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Preface to the Paperback Edition 

First published in 1990, this book remains the most comprehensive presentation 
of statistical models and methods for accelerated test data. It is gratifying that it 
has been widely used and praised by practitioners and researchers in statistics and 
engineering. This paperback edition is available at a bargain price thanks to the 
fine work of Mr. Steve Quigley, Ms. Susanne Steitz, and the Wiley staff. 

For subsequent advances in accelerated testing, the reader may wish to con- 
sult: 

Meeker, W.Q. and Escobar, L.A. (1998), Statistical Methods for Reliability 
Data, Wiley, New York, www.wiley.com. In particular, their degradation mod- 
els and corresponding statistical methods and Chapter I 1  of this book overlap 
little and together comprise a basic introduction to accelerated degradation. 
Nelson, Wayne (2004), “A Bibliography of Accelerated Test Plans,” over 100 
references, available from the author, WNconsult@aol.com. 

Since 1990, commercial software for analysis of accelerated test data has con- 
tinued to advance. To reflect these advances, Table 1.1 of Chapter 5 and corre- 
sponding text have been updated. Note that confidence limits using a normal ap- 
proximation to the sampling distribution of a maximum likelihood estimator and 
its asymptotic standard error are not current best practice. Instead, one should use 
software that calculates confidence limits using the likelihood ratio, as described 
in Section 5.8 of Chapter 5 ,  as these intervals are now known to be a better ap- 
proximation in virtually all applications. 

WAYNE B. NELSON 
Consulting and Training 

WNconsult@aol.com 
Scheneciady, New York 
June 2004 
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Preface 

Product reliability contributes much to quality and competitiveness. 
Many manufacturers yearly spend millions of dollars on product reliability. 
Much management and engineering effort goes into evaluating reliability, as- 
sessing new designs and design and manufacturing changes, identifying 
causes of failure, and comparing designs, vendors, materials, manufacturing 
methods, and the like. Major decisions are based on life test data, often from 
a few units. Moreover, many products last so long that life testing at design 
conditions is impractical. Many products can be life tested at high stress con- 
ditions to yield failures quickly. Analyses of data from such an accelerated 
test yield needed information on product life at design conditions (low 
stress). Such testing saves much time and money. This book presents practi- 
cal, modern statistical methods for accelerated testing. Up-to-date, it pro- 
vides accelerated test models, data analyses, and test plans. In recent years, 
much useful methodology has been developed, and this book makes it avail- 
able to practitioners. This book will contribute to more efficient accelerated 
testing and to valid and more accurate information. 

This book is written for practicing engineers, statisticians, and others who 
use accelerated testing in design, development, testing, manufacturing, quali- 
ty control, and procurement. It will aid workers in other fields concerned 
with regression models for survival, for example, in medicine, biology, and 
actuarial science. Also, this book is a useful supplement for statistics and en- 
gineering courses, as it presents many stimulating real examples, emphasizes 
practical data analysis (employing graphical methods and computer pro- 
grams), and shows how to use versatile maximum likelihood methods for 
censored data. 

This book is organized to serve practitioners. The simplest and most use- 
ful material appears first. The book starts with basic models and graphical 
data analyses, and it progresses through advanced maximum likelihood 
methods. Available computer programs are used. Each topic is self- 
contained for easy reference, although this results in some repetition. Thus 
this book serves as a reference or textbook. Derivations are generally omit- 
ted unless they provide insight. Such derivations appear in advanced sections 
for those seeking deeper understanding or developing new statistical models, 

xi 



xii PREFACE 

data analyses, and computer programs. Ample references to the literature 
will aid those seeking mathematical proofs. 

Readers of this book need a previous statistics course for Chapter 4 and 
beyond. Chapters 1,2, and 3 do not require a previous course. For advanced 
material, readers need facility in calculus through partial differentiation and 
the basics of matrix algebra. 

There is a vast and growing literature on statistical methods for accelerat- 
ed testing. However, this book has been limited to the most basic and widely 
used methods, as I did not wish to complete it posthumously. Topics not 
given in detail in this book are referenced. While I included my previously 
unpublished methods developed for clients, there are gaps in methodology, 
which are noted to encourage others to fii them. For advanced innovations 
and complex applications beyond the basics in this book, one can consult the 
literature and experts. 

Chapter 1 introduces accelerated testing - basic ideas, terminology, and 
practical engineering considerations. Chapter 2 presents models for ac- 
celerated testing - basic life distributions and life-stress relationships for 
products. Chapter 3 explains simple graphical analyses to estimate product 
life. Requiring little statistical background, these data plots are easy and very 
informative. Chapter 4 covers least squares estimates and confidence limits 
for product life from complete data (all test specimens run to failure). 
Chapter 5 shows how to use maximum likelihood estimates and confidence 
limits for product life from censored data (some specimens not run to 
failure). Chapter 6 shows how to choose a test plan, that is, the stress levels 
and corresponding numbers of specimens. Chapter 7 treats data with com- 
peting failure modes - models, graphical analyses, and maximum likelihood 
analyses. Chapters 8 and 9 present comparisons (hypothesis tests) with least 
squares and maximum likelihood methods. Chapter 10 treats step-stress test- 
ing and cumulative damage models. Chapter11 introduces aging- 
degradation testing and models. 

The real data in all examples come mostly from my consulting for Gen- 
eral Electric and other companies. Many data sets are not textbook exam- 
ples; they are messy - not fully understood and full of pimples and warts. 
Proprietary data are protected by generically naming the product and multi- 
plying the data by a factor. I am grateful to the many clients and colleagues 
who kindly provided their data for examples. 

I am most grateful to people who contributed to this book. Dr. Gerald J. 
Hahn, above all others, encouraged my work on accelerated testing and is a 
valued, knowledgeable, and stimulating co-worker. Moreover, he helped me 
obtain support for this book from the General Electric Co. I am deeply in- 
debted for support from my management at General Electric Co. corporate 
Research and Development - Dr. Roland Schmitt (now President of 
Rensselaer Polytechnic Inst.), Dr. Walter Robb, Dr. Mike Jefferies, Dr. Art 
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Chen, Dr. Jim Comly, and Dr, Gerry Hahn. Professor Josef Schmee, when 
Director of the Graduate Management Institute of Union College, kindly 
provided an office where I worked on this book. He also gave me an oppor- 
tunity to teach a course from the book manuscript and thereby improve the 
book. 

Friends generously read the manuscript and offered their suggestions. I 
am particularly grateful for major contributions from Prof. Bill Meeker, Dr. 
Necip Doganaksoy, Dr. Ralph A. Evans, Mr. D. Stewart Peck, Dr. Agnes 
Zaludova, Mr. Don Erdman, Mr. John McCool, Mr. Walter Young, Mr. Dev 
Raheja, and Prof. Tom Boardman. My interest in and contributions to ac- 
celerated testing owe much to the stimulating applications of and many colla- 
borations with Mr. Del Crawford, Mr. Don Erdman, Mr. Joe Kuzawinski, 
and Dr. Niko Gjaja, among others. Many experts on engineering topics and 
statistics provided key references and other contributions. 

The illustrations are the superb work of Mr. James Wyanski (Scotia, NY) 
and Mr. Dave Miller. The manuscript benefited much from the skWul word 
processing of Mr. John Stuart (Desktop Works, Schenectady, NY) and Ms. 
Rita Wojnar. 

Authors who wish to use examples, data, and other material from this 
book in journal publications may do so to the extent permitted by copyright 
law with suitable acknowledgement of the source. Any other use of such ma- 
terial requires the written permission of the publisher: Permissions Dept., 
John Wdey & Sons, 605 Third Ave., New York, NY 10158-0012. 

I would welcome correspondence on suggestions on key references and 
improvements for the book. 

WAYNE NELSON 
Schenectady, New Yo& August 1989 
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1 

Introduction and 
Background 

HOW TO USE THIS BOOK 

This section describes this book’s contents, organization, and how to use 
this book. This book presents statistical models, test plans, and data analyses 
for estimating product reliability from accelerated tests. 

Chapter overview. This chapter presents an introduction to accelerated 
testing methods. Section 1 surveys common applications of accelerated test- 
ing and sources of information. Section 2 describes types of accelerated test 
data. Section3 describes types of acceleration and types of stress loading. 
Section 4 discusses engineering considerations in planning and running an 
accelerated test. Section 5 describes common accelerated tests. Section 6 
outlines the statistical steps and considerations in data collection and analysis. 
This chapter is background for the rest of this book. To profit from this 
chapter, readers need only a general engineering background. Of course, 
previous acquaintance with accelerated testing helps. Those lacking such 
acquaintance may benefit from reading Chapters 2 and 3 before Chapter 1. 

Book overview. Chapter 1 gives an overview of the book and presents 
needed background. Chapter 2 describes accelerated life test models, con- 
sisting of a life distribution and a life-stress relationship. Chapter 3 presents 
simple probability and relationship plots for analyzing complete and censored 
data. Briefly stated, when all specimens have run to failure, the data are com- 
plete. When some specimens are unfailed at the time of the data analysis, 
the data are censored. The plots yield estimates for model parameters, prod- 
uct life (distribution percentiles, reliabilities, failure rates), and other quanti- 
ties. Chapter 4 presents least-squares analyses of complete data; these analy- 
ses yield such estimates and corresponding confidence limits. Chapter 5 
gives maximum likelihood methods for censored data; these methods yield 
estimates and confidence limits. Chapter 6 presents test plans. Chapter 7 
presents models and graphical and maximum likelihood analyses for data 
with a mix of failure modes. Chapters 8 and 9 present comparisons 
(hypothesis tests) for complete and censored data. Chapter 10 treats step- 
stress testing, cumulative damage models, and data analyses. Chapter 11 
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2 INTRODUCTION AND BACKGROUND 

1. INTRODUCTION AND BACKGROUND 1. MODELS 

3 .  GRAPHICAL DATA A N A L Y S I S  * 

1. COMPLETE DATA fi L S  DATA fi ML METHODS 

6 .  T E S T  PLANS . COMPETING F A I L U R E  MODES \\ 8 .  L S  COMPARISONS 9 .  FlL COMPARISONS 
w 
11. ACCEL. DEGRADATION 10. S T E P  AND VARYING S T R E S S  

Figure 1.1. Book organization (* basic chapter). 

introduces accelerated degradation testing, models, and data analyscs. Nel- 
son (1990) briefly covers the most basic applied esscntials of these topics. 

Organization. Figure 1.1 shows this book’s chapters. They are organized 
by type of data (complete, censored, and competing failure modes) and by 
statistical method (graphical, least squares, and maximum likelihood). The 
chapters are in order of difficulty. The arrows in Figure 1.1 show which 
chapters are background for later chapters. Also, each chapter introduction 
refers to needed background and describes the level of the chapter. The first 
three chapters are simple and basic reading for all. Chapter 2 on models is 
background for all else. Chapter 3 on graphical data analysis is most useful. 
The more advanced Chapters4 through 6 are in order of difficulty. 
Chapter 6 (test plans) follows Chapter 5 (maximum likelihood analysis of 
censored data) in the logical development of the subject, but it can profitably 
be read after Chapter 2. Many readers who plan to use a particular model 
can selectively read just the material on data analysis with that model, skip- 
ping other material in data analysis chapters. Maximum likelihood methods 
(Chapter 5) are essential. They are versatile and apply to most models and 
types of data. Also, they have good statistical properties. If time is limited, 
read key Chapters 2, 3, and 5 for basics to solve most problems. Chapters 7 
through 11 treat special topics and may be read in any order. 

Numbering. The book numbers sections, equations, figures, and tables as 
follows. Within each chapter, the sections are numbered simply 1, 2, 3, etc.; 
subsections are numbered 4.1, 4.2, etc. Equation numbers give the 
(sub)section number and equation number; for example, (2.3) is the third 
numbered equation in Section 2. Figure and table numbers include the sec- 
tion number; Figure 2.3 is the third figure in Section 2. Such numbers do not 
include the chapter number. Unless another chapter is stated, any refcr- 
enced equation, figure, or table is in the same chapter. 

Problems. There are two types of problems at the end of a chapter. One 
type involves an analysis of data with the methods in that chapter; the othcr 
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involves extending the results of the chapter to other problems. An asterisk 
(*) marks more laborious or difficult problems. 

Citations. The book cites references by means of the Harvard system. A 
citation includes the author’s name, year of publication, and his publications 
in that year. For example, “Nelson (1972b)” refers to Nelson’s second refer- 
enced publication in 1972. All references are listed near the end of the book. 
Coauthored references follow all singly authored references by the first 
named coauthor. For example, Nelson and Hahn (1972) follows all refer- 
ences authored solely by Nelson. 

Tables. Basic statistical tables are in AppendixA near the end of the 
book. Other tables must be obtained from the literature and are referenced. 

Index. The index of the book is detailed. It will be an aid to those who 
wish to use the book as a reference for selected methods. Also, to aid users, 
some sections are self-contained, thus repeating some material. 

Derivations. The book omits most derivations. Reasons for this are: (1) 
readers can properly apply most methods, knowing assumptions but not 
knowing derivations, (2) many derivations are easy for a reader or instructor 
to supply, and (3) more time can be spent on methods useful in practice. 
Many derivations appear in Mann, Schafer, and Singpurwalla (1974), Bain 
(1978), and particularly Lawless (1982) and Viertl (1988). 

Terminology. This book uses common statistical terminology, whose 
meaning often differs from engineering and everyday meanings. Terms such 
as “normal,” “independent,” “dependent,” and “confidence” are examples. 
Moreover, there are many instances of a single concept with several names. 
For example, independent, explanatory, and predictor variables are 
equivalent terms. Thus those not familiar with statistical terminology need to 
pay special attention to words in italics, boldface, and quotation marks. 
Caveat lector. 

1. SURVEY OF METHODOLOGY AND APPLICATIONS 

Overview. This section briefly surveys statistical and engineering meth- 
odology and the vast literature for accelerated testing. Also, this section 
briefly describes applications to indicate the wide use of accelerated testing. 
No doubt important references are lacking. 

1.1. Methodology 

Accelerated testing. Briefly stated, accelerated testing consists of a 
variety of test methods for shortening the life of products or hastening the 
degradation of their performance. The aim of such testing is to quickly ob- 
tain data which, properly modeled and analyzed, yield desired information on 



4 INTRODUCTION AND BACKGROUND 

product life or performance under normal use. Such testing saves much time 
and money. The aim of this book is to provide practitioners with basic, prac- 
tical statistical models, test plans, and data analyses for accelerated tests. 

Statistical methodology. In recent years statisticians have developed 
much statistical methodology for accelerated testing applications. Indeed 
they solved most of the statistical problems listed by Yurkowski, Schafer, and 
Finkelstein (1967). For example, statisticians solved the big bugaboo of ac- 
celerated testing, namely, proper analysis of data with a mix of failure modes 
(Chapter 7). Recent books with chapters on statistical methodology for ac- 
celerated tests include Lawless (1982), Mann, Schafer, and Singpurwalla 
(1974), Jensen and Petersen (1982), Lipson and Sheth (1973), Tobias and 
Trindade (1986), Kalbfleisch and Prentice (1980), Cox and Oakes (1984), and 
Little and Jebe (1975). Viertl (1988) surveys statistical theory for accelerated 
testing. Nelson (1990) briefly presents the most basic essentials of applied 
statistical methods and models for accelerated testing. The present book 
provides applied statistical models and methods for accelerated testing. Sta- 
tistical methodology is improving rapidly. Thus books over 5 years old lack 
important developments, and books over 10 years old are seriously out of 
date. This book is no exception. 

Surveys of the statistical literature on accelerated testing include Viertl 
(1988), Nelson (1974), Ahmad and Sheikh (1983), Meeker’s (1980) bibliogra- 
phy, Singpurwalla (1975), and Yurkowski, Schafer, and Finkelstein (1967). 
Peck and Trapp (1978) present simple graphical methods for semiconductor 
data. Peck and Zierdt (1974) survey semiconductor applications. 

Journals. Journals with articles on accelerated testing may be found in 
the References at the back of this book. Journals with statistical methodology 
for accelerated testing include: 
a American SOC. for Quality Control Annual Quality Congress Transactioits 

Annals of Reliability and Maintainability 
a Applied Statistics 
a IEEE Transactions on Reliability 
a J. of Quality Technology 

J. ofthe American Statistical Assoc. 
J. ofthe Operations Research Soc. of America 

a J. of Statistical Planning and Inference 
a Naval Research Logistics Quarterly 
a Proceedings of the Annual Reliability and Maintainability Symposium 
a The Q R Journal - Theory and Practice, Methods and Management 
a Quality and Reliability Engineering International 
a Reliability Review of the American SOC. for Quality Control 
a Technometrics 

Engineering methodology. Engineers have long used accelerated testing 
for diverse products. Governments and professional societies publish lists of 
standards and handbooks for testing methodology and data analysis. The en- 
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gineering literature contains many papers on accelerated testing theory and 
applications. The bibliographies on accelerated testing of Meeker (1980) and 
Yurkowski and others (1%7) with 524 older references show the scope of this 
literature. Also, various engineering books devote some space to this topic. 
A sample of references appears in the applications below. 

Data banks/handbooks. This book covers statistical methods for collec- 
tion and analysis of accelerated test data. It lacks data banks and handbooks 
for specific materials and products. The following brief list of sources may 
serve as a starting point in a search for such data. The US Department of 
Defense (DoD) (1981,1985) maintains Information Analysis Centers (LACS): 

Concrete Technology IAC, (601) 634-3269. 
DoD Nuclear IAC, (805) 963-6400. 
Infrared IAC, (313) 994-1200 ext. 214. 
Metals and Ceramics ICY (614) 424-5000. See the publication list of Metals 

Metal Matrix Composites IAC, (805) 963-6452. 
Plastics Technical Evaluation Center, (201) 724-3189. 
Pavement and Soils Trafficability IAC, (601) 634-2209. 
Reliability AC, (315) 330-4151. 
Thermophysical and Electronic Properties LAC, (317) 494-6300. 

Other sources of information include: 
Standards in many fields, American National Standards Inst. Catalog, 

National Nuclear Data Center, (516) 282-2103. 
Computerized references and data bases, STN International (Chemical 

Index to IEEE Publications (1988), (201)981-1393. Also, Quick Reference 

Ulrich's International Periodicals Directory, R.R. Bowker Co., New York. 
Science Citation Index for locating more recent papers citing known papers 
on a topic. 
GIDEP, Government-Industry Data Exchange Program, for failure rates 
of electronic and mechanical components, (714)736-4677. 
CINDAS - Center for Information and Numerical Data Analysis and Syn- 
thesis, Purdue Univ., Dr. c. Y. Ho, (317)494-6300. Maintains data bases 
on dielectrics and other materials. 

and Ceramics IAC (1984) 

1430 Broadway, New York, NY 10018. 

Abstracts Service), PO Box 3012, Colombus, OH 43210-9989. 

lo IEEE Standards. 

Omissions. This book omits various engineering aspects of accelerated 
testing. Omissions include: 

Failure unuZysis. Sources of information include the International Sympo- 
sium for Testing and Failure Analysis, the Symposium on Mechanical 
Properties, Performance, and Failure Modes of Coatings (NBS/NIST), the 
Failure Analysis Special Interest Group of the Society of Plastics En- 
gineers, and Chapter 13 of Ireson and Coombs (1988). 
Test equipment and labs. Sources of information include Quality Progress 
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(1988), Evaluation Engirreerirtg magazine (813) 966-9521, the Amer. Assoc. 
for Laboratory Accreditation, P.O. Box 200, Farifax Station, VA 22039, 
and various standards of professional societies. 
Measurements/metroIogy and test methods. Standards of engineering so- 
cieties treat this in detail. Meetings include the Instrumentation and Mea- 
surement Technology Conference (IEEE). References include Heymen 
(1988). 

Applications. For convenience, the following applications appear under 
three headings: (1) Materials, (2) Products, and (3) Degradation Mecha- 
nisms. These brief discussions are intended only to suggest the widespread 
use of accelerated testing. Those acquainted with a particular application will 
find the discussion rudimentary. Each discussion briefly describes applica- 
tions, typical products, accelerating stresses, professional societies, journals, 
and meetings. Some references are included. Applications appear in the ac- 
celerated testing bibliographies of Meeker (1980) and Carey (1988), and old- 
er applications appear in the survey of Yurkowski and others (1967). Most 
applications involve time - either as time to failure or as time over which a 
performance property of a product degrades. 

1.2. Materials 

The following paragraphs briefly survey accelerated testing of materials. 
These include metals, plastics, dielectrics and insulations, ceramics, 
adhesives, rubber and elastics, food and drugs, lubricants, protective coatings 
and paints, concrete and cement, building materials, and nuclear reactor ma- 
terials. 

Metals. Accelerated testing is used with metals, including test coupons 
and actual parts, as well as composites, welds, brazements, bonds, and other 
joints. Performance includes fatigue life, creep, creep-rupture, crack initia- 
tion and propagation, wear, corrosion, oxidation, and rusting. Accelerating 
stresses include mechanical stress, temperature, specimen geometry and sur- 
face finish. Chemical acceleration factors include humidity, salt, corrosives, 
and acids. Societies include the American Society for Testing and Materials 
(ASTM), the American Society for Mechanical Engineers (ASME), Ameri- 
can Powder Metallurgy Institute, ASM International (formerly the American 
Society for Metals), Institute of Metals, Society of Automotive Engineers 
(SAE), and the Society for Experimental Mechanics (SEM). References in- 
clude ASTM STP 91-A, 744, and E739-80, Little and Jebe (1975), Graham 
(1968), Dieter (l%l), Shelton (1982), Metals and Ceramics Information 
Center (1984), SAE Handbook AE-4 (1968), and Carter (1985). 

Plastics. Accelerated testing is used with many plastics including building 
materials, insulation (electrical and thermal), mechanical components, and 
coatings. Materials include polymers, polyvinyl chloride (PVC), urethane 
foams, and polyesters, Performance includes fatigue life, wear, mechanical 
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properties, and color fastness. Accelerating stresses include mechanical load 
(including vibration and shock), temperature (including cycling and shock), 
and weathering (ultraviolet radiation and humidity). Societies include the 
Plastics Institute of America, Plastics and Rubber Institute (PRI), and So- 
ciety of Plastics Engineers (particularly its Failure Analysis Special Interest 
Group). Meetings include the International Conference on Fatigue in Poly- 
mers. Publications include Polymer Engineering and Science and J. of Applied 
Polymer Science. References include Mark (1985), Brostow and Cor- 
neliussen (1986), Hawkins (1984,1971), Underwriter Labs (1975), and Clark 
and Slater (1%9). 

Dielectrics and insulations. Accelerated testing is used with many dielec- 
trics and electrical insulations including solids (polyethylene, epoxy), liquids 
(transformer oil), gases, and composites (oil-paper, epoxy-mica). Products 
include capacitors, cables, transformers, motors, generators, and other elec- 
trical apparatus. Performance includes time to failure and other properties 
(breakdown voltage, elongation, ultimate mechanical strength). Accelerating 
stresses include temperature, voltage stress, thermal and electrical cycling 
and shock, vibration, mechanical stress, radiation, and moisture. Societies in- 
clude the Institute of Electrical and Electronics Engineers (IEEE), American 
Society for Testing and Materials (ASTM), and International Electrotechni- 
cal Commission (IEC). Publications include the IEEE Traits. on Electrical 
Insulation and IEEE EIectrical btsirlation Magazine. Meetings include the 
IEEE Annual Conference on Electrical Insulation and Dielectric Phenome- 
na, IEEE Biannual International Symposium on Electrical Insulation, and 
Electrical/Electronics Insulation Conference. References include Sillars 
(1973), IEEE Standard 101 (1986), IEEE Standard 930 (1987), Goba (1969), 
IEEE Index (1988), Vincent (1987), Simoni (1974,1983), Vlkova and 
Rychtera (1978), and Bartnikas (1987, Chap. 5). 

Ceramics. Applications are concerned with fatigue life, wear, and degra- 
dation of mechanical and electrical properties. References include Metals 
and Ceramics Information Center (1984). Societies include the United States 
Advanced Ceramics Association and American Ceramics Society. Publica- 
tions include the I. of the American Ceramics SOC. Meetings include the 
World Materials Congress (ASM) and CERAMTEC Conference and Expo- 
sition (ASM/ESD). See Frieman (1980) and references for Metals. 

Adhesives. Accelerated testing is used with adhesive and bonding materi- 
als such as epoxies. Performance includes life and strength. Accelerating 
stresses include mechanical stress, cycling rate, mode of loading, humidity, 
and temperature. References include Beckwith (1979,1980), Ballado-Perez 
(1986,1987), Millet (1975), Gillespie (1%5), and Rivers and others (1981). 

Rubber and elastics. Accelerated testing is used with rubbers and elastic 
materials (e.g., polymers). Products include tires and industrial belts. Per- 
formance includes fatigue life and wear. Accelerating stresses include 



8 INTRODUCTION AND BACKGROUND 

mechanical load, temperature, pavement texture, and weathering (solar radi- 
ation, humidity, and ozone). Societies include the Plastics and Rubber Insti- 
tute (PRI). References include Winspear’s (1968) Vanderbilt Rubber Hand- 
book and Morton (1987). 

Foods and drugs. Accelerated testing is used with foods (e.g., browning 
of white wines), drugs, pharmaceuticals, and many other chemicals. Perfor- 
mance is usually shelf (or storage) life, usually in terms of amount of an ac- 
tive ingredient that degrades. Performance variables include taste, pH, mois- 
ture loss or gain, microbial growth, color, and specific chemical reactions. 
Accelerating variables include temperature, humidity, chemicals, pH, oxygen, 
and solar radiation. Societies include the American Society of Test Methods, 
US Pharmacopoeia, and Pharmaceutical Manufacturers Association. Major 
meetings include the Annual Meeting of Interplex. Kulshreshtha (1976) gives 
462 references on storage of pharmaceuticals. References include Carsten- 
sen (1972), Connors et al. (1979), Bentley (1970), US FDA Center for Drugs 
and Biologics (1987), Young (1988), Labuza (1982), Beal and Sheiner (1985), 
and Grimm (1987). 

Lubricants. Accelerated testing is used with solid (graphite, molybde- 
num disulphide, and teflon), oil, grease, and other lubricants. Performance 
includes oxidation, evaporation, and contamination. Accelerating stresses in- 
clude speed, temperature, and contaminants (water, copper, steel, and dirt). 
Societies include the Society of Tribologists and Lubrication Engineers, 
STLE (formerly the American Society of Lubrication Engineers, ASLE). Na- 
tional Lubricating Grease Institute (NLGI), American Society for Testing 
and Materials (ASTM), and Society for Automotive Engineers (SAE). El- 
sevier Sequoia, SA. (Switzerland) publishes WEAR, an international journal 
on the science and technology of friction, lubrication, and wear. 

Protective coatings and paints. Accelerated testing is used for weather- 
ing of paints (liquid and powder), polymers, antioxidants, anodized alumi- 
num, and electroplating. Performance includes color, gloss, and physical in- 
tegrity (e.g., wear, cracking, and blistering). Accelerating stresses include 
weathering variables - temperature, humidity, solar radiation (wavelength 
and intensity) - and mechanical load. Societies include the American Elec- 
troplaters and Surface Finishers Society. Meetings include the World Mate- 
rials Congress (ASM), and the Symposium on Mechanical Properties, Perfor- 
mance, and Failure Modes of Coatings (NBS/NIST). 

Concrete and cement. Accelerated testing is used with concrete and ce- 
ment to predict performance - the strength after 28 days of curing. The ac- 
celerating stress is high temperature applied for a few hours. Meetings in- 
clude the Cement Industry Technical Conference. 

Building materials. Accelerated testing is used with wood, particle 
board, plastics, composites, glass, and other building materials. Performance 
includes abrasion resistance, color fastness, strength, and other mechanical 
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properties. Accelerating stresses include load and weathering (solar radia- 
tion, temperature, humidity). References include Clark and Slater (1969). 

Nuclear reactor materials. Accelerated testing is used with nuclear reac- 
tor materials, for example, fuel rod cladding. Performance includes strength, 
creep, and creep-rupture. Accelerating stresses include temperature, 
mechanical stress, contaminants, and nuclear radiation (type, energy, and 
flux). Societies include the Institute of Environmental Sciences (1988) and 
American Nuclear Society. Journals include the IEEE Trans. 011 Nuclear Sci- 
ence and Radiation Research. DePaul(l957) surveys such work. 

13. Products 

The following paragraphs describe accelerated testing of certain products. 
Such products range from simple components through complex assemblies. 

Semiconductors and microelectronics. Accelerated testing is used for 
many types of semiconductor devices including transistors such as gallium ar- 
senide field emission transistors (GaAs FETs), insulated gate field emission 
transistors (IGFETs), Gunn and light emitting diodes (LEDs), MOS and 
CMOS devices, random access memories (RAMS), and their bonds, connec- 
tions, and plastic encapsulants. They are tested singly and in assemblies such 
as circuit boards, integrated circuits (LSI and VLSI), and microcircuits. Per- 
formance is life and certain operating characteristics. Accelerating variables 
include temperature (constant, cycled, and shock), current, voltage (bias), 
power, vibration and mechanical shock, humidity, pressure, and nuclear radi- 
ation. Societies include the Institute for Electrical and Electronics Engineers 
(IEEE), American Electronics Association (AEA), Society for the Advance- 
ment of Material and Process Engineering (PO Box 2459, Covina, CA 
91722). Major professional meetings include the International Reliability 
Physics Symposium, Annual Reliability and Maintainability (RAM) Symposi- 
um, International Symposium for Testing and Failure Analysis, Electronic 
Materials and Processing Congress (ASM), Annual Conference on Electron- 
ic Packaging and Corrosion in Microelectronics, and Gallium Arsinide In- 
tegrated Circuits Symposium (IEEE). References include Peck and Trapp 
(1978), Peck and Zierdt (1974), Reynolds (1977), IEEE Index (1988), and 
Howes and Morgan (1981). Publications include proceedings of the sympo- 
sia above, Microelectronics and Reliability, IEEE Trans. 018 Reliability, IEEE 
Journal of Solid-state Circuits, IEEE Trans. on Consumer Electronics, IEEE 
Circuits and Devices Magazine, IEEE Trans. on Circirits and Systems, IEEE 
Trans. on Electron Devices, IEEE Trans. on Power Electronics, Proceedings of 
the International SAMPE Electronics Materials Conference, IEEE J. of Qiran- 
tun1 Electmnics, and IEE Proceedings (England). 

Capacitors. Accelerated testing is used with most types of capacitors, in- 
cluding electrolytic, polypropylene, thin film, and tantalum capacitors. Per- 
formance is usually life. Accelerating variables include temperature, voltage, 
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and vibration. Professional societies that publish standards and journal arti- 
cles on accelerated test methods and applications include the Institute of 
Electrical and Electronics Engineers (IEEE) and the American Electronics 
Association (AEA). Also, see resources for semiconductor applications. 

Resistors. Accelerated testing is used with thin and thick film, metal ox- 
ide, pyrolytic, and carbon film resistors. Performance is life. Accelerating 
variables include temperature, current, voltage, power, vibration, electro- 
chemical attack (humidity), and nuclear radiation. References include 
Krause (1974). Also, see resources for semiconductor applications. 

Other electronics. Accelerated testing is used with other electronic com- 
ponents such as optoelectronics (opto couplers and photo conductive cells), 
lasers, liquid crystal displays, and electric bonds and connections. The per- 
formance, accelerating stresses, professional societies, and references are 
much the same as those for semiconductors. Publications include IEE 
Proceedings (England), IEEE Trans. on Power Electronics, IEEE Journal of 
Electronic Materials, and IEEE Trans. on Electron Devices. Meetings include 
the Electronic Components Conference (IEEE) and International Electron 
Devices Meeting (IEEE). 

Electrical contacts. Accelerated testing is used for electrical contacts in 
switches, circuit breakers, and relays. Performance includes corrosion and 
life. Metal fatigue, rupture, and welding are common failure mechanisms. 
Accelerating stresses include high cycling rate, temperature, contaminants 
(humidity), and current. References include the IEEE Index (1988). Meet- 
ings include the Holm Conference on Electrical Contacts (IEEE). 

Cells and batteries. Accelerated testing is used with rechargable, non- 
rechargable, and solar cells. Performance includes life, self discharge, cur- 
rent, and depth of discharge. Accelerating variables include temperature, 
current density, and rate of charge and discharge. Societies include the Elec- 
trochemical Society (609) 737-1902. Publications include the Journal of the 
Electrochemical Society, Solar Cells (Switzerland), and Proceedings of the 
Symposium on Lithium Batteries. References include Sidik and others 
(1980), McCallum and others (1973), Linden (1984), and Gobano (1983). 
Meetings include the Battery Workshop (NASA), Annual Battery Confer- 
ence on Applications and Advances (IEEE and California State University), 
and International Power Sources Symposium. 

Lamps. Accelerated testing is used with incandescent (filament), fluores- 
cent (including ballasts), mercury vapor, and flash lamps. Performance in- 
cludes life, efficiency, and light output. Accelerating variables include volt- 
age, temperature, vibration, and mechanical and electrical shock. Societies 
include the International Electrotechnical Commission (IEC). References 
include EG&G Electro-Optics (1984), IEC Publ. 64 (1973), and IEC Publ. 82 
(1980). 
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Electrical devices. Accelerated testing is used with various electrical de- 
vices including motors, heating elements, and thermoelectric converters. 
References include the IEEE Index (1988). Motor and generator failures are 
almost always due to insulation or bearing failure. Thus their life distribution 
is inferred from that of their insulation and bearings (Chapter 7). 

Bearings. Accelerated testing is used with roller, ball, and sliding (oil 
film) bearings. Performance includes life and wear (weight loss). Materials 
include steels and silicon nitride for rolling bearings and porous (sintered) 
metals, bronzes, babbitt, aluminum alloys, and plastics for sliding bearings. 
Accelerating stresses include overspeed, mechanical load, and contaminants. 
Societies include the Anti-Friction Bearing Manufacturers Association (AFB- 
MA), International Standards Organization (ISO), American Society for 
Testing and Materials (ASTM), Society of Automotive Engineers (SAE), and 
ASM International (formerly the American Society for Metals). References 
include Harris (1984), SKF (1981), and Lieblein and Zelen (1956). 

Mechanical components. Accelerated testing is used with mechanical 
components and assemblies such as automobile parts, hydraulic components, 
tools, and gears. Performance includes life and wear. Accelerating stresses 
include mechanical load, vibration, temperature and other environmental fac- 
tors, and combinations of such stresses. Societies include the American So- 
ciety for Testing and Materials (ASTM), Society for Automotive Engineers 
(SAE), and American Society for Mechanical Engineers (ASME). Meetings 
include the International Machinery Monitoring and Diagnostic Conference 
(sponsored by Union College, Schenectady, NY). References include Collins 
(1981), Zalud (1971), and Boothroyd (1975). See resources for Metals. 

1.4. Degradation Mechanisms 

The following paragraphs describe common mechanisms for degradation 
of product pegomance. Such mechanisms are utilized or studied in ac- 
celerated tests. For more detail, refer back to discussions of materials and 
products. Meetings include the International Machinery Monitoring and Di- 
agnostic Conference (sponsored by Union College, Schenectady, NY). 

Fatigue. Materials eventually fail by fatigue if subjected to repeated 
mechanical loading and unloading, including vibration. Well studied are the 
fatigue of metals, plastics, glass, ceramics, and other structural and mechani- 
cal materials (see references on these). Fatigue is a major failure mechanism 
of mechanical parts including bearings and electrical contacts. The usual ac- 
celerating stress is load. Other stresses are temperature and chemicals (wa- 
ter, hydrogen, oxygen, etc.). References include Tustin and Mercado (1984), 
ASTM STP648 (1978), ASTM STP 744 (1981), ASTM STP748 (1981), 
ASTM STP 738 (1981), Frieman (1980), and Skelton (1982). 
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Creep. Creep, the slow plastic deformation of materials under constant 
mechanical load, may interfere with product function or cause rupture or 
fracture. Accelerating variables are typically temperature and mechanical 
load, load cycling, and chemical contaminants (for example, water, hydrogen, 
and fluorine). References include Goldhoff and Hahn (1968), Hahn (1979), 
and Skelton (1982). See resources for Metals and Plastics. 

Cracking. Metals, plastics, glass, ceramics, and other materials crack. 
People study crack initiation and growth. Accelerating stresses include 
mechanical stress, temperature, and chemicals (humidity, hydrogen, alkalis, 
and acids). See resources for Metals and Plastics. 

Wear. In applications, many materials are subjected to friction that re- 
moves the material. For example, rubber tires lose tread, house paints wash 
off, gears, bearings, and machine tools wear away. Accelerating stresses in- 
clude speed, load (magnitude and type), temperature, lubrication, and chemi- 
cals (humidity). References include Rabinowicz (1988) and Peterson and 
Winer (1980). DePaul (1957) surveys nuclear applications. Boothroyd 
(1975) treats machine tool wear. Elsevier Sequoia, SA. (Switzerland) pub- 
lishes FEAR, an international journal on the science and technology of fric- 
tion, lubrication, and wear. 

Corrosion/oxidation. Most metals and many foods, pharmaceuticals, 
etc., deteriorate by chemically reacting with oxygen (oxidation and rusting), 
fluorine, chlorine, sulphur, acids, alkalis, salt, hydrogen peroxide, and water. 
Accelerating stresses include concentration of the chemical, activators, tem- 
perature, voltage, and mechanical load (stress-corrosion). Meetings include 
the Annual Conference on Electronic Packaging and Corrosion in Microelec- 
tronics. Professional societies include the National Assoc. of Corrosion En- 
gineers (NACE). The publications list of the Metals and Ceramics Informa- 
tion Center (1984) includes work on corrosion. References include DePaul 
(1957) on nuclear applications, Rychtera (1985), and Uhlig and Revie (1985). 

Weathering. This concerns the effects of weather on materials in outdoor 
applications. Such materials include metals, protective coatings (paint, elec- 
troplating, and anodizing), plastics, and rubbers. Accelerating stresses in- 
clude solar radiation (wavelength and intensity) and chemicals (humidity, 
salt, sulphur, and ozone). The degradation generally involves corrosion, oxi- 
dation (rust), tarnishing, or other chemical reaction. Professional societies 
include Institute of Environmental Sciences (1988). Publications include the 
Journal of Environntental Sciences. 

2. TYPESOFDATA 

This section presents background on accelerated test data. Accelerated 
test data can be divided into two types. Namely, the product characteristic of 
interest is 1) life or is 2) some other measure of performance, such as tensile 
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strength or ductility. Such data are described below. This background is 
essential for the rest of this book. 

Performance data. One may be interested in how product performance 
degrades with age. In such performance testing, specimens are aged under 
high stress, and their performance measured at different ages. Such perfor- 
mance data are analyzed by fitting a degradation model to the data to esti- 
mate the relationship between performance, age, and stress. Chapter 11 
discusses such data in detail and presents such models and data analyses. 
Such a degradation test has been used, for example, for temperature aging of 
electrical insulation and pharmaceuticals. Goba (1969) references such test- 
ing of electrical insulation. 

Life data. The proper analysis of life data depends on the type of data. 
The following paragraphs describe the common types of life data from a sin- 
gle test or design condition. 

Complete. Complete data consist of the exacf life (failure age) of each 
sample unit. Figure 2.lA depicts a complete sample from a single test condi- 
tion. There the length of a line corresponds to the lcngth of life of a test unit. 
Chapters 3, 4, and 8 treat such data. Much life data are incomplete. That is, 
the exact failure times of some units are unknown, and there is only partial 
information on their failure times. Examples follow. 

Censored. Often when life data are analyzed, some units are unfailed, 
and their failure times are known only to be beyond their present running 
times. Such data are said to be censored on the right. In older literature, 
such data or tests are called truncated. Unfailed units are called run-outs, 
survivors, removals, and suspensions. Such censored data arise when some 
units are (1) removed from test or service before they fail, (2) still running at 
the time of the data analysis, or (3) removed from test or service because 
they failed from an extraneous cause such as test equipment failure. Similar- 
ly, a failure time known only to be before a certain time is said to be cen- 
sored on the left. If all unfailed units have a common running time and all 
failure times are earlier, the data are said to be singly censored on the right. 
Singly censored data arise when units are started together at a test condition 
and the data are analyzed before all units fail. Such data are singly time cen- 
sored if the censoring time is fixed; then the number of failures in that fixed 
time is random. Figure 2.1B depicts such a sample. There the line for an un- 
failed unit shows how long it ran without failure, and the arrow pointing to 
the right indicates that the unit's failure time is later. Time censored data are 
also called 'Qpe I censored. Data are singly failure censored if the test is 
stopped when a specified number of failures occurs. The time to that fixed 
number of failures is random. Figure 2.1C depicts such a sample. Time cen- 
soring is more common in practice. Failure censoring is more common in 
the theoretical literature, as it is mathematically more tractable. Chapters 3 
and 5 present analyses for singly censored data. 
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Multiply censored. Much data censored on the right have differing run- 
ning times intermixed with the failure times. Such data are called multiply 
censored (also progressively, hyper-, and arbitrarily censored). Figure 2.1D 
depicts such a sample. Multiply censored data arise when units go on test at 
different times. Thus they have different running times when the data are 
recorded. Such data may be time censored (running times differ from failure 
times, as shown in Figure2.1D) or failure censored (running times equal 
failure times, as shown in Figure 2.1E). Chapters 3,5, and 7 treat such data. 

Competing modes. A mix of competing failure modes occurs when sam- 
ple units fail from different causes. Figure 2.1F depicts such a sample, where 
A, B, and C denote different failure modes. Data on a particular failure 
mode consist of the failure times of units failing by that mode. Such data for 
a mode are multiply censored. Chapters 3 and 7 treat such data. 

Quantal-response. Sometimes one knows only whether the failure time 
of a unit is before or after a certain time. Each observation is either cen- 
sored on the right or else on the left. Such life data arise if each unit is in- 
spected once to see if it has already failed or not. Such inspection data are 
called quantal-response data, also called sensitivity, probit, binary, and all- 
or-nothing response data. Figure 2.1G depicts such a sample. There the ar- 
row for each unit shows whether the unit failed before its inspection or will 
fail later. Chapter 5 treats such data. 

Interval. When each unit is inspected for failure more than once, one 
knows only that a unit failed in an interval between inspections. So-called in- 
terval, grouped, or read-out data are depicted in Figure 2.1H. There a solid 
line shows the interval where a unit failed, and a dotted line shows an inspec- 
tion interval where it did not fail. Such data can also contain right and left 
censored observations. Chapter 5 treats such data. 

Mixture. Data may also consist of a mixture of the above types of data. 

Purpose. Analyses of such censored and interval data have much the 
same purposes as analyses of complete data, for example, estimation of 
model parameters and the product life distribution and prediction of future 
observations. 

3. TYPES OF ACCELERATION AND STRESS LOADING 

This section describes common types of acceleration of tests (high usage 
rate, overstress, censoring, degradation, and specimen design) and stress 
loading. Test purposes (Section 4) might profitably be read first. 

High Usage Rate 

A simple way to accelerate the life of many products is to run the product 
more - at a higher usage rate. The following are two common ways of do- 
ing such compressed time testing. 
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Faster, One way to accelerate is to run the product faster. For example, 
in many life tests, rolling bearings run at about three times their normal 
speed. High usage rate may also be used in combination with overstress test- 
ing. For example, such bearings are also tested under higher than normal 
mechanical load. Another example of high usage rate involves a voltage en- 
durance test of an electrical insulation by Johnston and others (1979). The 
AC voltage in the test was cycled at 412 Hz instead of the normal 60 Hz, and 
test was shorter by a factor of 412/60 = 6.87. 

Reduced off time. Many products are off much of the time in actual use. 
Such products can be accelerated by running them a greater fraction of the 
time. For example, in most homes, a major appliance (say, washer or dryer) 
runs an hour or two a day; on test it runs 24 hours a day. In use, a refrigera- 
tor compressor runs about 15 hours a day; on test it runs 24. A small appli- 
ance (say, toaster or coffee maker) runs a few cycles a day; on test it cycles 
many times a day. 

Purpose. The purpose of such testing is to estimate the product life dis- 
tribution at normal usage rates. It is assumed that the number of cycles, re- 
volutions, hours, etc., to failure on test is the same that would be observed at 
the normal usage rate. For example, it is assumed that a bearing that runs 
6.2 million revolutions to failure at high rpm would run 6.2 million revolu- 
tions at normal rpm. The data are treated as a sample from actual use. 
Then standard life data analyses provide estimates of the percentage failing 
on warranty, the median life, etc. They also provide comparisons of designs, 
manufacturing methods, materials, vendors, etc. Such analyses are explained 
by Nelson (1983c,1982, pp. 567-569) and by reliability books he references. 

The assumption. It is not automatically true that the number of cycles to 
failure at high and normal usage rates is the same. Usually the test must be 
run with special care to assure that product operation and stress remain nor- 
mal in all regards except usage rate. For example, high rate usage usually 
raises the temperature of the product. That usually results in fewer cycles to 
failure. It may even produce failure modes not seen at normal temperature 
and usage rate. Thus many such tests involve cooling the product to keep the 
temperature at a normal level. In contrast, products sensitive to thermal cy- 
cling may last longer if run continuously without thermal cycling. For this 
reason, toasters on test are force cooled by a fan between cycles. 

Overstress Testing 

Overstress testing consists of running a product at higher than normal 
levels of some accelerating stress(es) to shorten product life or to degrade 
product performance faster. Typical accelerating stresses are temperature, 
voltage, mechanical load, thermal cycling, humidity, and vibration. Later, 
overstress tests are described according to purpose and the nature of the test. 



TYPES OF ACCELERATION 17 

Overstress testing is the most common form of accelerated testing and is a 
main subject of this book. 

Censoring 

Modern practice includes accelerating tests through censoring (Chapters 5 
and 6). That is, tests are terminated before all specimens run to failure. This 
shortens test time. For higher reliability products, one is usually interested in 
just the lower tail of the life distribution. Then usually little information is 
gained from data from the upper tail. However, sometimes an important 
failure mode is active at the design stress level and does not occur in the 
lower tail at the test stress levels. But it occurs in the uppe? tail. Then data 
from the upper tail is useful, and terminating the test early would miss that 
important failure mode (Chapter 7). 

mads tion 

Method. Accelerated degradation testing involves overstress testing. In- 
stead of life, product pefomance is observed as it degrades over time. For 
example, the breakdown voltage of insulation specimens at high temperature 
is measured at various ages. A model for performance degradation is fitted 
to such performance data and used to extrapolate performance and time of 
failure. Thus failure and the life distribution can be predicted before any 
specimen fails. This accelerates the test. Failure is assumed to occur when a 
specimen performance degrades below a specified value. For example, an in- 
sulation specimen fails when its breakdown voltage degrades below the 
design voltage. Chapter 11 presents models and data analyses for accelerated 
degradation. 

Specimen Design 

Life of some products can be accelerated through the size, geometry, and 
finish of specimens. 

Size. Generally large specimens fail sooner than small ones. For exam- 
ple, high capacitance capacitors fail sooner than low capacitance ones of the 
same design. The large capacitors merely have more dielectric area. Simi- 
larly, long cable specimens fail sooner than short ones. Time to breakdown 
of an insulating fluid is shorter for electrodes with a three-inch diameter than 
for electrodes with a one-inch diameter. Large (diameter or length) metal 
fatigue specimens fail sooner than short ones. Creep-rupture specimens have 
been linked end-to-end in a group to increase the amount of metal on a test 
machine. They are tested until the first specimen of a group fails; this is 
called sudden-death testing. Usually one wants to estimate the life of a 
smaller or larger standard size of the product. Such an estimate requires a 
model that takes specimen size into account (Chapter 7). Harter (1977) sur- 
veys such models. 
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Geometry. Specimen geometry may affect specimen life. For example, 
some metal fatigue, crack propagation, and creep-rupture specimens are 
notched. Such notches produce local high stress and early failure. One 
might argue that such specimens are locally overstressed or should be dis- 
cussed under overstress testing. On the other hand, the average stress in 
such a specimen may be the normal design stress. Also, surface finish 
(roughness) and residual stresses of metal specimens affect fatigue life. 

Stress Loading 

The stress loading in an accelerated test can be applied various ways. 
Descriptions of common loadings follow. They include constant, cyclic, step, 
progressive, and random stress loading. The discussion is limited to a single 
stress variable, but the concepts extend to multiple stress variables. 

Constant stress. The most common stress loading is constant stress. 
Each specimen is run at a constant stress level. Figure 3.1 depicts a constant 
stress test with three stress levels. There the history of a specimen is depict- 
ed as moving along a horizontal line until it fails at a time shown by an X. An 
unfailed specimen has its age shown by an arrow. At the highest level, all 
four specimens ran to failure. At the middle level, four ran to failure, and 
one was unfailed. At the lowest level, four ran to failure, and four were un- 
failed. In use, most products run at constant stress. Then a constant stress 
test mimics actual use. Moreover, such testing is simple and has advantages. 
First, in most tests, it is easier to maintain a constant stress level. Second, ac- 
celerated test models for constant stress are better developed and empirically 
verified for some materials and products. Third, data analyses for reliability 
estimation are well developed and computerized. Chapter 6 presents test 
plans for constant stress tests. Such plans consist of the “best” test stress lev- 
els and number of specimens at each level. 

Step stress. In step-stress loading, a specimen is subjected to successive- 
ly higher levels of stress. A specimen is first subjected to a specified constant 
stress for a specified length of time. If it does not fail, it is subjected to a 
higher stress level for a specified time. The stress on a specimen is thus in- 

- 
Figure 3.1. Constant stress test (x failure,- runout). 
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Figure 3.2. Stepstress test (x failure, o-+ runout). 

creased step by step until it fails. Usually all specimens go through the same 
specified pattern of stress levels and test times. Sometimes different patterns 
are applied to different specimens. Figure 3.2 depicts two such patterns. 
Such data may be censored. Pattern 1 has six failures and three runouts. 

