one-
shot computations, perhaps combined with relevant ideas from information theory
(e.g., distributed source coding). Some initial results in this direction have recently
appeared for the case of simple norms and linear aggregates; see, e.g., [12, 22].

Acknowledgements This work was partially supported by the European Commission under
ICT-FP7-FERARI (Flexible Event Processing for Big Data Architectures), www.ferari-project.eu.

www.ferari-project.eu
www.ferari-project.eu

Tracking Queries over Distributed Streams 313

References

1. N. Alon, P.B. Gibbons, Y. Matias, M. Szegedy, Tracking join and self-join sizes in limited stor-
age, in Proc. of the 18th ACM Symposium on Principles of Database Systems, Philadelphia,
Pennsylvania (1999)

2. N. Alon, Y. Matias, M. Szegedy, The space complexity of approximating the frequency mo-
ments, in Proc. of the 28th Annual ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania (1996), pp. 20–29

3. B. Babcock, C. Olston, Distributed top-k monitoring, in Proc. of the 2003 ACM SIGMOD Intl.
Conference on Management of Data, San Diego, California (2003)

4. S. Burdakis, A. Deligiannakis, Detecting outliers in sensor networks using the geometric ap-
proach, in Proc. of the 28th Intl. Conference on Data Engineering (2012)

5. M. Charikar, K. Chen, M. Farach-Colton, Finding frequent items in data streams, in Proc. of
the Intl. Colloquium on Automata, Languages, and Programming, Malaga, Spain (2002)

6. G. Cormode, M. Garofalakis, Streaming in a connected world: querying and tracking dis-
tributed data streams, in 2007 ACM SIGMOD Intl Conf. on Management of Data, Beijing,
China (2007). Tutorial

7. G. Cormode, M. Garofalakis, Approximate continuous querying over distributed streams.
ACM Trans. Database Syst. 33(2) (2008)

8. G. Cormode, M. Garofalakis, P.J. Haas, C. Jermaine, Synopses for massive data: samples,
histograms, wavelets, sketches. Found. Trends® Databases 4(1–3) (2012)

9. G. Cormode, M. Garofalakis, S. Muthukrishnan, R. Rastogi, Holistic aggregates in a net-
worked world: distributed tracking of approximate quantiles, in Proc. of the 2005 ACM SIG-
MOD Intl. Conference on Management of Data, Baltimore, Maryland (2005)

10. G. Cormode, M. Garofalakis, D. Sacharidis, Fast approximate wavelet tracking on streams, in
Proc. of the 10th Intl. Conference on Extending Database Technology (EDBT’2006), Munich,
Germany (2006)

11. G. Cormode, S. Muthukrishnan, What’s hot and what’s not: tracking most frequent items
dynamically, in Proc. of the 22nd ACM Symposium on Principles of Database Systems, San
Diego, California (2003), pp. 296–306

12. G. Cormode, S. Muthukrishnan, K. Yi, Algorithms for distributed functional monitoring.
ACM Trans. Algorithms 7(2) (2011)

13. C. Cranor, T. Johnson, O. Spatscheck, V. Shkapenyuk, Gigascope: a stream database for net-
work applications, in Proc. of the 2003 ACM SIGMOD Intl. Conference on Management of
Data, San Diego, California (2003)

14. A. Das, S. Ganguly, M. Garofalakis, R. Rastogi, Distributed set-expression cardinality estima-
tion, in Proc. of the 30th Intl. Conference on Very Large Data Bases, Toronto, Canada (2004)

15. A. Dobra, M. Garofalakis, J. Gehrke, R. Rastogi, Processing complex aggregate queries over
data streams, in Proc. of the 2002 ACM SIGMOD Intl. Conference on Management of Data,
Madison, Wisconsin (2002), pp. 61–72

16. S. Ganguly, M. Garofalakis, R. Rastogi, Processing set expressions over continuous update
streams, in Proc. of the 2003 ACM SIGMOD Intl. Conference on Management of Data, San
Diego, California (2003)

17. M. Garofalakis, D. Keren, V. Samoladas, Sketch-based geometric monitoring of distributed
stream queries, in Proc. of the 39th Intl. Conference on Very Large Data Bases, Trento, Italy
(2013)

18. N. Giatrakos, A. Deligiannakis, M. Garofalakis, I. Sharfman, A. Schuster, Prediction-based
geometric monitoring of distributed data streams, in Proc. of the 2012 ACM SIGMOD Intl.
Conference on Management of Data, Scottsdale, Arizona (2012)

19. N. Giatrakos, A. Deligiannakis, M. Garofalakis, I. Sharfman, A. Schuster, Distributed geo-
metric query monitoring using prediction models. ACM Trans. Database Syst. 39(2) (2014)

20. P.B. Gibbons, Distinct sampling for highly-accurate answers to distinct values queries and
event reports, in Proc. of the 27th Intl. Conference on Very Large Data Bases, Rome, Italy
(2001)

314 M. Garofalakis

21. M.B. Greenwald, S. Khanna, Space-efficient online computation of quantile summaries, in
Proc. of the 2001 ACM SIGMOD Intl. Conference on Management of Data, Santa Barbara,
California (2001)

22. Z. Huang, K. Yi, Q. Zhang, Randomized algorithms for tracking distributed count, frequen-
cies, and ranks, in Proc. of the 31st ACM Symposium on Principles of Database Systems
(2012)

23. R. Keralapura, G. Cormode, J. Ramamirtham, Communication-efficient distributed monitor-
ing of thresholded counts, in Proc. of the 2006 ACM SIGMOD Intl. Conference on Manage-
ment of Data, Chicago, Illinois (2006), pp. 289–300

24. D. Keren, I. Sharfman, A. Schuster, A. Livne, Shape-sensitive geometric monitoring. IEEE
Trans. Knowl. Data Eng. 24(8) (2012)

25. E. Kushilevitz, N. Nisan, Communication Complexity (Cambridge University Press, Cam-
bridge, 1997)

26. A. Lazerson, I. Sharfman, D. Keren, A. Schuster, M. Garofalakis, V. Samoladas, Monitoring
distributed streams using convex decompositions, in Proc. of the 41st Intl. Conference on Very
Large Data Bases (2015)

27. S.R. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, The design of an acquisitional query
processor for sensor networks, in Proc. of the 2003 ACM SIGMOD Intl. Conference on Man-
agement of Data, San Diego, California (2003)

28. G.S. Manku, R. Motwani, Approximate frequency counts over data streams, in Proc. of the
28th Intl. Conference on Very Large Data Bases, Hong Kong, China (2002), pp. 346–357

29. S. Muthukrishnan, Data streams: algorithms and applications. Found. Trends Theor. Comput.
Sci. 1(2) (2005)

30. NII Shonan workshop on large-scale distributed computation, Shonan Village, Japan, January
(2012). http://www.nii.ac.jp/shonan/seminar011/

31. C. Olston, J. Jiang, J. Widom, Adaptive filters for continuous queries over distributed data
streams, in Proc. of the 2003 ACM SIGMOD Intl. Conference on Management of Data, San
Diego, California (2003)

32. O. Papapetrou, M. Garofalakis, Continuous fragmented skylines over distributed streams, in
Proc. of the 30th Intl. Conference on Data Engineering, Chicago, Illinois (2014)

33. I. Sharfman, A. Schuster, D. Keren, A geometric approach to monitoring threshold functions
over distributed data streams, in Proc. of the 2006 ACM SIGMOD Intl. Conference on Man-
agement of Data, Chicago, Illinois (2006), pp. 301–312

http://www.nii.ac.jp/shonan/seminar011/

Part IV
System Architectures and Languages

STREAM: The Stanford Data Stream
Management System

Arvind Arasu, Brian Babcock, Shivnath Babu, John Cieslewicz, Mayur Datar,
Keith Ito, Rajeev Motwani, Utkarsh Srivastava, and Jennifer Widom

1 Introduction

Traditional database management systems are best equipped to run one-time queries
over finite stored data sets. However, many modern applications such as network
monitoring, financial analysis, manufacturing, and sensor networks require long-
running, or continuous, queries over continuous unbounded streams of data. In the
STREAM project at Stanford, we are investigating data management and query pro-
cessing for this class of applications. As part of the project we are building a general-
purpose prototype Data Stream Management System (DSMS), also called STREAM,
that supports a large class of declarative continuous queries over continuous streams
and traditional stored data sets. The STREAM prototype targets environments where
streams may be rapid, stream characteristics and query loads may vary over time,
and system resources may be limited.

Building a general-purpose DSMS poses many interesting challenges:

• Although we consider streams of structured data records together with conven-
tional stored relations, we cannot directly apply standard relational semantics to
complex continuous queries over this data. In Sect. 2, we describe the semantics
and language we have developed for continuous queries over streams and rela-
tions.

• Declarative queries must be translated into physical query plans that are flexi-
ble enough to support optimizations and fine-grained scheduling decisions. Our
query plans, composed of operators, queues, and synopses, are described in
Sect. 3.

A. Arasu · B. Babcock · S. Babu · J. Cieslewicz · M. Datar · K. Ito · R. Motwani · U. Srivastava ·
J. Widom (B)
Department of Computer Science, Stanford University, Stanford, CA, USA
e-mail: widom@cs.stanford.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_16

317

mailto:widom@cs.stanford.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_16

318 A. Arasu et al.

• Achieving high performance requires that the DSMS exploit possibilities for shar-
ing state and computation within and across query plans. In addition, constraints
on stream data (e.g., ordering, clustering, referential integrity) can be inferred and
used to reduce resource usage. In Sect. 4, we describe some of these techniques.

• Since data, system characteristics, and query load may fluctuate over the lifetime
of a single continuous query, an adaptive approach to query execution is essential
for good performance. Our continuous monitoring and reoptimization subsystem
is described in Sect. 5.

• When incoming data rates exceed the DSMS’s ability to provide exact results
for the active queries, the system should perform load-shedding by introducing
approximations that gracefully degrade accuracy. Strategies for approximation
are discussed in Sect. 6.

• Due to the long-running nature of continuous queries, DSMS administrators and
users require tools to monitor and manipulate query plans as they run. This func-
tionality is supported by our graphical interface described in Sect. 7.

Many additional problems, including exploiting parallelism and supporting crash
recovery, are still under investigation. Future directions are discussed in Sect. 8.

2 The CQL Continuous Query Language

For simple continuous queries over streams, it can be sufficient to use a relational
query language such as SQL, replacing references to relations with references to
streams, and streaming new tuples in the result. However, as continuous queries
grow more complex, e.g., with the addition of aggregation, subqueries, windowing
constructs, and joins of streams and relations, the semantics of a conventional re-
lational language applied to these queries quickly becomes unclear [3]. To address
this problem, we have defined a formal abstract semantics for continuous queries,
and we have designed CQL, a concrete declarative query language that implements
the abstract semantics.

2.1 Abstract Semantics

The abstract semantics is based on two data types, streams and relations, which are
defined using a discrete, ordered time domain Γ :

• A stream S is an unbounded bag (multiset) of pairs 〈s, τ 〉, where s is a tuple and
τ ∈ Γ is the timestamp that denotes the logical arrival time of tuple s on stream S.

• A relation R is a time-varying bag of tuples. The bag of tuples at time τ ∈ Γ is
denoted R(τ), and we call R(τ) an instantaneous relation. Note that our defini-
tion of a relation differs from the traditional one which has no built-in notion of
time.

STREAM: The Stanford Data Stream Management System 319

Fig. 1 Data types and
operator classes in abstract
semantics

The abstract semantics uses three classes of operators over streams and relations:

• A relation-to-relation operator takes one or more relations as input and produces
a relation as output.

• A stream-to-relation operator takes a stream as input and produces a relation as
output.

• A relation-to-stream operator takes a relation as input and produces a stream as
output.

Stream-to-stream operators are absent—they are composed from operators of the
above three classes. These three classes are “black box” components of our abstract
semantics: the semantics does not depend on the exact operators in these classes,
but only on generic properties of each class. Figure 1 summarizes our data types
and operator classes.

A continuous query Q is a tree of operators belonging to the above classes. The
inputs of Q are the streams and relations that are input to the leaf operators, and
the output of Q is the output of the root operator. The output is either a stream
or a relation, depending on the class of the root operator. At time τ , an operator
of Q logically depends on its inputs up to τ : tuples of Si with timestamps ≤ τ

for each input stream Si , and instantaneous relations Rj (τ
′), τ ′ ≤ τ , for each input

relation Rj . The operator produces new outputs corresponding to τ : tuples of S with
timestamp τ if the output is a stream S, or instantaneous relation R(τ) if the output
is a relation R. The behavior of query Q is derived from the behavior of its operators
in the usual inductive fashion.

2.2 Concrete Language

Our concrete declarative query language, CQL (for Continuous Query Language), is
defined by instantiating the operators of our abstract semantics. Syntactically, CQL
is a relatively minor extension to SQL.

Relation-to-Relation Operators in CQL

CQL uses SQL constructs to express its relation-to-relation operators, and much of
the data manipulation in a typical CQL query is performed using these constructs,
exploiting the rich expressive power of SQL.

320 A. Arasu et al.

Stream-to-Relation Operators in CQL

The stream-to-relation operators in CQL are based on the concept of a sliding win-
dow [5] over a stream, and are expressed using a window specification language
derived from SQL-99:

• A tuple-based sliding window on a stream S takes an integer N > 0 as a param-
eter and produces a relation R. At time τ , R(τ) contains the N tuples of S with
the largest timestamps ≤ τ . It is specified by following S with “[Rows N].”
As a special case, “[Rows Unbounded]” denotes the append-only window
“[Rows ∞].”

• A time-based sliding window on a stream S takes a time interval ω as a parameter
and produces a relation R. At time τ , R(τ) contains all tuples of S with times-
tamps between τ − ω and τ . It is specified by following S with “[Range ω].”
As a special case, “[Now]” denotes the window with ω = 0.

• A partitioned sliding window on a stream S takes an integer N and a set of at-
tributes {A1, . . . ,Ak} of S as parameters, and is specified by following S with
“[Partition By A1, . . . ,Ak Rows N].” It logically partitions S into dif-
ferent substreams based on equality of attributes A1, . . . ,Ak , computes a tuple-
based sliding window of size N independently on each substream, then takes the
union of these windows to produce the output relation.

Relation-to-Stream Operators in CQL

CQL has three relation-to-stream operators: Istream, Dstream, and Rstream. Istream
(for “insert stream”) applied to a relation R contains 〈s, τ 〉 whenever tuple s is in
R(τ)−R(τ − 1), i.e., whenever s is inserted into R at time τ . Dstream (for “delete
stream”) applied to a relation R contains 〈s, τ 〉 whenever tuple s is in R(τ − 1) −
R(τ), i.e., whenever s is deleted from R at time τ . Rstream (for “relation stream”)
applied to a relation R contains 〈s, τ 〉 whenever tuple s is in R(τ), i.e., every current
tuple in R is streamed at every time instant.

Example CQL Queries

Example 1 The following continuous query filters a stream S:

Select Istream(*) From S [Rows Unbounded] Where S.A > 10

Stream S is converted into a relation by applying an unbounded (append-only) win-
dow. The relation-to-relation filter “S.A > 10” acts over this relation, and the in-
serts to the filtered relation are streamed as the result. CQL includes a number of
syntactic shortcuts and defaults for convenience, which permit the above query to
be rewritten in the following more intuitive form:

Select * From S Where S.A > 10

STREAM: The Stanford Data Stream Management System 321

Example 2 The following continuous query is a windowed join of two streams S1
and S2:

Select * From S1 [Rows 1000], S2 [Range 2 Minutes]
Where S1.A = S2.A And S1.A > 10

The answer to this query is a relation. At any given time, the answer relation con-
tains the join (on attribute A with A > 10) of the last 1000 tuples of S1 with the
tuples of S2 that have arrived in previous 2 minutes. If we prefer instead to pro-
duce a stream containing new A values as they appear in the join, we can write
“Istream(S1.A)” instead of “*” in the Select clause.

Example 3 The following continuous query probes a stored table R based on each
tuple in stream S and streams the result:

Select Rstream(S.A, R.B) From S [Now], R Where S.A = R.A

Complete details of CQL including syntax, semantic foundations, syntactic
shortcuts and defaults, equivalences, and a comparison against related continuous
query languages are given in [3].

3 Query Plans and Execution

When a continuous query specified in CQL is registered with the STREAM system,
a query plan is compiled from it. Query plans are composed of operators, which
perform the actual processing, queues, which buffer tuples (or references to tuples)
as they move between operators, and synopses, which store operator state.

3.1 Operators

Recall from Sect. 2 that there are two fundamental data types in our query language:
streams, defined as bags of tuple-timestamp pairs, and relations, defined as time-
varying bags of tuples. We unify these two types in our implementation as sequences
of timestamped tuples, where each tuple additionally is flagged as either an insertion
(+) or deletion (−). We refer to the tuple-timestamp-flag triples as elements.

Streams only include + elements, while relations may include both + and −
elements to capture the changing relation state over time. Queues logically contain
sequences of elements representing either streams or relations. Each query plan op-
erator reads from one or more input queues, processes the input based on its seman-
tics, and writes any output to an output queue. Individual operators may materialize
their relational inputs in synopses (see Sect. 3.3) if such state is useful.

The operators in the STREAM system that implement the CQL language are
summarized in Table 1. In addition, there are several system operators to handle

322 A. Arasu et al.

Table 1 Operators used in STREAM query plans

Name Operator type Description

select relation-to-relation Filters elements based on predicate(s)

project relation-to-relation Duplicate-preserving projection

binary-join relation-to-relation Joins two input relations

mjoin relation-to-relation Multiway join from [22]

union relation-to-relation Bag union

except relation-to-relation Bag difference

intersect relation-to-relation Bag intersection

antisemijoin relation-to-relation Antisemijoin of two input relations

aggregate relation-to-relation Performs grouping and aggregation

duplicate-eliminate relation-to-relation Performs duplicate elimination

seq-window stream-to-relation Implements time-based, tuple-based,

and partitioned windows

i-stream relation-to-stream Implements Istream semantics

d-stream relation-to-stream Implements Dstream semantics

r-stream relation-to-stream Implements Rstream semantics

“housekeeping” tasks such as marshaling input and output and connecting query
plans together. During execution, operators are scheduled individually, allowing for
fine-grained control over queue sizes and query latencies. Scheduling algorithms are
discussed later in Sect. 4.3.

3.2 Queues

A queue in a query plan connects its “producing” plan operator OP to its “consum-
ing” operator OC . At any time a queue contains a (possibly empty) collection of
elements representing a portion of a stream or relation. The elements that OP pro-
duces are inserted into the queue and buffered there until they are processed by OC .

Many of the operators in our system require that elements on their input queues
be read in nondecreasing timestamp order. Consider, for example, a window opera-
tor OW on a stream S as described in Sect. 2.2. If OW receives an element 〈s, τ,+〉
and its input queue is guaranteed to be in nondecreasing timestamp order, then OW

knows it has received all elements with timestamp τ ′ < τ , and it can construct the
state of the window at time τ − 1. (If timestamps are known to be unique it can con-
struct the state at time τ .) If, on the other hand, OW does not have this guarantee,
it can never be sure it has enough information to construct any window correctly.
Thus, we require all queues to enforce nondecreasing timestamps.

Mechanisms for buffering tuples and generating heartbeats to ensure nonde-
creasing timestamps, without sacrificing correctness or completeness, are discussed
in detail in [17].

STREAM: The Stanford Data Stream Management System 323

3.3 Synopses

Logically, a synopsis belongs to a specific plan operator, storing state that may be
required for future evaluation of that operator. (In our implementation, synopses are
shared among operators whenever possible, as described later in Sect. 4.1.) For ex-
ample, to perform a windowed join of two streams, the join operator must be able
to probe all tuples in the current window on each input stream. Thus, the join oper-
ator maintains one synopsis (e.g., a hash table) for each of its inputs. On the other
hand, operators such as selection and duplicate-preserving union do not require any
synopses.

The most common use of a synopsis in our system is to materialize the current
state of a (derived) relation, such as the contents of a sliding window or the relation
produced by a subquery. Synopses also may be used to store a summary of the
tuples in a stream or relation for approximate query answering, as discussed later in
Sect. 6.2.

Performance requirements often dictate that synopses (and queues) must be kept
in memory, and we tacitly make that assumption throughout this chapter. Our system
does support overflow of these structures to disk, although currently it does not
implement sophisticated algorithms for minimizing I/O when overflow occurs; see,
e.g., [20].

3.4 Example Query Plan

When a CQL query is registered, STREAM constructs a query plan: a tree of op-
erators, connected by queues, with synopses attached to operators as needed. As
a simple example, a plan for the query from Example 2 is shown in Fig. 2. The
original query is repeated here for convenience:

Select * From S1 [Rows 1000], S2 [Range 2 Minutes]
Where S1.A = S2.A And S1.A > 10

There are four operators in the example plan: a select, a binary-join, and
one instance of seq-window for each input stream. Queues q1 and q2 hold the
input stream elements which could, for example, have been received over the net-
work and placed into queues by a system operator (not depicted). Queue q3, which
is the output queue of the (stream-to-relation) operator seq-window, holds el-
ements representing the relation “S1 [Rows 1000].” Queue q4 holds elements
for “S2 [Range 2 Minutes].” Queue q5 holds elements for the joined relation
“S1 [Rows 1000] &' S2 [Range 2 Minutes],” and from these elements,
Queue q6 holds the elements passing the select operator. q6 may lead to an out-
put operator sending elements to the application, or to another query plan operator
within the system.

The select operator can be pushed down into one or both branches below
the binary-join operator, and also below the seq-window operator on S2.

324 A. Arasu et al.

Fig. 2 A simple query plan
illustrating operators, queues,
and synopses

However, tuple-based windows do not commute with filter conditions, and therefore
the select operator cannot be pushed below the seq-window operator on S1.

The plan has four synopses, synopsis1–synopsis4. Each seq-window operator
maintains a synopsis so that it can generate “−” elements when tuples expire from
the sliding window. The binary-join operator maintains a synopsis material-
izing each of its relational inputs for use in performing joins with tuples on the
opposite input, as described earlier. Since the select operator does not need to
maintain any state, it does not have a synopsis.

Note that the contents of synopsis1 and synopsis3 are similar (as are the contents
of synopsis2 and synopsis4), since both maintain a materialization of the same win-
dow, but at slightly different positions of stream S1. Section 4.1 discusses how we
eliminate such redundancy.

3.5 Query Plan Execution

When a query plan is executed, a scheduler selects operators in the plan to execute in
turn. The semantics of each operator depends only on the timestamps of the elements
it processes, not on system or “wall-clock” time. Thus, the order of execution has
no effect on the data in the query result, although it can affect other properties such
as latency and resource utilization. Scheduling is discussed further in Sect. 4.3.

Continuing with our example from the previous section, the seq-window op-
erator on S1, on being scheduled, reads stream elements from q1. Suppose it reads
element 〈s, τ,+〉. It inserts tuple s into synopsis1, and if the window is full (i.e.,
the synopsis already contains 1000 tuples), it removes the earliest tuple s′ in the

STREAM: The Stanford Data Stream Management System 325

synopsis. It then writes output elements into q3: the element 〈s, τ,+〉 to reflect the
addition of s to the window, and the element 〈s′, τ,−〉 to reflect the deletion of s′ as
it exits the window. Both of these events occur logically at the same time instant τ .
The other seq-window operator is analogous.

When scheduled, the binary-join operator reads the earliest element across
its two input queues. If it reads an element 〈s, τ,+〉 from q3, then it inserts s into
synopsis3 and joins s with the contents of synopsis4, generating output elements
〈s · t, τ,+〉 for each matching tuple t in synopsis4. Similarly, if the binary-join
operator reads an element 〈s, τ,−〉 from q3, it generates 〈s · t, τ,−〉 for each match-
ing tuple t in synopsis4. A symmetric process occurs for elements read from q4. In
order to ensure that the timestamps of its output elements are nondecreasing, the
binary-join operator must process its input elements in nondecreasing times-
tamp order across both inputs.

Since the select operator is stateless, it simply dequeues elements from q5,
tests the tuple against its selection predicate, and enqueues the identical element
into q6 if the test passes, discarding it otherwise.

4 Performance Issues

In the previous section, we introduced the basic architecture of our query process-
ing engine. However, simply generating the straightforward query plans and execut-
ing them as described can be very inefficient. In this section, we discuss ways in
which we improve the performance of our system by eliminating data redundancy
(Sect. 4.1), selectively discarding data that will not be used (Sect. 4.2), and schedul-
ing operators to most efficiently reduce intermediate state (Sect. 4.3).

4.1 Synopsis Sharing

In Sect. 3.4, we observed that multiple synopses within a single query plan may ma-
terialize nearly identical relations. In Fig. 2, synopsis1 and synopsis3 are an example
of such a pair.

We eliminate this redundancy by replacing the two synopses with lightweight
stubs, and a single store to hold the actual tuples. These stubs implement the same
interfaces as non-shared synopses, so operators can be oblivious to the details of
sharing. As a result, synopsis sharing can be enabled or disabled on the fly.

Since operators are scheduled independently, it is likely that operators sharing a
single synopsis store will require slightly different views of the data. For example, if
queue q3 in Fig. 2 contains 10 elements, then synopsis3 will not reflect these changes
(since the binary-join operator has not yet processed them), although synopsis1
will. When synopses are shared, logic in the store tracks the progress of each stub,
and presents the appropriate view (subset of tuples) to each of the stubs. Clearly, the

326 A. Arasu et al.

Fig. 3 A query plan illustrating synopsis sharing

store must contain the union of its corresponding stubs: A tuple is inserted into the
store as soon as it is inserted by any one of the stubs, and it is removed only when it
has been removed from all of the stubs.

To further decrease state redundancy, multiple query plans involving similar in-
termediate relations can share synopses as well. For example, suppose the following
query is registered in addition to the query in Sect. 3.4:

Select A, Max(B) From S1 [Rows 200] Group By A

Since sliding windows are contiguous in our system, the window on S1 in this query
is a subset of the window on S1 in the other query. Thus, the same data store can
be used to materialize both windows. The combination of the two query plans with
both types of sharing is illustrated in Fig. 3.

4.2 Exploiting Constraints

Streams may exhibit certain data or arrival patterns that can be exploited to reduce
run-time synopsis sizes. Such constraints can either be specified explicitly at stream-
registration time, or inferred by gathering statistics over time [6]. (An alternate and
more dynamic technique is for the streams to contain punctuations, which specify
run-time constraints that also can be used to reduce resource requirements [21].)

As a simple example, consider a continuous query that joins a stream Orders
with a stream Fulfillments based on attributes orderID and itemID, perhaps to mon-
itor average fulfillment delays. In the general case, answering this query precisely
requires synopses of unbounded size [2]. However, if we know that all elements for

STREAM: The Stanford Data Stream Management System 327

a given orderID and itemID arrive on Orders before the corresponding elements ar-
rive on Fulfillments, then we need not maintain a join synopsis for the Fulfillments
operand at all. Furthermore, if Fulfillments elements arrive clustered by orderID,
then we need only save Orders tuples for a given orderID until the next orderID is
seen.

We have identified several types of useful constraints over data streams. Effective
optimizations can be made even when the constraints are not strictly met by defining
an adherence parameter, k, that captures how closely a given stream or pair of
streams adheres to a constraint of that type. We refer to these as k-constraints:

• A referential integrity k-constraint on a many-one join between streams defines
a bound k on the delay between the arrival of a tuple on the “many” stream and
the arrival of its joining “one” tuple on the other stream.

• An ordered-arrival k-constraint on a stream attribute S.A defines a bound k on
the amount of reordering in values of S.A. Specifically, given any tuple s in
stream S, for all tuples s′ that arrive at least k + 1 elements after s, it must be
true that s′.A ≥ s.A.

• A clustered-arrival k-constraint on a stream attribute S.A defines a bound k on
the distance between any two elements that have the same value of S.A.

We have developed query plan construction and execution algorithms that take
stream constraints into account in order to reduce synopsis sizes at query operators
by discarding unnecessary state [9]. The smaller the value of k for each constraint,
the more state that can be discarded. Furthermore, if an assumed k-constraint is not
satisfied by the data, our algorithm produces an approximate answer whose error is
proportional to the degree of deviation of the data from the constraint.

4.3 Operator Scheduling

An operator consumes elements from its input queues and produces elements on its
output queue. Thus, the global operator scheduling policy can have a large effect on
memory utilization, particularly with bursty input streams.

Consider the following simple example. Suppose we have a query plan with two
operators, O1 followed by O2. Assume that O1 takes one time unit to process a
batch of n elements, and it produces 0.2n output elements per input batch (i.e.,
its selectivity is 0.2). Further, assume that O2 takes one time unit to operate on
0.2n elements, and it sends its output out of the system. (As far as the system is
concerned, O2 produces no elements, and therefore its selectivity is 0.) Consider
the following bursty arrival pattern: n elements arrive at every time instant from
t = 0 to t = 6, then no elements arrive from time t = 7 through t = 13.

Under this scenario, consider the following scheduling strategies:

• FIFO scheduling. When batches of n elements have been accumulated, they are
passed through both operators in two consecutive time units, during which no
other element is processed.

328 A. Arasu et al.

• Greedy scheduling. At any time instant, if there is a batch of n elements buffered
before O1, it is processed in one time unit. Otherwise, if there are more than 0.2n

elements buffered before O2, then 0.2n elements are processed using one time
unit. This strategy is “greedy” since it gives preference to the operator that has
the greatest rate of reduction in total queue size per unit time.

The following table shows the expected total queue size for each strategy, where
each table entry is a multiplier for n:

Time 0 1 2 3 4 5 6 Avg

FIFO scheduling 1.0 1.2 2.0 2.2 3.0 3.2 4.0 2.4

Greedy scheduling 1.0 1.2 1.4 1.6 1.8 2.0 2.2 1.6

After time t = 6, input queue sizes for both strategies decline until they reach 0 after
time t = 13. The greedy strategy performs better because it runs O1 whenever it has
input, reducing queue size by 0.8n elements each time step, while the FIFO strategy
alternates between executing O1 and O2.

However, the greedy algorithm has its shortcomings. Consider a plan with op-
erators O1, O2, and O3. O1 produces 0.9n elements per n input elements in one
time unit, O2 processes 0.9n elements in one time unit without changing the input
size (i.e., it has selectivity 1), and O3 processes 0.9n elements in one time unit and
sends its output out of the system (i.e., it has selectivity 0). Clearly, the greedy al-
gorithm will prioritize O3 first, followed by O1, and then O2. If we consider the
arrival pattern in the previous example then our total queue size is as follows (again
as multipliers for n):

Time 0 1 2 3 4 5 6 Avg

FIFO scheduling 1.0 1.9 2.9 3.0 3.9 4.9 5.0 3.2

Greedy scheduling 1.0 1.9 2.8 3.7 4.6 5.5 6.4 3.7

In this case, the FIFO algorithm is better. Under the greedy strategy, although O3
has highest priority, sometimes it is “blocked” from running because it is preceded
by O2, the operator with the lowest priority. If O1, O2 and O3 are viewed as a
single block, then together they reduce n elements to zero elements over three units
of time, for an average reduction of 0.33n elements per unit time—better than the
reduction rate of 0.1n elements O1 provides. Since the greedy algorithm considers
individual operators only, it does not take advantage of this fact.

This observation forms the basis of our chain scheduling algorithm [4]. Our al-
gorithm forms blocks (“chains”) of operators as follows: Start by marking the first
operator in the plan as the “current” operator. Next, find the block of consecutive
operators starting at the “current” operator that maximizes the reduction in total
queue size per unit time. Mark the first operator following this block as the “cur-
rent” operator and repeat the previous step until all operators have been assigned to

STREAM: The Stanford Data Stream Management System 329

Fig. 4 Adaptive query processing

chains. Chains are scheduled according to the greedy algorithm, but within a chain,
execution proceeds in FIFO order. In terms of overall memory usage, this strategy
is provably close to the optimal “clairvoyant” scheduling strategy, i.e., the optimal
strategy based on knowledge of future input [4].

5 Adaptivity

In long-running stream applications, data and arrival characteristics of streams may
vary significantly over time [13]. Query loads and system conditions may change
as well. Without an adaptive approach to query processing, performance may drop
drastically over time as the environment changes. The STREAM system includes a
monitoring and adaptive query processing infrastructure called StreaMon [10].

StreaMon has three components as shown in Fig. 4(a): an Executor, which runs
query plans to produce results, a Profiler, which collects and maintains statistics
about stream and plan characteristics, and a Reoptimizer, which ensures that the
plans and memory structures are the most efficient for current characteristics. In
many cases, we combine the profiler and executor to reduce the monitoring over-
head.

The Profiler and Reoptimizer are essential for adaptivity, but they compete for
resources with the Executor. We have identified a clear three-way tradeoff among
run-time overhead, speed of adaptivity, and provable convergence to good strategies
if conditions stabilize. StreaMon supports multiple adaptive algorithms that lie at
different points along this tradeoff spectrum.

StreaMon can detect useful k-constraints (recall Sect. 4.2) in streams and exploit
them to reduce memory requirements for many continuous queries. In addition, it
can adaptively adjust the adherence parameter k based on the actual data in the
streams. Figure 4(b) shows the portions of StreaMon’s Profiler and Reoptimizer
that handle k-constraints, referred to as k-Mon. When a query is registered, the opti-
mizer notifies the profiler of potentially useful constraints. As the executor runs the
query, the profiler monitors the input streams continuously and informs the reopti-
mizer whenever it detects a change in a k value for any of these constraints. The

330 A. Arasu et al.

reoptimizer component adapts to these changes by adding or dropping constraints
used by the executor and adjusting k values used for memory allocation.

StreaMon also implements an algorithm called Adaptive Greedy (or A-Greedy)
[7], which maintains join orders adaptively for pipelined multiway stream joins,
also known as MJoins [22]. Figure 4(c) shows the portions of StreaMon’s Profiler
and Reoptimizer that comprise the A-Greedy algorithm. Using A-Greedy, StreaMon
monitors conditional selectivities and orders stream joins to minimize overall work
in current conditions. In addition, StreaMon detects when changes in conditions may
have rendered current orderings suboptimal, and reorders in those cases. In stable
conditions, the orderings converged on by the A-Greedy algorithm are equivalent
to those selected by a static Greedy algorithm that is provably within a cost factor
<4 of optimal. In practice, the Greedy algorithm, and therefore A-Greedy, nearly
always finds the optimal orderings.

In addition to adaptive join ordering, we use StreaMon to adaptively add and
remove subresult caches in stream join plans, to avoid recomputation of interme-
diate results [8]. StreaMon monitors costs and benefits of candidate caches, selects
caches to use, allocates memory to caches, and adapts over the entire spectrum be-
tween stateless MJoins and cache-rich join trees, as stream and system conditions
change.

Currently we are in the process of applying the StreaMon approach to make even
more aspects of the STREAM system adaptive, including sharing of synopses and
subplans, and operator scheduling.

6 Approximation

In many applications data streams can be bursty, with unpredictable peaks during
which the load may exceed available system resources, especially if numerous com-
plex queries have been registered. Fortunately, for many stream applications (e.g., in
many monitoring tasks), it is acceptable to degrade accuracy gracefully by providing
approximate answers during load spikes [18].

There are two primary ways in which a DSMS may be resource-limited:

• CPU-limited (Sect. 6.1)—The data arrival rate may be so high that there is in-
sufficient CPU time to process each stream element. In this case, the system may
approximate by dropping elements before they are processed.

• Memory-limited (Sect. 6.2)—The total state required for all registered queries
may exceed available memory. In this case, the system may selectively retain
some state, discarding the rest.

6.1 CPU-Limited Approximation

CPU usage can be reduced by load-shedding—dropping elements from query plans
and saving the CPU time that would be required to process them to completion. We

STREAM: The Stanford Data Stream Management System 331

implement load-shedding by introducing sampling operators that probabilistically
drop stream elements as they are input to the query plan.

The time-accuracy tradeoffs for sampling are more understandable for some
query plans than others. For example, if we know a few basic statistics on the
distribution of values in our streams, probabilistic guarantees on the accuracy of
sliding-window aggregation queries for a given sampling rate can be derived math-
ematically, as we will show in below. However, in more complex queries—ones
involving joins, for example—the error introduced by sampling is less clear and the
choice of error metric may be application-dependent.

Suppose we have a set of sliding-window aggregation queries over the input
streams. A simple example is

Select Avg (Temp) From SensorReadings [Range 5 Minutes]

If we have many such queries in a CPU-limited setting, our goal is to sample the
inputs so as to minimize the maximum relative error across all queries. (As an exten-
sion, we can weight the relative errors to provide “quality-of-service” distinctions.)
It follows that we should select sampling rates such that the relative error is the same
for all queries. Assume that for a given query Qi we know the mean μi and standard
deviation σi of the values we are aggregating, as well as the window size Ni . These
statistics can be collected by the profiler component in the StreaMon architecture
(recall Sect. 5). We can use the Hoeffding inequality [16] to derive a bound on the
probability δ that our relative error exceeds a given threshold εmax for a given sam-
pling rate. We then fix δ at a low value (e.g., 0.01) and algebraically manipulate this
equation to derive the required sampling rate Pi [6],

Pi = 1

εmax

√
σ 2

i +μ2
i

2Niμ
2
i

log
2

δ
.

Our load-shedding policy solves for the best achievable εmax given the constraint
that the system, after inserting load-shedders, can keep up with the arrival of ele-
ments. It then adds sampling operators at various points in the query plan such that
effective sampling rate for a query Qi is Pi .

6.2 Memory-Limited Approximation

Even using our scheduling algorithm that minimizes memory devoted to queues
(Sect. 4.3), and our constraint-aware execution strategy that minimizes synopsis
sizes (Sect. 4.2), if we have many complex queries with large windows (e.g., large
tuple-based windows, or any size time-based windows over rapid data streams),
memory may become a constraint. Spilling to disk may not be a feasible option due
to online performance requirements.

In this scenario, memory usage can be reduced at the cost of accuracy by re-
ducing the size of synopses at one or more operators. Incorporating a window into
a synopsis where no window is being used, or shrinking the existing window, will

332 A. Arasu et al.

shrink the synopsis. Note that if sharing is in place (Sect. 4.1), then modifying a
single synopsis may affect multiple queries.

Reducing the size of a synopsis generally tends to also reduce the sizes of
synopses above it in the query plan, but there are exceptions. Consider a query
plan where a sliding-window synopsis is used by a duplicate-elimination operator.
Shrinking the window size can increase the operator’s output rate, leading to an
increase in the size of “later” synopses. Fortunately, most of these cases can be de-
tected statically when the query plan is generated, and the system can avoid reducing
synopsis sizes in such cases.

There are other methods for reducing synopsis size, including maintaining a sam-
ple of the intended synopsis content (which is not always equivalent to inserting a
sample operator into the query plan), using histograms [19] or wavelets [12] when
the synopsis is used for aggregation or even for a join, and using Bloom filters [11]
for duplicate elimination, set difference, or set intersection. In addition, synopsis
sizes can be reduced by lowering the k values for known k-constraints (Sect. 4.2).
Lower k values cause more state to be discarded, but result in loss of accuracy if
the constraint does not hold for the assumed k. All of these techniques share the
property that memory use is flexible, and it can be traded against precision statically
or dynamically.

See Sect. 8.3 for discussion on future directions related to approximation.

7 The STREAM System Interface

In a system for continuous queries, it is important for users, system administrators,
and system developers to have the ability to inspect the system while it is running
and to experiment with adjustments. To meet these needs, we have developed a
graphical query and system visualizer for the STREAM system. The visualizer al-
lows the user to:

• View the structure of query plans and their component entities (operators, queues,
and synopses). Users can view the path of data flow through each query plan as
well as the sharing of computation and state within the plan.

• View the detailed properties of each entity. For example, the user can inspect
the amount of memory being used (for queue and synopsis entities), the current
throughput (for queue and operator entities), selectivity of predicates (for operator
entities), and other properties.

• Dynamically adjust entity properties. These changes are reflected in the system
in real time. For example, an administrator may choose to increase the size of a
queue to better handle bursty arrival patterns.

• View monitoring graphs that display time-varying entity properties such as queue
sizes, throughput, overall memory usage, and join selectivity, plotted dynamically
against time.

A screenshot of our visualizer is shown in Fig. 5. The large pane at the left dis-
plays a graphical representation of a currently selected query plan. The particular

STREAM: The Stanford Data Stream Management System 333

Fig. 5 Screenshot of the STREAM visualizer

query shown is a windowed join over two streams, R and S. Each entity in the plan
is represented by an icon: the ladder-shaped icons are queues, the boxes with mag-
nifying glasses over them are synopses, the window panes are windowing operators,
and so on. In this example, the user has added three monitoring graphs: the rate of
element flow through queues above and below the join operator, and the selectivity
of the join.

The upper-right pane displays the property-value table for a currently selected
entity. The user can inspect this list and can alter the values of some of the proper-
ties interactively. Finally, the lower-right pane displays a legend of entity icons and
descriptions for reference.

Our technique for implementing the monitoring graphs shown in Fig. 5 is based
on introspection queries on a special system stream called SysStream. Every entity
can publish any of its property values at any time onto SysStream. When a spe-
cific dynamic monitoring task is desired, e.g., monitoring recent join selectivity,
the relevant entity writes its statistics periodically on SysStream. Then a standard
CQL query, typically a windowed aggregation query, is registered over SysStream
to compute the desired continuous result, which is fed to the monitoring graph in
the visualizer. Users and applications can also register arbitrary CQL queries over
SysStream for customized monitoring tasks.

8 Future Directions

At the time of writing we plan to pursue the following general directions of future
work.

334 A. Arasu et al.

8.1 Distributed Stream Processing

So far we have considered a centralized DSMS model where all processing takes
place at a single system. In many applications, the stream data is actually produced
at distributed sources. Moving some processing to the sources instead of moving all
data to a central system may lead to more efficient use of processing and network
resources. Many new challenges arise if we wish to build a fully distributed data
stream system with capabilities equivalent to our centralized system.

8.2 Crash Recovery

The ability to recover to a consistent state following a system crash is a key feature
of conventional database systems, but has yet to be investigated for data stream
systems. There are some fundamental differences between DBMSs and DSMSs that
play an important role in crash recovery:

• The notion of consistent state in a DBMS is defined based on transactions, which
are closely tied to the conventional one-time query model. ACID transactional
properties do not map directly to the continuous query paradigm.

• In a DBMS, the data in the database cannot change during down-time. In contrast,
many stream applications deliver data to the DSMS from outside sources that do
not stop generating data while the system is down, possibly requiring the DSMS
to “catch up” following a crash.

• In a DBMS, queries underway at the time of a crash may be forgotten—it is the
responsibility of the application to restart them. In contrast, registered continuous
queries are part of the persistent state of a DSMS.

These differences lead us to believe that new mechanisms are needed for crash re-
covery in data stream systems. While logging of some type and perhaps even some
notion of transactions may form a component of the solution, new techniques will
be required as well.

8.3 Improved Approximation

Although some aspects of the approximation problem have already been addressed
(see Sect. 6), more work is needed to address the problem in its full generality. In the
memory-limited case, work is needed on the problem of sampling over arbitrary sub-
queries, computing “maximum-subset” as opposed to sampling approximations, and
maximizing accuracy over multiple weighted queries. In the CPU-limited case, we
need to address a broader range of queries, especially considering joins. Finally, we
need to handle situations when the DSMS may be both CPU and memory-limited.

STREAM: The Stanford Data Stream Management System 335

A significant challenge related to approximation is developing mechanisms
whereby the system can indicate to users or applications that approximation is oc-
curring, and to what degree. The converse is also important: mechanisms for users to
indicate acceptable degrees of approximation. As one step in the latter direction, we
are developing extensions to CQL that enable the specification of “approximation
guidelines” so that the user can indicate acceptable tolerances and priorities.

8.4 Relationship to Publish–Subscribe Systems

In a publish–subscribe (pub–sub) system (see, e.g., [1, 14, 15]), events may be pub-
lished continuously, and they are forwarded by the system to users who have regis-
tered matching subscriptions. Clearly, we can map a pub–sub system to a DSMS by
considering publications as streams and subscriptions as continuous queries. How-
ever, the techniques we have developed so far for processing continuous queries in
a DSMS have been geared primarily toward a relatively small number of indepen-
dent, complex queries, while a pub–sub system has potentially millions of simple,
similar queries. We are exploring techniques to bridge the capabilities of the two:
From the pub–sub perspective, provide a system that supports a more general model
of subscriptions. From the DSMS perspective, extend our approach to scale to an
extremely larger number of queries.

References

1. M.K. Aguilera, R.E. Strom, D.C. Sturman, M. Astley, T.D. Chandra, Matching events in a
content-based subscription system, in Proc. of the 18th Annual ACM Symp. on Principles of
Distributed Computing (1999), pp. 53–61

2. A. Arasu, B. Babcock, S. Babu, J. McAlister, J. Widom, Characterizing memory requirements
for queries over continuous data streams. ACM Trans. Database Syst. 29(1), 1–33 (2004)

3. A. Arasu, S. Babu, J. Widom, The CQL continuous query language: semantic foundations and
query execution. VLDB J. 15(2), 121–142 (2006)

4. B. Babcock, S. Babu, M. Datar, R. Motwani, Chain: operator scheduling for memory mini-
mization in data stream systems, in Proc. of the 2003 ACM SIGMOD Intl. Conf. on Manage-
ment of Data (2003), pp. 253–264

5. B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream sys-
tems, in Proc. of the 21st ACM SIGACT–SIGMOD–SIGART Symp. on Principles of Database
Systems (2002), pp. 1–16

6. B. Babcock, M. Datar, R. Motwani, Load shedding for aggregation queries over data streams,
in Proc. of the 20th Intl. Conf. on Data Engineering (2004)

7. S. Babu, R. Motwani, K. Munagala, I. Nishizawa, J. Widom, Adaptive ordering of pipelined
stream filters, in Proc. of the 2004 ACM SIGMOD Intl. Conf. on Management of Data (2004)

8. S. Babu, K. Munagala, J. Widom, R. Motwani, Adaptive caching for continuous queries, in
Proc. of the 21st Intl. Conf. on Data Engineering (2005), pp. 118–129

9. S. Babu, U. Srivastava, J. Widom, Exploiting k-constraints to reduce memory overhead in
continuous queries over data streams. ACM Trans. Database Syst. 29(3), 545–580 (2004)

10. S. Babu, J. Widom, StreaMon: an adaptive engine for stream query processing, in Proc. of the
2004 ACM SIGMOD Intl. Conf. on Management of Data (2004). Demonstration description

336 A. Arasu et al.

11. B.H. Bloom, Space/time trade-offs in hash coding with allowable errors. Commun. ACM
13(7), 422–426 (1970)

12. K. Chakrabarti, M.N. Garofalakis, R. Rastogi, K. Shim, Approximate query processing using
wavelets, in Proc. of the 26th Intl. Conf. on Very Large Data Bases (2000), pp. 111–122

13. J. Gehrke (ed.), Data stream processing. IEEE Comput. Soc. Bull. Technical Comm. Database
Eng. 26(1) (2003)

14. F. Fabret, H.-.A. Jacobsen, F. Llirbat, J. Pereira, K.A. Ross, D. Shasha, Filtering algorithms
and implementation for very fast publish/subscribe, in Proc. of the 2000 ACM SIGMOD Intl.
Conf. on Management of Data (2001), pp. 115–126

15. R.E. Gruber, B. Krishnamurthy, E. Panagos, READY: a high performance event notification
system, in Proc. of the 16th Intl. Conf. on Data Engineering (2000), pp. 668–669

16. W. Hoeffding, Probability inequalities for sums of bounded random variables. J. Am. Stat.
Soc. 58(301), 13–30 (1963)

17. U. Srivastava, J. Widom, Flexible time management in data stream systems, in Proc. of the
23rd ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (2004)

18. N. Tatbul, U. Cetintemel, S.B. Zdonik, M. Cherniak, M. Stonebraker, Load shedding in a data
stream manager, in Proc. of the 29th Intl. Conf. on Very Large Data Bases (2003), pp. 309–320

19. N. Thaper, S. Guha, P. Indyk, N. Koudas, Dynamic multidimensional histograms, in Proc. of
the 2002 ACM SIGMOD Intl. Conf. on Management of Data (2002), pp. 428–439

20. D. Thomas, R. Motwani, Caching queues in memory buffers, in Proc. of the 15th Annual
ACM–SIAM Symp. on Discrete Algorithms (2004)

21. P.A. Tucker, D. Maier, T. Sheard, L. Fegaras, Exploiting punctuation semantics in continuous
data streams. IEEE Trans. Knowl. Data Eng. 15(3), 555–568 (2003)

22. S. Viglas, J.F. Naughton, J. Burger, Maximizing the output rate of multi-way join queries
over streaming information sources, in Proc. of the 29th Intl. Conf. on Very Large Data Bases
(2003), pp. 285–296

The Aurora and Borealis Stream Processing
Engines

Uğur Çetintemel, Daniel Abadi, Yanif Ahmad, Hari Balakrishnan,
Magdalena Balazinska, Mitch Cherniack, Jeong-Hyon Hwang,
Samuel Madden, Anurag Maskey, Alexander Rasin, Esther Ryvkina,
Mike Stonebraker, Nesime Tatbul, Ying Xing, and Stan Zdonik

1 Introduction and History

Over the last several years, a great deal of progress has been made in the area
of stream-processing engines (SPEs) [9, 11, 17]. Three basic tenets distinguish
SPEs from current data processing engines. First, they must support primitives for
streaming applications. Unlike Online Transaction Processing (OLTP), which pro-
cesses messages in isolation, streaming applications entail time series operations
on streams of messages. Although a time series “blade” was added to the Illustra
Object-Relational DBMS, generally speaking, time series operations are not well
supported by current DBMSs. Second, streaming applications entail a real-time
component. If one is content to see an answer later, then one can store incoming
messages in a data warehouse and run a historical query on the warehouse to find
information of interest. This tactic does not work if the answer must be constructed
in real time. The need for real-time answers also dictates a fundamentally differ-
ent storage architecture. DBMSs universally store and index data records before
making them available for query activity. Such outbound processing, where data are
stored before being processed, cannot deliver real-time latency, as required by SPEs.
To meet more stringent latency requirements, SPEs must adopt an alternate model,
which we refer to as “inbound processing”, where query processing is performed

U. Çetintemel (B) · Y. Ahmad · J.-H. Hwang · A. Rasin · N. Tatbul · Y. Xing · S. Zdonik
Department of Computer Science, Brown University, Providence, RI, USA
e-mail: ugur@cs.brown.edu

D. Abadi · H. Balakrishnan · M. Balazinska · S. Madden · M. Stonebraker
Department of EECS and Laboratory for Computer Science,
Massachusetts Institute of Technology, Cambridge, MA, USA

M. Cherniack · A. Maskey · E. Ryvkina
Department of Computer Science, Brandeis University, Waltham, MA, USA

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_17

337

mailto:ugur@cs.brown.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_17

338 U. Çetintemel et al.

directly on incoming messages before (or instead of) storing them. Lastly, an SPE
must have capabilities to gracefully deal with spikes in message load. Incoming traf-
fic is usually bursty, and it is desirable to selectively degrade the performance of the
applications running on an SPE.

The Aurora stream-processing engine, motivated by these three tenets, is cur-
rently operational. It consists of some 100K lines of C++ and Java and runs on
both Unix- and Linux-based platforms. It was constructed with the cooperation of
students and faculty at Brown, Brandeis, and MIT. The fundamental design of the
engine has been well documented elsewhere: the architecture of the engine is de-
scribed in [9], while the scheduling algorithms are presented in [10]. Load-shedding
algorithms are presented in [21], and our approach to high availability in a multi-
site Aurora installation is covered in [12, 15]. Lastly, we have been involved in a
collective effort to define a benchmark that described the sort of monitoring appli-
cations that we have in mind. The result of this effort is called “Linear Road” and is
described in [7].

We have used Aurora to build various application systems. The first application
we describe here is an Aurora implementation of Linear Road, mentioned above.
Second, we have implemented a pilot application that detects late arrival of mes-
sages in a financial-services feed-processing environment. Third, one of our col-
laborators, a military medical research laboratory [23], asked us to build a system
to monitor the levels of hazardous materials in fish. Lastly, we have used Aurora
to build Medusa [8], a distributed version of Aurora that is intended to be used by
multiple enterprises that operate in different administrative domains.

The current Aurora prototype has been transferred to the commercial domain,
with venture capital backing. As such, the academic project is hard at work on
a complete redesign of Aurora, which we call Borealis. Borealis is a distributed
stream-processing system that inherits core stream-processing functionality from
Aurora and distribution functionality from Medusa. Borealis modifies and extends
both systems in nontrivial and critical ways to provide advanced capabilities that are
commonly required by newly emerging stream-processing applications. The Bore-
alis design is driven by our experience in using Aurora and Medusa, in develop-
ing several streaming applications including the Linear Road benchmark, and sev-
eral commercial opportunities. Borealis will address the following requirements of
newly emerging streaming applications.

We start with a review of the Aurora design and implementation in Sect. 2. We
then present the case studies mentioned above in detail in Sect. 3 and provide a brief
retrospective on what we have learned throughout the process in Sect. 4. We con-
clude in Sect. 5 by briefly discussing the ideas we have for Borealis in several new
areas including mechanisms for dynamic modification of query specification and
query results and a distributed optimization framework that operates across server
and sensor networks.

The Aurora and Borealis Stream Processing Engines 339

Fig. 1 Aurora graphical user interface

2 The Aurora Centralized Stream Processing Engine

Aurora is based on a dataflow-style “boxes and arrows” paradigm. Unlike other
stream processing systems that use SQL-style declarative query interfaces (e.g.,
STREAM [17]), this approach was chosen because it allows query activity to be in-
terspersed with message processing (e.g., cleaning, correlation, etc.). Systems that
only perform the query piece must ping-pong back and forth to an application for
the rest of the work, thereby adding to system overhead and latency.

In Aurora, a developer uses the GUI to wire together a network of boxes and arcs
that will process streams in a manner that produces the outputs necessary to his or
her application. A screen shot of the GUI used to create Aurora networks is shown
in Fig. 1: the black boxes indicate input and output streams that connect Aurora with
the stream sources and applications, respectively. The other boxes are Aurora oper-
ators and the arcs represent data flow among the operators. Users can drag-and-drop
operators from the palette on the left and connect them by simply drawing arrows
between them. It should be noted that a developer can name a collection of boxes
and replace it with a “superbox”. This “macro-definition” mechanism drastically
eases the development of big networks.

As illustrated in Fig. 2, the Aurora system is, in fact, a directed sub-graph of a
workflow diagram that expresses all simultaneous query computations. We refer to
this workflow diagram as the Aurora network. Queries are built from a standard set
of well-defined operators (a.k.a. boxes). The arcs denote tuple queues that represent
streams. Each box, when scheduled, processes one or more tuples from its input

340 U. Çetintemel et al.

Fig. 2 The Aurora processing network

queue and puts the results on its output queue. When tuples are generated at the
queues attached to the applications, they are assessed according to the application’s
QoS specification (more on this below).

By default, queries are continuous in that they can potentially run forever over
push-based inputs. Ad hoc queries can also be defined at run time and are attached
to connection points, which are predetermined arcs in the network where historical
data is stored. Connection points can be associated with persistence specifications
that indicate how long a history to keep. Aurora also allows dangling connection
points that can store static data sets. As a result, connection points enable Aurora
queries to combine traditional pull-based data with live push-based data. Aurora
also allows the definition of views, which are queries to which no application is
connected. A view is allowed to have a QoS specification as an indication of its
importance. Applications can connect to the view whenever there is a need.

The Aurora operators are presented in detail in [5] and are summarized in Fig. 3.
Aurora’s operator choices were influenced by numerous systems. The basic oper-
ators Filter, Map and Union are modeled after the Select, Project and Union op-
erations of the relational algebra. Join’s use of a distance metric to relate joinable
elements on opposing streams is reminiscent of the relational band join [14]. Aggre-
gate’s sliding window semantics is a generalized version of the sliding window con-
structs of SEQ [19] and SQL-99 (with generalizations including allowance for dis-
order (SLACK), timeouts, value-based windows etc.). The ASSUME ORDER clause
(used in Aggregate and Join), which defines a result in terms of an order which may
or may not be manifested, is borrowed from AQuery [16].

Each input must obey a particular schema (a fixed number of fixed or variable
length fields of the standard data types). Every output is similarly constrained. An
Aurora network accepts inputs, performs message filtering, computation, aggrega-
tion, and correlation, and then delivers output messages to applications.

The Aurora and Borealis Stream Processing Engines 341

Fig. 3 Aurora operators

Fig. 4 QoS graph types

Moreover, every output is optionally tagged with a Quality of Service (QoS)
specification. This specification indicates how much latency the connected appli-
cation can tolerate, as well as what to do if adequate responsiveness cannot be as-
sured under overload situations. Note that the Aurora notion of QoS is different
from the traditional QoS notion that typically implies hard performance guarantees,
resource reservations and strict admission control. Specifically, QoS is a multidi-
mensional function of several attributes of an Aurora system. These include (i) re-
sponse times—output tuples should be produced in a timely fashion; as otherwise
QoS will degrade (as delays get longer); (ii) tuple drops—if tuples are dropped to
shed load, then the QoS of the affected outputs will deteriorate; and (iii) values
produced—QoS clearly depends on whether important values are being produced
or not. Figure 4 illustrates these three QoS graph types.

When a developer is satisfied with an Aurora network, he or she can compile
it into an intermediate form, which is stored in an embedded database as part of
the system catalog. At run-time this data structure is read into virtual memory. The
Aurora run-time architecture is shown in Fig. 5. The heart of the system is the sched-
uler that determines which box (i.e., operator) to run. The scheduler also determines
how many input tuples of a box to process and how far to “push” the tuples toward
the output. Aurora operators can store and access data from embedded in-memory

342 U. Çetintemel et al.

Fig. 5 Aurora run-time architecture

databases as well as from external databases. Aurora also has a Storage Manager
that is used to buffer queues when main memory runs out. This is particularly im-
portant for queues at connection points since they can grow quite long.

The Run-Time Stats Monitor continuously monitors the QoS of output tuples.
This information is important since it drives the Scheduler in its decision-making,
and it also informs the Load Shedder when and where it is appropriate to discard
tuples in order to shed load. Load shedding is only one of the techniques employed
by Aurora to improve the QoS delivered to applications. When load shedding is
not working, Aurora will try to re-optimize the network using standard query op-
timization techniques (such as those that rely on operator commutativities). This
tactic requires a more global view of the network and thus is used more sparingly.
The final tactic is to retune the scheduler by gathering new statistics or switching
scheduler disciplines. The Aurora optimizer can rearrange a network by performing
box swapping when it thinks the result will be favorable. Such box swapping cannot
occur across a connection point; hence connection points are arcs that restrict the
behavior of the optimizer as well as remember history. More detailed information
on these various topics can be obtained from the referenced papers [5, 9, 10, 21].

3 Aurora Case Studies

In this section, we present four case studies of applications built using the Aurora
engine and tools.

The Aurora and Borealis Stream Processing Engines 343

3.1 Financial Services Application

Financial service organizations purchase stock ticker feeds from multiple providers
and need to switch in real time between these feeds if they experience too many
problems. We worked with a major financial services company on developing an
Aurora application that detects feed problems and triggers the switch in real time.
In this section, we summarize the application (as specified by the financial services
company) and its implementation in Aurora.