Advantages. The main advantage of a step-stress test is that it quickly 
yields failures. The increasing stress levels ensure this. Statisticians are hap- 
py to have failures, because they yield estimates of the model and of the 
product life. Engineers are happier when there are no failures, which sug- 
gests (perhaps incorrectly) that the product is reliable. Quick failures do not 
guarantee more accurate estimates. A constant stress test with a few speci- 
men failures usually yields greater accuracy than a shorter step-stress test 
where all specimens fail. Roughly speaking, the total time on test (summed 
over all specimens) determines accuracy - not the number of failures. 

Disadvantages. There is a major disadvantage of step-stress tests for reli- 
ability estimation. Most products run at constant stress - not step stress. 
Thus the model must properly take into account the cumulative effect of ex- 
posure at successive stresses. Moreover, the model must also provide an esti- 
mate of life under constant stress. Such a model is more complex than one 
for a constant stress test. Such cumulative exposure models (also called cu- 
mulative damage models) are like the weather. Everybody talks about them, 
but nobody does anything about them. Many models appear in the literature, 
few have been fitted to data, and even fewer assessed for adequacy of fit. 
Moreover, fitting such a model to data requires a sophisticated special com- 
puter program. Thus, constant stress tests are generally recommended over 
step-stress tests for reliability estimation. Another disadvantage of a step- 
stress test is that failure modes occurring at high stress levels (in later steps) 
may differ from those at use conditions. Some engineers who run elephant 
tests (Section 5.1) fail to note this. Chapter 10 presents step-stress models 
and data analyses. Step-stress data with a mix of failure modes can be prop- 
erly analyzed with the methods of Chapters 7 and 10, provided one has an 
adequate cumulative exposure model. 
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Figure 33. Progressive stress test (x failure, o+ runout). 

Examples. Nelson (1980) describes a step-stress model and data analysis. 
Schatzoff and Lane (1987) use this model to optimize planning of a step- 
stress test with read-out data. Goba (1969) references such work on tem- 
perature accelerated testing of electrical insulation. ASTM Special Technical 
Publication No. 91-A (1963) provides methods for analyzing such data from 
metal fatigue tests. Yurkowsi and others (1967) survey early work. 

Progressive stress. In progressive stress loading, a specimen undergoes 
a continuously increasing level of stress. Different groups of specimens may 
undergo different progressive stress patterns. Figure 3.3 depicts such a test 
with three patterns - each a linearly increasing stress. As shown in Fig- 
ure 3.3, under a low rate of rise of stress, specimens tend to live longer and to 
fail at lower stress. Such life data may be censored. In metal fatigue, such a 
test with a linearly increasing mechanical load is called a Prot test. 

Disadvantages. Progressive stress tests have the same disadvantages as 
step-stress tests. Moreover, it may be difficult to control the progressive 
stress accurately enough. Thus constant stress tests are generally recom- 
mended over progressive stress tests for reliability estimation. Chapter 10 
presents progressive-stress models and data analyses. 

Examples. Endicott and others (1%1,1%1,1%5) used progressive testing 
on capacitors. Nelson and Hendrickson (1972) analyze such data on dielec- 
tric breakdown of insulating fluid. Prot (1948) introduced such testing into 
fatigue studies of metal. ASTM Special Technical Publication No. 91-A 
(1963) provides methods for analyzing such data from metal fatigue tests. 
Goba (1969) references work on such temperature accelerated testing of 
electrical insulation. ASTM Standard D2631-68 (1970) describes how to car- 
ry out progressive stress tests on capacitors. 

Cyclic stress. In use, some products repeatedly undergo a cyclic stress 
loading. For example, insulation under ac voltage sees a sinusoidal stress. 
Also, for example, many metal components repeatedly undergo a mechanical 
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Figure 3.4. Cyclic-stress loading. 

stress cycle. A cyclic stress test for such a product repeatedly loads a speci- 
men with the same stress pattern at high stress levels. Figure 3.4 depicts a cy- 
clic stress test. For many products, a cycle is sinusoidal. For others, the duty 
(or test) cycle repeats but is not sinusoidal. The (usually high) number of cy- 
cles to failure is the specimen life. Such life data may be censored. 

Insulation. For insulation tests, the stress level is the umplihtde of the ac 
voltage sinusoid, which alternates from positive to negative voltage. So the 
level is characterized by a single number. For purposes of modeling and data 
analysis, such cyclic stress is regarded as a constant, and it can be depicted as 
in Figure 3.1, where the vertical axis shows the voltage amplitude. 

Metals. In metal fatigue tests, usually a specimen undergoes (nearly) 
sinusoidal loading. But the sinusoid need not have a mean stress of zero. 
Figure 3.4 shows such a sinusoid with a positive mean. Tensile stress is posi- 
tive, and compressive stress is negative in the figure. Thus, according to the 
figure, the specimen is under tension for most of a cycle and under compres- 
sion for a small part of a cycle. Such sinusoidal loading is characterized by 
two numbers, say, the stress range and the mean stress. Frequency often has 
negligible effect. Thus, fatigue life can be regarded as a function of these two 
“constant” stress variables. In place of the stress range, metallurgists use the 
A-ratio; it is the stress amplitude (half the range) divided by the mean stress. 
For example, suppose a specimen is cycled from 0 psi to 80,000 psi compres- 
sion and back to 0 psi. The mean stress is 40,OOO psi, and the A-ratio is 
OS(80,OOO-0)/40,OOO = 1. The A-ratio for ac voltage cycling of insulation is 
infinity, since the mean voltage is zero. Usually, on a fatigue test, all speci- 
mens see the same A-ratio as does an actual part in use, but different groups 
of specimens run at different mean stress levels. Such a test is then regarded 
as a constant stress test. The test can then be depicted as in Figure 3.1 where 
the vertical axis shows the mean stress. Moreover, then specimen life is 
modeled with a constant stress model, and the data are analyzed accordingly. 

Assumed. In most such tests, the frequency and length of a stress cycle 
are the same as in actual product use. For some products, they differ but are 
assumed to have negligible effect on life, and they are disregarded. For other 
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Figure 3.5. Random stress loading. 

products, the frequency and length of a cycle affect life; so they are included 
in the model as stress variables. 

Random stress. Some products in use undergo randomly changing levels 
of stress, as depicted in Figure 3.5. For example, bridge members and air- 
plane structural components undergo wind buffeting. Also, environmental 
stress screening (Section 5.2) uses random vibration. Then an accelerated 
test typically employs random stresses with the same distribution as actual 
random stresses but at higher levels. Like cyclic stress tests, random stress 
models employ some characteristics of the stress distribution as stress vari- 
ables (say, the mean, standard deviation, correlation function, and power 
spectral density). Then such a test is regarded as a constant stress test; this, 
of course, is simplistic but useful. The test can then be depicted as in Fig- 
ure 3.1 where the horizontal line shows the mean stress. Moreover, specimen 
life is modeled with a constant stress model, and the data are analyzed ac- 
cordingly. Such life data may be censored. 

4. ENGINEERING CONSIDERATIONS 

Many considerations impact the validity and accuracy of information 
from an accelerated test. This section surveys certain engineering and man- 
agement considerations involved in scientifically planning and carrying out a 
test. This section emphasizes accelerated tests for estimating product life at 
design conditions. However, most considerations apply to tests of perfor- 
mance degradation and to engineering experiments in general. 

Overview. The following topics highlight certain management and en- 
gineering decisions on a test. Generally such decisions involve the collabora- 
tion of manager, designers, production and test engineers, statisticians, and 
others. The topics include 

0 Test Purpose 
0 Product Performance 
0 Realistic Test Specimens 
0 Realistic Test Conditions 
0 Accelerating Stresses 

0 Other Variables 
0 Measurement Errors 
0 The Model 
0 Test Allocation 
0 Planning Ahead 

This section emphasizes the value of thinking these through in advance. 
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Test Purpose 

ed tests of products. 

various purposes. Common purposes include: 

The following describes engineering and statistical purposes for accelerat- 

Purposes. Accelerated life tests and performance degradation tests serve 

1. 

2. 

3. 

4. 

5. 

6. 

7. 
8. 
9. 

ZdentifL design failures. Eliminate or reduce them through redundancy, 
better design, components, etc. 
Comparisons. Choose among designs, components, suppliers, rated oper- 
ating conditions, test procedures, etc. 
ZdentifL manufacturing defects. Eliminate them through better manufac- 
turing, components, burn-in, etc. Estimate the reliability improvement 
from eliminating or reducing certain failure modes. 
Bum-in. A manufacturing step to eliminate early failures. Determine 
burn-in time and conditions. 
Qitalify control. Monitor product reliability and take corrective action as 
needed, for example, when a new failure mode arises, or life or perfor- 
mance degrades. 
Evalitate other variables. Assess how much design, manufacturing, mate- 
rials, operating, and other variables affect reliability. Optimize reliability 
with respect to them. Decide which need to be controlled. 
Acceptance sampling. Assess production or incoming lots. 
QualifL design and manufacturing changes, components, vendors, etc. 
Measure reliability. Assess whether to release a design to manufacturing 
or product to a customer. Estimate warranty and service costs, failure 
rates, mean time to failure (MTTF), degradation rates, etc. Satisfy a cus- 
tomer requirement for such measurement. Use as marketing informa- 
tion. 

10. Demorislrate reliability. Show that product reliability surpasses customer 
specifications. 

11. Validate the rest. Show that the accelerated test is consistent with itself 
over time, other tests (including those in other labs), and field data. 
Determine a range of test stresses. Develop a new test. 

12. Assess model. Determine whether the engineering relationship and sta- 
tistical distribution are adequate. Develop such a model. 

13. Operating conditions. Develop relationships between reliability (or degra- 
dation) and operating conditions. Choose design operating conditions. 

14. Senicepolicy. Decide when to inspect, service, or replace and how many 
spares and replacements to manufacture and stock. Units may be taken 
out of service and tested under accelerated conditions when an unexpect- 
ed problem shows up in service. 

A test may have one or more such purposes, which concern design, manufac- 
ture, quality control, test, application, marketing, and field service. 

Clear purpose needed. The most essential part of any test is a clear 
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statement of the test purposes. Usually such engineering purposes concern 
decisions to be made by engineering and management. For example, they 
need (1) to decide whether an insulation will last long enough in service, (2) 
to decide which of several competing designs will last longest in service, or 
(3) to judge which manufacturing and service variables to control to prolong 
the service life of a product. These typical engineering and management de- 
cisions often must ultimately be made on the basis of test arid other informa- 
tion. Statistical methods, of course, do not provide answers nor make deci- 
sions. They merely provide numerical information on product performance. 
Thus, if statistical methods are to be used, the engineering purpose must also 
be expressed as a statistical purpose in terms of needed riunterical inifonnu- 
tiori on the product. 

Statistical purpose. If an engineer (or manager) has difficulty specifying 
such needed numbers, the following may help. Imagine that one has all pos- 
sible data on the entire population through all future time. Clearly the 
thousands or millions of individual data values are not used to aid a decision. 
A few simple useful numbers that describe the population need to be calcu- 
lated from the mass of data. The engineer must decide which few numbers 
will help. Statistical analysis merely yields estimates of such population num- 
bers from limited sample data. In addition, statistical test planning helps 
make those estimates more accurate, that is, closer to the true population 
values. Management and engineering must also specify how accurate such 
estimates must be for decision purposes. Thus, reiterating, engineers need to 
express their statistical purposes in terms of all data on the population and 
the useful population values to extract from that mass of data. 

Examples. Such population values include the median life at design con- 
ditions, the percentage failing on warranty, the numerical relationship be- 
tween product life and certain manufacturing variables, etc. This book 
presents statistical models, data analyses, and test plans for efficiently obtain- 
ing accurate estimates of such population values. 

Performance 

Choice of performance. Product performance is often measured in terms 
of life or physical properties. For example, cable insulation is measured with 
respect to mechanical properties (such as ultimate strength and percent ulti- 
mate elongation) and electrical properties (such as breakdown strength and 
dielectric loss). For a particular product, there usually are standard perfor- 
mance properties and methods for measuring them. They are outside the 
scope of this book, and they appear in engineering texts, standards, and hand- 
books. Certain properties degrade with product age, and such degradation 
may be accelerated by high stress levels. Such accelerated testing for perfor- 
mance degradation appears in Chapter 11. In statistical terminology, such a 
performance variable is called a dependent or response variable. 
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Failure. In accelerated life testing, time to failure is the performance 
characteristic or dependent variable. Thus “failure” must be precisely 
defined in practice. Agreement on a definition in advance is essential be- 
tween producer and consumer to minimize misunderstandings and disputes. 
A discussion of “failure” follows. 

Catastrophic failure. Many products undergo catastrophic failure; that 
is, they clearly and suddenly stop working. Incandescent light bulbs, for ex- 
ample, fail catastrophically. 

Defined failure. For other products, performance degrades slowly over 
time, and there is no clear end of life. Then one can use a defined failure 
which occurs when performance first degrades below a specified value. For 
example, jet engine parts have four definitions of failure. (1) Critical parts 
“fail” when a crack initiates. In practice, this means when the crack is first 
detectable. (2) Less critical parts “fail” when the crack first reaches a 
specified size. (3) Any part “fails” when removed from service, usually the 
result of an inspection that shows that the part exceeds definition (1) or (2). 
This definition certainly is meaningful to accountants and top management. 
(4) Any jet engine part “fails” when there is a “part separation’’ - a mar- 
velous engineering euphemism for catastrophic failure. 

Coffee maker. Modern electric coffee makers heat water by passing it 
through heated tubing. In use, mineral build-up inside the tubing constricts 
the opening. This build-up gradually increases the time to make a pot of 
coffee. Engineers developed an accelerated test to study this problem - the 
sludge test. It was used to compare tubing designs, including competitors’ 
designs. The test involved repeatedly running a coffee maker with a 
mineral-rich slurry that quickly produced build-up. By definition, a coffee 
maker “failed” on the first pot that took longer than 20 minutes. Of course, 
20 minutes is a reasonable but arbitrary time; it owes much to the number of 
fingers we have. 17.2 minutes would be as good. 

Customer-defined Failure. One other definition is worth noting. The 
product “fails” when the customer says it fails. Marketing and top manage- 
ment take this definition seriously. Many failures as defined by engineering 
are not severe enough to concern customers. 

The right definition. Which of several definitions is the right one? All 
are. Each has value. In practice, one can use several and analyze the data 
separately according to each. Each yields information. The definition of 
failure is an engineering or management decision. 

Usage/exposure. Time to failure is only one possible measure of usage 
or exposure. For some products, other measures are used. Ball bearing 
usage is the number of revolutions. For non-rechargable battery cells, energy 
output is the usage. Locomotive usage is miles. Usage of many products is 
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the number of duty cycles. Examples include toasters, dishwashers, recharg- 
able battery cells, switches, and circuit breakers. Many such “cycled” prod- 
ucts have customer warranties for a specified calendar time (for example, 
one year), although cycle usage differs greatly from customer to customer. 
Throughout this book “time” means any measure of usage. Even if using 
time, one must decide whether to measure it starting on the date of product 
installation or manufacture. Sometimes installation dates are not known. 
Also, if the product runs only part of the time, one must decide whether to 
measure the actual running time or merely use calendar days in service. 
Calendar days is usually easier and cheaper to determine. The choice of ex- 
posure and how to measure it are engineering and management decisions. 

Realis tic Test Specimens 

Specimen versus product. Many test specimens differ from the actual 
product. Engineers realize that specimen life may differ from product life. 
Then they assume that specimen life is comparable to or below product life. 
Some differences between specimens and product are obvious, and others are 
subtle. Examples follow. It generally is worth the effort to use the actual 
product to get more accurate information. Statisticians will only acknowl- 
edge that specimen tests yield estimates of specimen life - not product life. 
Engineers must make the leap of faith from specimen life to product life. 

Motor insulation. Specimens of motor insulation are usually motorettes 
- not motors. Motorettes contain phase, ground, and turn insulation, as do 
motors. The amount and geometry of such insulations differ from those in 
motors. Moreover, a motorette has no moving parts; it merely contains dis- 
tinct samples of three insulations on substrates similar to those in a motor. 

Metal fatigue. Metal fatigue specimens are often small cylinders. Metal 
parts are generally larger, have complex geometry with sharp corners that lo- 
cally raise stress, have different surface treatment, etc. Engineers in air- 
frame, jet engine, and other businesses partly compensate for these 
differences by running parts only one-third as long as the specimens would 
survive. For example, if 1 specimen in 1,OOO fails by 30,OOO cycles, the part is 
removed from service at 30,OOO/3= 10,OOO cycles. 

Cable insulation. Most specimens of cable insulation range in length 
from one-half to several feet. Usually, but not always, the conductor cross- 
section and insulation geometry and thickness are the same as in actual cable. 
Being much shorter, specimens have much longer lives than actual cable, typ- 
ically many miles long. The cable can be regarded as a large number of 
specimens (end to end), and the cable fails when the first specimen fails. Sta- 
tistical models for the effect of size appear in Chapter 7. 

Sampling bias. Even when test specimens are the actual product, they 
usually are not a random sample. They are usually a biased sample and do 
not adequately represent the population. For example, an accelerated test of 
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a new product typically uses prototype units. They may be fabricated in a lab 
or model shop. Even if made on the production line, they may differ from 
later production units. The design or the manufacturing process always 
changes during production. Some changes are obvious and intentional - 
new materials, cost savings, new vendors, etc. Others are subtle and often 
unrecognized - a vendor’s process changes, plant humidity changes, employ- 
ees start cleaning their bowling balls in the ultrasonic cleaning equipment for 
the product, etc. Quality control engineers spend much time hunting such 
unknown production changes that degrade the product. Engineers generally 
recognize that prototypes differ from production product. 

Representative sample. A representative sample is best for estimating 
the reliability of a product population. Such a sample is heterogeneous and 
includes specimens from many production periods or batches. Ideally it is a 
truly random sample from the population. For other purposes, a homogene- 
ous sample may serve better. For example, to compare two methods of man- 
ufacture, a homogeneous sample of specimens is randomly divided between 
the two methods. Due to the smaller variability between homogeneous speci- 
mens, the comparison will detect smaller differences between the two 
methods. Similarly, test variables such as humidity, temperature, etc., may be 
held constant over all specimens to minimize variability in a comparison. For 
still other purposes, sample specimens with atreme values of observed co- 
variates may be chosen for a test. Such a wide range of covariate values pro- 
vides more accurate estimates of their effects. Taguchi (1987), among others, 
advocates this in experiments with manufacturing processes. 

What is the specimen? The following example suggests that the 
definition of “specimen” may need to be clarified. Much metal fatigue test- 
ing employs cylindrical specimens. At each end, a cylindrical specimen flares 
to a greater diameter, which the test machine grips. Failure can occur in the 
cylindrical portion, in the flare, or in the grips. Often just the cylindrical por- 
tion is regarded as the specimen. Then if the flare or grip portion fails, the 
cylindrical portion is treated as a run-out 6 t h  that number of cycles. Anoth- 
er viewpoint was well expressed by a test technician - you can’t ignore a 
failure in the grips, there’s information in it. In practice, one benefits from 
analyzing the data with each definition of specimen. 

Realistic Test Conditions 

Test versus real use. Many accelerated tests attempt to simulate actual 
use conditions, except for the high level of the overstress variable. Ideally 
test conditions should exactly reproduce use conditions. Indeed much en- 
gineering thought and effort goes into making tests realistic. Professional so- 
cieties issue standards for conducting tests. This is done to assure that the 
data accurately reflect product reliability in actual use. Nevertheless, many 
tests differ much from actual use but may still be useful. Engineers msume 
(based on experience) that a product that performs well on such a test will 
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perform well in actual use. Also, they assume that a design, material, vendor, 
or manufacturing method that performs better than another (design, materi- 
al, etc.) on test will perform better in actual use. Such tests may be regarded 
as engineering tests or index tests. They give a rough but useful measure of 
performance in actual use. Few accelerated tests exactly simulate actual use. 
There is only a question of how well a test simulates actual use. Engineers 
have always had to make this leap of faith from test to field performance. 
Statisticians acknowledge only that they estimate specimen reliability under 
test conditions. The following examples include obvious and subtle 
differences between test and use conditions. Thus it is useful to distinguish 
tea reliability from field reliability. 

Specifics of test methodology are outside the scope of this book. Refer to 
the many standards on test methodology published by engineering societies. 

Motor insulation test. IEEE Standard 117 (1974) specifies how to run a 
temperature-accelerated life test of motor insulation. Specimens go into an 
oven, which is then raised to their test temperature. In the oven, no voltage 
is applied to the insulation. After a specified time at temperature, the speci- 
mens are removed from the oven and cooled to room temperature. The 
specimens are sprayed with water, and then a specified voltage is applied to 
the insulation, which breaks down (failure) or survives. Survivors go back 
into the oven for the next cycle at temperature. In actual use, motor insula- 
tion constantly runs under voltage, is not sprayed with water, and in many ap- 
plications sees no thermal cycling. 

Electric cord test. Electric cord for small appliances is subjected to a flex 
test of durability. A test machine repeatedly flexes each cord specimen until 
it fails electrically. The number of test hours to failure measures perfor- 
mance. A week on test is comparable to 10 to 20 years in service. To make 
the test reflect actual use, various versions and adjustments of the test ma- 
chine were tried until it produced the same mix of failures (shorts, opens, 
etc.) seen in service. This “index” test is used to monitor quality, to compare 
proposed design and manufacturing changes (including cost savings), and to 
qualify new designs and vendors. This test ignores chemical degradation. 

Toaster test. In a life test, toasters are repeatedly cycled. That is, the 
handle is pushed down, the toaster heats, and finally pops. One cycle im- 
mediately follows another (reduced off-time). To speed the test and make it 
more realistic, fans cool the toaster between cycles. Lack of such cooling 
may shorten the life of some components and prolong the life of others 
(those sensitive to mechanical stressing from temperature changes). More- 
over, one version of the test runs by hand with bread (realistic), and another 
runs automatically with a slice of asbestos (a cost savings). Experience 
showed that bread and asbestos have the same effect on life. 

Metal fatigue tests. Metal fatigue tests of specimens or actual parts gen- 
erally employ a sinusoidal load. Each specimen runs at its own constant 
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stress amplitude, frequency, and average stress; this yields data for a fatigue 
curve. In service, most parts do not see such simple loading. Many see other 
cyclic patterns of loads, whereas others see random loads (that is, with a 
spectrum of amplitudes and frequencies). More realistic fatigue tests mimic 
such complex loads. 

Population and sample. The preceding discussions of specimens and test 
conditions deal with a basic statistical principle; namely, the sample must be 
representative of the population. In statistical theory, this means that the 
sample comes truly randomly from the entire population. Moreover, random 
numbers and simple random sampling should be used. In practice, this is sel- 
dom possible. Statistically speaking, a sample is any set of units from a popu- 
lation. In engineering work, “sample” also means a specimen or a test unit. 
Implicit in these comments is that the population must be clearly defined. 
Usually the target (ideal) population is all product of a particular design that 
will be made. In practice, the sampled population is often some small subset 
of the population. For example, the sample may consist of prototype units or 
early production units tested in a lab. Only engineering judgment can assess 
how representative of the population a particular sample is (test specimens 
and conditions). 

Accelerating Stresses 

In practice, one must decide how to accelerate a test. Should one use 
high temperature, mechanical load, voltage, current, vibration, humidity, or 
whatever? Should one use a combination of stresses? 

Standard stresses. For many products there are standard test methods 
and accelerating stresses. For example, high temperature and voltage are 
usually used to accelerate life tests of electrical insulation and electronics. 
Such standard methods and stresses are usually based on much engineering 
experience. Moreover, many are documented in engineering standards. 

No standard stresses. For other products there may be no standard 
stresses. Then the responsible engineers need to determine suitable ac- 
celerating stresses. Experimental work to determine appropriate stresses 
may be required. Such stresses should accelerate the failure modes of in- 
terest. Also, they should avoid accelerating failure modes that do not occur 
at design conditions. If there are extraneous failure modes, the data can still 
be properly analyzed (Chapter 7). The choice of such accelerating stresses is 
an engineering matter outside the scope of this book. 

Multiple stresses. More than one accelerating stress may be used. This 
is done for various reasons. First, one may wish to know how product life 
depends on several stresses operating simultaneously. For example, derating 
curves for various electronic devices include two or more stresses, such as 
temperature, voltage, and current. Such stresses may interact and require 
more elaborate models, such as the generalized Eyring model (Chap. 2). 
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Second, one stress cannot be increased to a high enough level to yield failures 
quickly enough. So a second stress is used for added acceleration. The first 
stress may not go high enough, because the test equipment or product cannot 
go that high. For example, the product may melt, go through a phase change, 
anneal, etc. Third, one stress may accelerate only some of the failure modes 
observed at use conditions. So another stress can be used to accelerate other 
modes in a separate test of additional specimens. Also, both stresses could 
be used in a single experiment with a number of combinations of levels. 

Single stress is simplest. For simplicity and validity of a test, it is gen- 
erally best to use a single accelerating stress. There is less experience with 
products under multiple stresses, and fewer suitable models have been 
verified. For example, the IEEE formed a committee on multi-stress testing 
of electrical insulation and dielectrics, because of the controversy and lack of 
information on the subject. 

The real stress. It is important to recognize which stress really ac- 
celerates product life. For example, one opinion was that the wear (and life) 
of brushes of electric motors is accelerated by the current through the brush. 
Of course, higher current produces higher brush temperature. So another 
opinion was that temperature accelerates brush life. A designed experiment 
with controlled combinations of temperature and current was run. It showed 
that only temperature determines brush life. This example indicates that 
temperature should be included in the model. Or temperature should be 
controlled and the same for all specimens when it is not the accelerating 
stress. High voltage, current, speed, etc., increase temperature, and speci- 
mens may need cooling. 

Stress loading. One must decide how to apply the stress to the speci- 
mens. Over time, the stress level on a specimen can be constant, vary cycli- 
cally, vary randomly (with some distribution of frequency and amplitude), or 
increase continuously or in steps. The choice of such stress loading (Sec- 
tion 3) depends on how the product is loaded in service and on practical and 
theoretical limitations. For example, theories for the effect of varying stress 
on product life are crude and mostly unverified. 

Constant stress is preferable. In service, many products run under a 
constant level of the accelerating stress. For example, most insulations run 
under constant temperature and voltage, most bearings run under constant 
load, most electronic components run under constant voltage and current, 
etc. This suggests that stress levels in accelerated tests to measure reliability 
should be constant to mimic actual use. Moreover, such constant-stress tests 
are easiest to run and model for reliability estimation. 

Step-stress ditflculties. For some products that run under constant 
stress, engineers sometimes choose progressive or step-stress testing. Such 
testing assures failures in a short time. There is no well verified theory for 
using such data to estimate product life under constant design stress. More- 
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over, although specimens of one design last longer on test than those of 
another design, they may not last longer at a lower constant design stress. 
This is especially so for products with a mix of failure modes. The high stress 
steps may produce failures that do not occur at design stress. Thus testing 
with varying stress is generally not recommended for reliability estimation. It 
may be useful for elephant testing (Section 5.1) to identify failure modes. 

Products with varying stress. Some products run under varying stress in 
actual use. Then it is simplest to use the same stress loading but at a higher 
level in a test. The constant-stress models may adequately represent such a 
test. Some engineers choose a constant-stress test, because it is easy to run, 
even though in service the product sees varying stress. There is little estab- 
lished theory (Chapter 10) for using constant stress data to estimate life 
under varying stress. Then constant-stress testing must be regarded as an in- 
dex test. That is, a product that performs well under constant stress is as- 
sumed to perform well under varying stress. Best and worst life distributions 
for such a product can be obtained from a constant-stress model. Use the 
model with the lowest and highest stress levels that the product sees. Even 
this contains implicit assumptions. Evaluating the model at the average or 
maximum stress level in use is misleading, since the dependence of product 
life on stress is highly nonlinear. 

Test stress levels. Test stress levels should not be so high as to produce 
mostly other failure modes that rarely occur at the design stress. Yet levels 
should be high enough to yield enough of the failures active at the design 
stress. Also, an accelerated test model is valid over a limited range of stress. 
So levels of stress need to be in that range. This is so, for example, for high 
temperature which can melt, unbond, anneal, or cause a phase change in ma- 
terials. Another example involved compressors tested under extreme high 
pressure to detect failure of the lubricant. A new compressor design could 
not withstand that pressure. So the standard test could not be used. Test 
plans that specify test stress levels appear in Chapter 6. 

Other Variables 

Types. Besides the accelerating stress, many accelerated tests involve 
other engineering variables (or factors) that affect product life. Such so- 
called independent or explanatory variables include product design, materi- 
al, manufacturing, operation or test, and environment variables. For the fol- 
lowing discussion, they are grouped according to whether the variable (1) is 
investigated at several values to learn its effect, (2) is held fiied at one value, 
(3) varies uncontrolled but is observed to learn its effect, and (4) varies un- 
controlled and unobserved. 

Continuous and categorical. Engineering variables can be continuous or 
categorical. A continuous variable can take on any numerical value in a con- 
tinuous range. For example, binder content of an insulation can (theoretical- 
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ly) have any value from 0 to 100%. Similarly, insulation thickness (theoreti- 
cally) can range from zero to infinity. A categorical variable can take on 
only distinct (discrete) values. For example, a categorical variable is the pro- 
duction shift that makes a specimen; it has three values - day, evening, and 
night. For material made and bought in distinct batches, production lot is a 
categorical variable. If three distinct designs are compared in a test, design is 
a categorical variable. 

Experimental principles. Experimental design books discuss experimen- 
tal designs and methods for investigating such variables. See, for example, 
Cox (1958), Little and Jebe (1975), Diamond (1981), Daniel (1976), and Box, 
Hunter, and Hunter (1978). These books present experimental principles 
such as randomization and blocking. Such principles help one get clear, 
correct results, as well as more accurate information. A few basic principles 
appear briefly below. Many so-called experimental design books only lightly 
touch on design principles. Instead they emphasize mathematical models and 
derivations and sophisticated data analysis. These are often not needed, as 
most well-designed experiments yield clear information from simple calcula- 
tions and data plots. 

Experimental variables. In some accelerated tests, experimental (con- 
trolled) variables are investigated. Different specimens are tested at 
different values of such variables. An example was an accelerated test of an 
insulation in the form of tape. There were two experimental variables: (1) 
the amount the tape overlaps itself as it is wound on the conductor and (2) 
the amount the next layer of tape is shifted relative to the previous layer of 
tape. The experiment involved three levels (amounts) of overlap and three 
levels of shift. Such specimens with various combinations of overlap and shift 
were accelerated at various voltage stresses. Another experiment with simi- 
lar tape insulation investigated one experimental variable - total insulation 
thickness (tape can be laid in any number of layers). There were specimens 
with each of five thicknesses. Specimens of each thickness were accelerated 
at various voltage stresses. 

Constant variables. In most accelerated tests, certain constant variables 
are each held at a single fixed value. For example, in the insulation tests of 
the previous paragraph, the tape came from a single homogeneous lot from 
the manufacturer. This avoids complications arising from differences be- 
tween lots. Similarly, specimens were all made by the same technician, and 
all specimens went through each processing step as a batch; for example, all 
specimens were cured together. In contrast, certain variables in the fabrica- 
tion of the Class-H insulation specimens in a later example were not held at a 
single fixed value. The 260" specimens were made separately from the rest, 
and they may have differed with respect to material lots and fabrication. 

Uncontrolled observed variables. In some accelerated tests, certain vari- 
ables vary uncontrolled but are observed or measured for each specimen. 
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Usually one intends to evaluate the effect of such uncontrolled observed 
variables (“covariates”) on product life. If they are related to life, they may 
be included in the model fitted to the data. The tape insulation tests involved 
such variables, for example, binder content and dissipation factor. If binder 
content has negligible effect on life, then manufacturing specifications on it 
can be relaxed. If dissipation factor is related to life, then it can be used to 
decide which insulation goes into high or low stress applications. To more 
accurately estimate the effect of such variables, one can select and test speci- 
mens with extreme values of such variables, as advocated by Taguchi (1987). 

Correlation. Data on such an observed, uncontrolled covariate may be 
“correlated” with life (or performance). As used by engineers, “correlated” 
means that life and the covariate have some relationship, usually assumed a 
physical cause and effect relationship. In particular, specimen data on (log) 
life crossplotted against such a covariate show a relationship, say, a trend to 
higher life for higher values of the covariate. Such a relationship in a plot 
does not necessarily mean that maintaining the covariate at a high level will 
produce a corresponding increase in life as suggested by the plot. That is, 
there may not be a cause and effect relationship between life and the covari- 
ate. Instead, there may be a more basic variable that simultaneously affects 
the covariate and life. Statisticians then say life and the covariate are (statis- 
tically) “correlated.” When there is a cause and effect relationship, the co- 
variate can be used to control life. Binder content above is such a covariate. 
When there is no cause and effect relationship but just statistical correlation, 
the covariate can be used topredict life but not to control it. Production shift 
below is such a covariate. Whether a covariate has a cause and effect rela- 
tionship with life can be determined only with a designed experiment where 
the covariate is a controlled experimental variable. 

In other tests of such tape insulation, production specimens were taped by 
the day, evening, and night shifts. There was no effort to make specimens by 
a single shift. Instead, test engineers just recorded whichever shift did the 
taping in the normal course of production. The data analyses indicated insu- 
lation taped by the night shift failed sooner. This is useful information for 
predicting life. Such insulation can be put into low-stress applications to 
reduce the risk of service failure. Similarly, production specimens were made 
from tape from many production lots; the tape lot for each specimen was 
recorded and analyzed. 

Uncontrolled unobserved variables. In most accelerated tests, there are 
many uncontrolled unobserved variables. Engineers are aware of some of 
such variables and unaware of others. When aware, engineers may not mea- 
sure them, because their effect is assumed negligible or they are difficult to 
measure. Such variables may include ambient humidity and temperature in 
fabrication and test. They may include various material and processing vari- 
ables, such as specimen position in a curing oven. 
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For example, suppose that humidity during fabrication is such a variable. 
Also, suppose the first third of the specimens were made under high humidi- 
ty and have short life, and the rest were made under low humidity and have 
long life. Suppose the first third are tested at high stress and the rest at 
lower stress. Then the estimate of life at design stress is biased low. More- 
over, the effect of stress is “confounded” with (not separable from) the effect 
of humidity. Randomization avoids this. 

Randomization. The effect of such biases from such variables can be re- 
duced through randomization. Randomization involves using random num- 
bers to determine the order in which specimens go through each step of fab- 
rication, handling, test, measurement, etc. Order is not determined hapha- 
zardly. For example, randomly assign specimens to test stress levels and test 
equipment. Also, randomly assign specimens to positions in ovens, curing 
tanks, etc. Such randomization reduces the chance of bias. For example, the 
high and low humidity specimens would tend to be spread among the test 
stress levels, and their difference would tend to average out. Moreover, it is 
useful to record the random order (position or whatever) of each specimen 
through each step. Residual plots (Chapter 4) against each such order may 
be informative and identify problems in fabrication and testing. 

Standard specimens. Another means of dealing with such variables is to 
regularly test standard specimens to monitor consistency of the test equip- 
ment, technique, and conditions. This requires a homogeneous sample of 
specimens that are archived and used as needed. If the life or degradation of 
such specimens changes from that seen before, then a cause needs to be 
identified and the test brought back into control. Also, one can use the life 
or degradation of standard specimens to “adjust” estimates for other speci- 
mens tested in the same period. 

Choice of type of variable. In practice, one may be able to choose wheth- 
er a variable will be experimental, controlled, or uncontrolled but observed. 
The choice depends on the purpose of the test. For example, suppose one 
wants to estimate the life of actual tape insulation. Then many tape lots 
should be employed in the test; that will produce realistic scatter in the data. 
In contrast, suppose one wants to discern the effect of tape overlap and shift 
with the greatest accuracy. Then one tape lot should be used; it will mini- 
mize scatter of the data and yield more accurate estimates of the effect of 
overlap and shift. 

Measurement Errors 

Engineers decide which stresses and other variables are included in a test. 
Also, they must decide how to measure them. Test results may be sensitive 
to measurement errors in life, stress, and other variables. 

Life. Usually life on test is measured accurately enough. An exception 
may arise when specimens are periodically inspected for failure. If the first 
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inspection is late, many specimens may fail before it. Then the data contain 
little information on the lower tail of the life distribution. That is, estimates 
of low percentiles are crude. So early inspection periods should be short. 

Stress. Stress measurements are usually accurate enough. An exception 
arises, for example, in voltage-endurance tests of insulation. Then stress is 
the voltage across the insulation divided by the insulation thickness in mils 
(milli-inches). This so-called voltage stress has the dimensions of volts per 
mil. Such insulation may be thin, and a 1% measurement error for thickness 
typically yields a 6 to 15% error in life with an inverse power relationship. 
Fuller (1987) treats fitting of regression models to data with appreciable ran- 
dom errors in the independent variable measurements. This book does not 
address this complication. Moreover, nonuniform thickness complicates the 
meaning of voltage stress, as it differs from point to point on the insulation. 
Section 4 of Chapter 7 treats applications with nonuniform stress. 

Corrected stresses. If observed to be different from its intended value, 
the actual value of a test stress should be used in the data analyses. For ex- 
ample, ambient temperature or humidity may be wrong. Suppose a specimen 
is hotter than ambient due to electrical or mechanical power dissipated in it. 
Then one must determine the correct specimen temperature or humidity. 
This may be done through direct measurement of specimen temperature or 
through a calculation of a correction based on physical theory. 

Other variables. Other independent variables need to be measured with 
suitable accuracy. Usually one needs a random measurement error that is 
enough smaller than the differences between specimens. More precisely, the 
standard deviation of random measurement error should be a fraction of that 
between specimens. 

The Model 

Choice of model. Analysis of data from an accelerated life test employs a 
model. Such a model consists of a life distribution that describes the scatter 
in product life times and a relationship between typical life and the accelerat- 
ing stress and other variables. Such a model is ideally based on engineering 
theory and experience. For many products, there are well-established models 
(Chapter 2) that are satisfactory over the desired ranges for stress and other 
variables. For example, for temperature accelerated life tests, the Arrhenius 
model is often satisfactory. 

Needed models. For other products, engineers need to develop such 
models. The life-stress relationships ideally are based on physical failure 
mechanisms. Statisticians generally lack the physical insight needed to 
develop such relationships. However, they can help engineers efficiently col- 
lect and accurately analyze data to estimate product life using such a model. 
Modern statistical theory is versatile and capable of estimating product life, 



36 INTRODUCTION AND BACKGROUND 

employing standard or new models. Lack of adequate physical models 
hinders the use of accelerated testing with some products. 

Choose ahead. Such a model must be specified while planning a test. A 
concrete model in mind helps one plan a test that will yield the desired infor- 
mation. In particular, one needs to be sure of two things. First, the data can 
be used to estimate the model. Second, the estimate of the model yields the 
desired numerical information on product life. A test run without a model in 
mind may yield useless data. For example, the test may lack data on impor- 
tant variables. A statistician performing a post-mortem on such data usually 
can do little to extract desired information. Statistical consultation is most 
beneficial during planning. Of course, after seeing the data, one may discard 
the original model and use another. 

Choice of the Number of Specimens, Stress Levels, and Test Length 

Choice. A test plan includes the test levels of stress and the number of 
specimens to run at each level. If there are other variables, one must choose 
their test values and the number of specimens to run at each combination of 
test values. For example, in the tape insulation experiment with shift and 
overlap, specimens were made with different combinations of shift and over- 
lap. Specimens of each combination were tested at different voltage levels. 

Traditional plans. Traditional engineering plans have three or four test 
levels of a single stress and the same number of specimens at each level. 
This practice yields less accurate estimates of product life at low stress. As 
shown in Chapter 6, more accurate estimates are possible. One should run 
more specimens at low test stresses than at high test stresses. Also, allocat- 
ing the specimens to four stress levels usually yields less accurate estimates 
than allocating them to three or two stress levels. 

Number of specimens. Saniple size, the number of test specimens, must 
be decided. Often it is the available number of specimens. In a development 
program the number is usually limited. Fabrication and test costs may limit 
the number. Ideally, the sample size is chosen to yield estimates with a 
desired accuracy. Of course, larger samples yield greater accuracy. 
Chapter 6 gives relationships between sample size and accuracy of estimates. 

Constraints. Various aspects of a test, including test stress levels and 
numbers of specimens, are affected by constraints. For example, a deadline 
for terminating a test can affect the choice of stress levels and numbers of 
specimens. Limited oven space or test machines or personnel affect the 
choice. If the model is inadequate above a certain stress levels, test stresses 
must not exceed it. Even the available computer programs for data analysis 
may impact how the test is run. 

Test length. Another aspect of test planning is the length of the test. 
Some tests run until all specimens fail - usually a poor practice. Other tests 
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are terminated at deadlines or to free test equipment. Chapter 6 presents 
trade-off between accuracy of estimates and length of test. 

Planning Ahead 

Experience. “Experience is the name that people give their mistakes.” 
Through experience we know the truth of the adages “Test in haste, repent at 
leisure” and “An ounce of planning is worth a pound of data analysis.” 

Aids to planning. Many accelerated tests are routine and get little 
forethought. However, this book can improve even such routine tests. New 
tests, especially, require forethought about the topics above. Ideally, as an 
aid to planning, one should write the final report before running the test. 
Blank spaces in the report can be filled in when data are collected. Also, it is 
very useful to run a pilot test with a small number of specimens. The pilot 
test should involve all steps in fabrication and testing. This will reveal prob- 
lems that can be corrected before the main test. Also, analyze pilot or simu- 
lated data. This is a check that the planned analyses of the final data will 
yield the desired information accurately enough. Of course, the actual data 
may suggest other useful analyses. Section 6 gives an overview of the statisti- 
cal aspects of such data analyses. 

5. COMMON ACCELERATED TESTS 

This background section briefly describes some common accelerated 
tests: elephant tests, environmental stress screening, a single test condition, a 
number of test conditions, and burn-in. Readers may skip this section, as it is 
not essential to the rest of this book. 

5.1. Elephant Tests 

Elephant tests go by many names including killer tests, design limits tests, 
design margin tests, design qualification tests, torture tests, and shake and 
bake. Such a test steps on the product with an elephant, figuratively speak- 
ing. (Luggage manufacturers use a gorilla on TV.) If the product survives, it 
passes the test, and the responsible engineers feel more faith in it. If the 
product fails, the engineers take appropriate action and usually redesign it or 
improve manufacturing to eliminate the cause of failure. 

Test procedure. Such an elephant test generally involves one specimen 
(or a few). The specimen may be subjected to a single severe level of a stress 
(for example, temperature). It may be subjected to varying stress (for exam- 
ple, thermal cycling). It may be subjected to a number of stresses - either si- 
multaneously or sequentially. An elephant test may not produce certain im- 
portant failures that the product sees in service. So different elephant tests 
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may be used to reveal different failure modes. For example, high voltage 
tests reveal electrical failures, and vibration tests reveal mechanical failures. 

Cookware. For example, a manufacturer of ceramic cookware uses an 
elephant test to monitor production quality. Production is sampled regularly. 
Each item is heated to a specified temperature and plunged into ice water. 
The cycle of heating and thermal shock is repeated until the item fails. The 
number of cycles to failure is observed. 

Standard elephants. For many products, companies have standard 
elephant tests. Professional societies and the government write standards for 
elephant tests. For example, there is a test standard for power cable insula- 
tion. It requires that a specified length of a new cable design go through a 
specified complex series of voltages and temperatures over a specified length 
of time. If the cable specimen survives, the new design qualifies for use. 
MIL-STD-883C describes such tests for qualifying microelectronics. 

Purposes. In design and manufacturing development work, elephant tests 
reveal failure modes. Engineers then change the product or manufacturing 
process to overcome such failures. This important use of elephant testing is a 
standard engineering practice that often improves a product. It sometimes 
does not, as shown below by the TV transformer example. For quality con- 
trol, elephant testing of samples from production can reveal product changes. 
Test failures indicate a process change that degraded the product. For exam- 
ple, compressors were sampled from production and subjected to a high 
pressure test for quick detection of failure of the lubricant. The test could 
not be used on a new design whose metal parts could not withstand the test 
pressure. Elephant tests are also used to qualitatively compare different 
designs, vendors, methods of manufacture, etc. Elephant tests for any pur- 
pose may mislead due to their limitations explained below. 

Good elephant. Everyone asks: what is a good elephant test? The 
answer is easy: one that produces the same failures and in the same propor- 
tions that will occur in service. The hard question is: how does one devise 
such a test, especially for a new design, possibly with new failure modes? 
What kind of elephant (African or Asian)? What color (gray, white, or 
pink)? What sex and age? Should the elephant step on the product or do the 
boogaloo on it? These are harder questions. Should more than one elephant 
be used? If so, simultaneously or sequentially? A meaner elephant is not 
necessarily a better elephant, as the following example shows. 

TV transformer. Hundreds of thousands of a type of transformer had re- 
cently been manufactured and had gone into service. An engineer devised a 
new elephant test, and it revealed a new failure mode. A new design over- 
came that failure mode, and production was changed over to the new design. 
Years later no transformer of the old design had failed from that mode. The 
redesign was unnecessary. Most companies have had such experiences with 
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some products. Engineers agree that devising a good elephant test is a black 
art that requires engineering knowledge, experience, insight, and luck. 
Elephant tests that work are valuable. This book merely notes that they may 
be grossly misleading, especially for new designs, materials, and suppliers. 

Limitations. Elephant tests provide only qualitative information on 
whether a product is good or bad. For the applications above, such informa- 
tion suffices. Moreover, elephant testing applies to complex products that 
may be assemblies of many diverse components. Many reliability applica- 
tions require an estimate of a failure rate, percentage failing on warranty, 
typical life, etc. Elephant tests do not provide quantitative reliability informa- 
tion. This is a consequence of the few specimens. Also, more importantly, 
the data from a single test condition often cannot be extrapolated to actual 
use conditions (Section 5.3). 

5.2. Environmental Stress Screening 

ESS. This section briefly surveys Environmental Stress Screening. En- 
vironmental stress screening involves accelerated testing of products under a 
combination of random vibration and thermal cycling and shock - shake and 
bake. It has two major purposes. First, as an elephant test during develop- 
ment, its purpose is to reveal design and manufacturing problems. Second, in 
manufacturing, it is an accelerated burn-in to improve reliability. It is widely 
used for military, industrial, and consumer electronics - components and as- 
semblies. With its roots in elephant testing and burn-in, ESS is a discipline 
less than 10 years old and is an engineering science or black art, opinion 
differing among experts. 

Standards. Except for RADC TR-86-139, the following military stan- 
dards are available from Naval Publications and Forms Center, 5801 Tabor 
Ave., Philadelphia, PA 19120, (215)697-2000. 

MIL-HDBK-344 (20 Oct. 1986), “Environmental Stress Screening - Elec- 
tronic Equipment,” 
MIL-STD-810D (19 July 1983), “Environmental Test Methods and Engineer- 
ing Guidelines,’’ 
MIL-STD-883 (25 August 1983), “Test Methods and Procedures for Mi- 
croelectronics,” 
MIL-STD-2164 (5 April 1985), “Environmental Stress Screening Process for 
Electronic Equipments,” 
RADC TR-86-139 (Aug. 1986), “RADC Guide to Environmental Stress 
Screening,” RADC, Griffiss A m ,  NY 13441. 
U.S. Navy Document P-9492 (May 1979), “Navy Manufacturing Screening 
Program .” 

References. Tustin (1986) briefly surveys ESS. The Catalog of the Insti- 
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tute of Environmental Sciences (below) lists many books, standards, hand- 
books, and conference proceedings. Books include 

Schlagheck, J.G. (1988), Methodology and Tecltniqiies of Environritetttal 
Stress Screening, T u s h  Technical Inst. (below). 
Tustin, W. and Mercado, R. (1984), Rartdorit Wbration in Perspective, Tus- 
tin Technical Inst. (below), 200 pp., $100. 

Resources. Sources of expertise, conferences, courses, and literature on 
ESS include: 

Institute of Environmental Sciences, 940 E. Northwest Hwy., Mt. Prospect, 

T u s h  Technical Institute, Inc., 22 E. Los Olivos St., Santa Barbara, CA 

Technology Associates, 51 Hillbrook Dr., Portola Valley, CA, (415)941- 

Hobbs Engineering Corp., 23232 Peralta Dr., Suite 221, Laguna Hills, CA 

IL 60056, (708)255-1561. Technical Publications Catalog. 

93105, (805)682-7171, Dr. Wayne T u s h  

8276, Dr. O.D. “Bud” Trapp. 

92653, (714)581-9255, Dr. Gregg K. Hobbs. 

53. A Single Test Condition 

Some overstress testing for reliability esfiniation involves a single test con- 
dition. Then the estimate of the product life distribution at a use condition 
depends on certain assumptions. Often the assumptions are poorly satisfied, 
and the estimates may be quite crude. Two models for such tests are de- 
scribed below - the acceleration factor and partially known dependence of 
life on stress. In addition, such tests are used for demonstration testing and 
to compare designs, materials, manufacturing methods, etc. 

Assumption. Such a test rests on an assumption. Namely, the test ac- 
celerates and reveals all the important failure modes at the use condition. 
Data with such a mix of failure modes (including ones not observed at use 
conditions) can properly be analyzed with the methods of Chapter 7. 

Acceleration Factor 

Definition. A certain test runs a diesel engine at 102% of rated power 
and is assumed to have an acceleration factor of 3. Roughly speaking, this 
means that if an engine ran 400 hours to failure on test, one assumes that it 
would have run 3 x 400 = 1200 hours to failure in service. Another engine 
test is assumed to have an acceleration factor of 5. Similarly, if an engine ran 
300 hours without failure on the second test, one assumes that it would have 
run 5 x 300 = 1500 hours without failure in service. Two or more such tests 
usually are run to produce different failure modes seen in service. To analyze 
such accelerated data, one converts them to service hours. Then one ana- 
lyzes the service hour data using standard statistical methods for a single 
sample to estimate the service life distribution. Such methods appear in reli- 
ability books referenced by Nelson (1983c, 1982, pp. 567-569). 
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Assumptions. This method involves various mathematical assumptions. 
Such assumptions may be marginally valid in practice. 