An unexpected delay in the reporting of new prices is an example of a feed prob-
lem. Each security has an expected reporting interval, and the application needs
to raise an alarm if a reporting interval exceeds its expected value. Furthermore,
if more than some number of alarms are recorded, a more serious alarm is raised
that could indicate that it is time to switch feeds. The delay can be caused by the
underlying exchange (e.g., NYSE, NASDAQ) or by the feed provider (e.g., Com-
stock, Reuters). If it is the former, switching to another provider will not help, so
the application must be able to rapidly distinguish between these two cases.

Ticker information is provided as a real-time data feed from one or more
providers, and a feed typically reports more than one exchange. As an example,
let us assume that there are 500 securities within a feed that update at least once
every 5 s and they are called “fast updates”. Let us also assume that there are 4000
securities that update at least once every 60 s and they are called “slow updates”.

If a ticker update is not seen within its update interval, the monitoring system
should raise a low alarm. For example, if MSFT is expected to update within 5 s,
and 5 s or more elapse since the last update, a low alarm is raised.

Since the source of the problem could be in the feed or the exchange, the moni-
toring application must count the number of low alarms found in each exchange and
the number of low alarms found in each feed. If the number for each of these cat-
egories exceeds a threshold (100 in the following example), a high alarm is raised.
The particular high alarm will indicate what action should be taken. When a high
alarm is raised, the low alarm count is reset and the counting of low alarms begins
again. In this way, the system produces a high alarm for every 100 low alarms of a
particular type.

Furthermore, the posting of a high alarm is a serious condition, and low alarms
are suppressed when the threshold is reached to avoid distracting the operator with
a large number of low alarms.

Figure 6 presents our solution realized with an Aurora query network. We assume
for simplicity that the securities within each feed are already separated into the 500
fast updating tickers and the 4000 slowly updating tickers. If this is not the case,
then the separation can be easily achieved with a lookup. The query network in
Fig. 6 actually represents six different queries (one for each output). Notice that
much of the processing is shared.

The core of this application is in the detection of late tickers. Boxes 1, 2, 3, and
4 are all Aggregate boxes that perform the bulk of this computation. An Aggregate
box groups input tuples by common value of one or more of their attributes, thus
effectively creating a substream for each possible combination of these attribute

344 U. Çetintemel et al.

Fig. 6 Aurora query network for the alarm correlation application

values. In this case, the aggregates are grouping the input on common value of
ticker symbol. For each grouping or substream, a window is defined that demarcates
interesting runs of consecutive tuples called windows. For each of the tuples in one
of these windows, some memory is allocated and an aggregating function (e.g.,
Average) is applied. In this example, the window is defined to be every consecutive
pair (e.g., tuples 1 and 2, tuples 2 and 3, etc.) and the aggregating function generates
one output tuple per window with a boolean flag called Alarm, which is a 1 when
the second tuple in the pair is delayed (call this an Alarm tuple) and a 0 when it is
on time.

Aurora’s operators have been designed to react to imperfections such as delayed
tuples. Thus, the triggering of an Alarm tuple is accomplished directly using this
built-in mechanism. The window defined on each pair of tuples will timeout if the
second tuple does not arrive within the given threshold (5 s in this case). In other
words, the operator will produce one alarm each time a new tuple fails to arrive
within 5 s, as the corresponding window will automatically timeout and close. The
high-level specification of Aggregate boxes 1 through 4 is:

Aggregate(Group by ticker,
Order on arrival,
Window (Size = 2 tuples,

Step = 1 tuple,
Timeout = 5 sec))

Boxes 5 through 8 are Filters that eliminate the normal outputs, thereby letting
only the Alarm tuples through. Box 9 is a Union operator that merges all Reuters
alarms onto a single stream. Box 10 performs the same operation for Comstock.

The rest of the network determines when a large number of Alarms is occurring
and what the cause of the problem might be. Boxes 11 and 15 count Reuters alarms

The Aurora and Borealis Stream Processing Engines 345

and raise a high alarm when a threshold (100) is reached. Until that time, they simply
pass through the normal (low) alarms. Boxes 14 and 18 do the same for Comstock.
Note that the boxes labeled Count 100 are actually Map boxes. Map takes a user-
defined function as a parameter and applies it to each input tuple. That is, for each
tuple t in the input stream, a Map box parameterized by a function f produces the
tuple f (x). In this example, Count 100 simply applies the following user-supplied
function (written in pseudocode) to each tuple that passes through:

F (x:tuple) = cnt++
if (cnt % 100 != 0)

if !suppress
emit lo-alarm

else
emit drop-alarm

else
emit hi-alarm
set suppress = true

Boxes 12, 13, 16, and 17 separate the alarms from both Reuters and Comstock
into alarms from NYSE and alarms from NASDAQ. This is achieved by using Filters
to take NYSE alarms from both feed sources (Boxes 12 and 13) and merging them
using a Union (Box 16). A similar path exists for NASDAQ alarms. The results of
each of these streams are counted and filtered as explained above.

In summary, this example illustrates the ability to share computation among
queries, the ability to extend functionality through user-defined Aggregate and Map
functions, and the need to detect and exploit stream imperfections.

3.2 The Linear Road Benchmark

Linear Road is a benchmark for stream-processing engines [4, 7]. This benchmark
simulates an urban highway system that uses “variable tolling” (also known as “con-
gestion pricing”) [1, 13, 18], where tolls are determined according to such dynamic
factors as congestion, accident proximity, and travel frequency. As a benchmark,
Linear Road specifies input data schemas and workloads, a suite of continuous and
historical queries that must be supported, and performance (query and transaction
response time) requirements.

Variable tolling is becoming increasingly prevalent in urban settings because it is
effective at reducing traffic congestion and because recent advances in microsensor
technology make it feasible. Traffic congestion in major metropolitan areas is an in-
creasing problem as expressways cannot be built fast enough to keep traffic flowing
freely at peak periods. The idea behind variable tolling is to issue tolls that vary ac-
cording to time-dependent factors such as congestion levels and accident proximity
with the motivation of charging higher tolls during peak traffic periods to discourage

346 U. Çetintemel et al.

vehicles from using the roads and contributing to the congestion. Illinois, Califor-
nia, and Finland are among the highway systems that have pilot programs utilizing
this concept.

The benchmark itself assumes a fictional metropolitan area (called “Linear City”)
that consists of 10 expressways of 100-mile-long segments each and 1,000,000 ve-
hicles that report their positions via GPS-based sensors every 30 s. Tolls must be
issued on a per-segment basis automatically, based on statistics gathered over the
previous 5 min concerning average speed and number of reporting cars. A segment’s
tolls are overridden when accidents are detected in the vicinity (an accident is de-
tected when multiple cars report close positions at the same time), and vehicles that
use a particular expressway often are issued “frequent traveler” discounts.

The Linear Road benchmark demands support for five queries: two continuous
and three historical. The first continuous query calculates and reports a segment toll
every time a vehicle enters a segment. This toll must then be charged to the vehicle’s
account when the vehicle exits that segment without exiting the expressway. Again,
tolls are based on current congestion conditions on the segment, recent accidents
in the vicinity, and frequency of use of the expressway for the given vehicle. The
second continuous query involves detecting and reporting accidents and adjusting
tolls accordingly. The historical queries involve requesting an account balance or a
day’s total expenditure for a given vehicle on a given expressway and a prediction
of travel time between two segments on the basis of average speeds on the segments
recorded previously. Each of the queries must be answered with a specified accuracy
and within a specified response time. The degree of success for this benchmark is
measured in terms of the number of expressways the system can support, assuming
1000 position reports issued per second per expressway, while answering each of
the five queries within the specified latency bounds.

3.3 Environmental Monitoring

We have also worked with a military medical research laboratory on an application
that involves monitoring toxins in the water. This application is fed streams of data
indicating fish behavior (e.g., breathing rate) and water quality (e.g., temperature,
pH, oxygenation, and conductivity). When the fish behave abnormally, an alarm is
sounded.

Input data streams were supplied by the army laboratory as a text file. The single
data file interleaved fish observations with water quality observations. The alarm
message emitted by Aurora contains fields describing the fish behavior and two
different water quality reports: the water quality at the time the alarm occurred and
the water quality from the last time the fish behaved normally. The water quality
reports contain not only the simple measurements but also the 1-/2-/4-hour sliding-
window deltas for those values.

The application’s Aurora processing network is shown in Fig. 7 (snapshot taken
from the Aurora GUI): The input port (1) shows where tuples enter Aurora from

The Aurora and Borealis Stream Processing Engines 347

Fig. 7 Aurora query network for the environmental contamination detection applications (GUI
snapshot)

the outside data source. In this case, it is the application’s C++ program that reads
in the sensor log file. A Union box (2) serves merely to split the stream into two
identical streams. A Map box (3) eliminates all tuple fields except those related to
water quality. Each superbox (4) calculates the sliding-window statistics for one of
the water quality attributes. The parallel paths (5) form a binary join network that
brings the results of (4)’s subnetworks back into a single stream. The top branch in
(6) has all the tuples where the fish act oddly, and the bottom branch has the tuples
where the fish act normally. For each of the tuples sent into (1) describing abnormal
fish behavior, (6) emits an alarm message tuple. This output tuple has the sliding-
window water quality statistics for both the moment the fish acted oddly and for
the most recent previous moment that the fish acted normally. Finally, the output
port (7) shows where result tuples are made available to the C++-based monitoring
application. Overall, the entire application ended up consisting of 3400 lines of C++
code (primarily for file parsing and a simple monitoring GUI) and a 53-operator
Aurora query network.

During the development of the application, we observed that Aurora’s stream
model proved very convenient for describing the required sliding-window calcula-
tions. For example, a single instance of the aggregate operator computed the 4-h
sliding-window deltas of water temperature.

Aurora’s GUI for designing query networks also proved invaluable. As the query
network grew large in the number of operators used, there was great potential for
overwhelming complexity. The ability to manually place the operators and arcs on
a workspace, however, permitted a visual representation of “subroutine” boundaries
that let us comprehend the entire query network as we refined it.

We found that small changes in the operator language design would have greatly
reduced our processing network complexity. For example, Aggregate boxes apply
some window function [such as DELTA(water-pH)] to the tuples in a slid-
ing window. Had an Aggregate box been capable of evaluating multiple func-
tions at the same time on a single window [such as DELTA(water-pH) and
DELTA(watertemp)], we could have used significantly fewer boxes. Many of
these changes have since been made to Aurora’s operator language.

The ease with which the processing flow could be experimentally reconfigured
during development, while remaining comprehensible, was surprising. It appears

348 U. Çetintemel et al.

Table 1 Overview of a subset of the Aurora API

start and shutdown: Respectively starts processing and shuts down a complete
query network.

modifyNetwork: At runtime, adds or removes schemas, streams, and operator boxes
from a query network processed by a single Aurora engine.

typecheck: Validates (part of) a query network. Computes properties of intermediate
and output streams.

enqueue and dequeue: Push and pull tuples on named streams.

listEntities and describe(Entity): Provide information on entities in the
current query network.

getPerfStats: Provides performance and load information.

that this was only possible by having both a well-suited operator set and a GUI tool
that let us visualize the processing. It seems likely that this application was devel-
oped at least as quickly in Aurora as it would have been with standard procedural
programming.

We note that, for this particular application, real-time response was not required.
The main value Aurora added in this case was the ease of developing stream-
oriented applications.

3.4 Medusa: Distributed Stream Processing

Medusa is a distributed stream-processing system built using Aurora as the single-
site query-processing engine. Medusa takes Aurora queries and distributes them
across multiple nodes. These nodes can all be under the control of one entity or be
organized as a loosely coupled federation under the control of different autonomous
participants.

A distributed stream-processing system such as Medusa offers several benefits
including incremental scalability over multiple nodes, composition of stream feeds
across multiple participants, and high availability and load sharing through resource
multiplexing.

The development of Medusa prompted two important changes to the Aurora pro-
cessing engine. First, it became apparent that it would be useful to offer Aurora not
only as a stand-alone system but also as a library that could easily be integrated
within a larger system. Second, we felt the need for an Aurora API, summarized
in Table 1. This API is composed of three types of methods: (i) methods to set up
queries and push or pull tuples from Aurora, (ii) methods to modify query networks
at runtime (operator additions and removals), and (iii) methods giving access to
performance information.

The Aurora and Borealis Stream Processing Engines 349

4 Experience and Lessons Learned

4.1 Support for Historical Data

From our work on a variety of streaming applications, it became apparent that each
application required maintaining and accessing a collection of historical data. For
example, the Linear Road benchmark, which represents a realistic application, re-
quired maintaining 10 weeks of toll history for each driver, as well as the current
positions of every vehicle and the locations of accidents tying up traffic. Historical
data might be used to support historical queries (e.g., tell me how much driver X
has spent on tolls on expressway Y over the past 10 weeks) or serve as inputs to
hybrid queries involving both streaming and historical data [e.g., report the current
toll for vehicle X based on its current position (streamed data) and the presence of
any accidents in its vicinity (historical data)].

In the applications we have looked at, historical data take three different forms.
These forms differ by their update patterns—the means by which incoming stream
data are used to update the contents of a historical collection. These forms are sum-
marized below.

1. Open windows (connection points). Linear Road requires maintaining the last
10 weeks’ worth of toll data for each driver to support both historical queries
and integrated queries. This form of historical data resembles a window in its
FIFO-based update pattern but must be shared by multiple queries and therefore
be openly accessible.

2. Aggregate summaries (latches). Linear Road requires maintaining such aggre-
gated historical data as: the current toll balance for every vehicle (SUM(Toll)),
the last reported position of every vehicle (MAX(Time)), and the average speed
on a given segment over the past 5 min (AVG(Speed)). In all cases, the update
patterns involve maintaining data by key value (e.g., vehicle or segment ID) and
using incoming tuples to update the aggregate value that has the appropriate key.
As with open windows, aggregate summaries must be shared by multiple queries
and therefore must be openly accessible.

3. Tables. Linear Road requires maintaining tables of historical data whose update
patterns are arbitrary and determined by the values of streaming data. For ex-
ample, a table must be maintained that holds every accident that has yet to be
cleared (such that an accident is detected when multiple vehicles report the same
position at the same time). This table is used to determine tolls for segments in
the vicinity of the accident and to alert drivers approaching the scene of the ac-
cident. The update pattern for this table resembles neither an open window nor
an aggregate summary. Rather, accidents must be deleted from the table when
an incoming tuple reports that the accident has been cleared. This requires the
declaration of an arbitrary update pattern.

Whereas open windows and aggregate summaries have fixed update patterns, ta-
bles require update patterns to be explicitly specified. Therefore, the Aurora query

350 U. Çetintemel et al.

algebra (SQuAl) includes an Update box that permits an update pattern to be speci-
fied in SQL. This box has the form

UPDATE (Assume O, SQL U, Report t)
such that U is an SQL update issued with every incoming tuple and includes vari-
ables that get instantiated with the values contained in that tuple. O specifies the
assumed ordering of input tuples, and t specifies a tuple to output whenever an up-
date takes place. Further, because all three forms of historical collections require
random access, SQuAl also includes a Read box that initiates a query over stored
data (also specified in SQL) and returns the result as a stream. This box has the form

READ (Assume O, SQL Q)
such that Q is an SQL query issued with every incoming tuple and includes variables
that get instantiated with the values contained in that tuple.

4.2 Synchronization

As continuous queries, stream applications inherently rely on shared data and com-
putation. Shared data might be contained in a table that one query updates and an-
other query reads. For example, the Linear Road application requires that vehicle
position data be used to update statistics on highway usage, which in turn are read
to determine tolls for each segment on the highway. Alternatively, box output can
be shared by multiple queries to exploit common subexpressions or even by a single
query as a way of merging intermediate computations after parallelization.

Transactions are required in traditional databases because data sharing can lead
to data inconsistencies. An equivalent synchronization mechanism is required in
streaming settings, as data sharing in this setting can also lead to inconsistencies.
For example, if a toll charge can expire, then a toll assessment to a given vehicle
should be delayed until a new toll charge is determined. The need for synchroniza-
tion with data sharing is achieved in SQuAl via the WaitFor box whose syntax is
shown below:

WaitFor (P: Predicate, T: Timeout).
This binary operator buffers each tuple t on one input stream until a tuple arrives on
the second input stream that with t satisfies P (or until the timeout expires, in which
case t is discarded). If a Read operation must follow a given Update operation, then
a WaitFor can buffer the Read request (tuple) until a tuple output by the Update
box (and input to the second input of WaitFor) indicates that the Read operation can
proceed.

4.3 Resilience to Unpredictable Stream Behavior

Streams are by their nature unpredictable. Monitoring applications require the sys-
tem to continue operation even when the unpredictable happens. Sometimes, the

The Aurora and Borealis Stream Processing Engines 351

only way to do this is to produce approximate answers. Obviously, in these cases,
the system should try to minimize errors.

We have seen examples of streams that do not behave as expected. The financial
services application that we described earlier requires the ability to detect a problem
in the arrival rate of a stream. The military application must fundamentally adjust
its processing to fit the available resources during times of stress. In both of these
cases, Aurora primitives for unpredictable stream behavior were brought to bear on
the problem.

Aurora makes no assumptions that a data stream arrives in any particular order or
with any temporal regularity. Tuples can be late or out of order due to the nature of
the data sources, the network that carries the streams, or the behavior of the operators
themselves. Accordingly, our operator set includes user-specified parameters that
allow handling such “damaged” streams gracefully.

For many of the operators, an input stream can be specified to obey an expected
order. If out-of-order data are known to the network designer not to be of relevance,
the operator will simply drop such data tuples immediately. Nonetheless, Aurora un-
derstands that this may at times be too drastic a constraint and provides an optional
slack parameter to allow for some tolerance in the number of data tuples that may
arrive out of order. A tuple that arrives out of order within the slack bounds will be
processed as if it had arrived in order.

With respect to possible irregularity in the arrival rate of data streams, the Au-
rora operator set offers all windowed operators an optional timeout parameter. The
timeout parameter tells the operator how long to wait for the next data tuple to ar-
rive. This has two benefits: it prevents blocking (i.e., no output) when one stream is
stalled, and it offers another way for the network designer to characterize the value
of data that arrive later than they should, as in the financial services application in
which the timeout parameter was used to determine when a particular data packet
arrived late.

4.4 XML and Other Feed Formats Adaptor Required

Aurora provides a network protocol that may be used to enqueue and dequeue tuples
via Unix or TCP sockets. The protocol is intentionally very low-level: to eliminate
copies and improve throughput, the tuple format is closely tied to the format of
Aurora’s internal queue format. For instance, the protocol requires that each packet
contain a fixed amount of padding reserved for bookkeeping and that integer and
floating-point fields in the packet match the architecture’s native format.

While we anticipate that performance-critical applications will use our low-level
protocol, we also recognize that the formats of Aurora’s input streams may be out-
side the immediate control of the Aurora user or administrator, for example, stock
quote data arriving in XML format from a third-party information source. Also, even
if the streams are being generated or consumed by an application within an organi-
zation’s control, in some cases protocol stability and portability (e.g., not requiring

352 U. Çetintemel et al.

the client to be aware of the endianness of the server architecture) are important
enough to justify a minor performance loss.

One approach to addressing these concerns is to simply require the user to build
a proxy application that accepts tuples in the appropriate format, converts them to
Aurora’s internal format, and pipes them into the Aurora process. This approach,
while simple, conflicts with one of Aurora’s key design goals—to minimize the
number of boundary crossings in the system—since the proxy application would be
external to Aurora and hence live in its own address space.

We resolve this problem by allowing the user to provide plug-ins called con-
verter boxes. Converter boxes are shared libraries that are dynamically linked into
the Aurora process space; hence their use incurs no boundary crossings. A user-
defined input converter box provides a hook that is invoked when data arrive over
the network. The implementation may examine the data and inject tuples into the
appropriate streams in the Aurora network. This may be as simple as consuming
fixed-length packets and enforcing the correct byte order on fields or as complex
as transforming fully formed XML documents into tuples. An output converter box
performs the inverse function: it accepts tuples from streams in Aurora’s internal
format and converts them into a byte stream to be consumed by an external applica-
tion.

Input and output converter boxes are powerful connectivity mechanisms: they
provide a high level of flexibility in dealing with external feeds and sinks without
incurring a performance hit. This combination of flexibility and high performance
is essential in a streaming database that must assimilate data from a wide variety of
sources.

4.5 Programmatic Interfaces and Globally Accessible Catalogs
Are a Good Idea

Initially, Aurora networks were created using the GUI and all Aurora metadata (i.e.,
catalogs) were stored in an internal representation. Our experience with the Medusa
system quickly made us realize that, in order for Aurora to be easily integrated
within a larger system, a higher-level, programmatic interface was needed to script
Aurora networks and metadata needed to be globally accessible and updatable.

Although we initially assumed that only Aurora itself (i.e., the runtime and the
GUI) would need direct access to the catalog representation, we encountered several
situations where this assumption did not hold. For instance, in order to manage dis-
tribution operation across multiple Aurora nodes, Medusa required knowledge of the
contents of node catalogs and the ability to selectively move parts of catalogs from
node to node. Medusa needed to be able to create catalog objects (schema, streams,
and boxes) without direct access to the Aurora catalog database, which would have
violated abstraction. In other words, relying on the Aurora runtime and GUI as the
sole software components able to examine and modify catalog structures turned out
to be an unworkable solution when we tried to build sophisticated applications on

The Aurora and Borealis Stream Processing Engines 353

the Aurora platform. We concluded that we needed a simple and transparent cata-
log representation that is easily readable and writable by external applications. This
would make it much easier to write higher-level systems that use Aurora (such as
Medusa) and alternative authoring tools for catalogs.

To this end, Aurora currently incorporates appropriate interfaces and mechanisms
(Sect. 3.4) to make it easy to develop external applications to inspect and modify
Aurora query networks. A universally readable and writable catalog representation
is crucial in an environment where multiple applications may operate on Aurora
catalogs.

4.6 Performance Critical

Fundamental to an SPE is a high-performance “message bus”. This is the system
that moves tuples from one operator to the next, storing them temporarily, as well as
into and out of the query network. Since every tuple is passed on the bus a number
of times, this is definitely a performance bottleneck. Even such trivial optimizations
as choosing the right memcpy() implementation gave substantial improvements to
the whole system.

Second to the message bus, the scheduler is the core element of an SPE. The
scheduler is responsible for allocating processor time to operators. It is tempting to
decorate the scheduler with all sorts of high-level optimization such as intelligent
allocation of processor time or real-time profiling of query plans. But it is important
to remember that scheduler overhead can be substantial in networks where there
are many operators and that the scheduler makes no contribution to the actual pro-
cessing. All addition of scheduler functionality must be greeted with skepticism and
should be aggressively profiled.

Once the core of the engine has been aggressively optimized, the remaining hot
spots for performance are to be found in the implementation of the operators. In
our implementation, each operator has a “tight loop” that processes batches of input
tuples. This loop is a prime target for optimization. We make sure nothing other
than necessary processing occurs in the loop. In particular, housekeeping of data
structures such as memory allocations and deallocation needs to be done outside of
this loop so that its cost can be amortized across many tuples.

Data structures are another opportunity for operator optimization. Many of our
operators are stateful; they retain information or even copies of previous input. Be-
cause these operators are asked to process and store large numbers of tuples, effi-
ciency of these data structures is important. Ideally, processing of each input tuple
is accomplished in constant time. In our experience, processing that is linear in the
amount of states stored is unacceptable.

In addition to the operators themselves, any parts of the system that are used
by those operators in the tight loops must be carefully examined. For example, we
have a small language used to specify expressions for Map operators. Because these
expressions are evaluated in such tight loops, optimizing them was important. The
addition of an expensive compilation step may even be appropriate.

354 U. Çetintemel et al.

These microbenchmarks measure the overhead involved in passing tuples into
and out of Aurora boxes and networks; they do not measure the time spent in boxes
performing nontrivial operations such as joining and aggregation. Message-passing
overhead, however, can be a significant time sink in streaming databases (as it was
in earlier versions of Aurora). Microbenchmarking was very useful in eliminating
performance bottlenecks in Aurora’s message-passing infrastructure. This infras-
tructure is now fast enough in Aurora that nontrivial box operations are the only
noticeable bottleneck, i.e., CPU time is overwhelmingly devoted to useful work and
not simply to shuffling around tuples.

5 Ongoing Work: The Borealis Distributed SPE

This section presents the initial ideas that we have started to explore in the context
of the Borealis distributed SPE, which is a follow-on to Aurora. The rest of the
section will provide an overview of the new challenges that Borealis will address.
More details on these challenges as well as a preliminary design of Borealis can be
found in [2].

5.1 Dynamic Revision of Query Results

In many real-world streams, corrections or updates to previously processed data are
available only after the fact. For instance, many popular data streams, such as the
Reuters stock market feed, often include messages that allow the feed originator
to correct errors in previously reported data. Furthermore, stream sources (such as
sensors), as well as their connectivity, can be highly volatile and unpredictable. As
a result, data may arrive late and miss their processing window or be ignored tem-
porarily due to an overload situation. In all these cases, applications are forced to
live with imperfect results, unless the system has means to correct its processing and
results to take into account newly available data or updates.

The Borealis data model extends that of Aurora by supporting such corrections
by way of revision records. The goal is to process revisions intelligently, correcting
query results that have already been emitted in a manner that is consistent with the
corrected data. Processing of a revision message must replay a portion of the past
with a new or modified value. Thus, to process revision messages correctly, we must
make a query diagram “replayable”. In theory, we could process each revision mes-
sage by replaying processing from the point of the revision to the present. In most
cases, however, revisions on the input affect only a limited subset of output tuples,
and to regenerate unaffected output is wasteful and unnecessary. To minimize run-
time overhead and message proliferation, we assume a closed model for replay that
generates revision messages when processing revision messages. In other words,
our model processes and generates “deltas” showing only the effects of revisions
rather than regenerating the entire result. The primary challenge here is to develop
efficient revision-processing techniques that can work with bounded history.

The Aurora and Borealis Stream Processing Engines 355

5.2 Dynamic Query Modification

In many stream-processing applications, it is desirable to change certain attributes
of the query at runtime. For example, in the financial services domain, traders typ-
ically wish to be alerted of interesting events, where the definition of “interesting”
(i.e., the corresponding filter predicate) varies based on current context and results.
In network monitoring, the system may want to obtain more precise results on a spe-
cific subnetwork if there are signs of a potential denial-of-service attack. Finally, in
a military stream application that MITRE [23] explained to us, they wish to switch
to a “cheaper” query when the system is overloaded. For the first two applications,
it is sufficient to simply alter the operator parameters (e.g., window size, filter pred-
icate), whereas the last one calls for altering the operators that compose the running
query. Another motivating application comes again from the financial services com-
munity. Universally, people working on trading engines wish to test out new trading
strategies as well as debug their applications on historical data before they go live.
As such, they wish to perform “time travel” on input streams. Although this last
example can be supported in most current SPE prototypes (i.e., by attaching the
engine to previously stored data), a more user-friendly and efficient solution would
obviously be desirable.

Two important features that will facilitate online modification of continuous
queries in Borealis are control lines and time travel. Control lines extend Aurora’s
basic query model with the ability to change operator parameters as well as opera-
tors themselves on the fly. Control lines carry messages with revised box parameters
and new box functions. For example, a control message to a Filter box can contain
a reference to a boolean-valued function to replace its predicate. Similarly, a control
message to an Aggregate box may contain a revised window size parameter. Ad-
ditionally, each control message must indicate when the change in box semantics
should take effect. Change is triggered when a monotonically increasing attribute
received on the data line attains a certain value. Hence, control messages specify
an 〈attribute, value〉 pair for this purpose. For windowed operators like Aggregate,
control messages must also contain a flag to indicate if open windows at the time of
change must be prematurely closed for a clean start.

Time travel allows multiple queries (different queries or versions of the same
query) to be easily defined and executed concurrently, starting from different points
in the past or “future” (typically by running a simulation of some sort). To support
these capabilities, we leverage three advanced mechanisms in Borealis: enhanced
connection points, connection point versions, and revision messages. To facilitate
time travel, we define two new operations on connection points. The replay opera-
tion replays messages stored at a connection point from an arbitrary message in the
past. The offset operation is used to set the connection point offset in time. When
offset into the past, a connection point delays current messages before pushing them
downstream. When offset into the future, the connection point predicts future data.
When producing future data, various prediction algorithms can be used based on the
application. A connection point version is a distinctly named logical copy of a con-
nection point. Each named version can be manipulated independently. It is possible

356 U. Çetintemel et al.

to shift a connection point version backward and forward in time without affecting
other versions.

To replay history from a previous point in time t , we use revision messages.
When a connection point receives a replay command, it first generates a set of revi-
sion messages that delete all the messages and revisions that have occurred since t .
To avoid the overhead of transmitting one revision per deleted message, we use a
macro message that summarizes all deletions. Once all messages are deleted, the
connection point produces a series of revisions that insert the messages and possi-
bly their following revisions back into the stream. During replay, all messages and
revisions received by the connection point are buffered and processed only after
the replay terminates, thus ensuring that simultaneous replays on any path in the
query diagram are processed in sequence and do not conflict. When offset into the
future, time-offset operators predict future values. As new data become available,
these predictors can (but do not have to) produce more accurate revisions to their
past predictions. Additionally, when a predictor receives revision messages, possi-
bly due to time travel into the past, it can also revise its previous predictions.

5.3 Distributed Optimization

Currently, commercial stream-processing applications are popular in industrial pro-
cess control (e.g., monitoring oil refineries and cereal plants), financial services
(e.g., feed processing, trading engine support and compliance), and network moni-
toring (e.g., intrusion detection, fraud detection). Here we see a server-heavy opti-
mization problem—the key challenge is to process high-volume data streams on a
collection of resource-rich “beefy” servers. Over the horizon, we see a very large
number of applications of wireless sensor technology (e.g., RFID in retail applica-
tions, cell phone services). Here we see a sensor-heavy optimization problem—the
key challenges revolve around extracting and processing sensor data from a net-
work of resource-constrained “tiny” devices. Further over the horizon, we expect
sensor networks to become faster and increase in processing power. In this case
the optimization problem becomes more balanced, becoming sensor-heavy/server-
heavy. To date, systems have exclusively focused on either a server-heavy environ-
ment or a sensor-heavy environment. Off into the future, there will be a need for a
more flexible optimization structure that can deal with a very large number of de-
vices and perform cross-network sensor-heavy/server-heavy resource management
and optimization.

The purpose of the Borealis optimizer is threefold. First, it is intended to opti-
mize processing across a combined sensor and server network. To the best of our
knowledge, no previous work has studied such a cross-network optimization prob-
lem. Second, QoS is a metric that is important in stream-based applications, and op-
timization must deal with this issue. Third, scalability, sizewise and geographical, is
becoming a significant design consideration with the proliferation of stream-based
applications that deal with large volumes of data generated by multiple distributed

The Aurora and Borealis Stream Processing Engines 357

sensor networks. As a result, Borealis faces a unique, multiresource/multimetric op-
timization challenge that is significantly different than the optimization problems
explored in the past. Our current thinking is that Borealis will rely on a hierarchical,
distributed optimizer that runs at different time granularities [3].

5.4 High Availability

Another part of the Borealis vision involves addressing recovery and high-
availability issues. High availability demands that node failure be masked by seam-
less handoff of processing to an alternate node. This is complicated by the fact that
the optimizer will dynamically redistribute processing, making it more difficult to
keep backup nodes synchronized. Furthermore, wide-area Borealis applications are
not only vulnerable to node failures but also to network failures and more impor-
tantly to network partitions. We have preliminary research in this area that leverages
Borealis mechanisms including connection point versions, revision tuples, and time
travel.

5.5 Implementation Status

We built a Borealis prototype on top of the Aurora and Medusa code bases. Borealis
borrowed many of the Aurora modules including its GUI, the XML representation
for query diagrams, portions of the runtime system, and much of the logic for boxes.
Borealis also borrowed basic networking and distribution logic from Medusa.

The Borealis prototype was demonstrated in SIGMOD 2006 [6], running real-
time player-visualization queries on top of a multiplayer network game. The proto-
type systems is also available to public through the Borealis website [22].

5.6 Commercialization

The Aurora/Borealis project led to the first commercial real-time stream processing
engine, which is being developed and offered by StreamBase Inc. [20]. The com-
pany was founded in 2003 primarily by the members of the academic project. Since
then, StreamBase has grown to more than 60 employees (as of summer 2007) and
has a diverse client base that consists of financial services, telecommunications and
gaming companies, as well as the intelligence and military sector.

The company has been actively participating in the development and publicity of
StreamSQL, an extension of SQL for live data streams, as the standard textual lan-
guage to develop stream-oriented applications. StreamSQL has constructs that can
seamlessly mix streams and stored tables in a single query and expressive pattern
matching capabilities.

358 U. Çetintemel et al.

Acknowledgements This work was supported in part by the National Science Foundation under
the grants IIS-0086057, IIS-0325525, IIS-0325703, and IIS-0325838; and by the Army contract
DAMD17-02-2-0048. We would like to thank all past members of the Aurora, Medusa, and Bore-
alis projects for their valuable contributions.

References

1. A guide for hot lane development: a US department of transportation federal highway admin-
istration. http://www.itsdocs.fhwa.dot.gov/JPODOCS/REPTSTE/13668.html

2. D. Abadi, Y. Ahmad, H. Balakrishnan, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, J. Janotti, W. Lindner, S. Madden, A. Rasin, M. Stonebraker, N. Tatbul, Y. Xing,
S. Zdonik, The design of the Borealis stream processing engine. Technical report CS-04-08,
Department of Computer Science, Brown University (2004)

3. D. Abadi, Y. Ahmad, H. Balakrishnan, M. Balazinska, U. Cetintemel, M. Cherniack,
J.-H. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Rvvkina, N. Tatbul, Y. Xing, S. Zdonik,
The design of the Borealis stream processing engine, in CIDR Conference (2005)

4. D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. Galvez, M. Ha-
toun, J. Hwang, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y. Xing, R. Yan,
S. Zdonik, Aurora: a data stream management system (demo description), in ACM SIGMOD
Conference (2003)

5. D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tat-
bul, S.Z. Aurora, A new model and architecture for data stream management. VLDB J. 12(2)
(2003)

6. Y. Ahmad, B. Berg, U. Çetintemel, M. Humphrey, J. Hwang, A. Jhingran, A. Maskey, O. Pap-
paemmanouil, A. Rasin, N. Tatbul, W. Xing, Y. Xing, S. Zdonik, Distributed operation in the
Borealis stream processing engine (demo description), in ACM SIGMOD Conference (2005)

7. A. Arasu, M. Cherniack, E.F. Galvez, D. Maier, A. Maskey, E. Ryvkina, M. Stonebraker, R.
Tibbetts, Linear road: a stream data management benchmark, in VLDB (2004), pp. 480–491

8. M. Balazinska, H. Balakrishnan, M. Stonebraker, Contract-based load management in feder-
ated distributed systems, in NSDI Symposium (2004)

9. D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul, S. Zdonik, Monitoring streams—a new class of data management applications, in
VLDB Conference, Hong Kong, China (2002)

10. D. Carney, U. Çetintemel, A. Rasin, S. Zdonik, M. Cherniack, M. Stonebraker, Operator
scheduling in a data stream manager, in VLDB Conference, Berlin, Germany (2003)

11. S. Chandrasekaran, A. Deshpande, M. Franklin, J. Hellerstein, W. Hong, S. Krishnamurthy,
S. Madden, V. Raman, F. Reiss, M. Shah, TelegraphCQ: continuous dataflow processing for
an uncertain world, in CIDR Conference (2003)

12. M. Cherniack, H. Balakrishnan, M. Balazinska, D. Carney, U. Çetintemel, Y. Xing, S. Zdonik,
Scalable distributed stream processing, in CIDR Conference, Asilomar, CA (2003)

13. Congestion pricing: a report from intelligent transportation systems (ITS). http://www.path.
berkeley.edu/leap/TTM/DemandManage/pricing.html

14. D. DeWitt, J. Naughton, D. Schneider, An evaluation of non-equijoin algorithms, in VLDB
Conference, Barcelona, Catalonia, Spain (1991)

15. J. Hwang, M. Balazinska, A. Rasin, U. Çetintemel, M. Stonebraker, S. Zdonik, A comparison
of stream-oriented high-availability algorithms. Technical report CS-03-17, Department of
Computer Science, Brown University (2003)

16. A. Lerner, D. Shasha, AQuery: query language for ordered data, optimization techniques, and
experiments, in VLDB Conference, Berlin, Germany (2003)

17. R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston,
J. Rosenstein, R. Varma, Query processing, approximation, and resource management in a
data stream management system, in CIDR Conference (2003)

http://www.itsdocs.fhwa.dot.gov/JPODOCS/REPTSTE/13668.html
http://www.path.berkeley.edu/leap/TTM/DemandManage/pricing.html
http://www.path.berkeley.edu/leap/TTM/DemandManage/pricing.html

The Aurora and Borealis Stream Processing Engines 359

18. R.W. Poole, Hot lanes prompted by federal program. http://www.rppi.org/federalhotlanes.
html

19. P. Seshadri, M. Livny, R. Ramakrishnan, SEQ: a model for sequence databases, in IEEE ICDE
Conference, Taipei, Taiwan (1995)

20. StreamBase incorporated. http://www.streambase.com/
21. N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, M. Stonebraker, Load shedding in a data

stream manager, in VLDB Conference, Berlin, Germany (2003)
22. The Borealis project web site. http://www.cs.brown.edu/research/borealis
23. The MITRE corporation. http://www.mitre.org/

http://www.rppi.org/federalhotlanes.html
http://www.rppi.org/federalhotlanes.html
http://www.streambase.com/
http://www.cs.brown.edu/research/borealis
http://www.mitre.org/

Extending Relational Query Languages for Data
Streams

N. Laptev, B. Mozafari, H. Mousavi, H. Thakkar, H. Wang, K. Zeng,
and Carlo Zaniolo

The design of continuous query languages for data streams and the extent to which
these should rely on database query languages represent pivotal issues for data
stream management systems (DSMSs). The Expressive Stream Language (ESL)
of our Stream Mill system is designed to maximize the spectrum of applications
a DSMS can support efficiently, while retaining compatibility with the SQL:2003
standards. This approach offers significant advantages, particularly for the many ap-
plications that span both data streams and databases. Therefore, ESL supports mini-
mal extensions required to overcome SQL’s expressive power limitations—a critical
enhancement since said limitations are quite severe on database applications and are
further exacerbated on data stream applications, where, e.g., only nonblocking query

N. Laptev · B. Mozafari · H. Mousavi · K. Zeng · C. Zaniolo (B)
Computer Science Department, University of California, Los Angeles, CA 90095, USA
e-mail: zaniolo@cs.ucla.edu

N. Laptev
e-mail: nlaptev@cs.ucla.edu

B. Mozafari
e-mail: barzan@cs.ucla.edu

H. Mousavi
e-mail: hmousavi@cs.ucla.edu

K. Zeng
e-mail: kzeng@cs.ucla.edu

H. Thakkar
Google Inc., Mountain View, CA 94043, USA
e-mail: hmt007@gmail.com

H. Wang
Sigma Center, Microsoft Research Asia, Beijing 100190, P.R. China
e-mail: haixun.wang@microsoft.com

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_18

361

mailto:zaniolo@cs.ucla.edu
mailto:nlaptev@cs.ucla.edu
mailto:barzan@cs.ucla.edu
mailto:hmousavi@cs.ucla.edu
mailto:kzeng@cs.ucla.edu
mailto:hmt007@gmail.com
mailto:haixun.wang@microsoft.com
http://dx.doi.org/10.1007/978-3-540-28608-0_18

362 N. Laptev et al.

operators can be used. Thus, ESL builds on user-defined aggregates and flexible
window mechanisms to turn SQL into a powerful and computationally-complete
query language, which is capable of supporting applications, such as data stream
mining and sequence queries that are beyond the application scope of other DSMSs.

1 Introduction

A key research issue for Data Stream Management Systems (DSMSs) is deciding
which data model and query language should be used. A wide spectrum of differ-
ent solutions have in fact been proposed, including operator-based graphical inter-
faces [1], programming language extensions [2], and an assortment of other solu-
tions provided in publish/subscribe systems [3]. However, the approach of choice
for many research projects is to extend SQL and use this tested database workhorse
for continuous queries on data streams. Indeed, an SQL-based approach can of-
fer significant benefits, particularly for the many applications that span both data
streams and databases. This is because application developers can then use the same
language on both streaming data and stored data—rather than having to learn a new
language and cope with the resulting impedance mismatch. From this vantage point,
it is also clear that data stream constructs should adhere closely to the syntax and
semantics of current standards (namely SQL:2003 [4]); indeed the introduction of
constructs that are superficially similar to those of SQL, but actually have different
syntax or semantics might confuse, rather than help, users writing spanning ap-
plications. Therefore, we advocate a conservative and minimalist’s approach, which
limits SQL extensions to those demanded by the very nature of infinite data streams,
and the online, push-based computation model of continuous queries. Indeed Data
Stream Management Systems (DSMSs) must operate as follows:

(a) Results must be pushed to the output promptly and eagerly, while input tuples
continue to arrive—i.e., without waiting for (i) the results to be requested by
other applications (e.g., a procedural program embedding the continuous query),
and (ii) the end of input streams (when blocking operators can be finally ap-
plied).

(b) Because of the unbounded and massive nature of the data streams, all past tuples
cannot be memorized for future uses. Only synopses, such as windows, can be
kept in memory and the rest must be discarded.

The main problem created by (a) is a significant loss of expressive power.
Database researchers have long been aware of expressive power limitations of SQL
and other relational languages; in fact, this problem has motivated much research
on topics such as recursive queries, database mining queries, sequence queries, and
time-series queries. Unfortunately, these limitations are dramatically more marring
on data stream applications for the following reasons:

1. Blocking query operators that were widely used on databases can no longer be
allowed on data streams [5, 6],

Extending Relational Query Languages for Data Streams 363

2. Database extenders (i.e., libraries of external functions written in procedural lan-
guages using BLOBs and CLOBs to exchange data) that have successfully en-
hanced the versatility of Object Relational (OR) DBMS are much less effective
in DSMS, which process data at small increments rather than as aggregate large
objects,

3. Embedding queries in a procedural programming language, a solution used ex-
tensively in relational database applications, is now of very limited effectiveness
on data streams.

We will now expand on these statements starting from point 1. A blocking query
operator is one that only returns answers when it detects the end of its input, while
a nonblocking operator produces its answers incrementally as new input tuples ar-
rive [5]. For continuous queries, the users must see the results immediately and
incrementally as new stream records arrive, rather than when the stream eventually
ends: thus only nonblocking query operators are allowed on data streams [5, 6].

The nature of nonblocking queries was formally characterized in [6], where it
was shown that only monotonic queries1 can be expressed by nonblocking oper-
ators [6]. Database query languages contain many nonmonotonic (and therefore
blocking) query operators/constructs: for instance, set difference and division are
nonmonotonic operators in relational algebra, while constructs such as EXCEPT,
NOT EXIST, and traditional aggregates in SQL are nonmonotonic. Then, a natural
question is whether all the monotonic queries expressible in a query language can
be expressed using only its monotonic operators or constructs. A query language
that satisfies this criterion is said to be NB-complete—i.e., complete for nonblock-
ing queries [6]. A query language that is NB-complete is as suitable a query lan-
guage for data streams as it is for databases (since by disallowing its nonmonotonic
operators/constructs we only lose queries that are of not suitable for continuous
online answering). Unfortunately, both relational algebra and SQL-2 fail the NB-
completeness test [6]. Thus, the banishment of blocking operators and lack of NB-
completeness further aggravate the expressive power limitations of SQL that has
made it difficult for DBMS to support new application domains. This problem is
discuss next.

As outlined in point 2 above, following the introduction of a time-series dat-
ablades by Illustra [7], OR DBMSs offered a plethora of such libraries covering a
wide spectrum of applications under an assortment of different names. These func-
tions often use large objects (BLOBs and CLOBs) to exchange data with SQL: for
instance, a whole sequence could be encoded as a BLOB and shared between the
database and the datablade. This solution is less suitable for data streams, where
the computation must proceed continuously in small increments—e.g., by process-
ing each new tuple in the sequence, rather than having to wait for it to be assembled
into a BLOB. Indeed, unlike in OR DBMS, datablades have not played an important
role as an extension mechanism for DSMS.

1Queries are viewed as mappings from the database, or the data stream, to the query answer.

364 N. Laptev et al.

Point 3 above considers the solution of embedding SQL queries in a procedural
programming language (PL); currently this represents a commonly used approach
for developing complex database applications, since the application logic that can-
not be expressed in SQL can then be easily implemented in the PL. This solution,
however, uses cursors and get-next constructs; thus it relies on a pull-based compu-
tation model that loses much of its effectiveness in the push-based environment of
data streams. Indeed in the continuous environment of data streams, consumption
(production) of input (output) tuples follows a push-based mechanism—i.e., produc-
tion (consumption) occurs without waiting for get-next requests from an embedding
procedural language.

The severe limitations resulting from the problems discussed in points 1–3 above
suggest that, for any SQL-based DSMS, extensions to enhance the power and flex-
ibility of its query language are crucial to compete against the many alternatives
proposed, including [1–3, 8, 9] that are discussed in Sect. 7.

Fortunately, a solution to SQL’s expressivity and flexibility problems is at hand:
user-defined aggregate functions adopt a computation model based on incremental
additions to their input streams, rather than the large BLOB objects of datablades.
As discussed in [10, 11], User-Defined Aggregates (UDAs) can be written in an ex-
ternal programming language or natively in SQL itself: the native UDA definition
capability makes SQL Turing-complete and NB-complete, i.e., able to express every
monotonic function expressible by a Turing Machine [6]. We can finally return to the
problems caused by the unbounded nature of data streams, mentioned in (b) above,
and observe that windows have proved by far to be the most popular form of syn-
opses used in DSMSs. Windows are actually not new to database languages, since
SQL-2003 supports logical and physical windows on a set of built-in aggregates
called OLAP functions. Many DSMSs also support these windows, and actually in-
troduced new ones, such as slides and tumbles [1, 12], for their built-in aggregates.
However, for a DSMS to address both problems (a) and (b) above effectively, its
language should support these windows on arbitrary UDAs besides on built-in ag-
gregates. Indeed, the Stream Mill system developed at UCLA supports (i) windows
on arbitrary UDAs and (ii) the native definition of these UDAs in SQL [13]. Thus
Stream Mill is unique in this respect, and its uniqueness is reflected in the much
broader range of applications it can support efficiently: for instance, its Expressive
Stream Language (ESL) can express data mining queries, sequence queries, approx-
imate queries, etc., that are beyond the reach of other DSMSs. Examples of these
advanced applications will be discussed later in this chapter, which is organized as
follows.

In Sect. 2, we introduce the main extensions to SQL:2003 supported in ESL, in-
cluding UDAs. In Sect. 3, we extend ESL to support different kinds of windows on
arbitrary UDAs. Then, in Sects. 4 and 5, respectively, we demonstrates the effective-
ness of these extensions in expressing approximate computations and advanced data
mining algorithms. In Sect. 6, we describe the architecture of the Stream Mill system
that supports these advanced query constructs very efficiently. Section 7 contains a
broad description of related work, and it is then followed by the conclusion.

Extending Relational Query Languages for Data Streams 365

2 ESL: An Expressive Stream Language Based on SQL

ESL supports ad-hoc SQL queries and updates on database tables and continuous
queries on data streams. Each data stream is declared by a CREATE STREAM dec-
laration that also specifies the external wrapper from which data is imported and the
timestamp associated with the stream. For instance, in Example 1, the data stream
OpenAuction is declared as having start_time as its external timestamp.

Example 1 Declaring Streams in ESL

CREATE STREAM OpenAuction(
itemID INT, sellerID CHAR(10),
start_price REAL, start_time TIMESTAMP)

ORDER BY start_time SOURCE . . . /* Wrapper ID */;

In ESL, new streams can be defined from existing streams in ways similar to
defining virtual views in SQL. For instance, to derive a stream consisting of the
auctions where the asking price is above 1000, we can write:

Example 2 Performing Selection Operations on Streams

CREATE STREAM expensiveItems AS
SELECT itemID, sellerID, start_price, start_time
FROM OpenAuction WHERE start_price > 1000

In terms of semantics, these ESL operators produce the same results as if instead
of being applied to data streams, they were applied to database tables to which new
tuples are being continuously appended. Additional operators supported by ESL on
data streams are (i) aggregates (built-in or user-defined) (ii) joins of a stream with a
database table, and (iii) union of two or more data streams. All the operators consid-
ered so far operate on a single data stream, except for union which always returns
tuples sorted by timestamp (thus its equivalent SQL statement is really UNION ALL

followed by ORDER BY TIMESTAMP).
In [6], it was proven that constructs mentioned above make ESL NB-complete,

thus capable of expressing all nonblocking computations on data streams. In the
rest of the chapter, we therefore concentrate on these constructs, which are the most
distinctive feature of ESL, and their effective use in expressing complex data stream
applications. Space limitations prevent us from covering here other constructs, such
as window joins, inasmuch as these constructs are less critical in terms of expressive
power, and their treatment by ESL is similar to that of other DSMSs [14, 15].

2.1 User-Defined Aggregates (UDAs)

In recent years, some of the most successful SQL extensions involve aggregates,
including (i) data cubes, and (ii) OLAP functions where continuous aggregates are

366 N. Laptev et al.

incrementally computed on logical and physical windows [4]. Logical and physical
windows for aggregates are also provided by many DSMSs, some of which also
support additional window constructs based on the notions of slides and tumbles
[1, 12]. Many current DBMSs and DSMSs also allow the importation of new UDAs
defined in external programming languages; however they do not support windows
on such UDAs. Now, ESL brings two important improvements to the state-of-the-art
by supporting (i) windows on arbitrary UDAs—including logical windows, physical
windows, tumbles, and slides—and (ii) the definition of UDAs in SQL (besides
external PLs).

Example 3 declares a UDA, myavg, equivalent to the standard avg aggregate in
SQL, using a definition consisting of the three statement groups that are labelled
INITIALIZE, ITERATE, and TERMINATE. Commercial DBMSs [9] and DSMSs sup-
porting UDAs [1, 15] allow a programmer to use external procedural languages
to specify the computations to be performed in INITIALIZE, ITERATE, and TERMI-
NATE; this capability is also available in ESL, which however also supports native
UDA definition.

In Example 3, the first line in the UDA definition declares a local table, state,
to keep the sum and count of the values processed so far. Then, the INITIALIZE
statement inserts the value taken from the input stream and sets the count to 1. The
ITERATE statement updates the table by adding the new input value to the sum
and 1 to the count. The TERMINATE statement returns the ratio between the sum
and the count as the final result of computation using the INSERT INTO RETURN
statement. Myavg and similar UDAs can then be used as standard SQL aggregates,
with optional GROUP BY clause.

Example 3 Defining the standard aggregate average

AGGREGATE myavg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE : {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

}
TERMINATE : {

INSERT INTO RETURN
SELECT tsum/cnt FROM state;

}
}

Natively defined UDAs provide an extensibility mechanism of great power and
flexibility; in fact, SQL with natively defined UDAs becomes Turing complete, and
thus can express all computable queries on database tables [6]. Aggregates such as

Extending Relational Query Languages for Data Streams 367

myavg, however, are blocking and thus do not add to the expressive power of SQL
in data stream applications, which instead require nonblocking aggregates.

Basically, there are two ways to turn a UDA such as myavg into a nonblocking
UDA. The first is to modify its definition so it becomes a continuous aggregate that
returns values during, rather than at the end of, the computation.

Example 4 The continuous average: a nonblocking UDA

AGGREGATE online_avg(Next Int) : Real
{ TABLE state(tsum Int, cnt Int);

INITIALIZE : {
INSERT INTO state VALUES (Next, 1);

}
ITERATE: {

UPDATE state
SET tsum=tsum+Next, cnt=cnt+1;

INSERT INTO RETURN
SELECT tsum/cnt FROM state
WHERE cnt % 200 = 0;

}
TERMINATE : { }

}

For instance, Example 4, shows a continuous version of average where results
are returned every 200 tuples rather than at the end. Observe that in this definition
the TERMINATE state is empty which assures that the aggregate is nonblocking and
monotonic.2

The second way to deal with a blocking aggregate consists of keeping the original
definition unchanged and using it to continuously recompute the aggregate on a
sliding window—in a fashion similar to that of SQL:2003 OLAP functions. We
next illustrate an interesting application of the first class of nonblocking aggregates;
window-based applications will be discussed in the next section.

2.2 Pattern Queries

Since UDAs process tuples one-at-a-time, they are effective on physically-ordered
sequences and can search for patterns in a sequence effectively. Say, for instance,
that we want to find the situation where users, immediately after placing an order,
ask for a rebate and then cancel the order. Finding this pattern in SQL requires two
self-joins on the incoming event-stream of user activities. In general, recognizing the

2Updates and other nonmonotonic constructs can still be used freely on other database tables, such
as state. But any operator applied to the data stream must be monotonic.

368 N. Laptev et al.

pattern of n events would require n−1 joins and queries involving the joins of many
streams can be complex to express in SQL. Furthermore, such queries would be very
inefficient on data streams. In particular, the condition that a tuple must immediately
follow another tuple is complex and inefficient with basic SQL but easy with UDAs.
For instance, consider an incoming stream of purchase actions:

webevents(CustomerID, ItemID, Event, Amount, Time)

We want to detect the pattern of an order, followed by a rebate, and immediately
after that, a cancellation of the same item. Then the following nonblocking UDA
can be used to return the string ‘pattern123’ with the CustomerID whose events have
just matched the pattern (the aggregate will be called with the group-by clause on
CustomerID, ItemID). This UDA models a finite state machine, where 0 denotes
the failure state that is set whenever the right combination of current-state and input
is not observed. Otherwise, the state is first set to 1 and then advanced step-by-step
to 3, where ‘pattern123’ is returned and the computation continues to search for the
next pattern.

Example 5 First the order, then the rebate, and finally the cancellation

AGGREGATE pattern(CustomerID Char, Next Char) : (Char, Char)
{ TABLE state(sno Int);

INITIALIZE : {
INSERT INTO state VALUES(0);
UPDATE state SET sno = 1 WHERE Next= ‘order’;}

ITERATE: {
UPDATE state SET sno = 0

WHERE NOT (sno = 1 AND Next = ‘rebate’)
AND NOT (sno = 2 AND Next = ‘cancel’)
AND Next <> ‘order’

UPDATE state SET sno = 1 WHERE Next= ‘order’;
UPDATE state SET sno = sno+1

WHERE (sno = 1 AND Next = ‘rebate’)
OR (sno = 2 AND Next = ‘cancel’)

INSERT INTO RETURN
SELECT CustomerID,‘pattern123’ FROM state WHERE sno = 3;

} }

While UDAs can be effectively used to search for simple patterns, this approach
can easily become prohibitive for more involved patterns.

Fortunately, powerful languages based on Kleene-* constructs were recently to
facilitate the expression of complex sequential patterns. The first such language was
SQL-TS [16, 17], for which powerful query optimization techniques were also de-
veloped [16, 17]. This led to an industrial SQL-change proposal [18] which has
been prototyped more recently [19]. Recently proposed query languages based on
Kleene-* constructs include SASE [20], SASE+ [21], Cayuga [22], CEDR [23], and

Extending Relational Query Languages for Data Streams 369

finally, K*SQL [24, 25]. Stream Mill supports K*SQL, which is the most power-
ful of these languages, inasmuch as it can express complex queries over relational
data, and complex XML streams. K*SQL uses nested word automata3 which in turn
are implemented as UDAs. For instance, the following K*SQL query could be im-
plemented by calling UDA in Fig. 5 with a PARTITION BY CustomerId (where
ORDER BY Time is implicitly assumed for our timestamp-ordered data streams).

Example 6 (Example 5 expressed in K*SQL)

SELECT ‘modified-pattern123’, X.CustomerId
FROM webevents

PARTITION BY CustomerId
AS PATTERN (X Y Z)

WHERE
X.Event = ‘order’ AND
Y.Event = ‘rebate’ AND Y.ItemID = X.ItemID AND
Z.Event = ‘cancel’ AND Z.ItemID = Y.ItemID

Thus we have a simple pattern specifying the sequence of 3 events where the sec-
ond (third) event immediately follows the first (second) in the separate CustomerId
substream. Languages such as SASE+ [21] adopt a semantics where the next event
in the pattern is simply required to follow, rather than immediately follow, the previ-
ous event. This more relaxed pattern can be expressed in K*SQL by simply chang-
ing the pattern in Example 6 to AS PATTERN (X V* Y W* Z). Here V* and W* each
can match zero or more successive events,4 thus a clause such as Z.Time-Y.Time ≤
60 might be advisable to limit the overall times elapses to 60 minutes. By adding F .
in the WHERE clause, we can express local conditions, i.e., F.Z.ItemID = F.Y.ItemID
will only require that in each occurrence of F the ItemID is the same, while different
occurrences of F can have different values of ItemID.

This seemingly simple extension, makes K*SQL strictly more expressive than
its counterparts. Fortunately, despite its higher expressive power, K*SQL has also
proved to be highly amenable to efficient execution over high-volumes of stored se-
quences and data streams [25]. For these reasons, and due to the appealing syntax of
K*SQL for sequence queries, the Stream Mill system also supports special built-in
UDAs that can efficiently execute K*SQL queries [24]. Likewise, it was previously
shown that queries expressed in SQL-TS [16] could be mapped into equivalent ESL
queries through the use of specialized UDAs [28]. Similarly, UDAs were used in
[28] to implement the FSA computation used by Yfilter to support multiple queries
on streaming XML data, thus unifying the processing of these two kinds of streams.

Thus, UDAs have proved to be a key extension of SQL. Furthermore, ESL greatly
enhances their power and versatility for data stream applications by providing the
flexible window mechanisms for arbitrary UDAs that are discussed next.

3Nested words [26] and visibly-pushdown automata [27] can model data with both sequential and
hierarchical structures, such as XML, RNA sequences or procedural software traces.
4However, expressing “immediately following” in SASE+ is significantly more difficult.

370 N. Laptev et al.

3 Window Aggregates and Their Applications

Following SQL:2003, ESL uses the OVER clause to specify (i) the type of window
(i.e., logical or physical), (ii) the size of the window (using a time span for logical
windows or the number of tuples for physical ones), and (iii) the columns in the
partition-by clause (if any). However, for data streams, the ORDER BY clause can
be omitted, since data streams are always ordered by their timestamps.

In Example 7, we have a physical window of 100 items, consisting of the current
tuple and the 99 rows preceding it; a separate window is maintained for each seller,
as specified by the (PARTITION BY sellerID) clause.

Example 7 For each seller, maintain the max selling price over the last 100 items
sold.

CREATE STREAM LastTenAvg
SELECT sellerID, max(price) OVER

(PARTITION BY sellerID ROWS 99 PRECEDING)
FROM ClosedPrice;

By replacing, say, ‘ROWS 99’ with ‘RANGE 5 MINUTES’, we would instead
specify a logical window of five minutes.