I) Known factor. It is usually assumed that the acceleration factor is 
"known." In practice, often its value is a company tradition with unknown 
origins. Sometimes it is estimated from test and field data on a previous 
product design. The conversion of test time to service time and subsequent 
data analyses (particularly confidence intervals) do not take into account the 
uncertainty in the factor. Such uncertainty is due to the randomness in the 
statistical samples of the previous test and service data. More important, the 
factor is based on previous designs. So this method assumes (often in error) 
that the new design has the same acceleration factor. 

2) Same shape. There is a subtle assumption in multiplying test data by the 
factor. Namely, this implies that the service life distribution is simply a multi- 
ple of the test life distribution. Consequently the two distributions are as- 
sumed to have the same shape, but the service life distribution is stretched 
out toward higher life by an amount equal to the factor. In other words, the 
scale parameter of the distribution of service life is a multiple of that of the 
test distribution. This may not be so. 

3) Failure modes. Often there is more than one failure mode in the data. 
Then, if one ignores the different modes, one is assuming that they all have 
the same acceleration factor. Typically, different failure modes have different 
acceleration factors (Chapter 7). This is especially so for complex products 
consisting of assemblies of diverse components. 

Performance. The discussion above applies to product life. Such a single 
accelerated test condition can also be used to accelerate the change or degra- 
dation in product performance over time. For example, the concrete indus- 
try uses the strength of concrete after 28 days of curing. Accelerated curing 
(say, 3 hours at high temperature) is used to predict 28-day strength. 

Partly Known Relationship 

Method. For some products and tests with a single stress, one may be 
able to use a partly known relationship between life and stress. For example, 
suppose an accelerated life test of insulation runs specimens at a single high 
temperature. Also, suppose that an Arrhenius relationship (Chap. 2, 
Sec. 9.1) describes the relationship between life and temperature. In particu- 
lar, suppose life increases by a factor of 2 for every 10°C decrease in tem- 
perature; this is the assumed partial knowledge. This assumption is wrong 
(Problem 2.11), but it crudely allows one to derive an acceleration factor for 
converting data from any high test temperature to service data at any low 
temperature. For the insulation example, suppose that the test temperature 
is 40°C (= 4 x lo") above the service temperature. Then life at the service 
temperature is 24 = 16 times as great as at the test temperature. The test 
times are multiplied by this acceleration factor of 16 to crudely convert them 



42 INTRODUCTION AND BACKGROUND 

to service times. Those service times are analyzed using standard statistical 
methods for a single sample to estimate the service life distribution. Such 
methods appear in reliability books, which Nelson (1983q 1982, pp. 567-569) 
references. The resulting confidence limits are much too narrow since they 
do not reflect the error in the assumed factor of 2. Examples with accelera- 
tion factors include microprocessors (Chap. 3, Sec. 6.3) and lubricating oil 
(Chap. 5, Sec. 2.3). 

Assumptions. This method makes various assumptions. First, it makes 
all of the assumptions for an acceleration factor. Moreover, this method em- 
ploys an assumed form of the life-stress relationship (such as the Arrhenius 
relationship) and an assumed numerical value for the relationship (such as 
life increases by a factor of 2 for each 10°C decrease in temperature). This 
power law approximation may not adequately represent the true Arrhenius 
relationship. Even if it is adequate, the true factor may be 2.4 - not 2. 
Round numbers like 2, rather than 2.4, are automatically suspect. In prac- 
tice, one might try different plausible factors to see how the corresponding 
estimates and conclusions differ. Hopefully, the conclusions and appropriate 
actions are not sensitive to the factor value. If they are, a more accurate fac- 
tor must be obtained. Accelerated tests with more than one test stress level 
(Section 5.4) provide a statistical estimate of a factor. This is preferable to 
assuming a value, except when the statistical estimate has great uncertainty. 

Advantages. In return for the added assumptions about the relationship, 
this method yields an advantage over the simple acceleration factor. Namely, 
the method works for any test temperature and any service temperature. In 
contrast, the simple factor applies only to the particular test and service con- 
ditions. However, such a relationship generally is satisfactory only for a ma- 
terial or a very simple product. It is unreliable for complex products consist- 
ing of diverse components, such as a circuit board or diesel engine. 

Comparisons 

Method. A single overstress condition is sometimes used to compare two 
or more different designs, materials, vendors, manufacturing methods, etc. A 
number of specimens of each design (or vendor, etc.) all undergo the same 
test condition. Such a condition may be high level of a single stress or a com- 
plex loading of one or more stresses. The life data on the different designs 
are compared. The flex test of appliance cord is such a test. It compares 
cord designs and monitors production quality. 

Assumption. The design with the best life distribution while overstressed 
is assumed to have the best life distribution under normal conditions. Of 
course, it is possible that a design that is better at high stress is poorer under 
normal conditions, because different designs and failure modes usually have 
different acceleration factors. Accelerated tests with more than one test 
stress level (Section 5.4) surmount this difficulty. Then the data yield sepa- 
rate estimates of the acceleration factor for each design and failure mode. 
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5.4. A Number of Test Conditions 

Description. Most overstress testing for reliability estimation employs a 
number of stress levels. A group of specimens is run at each level. A model 
for specimen life is fitted to the life data from the stress levels, and the fitted 
model is used to estimate the product life distribution at some design level of 
stress. Such testing can involve more than one stress variable. Then groups 
of specimens are each run at a different test condition, consisting of a combi- 
nation of a level of each stress. A more complex model involving all stresses 
is fitted to the resulting life data, and it is used to estimate the product life 
distribution at some combination of a low level of each stress. 

Validity. This type of testing, the accelerated test models, data analyses, 
and test plans are the main topics of this book. The ideas for such testing ap- 
ply to other types of overstress tests, including elephant tests and especially 
tests for reliability estimation from a single test condition. Such tests and 
models have generally been most successful for materials and simple prod- 
ucts. There are few successful applications to complex products consisting of 
assemblies of diverse components, such as a circuit board. 

Comparisons. Such tests are suitable for comparisons of different 
designs (vendors, materials, etc.) at normal stress levels. A separate model is 
fitted to the data from each design, and each fitted model is used to estimate 
and compare the life distributions of the designs at normal stress levels. 

5.5. Burn-In 

Burn-in consists of running units under design or accelerated conditions 
for a suitable length of time. Burn-in is a manufacturing operation that is in- 
tended to fail short-lived units (defectives, sometimes called freaks). If 
burn-in works, the surviving units that go into service have few early failures. 
Units that fail early typically have manufacturing defects. Burn-in is primari- 
ly used for electronic components and assemblies. Jensen and Petersen’s 
(1982) book surveys burn-in and includes a chapter on accelerated burn-in. 
Environmental stress screening (Section 5.2) includes burn-in as one of its 
purposes. Those interested in accelerated burn-in will find this book useful, 
as it provides more detail. In particular, Chapter 7 on competing failure 
modes pertains to accelerated burn-in. 

6. STATISTICAL CONSIDERATIONS 

Statistical considerations useful for the rest of this book are briefly 
presented here. The topics are statistical models, population and sample, 
valid data, nature of data analysis, estimates and confidence intervals, hy- 
pothesis tests, practical and statistical significance, numerical calculations, 
and notation. Many of these considerations reflect engineering considera- 
tions in Section 4. 
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Statistical models. Nominally identical units, made and used under the 
same conditions, usually have different values of performance, dimensions, 
life, etc. Such variability is inherent in all products, and it can be described 
by a statistical model or distribution. Chapter 2 presents such models. 

Population and sample. A statistical model describes some population. 
A manufacturer of fluorescent lamps is concerned with the future production 
of a certain lamp design - an essentially infinite population. A manufacturer 
of locomotives is concerned with a small population of locomotives. A metal- 
lurgist is concerned with a future production of a new alloy - an essentially 
infinite population. A manufacturer is concerned with the performance of a 
small population of generators to be manufactured next year. The targetpop- 
ulution of interest should be clearly specified at the outset, as it affects the 
choice of sample specimens and other matters. To obtain information, we 
use a sample (a set of units) from the population. We analyze the sample 
data to get information on the underlying population distribution or to 
predict future data from the population. 

Valid data. There are many practical aspects to the collection of valid 
and meaningful data. Some are briefly described below. Throughout, this 
book assumes that such aspects are properly handled. For example, mea- 
surements must be meaningful and correct. Also, one needs to avoid 
blunders in handling data. Bad data can be unknowingly processed by com- 
puters and by hand. 

Population. Most statistical work assumes that the sample is from the 
target population. A sample from another population or a subset of the tar- 
get population can give misleading information, For example, appliance 
failures on a service contract often overestimate failure rates for appliances 
not on contract. Also, laboratory test data may differ greatly from field data. 
Data on units made last year may not adequately predict this year’s units. In 
practice, it is often necessary to use such data. Then engineering judgment 
must determine how well such data represent the population of interest and 
how much one can rely on the information. 

Random sample. Most statistical theory assumes that the specimens are 
obtained by simple random sampling from the population of interest. Such 
sampling gives each possible set of 11 population units the same chance of be- 
ing the chosen sample. Only the use of random numbers ensures random 
selection. In practice, other statistical sampling methods are sometimes used, 
the most common methods being haphazard sampling, stratified sampling, 
and two-stage sampling. Data analyses must take into account the sampling 
method. Like all others, this book assumes throughout that simple random 
sampling is used. Some samples are taken haphazardly, that is, without prob- 
ability sampling. Other samples may be the available prototype units. Such 
samples may be quite misleading. 
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Experimental design. Many engineering experiments do not employ 
good experimental design principles. Use of such principles enhances the 
validity and clarity of experimental results. Moreover, a well designed and 
executed experiment is much easier to analyze and interpret. Also, such an 
experiment is easier to explain to others who must be convinced of the re- 
sults. Such design principles include choosing suitable test conditions and 
specimens, using randomization throughout all steps of the experiment, using 
a statistical design, blocking, etc. Section 4 discusses some of these princi- 
ples. Most statistical books on experimental design emphasize statistical 
models and data analyses. Few devote enough attention to good experimen- 
tal principles, which most statisticians and engineers learn on the job. 

Nature of data analysis. The following briefly describes statistical as- 
pects of data analysis. It outlines how to define a statistical problem, select a 
mathematical model, fit the model to data, and interpret the results. 

The statistical solution of a real problem involving data analysis has seven 
basic steps. 

1. Clearly state the real problem and the purpose of the data analysis. In 
particular, specify the numerical information needed in order to draw 
conclusions and make decisions. 

2. Formulate the problem in terms of a model. 
3. Plan both collection and analyses of data that will yield the desired nu- 

merical information. Use experimental design principles. 
4. Obtain appropriate data for estimating the parameters of the model. 
5. Fit the model to the data, and obtain the needed information from the 

fitted model. 
6. Check the validity of the model and data. As needed, change the model, 

omit some data, or collect more (often overlooked by statisticians), and 
redo steps 5 and 6. 

7. Interpret the information provided by the fitted model to aid in drawing 
conclusions and making decisions for the engineering problem. 

This book gives methods for steps 3, 5, and 6. The other steps involve the 
judgment of engineers, managers, scientists, etc. Those steps are discussed in 
Section 4 on engineering considerations, many of which have statistical 
consequences. In the planning stage, the data analyst can contribute by draw- 
ing attention to those considerations. Each of the steps is discussed further 
below, but full understanding of these steps comes only with experience. 
Data analysis is an iterative and exploratory process, and one usually subjects 
a data set to many analyses to gain insight. Thus, many examples in this book 
involve different analyses of the same set of data. 

1. A clear statement of a real problem and the purpose of a data analysis 
is half of the solution. Having that, one can usually specify the numerical in- 
formation needed to draw practical conclusions and make decisions. Of 
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course, statistical analysis provides no decisions - only numerical informa- 
tion for people who make them. If one has difficulty specifying the numerical 
information needed, the following may help. Imagine that any desired 
amount of data is available (say, the entire population). Then decide what 
values calculated from the data would be useful. Statistical analysis estimates 
such values from limited sample data. If such thinking does not clarify the 
problem, one does not understand it. Sometimes there is a place for explora- 
tory data analyses that do not have clear purposes but that may reveal useful 
information. Data plots are particularly useful for such analyses. 

2. One views a problem in terms of a model. Often the model is a simple 
and obvious one, widely used in practice. An example is the Arrhenius- 
lognormal model for time to insulation failure. Ideally a tentative model is 
chosen before the data are collected. After data collection, when a suitable 
model is not obvious, display the data various ways, say, on different proba- 
bility and relationship papers. Such plots often suggest a suitable model. 
Indeed, a plot often reveals needed information and can serve as a model it- 
self. Another approach is to use a very general model that is likely to include 
a suitable one as a special case. After fitting the general model to the data, 
one often sees which special case is suitable. Still another pragmatic ap- 
proach is to try various plausible models and to select, as a working model, 
one that fits the data well. The chosen model should, of course, provide the 
desired information. Examples of these approaches appear in later chapters. 

3. The test and data collection are planned, using experimental design 
principles. This insures that the model parameters and other quantities can 
be accurately estimated from the data. Sometimes, when data are collected 
before a model and data analyses are determined, it may not be possible to 
fi t  a desired model, and a less realistic model must be used. A statistician 
usually makes the greatest contribution at this test planning step. Chapter 6 
discusses test plans. 

4. Practical aspects of data collection and handling need much 
forethought and care. For instance, data may not be collected from the pop- 
ulation of interest. For example, data may be from prototype units rather 
than from production units. Many companies go to great expense collecting 
test data, often ending with inadequate data owing to lack of forethought. 

5. To fit a chosen model to the data, one has a variety of methods. This 
step is straightforward. It involves using methods described in this book to 
obtain estimates and confidence intervals. Confidence intervals are essential. 
Often wide, they help engineers take heed that the estimates have great sta- 
tistical uncertainty. Much of the labor can (and often must) be performed by 
computer programs. 

6. Of course, one can mechanically fit an unsuitable model just as readily 
as a suitable one. Computer programs do this well. An unsuitable model 
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may yield information leading to wrong conclusions and decisions. Before 
using information from a fitted model, one should check that the model ade- 
quately fits the data. Such checks usually employ graphical displays; they al- 
low one to examine the model and the data for consistency. The model may 
also be checked against new data. Sometimes various models fit a set of data 
within the range of the data. However, they can give very different results 
outside that range. Then a model must be chosen on other considerations, 
for example, simplest or most conservative. Also, it may be possible to test 
more specimens to resolve such problems. Engineers will think to run more 
tests as needed; this important option is often overlooked by inexperienced 
statisticians and statistics texts. 

7. Interpretation of results from the fitted model is usually easy when the 
above steps are done properly, as practical conclusions and decisions are usu- 
ally apparent. A possible difficulty is that the information may not be accu- 
rate or conclusive enough for practical purposes. Then one needs more data 
for the analysis, and may do further testing. Also, one may have to make do 
with less accurate information. Most models and data are inaccurate to some 
degree. So the uncertainty in any estimate or prediction is greater than is in- 
dicated by the corresponding confidence or prediction interval. 

Data analysis methods. Some specific data analysis methods are dis- 
cussed below - estimates, confidence intervals, and hypothesis tests. These 
methods are treated in detail in later chapters. Nelson (1983c,1982, Chap. 6, 
Sec. 1) provides more detail. Nelson (1990) briefly presents the basics of 
analysis of accelerated test data. Older statistics books present individual 
data analysis techniques. They seem to imply that a data set is analyzed by 
calculating a t statistic or a hypothesis test. Modern books on data analysis 
emphasize exploratory data analysis involving many different analyses of a 
data set, especially graphical analyses. This book advocates multiple analyses 
of a data set. To illustrate this, many examples here appear in different 
chapters with different analyses to attain greater insight into the data. 

Estimates and confidence intervals. Using sample data, this book pro- 
vides estimates and confidence intervals for the model parameters and other 
quantities of interest. The estimates approximate the true parameter values. 
By their width, confidence intervals for parameters indicate the uncertainty in 
estimates. If an interval is too wide for practical purposes, a larger sample 
may yield one with the desired width. A wide confidence interval warns that 
the estimate may be too uncertain for practical purposes. Hahn and Meeker 
(1990) survey such confidence intervals. 

Statistical comparisons. A statistical hypothesis test (Chapters 8 and 9) 
compares sample data with a hypothesis about the model. A common hy- 
pothesis is that a parameter equals a specified value; for example, a Weibull 
shape parameter equals 1 (that is, the distribution is exponential). Another 



48 INTRODUCTION AND BACKGROUND 

common hypothesis is that corresponding parameters of two or more popula- 
tions are equal; for example, the standard two-sample t-test compares two 
population means for equality. If there is a statistically significant difference 
between the data and the hypothesized model, then there is convincing evi- 
dence that the hypothesis is inadequate (“false” in statistical jargon). Other- 
wise, the hypothesized model is a satisfactory working assumption. Of 
course, data sets with few failures may be consistent with a physically inade- 
quate model. Also, a test of fit or a test for outliers may result in rejection of 
the model or data. 

Practical and statistical significance. Confidence intervals indicate how 
(im)precise estimates are; they reflect the random scatter in the data. Hy- 
pothesis tests indicate whether observed differences are statistically 
significant. That is, they indicate whether a difference between a sample of 
data and a hypothesized model (or whether the difference between a number 
of samples) is large relative to the random scatter in the data. Statistically 
significant differences are ones large enough to be convincing. In contrast, 
practically significant differences are ones big enough to be important in 
practice. Although results of an analysis may be practically significant (big), 
one should not rely on them unless they are also statistically significant, that 
is, convincing. Statistical significance assures that results are real rather than 
mere random sampling variation. 

A confidence interval for such differences is usually easier to interpret 
and more informative than a statistical hypothesis test. The interval width al- 
lows one to judge whether the results are accurate enough to identify 
differences that are important in practice. Chapters8 and 9 give such 
confidence intervals and their application to comparisons. 

Numerical calculations. Numerical examples here are generally calculat- 
ed with care. That is, extra figures are used in numbers substituted into for- 
mulas and in intermediate calculations. Only the final result is rounded to a 
suitable number of figures. This good practice helps assure that a result is 
accurate to the final number of figures shown. Common practice rounds all 
numbers to the number of significant figures desired in the final result. This 
practice yields fewer than the desired number of significant figures. For 
most practical purposes, two or three significant final figures suffice. A rea- 
sonable practice is to give estimates and confidence limits to enough figures 
so that they differ in just the last one or two places. For example, the esti- 
mate p* =2.76 and upper confidence limit ;=2.92 (for a parameter p) differ 
in the last two places. 

Many calculations for examples and problems can easily be done with an 
electronic pocket calculator. However, some calculations, particularly max- 
imum likelihood calculations, require computer programs. Readers can 
develop their own programs from the descriptions given here or preferably 
use standard programs. 
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PROBLEMS 

1.1. Search. Do a literature search on some area of application in Sec- 

12. Extension. Extend the discussion of any topic in Sections 4, 5, and 6. 

tion 1 and compile a bibliography. Annotate it. 

Specify your audience. 
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Models for Life Tests 
with Constant Stress 

1. INTRODUCTION 

Purpose. This chapter presents mathematical models for accelerated life 
tests with constant stress. These models are essential background for subse- 
quent chapters. All planning and data analyses for accelerated tests are 
based on such models. Moreover, those who run elephant tests and tests 
with a single stress condition will find this chapter useful background, be- 
cause this chapter provides concrete models and concepts. Such background 
will make apparent and reduce the vague nature of the meaning and interpre- 
tation of such tests. A model depends on the product, the test method, the 
accelerating stress, the form of the specimen, and other factors. Previous ex- 
posure to statistical life distributions and life-stress relationships is helpful 
but not essential background. 

Model. A statistical model for an accelerated life test consists of 1) a life 
distribution that represents the scatter in product life and 2) a relatioitshil, be- 
tween “life” and stress. Usually the mean (and sometimes the standard devi- 
ation) of the life distribution is expressed as a function of the accelerating 
stress. Sections 2 through 6 present the commonly used life distributions - 
the exponential, normal, lognormal, Weibull, and extreme value distributions. 
Section 2 also presents basic concepts for life distributions, including the reli- 
ability function and hazard function (instantaneous failure rate). Section 7 
briefly presents a number of other distributions that are useful but less com- 
monly used; these include mixture distributions and the log gamma distribu- 
tion, which includes the Weibull and lognormal distributions as special cases. 
Sections 8 through 14 present life-stress relationships. Such relationships ex- 
press a distribution parameter (such as a mean, percentile, or standard devia- 
tion) as a function of the accelerating stress and possibly of other variables. 
The most widely used basic relationships are 1) the Arrhenius relationship 
(Section 9) for temperature-accelerated tests and 2) the inverse power rela- 
tionship (Section 10). Singpurwalla (1975) surveys a number of models. Nel- 
son (1990) briefly presents the most basic applied models. 
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Standard Models, For many products, there are standard accelerating 
variables and models. For example, life testing of motor insulation is usually 
accelerated with high temperature, and the data are analyzed with the 
Arrhenius-lognormal model of Section 9.2. For some products with a stan- 
dard accelerating variable, the form of the life distribution or the life-stress 
relationship may be in question. For example, for certain voltage-endurance 
testing of an insulation, the Weibull and lognormal distributions and the in- 
verse power and other relationships were fitted to the data; the various distri- 
butions and relationships were compared to assess which fitted significantly 
better. Such standard accelerating variables and models appear in the prod- 
uct literature. For example, Meeker (1979) and Carey (1985) have run com- 
puterized literature searches on accelerated testing of a great variety of prod- 
ucts. This chapter presents standard models for such products. Later 
chapters present data analyses using such models and test plans. 

New models. For still other products, one may need to choose an ac- 
celerating variable and to develop and verify an appropriate model. This 
book does not deal explicitly with this difficult subject. Such work involves 
long-term effort of product experts, perhaps abetted by a skilled statistician. 
The book by Box and Draper (1987) is useful for such work. 

Single failure cause. The models here are best suited to products that 
have only one cause of failure. However, they also adequately describe many 
products that have a number of causes. Chapter 7 presents the series-system 
model for products with a number of causes of failure. 

Multiple tests. For some products there are two or more accelerated 
tests with different accelerating variables. Each test is run on a different set 
of units to accelerate different failure modes. For example, certain failure 
modes may be accelerated by high temperature, while others are accelerated 
by high voltage or vibration. 

Other models. Models for more complex situations are not presented 
here in Chapter 2. These include models for step-stress testing (Chapter lo), 
for aging degradation of performance (Chapter l l ) ,  for the effect of speci- 
men size (Chapter 7), for analysis of variance, and for components of vari- 
ance. The models here do not apply to most repairable systems which can 
fail and be repaired any number of times. Ascher and Feingold (1984) and 
Nelson (1988) present models and data analyses for repairable systems. 
There is little theory for accelerated testing of repairable systems. 

Notation. This book mostly follows common statistical notation. Popula- 
tion parameters and model coefficients are usually written as Greek letters; 
e.g., a, p, 7, and Q. Such numbers are usually unknown constants to be es- 
timated from data. Estimates of such constants are random quantities and 
are denoted by the Greek letter with a caret or by a corresponding Latin 
letter, e.g., a, a, @, 6 ,  ?, c, G, and s. Notations for a true (unknown) popula- 

A 

A A  
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tion value r~ and for an estimate $ are distinct; this attempts to avoid a com- 
mon mistake of thinking that an estimate is the true population value. Ran- 
dom quantities, such as time to failure, are usually denoted by capital Latin 
letters, e.g., T and Y. A specific numerical outcome of such a random quanti- 
ty is denoted by the corresponding lower case Latin letter, e.g., t andy. Latin 
letters (upper and lower case) are used for engineering variables, generally 
following standard engineering notation. A common exception to such nota- 
tion is that Latin letters may be coefficients in engineering relationships. 

2. BASIC CONCEPTS AND THE EXPONENTIAL DISTRIBUTION 

This section presents basic concepts for product life distributions. The 
exponential distribution illustrates them. 

Cumulative Distribution Function 

Definition. A cumulative distribution function F ( I )  represents the popu- 
lation fraction failing by age t. Any such continuous F( t )  has the mathemati- 
cal properties: 
a) 
b) 

c) 
The range of t for most life distributions is from 0 to 00, but some useful dis- 
tributions have a range from -00 to 00. 

Exponential cumulative distribution function. The population fraction 
failing by age t is 

it is a continuous function for all t, 
lim F ( t )  = 0 and limF(t) = 1, and 

F( t )  5 F(t’) for all t c t’. 
I--w /--m 

~ ( t )  = 1 - e-”’, t 2 0 .  (2.1) 

B > 0 is the meun time to failure (MTTF). fl is in the same measurement units 
as t, for example, hours, months, cycles, etc. Figure 2.1 shows this cumulative 
distribution function. Its failure rate is defined as 

x = i / e  (2.2) 

and is a constant. This relationship between the constant failure rate X and 
the MTTF B holds only for the exponential distribution. X is expressed in 
failures per million hours, percent per month, and percent per thousand 
hours. For high reliability electronics, A is often expressed in FITS, failures 
per billion hours. In terms of A, 

F ( I )  = 1 - e-A‘, t 2 0 .  (2.3) 

The exponential distribution describes the life of insulating oils and fluids 
(dielectrics) and certain materials and products. It is often badly misused for 
products better described with the Weibull or another distribution. Some ele- 
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mentary reliability books mistakenly suggest that the exponential distribution 
describes many products. In the author’s experience, it adequately describes 
only 10 to 15% of products in the lower tail of the distribution. 

Engine fan example. The exponential distribution with a mean of B = 
28,700 hours was used to describe the hours to failure of a fan on diesel 
engines. The 28,700 hours was estimated from data and has great statistical 
uncertainty. It and other numbers are treated in this chapter as if exact. The 
corresponding failure rate is X = 1/28,700 = 35 failures per million hours. 
For the engine fans, the population fraction failing on an 8,000 hour warranty 
is calculated from (2.1) as F(8,000) = 1 - exp(-8,000/28,700) = 0.24. 
Thinking 24% too high, management decided to use a better fan design. 

Reliability Function 

probability of survival beyond age t ,  namely, 
Definition. The reliability function R ( t )  for a life distribution is the 

R ( t )  = 1 - F ( t ) .  (2.4) 

This is also called the survivor or survivorship Jitnction. 

Exponential reliability. The population fraction surviving age t is 

R ( t )  = e-’/’, t 20. (2.5) 

Figure 2.2 shows this reliability function. It is the cumulative distribution 
function (Figure 2.1) “turned over.” 

/28,700) = 0.76. That is, 76% of such fans survive warranty. 
For the engine fans, reliability for 8,000 hours is R(8,000) = exp( -8,000 

Percentile 

which a proportion P of the population fails. It is the solution of 
Definition. The 100Pth percentile of a distribution F ( ) is the age rp  by 

P = F ( 7 p ) .  (2.6) 

A 

1.00- 
F(t1 

t 

0 313 

Figure 2.1. Exponential cumulative 
distribution. 

Figure 2.2. Exponential reliability 
function. 
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In life data work, one often wants to know low percentiles such as the 1% 
and 10% points, which correspond to early failure. The 50% point is called 
the median and is commonly used as a “typical” life. rp can be obtained as 
shown in Figure 2.1. Enter the figure on the vertical axis at the value P, go 
horizontally to the curve for F(t ) ,  and go down to the time axis to read rp. 

Exponential percentile. The lOOPth percentile is 

rp = -Bln(l-P). (2.7) 

For example, the mean B is roughly the 63rd percentile of the exponential dis- 
tribution. For the diesel engine fans, median life is 7.50 = -28,7001n(1-0.50) 
= 19,900 hours. The 1st percentile is 7.01 = -28,7001n(1-0.01) = 288 hours. 

Probability Density 

Definition. The probability density is the derivative 

which must exist mathematically. It corresponds to a histogram of the popu- 
lation life times. Equivalently, the population fraction failing by age t is the 
integral of (2.8), namely, 

F ( f )  = 1‘ f(u) du . 
-00 

If the lower limit of a distribution range is 0, the integral ranges from 0 to t. 
Similarly, 

R (I) = Jmf(t)dt. 

Exponential probability density. Differentiation of (2.1) yields 

f ( t )  = (I/B) e +/’, t 2 0. 

Figure 2.3 depicts this probability density. Also, 

f ( t )  = Xe-A‘, t LO. 

(2.10) 

(2.11) 

Mean 

Definition. The mean or expectation E ( T )  of a distribution for random 
time to failure Twith probability densityf(t) is the value of the integral 

E ( T )  = /” t f ( t )  dt . 
-00 

(2.12) 

The integral runs over the range of the distribution (usually 0 to 00 or -00 to 
co). The mean is also called the average or q e c t e d  life. It corresponds to 
the arithmetic average of the lives of all units in a population. Like the 
median, it is used as still another “typical” life. Here the terms “expectation” 
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Figure 23. Exponential probability Figure 2.4. Exponential hazard function. 
density . 

and “expected life” havc the precise statistical meaning in (2.12) and do not 
mean “anticipated life.” 

Exponential mean. The mean is 

E (T)  = im t (i/e) e -%it = e. (2.13) 

This shows why 6 is called the mean time to failure (MTTF). Also E (T) = 
1/X; as noted above, this relationship holds only for the exponential distribu- 
tion. For the diesel engine fans, E (T) = 28,700 hours. 

Variance and Standard Deviation 

Definition. The variance of a distribution with a probability densityf(t) is 

Var(T) = J” [t -~ (~ )12f ( t )d t .  (2.14) 

The integral runs over the range of the distribution. The variance is a mea- 
sure of the spread of the distribution. An equivalent formula is 

Var(T) = Jm t2f(t)dt - [E(T)I~ .  (2.15) 

Var(T) has the units of time squared, for example, hours squared. Used by 
statisticians, variance is equivalent to standard deviation below, which is 
easier to interpret. 

-00 

-” 

Exponential variance. For an exponential distribution, 

var(T) = 4“ tZ(i/e)exp(-t/e)dt - @ = 8. (2.16) 

This is the square of the mean. For the diesel engine fans, the variance of the 
time to failure is Var(T) = (28,700)2 = 8.24 x 10’ hours2. 

Definition. The standard deviation o(T) of a life distribution is 

U ( T )  = [ v a r ( ~ ) ] * / ~ .  (2.17) 

This has the units of life, for example, hours. The standard deviation is a 
more commonly used measure of distribution spread than the variance, 
because it has the same dimensions as life. 
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Exponential standard deviation. For an exponential distribution, 

O(T) = (#)‘I2 = e. (2.18) 

This equals the mean. For the fans, o(T) = (8.24xlO8)’/* = 28,700 hours. 

Hazard Function (Instantaneous Failure Rate) 

Definition. The hazardfunction h ( I )  of a distribution is defined as 

h ( t )  =f(t)/[l - Wl = f(t)/R(O. (2.19) 

It is the instantaneous failure rate at age t .  That is, in the short time A from 
t to t +A, a proportion Ash (t) of the population that reached age t fails. It (t) 
is a measure of proneness to failure as a function of age. It is also called the 
ltazard rate and the force of mortality. In many applications, one wants to 
know whether the failure rate of a population increases or decreases with 
product age, that is, whether service failures will increase (or decrease) with 
product age. 

The exponential hazard function is 

h ( t )  = [(i/e) e -‘/”]e -!je = i/e = A, t 2 0. (2.20) 

Figure 2.4 shows this constant hazard function. Also, h (t) = X , t 2 0; this 
explains why X is called the failure rate. Only the exponential distribution has 
a constant failure rate, a key characteristic. That is, for this distribution only, 
an old unit and a new unit have the same chance of failing over a future time 
interval A. Such products are said to lack memory and, like some people, do 
not remember how old they are. Also, products with a constant failure rate 
are said to have rundom failures, sometimes implying due to shocks and 
external events. The term “random” is misleading, as many such products 
fail from wear-out or manufacturing defects. For example, engine fans of any 
age failed at a constant rate of 35 failures per million hours from fatigue. 

Cumulative hazard. The cumulative hazardfuncfion is 
I 

H ( t )  =I h (u)du. (2.21) 
-W 

Here the lower limit is the lower end of the distribution range. This function 
is employed in hazard plotting (Chapter 3). For the exponential distribution, 

H ( t )  = LAdu = 2, fa. 

For any distribution, H ( t )  = - ln[R(t)]. Equivalently, 

R(t )  = exp[ -H( t ) ]  . (2.22) 

This basic relationship is employed on hazard plotting papers (Chapter 3). 

Infant mortality. A decreasing hazard function during the early life of a 
product is said to correspond to infant mortality. Figure 7.4 shows this near 
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time zero. Such a failure rate often indicates that the product has design or 
manufacturing defects. Some products, such as capacitors and some semi- 
conductor devices, have a decreasing failure rate over their observed life. 

Wear-out. A hazard function that increases without limit during later 
life of a product is said to correspond to wear-out failure. This often indicates 
that failures are due to the product wearing out. Figure 7.4 shows this fea- 
ture in the later part of the hazard curve. Many products have an increasing 
failure rate over the entire range of life. If the failure rate increases, preven- 
tive replacement of units in service can prevent costly service failures. 

3. NORMAL DISTRIBUTION 

This section presents the normal (or Gaussian) distribution. Its hazard 
function increases without limit. Thus it may describe products with 
wear-out failure. It has been used to describe the life of incandescent lamp 
(light bulb) filaments and of electrical insulations. It is also used as the dis- 
tribution for product properties such as strength (electrical or mechanical), 
elongation, and impact resistance in accelerated tests. It is important to 
understanding and using the lognormal distribution (Section 4), which is 
widely used to interpret accelerated test data. Also, the sampling distribution 
of many estimators is approximately normal. This fact yields approximate 
confidence intervals in later chapters. Thus knowledge of the normal distri- 
bution is essential. Books on it include Schneider (1986) and Johnson and 
Kotz (1970). 

Normal cumulative distribution function. The population fraction failing 
by agey is 

Figure 3.1 depicts this function. p is the population mean and may have any 
value. o is the population standard deviation and must be positive. p and o 
are in the same measurement units asy, for example, hours, months, cycles, 
etc. (3.1) can be expressed in terms of the standard normal cumulative distri- 
bution function ai( ) as 

F(Y) = W Y  - P ) / 4 ,  --oo <Y < 00. ( 3 4  

@( ) is (3.1) evaluated at p = 0 and o = 1; it is tabulated in Appendix Al. 
Many tables give @(I) only for 220; then use a ( - z )  = 1 - ai(z). z = (y-p) 
/o is called the (standardized) normal deviate. 

The range o fy  is from --oo to too. Life must, of course, be positive. 
Thus the distribution fraction below zero must be small for this distribution 
to be a satisfactory approximation in practice. 
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Figure 3.1. Normal cumulative Figure 3.2. Normal probability density. 
distribution. 

Insulation example. Nelson (1981) approximates the life of a type of 
insulation specimen with a normal distribution with p = 6,250 and u = 600 
years. The distribution fraction with negative life is F ( 0 )  = y(0-6,250)/600] 
= a[ - 10.421 =: 1.0 x which is negligible. 

Normal probability density. The probability density is 

f(y) = ( 2 ~ ~ > - ” * e ~ p [ - ( y - ~ ) ~ / ( 2 a 2 ) ] ,  --oo < y < 00. (3.3) 

Figure 3.2 depicts this probability density, which is symmetric about the mean 
p. The figure shows that p is the median and o determines the spread. 

Normal percentile. The lOOPth percentile is 

9P = P + zpa; 

z p  is the lOOPth standard normal percentile and is tabled briefly below and in 
Appendix A2. The median (50th percentile) of the normal distribution is 
q.50 = 1.1, since 2.50 = 0. Some standard percentiles are: 

(3.4) 

Figure 33. Normal hazard function. 
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loop%: 0.1 1 2.5 5 10 50 90 95 97.5 99 
~ p :  -3.090 -2.326 -1.960 -1.645 -1.282 0 1.282 1.645 1.960 2.326 

For the insulation specimens, median life is v,sU = 6,250 years. The 1st per- 
ccntile is q,ol = 6,250 t (- 2.326)600 = 4,830 years. 

Normal mean and standard deviation. For the normal distribution, 

E ( Y ) = p  and o(Y)=o (3.5) 
are the distribution parameters. For the insulation specimens, E ( Y )  = 6,250 
years and o(Y) = 600 years. 

Normal hazard function. The normal hazard function appears in Fig- 
ure 3.3, which shows that the normal distribution has an increasingfailure rule 
wilh age (wear-out behavior). Thus, the insulation above has an increasing 
failure rate. This suggests that older units with the insulation are more 
failure prone. In a preventive replacement program, older units should be 
replaced first to minimize the number of service failures. 

4. LOGNORMAL DISTRIBUTION 

The lognormal distribution is widely used for life data, including metal 
fatigue, solid state components (semiconductors, diodes, GaAs FETs, etc.), 
and electrical insulation. The lognormal and normal distributions are relat- 
ed; this fact is used to analyze lognormal data with methods for normal data. 
Books on the distribution include Crow and Shimizu (1988), Schneider 
(1986), Johnson and Kotz (1970), and Aitchinson and Brown (1957). 

Lognormal cumulative distribution. The population fraction failing by 
age t is 

F ( t )  = @{[log(t)-p]/a} , t > 0. (4.1) 

Figure 4.1 shows lognormal cumulative distribution functions. p is the mean 
of the log of life - not of life. p is called the log mean and may have any 
value from --oo to 00. o is the standard deviation of the log of life - not of 
life. o is called the log standard deviation and must be positive. p and 0 are 
not “times” like t ;  instead they are unitless pure numbers. Here log( ) 
denotes the common (base 10) logarithm. Some authors use the natural 
(base e) logarithm, denoted by In( ) in this book. @( ) is the standard normal 
cumulative distribution function; it is tabulated in Appendix Al. (4.1) is like 
the normal cumulative distribution function (3.1); however, log(t) appears in 
place of t .  The cumulative distribution can also be written as 

(4.1’) 

here 7.50 = antilog@) is the median. (4.1’) is similar to the Weibull cumula- 
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Figure 4.1. Lognormal cumulative Figure 42. Lognormal probability 
distribution. densities. 

tive distribution (5.1). (4.1’) shows that 750  is a scale parameter, and g is a 
shape parameter. 

Lognormal probability density. For a lognormal distribution, 

! ( I )  = {0.4343/[(2x)1/2ta]} exp{ -[l0g(t)-p]~/(2#)} , t > 0. (4.2) 

Here 0.4343 zz l/ln(lO). Figure 4.2 shows probability densities, which have a 
variety of shapes. The value of a determines the shape of the distribution, 
and the value of p determines the 50% point and the spread in life t .  

Class-H insulation example. The life of specimens of a proposed 
Class-H insulation at design temperature was described with a lognormal dis- 
tribution with p = 4.062 and a = 0.1053. The population fraction failing dur- 
ing the 20,000-hour design life is F(20,000) = ‘P{[l0g(20,000) -4.0621 
/0.1053} = (9[2.270] = 0.988. Thus most would fail, and the insulation was 
abandoned. 

Percentile. The lOOPth lognormal percentile is 

(4.3) 
+zPa . rP = anti~og[ptzpo] = 1d , 

here z p  is the l00Pth standard normal percentile. The median (50th percen- 
tile) is r,so = antilog[p]. 

For the Class-H insulation, the median is 7 5 0  = antilog(4.062) =: 11,500 
hours. The 1% life is r,ol = antiIog[4.062 t (- 2.326)0.1053] =: 6,600 hours. 

Lognormal reliability function. The population fraction surviving age t is 

R ( t )  = 1 - ‘P{ [log(t) -p] /~}  = ‘P{ -[logo) - p ] / ~ } .  (4.4) 

Lognormal mean and standard deviation. The mean and standard devi- 
ation of time t are little used in accelerated testing. Formulas appear, for 
example, in Nelson (1982). 
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0 

Figure 43. Lognormal hazard functions. 

Lognormal hazard functions. Hazard functions appear in Figure 4.3. 
For o = 0.5, h ( t )  is roughly constant. For u < 0.2, k (f) increases and is much 
like that of a normal distribution but eventually decreases off scale; also, then 
the lognormal cumulative distribution and probability density are close to 
normal ones. For u > 0.8, h ( t )  increases quickly and decreases slowly. This 
flexibility makes the lognormal distribution popular and suitable for many 
products. However, the lognormal hazard function has a property seldom 
seen in products. It is zero at time zero, increases to a maximum, and then 
decreases to zero with increasing age. Nonetheless, over most of its range 
and especially over the lower tail, the lognormal distribution fits life data of 
many products. Often one uses only the lower tail in applications. 

For the Class-H insulation, u = 0.1053 5 0.2. Thus, its failure rate in- 
creases with age (except in the far upper tail), according to the fitted lognor- 
mal distribution. The failure rate of most insulations, metals, and other ma- 
terials strictly increases. Sometimes a single lognormal distribution is fitted 
to pooled data from different distributions (batches, test conditions, etc.), 
then the resulting estimate of u tends to be above those of the individual dis- 
tributions. Consequently, the actual failure rate when such differing data are 
pooled is less than that suggested by the separate Q estimates. 

Relationship with the normal distribution. The following helps one 
understand the lognormal distribution in terms of the simpler normal distri- 
bution. Suppose life t has a lognormal distribution with parameters p and u. 
Then the (base 10) log of life y = log(t) has a normal distribution with mean 
p and standard deviation u. Thus the analysis methods for normal data can 
be used for the logarithms of lognormal data. 

Base e lognormal. Much engineering work now employs the base e log- 
normal distribution. The base e lognormal cumulative distribution is 

= @{[In(:) - cle1/0e). (4.5) 

Its parameters are related to the parameters plo = log(r.50) and 010 of the 
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corresponding base 10 lognormal distribution; namely, 

pe = In(r.s0) = plo x ln(10), a, = alo x ln(10). (4.6) 

5. WEIBULL DISTRIBUTION 

The Weibull distribution is often used for product life, because it models 
either increasing or decreasing failure rates simply. It is also used as the dis- 
tribution for product properties such as strength (electrical or mechanical), 
elongation, resistance, etc., in accelerated tests. It is used to describe the life 
of roller bearings, electronic components, ceramics, capacitors, and dielec- 
trics in accelerated tests. According to extreme value theory, it may describe 
a “weakest link” product. Such a product consists of many parts from the 
same life distribution, and the product fails with the first part failure. For ex- 
ample, the life of a cable or capacitor is determined by the shortest lived por- 
tion of its dielectric. Statistical theory for such cable or extreme phenomena 
appears in Galambos (1978) and Gumbel(l958). 

Weibull cumulative distribution. The population fraction failing by age t 
is 

~ ( t )  = 1 - exp[-(t/a)p], 1 > 0. (5.1) 

The shape parameter p and the scale parameter a are positive. a is also called 
the characteristic life. It is always the 63.2th percentile. a has the same units 
as t, for example, hours, months, cycles, etc. ,LJ is a unitless pure number; it is 
also called the p pararneter and “slope” parameter when estimated from a 
Weibull plot (Chapter 3). For most products and materials, /3 is in the range 
0.5 to 5. Figure 5.1 shows Weibull cumulative distribution functions. 

Capacitor example. The life of a type of capacitor is represented with a 
Weibull distribution with a = 100,OOO hours and p = 0.5. The population 
probability of failure in the first year of service is F(8,760) = 1 - 
exp[ - (8,760/100,000)05] = 0.26 or 26%. 

t t 
* 0 

0 a 2 a  3 a  0 a 2 a  3 a  

Figure 5.1. Weibull cumulative Figure 5.2. Weibull probability 
distributions. densities. 
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- 0  a 2a 3a 

Figure 5.3. Weibull hazard functions. 

Weibull probability density. For a Weibull distribution, 

f(r) = (p/c@) r@-l  exp[-(r/a)fl], t > 0.  (5.2) 

The Weibull probability densities in Figure 5.2 show that /3 determines the 
shape of the distribution, and a determines the spread. p determines the 
spread in log life; high (low) p corresponds to small (great) spread. For 
/3 = 1, the Weibull distribution is the exponential distribution. For much life 
data, the Weibull distribution fits better than the exponential, normal, and 
lognormal distributions. 

Weibull reliability function. The population fraction surviving age I is 

R ( t )  = exp[-(r/a)@], t > 0. (5.3) 
For the capacitors, the population reliability for one year is R(8760) = 

exp[ - (8760/100,000)0~5] = 0.74 or 74%. 

Weibull percentile. The 100Pth percentile of a Weibull distribution is 

Tp = cY[-h(l-P)]1/@; (5.4) 
In( ) is the natural log. For example, T.632 =: a for any Weibull distribution. 
This may be seen in Fi re 5.1. For the capacitors, the 1st percentile is T , ~ ~  = 

Weibull mean and standard deviation. These are little used in 
accelerated testing. Formulas appear, for example, in Nelson (1982) and 
many reliability texts. 

lOO,OOO[ -ln(l-O.Ol)]' F O3 = 10 hours, a measure of early life. 

Weibull hazard function. For a Weibull distribution, 

h ( t )  = @/a) (r/a)@-l, t > 0 .  (5.5) 
Figure 5.3 shows Weibull hazard functions. A power function of time, h ( t )  
increases for /3 > 1 and decreases for p c 1. For p = 1 (the exponential dis- 
tribution), the failure rate is constant. With a simple increasing or decreasing 
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failure rate, the Weibull distribution flexibly describes product life. /?tells the 
nature of the failure rate. This is often important information, particularly 
regarding whether to use preventive replacement. 

For the capacitors, ,9 = 0.5 c 1. Thus their failure rate decreases with 
age, called infant mortality behavior. This is consistent with r.ol = 10 hours 
although a! = 100,OOO hours is large. A decreasing failure rate is typical of 
capacitors with solid dielectrics. 

Relationship to the Exponential Distribution. The following relation is 
used later to analyze Weibull data in terms of the simpler exponential distri- 
bution. Suppose time T to failure has a Weibull distribution with parameters 
a and /?. Then T’ = Ta has an exponential distribution with mean tl = 2. In 
such analyses, one assumes ,9 is known, and a and other quantities are 
estimated from the data. 

Three-parameter Weibull. Nelson (1982) and Lawless (1982), among 
others, present the three-parameter Weibull distribution. It is seldom used 
for accelerated testing. 

Weibull versus lognormal. In many applications, the Weibull and lognor- 
mal distributions (and others) may fit a set of data equally well, especially 
over the middle of the distribution. When both are fitted to a data set, the 
Weibull distribution has an earlier lower tail than the corresponding lognor- 
mal distribution. That is, a low Weibull percentile is below the correspond- 
ing lognormal one. Then the Weibull distribution is more pessimistic. 
Chapters 4 and 5 present methods for assessing which distribution fits a set 
of data better. 

6. EXTREME VALUE DISTRIBUTION 

The (smallest) extreme value distribution is needed background for ana- 
lytic methods for Weibull data. Indeed the (base e) log of time to failure for 
a Weibull distribution has an extreme value distribution. The extreme value 
distribution also describes certain extreme phenomena; these include electri- 
cal strength of materials and certain types of life data. Like the Weibull dis- 
tribution, the smallest extreme value distribution may be suitable for a 
“weakest link” product. In other words, suppose a product consists of many 
nominally identical parts from the same strength (life) distribution (unbound- 
ed below) and the product strength (life) is that of the weakest (first) part to 
fail. Then the smallest extreme value distribution may describe the strength 
(life) of units (Galambos (1978)). An example is the life or electrical 
strength of cable insulation. That is, a cable may be regarded as consisting of 
many segments, and the cable fails when the first segment fails. 
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Extreme value cumulative distribution. The population fraction below y 
is 

F(y) = 1 - exp{ -exp[(y -€)/6]}, -00Cy coo. (6.1) 

The locatiorr parumeter ( may have any value from -00 to 00. ( is the 63.2 
Zercentile. The scale parameter 6 is positive, and it determines the spread of 
the distribution. E and 6 are in the same units asy, for example, hours, cycles, 
etc. Figure 6.1 depicts this function. The distribution range is -oo to +00. 
Lifetimes must, of course, be positive. Thus the fraction below zero must be 
small for this to be a satisfactory life distribution. 

Material strength. Weibull (1951) describes the ultimate strength of a 
material with an extreme value distribution with ( = 108 kg/cm2 and 6 = 
9.27 kg/cm2. The proportion of such specimens with strength below 
80 kg/cm2 is F (80) = 1 - exp{ - exp((80 - 108)/9.27]} = 0.048 or 4.8%. 

Extreme value density. For an extreme value distribution, 

f(Y) = (l/@xp[(Y -O/sI*exp{ - e M Y  -€)/611, -oo<Y (6.2) 

Figure 6.2 shows the probability density, which is asymmetric. 

Extreme value reliability function. For an extreme value distribution, 

W Y )  = exp{-exP[(Y - E m ,  - m < y  coo. (6.3) 
For the material, reliability for a stress of 80 kg/cm2 is R(80) = 1 - 
F(80) = 0.952. That is, 95.2% of such specimens withstand 80 kg/cm2. 

Extreme value percentile. The lOOPth percentile is 

VP = E t U P S ;  (6.4) 

up 3 In[-ln(1-P)] (6.5) 

here 

is the lOOPth standard extreme value percentile (E=O and 6= 1). For example, 
a632 =: E, the location parameter, since u.632 =: 0. Standard percentiles are 

loop%: 0.1 1 5 10 50 63.2 90 99 
U p :  -6.907 -4.600 -2.970 -2.250 -0.367 0 0.834 1.527 

For the material, q.50 = 108 t (- 0.367)9.27 = 104.6 kg/cm2. 

tribution, 
Extreme value mean and standard deviation. For an extreme value dis- 

E(Y) = ( - 0.57726, a(Y) = 1.2836; (6.6) 
here 0.5772 * - - is Euler’s constant and 1.283 * - = 7 r / f i .  The mean is the 
42.8% point of the distribution. For any extreme value distribution, mean < 
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Figure 6.1. Extreme value cumulative 
distribution. 

A 

Figure 6.2. Extreme value density. 

median < (. For the material, E (Y) = 108-0.5772(9.27) = 102.6 kg/cm2. 
Also o ( Y )  = 1.283(9.27) = 11.9 kg/cm2. 

Extreme value hazard function. For an extreme value distribution, 

h (Y) = (1/6)expKy -m, -W<Y <oo. (6.7) 

Figure 6.3 shows that h (j) increases exponentially with age (wear out). 

Relationship to the Weibull distribution. The extreme value distribution 
is used to analyze Weibull data. The following relationships are used to ana- 
lyze the base e logs of Weibull data. The log data are easier to analyze with 
the simpler extreme value distribution, because it has a single shape and sim- 
ple location and scale parameters, similar to the normal distribution. Sup- 

Figure 63. Extreme value hazard function. 
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pose a Weibull life distribution has shape and scale parameters /3 and a. The 
(base e) logarithm y = In(f) of life f has an extreme value distribution with 

< = In(&), 6 = l /P.  (6-8) 

The last equation shows that the spread in In life is the reciprocal of P. Thus 
low p corresponds to high spread of log life, and high p to low spread. The 
Weibull parameters can be expressed as 

a = exp(<), p = 1/6. (6.9) 

Similarly, the Weibull parameters in terms of the standard deviation o( Y) 
and mean E (  Y) of the extreme value distribution are 

(6.10) p = 1.283/0( Y), a = exp[E( Y) t 0.4501 o( Y)]. 
These relationships are used in Chapter 4 to analyzc Weibull data. 

7. OTHER DISTRIBUTIONS 

The basic distributions above (Sections 2 through 6) are commonly used 
for accelerated tests. The following other distributions and ideas may be use- 
ful. They include failure at time zero, eternal survivors, a mixture of distribu- 
tions, the generalized gamma distribution, and nonparametric analysis. 
Chapter 7 is devoted to the important series-system model for the life distri- 
bution of a product with a mix of competing failure modes. 

Distributions with failure at time zero. A fraction of a population may 
already be failed at time zero or fail soon after. For example, consumers may 
purchase a product that does not work when installed. The model for this 
consists of the proportionp failed at time zero and a continuous life distribu- 
tion for the rest. Such a cumulative distribution appears in Figure 7.1. The 
sample proportion failed at time zero is used to estimatep, and the other 
sample failure times are used to estimate the continuous distribution. 

P 

0 ,  
0 TIME t 

Figure 7.1. A cumulative distribution 
with failures at time zero. 

Figure 7.2. A cumulative distribution 
with eternal survivors. 
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Figure 73. A mixture of distributions. Figure 7.4. “Bathtub curve” hazard 
function. 

Distributions with eternal survivors. Some units may never fail. This 
applies to (1) the time to death from a disease when some individuals are im- 
mune, (2) the time to redemption of trading stamps (some stamps are lost 
and never redeemed), (3) the time to product failure from a particular defect 
when some units lack that defect, and (4) time to warranty claim on a prod- 
uct whose warranty applies only to original owners, some of which sell the 
product before failure. Figure 7.2 depicts such a cumulative distribution. 
Meeker (1985,1987) presents an application to integrated circuits. 

Mixtures of distributions. A population may consist of two or more sub- 
populations. Figure 7.3 depicts two subpopulations comprising proportions p 
and 1-p of the population. Units from different production periods may 
have different life distributions due to differences in design, raw materials, 
environment, usage, etc. It is often important to identi& such a situation and 
the production period, customers, environment, elc., with poor units. Then 
suitable action may be taken on that portion of the population. If two subpo- 
pulations have cumulative distribution functions F I ( t )  and F2(t), then the 
population has the cumulative distribution funcliori 

F( t )  = P 1 ( 0  + ( l -PF2(f )*  (7.1) 

Such a ritirhira should be distinguished froin competing failure modes, 
described in Chapter 7. Everitt and Hand (1982), McLachlan and Basford 
(1987), and Titterington, Smith, and Makor (1986) treat mixture distributions 
in detail. Hahn and Meeker (1982) offer practical advice on mixtures in 
analyzing product life data. Peck and Trapp (1978) divide certain semicon- 
ductors into two subpopulations; they call the early failures “freaks,” which 
may be as much as 20 or 30% of a product starting development and typically 
1 to 2% of a mature product. Vaupel and Yashiri (3985) show how one may 
badly misinterpret life data when unaware that the population is a mixture. 
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The bathtub curve. Some products have a decreasing failure rate in the 
early life and an increasing failure rate in later life. Figure 7.4 shows such a 
hazard function, called a “bathtub curve.” However, most products have a 
failure rate that just decreases throughout their observed life or else just 
increases. Thus, for many products, the bathtub curve does not hold water. 
It commonly appears in reliability books but describes only 10 to 15% of the 
author’s applications, usually products with competing failure modes 
(Chapter 7). Hahn and Meeker (1982) carefully distinguish between models 
for a mixture of subpopulations and those for competing failure modes. Both 
situations can have a bathtub failure rate for the population. 

Burn-in. Some products, such as high-reliability capacitors and semicon- 
ductor devices have a decreasing failure rate and are subjected to a burn-in. 
This weeds out early failures before units are put into service. Such burn-in 
is most effective if the population is a mixture of a small subpopulation of 
defectives (from manufacturing problems) that all fail early and a main popu- 
lation with satisfactory life. Peck and Trapp (1978) and Jensen and Petersen 
(1982) comprehensively treat planning and analysis of burn-in procedures, 
including the economics and accelerated burn-in. Such burn-in to weed out 
early failures is one of the purposes of environmental stress screening (ESS), 
also called shake and bake. Tustin (1986) surveys ESS. Also, some other 
products may be removed from service before wear-out starts. Thus units 
are in service only in the low failure rate portion of their life. This increases 
their reliability in service. 

Generalized gamma distribution. Farewell and Prentice (1977), 
Kalbfleisch and Prentice (1980), Cohen and Whitten (1988), and Lawless 
(1982) present the generalized gamma distribution. It includes the lognormal 
and Weibull distributions as special cases. The distribution (of log life) has 
three parameters (location, scale, and shape). When the distribution is fitted 
to data, the estimate of the shape parameter is used to compare the Weibull 
and lognormal fits. Such a comparison is useful if experience does not sug- 
gest either distribution. Farewell and Prentice have a computer program that 
fits this distribution to censored data from an accelerated test where the loca- 
tion parameter is a linear function of (possibly transformed) stress. Bowman 
and Shenton (1987) survey the simpler gamma distribution. 

Birnbaum-Saunders distribution. Birnbaum and Saunders (1969) pro- 
posed this distribution to describe metal fatigue. They mathematically derive 
their distribution from a model for crack propagation (Chap. 11, Sec. 2.4). 
Its cumulative distribution function is 

~ ( t )  = 9{[(t /p)l I2 - ( ~ / r ) l / ~ ] / a ) ,  t > o ;  (7.2) 

here 9{ } is the standard normal cumulative distribution function, @ > O  is the 
median, and 00 determines the distribution shape. 

It is an alternative to the lognormal distribution, which is widely used to 
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describe metal fatigue l ie.  It is comparable to the lognormal distribution in 
important respects. This cumulative distribution is close to a lognormal one 
for small a (usually found in practice), say, ae0.3. Then the corresponding 
(base e) lognormal parameters are approximately = In@) and a, = a. Its 
hazard function is zero at t = 0, increases to a maximum with age, and then 
finally decreases to a constant value; the lognormal hazard function is similar 
but finally decreases to zero. The distribution has a shorter lower tail than 
the corresponding lognormal one. That is, its 0.1% point is above the 
corresponding lognormal 0.1% point. This assumes that the distributions are 
matched by equating two percentiles above 0.1% (say, for 1% and 50%) or 
matched by some other reasonable means. 

Nonparametric analysis. Nonparametric analysis of data does not 
involve an assumed (parametric) form of the distribution; that is, fitting is 
distribution free. Widely used for biomedical life data, nonparametric esti- 
mates are rarely used for engineering data. First, nonparametric estimates 
are not as accurate as parametric ones, provided the assumed parametric dis- 
tribution is adequate. Second, nonparametric estimates of percentiles or 
fraction failed outside the range of the sample data do not exist; that is, one 
cannot extrapolate nonparametrically into the lower or upper tail of the dis- 
tribution. Nonparametric fitting of distributions and regression models to 
censored life data appears in various biomedical books. These include (from 
basic to advanced) Lee (1980), Miller (1981), Kalbfleisch and Prentice 
(1980), Cox and Oakes (1984), Viertl (1988), and Lawless (1982). They all 
present the widely used Cox model, also called the proportional hazards 
model. All such regression models employ parametric relationships between 
life and stress or other variables; only the life distribution does not have an 
assumed parametric form. Little used for accelerated tests, such models are 
not presented in this book. 

8. LIFE-STRESS RELATIONSHIPS 

This section motivates the life-stress relationships and models in follow- 
ing sections. These relationships are for constant-stress tests. Indeed, many 
products run at nominally constant stress in actual use and at constant stress 
in accelerated tests. Some readers may wish to skip to Section 9. 

Relationships 

Typical life data from a constant-stress test are plotted as x’s against 
stress in Figure 8.M. The figure has linear scales for life and for stress. Life 
times at low stress tend to be longer than those at high stress. Also, the 
scatter in life is greater at low stress than at high stress. The smooth curve 
through the data represents “life” as a function of stress. Engineering theory 
for some curves does not specify exactly what “life” means; it is some “nomi- 



72 MODELS FOR LIFE TESTS WITH CONSTANT STRESS 

b 
G 
L 
I 
F 
E 

L 
I 
F 
E 

\ 
F 
E 

STRESS 
* 

LOG STRESS 

I 
30% 

I I  I J U M  

STRESS LOG STRESS ’ 

Figure 8.1. Failure time versus stress. 

nal” life, which is not made precise. In this book, such “nominal” life is a 
specific characteristic of the life distribution - usually the mean, median, or 
other distribution percentile. MIL-HDBK-217E (1986) presents a great 
variety of such relationships. They serve as derating curves for many types of 
electronic components. 

Data can be conceptually simpler when plotted on paper with logarithmic 
or other suitable scales. On suitable paper the plotted points tend to follow a 
straight line, as in Figure8.1B. Then a straight line through the data 
represents the life-stress relationship between product “life” and stress. A 
straight line is easier to fit to the data than a curve. Moreover, it is 
mathematically easy to extrapolate the straight line to a low stress to estimate 
the nominal life there, assuming the straight line is adequate. On the other 
hand, it is difficult to extrapolate a curve like that in Figure 8.M. Use of a 
straight line on a special plotting paper is equivalent to using a particular 
equation to represent life versus stress. The Arrhenius relationship (Sec- 
tion 9) and the inverse power relationship (Section 10) are such equations. 

The preceding simple view of accelerated test data has long been used by 
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engineers. It is adequate for some work. However, most applications benefit 
from more refined models which follow. 

Applications 

Life-stress relationships for many products and materials have appeared 
ill the cngineering literature. The coniputerized literature searches by Meek- 
er (1979) and Carey (1985) contain many applications. Relationships for 
various applications are sunayed in the following references: 
0 Electrical insulation: Goba (1969) 

Electronic components: Grange (1971), MIL-HDBK-2lZE (1986) 
Metal fatigue: ASTM STP 91-A (1963) and STP 744 (1979), Gertsbakh 
and Kordonskiy (1%9). 

Models with Distributions and Relationships 

A simple relationship does not describe the scatter in the life of the test 
units. For each stress level, the units have some statistical distribution of life. 
A more refined model employs a statistical distribution to describe the 
scatter in life. Figure 8.1C depicts such statistical distributions. The curve 
for the probability density (histogram) of life at a stress would be perpendicu- 
lar to the page, but it has been drawn flat on the figure. A heavy curve passes 
through the 50 percent point of the distribution at each stress. Lighter curves 
pass through the 10 and 90 percent points. Such a curve can be imagined for 
any percentile. Thus the model here consists of a combination of a life distri- 
bution and a life-stress relationship. The percentile curves depict the model. 

Many such models are simpler on plotting paper (with logarithmic or oth- 
er suitable scales) where the relationship between life and stress is a straight 
line. The model in Figure 8.1C is depicted in Figure 8.1D on paper on which 
the relationship is a straight line. The relationships for other percentiles of 
the life distributions plot as parallel straight lines for many models, as shown 
in the figure. For example, percentiles of the Arrhenius model (Section 9) 
and the inverse power law model (Section 10) plot as parallel straight lines 
on suitable paper. Such models incorporating a distribution are more realis- 
tic than a simple relationship. For a particular stress level, such a model 
gives the age at which, for example, 1 percent or any other percentage of the 
units fail. More general models need not have percentiles that plot as paral- 
lcl straight lines on such paper. 

Commonly used theoretical life distributions include the exponential, log- 
normal, and Weibull distributions, described in previous sections. 

Distribution Plots 

In Figure 8.1, life data are plotted against test stress. Another plot of 
such data is useful. Figure 8.2A shows a plot of the cumulative percentage of 
the sample that has failed as a function of time. The plotted points are the 
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sample failure times, and the smooth curve depicts the population cumulative 
percentage failing as a function of time. The plot shows sample data for two 
stresses and the corresponding population distributions. Figure 8.2A also 
shows the population cumulative distribution for a low design stress. 

Such a plot is simpler on probability paper. Such paper has a suitable 
data scale (usually logarithmic) for time and a probability scale for the cumu- 
lative percentage failed. One uses a paper on which the plotted points tend 
to follow a straight line, as in Figure 8.2B. Then a straight line represents the 
population cumulative percentage failing as a function of time at that stress. 
There are probability plotting papers for the exponential, normal, lognormal, 
Weibull, extreme value, and other distributions. A straight line on a proba- 
bility paper is a cumulative distribution function for its distribution. The 
straight lines for the various stresses are parallel in Figure8.2B. The Ar- 
rhenius model (Section 9) and the inverse power law model (Section 10) have 
distributions that are parallel lines on suitable probability paper. More gen- 
eral models need not have distributions that plot as parallel straight lines on 
such paper. Instead the distributions plot as curves that do not cross. 

Overview 

The preceding paragraphs provide background for the following sections. 
Section 9 presents the Arrhenius relationship for temperature-accelerated 
tests. Section 10 presents the inverse power relationship. These two basic 
relationships are widely used, and many other relationships are generaliza- 
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Lions of them. Section 1 2  introduces endurance (or fatigue) limit relation- 
ships for products that do not fail when stressed below the endurance (fa- 
tigue) limit. Section 12 surveys a number of other relationships involving a 
singlc stress. Section 13 covers multivariable relationships for more than one 
accelerating stress or other variables, such as design, manufacturing, and op- 
erating variables. Section 14 gives relationships for the spread of a life distri- 
bution as a function of stress and other variables. 

Such relationships usually apply to a single failure mode. Such relation- 
ships may not be suitable for a product that fails from a number of causes. 
Models for such products appear in Chapter 7. Also, special models for the 
effect of size of the test specimen appear in Chapter 7. 

9. ARRHENIUS LIFE-TEMPERATURE RELATIONSHIP 

Applications. The Arrhenius life relationship is widely used to model 
product life as a function of temperature. Applications include 

electrical insulations and dielectrics, as surveyed by Goba (1969) 
solid state and semiconductor devices, Peck and Trapp (1978) 

0 battery cells 
0 lubricants and greases 

plastics 
incandescent lamp filaments, IEC Publ. 64 (1974). 

Based on the Arrhenius Law for simple chemical-reaction rates (Chapter l l ) ,  
the relationship is used to describe many products that fail as a result of deg- 
radation due to chemical reactions or metal diffusion. The relationship is 
adequate over some range of temperature. 

Overview. Section 9.1 presents the Arrhenius law for reaction rates and 
motivates the Arrhenius life relationship. Then, the distribution of life 
around the relationship is modeled with the lognormal (Section 9.2), Weibull 
(Section 9.3), and exponential (Section 9.4) distributions. 

complete data (Chapter 4, Section 2), 
censored data (Chapter 5, Section 2), 
data with a mix of failure modes (Chapter 7). 

The Arrhenius life relationship below describes the life of products and test 
specimens that run under constant temperature. Chapter 10 presents models 
for life where temperature is not constant. Chapter 11 presents a related 
model for degradation of performance of a product as a function of tempera- 
ture and age. 

Analyses of various types of data with this relationship appear as follows: 

9.1. The Relationship 

This section motivates the Arrhenius life relationship. Readers may wish 
to skip to the Arrhenius life relationship in Section9.2. Also, Chapter 11 
provides othei motivation. 
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Arrhenius law. According to the Arrhenius rate law, the rate of a simple 
(first-order) chemical reaction depends on temperature as follows 

rate = A’ exp[ - E / ( k T ) ]  ; (9.1.1) 

E is the activation energy of the reaction, usually in electron-volts. 

k is Boltmann’s constant, 8.617l~lO-~ electron-volts per “C. 

T is the absolute Kelvin temperature; it equals the Centigrade temperature 
plus 273.16 degrees; the absolute Rankme temperature equals the 
Fahrenheit temperature plus 459.7 Fahrenheit degrees. 

A’ is a constant that is characteristic of the product failure mechanism and 
test conditions. 

The rate of metal diffusion is described by the same equation. Thus the fol- 
lowing Arrhenius life relationship based on (9.1.1) may describe failures due 
to diffusion in solid state devices and certain other products made of metal, if 
geometry of the distinct metals is not an important factor. The effect of 
geometry has largely been ignored in the literature. 

Motivation. The following relationship is based on a simple view of 
failure due to such a chemical reaction (or diffusion). The product is 
assumed to fail when some critical amount of the chemical has reacted (or 
diffused); a simple view of this is 

(critical amount) = (rate) x (time to failure). 

Equivalently, 

(time to failure) = (critical amount) / (rate). 

While naive, this suggests that nominal time 7 to failure (“life”) is inversely 
proportional to the rate (9.1.1). This yields the Arrhenius life relationship 

7 = A exp[E/(kT)]. (9.1.2) 

Here A is a constant that depends on product geometry, specimen size and 
fabrication, test method, and other factors. Products with more than one 
failure mode have different A and E values for each mode. Adequacy of 
(9.1.2) has been confirmed experimentally for certain products and failure 
modes. In fact, in certain applications (e.g., motor insulation), if the Ar- 
rhenius life relationship (9.1.2) does not adequately fit the data, the data are 
suspect rather than the relationship. So the usual handwaving between 
(9.1.1) and (9.1.2) is not worth faulting. This connection between (9.1.1) and 
(9.1.2) has value. It suggests a mechanism for failure when the relationship 
(9.1.2) holds, namely, degradation due to a single chemical reaction (or to 
metal diffusion). 

Linearized relationship. The (base 10) logarithm of (9.1.2) is 
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log(7) = 7 0  + (71/T) (9.1.3) 

where 

71 = log(e)(E/k) =: 0.4343Elk. (9.1.4) 

Thus the log of “nominal life,” log(.), is a linear function of inverse absolute 
temperature x = 1/T. For example, Sillars (1973, p. 29) presents (9.1.3) for 
insulation life. “Life” 7 is usually taken to be a specified percentile or the 
mean of the (log) life distribution. Common choices are the 50th, 63.2th, and 
10th percentiles. (9.1.4) can be expressed as 

E = 2.303 k 71. (9.1.5) 

For most diodes, transistors, and other solid state devices, E is in the range 
0.3 to 1.5 electron-volts. Moreover, E varies from one failure mode to 
another, even for the same device. 

Class-H insulation example. An Arrhenius relationship used to describe 
life (in hours) of a new Class-H motor insulation has 70 = -3.16319 and 71 
= 3,273.67. In practice, such parameters are estimated from data, and they 
often have great statistical uncertainty. They and other numbers are treated 
in this chapter as if exact. The log life at the design temperature of 180°C 
(453.16”K) is -3.16319 t (3,273.67/453.16) = 4.0611. The antilog is about 
11,500 hours. The activation energy is E = 2.303 x 8.6171 x x 3,273.67 
=: 0.65 eV. Dakin (1948) proposed the Arrhenius relationship to describe 
temperature-accelerated life tests of electrical insulations and dielectrics. 
The relationship is now widely used for such tests and other products. 

Arrhenius acceleration factor. By (9.1.2), the Arrhenius acceleration fac- 
tor between life T at temperature T and life T’ at reference temperature T’ is 

K = T/T’ = e x p { ( E / k ) [ ( l / T ) - ( l / T ’ ) ] } .  (9.1.6) 

For the Class-H insulation, the acceleration factor between T= 453.16”K 
(180°C) and T’ = 533.16”K (260OC) is 

K = exp{ (0.65/8.617l~10-~)[(1/453.16) - (1/533.16)]) = 12. 

Thus specimens run 12 times longer at 180°C than at 260°C. 

Larsen-Miller relationship. The effect of temperature on time T to creep 
(to a specified % elongation) or to rupture of metals under load is discussed, 
for example, by Dieter (1961). The Larsen-Miller relationship for an abso- 
lute temperature T is (9.1.3) written as 

T [-TO i- log(T)] = 71 (9.1.7) 

rl is called the Larsen-Millerparameter; it depends only on load (stress in psi) 
and not on T or T. Dieter (1961) presents other such relationships which are 
fitted to creep-rupture data at high temperatures to estimate life at lower 
design temperatures. Usually 7 is taken to be the median life, and the scatter 



78 MODELS FOR LIFE TESTS WITH CONSTANT STRESS 

in life is often ignored in metallurgical studies. Of course, in high reliability 
applications where failure is to be avoided, the lower tail of the life distribu- 
tion must be modeled with a life distribution. 

Arrhenius paper. Figure 9.1 shows Arrhenius paper which has a log scale 
for life and a nonlinear (Centigrade) temperature scale, which is linear in 
inverse absolute temperature. The linear scale for inverse absolute tempera- 
ture was added to the figure to show its relation to the temperature scale. 
On such paper, the Arrhenius (life-temperature) relationship (9.1.2) plots as 
a straight line. The value of A (or equivalently 70) determines the intercept 
of the line (at T = 00 or 1/T = 0). The value of E (or equivalently n) deter- 

1000/'K 
I I 1 I I I I 

2. LO 2.20 2.00 1.80 

TEMPERATURE O C  

Figure 9.1. Arrhenius relationship (and lognormal percentile lines) on Arrhenius 
paper. 
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mines the slope, The previously calculated 11,500-hour “life” of Class-H 
insulation at 180°C appears as the median (50%) in Figure 9.1. 

9.2. Arrhenius-Lognormal Model 

The life of many products and materials in a temperature-accelerated test 
is described with a lognormal distribution. IEEE Standard 101 (1988) uses 
the lognormal distribution for motor insulation. Peck and Trapp (1978) use 
it for semiconductors and solid state devices. Described below is the 
Arrhenius-lognormal model. It combines a lognormal life distribution with 
an Arrhenius dependence of life on temperature. 

PERCENTAGE 

Figure 9.2. Cumulative distributions on lognormal probability paper - Arrhen- 
ius-lognormal model. 
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Assumptions. The assumptions of the Arrhenius-lognormal model are: 

1. At absolute temperature T, product life has a lognormal distribution. 
Equivalently, the log (base 10) of life has a normal distribution. 

2. The standard deviation, 0, of log life is a constant, i.e., independent of 
temperature. Section 14 extends the model to nonconstant u. 

3. The log of median life 1 5 0  is a linear function of the inverse of the abso- 
lute temperature T; that is, 

log[7SO(T)] = 70 t (7;/7? (9.2.1) 

which is called the Arrhenius life relationship. Parameters 70,7;,  and u are 
characteristic of the product and test method; they are estimated from data. 
An example of (9.2.1) is depicted on Arrhenius paper in Figure9.1. 
Equivalently, the mean p(x) of log life is a linear function ofx = lOOO/T: 

&) = 7 0  -I- 71x. (9.2.2) 

Here and elsewhere, lo00 is used to scale inverse temperatures, and 71 = 
r;/lOOO. Resulting numbers are more convenient. These assumptions yield 
the following cumulative distribution of life and its percentiles. 

Base e. If the base e log is used, then (9.2.1) and (9.2.2) become 

lnkso(T)] = 78 + (7ie/T), (9.2.1 ') 

P'@) = 78 + 7 h  (9.2.2') 

here 76 = 2.30 rot 7; = 2.30 71, and Oe = 2.30 u where ln(10) =: 2.30. Then 
In replaces log in formulas below. 

Fraction failed. At absolute temperature T, the cumulative distribution 

F(47? = Wog(t)-CL(x)l/4 ; (9.2.3) 

@{ } is the standard normal cumulative distribution function (Appendix Al). 
This fraction failed plots as a straight line versus t on lognormal probability 
paper in Figure9.2. The value of u determines the slope of such lines. A 
high (low) u value corresponds to a high (low) slope and to a wide (narrow) 
distribution of log life. In Figure 9.2, the distribution lines are parallel. This 
reflects assumption 2, which is needed for the following reason. Different D 

values at different temperatures result in distribution lines with different 
slopes. Such lines cross, resulting in a lower fraction failed for higher tem- 
perature beyond the age where the lines cross. Such crossing is physically 
implausible. Thus a common (constant) value for u is assumed. 

The model for the Class-H insulation provides an example of evaluating 
(9.2.3). The assumed value of u is 0.10533. At 180"C, the fraction failed by 
10,000 hours is calculated as follows. The absolute temperature is T = 
180t273.16 = 453.16"K, and x = 1000/453.16 = 2.2067. The log mean is 

function (population fraction failed) at age t is 
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~(2.2067) = -3.16319 t (3.27367) 2.2067 = 4.0611 . The fraction failed is 

F(10,000,453.16"K) = 'P{ [log(10,000) -4.0611]/0.10533} = 'P( -0.580) = 0.281. 

This 28% is a point on the 180" line at 10,000 hours in Figure 9.2. To plot the 
entire distribution, calculate the fraction failed at another age, plot that point 
on the lognormal paper, and draw a straight line through the two points. 

Percentiles. At temperature T, the 100Pth percentile (P fractile) of life is 

rp(T)  = antilog[p(x) + z p  u] = antilog[ro t rl(lOOO/T) t zpu]; (9.2.4) 

here zp is the standard normal percentile (AppendixA2). For a fixed P, 
rp(T) plotted against Centigrade temperature on Arrhenius paper is a 
straight line. Figure 9.1 shows such lines for several percentiles; the value z p  

determines the vertical position of the corresponding line. The correspond- 
ing percentile of log life is 

VP(X) = log[rP(x)l = Ax) t Z P b .  (9.2.5) 

Thus, one can think in terms of the percentile of life or of log life. The 
median (50th percentile) is a special case; namely, 

r.so(T) = antilog[p(x)] = antilog[ro t rl(lOOO/T)], 
(9.2.6) 

V.SO(X) = Ax) = 70 t 7 l X .  

For the Class-H insulation at 180"C, the 10th percentile of log life is 

V.io(2.2067) = 4.0611 + (-1.282)0.10533 = 3.9261. 

The 10th percentile of life is 

r.1~(453.16"K) = antilog(3.9261) = ld.9261 = 8,435 hours. 

This is a point on the 10% line in Figure 9.1. Also, it is a corresponding point 
on the 180" line in Figure 9.2. 

Design temperature. In some applications, one must choose a design 
temperature that yields a desired "life." Such a desired life is usually a 
specified value rp* of a percentile. For the Arrhenius-lognormal model, the 
desired absolute temperature is 

T* = 1 ~ 1 / [ 1 O g ( ~ p * )  - 70 - z ~ Q ] .  (9.2.7) 

For example, the desired median life of the Class-H insulation is 
7.50 * = 20,000 hours. This life is achieved at a design temperature of 

T* = 1000(3.27367)/[l0g(20,000) - (- 3.16319) - O(O.10533)J = 43833°K. 

This is (438.58-273.16) =: 165°C. This can also be obtained from Figure 9.1. 
Enter the figure on the time scale at 20,000 hours; go horizontally to the 50% 
line; then go down to the temperature scale to read 165°C. 
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93. Arrhenius-Weibull Model 

The life of some products and materials in a temperature-accelerated test 
is described with a Weibull distribution. For example, the author has used it 
for capacitor dielectric and for insulating tape. Described below is the 
Arrhenius-Weibull model. It combines a Weibull life distribution with an Ar- 
rhenius dependence of life on temperature. 

Assumptions. The assumptions of the Arrhenius-Weibull model are: 

1. 

2. 

3. 

At absolute temperature T, product life has a Weibull distribution; 
equivalently, the natural log of life has an extreme value distribution. 
The Weibull shape parameter 8 is a constant (independent of tempera- 
ture); equivalently, the extreme value distribution of the natural log of life 
has a constant scale parameter 6 = l/S. Section 14 extends the model to 
nonconstant 8. 
The natural log of the Weibull characteristic life a is a linear function of 
the inverse of T: 

(9.3.1) w47-11 = 70 + ( m - 1 .  

Figure 93. Arrhenius relationship and Weibull percentile lines. 
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The parameters 70, 7;, and B are characteristic of the product and test 
method; they are estimated from data. a(T) plots as a straight line on 
Arrhenius paper (Figure 9.3). Equivalently, 

3’. The extreme value location parameter of the distribution of natural log 
life is a linear function ofx = lOOO/T; that is, 

((x) = ln[a(T)] = 70 + 71 x .  (9.3.2) 

These assumptions yield the cumulative distribution of life and its percentiles. 

Fraction failed. At absolute temperature T, the cumulative distribution 
function (population fraction failed) at age t is 

F ( t ; T )  = 1 - exp{-[t/a(T)~@) = 1 - exp{- [ texp[-ro- (r ; /T) ] ]@} .  (9.3.3) 

For a specific temperature T, this fraction failed plots as a straight line versus 
f on Weibull probability paper. Such Weibull distribution lines appear in Fig- 
ure 10.2 for another relationship. The value of @ determines the slope of 
such lines on Weibull paper. Thus /3 is also unfortunately called the slope 
parameter, not to be confused with the relationship slope rl. A high @ value 
corresponds to a narrow distribution of In life; a low ,d value corresponds to a 
wide distribution of In life. In Figure 10.2, the distribution lines are parallel, 
a result of assumption 2. 

Percentile. At temperature T, the lOOPth percentile (P fractile) is 

r p ( ~ )  = a ( ~ )  [-ln(l-~)l’l@ = exp[ro trl(lOOO/~)l[-~n(l-~)l’lB. (9.3.4) 

For a fixed P, r p ( T )  plotted against Ton Arrhenius paper is a straight line, as 
in Figure 9.3. However, the spacing of these parallel Weibull percentile lines 
differs from that of the lognormal percentile lines in Figure9.1. The 
corresponding percentile of log life is 

V P @ )  = E(x) -t uP6; (9.3.5) 

here x = lOOO/T, and u p  = In[ -ln(l-P)] is the standard extreme value per- 
centile. Then 

d T )  = exp[VP(x)l* (9.3.6) 

The 63.2 percentile is the special case 7 6 3 2 ( T )  = a(T), V.632(x) = 70 

Design temperature. Suppose a desired life is specified as a percentile 
value r p * .  For the Arrhenius-Weibull model, the absolute temperature that 
yields this life is 

x . 

T* = looor,/ln{rp*/[-~n(l-~)l”@}. (9.3.7) 

9.4. Arrhenius-Exponential Model 

The life of semiconductor and solid state devices and other electronic 
components is often (incorrectly) represented with an exponential distribu- 
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tion. For example, MIL-HDBK-217E (1986) does so. The exponential dis- 
tribution is often a reasonable approximation for the distribution of times be- 
tween failure for a complex electronic system. However, it is often a poor or 
misleading approximation to the life distribution of a (nonrepaired) com- 
ponent or material. Then engineers incorrectly use the exponential distribu- 
tion for various reasons. Some do not know better. Knowing better, some 
follow common practice and use the exponential distribution, because it is 
easy to use and handbooks quote only constant failure rates. Moreover, a 
crude reliability estimate is better than no estimate. Some would use the 
Weibull distribution, which is better, but lack appropriate test or field data or 
handbook information; so they are unable to estimate Weibull parameters. 
Of course, the Arrhenius-exponential model is a special case of the 
Arrhenius-Weibull model with /3 = 1. Some other suitable assumed /3 value 
will usually yield better results. 

Assumptions. The assumptions of the Arrhenius-exponential model are: 

1. At any absolute temperature T, life has an exponential distribution. 
2. The natural log of the mean life B is a linear function of the inverse of T: 

1n[6(T)1 = 7 0  -t- (7i/T)* (9.4.1) 

Model parameters 7 0  and 7; are characteristic of the product and test 
method; they are estimated from data. B ( T )  plots as a straight line on 
Arrhenius paper. Equivalently, 

2’. The natural log of the (constant) failure rate X = l / B  is 

In[X(T)1 = -70 - (7i/T)- (9.4.2) 

Also, X(T) plots as straight line on Arrhenius paper. This model is 
presented, for example, by Evans (1969). These assumptions yield the cumu- 
lative distribution function of life and percentiles below. 

Temperature derating curve. MIL-HDBK-217E (1986) presents failure 
rate information on electronics. For example, for a Metal Oxide Semicon- 
ductor (MOS), the failure rate (failures per million hours) is (9.4.2) 
expressed as 

X(T) = 1.08 x l@ e -6373/T. 

For a design application at 55°C (T = 273.16 t 55 = 328.16), X(328.16) = 1.08 
x lo8 e -6373/328.16 = 0.39 failures per million hours. This failure-rate relation- 
ship plots as a straight line on Arrhenius paper. 

Fraction failed. At absolute temperature T, the cumulative distribution 
function (population fraction failed by age t )  is 

~ ( t ;  T) = 1 - exp[ - t / d ( ~ ) ]  = 1 - exp[ - ~ x ( T ) ]  
(9.4.3) 

= 1 - exp{-t exP[-70-(7;/T)I). 

For a temperature T, this fraction failed plots as a straight line versus t on 
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Weibull probability paper. Such distribution lines are parallel, as in Fig- 
ure 9.2, but have different spacings for the exponential distribution. 

Percentiles. At absolute temperature T, the lOOPth percentile (P fractile) 
is 

rP(T) = B ( T )  [-ln(1-P)] = exp[ro t 71(1000/T)] [-In(1-P)]. (9.4.4) 

For fixed P, rP(T) plotted against T on Arrhenius paper is a straight line. 
Such percentile lines for different P are parallel. Their spacing is determined 
by (9.4.4). The 63.2th percentile is, of course, the mean B(T). 

10. INVERSE POWER RELATIONSHIP 

Applications. The inverse power relationship is widely used to model 
product life as a function of an accelerating stress. Applications include: 

Electrical insulations and dielectrics in voltage-endurance tests. Examples 
include Cramp (1959), Kaufman and Meador (1968), Zelen (1959), Simoni 
(1974), and IEEE Standard 930 (1987). 
Ball and roller bearings, for example, Lieblein and Zelen (1956), Harris 
(1984), and the SKF catalog (1981). 
Incandescent lamps (light bulb filaments), IEC Publ. 64 (1974). 
Flash lamps, EG&G Electro-Optics (1984). 
Simple metal fatigue due to mechanical loading, for example, Prot (1948) 
and Weibull (1%1), and due to thermal cycling, for example, Coffin 
(1954,1974) and Manson (1953,1966). 

The relationship is sometimes called the inverse power law or simply the 
power law. The term “law” suggests it is universally valid, which it is not. 
However, while usually not based on theory, the relationship is empirically 
adequate for many products. 

Overview. This section first presents the (inverse) power relationship. 
Then the distribution of product life around the relationship is modeled with 
the lognormal, Weibull, and exponential distributions. 

Analysis of various types of data with this relationship appear as follows: 
complete data (Chapter 4, Section 4) 
censored data (Chapter 5, Section 2) 
data with a mix of failure modes (Chapter 7) 
step-stress test data (Chapter 10) 

The power relationship below describes the life of products and test speci- 
mens that run under constant stress. Chapter 10 presents models for life 
where stress varies. 

10.1. The Relationship 

Definition. Suppose that the accelerating stress variable V is positive. 
The inverse power relationship (or law) between “nominal” life r of a prod- 
uct and Vis 
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T(V) = A/Vn ; (10.1.1) 

here A and 71 are parameters characteristic of the product, specimen 
geometry and fabrication, the test method, etc. Equivalent forms are 

T ( V )  = (A’/V)% and r (V)  = A ” ( V o / V ) n ;  

here VO is a specified (standard) level of stress. The parameter 71 is called 
thepower or exponent. 

Transformer oil example. The inverse power relationship was used to 
describe the life (in minutes) of a transformer oil tested under certain condi- 
tions. Assumed parameter values are A = 1.2284 x ld6 and -yl = 16.3909. 
The voltage stress Vis in kilovolts (kV). Thus T ( V )  = 1.2284 x 1d6/lT/16.3909. 
At V = 15 kV, life is ~(15)  = 1.2284 x 1d6/1516.3909 = 6.45 x lo6 minutes. 

Coffin-Manson relationship. The inverse power law is used to model 
fatigue failure of metals subjected to thermal cycling. The “typical” number 
N of cycles to failure as a function of the temperature rung AT of the ther- 
mal cycle is 

N = A / ( A T ) ~ .  (10.1.2) 

Here A and B are constants characteristic of the metal and test method and 
cycle. Then (10.1.2) is called the Coffin-Munson relatioriship. Coffin 
(1954,1974) and Manson (1953,1966) present it and applications. The rela- 
tionship has been used for mechanical and electronic components. In elec- 
tronics it is used for solder and other connections. For metals, the fatigue life 
is often modeled with the lognormal distribution, which is combined with the 
inverse power relationship in Section 10.2. For metals, the B is near 2. For 
plastic encapsulants for microelectronics, B is near 5. Problem 3.15 applies 
this relationship. Nachlas (1986) proposes a general life relationship for 
thermal cycling. Nishimura and others (1987) show that life of plastic pack- 
aging for electronics also depends on the minimum cycle temperature. 

Palmgren’s equation. Life tests of roller and ball bearings employ high 
mechanical load. In practice, life (in millions of revolutions) as a function of 
load is represented with Palmgren’s equation for the 10th percentile Blo of 
the life distribution, namely, 

BlO = (C/P)P ; (10.1.3) 

C is a constant called the bearing capacity a n d p  is the power. Blo is called 
the “B ten” bearing life. P is the (equivalent radial) load in pounds. Bearing 
life is usually modeled with the Weibull distribution, which is combined with 
the inverse power relationship in Section 10.3. For rolling steel bearings, the 
Weibull shape parameter is typically in the range 1.1 to 1.3 in actual use 
and in the range 1.3 to 1.5 in laboratory tests. For steel ball bearings, the 
powerp = 3 is used, and, for steel roller bear ings ,~  = 10/3 is used. This 
model is presented by Harris (1984) and the catalog of SKF (1981). 
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Taylor’s model. Boothroyd (1975) gives Taylor’s model for the median 
life T of cutting tools, namely, 

T = A/v“  ; 

here V is the cutting velocity (feet/sec), and A and in are constants depend- 
ing on the tool material, geometry, etc. For high strength steels m z8, for 
carbides m ”4, and for ceramics m =: 2. 

Linearized relationship. The natural logarithm of (10.1.1) is 

Thus the log of “typical life”, In(?), is a linear function of the transformed 
stress x = - ln(V). “Life” r is usually taken to be a specified percentile of the 
life distribution. Common choices are the 50th, 63.2th, and 10th percentiles. 

Log-log paper. (10.1.4) shows that the inverse power relationship (10.1.1) 
is a straight line on log-log paper. Figure 10.1 shows such a straight line on 
such paper. The previously calculated nominal life of transformer oil of 6.45 
x lo6 minutes at 15 kV appears off scale on the line labeled 63.2%. Special 
log-log papers are needed. Namely, the length of the log cycle for time is 
much shorter than that for voltage as in Figure 10.1. Ordinary log-log paper 

10 20 30 40 ’ 50 60 70 80 90 100 
TEST VOLTAGE IN kV 

Figure 10.1, Inverse power relationship (Weibull percentile lines) on log-log pa- 
per. 
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has the same cycle length on each axis, and it is not suitable for most 
accelerated testing work. Some organizations have developed their own suit- 
able log-log paper, similar to that in Figure 10.1. Current graphics packages 
on computers readily custom make such paper with plotters. Figure 10.1 
shows time on the vertical axis. Some papers have time on the horizontal axis 
and stress on the vertical axis; this is common in applications with metal 
fatigue and insulation endurance. 

Power acceleration factor. By (lO.l.l), the power acceleration factor 
between life 7 at stress V and life 7' at reference stress V' is 

K = r/r' = (V'/V)?". (10.1.5) 

For the transformer oil, the acceleration factor between I/ = 15 kV and V' = 
38 kV is K = (38/15)'6.3909 = 4 . 1 ~ 1 0 ~ .  Thus such oil runs 4.1 million times 
longer at 15 kV than at 38 kV, if the relationship is valid. 

10.2. Power-Lognormal Model 

The life of certain products is described with a lognormal life distribution 
whose median is an inverse power function of stress. This is the simplest 
model used for metal fatigue; it appears, for example, in ASTM STP 744 
(1979) and ASTM STP 91-A (1963). The author has used this model for 
voltage-endurance of insulating tape. A description of the model follows. 

Assumptions. The assumptions of the power-lognormal model are: 

1. At any stress level V, product life has a lognormal distribution. 
2. The standard deviation, Q, of log life is a constant (independent of V). 

Section 14 extends the model to nonconstant o. 
3. The median life, 7.50, is an inverse power function of stress; that is, 

~ , 5 0 ( ~ )  = I O ~ / V ? " .  (10.2.1) 

Parameters 70, 71, and d are characteristic of the product and test method. 
An example of (10.2.1) is plotted in Figure 10.1, Equivalently, the mean p(I) 
of (base 10) log life is a linear function of transformed stressx = - log(V): 

&) = 70 -t 7 l x *  (10.2.2) 

These assumptions yield the following equations for the cumulative distribu- 
tion of life and its percentiles. 

Fraction failed. At stress level V, the cumulative distribution function 
(population fraction failed by age t )  is 

F ( W )  = @ { ~ W ) - P ( ~ ) l / ~ I  ; (10.2.3) 

here @{ } is the standard normal cumulative distribution function 
(Appendix Al). This fraction plots as a straight line versus t on lognormal 
probability paper. For example, see Figure 9.2. 
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Percentiles. At stress level V, the 100Pth percentile (P fractile) is 

7p(V)  = antilog[p(x) + z p  4 = (lO’b/V%) x antilog(zpt7) ; (10.2.4) 

here z p  is the standard normal percentile (Appendix A2). For fiied P, rp (V)  
plots against V on log-log paper as a straight line. Figure 10.1 shows such 
lines, but their vertical spacings correspond to a Weibull distribution. The 
corresponding percentile of log life is 

VP(X) = 1og“ql  = 4 x )  + ZP Q. (10.2.5) 

The median l i e  or median log life is a special case with 2.50 = 0. 

Design stress level. In some applications, one must choose a stress level 
that gives a desired “life.” Such a desired life is usually a specified value rp* 
of a percentile. For example, at what stress level will the O.lth percentile of a 
fatigue life distribution of a metal be 12,000 cycles. For the power-lognormal 
model, the corresponding stress level V* is 

VY = (1/7~) antilog[~o ++a - Iog(rp*)]. (10.2.6) 

In airplane frame and engine design, such a stress level is used, and the part 
is removed from service at ( r p * / 3 )  cycles. This practice seeks to avoid what 
the industry terms a “part separation.” The safety factor of 3 helps compen- 
sate for the uncertainties in estimating fatigue life due to differences between 
the geometry of specimens and that of actual parts and to differences 
between test and actual stress, environment, etc. 

103. Power-Weibull Model 

The life of certain products is described with a Weibull life distribution 
whose characteristic life is a power function of stress. Applications include: 

Electrical insulation and dielectrics, for example, IEEE Publication P930 
(1987), Nelson (1970), and Simoni (1974). Voltage stress is the accelerat- 
ing variable. 
Ball and roller bearings, for example, Lieblein and Zelen (1956), Harris 
(1984), and SKF (1981). Load is the accelerating variable. 
Metal fatigue, for example, Weibull (1961). Mechanical stress (pounds per 
square inch) is the accelerating variable. 

The assumptions and properties of the model follow. 

Assumptions. The assumptions of the power-Weibull model are: 

1. At stress level V, product life has a Weibull distribution. 
2. The Weibull shape parameter ,9 is a constant (independent of V). Sec- 

tion 14 extends the model to nonconstant p. 
3. The Weibull characteristic life a is an inverse power function of K 

a ( ~ )  = e l D / P .  (10.3.1) 

The parameters 70,  71, and ,9 are characteristic of the product and test 
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method. a(V) plots as a straight line versus V on log-log paper as shown in 
Figure 10.1. Equivalently, 

1'. The natural log of product life has an extreme value distribution. 
2'. The extreme value scale parameter o = l/@ is a constant. 
3'. The extreme value location parameter ,$ = In(a) is a linear function of 

x = -ln(V); that is, 

(10.3.2) ((x) = 70 + 71x. 

These assumptions yield the cumulative life distribution and its percentiles. 

(population fraction failed by age t) is 
Fraction failed. At stress level V, the cumulative distribution function 

F(t ;V) = 1 - exp{ - [ t /a(V)la}  = 1 - exp{ -[t e-% VnIa} .  (10.3.3) 

For a specific stress level V, F(t;V) plots as a straight line versus I on 
Weibull probability paper. Such distribution lines appear in Figure 10.2. A 
high (low) @ corresponds to a narrow (wide) distribution of In life. 

Transformer oil. The voltage endurance (time to breakdown) of a cer- 
tain transformer oil was described with the power-Weibull model. Assumed 
parameter values were qo = 60.1611,71 = 16.3909, and @ = 0.8084. Time t is 
in minutes, and voltage stress V is in kilovolts (kV). Usually voltage stress is 
in volts/mil. The gap between the test electrodes was constant throughout 
such tests; the gap is not stated here for proprietary reasons. A factory test 
of a transformer runs 10 minutes at 20 kV, The probability of oil failure on 
test is F(10;20) = 1 - exp{ - [lOe -M).1611 2016.3909]0.8084} = 0.0008 or 0.08%. 

0. I I 10 100 1000 l0,OOO l00,000 
MINUTES TO BREAKDOWN 

Figure 10.2. Cumulative distributions on Weibull probability paper - power- 
Weibull model. 
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Percentiles. At stress level V, the lOOPth percentile (P fractile) is 

rp (V)  = a(V)  [-ln(l-P)]'/@ = [e"/Vn] [-h(l-P)]'/@. (10.3.4) 

This equation shows that any r p ( l / )  plotted against V on log-log paper is a 
straight line, as in Figure 10.1. The spacing of such parallel percentile lines 
depends on the Weibull distribution through the factor [ - ln(1 -P)]'/@. 

For the transformer oil, the 0.1 percentile at 20 kV is r,ool = 
[e60.1611/2016.3909] [ - h(1- 0.001)]'/0~80" = 12.4 minutes. 

The corresponding percentile of In life is 

??&) = W P ( V ) I  = €(x) + UP 6; 
here up = h[ - 4 1 - P ) ]  and 6 = 1//3. The 63.2 percentile is the special case 

(10.3.5) 

..632(V) = a(V) = e%/Vn, ??.632(x) = ((x) = 7 0  -4- 71x. (l0.3.6) 

Design stress level. Suppose a desired life is specified as a percentile 
value rp*.  For the power-Weibull model, the stress level that yields this life is 

P = {em [ - l n ( l - ~ ) ] l / @ / r ~ * } ' / ~ .  (10.3.7) 

10.4. Power-Exponential Model 

The life of semiconductor and solid state devices and other electronic 
components is often (incorrectly) represented with an exponential distribu- 
tion. For example, MIL-HDBK-217E (1986) does so. The following simple 
power-exponential model is presented only because it is commonly used. 
Generally the power-Weibull model provides a much better representation of 
the life of electronic components. On the other hand, the power-exponential 
model adequately fits voltage-endurance data on transformer oil, as de- 
scribed by Cramp (1959) and Nelson (1970) and certain semiconductors after 
burn-in. The power-exponential model is a special case of the power-Weibull 
model with p =  1. 

Assumptions. The assumptions of the power-exponential model are: 

1. At any stress level V, life has an exponential distribution. 
2. The mean life 8 is an inverse power function of K 

d ( ~ )  = elD/V". (10.4.1) 

Model parameters 70 and 71 are characteristic of the product and test 
method. 8 (V) plots as a straight line on log-log paper. Equivalently, 

2'. The failure rate X = l / d  is a power function of K 

x ( V )  = e-"Vn. (10.4.2) 
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Also, X(V) plots as a straight line on log-log paper. 

with scale parameter 6 = 1 and location parameter 
It follows that the natural log of life has an extreme value distribution 

(10.4.3) ( (x )  = In[d(x)] = 70 + 71x 

wherex = -ln(V) . 
Transformer oil. The voltage endurance (time to breakdown) of the 

transformer oil described above was also described with the power- 
exponential model. Assumed parameter values are 70 = 60.1611 and rl = 
16.3909. The mean time to failure at 20 kV is @(XI) = e60~1611/20’6~3909 
63,500 minutes. The corresponding failure rate is X(20) = 1/63,500 16 
failures per million minutes. 

Fraction failed. At stress level V, the cumulative distribution function 
(population fraction failed by age t )  is 

F(t ;V)  = l-exp[-t/B(V)] = l-exp[-fX(V)] = 1-exp[-te-”V3]. (10.4.4) 

For a specific V, this fraction failed plots as a straight line versus t on Weibull 
probability paper. Such distribution lines are parallel as in Figure 10.2. 