Because of their many uses, the notions of window slides and tumbles [1, 12],
are now supported in many DSMSs, although they go beyond the SQL:2003 stan-
dards. These constructs are supported in ESL for arbitrary UDAs, using a ‘SLIDE’
declaration in the window clause. For instance, the following example is similar to
the previous one in every aspect, but the fact that results are now returned every 10
rows, rather than after each row as in the previous case.

CREATE STREAM LastTenAvg
SELECT sellerID, max(price) OVER

(PARTITION BY sellerID ROWS 99 PRECEDING SLIDE 10)
FROM ClosedPrice;

In this example, the size of the slide (10) is smaller than the overall size of the
window (100). Tumbles instead occur when the size of the slide exceeds that of the
window. For instance, to break the input stream into blocks of size 600 and return
the average of the last 600 input tuples at the end of each block, we can specify
ROWS 599 PRECEDING SLIDE 600. Thus the size of the window and the slide
are both 600, and the input data stream is partitioned into windows of size 600 and
results are returned every 600 tuples.

Window Aggregates

Providing efficient, integrated management and support for an assortment of dif-
ferent windows represents an interesting research problem that in the past has

Extending Relational Query Languages for Data Streams 371

been addressed only for specific built-in aggregates or specific classes of aggre-
gates [1, 12, 29]. A naive approach to implement windows on arbitrary UDAs re-
quires the user to write six versions of an aggregate, one for each combination of
(logical|physical × tumble|slide|no-slide). With ESL, however, users only need to
write at most the following two versions: (a) the base version of the UDA, and
(b) an optional window-optimized version. The second version (b) allows the user
to perform delta-maintenance on arbitrary UDAs, which can lead to significant per-
formance improvement. The ESL compiler utilizes these two definitions to provide
integrated support for (i) general optimization tasks that are applied to all window
aggregates, along with (ii) user-specified optimizations that are specified for a par-
ticular UDAs. We next illustrate how this is accomplished using the MAX aggregate
as an example whose base definition is shown below:

Example 8 Base Definition for MAX

CREATE WINDOW AGGREGATE max (Next Real) : Real
{ TABLE current(CVal real);

INITIALIZE : {
INSERT INTO current VALUES (Next);

} /* the value in is the first max */
ITERATE : {

UPDATE current set CVal = Next
WHERE CVal < Next;

INSERT INTO RETURN
SELECT CVal FROM state;

}
}

The Stream Mill system provides uniform support for physical and logical win-
dows, thus the six combinations above degenerate to three, which we discuss next.
The simplest one is that of tumbles, i.e., the case in which the UDA is called over
a window of size smaller or equal to that of its slide. For instance, say that MAX is
called on a window of 600 tuples and the size of its slide is S ≥ 600. In this case,
ESL will use the base definition of MAX in Example 8 and return the result after 600
tuples. Then the next S − 600 input tuples are ignored and the computation restarts
from (S − 600 + 1)th tuple and goes for another 600 tuples, and so on. Examples
illustrating the use of tumbles in clustering and ensemble-based classification are
given in Sects. 5.1 and 5.2.

The second case is that of Example 7, in which the UDA is called without the
slide construct. A naive implementation consists in buffering all the window tuples
into an inwindow table.5 Then, for each arriving tuple, base MAX aggregate is re-
computed over the tuples in inwindow table. While this approach is correct, it is

5Newly arriving tuples are inserted into and expiring tuples are removed from the inwindow table
automatically by the system for efficiency.

372 N. Laptev et al.

obviously inefficient. Thus ESL allows users to define a specialized version of the
UDA which uses the values of tuples leaving the window to perform delta mainte-
nance. For an aggregate such as sum, this delta maintenance involves the subtraction
of the expiring value from the current sum. For MAX and more sophisticated aggre-
gates the delta maintenance is more complex but nevertheless quite beneficial. As
shown in Example 9, the delta maintenance is performed in a special state called
EXPIRE. In our window version of MAX, shown in Example 9, the EXPIRE event
does not require any action. The expiring tuple is simply discarded (automatically,
by the system). The ITERATE state of the UDA only keeps tuples that can poten-
tially be the maximum in the window. Thus, the oldest tuple in the inwindow table is
the maximum in the current window.

The result of the aggregate is the same whether this delta computation is per-
formed as soon as a tuple expires, later when a new tuple arrives, or anywhere in
between these two instants. ESL takes advantage of this freedom to optimize execu-
tion.

Example 9 MAX with Windows

CREATE WINDOW AGGREGATE max (Next Real) : Real
{ TABLE inwindow(wnext real);

INITIALIZE : {
INSERT INTO RETURN VALUES (Next);

} /* the system adds new tuples to inwindow */
ITERATE : {

DELETE FROM inwindow WHERE wnext ≤ Next;
INSERT INTO RETURN VALUES (oldest());

}
EXPIRE: { } /*expired tuples are removed automatically*/

}

In the definition of window aggregates, EXPIRE is treated as an event that occurs
once for each expired tuple—and the expired tuple is removed as soon as the EX-
PIRE statement completes execution. ESL also provides the built-in predicate old-
est() which selects the oldest tuple among the tuples of inwindow: oldest().wnext
delivers the wnext column in this tuple. If the tuple has only one column then the
system allows using oldest(), i.e., without the column name.

Upon arrival of a new tuple, the system first proceeds at executing any outstand-
ing EXPIRE events. The ITERATE statements are next executed on this newly arrived
tuple. After the ITERATE statements, the new tuple is put into the inwindow buffer.

This delta-maintenance approach to window aggregates is also used in the imple-
mentation of basic ESL built-in aggregates. For instance, in case of the MAX aggre-
gate, we eliminate tuples in the buffer that are dominated by more recent tuples—
thus reducing the size of the buffer from W to log(W), where W denotes the size
of the window. Frequently, the approach is also effective on more complex UDAs,
such as the approximate frequent-items example discussed in Sect. 4.

Extending Relational Query Languages for Data Streams 373

For the third case, i.e., where the specified slide size is less than the window
size, ESL utilizes the optimization that has been proposed in [12]. This optimization
involves dividing the window in smaller panes. Window version of the UDA is used
to perform the delta computation on the results of the base version of the UDA on
each smaller pane [30]. Using these powerful UDAs we can also implement the
‘negative tuple’ semantics6 that has also been considered for windows [31].

The introduction of powerful analytics SQL:2003 have illustrate the need for
DBMS to support a wider range of aggregates than those supported in SQL-2, and
the important role that windows play in this context. However, windows aggregates
play an even more important role in DSMS particularly those that must support
complex tasks with QoS guarantees: in fact, window UDAs can support effectively
(i) approximate computations, (ii) load shedding, and (iii) complex decision support
and mining task. Our discussion in the rest of the chapter will focus on these topics.

4 Approximation and Sketch Aggregates

In order to assure QoS against high arrival rates and bursts in the incoming data
streams, DSMS rely on (i) load shedding, and (ii) approximation techniques, which
dovetail with and UDA-oriented architecture. Indeed, Stream Mill provides an archi-
tecture where load shedding is integrated with UDAs [32], supporting error models
that accommodate different requirements for multiple users, different sensitivities to
load shedding, and different penalty functions. By incorporating a priori statistics of
data streams, the Stream Mill system can provide QoS guarantee for a large class of
queries, including traditional SQL aggregates, statistical aggregates and data min-
ing functions [32]. A Bayesian approach can be used to combine the past statical
information about query answers and further boost the quality of the a priori esti-
mations [33].

We now leave the discussion of load-shedding which would take us beyond the
scope of this paper to concentrate on sketches and other approximate aggregates.

EH Sketches

Many data mining techniques require counting the frequency of different items in a
window. Since computing the exact counts would require storing the whole window
to determine the tuples leaving the window. For windows that are too large in size
approximate counting aggregates can be used instead. In [34], Datar et al. proposed
the Exponential Histogram (EH) sketch algorithm for approximating the number of
1’s in sliding windows of a 0–1 stream and showed that for a δ-approximation of the

6Besides returning values when new tuples arrive, under such semantics, new revised aggregate
values could be produced as soon as a tuple expires out from the time-based window.

374 N. Laptev et al.

number of 1’s in the current window, the algorithm needs O(1
δ

logW) space, where
W is the window size.

The EH sketch consists of an ordered list of buckets or boxes. Every box in an EH
sketch basically carries on two types of information, a time interval and the number
of observed 1’s in that interval. The intervals for different boxes do not overlap
and every 1 in the current window should be counted in exactly one of the boxes.
Boxes are sorted based on the start time of their intervals. For each new coming 1,
EH creates a new box with size one. Then the algorithm checks if the number of
boxes with the same size exceeds k/2 + 2 (where k = 1

δ
), it merges the oldest two

such boxes. The merge operation adds up the size of the boxes and merges their
intervals. The final estimation of the number of 1’s would be the aggregate size of
boxes minus half of the oldest box’s size. Note that before reporting the results, we
discard the boxes which do not overlap the current window. Thus an EH UDA can
be expressed by the ESL code below, and then called in a way similar to built-in
SQL3 aggregates.

Example 10 Counting by Exponential Histograms

STREAM zeroOnes(val Int, t Timestamp);
AGGREGATE EHCount(next Int, t Timestamp, k Int):{

WINDOW EH(h Int, t Timestamp) ORDER BY t;
TABLE memo(last Int, total Int) MEMORY VALUES (0,0);

AGGREGATE merge(next Int, t Timestamp, k Int):{
/∗ state table stores the current box, count, and the last two timestamps ∗/
TABLE state(h Int, cnt Int, t1 Timestamp, t2 Timestamp) MEMORY;
INITIALIZE:
{INSERT INTO state VALUES(next, 1, t, NULL);}
ITERATE:{

UPDATE state SET cnt=cnt+1, t2=t1, t1=t WHERE h=next;
/∗ should early return if true ∗/

UPDATE state SET h=next, cnt=1, t1=t
WHERE h <> next AND (SELECT cnt FROM state) < k/2+2;

/∗ should early return if true ∗/
/∗ if current count is k/2+2, delete the last box, and double the next-to-last one ∗/

DELETE FROM EH h WHERE h.t = (SELECT t1 FROM state)
AND h <> next AND (SELECT cnt FROM state) = k/2 + 2;

UPDATE EH h SET h=h*2 WHERE SQLCODE = 0
AND h.t = (SELECT t2 FROM state);

UPDATE state SET h=next, cnt=2, t1=t WHERE SQLCODE = 0; }
}; /∗ the end of merge aggregate/∗

INITIALIZE:ITERATE:{
INSERT INTO EH VALUES(next, t) WHERE next > 0; /∗ ignore 0’s ∗/
UPDATE memo SET total = total + next;
SELECT merge(h, t, k) OVER (ORDER BY t DESC) FROM EH;
/∗ Update last pointer due to merge ∗/
UPDATE memo SET last = (SELECT max(h) FROM EH);
INSERT INTO Return SELECT total FROM memo;}

Extending Relational Query Languages for Data Streams 375

EXPIRE:{
UPDATE memo SET last = h/2

WHERE (SELECT count(1) FROM EH h WHERE h.h = last) =1;
/∗ update total pointer ∗/
UPDATE memo SET total = total-h/2-last/2 }

}
/∗Calling the aggregate just defined from an ESL statement /∗

SELECT EHCount(val, t, 2) OVER (RANGE 10 MINUTE) FROM zeroOnes;

This sketch is later used in several other structures and algorithms listed in [35].
Recently, [36] has used EH to generate an approximate B-bucket equi-depth his-
togram for data streams with sliding windows. The proposed approach which is
called BAr-Splitting Histograms (BASH) is based on dividing the acceptable in-
put range into several chunks or bars in a way that each bar contains roughly equal
number of items. The number of bars are limited to fix value which is greater than B

for improving the accuracy. To keep the size of bars roughly the same as the stream
passes, a splitting/merging technique is employed to split big bars, and merge adja-
cent small bars. BASH provides a very fast and space-efficient equi-depth histogram
particularly for high speed data streams.

Approximate Frequent Items

The problem of determining the frequent items in a data stream is important in
many applications and several algorithms have been proposed to deal with the com-
mon situation where there is enough memory for the frequent items but not for all
items [37–39]. Here we focus primarily on [37], which is a windowed approximate
frequent items algorithm suitable for delta computation. The algorithm, shown with
ESL code in Example 11, maintains k hash-tables over the current window. Each
hash-table has a corresponding hash-function. Each hash entry in the hash-tables is
an integer, which is used as a counter. When an item enters the window, we iterate
through the k hash-functions and determine the k key values. For each key value,
we increment the counter at that location in the corresponding hash-table. Simi-
larly, when an item expires out of the window, we decrement the corresponding k

counters. Finally, the approximate frequency of an item is determined by taking the
minimum value of the k counters. Note, that this minimum value may over estimate
the frequency of the item, if all k keys have at least one other item mapped to it. This
algorithm can also be viewed as a bloom-filter with two exceptions: (i) there are k

different hash-tables instead of just one and (ii) each entry is an integer(counter) as
opposed to a bit. In addition to the delta maintenance property, the algorithm pro-
vides bounded error estimates. Thus, given the available amount of memory we can
estimate the expected error.

376 N. Laptev et al.

Example 11 Approximate Frequency Count

STREAM items(item Int); /∗ Stream of items ∗/
TABLE hash_tables(index1 Int, index2 Int, cnt Int) MEMORY;

/∗ the k hash tables index2 goes from 1 to k∗/
TABLE hs(h Int, ah Int, bh Int) MEMORY; /∗ constants for hash functions ∗/

/∗ table initialization omitted ∗/

/∗ Windowed aggregate that maintains the hash−tables ∗/
WINDOW AGGREGATE MaintainHashes(k Int):Int {

/∗an aggregate that updates a certain hash entry ∗/
AGGREGATE updateCnt(k Int, h Int, ah Int, bh Int, val Int):Int {

INITIALIZE: ITERATE: {
UPDATE hash_tables SET cnt = cnt+val
WHERE index1 = ((ah*k+bh)%31)%4 AND index2 = h }

};
INITIALIZE: ITERATE: { /∗ new item entering the window ∗/

SELECT updateCnt(k, h, ah, bh, 1) FROM hs
}
EXPIRE: { /∗ item expiring ∗/

SELECT updateCnt(k, h, ah, bh, −1)FROM hs }
};

/∗ Calling the UDA just defined∗/
SELECT MaintainHashes(item) OVER (ROWS 29 PRECEDING)
FROM items;

5 Mining Data Streams

Data stream mining represents an important area of current research, and the topic
of many recent papers, which primarily focus on devising mining algorithms that
are fast and light enough to be executed continuously and produce real-time or quasi
real-time responses. However, online data mining represents such a difficult issue for
DSMS that no system before Stream Mill [40] has claimed success in this important
application. Many of the problems facing DSMS are similar to those of DBMSs
that in mid-1990s where unable to extend the success of SQL on OLAP applica-
tions to data mining applications. Indeed performing data mining tasks through the
DBMS-supported constructs and functions was exceedingly difficult [41], whereby
in a visionary 1996 paper [42], Imielinski and Mannila called a major research effort
to produce quantum leap in the functionality and usability of DBMSs, whereby min-
ing queries can be supported with the same ease of use as other relational queries
are now supported. The notion of “Inductive DBMS” was thus born, which inspired
much research [43], while vendors have been working on providing some data min-
ing functionality as part of their DBMS [44].

Extending Relational Query Languages for Data Streams 377

The Stream Mill DSMS supports a powerful data stream mining workbench
called SMM which is open and extensible. The first ingredient of SMM is a library
of powerful data stream mining methods defined as window UDAs. New methods
can be defined using ESL, or procedural languages; in either case the definition
follows the standard INITIALIZE, ITERATE, TERMINATE, and EXPIRE templates of
aggregates previously described. For the analysts and other users who want to work
at higher level of abstraction, SMM support mining models [40, 45]. Mining meth-
ods and models are discussed next.

5.1 Density-Based Clustering (DBScan)

DBScan represents a popular clustering algorithm that can be successfully applied
to mining and monitoring data streams [46]. Let us assume we have a stream of two-
dimensional data, where more than minPts points occurring in close proximity (i.e.,
at distance less than eps) of each other are assigned to the same cluster, while sparse
points are instead classified as outliers. To monitor changes in the incoming stream
of two-dimensional data, we employ DBScan algorithm as follows: (i) partition the
stream into blocks containing the same number of tuples, (ii) cluster the data in
each block, and (iii) monitor the appearance/disappearance of new/old clusters and
changes in cluster population between successive blocks. The first two tasks are
accomplished by the following ESL statement that invokes the dbscan aggregate on
input data stream Stream_of_Points(Xvalue, Yvalue, TimeStamp):

/*call dbscan with minPts = 10 and eps = 50 */
SELECT dbscan(Xvalue, Yvalue, 0, 10, 50)

OVER(ROWS 999 PRECEDING SLIDE 1000)
FROM Stream_of_Points

Here 10 and 50 are the example values we assign to two important parameters
for the DBScan Algorithm, minPts and eps, respectively. The third argument is for
book-keeping purposes. Observe that since the size of the slide is the same as that
of the window, this is a tumble. Therefore the Stream Mill system will use the base
definition of DBScan, shown below, independent of whether a window version is
available or not.

Given the two parameters eps and minPts, the DBScan algorithm works as fol-
lows: pick an arbitrary point p and find its neighbors (points that are less than eps
distance away). If p has more than minPts neighbors then form a cluster and call
DBScan on all its neighbors recursively. If p does not have more than minPts neigh-
bors then move to other un-clustered points in the database. Note, this can be viewed
as a depth-first search.

AGGREGATE dbscan(iX Real, iY Real, Flag Int, minPt Int, eps Int): Int
{ TABLE closepnts(X2 real, Y2 real, C2 Int) MEMORY;

INITIALIZE: ITERATE: {
/* Find neighbors of the given point */

378 N. Laptev et al.

INSERT INTO CLOSEPNTS SELECT X1, Y1, C1 FROM points
WHERE sqrt((X1-iX)*(X1-iX) + (Y1-iY)*(Y1-iY)) < eps;

/* If there are more than minPt neighbors, form a cluster */
UPDATE clusterno SET Cno= Cno+1 /* new cluster number*/

WHERE Flag=0 AND SQLCODE=0 /* A new cluster */
AND minPt < (SELECT count(C2) FROM closepnts);

/* Assign these neighboring points to this cluster */
UPDATE points SET C1 = (SELECT Cno FROM clusterno)

WHERE points.C1=0 AND
EXISTS (SELECT S.X1 FROM closepnts AS S

WHERE points.X1=S.X2 AND points.Y1=S.Y2)
AND minPt < (SELECT count(C2) FROM closepnts);

/* Call dbscan recursively */
SELECT dbscan(X2, Y2, 1, minPt, eps)

FROM closepnts, points
WHERE X1 = X2 AND Y1=Y2;

DELETE FROM closepnts;
}

}; /*end dbscan*/

5.2 Mining Data Streams with Concept Drift

Since streaming data is characterized by time-changing concepts, a basic challenge
faced by data mining algorithms is to model and capture the time-evolving trends
and patterns in the streams, and make time-critical predictions. One approach is to
incrementally maintain a model for the time-changing data. In this case the model
is learned from data in the most recent window. This approach has several weak
points. First, given that data arrives at a high speed, incremental model maintenance
is usually a costly task, especially for learning methods such as the decision tree
algorithm, which are known to be unstable. Second, models trained from the data
in a window may not be optimal. If the window is too large, it may contain concept
drifts; if it is too small, it may result in over-fitting.

A more effective approach consists in using an ensemble based model whereby
we partition the stream into fixed size data chunks and learn a model from each
chunk. We combine models learned from data chunks, whose class distribution is
similar to the most recent training data, to be our stream classifier (as shown in
Fig. 1). This approach reduces classification error in the concept-drifting environ-
ment. We use ESL to implement this approach [47] effectively, which takes full
advantage of off-the-shelf classifier packages and other procedural routines.

The seemingly complex solution described above can be implemented in ESL in
a very succinct way. We assume each data record in the stream is in the form of
(a1, . . . ,an,L), where ai, . . . ,an are attribute values, and L is the class label. If L =

Extending Relational Query Languages for Data Streams 379

Fig. 1 Mining streams with
concept-drift

TBA then it is a testing example, otherwise it is a training example. In Example 12,
we express the algorithm in one SQL statement.

Here, we call UDA ClassifyStream with keyword SLIDE, which implements data
partitioning on the stream, via tumbles of size 1000. We assume classifiers, together
with their weights, are stored in a table called ensemble. In UDA classifystream,
we use classifiers in the ensemble whose weights are above a given threshold to
classify each test example, where Classify is a UDA for classifying static data [11].
Once we reach the end of a data partition, we learn a new classifier from the training
data in the partition, and we reset the weight of each classifier in the ensemble
proportional to its accuracy in classifying the most recent training data. The freshly
weighted classifiers will then be used to classify data in the next partition.

Example 12 A Terse Expression for Complex Classifier Ensembles

SELECT ClassifyStream(S.*)
OVER (ROWS 999 PRECEDING SLIDE 1000)

FROM stream AS S;

Example 13 UDA classifystream

AGGREGATE ClassifyStream(a1, . . . , an, L) : Int
{ TABLE temp(a1, . . . , an, L);

INITIALIZE : ITERATE : {
INSERT INTO RETURN

SELECT sum(E.Classify(a1, . . . , an) × E.weight) /
sum(E.weight)

FROM ensemble AS E
WHERE L = TBA AND E.weight ≥ threshold;

INSERT INTO TEMP VALUES (a1, . . . , an, L);
}
TERMINATE : {

INSERT INTO ensemble

380 N. Laptev et al.

SELECT learn(T.*) FROM TEMP AS T
WHERE T.L <> TBA;

UPDATE ensemble AS E SET E.weight =
(SELECT 1-avg(|E.Classify(T.*)-T.L|)
FROM TEMP AS T
WHERE T.L<>TBA);

}
}

5.3 Mining Models

The integration of mining methods into SMM is made simple via the Mining Model
Definition Language which support the declaration of mining models [40]. Each
mining model instance defines (i) which mining UDAs will be used in the task,
(ii) the parameter values and ancillary information they will use, and (iii) the flow
of stream data between these methods [40, 45].

Seldom flows need to be specified for complicated mining tasks. Consider a more
advanced mining method such as an ensemble based weighted bagging (EBWB)
[47], which is supported by SMM to improve the accuracy of classifiers in the pres-
ence of concept drifts and shifts. With EBWB, instead of maintaining a single clas-
sifier, the user maintains several small classifiers, whose classification in combined
later using some kind of weighted voting. This approach assures a better adapta-
tion in the presence of concept-shift and concept-drift, since new classifiers can be
continuously trained based on the latest statistics, while older or inaccurate clas-
sifiers can be retired. Note that specifying the various steps required for weighted
bagging represents a daunting task for analysts and less experienced users. There-
fore, MMDL supports specification of one or more mining flows within the mining
model definition. These complex mining processes only have to be specified once
during model definition and can be reused by all users. Flows have been essential
in definition of many built-in mining methods, such as SWIM for association rule
mining [48], in SMM [40]. At the best of our knowledge SMM’s ability to support
data stream mining algorithms is unique among DSMS and CEP systems. On the
other hand, systems such as MOA [49] provide a flexible and user-friendly envi-
ronment for evaluating algorithms for data stream mining and for the incremental
mining of data sets; however such systems are not DSMS designed to support QoS
for continuous queries over extended periods of time.

6 The Stream Mill System

The architecture of the Stream Mill system consists of a single server and multiple
clients.

Extending Relational Query Languages for Data Streams 381

The Client

Users interact with the server through the query editor—marked as α in Fig. 2. The
query editor allows the user to perform the following tasks: logging in and out of the
system, defining streams, queries, aggregates, starting and stopping queries, etc. Re-
sults of these tasks are shown in the query editor’s status pane, by default. The client
also provides a set of GUI modules to display the workflow and the results of the
continuous queries in a graphical form, e.g., β in Fig. 2. Several performance meters
(marked as γ) are also at hand to continuously monitor traffic, memory utilization,
queue length, and related measures of server performance.

The Server

The bulk of Stream Mill R&D efforts focused on the Server, which supports the
following functional modules:

Query Compiler/Optimizer

The compiler is responsible for parsing and compiling continuous queries and gen-
erating/modifying the query graph that describes how continuous queries are im-
plemented by operators that take tuples from their input buffers and push them into
their output buffers (in cooperation with the Buffer Manager). These operators are
implemented as C/C++ functions compiled into dynamic libraries, which are then
invoked by the Execution Scheduler. After careful optimizations, natively defined
UDAs on the average execute nearly as well (a 30 % slowdown) as UDAs exter-
nally defined in C++ and better than those defined in Java

Buffer Manager

The Buffer Manager is responsible for managing the stream tuples as in-memory
queues. Most tuples are processed and removed from these buffers as quickly as
possible to free space and to reduce latency. However, when windows are used in
the query, tuples must be retained main memory for extended period of time. This
is the task of the Window Manager, which is also responsible for supporting delta-
maintenance constructs for these windows, window sharing, and suitable paging
policy.

Execution Scheduler

The Execution Scheduler is responsible for deciding which operator from the query
graph executes next and how many input tuples it will consume. This decision re-
flects the optimization criterion selected, which in turn reflects priorities specified

382 N. Laptev et al.

Fig. 2 The stream mill
system architecture

by the user and also the load conditions currently experienced in the system. For in-
stance, a low-memory condition might force the scheduler to change from a schedul-
ing policy that minimizes response time to one that minimizes memory [50]. This
change might require a modification (e.g., partitioning) of the query graph; Stream
Mill is capable of performing this adjustment very quickly, efficiently, and without
stopping the execution of the continuous queries [51]. Stream Mill’s flexible exe-
cution model also supports on demand-generation of timestamp to minimize idle-
waiting in operators such as union and joins [51].

Other important modules which are part of the system include the I/O Scheduler,
which is responsible for managing incoming and departing data streams, and the
interaction between the server and the outside world, including the Stream Mill
Client. The Database Manager, based on ATLaS and Berkeley DB, is used to support
database queries and spanning applications. Various extensions and improvements
being added include new data stream mining algorithms, load shedding extensions,
and better GUI primitives.

7 Related Work

Data Stream Management Systems (DSMSs) represent a vibrant area of current re-
search comprising several subareas. Because of space limitations and the availability
of authoritative surveys [5, 52], we will here focus on previous works that are most
relevant to ESL.

The Tapestry project [53, 54] that was the first to discuss ‘queries that run con-
tinuously over a growing database’ with append-only relations as the basic data
model for data streams. The append-only data model was then adopted in many
projects, including Tribeca [55], and Telegraph [56]. Likewise, OpenCQ [57] and
Niagara Systems [58] are designed to support continuous queries for monitoring
web sites, and the Chronicle data model uses append-only ordered sets of tuples
(chronicles) [59].

With respect to languages for continuous queries, the use of SQL and its dialects
is predominant not only for DSMS of relational DBMS lineage, but also for the

Extending Relational Query Languages for Data Streams 383

various systems of mongrel lineages known as CEP systems.7 In reality, however,
the apparent popularity of SQL is restricted by many exceptions and limitations.
For instance, extensions to C++ are used in Hancock [2], while systems focusing
on streaming XML data use XQuery or Xpath [8, 60]. Finally, CEP systems tend to
support SQL only as a tool of convenience for simple applications, while they rely
on some Java-based language for more serious applications and system extensions.
Even in DSMS with a relational database lineage, we find variations and limita-
tions. For instance, Tribeca relies on operators adapted from relational algebra [55],
while active database rules are used in OpenCQ [57]. Furthermore, the influential
Aurora/Borealis project [61] focuses on providing an attractive graphical interface
to define a network of continuous query operators, where the user can then request
an equivalent SQL program to be produced from this.

Another influential DSMS project is STREAM; this system and its Continu-
ous Query Language (CQL) [14] features several syntactic variations from the
SQL:2003 standards, and from the append-only model, by proposing an approach
based on database queries over continuously sliding windows.

Unlike many other DSMS projects, however, the Stream Mill project seeks to
preserve the syntax and semantics SQL standards as far as possible. In this respect,
our project is similar to the very influential Gigascope [15] project, which has also
adopted the append-only model as ESL does. But unlike Gigascope, which was
designed primarily for network analysis and management, ESL strives to serve a
much wider range of applications, including applications not supported by other
DSMSs, such as pattern queries on relational and XML streams [25, 28], and data
mining queries [40]. Thus, while Gigascope relies on SQL-2 style of aggregates,
ESL adopts the SQL:2003 constructs for windowed aggregates; the same constructs
are then applied to UDAs producing a compact language that is Turing complete on
stored data and NB-complete on streaming data [6, 62].

8 Conclusion

A key contribution of ESL and Stream Mill is proving that rather limited exten-
sions enable database query languages to support effectively a very wide range of
data stream applications, by providing levels of expressive power and generality
that match or surpass those of other query languages and systems proposed for data
stream and publish/subscribe applications [1–3, 8, 9]. The merits of ESL extensions
are supported by theoretical results [6, 62] and demonstrated by important applica-
tions that are beyond the reach of other DSMS, including continuous data mining
queries [40], sequence queries on the nested-word and the XML model [24, 25, 28],
and algorithms for synopsis maintenance [36]. This significant leap in power and
generality has been achieved while preserving the basic append-only-table seman-
tics for data streams and minimizing extensions w.r.t. SQL:2003 standards—as

7http://en.wikipedia.org/wiki/Complex_event_processing.

http://en.wikipedia.org/wiki/Complex_event_processing

384 N. Laptev et al.

needed to facilitate the writing of applications that span both databases and data
streams.

The Stream Mill prototype is now fully operational and supports (i) continuous
queries on data streams [63], (ii) ad hoc queries on database tables, and (iii) ad
hoc queries on table-like concrete views defined on data streams. More information
on (iii), time-series queries, and XQuery on SAX in Stream Mill is available from
the project web site [13].

Acknowledgements Thanks are due to Yijian Bai, Yannei Law, Stefano Emiliozzi, Shu Man
Li, Vincenzo Russo, and Xin Zhou for their many contributions to the system and its enabling
technology.

References

1. D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker, N. Tat-
bul, S.Z. Aurora, A new model and architecture for data stream management. VLDB J. 12(2),
120–139 (2003)

2. C. Cortes, K. Fisher, D. Pregibon, A. Rogers, Hancock: a language for extracting signatures
from data streams, in SIGKDD (2000), pp. 9–17

3. P. Felber, P. Eugster, R. Guerraoui, A. Kermarrec, The many faces of publish/subscribe. ACM
Comput. Surv. 35(2), 114–131 (2003)

4. ISO/IEC. Database languages—SQL, ISO/IEC 9075-*:2003 (2003)
5. B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream

systems, in PODS (2002), pp. 1–16
6. Y.-N. Law, H. Wang, C. Zaniolo, Data models and query language for data streams, in VLDB

(2004), pp. 492–503
7. I. Information Technologies, Illustra user’s guide, in 1111 Broadway, Suite 2000, Oakland,

CA (1994)
8. D. Florescu, C. Hillery, D. Kossmann et al., The BEA/XQRL streaming xquery processor.

VLDB J. 13(3), 294–315 (2004)
9. Oracle. Oracle9i application developer’s guide advanced queuing. Oracle, Redwood Shores,

CA, USA (2002)
10. H. Wang, C. Zaniolo, Using SQL to build new aggregates and extenders for object-relational

systems, in VLDB (2000), pp. 166–175
11. H. Wang, C. Zaniolo, Atlas: a native extension of sql for data minining, in Proceedings of

Third SIAM Int. Conference on Data Mining (2003), pp. 130–141
12. J. Li, D. Maier, K. Tufte, V. Papadimos, P.A. Tucker, Semantics and evaluation techniques for

window aggregates in data streams, in SIGMOD Conference (2005), pp. 311–322
13. Stream mill home. http://wis.cs.ucla.edu/stream-mill
14. A. Arasu, S. Babu, J. Widom, Cql: a language for continuous queries over streams and rela-

tions, in DBPL (2003), pp. 1–19
15. C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, O. Spatscheck, Gigascope: high performance

network monitoring with an sql interface, in SIGMOD (ACM, New York, 2002), p. 623
16. R. Sadri, C. Zaniolo, A. Zarkesh, J. Adibi, Optimization of sequence queries in database sys-

tems, in PODS (2001)
17. R. Sadri, C. Zaniolo, A.M. Zarkesh, J. Adibi, Expressing and optimizing sequence queries in

database systems. ACM Trans. Database Syst. 29(2), 282–318 (2004)
18. F. Zemke, A. Witkowski, M. Cherniak, L. Colby, Pattern matching in sequences of rows, in

Sql Change Proposal (2007). http://www.sqlsnippets.com/en/topic-12162.html

http://wis.cs.ucla.edu/stream-mill
http://www.sqlsnippets.com/en/topic-12162.html

Extending Relational Query Languages for Data Streams 385

19. N. Dindar, B. Güç, P. Lau, A. Ozal, M. Soner, N. Tatbul, Dejavu: declarative pattern matching
over live and archived streams of events, in SIGMOD Conference (2009), pp. 1023–1026

20. E. Wu, Y. Diao, S. Rizvi, High-performance complex event processing over streams, in SIG-
MOD Conference (2006), pp. 407–418

21. D. Gyllstrom, J. Agrawal, Y. Diao, N. Immerman, On supporting kleene closure over event
streams, in ICDE (2008), pp. 1391–1393

22. A.J. Demers et al., Cayuga: a high-performance event processing engine, in SIGMOD Confer-
ence (2007), pp. 1100–1102

23. R.S. Barga et al., Consistent streaming through time: a vision for event stream processing, in
CIDR (2007), pp. 363–374

24. B. Mozafari, K. Zeng, C. Zaniolo, K*SQL: a unifying engine for sequence patterns and XML,
in SIGMOD Conference–Demo Track (2010), pp. 1143–1146

25. B. Mozafari, K. Zeng, C. Zaniolo, From regular expressions to nested words: unifying lan-
guages and query execution for relational and XML sequences. Proc. VLDB Endow. 3(1),
150–161 (2010)

26. R. Alur, P. Madhusudan, Adding nesting structure to words, in Developments in Language
Theory (2006)

27. R. Alur, P. Madhusudan, Visibly pushdown languages, in STOC (2004), pp. 202–211
28. X. Zhou, H. Thakkar, C. Zaniolo, Unifying the processing of XML streams and relational data

streams, in ICDE (2006), p. 50
29. U. Srivastava, J. Widom, Memory-limited execution of windowed stream joins, in VLDB

(2004), pp. 324–335
30. Y. Bai, H. Thakkar, C. Luo, H. Wang, C. Zaniolo, A data stream language and system designed

for power and flexibility, in CIKM (2006), pp. 337–346
31. L. Golab, M. Tamer Özsu, Update-pattern-aware modeling and processing of continuous

queries, in ACM SIGMOD Conference (2005), pp. 658–669
32. B. Mozafari, C. Zaniolo, Optimal load shedding with aggregates and mining queries, in ICDE

(2010), pp. 76–88
33. Y.-N. Law, C. Zaniolo, Improving the accuracy of continuous aggregates and mining queries

on data streams under load shedding. Int. J. Bus. Intell. Data Min. 3(1), 99–117 (2008)
34. M. Datar, A. Gionis, P. Indyk, R. Motwani, Maintaining stream statistics over sliding win-

dows: (extended abstract), in Proceedings of the Thirteenth Annual ACM–SIAM Symposium
on Discrete Algorithms (2002), pp. 635–644

35. C. Aggarwal, Data Streams: Models and Algorithms (Springer, Berlin, 2007)
36. H. Mousavi, C. Zaniolo, Fast and accurate computation of equi-depth histograms over data

streams, in EDBT (2011), pp. 69–80
37. C. Jin, W. Qian, C. Sha, J.X. Yu, A. Zhou, Dynamically maintaining frequent items over

a data stream, in Proceedings of the 12th ACM Conference on Information and Knowledge
Management (CIKM) (2003)

38. M. Charikar, K. Chen, M. Farach-Colton, Finding frequent items in data streams, in Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP) (2000), pp. 508–515

39. G. Cormode, S. Muthukrishnan, What’s hot and what’s not: tracking most frequent items
dynamically, in PODS (2003), pp. 296–306

40. H. Thakkar, N. Laptev, H. Mousavi, B. Mozafari, V. Russo, S.M.M. Carlo Zaniolo, A data
stream management system for knowledge discovery, in ICDE (2011), pp. 757–768

41. S. Sarawagi, S. Thomas, R. Agrawal, Integrating association rule mining with relational
database systems: alternatives and implications, in SIGMOD (1998)

42. T. Imielinski, H. Mannila, A database perspective on knowledge discovery. Commun. ACM
39(11), 58–64 (1996)

43. C. Zaniolo, Mining databases and data streams with query languages and rules—invited paper,
in KDID 2005: Knowledge Discovery in Inductive Databases, 4th International Workshop.
Lecture Notes in Computer Science, vol. 3933 (Springer, Berlin, 2006), pp. 24–37

44. Z. Tang, J. Maclennan, P.P. Kim, Building data mining solutions with OLE DB for DM and
XML for analysis. SIGMOD Rec. 34(2), 80–85 (2005)

386 N. Laptev et al.

45. H. Thakkar, B. Mozafari, C. Zaniolo, Designing an inductive data stream management system:
the stream Mill experience, in SSPS (2008), pp. 79–88

46. H.-P. Kriegel, M. Ester, J. Sander, X. Xu, A density-based algorithm for discovering clusters
in large spatial databases with noise, in KDD (1996), pp. 226–231

47. H. Wang Wei Fan, P.S. Yu, J. Han, Mining concept-drifting data streams using ensemble clas-
sifiers, in KDD (2003), pp. 226–235

48. B. Mozafari, H. Thakkar, C. Zaniolo, Verifying and mining frequent patterns from large win-
dows over data streams, in ICDE (2008), pp. 179–188

49. A. Bifet, G. Holmes, B. Pfahringer, P. Kranen, H. Kremer, T. Jansen, T. Seidl, Moa: massive
online analysis, a framework for stream classification and clustering. J. Mach. Learn. Res. 11,
44–50 (2010)

50. Y. Bai, C. Zaniolo, Minimizing latency and memory in DSMS: a unified approach to quasi-
optimal scheduling, in SSPS (2008), pp. 58–67

51. Y. Bai, H. Thakkar, H. Wang, C. Zaniolo, Optimizing timestamp management in data stream
management systems, in ICDE (2007), pp. 1334–1338

52. L. Golab, M. Tamer Özsu, Issues in data stream management. ACM SIGMOD Rec. 32(2),
5–14 (2003)

53. D. Barbara, The characterization of continuous queries. Int. J. Coop. Inf. Syst. 8(4), 295–323
(1999)

54. D.B. Terry, D. Goldberg, D.A. Nichols, B.M. Oki, Continuous queries over append-only
databases, in SIGMOD Conference (1992), pp. 321–330

55. M. Sullivan, Tribeca: a stream database manager for network traffic analysis, in VLDB (1996),
p. 594

56. S. Chandrasekaran et al., TelegraphCQ: continuous dataflow processing for an uncertain
world, in CIDR (2003)

57. L. Liu, C. Pu, W. Tang, Continual queries for Internet scale event-driven information delivery.
IEEE Trans. Knowl. Data Eng. 11(4), 583–590 (1999)

58. J. Chen, D.J. DeWitt, F. Tian, Y. Wang, NiagaraCQ: a scalable continuous query system for
Internet databases, in SIGMOD (2000), pp. 379–390

59. H. Jagadish, I. Mumick, A. Silberschatz, View maintenance issues for the chronicle data
model, in PODS (1995), pp. 113–124

60. A. Kumar Gupta, D. Suciu, Stream processing of xpath queries with predicates, in SIGMOD
Conference (2003), pp. 419–430

61. D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul, S. Zdonik, Monitoring streams—a new class of data management applications, in
VLDB, Hong Kong, China (2002)

62. Y.-N. Law, H. Wang, C. Zaniolo, Relational languages and data models for continuous queries
on sequences and data streams. ACM Trans. Database Syst. 36, 8 (2011)

63. C. Luo, H. Thakkar, H. Wang, C. Zaniolo, A native extension of SQL for mining data streams,
in ACM SIGMOD Conference 2005 (2005), pp. 873–875

Hancock: A Language for Analyzing
Transactional Data Streams

Corinna Cortes, Kathleen Fisher, Daryl Pregibon, Anne Rogers,
and Frederick Smith

Massive transaction streams present a number of opportunities for data mining
techniques. Transactions might represent calls on a telephone network, commer-
cial credit card purchases, stock market trades, or HTTP requests to a web server.
While historically such data have been collected for billing or security purposes,
they are now being used to discover how the transactors, e.g. credit-card numbers or
IP addresses, use the associated services.

For over six years, we have computed evolving profiles (called signatures) of the
transactors in several large data streams. The signature for each transactor captures

C. Cortes, K. Fisher, D. Pregibon, A. Rogers and F. Smith, ACM Transactions on Programming
Languages and Systems (TOPLAS), Volume 26 Issue 2, March 2004, Pages 301–338.
DOI: 10.1145/973097.973100, © 2004 ACM, Reprinted with permission.

C. Cortes · D. Pregibon
Google Research, 1440 Broadway, New York, NY 10018, USA

C. Cortes
e-mail: corinna@google.com

D. Pregibon
e-mail: daryl@google.com

K. Fisher (B)
Computer Science Department, Tufts University, Medford, MA 02155, USA
e-mail: kfisher@eecs.tufts.edu

A. Rogers
University of Chicago, 1100 E 58th Street, Chicago, IL 60637, USA
e-mail: amr@cs.uchicago.edu

F. Smith
The Mathworks, 3 Apple Hill Drive, Natick, MA 01760, USA
e-mail: fsmith@mathworks.com

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_19

387

http://dx.doi.org/10.1145/973097.973100
mailto:corinna@google.com
mailto:daryl@google.com
mailto:kfisher@eecs.tufts.edu
mailto:amr@cs.uchicago.edu
mailto:fsmith@mathworks.com
http://dx.doi.org/10.1007/978-3-540-28608-0_19

388 C. Cortes et al.

the salient features of his or her transactions through time. Programs for processing
signatures must be highly optimized because of the size of the data stream (several
gigabytes per day) and the number of signatures to maintain (hundreds of millions).
Originally, we wrote such programs directly in C, but because signature programs
often sacrificed readability for performance, they were difficult to verify and main-
tain.

Hancock is a domain-specific language created to express computationally effi-
cient signature programs cleanly. In this chapter, we describe the obstacles to com-
puting signatures from massive streams and explain how Hancock addresses these
problems. For expository purposes, we present Hancock using a running example
from the telecommunications industry; however, the language itself is general and
applies equally well to other data sources.

1 Introduction

A transactional data stream is a sequence of records that log interactions between
entities. For example, a stream of stock market transactions consists of buy/sell or-
ders for particular companies from individual investors. Likewise, a stream of credit
card transactions contains records of purchases by consumers from merchants. Data
mining techniques are needed to exploit such transactional data streams because
these streams contain a huge volume of simple records, any one of which is rather
uninformative. When the records related to a single entity are aggregated over time,
however, the aggregate can yield a detailed picture of evolving behavior, in effect,
capturing the “signature” of that entity.

We have analyzed data streams from the telecommunications domain for more
than six years. In our initial work, we processed roughly five million (M) interna-
tional call-detail records per day, generated by approximately 12M accounts. In sub-
sequent work, we have tackled larger and larger data streams, including the complete
AT&T long distance data stream, which consists of approximately 300M records
from roughly 100M accounts per day.

For each data stream, we compute or update signatures based on selected fields
in each record in the data stream. A signature for a phone number might contain
directly measurable features such as when most telephone calls are placed from that
number, to what regions those calls are placed, and when the last call was placed.
It might also contain derived information such as the degree to which the calling
pattern from the number is “business-like” [12].

Figure 1 shows a fraud-detection application: a program taps a call-detail stream
as it goes into a data warehouse and uses the tapped data to update the signatures
of the telephone numbers with calls in the stream. If the new calls are inconsis-
tent with the signature of a given telephone number, the system sends an alert to a
network security representative. The representative then retrieves the relevant call-
detail records from the warehouse to determine if the alert warrants further action.
If the new calls are consistent with the existing signature, they are folded into the

Hancock: A Language for Analyzing Transactional Data Streams 389

Fig. 1 Typical use of a fraud
signature

signature to allow a smooth evolution of calling behavior. Since most numbers ex-
hibit consistent behavior through time, an overwhelming majority of calls are incor-
porated into the appropriate signatures and stored in the warehouse without being
examined manually.

Programs to compute signatures must be highly optimized because of the size
of the data stream and the number of signatures tracked. The size of the signature
collection prevents us from keeping it entirely in memory. Consequently, signature
programs are very I/O intensive: they must read from and write to the signature data
on disk as they process transactions.

Our initial C programs for computing telecommunication signatures were ef-
ficient, but they often sacrificed readability to obtain this efficiency. Regulatory
changes force frequent modifications to these programs. Consequently, program
maintenance and verification, both of which require program readability, are im-
portant issues. When we started working with the complete AT&T long distance
data stream, we realized that we needed software that could function at scale and
yet be maintained as changes were required.

Hancock is a C-based domain-specific programming language that we designed
and implemented in response to this need. By design, the language makes time
and space efficient signature programs easy to read and write, independent of the
quantity of data involved. Because Hancock manages scaling issues, it allows data
analysts to experiment with new signatures quickly.

The goals of this chapter are to discuss the computational difficulties in writing
efficient signature code for massive data streams, to show how Hancock alleviates
these difficulties, and to discuss the motivations behind the Hancock design. Previ-
ous papers presented preliminary designs [5, 10], described the current design [11],
and discussed implementation issues in depth [16].

2 Running Example

In this section, we describe the Cell Tower signature, which we will use as a running
example to describe Hancock. This signature mines information from a wireless call

390 C. Cortes et al.

stream containing records used to bill accounts for calls sent and received from mo-
bile telephones. Although these records contain many fields, only a few are relevant
for computing the Cell Tower signature:

• Mobile Phone Number (MPN)
• Dialed telephone number
• First and last cell tower used

Our illustrative application characterizes the “diameter” of a mobile phone, i.e., is
the phone used exclusively in one or a few neighboring cells, or is it used in a much
larger region? Such information is useful for target marketing and for developing
new service offerings.

To compute this information, we designed the Cell Tower signature. For each
MPN, we track the five most frequently (and most recently) used cell towers and
another value that captures the frequency with which calls placed from the MPN do
not involve the top five cell towers. As one might expect, the top five list is dynamic,
so the signature computation includes a probabilistic bumping algorithm that allows
a new cell tower to enter the top five list as its frequency of use increases. Earlier
work describes how to design signatures [6, 13–15].

Given the Cell Tower signature, any number of measures of “diameter” can be
computed, e.g., the area of the convex hull defined by the geographical coordinates
of the top five cell towers. Maintaining the list allows us to experiment with alter-
native measures before committing to any specific measure that might be computed
directly from the call-detail stream.

As a prelude to subsequent sections in which we intersperse Hancock code with
text, the following Hancock/C code describes the profile struct that we associate
with each MPN in our Cell Tower signature:

#define NDIV 5
#define MAX_TOWER_NAME 12
typedef struct {

char celltower[NDIV][MAX_TOWER_NAME];
float freq[NDIV];
float other;

} profile;

The celltower array stores the names of the five most commonly used towers as
fixed-size C strings. The parallel array freq measures the frequency with which
the corresponding tower is used. Field other measures how many calls are not
reflected in the list of the top five towers.

3 The Hancock Language

Hancock makes it easier to read, write, and maintain signature programs by factor-
ing into the language the issues that relate to scale. In this section we discuss some
of these issues and describe how Hancock addresses them.

Hancock: A Language for Analyzing Transactional Data Streams 391

Fig. 2 High-level architecture of signature computations. The processing typically consists of
several phases, each of which sorts the data in a different order and updates a different part of the
signature

Prior to designing Hancock, we studied existing signature programs to under-
stand their structure and the techniques they employ to achieve good performance.
Figure 2 illustrates the process flow for a typical signature program from the
telecommunications industry. Transaction records are collected for some time pe-
riod, the length of which depends on the application (e.g., a day for marketing but
just a few minutes for fraud detection). At the end of the time period, the records
are processed to update the signatures. Before processing, the old signature data is
copied to preserve a back-up for error-recovery purposes. During processing, the
records are typically sorted in several ways, e.g., according to the originating and
then the dialed phone numbers. After each sort, a pass is made over the data stream.
During a pass, the portion of each signature relevant to the given sort is retrieved
from disk, updated, and then written back to disk. For example, after sorting by the
originating telephone number, only the portion of a signature that tracks out-bound
calling would be updated typically; after sorting by the dialed number, the portion
that tracks in-bound calling would be changed. Sorting the stream ensures good lo-
cality for accesses to the signatures on disk and groups the information relevant to
each transactor into a contiguous segment of the stream.

3.1 Logical and Physical Streams

The fields in a transaction record are often encoded and packed to save space. In
studying the original signature programs, we noticed that code to decipher the rep-
resentation of records was interleaved with signature processing code, which made
it difficult to respond to changes in the physical representation of records.

In Hancock, we separate the physical representation of the records in a data
stream from the logical (expanded) representation on which we perform compu-
tations. This separation allows one person to understand the physical representation
(the expert on that data source) but many people to use the logical representation
(the consumers of that data source). This division facilitates maintenance: if the

392 C. Cortes et al.

physical representation changes, only the translation from the physical to the logi-

cal representation must be modified, presumably by the expert on that data source.

The consumers need not modify their programs.

To declare a new stream type, programmers use the stream type operator. Gen-

erally, Hancock requires one stream type per data source. As there are many fewer

data sources than there are signature programs, declaring new streams is rare. There

are two forms of stream declarations: a specialized form for streams whose records

are stored on disk in a fixed-width binary format, and a general form for records

stored in other formats. The binary form is more convenient for the programmer,

while the general form is more broadly applicable. In the general case, a stream dec-

laration specifies a function that reads data from a file and returns a logical record.

In the binary case, a stream declaration specifies both the physical and the logical

representations for the records in the stream. It also specifies a function to convert

from the encoded physical representation to the expanded logical representation.

The following binary stream declaration introduces the stream wireless_s:

stream wireless_s {
getvalidWCR : wcrPhy_t => wcrLog_t;

};

For this stream of wireless call records, the C type wcrPhy_t serves as the physical

representation and wcrLog_t serves as the logical. The identifier getvalidWCR

names the function that specifies how to convert from the physical to the logical

representation. This function, whose prototype is:

char getvalidWCR(wcrPhy_t *pc, wcrLog_t *c);

checks that the record *pc is valid and if so, unpacks *pc into *c and returns

a constant to indicate a successful conversion. Otherwise, getvalidWCR simply

returns a different constant to tell the system to skip to the next record.

Hancock provides initializing declarations to connect the on-disk representation

of persistent data with Hancock variables. For example, the following code

wireless_s s = ‘‘02-Dec-2004.calls’’;

declares that the variable s has type wireless_s and can be found on disk at the

location named by the path expression “02-Dec-2004.calls”.

In the remainder of the chapter, we use the term “record” to mean the logical

representation of the elements in a stream, since stream definitions are the only

place where the physical representation is needed. Figure 3 shows a sample stream

of wireless call records.

Hancock: A Language for Analyzing Transactional Data Streams 393

Fig. 3 Portion of a wireless call stream running from left to right. Each box represents a call
from an originating phone number to a dialed number. The first call, for example, was placed from
(973)555-1212 to (201)555-2323. Each box is labeled with a call number (C1, for exam-
ple). White boxes denote calls that originated from mobile phone numbers, while dark gray/blue
boxes represent calls that originated from land lines

3.2 Logical, Approximate, and Physical Signatures

When the number of accounts is in the hundreds of millions, one often prefers to
maintain only very small signatures for each account to reduce the I/O cost nec-
essary to update the signatures. To save space, the values of a signature are often
quantized or otherwise approximated before they are stored. For example, a floating
point number representing the probability that a phone number is behaving like a
business might be quantized into sixteen levels; similarly, the number of daily out-
bound minutes may be categorized according to one of eight logarithmically spaced
usage bins. These approximate signatures can be compressed conveniently into a
few bytes before writing them to disk. Thus, each signature program conceptually
uses three different representations of each signature: the logical representation used
for computation, the approximate representation that specifies what information to
preserve, and the compressed physical form that is written to disk.

The original C signature programs contained routines to approximate and com-
press each signature before writing it to disk and routines to uncompress and expand
it before computing with it. However, the original C code occasionally performed
computations not only on the logical representations, but also on the approximate
and on the compressed representations. While the code was very efficient, it was
highly unreadable, making it difficult to verify and maintain.

Hancock’s view construct provides a mechanism to specify two views of a sin-
gle piece of data and the conversion between them. Signature programs use one
view to describe the logical representation of each signature and another to describe
the approximate representation. Hancock’s map abstraction provides a mechanism
to specify application-specific compression functions (see Sect. 4).

As an example of views, consider the following declaration that specifies approx-
imate (bin) and logical (minute) representations of a unit of time:

view time(bin, minute) {
char <=> int;
bin(m) { return min_to_bin(m); }
minute(b) { return bin_to_min(b); }

}

The line char <=> int declares that the bin view is represented as a char
and the minute view is represented as an int. The bin function specifies how

394 C. Cortes et al.

to convert from the logical to the approximate representation by computing the bin
associated with m minutes. Similarly, the minute function converts from the ap-
proximate to the logical representation by assigning a default number of minutes to
the bin b. To translate between these two views, the programmer uses the Hancock
view operator ($):

bin b = 3;
minute m;
m = b$minute; // Convert bin b to minutes m

...
b = m$bin; // Convert minutes m to

// corresponding bin number

Views allow Hancock programmers to document the representation they are using
in a given context. Views also ensure that the definition of how to convert between
their representations appears only once in the program. Both of these aspects of
views make Hancock programs easier to read and maintain than the corresponding
C programs.

3.3 Signature Collections

The original signature programs used a data structure called a map to associate
values with keys. Because performance requirements were tight, maps supported
only two operations: associating a value with a key and retrieving the value asso-
ciated with a key. To save disk space, maps were stored in a compressed format,
customized for each application.

Hancock retained the notion of a map with a design that balances the need for
performance on the one hand with the desire to separate the abstraction from the im-
plementation on the other. We struck this balance by allowing programmers to tune
map representations by specifying implementation parameters in map definitions.
All subsequent uses of the map definition use only the abstract interface for maps:
they do not depend upon the implementation parameters.

To make this discussion more concrete, consider the map declaration for the Cell
Tower application, which associates a profile with each mobile phone number.

map cellTower_m {
key 0..9999999999LL;
split (10000, 100);
value profile;
default {{’\0’, ’\0’, ’\0’, ’\0’, ’\0’},

{0.0, 0.0, 0.0, 0.0, 0.0},
0.0};

};

Hancock: A Language for Analyzing Transactional Data Streams 395

The key clause indicates that the cellTower_m map will be indexed by values
(of type long long) that range from 0 to 9999999999.

The split clause allows programmers to tune the implementation of maps by
specifying block (10000) and stripe sizes (100). These parameters, which deter-
mine the decomposition of the key space in the implementation, are described in
more detail in Sect. 4.

The value clause of a map declaration specifies the type of data to be asso-
ciated with each key. The value type may be any valid Hancock type. In the Cell
Tower application, this type is a standard C struct profile, but in many other
applications the value type is the approximate representation from a Hancock view
type. (In this signature application, the logical and approximate representations are
the same.)

Finally, the default clause specifies a value to be returned if the programmer
requests data for a key that does not have a value stored in the map. Such requests
are relatively frequent because large transaction streams often contain data for fresh
keys, for example, whenever a new telephone number, credit card number, or IP
address is issued. Isolating default construction in map declarations allows code that
queries a map for the value associated with a key to assume that it always receives
a meaningful value, simplifying transaction processing code. For maps with type
cellTower_m, the default profile contains empty strings for the cell towers and
zeros for the frequencies.

As with streams, Hancock map variables can be connected to the associated on-
disk representations using initializing declarations. In addition, such declarations
can be annotated with qualifiers const, exists, and new, which we designed
to protect valuable data. The const qualifier guards against writing to structures
that should not change, exists ensures that the indicated location already has
appropriate persistent data, while new guarantees that the indicated location is fresh.

Hancock supports a limited set of map operations that includes retrieving or up-
dating the value associated with a key, iterating over a range of keys with stored
values, and copying maps. Hancock maps do not support transactions, locking, sec-
ondary indices, or declarative querying to avoid the associated overhead.

Hancock programs access values in maps using an indexing operator <: . . . :>.
The code:

cellTower_m ct = ‘‘02-Dec-2004.ct’’;
pn_t mpn = 9735551212LL;
c = ct<:mpn:>;

...
ct<:mpn:> = c;

uses mobile phone number mpn to first read from and then write to map ct. A com-
mon idiom in Hancock

m<:key:>$logview

396 C. Cortes et al.

uses the indexing operator to get an approximate value out of a map (m) and the
view operator to convert that value into the logical representation (logview).

In addition to the operations that manipulate individual items, Hancock also pro-
vides an operation that converts a map into a stream with one entry for each active
key1 from within a given range. The expression:

ct[startKeyExpr..stopKeyExpr]

generates a stream of active keys from map ct that fall between the values of the
expressions startKeyExpr and stopKeyExpr inclusive.

Such map-to-stream expressions make it easy to write programs that update every
value in a map or that evaluate queries that characterize the data. For example, the
Cell Tower application uses map iteration to age each cell tower frequency each
day, a process that allows new information to replace old information gradually. An
auxiliary program for the Cell Tower application might generate a histogram that
plots the number of MPNs with each possible number of recently-used cell towers
by iterating over the map and assigning each active MPN to a histogram bucket
based on its profile.

Finally, Hancock provides a lazy map copy operator, written using the infix no-
tation :=:, to support coarse-grain roll-back for error-recovery. For example, the
statement new_ct:=:ct initializes the map new_ct with the data from map ct.

3.4 Other Persistent Data

While building the first version of Hancock and porting the original production sig-
natures, we observed the need for additional persistence mechanisms. In response,
we added directories to group related information persistently and pickles
to support custom persistent structures that could be split across memory and disk.
We briefly describe the rationale behind the design of these mechanisms; see Cortes
et al. [11] for more details.

We designed Hancock’s directory mechanism based on two related observa-
tions. First, map file names were often used to encode auxiliary information, such
as the date of processing and the source of the data. Second, many applications used
a collection of maps and other structures that together constituted the persistent data
for the application. Grouping related information into a single unit allows program-
mers to dispense with arcane name conventions and be more confident that they will
not improperly mix data from different time windows or applications.

The need for custom, partially memory-resident persistent data structures became
apparent in studying the auxiliary data used in some signature applications. Some
of this data did not fit comfortably into memory, and yet it was not a good candi-
date for the map abstraction. In response to this problem, we designed Hancock’s

1An active key is one with an associated value stored in the map.

Hancock: A Language for Analyzing Transactional Data Streams 397

pickle mechanism, whichs allow programmers to design persistent structures with
on-disk and in-memory representations tailored to the performance of individual
signature programs. This mechanism is designed to integrate user-defined persis-
tent data structures seamlessly with the other elements of Hancock’s persistent data
system, in particular, with directories and initializing declarations.