The probability of failure of the transformer oil during a 10-minute fac- 
tory test at 20 kV is F(10;20) = 1 - exp[ - 10/63,500] =: 0.00016 or 0.016%. 
The Weibull distribution with ,!3 = 0.8084 gives this as 0.08%. 

Percentiles. At stress level V, the l W t h  percentile (P fractile) is 

rp(V) = B(V) [-ln(1-P)] = [e”/Vn] .[-ln(1-P)]. (10.4.5) 

For fixed P, rp (V)  plots against V on log-log paper as a straight line, as in 
Figure 10.1. Such percentile lines for different P are parallel. Their spacing 
is determined by the exponential distribution through (10.4.5). 

The 0.1 percentile of the transformer oil at 20 kV is r.001(20) = 63,500 
*[ - ln(1- O.OOl)] = 63.5 minutes. 

Design stress level. Suppose that a desired life is specified as a mean 
time to failure B*. For the power-exponential model, the stress level that 
yields this life is 

P‘ = (e”/B+)’/%. (10.4.6) 

In terms of a specified failure rate A*, P‘ = (eaA*)l/n. 

11. ENDURANCE (OR FATIGUE) LIMIT RELATIONSHIPS AND 
DISTRIBUTIONS 

Fatigue data on certain steels suggest that specimens tested below a cer- 
tain stress run virtually indefinitely without failure. That stress is called the 
fatigue limif. Graham (1968) and Bolotin (1969) discuss this phenomenon, 
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and ASTM STP 744 (1979, p. 92) gives a number of proposed life-stress rela- 
tionships with a fatigue limit for steels. For many components, such low 
design stress is uneconomical, and such components are designed for finite 
life and removal before failure. 

Similarly, voltage endurance data on certain dielectrics and insulations 
suggest that specimens tested below a certain voltage stress (electric field 
strength in volts per mil) run virtually indefinitely without failure. That volt- 
age stress is called the endurance limit. While the existence of such a limit 
stress may be in doubt, it would allow designers to put critical components 
under a low enough stress to prevent failures during design life. 

The simple relationship below may be useful even if there is no physical 
endurance limit. It has three coefficients and may be a better fit to 
non-linear data over the range of interest than the quadratic relationship 
(12.4), which also has three coefficients. 

Power-’llpe Relationship 

durance (or fatigue) limit Vo > 0 is 
A commonly used relationship for “nominal” time T to failure with an en- 

(11.1) 

Here V is the positive stress and 70 and 71 are product parameters. Vo, 70, 
and 71 are estimated from data. (11.1) reduces to the inverse power law if Vo 
= 0. Product life is infinite for stresses below Vo. This relationship appears, 
for example, in Bolotin (1969) and ASTM STP 91-A and ASTM STP 744 
(1979, p. 92) for metal fatigue; then V is mechanical stress in psi. For dielec- 
tric endurance, Vis voltage stress in volts per mil. 

Straight Line 

Another simple relationship with endurance (or fatigue) limit Vo > 0 is 

(11.2) 

Here V is the stress, and 70 and 71 are product parameters. (11.2) is a 
straight line on log-log paper for V > Vo. It is used to represent fatigue data 
on certain steels as described in ASTM STP 744 (1979, pp. 92 and 111) and 
by Dieter (1961, p. 304). (11.2) is the inverse power law if Vo = 0. 

Fatigue-Limit (or Strength) Distribution 

The preceding simple relationships involve a sharp fatigue limit. Stressed 
below that limit, all specimens last forever. Stressed above that limit, all 
specimens have finite life. A more plausible model assumes that each speci- 
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lo6 1 o7 
CYCLES N 

Figure 11.1. Fatigue life distributions and strength distributions (m is a runout). 

men has its own distinct fatigue limit. Thus there is a distribution of fatigue 
limits of such specimens. This distribution is also called the strength distri- 
bution; it is depicted as a vertical distribution in Figure 11.1. Of course, 
fatigue specimens cannot be tested an infinite time. Thus such fatigue tests 
of steel typically run for lo7 cycles. For most applications, lo’ cycles well 
exceeds design life. A designer then chooses a design stress such that 
(almost) all product units survive lo7 cycles. The desired design stress is typi- 
cally the 0.001 fractile (0.1 percentile) or fractile (1 in lo6 fails) of the 
fatigue limit distribution, In some applications, design life is short, and the 
design stress is well above the fatigue limit. Then one uses the strength 
distribution at the design life. The following paragraphs survey such fatigue 
limit (strength) distributions, the form of the test data, and data analyses. 

Fatigue limit (or strength) distributions have been represented with the 
normal, lognormal, Weibull, extreme value, logistic, and other distributions; 
for example, see ASTM STP 744 (1979, p. 174), Little and Jebe (1975, Chaps. 
10-12), and Serensen and others (1%7, Chap. 3). The normal distribution 
provides a simple and concrete example. Suppose the entire population runs 
at stress level S. Then the population fraction that fails before N cycles is 

F ( S ; N )  = @ [ ( S - p N ) / g N ] -  (11.3) 

Here @[ ] is the standard normal cumulative distribution function, and p~ and 
ON are the mean and standard deviation of strength at N cycles. The vertical 
strength distributions in Figure 11.1 are normal distributions. For a design 
life of N* cycles with a small percentage lOOP failing, the design stress from 
(11.3) is 
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s* = PN* + z p  uN*; (11.4) 

here zp is the standard normal lOOPth percentile. In practice, one estimates 
p ~ *  and ON* from data. 

Fatigue data used to estimate a strength distribution generally have the 
form depicted in Figure 11.1. A number of specimens is run at each of a 
small number of test stresses, Testing is stopped at, say, lo7 cycles. The 
runouts (nonfailures) are depicted with arrows in Figure 11.1. For a particu- 
lar design life (say, lo7 cycles), the data at each test stress consist of the num- 
ber of specimens that failed before that life and the number that reached that 
life without failure. The exact failure ages are ignored. Such binary data 
(failed before or survived the design life) are called quantal-response data. 
Such data are sometimes obtained from up-down testing. Such testing 
involves a number of stress levels and running one specimen at a time. If a 
specimen fails before (after) the design life, the next specimen is run at the 
next lower (higher) stress level. Thus most specimens are run near the mid- 
dle of the strength distribution. 

Methods and tables for fitting a strength distribution to such 
quantal-response data are given, for example, by Little (1981) and Little and 
Jebe (1975). Also, many computer programs (Chapter 5, Section 1) fit distri- 
butions to such quantal-response data. Typically such methods and up-down 
testing, which were developed for biological applications, yield efficient esti- 
mates and confidence limits for the median of the strength distribution. In 
fatigue design, estimates of low percentiles of a strength distribution are usu- 
ally more important. Efficient test plans for estimating low percentiles have 
not been used in practice. Meeker and Hahn (1977) present some optimum 
plans for a logistic strength distribution. Use of quantal-response data and 
the strength distribution at a design life ignores the relationship between 
fatigue life and stress. This simplification has a drawback; namely, run-outs 
below the design life cannot be included in a quantal-response analysis. A 
more complex model (including the fatigue curve and life distribution) is 
required to properly include such early run-outs in an analysis. 

12. OTHER SINGLE STRESS RELATIONSHIPS 

The Arrhenius and inverse power relationships are the most commonly 
used life-stress relationships. People, of course, use a great variety of other 
relationships. This section briefly surveys a number of such relationships 
with a single stress variable. A statistical distribution of life about such rela- 
tionships is omitted here. One can combine any such distribution with a rela- 
tionship as done in Sections 9 and 10. 

This section first presents simple relationships with just two coefficients. 
Then it proceeds to relationships with three or more coefficients. It also 
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presents special purpose relationships (for example, the elastic-plastic fatigue 
relationship). MIL-HDBK-217E (1986) presents a variety of derating curves 
and relationships for failure rates of electronic components. The relation- 
ships are typically a function of temperature, voltage, or current. 

Exponential Relationship 

The exponential relationship for “life” 7 as a function of stress V is 
7 = exp(70-7lV). (12.1) 

This has been used, for example, for the life of dielectrics, according to 
Simoni (1974). Simoni notes that usually there are not enough test data to 
assess whether this or the inverse power relationship (10.1.1) fits the data 
better. MIL-HDBK-217E (1986) also uses it for various electronic com- 
ponents. The In of (12.1) is 

ln(r) = 70 - r l V .  (12.2) 

This shows that (12.1) plots as a straight line on semi-log paper. Then life T 

appears on the log scale, and stress V appears on the linear scale. 

Exponential-Power Relationship 

(possibly transformed) stress x is 
The exponential-power relationship for “nominal” life r as a function of 

7 = eq(70-71xn)- (12.3) 

This is used, for example, in MIL-HDBK-217E (1986), where x is often volt- 
age or inverse of absolute temperature. This relationship has three parame- 
ters 70, yl, and 72; thus it is not linear on any plotting paper. 

Quadratic and Polynomial Relationships 

(possibly transformed) stress x is 
The quadratic relationship for the log of nominal life 7 as a function of 

lOg(7) = 70 t 7 l X  t 7 2 X 2 .  (12.4) 

This relationship is sometimes used when a linear relationship (r0 t 7 1 ~ )  does 
not adequately fit the data. For example, the linearized form of the 
Arrhenius relationship (9.2.2) or of the power law (10.1.4) may be inade- 
quate. Then (12.4) is sometimes used, and its curve on the corresponding 
plotting paper is a quadratic. For example, Nelson (1984) applies (12.4) to 
metal fatigue data. A quadratic relationship is often adequate over the range 
of the test data, but it can err much if extrapolated much outside of that 
range. It is best to regard (12.4) as a curve fitted to data rather than as a 
physical relationship based on theory. 
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For accurate calculation, (12.4) is often expressed as the equivalent 

log(r) = 7; t 7Xx -xo) t 72(x-xd2 9 (12.5) 

wherexo is a chosen stress value near the center of the data or test range. 

(possible transformed) stress x is 
Apolynomial relationship for the log of “nominal)’ life r as a function of 

(12.6) 

Such relationships are used for metal fatigue data over the stress range of the 
data. Such a polynomial for K 2 3 is virtually worthless for extrapolation, 
even short extrapolation. 

log(r) = 7 0  t rlx t 72x2 t - * t 7 K x K .  

Elastic-Plastic Relationship for Metal Fatigue 

Used for metal fatigue over a wide range of stress, the elastic-plustic rela- 
tionship between “life” N (number of cycles) and constant strain (or 
pseudo-stress) amplitude S is 

S = A N Q  t BN4. (12.7) 

This relationship (S-N curve) has four parameters A, a, B, and b, which must 
be estimated from data. Here N cannot be written as an explicit function of 
S. Consequently, some data analysts incorrectly treat S as the dependent 
(and random) variable in least-squares fitting of this and other fatigue rela- 
tionships to data. Hahn (1979) discusses the consequences of incorrectly 
treating stress as the dependent (and random) variable. Least-squares the- 
ory, of course, assumes that the random variable (life) is the dependent vari- 
able. (12.7) is sometimes incorrectly called the Coff in-Manson relationship, 
which is (10.1.2) according to Dr. Coffin. 

A metallurgical interpretation of (12.7) is given by Graham (1968, p. 25). 
For example, the elastic term A N Q  usually has an a value in the range 0.10 to 
0.20 and a typical a value of 0.12. Theplastic term BN’ usually has a b value 
in the range 0.5 to 0.7 and a typical b value of 0.6. Fatigue life of metals is 
complex, and no one S-N curve is universally applicable, even one with four 
parameters such as (12.7). ASTM STP 744 (1981, p.92) lists some of the 
proposed curves. Some applications involving temperature and other vari- 
ables employ polynomial fatigue curves. Such polynomial curves merely 
smooth the data. They have no physical basis. 

Eyring Relationship for Temperature Acceleration 

An alternative to the Arrhenius relationship (Section 9) for temperature 
acceleration is the Eyring relationship. Based on quantum mechanics, it is 
presented as a reaction rate equation for chemical degradation by Glasstone, 
Laidler, and Eyring (1941). 
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The Eyring relationship for “nominal” life r as a function of absolute 

7 = (A / T )  expP l(k7.91; (12.8) 

hereA and B are constants characteristic of the product and test method, and 
k is Boltzmann’s constant. For the small range of absolute temperature in 
most applications, ( A / Q  is essentially constant, and (12.8) is close to the 
Arrhenius relationship (9.1.2). For most applications, both fit the data well. 

The methods for fitting the Eyring model to data are the same as those 
for fitting the Arrhenius model, described in later chapters. One just ana- 
lyzes transformed times t’ = t * T as if they come from an Arrhenius model. 

In the Eying-lognormal model, (12.8) is the relationship for median life. 
Also, the standard deviation u of log life t is assumed to be a constant. Then 
the standard deviation of the log of transformed l i e  is the constant value 6. 

temperature T is 

13. MULTIVARIABLE RELATIONSHIPS 

The life-stress relationships in Sections 8 through 12 involve a single ac- 
celerating stress. Such relationships are appropriate for many accelerated 
tests. However, some accelerated tests involve more than one accelerating 
stress or an accelerating stress and other engineering variables. For example, 
an accelerated life test of capacitors employed both high temperature and 
high voltage - two accelerating variables. The effect of both stresses on life 
was sought. Also, for example, in an accelerated life test of tape insulation, 
the accelerating variable was voltage stress, but the dissipation factor of 
specimens was included in the relationship. The factor was related to life and 
could be used to determine which insulation batches to install at higher volt- 
age. Also, for example, MIL-HDBK-217E (1986) uses multivariable derating 
curves for failure rates of electronic components. The curves are functions of 
temperature, voltage, current, vibration, and other variables. 

This section presents relationship between life and two or more variables, 
which may be stress or other predictor variables. For simplicity, accelerating 
stresses and other variables are all called variables. 

It is useful to divide nonaccelerating variables into two groups. One 
group consists of variables that are experimentally varied. That is, the value 
of such an experimental variable is chosen for each specimen. For example, a 
taping experiment involved insulating tape wound on a conductor. The 
amount of overlap of successive layers of tape was varied - different speci- 
mens with different amounts of overlap. The other group of variables are un- 
controlled, and such uncontrolled variables are only measured. For example, 
the same tape specimens were each measured for dissipation factor, a prop- 
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erty of the specimen, because it is related to life. In experimental design 
books (e.g., Box, Hunter, and Hunter (1978)), such uncontrolled variables 
which are observed and included in a relationship are called covariates. 

This section first presents a general multivariable relationship - the 
log-linear relationship; it includes the generalized Eyring relationship and in- 
dicator variables. The section then briefly presents nonlinear relationships 
and the Cox (proportional hazards) model. 

Log-Linear Rela tionship 

(say, a percentile) is the log-linear relationship 
General relationship. A general, simple relationship for “nominal” life 7 

ln(7) = 70 t 71x1 t t -yJxJ. (13.1) 

Here 7 0 ,  71, , 7~ are coefficients characteristic of the product and test 
method; they are usually estimated from data. q, x2, * * * , xJ are (possibly 
transformed) variables. Anyxi may be a function (transformation) of one or 
any number of basic engineering (predictor or independent) variables. (13.1) 
is used in parametric analyses with an assumed form of the life distribution. 
It is also used in nonparametric analyses without an assumed form of the life 
distribution. For example, the Cox proportional hazards model below is non- 
parametric and uses (13.1). 

(13.1) is a linear function of each of the coefficients 70, rl, - * * , TJ.  It is 
not necessarily linear in the original variables used to calculate xl, x2, * , 
XJ. Relationships that are linear in the coefficients are used mostly because 
they are mathematically convenient and physically adequate rather than 
“correct.” The log-linear relationship includes a number of special cases 
below. Also, the relationship can be used to represent the spread in life (log- 
normal u or Weibull/3) as a function of a number of variables (Section 14). 

Taping experiment. An experiment with insulating tape sought to evalu- 
ate the effect on life of the amount w that tape overlaps itself when wound on 
a conductor. The effect was modeled with (13.1) and sinusoidal terms 

xl = sin(2m/W), x2 = cos(2?rw/W), 

where W is the tape width. Also, the life test was voltage accelerated; so the 
effect of voltage stress was modeled with x3 = -ln(v), that is, with the 
inverse power law. 

Battery cells. In a battery cell application, Sidik and others (1980) use a 
quadratic relationship in five variables. The terms of (13.1) corresponding to 
linear, quadratic, and cross terms of the quadratic relationship. They sought 
to maximize the quadratic function of life by optimizing the five design and 
operating variables. 
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Generalized Eyring Relationship 

Relationship. The generalized Eyring relationship has been used to 
describe accelerated life tests with temperature and one other variable. Glas- 
stone, Laidler, and Eyring (1941) present it as a reaction rate equation. 
Rewritten to express “nominal” product life r as a function of absolute tem- 
perature T and a (possibly transformed) variable V, it is 

7 = (A/T)expIB/(kT)I xexp{V[C+(D/kT)I)- (13.2) 

Here A, B, C, and D are coefficients to be estimated from data, and k is 
Boltzmann’s constant. Most engineering applications of (13.2) use I/ or the 
transformation In(v) in its place; see Peck’s relationship below. In some 
applications the first 1/T is omitted. (13.2) is equivalent to (13.1) where 

r’ = r T is “life”, 70 = In@), 71 = B/k, x1 = 1/T7 

72 = C, ~2 = V, 73 = D/k, ~3 = V / T .  

x3 = xlx2 = V(l/T) is an “interaction term” for x1 = (1/T) and x2 = V. 
Applications follow, (13.2) like all other relationships needs to be supported 
in applications by data and experience, since theory is merely theory. 

Capacitors. The author used (13.2) without the first 1/T as the Weibull 
characteristic life for an accelerated life test of capacitors with V equal to the 
In of voltage. It was assumed that the interaction tenn between temperature 
and voltage was zero (D = 0). If D $0, then in an Arrhenius plot, the 
straight line for (13.2) has a different slope for each voltage level. Because I/ 
is the In of voltage, there was an assumed inverse power relationship between 
life and voltage. Figure 13.1 depicts this relationship as a plane in three 
dimensions. In the figure, temperature is on a reciprocal absolute scale, and 
life and voltage are on log scales. Figure 13.2 depicts contours of constant 

Figure 13.1. Generalized Eyring relationship with a power relationship in V. 
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Figure W.2. Contours of constant life T for a generalized Eyring relationship 
no interaction (D = 0). 

with 

life (height on the relationship plane) projected onto the temperature-voltage 
plane of Figure 13.1. That plane is scaled like Arrhenius paper in Fig- 
ure 13.2. The contours are straight lines since D = 0. Montanari and Cac- 
ciari (1984) extend the model by assuming that the Weibull shape parameter 
is a linear function of temperature. They fit their model to accelerated life 
teat data on low density polyethylene. 

Electromigration. Aluminum conductors in VLSI and other microelec- 
tronics fail from electromigration, which d’Heurle and Ho  (1978) and Ghate 
(1982) survey. High current densities in such conductors promote movement 
of aluminum atoms, resulting in voids (opens) or extrusions (shorts). 
Accelerated tests of this phenomenon employ elevated temperature T and 
current density J (amps per square centimeter). Black’s (1969a,b) formula 
for median life 7 of such conductors is the Erying relationship; namely, 

7 = M-” e x p [ ~ / ( k ~ ) ]  ; 

here I/ = - ln(J)  and D = 0 (no interaction term). Figures 13.1 and 13.2 
depict Black’s formula for median life if voltage V is replaced by current den- 
sity J. Using a debated physical model and argument, Black derives n =2. 
Much data support this value. Recently Shatzkes and Lloyd (1986) propose 
physical mechanisms and argue that 

7 = A (T/J)~ e x p [ ~ / ( k ~ ) ] .  

They state that this fits two data sets as well as Black’s formula does. Many 
use the lognormal distribution for such life data. 

Temperature-humidity tests. Many accelerated life tests of epoxy pack- 
aging for electronics employ high temperature and humidity. For example, 
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85°C and 85% relative humidity (RH) is a common test condition. Peck 
(1986) surveys such testing and proposes an Eyring relationship for life 

7 = A (RH)-” exp[E/(kT)] , 
called Peck’s relutionship. Data he uses to support it yield estimates n =2.7 
and E =0.79 eV. Figures 13.1 and 13.2 depict this relationship if relative 
humidity RH replaces voltage I/ and its axis is linear instead of logarithmic. 
Intel (1988) uses another Eyring relationship 

7 = A exp( -B.RH) exp[E/(kT)]. 

Intel notes that this differs little from Peck’s relationship relative to uncer- 
tainties in such data. 

Rupture of solids. Zhurkov’s (1965) relationship for “time” 7 to rupture 
of solids at absolute temperature T and tensile stress S is 

7 = A  exp[(B/kT)-D(S/kT)]. 

This is the Eyring relationship with C = O  and a minus sign for D. Also, it is a 
form of the Larsen-Miller relationship (9.1.7). Zhurkov motivates this rela- 
tionship with chemical kinetic theory, and he presents data on many materials 
to support it. He interprets B as the energy to rupture molecular bonds and 
D as a measure of the disorientation of the molecular structure. Ballado- 
Perez (1986,1987) proposes this relationship for life of bonded wood compos- 
ites; he extends it to include indicator variables (below) for type of wood, 
adhesive, and other factors. 

Indicator Variables 

Category variables. Most variables in relationships are numerical, and 
they can mathematically take on any value in an interval. For example, abso- 
lute temperature can mathematically have any value from 0 to infinity. On 
the other hand, some variables can take on only a finite number of discrete 
values or categories. Examples include 1) insulation made on three shifts, 2) 
insulation coated on two different conductor metals, and 3) material from two 
vendors. Relationships for such categorical variables are expressed as follows 
in terms of indicator variables. 

Shifts example. For concreteness, suppose that insulation is made on 
three production shifts, denoted by 0, 1, and 2. Also, suppose that insulation 
life in a voltage-endurance test is modeled with the power-Weibull model. 
Also, suppose that the insulations from the shifts have the same power in the 
power law but different constant coefficients (intercepts). Then the charac- 
teristic life aj for shift j is 

ln[%(v)1 = 70 + 73ln(V), ln[al(v)l = 71 + 73ln(V>, 
(13.4) 

ln[az(v)] = 7 2  +- 73ln(V); 
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here Vis the voltage stress, 7 3  is the power coefficient and is negative, and 7j 
is the intercept coefficient for shift j = 0, 1,2. The straight lines for the three 
shifts are parallel on log-log paper. The power r3 is assumed to be the same 
for all three shifts, as it is regarded as a physical property of the insulating 
material. The intercept is assumed to depend on shift, as skills of the work- 
ers differ. Of course, both assumptions were assessed using data. 

Definition. Define the indicator variable zj = 1 if the corresponding test 
specimen is from shift j ;  otherwise, zj = 0 if the specimen is from another 
shift. For example, a specimen made on shift 1 has values zo = 0, z 1  = 1, and 
z2 = 0 for the three indicator variables, also called dummy variables. An 
indicator variable takes on only the values 0 and 1. For that reason it is also 
called 0-1 variable. Let z3 = ln(V). The relationships (13.4) can then be 
written in a single equation 

In[a(V)] = 7$0 7lzl 7 2 2 2  7 3 2 3 .  (13.5) 

This equation has four variables (zo, z 1 ,  z 2 ,  z 3 )  and four coefficients (70, 7 1 ,  

7 2 ,  r3); it has no intercept coefficient, that is, a coefficient without a variable. 
Most computer programs that fit linear relationships to data require that the 
relationship have an intercept coefficient. This can be achieved by awkwardly 
rewriting (13.5) as 

h[a(V)] = 60 t 6121 t 6 2 ~ 2  t 7 3 2 3  ; (13.6) 

here 60 = 7 0  is the intercept, 60 t 61 = 71 ,  and 60 t 6, = 7 2 .  Equivalently, 
61 = 7 1  - 70 and 62 = 7 2  - 70. The 6j coefficients are not as natural or sim- 
ple a way of representing the relationship. Yet this representation is better 
suited to most computer programs, which require an intercept term. 

Some relationships have more than one categorical variable. For exam- 
ple, the three shifts each make two types of insulation. Shift is a categorical 
variable requiring two indicator variables (zl and zz), and insulation is anoth- 
er requiring one (z3). Then 

h[a(V)] = 60 t 6 1 ~ 1  t 6222 t 6 9 3  t 7 3 h ( V ) .  

A relationship that is just a h e a r  function of the indicator variables for two 
or more categorical variables is call a main-efjcts relationship. More com- 
plex relationships involve intemction terms; they appear in books on analysis 
of variance, for example, Box, Hunter, and Hunter (1978). Zelen (1959) 
presents an application with interaction terms for life of glass capacitors over 
a range of temperature and of voltage. 

Logistic Regression Relationship 

The logistic regression relationship is widely used in biomedical applica- 
tions where the dependent variable is binary; that is, it is in one of two mutu- 
ally exclusive categories, for example, dead or alive. The logistic relationship 
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for the proportionp in a particular category (say, “failed”) as a function of J 
independent variablesxl, * * - ,xJ is 

In[(l-p)/p] = 70 + 71x1 + * . * + WXJ; (13.7) 

here 70,71, 

In accelerated testing, (13.7) might be used when the life data are 
quantal-response data; that is, each specimen is inspected once to determine 
whether it has failed by its inspection age. Thenp is the fraction failed, and 
one of the independent variables is (log) age at inspection. 

Introductions to the logistic relationship and fitting it to data are given by 
Neter, Wasserman, and Kutner (1983) and Miller, Efron, and others (1980). 
A comprehensive presentation of logistic regression is given by Breslow and 
Day (1980). The BMDP Statistical Software of Dixon (1985) is one of the 
many statistical packages that fit the model to data. 

* , 7~ are unknown coefficients to be estimated from data. 

Nonlinear Relationships 

The log-linear relationship (13.1) is linear in the unknown coefficients. 
Engineering theory may suggest relationships that are nonlinear in the 
coefficients. However, most computer packages fit only linear relationships. 
Nonlinear relationships usually must be programmed into certain packages. 

Nelson and Hendrickson (1972, p. 5-3-4) give an example of such a non- 
linear relationship. A test involved time to breakdown of an insulating fluid 
between parallel disk electrodes. The voltage across the electrodes was 
increased linearly with time at different rates R (volts per second). Elec- 
trodes of various areas A were employed. The assumed distribution for time 
to breakdown is Weibull with parameters 

a(RA) = {%R/~exp(’YO)])’’” Y P = 71. 

The In(a) relationship is nonlinear in 71. 

Cox (Proportional Hazards) Model 

Used in biomedical applications, the Cox (or proportional hazards) model 
can be used as an accelerated life testing model. It does not assume a form 
for the distribution - possibly an attractive feature. It can be used to extra- 
polate in stress but not in time, because it is distribution free (“non- 
parametric”). It cannot be used to extrapolate the distribution to early time 
in the lower tail or later time in the upper tail outside the range of the life 
data. So it is useful only for estimating the observed range of the life distri- 
bution at actual use conditions. Such extrapolation in stress is desired in 
many applications. A brief description of the model follows. 

Let xl, - * * , xJ denote the (possibly transformed and centered) variables, 
and let h o ( t )  denote the hazard function of the unknown life distribution at 
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x1 = x2 = * * 

tribution at variable values xl, * - , xJ is 
= XJ = 0. The Cox model for the hazard function of the dis- 

(13.8) 

The base hazard function ho(t)  and the coefficients rl, * * - ,7J are estimated 
from data. Note the similarity of (13.8) to the log-linear relationship (13.1). 
(13.8) does not have an intercept coefficient 70, as h o ( r )  takes the place of 70. 
The corresponding reliability functions are 

(13.9) 

h( t ;x l ,  - * * , X J )  = ho(t) * exp(Tlxl t * - * t 7~1). 

e x p ( w i +  ’ ’ +WJ) 
R(t;x1, * - ,xr) = P o ( t ) l  

The reliability function at x1 = - - * = XJ = 0 is 

(13.10) 

The life distribution (13.9) is complex. Its “typical” life (say, a percentile) 
depends onxl, - * * , g in a complex way. Moreover, the spread and shape of 
the distribution of log life generally depend on xl, * * * XJ in a complex way. 
Previous parametric models, such as the Arrhenius-lognormal and linear- 
Weibull, have simpler form. The Weibull distribution with a multivariable 
log linear relationship (13.1) for characteristic life is a special case of (13.9). 

Kalbfleisch and Prentice (1980), Lee (1980), Miller (1981), and Cox and 
Oakes (1984) among others present the model in detail. They also give 
methods and computer programs for fitting it to data and evaluating the fit. 

14. SPREAD IN LOG LIFE DEPENDS ON STRESS 

In many accelerated life test models, the spread in log life is assumed to 
be the same at all stress levels of interest. For example, the standard devia- 
tion D of log life in the Arrhenius-lognormal model is assumed to be a con- 
stant. Similarly, the shape parameter /3 in the power-Weibull model is as- 
sumed to be a constant. A constant spread is assumed for two reasons. First, 
the data or experience with such data suggests that a constant spread ade- 
quately models log life. Second, the analyst uses a model with constant 
spread because it is traditional or easy to use. For example, almost all model 
fitting programs (especially least-squares programs) assume that the data 
spread is constant. 

On the other hand, experience with certain products indicates that the 
spread of log life is a function of stress. For example, for metal fatigue and 
roller bearing life, the spread is greater at lower stress. For some electrical 
insulations, the spread is smaller at lower stress. The following paragraphs 
present some simple “heteroscedastic” relationships for spread as a function 
of stress. For concreteness, the standard deviation 0 of log life with a lognor- 
mal distribution is used. Equivalently, one could use the shape parameter p 
of a Weibull distribution or any measure of spread of a life distribution. 
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Log-Linear Relationship for Spread 

tionship 
The simplest relationship for a spread parameter B is the log-linear rela- 

In[a(x)] = 60 + 6 1 ~ .  (14.1) 

Here 60 and 61 are parameters characteristic of the product; they are 
estimated from data. x is the (possibly transformed) stress. Equivalently, 

B(X) = exp[sO + b l x ] .  (14.2) 

Figure 14.W depicts (14.2) where p(x) is a linear function ofx = log(stress). 
Nelson (1984) gives an example of fitting (14.1) to metal fatigue data with 
runouts. Of course, B must be positive. The logarithmic form of (14.1) 
assures that is so. Glaser (1984) assumes B is simply a linear function (no 
logarithm) of x. His function yields an incorrect negative u for extreme 
values of x. Thus it is satisfactory over only a limited range of x. 

Other mathematically plausible relationships could be used, for example, 
the log-quadratic relationship 

(14.3) ln[o(x)] = 60 t 61x t 6 g 2 .  

A model with a lognormal (or Weibull) distribution where u(x) is a func- 

A. 

LOG 
STRESS 

LOG LIFE 

LOG LIFE 

Figure 14.1. (A) Log spread as a function of stress, (B) Probability plot of crossing 
distributions. 



PROBLEMS 107 

tion of stress has the following drawback. Figure 14.1B depicts on lognormal 
(or Weibull) paper a life distribution for low stress and another for high 
stress. If the straight lines are extended into the lower tail, the distributions 
cross there. This is physically implausible and undesirable if the lower tail is 
important. Then such a model with ~ ( x )  is inaccurate low enough in the tails. 
This drawback is not apparent in Figure 14.lA. There is a need for more 
sophisticated models that do not have distributions that cross. 

The spread may depend on a number of accelerating and other variables. 
This dependence can be represented with the log-linear and other multivari- 
able relationships of Section 13. 

Components of Variance 

Metals and many other products are made in batches. For metals, the 
fatigue life distribution may differ appreciably from batch to batch. Thus the 
life distribution of the entire product population is a mixture of the distribu- 
tions of the batches. Such a situation with many batches is modeled with a 
components-of-variance model. Such models for a single stress level appear 
in most books on analysis of variance, for example, Box, Hunter, and Hunter 
(1978). Some recent research is extending such models to regression situa- 
tions. However, such extensions do not yet apply to censored data or to stan- 
dard deviations that depend on the accelerating variable. Such models need 
to be developed for metal fatigue and other applications. 

PROBLEMS (* denotes difficult or laborious) 

2.1. Exponential. For the exponential distribution function F ( r )  = 1 - 
exp(-At), r > 0, derive the following. 
(a) Probability density. 
(b) Hazard function. 
(c) lOOPth percentile. 
An exponential distribution used to model time to breakdown of an insulat- 
ing fluid has X = 0.946 failures/thousand-hours. Calculate the following. 
(d) The fraction failing in u) minutes. 
(e) The mean time to failure. 
( f )  The median life. 
(g) Plot this life distribution on Weibull probability paper. 

F ( I )  = 1 - exp[ - (r  /a)@], r > 0, derive the following. 
(a) Probability density. 
(b) Hazard function. 
(c) 100Pth percentile. 
A Weibull distribution used to model time to breakdown of an insulating 
fluid has a = 63,400 minutes and @ = 0.8084. Calculate the following. 

2.2. Weibull. For the Weibull cumulative distribution function, 
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(d) Median life. 
(e) Fraction failing on at 20-minute test. 
( f )  Plot this distribution on Weibull probability paper. 

F ( f )  = ih{[loglo(f) -p]/cr}, f > 0, derive the following. 
(a) Probability density. 
(b) Hazard function. 
(c) lOOPth percentile. 
A lognormal distribution for life (in hours) of a Class-B insulation at 130°C 
(design temperature) has p = 4.6698 and cr = 0.2596. Calculate: 
(d) Median life. 
(e) 1st percentile. 
( f )  Fraction failing by 40,OOO hours. 
(g) Plot this distribution on lognormal probability paper. 

mulative distribution function 

23. Loglonormal. For the lognormal cumulative distribution function, 

2.4. Lo& normal. The lognormal distribution with base e logs has the cu- 

~(f)=~i{[ln(t)-p~,I/cre}, O<t<m; 

here pe is the mean and cre is the standard deviation of In life. Derive the: 
(a) lOOPth percentile. 
(b) Probability density in terms of the standard normal density #( ). 
(c) Hazard function. 
(d) Relationship between and cre and the p and cr of the same lognormal 

distribution expressed with base 10 logs. Evaluate pe and cre for the 
Class-B insulation in the previous problem. 

2.5.8 Mixture of exponentials. Suppose that a population contains a pro- 
po r t ion~  of units from an exponential life distribution with mean d1 and the 
remaining proportion l-p from an exponential life distribution with mean 6,. 
Proschan (1963) treats such a problem. 
(a) Derive the hazard function of the mixture distribution. 
(b) Show that the failure rate of the mixture distribution decreases with age. 
(c) Extend this result to a mixture of two Weibull distributions with charac- 

teristic lives a1 and q and a common shape parameter @. 
These results indicate that the failure rate of a mixture has a lower @ than do 
the individual Weibull subpopulations. For example, bearings under (homo- 
geneous) laboratory test conditions have a Weibull life distribution with @ in 
the range 1.3 to 1.5. Under a mix of diverse field conditions, the same type of 
bearing has @ in the range 1.1 to 1.3. 

2.6. Class-B insulation (lognormal), The life (in hours) of a Class-B 
motor insulation was approximated with an Arrhenius-lognormal model 
(base 10) with cr = 0.2596,~o = -6.0098, and rl = 4.3055 where x = 1000/T 
and absolute temperature T is in Centigrade degrees. 



PROBLEMS 109 

(a) Calculate the lst, loth, 50th, Wth, and 99th percentiles of life at 220, 
190,170,150, and 130°C (the design temperature). 

(b) Plot these percentiles on Arrhenius paper, and draw the percentile lines. 
(c) Plot these percentiles on lognormal probability paper, and draw the 

straight distribution lines. 
(d) Comment on the behavior of the lognormal hazard function. 

2.7. Class-B insulation (Weibull). A Weibull distribution for the life of 
the Class-B insulation can be fitted as follows. Assume that the 50th and 
10th percentile calculated above are correct. This choice of percentiles (10th 
and 50th) is reasonable but arbitrary. 
(a) Calculate the coefficients of the relationship for the log (base e) of 

median life. 
(b) Using the 10th and 50th percentiles at a particular temperature, calcu- 

late the value of the Weibull shape parameter. Comment on the nature 
of the failure rate (increasing or decreasing?). 

(c) Calculate the Weibull lst, Wth, and 99th percentiles at 220, 190, 170, 
150, and 130°C (the design temperature). 

(d) Plot these percentiles on Arrhenius paper, and draw the percentile lines. 
(e) Plot these percentiles on Weibull probability paper, and draw the 

straight distribution lines. 
(0 Plot the lognormal percentiles on the Weibull plot, and draw the curved 

distribution lines through them. Comment on how the Weibull and log- 
normal distributions compare i) below the 10th percentile, ii) between 
the 10th and 50th percentiles, and iii) above the 50th percentile. 

2.8. Eyring model. For the Eyring relationship (12.8) and a lognormal 
life distribution, do the following. 
(a) Assuming (12.8) is the median, derive the equation for mean log life. 
(b) Express the equation from (a) in a form that is linear in coefficients 70 

and 71 (which are functions ofA and B) andx = 1/T. 
(c) Write the reliability function in terms of temperature T and age t. 
(d) Write the log of the lOOPth percentile in terms ofx and (r. 
(e) Write the 1OOPth percentile in terms ofx and P and in terms of T and (r. 
(0 The Class-H insulation example of Section 9.2 employs the Arrhenius 

model with o = 0.10533, 7,50(260”C) = 940 hours, and 7.50(19o”c) = 

8,030 hours. (Calculate the corresponding parameter values 70 and 71 
for the Eyring-lognormal model. 

(g) Calculate the 10th and 50th percentiles of the Eyring-lognormal model 
for temperatures of 300,260,225,190,180, and 130°C. 

(h) Plot the percentiles from (g) on Arrhenius paper, and draw smooth 
curves through them. Plot the corresponding percentiles from the 
Arrhenius-lognormal model, and draw straight lines through them. 
How do the two models compare at “design” stresses of 180 and 130°C 
(small and medium extrapolation)? Which is more optimistic? 
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2.9. Superalloy Zatigue. Nelson (1984) describes fatigue life (in cycles) of 
specimens of a nickel base superalloy with a lognormal life distribution with 

AS) = 4.573919 - 5.004997[log(S) -2.0026311, 

a(S) = exp{ - 1.262398 - 4.921923[log(S) - 2.0026311) ; 

here S is the stress in thousands of pounds per square inch (ksi). 
(a) Calculate AS) and a(S) for S = 75,85,100, 120, and 150 ksi. 
(b) Calculate the O.lth, loth, and 50th percentiles at each of those stresses. 
(c) Plot the percentiles on log-log paper (stress vertical versus life horizon- 

tal, engineering practice), and draw percentile curves. 
(d) Plot the percentiles on lognormal probability paper, and draw straight 

distribution lines through them. 
(e) In view of the plots, comment on peculiarities or inadequacies of the 

model. For this alloy and others, design engineers usually use the 0.1 
percentile divided by 3 as a design life. 

2.10. Relay failure rate. MIL-HDBK-217E (1986) gives the failure rate 
(failures per million hours) of a certain class of resistively loaded relays rated 
for 85°C ambient. MIL-HDBK-217E assumes that the failure rate is con- 
stant. Consequently the life distribution is assumed to be exponential. As a 
function of absolute temperature T and “stress” S = (operating load 
current)/(rated resistive load current), 

X(T,S) = 5.55~10-~exp[(T/352.0)”~~]xexp[ (S/0.8)2.0]. 

(a) For 85”C, calculate X for S = 0.2,0.4,0.6,0.8, and 1.0. 
(b) Repeat (a) for 25,50, and 125°C. 
(c) Plot the preceding four curves (25, 50, 85, and 125°C) on appropriate 

relationship plotting paper for X versus S. 
(d) For a “stress” of S = 0.8, calculate the operating temperature that will 

result in a failure rate of 0.018 failures per million hours. 
(e) For X = 0.010 failures per million hours, calculate T as a function of S 

for S = 0.0,0.2,0.4,0.6,0.8, and 1.0. T versus S is a trade-off curve. 
(f) Repeat (e) for X = 0.050 and 0.100. 
(g) Plot the three trade-off curves from (e) and (f) on paper with appropri- 

ate scales for T and S. This is a contour plot of constant A. 

2.11. Life doubles for each 10°C. There is a widely used rule of thumb 
based on an inverse power approximation to the Arrhenius relationship; 
namely, product life doubles for every 10°C drop in temperature. The follow- 
ing problem shows that the rule can be very crude and misleading. 
(a) For a given activation energy E, show that this is true at just one tem- 

perature T2. Give the formula for T2 in terms of E. 
(b) Evaluate Tz for E = 0.50 electron-volts. 
(c) Evaluate Tz for E = 1.00 electron-volts and for E = 1.50 electron-volts. 
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(d) Show how much the factor could differ from 2 for a 10°C drop at a tem- 
perature different from Tz. 

(e) Comment on the validity of the rule of thumb. 

relationship (13.2), 
(a) Give the acceleration factor between conditions (T,V) and (T’ ,V) .  
(b) Show that the acceleration factor is the product of the separate T and V 

acceleration factors only if D = 0. 
Use Peck’s relationship (Section 13) with his values ti  =2.7 and E =0.79 eV. 
(c) On Arrhenius paper, make a contour plot of lines of constant accelera- 

tion factor K. Use 85’C and 85% relative humidity (RH) as the refer- 
ence condition, a common test condition for electronics in MIL-STD- 
883. Use K = .001, .01, .l, 1, 10, 100, 1000. Include RH from 10 to 
100% and temperature from 40 to 200°C. This plot shows how much the 
reference condition accelerates life compared to any design temperature 
and humidity. 

2.13. Zhurkov’s relationship. Sketch contours of constant life for 

2.14. MOS. Use the failure rate relationship of the MOS in Section 9.4. 

2.12. Generalized Eyring acceleration factor. For the generalized Eyring 

Zhurkov’s relationship on suitable plotting paper. 

(a) Calculate and plot the failure rate on Arrhenius paper. 
(b) Calculate and plot the life distributions on Weibull paper for 25,50, 100, 

and 150°C. 
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Graphical Data Analysis 

1. INTRODUCTION 

Purpose. This basic chapter presents simple data plots for analysis of ac- 
celerated life test data. These plots provide desired estimates of a product 
life distribution at design stress and of model parameters. Also, the data 
plots are used to assess the validity of the model and data. In addition, the 
plots help one understand the complex numerical methods of later chapters. 

Background. Needed background appears in Chapter 2, particularly, 
simple models. These include lognormal, Weibull, and exponential life distri- 
butions and Arrhenius and inverse power relationships. Unlike analytic 
methods, graphical methods do not require a knowledge of statistical theory. 

Advantages. Graphical methods for data analysis have advantages and 
disadvantages relative to analytic methods. Graphical methods are multipur- 
pose, and their advantages include: 

They are simple - quick to make and easy to interpret. At age 11, the 
author's son could make and interpret such data plots. Moreover, they do 
not require special computer programs, as do analytic methods. However, 
computer programs (see Chap. 5, Sec. 1) readily make such plots. More- 
over, well-made computer plots are convincing and authoritative. 
They provide estimates of the product life distribution (percentiles, per- 
centage failed) at any stress and estimates of model parameters. 
They allow one to assess how well a model fits the data and how valid the 
data are. Such assessments are also needed before using analytic methods. 
Most important they help convince others of conclusions based on plots or 
analytic results, which others accept more readily after seeing such plots. 
They reveal unsought insights into the data. Such a discovery in the 
Class-H insulation example below yields $l,OOO,OOO yearly. Analytic 
methods reveal less. They have tunnel vision and rarely reveal anything 
not specifically calculated. 

Disadvantages. Analytic methods have certain advantages over graphical 
methods. These include: 

The statistical uncertainty of analytic estimates can be given objectively by 
means of confidence intervals. This is important because inexperienced 
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data analysts tend to think estimates are more accurate than they really 
are. On the other hand, it is often apparent that graphical estimates are 
(or are not) accurate enough for practical purposes. 
Comparisons (say, of two products) can be made objectively with a statisti- 
cal confidence interval or hypothesis test. Such a test indicates whether an 
observed difference is statistically significant, that is, convincing. Of 
course, graphical comparisons can be convincing, namely, when observed 
differences are large compared to the scatter in the data. Subjective judg- 
ments of what is convincing can differ. Viewing the same data plots, three 
data analysts can have six different opinions on what they see. Thus use 
subjective judgement cautiously, aided by objective analytic methods. 
Appropriate sample sizes can be determined, as well as, optimum or good 
test plans, based on analytic methods. 

For most work, it is essential to use both graphical and analytic methods. 
Each provides certain information not provided by the other. A proper anal- 
ysis of data always requires many different analyses. Examples repeatedly 
appear in different chapters to show the wide variety of analyses that should 
be applied to a data set. 

Method. The graphical method employs the simple model (Chapter 2) 
and involves two data plots. The first employs probability paper for the as- 
sumed life distribution (for example, lognormal, Weibull, and exponential). 
The second employs paper which linearizes the assumed relationship (for ex- 
ample, the Arrhenius and inverse power laws). The simple model is usually 
suitable only for data with R single cause of failure. Models and analyses for 
data with more than one cause of failure appear in Chapter 7. Chapters 4 
and 5 provide corresponding analytic methods for complete and censored 
data. Models and data analyses for products whose performance degrades 
with age appear in Chapter 11. Nelson (1990) briefly presents basic applica- 
tions of graphical analyses for accelerated test data. General presentations of 
data plotting are given by Cleveland (1985), Tufte (1983), and Chambers and 
others (1983). 

Overview, In this chapter, Section 2 presents the basic probability and re- 
lationship plots in detail; the presentation treats complete data, the lognor- 
mal probability plot, and the Arrhenius (relationship) plot. Section 3 briefly 
does the same for complete data, the Weibull probability plot, and the in- 
verse power relationship. Section 4 presents probability and relationship 
plots for singly censored data (the most efficient type of test plan). Section 5 
presents such plots for multiply censored data. Section 6 presents plots for 
interval (read-out) data. 

2. COMPLETE DATA AND ARRHENIUS-LOGNORMAL MODEL 

Introduction. This section presents simple graphical methods for analyz- 
ing complete data, using the simple model of Chapter 2. The methods are il- 
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lustrated with the lognormal distribution and the Arrhenius relationship 
presented in Chapter 2. The methods yield estimates of model parameters 
and the product life distribution at any stress. The plots are also used to as- 
sess the validity of the model and data. 

Corresponding numerical methods in Chapter 4 provide confidence inter- 
vals as well as estimates. The simpler graphical methods fill most practical 
needs. Moreover, they provide information that numerical methods do not, 
including checks on the validity of the data and the model. On the other 
hand, graphical estimates have unknown accuracy whereas numerical 
confidence intervals indicate the accuracy of estimates. It is best to use a 
combination of graphical and numerical methods. 

Overview. Section 2.1 describes illustrative data. Section 2.2 shows how 
to make and use a probability plot of the data. Section 2.3 presents a data 
plot of the relationship between life and stress. Section 2.4 shows how to es- 
timate the model parameters and life distribution at any stress. Section 2.5 
concludes with assessments of the model and data. 

2.1. Data (Class-H Insulation) 

The complete data in Table 2.1 are hours to failure of 40 motorettes with 
a new Class-H insulation run at 190, 220, 240, and 260°C. These data were 
the first clue to a discovery that is reducing a business’s insulation costs one 
million dollars yearly at 1989 prices. For each test temperature, the 10 
motorettes were periodically examined for insulation failure, and the given 
failure time is midway between the inspection time when the failure was 
found and the time of the previous inspection. The test purpose was to esti- 
mate the median life of such insulation at its design temperature of 180°C. A 
median of 20,000 hours was desired. The Arrhenius-lognormal model is 
used, based on engineering experience. 

Table 2.1. Class-H Insulation Life Data and Plotting Positions 

Plotting 
Hours to Failure Rank Positions 

190°C 
7228 
7228 
7228 
8448 
9167 
9167 
9167 
9167 

10511 
10511 

220°C 240°C 
1764 1175 
2436 1175 
2436 1521 
2436 1569 
2436 1617 
2436 1665 
3108 1665 
3108 1713 
3108 1761 
3108 1953 

260°C 
600 
744 
744 
744 
912 

1128 
1320 
1464 
1608 
1896 

- & &  1 

1 5 9.1 
2 15 18.2 
3 25 27.3 
4 35 36.4 
5 45 45.5 
6 55 54.5 
7 65 63.6 
8 75 72.7 
9 85 81.8 

10 95 90.9 
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There are four test temperatures each with an equal number of speci- 
mens. This is a traditional engineering test plan, but it is very ineflicient. 
Better test plans involve two or three stress levels and run more specimens at 
the low stress. Better plans, described in Chapter 6, provide more accurate 
estimates of the life distribution at the design stress. 

22. Lognormal Probability Plot 

The life data for each test stress level are plotted as follows on probability 
paper. The plot provides estimates of the model parameters and life distri- 
bution percentiles. The data plot resembles the model on probability paper 
in Figure 9.2 of Chapter 2. On such probability paper, the theoretical cumu- 
lative distribution function of life is a straight line. How to make a probabili- 
ty plot follows. Estimates for distribution percentiles and model parameters 
are presented later. Section 2.5 explains how to use the plots to assess the 
validity of the data and model. 

Plotting Positions. Order the n failure times at a test stress from smallest 
to largest as shown in Table 2.1. Give the earliest failure rank 1, the second 
earliest failure rank 2, etc. Calculate the probability plotting position for 
each failure from its rank i as 

Fi = 1OO(i -OS)/n. (2.1) 
Fi values appear in Table 2.1. These midpoint pZotting positions approximate 
the percentage of the population below the ith failure. People also use the 
expected plotting position 

Ff = lOoi/(n t 1). (2.2) 

Ff values also appear in Table 2.1. People also use the median plottingposi- 
tion approximated as 

Fi’ =: lOO(i-0.3)/(n t0.4). (2.3) 

Consistently use any plotting position for all stresses. The Fi are tabulated in 
AppendkA7, the FI by King (1971), and the F;’ by Johnson (1964). Plotting 
positions differ little compared to the usual random variation in the data. 
Some authors strongly argue for a particular plotting position. This is as 
fruitless as arguing religions; they all get you to heaven. 

Probability plot. Use probability paper for the model distribution. 
Choose probability and data scales with the smallest range that encloses the 
data and any distributions and percentiles of interest. This spreads out the 
plotted data and reveals details. Two or more plotting papers can be joined 
to obtain more log cycles on the data scale. Label the data scale to span the 
data and any distribution of interest, say, at the design temperature. Plot 
each failure time against its plotting position on the probability scale. 
Figure 2.lA is a plot of the Class-H data on lognormal probability paper. 
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Figure 2.M. 
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Lognormal plot of Figure 2.1B. Separate fits to 
Class-H data. Class-H data. 

Assess distribution. If the plotted points for a stress level tend to follow 
a straight line, then the distribution appears to describe the data adequatcly. 
Sample sizes are typically small (below 20 specimens) at each stress level in 
accelerated life tests, and the plots may appear erratic. A more sensitive 
assessment of a distribution is in Chapter 4 and uses residuals. 

Distribution lines. Draw a separate straight distribution line through the 
data for each test stress as in Figure2.1B. The vertical (time) deviations 
between the line and the plotted points should be as small as possible. Such 
fitted lines are not necessarily parallel due to random variation in the data or 
unequal true slopes. However, the Arrhenius and other simple models 
assume that the life distributions at different stresses have a common slope, 
as depicted in Figure 9.2 of Chapter 2. The slope of a line for a lognormal 
distribution corresponds to the log standard deviation 0. The 260' data have 
a slope different from the others. Note that the fitted lines distract the eye 
from the data and can distort the data. Thus it is best to examine plots both 
with and without fitted lines. 

Parallel lines. If parallel lines are appropriate, a more refined method 
fits parallel lines to the data as in Figure 2.2. Guided by the separately fitted 
lines, fit parallel lines with a compromise common slope to the data for each 
stress. The numbers of specimens may differ from stress to stress. Then try 
to choose the common slope by weighting the slope at a stress proportional 
to its number of specimens. This parallel fit to the data looks like the plot of 
the model in Figure 9.2 of Chapter 2. Estimates are obtained from the paral- 
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PERCENTAGE 

Figure 2.2. Parallel fit to Class-H data, 

lel lincs as dcscribed below. Analylic methods for fitting parallel lines appear 
in Chapter 4. Again note in Figure 2.2 how the fitted parallel lines distract 
and iiicorrectly suggest that the data plots are parallel. 

Percent hiled at a test stress. Either type of fitted distribution line pro- 
vides an estimate of the percentage of units failing by a given age. Enter the 
probability plot at that age on the time scale, go sideways to the fitted line for 
that stress, and then go up to the probability scale to read the percentage. 
For example, for 1"l"C in Figure 2.1B, the estimate of the percentage failing 
by 7,000 hours is 7 percent. Similarly from Figure 2.2, the estimate is 27%. 
Eslimates from the parallel distribution lines tmd to be more accurate, pro- 
vided thc model is correct. 

Percentile estimate. The following provides an estimate of a percentile at 
a test stress. Enter the probability plot at the desircd percentage on the 
probability scale, go vertically to the fitted distribution linc for the test stress, 
and go horizontally to the tiiiie scale to read the estimate. For example, this 
esliinate of tile medinn life at 190°C is 8,700 hours lrom Figure 2.1B. Thcse 
estimates ol' [lie medians arc: x's in Figurc 2.3 on Arrhenius paper. 
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Figure 23. Arrhenius plot of Class-H data (x = median). 

Lognorrral papers. Lognormal prob;ibilily plotting papers are available 
from the following: 

I) TEAM (Technical and Engineering Aids for Management), Box 25, 'I'ani- 
worth, NF-I 03886, (603)323-8843. The wide selection in the TEAM 
(1988) catalog includes: 

3212 
3212 
3312 
311 
313 
314 
315 

30101 
SA-5 

1-99% (ll" horizontal) 
0.01-99.99% (11" horizontal) 
O.OOO1-99.9999 (1111 horizontal) 
0.01-99.99% (81/2" horizontal) 
0.01-99.99% (81/2" horizontal) 
0.01-99.99% (81/2" horizontal) 
0.01-99.99% (81/2" horizontal) 
2-98% (81/2" horizontal) 
Assortment of 311,313,314,315,3112,3212,3312. 

3 log cycles (81/2" vertical) 
3 log cycles (81/2" vertical) 
3 log cycles (81/2" vertical) 
3 log cycles (ll" vertical) 
5 log cycles (ll" vertical) 
7 log cycles (11" vertical) 

10 log cycles (11" vertical) 
2 log cycles (11" vertical) 
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2) CODEX Book Co., 74 Broadway, Norwood, MA 02062, (617)769-1050. 

Y3 210 0.01-99.99% (11" horizontal) 2 log cycles (81/2" vertical) 
Y3 213 0.1-99.9% (81/2" vertical) 3 log cycles (11" horizontal) 
Y4 211 0.01-99.99% (1111 horizontal) 4 log cycles (161/2" vertical) 

3) K + E (Keuffel & Esser Co.), 20 Whippany Rd., Morristown, NJ 07960, 
(800)538-3355. 

46 8040 0.01-99.99% (111' horizontal) 2 log cycles (81/2" vertical) 
46 8080 2-98% (81/2" horizontal) 3 log cycles (11" vertical) 

4) Craver (1980) gives reproducible copies of 

pg. 220 0.01-99.99% (11" horizontal) 1 log cycle (81/2" vertical) 
pg. 221 0.01-99.99% (11" horizontal) 2 log cycles (81/2" vertical) 
pg. 222 0.01-99.99% (11" horizontal) 3 log cycles (81/2" vertical) 
pg. 225 2-98% (81/2" horizontal) 3 log cycles (1111 vertical) 

is K + E 46 8080 
pg. 229 0.1-99.9% (81/2" vertical) 3 log cycles (11" horizontal) 

5) Technology Associates, 51 Hillbrook Dr., Portola Valley, CA 94025, 
(415)941-8272. 

5001 0.1-99.5% (81/2" horizontal) 6 log cycles (11" vertical) 

Symbols. Plots with professional quality plotting symbols and lettering 
can be achieved with transfer lettering (press type). The catalogs of Chart- 
pak (1988) and Letraset (1986) list sheets of such symbols and lettering. 
Also, some computer packages (Chap. 5, Sec. 1) produce quality plots. 

23. Relationship Plot (Arrhenius) 

Data plot. The following relationship plot of data resembles the relation- 
ship plot of the model in Figure 9.1 of Chapter 2. The plot graphically esti- 
mates the relationship between life and stress. The method employs plotting 
paper on which the relationship is a straight line. For example, Arrhenius 
paper (Figure2.3) has a log time scale and a reciprocal scale for absolute 
temperature. Plot each failure time against its temperature as in Figure 2.3, 
which shows the Class-H data of Table 2.1. Draw a line through the data to 
estimate "life" as a function of temperature. Note that Figure 2.3 also shows 
that the 260" data has greater scatter than data from other test temperatures. 
This was noted earlier from the lognormal plot, Figure 2.2, which shows this 
more clearly. Probability plots often reveal more. Figures 2.2 and 2.3 are 
side by side and have identical time scales. A particular failure time is plot- 
ted at the same height on both figures. This pair of figures depicts that the 
probability and relationship plots are two views of the same model and data. 
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Life estimate at any stress. The “life” line is used to estimate life at any 
stress level. Enter the plot at the stress level, go up to the fitted life line, and 
then go horizontally to the time scale to read the estimate. For the Class-H 
insulation, the estimate of life at the design temperature of 180°C is 
11,500 hours from Figure 2.3. This is well below the desired 20,000 hours. 
“Life” as used here is a vague “typical” life and is common engineering 
usage. The uncertainty of a graphical estimate can be gauged subjectively. 
Wiggle the fitted line (clear straight edge) to change the estimate while still 
passing the line through the data well. The largest and smallest such esti- 
mates for which the line fits well enough indicate the uncertainty. For exam- 
ple, a line through 20,OOO hours at 180°C does not pass through the data well 
enough. This is convincing that the insulation does not meet the 20,000 hour 
requirement. Chapter 4 presents confidence intervals, a precise means of 
evaluating uncertainties of numerical estimates. 

Percentile lines, The “life” line has more specific meaning if fitted as fol- 
lows. On the relationship paper, plot the estimate of a chosen percentile at 
each stress. Such percentile estimates from the distribution line on a proba- 
bility plot are described above. The sample percentile and the geometric 
mean are other useful estimates; they are described below. Fit a line to the 
percentile estimates. Try to weight each estimate proportional to the number 
of test units at its stress. This line graphically estimates the relationship be- 
tween the percentile and stress. Such a line is fitted to medians (%) in Fig- 
ure 2.3. Plot all points to display the data and to help spot peculiar data. 

Analytic methods for estimating the median and other percentile lines ap- 
pear in Chapters 4 and 5. It is useful to plot such fitted lines with the data as 
in Figure 2.3. The line helps check the fit. Also, such a plot is a good means 
of presenting results to others, regardless whether analytic or graphical. 

Sample percentile. The sample percentile is another useful percentile es- 
timate. Suppose that the chosen percentage is a plotting position, say, 25%. 
Then the sample percentile is the corresponding observation. For example, 
the sample 25th percentile at 240°C is 1521 hours from Table 2.1. Suppose 
the chosen percentage is not a plotting position, say, 50%. On the relation- 
ship plot, one graphically interpolates appropriately between the observations 
with plotting positions just above and below the chosen percentage. For the 
Class-H data, the sample 50th percentile is graphically midway between the 
5th and 6th largest observations, which have plotting positions of 45 and 55%. 
Mark such sample percentiles with xs in relationship plots. 

The sample percentile is robust. That is, it is a valid estimate of a distri- 
bution percentile even when the assumed distribution is not valid over the en- 
tire actual distribution. This is so because the estimate does not use the dis- 
tribution line on the probability plot. If the assumed distribution is valid, 
then the sample percentile is not as accurate as the previous estimate. This is 
so because the sample percentile uses one or two observations, and the previ- 
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ous estimate uses the entire sample at that stress. Usually the percentile is 
chosen in the middle or lower tail of the distribution, near the percentiles of 
interest at the design stress. 

Geometric mean. Another useful estimate of a median is the geometric 
mean. For a stress, take the loglo of each time, sum those logs, and divide 
the sum by the number of observations in the sum. The antilog of this result 
is the geometric mean. For example, for the Class-H data at lWC, the 
geometric mean is 8,701 hours. This estimate is valid only for the lognormal 
distribution and when there are no peculiar data. Then it is the most accu- 
rate estimate of the median. If the lognormal distribution is in doubt, the 
previous two estimates are likely more accurate. 

Arrhenius papers. Arrhenius plotting papers are available from 

1) TEAM, Box 25, Tamworth, NH 03886, (603)323-8843. 

8112 - 100 to +200"C (11,' horizontal) 3 log cycles (81/2" vertical) 
8212 20 to 400°C (1111 horizontal) 3 log cycles (81/2" vertical) 
8312 20 to 1600°C (11" horizontal) 3 log cycles (81/2" vertical) 

2)K t E (Keuffel & Esser Co.), 20 Whippany Rd., Morristown, NJ 07960, 
(800)538-3355. 

46 8200 
46 8242 

40 to 300°C (81/2" horizontal) 4 log cycles (11" vertical) 
100 to 300°C (81/2" horizontal) 4 log cycles (1111 vertical) 

3) Technology Associates, 51 Hillbrook Dr., Portola Valley, CA 94025, 
(415)941-8272. For a convenient scale for activation energy (Figure 6.3): 

5001 25 to 400°C (81/2" vertical) 7 log cycles (11" horizontal) 

2.4. Graphical Estimates 

stress), of the model parameters, and of a design stress are given below. 

Distribution for a stress. The distribution line for any stress, such as a 
design stress, is fitted as follows. First, use the percentile line on the rela- 
tionship plot to estimate the percentile at the chosen stress level. For exam- 
ple, the estimate of median life at the design temperature of 180°C is 11,500 
hours from Figure 2.3. Plot that estimate on the probability plot. This point 
is shown as an x on Figure 2.2. Draw a distribution line through that point 
parallel to the distribution lines for the test stresses. Such a 180" line with a 
compromise ("average'') slope appears in Figure 2.2. This line provides esti- 
mates of percentiles and fraction failed for the 180" life distribution. 

If the plot or other knowledge suggests that the distribution lines are not 
parallel, fit a line with an appropriate slope, for example, with the slope of 

Graphical estimates of the life distribution at any stress (such as a design 
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the data at the nearest test stress. In Figure 2.1B, one would use the slope of 
the 190" data, not the compromise 180" line in the plot. Information given 
later suggests that the 260" data should be ignored in drawing the 180" line. 

Percent failed at a (design) stress. As follows, estimate the percent 
failed by a given age at a specified stress, such as a design stress. Use the 
preceding distribution line for that stress. Enter the probability plot on the 
time scale at the given age, go horizontally to the distribution line, and then 
go vertically to the probability scale to read the percentage failed. For the 
Class-H insulation, the estimate of the percentage failed by 10,000 hours at 
180°C is 27% from Figure 2.2. 

Percentile at a (design) stress. A percentile at any specified stress (such 
as design stress) is estimated from the fitted distribution h e  as follows. 
Enter the probability plot at that percentage, go to the fitted line, and then go 
to the time scale to read the estimate. For example, in Figure 2.2, the esti- 
mate of median life at the design temperature of 180°C is 11,500 hours. This 
is much below the desired 20,000 hour median. Also, the estimate of the 1st 
percentile (off scale) at 180°C is 6600 hours. 

Other percentile lines, Other percentile lines are drawn on the relation- 
ship plot as follows. As described in a previous paragraph, obtain a percen- 
tile estimate at the design stress. For example, the estimate of the 1st per- 
centile at 180°C is 6600 hours. Plot this estimate on the relationship plot. 
Then through this point draw a line that is parallel to the original relationship 
line as in Figure 9.1 of Chapter 2. This added line estimates the desired per- 
centile line. It is used as described next to estimate the design stress that 
yields a specified life. Such parallel lines for a number of percentiles may be 
added. Then the plot looks like the model in Figure 9.1 of Chapter 2. 

Design stress. One may need to estimate a design stress that yields a 
specified life. To do this, enter the relationship plot at the specified life on 
the time scale, go to the fitted line for the desired percentile, and go to the 
stress scale to read the estimate. For example, a median life of 20,000 hours 
results from an estimated temperature of 165°C from Figure 2.3. The analyt- 
ic estimate and confidence limits for this stress are in Chapter 4. 

Relationship parameters (activation energy). Sometimes one wishes to 
estimate the coefficients qo and 71 of the simple linear relationship. For the 
Arrhenius relationship, 71 is related to the activation energy E of the chemi- 
cal degradation that produces failure; thus yl has a physical interpretation. 
Choose two widely s aced temperatures T < T'. Obtain graphical estimates 
of the median lives t.SO and t.:; from the relationship plot. Then the estimates 
of 71,70, and the activation energy E are 

P 

here k = 0.8617~ is Boltzmann's constant in electron volts per degree 
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Kelvin. Analytic estimates and confidence limits for -yl, 70,  and E are in 
Chapter 4. Peck and Trapp's (1978) Arrhenius paper has a special scale that 
estimates activation energy directly. Other papers listed above lack this scale. 

For example, from Figure 2.3, the graphical estimates of the medians at 
T = 453.2"K (180OC) and T' = 533.2"K (260°C) are t.& = 11,500 and t.:; = 
950 hours. Thus 

7; = [(453.2)533.2/(533.2-453.2)]log(l1,500/950) = 3271, 

7: = log(950) - (3271/533.2) = -3.17, 

E* = 2.303 x 0.8617~10-~(3271) = 0.65 eV. 

Log standard deviation. Estimate a from the slope of a fitted line in the 
lognormal probability plot as follows. Enter the plot on the probability scale 
at the 50% point, go down to one of the parallel fitted lines, and then go side- 
ways to the time scale to read the median estimate t.:o. Similarly, obtain the 
estimate f.+16 of the 16th percentile from the same line. The estimate of Q is 

a* = log(t.;O /t.+16 ). (1.4) 

Analytic estimates and confidence limits for a are in Chapter 4. Another 
graphical estimate of a uses residuals (Chapter 4). 

For example, for the 180" line in Figure 2.1B, 130 = 11,500 hours and 
t.;6 = 9,000 hours. Then u* = log(11,500/9,000) = 0.11. This small esti- 
mate indicates that such insulation has a failure rate that increases over most 
of the distribution. The line for a test temperature could also be used to 
estimate a, say, the 190" line. 

2.5. Assess the Model and Data 

The validity of the graphical analyses and estimates above depend on how 
valid the assumptions of the model are. The methods below check the as- 
sumptions of the simple (Arrhenius-lognormal) model and the validity of the 
data. In particular, the methods check that the assumed distribution fits the 
data, that the distribution spread is the same for all stresses, and that the 
(transformed) life-stress relationship is linear. Also, the methods check the 
data for outliers and other peculiarities due to blunders or faulty testing. 

The methods below are applied to the Class-H insulation data of Sec- 
tion 2.1 and the Arrhenius-lognormal model. However, the methods apply to 
data from any simple model. They apply, for example, to the power-Weibull 
model of Section 3. 

Analytic methods for assessing the model and complete data appear in 
Chapter 4. That chapter also includes graphical analyses of residuals. Use 
graphical and analytic methods to get the most information. 
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Lognormal distribution. A probability plot allows one to assess how well 
the theoretical distribution fits the data. Relatively straight lognormal plots 
suggest the distribution adequately fits the data. To judge straightness sensi- 
tively, hold the plot at eye level and sight along the line of plotted points. For 
example, the four data plots in Figure 2.M are relatively straight and indicate 
that the lognormal distribution adequately fits at the four temperatures. 

Curved distribution plots. Plots curved the same way suggest that anoth- 
er distribution, such as the Weibull distribution, may fit the data better. 
Another analysis of curved plots involves drawing smooth curves through the 
points. Such curves (nonparametric fits) can be used as distribution lines. 
Estimates of percentiles and fraction failed are read from them as explained 
above. Such percentile estimates can be plotted on a relationship plot and 
percentile lines fitted to them. 

Sometimes the lower tails of curved plots are straight. If interested only 
in the lower tail, one can treat the data above some point in each lower tail as 
censored. The censored data can then be analyzed with the methods of Sec- 
tion 4 or 5. Then the fitted model and estimates describe only the lower tail 
of the fitted distribution. Hahn, Morgan, and Nelson (1985) present methods 
for such censoring and analytically fitting to just the early failure data. 

Outliers. Individual points out of line with the rest may indicate unusual 
or mishandled specimens, rather than poor fit of the distribution. Such 
“outliers” usually are failures that are too early relative to others at the same 
stress. Peculiar data are discussed in detail below. 

Overinterpretation. Those inexperienced in analyzing data tend to over- 
interpret plots. They assume that any noticeable gap, flat spot, curvature, 
etc., of a data plot has physical meaning and is a property of the population. 
But only pronounced features of a plot should be assumed to be properties of 
the population. Hahn and Shapiro (1967) and Daniel and Wood (1971) dis- 
play probability plots of Monte Carlo data from a true normal distribution. 
Their plots are sobering. Their samples of 20 and even 50 observations ap- 
pear erratic, having peculiarities such as curvature, gaps, and outlying points. 
Most people’s subjective notions of randomness are stringent and orderly; 
they incorrectly expect points in a probability plot to fall on a straight line. 
Some authors have promoted this fallacy by creating illustrative data by 
drawing data points on a straight line on a probability plot. Caveat lector. 
This book presents only real data, complete with pimples and warts. 

Constant standard deviation. The Arrhenius-lognormal model assumes 
that the standard deviation o of log life is a constant. If o does depend on 
stress, then the estimates for percentiles at a stress may be inaccurate. A (T 

that depends on stress may be a property of the product, may result from a 
faulty test, or may be due to competing failure modes (Chapter 7). 

The following method assesses whether the spread 0 is independent of 
stress. If the spread is constant, probability plots (Section2.3) of the data 
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should yield parallel lines. Most samples at each test stress are small (less 
than 20 specimens). So the slopes of the distribution lines may randomly 
vary a lot when the true population spreads are the same. Thus, only ex- 
treme differences in the slopes are convincing. The slope changing systemati- 
cally with stress may indicate that the spread depends on stress or there are 
competing failure modes. If the slope for one test stress differs greatly from 
the others, the data or the test at that stress may be faulty. 

Clue to $l,OOO,0oO. In Figure 2.M, the separate lines for 190, 220, and 
240" lines are parallel, and the 260" line is steeper. The slope of a distribu- 
tion line corresponds to the log standard deviation u. So the plot suggests 
that the scatter in (log) life at 260" is greater; this is contrary to the assumed 
constant scatter (log standard deviation) of the simple model. In insulation 
work, the validity of the Arrhenius model is well established, and departures 
from the model are usually due to faulty experimental technique or compet- 
ing failure modes (Chapter 7). The nonparallel lines were the first clue lead- 
ing to a yearly savings of one million dollars (1989 prices) for the product 
department. After being shown the nonparallel plots, the responsible insula- 
tion engineer suggested two possible reasons. 

First, the 10 motorette specimens at 260" were made after the other 30. 
The 30 had not failed fast enough (few failures yield little information). So 
the engineer decided to make 10 more and test them at 260°C to get failures 
quickly. When questioned, the engineer did not know if the 10 specimens 
were made from the same lots of raw materials or by the same shop people 
as the previous 30. This suggests that the nonparallel plots are possibly due 
to lack of quality control in the materials or in making the specimens. 

Second, the engineer then revealed that the motorettes failed from three 
causes. A green statistician at the time, the author did not know enough to 
ask the engineer at the outset if the data contained more than one cause of 
failure. Riper now, the author asks this right away, even when just planning a 
test. Autopsy of each failed motorette revealed the cause as a 1) Turn 
failure, 2) Ground failure, or 3) Phase failure. Each corresponds to failure of 
a distinct part of the insulation system. Moreover, most of the 260" failures 
were Ground failures, and most of the failures at the other three tempera- 
tures were Turn failures. So the scatter in log life of Ground insulation may 
just be greater than that of Turn insulation. Clearly the Ground failure data 
at 260" should not be used to estimate life at 180" where motorettes mostly 
fail from Turn failures. Section 5 presents valid graphical analyses for such 
data and further insight leading to the $l,OOO,OOO yearly saving. Chapter 7 
presents numerical analyses of data with competing failure modes. 

The nonparallel distribution lines and competing failure modes are ig- 
nored in what follows. Ignoring these complications is done only to present 
the graphical methods. 

So there is a question of whether or not to use the 260" data in the analy- 
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ses. In practice, it is best to do two analyses, one with and the other without 
the suspect data. If the results of both are the same for practical purposes, 
one need not choose an analysis. Otherwise, one must decide which analysis 
is better, say, more correct or more conservative. 

Linear (Arrhenius) relationship. The Arrhenius relationship is a linear 
relationship between transformed life and temperature. This assumed linear- 
ity is important when one extrapolates the fitted relationship to estimate life 
at low stress. The relationship plot may be nonlinear for various reasons. 
The life test may not have been carried out properly. The data may contain a 
number of competing failure modes, each with a different linear relationship. 
Also, the (transformed) true relationship just may not be linear. 

Subjective assessment of the linearity comes from examining the relation- 
ship plot of the data (or better the percentile estimates). The data and the 
medians of the Class-H insulation in Figure 2.3 are close to a straight line 
compared to the scatter in the data. This suggests that the Arrhenius rela- 
tionship adequately fits the data. Chapter 4 presents analytic methods for 
checking linearity. 

Nonlinear relationship plot. If nonlinearity is convincing, examine the 
relationship plot of the percentile estimates to determine how the relation- 
ship departs from linearity. For competing failure modes (Chapter 7), the re- 
sulting relationship is concave downwards in Figure 2.3. If a sample percen- 
tile is out of line with the others, the data for that stress may be in error. 
Look for erroneous data, and determine if those data should be used or not. 
After examining the relationship plot, one may do any of the following: 

If the plot shows that a smooth curve describes the relationship, fit a curve 
to the data. Be sure that the apparent curvature is not a result of errone- 
ous data. Extrapolating such a curve to the design stress may be difficult 
to justify and is likely to be inaccurate. 
Analyze the data with a linear fit but subjectively take into account the 
nonlinearity in interpreting the data and coming to conclusions. The linear 
fit may ignore certain data or weight some data more or less. 

Valid data. The probability and relationship plots may reveal peculiari- 
ties of the data. In a sense, the data are always valid, and our assumptions 
are often invalid if the data differ from the model. Sometimes peculiar data 
arise from blunders in recording or transcribing the data. More often such 
data arise from specimens that are mismade or mistested or an inaccurate 
model. Methods above check the adequacy of the model, namely, the distri- 
bution, a common standard deviation of log life, and a h e a r  relationship. 

Peculiar data. If the model does not fit the data well, it is important to 
determine the reason. Some people speak backwards and say the data do not 
fit the model. The data are almost always right, and understanding the rea- 
son for peculiar data is often more important than the good data. For exam- 
ple, the greater scatter in the 260" Class-H data led to yearly savings of 
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$l,OOO,OOO. Thus it is essential to determine the cause of peculiar data. It is 
less important to decide whether to include or exclude peculiar data from an 
analysis. Usually it is best to do two or more analyses, excluding some or all 
of the peculiar data. Often the practical conclusions are the same for such 
analyses (for example, Problem 3.7). When the conclusions differ, then one 
must chose an analysis, say, the most conservative or most realistic analysis. 

Outliers. Sometimes there is one or a few data points that stand out in a 
plot. Such points are usually failures that are too early relative to the rest of 
the data. As noted above, it is usually most informative to determine the 
cause of such “outliers.” Otherwise, one can do analyses with and without 
such outliers. Section 4 presents data with outliers. 

3. COMPLETE DATA AND POWER-WEIBULL MODEL 

Introduction. This section presents simple graphical methods for com- 
plete life test data, using Weibull and exponential life distributions and the 
(inverse) power relationship. Exactly like those in Section 2, the methods es- 
timate the model parameters and the product life distribution at any stress. 
The plots also are used to assess the validity of the model and data. 
Corresponding least-squares methods appear in Chapter 4. To use the 
methods, one needs background on the Weibull and exponential distributions 
and the inverse power law in Chapter 2. While the example employs the in- 
verse power law, the methods apply to other relationships between life and 
stress. These methods are the same as those of Section 2, which is needed 
background. Thus this section aims only to acquaint readers with Weibull 
probability paper and the inverse power law, since both are widely used for 
accelerated life test data. 

Overview. Section 3.1 describes data that illustrate the graphical 
methods. Section 3.2 explains how to make and use Weibull probability plots 
of the data. Section 3.3 presents a log-log plot of the relationship between 
life and stress. Section 3.4 presents estimates of the model parameters and 
other quantities. Section 3.5 shows how to assess the model and data. 

3.1. Data (Insulating Fluid) 

The data in Table 3.1 illustrate the graphical methods for complete data, 
using the power-Weibull model. The data are the times to oil breakdown 
under high test voltages. High voltages quickly yield breakdown data. At 
design voltages, time to breakdown runs thousands of years. The tests em- 
ployed two parallel plate electrodes of a certain area and gap. The electrical 
stress is given as a voltage, since the electrode geometry was constant. 

The main purpose was to estimate the relationship between time to 
breakdown and voltage. This involves fitting the model to the data. The 
model is used to estimate the probability of product failure during a factory 
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Table 3.1. Times to Breakdown of an Insulating Fluid 

26 kV 
Min- Plotting 
Utes Position 

5.79 16.3 

1579.52 50.0 

2323.70 83.3 

34 kV 
Min- Plotting 
Utes Position 

0.19 2.6 

0.78 7.9 

0.96 13.2 

1.31 18.4 

2.78 23.7 

3.16 28.9 

4.15 34.2 

4.67 39.5 

4.85 44.7 

6.50 50.0 

7.35 55.3 

8.01 60.5 

8.27 65.8 

12.06 71.1 

31.75 76.3 

32.52 81.6 

33.91 86.8 

36.71 92.1 

72.89 97.4 

28 kV 
Min- Plotting 
Utes Position 

68.85 10.0 

108.29 30.0 

110.29 50.0 

426.07 70.0 

1067.60 90.0 

36 kV 
Min- Plotting 
Utes Posit ion 

0.35 3.3 

0.59 10.0 

0.96 16.7 

0.99 23.3 

1.69 30.0 

1.97 36.7 

2.07 43.3 

2.58 50.0 

2.71 56.7 

2.90 63.3 

3.67 70.0 

3.99 76.7 

5.35 83.3 

13.77 90.0 

25.50 96.7 

30 kV 
Min- Plotting 
Utes Position 

7.74 4.5 

17.05 13.6 

20.46 22.7 

21.02 31.8 

22.66 40.9 

43.40 50.0 

47.30 59.1 

139.07 68.2 

144.12 77.3 

175.88 86.4 

194.90 95.5 

38 kV 
Min- Plotting 
Utes Position 

0.09 6.2 

0.39 18.7 

0.47 31.2 

0.73 43.7 

0.74 56.2 

1.13 68.7 

1.40 81.2 

2.38 93.7 

32 kV 
Min- Plotting 
Utes Position 

0.27 3.3 

0 . 4 0  10.0 

0.69 16.7 

0.79 23.3 

2.75 30.0 

3.91 36.7 

9.88 43.3 

13.95 50.0 

15.93 56.7 

27.80 63.3 

53.24 70.0 

82.85 76.7 

89.29 83.3 

100.58 90.0 

215.10 96.7 

test at 20 kV. Another purpose was to assess whether the distribution of time 
to breakdown is exponential. 

3.2. Weibull Probability Plot 

Weibull plot. A probability plot is made and interpreted as described in 
Section 2.2. However, Weibiill probability paper is used (Figure 3.1). Such 
paper has a log scale for data (time) and a Weibull scale for probability. 
Data from all of the stresses are plotted on in Figure 3.1 and clutter the plot. 
There is a separate straight line through the data for each test stress. The 
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MINUTES TO BREAKDOWN 

Figure 3.1. Weibull plot of insulating fluid data. 

lines estimate, tlic cumulative distribution functiotis at those stresses, that is, 
the percentage failed versus timc. 

For the model for the example, the Weibull life distribution has the same 
shape parameter value at any stress. This nieiiti~ that the distribution lines 
are all parallel. Such parallel lines are lilted in Figire 3.2; there data from 
half o l  tlic stresscs are plotted to avoid clut~er. 

Sliapc partrmeler estimate. The Webull shape parameter indicates the 

Figure 3.2. Parallel fits to insulating fluid data. 
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behavior of the failure rate with time. It is estimated from the Weibull prob- 
ability plot (Figure3.2). Through the point labeled "origin," draw a line 
parallel to the common slope of the fitted lines. The line intersects the shape 
parameter scale at a value which is the graphical estimate. Figure 3.2 gives 
an estimate of 0.81. The value less than 1 indicates that the failure rate de- 
creases with time. Also, the life distribution is close to exponential. It is not 
clear that this estimate convincingly differs from 1. Also, uncontrolled test 
conditions (voltage etc.) may have created greater scatter in the data and 
thereby lowered the observed shape value below 1. Chapter 4 gives an ana- 
lytic method that assesses whether the sample shape parameter significantly 
differs from 1, that is, an exponential life distribution. 

Specified Weibull shape. Sometimes the value of the Weibull shape pa- 
rameter is specified. In the example, the life distribution is assumed to be ex- 
ponential - a shape parameter of 1. One can fit distributions with that shape 
parameter value to the data as follows. On the Weibull paper, draw a line 
from the point labeled "origin" through the shape parameter scale at the 
specified value. Such a line in Figure 3.1 passes through the value 1 (an ex- 
ponential distribution). Througli the data for a stress draw a line parallel to 
the shape parameter line. That fitted distribution has the specified Weibull 
shape parameter value. 

Weibull papers. Weibull probability papers are available from: 

1) TEAM, Box 25, Tamworth, NH 03886, (603)323-8843. 

118 
218 
318 
118-2 
218-2 
318-2 
118-3 
218-3 
318-3 
228 
112* 
113* 
122* 
123* 
10/18-3 
20/18-3 
40/18-2 
SA-6 

O.OOO1-99.9% (81/2" vertical) 3 cycles (11" horizontal) 
O.OOO1-99.9% (81/2" vertical) 5 cycles (1111 horizontal) 
O.OOO1-99.9% (81/2" vertical) 7 cycles (11" horizontal) 
0.01-99.9% (81/2" vertical) 3 cycles (11" horizontal) 
0.01-99.9% (81/2" verlical) 5 cycles (1111 horizontal) 
0.01-99.9% (81/2" vertical) 7 cycles (1111 horizontal) 
1.0-99.9% (81/2" vertical) 3 cycles (11" horizontal) 
1.0-99.9% (81/2" vertical) . 5 cycles (11" horizontal) 
1.0-99.9% (81/2" vertical) 7 cycles (111' horizontal) 
O.OOO1-99.9% (11" vertical) 7 cycles (14 horizontal) 
0.01-99.99% (11" horizontal) 3 cycles (81/2" vertical) 
0.01-99.99% (1111 horizontal) 5 cycles (81/2" vertical) 
O.OOO1-99.9999% (14" horizontal) 3 cycles (11" vertical) 
O.OOO1-99.9999% (14 horizontal) 5 cycles (11" vertical) 
1-99.9% (11" horizontal) 1 cycle (81/2" vertical) 
149.9% (11" horizontal) 2 cycles (81/2" vertical) 
0.01-99.9% (1Y horizontal) 4 cycles (81/2" vertical) 
Assortment of 118,118-2,118-3,218,218-2,218-3,318, 
318-2,318-3,518-2. 

* The catalog calls these extreme value probability papers. Their data 
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scale is logarithmic, and they are actually Weibull papers but lack a shape 
parameter scale. 

2) CODEX Book Co., 74 Broadway, Norwood, MA 02062, (617)769-1050: 

Y4 280* 0.1-99.9% (11" vertical) 4 cycles (161/2" horizontal) 

3) Craver (1980) gives reproducible copies of 

pg. 228 0.1-99.9% (11" vertical) 2 log cycles (81/2" horizontal) 
pg. 230 0.001-99.9% (11" vertical) 3 log cycles (81/2" horizontal) 

Exponential paper, Use Weibull paper for an exponential fit. Exponen- 
tial probability paper badly compresses data in the lower tail, which is usually 
of greatest interest. 

33. Relationship Plot (Inverse Power) 

Relationship line. For the inverse power law, plot the data on log-log pa- 
per (Figure3.3). Then fit a straight line by eye to pass through the data. 
This is best done by fitting the line to an estimate of a percentile at each 
stress. Such estimates of the characteristic life (63.2 percentile) are shown as 
x's in Figure 3.3. The fitted line in Figure 3.3 graphically estimates the in- 
verse power law relationship between the characteristic life and stress. Com- 
pare Figure 3.3 with the plotted model in Figure 10.1 of Chapter 2. Here the 

Figure 3.3. Log-log plot of insulating fluid data (x is a graphical estimate of a and 
0 is the sample 63rd percentile). 
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relationship plot (Figure 3.3) and the corresponding probability plot (Fig- 
ure 3.1 or 3.2) do not appear side by side with identical time scales, as do Fig- 
ures 2.2 and 2.3, and one is turned 90" from the other. Log-log and Weibull 
papers with identical time scales show the correspondence between the two 
data plots. However, such pairs of papers have not been developed. 

Percentile estimates. Two estimates of a percentile at a stress can be 
used. One is obtained graphically from the fitted distribution line as de- 
scribed in Section 2.2. Such estimates appear as x's in Figure 3.3. The other 
is the sample percentile of Section 2.3. These observations (63.2 percentiles) 
are circles in Figure 3.3. In practice, only one such estimate is marked at 
each test stress. The two percentile estimates differ with respect to simplicity 
and statistical accuracy. The sample percentile is easier to use and less accu- 
rate. For most purposes, the graphical estimate is recommended. 

Log-log papers. Most commercial log-log paper has cycles of the same 
length on both axes. Such paper is often not suitable for accelerated test 
data. Such paper is available through CODEX (1988), Craver (1980), 
Dietzen (1988), Keuffel 8c Esser (1988), and TEAM (1988) among others. 
Better paper (Figure3.3) has one or two large cycles for stress and many 
small cycles for life; some engineering departments have developed such pa- 
pers. Semi-log paper with one or two log cycles can be used. Mark the linear 
scale with powers of 10 and treat it as a log scale. 

3.4. Graphical Estimates 

Graphical estimates are obtained as described in Section 2. Examples of 
such estimates follow and include the Weibull characteristic life, percentiles, 
relationship parameters, and the design stress that yields a specified life. 

Characteristic life. The estimate of the characteristic life at any stress 
can be read directly from the fitted line in the relationship plot. Enter the 
plot at that stress on the horizontal scale. Go up to the fitted line, and then 
go sideways to the time scale to read the estimate. For example, in Fig- 
ure 3.3, the estimate of the characteristic life at 20 kV is 105,000 min. The 
estimate may be in error if the relationship is nonlinear on log-log paper. 
Analytic methods for checking linearity appear in Chapter 4. 

Percentile lines. Section 2 shows how to estimate percentile lines in a re- 
lationship plot. Such lines appear in Figure 10.1 of Chapter 2. The lines esti- 
mate those percentiles at any stress. For example, the 1st percentile at 20 kV 
is 210 min. from Figure 10.1. 

Relationship parameters (power). The power -yl in the inverse power 
law a = e " / p i s  often of interest. The larger its (absolute) value, the more 
sharply life decreases as stress increases. For two stresses V c V ,  graphical- 
ly estimate their characteristic lives a* and a". Then the graphical estimates 
of 71 and 70 are 
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7; = ln(a*/a’*)/ln(v/v, To+ = In(a*p’). ( 3 4  

For example, in Figure3.3 a* = 105,000min at V = 20 kV and a’* = 
0.60 min at V‘ = 40 kV. Thus 

7; = ln(lO5,000/0.60)/1n(40/20) = 17.4, 7; = 1n(105,000-2017.4) = 63.7. 

A power of 17.4 is unusually large, even for insulation life. 

Choice of design stress. Sometimes one needs to estimate a design stress 
with a desired characteristic life. Enter the log-log plot at that life on the 
time scale, go sideways to the fitted line, and go down to the stress scale to 
read the estimate. For example, in Figure3.3, a characteristic life of 
1,OOO,O00 min (offscale) is provided by an estimated voltage of 17.6 kV. This 
method can also be used with percentile lines to estimate a design stress with 
a specified low percentile. For example, if the 1st percentile must be 
1O,O00 min., then the stress must be 15.8 kV from Figure 10.1 of Chapter 2. 

Distribution line at any (design) stress. The distribution line at any 
stress is estimated on the probability paper as described in Section 2.4. Such 
a line for the insulating fluid at the factory test voltage of 20 kV appears in 
Figure 3.1. Percentiles and percentage failing are estimated from the line as 
described in Section 2.4. For example, the estimate of the 1st percentile at 
20 kV is 210 min. from Figure 3.1. Also, the estimate of the percentage fail- 
ing by 10 min. at 36 kV is 95%. 

3.5. Assess the Model and Data 

Graphical methods of Section 2.5 are used to assess the (Weibull) distri- 
bution, the (power law) relationship, and the data. Corresponding analytic 
methods appear in Chapter 4. Use both graphical and analytic methods to 
get the most information from the data. 

The straight Weibull plots (Figure 3.1) indicate that the Weibull distribu- 
tion fits adequately. The relatively parallel Weibull plots (Figure 3.1) suggest 
a common shape parameter is reasonable. The straight relationship plot 
(Figure 3.3) indicates that the power law fits over the range of the data. In 
both plots, a low outlier at 26 kV is evident. No reason for it was found. El- 
iminating it has little effect on estimates, since the sample is relatively large 
(76 times to breakdown) and the Weibull distribution has a long lower tail. 

4. SINGLY CENSORED DATA 

Introduction. Often life data are not complete. When the data are ana- 
lyzed, some units may still be running. Such data are singly censored when 
the failure times of unfailed units are known only to be beyond their current 
common (single) running time. A censored life clearly cannot be discarded 
or treated as a failure as this ignores and arbitrarily changes such data. 
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This section presents simple graphical methods for estimating from singly 
censored data the model and the life distribution at any stress. The methods 
are like those for complete data in Sections 2 and 3 and include 1) a probabil- 
ity plot of singly censored data from each test stress and 2) a relationship plot 
of life against stress. 

Also, a distribution may adequately fit only data in the lower tail at each 
stress. When the upper tail is not of interest, then the influence of data in the 
upper tail can be removed. One treats all upper tail data as censored at some 
time in the lower tail. Hahn, Morgan, and Nelson (1985) present such 
artificial censoring. 

Overview. Section 4.1 describes data used to illustrate the methods here. 
Section 4.2 presents probability plotting of such data, and Section 4.3 
presents relationship plotting. Section 4.4 briefly reviews graphical estimates. 
Section 4.5 discusses checks on the model and data. Chapter 5 provides ad- 
vanced analytic methods for such data. A combination of graphical and ana- 
lytic analyses of such data is most effective. 

4.1. Data (Class-B Insulation) 

Table 4.1 displays censored data from a temperature-accelerated life test 
of a Class-B insulation for electric motors (Crawford 1970). Ten motorettes 
were tested at each of four temperatures (150"C, 170"C, 19O"C, 220°C). The 
test purpose was to estimate the life distribution (in particular, its median 
and 10% point) at the design temperature of 130°C. At the time of the analy- 
sis, 7 motorettes at 170°C had failed, five each at 190°C and 220°C had failed, 
and none at 150°C had failed. The t in Table4.1 indicates a running 
motorette at that number of hours. The motorettes were periodically 
checked for failure, and a failure time in Table 4.1 is the upper endpoint of 
the period in which the failure occurred. It is better to use the midpoint. 

Table 4.1. Class-B Insulation Life Data and Plotting Positions 

150 "C 170°C 190°C 220°C 

Hours 

8064 t 
8064t 
8064 t 
8064t 
8064 t 
8064 t 
8064 t 
8064t 
8064 t 
8064 t 

Fi Hours - -  
- 1764 
- 2772 
- 3444 
- 3542 
- 3780 
- 4860 
- 5196 
- 5448t 
- 5448t 
- 5448t 

5 
5% 

15 
25 
35 
45 
55 
65 

Hours 

408 
408 

1344 
1344 
1440 
1680 t 
1680 t 
1680 t 
1680 t 
1680 t 

3 
5% 

15 
25 
35 
45 

Hours 

408 
408 
504 
504 
504 
528t 
528t 
528t 
528t 
528t 

Fi 

5% 
- 

15 
25 
35 
45 
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The lognormal distribution and Arrhenius relationship are used to ana- 
lyze these data. The methods also apply to other simple models, using the 
Weibull distribution and the inverse power law and other relationships. 

4.2. Probability Plot (Lognormal) 

A probability plot of censored data at each test stress is made as follows. 
Use probability plotting paper for the model distribution (lognormal here). 
Suppose, at a test stress, a sample of n units has r failure times. Order the 
times from smallest to largest, and assign rank i to the ith ordered failure 
time. As before, the plotting position of the ith failure is 

i = 1,2, . - * ,r. Fi = lOO(i - 0 S ) / n ,  

These plotting positions are in Table 4.1. Nonfailure times are not assigned 
plotting positions. Other plotting positions of Section 2.2 can be used. 

PERCENTAGE 

Figure 4.1. Lognormal plot of censored Class-B data. 
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On the probability paper, plot each failure time against its plotting posi- 
tion. Nonfailure times are no1 plotted. Figure 4.1 shows a lognormal proba- 
bility plot of the Class-B data. By eye fit a straight line (or, if necessary, a 
curve) to the plotted points as shown in Figure 4.1. Fitted lines can be paral- 
lel, since the model has parallel lines. As before, the fitted lines obscure the 
data. So it is best to also have a plot without lines. 

The probability plot of singly censored data yields the same information 
and is interpreted the same as a plot of complete data (Sections 2.2-2.5 and 
3.2-3.5). Such information includes estimates of distribution percentiles and 
fraction failing by a given age. For example, Figure 4.1 yields median 
estimates of 4300 hours at 170", 1650 hours at 190", and 510 hours at 220". 
For 190 or 220", estimating the median involves extrapolating from data in 
the lower tail of the distribution to the middle of the distribution. The log- 
normal (cumulative) distribution is used to extrapolate over time. This is 
similar in spirit to using the Arrhenius relationship to extrapolate over tem- 
perature. 

Figure 4.2. Arrhenius plot of Class-B data ( 0 observed failure, x estimate of medi- 
an, & unfailed). 
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43.  Relationship Plot (Arrhenius) 

A relationship plot of life against stress is made as described in Sec- 
tion 2.3 or 3.3. In particular, estimate a specific percentile at each test stress 
from the probability plot. Then plot each estimate against stress on paper 
where the relationship between "life" and stress is linear. Finally draw a line 
through the plotted estimates to estimate the relationship. 

For the Class-B insulation, each median estimate is plotted with a cross 
against its test temperature on Arrhenius paper in Figure 4.2. A straight line 
is fitted by eye to the crosses in Figure 4.2. The failure and nonfailure times 
are also plotted to display the data. Nonfailures make such a plot more 
difficult to grasp. This is one reason the line is fitted to percentile estimates 
rather than directly to the data. 

The fitted relationship is used as described in Sections 2.3,2.4,3.3 and 3.4 
to estimate model parameters and life at a given stress. For example, the es- 
timate of median life at the design temperature of 130°C is 35,000 hours. 
This key estimate indicates that insulation life is satisfactory. 

Analytic fitting of a relationship to censored data appears in Chapter 5. 
Such fitting provides confidence limits, as well as estimates. 

4.4. Graphical Estimates 

The probability and relationship plots yield estimates as described in Sec- 
tions 2.4 and 3.4. An example follows. 

To estimate the life distribution line at 130"C, mark the median life of 
35,000 hours on the lognormal probability paper in Figure 4.1. Then draw a 
straight line through this median. Choose the slope of this 130" line as the 
visual average of the slopes for the test temperatures. The slope (log stan- 
dard deviation) is assumed to be the same for all temperatures. This line es- 
timates the 130" life distribution. For example, the estimate of the 10th per- 
centile at 130°C is 17,300 hours. 

4.5. Assess the Model and Data 

Graphical methods of Sections 2.5 and 3.5 are used to assess the (lognor- 
mal) distribution, the (Arrhenius) relationship, and the data. Censored data 
require greater care in interpretation; for example, the nonfailures in a rela- 
tionship plot must be visually assessed differently from the failures. Thus it is 
best to use estimates of percentiles in such a plot to assess linearity. 

The lognormal plots (Figure 4.1) of the 170 and 220" data are relatively 
straight. However, their slopes differ some. When informed of this, the insu- 
lation engineer revealed that post mortem of failures had identified different 
dominant failure modes for these two temperatures. For more details on a 
mixture of failure modes, see Chapter 7. 
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At 19O"C, two failures are much too early. Review of the data and test 
method did not reveal their cause. The data were reanalyzed without them. 
The estimate of median life at 130" changed little. Of course, the estimate of 
the log standard deviation decreased, and the estimate of the 10% point at 
130°C increased. 

Examination of the plot of the medians suggests that over the range 
170"C, 19O"C, and 220°C the linear relationship is adequate. 

5. MULTIPLY CENSORED DATA 

Introduction. In some accelerated life tests, data at a stress level are 
multiply censored. Such data contain running and failure times that are in- 
termixed. Such data result from (1) analysis of the data while specimens are 
still running, (2) removal of specimens from test at various times, (3) starting 
specimens on test at various times, and (4) loss of specimens through failure 
modes not of interest or through extraneous causes such as test equipment 
failure. This section describes graphical estimates of the accelerated test 
model and of the product life distribution at any stress. Graphical analysis 
involves (1) a hazard plot of the multiply censored data at each test stress 
(like a probability plot) and (2) a relationship plot of life versus stress. Ana- 
lytic methods for such data appear in Chapter 5. 

The example employs the lognormal distribution and Arrhenius relation- 
ship. Of course, the methods apply to other distributions and other 
(transformed) h e a r  relationships. 

Overview. Section 5.1 presents illustrative data. Section 5.2 explains haz- 
ard plotting for multiply censored data. Section 5.3 presents the relationship 
plot. Section 5.4 describes graphical estimates. Section 5.5 describes checks 
for the validity of the model and data. 

5.1. Data (Turn Failures) 

Data in Table 5.1 illustrate the graphical methods here. The data are 
hours to Turn failure of a new Class-H insulation system tested in motorettes 
at high temperatures of 190,220,240, and 260°C. A purpose was to estimate 
the median time to Turn failure at the design temperature of 180°C. A medi- 
an life over 20,000 hours was desired. 

Ten motorettes were run at each temperature and periodically inspected 
for failure. The time in Table 5.1 is midway between the time when the 
failure was found and the time of the previous inspection. The times between 
checks are short, and using the midpoint has little effect on the plots. The 
times between checks (called cycle lengths) were nominally 7,4,2, and 2 days 
for 1W, 220", 240", and 260"C, respectively. 



140 GRAPHICAL DATA ANALYSIS 

Table 5.1. Turn Failure Data in Hours 

190°C 220°C 240°C 260°C 
7228 1764 1175 1128 
7228 2436 1521 1464 
7228 2436 1569 1512 
8448 2436t 1617 1608 
9167 2436 1665 1632t 
9167 2436 1665 1632t 
9167 3108 1713 1632t 
9167 3108 1761 1632t 

---- 

10511 3108 1881t 1632t 
10511 3108 1953 18% 

The data on Turn failures are not complete, since some motorettes were 
removed from test before having a Turn failure. Each running time is 
marked with a t in Table5.1. Failure times are unmarked. Such multiply 
(or progressively) censored data and must be analyzed with special methods 
like those below. 