3.5 Events

Much of the work in computing a signature is done in response to “events” in the
input stream. For example, when a program sees a new mobile phone number in
a wireless_s stream, it might re-initialize per-number counters. The original
signature programs contained a hierarchy of events including seeing a new area
code (npa_begin), seeing a new exchange (nxx_begin),2 seeing a new phone
number (line_begin), seeing an individual call record (call), seeing the last
of a phone number (line_end), etc. Similar event hierarchies may be defined for
streams of credit card charges, IP packets, etc. When a call-detail signature program
detects an npa_begin event in a stream, it may retrieve the time zone for the
triggering area code. In response to an nxx_begin event, it may retrieve all the old
signatures for the newly seen exchange. For a line_begin event, it may initialize
counters that it later increments in response to call events. The program may
store the final values for these counters when a line_end event occurs. Analogous
actions may be taken when processing other kinds of event hierarchies.

In Hancock, we divide this processing into two pieces: event detection and event
response. Event detection includes defining the events of interest in a given stream
and specifying how to identify them. Event response indicates what to do when
an event is detected. The Hancock compiler generates the control flow that se-
quences the detection and response code. This control-flow code involves deeply
nested loops that have an inverted control structure, which means that the code to
respond to an ending event precedes the code for the corresponding beginning event.
Hancock programs, which hide this structure, are much easier to read and maintain
than the corresponding C programs, which mix the inverted control flow with event
response code. In the remainder of this section, we discuss how to describe and de-
tect events in a stream. In the next section, we discuss how to respond to detected
events.

To define events in a general fashion, we introduced a new kind of type into Han-
cock: a multi-union. A multi-union names the set of labels it may contain and asso-
ciates a type with each such label. Although we designed multi-unions to describe
events, they are in fact a general construct, suitable for many purposes; hence we
named their constituents “labels” instead of “events.” When we use multi-unions to
describe events, however, we often refer to their labels as “events.” As an example,
consider the declaration:

2An exchange is the first six digits of a ten digit telephone number.

398 C. Cortes et al.

Fig. 4 Stream with window of type *wcrLog_t[3:1]

munion line_e {: areacode_t npa_begin,
exchange_t nxx_begin,
pn_t line_begin,
wcrLog_t call,
pn_t line_end,
exchange_t nxx_end,
areacode_t npa_end :};

This code creates a multi-union type line_e to describe typical events for call-
detail streams. A value with this type contains any subset of the declared labels,
including the empty set, which we write {: :}. Each label in the set carries a
value of the indicated type. If l is the current phone number and c the current call
record in a stream, then the expression

{: line_begin = l, call = c :};

creates a value with type line_e. This value would describe the events that occur
when the first (but not the last) call record for telephone number l appears in the
stream. If e1 and e2 are multi-union values with the same type, then expression
e1:+:e2 produces a new value that contains the union of the labels of e1 and e2.

After describing the events of interest using a multi-union declaration, the pro-
grammer must specify how to detect such events by writing an event-detection func-
tion. Such a function looks at a small portion of a stream and returns a multi-union
to describe the events detected in that window.

To describe a small portion of a stream, Hancock provides a window type, illus-
trated in Fig. 4. The size of the window determines how many records in the stream
can be viewed at once. A window is like an array, but has the added notion of a
“current” record. In specifying a window, the programmer indicates the placement
of the current record in the window. For example, the declaration:

wcrLog_t *w[3:1]

Hancock: A Language for Analyzing Transactional Data Streams 399

specifies that w is a window of size three onto a stream with records of type

wcrLog_t. A pointer to the current record appears in the middle slot of the win-
dow, i.e., in w[1]. Slots with lower indices (w[0]) store pointers to records earlier
in the stream; slots with higher indices (w[2]) look ahead to records appearing later
in the stream. If the window overlaps either the beginning or the end of the stream

(or both), the slots with no corresponding stream record are set to NULL.
An event detection function takes a window onto a stream and returns a multi-

union describing the events detected for the current record in that window. The Cell
Tower signature uses the originDetect function to process outgoing calls:

line_e originDetect(wcrLog_t *w[3:1])
{ line_e b,e;

b = beginDetect(w[0], w[1]);
e = endDetect(w[1], w[2]);
return b :+: {: call = *w[1] :} :+: e;

}

This function calls the auxiliary functions beginDetect and endDetect. The

first determines whether the current record represents a new MPN by comparing
the origin from the previous record (w[0]) to the origin of the current record
(w[1]). The second determines whether the current record represents the last call
for a MPN by comparing the origin for the current record to the origin for the

next record (w[2]).

3.6 Consuming a Stream

As in the original signature programs, Hancock’s computation model is built around

the notion of iterating over a sorted stream of transaction records. Sorting the records
groups all the data relevant to one key into a contiguous segment of the stream and
ensures good locality for map references that follow the sorting order. Consequently,
each signature program typically makes multiple passes over its data stream. Dur-

ing each such pass, the signature program sorts the stream in a different order and
updates a different portion of the signature associated with each key. We call each
pass a phase.

We implement phases using Hancock’s iterate statement, which has the fol-

lowing form:

400 C. Cortes et al.

Fig. 5 Filtered, sorted stream labelled with events

iterate
(over stream variable
filteredby filter predicate
sortedby sorting order
withevents event detection function)

{
event clauses

};

The header specifies an initial stream, a set of transformations to produce a new
stream, and a function to detect events in the transformed stream. The body contains
a set of event clauses that specify how to respond to the detected events.

We explain each of these pieces in turn. The over clause names the input stream.
The filteredby clause specifies a predicate to drop unneeded records. For ex-
ample, a wireless_s stream may include land-to-cell calls, which are not used
by the Cell Tower signature. Immediately removing such records improves the ef-
ficiency of sorting and simplifies event response code. The sortedby clause de-
scribes a sorting order for the stream by listing the record fields that constitute the
desired sorting key. For example, the clause

sortedby origin, connecttime

produces a stream sorted primarily by the originating telephone number and sec-
ondarily by the time at which the call was made. The withevents clause speci-
fies an event detection function that computes the events triggered by the “current”
record. Figure 5 shows a portion of a filtered, sorted, wireless call stream labeled
with events.

The event clauses specify code to execute when an event detection function trig-
gers an event. Events that occur simultaneously (i.e., in the same multi-union value)
are processed in the order they appear in the event clauses. Given this ordering in-
formation, Hancock generates the control-flow to sequence the response code. The
name of each event clause corresponds to a label in the multi-union returned by the
event detection function. Each event clause takes as a parameter the value carried
by the corresponding label. For example, the mobile phone number that triggers an
line_begin event is passed to the line_begin event clause. The body of each
event clause is a block of Hancock/C code.

As an example, Fig. 6 shows the outgoing phase of the Cell Tower signature,
which processes the calls made by wireless telephone numbers. The function out,

Hancock: A Language for Analyzing Transactional Data Streams 401

1 vo i d o u t (w i r e l e s s _ s c a l l s , ce l lTower_m c t)
2 {
3 p r o f i l e p ;
4
5 i t e r a t e
6 (o v e r c a l l s
7 f i l t e r e d b y c o m p l e t e C e l l C a l l
8 s o r t e d b y o r i g i n
9 w i t h e v e n t s o r i g i n D e t e c t) {

10
11 e v e n t nxx_beg in (e x c h a n g e _ t npanxx) {
12 age (c t , npanxx) ;
13 }
14
15 e v e n t l i n e _ b e g i n (pn_ t mpn) {
16 i n i t P r o f i l e (&p) ;
17 }
18
19 e v e n t c a l l (wcrLog_t c) {
20 a g g r e g a t e (&p , c . c e l l i d) ;
21 }
22
23 e v e n t l i n e _ e n d (pn_ t mpn) {
24 p r o f i l e o l d ;
25 o l d = c t < : mpn : > ;
26 c t < : mpn: > = u p d a t e (& old ,&p) ;
27 }
28 } ;
29 }

Fig. 6 Outgoing phase for the Cell Tower signature

which encapsulates this phase, contains a single iterate statement that processes a
wireless call stream. It uses the predicate function completeCellCall to re-
move incomplete and non-cellular calls from the stream. It sorts the filtered stream
by the originating phone number. It uses the function originDetect to find
events in the sorted stream. The event clauses in lines 11 to 27 of Fig. 6 specify
how to respond to the detected events, aging all the signatures in an exchange with
the function age, initializing a temporary profile to track the calls for a given phone
number with the function initProfile, integrating each call into the temporary
profile with the function aggregate, and finally updating the map with the day’s
profile. Note that this phase does not use all the events defined in the line_e type.

3.7 Putting It Together

In the previous section, we explained that computing a signature may require multi-
ple passes over the data. Hancock provides the sig_main construct to express the

402 C. Cortes et al.

data flow between such passes: the arcs between the phase boxes in Fig. 2 depict this
construct. In addition, the sig_main function indicates the entry-point into Han-
cock programs, provides a simple way for programmers to specify command-line
arguments, and augments initializing declarations as a way to connect persistent
representations with program variables. The Hancock compiler generates code to
parse the actual command-line parameters, relieving the programmer of this tedious
task.

As an example, consider the sig_main function for the Cell Tower signature:

void sig_main(const wireless_s calls <c:>,
exists const cellTower_m oldCT <m:>,
new cellTower_m newCT <M:>) {

newCT :=: oldCT;
out(calls,newCT);

}

The calls parameter is a stream that contains the raw wireless call data. The syn-
tax (<c:>) after the variable name specifies that this parameter will be supplied as
a command-line option using the -c flag. The colon indicates that the flag takes an
argument, in this case the path to the on-disk representation of the wireless stream.
The absence of a colon indicates that the parameter is a boolean flag. The oldCT
parameter is an existing Cell Tower map, the location of which is specified using the
-m flag. The newCT parameter names the Cell Tower map to hold the result of this
program. The -M flag specifies the location for this map. The qualifiers on sig_
main parameters have the same meaning as qualifiers in initializing declarations.

In general, the body of sig_main is a sequence of Hancock and C statements.
In the Cell Tower application, sig_main copies the data from oldCT into newCT
and then invokes the outgoing phase with the raw call stream and the new Cell Tower
map as arguments. If the Cell Tower application required a second phase, e.g., an
incoming phase, we would call it after the call to out.

4 Implementation

In this section, we give a brief overview of our implementation of Hancock. The
Hancock compiler translates Hancock code into C and then invokes a platform-
dependent compiler to convert the resulting code into an object file. That object file
is then linked to the Hancock runtime system to produce an executable.

To implement the translation, we modified CKIT [8], a C-to-C translator writ-
ten in ML, to parse Hancock and translate the resulting extended parse tree into
abstract syntax for C. During the translation, we typecheck the various Hancock
forms, which allows us to report errors in terms of the Hancock source code, rather
than in terms of the resulting C code. The translator generates code to implement
command-line processing, directories, and the iterate statement, which signifi-
cantly reduces the amount of code the programmer needs to write. After translation,
we use the CKIT pretty-printer to produce C code.

Hancock: A Language for Analyzing Transactional Data Streams 403

Fig. 7 The on-disk data representation of a Hancock map includes a self-identification field,
a block index, an unordered set of blocks, and a free-list for unused space. The self-identifica-
tion information is used to match the file against the declared type of a map to help prevent users
from inadvertently using a map with the wrong type for an application. Each block contains a stripe
index followed by the stripes, in order

The runtime system, written in C, mediates access to persistent data. It converts
between the representation of data on-disk and in memory as necessary. Managing
stream, directory, and pickle data is straightforward: the runtime system provides
the necessary I/O and calls the appropriate user or compiler-generated functions.

Managing map data is more complex because it requires a data structure that sat-
isfies the temporal requirements of our applications without introducing significant
space overhead. Hancock’s map implementation uses the multi-level table3 shown
in Fig. 7 augmented with compression to reduce disk space requirements. To find
the location of a key in the table, the runtime system splits keys into three pieces:
a block number, a stripe number, and an entry number. It uses these pieces to index
into different levels of the table. The top level table maps a block number to its lo-
cation in memory or on disk. Each block contains a stripe index that maps a stripe
number to its starting location within the block. Once the location of the relevant
stripe is identified, the runtime system reads in the stripe, which contains a bitvec-
tor followed by compressed data,4 and decompresses it. Finally, the entry number
determines the location of the key within the decompressed stripe.

Recall that programmers specify the block size and the stripe size for a map using
the split clause in type declaration. The main tradeoff to consider when deciding
the block size is the size of the index (12 bytes per entry on disk, 20 in memory).
Choosing a stripe size, on the other hand, requires weighing various considerations,
including the cost of decompressing values, the size of a decompressed stripe in
relation to the processor’s primary and secondary cache sizes, and the expected mix

3Other applications, such as paging or IP address lookup for routing [17, 19, 21] use variants of a
multi-level table to support large key spaces.
4Hancock supplies default compression functions, but programmers can also specify application-
specific compression routines as part of a map type declaration.

404 C. Cortes et al.

of access patterns for the data. See Fisher et al. [16] for a more detailed discussion
of these tradeoffs.

5 Experiences

In this section, we describe our experiences with Hancock programs in practice. We
rewrote the original domestic long-distance signature programs in Hancock. These
programs, which have been running in production every day for more than six years,
are as time efficient as the original C programs, while at the same time being more
space efficient, shorter, and better organized. The readability of the Hancock pro-
grams makes them easy to check for compliance with (frequently changing) federal
legislation. The Hancock programs are also easy to update in response to changes in
the transaction data. For example, updating the programs to make them aware that
area code 866 and 877 had become toll-free required changing only two lines of
one header file and recompiling the programs.

In addition to supporting the original applications better, Hancock’s domain-
specific abstractions and improved performance enabled data analysts to craft new
kinds of signatures. When analysts used C directly, they were able to store only two-
to four-byte signatures. Because of this limited space, they had to use very rough
approximations. Although this rough data was very useful for certain kinds of mar-
keting applications, it was not suitable for many other kinds of applications, notably
fraud detection. Hancock’s abstractions and their efficient performance enabled ana-
lysts to build signatures containing over 100 bytes. With that level of detail, analysts
were able to store sufficiently precise information to enable applications previously
thought to be infeasible.

Most existing Hancock programs manipulate long-distance call-detail data be-
cause the data analysts we work with focus on that domain. However, nothing in
Hancock is specific to this domain; Hancock gives programmers full control over
the description of their data sources. Programmers have used Hancock to analyze
data from various sources: wireless call records, calling-card call records, telephone
numbers, TCPDUMP data, IP addresses, and even referee reports.

6 Related Work

Broadly speaking, there are two different classes of work related to Hancock: work
on persistent data structures and work on stream processing.

6.1 Persistent Data

Many languages provide support for persistent data. This support typically falls into
one of three categories: pickle-based approaches [1, 23, 24, 27, 29], interfaces to

Hancock: A Language for Analyzing Transactional Data Streams 405

databases, and orthogonal persistence systems [2, 20, 22]. Pickles provide a way to
convert a value into a stream of bytes and vice versa, supporting persistence, but
not in a way that allows data structures to reside partially in-memory and partially
on-disk, a requirement for very large data. A second common approach to support-
ing persistence is to provide an interface to a standard relational or object-oriented
database. We rejected this approach for Hancock because we did not believe that a
traditional database could handle the high-percentage of updates generated during
daily stream processing [3, 4, 7, 16, 18, 26]. Orthogonal persistence systems au-
tomatically determine if a given piece of data must be persistent by starting from a
collection of persistent roots and making all reachable data persistent. This approach
is akin to automatic memory management, which can simplify programming, but at
some performance cost. Because of the tight space and time requirements of our
domain, we adopted a more explicit technique for persistence in Hancock.

6.2 Stream Processing

Many systems support stream operations; here we describe systems designed to han-
dle high-volume stream data. The oldest of these systems, Tribeca [26], pre-dated
Hancock. More recently, high-volume stream processing has become an area of ac-
tive interest in the database community [25, 28]. Aurora [7], Telegraph [18], and
STREAMS [3] are all examples of systems under development for computing with
high-volume streams. In contrast to Hancock, which has been deployed in produc-
tion for several years, these newer systems are in various stages of prototyping.
Further experience is necessary to determine how well these systems will scale. We
briefly describe the focus of each of these projects.

Tribeca [26] is a system for monitoring network traffic. It provides a query lan-
guage with operations for separating and recombining streams, operations for com-
puting moving-aggregates over windows, and a restricted form of join. The separa-
tion and recombination operators might be used, for example, to convert a packet
stream into a session stream. Tribeca provides more support for describing and ma-
nipulating streams than Hancock does, but it provides less support for computing
with the individual elements in a stream or for integrating with persistent data.

Aurora [7] and Hancock are complementary. Aurora is a system designed to mon-
itor stream data. It supports queries over multiple streams of data and allows queries
to join and leave the system over time. One can view the queries combined with
the streams as a graph. At the end of any path in the graph is an application that
consumes the resulting data; that application could be a Hancock program.

Telegraph [18] is an adaptive dataflow system designed to compute continuous
queries over streams of data. PSoup [9], a system built on top of Telegraph, expands
upon this model to allow the query mix to change over time. This system can be
used to compute aggregates from stream data, such as how many music downloads
occurred in a given subnet within the last hour. Like Aurora, Telegraph is not de-
signed to provide direct support for integrating stream data into persistent structures,
the essential operation in computing signatures.

406 C. Cortes et al.

The members of the STREAMS project [3] are developing a system for execut-
ing continuous queries over multiple streams. The focus of this project is to develop
fundamental models of stream data systems and efficient methods for managing re-
sources in such systems. At present, their model explicitly excludes queries that can
modify persistent data during computation. This restriction, which may be removed
over time, eliminates signatures as a possible application for STREAMS.

7 Language Versus Library

One question we are asked often is why we chose to design a language rather than
a library. There are two technical reasons for choosing the language option. First,
expressing Hancock’s event model and the information sharing it provides proved
awkward in a call-back5 framework, the usual technique for implementing such
abstractions. Second, by designing a language we could use the language’s type
system to provide more precise typechecking than is provided by C. For example,
the natural way to implement maps using a library interface would require the pro-
grammer to cast between the actual type of a value and void *, thereby losing
the benefits of typechecking. The scale of the data makes the complexity of finding
and fixing bugs in signature programs substantial. Therefore, static error detection
is essential.

The more compelling reason to choose a language over a library for us is soci-
ological. The experience of writing a Hancock program is fundamentally different
than writing the equivalent program in C. This difference arises in part because
Hancock removes issues of scale, leaving programmers free to concentrate on the
design of the individual profiles, and in part because Hancock provides a vocabulary
tailored to the domain of signature design.

8 Conclusions

Working with transactional data streams is like drinking from the proverbial fire
hose: the volume is simply overwhelming. But this challenge provides an oppor-
tunity for data mining research to enter a new area. We believe that Hancock is a
valuable tool for exploiting this opportunity.

Hancock has allowed us to improve our application base by replacing hard-to-
maintain, hand-written C code with disciplined Hancock code. Because Hancock
provides high-level, domain-specific abstractions, Hancock programs are easier to
read and maintain than the earlier C programs. By careful design, these abstractions
have efficient implementations, which allow Hancock programs to preserve the ex-
ecution speed and data efficiency of the earlier C programs. Hancock gave domain

5A call-back is a call from a function in a library “back” to a function in user code.

Hancock: A Language for Analyzing Transactional Data Streams 407

experts the confidence to attack more challenging problems because it allowed them
to concentrate on what to compute without worrying about how to manage the vol-
ume of data.

Hancock is publicly available for non-commercial use from:

www.research.att.com/projects/hancock.

References

1. A.W. Appel, A runtime system. Lisp and Symbolic Computation 4(3), 343–380 (1990)
2. M. Atkinson, L. Daynes, M. Jordan, T. Printezis, S. Spence, An orthogonally persistent Java.

ACM SIGMOD Rec. 25(4) (1996)
3. B. Babcock, S. Babu, M. Data, R. Motwani, J. Widom, Models and issues in data stream

systems, in Proceedings of the 2002 ACM Symposium on Principles of Database Systems
(PODS 2002) (2002). See the Stream Project homepage, www-db.stanford.edu/stream for a
complete list of papers

4. D. Belanger, K. Church, A. Hume, Virtual data warehousing, data publishing, and call de-
tail, in Processings of Databases in Telecommunications 1999, International Workshop. Also
Appears in Springer Verlag LNCS, vol. 1819 (1999), pp. 106–117

5. D. Bonachea, K. Fisher, A. Rogers, F.S. Hancock, A language for processing very large-
scale data, in USENIX 2nd Conference on Domain-Specific Languages, USENIX Association
(1999), pp. 163–176

6. P. Burge, J. Shawe-Taylor, Frameworks for fraud detection in mobile telecommunications net-
works, in Proceedings of the Fourth Annual Mobile and Personal Communications Seminar,
University of Limerick (1996)

7. D. Carney, U. Cetinemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul, S. Zdonik, Monitoring streams–a new class of data management applications,
in Proceedings of the 28th VLDB Conference (2002). See the Aurora Project homepage,
www.cs.brown.edu/research/aurora/main.html for a complete list of papers

8. S. Chandra, N. Heintze, D. MacQueen, D. Oliva, M. Siff, Pre-release of C-frontend library for
SML/NJ (1999). See cm.bell-labs.com/cm/cs/what/smlnj

9. S. Chandrasekaran, M.J. Franklin, Streaming queries over streaming data, in Proceedings of
the 28th VLDB Conference (2002)

10. C. Cortes, K. Fisher, D. Pregibon, A. Rogers, F.S. Hancock, A language for extracting signa-
tures from data streams, in Proceedings of the Sixth International Conference on Knowledge
Discovery and Data Mining (2000), pp. 9–17

11. C. Cortes, K. Fisher, D. Pregibon, A. Rogers, F.S. Hancock, A language for analyzing trans-
actional data streams. ACM Transactions on Programming Languages and Systems 26(2),
301–338 (2004)

12. C. Cortes, D. Pregibon, Giga mining, in Proceedings of the Fourth International Conference
on Knowledge Discovery and Data Mining (1998)

13. C. Cortes, D. Pregibon, Information mining platform: an infrastructure for KDD rapid deploy-
ment, in Proceedings of the Fifth International Conference on Knowledge Discovery and Data
Mining (1999)

14. D.E. Denning, An intrusion-detection model, IEEE Trans. Softw. Eng. 13(2) (1987)
15. T. Fawcett, F. Provost, Adaptive fraud detection. Data Mining and Knowledge Discovery 1,

291–316 (1997)
16. K. Fisher, C. Goodall, K. Hogstedt, A. Rogers, An application-specific database, in Pro-

ceedings of 8th Biennial Workshop on Data Bases and Programming Languages (DBPL’01).
LNCS, vol. 2397 (Springer, Berlin, 2002), pp. 213–227

www.research.att.com/projects/hancock
http://www-db.stanford.edu/stream
http://www.cs.brown.edu/research/aurora/main.html
http://cm.bell-labs.com/cm/cs/what/smlnj

408 C. Cortes et al.

17. P. Gupta, S. Lin, M. McKeown, Routing lookups in hardware and memory access speeds,
in Proc. 17th Ann. Joint Conf. of the IEEE Computer and Communications Societies, vol. 3
(1998), pp. 1240–1247

18. J. Hellerstein, M. Franklin, S. Chandrasekaran, A. Deshpande, K. Hildrum, S. Madden, V. Ra-
man, M. Shah, Adaptive query processing: technology in evolution, in IEEE Data Eng. Bul-
letin (2000), pp. 7–18. See the Telegraph Project homepage telegraph.cs.berkley.edu for a
complete list papers

19. N.-F. Huang, S.-M. Zhao, J.-Y. Pan, C.-A. Su, A fast IP routing lookup scheme for gigabit
switching routers, in Proc. 18th Ann. Joint Conf. of the IEEE Computer and Communications
Societies, vol. 3 (1999), pp. 1429–1436

20. M. Knasmüller, Adding persistence to the Oberon system, in Proceedings of the Joint Modular
Languages Conference 97 (1997)

21. B. Lampson, V. Srinivasan, G. Varghese, IP lookups using multiway and multicolumn search.
IEEE/ACM Transactions on Networking 7(3), 324–334 (1999)

22. B. Liskov, M. Castro, L. Shrira, A. Adya, Providing persistent objects in distributed sys-
tems, in Proceedings of the 13th European Conference on Object-Oriented Programming
(ECOOP’99) (1999)

23. G. Nelson (ed.), Systems Programming with Modula-3 (Prentice Hall, New York, 1991)
24. R. Riggs, J. Waldo, A. Wollrath, K. Bharat, Pickling state in the Java system, in Proceedings

of the USENIX 1996 Conference on Object-Oriented Technologies (COOTS) (1996)
25. SIGMOD. Proceedings of SIGMOD (2002)
26. M. Sullivan, A. Heybey, Tribeca: a system for managing large databases of network traffic, in

Proceedings of the USENIX Annual Technical Conference (No. 98) (1998)
27. G. van Rossum Python library reference (2001). python.sourceforge.net/devel-docs/lib/lib.

html
28. VLDB. Proceedings of the 28th VLDB conference (2002)
29. D.C. Wang, The asdlGen reference manual. See www.cs.princeton.edu/zephyr/ASDL (1998)

http://telegraph.cs.berkley.edu
http://python.sourceforge.net/devel-docs/lib/lib.html
http://python.sourceforge.net/devel-docs/lib/lib.html
http://www.cs.princeton.edu/zephyr/ASDL

Sensor Network Integration with Streaming
Database Systems

Daniel Abadi, Samuel Madden, and Wolfgang Lindner

1 Introduction

Recent advances in computing technology have led to the production of a new class
of computing device—the wireless, battery powered, smart sensor [30]. Traditional
sensors deployed throughout buildings, labs, and equipment are passive devices that
simply modulate a voltage based on some environmental parameter. In contrast,
these new sensors are active, full-fledged computers, capable not only of sampling
real world phenomena but also filtering, sharing, and combining those sensor read-
ings with each other and nearby Internet-equipped endpoints.

Smart-sensor technology has enabled a broad range of ubiquitous computing
applications [13]: the low cost, small size, and untethered nature of these devices
makes it possible to sense information at previously unobtainable resolutions. Ani-
mal biologists can monitor the movements of hundreds of different animals simulta-
neously, receiving updates of location as well as ambient environmental conditions
every few seconds [8, 25]. Vineyard owners can place sensors on every one of their
plants, providing an exact picture of how various light and moisture levels vary
in the microclimates around each vine [7]. Supervisors of manufacturing plants,

D. Abadi
Department of Computer Science, Yale University, 51 Prospect Street, New Haven, CT 06511,
USA
e-mail: dna@cs.yale.edu

S. Madden (B) · W. Lindner
Computer Science and Artificial Intelligence Laboratory (CSAIL),
Massachusetts Institute of Technology, 32 Vassar Street, Cambridge, MA 02139, USA
e-mail: madden@csail.mit.edu

W. Lindner
e-mail: wolfgang@csail.mit.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_20

409

mailto:dna@cs.yale.edu
mailto:madden@csail.mit.edu
mailto:wolfgang@csail.mit.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_20

410 D. Abadi et al.

temperature controlled storage warehouses, and computer server rooms can moni-
tor each piece of equipment, and automatically dispatch repair teams or shutdown
problematic equipment in localized areas where temperature spikes or other faults
occur.

Over the past several years, we have designed and implemented a query processor
for such sensor networks called TinyDB (for more information on TinyDB, see the
TinyDB Home Page [24]). TinyDB is a distributed query processor that runs on
each of the nodes in a sensor network that is explicitly designed to simplify many
of the data collection applications described above. TinyDB runs on the Berkeley
mote platform, on top of the TinyOS [17] operating system. TinyDB has many of
the features of a traditional query processor (e.g., the ability to select, join, project,
and aggregate data), but also incorporates a number of other optimization features
designed to minimize power consumption.

In this chapter, we review of many of the features of TinyDB and other sen-
sor network query processing systems (such as Cougar [41]). We also discuss how
TinyDB interfaces with a data stream management system (DSMS), examples of
which are discussed elsewhere in this book. Such integration is important a number
of reasons, including:

1. Integration provides the ability to combine stored or streaming data from the
DSMS with data from the sensornet. For example, users may want to compute
a join to decide if readings from a motion-detector are correlated with network
activity, or if truck locations match the expected locations on the planned route.

2. Integration provides a single, integrated interface for interacting with both the
streaming database and the sensor network. TinyDB currently allows users to
log query results into a relational database table via JDBC, but queries must
still be input to TinyDB independently of the relational database. By providing a
single, seamless system, users are only require knowledge of configuration and
interaction with one set of interfaces.

3. Integration offers the ability to optimize between the database system and the
sensor network. For example, it may be desirable to push certain filters and ag-
gregates into the sensor network if user queries are interested in only particular
subsets or coarse summaries of readings.

To provide this integration, we interpose a proxy between the DSMS and TinyDB.
This proxy selects fragments of a query input at the DSMS that can be safely and
efficiently run on the sensor network, and facilitates optimization between the two
query processing systems. It also hides from the DSMS the sensor-network specific
communication and control protocols, and prevents the sensor network from need-
ing to provide a complete set of query processing operators or sophisticated query
parsing or optimization features.

Before covering the details of this proxy system, however, we begin with a brief
discussion of the TinyOS operating system and the mote hardware upon which
TinyDB is built.

Sensor Network Integration with Streaming Database Systems 411

2 Sensor Networks and TinyOS

A sensor network node is a battery-powered, wireless computer. Typically, these
nodes are physically small (a few cubic centimeters) and extremely low power (a few
tens of milliwatts versus tens of watts for a typical laptop computer). Power is of
utmost importance. If used naively, individual sensor nodes will deplete their en-
ergy supplies in only a few days.1 In contrast, if sensor nodes are very spartan about
power consumption, months or years of lifetime are possible. Mica motes, for exam-
ple, when operating at 2 % duty cycle (between active and sleep modes) can achieve
lifetimes in the 6 month range on a pair of AA batteries. This duty cycle limits the
active time to 1.2 seconds per minute.

There have been several generations of motes produced. Older, Mica motes
have a 4 MHz, 8 bit Atmel microprocessor. Their RFM TR1000 [33] radios run
at 40 kbits/s over a single shared CSMA/CA (carrier-sense multiple-access, colli-
sion avoidance) channel. Newer Mica2 nodes use a 7 MHz processor and a radio
from ChipCon [10] corporation which runs at 38.4 kbits/s. A third mote, called the
Mica2Dot has similar hardware as the Mica2 mote, but uses a slower, 4 MHz, pro-
cessor. Pictures of a Mica and Mica2Dot mote are shown in Fig. 1. Mica motes
are visually very similar to Mica2 motes and are exactly the same form factor.
Newer motes, from Crossbow, Telos, and other companies, still use low power, low-
frequency microprocessors with very limited RAM (such as the TI MSP430 series,
which has up to 10 KB of RAM and runs up to 16 MHz), but now typically use
ZigBee 802.15.4 radios with bit rates up to 250 kbits/s (such as the ChipCon 2420).

Radio messages are in TinyOS variable size. Typically about 20 50-byte mes-
sages (the default size in TinyDB) can be delivered per second. Like all wireless
radios (but unlike a shared EtherNet [11], which uses the collision detection (CD)
variant of CSMA), both the RFM and ChipCon radios are half-duplex, which means
that they cannot detect collisions because they cannot listen to their own traffic. In-
stead, they try to avoid collisions by listening to the channel before transmitting and
backing off for a random time period when it is in use.

2.1 TinyOS

Berkeley provides a primitive OS for the motes called TinyOS. TinyOS consists of
a set of components for managing and accessing the mote hardware, and a “C-like”
programming language called nesC. TinyOS has been ported to a variety of hard-
ware platforms, including UC Berkeley’s Rene, Dot, Mica, Mica2, and Mica2Dot
motes, the Blue Mote from Dust Inc. [18], and MIT’s Cricket [32] platform.

1At full power, a Berkeley Mica mote (see Fig. 1) draws about 15 mA of current. A pair of AA
batteries provides approximately 2200 mAh of energy. Thus, the lifetime of a Mica2 mote will be
approximately 2200/15 = 146 hours, or 6 days. Mica2Dot motes, with smaller 800 mAh batteries
and peak current consumption of 12 mAh can run at full power for just 800/12 = 66 hours, or
about 3 days.

412 D. Abadi et al.

Fig. 1 Two Berkeley motes

The major features of TinyOS are:

1. A suite of software designed to simplify access to the lowest levels of hardware
in an energy-efficient and contention-free way, and

2. A programming model and the nesC language designed to promote extensibility
and composition of software while maintaining a high degree of concurrency and
energy efficiency. Interested readers should refer to [15].

It is interesting to note that TinyOS does not provide the traditional operating
system features of process isolation or scheduling (there is only one application
running at time), and does not have a kernel, protection domains, memory manager,
or multi-threading. Indeed, in many ways, TinyOS is simply a library that provides
a number of convenient software abstractions, including:

• The radio stack, which sends and receives packets over the radio and manages the
MAC layer [17, 39].

• Software to read sensor values—each sensor device (e.g., the light sensor) is man-
aged by a software component that provides commands to fetch a new reading
from the sensor, and possibly access calibration and configuration features for
more sophisticated digital sensors.

• Components to synchronize the clocks between a group of motes and schedule
timers to fire at specified times [12].

• Power management features that allow an application to put the device into a low
power sleep mode without compromising the state of any other software compo-
nents.

• Software to manage the off-chip Flash using a simple, file-system like interface.

Sensor Network Integration with Streaming Database Systems 413

• Components to localize a sensor relative to neighboring node by emitting sound
or ultrasound pulses and measuring their time-of-flight to those neighbors [38].

Thus, TinyOS and nesC provide a useful set of abstractions on top of the bare
hardware. Unfortunately, they do not make it particularly easy to author software
for many of the data collection applications discussed in the introduction. Sensor
networks will never be widely adopted if every application requires this level of
engineering effort. The declarative model we advocate reduces these applications to
a few short statements in a simple language.

3 TinyDB

In TinyDB, queries are input at the user’s PC in a simple SQL-like language which
describes the data the user wishes to collect and ways in which he or she would like
to combine, transform, and summarize it. The most significant way in which the
variant of SQL we have developed differs from traditional SQL is that queries are
continuous and periodic. That is, users register an interest in certain kinds of sensor
readings (e.g., “temperatures from sensors on the 4th floor every 5 seconds”) and
the system streams these results out to the user. We call each period in which a result
is produced an epoch. The epoch duration, or sample period, of a query refers to the
amount of time between successive samples; for this example, the sample period
would be 5 seconds. As we discuss various aspects of our system, we will show
some examples of our language syntax and discuss its other features (new and in
common with traditional SQL) in more detail.

In TinyDB, query optimization is done as much as possible on the server-side PC,
since it can be quite computationally intensive. However, because the server may not
have perfect state about the status of the sensor network, and because costs used to
optimize a query initially may change over its lifetime, it is sometimes necessary to
adapt running query plans once they have been sent into the network.

3.1 Query Language

Queries in TinyDB, as in SQL, consist of SELECT-FROM-WHERE-GROUPBY-
HAVING blocks supporting selection, join, projection, aggregation, and grouping.
TinyDB also includes explicit support for windowing and subqueries via material-
ization points. In queries, we view sensor data as a single virtual table with one col-
umn per sensor type. Tuples are appended to this table periodically, at well-defined
intervals that are a parameter of the query. This period of time between each sample
interval is the epoch, as described above. Epochs provide a convenient mechanism
for structuring computation to minimize power consumption. As an example, con-
sider the query

414 D. Abadi et al.

SELECT nodeid, light, temp
FROM sensors
SAMPLE PERIOD 1s FOR 10s

This query specifies that each sensor should report its own id, light, and temper-
ature readings once per second for 10 seconds. The virtual table sensors contains
one column for every attribute available in the catalog and one row for every pos-
sible instant in time. The term virtual means that these rows and columns are not
actually materialized—only the attributes and rows referenced in active queries are
actually generated.

Results of this query stream out of the network fashion where they may be
logged, output to the user, or fed into another database system. The output con-
sists of an ever-growing sequence of tuples, clustered into 1 s time intervals. Each
tuple includes a time stamp corresponding to the time it was produced.

Note that the sensors table is (conceptually) an unbounded, continuous data
stream of values; as is the case in other streaming and online systems, certain block-
ing operations (such as sort and symmetric join) are not allowed over such streams
unless a bounded subset of the stream, or window, is specified. Windows in TinyDB
are defined as fixed-size materialization points over the sensor streams. Such materi-
alization points accumulate a small buffer of data that may be used in other queries.
Consider, as an example, the following query:

CREATE
STORAGE POINT recentlight SIZE 8 seconds
AS (SELECT nodeid, light FROM sensors
SAMPLE PERIOD 1s)

This statement provides a shared, local (i.e., single-node) location to store a
streaming view of recent data similar to materialization points in other streaming
systems like Aurora or STREAM [2, 26], or materialized views in conventional
databases.

Joins are allowed between two storage points on the same node, or between a
storage point and the sensors relation, in which case sensors is used as the
outer relation in a nested-loops join. That is, when a sensors tuple arrives, it is
joined with tuples in the storage point at its time of arrival. This is effectively a
landmark query [16] common in streaming systems. Consider, as an example

SELECT COUNT(*)
FROM sensors AS s, recentLight AS rl
WHERE rl.nodeid = s.nodeid
AND s.light < rl.light
SAMPLE PERIOD 10s

This query outputs a stream of counts indicating the number of recent light read-
ings (from 0 to 8 samples in the past) that were brighter than the current reading.

TinyDB also includes support for grouped aggregation queries. Aggregation has
the attractive property that it reduces the quantity of data that must be transmitted

Sensor Network Integration with Streaming Database Systems 415

through the network, and thus can reduce energy consumption and bandwidth us-
age by replacing more expensive communication operations with relatively cheaper
computation operations, extending the lifetime of the sensor network significantly.
TinyDB also includes a mechanism for user-defined aggregates and a metadata man-
agement system that supports their optimization.

In addition to aggregates over values produced during the same sample interval
(for example, as in the COUNT query above), users want to be able to perform tempo-
ral operations. For example, in a building monitoring system for conference rooms,
users may detect occupancy by measuring maximum sound volume over time and
reporting that volume periodically:

SELECT WINAVG(volume, 30s, 5s)
FROM sensors
SAMPLE PERIOD 1s

This query will report the average volume over the last 30 seconds once every 5 sec-
onds, acquiring a sample once per second. This is an example of a sliding-window
query common in many streaming systems [16, 26].

When a query is issued in TinyDB, it is assigned an identifier (id) that is returned
to the issuer. This identifier can be used to explicitly stop a query via a “STOP
QUERY id” command. Alternatively, queries can be limited to run for a specific
time period via a FOR clause, or can include a stopping condition as a triggering
condition or event; see our recent work on acquisitional query processing [23] for
more detail about these language constructs.

3.2 Query Dissemination and Result Collection

Once a query has been optimized, it is disseminated into the network. We discuss
one basic communication primitive, a routing tree. A routing tree is rooted at either
the base station or a storage point and it allows the root of the network to disseminate
a query and to collect query results. This routing tree is formed by forwarding the
query from every node in the network: the root initially transmits the query; all child
nodes that hear it process it and forward it on to their children, and so on, until the
entire network has heard about the query.

Each radio message contains a hop-count, or level, indicating the distance from
the broadcaster to the root. To determine their own level, nodes pick a parent node
that is (by definition) one level closer to the root than they are. This parent will be
responsible for forwarding the node’s (and its children’s) query results to the base
station. We note that it is possible to have several routing trees if nodes keep track
of multiple parents. This can be used to support several simultaneous queries with
different roots. This type of communication topology is common within the sensor
network community and is known as tree-based routing.

Figure 2 shows an example sensor network topology and routing tree. Solid ar-
rows indicate parent nodes, while dotted lines indicate nodes that can hear each

416 D. Abadi et al.

Fig. 2 A sensor network
topology, with routing tree
overlay

other but do no use each other for routing. In general, a node may have several pos-
sible choices of parent; a simple approach is to chose the parent to be the ancestor
node with the lowest level. In practice, it turns out that making a proper choice of
parent is quite important in terms of communication and data collection efficiency
and that network topologies are much less regular and more complex than one might
expect [14]. Unfortunately, the details of the best known techniques forming trees in
real networks are quite complicated and outside the scope of our discussion in this
paper. For a more complete discussion of these and other issues, see, for example,
recent work from the TinyOS group at UC Berkeley [40]. We would like to note
that there has been a plethora of work on routing in ad-hoc and sensor networks
[19, 21, 27, 28], including energy-aware routing [9, 31] and special MAC proto-
cols [42]. Our goal here is different: instead of a general-purpose routing layer, we
need to disseminate information from sensors to the root, and we can leverage this
knowledge about our communication patterns.

Once a routing tree has been constructed, each node has a connection to the
root of the tree which is just a few radio hops long. We can then use this tree to
collect data from sensors by having them forward query results up this path. In
TinyDB, the routing tree evolves over time as new nodes come online, interference
patterns change, or nodes run out of power. Tree maintenance is done locally, at
every node, by keeping a set of candidate parents and an estimate of the quality of
the communication link with each of them; when the quality of the link to the current

Sensor Network Integration with Streaming Database Systems 417

parent is sufficiently worse than the quality to another candidate parent, a switch is
made.

A simple routing structure such as routing trees is well suited to our scenario:
sensor network query processors impose communication workloads on the multi-
hop communication network that are very different from traditional ad-hoc networks
with mobile nodes. Since the sensor network is programmed only through queries,
there are very regular communication patterns, mainly consisting of the collection
of sensor readings from a region at a single node or the base station. Note that other
types of routing structures beyond routing trees are necessary if the query workload
has more than a few destinations since the overlay of several routing trees neglects
any sharing between several trees and leads to performance decay. The discussion
of such routing algorithms is beyond the scope of this chapter, but we have begun to
explore such issues in our research.

3.3 Query Processing

Once a query has been disseminated, each node begins processing it. Processing
is a simple loop: once per epoch, readings, or samples are acquired from sensors
corresponding to the fields or attributes referenced in the query. This acquisition
is done by a special acquisition operator. This set of readings, or tuple, is routed
through the query plan built in the optimization phase. The plan consists of a number
of operators that are applied in a fixed order; each operator may pass the tuple on to
the next operator, reject it, or combine it with one or more other tuples. Any tuple
that successfully passes the plan is transmitted up the routing tree to the node’s
parent, which may in turn forward the result on or may combine it with its own data
or data collected from its other children.

The acquisition operator uses a catalog of available attributes to map names ref-
erenced in queries into low-level operating system functions that can be invoked to
provide their values. This catalog abstraction allows sophisticated users to extend
the sensor network with new kinds of sensors, and also provides support for sensors
that are accessed via different software interfaces. For example, in the TinyDB sys-
tem, users can run queries over sensor attributes like light and temperature, but can
also query attributes that reflect the state of the device or operating system, such as
the free RAM in the dynamic memory allocator. Table 1 shows a list of some of the
sensor and system attributes that are available on current generation sensors. This
table includes energy per sample as an example of additional catalog metadata that
can be used in query optimization.

4 Data Integration Architecture

TinyDB and sensor network query processing systems are one piece of our flexible
query processing system for sensor data. However, to make sensor networks truly

418 D. Abadi et al.

Table 1 Some sensors available for Mica motes and their power requirements

Sensor Notes Energy per sample
(@3V), mJ

Solar Radiation [36] Amount of radiation in 400 to 700 nm range
that allows plants to photosynthesize

0.525

Barometric Pressure [20] Air pressure, in mbars 0.003

Humidity [35] Relative humidity 0.5

Passive Infrared [37] Temperature of an overhead surface 0.0056

Ambient Temp [37] 0.0056

Accelerometer [5] Measure movement and vibration 0.0048

(Passive) Thermistor [6] Uncalibrated temperature, low cost 0.00009

useful, users need the ability to seamlessly query data from sensor networks as well
as other data sources. Ideally, such a system would provide users with the same
query language as well as data layout and schema management tools across both
sensors and other data sources. We are in the process of adding support to Borealis
(a follow-on to the Aurora [2] stream processing system) to support TinyDB and
other limited-capability query processors.

In this section, we consider in broad terms the problem of integrating a sensor
database system into any system for processing (non-sensor) data streams (such
as Telegraph, Aurora, or other systems described in this book). We note that this
problem cannot be trivially solved by simply wrapping the data that is output from
TinyDB into statements in the appropriate “data definition langauge” for the stream-
ing system in question, for the following fundamental reasons:

• TinyDB must be parameterized by one or more queries that specify the data that
should be extracted from it. Some mechanism is needed to derive the appropriate
query to send into the network when the user requests data from the combined
stream/sensor database.

• To provide reasonable performance, as many data reducing operators (e.g., filters
and projections) as possible should be executed by the sensors, however;

• TinyDB does not support the full set of operators provided by most streaming
systems, so not all queries can be executed in TinyDB. Furthermore,

• Some operators (e.g., joins with external tables) require state to be made available
to the sensor network to execute the query in the network, which can substantially
increase the cost of executing a query in-network.

• Finally, the optimization metric in a sensor network is typically expressed in terms
of energy, whereas it is in other streaming database systems, other, more tradi-
tional metrics (e.g., latency) are typically used.

Our basic integrated architecture is shown in Fig. 3. To the right of the dashed
line is the data stream processor; to the left is our sensor network system. The proxy
between these two systems acts as a mediator, translating queries from the streaming
system into queries on the sensor network and managing the optimization process
between the two systems.

Sensor Network Integration with Streaming Database Systems 419

Fig. 3 Proxy architecture

To illustrate how our approach to integration works, we look in detail at how
a proxy allows us to solve the two fundamental problems outlined above: query
dissemination and optimization.

4.1 Proxy-Based Query Dissemination

The basic process for query dissemination in our architecture works as follows:
queries arrive at the data stream management system (DSMS), which parses and
verifies them, and sends them to the proxy. The proxy is responsible for transforming
these user-input queries into two subqueries: one which runs on the sensor network,
the sensor query, and one which runs on the streaming database, the stream query.
The output of the sensor query is fed into the stream query such that the output of
this composite stream-sensor query is identical to the non-transformed query where
all processing is done inside the stream system.

Since the DSMS parses queries into query graphs of operators, the process
of transforming a query in the two subqueries can be thought of as partitioning
the query graph. In most cases, the actual mechanisms for partitioning queries
are straightforward and well understood from prior work in the database commu-
nity [22, 29]; connected sub-graphs of the query plan can be pushed into the net-

420 D. Abadi et al.

work, and in some cases operators can be commuted to arrive at plans that provide
better performance characteristics.

The challenge of building such a proxy system, then, is determining what de-
compositions are feasible; that is, identifying the decompositions that can actually
be executed in the sensor network. A simple option would be to hard-code knowl-
edge into the proxy regarding the capabilities of the sensor network—for example,
the proxy might know that sub-plans without joins could be pushed into the net-
work. The problem with this approach is that it constrains the proxy to be usable
with a single type of external data source; ideally, we would like to be able to reuse
this proxy architecture for other purposes—e.g., to allow for pushing the execution
of simple query processing operators into a Website that provides selection facilities
via a form-based interface.

Our approach for capability-based approach is loosely inspired by work on me-
diation systems like Garlic [34]. Unlike in our approach, the Garlic middleware asks
client databases if they can run a certain part of each query and at what costs. De-
pending on the answer, Garlic assigns the parts of the queries to the clients, or runs
those parts itself. As we discuss in the next sections, our system uses capabilities to
locally enumerate and cost distributed plans at the proxy.

Constraint-Based Capability Language

Thus, we are developing a constraint-based capability language for expressing the
set of feasible plans that can be pushed into sensor network query processing ser-
vices that users wish to interface to the streaming database. To add a new service
to the proxy, the user registers a description of that system using the capability lan-
guage. The language consists of a sequence of property-value predicates. Properties
are derived from a candidate sensor query and refer to simple characteristics of the
query, such as has_aggregates. A query is considered valid (i.e., legal to run
in the sensor network) if all of the predicates evaluate to true. As a simple example,
consider the service description below; it specifies that a given query processor reg-
istered with the proxy can accept queries without aggregates and with one or fewer
joins of low selectivity.

{ has_aggregates = false,
num_joins ≤ 1,
all_join_selectivity ≤ 1 }

Initially, we provide a small number of basic properties similar to those shown in
the capability language fragment above. Adding a new property is a simple matter
of writing a function that accepts a query and computes the value of that property
over the query. Such functions are a part of the stream query processor, as they may
need to access query processor statistics or pieces of the optimizer (e.g., to compute
join selectivity).

Sensor Network Integration with Streaming Database Systems 421

ENUMERATESENSORQUERIES(s , q)

r ←{}
w ←{s}
WHILE w �= {}

w′ ← {}
FOR EACH QUERY curq IN w

Ops ←{ NEXT OPERATOR IN Q[CURQ.ID] ALONG EACH NON-OVERLAPPING SUBTREE OF curq}

FOR EACH OPERATOR op IN Ops WHERE PARENT(op) �= NULL

curq′ ← curq ⊕ PARENT(op)

IF (curq′ IS VALID) THEN w′ ← w′ ∪ {curq′}
r ← r ∪w

w ← w′

Fig. 4 Sensor query enumeration algorithm

Feasible Plan Enumeration

To derive candidate feasible sensor queries from a service description like the one
shown above, the stream query processor begins with a query q , which we will rep-
resent as a workflow graph (e.g., a tree of joins, as in a relational database system,
or a Stream [26]-style or Aurora [2]-style “boxes and arrows” diagram). It trans-
forms this query by pushing selections past joins and other operators and choosing
an ordering for joins (and other commutable operators) that it expects will perform
well based on available statistics and optimization goals. The DSMS then produces
a simple query, s, that contains no selections or joins and simply projects the fields
contained in tables that reside in the sensor network from the original query, q . It
then enumerates valid prefixes of query of q that can be added to s, where a valid
query is determined by the sensor network’s service description. By prefix we mean
a traversal from one or more leaves of the workflow graph across one or more oper-
ators towards an output of that graph.

The pseudocode for our candidate query enumerator is given in Fig. 4. The basic
idea is to try adding successively larger and larger prefixes from q to the set of
candidate queries, until any further additions result in invalid plans. We define the
operator ⊕ to mean the addition of a set of operators contained in a prefix to the
query.

More formally, enumerateSensorQueries constructs a set, r , of valid can-
didate sensor queries. Initially, r is empty. The algorithm also constructs a set w of
queries that initially contains just s. It then begins looping over w. For each query,
curq in w, enumerateSensorQueries constructs a set of operators, Ops. Ops
contains the next operators along each non-overlapping subtree in curq. These op-
erators are found by doing a lookup in the query set q . To construct new candidate
plans, enumerateSensorQueries loops over each operator op in Ops, and
constructs a new plan, curq′ where the parent operator of op in q has been added
into curq. If curq′ is valid, the algorithm adds it to the new w set w′. Once it has
looped over all plans in w, enumerateSensorQueries adds all the plans in w

to r and replaces the plans in w with w′.

422 D. Abadi et al.

Fig. 5 Illustration of the enumerateSensorQueries algorithm. The initial query q is shown,
and the contents of w for the first three iterations of the outer loop of the algorithm are illustrated

Note that if we move a join operator into curq′, we have joined two subtrees
of curq, and reduced the number of operators in the set Ocurq′ that results when
enumerating the closest operators in curq′ versus the number of closest operators
in curq. Figure 5 shows an example of plan enumeration with the join query over
three data sources, two of which originate in the sensor network. The initial plan q

is shown at the top of the diagram, and the contents of set w are shown after the first,
second, and third iterations of the algorithm. Note that in w2, the output of the entire
sub-branch of the query containing source B and the two selections over B is pushed
into the network. Because the source B exists external to the network, however, we
do not ever generate plans that execute operators in B inside the network. Though
this is a heuristic (that could be relaxed), we believe it to be a reasonable one as it is
unlikely that pushing down sub-plans over external sources will reduce the amount
of energy used by the network.2 Were B in the sensor network, these operators
would, of course, be executed in-network.

2This would only be the case if the cardinality of the output of the sub-branch were larger than the
cardinality of the inputs of the sub-branch.

Sensor Network Integration with Streaming Database Systems 423

The complexity of enumerateSensorQueries scales with the number of
distinct in-network sources, S, and the number operators along each path from S to
the output of the network. If there are N operators along each such path, the worst
case running time will be SN . Though the running time is exponential, we expect
the number of sources in each sensor network to be small, such that the running
time will be bounded. Note also that this is a worst-case, as the validity checking
will eliminate many possible plans. Simple heuristics that, for example, consider
pushing down only a few paths, can be used to bound the complexity of very large
problem instances.

4.2 Proxy-Based Query Optimization

Given our set of candidate sensor plans r to evaluate, we can pass them to our
query optimizer, which chooses the best sensor query from r , r∗, to push into the
sensor network, given the original plan q and the corresponding stream query, r∗,
that excludes the operators in r∗.

The primary challenge for query optimization across a DSMS-sensor network
integration is that a DSMS and a sensor network have different and potentially
conflicting optimization goals. The DSMS is responsible for maximizing the QoS
(Quality of Service) to end applications, and thus may be interested in decreasing la-
tency, increasing throughput, or maximizing the quality of results delivered to these
applications, depending on user preferences. In contrast, a sensor network is primar-
ily concerned with minimizing power consumption in order to extend lifetime and
reduce cost. In some cases, these goals conflict. As an example, consider whether
a join operation (of sensor data with a static table) should be performed in a sensor
network. Assume that the join predicate is highly selective, but that the static table
is large so that the table must be horizontally partitioned and the join performed in
parallel on many sensors. Assuming the network has the processing capability for
the operator, and that the continuous query will run for a large amount of time such
that overhead of disseminating the table is outweighed by the join’s low selectivity,
it is in the sensor network’s interest to perform the operation in-network since this
will reduce the number of transmitted tuples and thus power used.

To implement such a join in TinyDB, we use a parallel join on nodes within
broadcast range of each other so that each sensor tuple is only transmitted once
(more details on this approach are given in Sect. 5), with all nodes containing a
partition receiving the same transmission. Due to the lossy nature of wireless com-
munication, however, the broadcast might not reach all nodes containing a partition,
so some result tuples may be lost, affecting the quality of results observed by the
end application. Thus, there is an energy–quality tradeoff: due to power concerns,
the sensor network may prefer to perform the join in-network, while, for quality
reasons, the DSMS may prefer to perform the join outside the network.

We attempt to resolve this conflict by adding an additional possible optimiza-
tion metric to our DSMS optimizer—lifetime. Lifetime can be thought of as a fixed

424 D. Abadi et al.

amount of energy the DSMS has bought from the sensor network; when this energy
runs out, no data will be produced for the query (thus, lifetime is a per-source met-
ric; for now, we define the lifetime of a query to be the minimum of the lifetimes
of all data sources in the query). In practice, for many sensor networks, lifetime
simply corresponds to the amount of time until the sensor’s batteries are exhausted.
The more work the query requires of a sensor network, the faster this fixed amount
of energy will be used. Thus, there is an observable cost to the application when
making decisions that might improve latency or quality while also increasing power
utilization in the sensor network, allowing the DSMS to choose in which direction
of the power/latency/quality trade-off to optimize using application QoS functions.

Briefly, query optimization works as follows: after running for some time, the
DSMS observes that an optimization dimension, d , is most in need of optimiza-
tion based on the observed performance of the query and the user’s QoS require-
ments. For example, if predicted lifetime of the network is 1 week, and the user has
requested a lifetime of 2 weeks or more, the optimizer might choose to optimize
lifetime. Once the DSMS chooses the optimization dimension, the proxy is notified
of this choice. The proxy then searches the set of feasible plans, r , for the plan,
r∗ that will most improve the desired dimension and sends this plan into the net-
work, returning r∗ to the DSMS for further optimization and redistribution within
the streaming system.

In our current approach, plan costing is done via simple statistics and heuristics
as in traditional relational database systems, or as in TinyDB for the case of life-
time [23]. It should be noted that some of the potential optimization dimensions
have not been sufficiently studied in the database community. For example, esti-
mating how wireless loss rate of tuples (due to contention) in a sensor network is
affected by moving an operator into the network and by different implementations
of that operator is complex and potentially difficult to estimate correctly. Since es-
timation errors are compounded through composition of operators, a more greedy
version of the enumeration algorithm described above might be in order, where the
search space is pruned by not exploring more than 1–3 operators along any particular
branch. This also has the benefit of decreasing the running time of the enumeration
algorithm.

If the proxy is already running the maximally efficient plan for the dimension in
question, it can attempt to adjust the sensor sample rates to improve d . For example,
if d is lifetime or latency, reducing the sample rate will likely improve these metrics.
However, if d is tuple quality or throughput, increasing the sample rate might help.
If the DSMS indicates that the sample rate should not be changed, the proxy simply
notifies the DSMS optimizer that it can do nothing to improve d . We note that this
process of re-optimization is fairly expensive and envision it being done rarely. We
are investigating lighter weight, local optimizations that can be used to adapt on
shorter time scales [1].

Sensor Network Integration with Streaming Database Systems 425

5 Join Operator Push down

One of the features that our integrated architecture provides is the ability to push
external tables into the sensor network. In this section, we use an example scenario
to illustrate an example when this type of push down processing might be useful,
and look at the mechanics of executing such joins. The algorithms described in this
section are derived from the REED (Robust, Efficient, Event Detection) project, and
they are presented in more detail in [4].

Consider the following sensor network query designed for use in a factory en-
vironment with temperature sensitive construction phases. The factory produces a
product whose creation requires the temperature to remain in a small, fixed range
that varies over time. Should the temperature fall outside this range, the product is
in danger of being damaged and action must be taken immediately. A continuous
query is thus desired that joins aggregate temperature readings from sensors located
at various positions in the factory with a time-indexed relation that encodes the de-
sired temperature range. Should the temperature ever fall outside the required range,
an appropriate reaction will be initiated.

It might be beneficial to perform a join of this type in the sensor network. First,
since the join predicate is highly selective (it only outputs data if something has
gone wrong in the temperature maintenance system at the factory), it reduces the
number of transmissions that sensors in the network need to make, extending net-
work lifetime. Second, the join can be done in parallel on multiple sensor nodes.
The historical table can be horizontally partitioned across sensor nodes and each
new tuple joined with each partition separately. This could reduce latency.

The role of the proxy in pushing down the join operator is two-fold. Firstly, it
decides whether or not it is beneficial to the application to push down the operator
at all. This is handled by the DSMS optimizer described above. Secondly, if the
decision is made to move the join into the network, the proxy aids in the distribution
of the tuples of the partitioned table to the appropriate sensor nodes.

Once the decision is made to push the join operator into the sensor network, the
proxy orchestrates the distribution of the stored tuples to the appropriate nodes. The
first step in this process is to flood the description of the operator (including the
schema of the input and output tuples) and the name, size, and schema of the stored
table down the TinyDB routing tree. Upon receiving this message from the proxy,
every node in the sensor network knows whether or not it will participate in the join
(by verifying that it contains the sensors that produce the fields in the input schema)
and how many tuples of the join table can be locally stored (by calculating the tuple
size of the stored table using the table schema and comparing this value with the
storage capacity that node is willing to allocate for the query).