52. Hazard Plot (Lognormal) 

A hazard plot of the multiply censored data from each test stress is made 
to estimate each life distribution. A hazard plot is a probability plot and is 
used and interpreted like one. Other methods for plotting multiply censored 
data are given by Kaplan and Meier (1958), Herd (1960), Johnson (1964), 
and Nelson (1982, p. 147). They employ probability paper. Hazard plotting 
also applies to singly censored and complete data; for such data, probability 
plotting is usually used, as it is better known and understood by others. The 
hazard plotting method is explained with the 220" data in Table 5.2. 

Hazard calculations. For a test stress, suppose there are n tests units 
(n = 10 for the 220" data). Order the n times from smallest to largest as 
shown in Table 5.2 (ignore whether they are running or failure times). Then 
label the times with reverse ranks k; that is, label the first with n, the second 
with n - 1, * - * , and the nth with 1 as in Table 5.2. 

Calculate a hazard value for each failure time as lOO/k, where k is its re- 
verse rank. The hazard values for the Turn failures are shown in Table 5.2. 
For example, the failure at 2436 hours with reverse rank 8 has a hazard value 
of 100/8 = 12.5%. Hazard values are not calculated for running times. 

Calculate the cumulative hazard value for each failure as the sum of its 
hazard value and the cumulative hazard value of the preceding failure. For 
example, for the same failure at 2436 hours, the cumulative hazard value is 
33.6 = 12.5t21.1. The cumulative hazard valiles of the Turn failures are 
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Table 5.2. Hazard Calculations for 220" Turn Data 

220°C Reverse (lOO/k)% % Cum. Modified 
Hours Rank k Hazard Hazard Cum. Haz. 
1764 10 10.0 10.0 5.0 
2436 9 11.1 21.1 15.6 
2436 8 12.5 33.6 27.4 
2436t 7 
2436 6 16.7 50.3 42.0 
2436 5 20.0 70.3 60.3 
3108 4 25.0 95.3 82.8 
3108 3 33.3 128.6 112.0 
3108 2 50.0 178.6 153.6 
3108 1 100.0 278.6 228.6 

-~ 

+ censoring time 

shown in Table 5.2. Cumulative hazard values have no physical meaning and 
can be larger than 100%. They are just proper plotting positions. 

Modified values. Modified cumulative hazard values may be better for 
plotting small samples. The modified value for a failure is the average of its 
cumulative hazard value and that of the preceding failure. The modified cu- 
mulative hazard value of the first failure is half of its cumulative hazard 
value. Such modified values appear in Table 5.2. 

Hazard paper. Choose the hazard paper of a theoretical distribution. 
There are hazard papers for the exponential, Weibull, extreme value, normal, 
and lognormal distributions. These papers are available from TEAM, 
Box 25, Tamworth, NH 03886. Lognormal hazard paper is used for the insu- 
lation life data (Figure 5.1). Suitably label the vertical (data) scale. 

Hazard plot. On the hazard paper, plot each failure time vertically 
against its cumulative hazard value on the horizontal axis. Nonfailure times 
are not plotted. Such a plot is made with the data for each stress as shown in 
Figure 5.1. Fit parallel straight lines to the data at each stress if desired. 
Each line is a graphical estimate of the cumulative distribution at that stress. 

How to use a hazard plot. The probability (percentage) scale on a haz- 
ard paper for a distribution is exactly the same as that on the corresponding 
probability paper. Thus, a hazard plot is used the same way as a probability 
plot, as described in Sections 2.2,2.4, and 2.5. The hazard scale is only a con- 
venience for plotting multiply censored data. Examples follow. 

Percentile estimates. An estimate of a distribution percentile comes from 
a hazard plot in the same way as from a probability plot. Enter the hazard 
plot on the probability scale at the desired percentage. Go down to the fitted 
line for the stress, and then go sideways to the time scale to read the percen- 
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Figure 5.1. Lognormal hazard plot of Turn data. 

tile estimate. For example, the estimate of the median time (50th percentile) 
to Turn failure at 220°C is 2900 hours from Figure 5.1. Estimates of the 
medians at the test temperatures are plotted as crosses in Figure 5.2. 

Estimate of a percentage failing. A hazard plot is used like a probability 
plot to estimate the percentage of units that fail by a given age at a stress. 
Enter the hazard plot on the time scale at that age. Go sideways to the fitted 
line for the stress, and then go up to the probability scale to read the percent- 
age. For example, in Figure 5.1, the estimate of the percentage that fail by 
3,000 hours at 220" is 55%. 

53. Relationship Plot (Arrhenius) 

The relationship between life (some distribution percentile) and stress is 
estimated with the same method described in Sections 2.3 and 3.3. Namely, 
use paper where the relationship is a straight line, and plot the estimate of 
the chosen percentile for each test stress against the stress. The Turn failure 
medians are plotted on Arrhenius paper in Figure5.2. The Turn failure 
times and running times could be plotted to display the data. However, the 
plot of failure and running times is cluttered and difficult to interpret. 
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TEMPERATURE "C 

Figure 53. Arrhenius plot of Turn medians x. 

Finally fit a straight line by eye to the percentile estimates. This line 
graphically estimates the relationship between life (the percentile) and stress. 
For reasons given later, the 260" data were not used to estimate the line in 
Figure 5.2. The median life at any temperature is estimated from this line. 
In particular, the estimate of median life of Turn insulation at the design 
temperature of 180°C is 12,300 hours. This is well below the desired 
20,000 hours. Other percentile lines can be estimated on the relationship 
plot as described in Sections 2.4 and 3.4. 

5.4. Graphical Estimates 

The hazard and relationship plots yield estimates as described in Sec- 
tions 2.4 and 3.4. Some examples follow. 

Estimates of p and u. The hazard plot yields estimates of the mean log 
life p and the log standard deviation c. As before, the estimate of the mean 
log life p at a stress is just the log of the median there. For example, the 
graphical estimate of the median at 220°C is 2900 hours from Figure 5.1. The 
corresponding mean log life is log(2900) = 3.462. the estimate of the log 
standard deviation c is the difference between the logs of the 50th and 16th 
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percentiles at a stress. For 2u)"C, the estimate of the 16th percentile is 
2400 hours. The estimate of the log standard deviation is log(2900) - 
log(2400) = 0.08. This small value indicates an increasing failure rate. 

Median at design temperature. The relationship plot yields an estimate 
of the median at any temperature. For example, the estimate for 180"C, the 
design temperature, is 12,300 hours. 

5.5. Assess the Model and Data 

The graphical methods of Section 2.5 are used to assess the distribution 
(lognormal here), the relationship (Arrhenius here), and the data. Censored 
observations in a relationship plot are difficult to interpret. Thus one uses 
estimates of percentiles in such a plot. Some remarks on the plots follow. 

Common u. Figure 5.1 shows noteworthy features. The plots at the four 
temperatures are parallel. This indicates that Q has the same value at all test 
temperatures. This is consistent with the Arrhenius-lognormal model. In 
contrast, Figure 2.lA does not have parallel plots because the Class-H data 
there contain a mix of failure modes. One expects the model to fit data on a 
single failure mode better than it fits data with a mix of failure modes. 

Relationship not Arrhenius. The 260" data coincide with the 240" data in 
Figure 5.1. Consequently the 260" median is the same as the 240" median in 
Figure 5.2. However, insulation life should be less at 260" than at 240". One 
possible reason for the peculiar 260" data is that the 260" motorettes were not 
made at the same time as the others. So they may differ with respect to ma- 
terials or fabrication and consequently life. 

$1,000,000 insight. Another possible reason for the peculiar 260" data is 
that the test method based on IEEE Standard 117 may be misleading. The 
Standard recommends how long motorettes be held at temperature in an 
oven between inspections. Following the Standard, the test used 7 days be- 
tween inspections at lW", 4 days at 220", and 2 days at 240", but did not use 
1 day at 260". Instead the test used 2 days at W", the same as at 240". The 
inspection involves removing the motorettes from the oven, cooling them to 
room temperature, and applying the design voltage to see if the insulation 
withstands it. Unfailed motorettes are put back into the oven and heated to 
the test temperature. Thus the insulation is thermally cycled, and the result- 
ing mechanical stressing may degrade life. According to this theory, if the 
260" motorettes had been cycled every day, instead of every two days, they 
would have failed sooner and the data would have looked "right." A subse- 
quent designed experiment (in Problem 3.9) involved combinations of tem- 
perature and cycle length. The experiment showed that thermal cycling has 
an important effect on the insulation life. The insulation engineer knew that 
such a motor is used one of two ways: (1) continuously or (2) frequently on 
and off. The engineer saw that continuously running motors were not ther- 
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mally cycled, and a cheaper insulation would suffice for them. This insight 
annually saves $l,OOO,OOO at 1989 prices. 

6. INTERVAL (READ-OUT) DATA 

Introduction. This section describes how to graphically analyze read-out 
(interval) data. It shows how to estimate the product life distribution under 
(accelerated) test conditions and under design conditions. Topics include 

6.1. Interval (read-out) data and Microprocessor example, 
6.2. Probability plot and confidence limits, 
6.3. Relationship plot and acceleration factors. 

Tobias and Trindade (1986) present some of these topics with electronics ap- 
plications. Analytic methods for such data appear in Chapter 5. 

6.1. Read-Out (Inspection) Data and Microprocessor Example 

Overview. This section describes read-out data and how it arises, a Mi- 
croprocessor example, removals and censoring, and assumptions. 

Description. Some life tests yield read-out (interval) data on time to 
failure of specimens. In such tests, sample specimens start on test together 
(at test time 0), and they are inspected periodically for failure. Finding a 
specimen failed on inspection i at read-out time t i ,  one knows only that it 
failed between the previous read-out time and ti (to = 0). The exact 
failure time is not observed, because it is difficult or costly to instrument each 
specimen to observe failure. 

Example. Table6.1 shows typical read-out data on a sample of Mi- 
croprocessors tested at 125°C and 7.0 V. The inspection (read-out) times are 
6,12,24,48,168,500,1000, and 2000 test hours. For inspection interval i, the 
data consist of the number ni of devices that started through the interval at 
time t i -1  and the number fi that failed by the interval end at time t i .  These 
numbers appear Table 6.1 as f i /n i .  For example, interval 2 runs from 6 to 
12 hours, and the data 2/1417 means that 1417 devices entered the interval at 
6 test hours, and 2 were found failed on inspection at 12 test hours. Such 
data are also called inspection and interval data. 

Purpose. A purpose of the analyses below is to estimate the life distribu- 
tion of such devices at the test condition (125°C and 7.0 V) and at the design 

Table 6.1. Microprocessor Read-Out Data 

Interval i:  1 2 3 4 5 6 7 8 
Hours t i :  6 12 24 48 168 500 1000 2000 
f i / n i :  6/1423 2/1417 0/1415 2/1414 1/573 1/422 2/272 1/123 
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condition (55°C and 5.25 V). Also, the device failure rate is to be compared 
with a goal of 200 FITS, which is equivalent to 0.02% per lo00 hours, assum- 
ing an exponential distribution. 

Removals and censoring. In such testing, some unfailed devices may be 
censored after any inspection time. For example, Table6.1 shows that 
1414 devices entered interval 4 at 24 hours and 2 failed. Of the 1414-2 = 
1412 that survived to 48 hours, 573 devices entered interval 5 at 48 hours. 
Thus 1412-573 = 839 unfailed devices were censored at 48 hours. Such cen- 
soring arises various ways. Some unfailed devices may be removed from test 
at various read-outs. Such removals free the test equipment for other tests 
and reduce test cost. Of course, such removals result in less accurate esti- 
mates of the life distribution at later inspection times. However, it is often 
best to run more devices through early inspection times to accurately esti- 
mate the lower tail of the life distribution. Below it is assumed that removals 
occur only at inspection times. Also, censoring may result from loss of de- 
vices, say, from failure of the test equipment or other extraneous causes, for 
example, a failure mode not of interest. Also, censoring results from having 
several tests in progress, each having run a different length of time when the 
data are analyzed. Analysis of read-out data without (intermediate) censor- 
ing is much simpler; see, for example, Nelson (1982, Chapter 9). 

Assumptions. (1) In some tests, specimens are run at an accelerated 
temperature and are inspected at room temperature. Such thermal cycling at 
each inspection may affect device life. This possibility is often overlooked. 
(2) A common inspection scheduled is assumed throughout. In Table 6.1, all 
devices were inspected on the same schedule. Consequently, the data plots 
below are simple. Otherwise, use Peto’s (1973) and Turnbull’s (1976) plot. 

63. Probability Plot and Confidence Limits 

Overview. This section presents a probability plot (nonparametric esti- 
mate and confidence limits) for the life distribution for read-out data with re- 
movals or censoring. 

Estimate and Plot 

Estimate. For read-out data, the life distribution can be nonparametri- 
cally estimated only at the inspection times. The following method yields a 
nonparametric estimate Fi and plot of the population fraction failed at each 
inspection time t i .  The random quantities in the read-out data are the num- 
bers fi of devices failing in each inspection period. The actual random failure 
times are not observed. Thus the usual probability plotting methods of previ- 
ous sections for observed failure times do not apply. The following steps 
yield the Kaplan-Meier (1958) estimate adapted to read-out data. 

Steps. Table 6.2 shows the steps in the calculation of the reliability esti- 
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Table 6.2. Calculation of Microprocessor Reliability Estimates 

(5 )  (6) (7) 
Ri = Fi = 95% 

(4) 
R: = 

(1) (2) (3) 

i ti fi/ni l -c f i /n i )  R ;Ri . -  . R,! 1 -Ri conf. 

1 6 611423 957835 +=+ .957835 0.42% 2.34% 
.99437~ 0.56% 2.39% 

e x -  
2 12 211417 .99858~ +=-+ 

9943780 0.56% 2.39% 
Y X’ 

3 24 011415 1.0000000 -+=+ 
-x- 

4 48 211414 .9985855 +=+ .9929716 0.70% 2.44% 
4-x- 

5 168 11573 9982548 -+=+ .9912386 0.88% 2.56% 
e x -  

6 500 11422 976303 +=-+ .9888897 1.11% +.73% 
e x -  7 loo0 21272 .9926$0 -+=+ .98161fi 1.84% 21.26% 
4-x- 

8 2000 11123 .99186~ +=+ .973637a 2.64% 22.02% 

mate at each inspection time ti. The Microprocessor data in Table 6.2 come 
from Table 6.1. 

1. 
2. 

3. 

4. 

5. 

6. 

7. 

Column (1) shows the number i of each inspection, i = 1,2, 
Column (2) shows the inspection time ti in hours. For example, inspec- 
tion 2 was at 12 test hours, and the inspection interval ran from 6 to 
12 test hours. 
Column (3) shows the datafilni. fi is the number of devices failing in in- 
terval i, and ni is the number on test at the interval start at time t i -1 .  

Column (4) shows the calculation of the estimate of the conditional reli- 
ability for interval i as RJ = 1- Y; /n i ) .  This estimates the fraction of the 
population unfailed at time t i- l  that also reach time ti unfailed. f i /n i  esti- 
mates the conditional fraction failed in interval i. For example, for inter- 
val 2, R i  = 1-(211417) = 0.9985885. For confidence limits later, these 
and all other calculations employ at least seven significant figures. 
Column (5) shows the recursive calculation of the estimate of the (uncon- 
ditional) reliability at time ti as Ri = RJ x Ri-l where R o  = 1. For exam- 
ple, for interval 2, R2 = R i  x R1 = 0.9985885 x 0.9957835 = 0.9943780. 
The flow of the recursive calculations is shown by arrows in Table 6.2. 
Column (6) shows the estimate of the (unconditional) population fraction 
failed by time ti ,  namely, Fi = 1-Ri,  expressed as a percentage. 
Column (7) shows the k uncertainty (95% confidence) in the estimate Fi 
of the fraction failed. Its calculation appears below. 

,8. 

Plot. On probability paper, plot each estimate Fi of the population frac- 
tion failed against its time t i .  These estimates for the Microprocessor data 
appear as xs on Weibull paper in Figure 6.1. In previous probability plots, 
each point corresponds to one specimen failure at its actual time of failure. 
However, in a plot of read-out data, a point may correspond to one or more 
failures. Moreover, the point appears at the inspection time - after the actu- 
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6 

HOURS 

Figure 6.1. Weibull plot of Microprocessor estimates and 95% limits. 

al failure time. To interpret such a plot, one must take into account such 
differences. To help do this, one can write the actual number of failures in 
each interval in place of the point. Or, better, plot confidence limits (Fig- 
ure 6.1) about each plotted Fi to indicate its accuracy. No failures occurred 
in interval 3. It is difficult to say whether to plot the estimate Fj, since the 
point does not correspond to any failures. 

Interpretation. Interpret the plot of the Fi like other probability plots as 
follows. But take into account the interval nature of the data. 

Distribution fit. If the plot is relatively straight, then the distribution ade- 
quately fits the data over the observed inspection times. For example, the 
Weibull plot of the Microprocessor data (Figure 6.1) is relatively straight. 
Thus the Weibull distribution appears to adequately fit the data. To com- 
pare how well different distributions fit, plot the data on various distribu- 
tion papers, and choose the distribution with the straightest plot. The 
confidence limits below help make this choice. 
Failure rate. The graphical estimate of the Weibull shape parameter indi- 
cates the nature of the failure rate (increasing, decreasing, or constant as 
the population ages). For the Microprocessor data, this estimate is 0.3. 
This indicates a decreasing failure rate. Thus such devices would benefit 
from burn-in - if the failure mode at the test condition is the dominant one 
at the design condition. 
Goal. A goal is a failure rate of 200 FITS. The corresponding exponential 
distribution appears in Figure 6.1 as a straight line with a shape parameter 
(slope) of 1. The distribution estimate is well below (worse than) the goal. 
Of course, this estimate is for an accelerated condition. Section 6.3 shows 
how to estimate the distribution at a design condition. 
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Confidence Limits 

Overview. This section presents nonparametric confidence limits for the 
population reliability at the read-out times where the data are (1) uncensored 
and (2) censored. These confidence limits help one judge the accuracy of the 
plotted points and draw a line through them. Chapter 5 presents parametric 
confidence limits. 

(1) Uncensored data. Suppose n devices are tested and are uncensored 
before inspection i .  The following simple estimate and confidence limits ap- 
ply to all inspection times through ti. For example, for the Microprocessor 
data in Table 6.1, the limits apply through r3  = 24 hours. Also, to a good ap- 
proximation they apply through r4 = 48 hours, since only one device out of 
1415 is censored at 24 hours. 

Estimate. Suppose Ci is the curnularive number failed by read-out time ti. 
Then the simple estimate of the population fraction failed by time ti is the 
sample fraction Fi = Ci/n. The reliability estimate is Ri = l-(Cj/n). The 
estimate above for censored data reduces to this simple one when there is no 
intermediate censoring. Plot these Fi on probability paper. 

Exact limits. If there is no censoring before ti ,  the cumulative number of 
failures Ci has a binomial distribution, and exact binomial confidence limits 
apply. These limits appear in most statistics texts, for example, in Nelson 
(1982, p. 205). Simple approximate limits follow. 

Poisson approximation. For few failures (say, Ci < 10 and 11 > loci), use 

4 (0.5/n)g[(1-P)/2;2Ci], Fi (OS/n)J[(ltP)/2;2Cit2]. (6.1) 

Here ?[P’;D] is the 100P’th percentile of the chi-square distribution with D 
degrees of freedom. Note that the two limits have different degrees of free- 
dom:- 2Ci and 2Ci+2. The confidence limits for reliability are $i = 1-Fi 
and Ri = 1-4. The one-sided upper 1OOP% confidence limit is 

Fi (0.5/n)2(P;2Ci +2). 

With loo<% confidence, the population fraction failing by time ti is no worse 
than this Fi. 

Example. n = 1423 for the Microprocessor data (Table 6.1). The simple 
estimate at r l  = 6 hours is F1 = 6/1423 = 0.0042 or 0.42%. The 95% 
confidence limits are 

Fl = (0.5/1423)2[(1-0.95)/2;2(6)] = (0.5/1423)4.404 = 0.0015 or 0.15%, 

k1 = (0.5/1423)2[(1t0.95)/2;2(6) t 21 = (0.5/1423)26.12 = 0.0092 or 0.92%. 

the two-sided 1OOP% confidence limits (Poisson approximation): 
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Normal approximation. For many failures (say, 10 < C; < 11-10), use 
the two-sided loop% limits (normal approximation): 

4 2 F;-K~[F;(~-F;)/II]'/~, F; = F ; ~ K ~ [ F ; ( ~ - F ; ) / I I ] ' / ~ .  (6.2) 

Here K p  is the standard normal 100(1tP)/2 percentile. For example, 
K,95 = 1.96 2. The one-sided upper loop% confidence limit is 

F; = F; t zp[F;(l - F ; ) / I ~  ]'I2; 

here z p  is the standard normal 1OOPth perceniile. F y  example, z.95 = 1.645. 
Confidence limits for reliability are R; = 1 -F; and R; = 1-6. Thomas and 
Grunkemeier (1975) investigate better approximations. 

(2) Censored data. For cerisored read-out data, the following are approx- 
imate confidence limits for the population fraction failed by read-out time f ; .  
Based on a normal approximation to the distribution of the estimate F;, they 
are adequate when C, > 10, and can be used even for C; > 5. For smaller C;, 
use the binomial confidence limits for uncensored data if feasible. Plot these 
confidence limits on the probability paper with the estimates F,. Figure 6.1 
shows such limits on the Weibull plot for the Microprocessor data. 

Limits. The following limits employ an estimate v(F;) of the variance of 
the estimate F;. Two-sided approximate loop% confidence limits are 

_F;. F; - Kp[v(F;)]'/2, F; F; t K~[v(F;)]'/~. (6.3) 

Here K p  is the standard normal lW(1 tP)/2 percentile (Appendix A3). 

mation is 
Approximate variance. For Fi small (say, Fi c 0.10), a simple approxi- 

v(F;) ' Rf { [ F ; / ( n  1R;)j t [ F i / ( t 1 2 R i ) ]  t * * . t [Fi / (n jRJ)] } .  (6.4) 

The notation follows that in Table 6.2. Note that both primed and unprimed 
estimates appear here, and F; = fi/nj = l - R i .  For example, for the 
Microprocessor data, v(F8) O.OOO100 at 2OOO hours. The approximate 95% 
confidence limits are 

E8 = 0.0264 - 2(0.000100)'/* = 0.0064 or 0.64%, 

= 0.0264 t 2(0.000100)'/2 = 0.0464 or 4.64%. 

These limits are plotted at 2000 hours in Figure 6.1. 

Exact variance. The exact variance estimate entails (he calculations in 
Table 6.3. The calculations in columns (1) through (5) of Table 6.3 are 
exactly the same as those in Table 6.2. However, in column (3) of Table 6.2, 
use nlr = n; - 1 in place of n;. In Table 6.3, rlf denoles the estimate of the con- 
ditional reliability, and r; denotes the estimate of the reliability at time f;. 
Then the exact variance estimate is 

v(F;) = I?;@;-r;). (6.5) 
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Table 63. Exact Calculation of V(Fj) 

1 6 611422 
2 12 211416 
3 24 011414 
4 48 211413 
5 168 11572 
6 500 11421 
7 lo00 21271 
8 2000 1/122 

9957806 
.9985875 

1.00000~ 
9985845 
982517 
.9976247 
926199 
.9918O32 

.99578~ 
,9943741 
,9943741 
992966 
9912307 
.9888762 
.9815782 
.97353, 

f .34% 
f .39% 
2.39% 
? 4% 
f .56% 
2.73% 
5 1.26% 
f 2.02% 

Here Ri comes from Table 6.2, and rj comes from Table 6.3. Note that (Ri - 
rj) is a small difference of nearly equal numbers. Thus Rj  and ri must be 
accurate to seven significant figures to assure that v (Fj )  is accurate to two 
figures. The v(Fi) appear in column (6) of Table6.3. Column (7) shows 
2~10Ox[v(Fi)]'~~ where 2 K.95, and 100 yields a percentage. This v(Fj) is 
Greenwood's (1926) variance for the Kaplan-Meier estimate extended for 
read-out data. 

Computer packages. The procedure LIFETEST of SAS Inst (1985) and 
other computer packages calculate the Kaplan-Meier estimate (1958) and 
such confidence limits for multiply censored data with observed failure times. 
Such routines can be used for censored intend data if all specimens have the 
same inspection schedule. Then one must take into account the interval 
nature of the data in inputting the data and using the output. If groups of 
specimens have different inspection schedules, one must use the more com- 
plex confidence limits for the Pet0 (1973) and Turnbull (1976) estimates. 
STAR of Buswell and others (1984) performs the complex Pet0 calculations 
and calculates confidence limits. 

63. Relationship Plot and Acceleration Factors 

Overview. This section first shows how to use an acceleration factor 
(defined below) to analyze data from a test at a single accelerated stress level. 
Such analyses yield an estimate of the life distribution at a design condition 
for interval and other types of data. Interval data from h ~ o  or more stress lev- 
els are plotted on relationship and probability plots and analyzed with 
methods in Sections 4.3 and 5.3, including assessing the model and data. 

One condition. In some accelerated tests, specimens are run at just one 
accelerated test condition. Moreover, that condition may result from ac- 
celerating a number of variables, such as temperature, temperature cycling, 
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humidity, vibration, etc. Such testing of electronics is common, and MIL- 
STD-883 specifies standard tests. Run during development, such a test is 
usually intended to identify failure modes so they can be corrected. Also, 
they are used as demonstration tests (MIL-STD-883) to assess whether a de- 
vice has satisfactory reliability. One can estimate device life at a design con- 
dition only if one knows the acceleration factor between life at the accelerat- 
ed and design conditions. 

Acceleration factor. Suppose that “typical life” of a failure mode is t at a 
design condition and is t’ at an accelerated test condition. Then the acceleru- 
tion factor K for those two conditions is 

t = K - t ’ .  (6.6) 

For example, if K = 500, the failure mode lasts 500 times as long at the 
design condition as at the accelerated condition. Also, loosely speaking, one 
hour at the accelerated condition equals K hours at the design condition. 
Equivalently, a read out time of 6 hours under acceleration corresponds to 
500 * 6 = 3OOO hours at the design condition. An acceleration factor is calcu- 
lated as follows from a known life-stress relationship. Each failure mode has 
a separate relationship and acceleration factor (Chapter 7). 

Arrhenius factor. The Arrhenius relationship is often used to describe 
temperature-accelerated tests where product failure is due to chemical deg- 
radation or intermetallic diffusion. Suppose that T is the design temperature, 
and T is the test temperature, both in degrees Kelvin. Kelvin = Centigrade 
t 273.16. Then the Arrhenius acceleration factor (Section 9.1 of Chapter 2) 
for a failure mode is 

K = exp{(E/Wl/T) - (1/~’)11. (6.7) 

Here E is the activation energy (in eV) of the failure mode, and k = 8.6171 x 
is Boltzmann’s constant in eV per Kelvin degree. E corresponds to the 

slope of an Arrhenius relationship on an Arrhenius plot. To evaluate the fac- 
tor, one must know E or assume a value for it. There are such factors for 
other life-stress relationships. 

Example. For the Microprocessor, the test temperature is T‘ = 125 + 
273.16 = 398.16, and the design temperature is T = 55 t 273.16 = 328.16. 
For some types of failure modes, the activation energy is assumed to be E = 

1.0 eV. The corresponding acceleration factor is 

K = exp{(1.0/8.617l~lO-~) [(1/328.16) - (1/398.16)]} =50L 

Thus such a failure mode lasts about 500 times longer at the design tempera- 
ture. For such microprocessors, other failure modes are also assumed to 
have activation energies of 0.8 and 0.3 eV. 

Design life. The following provides an estimate of the life distribution at 
a design condition. For each read-out time ri’, use the acceleration factor K 
to calculate the equivalent time ti = K ti’ at the design condition. Use the 
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Figure 6.2. Weibull plot of 55°C estimate and 95% limits. 
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Figure 63. Arrhenius plot of Microprocessor data, slope of 1.0 eV. (Paper provid- 
ed by courtesy of D. Stewart Peck.) 



154 GRAPHICAL DATA ANALYSIS 

equivalent times to estimate the life distribution at the design condition, using 
the methods above. Equivalently, move the estimate of the accelerated dis- 
tribution toward longer life by a factor K. For example, Figure 6.2 shows a 
Weibull plot of this estimate of the Microprocessor life distribution at 55°C. 
The distribution at 55°C is higher than that at 125°C (Figure 6.1) by a factor 
K = 500. For example, the inspection at 6 hours at 125°C corresponds to an 
inspection at 500.6 = 3OOO hours at 55°C. Confidence limits and parametric 
estimates similarly are at higher times by a factor K as in Figure 6.2. 

Multiple acceleration. There can be several accelerating variables, each 
with an accelerating factor. The product of those factors is the combined 
accelerating factor. This assumes that the variables do not interact. The gen- 
eralized Eyring model (Chapter 2) represents such interactions. 

Uncertainty. Note that the width of a confidence interval is the same at 
the accelerated and design conditions. This results from assuming that the 
acceleration factor is correct. In practice, the factor is approximate. Thus 
the uncertainty of the estimate of life at the design condition really exceeds 
the confidence limits. A better analysis would include the uncertainty in the 
acceleration factor. 

Arrhenius plot. The acceleration factor can be graphically evaluated with 
Arrhenius paper as follow, The Arrhenius paper in Figure 6.3 shows each 
read-out time and sample cumulative percent failed at 125"C, the accelerated 
temperature. In Figure 6.3, a line passes through an origin and the Activa- 
tion Energy scale at 1.0 eV. Its slope corresponds to E = 1.0 eV. Draw lines 
parallel to that line from the read-out times ti' at 125°C to get the 
corresponding times ti at 55°C. The estimates Fi correspond to these new t i .  

The times scales in Figures 6.2 and 6.3 coincide, showing the relationship 
between the Weibull and Arrhenius plots. 

PROBLEMS (* denotes difficult or laborious) 

3.1. Three insulations. Specimens lives (in hours) of three electrical in- 
sulations at three test temperatures appear below. Failure times are the mid- 
points of inspection intervals. The main aim is to compare the three insula- 
tions at the design temperature of 200°C and at 225" and 250", occasional op- 
erating temperatures. Use the Arrhenius-lognormal model. 

Insulation 1 Insulation 2 Insulation 3 
200°C 225°C 250°C 200°C 225°C 250°C 200°C 225°C 25OOC 
1176 624 204 2520 816 300 3528 720 252 
1512 624 228 2856 912 324 3528 1296 300 
1512 624 252 3192 1296 372 3528 1488 324 
1512 816 300 3192 1392 372 
3528 1296 324 3528 1488 444 
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(a) On separate lognormal probability paper for each insulation, plot the 
data from the three test temperatures. 

(b) Are there any pronounced peculiarities in the data? 
(c) How do the three insulations compare at 200"C, the usual operating 

temperature, with respect to the median and spread in (log) life? 
Which differences are convincing? Why? 

(d) How do the three insulations compare at 225 and 250"C, occasional op- 
erating temperatures, with respect to the median and spread in (log) 
life? Which differences are convincing? Why? 

(e) How do the three compare overall, and are any differences convincing to 
you? Write a short recommendation to management. 

( f )  Estimate r-7 for each insulation. Gauge the amount of uncertainty in each 
estimate. Do the slopes (ds) for the insulations differ convincingly? 
Comment on the nature of the failure rate (increasing or decreasing?). 

(g) On separate Arrhenius papers, plot the data for each insulation. 
(h) On each Arrhenius plot, mark the sample medians and fit  a straight line 

to them. Judge the linearity of each plot. 
(i) Use the Arrhenius line to estimate the median life at 200°C of each insu- 

lation. Gauge the amount of uncertainty in each estimate. Do you 
prefer these estimates or those from (c)? Why? 

(j) Suggest further analyses and other models. 
(k) Carry out (j). 

32. Plotting positions. Use the data on Insulation 2 at 225°C above. On 
lognormal probability paper make three plots of the data at 225"C, using the 
(1) midpoint, (2) mean, and (3) median plotting positions. 
(a) How do the graphical estimates of the distribution median, 1% point, 

and Q compare for the three plotting positions? 
(b) Which yields the most conservative (pessimistic) and optimistic esti- 

mates for reliability purposes? 
(c) Do the differences in the estimates look large compared to the uncer- 

tainties in the estimates? 

33. Heater data. Complete life data (in hours) from a temperature- 
accelerated test of sheathed tubular heaters appear below. The main aim 
was to estimate the median and 1% point of life at the design temperature of 
1100°F. Absolute (Rankine) temperature is the Fahrenheit temperature plus 
460°F. Life was assumed to have a lognormal distribution and to follow an 
Arrhenius relationship. 

Temp. "F Hours 

1708: 511 651 651 652 688 729 
1660: 651 837 848 1038 1361 1543 
1620: 1190 1286 1550 2125 2557 2845 
152Q 1953 2135 2471 4727 6134 6314 

(a) Plot the data on lognormal probability paper. Comment whether the 
lognormal distribution adequately fits. 
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(b) From separately fitted lines, estimate the log standard deviation and 
median at each test temperature. Gauge the amount of uncertainty in 
each estimate. Do the slopes of the lines differ convincingly? 

(c) From parallel fitted lines, estimate a common log standard deviation. 
Gauge the amount of uncertainty in this estimate. 

(d) Plot the data and sample medians on Arrhenius paper. First make such 
paper from semi-log paper, as none is availathe for 1100 to 1708°F. 

(e) Fit a straight line to the sample medians and comment on linearity. 
( f )  Use the fitted line to estimate the median at 1100°F. Gauge the amount 

of uncertainty in this estimate. 
(g) On the lognormal paper, plot the estimate of the 1100" median, and 

draw the line for the 1100" life distribution. 
(h) Estimate the 1% point of life at 1100°F. Gauge its uncertainty. 
(i) Comment on convincing lack of fit of the model or peculiar data. 
(j) Suggest further analyses and other models. 
(k) Carry out (j). 

3.4. Class-H without 260" data. As follows, reanalyze the Class-H insula- 
tion data of Table 2.1 without the 260" data. Use Weibull probability paper 
rather than lognormal paper. As before, the main aim is to estimate the 50th 
percentile at 180°C. 
(a) Plot the data on Weibull probability paper. 
(b) Comment on the adequacy of the Weibull fit to the data? 
(c) Is the Weibull or lognormal fit convincingly better? Why? 
(d) From separately fitted lines, estimate the shape parameter and 50th per- 

centile at the three test temperatures. Gauge the amount of uncertainty 
in each estimate. Do the slopes of the l i e s  differ convincingly? 

(e) From parallel fitted lines, estimate a common shape parameter. Gauge 
the amount of uncertainty in this estimate. Is the estimate convincingly 
different from l? Comment on the behavior of the failure rate with age. 

( f )  Plot the data on Arrhenius paper. 
(g) On the Arrhenius plot, mark the sample medians. Then fit a line to the 

sample medians. Comment on the linearity of the relationship. 
(h) Use the fitted line to estimate the median at the design temperature of 

180°C. Gauge the amount of uncertainty in this estimate. 
(i) On the Weibull paper, plot the estimate of the median at 180" and draw 

the line for the 180" life distribution. 
0') Comment on any convincing lack of fit of the model or peculiar data. 
(k) Suggest further analyses and other models. 
(1) Carry out (k). 

35. Bearing data. Courtesy of Mr. John McCool, the complete life data 
below are from a load accelerated test of rolling bearings. Forty bearings 
were tested, ten at each of four test loads. The usual assumed model consists 
of a Weibull life distribution and an inverse power relationship (Palmgren's 
equation) between life and load. The failure labeled * is an obvious outlier. 
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Load Life (lob remlutions) 

0.87 1.67 2.20 251 3.00 3.90 4.70 7.53 14.70 27.76 37.4 
0.99 .80 1.00 1.37 2.25 2.95 3.70 6.07 6.65 7.05 7.37 
1.09 .012* .18 .20 -24 .26 .32 .32 .42 .44 .88 
1.18 .073 .098 .117 .135 .175 262 .270 .350 .386 .456 

Make a Weibull probability plot of the four data sets. 
Comment on the outlier and the adequacy of the Weibull distribution. 
Separately fit distribution lines, and estimate the shape parameter for 
each test load and the 10th percentile (Blo life) for each test load. 
Gauge the amount of uncertainty in each estimate. Is it reasonable to 
use a common shape parameter? 
Fit parallel lines, and estimate a common shape parameter. Gauge the 
amount of uncertainty in this estimate. Is the estimate convincingly 
different from l ?  Does the failure rate increases or decreases with age? 
Make a relationship plot of the data on log-log paper. 
On the relationship plot, mark the sample 10th percentile estimates 
(midway between the 1st and 2nd smallest observations) for each test 
load. Fit a line to those estimates, and judge whether it fits adequately. 
Use the fitted line to estimate the 10th percentile at load of 0.75. Gauge 
the amount of uncertainty in this estimate. 
On the Weibull plot, plot the estimate of the 10th percentile and draw 
the line for the life distribution at the design load 0.75. 
Comment on convincing lack of fit of the model or peculiar data. 
Suggest further analyses and other models. 
Carry out 6). 

3.6. Censored bearing data. Redo Problem 3.5 (a)-(;), plotting only the 
fist  four failures at each load. Delete the outlier. Note answers differing 
much from those in 3.5. 

3.7. Censored Class-B insulation life. Delete the two low outliers from 
the data of Table 4.1, and reanalyze the data as follows. As before, the main 
aim is to estimate median Life at 130°C. 

Plot the data on a lognormal probability paper. 
Comment on the adequacy of a lognormal fit, and compare this plot 
with Figure 4.1. 
From separately fitted lines, estimate the log standard deviation and 
50th percentile at each test temperature. Gauge the amount of uncer- 
tainty in each estimate. Do the slopes of the lines differ convincingly? 
From parallel fitted lines, estimate a common log standard deviation. 
Gauge the amount of uncertainty in this estimate. 
Plot the data and estimates of the 50th percentiles on Arrhenius paper. 
Fit a straight line to the sample medians and comment on the linearity 
of the relationship. 
Use the fitted line to estimate the 50th percentile at lWC,  the design 
temperature. Gauge the amount of uncertainty in this estimate. 
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(h) On the lognormal paper, plot the estimate of the 130" median, and draw 
the tine for the 130" life distribution. 

(i) Comment on convincing lack of fit of the model or peculiar data. 
(j) Compare the estimates obtained here with those in Section4. Which 

analysis (with or without outliers) do you prefer and why? State any 
compelling reasons that you prefer either analysis. 

(k) Suggest further analyses and other models. 
(1) Carry out (k). 

Table 4.1 continued running. The test was terminated with the data below. 
3.8, Later Class-B insulation data. The test of the Class-B insulation of 

150°C 
9429 t 
9429 t 
9429 t 
9429 t 
9429 t 
9429 t 
9429 t 
9429 t 
9429 t 
9429 t 

170°C 
1764 
2772 
3444 
3542 
3780 
4860 
51% 
6206 
6792 t 
6792 t 

190°C 
408 
408 

1344 
1344 
1440 
1920 
2256 
2352 
25% 
3120 t 

220°C 
408 
408 
504 
504 
504 
600 
600 
648 
648 
696 

Do (a) through (j) from Problem 3.7. Ignore the interval nature of the data. 
(k) Do the additional failures here yield appreciably different estimates or 

conclusions from those of Problem 3.7? 

3.9.* $l,OOO,0oO experiment. The analysis of the data on Turn failures of 
Class-H insulation in Section 5.5 suggested that the length of the oven cycle 
may affect insulation life. A subsequent experiment with a Class-H insulation 
with various combinations of temperature and cycle length was run. The re- 
sulting data (in hours) on Turn failures appear below. The aims of the analy- 
ses are to estimate Turn life at the design temperature of 180°C and to evalu- 
ate the effect of cycle length. Note that there are different numbers of the 
43 motorettes at the test conditions. This yields greater accuracy in extrapo- 
lating to 180"C, the design temperature, as described in Chapter 6. 

200 "C/7 days: 
215 "C/B days: 
215 "C/2 days: 
230 "C/7 days: 
245 "C/B days: 
245 "C/2 days: 1660,1708,19%, 3008 
260 "C/7 days: 

9 survived 7392 t 
9072,7 survived 11424 t 
6 survived 2784 t 
4286,4452,2 at 4620,5746,6216 
2352,3 at 3024,4363,7056 

3 at 1088,1764 

(a) Make a lognormal plot of the data from the four test combinations 
(230", 7 days), (245", 28 days), (245", 2 days), and (260", 7 days). Com- 
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ment on (i) adequacy of the lognormal fit and (ii) parallelness of the 
four plots (common 6). 

Estimate a common o value and gauge its amount of uncertainty. Com- 
ment on the nature of the failure rate. 
Compare the lognormal plots of the 245" data with cycle lengths of 2 and 
28 days. Is there a convincing difference between the two sets of data? 
Do the data support the theory that shorter cycle length (more frequent 
temperature cycling) reduces insulation life? 
IEEE Std 117 suggests using test conditions (215", %days), (UO", 
7 days), and (245", 2 days). Make a lognormal plot of these three data 
sets. Comment on the appearance of the plot. 
Plot the data (including nonfailures) and the sample medians from (d) 
on Arrhenius paper, and fit the Arrhenius line. Estimate the median at 
18O"C, and gauge its amount of uncertainty. 
Another analysis employs data with just one cycle length, 7 days: (200", 
7 days), (m", 7 days), and (2600, 7 days). Make a lognormal plot of 
these three data sets. Comment on the appearance of the plot. 
Repeat (e) for the 7-day data on another Arrhenius paper. 
Do the estimates from (e) and (g) differ convincingly? Which do you 
prefer and why? 
Are the two estimates of median life at 180°C sensitive to assuming a 
lognormal life distribution? 
Suggest further analyses and other models. 
Carry out 6). 
Write a brief report for engineers to summarize your findings. Include 
appropriate plots and output. 

3.10.* Left and right censored data. The data below came from a 
voltage-endurance test of an insulating fluid. Some breakdowns occurred 
within one second while the voltage was being raised to 45 kV; they are 
denoted by 1- below. Such data are censored on the left; that is, failure oc- 
curred before the given time. Include them in determining plotting positions 
of later failures, but do not plot them. The aim is to estimate the 1% life at 
15 kV, a design voltage. 

Time to Breakdown (seconds) 

45 kV 
1- 
1- 
1- 
2 
2 
3 
9 

13 

1 
1 
2 
3 

12 
25 
46 
56 

35 kV 
30 
33 
41 
87 
93 
98 

116 
258 

30 kV 
50 

134 
187 
882 

1,448 
1,468 
2,290 
2,932 

25 kV 
521 

2,517 
4,056 

12,553 
40,290 
50,560 + 
52,900 + 
67,270 + 

Plotting 
Position 

4.2 
12.5 
20.8 
29.2 
37.5 
45.8 
54.2 
62.5 



160 GRAPHICAL DATA ANALYSIS 

47 68 461 4,138 83,990* 70.8 
50 109 1182 15,750 85,500+ 79.2 
55 323 1350 29,180t 85,700+ 87.5 
71 417 1495 86,100+ 86,420+ 95.8 

- denotes left censored (failure occurred earlier). 
t denotes right censored (unfailed). * unplotted failure. 

(a) Make a Weibull plot of the five data sets. Comment on the adequacy of 
the Weibull distribution. 

(b) Separately fit distribution lines, and separately estimate the same per- 
centile and the shape parameter for each test voltage. Gauge the 
amount of uncertainty in each estimate. Is it reasonable to use a com- 
mon shape parameter? 

(c) Fit parallel lines, and estimate a common shape parameter. Gauge the 
amount of uncertainty in this estimate. 

(d) Engineering theory says that the life distribution of such fluid is ex- 
ponential. Does the shape estimate convincingly differ from l? Com- 
ment whether the failure rate increases or decreases. 

(e) Make a relationship plot on log-log paper, showing censored data. 
(Q Fit a line to percentile estimates. Judge whether the line fits adequately. 
(g) Use the fitted line to estimate the percentile at 15 kV. Gauge the 

amount of uncertainty in this estimate. On Weibull paper, draw the dis- 
tribution line through this estimate. 

(h) Comment on convincing lack of fit of the model or peculiar data. 
(i) Suggest further analyses and other models. 
(j) Carry out (i). 

3.11. Multiply censored relay data. Below are test data on a production 
relay and on a proposed design change. Engineering experience suggested 
that life has a Weibull distribution and life is an exponential function of cur- 
rent. Engineering sought to compare the production and proposed designs 
over the range of test currents. 
Production Thousands of cycles 

16amps: 38+ 77+ 138 168+ 188 228 252 273 283t  288 
291 299 317 374 521 529 559 561 656 873 

26amps: 103 110 131 219 226t 

28amps: 84 92 121 138 191 206 254 267 308 313 
Prooosed 

26amps: 110 138 249 288 297 

28amps: 8+ 5 1 t  118t  144 219 236t  236t  252 252t 

(a) Make separate Weibull hazard plots for the two designs. 
(b) Comment on the adequacy of the Weibull distribution. 
(c) Estimate the shape and scale parameter for each of the five data sets. 

Gauge the amount of the uncertainty in each estimate. 
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(d) Estimate a common shape parameter for each design separately and for 
both designs together. Gauge the amount of the uncertainty in each es- 
timate. Is a common value reasonable? Is the common estimate con- 
vincingly different from l ?  Does the failure rate increase or decrease? 

(e) Make a separate relationship plot for each design on semilog paper, us- 
ing the log scale for cycles and the linear scale for current. Plot runouts. 

(f) On each relationship plot, mark sample percentile estimates (your 
choice) for each test current. Fit a line to the percentile estimates, and 
comment on the linearity of the two relationships. 

(g) Comment on any lack of fit of the model or peculiar data. 
(h) Is one design convincingly better than the other? 
(i) Suggest further analyses and other models. 
(j) Carry out (i). 

3.12. Transformer turn data. Transformer l i e  testing at high voltage 
(rms) resulted in the multiply censored data below. All failures were turn- 
to-turn failures of the primary insulation. The Weibull distribution and in- 
verse power law were assumed to fit such data. The main aim was to esti- 
mate the 1st percentile at 15.8 kV, 110% of design voltage 14.4 kV. 

Voltage Hours 

35.4 k V  40.1 59.4 71.2 1665 204.7 229.7 308.3 537.9 1002.3t 1002.3t 
42AkV. 0.6 13.4 15.2 19.9 25.0 30.2 32.8 44.4 50.2t 56.2 
46.7 k V  3.1 8.3 8.9 9.0 13.6 14.9 16.1 16.9 21.3 48.1 t 

Plot the data on Weibull hazard paper. Comment on the Weibull fit. 
Repeat (a) using the modified hazard plotting positions. Compare 
plots (a) and (a'). 
From separately fitted lines, estimate the shape parameter and a 
chosen percentile at each test voltage. Gauge the amount of uncertain- 
ty in each estimate. Do the slopes of the lines differ convincingly? 
From parallel fitted lines, estimate a common shape parameter. 
Gauge the amount of uncertainty in this estimate. Does this estimate 
differ convincingly from l ?  Does the failure rate increase or decrease? 
Plot the data (including nonfailures) and percentile estimates on log- 
log paper. Fit a line to the percentile estimates. Comment on the 
linearity of the relationship. 
Estimate the power of the inverse power law. Gauge the amount of 
uncertainty in this estimate. 
Use the fitted line to estimate the chosen percentile at 15.8 kV. Gauge 
its amount of uncertainty. Plot this estimate on Weibull paper. 
Draw a distribution line through the estimate (f) on Weibull paper. 
Estimate the 1st percentile at 15.8 kV and convert it from hours to 
years. Gauge the amount of uncertainty in this estimate. 
Comment on any convincing lack of fit or peculiar data. Suggest fur- 
ther analyses. 
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%RH 
30 
40 
50 
60 
70 
78 

Corrosion (weight change) 
0.0144 0.0153 0.0092 0.0120 0.0111 0.0163 0.0193 0.0244 
0.0221 0.0280 0.0287 0.0301 0.0301 0.0330 
0.0744 0.0684 
0.1050 0.1110 0.1160 0.1185 
0.1665 0.2065 0.2220 0.2540 0.2930 0.3008 0.3408 0.3807 
0.6549 0.6660 
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given humidity - both with symbols and numbers for parameters. Do 
this for the equation for a percentile as a function of humidity. 

(i) Suggest further analyses and other methods. 
(j) Carry out (i). 

3.14. Eyring relationship. Repeat the graphical analyses of the Class-H 
data, but use the Eyring relationship instead of the Arrhenius relationship. 
In particular, plot the transformed times t i  = riT where ri is the failure time 
and 

3.15. Thermal cycling. Eighteen specimens of encapsulant were thermal- 
ly cycled - six at each of the temperature changes. Inspection after 12, 50, 
100, and 200 cycles detected cracked specimens and yielded the following in- 
terval data. The aim is to estimate life under a 40" cycle. 

the absolute temperature for specimen i. 

Cycles 
Temp. Survived 

190°C 1 1 2 1 1 
140°C 2 1 3 
100°C 6 

0-12 13-50 51-100 101-200 200 Change - ~ - - - 

(a) Plot the data on lognormal probability paper. For a single failure in an 
interval, plot it at the interval middle. For two failures, plot them equal- 
ly spaced in the interval. Comment on whether the plots are parallel. 

(b) Plot the data on log-log paper, including nonfailures. Theory for the 
Coffin-Manson relationship suggests life goes inversely as the fifth 
power of the temperature change. Fit to the data a line with the 
corresponding slope. Comment on how well the line fits the data. 

(c) Use both plots to estimate the life distribution for a temperature change 
of 40°C. Plot the estimate of distribution line on the lognormal paper. 