Upon receiving this message from the proxy, the sensor nodes then indepen-
dently form groups. A group is defined as a set of nodes which are all within broad-
cast range of each other and which collectively have enough storage capacity to
accommodate the stored table. The advantage of storing the table in these types of
groups is that it takes just one broadcast tuple from any member in the group to
reach each location of the partitioned join table. Group formation is a background

426 D. Abadi et al.

task that happens continuously throughout the lifetime of the join. Sensor nodes that
produce data relevant to the join but are not currently members of a group initiate a
group creation algorithm by notifying neighbors that it is creating a group and using
neighbor lists from each willing participant to create a group of maximum size. The
initiator then notifies each chosen participant of their acceptance into the group.

Each participant then sends a message to the proxy containing its group identifier
and storage capacity. This allows the proxy to decide how to partition the table for
this particular group and sends the relevant tuples to each participant according to
this decision. Once all tuples have been sent to all participants, the group is ready
to perform the join. Since the proxy is aware of what groups have been formed and
which tuples have been sent to which nodes, it can deduce where to send updates to
the table, should this be necessary.

In summary, with the help of the proxy, a join of sensor data with a static table
can be pushed from a DSMS into the sensor network. The proxy administers the
distribution of the query and static table into the network, and can monitor and
collect query statistics to ensure that the join selectivity remains low enough that
executing the join in the network remains the right thing to do [3, 4].

6 Conclusions

Thus, TinyDB provides a robust platform for deploying a wide range of monitoring
and data collection applications on sensor networks. By itself, it provides a number
of features specially tailored to sensor networks, including features to allow users
to control when and how frequently data is acquired from the sensors. When inte-
grated with a DSMS, TinyDB uses a proxy interface to facilitate query optimization
between the DSMS and itself, enabling sensor nodes to participate in the processing
of complex queries, such as joins between the network and external tables stored in
the DSMS.

We believe this integrated data processing architecture is the key to widespread
adoption of sensor networks. The vast majority of users are not concerned with the
details of power management or ad-hoc, multihop networking—rather, they simply
want to combine and process sensor network data with existing data streams and
relations, using familiar data processing operations and tools, which is exactly what
TinyDB provides.

References

1. D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack, J. Hwang, W. Lindner,
A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, S. Zdonik, The design of the Borealis
stream processing engine, in Conference on Innovative Data Systems Research (CIDR’05),
Asilomar, CA (2005)

2. D.J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stonebraker,
N. Tatbul, S.Z. Aurora, A new model and architecture for data stream management. VLDB J.
(2003)

Sensor Network Integration with Streaming Database Systems 427

3. D.J. Abadi, W. Lindner, S. Madden, J. Schuler, An integration framework for sensor networks
and data stream management systems, in VLDB (2004), pp. 1361–1364

4. D.J. Abadi, S. Madden, W. Lindner, Reed: robust, efficient filtering and event detection in
sensor networks, in Proceedings of VLDB (2005), pp. 769–780

5. Analog Devices, Inc. ADXL202E: low-cost 2 g dual-axis accelerometer. http://products.
analog.com/products/info.asp?product=ADXL202

6. Atmel corporation. Atmel ATMega 128 Microcontroller Datasheet. http://www.atmel.com/
atmel/acrobat/doc2467.pdf

7. T. Brooke, J. Burrell, From ethnography to design in a vineyard, in Proceedings of the Design
User Experiences (DUX) Conference (2003). Case Study

8. A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, J. Zhao, Habitat monitoring: applica-
tion driver for wireless communications technology, in ACM SIGCOMM Workshop on Data
Communications in Latin America and the Caribbean (2001)

9. J.-H. Chang, L. Tassiulas, Energy conserving routing in wireless ad-hoc networks, in Proceed-
ings of the 2000 IEEE Computer and Communications Societies Conference on Computer
Communications (INFOCOM-00) (IEEE Comput. Soc., Los Alamitos, 2000), pp. 22–31

10. C Corporation. CC1000 Single Chip Very Low Power RF Transceiver Datasheet. http://www.
chipcon.com

11. X. Digital Equipment Corporation, Intel. The Ethernet, A Local Area Network: Data Link
Layer and Physical Layer Specifications (Version 2.0) (1982)

12. J. Elson, L. Girod, D. Estrin, Fine-grained network time synchronization using reference
broadcasts, in OSDI (2002)

13. D. Estrin, L. Girod, G. Pottie, M. Srivastava, Instrumenting the world with wireless sensor
networks, in International Conference on Acoustics, Speech, and Signal Processing (ICASSP
2001) Salt Lake City, Utah (2001)

14. D. Ganesan, B. Krishnamachari, A. Woo, D. Culler, D. Estrin, S. Wickera, Complex behavior
at scale: an experimental study of low-power wireless sensor networks. Under submission
(2002). Available at http://lecs.cs.ucla.edu/~deepak/PAPERS/empirical.pdf

15. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, The nesC language: a holistic
approach to network embedded systems, in ACM SIGPLAN 2003 Conference on Programming
Language Design and Implementation (PLDI) (2003)

16. J. Gehrke, F. Korn, D. Srivastava, On computing correlated aggregates over continual data
streams, in Proceedings of the ACM SIGMOD Conference on Management of Data, Santa
Barbara, CA (2001)

17. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D.C.K. Pister, System architecture directions for
networked sensors, in ASPLOS (2000)

18. D. Inc. company web site. http://www.dust-inc.com
19. C. Intanagonwiwat, R. Govindan, D. Estrin, Directed diffusion: a scalable and robust commu-

nication paradigm for sensor networks, in MobiCOM, Boston, MA (2000)
20. Intersema, Ms5534a barometer module. Technical report (2002). http://www.intersema.com/

pro/module/file/da5534.pdf
21. D.B. Johnson, D.A. Maltz, Dynamic source routing in ad hoc wireless networks, in Mobile

Computing, ed. by T. Imielinski, H. Korth. The Kluwer International Series in Engineering
and Computer Science, vol. 353 (Kluwer Academic, Norwell, 1996)

22. A.Y. Levy, I.S. Mumick, Y. Sagiv, Query optimization by predicate move-around, in Proceed-
ings of VLDB (1994)

23. S. Madden, M.J. Franklin, J.M. Hellerstein, W. Hong, The design of an acquisitional query
processor for sensor networks, in ACM SIGMOD (2003)

24. S. Madden, W. Hong, J.M. Hellerstein, M. Franklin, TinyDB web page. http://telegraph.cs.
berkeley.edu/tinydb

25. A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, Wireless sensor networks for habitat
monitoring, in ACM Workshop on Sensor Networks and Applications (2002)

26. R. Motwani, J. Window, A. Arasu, B. Babcock, S. Babu, M. Data, C. Olston, J. Rosenstein,
R. Varma, Query processing, approximation and resource management in a data stream man-

http://products.analog.com/products/info.asp?product=ADXL202
http://products.analog.com/products/info.asp?product=ADXL202
http://www.atmel.com/atmel/acrobat/doc2467.pdf
http://www.atmel.com/atmel/acrobat/doc2467.pdf
http://www.chipcon.com
http://www.chipcon.com
http://lecs.cs.ucla.edu/~deepak/PAPERS/empirical.pdf
http://www.dust-inc.com
http://www.intersema.com/pro/module/file/da5534.pdf
http://www.intersema.com/pro/module/file/da5534.pdf
http://telegraph.cs.berkeley.edu/tinydb
http://telegraph.cs.berkeley.edu/tinydb

428 D. Abadi et al.

agement system, in CIDR (2003)
27. V. Park, S. Corson, Temporally-ordered routing algorithm (tora) version 1 functional spec-

ification (1999). Internet draft, http://www.ietf.org/internet-drafts/draft-ietf-manet-tora-spec-
02.txt

28. C.E. Perkins, Ad hoc on demand distance vector (aodv) routing (1999). Internet draft, http://
www.ietf.org/internet-drafts/draft-ietf-manet-aodv-04.txt

29. H. Pirahesh, J.M. Hellerstein, W. Hasan, Extensible/rule based query rewrite optimization in
starburst, in Proceedings of the 1992 ACM SIGMOD International Conference on Manage-
ment of Data (ACM, New York, 1992), pp. 39–48

30. G. Pottie, W. Kaiser, Wireless integrated network sensors. Commun. ACM 43(5), 51–58
(2000)

31. G.J. Pottie, W.J. Kaiser, Embedding the Internet: wireless integrated network sensors. Com-
mun. ACM 43(5), 51 (2000)

32. N.B. Priyantha, A. Chakraborty, H. Balakrishnan, The cricket location-support system, in MO-
BICOM (2000)

33. R.F.M. Corporation, RFM TR1000 datasheet. http://www.rfm.com/products/data/tr1000.pdf
34. M.T. Roth, P.M. Schwarz, Don’t scrap it, wrap it! A wrapper architecture for legacy data

sources, in Proceedings of 23rd International Conference on Very Large Data Bases, August
25–29, 1997, Athens, Greece (1997), pp. 266–275

35. Sensirion, Sht11/15 relative humidity sensor. Technical report (2002). http://www.sensirion.
com/en/pdf/Datasheet_SHT1x_SHT7x_0206.pdf

36. T.A.O. Solutions, Tsl2550 ambient light sensor. Technical report (2002). http://www.taosinc.
com/pdf/tsl2550-E39.pdf

37. M.M.I. Systems, Mlx90601 infrared thermopile module. Technical report (2002). http://www.
melexis.com/prodfiles/mlx90601.pdf

38. K. Whitehouse, The design of calamari: an ad-hoc localization system for sensor networks.
Master’s thesis, University of California at Berkeley (2002)

39. A. Woo, D. Culler, A transmission control scheme for media access in sensor networks, in
ACM Mobicom (2001)

40. A. Woo, T. Tong, D. Culler, Taming the underlying challenges for reliable multihop routing in
sensor networks, in ACM Sensys, Los Angeles, California (2003)

41. Y. Yao, J. Gehrke, Query processing in sensor networks, in Proceedings of the First Biennial
Conference on Innovative Data Systems Research (CIDR) (2003)

42. W. Ye, J. Heidemann, D. Estrin, An energy-efficient MAC protocol for wireless sensor net-
works, in Proceedings of the IEEE Infocom (2002), pp. 1567–1576

http://www.ietf.org/internet-drafts/draft-ietf-manet-tora-spec-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-manet-tora-spec-02.txt
http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-04.txt
http://www.ietf.org/internet-drafts/draft-ietf-manet-aodv-04.txt
http://www.rfm.com/products/data/tr1000.pdf
http://www.sensirion.com/en/pdf/Datasheet_SHT1x_SHT7x_0206.pdf
http://www.sensirion.com/en/pdf/Datasheet_SHT1x_SHT7x_0206.pdf
http://www.taosinc.com/pdf/tsl2550-E39.pdf
http://www.taosinc.com/pdf/tsl2550-E39.pdf
http://www.melexis.com/prodfiles/mlx90601.pdf
http://www.melexis.com/prodfiles/mlx90601.pdf

Part V
Applications

Stream Processing Techniques for Network
Management

Charles D. Cranor, Theodore Johnson, and Oliver Spatscheck

1 Introduction

The phenomenal growth of the Internet has had a tremendous effect on the way
people lead their lives. As the Internet becomes more and more ubiquitous, it plays
an increasingly critical role in society. In addition to leisure-time activities such as
gaming and Web browsing, the Internet also carries important financial transactions
and other types of business communications. Clearly, our dependency on the correct
operation and good performance of the Internet is increasing and will continue to
do so.

For network operators, understanding the types and volumes of traffic carried on
the Internet is fundamental to maintaining its stability, reliability, security, and per-
formance. Having efficient and comprehensive network monitoring systems is the
key to achieving this understanding. The process of network monitoring varies in
complexity from simple long term collection of link utilization statistics to compli-
cated ad-hoc upper-layer protocol analysis for detecting network intrusions, tuning
network performance, and debugging protocols.

Unfortunately, rapid Internet growth has not made monitoring the network any
easier. In fact, three trends associated with this growth present a significant chal-
lenge to network operators and the network monitoring tools they use:

• First, Internet applications have become more sophisticated. New applications
level protocols with important semantic information in their headers are being
layered on top of TCP and UDP. These headers might be free-form text that
must be parsed, or the header might implement an application-specific proto-
col that must be emulated. Network monitoring systems that collect only basic

C.D. Cranor · T. Johnson (B) · O. Spatscheck
AT&T Labs—Research, Florham Park, NJ, USA
e-mail: johnsont@research.att.com

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_21

431

mailto:johnsont@research.att.com
http://dx.doi.org/10.1007/978-3-540-28608-0_21

432 C.D. Cranor et al.

TCP/IP header information are no longer sufficient for evaluating and debug-
ging application-level performance. Additionally, these new protocols are plac-
ing stricter demands on Internet performance—in terms of bandwidth, latency
and loss.

• Second, ever increasing Internet data rates result in more data traversing the net-
work making it harder to examine specific parts of network data in any detail.

• Third, Internet users are becoming more savvy and are more concerned with
application-level performance than with network-level statistics that network op-
erators typically collect and report.

We found that the current generation of network monitoring tools such as
SNMP [6], RMON [24], NetFlow [7], and tcpdump [13] no longer fully address net-
work monitoring and debugging needs. A serious problem is that the trends make not
only monitoring, but also data management difficult. Current generation tools create
very large collections of flat files, which are analyzed with hand-crafted programs
(for example, Perl scripts). Managing these very large data sets is difficult—data
quality problems are common and metadata is quickly lost. The data analysis often
involves merging data sets and correlating data from multiple sources (e.g., corre-
lating TCP performance data with BGP—Border Gateway Protocol, a router update
protocol [20]—data). For alerting and triggering applications, we need to evaluate
complex queries in real time.

To address these problems, we have created Gigascope—a fast and flexible
stream database for network monitoring. Gigascope was designed around two key
aspects. First, Gigascope has a highly flexible SQL-like query language, GSQL,
for its interface. Using a database query language provides us with great flexibility
and allows Gigascope to be quickly adapted for new problems—only the high-level
query need be changed. For example, Gigascope can be used to analyze or monitor
newly evolving peer-to-peer and multi-media protocols (which change often). Net-
work operators are especially interested in these types of protocols because of their
potential impact on traffic patterns.

Second, Gigascope was designed using the overriding principle of reducing data
as early as possible to allow high-speed monitoring. Gigascope queries are auto-
matically broken up into hierarchical components. Low-level components can run
on the network interface card itself, reducing data before it reaches the main system
bus. High-level query components may run either in kernel or user space and can
be used to extract application layer information from the network. By reducing data
in key locations, a single machine can monitor very high-speed links. Early data re-
duction also makes it practical to use high-level languages such as Perl to interpret
the results of Gigascope queries.

In this chapter, we discuss stream processing techniques for network manage-
ment, especially as implemented using Gigascope. We discuss the nature of network
performance and management data and the types of queries that are typically posed.
Next, we discuss the GSQL language, and show how it is designed to support queries
on network data. Network data streams can be very high volume (multiple Gbits/s
and millions of records per second) and require a highly optimized processing archi-

Stream Processing Techniques for Network Management 433

tecture, which we discuss next. We present some observations about performance,
and conclude with discussions of some sample applications.

2 Network Monitoring

Network operators perform network monitoring for a variety of reasons, rang-
ing from routing optimization to application performance monitoring. While these
widely disparate activities have their unique characteristics, there are also many
commonalities. In this section, we discuss the nature of the data and queries used
for network monitoring.

2.1 Network Monitoring Data

Network monitoring data generally arrive as a data stream—the latency between the
observed activity and the arrival of its measurement is small, and the data arrives
continually as it is highly undesirable to turn off the network.

The measurement data can be archived to disk and later loaded into a conven-
tional database or analyzed using ad-hoc tools. However, there are severe problems
with these approaches. Even moderate speed networks generate huge amounts of
data. For example, monitoring a single gigabit ethernet running at 50 % utilization
generates a terabyte of data in less than five hours. Most of the data is not valuable
for (legitimate) analyses. This approach therefore presents intractable problems of
cost, speed, security, and privacy. The speed issue is critical because for many ap-
plications the value of the result degrades rapidly with time (you want to trigger an
alarm seconds after a DDOS attack starts, not days after). Stream processing tech-
niques which reduce these huge volumes of data into actionable knowledge in real
time are critical for network monitoring.

Current generation monitoring tools such as SNMP and Netflow provide a pre-
aggregated view of network activity. SNMP typically maintains a collection of coun-
ters (e.g., of bytes or packets traversing a network interface) and reports the value of
these counters at regular intervals (e.g., once a minute). Netflow data is a byproduct
of a router’s “flow” cache. A flow is a sequence of packets from a particular source to
a particular destination such that the time between successive packets is small. When
the flow finishes, the router emits a flow report specifying the source, destination,
byte and packet count, start and end time, and some router-specific information. The
router does not monitor each flow to determine when the flow ends, instead flows are
generated as a byproduct of the flow cache cleaning algorithm (long-lived flows are
also emitted for timely monitoring). The precise details of flow generation depend
on the router’s operating system and configuration parameters.

SNMP and Netflow are effectively the output of simple aggregation queries
which reduce the volume of monitoring data to manageable levels. Their volume

434 C.D. Cranor et al.

can still be large, e.g., Netflow monitoring data from core routers, so further reduc-
tion in a stream database is often necessary. We found that Gigascope queries are
a better mechanism for this kind of pre-aggregation, being more flexible and with
more precisely defined semantics. However, it is often cheaper and easier to use
Netflow for very large scale monitoring because Netflow is produced by the router,

Netflow and SNMP summaries are often too coarse for the intended analysis.
For a more detailed view, we need to look at packet data. Many analyses are made
from packet headers—the data volume is reduced by projecting out the packet body.
Unfortunately, a great deal of information about the application protocol (web, mul-
timedia, P2P, etc.) is thereby lost. Using the port number to deduce the protocol is
unreliable because of port 80 tunneling (e.g., to get through firewalls) and the use
of non-standard port numbers (e.g., to get around P2P port blocking). With a stream
database such as Gigascope, we can access the packet body in an efficient way and
recover application protocol information.

Our primary sources of network performance data are either packet data streams
or packet aggregate data streams. However, other performance data streams are
available. For example, we have incorporated active network measurements into our
Gigascope queries by making them into data stream. Some particular characteristics
of these data are:

• The data arrives as a stream.
• Each tuple in the stream contains a field which acts as a timestamp or a sequence

number (e.g., the end time field of a Netflow, the arrival time of a network packet,
the TCP sequence number, etc.).

• A tuple might have several timestamps, which have different properties. For ex-
ample, a Netflow tuple has both a start time and an end time. The stream is likely
to be sorted on the end time, and almost sorted on the start time (it will be within
a window, e.g., five minutes, before the end time).

The network performance data does not have much meaning in isolation. An-
other important type of data is configuration data. For example, to interpret network
performance data we often need to understand the state of the routers. One data feed
is updates of router configuration data, typically provided as daily snapshots. An-
other feed is a stream of route update messages, for example, messages exchanged
by BGP. Analyzing BGP and related streams is also of independent interest.

2.2 Network Monitoring Queries

Queries over network data depend on the application. The archetypical network
query is load monitoring, usually long term and for the purpose of network opti-
mization. This application is a popular example because it can be answered using
coarse grained summaries such as Netflow or SNMP data. However, a flexible and
high speed tool such as Gigascope enables a wide range of critical applications.

Stream Processing Techniques for Network Management 435

Fine Grained Load Monitoring

Provisioning network links to properly support customer applications requires good
understanding of the types of loads currently in the network. The network opera-
tor needs to ensure the good performance of sensitive applications while provid-
ing adequate capacity for all applications. The desired report is usually an aggre-
gation of traffic volume grouped by time period and application type (determined
from the port number). Traditionally, this monitoring is done with a combination
of SNMP and NetFlow statistics. Unfortunately, the bandwidth measurements these
tools make uses a fixed level of aggregation that can result in undesirable smooth-
ing of traffic characteristics. Gigascopes can be used to mitigate this problem be-
cause they can easily be programmed to provide very fine-grained load information.
Tools such as NetFlow are difficult to change as they are embedded within a router’s
firmware.

Hidden Traffic Detection

The advent of peer-to-peer networks has created a management challenge for net-
work operators because it soaks up lots of bandwidth and contains data that may be
illegal to copy in the first place. Because of the impact of peer-to-peer traffic, it is
important for network operators to keep track of how much load it is placing on net-
work links. However, the traditional approach of monitoring well known TCP and
UDP port numbers in NetFlow records to track a class of application’s network us-
age breaks down in peer-to-peer networks because peer-to-peer protocols have been
designed to use random or misleading port numbers in order to circumvent firewalls
and rate-limiting routers. A tool such as Gigascope can detect hidden traffic by fil-
tering application-level protocol headers in the data area of TCP/IP packets. This
type of filter usually involves searching for particular combinations of keywords.
These protocols evolve, but it is easy to update Gigascope queries to track the new
versions.

Customized Application Monitoring

Network operators are often be requested to examine the performance of a criti-
cal customer application and provide some application-layer performance metrics.
This type of analysis can be difficult to do because it is often necessary for the net-
work monitor to understand the application-level protocol. Furthermore, the most
meaningful statistics are generated by emulating the protocol (perhaps TCP) and
reporting, e.g., lost packets and round trip times. We often need to provide complex
statistics, such as distributions (i.e., quantiles) of round trip times. Identifying the
source of performance problems sometimes requires correlating this performance
data against active network measurements, router configuration data, and route up-
date protocol data.

436 C.D. Cranor et al.

Network Attack Detection

Networks are under frequent attack, necessitating rapid responses. Attack detec-
tion involves looking for “anomalous” behavior (sudden increase in traffic) and/or
for known attack signatures (port scanning or detecting a known worm signature).
When an attack is discovered, the appropriate action is to generate an alert and to
look more closely at the attack traffic.

3 Gigascope

We developed Gigascope to address the monitoring and data management shortcom-
ings of current generation monitoring tools. Gigascope is a high-performance stream
database specialized for network monitoring. To ensure our ability to achieve high
performance, Gigascope has some simplifying restrictions. The primary restriction
is that Gigascope is a pure stream database, and does not even directly support con-
ventional relations much less continuous query tables. We have used Gigascope to
develop a diverse collection of network monitoring applications and have not found
these restrictions to be serious.

3.1 Query Language

The Gigascope query language, GSQL, is a pure stream query language with SQL-
like syntax (being mostly a restriction of SQL). That is, all inputs to a GSQL are
streams, and the output is a data stream. We feel that this choice (akin to that made
by Tribeca [21] and Hancock [9]) allows for precise query semantics, enables the
composition of complex query processing, and simplifies the implementation of fast
operators.

Almost all network data contains one or more timestamps or sequence numbers,
and almost all monitoring queries make explicit reference to one or more of these
timestamps. We use these timestamps to explicitly limit the locality of the output
tuples that an input tuple contributes to. All of our operators, including aggregation,
join, and merge, are automatically unblocking and are implemented using simple
modifications to conventional pipelined implementations. There is a cost, however,
as GSQL cannot express monitoring queries which require the continuous query
model.

Ordered Attributes

One concern in a stream database language is that of blocking operators. While
some operators (such as selection and projection) need no state other than the tuple

Stream Processing Techniques for Network Management 437

being processed, other operators (such as aggregation and join) potentially require
their entire inputs before a single output can be produced. One approach to bounding
the state is to use sliding windows [3]. However, our approach is to analyze the
“timestamps” of the input stream(s) and the properties of the query to determine a
query plan which bounds the state required to evaluate blocking operators.

We observed that network analysis data generally contains one or more times-
tamps or sequence numbers, that these timestamps generally increase (or decrease)
with the ordinal position of a tuple in a stream, and that almost all queries make
reference to these timestamps. We therefore adopt an approach similar to that of a
sequence database [19]. However, a sequence database model has a couple of lim-
itations which make it impractical for our application. First, network data streams
often have several timestamps and sequence numbers, and they might not be mono-
tonically increasing with the ordinal position of the tuple in the stream. For a simple
example, Netflow records have a start and an end timestamp. A stream of Netflow
records produced by a router will have monotonically increasing end timestamps,
and generally (but not monotonically) increasing start timestamps. Further, most
queries on Netflow data will refer to the start timestamp rather than the end times-
tamp. The notion of sequence is further perturbed by operators such as join and
aggregation (e.g., Netflow is the result of an aggregation query). Second, network
analysis queries naturally involve predicates and other references to the timestamps
and sequence numbers, but not to the ordinal position of a tuple in its stream.

We make use of timestamps and sequence numbers by defining them to be or-
dered attributes having ordering properties. These properties might be inherent in
the data source, or might be due to processing by an operator. Below is a illustrative
but nonexhaustive set of ordering properties:

1. Strictly/monotonically increasing/decreasing expresses the usual notion of a
timestamp.

2. Monotone nonrepeating is a generalization of monotone increasing, and might
occur due to a hash function.

3. Banded-increasing(ε) is a modifier of the increasing property, and states that
the attribute will always be less than ε below the high water mark. The start time
of a Netflow record is banded-increasing (5 minutes) if all Netflows are dumped
by the router every 5 minutes. This property can also occur in the output of a
windowed join.

4. Increasing with probability p is another modifier of the increasing property,
and states that there are occasional exceptions (at rate p) to the ordering property.

5. Increasing in group G states that among the tuples defined by the field in G, the
attribute is increasing. This property can occur after aggregation. For example,
the start time of a Netflow record (an aggregation of packets) is increasing in
group {sourceIP, destIP, sourcePort, destPort, protocol}.

We might need to modify these definitions to account for almost-sorted input.
For example, Netflow records are sorted on the end time, and all Netflow records
are dumped every 5 minutes. Therefore, the start time of a record is always within
5 minutes of the high water mark, i.e., the start attribute is banded-increasing (5 min-
utes).

438 C.D. Cranor et al.

We use the ordering attributes to turn blocking operators into stream operators. In
the current implementation of Gigascope, we use the monotone increasing property
as follows:

• Join. The join predicate must contain a constraint on an ordered attribute from
each table which can be used to define a join window. For example, B.ts = C.ts
or B.ts ≥ C.ts − 1 and B.ts ≤ C.ts + 1.

• Group-by and aggregation. The group key must contain at least one ordered
attribute. When a tuple arrives for aggregation whose ordered attribute is larger
than that in any current group, we can deduce that all of the current groups are
closed and will receive no further updates in the future. All of the closed groups
are flushed to the output.

The Gigascope data definition language allows the user to specify special proper-
ties of the attributes in a source stream, including the ordering properties. The query
processing system will impute ordering properties of the output of query operators.
For example, suppose that attribute ts is monotonically increasing and a projection
operator computes the value ts/5 as one of the attributes in its output. We can im-
pute that ts/5 is also monotonically increasing. We can perform similar reasoning
for the group-by/aggregation operator.

The ordering property imputation for the join operator is more complex, and
depends on the constraints in the join predicate and the particular join algorithm
selected. For example, if B.ts and C.ts are monotonically increasing, B.ts is in the
output, and the join predicate contains the constraint B.ts = C.ts, then B.ts in the
output will be monotonically increasing. If the constraint is B.ts ≥ C.ts − 1 and B.ts
≤ C.ts + 1, then in the output B.ts might be monotonically increasing or banded-
increasing(2) depending on the choice of join algorithm (monotonically increasing
requires more buffer space).

Our approach is similar to that of punctuation semantics for data streams [23].
By labeling attributes with ordering properties, we make the tuples self-punctuating.

3.2 The GSQL Language

GSQL is an SQL-like stream database language, being mostly a restriction of SQL
but with some stream database extensions. Currently GSQL supports selection, join,
aggregation, and stream merge (discussed below). Join queries are currently re-
stricted to two-stream joins, and the join predicate must include a constraint which
defines a window on ordered attributes from both streams. Aggregation queries
should have at least one ordered attribute as one of the group-by keys, but this re-
striction is not enforced (the user can obtain output by flushing the query).

All queries operate over streams, which come in two flavors: Protocols1 and
Streams. A Protocol is a data stream generated by interpreting a sequence of data

1This word was chosen because of its connotations to the end-users.

Stream Processing Techniques for Network Management 439

packets which are presented to the Gigascope run time system. These data pack-
ets can be from any reasonable source—IP packets transported via OC48, Netflow
packets, BGP updates, etc. The Gigascope run time system interprets the data pack-
ets as a collection of fields using a library of interpretation functions. The schema
of a Protocol stream maps field names to the interpretation functions to invoke.
A Stream is the output of Gigascope query. The fields of its tuples are packed in a
standard fashion.

A Protocol defines a mechanism for interpreting a data source, but not what
serves as the data source (whereas the source of a Stream is the output of a query).
To completely specify a data source, the Protocol must be bound to an Interface—
a symbolic name which the run time system can bind to a source of packets (if no
Interface is given, a default Interface is implied). An example which reports the des-
tination IP and port, and a timestamp from TCP packets on eth0 (the first Ethernet
interface card) is:

DEFINE{ query_name tcpDest0; }
Select destIP, destPort, time From eth0.TCP
Where IPVersion = 4 and Protocol = 6

The DEFINE section of a query allows the user to set properties of the query. In
this case, the query name is set to tcpDest0. A user application or another GSQL
query can read the output of tcpDest0 by specifying it in the From clause.

Network data streams often come from many sources, which might be analyzed
separately or in combination (for example, packets flowing to and from a client
site and the internet). Therefore, GSQL contains an extension to SQL, the merge
operator, which is a Union operator which preserves the ordering properties of an
attribute. For an example of a merge query, suppose that we have a tcpDest1 which
matches tcpDest0 except that it reads from Interface eth1:

DEFINE{ query_name tcpDest; }
Merge tcpDest0.time : tcpDest1.time
From tcpDest0, tcpDest1

The merge operator allows us to combine streams from multiple sources into a
single stream. This operator is surprisingly important—we implemented it before
the join operator. We developed Gigascope to monitor optical links, which are usu-
ally simplex rather than duplex. To obtain a full view of the traffic on a logical link,
we need to monitor two physical interfaces and merge the resulting streams.

GSQL supports the join of two streams as long as it can determine a join window
from the join predicates. However, GSQL does not currently support the join of a
stream to a non-stream relation. Instead GSQL provides support for user-written
functions which can act as special types of (foreign key) joins. These have worked
so well in practice that supporting non-stream tables in GSQL has become a low
priority.

Users can make new functions available by adding the code for the function to
the function library, and registering the function prototype in the function registry.
In the function registry, the function can be marked as a partial function, meaning

440 C.D. Cranor et al.

that it might not return a value. The processing is the same as if there is no result
from a join—the tuple being processed is discarded. One or more of the parameters
of the function can be marked as pass by handle. These parameters (which must be
literals or query parameters) require expensive pre-processing before the function
can use them, for example, a regular expression to be compiled. Let us consider an
example:

DEFINE{ query_name tcpByAS; }
Select peerid, tb, count(*) as Cnt From tcpDest
Group by time/60 as tb,

getlpmid(destIP,’peerid.tbl’) as peerid

The attribute time is a 1-second granularity timer, so time/60 defines minute-
long buckets (when group with a new value of tb is produced, all of the pre-existing
groups are closed, and therefore are flushed to the output stream). The getlpmid
function performs longest prefix matching—that is, it identifies which subnet an IP
address belongs to. Longest prefix matching is a common network analysis activity,
and researchers have developed special fast algorithms for it, which getlpmid im-
plements. The second parameter is a pass-by-handle parameter, which indicates a
file mapping each routable prefixes in the Internet to the ISPs which originates the
prefix (i.e., obtained from a routing table). Before the getlpmid function is first in-
voked, the parameter handle registration function reads this file and builds a special
in-memory data structure for the function. This in-memory data structure referenced
by the handle is then used when the getlpmid function is called to quickly map IP
addresses to the ISP which originates them.

Many network monitoring queries require the emulation of a network protocol.
While it is possible to express many protocol emulation subqueries in SQL, usually
it is much easier and more efficient to write C or C++ code. To capture these sub-
queries, Gigascope provides a mechanism for expressing user-defined operators as
stream operators. The stream properties of the operator are expressed using an op-
erator view wrapper. For example, a piece of code which estimates packet loss rate
in TCP/IP connections aggregated by autonomous system and 60 second intervals
can be exposed to Gigascope using the following wrapper:

OPERATOR_VIEW tcp_loss {
SOURCE(file tcp_loss);
FIELDS {

UINT time (increasing); UINT peerid; loss_rate_estimate; }
SUBQUERIES {

tcpq (UINT time (increasing), UINT srcIP, UINT destIP,
UINT srcPort, UINT destPort, UINT seqNum, UINT ackNum); }

SELECTION_PUSHDOWN {
srcIP -> tcpq.srcIP; destIP -> tcpq.destIP;
srcPort -> tcpq.srcPort; destPort -> tcpq.destPort; }

}

Here we specify that the user-defined operator tcp_loss receives as input a data
stream named tcpq with the specified fields and ordering properties and producing

Stream Processing Techniques for Network Management 441

the specified output. The SELECTION_PUSHDOWN clause provides query trans-
formation hints to the optimizer. In the following example, we join tcp_loss output
with tcpByAS to produce a combined report:

DEFINE{ query_name tcp_perf; }
Select C.peerid, C.tb, C.Cnt, L.loss_rate_estimate
From tcpByAS C, tcp_loss L
Where C.peerid = L.peerid and C.tb = L.time

Network analyses often make use of complex holistic aggregates, such as quan-
tiles and heavy hitters. In recent years, a significant literature has developed which
describes how to approximate complex aggregates quickly and using small space.
Gigascope incorporates a mechanism for defining user-defined aggregate functions
(UDAFs), which we have used to implement several streaming algorithms. For more
details, see [8].

4 Architecture

In this section we describe the Gigascope architecture, starting with an overview,
and then examining the query interface, run-time system, and network device inter-
face support in detail.

4.1 Architectural Overview

To build a Gigascope application, you first need an idea of the type of network mea-
surement that needs to be made. Once that has been established, then the query set
(usually more than one query is required for the application) must be expressed in
the GSQL language (described in detail in Sect. 3.2). The GSQL query set expres-
sion is then input into the Gigascope query compiler. The Gigascope query compiler
takes a set of GSQL queries as input and generates a set of query nodes, expressed
as C and C++ modules.

To run a Gigascope query, the query node modules are compiled into a library and
linked into the run-time components of Gigascope. When the top-level Gigascope
application is started, it allocates and configures a set of queries required to support
the application. The top-level application collects the resulting output streams of its
queries, which can be immediately displayed, used to trigger actions, or saved for
loading into a conventional data warehouse.

The query nodes (called FTAs within Gigascope for historic reasons) execute in
an environment provided by the Gigascope run-time system. The run-time system
is responsible for managing and tracking all FTAs, handling IPC between Gigas-
cope components, and tracking available network input devices. The network input
devices themselves are managed by a device interface layer. This layer provides a

442 C.D. Cranor et al.

Fig. 1 Example GSQL query and how it is split into an LFTA and a HFTA by the query compiler

uniform interface to the various types of network interface hardware that Gigascope
is capable of using, including hardware that uses custom Gigascope-based firmware.

When an FTA is created, it takes a set of configuration parameters as input. This
allows a single FTA module to perform different types of queries based on the pa-
rameters. Once allocated, the FTA can receive input data streams from the network
and other FTA modules, and produces an output data stream.

There are two types of Gigascope FTAs: low-level FTAs and high-level FTAs,
called LFTAs and HFTAs, respectively. LFTAs are designed to read data from the
device interface layer and may run on the network interface card itself. Thus, LFTAs
need to be capable of running in a resource constrained firmware-based environ-
ment. On the other hand, HFTAs receive their tuples from LFTAs or other HFTAs
and run on the host itself, so they have fewer operational constraints. An example is
depicted in Fig. 1.

The practice of splitting queries into high-level HFTAs and low-level LFTAs is
crucial for monitoring high-speed packet streams without packet loss. In the best
case, we can migrate the LFTAs to the network interface card and avoid the need
to move most packet data to the host. Even when the LFTAs execute on the host,
this architecture provides significant benefits. The largest buffers in the system are
those for the network streams. The lightweight and fast LFTAs process the network
streams, creating vastly reduced streams for slower and more extensive processing
by the HFTAs. In this way, we minimize memory buffer requirements and therefore
packet loss rate.

We note that the FTA modules and the output that they generate are self-
describing. This allows applications to query the module or the module output di-
rectly in order to determine and decode its format. This feature prevents query output
from getting out of sync with the query that generated it in the event that the query
was modified.

Stream Processing Techniques for Network Management 443

Fig. 2 Gigascope run-time
architecture

4.2 Gigascope Run-Time System

The Gigascope run-time system provides the software and hardware environment
that Gigascope queries run within. The run-time systems is responsible for:

• Providing a high-level application interface. This API is used to allocate and con-
figure FTAs, start and stop query processing, and collect query output tuples.

• Keeping statistics on the overall system operation. These statistics include infor-
mation on system load and are used to fine tune query processing.

• Defining the processing environment that FTAs run in. This includes determining
how allocated HFTAs and LFTAs are assigned to processes and coordinating IPC
and shared memory management among those processes. The run-time system
keeps a registry of all FTAs and processes associated with a running Gigascope.

• Providing GSQL’s packet data access and external functions and UDAFs. Refer-
ences to these functions are generated by the query compiler.

• Providing a uniform network device interface to FTA query code. This allows
FTA module code to be independent of the underlying network interface being
used. Gigascope currently supports three network interfaces: Libpcap, Tigon, and
DAG. Libpcap is a portable low-speed interface, Tigon is a high-speed firmware-
based gigabit ethernet interface, and DAG is a high-speed gigabit ethernet and
OC48 interface.

Figure 2 shows the run-time architecture provided by the Gigascope run-time
system. The main run-time system process that tracks allocated FTAs and manages
IPC is called the “clearinghouse” process. When a user application process starts,
it contacts the clearinghouse process in order to establish a communication path
with the Gigascope run-time system. It then uses the run-time system’s high-level
application interface to start a query. This involves allocating HFTAs and LFTAs for
the query and arranging for their output tuples to be directed back to the application
for processing. Some queries do not require the use of HFTAs—in this case the user
application process receives output tuples directly from LFTAs.

User applications can be written in a variety of languages including C/C++ and
Perl. Interpreted applications are acceptable even in a high-speed environment pro-
vided that Gigascope can aggregate the input data down to a manageable size before
handing the output tuples off to the interpreter. The Perl binding for the Gigascope

444 C.D. Cranor et al.

application API returns tuples as associative arrays making it easy to access and
process query data.

The Gigascope run-time system groups all LFTAs into a single process, while it
assigns HFTAs to a set of processes. Depending on the network device interface,
the LFTA process may run on the host system or on the network device itself as part
of custom Gigascope firmware. Running the LFTAs on the network device allows
Gigascope to improve performance by significantly reducing input data bandwidth
before it even hits the system bus. Even without special hardware, running LFTAs in
a single Unix process works well because the data is reduced before it is distributed
through the Gigascope IPC system to the HFTA processes. Furthermore, on the
dual processor systems we typically use for Gigascope, it is safe to assume that one
processor can be devoted to performance critical LFTA processing while the other
can be shared among the HFTAs and user applications.

4.3 Gigascope Network Device Interface

In the previous section, we introduced the three network devices that Gigascope cur-
rently supports: Libpcap, Tigon, and DAG. In this section, we examine Gigascope’s
device support in more detail. Of the three device interfaces, the Libpcap interface
is the simplest as no special hardware support is required for it. Although Libpcap is
a relatively low-performance interface, the main advantage of it is that it is portable
across many systems. Libpcap allows Gigascope to run on any system that can run
the Tcpdump application. For the remainder of this section, we will focus on the op-
eration of the more complex hardware-based DAG interface (we do not have space
to discuss the Tigon interface).

DAG Network Interface

The DAG is a PCI network monitoring card manufactured by Endace that is capa-
ble of monitoring very high speed networks. We are currently using both gigabit
ethernet and OC48 DAG cards with Gigascope. Each DAG card contains a packet
processor, a radio clock interface, a network MAC interface, and a high-performance
PCI bus interface. Unlike the Tigon, the DAG card uses host memory to store packet
data. The DAG clock interface allows the DAG to provide very precise timestamps
with captured packets. Details on the DAG hardware can be found on the Endace
Web site [11].

Gigascope’s DAG software environment consists of two main parts provided by
Endace: a device driver used to control the card, and a small library used by appli-
cations such as Gigascope to access packets captured by the card. When the host
system boots, the DAG device driver allocates a large physically contiguous buffer
in host memory for use as a receive ring buffer. This ring buffer is directly mapped

Stream Processing Techniques for Network Management 445

into the LFTAs address space. Gigascope polls this ring buffer to detect when new
packet data arrives and should be processed by the FTA code.

Like Tigon-based Gigascopes, the DAG run-time architecture requires special
device driver support and uses polling to avoid interrupt overheads. However, in the
DAG case LFTAs run on the host rather than in the card. Network data is delivered
directly to the application LFTA process, completely bypassing the kernel, but not
the system PCI bus. Some Endace cards can perform filtering to reduce the data
load. Gigascope models these filters as selection and projection operators.

5 Example Applications

We conclude our evaluation with some real-world measurements from deployed
Gigascopes. For business reasons, we have anonymized the data presented here.

Fine-Grained Load Monitoring

We deployed a Gigascope to measure network traffic in parallel with an existing
NetFlow-based measurement system on a link in an internet data center. For the Gi-
gascope, we used an aggregation interval of 1 second. The NetFlow aggregation in-
terval is at least 30 seconds, but can be longer depending on the behavior of the flow.
We measured the same traffic for a period of one day with both Gigascope and Net-
Flow. Averaged over the full day, both Gigascope and NetFlow measured 2.1 kbps.
However, the finer grained Gigascope measurement found peak bandwidths up to
729 kbps, while NetFlow only reported peaks of 190 kbps indicating that the higher
peaks were getting reduced by the relatively coarse grained NetFlow aggregation.

Hidden Network Traffic Detection

We deployed a Gigascope within an access network and collected bandwidth data
on peer-to-peer traffic. We collected our data using two queries. The first query
used only well-known TCP/UDP port numbers to identify peer-to-peer traffic. This
corresponds to the type of measurement that can be made with NetFlow. On the
other hand, the second query searches for peer-to-peer traffic by searching packet
payloads for application-level peer-to-peer protocol headers. This corresponds to
the kind of flexible queries that can easily be made with Gigascope to detect hidden
network traffic. One day’s worth of results for our queries is shown in Fig. 3. The
plot clearly shows that the Gigascope query detects more than two times the amount
of peer-to-peer traffic that the simple port-based query detects.

446 C.D. Cranor et al.

Fig. 3 Hidden network
traffic detection

Fig. 4 Customized
application monitoring

Customized Application Monitoring

Finally, we deployed Gigascope on a customer link and wrote a custom query to
analyze the application-level performance of the customer’s protocol. Our query
tracks the number and IP address of all application users and provides detailed per-
formance statistics for 5 % of all users. The detailed statistics include round-trip
time, client loss, client latency, server loss, and server latency. We also capture all
ICMP unreachable error messages to track network errors. The processed load for
one day’s worth of traffic is shown in Fig. 4. At the peak load of 1M packets/second
the Gigascope is monitoring 90K application users generating 1.4 Gbps of traffic.

6 Related Work

One of the most common network monitoring tools is the tcpdump [13] program.
Tcpdump is based on a packet capture library (libpcap) that uses the Berkeley packet

Stream Processing Techniques for Network Management 447

filter (BPF) [16] to capture network traffic. Both Gigascope and tcpdump were de-
signed to enable network data to be reduced as early as possible. Tcpdump achieves
this goal by providing a simple configuration language that allows the specification
of a single BPF filtering expression.

The Windmill [15] framework uses a similar approach as tcpdump to reduce data
early on in the kernel. However, in addition to the basic filtering tcpdump performs,
Windmill provides a set of protocol modules that allow the reassembly of protocol
information.

Another way to reduce data volumes early is to execute trusted code in the kernel.
This approach is used by the FLAME [1] architecture. The main drawback of such
an approach is that the semantics of the code that is executed in the kernel is only
known to the programmer thus making it difficult to automatically optimize the
execution of a query.

In addition to research efforts in network monitoring, there are also a large num-
ber of commercial products in this area. These products range from simple flow
based monitoring tools to complex application-layer analyzers. The most dominant
flow based tool is the Netflow [7] tool implemented on a large number of CISCO
routers. Netflow operates by counting packets traversing the router hashed on their
IP addresses and port numbers. The router will periodically flush its Netflow hash
table based on time and current network load.

In the area of application-layer analyzers, the most promising products appear
to be the solutions offered by Narus [17] and Niksun [18]. Both of those solu-
tions provide a set of predefined configurable reports. However, neither provides
the flexibility to users to specify new queries which then get executed on the line
cards. In addition, our experience with vendors shows that persuading them to
add new functionality to their network monitors is expensive and has a long lead
time.

From an architectural perspective, Gigascope borrows heavily from the x-kernel
[12]. Gigascope takes x-kernel abstractions, applies them to GSQL queries, and
implements them using a combination of message queues, shared memory, and
firmware.

The database community has developed the concept of a data stream [14] which
is similar to the concept underlying GSQL. Data streams are used to describe data
sets that arrive in a continual fashion, such as financial data, sensor data, and net-
work traffic data. One approach proposed for data stream databases is the continuous
query model [2, 4, 22].

The database model used for GSQL is most similar to the recent body of
work [5, 10, 14] that explores the problem of query evaluation over sensor net-
works. A significant difference between Gigascope and this work is that Gigascope
is targeted towards high performance applications, with a corresponding emphasis
on performance optimization.

448 C.D. Cranor et al.

7 Summary

Our experiences with large scale network analysis convinced us that conventional
methods and tools had significant limitations. We developed a stream database, Gi-
gascope, to address these problems. By expressing network sniffing as SQL queries
and applying careful optimizations, we developed a very high speed, very flexible,
and rapidly reconfigurable network monitor. Furthermore, much of the required data
analysis is performed by Gigascope. The output is readily loaded into conventional
stored-table databases and queried with SQL, providing a consistent developer’s
interface.

References

1. K.G. Anagnostakis, S. Ioannidis, S. Miltchev, J. Ioannidis, M.B. Greenwald, J.M. Smith, Ef-
ficient packet monitoring for network management, in Proceedings of IFIP/IEEE Network
Operations and Management Symposium (NOMS) (2002)

2. A. Arasu, B. Babcock, S. Babu, J. McAlister, J. Widom, Characterizing memory requirements
for queries over continuous data streams, in Principles of Database Systems (2002)

3. B. Babcock, S. Babu, M. Datar, R. Motwani, J. Widom, Models and issues in data stream
systems, in Principles of Database Systems (2002), pp. 1–16

4. S. Babu, J. Widom, Continuous queries over data streams. SIGMOD Rec. 30(3), 109–120
(2001)

5. P. Bonnet, J. Gehrke, P. Seshadri, Towards sensor database systems, in 2nd Intl. Conf. on
Mobile Data Management (2001)

6. J.D. Case, M. Fedor, M.L. Schoffstall, C. Davin, RFC 1157: Simple Network Management
Protocol (SNMP) (1990)

7. Cisco. Netflow services and application. http://www.cisco.com/
8. G. Cormode, T. Johnson, F. Korn, S. Muthukrishnan, D. Srivastava, Holistic udafs at streaming

speeds, in Proc. ACM SIGMOD (2004)
9. C. Cortes, K. Fisher, D. Pregibon, A. Rogers, F.S. Hancock, A language for extracting signa-

tures from data streams, in Proc. Sixth Intl. Conf. on Knowledge Discovery and Data Mining
(2000), pp. 9–17

10. DSKI. Dski—the data stream kernel interface. http://www.ittc.ku.edu/datastream
11. Endace. Endace web page. http://www.endace.com
12. N.C. Hutchinson, L.L. Peterson, Design of the x-Kernel, in Proceedings of the SIGCOMM’88

Symposium, Stanford, Calif. (1988), pp. 65–75
13. V. Jacobson, C. Malan, S. McCanne, Libpcap and tcpdump home page. http://www.tcpdump.

org/
14. S. Madden, M. Franklin, Fjording the stream: an architecture for queries over streaming sensor

data, in Intl. Conf. on Data Engineering (2002)
15. G.R. Malan, F. Jahanian, An extensible probe architecture for network protocol performance

measurement, in ACM SIGCOMM’98 (1998)
16. S. McCanne, V. Jacobson, The BSD packet filter: a new architecture for user-level packet

capture, in USENIX Winter (1993), pp. 259–270
17. Narus. Narus platform. http://www.narus.com/w/solutions/platform/
18. Niksun. Product solutions. http://www.niksun.com/product-list.html
19. P. Seshadri, M. Livny, R. Ramakrishnan, The design and implementation of a sequence

database system, in Proc. of the 22nd VLDB Conf. (1996)
20. J.W. Stewart III, BGP4: Inter-Domain Routing in the Internet (Addison-Wesley, Reading,

1999)

http://www.cisco.com/
http://www.ittc.ku.edu/datastream
http://www.endace.com
http://www.tcpdump.org/
http://www.tcpdump.org/
http://www.narus.com/w/solutions/platform/
http://www.niksun.com/product-list.html

Stream Processing Techniques for Network Management 449

21. M. Sullivan, A. Heybey, Tribeca: a system for managing large databases of network traffic, in
Proc. USENIX Annual Technical Conf. (1998)

22. D. Terry, D. Goldberg, D. Nichols, B. Oki, Continuous queries over append-only databases,
in Proc. ACM SIGMOD Conf. (1992), pp. 321–330

23. P. Tucker, D. Maier, T. Sheard, L. Fegaras, Exploiting punctuation semantics in continuous
data streams. IEEE Trans. Knowl. Data Eng. 15(3), 555–568 (2003)

24. S. Waldbusser, RFC 2819: remote monitoring management information base (2000)

High-Performance XML Message Brokering

Yanlei Diao and Michael J. Franklin

1 Introduction

For distributed environments including Web Services, data and application integra-
tion, and personalized content delivery, XML [5] is becoming the common wire
format for data. In this emerging distributed infrastructure, XML message bro-
kers [1, 2] will play a key role as central exchange points for messages sent between
applications and/or users. The context in which such a message broker operates is
shown in Fig. 1. Users (equivalently, applications, or organizations) subscribe to the
message broker by providing profiles expressing their data interests. After arriving
at the message broker, these profiles become “standing queries,” which are executed
on all incoming data. Data sources publish their data by pushing streams of XML
messages to the broker. The broker delivers to each user the messages that match
his data interests; these messages are presented in the required format of the user.

There are three main functions provided by XML message brokers: filtering,
transformation, and routing. Filtering matches XML messages to a large set of
queries that represent the data interests of specific users. Transformation restruc-
tures matched messages according to user-specific requirements. Routing involves
the transmission of the customized data to the relevant users.

This work has been supported in part by the National Science Foundation under the ITR grants
IIS0086057 and SI0122599 and by Boeing, IBM, Intel, Microsoft, Siemens, and the UC MICRO
program.

Y. Diao (B)
Department of Computer Science, University of Massachusetts Amherst, Amherst, MA, USA
e-mail: yanlei@cs.umass.edu

M.J. Franklin
Computer Science Division, University of California, Berkeley, Berkeley, CA, USA
e-mail: franklin@cs.berkeley.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_22

451

mailto:yanlei@cs.umass.edu
mailto:franklin@cs.berkeley.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_22

452 Y. Diao and M.J. Franklin

Fig. 1 Overview of XML message brokering

For XML filtering, user queries are usually expressed in a language such as XPath
1.0 [11], which is used to specify constraints over both structure and content using
path expressions. An earlier project, XFilter [3], pioneered the use of event-based
parsing and Finite State Machines (FSMs) for fast structure-oriented XML filtering.
In XFilter, the structural part of each path expression is converted in to an FSM by
mapping location steps of the expressions to machine states. For each arriving XML
document, the events raised during parsing are used to drive such FSMs through
their various transitions. By creating a separate FSM for each distinct path expres-
sion, however, XFilter fails to exploit commonality among the path expressions, and
thus, may perform redundant work.

Based on this insight, we have developed “YFilter”, an XML filtering system
aimed at providing efficient filtering for large numbers (e.g., 10s or 100s of thou-
sands) of path queries. The key innovation in YFilter is a Nondeterministic Fi-
nite Automaton (NFA)-based representation of path expressions which combines
all queries into a single machine. YFilter exploits commonality among path queries
by merging the common prefixes of the paths so that they are processed at most
once. The NFA-based implementation also provides additional benefits including a
relatively small machine size, flexibility in dealing with diverse characteristics of
data and queries, incremental machine construction, and ease of maintenance.

An important challenge that arises due to the shared structure matching is the
handling of value-based predicates that address contents of elements. We have
developed two alternative approaches to handling such predicates. Following the
heuristic of evaluating “cheap” predicates early in the execution as in relational sys-
tems, one approach evaluates predicates as soon as the addressed elements are read
from a message. The other approach delays predicate evaluation until the structure
of a path expression has been entirely matched.

The XML filtering solution described so far has focused on the matching of mes-
sages to large numbers of queries, but has not addressed the customization of out-
put. Our work on XML transformation is aimed at developing the next level of
functionality, i.e., transforming the XML messages on a per-query basis, in order to
provide customized data delivery. User queries specifying transformation require-
ments can be written using a subset of XQuery [4]. To support such queries, we
leverage the YFilter shared path matching engine [12], and develop alternatives for

High-Performance XML Message Brokering 453

building customization functionality on top of it. In particular, we have developed
three techniques that differ in the extent to which they push work down into the path
matching engine. Due to an inherent tension between shared path matching and cus-
tomized result generation, aggressive path sharing requires more sophisticated post-
processing. To reduce the cost of such post-processing, we have developed provably
safe optimizations based on query and DTD (if available) inspection that are able
to simplify the post-processing of individual queries, and a set of techniques that
enable the sharing of such post-processing across multiple queries.

Roadmap

The remainder of this chapter is organized as follows. Section 2 describes the broker
architecture. Sections 3 and 4 present our solutions to XML filtering and transfor-
mation. Section 5 covers the related work and Sect. 6 presents conclusions.

2 Architectural Overview

Our XML message broker architecture is shown in Fig. 2. The primary inputs are
the queries that represent user profiles and the XML messages themselves.

Queries become active as soon as they arrive at the message broker. Inside the
broker, an arriving query is parsed for use by the Query Processor, where the execu-
tion plan of the new query is merged with the existing queries without recompiling
any of them.

Incoming messages are filtered and transformed on-the-fly for the entire set of
queries. These messages need not conform to DTDs (Document Type Definitions)
or XML schemas but such conformance can be exploited.1 Internally, the broker
runs an incoming message through an event-based XML parser. Parsing events are
passed to the query processor to drive the query execution. They are also used to
incrementally construct a node-labeled tree, which provides materialization of the
parsed message for need of some query processing. The nodes are assigned integer
identifiers according to a pre-order traversal of the tree.

The query processor produces output in an intermediate format that contains
identifiers of nodes in the parsed XML message organized for efficient translation
into customized output messages. The intermediate output of the query processor is
fed to the “message factory”, which combines the element tags in queries with the
intermediate output and forwards the resulting messages for delivery.

The query processor is the focus of our research work. The foundation of the
query processor is a shared path matching engine. The shared path matching ap-
proach that this engine implements is described in the next section.

1XML Schemas provide richer information than DTDs (e.g., robust and extensible datatyping).
Since the structural information we exploit is provided by both types of definition, XML schemas
and DTDs are used under the same conditions in this work.

454 Y. Diao and M.J. Franklin

Fig. 2 XML message broker architecture

3 Shared Processing of Path Expressions

In our work, the solution to efficient matching of path expressions is based on two
key observations. First, any single path expression written using the axes (“/”, “//”)
and node tests (element name or “*”) can be transformed to a regular expression.
Thus, there exists an FSM that accepts the language described by such a path ex-
pression [18]. Second, if two path expressions share a sub-expression, the language
described by that sub-expression can be accepted by a single FSM. For large-scale
filtering of XML data, exploiting such commonality is the key to efficiency and scal-
ability. In this section, we describe our shared path processing approach based on a
combined FSM.

3.1 An NFA-Based Model with an Output Function

In YFilter, all of the path queries written using the axes and node tests described
above are combined into a single FSM that takes a form of Nondeterministic Finite
Automaton (NFA). All common prefixes of the paths are represented only once in
the NFA.

Figure 3 shows an example of such an NFA, representing eight queries (the pro-
cess for constructing such a machine is described in the following section). A circle
denotes a state. Two concentric circles denote an accepting state; such states are also
marked with the IDs of the queries they represent. A directed edge represents a tran-
sition. The symbol on an edge represents the input that triggers the transition. The
special symbol “*” matches any element. The symbol “ε” is used to mark a tran-
sition that requires no input. In the figure, shaded circles represent states shared by
queries. Note that the common prefixes of all the queries are shared. Also note that

High-Performance XML Message Brokering 455

Fig. 3 Path queries and a
corresponding NFA

the NFA contains multiple accepting states. While each query in the NFA has only
a single accepting state, the NFA represents multiple queries. Identical (and struc-
turally equivalent) queries share the same accepting state (recall that at the point in
the discussion, we are not considering predicates).

This NFA can be formally defined as a Moore Machine [18]. The output function
of this Moore Machine is a mapping from the set of accepting states to a partitioning
of identifiers of all queries in the system, where each partition contains the identifiers
of all the queries that share the accepting state.

Some Comments on Efficiency

A key benefit of using an NFA-based approach is the tremendous reduction in ma-
chine size it affords. It is reasonable to be concerned that using an NFA-based model
could lead to performance problems due to (for example) the need to support mul-
tiple transitions from each state. A standard technique for avoiding such overhead
is to convert the NFA into an equivalent DFA [18]. A straightforward conversion
could theoretically result in severe scalability problems due to an explosion in the
number of states. But, as pointed out in [15], this explosion can be avoided in many
cases by placing restrictions on the set of DTDs (i.e., document types) and queries
supported, and lazily constructing the DFA.

The experimental results on the performance of the NFA-based approach re-
ported in our earlier work [12], however, indicate that such concerns about NFA
performance in this environment are unwarranted. In fact, in the YFilter system,
path evaluation (using the NFA) is sufficiently fast, that it is not the dominant cost
of filtering in many cases. Rather, other costs such as document parsing and result
collection are often more expensive than the basic path matching. Thus, while it
may be possible to further improve path matching speed, we believe that the sub-
stantial benefits of flexibility and ease of maintenance provided by the NFA model
outweigh any marginal performance improvements that remain to be gained by even
faster path matching.

456 Y. Diao and M.J. Franklin

Fig. 4 NFA fragments for location steps, and examples of merging NFA fragments

3.2 Constructing a Combined NFA

Having presented the basic NFA model used by YFilter, we now describe an in-
cremental process for NFA construction and maintenance. The shared NFA shown
in Fig. 3 was the result of applying this process to the eight queries shown in that
figure.

Figure 4(a) shows four basic location steps in our subset of XPath, and the di-
rected graphs, called NFA fragments, that correspond to these location steps. The
NFA for a path expression, denoted as NFAp , can be built by concatenating all the
NFA fragments for its location steps. The final state of this NFAp is the (only) ac-
cepting state for the expression.

NFAps are combined into a single NFA as follows: There is a single initial state
shared by all NFAps. To insert a new NFAp , we traverse the combined NFA until
either (i) the accepting state of the NFAp is reached, or (ii) a state is reached for
which there is no transition that matches the corresponding transition of the NFAp .
In the first case, we make that final state an accepting state (if it is not already one)
and add the query ID to the query set associated with the accepting state. In the
second case, we create a new branch from the last state reached in the combined
NFA. This branch consists of the mismatched transition and the remainder of the
NFAp . Figure 4(b) provides three examples of this process. Note from (b2) that in
the NFA fragment for a location step with “//”, the ε-transition is needed so that
when combining NFA fragments representing “//” and “/” steps, the resulting NFA
accurately maintains the different semantics of both steps.

It is important to note that because NFA construction in YFilter is an incremen-
tal process, new queries can easily be added to an existing system. This ease of
maintenance is a key benefit of the NFA-based approach.

3.3 Executing the NFA

Following the XFilter approach, the NFA is executed in an event-driven fashion.
When an XML document arrives to be filtered, it is parsed with an event-based

High-Performance XML Message Brokering 457

Fig. 5 An example of the NFA execution

parser; each time a new element or the end of an element is encountered, an event is
raised. The start-of-element events trigger various transitions in the NFA. Since the
machine is non-deterministic, many states can be active simultaneously. In addition,
the nesting of XML elements requires that when an “end-of-element” event is raised,
NFA execution must backtrack to the states it was in when the corresponding “start-
of-element” was raised. A stack mechanism is used to trace multiple active states
and enable backtracking.

Figure 5 shows the evolution of the contents of the stack as an example XML doc-
ument is parsed. Each state in the stack is represented by its state ID, as shown in
Fig. 3. On receiving a start-of-element event, the execution engine follows all match-
ing transitions from all currently active states. For each active state, four checks are
performed. First, if a transition marked by the incoming element name is present,
the next state is added to the set of new active states. A transition marked by the “*”
symbol is checked in the same way. Then, the state itself is added to the set if it has
a self-loop, which is represented by an underlined state ID in Fig. 5. Finally, if an
ε-transition is present, the state after the ε-transition is processed immediately ac-
cording to these same rules. The interested reader is referred to [12] for more details
on the NFA-based processing of path expressions.

Finally, it is important to note that, unlike a traditional NFA, whose goal is to
find one accepting state for an input, the NFA execution in this work must continue
until all potential accepting states have been reached. This is because all queries that
match the input document need to be found for the purpose of XML filtering.

3.4 Predicate Evaluation

The discussion so far has focused on the structure matching aspects of YFilter. In
an XPath expression, however, predicates can be applied to address properties of
elements, such as the text data and attributes. In this section, we focus on these
value-based predicates and briefly describe the techniques used in YFilter to evalu-
ate them. The discussion on the evaluation of nested path expressions is postponed
until Sect. 4.

458 Y. Diao and M.J. Franklin

Given the NFA-based model for path-matching, an intuitive approach to sup-
porting value-based predicates would be to extend the NFA by including additional
transitions to states that represent the successful evaluation of the predicates. Un-
fortunately, such an approach could result in an explosion of the number of states in
the NFA, and would destroy the sharing of path expressions, the key advantage of
using an NFA.

YFilter uses a separate selection operator that evaluates value-based predicates
by interacting with the NFA-based processing of path expressions. Traditional rela-
tional query processing uses the heuristic of pushing selections down in the query
plan to avoid unnecessary future work. Following this intuition, we developed an
approach called Inline that processes value-based predicates as soon as the elements
that those predicates address are matched during structure matching. To do so, predi-
cates applied to a location step are associated with the state representing this location
step in the NFA; these predicates are evaluated using selection immediately when
this state is visited in the NFA execution. For each query, bookkeeping information
is maintained, indicating which predicates of that query can be satisfied by a partic-
ular element. When an accepting state is reached, the bookkeeping information for
the queries of that state is checked, and those queries for which all the predicates
can be successfully evaluated are returned as matches.

We also developed an alternative approach, called Selection Postponed (SP) that
waits until an entire path expression is matched during structural matching, and at
that point applies all the value-based predicates for the matched path. In SP, the
predicates are stored with each query. When an accepting state is reached in the
NFA, selections are performed in bulk for each query associated with the state. If
all predicates of a query evaluate to true, then the query is satisfied. A more detailed
description of the above two approaches is provided in [12].

3.5 Performance Results for Shared Path Processing

We have performed a detailed performance study of our YFilter implementation. In
the study, we compared the performance of the NFA-based path matching approach
in YFilter, the FSM-per-query approach used by XFilter, and a hybrid approach
that exploits a reduced degree of shared path processing. We also investigated the
tradeoffs between the Inline and SP approaches to value-based predicates. The full
results are reported in an earlier paper [12]. Here, we summarize those results as
follows:

• YFilter can provide order of magnitude performance improvements over both
XFilter and the hybrid approach. In fact, as discussed earlier, path processing
using YFilter is sufficiently fast that in many cases it is outweighed by other costs
for XML filtering such as document parsing and result collection.

• The NFA-based approach is robust and efficient under query workloads with vary-
ing proportions of “//” operators and “*” operators. This is important because it
is these operators that introduce non-determinism into the path matching process.

High-Performance XML Message Brokering 459

The NFA-based approach was also shown to perform well using a number of
DTDs with different characteristics.

• The maintenance cost (i.e., as queries are added and removed) of the NFA struc-
ture is small, due to the incremental construction that a nondeterministic version
of an FSM enables and due to the sharing of structure inherent in the NFA ap-
proach.

• For value-based predicates, the SP approach was found to perform much better
than the Inline approach. The Inline approach suffers from high execution com-
plexity (e.g., the bookkeeping overhead). Moreover, early predicate evaluation is
not effective in eliminating future work of structure matching or predicate evalua-
tion, due to the shared nature of path matching and the effect of recursive elements
in the presence of “//” operators in path queries. In contrast, SP is relatively simple
and uses path matching to prune the set of queries for which predicate evaluation
needs to be considered, thus achieving a significant performance gain.

4 Customized Result Generation

The XML filtering solution as presented so far has focused on the matching of large
numbers of queries, but has not addressed the customization of output. Support for
such customization can significantly increase the complexity of processing. This
section presents approaches that leverage the YFilter path matching engine for re-
sult customization; in particular, they use the path engine for shared path matching
and perform post-processing on the path engine output to extract the specific XML
elements needed for the customized results.

4.1 Input and Output Specifications

We focus on user queries written in a subset of XQuery. Consider Query 1 below,
which is based on the Book DTD from the XQuery use cases [7].

〈sections〉
{

for $s in $msg//section
where $s//figure/title = “XML processing”
return 〈section〉

{ $s/title }
{ $s//figure }

〈/section〉
}
〈/sections〉

This query specifies that for each section containing a figure whose title is “XML
processing”, a “section” element containing the title of that section and all of its

460 Y. Diao and M.J. Franklin

figures should be returned. Note that in a document conforming to the Book DTD,
section elements may contain other sections as well as figures and other elements.
This query requires results to be returned for all distinct sections matching the query
in the same order that the matching sections appear in the message.

More specifically, the queries we consider consist of a single FLWR (i.e., For-
Let-Where-Return) expression, optionally enclosed in elements defined by constant
tags. The FLWR expression contains the following clauses in the specified order:

• A for clause containing a variable name and a path expression;
• An optional where clause that contains a set of conjunctive predicates, each of

which takes a form of a triplet: path expression, op, constant;
• A return clause that contains interleaved constant tags and path expressions,

where all constant tags have a matching close tag.

The current implementation in this work does not support the let clause.
The semantics of such queries is as follows: The for clause creates an ordered

sequence of variable bindings to distinct element nodes. The where clause, if
present, restricts the set of bindings passed to the return clause. The return
clause is invoked once for each variable binding. At each invocation of the return
clause, tags cause the construction of new XML fragments and path expressions
select nodes from the current variable binding. The final result of the FLWR expres-
sion is an ordered sequence of the results of these invocations.

For conciseness, the path expression in a for clause is referred to as the binding
path, those in a where clause as predicate paths, and those inside a return clause
as return paths. In this work, we consider predicate and return paths that are relative
to the binding path of that query (i.e., they are prefixed by the variable name used
in the binding path). As in our previous work on XML filtering, a path expression
consists of a sequence of location steps; location steps can contain the child “/” or
the descendent “//” axis, and element name tests. Path expressions containing such
location steps are referred to as navigation paths. We also allow location steps to
contain predicates that compare the attributes or text data of elements to a constant,
referred to as value-based predicates. In this work, binding paths can contain an
arbitrary number of value-based predicates in any location step. A predicate path
is a navigation path with a value-based predicate attached to the last location step
(which is effectively a nested path expression imposed on its binding path). A return
path is simply a navigation path.2

As stated in Sect. 2, the output of the query processor is an intermediate repre-
sentation that is passed on to the message factory component of the broker. In this
representation, the nodes selected from the message are organized into a sequence
of groups, such that each group corresponds to a single invocation of the return
clause. Inside a group, nodes are contained in a sequence of lists. The sequencing of
lists corresponds to the ordering of the return paths in the return clause. Each list

2The approaches we describe in this section can be extended to support more general XQuery
scenarios. This extension is our future work, and will not be discussed further here.

High-Performance XML Message Brokering 461

contains the nodes matching the return path in their document order. For example,
the output of Query 1 would have the following format:

· · · · · ·
sectioni : [titlei1], [figurei1, . . .]
sectioni+1 : [title(i+1)1], [figure(i+1)1, . . .]
· · · · · ·

where sectioni represents a group, and the numbering . . . , i, i + 1, . . . represents
the ordering of those groups. The sequence inside a group consists of a list of iden-
tifiers of title nodes (in the above example there is only a single title per section)
followed by a list of identifiers of figure nodes. This representation is referred to as
the groupSequence-listSequence format.

4.2 Query Processor Details

In the YFilter system, as shown in Fig. 2, the query processor consists of two main
runtime components: a shared path matching engine and a post-processing module.
Given a parsed query, the compiler in the query processor inserts navigation paths
from the query into the shared path matching engine, and adds the execution plan for
the remainder of the query to the post-processing module. For an incoming message,
the shared path matching engine takes the parsing events to match its contained nav-
igation paths. The post-processing module further processes the output of the path
matching engine to generate customized results in the groupSequence-listSequence
format.

Our solutions to customized result generation are developed in the context of
the particular output format provided by the path matching engine. For a navigation
path matched by an incoming message, the path engine delivers a stream of “path-
tuples” each of which represents a unique match of this path. A path-tuple contains
one field per location step in the path, and the value of the field is the identifier of
the element node bound to the location step. When multiple paths are matched by
a message, the path engine delivers its output as streams of path-tuples, one stream
for each path.

Figure 6(a) shows a node-labeled tree for a message fragment, where nodes are
annotated with their assigned ids. Path-tuple streams that are output from the path
engine for different paths are illustrated in Fig. 6(b). Take the stream for the path
“//section//figure”. It contains three path-tuples. Each path-tuple contains two node
ids, representing a unique combination of the two location step bindings.

The path engine guarantees that path-tuples in each stream are produced such that
the node ids in the last field of the path-tuples appear in monotonically increasing
order. This stream order is exploited in the processing algorithms as described in the
following sections. It is worth noting that ordering on other fields of path-tuples is
not guaranteed, however.

462 Y. Diao and M.J. Franklin

Fig. 6 An example of the NFA execution

The following three subsections present three different query processing ap-
proaches that differ in the extent to which they exploit the path matching engine. In
all of them, post-processing of the matching engine output is done via query plans
using relational-style operators. Such a post-processing plan is created per XQuery
query (i.e., the post-processing phase is not shared). The discussion on shared post-
processing is postponed to Sect. 4.7.

Much of the subtlety of developing solutions to this problem arises from the
inherent tension between shared processing at the lower level (which is essential for
good performance) and customized query result generation. The matching engine
returns the path-tuples in a stream in a single, fixed order to all queries that include
the corresponding path. The paths, however, may be used quite differently by the
various queries, and thus potential inconsistencies such as unintended duplicates
or ordering problems can arise with aggressive path sharing (these cases will be
discussed in detail shortly). In the following, we describe these approaches in order
of increasing path sharing, and focus on how the additional complications raised by
increased sharing are addressed.

4.3 Shared Matching of “for” Clauses

The first approach uses the path matching engine to process only binding paths (i.e.,
paths that appear in for clauses). In this approach, the navigation part of the binding
path is inserted from each query into the engine. Then, during the processing of a
message, the output of the engine for each path is directed to the post-processing
plans for its corresponding queries. This approach is referred to as PathSharing-F.
Consider Query 2 below:

〈figures〉
{

for $f in $msg//section[@id ≤ 2]//figure
where $f/title = “XML processing”
return 〈figure〉

High-Performance XML Message Brokering 463

Fig. 7 A query plan using
PathSharing-F

{ $f/image }
〈/figure〉

}
〈/figures〉

Figure 7 highlights the post-processing plan for this query under PathSharing-F.
In the figure, the multiple arrows above the matching engine represent the streams
of path-tuples (note that queries that have a common binding path share a common
stream). The thick arrow denotes the stream used by Query 2, which contains the
path-tuples matching the binding path “//section//figure”. In the following, the last
field of these path-tuples is referred to as the binding field because they contain
the ids of the nodes that are actually bound by the binding paths. These nodes are
referred to as the BoundNodes. The box above the thick arrow contains the post-
processing execution plan. The operators in this plan are, from bottom-up:

Selection

A selection operator is placed at the bottom of a query plan to evaluate any value-
based predicates (e.g., comparisons of the attributes or text data of elements to a
constant) attached to a binding path. The evaluation is done for each path-tuple by
checking predicates against the nodes referenced by the path-tuple. Selection emits
only those path-tuples for which all predicates evaluate to True.

Duplicate Elimination (DupElim)

The XQuery specification requires that duplicate nodes bound to a path be elim-
inated based on the node identity [4]. Accordingly, we define duplicates in the
stream for a binding path as path-tuples that contain the same node id in the binding
field. Such duplicates arise when multiple path-tuples in a stream reference the same

464 Y. Diao and M.J. Franklin

BoundNode. For example, consider Query 2 and the XML fragment:

〈
section id = “1”

〉〈
section id = “2”

〉〈figure〉〈title〉
XML processing〈/title〉〈/figure〉〈/section〉〈/section〉

The matching engine outputs two path-tuples for the binding path. The first cor-
responds to “〈section id = “1”〉 〈figure〉” and the second to “〈section id = “2”〉
〈figure〉”. These two path-tuples reference the same BoundNode, so the second
could cause redundant work and produce a duplicate result.

The DupElim operator avoids these problems by ensuring that each BoundNode
is emitted at most once. In this case, a simple scan-based DupElim operator can
be used because as described in the previous section, path-tuples in the stream are
ordered by their binding field. It should be noted, however, that DupElim cannot be
pushed before the selection because it is not known which (if any) of the path-tuples
referencing the same BoundNode will pass the selection.

Where-Filter

This operator evaluates the where clause on each path-tuple until a predicate in
the where clause evaluates to False or the entire where clause evaluates to True.
Path-tuples in the latter case are emitted. For each path-tuple, a predicate path is
evaluated with a tree search routine that uses a depth-first search in the sub-tree of
the parsed message rooted at the BoundNode of the path-tuple. The search routine
for a path returns True as soon as any node satisfying the predicate is found.

Return-Select

This operator applies the return clause to the BoundNodes of the path-tuples that
survive the Where-Filter. It uses the tree search routine to select nodes for each
return path. Unlike the Where-Filter, however, the tree search routine here must re-
trieve all nodes matching a return path rather than stopping at the first match. In
addition, it generates results in the groupSequence-listSequence format. Each input
path-tuple causes the creation of a new group. The ordering of return paths in the
query defines the sequence of lists within each group. For each list, the nodes se-
lected for the corresponding return path are placed in the order that they appear in
the message.

Recall that the results of a FLWR expression must be ordered in accordance with
the order of the variable bindings of the for clause. Since the stream for the binding
path is ordered in this way, and the remaining processing steps do not change that
order, we are assured that the order produced by PathSharing-F is correct.

High-Performance XML Message Brokering 465

4.4 Shared Matching of “Where” Clauses

PathSharing-F only uses the path matching engine to process binding paths. The
next approach, PathSharing-FW, in addition pushes the navigation part of predicate
paths from the where clause into the matching engine to exploit further sharing.
Recall that predicate paths are defined to be relative to the binding paths. Since
the matching engine treats all paths as being independent, the predicate paths must
be first extended by pre-pending their corresponding binding path. For example,
consider Query 3 below:

〈sections〉
{

for $s in $msg//section
where $s/title = “XML”
and $s/figure/title = “XML processing”
return 〈section〉

{ $s//section//title }
{ $s/figure }

〈/section〉
}
〈/sections〉

The first predicate path “/title” is transformed into “//section/title” and the second
becomes “//section/figure /title”. These extended predicate paths, along with the
binding path, are inserted into the matching engine. Note that since common prefixes
of paths are shared in the matching engine, the extension of these paths does not add
significantly to their processing cost.

As in PathSharing-F, the path-tuple streams for each query are then post-
processed by a query plan that executes the remaining portion of that query. This
arrangement is shown in Fig. 8. The stream corresponding to a binding path is
passed through a selection operator and a DupElim operator as before. The out-
put of the DupElim operator is then matched with the streams corresponding to the
predicate paths. The path-tuples resulting from the matching process are piped to a
Return-Select that works as described before.

In PathSharing-FW, the Where-Filter of PathSharing-F is replaced by a left-deep
tree of semijoins with the binding path stream as the leftmost input. Recall that the
predicate paths are extended by pre-pending them with the corresponding binding
path. Thus, the common field on which each semijoin will match is the binding field,
i.e., the last common field between the binding path tuples and the predicate path
tuples. The result of a semijoin, therefore, is a stream containing only those binding
path tuples that have matching predicate path tuples. Figure 8 shows an example for
the leftmost semijoin.

The semijoin operators can be implemented using a simple merge-based algo-
rithm, if it is known that the predicate path streams are delivered in monotonically
increasing order of BoundNode id. In general, however, there are cases where such

466 Y. Diao and M.J. Franklin

Fig. 8 A query plan using PathSharing-FW

ordering cannot be assumed. Consider the execution of Query 3, when applied to
the following XML fragment:

〈section〉〈section〉〈figure〉〈title〉XML processing

〈/title〉〈/figure〉〈/section〉〈figure〉〈title〉
XML processing〈/title〉〈/figure〉〈/section〉

In this case, the stream for the predicate path “//section/figure/title would contain a
path-tuple corresponding to “section2 figure1 title1” followed by a path-tuple cor-
responding to “section1 figure2 title2”, where the subscript indicates the first or the
second occurrence of the element name. This stream is not properly ordered by
the binding field (i.e., “section”). In such cases, since the binding path stream is
ordered properly, we can use a hash-based implementation of semijoin where the
binding path stream is used as the probing stream. Sufficient conditions for deter-
mining when the more efficient merge-based approach can be used are discussed in
Sect. 4.6. Note, however, that both approaches order the output correctly, resulting
in semantics identical to those provided by PathSharing-F.

4.5 Shared Matching of “Return” Clauses

The third alternative approach, PathSharing-FWR, aims at further increasing shar-
ing by also pushing the return paths into the path matching engine. Return paths
differ from predicate paths in that they do not constrain the set of matching binding
path tuples so the semijoin approach cannot be used for them. Instead, outer-join
semantics are required.

This particular work requires a slightly more specialized operator than a generic
outer-join, however, because results must be generated in the groupSequence-

High-Performance XML Message Brokering 467

Fig. 9 A query plan using
PathSharing-FWR

listSequence format. Thus, we have implemented our own n-way outer-join opera-
tor, called OuterJoin-Select. As Fig. 9 shows, OuterJoin-Select takes as its leftmost
input, the binding path stream resulting from the semijoins of the PathSharing-FW
approach. It performs left outer joins on the binding field with each of the return
path streams. Generation of the results in the required format is performed as part
of the outer join processing. Each path-tuple in the binding path stream causes the
creation of a new group. The outer join between this path-tuple and a return path
stream results in a new list within the group, containing the node ids in the last
field in the return path tuples that have matched the binding path tuple. If no such
matches are found, an empty list is kept in the group for this return path. The issue
of hash- versus merge-based implementation of OuterJoin-Select is similar to that
of semijoins.

Note from Fig. 9 that DupElim operators are required on each of the return path
streams to prevent duplicate results from being generated by OuterJoin-Select. Here,
the notion of duplicates is defined on the combination of the binding field and the
last field of the path-tuple, called the return field. Recall that a return path stream
is always ordered by the return field. If it also arrives ordered by the binding field,
a scan-based approach suffices for DupElim. Otherwise, hashing is used.

As can be seen, PathSharing-FWR, the approach that exploits path sharing to
the fullest extent, requires the most sophisticated post-processing. As mentioned
earlier, this complexity results from the tension between shared path matching and
result customization. It is important to note that this problem cannot be easily solved
in the path matching engine. Consider a path expression that is the binding path in
one query and a return path in another. In this case, the path-tuple stream produced
for that path expression will be used (by different queries) as two different types of
streams. Since the two types of streams have different notions of duplicates, dupli-
cate elimination cannot be done in the engine, but must be done in a usage-specific
manner during post-processing. Similar issues arise with the ordering of path-tuples
expected by the different uses of the stream.

468 Y. Diao and M.J. Franklin

4.6 Simplifying Post-Processing

Duplicates and stream ordering are two fundamental issues that complicate post-
processing for customized result generation. With additional knowledge, however,
it is sometimes possible to infer cases when duplicates cannot arise, or when path-
tuples will arrive in a needed order. In the first case, DupElim operators can be
removed from the post-processing plans. In the second case, cheaper scan or merge-
based operator implementations can be used in place of the more expensive hash-
based ones.

We have derived a set of sufficient conditions that enable the detection of some
situations where post-processing can be simplified. These conditions involve the
presence of “//” axes in queries, and the potential for recursive elements (i.e., ele-
ments that have the same element name and contain each other) in the messages.
The first type requires examining the queries, and the second can be checked by ex-
amining a DTD, if present. The set of sufficient conditions and a detailed description
on how they are applied to optimize post-processing plans are provided in [13].

4.7 Shared Post-Processing

A common feature of the three approaches to sharing path matching among
queries is that they all require a separate post-processing plan for each query. We
have also developed an initial set of techniques that can further improve shar-
ing by allowing some of the post-processing work to be shared across related but
non-identical queries, in particular, ones that have path expressions (and hence,
path-tuple streams) in common. Similar in spirit to some techniques proposed
for shared Continuous Query (CQ) processing over (typically non-XML) data
streams [9, 10, 17, 20, 22], the techniques developed in this work are highly tai-
lored for the unique set of operators used and a specific data flow through them for
processing large numbers of XQuery queries. Examples of these techniques include
query rewriting, shared GroupBy for OuterJoin-Select, selection-DupElim pull up,
and shared selection. The interested reader is referred to [13] for details of these
techniques.

4.8 Performance Results for Customized Result Generation

The experiments reported in [13] have compared the performance of the three al-
ternatives for exploiting YFilter’s shared path matching engine with and without
optimizations. The experiments also investigated the performance of a suite of tech-
niques to share the post-processing among queries. These results can be summarized
as follows:

High-Performance XML Message Brokering 469

• PathSharing-FWR when combined with optimizations based on queries and DTD
usually provides the best performance. This approach is the most aggressive of
the three in terms of path sharing. Without optimizations, however, PathSharing-
FWR performs quite poorly, due to high post-processing costs.

• Optimization of query plans using query information improves the performance
of all alternatives, and the addition of DTD-based optimizations improves them
further.

• For non-recursive data, DTD-based optimizations can remove all DupElim op-
erators and turn all hash-based implementations to merge/scan-based. Recursive
data, however, stresses the post-processing of queries containing “//” axes and
limits the effectiveness of optimizations.

• Finally, experiments on extending PathSharing-FWR with shared post-processing
showed excellent scalability improvements, allowing the processing of 100,000
queries in less than half a second.

5 Related Work

Our work on XML message brokering is related to Continuous Query (CQ) pro-
cessing, publish/subscribe, XML filtering, XML stream processing, and multi-query
processing.

CQ systems support shared processing of multiple standing queries over (typi-
cally non-XML) data streams. The concept of expression signatures was introduced
by TriggerMan [17]. Using such expression signatures, NiagaraCQ [9, 10] incre-
mentally groups query plans, and CACQ [22] supports the sharing of physical oper-
ators among tuples. OpenCQ [20] uses grouped triggers for CQ condition checking.
Our techniques for sharing post-processing, though similar in spirit to those used in
some of these systems, are developed particularly for XQuery processing.

Publish/subscribe systems, e.g., Le Subscribe [14] and Xlyeme [23], match in-
coming events with a very large number of subscriptions each of which is typically
a set of conjunctive predicates. These systems use restricted query languages and
data structures tailored to the query languages to achieve high system throughput.

A number of XML filtering systems have been developed to efficiently match a
large set of path queries with streaming documents. XFilter [3] builds a Finite State
Machine (FSM) for each path query and employs a query index on all the FSMs
to process all queries simultaneously. XTrie [8] supports shared processing of the
common substrings of path expressions which only contain parent-child operators.
In [15], all path expressions are combined into a single DFA, resulting in good per-
formance but with significant limitations on the flexibility of the approach. YFilter
and Index-Filter are compared through a detailed performance study in [6]. Match-
Maker [19] supports shared tree pattern matching using disk-resident indexes on
the tree patterns, with limited filtering performance. XPush [16] builds a pushdown
automaton for a subset of tree-pattern queries, sharing both path navigation and
predicate evaluation among them. It requires some precomputation of the machine

470 Y. Diao and M.J. Franklin

to achieve good performance. As stated previously, these systems only provide the
lowest level of functionality required by XML message brokers.

In the context of XML stream processing, some other recent work uses transducer
based mechanisms for processing path expressions with qualifiers [21] or XQuery
containing FLWR expressions [24]. These approaches, however, are developed for
single query processing.

Multi-query processing [25–27] considers small numbers of queries (e.g., 10s)
and uses heuristics to approximate the optimal global plan. In contrast, high-volume
XML message brokering needs to handle sets of queries orders of magnitude larger
in a dynamic environment. Thus, scalability of the approach and incremental con-
struction of query plans are the major concerns unique to our work.

6 Conclusions

In this chapter, we presented our approaches to shared processing of queries for
XML filtering and transformation in the context of high-performance XML mes-
sage brokering. For XML filtering, we developed an NFA-based shared path match-
ing engine that provides flexibility and excellent performance by exploiting overlap
of path expressions. To support the customization of output, we developed three dif-
ferent ways of exploiting the shared path matching engine. The most aggressive of
the three in terms of path sharing is shown to perform best, when combined with
optimizations based on the queries and DTD. Moreover, when post-processing of
the path matching output is also shared among queries, excellent scalability can be
achieved.

The results presented in this chapter, as well as other efforts cited in the related
work, have demonstrated that XML message brokering is a rich source of research
issues. Furthermore, as XML continues to gain acceptance in technologies such as
Web Services, Event-based Processing, Application Integration, and Mobile Opera-
tors, this work will be of increasing commercial importance. As such, there are many
important problems to be addressed in future work. These include incorporation of
additional features such as ordering in result customization, support of data aggre-
gation within each message and across multiple messages, and ultimately, the exten-
sion of XML message brokering in a wide-area distributed environment through the
investigation of content-based routing. Research on all of these issues is currently
underway.

References

1. Microsoft biztalk server (2002). http://www.microsoft.com/biztalk
2. Sybase financial fushion message broker (2003). http://www.sybase.com/products/

middleware/messagebroker
3. M. Altinel, M.J. Franklin, Efficient filtering of XML documents for selective dissemination of

information, in Proc. of Int’l Conf. on Very Large Databases (2000)

http://www.microsoft.com/biztalk
http://www.sybase.com/products/middleware/messagebroker
http://www.sybase.com/products/middleware/messagebroker

High-Performance XML Message Brokering 471

4. S. Boag, D. Chamberlin, M. Fernandez, D. Florescu, J. Robie, J. Simeon, XQuery 1.0: an
XML query language (2002). W3C working draft. http://www.w3.org/TR/xquery

5. T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, Extensible markup language XML 1.0.
W3C recommendation (2000). http://www.w3.org/TR/2004/REC-xml-20001006

6. N. Bruno, L. Gravano, N. Koudas, D. Srivastrava, Navigation- vs. index-based XML multi-
query processing, in Proc. of IEEE Int’l Conf. on Data Engineering (2003)

7. D. Chamberlin, P. Fankhauser, D. Florescu, M. Marchiori, J. Robie, XML query use cases.
W3C working draft (2002). http://www.w3.org/TR/xmlquery-use-cases/

8. C.Y. Chan, P. Felber, M.N. Garofalakis, R. Rastogi, Efficient filtering of XML documents with
XPath expressions, in Proc. of IEEE Int’l Conf. on Data Engineering (2002)

9. J. Chen, D.J. DeWitt, J.F. Naughton, Design and evaluation of alternative selection placement
strategies in optimizing continuous queries, in Proc. of IEEE Int’l Conf. on Data Engineering
(2002)

10. J. Chen, D.J. DeWitt, F. Tian, Y. Wang, NiagaraCQ: a scalable continuous query system for
Internet databases, in Proc. of ACM SIGMOD Conf. on Management of Data (2000)

11. J. Clark, S. DeRose, XML path language XPath—version 1.0 (1999). http://www.w3.org/TR/
xpath

12. Y. Diao, M. Altinel, M.J. Franklin, H. Zhang, P. Fischer, Path sharing and predicate evaluation
for high-performance XML filtering. ACM Trans. Database Syst. (2003)

13. Y. Diao, M.J. Franklin, Query processing for high-volume XML message brokering, in Proc.
of Int’l Conf. on Very Large Databases (2003)

14. F. Fabret, H.A. Jacobsen, F. Llirbat, J. Pereira, K.A. Ross, D. Shasha, Filtering algorithms and
implementation for very fast publish/subscribe, in Proc. of ACM SIGMOD Conf. on Manage-
ment of Data (2001)

15. T.J. Green, G. Miklau, M. Onizuka, D. Suciu, Processing XML streams with deterministic
automata, in Proc. of IEEE Int’l Conf. on Database Theory (2003)

16. A. Gupta, D. Suciu, Streaming processing of XPath queries with predicates, in Proc. of ACM
SIGMOD Conf. on Management of Data (2003)

17. E.N. Hanson, C. Carnes, L. Huang, M. Konyala, L. Noronha, S. Parthasarathy, J. Park, A. Ver-
non, Scalable trigger processing, in Proc. of IEEE Int’l Conf. on Data Engineering (1999)

18. J.E. Hopcroft, J.D. Ullman, Introduction to Automata Theory, Languages and Computation
(Addition-Wesley, Reading, 1979)

19. L.V. Lakshmanan, S. Parthasarathy, On efficient matching of streaming XML documents and
queries, in Proc. of Int’l Conf. on Extending Database Technology (2002)

20. L. Liu, C. Pu, W. Tang, Continual queries for internet scale event-driven information delivery.
IEEE Trans. Knowl. Data Eng. (1999)

21. B. Ludäscher, P. Mukhopadhyay, Y. Papakonstantinou, A transducer-based xml query process-
ing, in Proc. of Int’l Conf. on Very Large Databases (2002)

22. S.R. Madden, M.A. Shah, J.M. Hellerstein, V. Raman, Continuously adaptive continuous
queries over streams, in Proc. of ACM SIGMOD Conf. on Management of Data (2002)

23. B. Nguyen, S. Abiteboul, G. Cobena, M. Preda, Monitoring XML data on the web, in Proc. of
ACM SIGMOD Conf. on Management of Data (2001)

24. D. Olteanu, T. Kiesling, F. Bry, An evaluation of regular path expressions with qualifiers
against XML streams, in Proc. of IEEE Int’l Conf. on Data Engineering (2003)

25. A. Rosenthal, U.S. Chakravarthy, Anatomy of a modular multiple query optimizer, in Proc. of
Int’l Conf. on Very Large Databases (1988)

26. P. Roy, S. Seshadri, S. Sudarshan, S. Bhobe, Efficient and extensible algorithms for multi-
query optimization, in Proc. of ACM SIGMOD Conf. on Management of Data (2000)

27. T.K. Sellis, Multiple-query optimization. ACM Trans. Database Syst. (1988)

http://www.w3.org/TR/xquery
http://www.w3.org/TR/2004/REC-xml-20001006
http://www.w3.org/TR/xmlquery-use-cases/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

Fast Methods for Statistical Arbitrage

Eleftherios Soulas and Dennis Shasha

1 Motivation

In many time series applications, the data set under study is a vast stream of contin-
uously updated data. Often those data arrive in bursts. Many examples are found in
finance, telecommunications, physics, biology, astronomy, among others [3, 18–20].

The main motivation of our project is to infer linear relationships among multi-
ple financial variables, yielding expressions of the form 4 ∗ DJI − 35 ∗ SNP500 =
2.4 ∗ NASDAQ. We use such relationships to back-test a simple trading strategy.
For the most part we based our analyses on FOREX data but we also experimented
with non-financial datasets. Finally, we provide software capable of being used in
a variety of generalized machine learning and streaming applications in many envi-
ronments. The framework we developed is named StatLearn and is based on two
fundamental blocks: SketchStream to filter for relevant time series (a reimple-
mentation of StatStream [2, 4, 16]) and LearnStream to make predictions. Thus,
we provide machine learning algorithms in an on-line context.

2 SketchStream

The first step of our learning framework is to select the best candidate data from
a large number of possible candidates and train on them in order to optimize the

To the memory of Lefteris’s father, Christos Soulas, who supported and guided Lefteris in every
step of the way.

E. Soulas · D. Shasha (B)
New York University, 251 Mercer St, New York, NY 10012, USA
e-mail: shasha@courant.nyu.edu

E. Soulas
e-mail: es3431@nyu.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_23

473

mailto:shasha@courant.nyu.edu
mailto:es3431@nyu.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_23

474 E. Soulas and D. Shasha

Fig. 1 Cooperative vs uncooperative data

accuracy of our results. To implement this, we find the most correlated (or anti-
correlated) pairs with our target variable in an effort to try and combine all of the
most statistically significant data sources that can explain the variance of the time
series we are trying to predict.

Therefore, we are interested in calculating all the pairwise correlations of Ns

streams in a sliding window of size sw. Doing this naively requires O(sw ∗ N2
s)

time. For applications with a many streams, this would take too long. Thus, our task
is to study efficient algorithms to speed this up. We categorize the time series as
cooperative or uncooperative.

• Cooperative—Time series that exhibit a substantial degree of regularity.
There are several data reduction techniques that can be used in order to com-

press long time series into a few Fourier coefficients as Fourier Transform meth-
ods [5–7], Wavelet Transforms [8, 9], Singular Value Decompositions [10], Piece-
wise Constant Approximations [11].

• Uncooperative—Time series with no such periodical regularities. An example
can be the returns of a stock prices because the increase or decrease of returns do
not necessarily follow any particular patterns.

For uncooperative time series, the number of Fourier coefficients required to de-
scribe a time series grows to a large number as shown in Fig. 1.

Stock market returns (= today’s_price−yesterday’s_price
yesterday’s_price) are “white noise-like”, that

is, there is almost no correlation from one time point to the next.
For collections of time series that do not concentrate power in the first few

Fourier/Wavelet coefficients, which we have termed uncooperative, we use a sketch
based algorithmic framework called SketchStream.

SketchStream framework partitions time as following:

Fast Methods for Statistical Arbitrage 475

Fig. 2 Time partitioning in
SketchStream

• timepoint—The smallest unit of time over which the system collects data, for
example a second.

• basic window—A consecutive subsequence of timepoints over which the system
maintains a compressed representation, for example two minutes.

• sliding window—A user-defined consecutive subsequence of basic windows over
which the user wants statistics, for example, an hour. This way the user can submit
queries for highly correlated stream pairs which were above a certain threshold
for the past sliding window, for example between 12 noon and 1 PM, between
12:02 and 1:02, between 12:04 and 1:04, etc.

Figure 2 depicts a graphical representation of these time intervals in Sketch-
Stream.

The choice of sw and bw depends on the application under consideration because
bw is the delay before results are reported. Smaller values of bw require more work.

2.1 Intuition & Guarantees of the Sketch Approach

As pointed out above, the Fourier Transform behaves very poorly for “white noise”
style data. For such data, sketches are invoked.

The sketch approach, as developed by Kushikvitz et al. [14], Indyk et al. [15], and
Achlioptas [12], provides a very elegant bound approach: with high probability a
random mapping taking points in R

m to points in (Rd)2b+1 (the (2b+1)-fold cross-
product of Rd with itself) approximately preserves distances (with higher fidelity
the larger b is). All these bounds follow from the seminal work of Johnson and
Lindenstrauss [13].

The JL lemma shows that the approximation of the original distance may achieve
sufficient accuracy with high probability as long as the synopsis size is larger than a
given bound. This synopsis is used to filter the non-correlated time series pairs. This
approach will be further addressed in the following sections.

We use correlation and distance more or less interchangeably because one can be
computed from the other once the data has been normalized. Specifically, Pearson

476 E. Soulas and D. Shasha

correlation is related to Euclidean distance as follows:

D2(x̂, ŷ) = 2 ∗ (1 − corr(x − y))

Given a point x ∈ R
m, we compute its dot product with d random vectors ri ∈

{1,−1}m. The first random projection of x is given by y1 = (x ∗ r1, x ∗ r2, . . . ,

x ∗ rd).
We compute 2b more such random projections y1, . . . , y2b+1. If w is another

point in R
m and z1, . . . , z2b+1 are its projections using dot products with the same

random vectors then the median of ‖y1 − z1‖,‖y2 − z2‖, . . . ,‖y2b+1 − z2b+1‖ is a
good estimate of ‖y − z‖. It lies within a θ(1/d) factor of ‖y − z‖ with probability
1 − (1/2)b .

2.2 Sketch Implementation

We want to find the highest positively and negatively correlated pairs over sliding
window lengths. That could entail redoing the above operations every basic window.
Because that could be expensive, SketchStream makes use of structured random
vectors.

The idea is to form each structured random vector r from the concatenation of
nb = sw

bw random vectors r = s1, s2, . . . , snb where each si has length bw. Further-
more, each si is either u or −u, and u is a random vector in the space {−1,+1}bw.1

This choice is determined by another random binary k-vector b: if bi = 1 => si = u

and if bi = 0 => si =−u. The structured approach leads to an asymptotic perfor-
mance of O(nb) integer additions and O(log bw) floating point operations per time
series, per random vector. There is a 30 to 40 factor improvement in runtime over
recomputing the structured vectors from scratch.

In order to compute the dot products with structured random vectors, we first
compute dot products with the random vector u. For each random vector r of length
equal to the sliding window length sw = nb ∗ bw, the dot product with each succes-
sive length sw chunk of the stream2 is computed to form the sketch.

Example

The theory above may be somewhat difficult to understand at first, thus so consider
this simple example.

As we mentioned, a random vector rbw is constructed as follows:

rbw = (r0, r1, . . . , rbw)

1The random vector u remains the same for all si , only the sign changes.
2Successive chunks being one timepoint apart and bw being the length of a basic window.

Fast Methods for Statistical Arbitrage 477

where

{ri} =
{+1, with probability 1

2 ,

+1, with probability 1
2 .

To form a random vector of length sw, another random vector b is constructed of
length nb = sw

bw , which we call the control vector, as follows:

b = (b0, b1, . . . , bnb)

where

{bi} =
{+1, with probability 1

2 ,

+1, with probability 1
2 .

The random vector r for a sliding window is then built as follows:3

r = (rbw ∗ b0, rbw ∗ b1, . . . , rbw ∗ bnb)

Now let us define the following example. Let’s assume we are given a time se-
ries X = (x1, x2, . . .), sliding window of size sw = 12, and a basic window of
size bw = 4. If the random vector within a basic window is rbw = (1,1,−1,1),
the control vector b = (1,−1,1), the random vector for a sliding window will be
rsw = (1,1,−1,1,−1,−1,1,−1,1,1,−1,1).

So now we will form the sketches out of the two streams (of sw size).

X1
sw = (x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12), (1)

X5
sw = (x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16). (2)

Sketch for X1 is

X1
sk = rsw ∗X1

sw

= b1 ∗ rbw ∗ (x1, x2, x3, x4)+ b2 ∗ rbw ∗ (x5, x6, x7, x8)

+ b3 ∗ rbw ∗ (x9, x10, x11, x12)

= b ∗ (rbw ∗ (x1, x2, x3, x4), rbw ∗ (x5, x6, x7, x8),

rbw ∗ (x9, x10, x11, x12)). (3)

Sketch for X5 is

X5
sk = rsw ∗X5

sw

= b1 ∗ rbw ∗ (x5, x6, x7, x8)+ b2 ∗ rbw ∗ (x9, x10, x11, x12)

+ b3 ∗ rbw ∗ (x13, x14, x15, x16) = b ∗ (rbw ∗ (x5, x6, x7, x8),

rbw ∗ (x9, x10, x11, x12), rbw ∗ (x13, x14, x15, x16)). (4)

3This reduction of randomness does not noticeably diminish the accuracy of the sketch estimation.

478 E. Soulas and D. Shasha

Fig. 3 Sketch by random projection

2.3 Sketch Vector Partitioning

Suppose we have 604 random vectors to which each window is compared and the
sketch vector is the vector of the dot products to those random vectors. In Fig. 3, we
can graphically see the procedure described above.

2.4 Grid Structure

To determine the closeness of the vectors, we partition each sketch vector into sub-
vectors and build data structures to determine the similarity of the sub-vectors.

So the algorithmic framework described above, and presented in the papers re-
lated to StatStream [2, 4, 16], behaves as follows. Suppose we are seeking points
within some distance d in the original time series space.

• Partition each sketch vector s of size N into groups of some size g.
• The ith group of each sketch vector s is placed in the ith grid structure of dimen-

sion g (in Fig. 5, g = 2).
• If two sketch vectors s1 and s2 are within distance c ∗ d5 in more than a fraction

f of the groups, then the corresponding windows are candidate-highly-correlated
windows and will be checked exactly.

In Fig. 4, you can see the how the sketches are compared and the grid filtering
outputs the candidate highly correlated pairs.

4This is a parameter that can be modified.
5c is a user-defined parameter.

Fast Methods for Statistical Arbitrage 479

Fig. 4 Grid structure

Fig. 5 Grid structure

In order to derive a better intuition about the grid structure of Fig. 5, an analysis
of its components is desirable. Assume a set of data points in a 2D space, where
a 2-dimensional orthogonal regular grid is super-imposed on this space. In prac-
tice, the indexed space is bounded. Let the spacing of the grid be a. The indexing
space, a 2-dimensional square with diameter A and partitioned into [A

a
]2 small cells.

Each cell is a 2-dimensional square with side length a. All the cells are stored in a
2-dimensional array in main memory.

In such a main memory grid structure, we can compute the cell to which a par-
ticular point belongs. Let us use (c1, c2) to denote a cell that is the c1th in the first
dimension and the c2th in the second dimension. A point p with coordinates x1, x2
is within the cell (
 x1

a
, x2

a
�). We say that point p is mapped to that cell. This can be

easily extended to k-dimensions.

480 E. Soulas and D. Shasha

Fig. 6 Sketch by random projection

2.5 Results

Sketches work very well for uncooperative data. Figure 6 compares the distances
of the Fourier and sketch approximations for 1000 pairs of 256 timepoint windows
with a basic window size of length 32. Here sketch size = 30 and Singular Value
Decomposition coefficient number = 30. As one can see, the sketch distances are
closer to the real distance.

3 LearnStream

After finding the highest positively and negatively correlated time series to our target
using SketchStream, we use stochastic gradient descent to predict complex linear
relationships on streams. The LearnStream platform is thus capable of combining
stream processing and machine learning.

3.1 Sliding Window Stochastic Gradient Descent

To evaluate a classifier’s performance, given by a machine learning scheme, either
a special testing set or a cross-validation technique may be employed. A test set
contains pre-select examples different from those in the training set, and is used
only for evaluation, not for training.

If data are scarce, it is sensible to use cross-validation in order not to waste any
data, which could be useful in enhancing classifier performance; all data are used
both for training the classifier and for testing its performance.

More examples do not necessarily mean better classifier performance. Even
though the classifier becomes better in the training set it could actually perform
worse on the test data. This is due to the possibility of overfitting of the classi-
fier function, so that it fits too tightly to the training data. As an extreme example,

Fast Methods for Statistical Arbitrage 481

suppose that we want to predict the wealth of a person and one of the attributes
is a unique key social security number. Overfitting might lead us to conclude that
the most informative attribute is the social security number because given that, we
would (in our training set) know the person’s wealth. In Sect. 7, we describe how
we found the most appropriate time window for each application.

As with every other classifier, Stochastic Gradient Descent has to be fitted with
two arrays: an array X of size [nsamples, nfeatures] holding the training samples, and
an array y of size nsamples holding the target values (class labels) for the training
samples.

We train our regressor over a sliding window [ti , ti+sw] and then use the regressor
model obtained to predict the value for ti+sw+1. For our predictions to have meaning,
we need to use the data up to time point t to predict values for t + 1.

For example, we monitor the ticks of the prices for three stocks A[t0, tsw],
B[t0, tsw] and C[t0, tsw] and we want to make predictions for the price of C[tsw+1].
To put this in the X–y framework, all the stocks in the X will start from time point
t0 and the target stock in y from t1, . . . , tn. This way we can train the model based
on the relationship between the present and the future data.

3.2 Iterative Tuning of Sliding Window

We expect different outcomes with different window sizes. If the algorithm trains
on 50 time points, the linear model will be different from when it trains on 5000.

We don’t know a priori which sliding window length will be capable of predicting
with the smallest error. Therefore, an iterative tuning process is performed off-line
to determine what would be a suitable interval for this particular dataset.

In particular, when we have a plethora of data at our disposal, we execute parallel
versions of our algorithm with various window sizes. For each one we calculate the
error of the prediction (relative to the correct result) and then we pick the sliding
window which minimizes this error. Our assumption is that for a specific dataset the
variance of its values will not dramatically change in the future. Varying this might
be necessary for your application.

3.3 Exponential Random Picking

In time series analysis, recent data is often more relevant than older data. For ex-
ample, the present stock price encodes more recent information than do historical
prices. Traders do not want to forget the past entirely but they aim to place emphasis
on the present as the balances may have changed concerning old statistics.

Therefore, in every time window we perform bootstrapping in order to try to
decrease the variance of our classifier, giving preference to more recent values. For

482 E. Soulas and D. Shasha

Fig. 7 Exponential selection

example if SGD was to train a sliding window of the following values: 1,2,3,4,5
our algorithm randomly forms a new dataset which may have this form 3,1,4,5,5.6

The random selection is based on an exponential distribution which selects values
closer to current time points, with higher probability. Figure 7 shows the probability
of every time point in a sliding window to be a candidate for the new training dataset.

3.4 Warm Start/Use Historical Predictions

We may wish to focus more on recent data but that does not mean we should neglect
the past.

Specifically, we used the coefficients produced by the last execution in the pre-
vious sliding window. By doing this we affect the algorithm’s initialization point.
This method works surprisingly well; much better than plain Stochastic Gradient
Descent. In retrospect, this was a reasonable approach because our data is sequen-
tial, so the warm start would possibly give a good head start in contrast to starting
from no a priori information.

3.5 Learning Rate

Despite the abundance of methods for learning from examples, there are only a few
that can be used effectively for online learning. Classic batch training algorithms
cannot straightforwardly handle non-stationary data. As described in [21], there ex-
ists the problem of “catastrophic interference”, in which training with new exam-
ples interferes excessively with previously learned examples, leading to saturation
and slow convergence. Variants stochastic gradient descent methods are proposed in

6We allow selecting the same value more than once.

Fast Methods for Statistical Arbitrage 483

[22], which mainly implement an adaptive learning rate for achieving online learn-
ing. In Sect. 7, we discuss how we selected the appropriate α for our application.

4 Experimental Results

In this section, we present the experimental results of our work with real data and
discuss the purity and the associated attributes of the three algorithms we studied.

The experiments compared three versions of Stochastic Gradient Descent:

• Plain Stochastic Gradient Descent.
From here on we will refer to it as plainSGD.

• Stochastic Gradient Descent with random sample picking.
From here on we will refer to it as approxSGD.

• Stochastic Gradient Descent with random sample picking and warm start.
From here on we will refer to it as approxWarmSGD.

5 Datasets

The experiments were mainly conducted on using three datasets: two proprietary
FOREX (foreign exchange) datasets, with which we tested our trading strategy, as
well as one publicly available household electric power consumption dataset.

5.1 FOREX Data Sets

Our primary dataset was obtained from Capital K Partners. It is composed of 28
different currency pairs with ticks aggregated every 100 ms. There are in total 80
days of data, starting from 01/05/2012 until 09/08/2012. Every pair consists of 42
features (such as the best bid/ask price, best bid/ask volume, mid prices, bid/ask
range, bid/ask slope, etc.).

For the sake of simplicity, we used only the bid/ask prices. The procedure we
followed was to use all the pairs associated with EUR currency (i.e., EURCAD,
EURAUD, EURGBP) to predict the price of EURUSD pair. In other words, we
form the training matrix X by using the prices from all the currency pairs and the
target array y, by using the prices from the EURUSD pair.

The problem is that we could not predict both bid and ask prices simultaneously
as they depend on different attributes.7 There are two separate instances of our al-
gorithm running in parallel: one associated with the bid price and one with the ask

7We predicted the mid price = bid+ask
2 but we couldn’t use it effectively in our trading strategy

later on.

484 E. Soulas and D. Shasha

price. In this way, we can combine the predictions and create a buy/sell signal for
our trading system.

The second dataset on FOREX data was obtained by a hedge fund from Singa-
pore. Its far more simplistic and it contains ticks aggregated every 5 minutes for a
time period of around three months. Because 5 minutes is so long, it omits a lot of
information, so we do not expect results consistent with the 100 millisecond data.

5.2 Individual Household Electric Power Consumption Data
Set [1]

This dataset contains measurements of electric power consumption in one household
with a one-minute sampling rate over a period of almost 4 years. Different electri-
cal quantities and some sub-metering values are available. This dataset consist of
roughly 2070000 values for 4 years (16/12/2006–26/11/2010).

Its features are:

1. Date—Date in format dd/mm/yyyy.
2. Time—time in format hh:mm:ss.
3. Global Active Power—Household global minute-averaged active power (in kilo-

watt).
4. Global Reactive Power—Household global minute-averaged reactive power (in

kilowatt).
5. Voltage—Minute-averaged voltage (in volt).
6. Global Intensity—Household global minute-averaged current intensity (in am-

pere).
7. Sub Metering 1—Energy sub-metering No. 1 (in watt-hour of active energy).

It corresponds to the kitchen, containing mainly a dishwasher, an oven and a
microwave (hot plates are not electric but gas powered).

8. Sub Metering 2—Energy sub-metering No. 2 (in watt-hour of active energy). It
corresponds to the laundry room, containing a washing-machine, a tumble-drier,
a refrigerator and a light.

9. Sub Metering 3—Energy sub-metering No. 3 (in watt-hour of active energy). It
corresponds to an electric water-heater and an air-conditioner.

The reason we used a dataset so unrelated to the other two, which have an obvious
financial similarity, was to cross-check the predictive accuracy of our algorithm and
show that this work can be useful to fields other than financial analysis.

We use attributes 1,2,4,5,6,7,8,9 to predict the global active power of the
house for the next minute, something which may help us optimize our electricity
usage. The method is almost the same as the one we followed for the financial
datasets but somewhat simpler, as we deal with only one predictor.

Fast Methods for Statistical Arbitrage 485

6 Metrics

In this section, we describe the error metrics we used in order to compare the per-
formance of the algorithms we tested.

6.1 Absolute/Relative Error

Experimental and measurement errors always create uncertainty in the final data.
No measurement of a physical quantity can be entirely accurate.

The absolute error in a measured quantity is the uncertainty in the quantity and
has the same units as the quantity itself.

For example, if you predict the price of a stock to be 1.3223 $ ± 0.00002 $, the
0.00002 $ is an absolute error.

The relative error (also called the fractional error) is obtained by dividing the
absolute error in the quantity by the quantity itself:

relative error = absolute error

value of thing measured
,

or in terms common to Error Propagation

relative error = �x

x
,

where x is any variable.
The relative error is usually more relevant than the absolute error. For example,

a $1 error in the price of a cheap stock is probably more serious than a $1 error in
the quote of an expensive one. Relative errors are dimensionless. When reporting
relative errors, it is usual to multiply the fractional error by 100 and report it as a
percentage.

Relative Error was our baseline method to determine whether or not our predic-
tions were meaningful. Scikit-learn [17] implements three more metrics for regres-
sion, which we used to further analyze our estimator and are presented below.

6.2 Mean Squared Error

If ŷi is the predicted value of the ith sample and yi is the corresponding true value,
then the mean squared error (MSE) estimated over nsamples is defined as:

MSE(y, ŷ) = 1

nsamples

nsamples−1∑

i=0

(yi − ŷi)
2.

The best value is 0.0, higher values are worse.

486 E. Soulas and D. Shasha

6.3 Explained Variance Score

Explained variation measures the proportion to which a mathematical model ac-
counts for the variation (dispersion) of a given data set.

If ŷ is the estimated target output and y is the corresponding (correct) target
output, then the explained variance is estimated as follows:

Explained Variance(y, ŷ) = 1 − Var{y − ŷ}
Var{y} .

The best possible score is 1.0, lower values are worse.

6.4 R2 Score, the Coefficient of Determination

The coefficient of determination, denoted R2, is used in the context of statistical
models whose main purpose is the prediction of future outcomes on the basis of
other related information.

R2 is a number between 0 and 1.0, used to describe how well a regression line
fits a set of data. An R2 near 1.0 indicates that a regression line fits the data well,
while an R2 closer to 0 indicates a regression line does not fit the data very well.
It is the proportion of variability in a data set that is accounted for by the statistical
model. It provides a measure of how well future outcomes are likely to be predicted
by the model.

If ŷi is the predicted value of the ith sample and yi is the corresponding true
value, then the score R2 estimated over nsamples is defined as:

R2(y, ŷ) = 1 −
∑nsamples−1

i=0 (yi − ŷi)
2

∑nsamples−1
i=0 (yi − ȳ)2

where ȳ = 1
nsamples

∑nsamples−1
i=0 yi .

The best possible score is 1.0, lower values are worse.

7 Parameter Tuning

As described in the previous sections, we have 5 distinct parameters in our algo-
rithm. In order to determine the appropriate value for every attribute and for every
dataset, we isolated them and through permutations, we modified only the parame-
ter under consideration, so as to attain the optimal solution. In particular, in order to
select the optimal parameter for each dataset, we performed grid-search on a set of
possible value for each parameter and selected the set of parameters, for which the
classifier that performs better.

Fast Methods for Statistical Arbitrage 487

Due to the fact that we base our model on an online framework, the boundaries
between training and testing sort of overlap. In particular, our algorithm continu-
ously updates the coefficients for every sliding window and thus learns and adapts
to the future constantly. For our parameter tuning phase though, we used the first
80 % of our data to perform grid-search and fix the parameters. Then we kept them
the same for the testing data.

• Learning Rate (α) ∈R

The learning rate can be any real value so it is not feasible to test every combina-
tion. We narrowed the problem down to determine how many decimal points will
α have. As a matter of fact, we came to the realization that a value of two zeros
after decimal point performs much better than a larger or a smaller learning rate.
Reflecting that insight we set α = 0.0015

• Regularization Term ∈ {L1,L2,Elastic Net}
L1 and L2 have almost the same results but for most of the cases L2 delivers
slightly more accuracy. For the regularization coefficient C, which signifies the
inverse of the regularization strength, we performed grid search for each applica-
tion in the space of [10−3, 103] and select the best set of parameters.

• Loss Function ∈ {Squared Loss,Huber,Epsilon Insensitive}
Huber Loss and Squared Loss were much better on the average than Epsilon
Insensitive Loss. Huber was slightly better than Squared loss for the approx-
WarmSGD for every dataset, while for the other two algorithms it was mainly
dependent on the dataset.

In sum, the improvement or regression, in terms of relative error and the other
methods stated, was sufficiently minor to avoid further examination.

• Sliding Window (SW) ∈N

The iterative tuning procedure followed in order to figure out the proper sw was
explained in Sect. 3.2.
The results we obtained helped us set the

SWcapital K Forex Dataset = 72,

SWsingapore Forex Dataset = 100,

SWElectrical Consumption Dataset = 155.

• Approximation Time Points ∈ SWsize

If the sliding window, on which plainSGD uses all the samples to train the model,
is SW then let the size of the dataset used from approxSGD and approxWarmSGD
be approxSW.

We found empirically that if we set SizeapproxSW = SizeSW − 1, we produce
a prediction with the smallest relative and mean squared error. We contrast this
approach with setting SizeapproxSW = SizeSW/2, in order to see how our algorithm
behaves when we decrease the number of time points examined. These results
could change in other data sets.

488 E. Soulas and D. Shasha

Table 1 Electrical consumption data SW-1 approx. Points

Metric plainSGD approxSGD approxWarmSGD

Average relative error 46.5268326356 % 35.1390031025 % 12.3209254031 %

Mean squared error 1.20014251329 0.836286330532 0.15540327753

Explained variance 0.556287783866 0.654150947989 0.913688374021

R2 score 0.333425379143 0.535515792892 0.913687016623

Table 2 Electrical consumption data SW/2 approx. Points

Metric plainSGD approxSGD approxWarmSGD

Average relative error 46.5268326356 % 43.9709146395 % 12.3961653422 %

Mean squared error 1.20014251329 1.33460563753 0.154441109978

Explained variance 0.556287783866 0.550474129003 0.914222866339

R2 score 0.333425379143 0.258742826809 0.914221416883

8 Experiments

8.1 Electric Power Consumption Data Set

In Tables 1 and 2 you see the results of the electric power consumption in terms of
the metrics referred above. We present results both for SW − 1 and SW

2 approxima-
tion points. For this specific dataset the time lag we selected was 60, which means
that we make our predictions for the electric power consumption for one hour ahead.

We can see that the method (approxWarmSGD) is better than the other two in
all four metrics. The remarkable thing though is that even when we decrease the
number of time points examined by half, there is almost no loss in the accuracy of
the results.

8.2 Singapore Hedge Fund FOREX Data Set

Likewise, Tables 3 and 4 the results for the Singapore FOREX data set. The error
metrics were almost the same for both bid and ask predictions so we show only one
of them. As we described above, this dataset is not appropriate for high frequency
trading, and we mainly use it in contrast with our second FOREX dataset that is
high frequency and the accuracy there is far better. Nonetheless, the returns (even
with a time lag of 5 minutes) are still bound to follow a random walk movement,
thus we can classify them as uncooperative.

As we can see for this particular dataset, approxSGD without the warm start per-
forms best. This reason may be that the values are infrequent (ticks every 5 minutes).

Fast Methods for Statistical Arbitrage 489

Table 3 Results for Singapore FOREX data SW-1 approx. Points

Metric plainSGD approxSGD approxWarmSGD

Bid/Ask Bid/Ask Bid/Ask

Average relative error 0.1366274551 % 0.133887583 % 0.2294997927 %

Mean squared error 5.79361776e-06 5.552743418e-06 1.547903339e-05

Explained variance 0.9990655232 0.9991046995 0.9974962369

R2 score 0.9990535129 0.9990928638 0.9974712337

Table 4 Singapore FOREX data SW/2 approx. Points

Metric plainSGD approxSGD approxWarmSGD

Bid/Ask Bid/Ask Bid/Ask

Average relative error 0.1366274551 % 0.09281447603 % 0.1551851906 %

Mean squared error 5.79361778e-06 3.045854724e-06 7.963935037e-06

Explained variance 0.9990655232 0.9995082637 0.9987048952

R2 score 0.9990535129 0.9995024072 0.9986989542

Table 5 Capital K FOREX data, SW-1 approx. Points

Metric plainSGD approxSGD approxWarmSGD

Bid/Ask Bid/Ask Bid/Ask

Average relative
error

0.01167 %/0.0117 % 0.0116 %/0.0117 % 1.502e-03 %/1.554e-03 %

Mean squared
error

2.201e-08/2.223e-08 2.175e-08/2.191e-08 1.287e-09/1.372e-09

Explained
variance

0.999 0.999 0.999

R2 score 0.9812/0.9828 0.9814/0.9831 0.9989/0.9989

8.3 Capital K FOREX Data Set

This brings us to the cornerstone of our data sets, the one on which we based our
theoretical study to produce a trading strategy that could potentially generate sub-
stantial profit.

As stated above, we have 80 days of data each one of which consists of 860,000
ticks approximately. Each date is a separate dataset for which we have different
results. In Tables 5 and 6, you can see the average values from all the dates.

approxWarmSGD is superior in all metrics. The results hold even if we use SW
2

time points.

490 E. Soulas and D. Shasha

Table 6 Capital K FOREX data, SW/2 approx. Points

Metric plainSGD approxSGD approxWarmSGD

Bid/Ask Bid/Ask Bid/Ask

Average relative
error

0.01167 %/0.0117 % 0.0314 %/0.0313 % 1.701e-03 %/1.751e-03 %

Mean squared
error

2.201e-08/2.223e-08 1.538e-07/1.517e-07 1.514e-09/1.602e-09

Explained
variance

0.999 0.999 0.998

R2 score 0.9812/0.9828 0.8687/0.8832 0.9987/0.9987

9 Trading Strategy

Most empirical studies with high-frequency data look at the time series of volatil-
ity, trading volume and spreads. Several researchers argue that all these time series
follow a U-shaped or a J-shaped pattern, i.e., the highest point of these variables
occurs at the opening of the trading day and they fall to lower levels during the mid-
day period, and then rise again towards the close. The behavior of these variables
is not easy to explain theoretically using the basic models related to three kinds of
agents: the informed trader, the uninformed trader and the market maker.

The introduction of a distinction between discretionary and non-discretionary
uninformed traders partially overcome this difficulty. If the uninformed or liquidity
traders choose the time of their trades, then they can congregate in the periods when
trading costs are low.

Some other models go further in explaining the positive relation between volatil-
ity and spread, indicating that more volatility is associated with the revelation of
more information, and thus the market becomes more uncertain and spreads widen
[23, 24].

9.1 Spread Based Trading

In contrast to the above, the approach we followed was again a very basic one, aimed
at showing that the learning algorithm can make a constant positive profit even if the
trading technique does not make use of macroeconomic theories or models.

Our strategy relies mostly on the spread of the bid and ask prices for consecutive
time points. At this point we are not dealing with volatility; we trade one unit of
EUR/USD per time. It is obvious though that in the case that you trade one unit and
get a profit of 0.002 $, it is the same as if you trade 1 million units and get a profit
of 2000 $. Of course, if you try to perform such a trade tracking volatility, you must
check first that the amount of security you wish to buy is available.

Specifically, we have the two following cases where we get a buy/sell signal.

Fast Methods for Statistical Arbitrage 491

Fig. 8 Profit graph for every trading day

• If bid_predictiont+1 > askt then buy at time t and sell at t + 1.
If the bid price at time point t + 1 is larger than the ask price at time t , it means
that we will get a positive profit if we buy something that will be sold later for a
higher price, than the price we bought it.

• If ask_predictiont+1 < bidt then sell at time t (sell short) and rebuy it at t + 1 to
return to a neutral position.
If the ask price at time point t + 1 is smaller than the bid price at time t , it means
that if we sell something now and rebuy it later we will gain a profit by exploiting
this spread.

As is easily understood, though, if the prediction is not accurate we end up buying
something that we have to sell for less or selling something and then need to buy it
for a higher price.

Table 7 shows the trading results for every day and the total profit in the end.
The first column (goldenMethodProfit), is the maximum profit we could gain if we
predicted the exact value for the next time point. That is the unattainable ideal.

As we see approxWarmSGD is the only method that in the end has a positive
profit. The astonishing thing is that even in the days when it loses, the algorithm
somehow manages to limit the loss to about 1

10 of the loss of the other two methods.
One can see the above results graphically represented in Fig. 8.
For the Singapore FOREX Dataset the results were not so encouraging though,

as you can see in Table 8.
It is very difficult to capture the essence of the currency movement by using ticks

aggregated every 5 minutes. At least, we can state that our algorithm could sustain
a loss 37.14 times less than the other two algorithms.

492 E. Soulas and D. Shasha

Ta
bl

e
7

C
ap

ita
lK

FO
R

E
X

da
ta

se
tt

ra
di

ng
re

su
lts

D
at

e
go

ld
en

M
et

ho
dP

ro
fit

pl
ai

nS
G

D
ap

pr
ox

SG
D

ap
pr

ox
W

ar
m

SG
D

20
12

/0
5/

01
0.

02
39

37
1

$
−0

.0
34

28
49

$
−0

.0
26

99
91

$
−0

.0
00

75
32

00
00

00
02

$

20
12

/0
5/

02
0.

07
61

67
3

$
−0

.0
29

18
22

$
−0

.0
17

56
58

$
0.

00
27

72
10

00
00

01
$

20
12

/0
5/

03
0.

03
40

37
6

$
−0

.0
48

88
26

$
−0

.0
39

23
53

$
−0

.0
01

60
23

$

20
12

/0
5/

04
0.

15
88

48
1

$
0.

02
74

16
2

$
0.

05
11

83
1

$
0.

04
77

92
5

$

20
12

/0
5/

06
0.

61
68

27
$

0.
54

45
01

4
$

0.
56

84
93

1
$

0.
57

50
70

4
$

20
12

/0
5/

07
0.

06
41

95
8

$
0.

01
61

21
1

$
0.

02
15

62
1

$
0.

00
40

00
79

99
99

99
$

20
12

/0
5/

08
0.

04
05

38
8

$
0.

00
38

16
69

99
99

99
$

0.
00

67
43

89
99

99
99

$
−0

.0
01

72
37

$

20
12

/0
5/

09
0.

08
95

91
$

0.
02

53
44

9
$

0.
02

66
84

9
$

0.
00

23
35

4
$

20
12

/0
5/

10
0.

06
23

35
90

00
00

1
$

−0
.0

27
32

92
$

−0
.0

18
66

82
$

−0
.0

01
53

36
$

20
12

/0
5/

11
0.

05
68

55
3

$
0.

00
16

68
7

$
0.

00
58

60
7

$
0.

00
08

05
29

99
99

99
7

$

20
12

/0
5/

13
0.

00
60

90
79

99
99

99
$

−0
.0

54
18

37
$

−0
.0

42
11

92
$

−0
.0

00
12

93
00

00
00

01
$

20
12

/0
5/

14
0.

07
02

26
8

$
0.

01
33

07
3

$
0.

01
81

47
9

$
−0

.0
00

31
66

00
00

00
05

$

20
12

/0
5/

15
0.

22
10

93
$

0.
04

79
60

8
$

0.
07

84
40

7
$

0.
08

01
66

6
$

20
12

/0
5/

16
0.

05
33

72
6

$
−0

.0
49

72
75

$
−0

.0
29

46
74

$
−0

.0
06

66
$

20
12

/0
5/

17
0.

04
76

87
3

$
−0

.0
15

69
91

$
−0

.0
05

69
44

99
99

99
8

$
0.

01
22

04
4

$

20
12

/0
5/

18
0.

06
25

96
8

$
−0

.0
33

93
29

$
−0

.0
17

15
66

$
−0

.0
04

85
04

00
00

00
1

$

20
12

/0
5/

20
0.

00
08

37
80

00
00

00
1

$
−0

.0
30

62
22

$
−0

.0
22

02
22

$
−0

.0
06

$

20
12

/0
5/

21
0.

02
75

62
5

$
0.

01
12

56
1

$
0.

01
20

18
6

$
−0

.0
01

10
88

$

20
12

/0
5/

22
0.

02
13

18
4

$
−0

.0
14

68
06

$
−0

.0
12

12
39

$
−2

.1
30

00
00

00
02

e-
05

$

20
12

/0
5/

25
0.

02
87

46
5

$
−0

.0
38

01
12

$
−0

.0
27

17
16

$
−0

.0
00

46
48

00
00

00
01

$

20
12

/0
5/

27
0.

00
90

65
50

00
00

04
$

−0
.0

02
80

85
99

99
99

8
$

0.
00

32
67

30
00

00
02

$
0.

00
20

46
70

00
00

01
$

20
12

/0
5/

28
0.

00
98

99
3

$
−0

.0
25

21
88

$
−0

.0
23

24
69

$
−0

.0
00

72
62

$

20
12

/0
5/

29
0.

07
52

84
1

$
−0

.0
20

96
11

$
−0

.0
02

00
59

00
00

00
1

$
0.

00
56

65
3

$

Fast Methods for Statistical Arbitrage 493

Ta
bl

e
7

(C
on

tin
ue

d)

D
at

e
go

ld
en

M
et

ho
dP

ro
fit

pl
ai

nS
G

D
ap

pr
ox

SG
D

ap
pr

ox
W

ar
m

SG
D

20
12

/0
5/

31
0.

04
82

91
5

$
−0

.0
51

18
41

$
−0

.0
31

25
88

$
0.

00
60

81
60

00
00

01
$

20
12

/0
6/

01
0.

30
12

09
5

$
0.

01
08

27
09

99
99

9
$

0.
05

37
84

2
$

0.
08

70
46

3
$

20
12

/0
6/

03
0.

00
31

91
3

$
−0

.0
32

64
01

$
−0

.0
23

09
99

$
0

$

20
12

/0
6/

04
0.

03
02

69
7

$
−0

.0
06

52
45

00
00

00
1

$
−0

.0
01

54
90

00
00

00
1

$
−0

.0
00

26
49

00
00

00
03

$

20
12

/0
6/

05
0.

03
37

18
5

$
−0

.0
56

64
53

$
−0

.0
46

37
28

$
−0

.0
02

68
09

$

20
12

/0
6/

06
0.

17
04

43
4

$
0.

00
03

12
59

99
99

95
8

$
0.

02
45

61
5

$
0.

05
51

33
4

$

20
12

/0
6/

12
0.

01
59

15
2

$
−0

.0
01

84
95

$
−0

.0
02

23
44

$
−0

.0
00

37
22

$

20
12

/0
6/

13
0.

02
79

10
1

$
−0

.0
20

31
7

$
−0

.0
13

56
48

$
0.

00
33

57
50

00
00

01
$

20
12

/0
6/

14
0.

02
00

00
4

$
−0

.0
25

71
94

$
−0

.0
14

63
46

$
−0

.0
01

31
87

$

20
12

/0
6/

15
0.

03
07

02
3

$
−0

.0
09

14
05

$
−0

.0
00

56
42

$
0.

00
02

56
49

99
99

99
7

$

20
12

/0
6/

17
0.

00
07

26
20

00
00

00
1

$
−0

.0
15

28
5

$
−0

.0
07

92
4

$
−0

.0
00

23
$

20
12

/0
6/

18
0.

06
63

89
49

99
99

9
$

−0
.0

06
74

74
$

−0
.0

04
19

27
$

−0
.0

02
75

32
$

20
12

/0
6/

19
0.

04
07

95
8

$
−0

.0
32

07
35

$
−0

.0
16

35
44

$
−0

.0
03

04
73

$

20
12

/0
6/

20
0.

44
75

2
$

0.
15

04
54

3
$

0.
19

60
73

4
$

0.
33

64
99

3
$

20
12

/0
6/

21
0.

06
22

06
29

99
99

9
$

−0
.0

54
56

87
00

00
01

$
−0

.0
37

80
72

00
00

01
$

0.
01

23
71

39
99

99
9

$

20
12

/0
6/

22
0.

01
41

18
2

$
−0

.0
32

14
46

$
−0

.0
31

30
11

$
−0

.0
00

61
07

$

20
12

/0
6/

24
7.

34
99

99
99

99
4e

-0
5

$
−0

.4
44

26
54

$
−0

.3
29

30
38

$
−0

.0
40

96
$

20
12

/0
6/

25
0.

00
91

78
5

$
−0

.0
43

02
64

$
−0

.0
35

82
35

$
0

$

20
12

/0
6/

26
0.

03
89

42
5

$
−0

.0
31

43
76

$
−0

.0
15

60
91

$
0.

00
33

50
50

00
00

01
$

20
12

/0
6/

27
0.

01
81

89
4

$
−0

.0
22

14
11

$
−0

.0
13

63
55

$
0.

00
21

17
9

$

20
12

/0
6/

28
0.

04
55

77
2

$
−0

.0
55

72
39

$
−0

.0
36

61
59

$
−0

.0
01

31
71

$

20
12

/0
6/

29
0.

09
06

55
8

$
−0

.0
14

56
92

$
0.

00
14

31
5

$
0.

00
19

47
8

$

20
12

/0
7/

01
0.

00
06

80
89

99
99

99
9

$
−0

.0
00

33
06

00
00

00
02

$
−0

.0
00

24
06

00
00

00
01

$
0

$

494 E. Soulas and D. Shasha

Ta
bl

e
7

(C
on

tin
ue

d)

D
at

e
go

ld
en

M
et

ho
dP

ro
fit

pl
ai

nS
G

D
ap

pr
ox

SG
D

ap
pr

ox
W

ar
m

SG
D

20
12

/0
7/

02
0.

07
75

11
20

00
00

1
$

0.
04

52
05

30
00

00
1

$
0.

05
10

53
80

00
00

1
$

0.
05

53
43

00
00

00
1

$

20
12

/0
7/

03
0.

00
58

70
1

$
−0

.0
83

04
29

$
−0

.0
66

26
99

$
0

$

20
12

/0
7/

04
0.

00
81

75
19

99
99

99
$

−0
.0

14
68

92
$

−0
.0

09
61

25
$

−6
.6

10
00

00
00

06
e-

05
$

20
12

/0
7/

05
0.

05
13

88
5

$
−0

.0
82

20
23

$
−0

.0
59

48
1

$
−0

.0
06

38
64

$

20
12

/0
7/

06
0.

02
73

25
7

$
−0

.0
66

22
85

$
−0

.0
51

17
03

$
−0

.0
00

94
53

$

20
12

/0
7/

08
0.

00
20

01
7

$
0

$
0

$
0

$

20
12

/0
7/

09
0.

00
95

41
00

00
00

01
$

−0
.0

52
01

38
$

−0
.0

43
46

9
$

−0
.0

00
42

71
$

20
12

/0
7/

10
0.

00
59

4
$

−0
.0

00
46

$
−0

.0
00

72
81

$
−0

.0
00

28
72

$

20
12

/0
7/

11
0.

01
64

14
8

$
−0

.0
27

23
27

$
−0

.0
18

94
62

$
−0

.0
02

38
74

$

20
12

/0
7/

12
0.

02
90

47
2

$
−0

.0
09

36
00

00
00

00
1

$
−0

.0
00

82
25

00
00

00
12

$
0.

00
80

64
19

99
99

99
$

20
12

/0
7/

13
0.

00
67

26
9

$
−0

.0
51

91
78

$
−0

.0
36

11
88

$
−0

.0
00

31
76

$

20
12

/0
7/

15
1.

91
e-

05
$

−0
.0

42
31

09
$

−0
.0

23
21

$
0

$

20
12

/0
7/

16
0.

01
19

67
7

$
−0

.0
27

80
2

$
−0

.0
22

71
66

$
−0

.0
00

51
98

$

20
12

/0
7/

17
0.

02
87

96
2

$
−0

.0
68

19
72

$
−0

.0
44

85
3

$
0.

00
06

64
99

99
99

99
6

$

20
12

/0
7/

18
0.

01
10

80
6

$
−0

.0
06

99
17

$
−0

.0
04

02
49

$
−0

.0
00

12
58

$

20
12

/0
7/

19
0.

02
88

01
$

−0
.0

62
38

2
$

−0
.0

36
55

26
$

0.
00

17
29

8
$

20
12

/0
7/

20
0.

05
42

12
6

$
−0

.0
07

01
23

$
0.

01
21

81
5

$
0.

01
73

61
9

$

20
12

/0
7/

22
0.

00
09

79
89

99
99

99
9

$
−0

.0
96

72
28

$
−0

.0
57

52
02

$
0

$

20
12

/0
7/

23
0.

01
98

58
6

$
−0

.0
11

59
44

$
−0

.0
10

47
6

$
−0

.0
00

93
40

00
00

00
01

$

20
12

/0
7/

24
0.

08
24

35
89

99
99

9
$

−0
.0

15
50

94
00

00
01

$
0.

00
83

61
89

99
99

94
$

0.
03

12
99

6
$

20
12

/0
7/

25
0.

12
88

26
5

$
0.

02
23

87
9

$
0.

03
81

82
7

$
0.

04
23

11
9

$

20
12

/0
7/

26
0.

04
70

79
6

$
−0

.0
19

31
45

$
−0

.0
12

13
06

$
−0

.0
03

75
87

$

20
12

/0
7/

27
0.

08
80

50
7

$
−0

.0
06

42
77

00
00

00
1

$
0.

00
40

80
49

99
99

99
$

−0
.0

04
92

14
00

00
00

1
$

Fast Methods for Statistical Arbitrage 495

Ta
bl

e
7

(C
on

tin
ue

d)

D
at

e
go

ld
en

M
et

ho
dP

ro
fit

pl
ai

nS
G

D
ap

pr
ox

SG
D

ap
pr

ox
W

ar
m

SG
D

20
12

/0
7/

29
8.

78
99

99
99

99
6e

-0
5

$
−0

.0
76

29
$

−0
.0

56
87

$
−0

.0
31

02
8

$

20
12

/0
7/

30
0.

00
88

63
99

99
99

99
$

−0
.0

06
95

27
$

−0
.0

04
09

43
$

−0
.0

00
48

47
$

20
12

/0
7/

31
0.

03
92

84
6

$
−0

.0
11

78
98

$
0.

00
02

31
9

$
0.

00
14

71
1

$

20
12

/0
8/

01
0.

06
35

61
3

$
−0

.0
69

20
96

$
−0

.0
50

63
29

$
−0

.0
04

65
02

$

20
12

/0
8/

02
0.

85
81

65
7

$
0.

49
55

92
4

$
0.

54
32

27
1

$
0.

47
88

21
5

$

20
12

/0
8/

03
0.

04
73

33
5

$
−0

.0
59

74
6

$
−0

.0
36

65
79

$
0.

00
26

63
4

$

20
12

/0
8/

05
0.

00
32

21
8

$
−0

.0
55

97
79

$
−0

.0
32

43
49

$
−0

.0
00

10
01

$

20
12

/0
8/

06
0.

01
25

08
8

$
−0

.0
39

83
68

$
−0

.0
28

47
13

$
−0

.0
00

59
52

$

20
12

/0
8/

07
0.

00
70

42
6

$
−0

.1
34

19
35

$
−0

.1
11

16
58

$
0

$

20
12

/0
8/

08
0.

01
15

54
$

−0
.0

29
38

67
$

−0
.0

18
46

45
$

−8
.9

99
99

99
99

e-
05

$

20
12

/0
8/

09
0.

02
14

83
2

$
−0

.0
48

40
38

$
−0

.0
32

60
47

$
0.

00
14

49
8

$

To
ta

l
5.

18
89

79
1$

−1
.2

49
06

45
$

−0
.0

89
48

91
$

1.
75

45
60

7
$

496 E. Soulas and D. Shasha

Table 8 Singapore FOREX dataset trading results

goldenMethodProfit plainSGD approxSGD approxWarmSGD

11.810265 $ −5.259669 $ −5.209989 $ −0.14704 $

9.2 Other Methods we Tried

We thought of other techniques as well that take into account long term trading.
Those methods though need further examination as problems could occur, for in-
stance, in the case that we do not sell if the prediction is not right and just hold the
amount purchased until we find a more profitable choice, we might end up stacking
up our inventory and keep losing money as we do not sell anything.

Although it is not easy to develop such a strategy, we believe that we can gen-
erate much better results if we design a method that tries to minimize loss and not
immediately buy and sell to return to a neutral position.

10 Conclusion

In this paper, we developed a framework called StatLearn consisting of fast algo-
rithms for time series data streams. StatLearn concentrates on solving two problems:
finding correlations in an online sliding window manor and predicting the future of
financial time series based on an online approximation algorithm we created. We
tested our results with data collected from the stock market and publicly available
data sets.

10.1 Future Work

The work in this paper can be used as the basis for several future research directions
including improving the trading strategy (especially the thresholds used to open
or close a trade), incorporating other machine learning techniques such as boosted
random forests, and finding outliers.

References

1. A. Frank, A. Asuncion, UCI Machine Learning Repository (2010). http://archive.ics.uci.edu/
ml

2. R. Cole, D. Shasha, X. Zhao, Fast window correlations over uncooperative time series, in Pro-
ceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery
in Data Mining, KDD’05, New York, NY, USA (ACM, New York, 2005), pp. 743–749

3. X. Zhao, High performance algorithms for multiple streaming time series. PhD thesis, New
York, NY, USA, AAI3205697 (2006)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Fast Methods for Statistical Arbitrage 497

4. Y. Zhu, D. Shasha, Statstream: statistical monitoring of thousands of data streams in real time,
in Proceedings of the 28th International Conference on Very Large Data Bases, VLDB’02,
VLDB Endowment (2002), pp. 358–369

5. R. Agrawal, C. Faloutsos, A.N. Swami, Efficient similarity search in sequence databases, in
Proceedings of the 4th International Conference on Foundations of Data Organization and
Algorithms, FODO’93, London, UK, UK (Springer, Berlin, 1993), pp. 69–84

6. C. Faloutsos, M. Ranganathan, Y. Manolopoulos, Fast subsequence matching in time-series
databases. Technical report College Park, MD, USA (1993)

7. D. Rafiei, A. Mendelzon, Similarity-based queries for time series data. SIGMOD Rec. 26(2),
13–25 (1997)

8. K.-P. Chan, A.W.-C. Fu, Efficient time series matching by wavelets, in Proceedings of the
15th International Conference on Data Engineering, ICDE’99, Washington, DC, USA (IEEE
Comput. Soc., Los Alamitos, 1999), p. 126

9. A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, M.J. Strauss, Surfing wavelets on streams: one-
pass summaries for approximate aggregate queries, in VLDB (2001), pp. 79–88

10. F. Korn, H.V. Jagadish, C. Faloutsos, Efficiently supporting ad hoc queries in large datasets of
time sequences, in SIGMOD (1997), pp. 289–300

11. E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Dimensionality reduction for fast similar-
ity search in large time series databases. J. Knowl. Inf. Syst. 3, 263–286 (2000)

12. D. Achlioptas, Database-Friendly Random Projections (ACM, New York, 2001), pp. 274–
281

13. W.B. Johnson, J. Lindenstrauss, Extensions of Lipschitz mappings into a Hilbert space (1982)
14. E. Kushilevitz, R. Ostrovsky, Y. Rabani, Efficient search for approximate nearest neighbor in

high dimensional spaces, in Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, STOC’98, New York, NY, USA (ACM, New York, 1998), pp. 614–623

15. P. Indyk, Stable distributions, pseudorandom generators, embeddings, and data stream com-
putation. J. ACM 53(3), 307–323 (2006)

16. D. Shasha, Statstream pictorial architecture (2005). http://cs.nyu.edu/shasha/papers/statstream/
architecture.html

17. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830 (2011)

18. M. Kontaki, A.N. Papadopoulos, Efficient similarity search in streaming time sequences, in
Proceedings of the 16th International Conference on Scientific and Statistical Database Man-
agement, SSDBM’04, Washington, DC, USA (IEEE Comput. Soc., Los Alamitos, 2004), p. 63

19. T. Buchgraber, D. Shutin, H.V. Poor, A sliding-window online fast variational sparse Bayesian
learning algorithm, in ICASSP (2011), pp. 2128–2131

20. M. Velazco, A. Oliveira, C. Lyra, Neural networks give a warm start to linear optimiza-
tion problems, in Proceedings of the 2002 International Joint Conference Neural Networks,
IJCNN’02, vol. 2 (2002), pp. 1871–1876

21. R.S. Sutton, S.D. Whitehead, Online learning with random representations, in Proceedings
of the Tenth International Conference on Machine Learning (Morgan Kaufmann, San Mateo,
1993), pp. 314–321

22. D. Saad (ed.), On-Line Learning in Neural Networks (Cambridge University Press, Cam-
bridge, 1998)

23. C.C. Chang, S.S. Chen, R. Chou, C.W. Hsin, Intraday return spillovers and its variations across
trading sessions. Rev. Quant. Finance Account. 36, 355–390 (2011)

24. C.M.C. Lee, B. Mucklow, M.J. Ready, Spreads, depths, and the impact of earnings informa-
tion: an intraday analysis. Rev. Financ. Stud. 6(2), 345–374 (1993)

http://cs.nyu.edu/shasha/papers/statstream/architecture.html
http://cs.nyu.edu/shasha/papers/statstream/architecture.html

Adaptive, Automatic Stream Mining

Spiros Papadimitriou, Anthony Brockwell, and Christos Faloutsos

Sensor devices and embedded processors are becoming widespread, especially
in measurement/monitoring applications. Their limited resources (CPU, memory
and/or communication bandwidth and power) pose some interesting challenges. We
need concise, expressive models to represent the important features of the data, and
lend themselves to efficient estimation. In particular, under these severe constraints,
we want models and estimation methods which (a) require little memory and a sin-
gle pass over the data, (b) can adapt and handle arbitrary periodic components, and
(c) can deal with various types of noise.

This material is based upon work supported by the National Science Foundation under Grants
No. DMS-9819950 and IIS-0083148.

This material is based upon work supported by the National Science Foundation under Grants
No. IIS-9817496, IIS-9988876, IIS-0083148, IIS-0113089, IIS-0209107 IIS-0205224
INT-0318547 SENSOR-0329549 EF-0331657IIS-0326322 by the Pennsylvania Infrastructure
Technology Alliance (PITA) Grant No. 22-901-0001, and by the Defense Advanced Research
Projects Agency under Contract No. N66001-00-1-8936. Additional funding was provided by
donations from Intel, and by a gift from Northrop-Grumman Corporation. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation, or other funding parties.

S. Papadimitriou (B)
Business School, Rutgers University, New Brunswick, NJ, USA
e-mail: spapadim@business.rutgers.edu

A. Brockwell
Department of Statistics, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: abrock@stat.cmu.edu

C. Faloutsos
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: christos@cs.cmu.edu

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_24

499

mailto:spapadim@business.rutgers.edu
mailto:abrock@stat.cmu.edu
mailto:christos@cs.cmu.edu
http://dx.doi.org/10.1007/978-3-540-28608-0_24

500 S. Papadimitriou et al.

We propose AWSOM (Arbitrary Window Stream mOdeling Method), which al-
lows sensors in remote or hostile environments to efficiently and effectively discover
interesting patterns and trends. This can be done automatically, i.e., with no prior in-
spection of the data or any user intervention and expert tuning before or during data
gathering. Our algorithms require limited resources and can thus be incorporated
in sensors—possibly alongside a distributed query processing engine [6, 10, 26].
Updates are performed in constant time with respect to stream size, using logarith-
mic space. Existing forecasting methods (SARIMA, GARCH, etc.) or “traditional”
Fourier and wavelet analysis fall short on one or more of these requirements. To
the best of our knowledge, AWSOM is the first framework that combines all of the
above characteristics.

Experiments on real and synthetic datasets demonstrate that AWSOM discov-
ers meaningful patterns over long time periods. Thus, the patterns can also be used
to make long-range forecasts, which are notoriously difficult to perform. In fact,
AWSOM outperforms manually set up auto-regressive models, both in terms of
long-term pattern detection and modeling, as well as by at least 10× in resource
consumption.

1 Introduction

Several applications produce huge amounts of data in the form of a semi-infinite
stream of values [16, 18, 19, 21], typically samples or measurements. Formally,
a stream is a discrete sequence of numbers X0,X1, . . . ,Xt , Time sequences
have attracted attention [7], for forecasting in financial, sales, environmental, eco-
logical and biological time series, to mention a few. However, several new and ex-
citing applications have recently become possible.

The emergence of cheap and small sensors has attracted significant attention.
Sensors are small devices that gather measurements—for example, temperature
readings, road traffic data, geological and astronomical observations, patient phys-
iological data, etc. There are numerous, fascinating applications for such sensors
and sensor networks, in fields such as health care and monitoring, industrial pro-
cess control, civil infrastructure [9], road traffic safety and smart houses, to men-
tion a few. Although current small sensor prototypes [23] have limited resources
(512 bytes to 128 KB of storage), dime-sized devices with memory and process-
ing power equivalent to a PDA are not far away. In fact, PDA-like devices with
data gathering units are already being employed in some of the above applications.
The goal in the next decade is single-chip computers with powerful processors and
2–10 GB [9] of non-volatile storage. Furthermore, embedded processors are becom-
ing ubiquitous and their power has yet to be harnessed. A few examples of such
applications are (a) intelligent (active) disks [30] that learn input traffic patterns and
do appropriate prefetching and buffering, (b) intelligent routers that monitor data
traffic and simplify network management.

Adaptive, Automatic Stream Mining 501

Fig. 1 Automobile traffic, complete series, one day and one hour (the first two are 8- and 4-point
averages to make the trends easier to see). There is clearly a daily periodicity. Also, in each day
there is another distinct pattern (morning and afternoon rush hours). However, at an hour scale
traffic is highly bursty—in fact, it can be modeled by self-similar noise. We want a method that
can capture all this information automatically, with one pass and using limited memory!

From now on, we use the term “sensor” broadly, to refer to any embedded com-
puting device with fairly limited processing, memory and (optionally) communica-
tion resources and which generates a semi-infinite sequence of measurements.

The resource limitations unavoidably imply the need for certain trade-offs—it is
impossible to store everything. Furthermore, we want to make the most of available
resources, allowing the sensor to adapt and operate without supervision for as long
as possible. This is the problem we address in this work. The goal is a “language”
(i.e., model/representation) for efficient and effective stream mining. We want to
collect information, in real-time and without any human intervention, and discover
patterns such as those illustrated in Fig. 1.

This problem is orthogonal to that of continuous query processing. We focus
on an adaptive algorithm that can look for arbitrary patterns and requires no prior
knowledge and initial human tuning to guide it. There are situations when we do
not know beforehand what we are looking for. Furthermore, it may be impossible
to guide the sensor as it collects data, due to the large volume of data and/or limited
or unavailable communication. If further exploration is desired, users can issue fur-
ther queries, guided by the general long-term patterns to quickly narrow down the
“search space.”

In detail, the main requirements are (see also Fig. 1):

1. Concise models. The models should be able to capture most of the regularities in
real-world signals, using limited resources. In particular, we want

(a) Periodic component identification; humans can achieve this task, visually,
from the time-plot. Our method should automatically spot multiple periodic
components, each of unknown, arbitrary period.

(b) Noise filtering/identification; various types of “noise” are present in most
real signals; our framework should deal with it and identify several of its
characteristics.

502 S. Papadimitriou et al.

(c) Finally, we need a few, simple patterns (i.e., equations and features), so they
can be easily communicated to other nearby sensors and/or to a central pro-
cessing site.

2. Streaming framework. In particular, we want

(a) An online, one-pass algorithm, since we can afford neither the memory nor
time for offline updates, much less multiple passes over the data stream.

(b) Limited memory use, since sensor memory will be exhausted, unless our
method carefully detects redundancies (or equivalently, patterns) and ex-
ploits them.

(c) Any-time forecasting and outlier detection; it is not enough to do compres-
sion (e.g., of long silence periods, or by ignoring small Fourier or wavelet
coefficients). The model should be generative and thus able to report out-
liers. An outlier can be defined as any value that deviates too much from our
forecast (e.g., by two standard deviations).

3. Unsupervised, automatic operation. In a general sensor setting, we cannot afford
human intervention.

The AWSOM framework can extract several key features of the stream, in a princi-
pled way. It can do so in a single pass, with minimal resource requirements. Based
on these features, it can immediately provide information about the stream at sev-
eral levels. In brief, AWSOM has all of the above characteristics, while none of
the previously published methods (AR and variations, Fourier analysis, wavelet
decomposition—see Sect. 2.2) can claim the same.

2 Related Work

Previous work broadly falls into two categories. The first includes work done by
the databases community on continuous query processing. These methods employ
increasingly sophisticated mathematical methods, but the focus is typically on some
form of compression (or, synopses) which do not employ generative models. The
other includes various popular statistical models and methods for time series fore-
casting. However, standard estimation methods for these models typically fail in one
or both of the requirements 2 and 3 earlier.

Thus the authors believe that there is a need for straightforward methods of time
series model building which can be applied in real-time to semi-infinite streams of
data, using limited memory. Table 1 summarizes the main characteristics of some
key earlier techniques and our proposed AWSOM framework.

2.1 Continuous Queries and Stream Processing

An interesting method for discovering representative trends in time series using
sketches was proposed by Indyk et al. [24]. A representative trend is a section of the

Adaptive, Automatic Stream Mining 503

Table 1 Comparison of methods

Method Contin. streams Trends/Forecast Automatic Memory

DFT (N-point) NO NO – –

SWFT (N-point) YES(?) NO – –

DWT (N-point) NO NO – –

IncDWT [21] YES NO – –

Sketches [24] NO YES(?) – –

AR/ARIMA YES YES NO [7] W 2

AWSOM YES YES YES m|D|2

time series that has the smallest sum of “distances” from all other sections of the
same length. The proposed method employs random projections for dimensionality
reduction and FFT to quickly compute the sum of distances. However, it cannot
be applied to semi-infinite streams, since each section has to be compared to every
other.

Gilbert et al. [21] use wavelets to compress the data into a fixed amount of mem-
ory, by keeping track of the largest Haar wavelet coefficients and carefully updating
them online. In the following, we will use the name Incremental DWT or IncDWT
for short. However, this method does not try to discover patterns and trends in the
data. Thus, it cannot compete directly with our method, which employs a generative
model. More recently, Garofalakis et al. [18] presented an approach for accurate data
compression using probabilistic wavelet synopses. However, this method has an en-
tirely different focus and cannot be applied to semi-infinite streams. The recent work
of Guha et al. [22] efficiently constructs ε-accurate histograms in a stream setting,
for a fixed number of buckets, using space and time-per-element that is logarithmic
with respect to stream size (or poly-logarithmic with respect to a fixed window size).
Further work on streams focuses on providing exact answers to pre-specified sets of
queries using the minimum amount of memory possible. Arvind et al. [2] study the
memory requirements of continuous queries over relational data streams. Datar et
al. [14] keep exact summary statistics and provide theoretical bounds in the setting
of a bit stream. Das et al. [13] examine the problem of discovering rules in time
series, by quantizing them and then mining local, frequent-itemset type rules over
sliding window fragments, based on certain similarity criteria.

There is also recent work on approximate answers to various types of continuous
queries. Gehrke et al. [19] presents a comprehensive approach for answering corre-
lated aggregate queries (e.g., “find points below the (current) average”), using his-
togram “summaries” to approximate aggregates. Dobra et al. [16] present a method
for approximate answers to aggregate multi-join queries over several streams, using
random projections and boosting. More recently, Considine et al. [12] have pro-
posed novel sketching techniques for aggregate queries with the goal of minimizing
communication and computation overhead.

Olston et al. [27] present a query processing framework for minimizing commu-
nication overhead over a set of specific continuous queries over multiple streams,

504 S. Papadimitriou et al.

while providing error guarantees. Also, the work in [3] considers the problem of
efficiently monitoring the top-k values in a distributed, multiple stream setting.

Zhu and Shasha [37] examine the problem of efficient detection of elastic bursts
in streams. In [36], they use the DFT to summarize streams within a finite window
and then compute the pairwise correlations among all streams. Also, Yi et al. [33]
present a method for analysis of multiple co-evolving sequences.

A system for linear pattern discovery on multi-dimensional time series was pre-
sented recently by Chen et al. [11]. Although this framework employs varying res-
olutions in time, it does so by straight aggregation, using manually selected aggre-
gation levels (although the authors discuss the use of a geometric progression of
time frames) and can only deal with, essentially, linear trends. Recently, Bulut et
al. [8] proposed an approach for hierarchical stream summarization (similar to that
of [21]) which focuses on simple queries and communication/caching issues for
wavelet coefficients. Even more recently, Palpanas et al. [28] consider approxima-
tion of time-series with amnesic functions. They propose novel techniques suitable
for streaming, and applicable to a wide range of user-specified approximating func-
tions.

Finally, in other areas of database research, Zhang et al. [35] present a framework
for spatio-temporal joins using multiple-granularity indices. Aggregation levels are
pre-specified and the main focus is on efficient indexing. Yufei et al. [31] recently
presented an approach to recursively predict motion sequence patterns.

2.2 Time Series Methods

None of the continuous querying methods deal with pattern discovery and fore-
casting. The typical “textbook” approaches to forecasting (i.e., generative time se-
ries models) include auto-regressive (AR) models and their generalizations, auto-
regressive moving average (ARMA), auto-regressive integrated moving average
(ARIMA) and seasonal ARIMA (SARIMA) [7]. Other popular time-series models in-
clude GARCH (generalized auto-regressive conditional heteroskedasticity) [5] and
ARFIMA (auto-regressive fractionally integrated moving average) [4]. These time-
series models could be used; however, standard estimation methods for these models
fail in one or both of the requirements 2 and 3 stated in the introduction. Further-
more, these methods often have a number of other limitations.

Existing model-fitting methods are typically batch-based (i.e., do not allow on-
line update of parameters). Established methods for determining model structure
are at best computationally intensive, besides not easily automated. Large window
sizes introduce severe estimation problems, both in terms of resource requirements
as well as accuracy.

In addition, ARIMA models cannot handle bursty time series, even when the
bursts are re-occurring. While GARCH models [5] can handle the class of bursty
white noise sequences, they do not have the richness in structure to model a wide
variety of different time series. Recently, the ARIMA model has been extended to

Adaptive, Automatic Stream Mining 505

Table 2 Symbols and definitions

Symbol Definition

X,P, . . . Matrices (boldface capital).

y,q,b, . . . Vectors (boldface lower-case).

Xt Value at time t = 0,1, . . . (sometimes also X[t]).
N Number of points so far from {Xt }.
Wl,t Wavelet (or, detail) coefficient (level l, time t); also denoted W [l, t].
Vl,t Scaling (or, smooth) coefficient (level l, time t); also denoted V [l, t].
β

(l)
i AWSOM coefficient at time lag i, for the equation at level l.

AWSOM(n0) AWSOM model of order n0 (i.e., with n0 model coefficients, per level).
The total order of this model is k ≡ n0.

ARFIMA, which handles the class of self-similar bursty sequences [4]. However,
ARFIMA models pose particular computational problems since they cannot be ex-
pressed in Markovian form, making the likelihood computationally burdensome to
evaluate.

All the above methods deal with linear forecasting. Nonlinear modeling meth-
ods [32] also require human intervention to choose the appropriate windows for
non-linear regression or to configure an artificial neural network.

2.3 Other

There is a large body of work in the signal processing literature related to compres-
sion and feature extraction. Typical tools include the Fast Fourier Transform (FFT),
as well as the Discrete Wavelet Transform (DWT) [29]. However, most of these al-
gorithms (a) deal with fixed length signals of size N , and (b) cannot do forecasting
(i.e., do not employ a generative model).

3 Background Material

In this section we give a very brief introduction to some necessary background ma-
terial. Table 2 summarizes the key notation used in our development.

3.1 Auto-Regressive (AR) Modeling

Auto-regressive models are the most widely known and used. We present the basic
ideas (see also Appendix A)—more information can be found in, e.g., [7]. The main

506 S. Papadimitriou et al.

idea is to express Xt as a function of its previous values, plus (filtered) noise εt :

Xt = φ1Xt−1 + · · · + φWXt−W + εt (1)

where W is a window that is determined by trial and error, or by using a criterion
that penalizes model complexity (i.e., large values of W), like the Akaike Informa-
tion Criterion (AIC). Seasonal variants (SAR, SAR(I)MA) also use window offsets
that are multiples of a single, fixed period (i.e., besides terms of the form Xt−i ,
the equation contains terms of the form Xt−Si where S is a constant). The typi-
cal ARIMA modeling approach involves manual preprocessing to remove trend and
seasonal components.

3.2 Recursive Least Squares (RLS)

Recursive Least Squares (RLS) is a method that allows dynamic update of a least-
squares fit. The least squares solution to an overdetermined system of equations
Xb = y where X ∈ R

m×k (measurements), y ∈ R
m (output variables) and b ∈ R

k

(regression coefficients to be estimated) is given by the solution of XT Xb = XT y.
Thus, all we need for the solution are the projections

P ≡ XT X and q ≡ XT y.

We need only space O(k2 + k) = O(k2) to keep the model up to date. When a new
row xm+1 ∈R

k and output ym+1 arrive, we can update

P ← P + xm+1xT
m+1 and

q ← q + ym+1xm+1.

In fact, it is possible to update the regression coefficient vector b without explicitly
inverting P to solve P b = P−1q. In particular (see, e.g., [34]) the update equations
are

G ← G − (
1 + xT

m+1Gxm+1
)−1Gxm+1xT

m+1G,

b ← b − Gxm+1
(
xT
m+1b − ym+1

)
,

where the matrix G can be initialized to G ← εI (where ε is a small positive number
and I is the k × k identity matrix).

RLS and AR

In the context of auto-regressive modeling (Eq. (1)), we have one equation for each
stream value Xw+1, . . . ,Xt , . . . , i.e., the mth row of the X matrix above is

xm = [Xm−1 Xm−2 . . . Xm−w]T ∈R
w

Adaptive, Automatic Stream Mining 507

for t − w = m = 1,2, . . . (t > w). In this case, the solution vector b consists pre-
cisely of the auto-regression coefficients in Eq. (1), i.e.,

b = [φ1 φ2 . . . φw]T ∈R
w.

3.3 Wavelets

The N -point discrete wavelet transform (DWT) of a length N time sequence gives N

wavelet coefficients. Wavelets are best introduced with the Haar transform because
of its simplicity (a more rigorous introduction can be found, e.g., in [29]). At each
level l of the construction we keep track of two sets of coefficients, each of which
“looks” at a time window of size 2l :

• Vl,t —The smooth component, which consists of the N/2l scaling coefficients.
These capture the low-frequency component of the signal; in particular, the fre-
quency range [0,1/2l].

• Wl,t —The detail component, which consists of the N/2l wavelet coefficients.
These capture the high-frequency component; in particular, the range [1/2l ,

1/2l−1].
The construction starts with V0,t = Xt and W0,t is not defined. At each iteration
l = 1,2, . . . , lgN we perform two operations on Vl−1,t to compute the coefficients
at the next level:

• Differencing, to extract the high frequencies:

Wl,t = (Vl−1,2t − Vl−1,2t−1)/
√

2;
• Smoothing, which averages1 each consecutive pair of values and extracts the low

frequencies:

Vl,t = (Vl−1,2t + Vl−1,2t−1)/
√

2.

We stop when Wl,t consists of one coefficient (which happens at l = lgN + 1). The
scaling coefficients are needed only during the intermediate stages of the compu-
tation. The final wavelet transform is the set of all wavelet coefficients along with
VlgN+1,0. Starting with VlgN+1,0 (which is also referred to as the signal’s scaling
coefficient) and following the inverse steps, we can reconstruct each Vl,t until we
reach V0,t ≡ Xt .

Figure 2 illustrates the final effect for a signal with N = 16 values. Each wavelet
coefficient is the result of projecting the original signal onto the corresponding basis
signal (i.e., taking the dot product of the signal with the basis). Figure 2 shows the
scalogram, that is, the energy (i.e., squared magnitude) of each wavelet coefficient

1The scaling factor of 1/
√

2 in both the difference and averaging operations is present in order to
preserve total signal energy (i.e., sum of squares of all values).

508 S. Papadimitriou et al.

Fig. 2 Haar bases and correspondence to time/frequency (for signal length N = 16). Each wavelet
coefficient is a linear projection of the signal to the respective basis

versus the location in time and frequency it is “responsible” for. In general, there are
many wavelet transforms, but they all follow the pattern above: a wavelet transform
uses a pair of filters, one high-pass and one low-pass. For example, in Haar wavelets,
this pair consists of the simple differencing and averaging filters, respectively.

For our purposes here, we shall restrict ourselves to wavelets of the Daubechies
family, which have desirable smoothness properties and successfully compress
many real signals. In practice, although by far the most commonly used (largely
due to their simplicity), Haar wavelets are too unsmooth and introduce significant
artifacting [29]. In fact, unless otherwise specified, we use Daubechies-6.

Incremental Wavelets

This part is a very brief overview of how to compute the DWT incrementally. This
is the main idea of IncDWT [21], which uses Haar wavelets. In general, when using
a wavelet filter of length L, the wavelet coefficient at a particular level is computed
using the L corresponding scaling coefficients of the previous level. Recall that
L = 2 for Haar (average and difference of two consecutive points), and L = 6 for
Daubechies-6 that we typically use. Thus, we need to remember the last L − 1
scaling coefficients at each level. We call these the wavelet crest.

Definition 1 (Wavelet Crest) The wavelet crest at time t is defined as the set of
scaling coefficients (wavelet smooths) that need to be kept in order to compute the
new wavelet coefficients when Xt arrives.

Lemma 1 (DWT Update) Updating the wavelet crest requires space (L−1) lgN+
L = O(L lgN) = O(lgN), where L is the width of the wavelet filter (fixed) and N

the number of values seen so far.

Proof See [21]. Generalizing to non-Haar wavelets and taking into account the
wavelet filter width is straightforward. �

Adaptive, Automatic Stream Mining 509

Wavelet Properties

In this section, we emphasize the DWT properties which are relevant to AWSOM.

Computational Complexity

The DWT can be computed in O(N) time and, as new points arrive, it can be
updated in O(1) amortized time. This is made possible by the structure of the
time/frequency decomposition which is unique to wavelets. For instance, the Fourier
transform also decomposes a signal into frequencies (i.e., sum of sines), but requires
O(N lgN) time to compute and cannot be updated as new points arrive.

Time/Frequency Decomposition

Notice (see scalogram in Fig. 2) that higher level coefficients are highly localized
in time, but involve uncertainty in frequency and vice-versa. This is a fundamental
trade-off of any time/frequency representation and is a manifestation of the uncer-
tainty principle, according to which localization in frequencies is inversely propor-
tional to localization in time. The wavelet representation is an excellent choice when
dealing with semi-infinite streams in limited memory: it “compresses” well many
real signals, while it is fast to compute and can be updated online.

Wavelets and Decorrelation

A wavelet transform with filter of length 2L can decorrelate only certain signals
provided their Lth order (or less) backward difference2 is a stationary random pro-
cess [29]. For real signals, this value of L is not known in advance and may be
impractically large: the space complexity of computing new wavelet coefficients is
O(L lgN)—see Lemma 1.

Wavelet Variance

One further benefit of using wavelets is that they decompose the variance across
scales. Furthermore, the plot of log-power versus scale can be used to detect self-
similar components (see Appendix B for a brief overview).

2In particular, the Daubechies-2L wavelet filters are essentially Lth order backward differences
(and, consequently, the scaling filters are essentially 2L-point weighted moving averages).

510 S. Papadimitriou et al.

Fig. 3 AWSOM—Intuition
and demonstration. AWSOM
captures intra-scale
correlations (a). Also,
(b) demonstrates why we fit
different models per level

4 Proposed Method

In this section, we introduce our proposed model. What equations should we be
looking for to replace ARIMA’s (see Eq. (1))?

4.1 Intuition Behind Our Method

First Part—Information Representation

This is a crucial choice—what is a good way to represent the key information in
the series, given the severe resource constraints in a streaming, sensor setting? We
want a powerful and flexible representation that can adapt to the sequence, rather
than expect someone to adapt the sequence to the representation. We propose to use
wavelets because they are extremely successful in compressing most real signals,
such as voice and images [17], seismic data [38], biomedical signals [1] and eco-
nomic time sequences [20]. By using wavelet coefficients, we immediately discard
many redundancies (i.e., near-zero valued wavelet coefficients) and focus on what
really matters. Furthermore, the DWT can be computed quickly and updated online.

Second Part—Correlations

In the wavelet domain, how can we capture arbitrary periodicities? A periodic sig-
nal will have high-energy wavelet coefficients at the scales that correspond to its
frequency. Also, successive coefficients on the same level should have related val-
ues (see Fig. 3(a)). Thus, in order to capture periodic components, we should look
for intra-scale correlations between wavelet coefficients.

The last question we need to answer is: what type of regression models should
we use to quantify these correlations? Our proposed method tries to capture these

Adaptive, Automatic Stream Mining 511

by fitting linear regression models in the wavelet domain. These can also be updated
online with RLS.

Summary

We propose using the wavelet representation of the series and capturing correla-
tions in the wavelet domain (see Fig. 3(b)). If we naïvely try to apply linear auto-
regression in the time domain, there are several problems:

• Window size. In order to capture long-term (non-sinu soidal) periodic compo-
nents, the window size has to be as large as the period. If we hope to capture
any information about long-term periodic trends, the window size has to be ex-
tremely large and this clearly violates the limited memory requirements (it also
creates other problems, as discussed next).

However, the wavelet coefficients at each level capture information at a coarser
resolution, but at windows whose size increases exponentially with the level.

• Noise. Even with a large window size, the presence of noise (typically at higher
frequencies) severely affects model fitting. Dealing with noise in the time domain
is possible (moving average being the simplest approach), but cannot be done
easily in an online setting and often requires human intervention (seasonal models
typically used for this reason, where the period has to be manually identified).

However, the wavelet transform filters out this noise quite successfully and
does so in a principled manner, than has been proven to work for several real
signals. Furthermore, it allows us to extract certain important characteristics of
the noise.

Therefore, our approach significantly improves modeling power while dramatically
reducing memory requirements, by essentially performing auto-regression on the
wavelet representation instead of the original signal. At the same time, it adheres to
the principle of no prior human intervention and tuning (or, adapting to new data as
they arrive).

4.2 AWSOM Modeling

We express the wavelet coefficients at each level as a function of the n0 previous
coefficients of the same level, i.e.,

Wl,t = β
(l)
1 Wl,t−1 + β

(l)
2 Wl,t−2 + · · · + β(l)

n0
Wl,t−n0 (2)

where Wl,t are the wavelet coefficients (at time t and level l) and β
(l)
i are the AW-

SOM coefficients (for level l and lag i). We estimate one set of such coefficients
for each level l; note that l is at most lgN . This is a model of order n0, denoted as
AWSOM(n0). To summarize:

512 S. Papadimitriou et al.

Input: Continuous, numerical stream X[1],X[2], . . . ,X[t], . . .
Model order n0 (typically n0 ≤ 6)

Output: Wavelet variances Vl

AWSOM coefficients β
(l)
i

Wavelet crest (or, initial conditions) W [N − i − 1, l]
Where: N is the number of points seen so far

1 ≤ l ≤ �lgN� and 1 ≤ i ≤ n0

UpdateCrest (X[t]):
Foreach l ≥ 0 s.t. 2l divides t :

Compute V [l, t/2l]
If 2l+1 divides t :

Compute W [l, t/2l+1]
Delete W [l, t/2l+1 −L]

Update (X[t]):
UpdateCrest(X[t])
Foreach new coeff. W [l, t ′] in wavelet crest:

Find the linear model it belongs to
based on l and t ′ mod Λ

Update P ≡ XT X and
q ≡ XT y for this model

ModelSelection:
For each linear model:

Estimate SSR of complete model
For each subset of regression variables:

Compute SSR of reduced model from Lemma 2
Estimate probability that reduction in variance is not due to chance

Select the subset of variables with highest probability (or keep all
if not within 95 % confidence interval)

Fig. 4 High-level description of the algorithms

Definition 2 (AWSOM Model and Order) A model with n0 coefficients β
(l)
i , i =

1,2, . . . , n0 for each wavelet level l is denoted as AWSOM(n0). Its (total) order
is n0.

This can capture arbitrary periodic components and is sufficient in many real
signals.

Figure 4 described the algorithm; we update the wavelet crest online (as de-
scribed before) and use recursive least squares to update the regression models, also
online.

4.3 Model Selection

Many of the dependencies may be statistically insignificant, so the respective coeffi-
cients β

(l)
i should be set to zero. We want to (a) avoid over-fitting and (b) present to

the user those patterns that are important. We can do model selection using only data
gathered online and with time complexity independent of the stream size. Next, we
show how feature selection can be done from the data gathered online (i.e., P and
q for each AWSOM equation). The algorithm is sketched in Fig. 4. The main idea

Adaptive, Automatic Stream Mining 513

is to determine whether the reduction in error achieved by adding extra parameters
is statistically significant (based on some criterion), i.e., it cannot be attributed to
noise.

Model Testing and Selection

The key quantity we need is the total squared error (or, square sum of residuals
(SSR)).

Lemma 2 (Square Sum of Residuals) If b is the least-squares solution to the
overdetermined equation Xb = y, then

sn ≡
n∑

i=1

(
xT
i b − yi

)2 = bT Pb − 2bT q + y2.

Proof Straightforward from the definition of sn, which in matrix form is sn =
(Xb − y)2. �

Thus, besides P and q, we only need to update y2 (a single number), by adding
y2
i to it as each new value arrives. Now, if we select a subset I = {i1, i2, . . . , ip} ⊆

{1,2, . . . , k} of the k variables x1, x2, . . . , xk , then the solution bI for this subset
is given by PIbI = qI and the SSR by sn = bT

IPIbI − 2bIqI + y2 where the
subscript I denotes straight row/column selection (e.g., PI = [pij ,ik]ij ,ik∈I)

The F-test (Fisher test) [15] is a standard method for determining whether a
reduction in variance is statistically significant. The F-test is based on the sample
variances, which can be computed directly from the SSR (Lemma 2). Although
the F-test holds precisely (i.e., non-asymptotically) under normality assumptions, in
practice it works well in several circumstances, especially when the population size
is large (as is the case with semi-infinite streams).

4.4 Complexity

In this section, we show that our proposed AWSOM models can be easily esti-
mated with a single-pass, “any-time” algorithm. From Lemma 1, estimating the
new wavelet coefficients requires space O(lgN). In fact, since we typically use
Daubechies-6 wavelets (L = 6), we need to keep exactly 5 lgN + 6 values. The
AWSOM models can be dynamically updated using RLS.

At each level, we fit a separate regression model; since the number of levels is
�lgN�, this leads to the following result:

Lemma 3 (Logarithmic Space Complexity) Maintaining an AWSOM(k) model
requires O(lgN + mk2) space, where N is the length of the signal so far, k is the
total AWSOM order and m = �lgN� = O(lgN) the number of equations.

514 S. Papadimitriou et al.

Fig. 5 (a) Memory space requirements (normalized): Space needed to keep the models up-to-date
(AWSOM and AR with equivalent, fair window size). (b) Time complexity versus stream size
(Python prototype), including model selection; the relationship is exactly linear, as expected

Proof Keeping the wavelet crest scaling coefficients requires space O(lgN). If we
use recursive least squares, we need to maintain a k × k matrix for each of the m

equations in the model. �

Auto-regressive models with a comparable window size need space O(m2k2),
since the equivalent fair window size is W ≈ mk. Here, “fair” means that the number
of total number of AWSOM coefficients plus the number of initial conditions we
need to store is the same for both methods. This is the information that comprises
the data synopsis and that would have to be eventually communicated. However, the
device gathering the measurements needs extra storage space in order to update the
models. The latter is, in fact, much larger for AR than for AWSOM (see Fig. 5(a)).
Thus this definition of equivalent window actually favors AR.

Lemma 4 (Time Complexity) Updating the model when a new data point arrives
requires O(k2) time on average, where k is the number of AWSOM coefficients in
each equation.

Proof On average, the wavelet crest scaling coefficients can be updated in O(1)

amortized time. Although a single step may require O(lgN) time in the worst case,
on average, the (amortized) time required is O(

∑n
i=0 B(i)/N) = O(1) (where B(i)

is the number of trailing zeros in the binary representation of i).3 Updating the
k × k matrix for the appropriate linear equation (which can be identified in O(1)

time, based on the level l), requires time O(k2). �

Auto-regressive models with a comparable window size need O(m2k2) time per
update.

3Seen differently, IncDWT is essentially a pre-order traversal of the wavelet coefficient tree.

Adaptive, Automatic Stream Mining 515

Table 3 Description of datasets (sizes are in number of points, 1K = 1024 points)

Dataset Size Description

Triangle 64K Triangle wave (i.e., piecewise linear;
amplitude 5, period 256)

Mix 256K Square wave (amplitude 25, period 256)
plus sine (amplitude 5, period 64)

Sunspot 2K Sunspot data

Automobile 32K Automobile traffic sensor trace from
large Midwestern state

Temperature 32K Measurements from indoor temperature
sensor (per second, degrees Celsius)

Corollary 1 (Constant-Time Update) When the model parameters have been fixed
(typically k is a small constant ≈ 6 and m ∼ lgN), the model requires space
O(lgN) and amortized time O(1) for each update.

Figure 5(b) shows that this is clearly the case, as expected.

5 Experimental Evaluation

We compared AWSOM against standard AR (with the equivalent, fair window
size—see Sect. 4.4), as well as hand-tuned (S)ARIMA (wherever possible). Our
prototype AWSOM implementation is written in Python, using Numeric Python for
fast array manipulation. We used the standard ts package from R4 for AR and
(S)ARIMA models. We illustrate the properties of AWSOM and how to interpret
the models using synthetic datasets and then show how these apply to real datasets
(see Table 3).

Only the first half of each sequence was used to estimate the models, which were
then applied to generate a sequence of length equal to that of the entire second half.
For AR and (S)ARIMA, the last values (as dictated by the lags) of the first half were
used to initiate generation. For AWSOM we again used as many of the last wavelet
coefficients from each DWT level of the first half as were necessary to start applying
the model equations. We should note that generating more than, say, 10 steps ahead
is very rare: most methods in the literature [32] generate one step ahead, then obtain
the correct value of Xt+1, and only then try to generate Xt+2. Nevertheless, our goal
is to capture long-term behavior under severe resource constraints and AWSOM
achieves this efficiently.

4R version 1.6.0; see http://www.r-project.org/.

http://www.r-project.org/

516 S. Papadimitriou et al.

5.1 Interpreting the Models

Visual Inspection

A “forecast” is essentially a by-product of any generative time series model: ap-
plication of any model to generate a number of “future” values reveals precisely
the trends and patterns captured by that model. In other words, synthesizing points
based on the model is the simplest way for any user to get a quick, yet fairly accurate
idea of what the trends are or, more precisely, what the model thinks they are. Thus,
what we expect to see (especially in a long-range forecast) is the important patterns
that can be identified from the real data. However, an expert user can extract even
more precise information from the models.

Variance Test

As explained in Appendix B, if the signal is self-similar, then the plot of log-power
versus scale is linear.

Definition 3 (Variance Log-Power Diagnostic) The log-power vs. scale plot is the
wavelet variance log-power diagnostic plot (or just log-power diagnostic). In par-
ticular, the correlation coefficient ρα quantifies the relation. If the plot is linear (in
a range of scales), the slope α̂ is the self-similarity exponent (−1 < α < 0, closer to
zero the more bursty the series).

A large value of |ρα|, at least across several scales, indicates that the series com-
ponent in those scales may be modeled using, e.g., a fractional noise process with
parameter dictated by α (see Automobile). However, we should otherwise be
careful in drawing further conclusions about the behavior within these scales.

We should note that after the observation by [25], fractional noise processes and,
in general, self-similar sequences have revolutionized network traffic modeling. Fur-
thermore, self-similar sequences appear in atomic clock fluctuations, river minima,
compressed video bit-rates [4, 29], to mention a few examples.

Wavelet Variance (Energy and Power)

The magnitude of variance within each scale serves as an indicator about which
frequency components are the dominant ones in the sequence. To precisely inter-
pret the results, we also need to take into account the fundamental uncertainty in
frequencies (see Fig. 12). However, the wavelet variance plot quickly gives us the
general picture of important trends. Furthermore, it guides us to focus on AWSOM
coefficients around frequencies with large variance.

To summarize, the steps are: (i) Examine the log-power diagnostic to identify
sub-bands that correspond to a self-similar component. These may be modeled using

Adaptive, Automatic Stream Mining 517

a fractional noise process for generation purposes; for forecasting purposes they
are just that: noise. (ii) Examine the wavelet energy spectrum to quickly identify
important sub-bands.

Experimental Goals

In each case, we demonstrate that AWSOM can provide information to answer the
following questions, using limited resources and no supervision:

(Q1) Identify and capture periodic components: this can be done by simply inspect-
ing the forecasts, or by examining the wavelet variance. The latter also gives
information about the relative “significance” (essentially, amplitude) of each
component.

(Q2) Diagnose the presence of self-similar noise in the appropriate scales: The log-
power diagnostic provides the necessary information.

(Q3) Perform long-range forecasts: Besides identifying periodic components, the
AWSOM coefficients at the appropriate scales capture their behavior (regard-
less of their relative amplitude).

5.2 Synthetic Datasets

We present synthetic datasets to illustrate the basic properties of AWSOM, its be-
havior on several characteristic classes of sequences, and the principles behind in-
terpreting the models. Applying the models to generate a number of “future” data
points is the quickest way to see if each method captures long-term patterns (see
Fig. 7).

Triangle

AR fails to capture anything because the window is not large enough. SAR estima-
tion (with no differencing, no MA component and only a manually pre-specified
256-lag seasonal component) fails completely. In fact, R segfaults after several
minutes, even without using maximum-likelihood estimation (MLE). However,
AWSOM captures the periodicity.

This is immediately evident from the forecasts, which capture the trend almost
perfectly. Also, inspection the wavelet variance (Fig. 9(a)) shows a single spike at
scale 7 (which corresponds to a window of 27 = 128; this is as expected, since there
is zero change among consecutive windows of the next size, 256).

518 S. Papadimitriou et al.

Fig. 6 Wavelet log-power diagnostic (real datasets). Horizontal axis is wavelet scale (l) and ver-
tical axis is log-power (logVl) (see Appendix B). A linear trend with negative slope (between 0
and −1) indicates presence of self-similar noise. Automobile exhibits self-similarity in scales
up to 6 (which roughly corresponds to one hour) but not overall

Mix

AR is again confused and does not capture even the sinusoidal component. SAR
estimation (without MLE) fails (R’s optimizer returns an error, after several minutes
of computation).

Quick inspection of the AWSOM forecast shows clearly the two periodic com-
ponents. The wavelet variance plot (Fig. 9(b)) also gives this information: there is
again a spike at scale 7 (or, window 27 = 128; same interpretation as Triangle),
which corresponds to the square wave periodic component. There is also a rise at
scale 5 (or window 25 = 32), which corresponds to the sinusoidal periodic compo-
nent5. The difference in magnitude of the variances is precisely due to the difference
in amplitude of the two periodic components: indeed, the square wave component is
a much “stronger” one. However, regardless of the strength (i.e., variance) of each
component, the AWSOM coefficients capture their behavior. In summary, using lim-
ited resources, AWSOM provides all the key information about the series.

5.3 Real Datasets

For the real datasets, we again show long-range forecasts (see Fig. 8), as well as the
marginal distribution quantile–quantile plots (or Q–Q plots—see Figs. 11 and 10).6

5The nonzero value at scale 6 is expected and due to frequency leaks, as explained in Appendix B.
6These are the scatter plots of (x, y) such that p % of the values are below x in the real sequence
and below y in the generated sequence. When the distributions are identical, the Q–Q plot coincides
with the bisector of the first quadrant.

Adaptive, Automatic Stream Mining 519

Fig. 7 Forecasts—synthetic datasets. Note that AR gives the wrong trend (if any), while seasonal
AR fails to complete and is not shown

Sunspot

This is a well-known dataset with a time-varying “period.”7 AR again fails com-
pletely. SAR (without a MA component, much less MLE) takes 40 minutes to es-
timate. AWSOM (in Python) takes less than 9 seconds. SAR misses the marginal
distribution (see Fig. 11) but, more importantly, it does not discover any period; that
information has to be manually provided, after an initial inspection of the data. Fur-
thermore, SAR can only deal successfully with one period only. AWSOM captures
the general periodic trend, with a desirable slight confusion about the “period.”

7Signals exhibiting this behavior are often referred to as cyclical, as opposed to periodic.

520 S. Papadimitriou et al.

Fig. 8 Forecasts—real datasets. AR fails to detect any trend, while seasonal AR fails to complete
or gives a wrong conclusion in 260× time

First, the log-power diagnostic (Fig. 6(b)) shows some hint of self-similar noise
at scales 2–4 (and, indeed, the series has some fluctuation at the month scale). We
won’t focus on this behavior here (see, however, discussion on Automobile) since
the other periodic (or, more accurately, cyclic) components are those that are of the
most interest and dominate the series by far.

The wavelet variance (Fig. 9(c)) indeed shows a spike in the vicinity of scale
6 (or window 26 = 64). Each time tick is one month; it is a well-known fact
(the so-called “Maunder minimum”) that sunspots cycle at about 9–11.5 years (or,
108–138 months), with an average cycle length of about 10.8 years (approximately
129–130 months). Indeed, we see that the wavelet variance has a peak at windows
of 64–128 (scales 6–7), which would correspond to repeating cycles every 128 or
more months, as is the case.

Furthermore, the AWSOM coefficients at those scales capture the trend at that
granularity (as can be seen immediately from the forecast), with the desirable “con-
fusion” about the period.

Finally, closer examination of the series shows that the peaks at the last third are
much lower than the rest of the series. This explains the other peak in Fig. 9(c) at the
scales of 9–10, which correspond to a window of about 1/4–1/2 of the total series
length.

Adaptive, Automatic Stream Mining 521

Fig. 9 Wavelet variances (average energy, normalized). The horizontal axis is wavelet level (l, i.e.,
wavelet window 2l) and the vertical is wavelet variance (i.e., average of squares of wavelet coeffi-
cients for each l). The vertical axis is (linearly) normalized to a maximum of 1. Essentially, values
at level l indicate “strength” of the series component at periods in the range [2l ,2l+1] (see also
Appendix B)

Automobile

This dataset has a strongly linear log-power diagnostic in scales 1–6 (Fig. 6(a)).
However, the lower frequencies (i.e., larger scales) contain the most energy (see
Fig. 9(d)). This indicates we should focus at these scales. The lowest frequency
corresponds to a daily periodicity (approximately 4000 points per day, or about 8
periods in the entire series). The next highest frequency corresponds to the morning
and afternoon rush-hours (approximately 2000 points per half-day). Also, we would
expect to see a rise in the wavelet variance at scales corresponding to windows of
≈1000–2000 or in the vicinity of scales 10–11. Indeed, this is the case, and at these
scales, the AWSOM coefficients capture the periodic components.

Furthermore, there appear to be significant differences in the dips between the
two halves (this is clearer in Fig. 1, where some of the noise has been removed),
which explains the continued rise up to scale 12 (along with some small frequency
leak, as explained in Appendix B). This trend is not repeated frequently enough to
be captured by a the regression models. However, the variance plot gives us a hint
about this and the regression models on the other scales still do their job.

Next, we examine closer the self-similar noise at the hour scale (or high frequen-
cies). In this series, these frequencies (corresponding scales 1–6) can be modeled

522 S. Papadimitriou et al.

Fig. 10
Automobile—generation
with fractional noise

Fig. 11 Marginal Q–Q plots
(slope and correlation
coefficients in parentheses)

by fractional noise. Figure 10 shows a generated sequence with fractional noise, as
identified by AWSOM (compare to Fig. 8, middle row). The fractional difference
parameter8 is estimated as δ̂ ≡−α̂/2 ≈ 0.276 and the amplitude is chosen to match
the total variance in those scales.

However, for unsupervised outlier detection, this is not necessary: what would
really constitute an outlier would be, for instance, days that (a) do not follow the
daily and rush-hour patterns, or (b) whose variance in the fractional noise scales is
very different. This can be captured automatically by the series components in the
appropriate frequency sub-bands that AWSOM identifies as a periodic component
and bursty noise, respectively.

Temperature

This data set consists of temperature measurements (in degrees Celsius) from small
sensors that attach to the joystick port.9 Each time tick is one second, thus the entire
dataset is approximately 10 hours. The interpretation is similar to that of Automo-
bile, except that there isn’t a strong noise component at any scale (see Fig. 6(c);
the slope is not negative, as required for diagnosing self-similar noise). Also, ob-
serve that the wavelet variance (Fig. 9(e)) tells us that the strongest trends happen

8This parameter is also related to the Hurst exponent.
9http://www.ices.cmu.edu/sensornets/.

http://www.ices.cmu.edu/sensornets/

Adaptive, Automatic Stream Mining 523

at largest scales (from 10 and on, or windows >1024). In other words, the most
interesting activity is at times larger than about half an hour, which is indeed the
case.

6 Conclusions

Sensor networks are becoming increasingly popular, thanks to falling prices and
increasing storage and processing power. We presented AWSOM, which achieves
all of the following goals:

1. Concise patterns. AWSOM provides linear models with few coefficients, it can
detect arbitrary periodic components, it gives information across several frequen-
cies and it can diagnose self-similarity and long-range dependence.

2. Streaming framework. We can update patterns in an “any-time” fashion, with one
pass over the data, in time independent of stream size and using O(lgN) space
(where N is the length of the sequence so far). Furthermore, AWSOM can do
forecasting (directly, for the estimated model).

3. Unsupervised operation. Once we decide the largest AWSOM order, no further
intervention is needed; the sensor can be left alone to collect information.

We showed real and synthetic data, where our method captures the periodicities and
burstiness, while manually selected AR (or even (S)ARIMA generalizations, which
are not suitable for streams with limited resources) fails completely.

AWSOM is an important first step toward hands-off stream mining, combining
simplicity with modeling power. Continuous queries are useful for evidence gather-
ing and hypothesis testing once we know what we are looking for. AWSOM is the
first method to deal directly with the problem of unsupervised stream mining and
pattern detection and fill the gap.

Acknowledgements We thank Becky Buchheit for her help with the automobile traffic datasets
and Mike Bigrigg for the temperature sensor data.

Appendix A: Auto-Regressive Modeling

In their simplest form, an auto-regressive model of order p, or AR(p) express Xt as
a linear combination of previous values, i.e., Xt = φ1Xt−1 + · · · + φpXt−p + εt or,
more concisely,

φ(L)Xt = εt

where L is the lag operator and φ(L) is a polynomial defined on this operator:

LXt ≡ Xt−1,

φ(L) = 1 − φ1L− φ2L
2 − · · · − φpLp,

524 S. Papadimitriou et al.

and εt is a white noise process, i.e.,

E[εt] = 0 and Cov[εt , εt−k] =
{

σ 2 if k = 0,

0 otherwise.

Using least-squares, we can estimate σ 2 from the sum of squared residuals (SSR).
This is used as a measure of estimation error; when generating “future” points, εt is
set to E[εt] ≡ 0.

The next step up are auto-regressive moving average models. An ARMA(p, q)

model expresses values Xt as

φ(L)Xt = θ(L)εt

where θ(L) = 1−θ1L−· · ·−θqLq . Estimating the moving average coefficients θi is
fairly involved. State-of-the-art methods use maximum-likelihood (ML) algorithms,
employing iterative methods for nonlinear optimization, whose computational com-
plexity depends exponentially on q .

ARIMA(p, d, q) models are similar to ARMA(p, q) models, but operate on
(1 −L)dXt , i.e., the d th order backward difference of Xt :

φ(L)(1 −L)dXt = θ(L)εt .

Finally, SARIMA(p, d, q)×(P,D,Q)T models are used to deal with seasonal-
ities, where

φ(L)Φ
(
LT

)
(1 −L)d

(
1 −LT

)D
Xt = θ(L)Θ

(
LT

)
εt

and where the seasonal difference polynomials,

Φ
(
LT

) = 1 −Φ1L
T −Φ2L

2T − · · · −ΦP LPT ,

Θ
(
LT

) = 1 −Θ1L
T −Θ2L

2T − · · · −ΘQLQT ,

are similar to φ(L) and θ(L) but operate on lags that are multiples of a fixed pe-
riod T . The value of T is yet another parameter that either needs to be estimated or
set based on prior knowledge about the series Xt .

Appendix B: More Wavelet Properties

Frequency Properties

Wavelet filters employed in practice can only approximate an ideal bandpass filter
since they are of finite length L. The practical implications are that wavelet co-
efficients at level l correspond roughly to the frequency range [1/2l+1,1/2l], or,
equivalently, periods in [2l ,2l+1] (see Fig. 12 for the actual correspondence). This
has to be taken into account for precise interpretation of AWSOM models by an
expert.

Adaptive, Automatic Stream Mining 525

Fig. 12 Illustration of Haar and Daubechies-6 cascade gain (levels 3–5). The horizontal axis is
frequency and the curves show how much of each frequency is “represented” at each wavelet level.
As expected, D-6 filters (used in all experiments), have better band-pass properties

526 S. Papadimitriou et al.

Wavelet Variance and Self-Similarity

The wavelet variance decomposes the variance of a sequence across scales. Due
to space limitations, we mention basic definitions and facts; details can be found
in [29].

Definition 4 (Wavelet Variance) If {Wl,t } is the DWT of a series {Xt } then the
wavelet variance Vl is defined as Vl = Var[Wl,t].

Under certain general conditions, V̂l = 2l

N

∑N/2l

t=1 W 2
l,t is an unbiased estimator

of Vl . Note that the sum is precisely the energy of {Xt } at scale l.

Definition 5 (Self-Similar Sequence) A sequence {Xt } is said to be self-similar fol-
lowing a pure power-law process if SX(f) ∝ |f |α , where −1 < α < 0 and SX(f)

is the SDF.10

It can be shown that Vl ≈ 2
∫ 1/2l

1/2l+1 SX(f)df , thus if {Xt } is self-similar, then

logVl ∝ l,

i.e., the plot of logVl versus the level l should be linear. In fact, the slope of the
log-power versus scale plot should be approximately equal to the exponent α. This
fact and how to estimate Vl are what the reader needs to keep in mind.

References

1. M. Akay (ed.), Time Frequency and Wavelets in Biomedical Signal Processing (Wiley, New
York, 1997)

2. A. Arasu, B. Babcock, S. Babu, J. McAlister, J. Widom, Characterizing memory requirements
for queries over continuous data streams, in PODS (2002)

3. B. Babcock, C. Olston, Distributed top-k monitoring, in Proc. SIGMOD (2003)
4. J. Beran, Statistics for Long-Memory Processes (Chapman & Hall, London, 1994)
5. T. Bollerslev, Generalized autoregressive conditional heteroskedasticity. J. Econom. 31, 307–

327 (1986)
6. P. Bonnet, J.E. Gehrke, P. Seshadri, Towards sensor database systems, in Proc. MDM (2001)
7. P.J. Brockwell, R.A. Davis, Time Series: Theory and Methods, 2nd edn. Springer Series in

Statistics (Springer, Berlin, 1991)
8. A. Bulut, A.K. Singh, SWAT: hierarchical stream summarization in large networks, in Proc.

19th ICDE (2003)
9. L.R. Carley, G.R. Ganger, D. Nagle, Mems-based integrated-circuit mass-storage systems.

Commun. ACM 43(11), 72–80 (2000)

10The spectral density function (SDF) is the Fourier transform of the auto-covariance sequence
(ACVS) SX,k ≡ Cov[Xt ,Xt−k]. Intuitively, it decomposes the variance into frequencies.

Adaptive, Automatic Stream Mining 527

10. D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stonebraker,
N. Tatbul, S.B. Zdonik, Monitoring streams—a new class of data management applications,
in Proc. VLDB (2002)

11. Y. Chen, G. Dong, J. Han, B.W. Wah, J. Wang, Multi-dimensional regression analysis of time-
series data streams, in Proc. VLDB (2002)

12. J. Considine, F. Li, G. Kollios, J.W. Byers, Approximate aggregation techniques for sensor
databases, in Proc. ICDE (2004)

13. G. Das, K.-I. Lin, H. Mannila, G. Renganathan, P. Smyth, Rule discovery from time series, in
Proc. KDD (1998)

14. M. Datar, A. Gionis, P. Indyk, R. Motwani, Maintaining stream statistics over sliding windows,
in Proc. SODA (2002)

15. M.H. DeGroot, M.J. Schervish, Probability and Statistics, 3rd edn. (Addison-Wesley, Read-
ing, 2002)

16. A. Dobra, M.N. Garofalakis, J. Gehrke, R. Rastogi, Processing complex aggregate queries
over data streams, in Proc. SIGMOD (2002)

17. C. Faloutsos, Searching Multimedia Databases by Content (Kluwer Academic, Norwell,
1996)

18. M.N. Garofalakis, P.B. Gibbons, Wavelet synopses with error guarantees, in Proc. SIGMOD
(2002)

19. J. Gehrke, F. Korn, D. Srivastava, On computing correlated aggregates over continual data
streams, in Proc. SIGMOD (2001)

20. R. Gencay, F. Selcuk, B. Whitcher, An Introduction to Wavelets and Other Filtering Methods
in Finance and Economics (Academic Press, San Diego, 2001)

21. A.C. Gilbert, Y. Kotidis, S. Muthukrishnan, M. Strauss, Surfing wavelets on streams: one-pass
summaries for approximate aggregate queries, in Proc. VLDB (2001)

22. S. Guha, N. Koudas, Approximating a data stream for querying and estimation: algorithms
and performance evaluation, in Proc. ICDE (2002)

23. J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System architecture directions
for networked sensors, in Proc. ASPLOS-IX (2000)

24. P. Indyk, N. Koudas, S. Muthukrishnan, Identifying representative trends in massive time se-
ries data sets using sketches, in Proc. VLDB (2000)

25. W. Leland, M. Taqqu, W. Willinger, D. Wilson, On the self-similar nature of Ethernet traffic.
IEEE Trans. Netw. 2(1), 1–15 (1994)

26. S.R. Madden, M.A. Shah, J.M. Hellerstein, V. Raman, Continuously adaptive continuous
queries over streams, in SIGMOD Conf. (2002)

27. C. Olston, J. Jiang, J. Widom, Adaptive filters for continuous queries over distributed data
streams, in Proc. SIGMOD (2003)

28. T. Palpanas, M. Vlachos, E.J. Keogh, D. Gunopulos, W. Truppel, Online amnesic approxima-
tion of streaming time series, in Proc. ICDE (2004)

29. D.B. Percival, A.T. Walden, Wavelet Methods for Time Series Analysis (Cambridge University
Press, Cambridge, 2000)

30. E. Riedel, C. Faloutsos, G.R. Ganger, D. Nagle, Data mining on an OLTP system (nearly) for
free, in SIGMOD Conf. (2000)

31. Y. Tao, C. Faloutsos, D. Papadias, B. Liu, Prediction and indexing of moving objects with
unknown motion patterns, in Proc. SIGMOD (2004)

32. A.S. Weigend, N.A. Gerschenfeld, Time Series Prediction: Forecasting the Future and Un-
derstanding the Past (Addison-Wesley, Reading, 1994)

33. B.-K. Yi, N. Sidiropoulos, T. Johnson, H. Jagadish, C. Faloutsos, A. Biliris, Online data mining
for co-evolving time sequences, in Proc. ICDE (2000)

34. P. Young, Recursive Estimation and Time-Series Analysis: An Introduction (Springer, Berlin,
1984)

528 S. Papadimitriou et al.

35. D. Zhang, D. Gunopulos, V.J. Tsotras, B. Seeger, Temporal aggregation over data streams
using multiple granularities, in Proc. EDBT (2002)

36. Y. Zhu, D. Shasha, Statstream: statistical monitoring of thousands of data streams in real time,
in Proc. VLDB (2002)

37. Y. Zhu, D. Shasha, Efficient elastic burst detection in data streams, in Proc. KDD (2003)
38. R. Zuidwijk, P. de Zeeuw, Fast algorithm for directional time-scale analysis using wavelets,

in Proc. SPIE, Wavelet Applications in Signal and Image Processing VI, vol. 3458 (1998)

Conclusions and Looking Forward

Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi

Today, data streaming is a part of the mainstream and several data steaming prod-
ucts are now publicly available. Data streaming algorithms are powering complex
event processing, predictive analytics, and big data applications in the cloud. In this
final chapter, we provide an overview of current data streaming products, and ap-
plications of data streaming to cloud computing, anomaly detection and predictive
modeling. We also identify future research directions for mining and doing predic-
tive analytics on data streams, especially in a distributed environment.

1 Data Streaming Products

Given the need for processing data streams in manufacturing, financial trading, lo-
gistics, telecom, health monitoring, and web analytics applications, a number of the
leading software vendors have launched commercial data streaming products. We
describe three prominent products below.

TIBCO Streambase is a high-performance system for rapidly building applications
that analyze and act on real-time streaming data. StreamBase’s EventFlow language

M. Garofalakis (B)
School of Electrical and Computer Engineering, Technical University of Crete,
University Campus—Kounoupidiana, Chania 73100, Greece
e-mail: minos@softnet.tuc.gr

J. Gehrke
Microsoft Corporation, One Microsoft Way, Redmond, WA 98052-6399, USA
e-mail: johannes@microsoft.com

R. Rastogi
Amazon India, Brigade Gateway, Malleshwaram (W), Bangalore 560055, India
e-mail: rastogi@amazon.com

© Springer-Verlag Berlin Heidelberg 2016
M. Garofalakis et al. (eds.), Data Stream Management,
Data-Centric Systems and Applications, DOI 10.1007/978-3-540-28608-0_25

529

mailto:minos@softnet.tuc.gr
mailto:johannes@microsoft.com
mailto:rastogi@amazon.com
http://dx.doi.org/10.1007/978-3-540-28608-0_25

530 M. Garofalakis et al.

represents stream processing flows and operators as graphical elements—operators
can be placed on a canvas and connected with arrows that represent the flow of data.
Furthermore, StreamBase’s StreamSQL extends the standard SQL querying model
and relational operators to also perform processing on continuous data streams.
EventFlow and StreamSQL both extend the semantics of standard SQL by adding
rich windowing constructs and stream-specific operators. Windows are definable
over time or the number of messages, and define the scope of a multi-message oper-
ator such as an aggregate or a join. EventFlow and StreamSQL operators provide the
capability to filter streams, merge, combine, and correlate multiple streams, and run
time-window-based aggregations and computations on real-time streams. In addi-
tion, developers can easily extend the set of operators available to either EventFlow
or StreamSQL modules by writing their own operators.

IBM System S provides a programming model and an execution platform for user-
developed applications that ingest, filter, analyze, and correlate potentially massive
volumes of continuous data streams. In System S, users create applications in the
form of dataflow graphs consisting of analytics operators interconnected by streams.
System S provides a toolkit of type-generic built-in stream processing operators,
which include all basic stream-relational operators, as well as a number of plumb-
ing operators (such as stream splitting, demultiplexing, etc.). It also provides an ex-
tensible operator framework, which supports the addition of new type-generic and
configurable operators.

Microsoft StreamInsight implements a lightweight streaming architecture that
supports highly parallel execution of continuous queries over high-speed event data.
Developers can write their applications using Microsoft’s .NET language such as
Visual C#, leveraging the advanced language platform LINQ (Language Integrated
Query) as an embedded query language. By using LINQ, developers can write SQL
queries in a declarative fashion that process and correlate data from multiple streams
into meaningful results. The optimizer and scheduler of the StreamInsight server in
turn ensure optimal query performance. Incoming events are continuously streamed
into standing queries in the StreamInsight server, which processes and transforms
the data according to the logic defined in each query. The query result at the output
can then be used to trigger specific actions. Each event consists of the following
parts: (i) An event header that contains metadata defining the event kind (interval
vs. point events) and one or more timestamps that define the time interval for the
event, and (ii) The payload of an event is a .NET data structure that contains the data
associated with the event. StreamInsight provides the following query functionality:
(i) Filter operation to express Boolean predicates over the event payload and discard
events that do not satisfy the predicates, (ii) Grouping operation that partitions the
incoming stream based on event properties such as location or ID and then applies
other operations or complete query fragments to each group separately, (iii) Hopping
and sliding windows to define windows over event streams—a sliding window con-
tains events within the last X time units, at each point in time, (iv) Built-in aggrega-
tions for sum, count, min, max, and average that typically operate on time windows,
(v) TopK operation to identify heavy hitters in an event stream, (vi) A powerful join

Conclusions and Looking Forward 531

operation that matches events from two sources if their times overlap and executes
the join predicate specified on the payload fields, (vii) A union operation that mul-
tiplexes several input streams into a single output stream, and (viii) User-defined
functions.

2 Data Streaming in the Cloud

Many internet applications such as web site statistics monitoring and analytics, in-
trusion detection systems and spam filters have real time processing requirements.
To provide real-time analytics functionality to such applications, a number of sys-
tems for processing data streams in the cloud have been developed recently. We
describe a few of these below.

Spark Streaming extends Apache Spark for doing large scale stream processing.
It chops up the live stream into batches of X seconds. Each batch of data is treated
as a Resilient Distributed Dataset (RDD) and processed using RDD operations such
as map, count, join, etc. Finally, the processed results of the RDD operations are
returned in batches and can be persisted in HDFS. Thus, Spark represents a stream
of data as a sequence of RDDs (referred to as DStream) and applies transforma-
tions that modify data from one DStream to another using standard RDD operations.
Spark Streaming also has support for defining Windowed DStreams that gather to-
gether data over a sliding window. Each window has two parameters, a window
length and a sliding interval. At each time t, the function for time t is applied to the
union of all RDDs of the parent DStream between times t and (t—window length).
One can use Spark Streaming to get hashtags from a Twitter stream, count the num-
ber of hashtags in each window, or join incoming tweets with a file containing spam
keywords to filter out bad tweets.

Amazon Kinesis enables users to collect and process large streams of data records
in real time. A producer puts data records into Amazon Kinesis streams. For exam-
ple, a web server sending log data to an Amazon Kinesis stream is a producer. Each
data record consists of a sequence number, a partition key, and a data blob that is
not interpreted by Kinesis. The data records in a stream are distributed into multiple
shards, using the partition key associated with each data record to determine which
shard a given data record belongs to. Specifically, an MD5 hash function is used to
map partition keys to 128-bit integer values and to map associated data records to
shards. When a stream is created, the number of shards for the stream are specified
by the application. Each consumer reads data records from a particular shard.

Apache Kafka is a high-throughput publish-subscribe messaging system. Kafka
maintains feeds of messages in categories called topics. Producers publish messages
to a topic that are delivered to consumers who have subscribed to the topic. Each
topic consists of multiple partitions and producers can specify which partition each
message within a topic is assigned to. Consumers label themselves with a consumer
group name, and each message published to a topic is delivered to one consumer

532 M. Garofalakis et al.

instance within each subscribing consumer group. Kafka provides both ordering
guarantees and load balancing over a pool of consumer processes by assigning par-
titions in the topic to consumers in the consumer group so that each partition is
consumed by exactly one consumer in the group. Kafka provides a total order over
messages only within a partition, not between different partitions in a topic. Use
cases for Apache Kafka include messaging, website activity tracking (page views,
searches), and stream processing.

Apache Storm makes it easy to reliably process unbounded streams of data. The
basic primitives Storm provides for doing stream transformations are “spouts” and
“bolts”. A spout is a source of streams. For example, a spout may connect to the
Twitter API and emit a stream of tweets. A bolt consumes any number of input
streams, does some processing, and possibly emits new streams. Bolts can do any-
thing from run functions, filter tuples, do streaming aggregations, do streaming
joins, etc. For example, a bolt may perform complex stream transformations like
computing a stream of trending topics from a stream of tweets. Networks of spouts
and bolts are packaged into a “topology” to do real-time computation. A topology is
a graph of stream transformations where each node is a spout or bolt. Links between
nodes in the topology indicate how tuples should be passed around between nodes.
For example, when a spout or bolt emits a tuple, it sends the tuple to every bolt to
which it has an outgoing edge. Thus, a storm topology consumes streams of data
and processes those streams in arbitrary complex ways, repartitioning the streams
between each stage of the computation as needed.

3 Complex Event Processing

Complex event processing (CEP) techniques discover complex events by analyzing
patterns and correlating other events. For instance, a CEP application may analyze
tweet events in a Twitter stream to detect complex events such as an earthquake or a
plane accident. Another CEP application in the manufacturing domain may generate
an alert when a measurement exceeds a predefined threshold of time, temperature, or
other value. CEP applications include algorithmic stock-trading, network anomaly
detection, credit-card fraud detection, demand spike detection in retail, and security
monitoring.

CEP applications may require complex pattern matching over high-speed data
streams. For instance, Network intrusion detection systems (NIDS) like Snort per-
form deep packet inspection on an IP traffic stream to check if the packet payload
(and header) matches a given set of signatures of well known security threats (e.g.,
viruses, worms). The signature patterns are frequently specified using general regu-
lar expressions because it is a more expressive pattern language compared to strings.
Thus, matching thousands of regular expressions on data streams is a critical capa-
bility in network security applications. Current matching algorithms employ finite
automata-based representations to detect regular expression patterns.

Conclusions and Looking Forward 533

Another example in the retail space is detection of spikes in product demand.
Such spikes can occur because of different types of events, e.g., a snowstorm can
trigger the sale of snow shovels. Similarly, there may be a jump in the sale of text-
books when students go back to school. One strategy to detect sudden demand
spikes is to maintain a sliding window and compute the mean demand and stan-
dard deviation over the window. If the current observed demand deviates from the
mean by more than two standard deviations then we can generate a demand spike
event.

Numenta’s Grok application employs an innovative approach to detect anoma-
lies in numeric streaming data. It continuously trains a machine learning model on
a sliding window of the most recently observed data and uses the model to predict
the next most likely value based on the sliding window of previous values. Specifi-
cally, the model returns the probability that the next value in the data stream is the
observed value. If multiple contiguous stream values have low occurrence probabil-
ities then Grok generates an anomaly event. Grok is being used to detect anomalies
in streaming metrics (e.g., CPU utilization, disk writes) from server clusters.

4 Big Data and Predictive Modeling

As businesses increasingly computerize and automate their operations, they have the
ability to collect massive amounts of data and leverage the data to automate decision
making at every step. Consequently, Big Data analytics and Predictive modeling is
ubiquitous today across a wide range of domains such as telecom, healthcare, in-
ternet, finance, retail, media, transportation and manufacturing, and is leading to:
(i) Improved customer experience—Online content providers and web search com-
panies analyze historical customer actions (e.g., clicks, searches, browsed pages) to
learn about customer preferences and then show relevant content and search results
that match a user’s interests, (ii) Reduced costs—In transportation and manufac-
turing, analysis of past equipment operations data enables proactive prediction of
failures and servicing of equipment prior to failures, and (iii) Higher revenues—In
online advertising and e-commerce, targeting customers with relevant ads and rec-
ommending relevant products can lead to higher ad clicks and product purchases.

Data streaming algorithms are critical for Big Data analytics and Predictive mod-
eling. Below, we list applications of data streaming algorithms in various Predictive
modeling steps:

• Data cleaning. Collected data is frequently dirty with errors, outliers and miss-
ing values. For a numeric attribute, values greater than a certain threshold (e.g.,
98th percentile, mean plus two times standard deviation) or smaller than a certain
threshold (e.g., 2nd percentile, mean minus two times standard deviation) can be
considered as outliers. Similarly, for a categorical attribute, values that occur very
frequently or infrequently can be regarded as outliers. Single-pass algorithms for
computing a wide variety of data statistics such as percentiles, mean and standard
deviation for numeric attributes, and value frequencies for categorical attributes
can help to detect outliers and prune them, thus ensuring high data quality.

534 M. Garofalakis et al.

• Data statistics and visualization. Univariate data statistics provide insights into
attribute and target data distributions—these include different percentiles, mean
and standard deviation for numeric attributes, and cardinality and top frequent
values/keywords for categorical and text attributes. Text attributes, in particular,
may contain millions of keywords making it difficult to store counts for individ-
ual keywords in main memory. These analyses require scalable algorithms for
constructing histograms over numeric attribute values, and computing attribute
value frequencies and cardinality. Bivariate data statistics shed light on the de-
gree of correlation between attribute and target values. Commonly used correla-
tion metrics include Pearson’s Correlation Coefficient for numeric attributes, and
information gain or mutual information for categorical and text attributes. While
Pearson’s Coefficient can be computed efficiently in one pass over the data, in-
formation gain and mutual information estimation requires calculating attribute-
target value pair frequencies using streaming techniques.

• Feature engineering. To obtain models with high predictive accuracy, raw data
needs to be transformed into higher level representations with predictive power.
For instance, individual pixels within an image may not have much signal but
higher level aggregations such as color histograms or shapes in the image may
be a lot more predictive. A common transformation is numeric attribute binning
which can be carried out on large data sets using stream quantile computation al-
gorithms. Another option is to construct interaction features over attribute pairs,
e.g., in online advertising, an interaction feature involving user gender and ad
category has more signal compared to the individual attributes themselves (since
women are more likely to click on jewelry or beauty product ads while men are
more likely to click on ads related to automotive parts). Here, min-wise hash-
ing techniques can be used to efficiently compute counts for frequent attribute
value pairs belonging to interaction features. More recently, deep learning has
shown promise for unsupervised learning of higher level features in speech recog-
nition, computer vision and natural language processing applications. Efficient
algorithms for learning deep neural networks on large datasets is an active area of
research.

• Feature selection. Noisy and redundant features can cause trained models to over-
fit the data, thus adversely impacting their accuracy. In order to prune such fea-
tures, we need scalable algorithms for (i) computing correlations between at-
tributes and the target using metrics such as Pearson’s coefficient, information
gain or mutual information, and selecting highly correlated features with predic-
tive power, (ii) computing pairwise attribute correlations and dropping redundant
features that are highly correlated with other features, and (iii) reducing data di-
mensionality using techniques such as PCA, SVD and matrix factorization.

• Model training. Online learning algorithms such as stochastic gradient descent
(SGD) can be used to train linear and logistic regression models, and perform
tasks such as matrix factorization. SGD updates model parameters with the gra-
dient computed for each example as opposed to the entire dataset as is done by
traditional batch learning algorithms like BFGS. For clustering problems, pro-
posed data streaming algorithms first independently cluster data partitions in an

Conclusions and Looking Forward 535

initial pass and subsequently cluster the centroids for each partition in a second
pass. Note that a possible strategy for scaling learning algorithms is to train mod-
els on a random sample of the data. Random samples can be obtained in a single
pass over the data using reservoir sampling. However, the random sampling ap-
proach does not consider the entire data and so could hurt model accuracy. Scal-
able training and inference algorithms for complex ML models such as decision
trees, random forests, neural networks and graphical models is an active area of
research.

In addition to data streaming algorithms, scaling predictive modeling to large ter-
abyte datasets also requires parallelizing the algorithms over large machine clusters.
There are two main parallelization paradigms proposed in the literature.

• Loosely-coupled paradigm. In this paradigm, data is partitioned across ma-
chines, the algorithm is run locally on each machine and then the data sum-
maries/synopses structures from the different machines are combined into a single
summary/synopsis structure. Thus, the loosely-coupled paradigm fits well with
Map-Reduce style computation with reducers combining the synopses computed
by the mappers. Note that multiple Map-Reduce iterations may be performed in
this paradigm with the synopsis computed at the end of each iteration used to
initialize the synopsis at the beginning of the next iteration.

As an example, consider k-means clustering. The synopsis contains the k clus-
ter centroids. Each mapper assigns points in its data partition to the closest cen-
troid and computes k new centroids for the new assignment. The mappers transmit
the new cluster centroids along with the size of each cluster to the reducers that
combine the centroids to compute k new centroids using weighted averaging.

The loosely-coupled paradigm is especially well-suited for parallelizing algo-
rithms where synopses satisfy the composability property, that is, sketches com-
puted on individual data partitions can be combined to yield a single synopsis for
the entire dataset. Several synopses structures such as the Flajolet–Martin (FM)
sketch and the Count-Min sketch satisfy the composability property. Algorithms
that maintain such synopses can be naturally parallelized using Map-Reduce with
mappers computing synopses for each data partition and the reducer composing
a single synopsis from the synopses computed by mappers.

• Tightly-coupled paradigm. In many instances, synopses may not satisfy the com-
posability property, thus making the loosely-coupled paradigm inapplicable for
parallelization. For example, in online machine learning algorithms like SGD,
parameter values computed for each data partition cannot be easily combined to
yield the same parameter values had the algorithm been run on the full dataset.
To handle such scenarios, tight coupling between the parallel instances in needed.
In the tightly-coupled paradigm, the synopsis structure is replicated across mul-
tiple machines, and the synopsis replicas are kept synchronized using distributed
protocols while the algorithm is running on each machine.

A popular realization of the tightly-coupled paradigm for ML algorithms is
through a centralized parameter server. The parameter server synchronizes the
values of parameter replicas distributed across the machines using asynchronous

536 M. Garofalakis et al.

messages. Specifically, each time a parameter value is updated on a machine,
the change in the parameter value is propagated to all the replicas through the
parameter server. Furthermore, in order to reduce communication, changes are
only propagated if they exceed a certain threshold value.

Scaling ML algorithms through distributed implementations on machine clusters is
currently an active area of research.

Popular systems for statistical and exploratory data analysis such as R load the
entire dataset into main memory. Consequently, these systems are incapable of an-
alyzing large terabyte datasets that do not fit in memory. To fill the gap, a number
of systems for doing predictive analytics on big data have been developed in re-
cent years. These systems rely on online algorithms and parallelization to different
degrees in order to handle large datasets. We describe the salient characteristics of
some prominent systems below.

Vowpal Wabbit (VW) supports training of a wide spectrum of ML models: linear
models with a variety of loss functions like squared, logistic, hinge and quantile
loss, matrix factorization models and latent Dirichlet allocation (LDA) models. To
scale to terabyte size datasets, it uses the online SGD algorithm to learn model
parameters. Furthermore, it employs a parallel implementation of SGD based on
the loosely-coupled paradigm that combines parameter values computed on each
data partition using simple averaging.

GraphLab provides a high level programming interface for rapid development of
distributed ML algorithms based on the tightly-coupled paradigm. Users specify
dependencies among ML model parameters using a graph abstraction, the logic
for updating parameter values based on those of neighbors and rules for propagat-
ing parameter updates to neighbors in the graph. The GraphLab distributed infras-
tructure partitions parameters across machines to minimize communication, appro-
priately updates parameter values and transparently propagates parameter updates.
GraphLab has a large collection of ML methods already implemented such cluster-
ing, matrix factorization and LDA.

Skytree includes many ML methods such as k-means clustering, linear regression,
Gradient Boosted trees and Random forests. Through a combination of new efficient
ML algorithms and parallelization, Skytree is able to achieve significant speedups
on massive datasets.

Azure ML supports a broad range of ML modeling methods including scalable
Boosted Decision trees, deep neural networks, logistic and linear regression and
clustering using a variant of the standard k-means approach. The linear regression
implementation is based on the online SGD algorithm while the logistic regression
implementation relies on the batch BFGS learning algorithm.

Apache Mahout offers a scalable machine learning library with support for
k-means clustering, matrix factorization, LDA, logistic regression and random
forests. Mahout implements a streaming k-means algorithm that processes data
points one-by-one and makes only one pass through the data. The algorithm main-
tains a set of cluster centroids in memory along with a distance threshold parameter.

Conclusions and Looking Forward 537

For a new data point, if its distance from the closest cluster centroid is less than the
threshold, then the point is simply assigned to the closest cluster (and its centroid is
updated). However, if the distance to the closest centroid is greater than the thresh-
old, then the point starts a new cluster. Finally, if the number of clusters exceeds
the memory size, then the distance threshold is increased and existing clusters are
merged. The Mahout implementation of logistic regression and matrix factorization
uses the online SGD algorithm.

Spark MLlib is Spark’s scalable machine learning library consisting of common
learning algorithms and utilities, including classification, regression clustering, col-
laborative filtering, and dimensionality reduction. MLlib computes basic statistics
such as mean and variance for numeric attributes, and correlations based on Pear-
son’s Coefficient and Pearson’s chi-squared tests. For classification and regression,
it supports linear models with a variety of loss functions such as squared, logistic
and hinge with L1 and L2 regularization, decision trees, and naïve Bayes. MLlib
supports SGD and L-BFGS optimization methods to compute parameter values for
linear models that minimize the loss function value. MLlib also supports collab-
orative filtering using the alternating least squares (ALS) algorithm to learn latent
factors, k-means clustering, and dimensionality reduction methods such as SVD and
PCA.

	Data Stream Management
	Contents

	Data Stream Management: A Brave New World
	1 Introduction
	2 Basic Stream Processing Models
	2.1 Data Streaming Models
	2.2 Incorporating Recency: Time-Decayed and Windowed Streams

	3 Querying Data Streams: Synopses and Approximation
	4 This Volume: An Overview
	References

	Part I: Foundations and Basic Stream Synopses
	Data-Stream Sampling: Basic Techniques and Results
	1 Introduction
	1.1 Finite-Population Sampling
	1.2 Database Sampling
	1.3 Sampling from Data Streams

	2 Sampling from a Stationary Window
	2.1 Bernoulli Sampling
	2.2 Reservoir Sampling
	2.3 Other Sampling Schemes
	Stratiﬁed Sampling
	Deterministic and Semi-Deterministic Schemes
	Biased Reservoir Sampling
	Biased Sampling by Halving

	3 Sampling from a Sliding Window
	3.1 Sequence-Based Windows
	Complete Resampling
	A Passive Algorithm
	Subsampling from a Bernoulli Sample
	Chain Sampling
	Stratiﬁed Sampling

	3.2 Timestamp-Based Windows
	3.3 Generalized Windows

	4 Inference from a Sample
	4.1 Estimation of Population Sums and Functions of Sums
	4.2 SRS and Bernoulli Sampling
	4.3 Stratiﬁed Sampling
	4.4 Biased Sampling
	4.5 Functions of Population Sums

	References

	Quantiles and Equi-depth Histograms over Streams
	1 Introduction
	2 Preliminaries
	2.1 Quantile Summary
	2.2 Operations
	The Combine Operation
	The Prune Operation

	3 Deterministic Algorithms
	3.1 Exact Selection
	3.2 MRL Framework for epsilon-Approximate Quantile Summaries
	The Munro-Patterson Algorithm
	The Alsabti-Ranka-Singh Algorithm
	The Manku-Rajagopalan-Lindsay Algorithm

	3.3 The GK Algorithm
	The GK Summary Data Structure
	Answering Quantile Queries
	Overview
	Tuple Capacities
	Bands
	A Tree Representation
	Operations
	External Operations
	Internal Operations

	Analysis

	4 Randomized Algorithms
	4.1 Sampling-Based Approaches
	4.2 The Count-Min Algorithm
	Universal Hash Families
	Basic CM Data Structure
	CM Data Structure for Quantile Queries
	The Data Structure CMi
	Application to Quantile Queries

	5 Other Models
	5.1 Deletions
	Deterministic Algorithms with Input Dependent Guarantees
	Example: Bounded Deletions
	Example: Session Data
	Probabilistic Guarantees Across All Inputs

	5.2 Sliding Window Model
	Fixed Size Windows
	Variable Size Windows

	5.3 Distributed Quantile Summaries
	A General Algorithm Using combine and prune
	Optimized Algorithm When the Range of Values Is Known

	6 Concluding Remarks
	References

	Join Sizes, Frequency Moments, and Applications
	1 Introduction
	2 Preliminaries and Problem Formulation
	3 AMS Sketches
	3.1 Second Frequency Moment Estimation
	3.2 Vector Difference Estimation
	3.3 Join Size Estimation

	4 Applications and Extensions
	4.1 Point Estimation, Range Queries and Wavelets
	4.2 Faster Implementations Using Hashing
	4.3 Multidimensional and Spatial Data
	4.4 Further Extensions and Applications

	5 Concluding Remarks
	References

	Top-k Frequent Item Maintenance over Streams
	1 Introduction
	2 Random Sampling Methods
	2.1 Sticky Sampling

	3 Deterministic Methods
	4 Randomized Multiple Counter Methods
	4.1 Count-Min Sketch
	4.2 Count Sketch
	Estimating the Most Frequent Element
	Estimating the Top k Elements

	4.3 Group-Testing Approaches

	5 Lower Bounds
	References

	Distinct-Values Estimation over Data Streams
	1 Introduction
	2 Preliminary Approaches and Difﬁculties
	2.1 Sampling-Based Algorithms
	2.2 Streaming Approaches

	3 Flajolet and Martin's Algorithm
	3.1 The Basic FM Algorithm
	3.2 The AMS Algorithm
	3.3 Practical Issues
	3.4 Improving the Per-Item Processing Time

	4 (epsilon, delta)-Approximation Schemes
	4.1 Coordinated Sampling
	4.2 Improving the Space Bound

	5 Lower Bounds
	6 Extensions
	6.1 Sampling Distinct
	6.2 Sliding Windows
	6.3 Update Streams
	6.4 Distributed Streams
	6.5 Order- and Duplicate-Insensitive (ODI)
	6.6 Additional Settings

	References

	The Sliding-Window Computation Model and Results
	1 Sliding-Window Model: Motivation
	1.1 Motivation and Road Map

	2 A Solution to the BasicCounting Problem
	2.1 The Approximation Scheme

	3 Space Lower Bound for BasicCounting Problem
	4 Beyond 0's and 1's
	5 References and Related Work
	6 Conclusion
	References

	Part II: Mining Data Streams
	Clustering Data Streams
	1 Introduction
	Approximation Guarantees
	Overview and Organization

	2 Preliminaries and Deﬁnitions
	3 The k-Center Clustering on a Stream
	4 The k-Median Divide-and-Conquer Approach
	4.1 Performance of the Divide-and-Conquer Approach
	4.2 The k-Median-Squared Objective and the k-Means Algorithm

	5 Notes
	The Sampling Approach

	References

	Mining Decision Trees from Streams
	1 Introduction
	2 The VFDT System
	2.1 Quality Guarantees

	3 Empirical Evaluation of VFDT on Synthetic Data
	4 Application of VFDT to Web Data
	5 Related Work
	6 Conclusion
	References

	Frequent Itemset Mining over Data Streams
	1 Problem Deﬁnition
	2 One-Pass Algorithms
	3 Frequent Itemset Mining
	3.1 Modiﬁcations to lossy counting
	3.2 Frequent Itemsets Algorithm
	3.3 Data Structure and Algorithm Design
	Overall Algorithm

	3.4 Efﬁcient Implementations
	3.5 System Issues and Optimizations

	4 Applications and Related Work
	4.1 Iceberg Queries
	4.2 Network Flow Identiﬁcation
	4.3 Algorithms for Sliding Windows

	References

	Temporal Dynamics of On-Line Information Streams
	1 Introduction
	2 Techniques: Thresholds, State Transitions, and Trends
	Topic Detection and Tracking
	Information Visualization
	Timelines and Threshold-Based Methods
	State-Based Methods
	Trend-Based Methods
	Two-Point Trends

	3 Applications: Weblogs, Queries, and Usage Data
	Weblogs
	Search Engine Queries
	Usage Data

	4 Conclusions
	References

	Part III: Advanced Topics
	Sketch-Based Multi-Query Processing over Data Streams
	1 Introduction
	2 Answering a Single Multi-Join Query
	3 Answering Multiple Join Queries: Sketch Sharing
	3.1 Sketch Sharing: Basic Concept
	Estimation with Sketch Sharing
	Correctness of Sketch-Sharing Conﬁgurations

	3.2 Sketch Sharing Problem Formulation
	Problem Statement

	3.3 Space Allocation Problem
	Minimizing the Average Error
	Minimizing the Maximum Error

	3.4 Computing a Well-Formed Join Graph

	4 Improving Answer Quality: Sketch Partitioning
	4.1 Our General Technique
	4.2 Sketch-Partitioning for Single Query
	Binary Sketch Partitioning
	K-ary Sketch Partitioning
	Sketch-Partitioning for Multi-Join Queries

	4.3 Sketch-Partitioning for Multiple Join Queries

	5 Conclusions
	References

	Approximate Histogram and Wavelet Summaries of Streaming Data
	1 Introduction
	Ordered Aggregate Data
	Dynamic Data

	2 Wavelet Summaries for Ordered Aggregate Data
	2.1 Online Wavelet Transform
	2.2 Finding the Largest Terms
	2.3 Analysis

	3 Ofﬂine Histogram Algorithms
	3.1 A Quadratic Time Exact Algorithm
	3.2 A Linear Time Approximation Algorithm

	4 Basic Histograms from Wavelet Representations
	4.1 Wavelet Representations as Histograms
	4.2 Wavelet Representations as Intermediate Summaries
	4.3 Robust Representations

	5 Histograms and Wavelets with Dynamic Data
	6 Generalized Histograms
	6.1 Piecewise-Linear Representations
	6.2 Range Queries
	6.3 Multidimensional Histograms

	References

	Stable Distributions in Streaming Computations
	1 Introduction
	2 Building Sketches Using Stable Distributions
	2.1 Data Stream Model
	2.2 Stable Distributions
	2.3 Sketch Construction
	2.4 Simulating Stable Distributions
	2.5 The Sketch Algorithm
	2.6 Other Estimators
	2.7 Combining Sketches

	3 Application to Streaming Problems
	3.1 L0 and Counting Distinct Items
	3.2 Dominance Norms
	3.3 Application to Computing Embeddings
	3.4 Clustering and Nearest Neighbors

	4 Related Work
	5 Extensions and New Directions
	References

	Tracking Queries over Distributed Streams
	1 Introduction
	2 Distributed Data Streaming and the Geometric Method
	2.1 Data Streams and Distributed Streaming
	2.2 The Geometric Method (GM)
	From Threshold Crossing to Approximate Query Tracking

	3 Enhancing GM: Sketches and Prediction Models
	3.1 GM and AMS Sketches
	3.2 GM and Prediction Models

	4 Towards Convex Safe Zones
	5 Conclusions and Future Directions
	References

	Part IV: System Architectures and Languages
	STREAM: The Stanford Data Stream Management System
	1 Introduction
	2 The CQL Continuous Query Language
	2.1 Abstract Semantics
	2.2 Concrete Language
	Relation-to-Relation Operators in CQL
	Stream-to-Relation Operators in CQL
	Relation-to-Stream Operators in CQL
	Example CQL Queries

	3 Query Plans and Execution
	3.1 Operators
	3.2 Queues
	3.3 Synopses
	3.4 Example Query Plan
	3.5 Query Plan Execution

	4 Performance Issues
	4.1 Synopsis Sharing
	4.2 Exploiting Constraints
	4.3 Operator Scheduling

	5 Adaptivity
	6 Approximation
	6.1 CPU-Limited Approximation
	6.2 Memory-Limited Approximation

	7 The STREAM System Interface
	8 Future Directions
	8.1 Distributed Stream Processing
	8.2 Crash Recovery
	8.3 Improved Approximation
	8.4 Relationship to Publish-Subscribe Systems

	References

	The Aurora and Borealis Stream Processing Engines
	1 Introduction and History
	2 The Aurora Centralized Stream Processing Engine
	3 Aurora Case Studies
	3.1 Financial Services Application
	3.2 The Linear Road Benchmark
	3.3 Environmental Monitoring
	3.4 Medusa: Distributed Stream Processing

	4 Experience and Lessons Learned
	4.1 Support for Historical Data
	4.2 Synchronization
	4.3 Resilience to Unpredictable Stream Behavior
	4.4 XML and Other Feed Formats Adaptor Required
	4.5 Programmatic Interfaces and Globally Accessible Catalogs Are a Good Idea
	4.6 Performance Critical

	5 Ongoing Work: The Borealis Distributed SPE
	5.1 Dynamic Revision of Query Results
	5.2 Dynamic Query Modiﬁcation
	5.3 Distributed Optimization
	5.4 High Availability
	5.5 Implementation Status
	5.6 Commercialization

	References

	Extending Relational Query Languages for Data Streams
	1 Introduction
	2 ESL: An Expressive Stream Language Based on SQL
	2.1 User-Deﬁned Aggregates (UDAs)
	2.2 Pattern Queries

	3 Window Aggregates and Their Applications
	Window Aggregates

	4 Approximation and Sketch Aggregates
	EH Sketches
	Approximate Frequent Items

	5 Mining Data Streams
	5.1 Density-Based Clustering (DBScan)
	5.2 Mining Data Streams with Concept Drift
	5.3 Mining Models

	6 The Stream Mill System
	The Client
	The Server
	Query Compiler/Optimizer
	Buffer Manager
	Execution Scheduler

	7 Related Work
	8 Conclusion
	References

	Hancock: A Language for Analyzing Transactional Data Streams
	1 Introduction
	2 Running Example
	3 The Hancock Language
	3.1 Logical and Physical Streams
	3.2 Logical, Approximate, and Physical Signatures
	3.3 Signature Collections
	3.4 Other Persistent Data
	3.5 Events
	3.6 Consuming a Stream
	3.7 Putting It Together

	4 Implementation
	5 Experiences
	6 Related Work
	6.1 Persistent Data
	6.2 Stream Processing

	7 Language Versus Library
	8 Conclusions
	References

	Sensor Network Integration with Streaming Database Systems
	1 Introduction
	2 Sensor Networks and TinyOS
	2.1 TinyOS

	3 TinyDB
	3.1 Query Language
	3.2 Query Dissemination and Result Collection
	3.3 Query Processing

	4 Data Integration Architecture
	4.1 Proxy-Based Query Dissemination
	Constraint-Based Capability Language
	Feasible Plan Enumeration

	4.2 Proxy-Based Query Optimization

	5 Join Operator Push down
	6 Conclusions
	References

	Part V: Applications
	Stream Processing Techniques for Network Management
	1 Introduction
	2 Network Monitoring
	2.1 Network Monitoring Data
	2.2 Network Monitoring Queries
	Fine Grained Load Monitoring
	Hidden Trafﬁc Detection
	Customized Application Monitoring
	Network Attack Detection

	3 Gigascope
	3.1 Query Language
	Ordered Attributes

	3.2 The GSQL Language

	4 Architecture
	4.1 Architectural Overview
	4.2 Gigascope Run-Time System
	4.3 Gigascope Network Device Interface
	DAG Network Interface

	5 Example Applications
	Fine-Grained Load Monitoring
	Hidden Network Trafﬁc Detection
	Customized Application Monitoring

	6 Related Work
	7 Summary
	References

	High-Performance XML Message Brokering
	1 Introduction
	Roadmap

	2 Architectural Overview
	3 Shared Processing of Path Expressions
	3.1 An NFA-Based Model with an Output Function
	Some Comments on Efﬁciency

	3.2 Constructing a Combined NFA
	3.3 Executing the NFA
	3.4 Predicate Evaluation
	3.5 Performance Results for Shared Path Processing

	4 Customized Result Generation
	4.1 Input and Output Speciﬁcations
	4.2 Query Processor Details
	4.3 Shared Matching of "for" Clauses
	Selection
	Duplicate Elimination (DupElim)
	Where-Filter
	Return-Select

	4.4 Shared Matching of "Where" Clauses
	4.5 Shared Matching of "Return" Clauses
	4.6 Simplifying Post-Processing
	4.7 Shared Post-Processing
	4.8 Performance Results for Customized Result Generation

	5 Related Work
	6 Conclusions
	References

	Fast Methods for Statistical Arbitrage
	1 Motivation
	2 SketchStream
	2.1 Intuition & Guarantees of the Sketch Approach
	2.2 Sketch Implementation
	Example

	2.3 Sketch Vector Partitioning
	2.4 Grid Structure
	2.5 Results

	3 LearnStream
	3.1 Sliding Window Stochastic Gradient Descent
	3.2 Iterative Tuning of Sliding Window
	3.3 Exponential Random Picking
	3.4 Warm Start/Use Historical Predictions
	3.5 Learning Rate

	4 Experimental Results
	5 Datasets
	5.1 FOREX Data Sets
	5.2 Individual Household Electric Power Consumption Data Set [1]

	6 Metrics
	6.1 Absolute/Relative Error
	6.2 Mean Squared Error
	6.3 Explained Variance Score
	6.4 R2 Score, the Coefﬁcient of Determination

	7 Parameter Tuning
	8 Experiments
	8.1 Electric Power Consumption Data Set
	8.2 Singapore Hedge Fund FOREX Data Set
	8.3 Capital K FOREX Data Set

	9 Trading Strategy
	9.1 Spread Based Trading
	9.2 Other Methods we Tried

	10 Conclusion
	10.1 Future Work

	References

	Adaptive, Automatic Stream Mining
	1 Introduction
	2 Related Work
	2.1 Continuous Queries and Stream Processing
	2.2 Time Series Methods
	2.3 Other

	3 Background Material
	3.1 Auto-Regressive (AR) Modeling
	3.2 Recursive Least Squares (RLS)
	RLS and AR

	3.3 Wavelets
	Incremental Wavelets
	Wavelet Properties
	Computational Complexity
	Time/Frequency Decomposition
	Wavelets and Decorrelation
	Wavelet Variance

	4 Proposed Method
	4.1 Intuition Behind Our Method
	First Part-Information Representation
	Second Part-Correlations
	Summary

	4.2 AWSOM Modeling
	4.3 Model Selection
	Model Testing and Selection

	4.4 Complexity

	5 Experimental Evaluation
	5.1 Interpreting the Models
	Visual Inspection
	Variance Test
	Wavelet Variance (Energy and Power)
	Experimental Goals

	5.2 Synthetic Datasets
	Triangle
	Mix

	5.3 Real Datasets
	Sunspot
	Automobile
	Temperature

	6 Conclusions
	Appendix A: Auto-Regressive Modeling
	Appendix B: More Wavelet Properties
	Frequency Properties
	Wavelet Variance and Self-Similarity

	References

	Conclusions and Looking Forward
	1 Data Streaming Products
	2 Data Streaming in the Cloud
	3 Complex Event Processing
	4 Big Data and Predictive Modeling