(d) Comment on the validity of the data and model. 
(e) In a test of a new encapsulant, 42 specimens were cycled through a tem- 

perature change of 190" and all survived 200 cycles. How does the new 
encapsulant compare with the old under a 190" cycle? Under 40"? Are 
differences convincing? What assumptions are used? Are they valid? 

3.16. Wire varnish. Twisted wire pairs coated with a varnish (electrical 
insulation) were subjected to a temperature-accelerated test. The midpoints 
of the inspection intervals in hours and the numbers of failures (in 
parentheses) follow. 

Temp. Hours (No. of failures) 

220°C 1092 (l), 2184 (2), 2436 (4), 2604 (1) 

260°C lO8(2), 132(4), 156 (3), 180(2), m(5) 
240°C 528(5) 

(a) Do a complete graphical analysis of the data. 
(b) Estimate median life at 18O"C, the design temperature. 
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(c) W h y  were unequal numbers of specimens run at the test temperatures? 

3.17. CMOS RAMs. A temperature-accelerated test of CMOS RAMs 
yielded following numbers of failures on inspection (read-out data). The 
purpose of the test was to estimate the life at the design temperature of 55°C 
and at the worst service temperature of 85°C. A device “failed” when its 
leakage current reached a specified value, a result of mobile ion contamina- 
tion. The test ended at 336 hours. Temperatures are ambient. Devices ran 
under a reverse bias but not under power. There are no specimen removals. 

No. at hours (days) 

3 at 24 (1) 
1 at 136 (5.7) 
2 at 168 (7) 
2 at 336 (14) 
40 survived 336 hours 

125°C (106 RAM S )  150°C (48 RAMS) 175°C (24 RAMs) 
No. at hours (days) 

2 at 72 (3) 
1 at 168 (7) 
2 at 336 (14) 
101 survived 336 hours 

No. at hours (days) 

2 at 24 (1) 
3 at 72 (3) 
3 at 336 (14) 
16 survived 336 hours 

(a) Make a Weibull plot of the data, taking into account the inspection in- 
tervals by spreading the individual failures over their intervals. Does the 
Weibull distribution adequately fit the data? Explain. Repeat, plotting 
the fraction failed at inspection times. Compare the plots. 

(b) Estimate the shape parameter. Does the failure rate increase or de- 
crease? 

(c) Does the shape parameter depend on temperature? Explain. 
(d) Estimate the same low percentile at each temperature. Plot those esti- 

mates on Arrhenius paper. Draw a line through them. Also, plot the in- 
dividual failures and indicate numbers of survivors. Comment on ade- 
quacy of the Arrhenius relationship. 

(e) Estimate the activation energy from (d), and compare the estimate with 
1.05 eV, the traditional value for the failure mechanism. 

(f) Use (d) to plot estimates of the life distributions at 55 and 85°C on the 
Weibull paper. In particular, estimate the 1st and 50th percentiles. 

(g) The devices all came from the same wafer. Comment on how this 
affects previous estimates and interpretation of the plots. 

(h) Comment on how to improve the schedule of inspection times. 
(i) Comment on the advantages and disadvantages of the unequal numbers 

of specimens at the three test temperatures. 
6) Calculate an optimum test plan (Chapter 6), and compare it with that 

above. 
(k) Fit the Arrhenius-Weibull model to the (interval) data by maximum 

likelihood (Chapter 5). Plot the fitted model and confidence limits on 
such papers without the data. 

(1) Repeat the preceeding with the Arrhenius-lognormal model. 

3.18.* Microprocessor. The following read-out data are from an ac- 
celerated test of the same Microprocessor whose data appear in Table 6.1. 
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The accelerated temperature is the same (125°C) but here the voltage is 
5.25 V, the design voltage. 

Interval i 1 2 3 4 5 
Hours ti 48 168 500 lo00 m 
hlni 1/1413 3/1411 1/316 2/315 1/165 

(a) Using the format of Table 6.2, calculate the estimates Fi. 
(b) Plot the distribution estimate on Weibull paper. Does the Weibull dis- 

tribution adequately fit the data? 
(c) Estimate the Weibull shape parameter, and comment on the failure rate 

at that test condition. Would burn-in improve production? Why? 
(d) Do the shape parameters at the two voltages differ convincingly? Sug- 

gest explanations for the difference? 
(e) Calculate two-sided 95% confidence limits for the fraction failed, and 

plot them. Do the two distributions differ convincingly? 
( f )  Calculate the acceleration factor between 125°C and the design tem- 

perature 55"C, using (i) E = 0.8 eV and (ii) E = 0.3 eV. On Arrhenius 
paper, plot slopes for 0.3, 0.8 and 1.0 eV, and plot the 5.25 V data. 
Which activation energy is most pessimistic at the design temperature? 

(g) Move the estimate and confidence limits from 125°C to 55°C on the 
Weibull plot, assuming E = 1.0 eV. Compare the 5.25 and 7.0 V distri- 
butions to each other and to the goal. What differences are convincing? 

(h) On another Weibull paper, do (g) for both distributions, assuming E = 
0.8 eV. Do the two distributions at design temperature differ much 
from a practical point of view? 

(i) Do (b) and (g) on lognormal paper, assuming E = 1.0 eV. 
(j) Criticize the preceding analyses. 
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Complete Data and 
Least Squares Analyses 

1. INTRODUCTION 

Contents. This chapter presents least squares analyses for complete life 
data (all specimens run to failure). The analyses provide estimates and 
confidence limits for product life, namely, for model parameters, mean (log) 
life, percentiles, the stress yielding a desired life, and the fraction failing by a 
given age. The methods are used here with normal, lognormal, Weibull, and 
exponential l i e  distributions. The methods apply to data on a measure of 
product performance which degrades with time (Chapter 11). This chapter 
presents checks on the data and assumed model. These checks help one as- 
sess the validity of the estimates and confidence limits. More important, such 
checks often yield insight into improvements of a product. 

Background. Needed background for this chapter includes the distribu- 
tions and linear life-stress relationships of Chapter 2. Knowledge of the 
graphical methods of Chapter 3 is useful. Also needed is basic knowledge of 
statistical estimates (sampling distributions and standard errors), confidence 
limits, and hypothesis tests; for example, Nelson (1982, Chaps. 6 and 10) cov- 
ers these basics. Knowledge of least squares regression methods is helpful 
but not essential; regression texts are referenced below. This chapter is in- 
tended for those who know only the basics of statistical methods. Those ac- 
quainted with least squares methods may choose to read selectively. 

Chapter overview. Section 2 presents least squares methods for estimates 
and confidence limits for a (log) normal life distribution and a linear 
life-stress relationship. Section 3 describes data analyses and plots for check- 
ing the data and a model with a (log) normal life distribution. Section 4 ex- 
tends least squares methods for estimates and confidence limits to Weibull 
and exponential life distributions. Section 5 describes data analyses and plots 
for checking the data and a model with a Weibull (or exponential) life distri- 
bution. Section 6 presents least squares fitting of multivariable models; such 
models contain two or more accelerating and engineering variables. 
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Accelerated Testing: Statistical Models, Test Plans, and Data Analysis 
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Advantages and disadvantages. Analytic methods like least squares have 
both advantages and disadvantages compared with graphical methods. Ana- 
lytic methods are objective; that is, if two people use the same analytic 
methods on a set of data, they get exactly the same results. This is not true of 
graphical methods, but two people will usually arrive at the same conclusions 
from graphical analysis. Also, analytic methods indicate the accuracy of esti- 
mates by means of standard errors and confidence intervals. Statistical un- 
certainties in estimates of product life are usually large and startling. The ac- 
curacy is important if graphical methods do not clearly indicate that the infor- 
mation is accurate enough for practical purposes. A disadvantage of analytic 
methods is that they do not readily reveal certain information in data, 
whereas graphical methods do. Chapter 3 and Sections 3 and 5 below give 
examples of this. Also, the computations for most analytic methods are too 
laborious; so they require special computer programs. In contrast, graphical 
methods are easy to use by hand, and there are computer programs that do 
graphical analyses. Moreover, graphical methods help one present results to 
others. Seeing is believing. 

It is usually best to use graphical methods atid analytic methods together. 
The graphical methods help one assess whether the data and analytic 
methods are reasonable. Moreover, each provides certain information not 
provided by the other. Understanding a set of data requires many different 
analyses. Many modern statistics books expound such iterative and explora- 
tory data analysis. Older books naively “solve” a problem by simply calculat- 
ing a t statistic, a confidence interval, or a significance level. 

W h y  this chapter? Methods for complete data deserve a chapter for 
several reasons. First, many accelerated tests are run until all specimens fail. 
This is usually inefficient and not recommended for reasons given in 
Chapter 5. However, this is a common practice for many products. Second, 
the least squares methods (calculations) for such data are well known and 
relatively simple. For example, IEEE Standard 101, ASTM Special Techni- 
cal Publication STP 313, and ASTM Standard Practice E 739-80 present least 
squares methods. Moreover, regression books present the calculations and 
theory; examples include Draper and Smith (1981), Weisberg (1985), and 
Neter, Wasserman, and Kutner (1983,1985). Theory for the methods of this 
chapter appears in such books. Third, least squares computer programs that 
do the calculations are widely available. Even some pocket calculators do 
them. Fourth, for a lognormal life distribution, least squares methods yield 
the “best” estimates and exact confidence limits. In contrast, least squares 
methods for a Weibull or exponential life distribution are not statistically 
efficient (most accurate). Fifth, many readers are acquainted with regression 
methods for complete data. So this chapter is a simple introduction to 
Chapter 5, which extends regression methods to censored data and is more 
complex. 

Avoid complete data. Running an accelerated test until all specimens fail 
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is generally inefficient; that is, it wastes time and money, It is generally 
better to stop a test before all specimens fail. Then one analyzes the cen- 
sored data with the maximum likelihood methods in Chapter 5. Developed 
in the 196Os, those methods are yet unknown to some engineers. Moreover, 
the calculations for censored data are complex and require special computer 
programs. Also, many major companies do not yet have such programs, as 
they are not part of many well-known statistical packages. Consequently, en- 
gineers will continue to collect complete data and use least squares methods. 

Model error. Besides efficiency, there is another reason to stop a test be- 
fore all specimens fail, namely, accuracy of results. Suppose one wants to es- 
timate a low percentile of the life distribution at some stress level. Also, sup- 
pose that the assumed life distribution does not fit the data over the entire 
range of the distribution; that is, the model is inaccurate. Then it is usually 
better to fit the distribution only to the early failures at each test stress. Then 
the later failures do not bias the estimate of a low percentile. Figure 1.1 
shows the reason for such bias on probability paper. Hahn, Morgan, and 
Nelson (1985) explain in detail the use of artificial censoring to reduce such 
model bias. In particular, they recommend treating failures in the upper tail 
as if they were censored at some earlier time. 

Computer programs. Least-squares computer programs are widely avail- 
able. Most statistical packages with such programs also provide probability 
plots and crossplots, useful for checking the model and data. Major packages 
used in industry include: 

BMD, edited by Dixon (1974). 
BMDP, Dixon (1983). This has a friendlier user language than BMD does. 
SAS, offered by the SAS Institute, Inc. (1982), (919)467-8000. 

s SPSS’, offered by SPSS, Inc. (1986). 
Minitab, offered by Minitab Project, 215 Pond Laboratory, University 

These all run on main frame and minicomputers. Some are available on PCs. 

Most least squares programs lack certain output useful for accelerated 
testing. This includes estimates and confidence limits for percentiles, for a 

Park, PA 16802, (814)238-3280 or 865-1595. 

Lll-t 

CUM 
% 

LIFE 

Figure 1.1. (a) Biased fit to all data, (b) better fit to lower tail. 



170 COMPLETE DATA AND LEAST SQUARES ANALYSES 

fraction failing by a given age, and for a design stress that yields a specified 
life. Such programs assume life has a (log) normal distribution, and most 
lack the necessary modifications for Weibull and exponential distributions. 
These modifications appear in Sections 4 and 5. Most readers will use such 
programs. However, some readers may wish to write their own programs. 
The detailed calculations presented here make this easy. Be aware though 
that such personally written programs usually suffer from round-off error, 
over- and under-flow, crude approximations to t percentiles and other statisti- 
cal functions, etc. Most mature standard statistical packages perform accept- 
ably in these regards, as most use sophisticated algorithms. Moreover, they 
calculate and plot residuals, as described in Sections 3 and 5. 

Section 1 of Chapter 5 lists computer packages that analyze censored 
(and complete) life data with maximum likelihood methods. For complete 
data and a lognormal life distribution, maximum likelihood estimates are the 
same as least squares estimates. Moreover, maximum likelihood programs 
give estimates and approximate confidence limits for percentiles and for a 
fraction failing by a given age, whereas least squares programs do not. 

Uncertainties are greater. Practical considerations for data collection 
and analysis are discussed in Chapter 1. For example, data ideally should be 
a random sample from the population of interest, that is, from production 
units tested under actual use conditions. Also, the model should adequately 
represent the product life as a function of stress. For example, the methods 
of this chapter may mislead if the data contain more than one failure mode; 
Chapter 7 treats this complication. Of course, in practice, the test units and 
conditions only approximate the population and service conditions, and the 
model is inaccurate to some degree. Thus the estimates below have greater 
uncertainty than indicated by standard errors and confidence limits. 

Related material. Subsequent chapters extend the methods here. 
Chapter 5 presents maximum likelihood methods for analysis of censored 
and interval data. Chapter 7 presents graphical and maximum likelihood 
methods for data with a mix of failure modes. Also, Chapter 3 provides 
graphical methods for complete and censored data. Chapter 6 gives guidance 
on the choice of a test plan and the number of test specimens. 

2. LEAST-SQUARES METHODS FOR LOGNORMAL LIFE 

Purpose. This section describes least squares methods for estimates and 
confidence limits for parameters, percentiles, reliabilities, and other quanti- 
ties. These methods apply when product life has a lognormal or normal dis- 
tribution and the life-stress relationship is linear. The methods also apply to 
data on product performance that degrades with time (Chapter 11). 

Background. Needed background for this section includes the normal 
and lognormal distributions and the simple linear life-stress relationship 
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(Chapter 2). The widely used Arrhenius-lognormal model is a special case. 
Also needed is basic knowledge of statistical estimates, confidence limits, and 
hypothesis tests, and the graphical methods of Chapter 3. 

Overview. Section 2.1 describes the example data, model, and computer 
output used to illustrate the least squares methods. Section 2.2 presents esti- 
mates for model parameters, mean (log) life, percentiles, a design stress, and 
the fraction failing by a given age. Section 2.3 presents confidence limits for 
the same quantities. Section 3 provides checks on the data and model. 

2.1. Example Data, Model, and Computer Output 

Example data. The least squares methods for a normal or lognormal life 
distribution are illustrated with the Class-H insulation data. Chapter 3 
presents these complete data and graphical analyses of them. Table 2.1 con- 
tains the (base 10) log times to failure of the 40 specimens. For the assumed 
lognormal distribution, one analyzes the log times. As in Chapter 3, we use 
the middle of an inspection interval as the failure time. 

Purpose. The main purpose of the least squares analysis is to estimate 
the median life of such insulation at the design temperature of 180°C. This 
includes comparing the estimate with a desired life of 20,000 hours by means 
of a confidence interval. Also, the validity of the data and assumed model 
must be assessed with methods in Section 3; they led to a discovery of how to 
save $l,OOO,OOO annually. 

Model assumptions and notation. For complete (log) normal data, least 
squares analysis involves the following assumptions. A random sample of n 
units is put on test, and all run to failure. There are J test stress levels. n, 
units are tested at (transformed) stress level xj, j = 1, 2, - - , J .  For exam- 
ple, for the Arrhenius model, xi = 1000/Tj is the reciprocal of absolute tem- 
perature 5. For the inverse power law,xj = log(?) is the log of voltage 5. 
y i j  denotes the (log) time to failure of test unit i at test stressxi. Such log 
times for the Class-H insulation data appear in Table 2.1. The total number 
of test units is n =nl + - * +nJ. 

190 c 220 c 240 C 260 C 

3.8590 
3.8590 
3.8590 
3.9268 
3.9622 
3.9622 
3.9622 
3.9622 
4.0216 
4.0216 

3.2465 
3.3867 
3.3867 
3.3867 
3.3867 
3.3867 
3.4925 
3.4925 
3.4925 
3.4925 

3.0700 
3.0700 
3.1821 
3.1956 
3.2087 
3.2214 
3.2214 
3.2338 
3.2458 
3.2907 

2.7782 
2.8716 
2.8716 
2.8716 
2.9600 
3.0523 
3.1206 
3.1655 
3.2063 
3.2778 

Table 2.1. Log Failure Times of Class-H Insulation 
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The model for the (log) failure timeyij is 

Yij = &j) f eij (2.1.1) 

for i = 1, - - * , nj and j = 1, * * * , J. The random variation (or mndom error) 
eij of the (log) life yij has a normal distribution with a mean of zero and an 
unknown standard deviation u. The linear life-stress relationship 

&j)  = 7 0  -k rlxj (2.1.2) 

gives the mean log life. (2.1.2) includes the Arrhenius and inverse power 
relationships, Also, the random variations eij are all assumed statistically 
independent. These are the usual assumptions for least squares regression 
theory; see Draper and Smith (1981) or Neter, Wasserman, and Kutner 
(1983,1985). This section presents least squares estimates and confidence in- 
tervals for the model parameters 70, rl, and u and for other quantities. 

For some purposes, (2.1.2) is used in the form 

&j)  = 7; f 71(xjxix’) (2.1.2 ‘ ) 

Herex’ is a chosen value, usually near the center of the data or a key value 
such as the design stress. Then &’) = 76 and 70 = 76 - ylx’. Here the 
stress x is “centered” onx’ or “coded.” 

Output. Least squares fitting of the model above can be carried out with 
most statistical packages. Figure 2.1 displays selected output from such 
fitting to the Class-H data with the SAS package. The SAS calculations 
employ data accurate to 7 figures; Table 2.1 is accurate to 4 or 5. Most such 
least squares packages lack certain output useful for accelerated test data. 
Sections 2.2 and 2.3 describe the underlying calculations and define all nota- 
tion and terminology. Equation numbers for such calculations appear below. 
The variables are LOGLIFE (the base 10 log of insulation life) and 
INVTEMP (lo00 divided by the absolute temperature). The following com- 
ments refer to numbered lines in the output. 

Line 1 and following show descriptive statistics. These include the sums, 
means (2.2.4 and 2.2.5), and sums of squares (2.2.6,2.2.7, and 2.2.8) for the 
variables LOGLIFE and INVTEMP. 
Line 2 shows the estimate 0.1110659 of the log standard deviation u 
(2.2.12). Here it is labeled the Root Mean Square Error. SAS does not 
provide confidence limits (2.3.6) for u. 
Line 3 shows the least squares estimate -3.16328 for the intercept 
coefficient 70 (2.2.10). It also shows the standard error (2.3.8) for that esti- 
mate. SAS output lacks confidence limits (2.3.9) for this coefficient. 
Line 4 shows the least squares estimate 3.27284166 for the slope coefficient 
for INVTEMP (2.2.9). It also shows the standard error (2.3.11) for that 
estimate. SAS output lacks confidence limits (2.3.12) for this coefficient. 
Line 5 and following show the variances (2.3.7 and 2.3.10) and covariance 
of the coefficient estimates. 
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1 D E S C R I P T I V E  S T A T I S T I C S  

V A R I R B L E  sun t lE  AN UNCORRECTED SS 

135.66081 31 3.391520328 465.294 1647 L O C L I F E  
I N V T E M P  80.1114010 2.002785025 160.8874031 
I N T E R C E P  40.0000000 1.000000000 40.0000000 

V A R I A B L E  V A R I A N C E  S T D  D E V I A T I O N  

LOGL I FE 0.1332758829 0.3650696959 
I NV T E t l P  0.0113202295 0.1063965671 
I NTERCE P 0.0000000000 0.0000000000 

sums OF SQUARES AND CROSSPRODUCTS 

S S C P  LOGL I FE I N V T E f l P  

LOGL I FE 
I N V T E M P  
I N T E R C E P  

465.2942 
273.1444 
135.6608 

273.1444 
160.0874 
80.1 114 

I N T E R C E  P 

135.6608 
80.1114 

40 

PROE>F 

0.0001 

D E P  V A R I A B L E :  L O G L I F E  
A N A L Y S I S  O F  V A R I A N C E  

SOURCE OF SQUARES SQUARE F VALUE 
SUM O F  M E A N  

MODEL 1 4.72900560 4.72900560 383.362 
ERROR 38 0.46875383 0.01233563 
C T O T A L  39 5.19775943 

2 ROOT MSE 0.1110659 R-SQUARE 0.9098 
D E P  R E A N  3.39152 A D J  R - S Q  0.9074 
C . V .  3.274811 

PARAf lETER E S T I M A T E S  

V A R I A B L E  O F  E S T  I MAT E ERROR PRRRt lETER=O PROE > I T )  
STRNDARD T FOR' HO: PARAME TER 

I N T E R C E P  1 -3.16328 0.33523683 -9.436 0.0001 
I N V T E f l P  1 3.27284166 0.16715551 19.580 0.0001 

5 C O V A R I A N C E  O F  E S T I M A T E S  

COVE I N T E R C E P  I NV TEMP 

I N T E R C E P  0.1123837 -0,0559597 
I N V T E  MP -0.0559597 0.02794096 

T E f l P  t l E A N  S T D  ERR LOWER95X UFPEROS): M E D I A N  L M E D I R N  U M E D I A N  

180 deg. 4.05899 0.0383472 3.98136 4.13662 11454.8 9579.83 13696.7 
6190 deg. 3.90305 0.0314793 3.83933 3.96678 7999.3 6907.59 9263.6 
220 deg. 3.47319 0.0180497 3.43665 3.50973 2973.0 2733.08 3233.9 
240 deg. 3.21454 0.0197508 3.17456 -3.25452 1638.9 1494.71 1796.9 
260 deg. 2.97530 0.0275735 2.91948 3.03111 944.7 830.76 1074.3 

Figure 2.1. SAS least squares output for Class-H data, 

Line 6 and following show estimates and symmetric two-sided 95% 
confidence limits (2.2.3) for the log mean life at the test and design tem- 
peratures. They also show estimates and two-sided 95% confidence limits 
for the median life in hours at the test and design temperatures. These 
limits for 180°C are below 20,000 hours. This is convincing evidence that 
the insulation does not meet the 20,000-hour goal. SAS does not automati- 
cally calculate such results. 

SAS provides other standard output, but it has little value for accelerated 
tests. Most readers will analyze data with such a standard package. They can 
skip the theory in Sections 2.2 and 2.3. 
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2.2. Estimates for the Model 

This section presents formulas for the least squares estimates for the 
model parameters and other quantities of interest. Section 2.3 presents 
corresponding confidence intervals. The estimates and confidence intervals 
are standard ones from least squares regression theory; see Draper and 
Smith (1981) or Neter, Wasserman, and Kutner (1983,1985). They have good 
statistical properties and suit practical work. 

Preliminary calculations. Preliminary calculations with the data follow. 
Calculate the sample average j j  and standard deviation sj for each test stress: 

Y j  = (Ylj+yzj+ * * * +Ynjj>/nj 9 (2.2.1) 

here the sums run over all observations yd at test stress j. AntilogGj) is 
called the sample geomern’c average or mean. The first formula for sj has less 
round off error. The iiuniber of degrees of freedom of sj is 

v. J = nj -1 .  (2.2.3) 

If nj = 1, sj is not calculated. Table2.2 shows these calculations for the 
example. All calculations use six-figure accuracy; this assures 3- or 4-figure 
accuracy in final results. It would also be best to use six-figure data. 

Calculate the grand uverages of all data 

x = (n& t * * ’ -I- nJxJ) /n  , (2.2.4) 

Table 2.2. Least Squares Calculations for the Class-H Insulation 

(2.2.1) YI = 3.93958, y 2  = 3.41500, y 3  = 3.19395, y 4  = 3.01755 
Antilog(yj): 8,701 2,600 1,563 1,041 

(2.2.2) s I = { [(3.859O-3.93958)’ + . . . t (4.0216 -3.93958)2]/(10 - l)}m =0.0624891 
(2.2.2) S Z  = { [(3.246S -3.41500)’ t . . . +(3.492S -3.4lSOO)’]/(lO - l)}” -0.0791775 
(2.2.2) ~3 ={[(3.0700-3.19395)’ t * . t(3.2907-3.19395)’]/(10- l)}m =0.0716720 
(2.2.2) ~4 = {[(2.7782-3.01755)2 t . * . t(3.2778-3.01755)’]/(10-l)}m =0.170482 

(2.2.4) 3 = (lO(2.159) + lO(2.026) + lO(1.949) t 10(1.875)]/40=2.00225 
(2.2.5) j =[10(3.93958) + lO(3.41500) t lO(3.19395) t 10(3.01755)]/40=3.39152 

(2.2.6) S, =(3.8590-3.39152)’ t . . . t(3.2778-3.39152)* ~5.19746 
(2.2.7) S, = lO(2.159 -2.00225)’ t lO(2.026 -2.00225)’ + 10( 1.949 - 2.00225)2 

(2.2.8) Sv = 10(2.1S9-2.0022S)3.93958+ . . * t lO(1.875-2.00225)3.01755=1.44574 
= 0.441627. 

(2.2.9) c 1 = 1.44574/0.441627=3.27367 
(2.2.10) c 0 = 3.39152 -3.27367(2.00225) = - 3.16319 

(2.2.11) s = { [9(0.0624891)’ t9(0.0791775)2 +9(0.0716720)* +9(0.170482)2]/(40-4))’’ 

(2.2.12) S‘ ={[S.l9746-3.27367(1.44574)]/(40-2)}W =0.110569 
= 0.105327 
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j = (n51 t . . *  t n,j , ) /n.  (2.2.5) 

Each is also the sum over the entire sample divided by n. Calculate the sums 
of squares 

s, = g=ly!16Jiy-j92 = g=ly!lY; - nY2, (2.2.6) 

s, = nl(Xl--X)*t * . ’  tnJ(x,-X)2 = n & t  . * *  t I l J x j  - 6 2 ,  (2.2.7) 

Sq = nl(X1 - X ) j l +  a * . +nj(Xj--X)jj = nix51 t * * . tnpj j j  - Gj;  (2.2.8) 

here the double sum of S, runs over all n observations in the sample. 
Table 2.2 shows the sums for the example. Least-squares computer pro- 
grams perform the calculations for equations (2.2.1) through (2.2.12). 
Results in Table 2.2 differ from those in Figure 2.1 due mostly to the fewer 
number of significant figures in the data in Table 2.1. 

Some data sets have a different xi value for each or most specimens; that 
is, nj = 1. Then the sums in (2.2.5) through (2.2.8) must run over all n speci- 
mens. All subsequent calculations are the same. However, then use the esti- 
mates’ (2.2.12) rather than s (2.2.11) for c. 

Coefficient estimates. The least squares estimates of 71 and 70 are 

(2.2.9) 

(2.2.10) 

For the example in Table 2.2, cl = 3.27367 and co = -3.16319. Confidence 
limits for the true rl and 70 appear in Section 2.3. Graphical estimates 
appear in Chapter 3. The estimate of activation energy (in electron-volts) is 

E* = 2303kq 

where Boltzmann’s constant is k = 8.6171~10-~ electron-volts per Centigrade 
degree. For the example in Table 2.2, E* = 2303 (8.617l~lO-~) 3.27367 = 
0.65 electron-volts (rounded to a physically useful number of figures). 

a estimate. Thepooled estiniate of the (log) standard deviation c is 

s = [(vls: t * * * t v,s3)/v]”2; (2.2.11) 

here v = v1 t * * t v j  = 11 -J  is its number of degrees of freedom. This is 
called the estiniate of the standard deviation based on replication (or on pure 
error). For the example in Table 2.2, s = 0.105327. This small value indicates 
that the failure rate increases with insulation age. Another pooled estimate is 

s‘ = [ (S,  - c&)/(rr -2)]1’2. (2.2.12) 

This is called the estimate based on lack of fit about the equation. It has v’ = 

(n - 2) degrees of freedom. Most regression programs give this estimate. 
For the example in Table2.2, s‘ = 0.110569. For practical purposes, this 
differs little from s = 0.105327. 

Either c estimate can be used below, but one must use the corresponding 
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v or v’. s is recommended and used below. s’ tends to overestimate u if the 
true (transformed) life-stress relationship is not linear. However, s’ may 
sometimes be preferable; it is conservative, tending to overestimate u and to 
make the product look worse. Confidence limits for u appear in Section 2.3. 
Graphical estimates of u appear in Chapter 3. 

Estimate for mean (log) life. For any (transformed) stress level xo, the 
least squares estimate of the (log) mean p(x0) = 70 +71xo is 

rn(x0) = co t qxo . (2.2.13) 

This estimate assumes that the linear relationship (2.2.2) holds; otherwise, 
the estimate may be inaccurate. Methods for assessing linearity appear in 
Section 3.1. Confidence limits for p(x0) appear in Section 2.3. The graphical 
estimate appears in Chapter 3. For the lognormal distribution, the estimate 
of the median life is f.So(x0) = antilog[ni(xo)]. 

For the insulation at absolute temperature TO (XO = lOOO/T,-,), 

~ I ( . Q )  = -3.1632 t 32737x0 = -3.1632 t (3273.7/1’0); 

here co and c1 come from Table 2.2. The coefficient estimates in this equa- 
tion require five or more significant figures; this assures that any final calcu- 
lation is accurate enough. This line is shown on Arrhenius paper in Fig- 
ure2.2. At the design temperature of 180°C (xo = 2.207), rn(2.207) = 
-3.1632 t 3.2737(2.207) = 4.062. The estimate of the median life at 180°C is 

100 

10 

HOL 

1 

000 

000 

JRS 

000 

TEMPERATURE “C 
Figure 2.2. Arrhenius plot and confidence limits for the Class-H data. 
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t.so(2.207) = antilog(4.062) = 11,500 hours. This point is on the median line 
in Figure 2.2. 

Estimates for percentiles. For any (transformed) stress level xo, the esti- 
mate for the normal 100Pth percentile qp(x0) = c((x0) + z p a  is 

yp(x0)  = m(x0) + zps  = co + C l X O  + z p s ;  (2.2.14) 

here z p  is the lOOPth standard normal percentile. This estimates the (log) 
mean if P = 0.50. The estimate of the lognormal lOOPth percentile is 

For the example, the estimate of the 1st percentile of log life at 180°C is 
~ . ~ ~ ( 2 . 2 0 7 )  = 4.062 t (-2.2363)0.1053 = 3.827 where z.ol  = -2.2363. This 
estimate of life is t.ol(2.207) = antilog(3.827) = 6,710 hours. The 1st percen- 
tile line in Figure 2.2 passes through this estimate. 

Lower confidence limits for such percentiles appear in Section 2.3. 
Graphical estimates appear in Chapter 3. 

Estimate for a stress with desired life. One may need to estimate the 
(transformed) stress level such that a given percentage l00R of the popula- 
tion survives a specified (log) time q*. The estimate x* of the (transformed) 
stress comes from (2.2.14) written as 

x* = (q* -co + Z R S ) / C 1 .  (2.2.15) 

tP(X0) = antilog[YP(xo)l* 

For the example, suppose 99 percent of the population is to survive 10,000 
hours (q* = log(10,OOO) = 4.000). The estimate of the transformed stress 
that produces this life is 

X* = [4.000 - (-3.163) + (2.2363)0.1053]/3.2737 = 2.260. 

Converted, this is (1000/2.260) - 273.16 =: 169°C. 

estimate appears in Chapter 3. 

mate for the fraction failing by a given (log) age qo is 

Confidence limits for such a stress appear in Section 2.3. A graphical 

Estimate for a fraction failing. For any (transformed) stress xo, the esti- 

F*(vo;xo) = @{[rlo --I7Z(XO)II*~) = @[(vo -co -c1xo)/sl; (2.2.16) 

@{ } is the standard normal cumulative distribution function (Appendix Al). 

For Class-H insulation at 190"C, xo = 1000/(190+273.16) = 2.159. The 
estimate of the fraction failing by 7000 hours (% = log(7000) = 3.84510) is 

F*(3.84510;2.159) = @{ [3.84510- (- 3.16319) - (3.27367)2.159]/0.105327) 

= @( -0.566) = 0.286. 

The graphical estimate appears in Chapter 3. Confidence limits for the true 
value of such a fraction appear in Section 2.3. 
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2.3. Confidence Iiitervals 

The accuracy of least squares estimates is given by their standard errors 
and conlidence intervals. These appear below for the estimates of the model 
parainetcrs and the other quantities of interest. Many of these intervals are 
given by Draper and Smith (1981), Neter, Wasserman, and Kutner (1983, 
1985), and Weisberg (1985). 

Confidence limits for the (log) mean. nz(x0) = co t ~1x0 is the estimate 
for the (log) mean p(x0) = 70 t rlxo at a stressxo. It has a normal sampling 
distribution with a mean equal to p(xo).  Thus m(xo) is an unbiased estimate 
for p(xo). The standard deviation of this sampling distribution is the standard 
error of nt(xo) and is 

.[m(xo)] = { (l /n) t [(xo -x)2/sar]}*’20; (2.3.1) 

the notation is defined in Section 2.2. The size of this standard error depends 
on the test plan, that is, the choice of test stress levels xj and the numbers nj 
of test units run at them. The estimate of this standard error is 

s[m(xo)]  = {(1/11) t [(xo -X)2/SJ)’/2s; (2.3.2) 

here s is an estimate of (J and has v degrees of freedom (Section 2.2). 

A two-sided lO(L.r% confidence interval for the true p(x0) has limits 

&o) = m(x0) - t(7’;v) s[rn(xo)], 

jL(x0) = .t(Xo) t I(7’;v) *s[nl(xo)]; 
(2.3.3) 

here t(7’;v) is the 100”jth t percentile with Y degrees of freedom where 
7’ = (1 t7)/2. These percentiles appear in AppendkA4. Confidence limits 
for the true median ~ . ~ ~ ( x ~ )  of a lognormal life distribution are 

~ . s o ( x o )  = antilog[tc(xo)I, ?so(xo) = antilog[jL(xo)I. 

For the Class-H insulation at 180°C (xo = 2.207), 

s [m(2.207)] = { (1/40) t [(2.207-2.002)2/0.~16]}’~20.1053 = 0.0365; 

here s = 0.1053 has 36 degrees of freedom. The 95% confidence limits are 

~(2.207) = 4.062 - 2.029(0.0365) = 3.988, 

jL(2.207) = 4.062 t 2.029(0.0365) = 4.136; 

here f(0.975;36) = 2.029 is the 97.5th t percentile with v = 36 degrees of free- 
dom. The limits for the median life are ~ , ~ ~ ( 2 . 2 0 7 )  = antilog(3.988) = 9,730 
and &1(2.207) = antilog(4.136) = 13,700hours. These limits do not enclose 
the desired median life of 20,000 hours. So clearly the true median life is sta- 
tistically significantly (convincingly) below 20,000 hours. This answers the 
main question. The 95% confidence limits for median lives at the design and 
test temperatures are tabulated below. These limits appear on curves in Fig- 
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ure 2.2. The limits are narrowest near the center of the data and are wider 
the farther from the center - a general characteristic of such limits. 

Temperature Lower Limit for Upper Limit for 
("C) Median (hours) Median (hours) 
180 9,730 13,700 
190 6,980 9,220 
220 2,720 3,190 
240 1,510 1,780 
260 836 1,070 

Often one seeks only a lower limit, since long life is desired. A lower 

t"(x0) = n+o) - ~(7;4S[m(xo)l; (2.3.4) 

here t(7;v) is the 1 m h  I percentile with v degrees of freedom. The lower 
limit for the median of a lognormal life distribution is the antilog of this. 

For the Class-H insulation at 180°C (xo = 2.207), the lower 95% 
confidence limit for ~(2.207) is ~(2.207) = 4.062- 1.689(0.0365) = 4.000; here 
t(0.95;36) = 1.689 is the 95th t percentile with v = 36 degrees of freedom. 
For the median, ~ . ~ ~ ( 2 . 2 0 7 )  = antilog(4.000) = 10,OOO hours. 

A lower limit for a two-sided lm% confidence interval is also a lower 
limit for a one-sided 100(1+7)/2% confidence interval. For example, the 
lower limit of a two-sided 95% confidence interval is a lower limit for a 
one-sided 97.5% confidence interval. 

one-sided 100.1% confidence limit for p(xo) is 

Confidence limits for a percentile. Confidence limits for the 100Pth per- 
centile q p ( x 0 )  of a (log) normal life distribution at a given stress xo follow. 
Usually one wants that no more than a proportion P of the population failing 
below the limit with lm percent confidence. An approximate limit is 

(2.3.5) 

here the notation is the same as before. ~ p ( x 0 )  = antilog[gp(xo)] is a lower 
confidence limit for the lOOPth lognormal percentile. ~ ~ ( x ~ )  is also called a 
lower tolerance limit for lOO(1-P)% of the population. 

An exact lower limit is given by Easterling (1969). No least squares 
regression programs give confidence limits for percentiles. The confidence 
limit is inaccurate if the population distribution is not (log) normal. 

For the Class-H insulation at the design temperature of 180°C (XO = 
2.207), the 95% confidence limit for the log 1st percentile is 

g&o) =: Y P ( X 0 )  - Z - & / ( W l +  ( l / n )  t [(xo -a2/s,1)'/2s; 

g.ol(2.207) = 3.827-1.645{[(-2.326)2/(2~ 36)J 

t (1/40) t [(2.207-2.002)2/0.~16]}'~20.1053 = 3.741, 



180 COMPLETE DATA AND LEAST SQUARES ANALYSES 

The limit for the lognormal 1st percentile of life is _7.01(2.207) = anti- 
log(3.741) = 5500 hours (two-figure accuracy). 

Confidence limits for u. A two-sided 1 w %  confidence interval for the 
true (log) normal standard deviation cr has limits 

,a = s.{v/~[(1+7)/2;u]}1~2, 0 = s.{v/$[(l-y)/2;u]}’/2 ; (2.3.6) 

here ?(S;u) is the 1006th chi-square percentile with u degrees of freedom, 
that of s (Section 2.2). These percentiles appear in Appendix A5. Some 
regression programs calculate these limits. 

For the example, 95% confidence limits are ,o = 0.1053[36/51.0]’~2 = 
0.0885 and 0 = 0.1053[36/23.3]1/2 = 0.1317; here g(0.97336) = 51.0 and 
2(0.025;36) = 23.3. This could employs’, which has u’ degrees of freedom. 

This confidence interval for the standard deviation of (log) life assumes 
that the life distribution is (log) normal. Otherwise, the interval is incorrect. 

Confidence limits for v0. The estimate co for the intercept coefficient 70 
has a normal sampling distribution with a mean of 70. Thus co is an unbiased 
estimate for 70. The standard deviation of this sampling distribution is the 
standard error of co and is 

Q(C0) = [(l/n) t (x2/sxll)]l/*a. (2.3.7) 

Its estimate is 

s(c0) = [(l/n) t (X2/Sxll)]’/2s; (2.3.8) 

here s is an estimate for Q and has u degrees of freedom (Section 2.2). 

A two-sided lW% confidence interval for yo has limits 

70 = CO - t(7’;v)s(cO), 5 0  = CO t(’l’p)s(cO) ; (2.3.9) 

here t(7’;v) is the lw’ = 100(1t7)/2th t percentile with u degrees of free- 
dom. These percentiles appear in Appendix A4. Most regression programs 
calculate these limits. This interval is seldom used in accelerated testing 
work, since 70 usually does not a have useful physical meaning. 

For the example, s(c0) = [(1/40) t (2.0022/0.4416)]1/20.1053 = 0.318; 
here s = 0.1053 has 36 degrees of freedom. The 95% limits are yo = 
- 3.163 - 2.029(0.318) = - 3.808 and ro = - 3.163 t 2.029(0.318) = - 2.518 
where t(0.97336) = 2.029. 

This interval is exact if the life distribution is lognormal. For large sam- 
ples, the confidence of the interval is close to l W %  for other distributions. 

Confidence limits for 71. The estimate c1 for the slope coefficient 71 has 
a normal sampling distribution with a mean of yl. Thus, c1 is an unbiased 
estimate for 71. The standard deviation of this sampling distribution is the 
sfandard error of cl and is 
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u(c1) = [l/SU]’/2U. (2.3.10) 

Its estimate is 

s(c1) = [l/Su]’/2s; (2.3.1 I) 

here s is an estimate of 0 and has v degrees of freedom (Section 2.2). 

A two-sided lOOy% confidence interval for rl has limits 

21 = c1 - t(7’;v)s(cl), = c1 t(’Y’;v)s(cl); (2.3.12) 

here t(7’;u) is the 1OOy’ = 100(1t7)/2th t percentile with v degrees of free- 
dom. These percentiles appear in Appendix A4. Most regression programs 
give these limits. Limits for activation energy (electron-volts) are 

5 = 2,303k21, l? = 2,303k:l 

where Boltzmann’s constant is k = 8.617l~lO-~ electron-volts per “C. 

For the example, s(cl) = [1/0.4416]’~20.1053 = 0.1585. The 95% 
confidence limits are yl  = 3.2737-2.029(0.1585) = 2.952 and rl = 3.2737 t 
2.029 (0.1585) = 3.595. For the activation energy, = 2,303(8.6171~10-~) 
2.952 = 0.59 and E = 2,303(8.6171 x 10-5)3.595 = 0.71 electron-volts. 

This interval is exact if the life distribution is (log) normal. For large 
samples, its confidence is close to lo@% for other life distributions. 

Confidence limits for a fraction failing. Two-sided approximate lOOy% 
confidence limits for the fraction failing by age t o  at (transformed) stress xo 
are calculated as follows. Calculate the standardized deviate 

= [vo - Wo>l/s (2.3.13) 

where qo = log(t0). Calculate its approximate variance as 

var(Z) = ( ~ / n )  t [(xo - X ) 2 / ~ u ]  t [z2/(2u)]. (2.3.14) 

Calculate 

z = z -z7*[var(~)1’/2, i: = z +z7*[var(~>l’/2 , (2.3.15) 

where 7’ = (lt7)/2. The approximate confidence limits are 

F(to;xo) = a(?), k o ; x o )  = OCi:); (2.3.16) 

here O( ) is the standard normal cumulative distribution function 

(Appendix AI). For a one-sided lm% confidence limit, replace 7’ by 7. 
Usually one uses an upper limit. Confidence limits for reliability are - - 

I j ( t 0 ; x o )  = 1 - F(to;xo), R(t0;xo)  = 1 - F ( f 0 ; x o ) .  

These limits tend to be too narrow. The approximation usually suffices if 
v 1 15. Owen (1968) gives exact confidence limits based on the non-central t 
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distribution. Such limits are inaccurate if the life distribution is not (log) nor- 
mal, no matter how large the sample. 

Confidence limit for a design stress. Sometimes one seeks a design 
stress x such that the 100Pth percentile rp(x) equals r;, a specified life. The 
estimate x* (2.2.15) randomly falls below the true x with about 50% probabil- 
ity. One may prefer a design stress that is on the low (safe) side of x with 
high probability 7. Then one uses the lower one-sided 1m% confidence 
limit ,x for x as the design stress. An approximate limit ,x is the solution of 

0; co tC1Ztzps - z,{ [z$/(~u)] t (1/11) t [&-X )2/Sxr]}112~ , (2.3.17) 

where 0; = log(r;). This equation assumes that the transformed stress x is 
an increasing function of stress, such as x = log(V). If not (e.g., x = 
lOOO/r), replace -2, by tz, and solve (2.3.17). No least squares program 
calculates this limit. 

Easterling (1969) and Owen (1968) give an exact limit, which employs the 
non-central f distribution. This limit is inaccurate if the population distribu- 
tion is not (log) normal, no matter how large the sample. 

3. CHECKS ON THE LINEAR-LOGNORMAL MODEL AND 
DATA 

Least-squares analyses of data involve assumptions about the model and 
data. Thus, the accuracy of the estimates and confidence limits depends on 
how well the assumptions hold. Some estimates and confidence limits are ac- 
curate enough even when the assumptions are far from satisfied, and others 
may be quite sensitive to an inaccurate model or faulty data. 

Sections present checks for (3.1) linearity of the life-stress relationship, 
(3.2) dependence of the (log) standard deviation on stress, (3.3) the (log) 
normal distribution, and (3.4) the data. Section 3.5 shows also how to use re- 
siduals to estimate Q graphically and to assess the effect of other variables on 
life. More important, such checks may reveal useful information on the 
product or test method. 

3.1. Is the Life-Stress Relationship Linear? 

A test for linearity of the (transformed) relationship between the mean 
(log) life and stress follows. It tests whether the sample means of log life for 
the test stresses are statistically significantly far from the fitted straight line. 
Sample means may depart significantly from the line for two main reasons: 

1. The true relationship is not a straight line. 

2. The true relationship is a straight line, but other variables or factors have 
produced data departing from the line. Examples include: 
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a. 
b. 

inaccurate stress levels (mismeasured or not held constant); 
malfunctioning test equipment (for example, failure of a specimen in 
a rack of specimens produces failure of others in the rack because 
they are not electrically isolated); 
differing test specimens due to differing raw materials, fabrication, 
handling, and personnel (for example, specimens made by the third 
shift failed sooner); 

d. differing test conditions due to uncontrolled variables other than 
stress (for example, temperature increases with voltage used as the 
accelerating stress, and cycle time in the oven and temperature cy- 
cling can also affect life when temperature is the accelerating stress); 

e. blunders in recording, transcribing, and analyzing the data; 
f. the combined effect of two or more failure modes (Chapter 7 ) .  

Suppose there are n specimens among J test stress levels where J >2 .  

c. 

The notation follows that of Section 2. Calculate the F statistic for linearity 

F = [(n - 2 ) ~ ’ ~  - (11 - J>s2 ]  / [ (J-2)s2];  (3.1) 

here s is the estimate of Q based on pure error (2.2.11), and s ’ is the estimate 
based on lack of fit (2.2.12). The numerator of F may be a small difference 
between two large numbers. So calculate with extra significant figures. 

The test for linearity of the relationship is 

1. If F 5 F ( l - a ; J - 2 , 4 ,  there is no evidence of nonlinearity at the 1&% 
level; 

2. If F > F ( l - a ; J - 2 , ~ ) ,  there is statistically significant nonlinearity at the 
1OOa% level. 

Here F ( l - a ; J - 2 , ~ )  is the 1 - 0  point of the F distribution with (J-2)  de- 
grees of freedom in the numerator and v = n - J  in the denominator. 
AppendixA6 contains values of F ( l - a ; J - 2 , ~ ) .  This test is exact for a (log) 
normal life distribution. Also, it is a useful approximation for other distribu- 
tions. If there is statistically significant nonlinearity, examine the relationship 
plot of the data (Chapter 3)  to understand the nonlinearity. 

For the Class-H data in Table 2.1, 

F = [(40-2)(0.110569)2-(40-4)(0.105327)2] / [(4-2)(0.105327)2] = 2.94. 

The F distribution has 4 - 2  = 2 degrees of freedom in the numerator and 
Y = 40-4 = 36 in the denominator. Since F = 2.94 c 3.27 = F(.95;2,36), 
there is no statistically significant (that is, no convincing) nonlinearity. 

3.2. Is the (Log) Standard Deviation Constant? 

An assumption is that Q is constant, that is, independent of stress. If o 
does depend on stress, then the estimates and confidence intervals for per- 
centiles at a stress are inaccurate. However, the estimates for 70 and 71 and 
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the relationship p(x0) generally suffice, even when u depends on stress. The 
following test objectively assesses whether u depends on stress. Dependence 
of 0 on stress may be an inherent characteristic of the product; it may result 
from a faulty test; or it may be due to different failure modes acting at 
different stress levels. 

The following comparison of (log) standard deviations is Burlleft’s test. 

nj 

sj 

vj 
J 

The pooled estimate (2.2.11) of a common (log) standard deviation is 

denotes the number of specimens at the test stress j ,  
denotes the sample (log) standard deviation for test stress j ,  
denotes its degrees of freedom (vj = nj - l), and 
denotes the number of test stresses. 

s = [(v& t * * * tvJs:)/v]‘/2, (3.2) 

and v = v1 t * - t vJ denotes its number of degrees of freedom. 

Bartlett’s test statistic is 

Q = C{ plOg(S) - [vI *log(s1) t * * * t v~*~o~(sJ ) ]}  , (3-3) 

(base 10 logs), and 

C = (3.4) 

The approximate level a test for equality of the sj is 

1. if Q 5 ?( l -a ;J-  l), the sj do not differ significantly at the 1OOa% level; 
2. if Q > $(l-a;J-  l ) ,  they differ significantly at the 1OOa% level; 

here ?( l -a ;J- l )  is the lOO(1-a)th chi-square percentile with (J-1) 
degrees of freedom. Appendix A5 contains these percentiles. 

If the sj differ significantly, then examine them to determine how they 
differ. For example, examine a plot of the estimates and confidences limits 
side by side. Figure 3.1 shows such a plot for the Class-H insulation. Most 
applied books state the value of plotting data, but few note the value of plot- 
ting estimates and confidence limits. Also, then take those differences into 
account in interpreting the data. For example, if the data from a stress level 
are suspect, one might discard them and analyze only the “good” data. 

For the Class-H insulation data, 

C = 4.605/{1 t ~ [ -+-+-+--- ']}=sol, 
3(4-1) 9 9 9 9 36 

Q = 4.401{36*10g(0.1053) - [9*10g(0.0625)] t 9.10g(0.0792) 

t 9*10g(0.0717) t 9.log(0.1705)]} = 12.19. 

The chi-square distribution for Q has J-1 = 3 degrees of freedom. Since 
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I 1 1 I 1 1 
190" 220" 2LO" 260" POOLED 

Estimates x and confidence limits I for Q. Figure 3.1. 

Q = 12.19 > 11.34 = 2(0.99;3), the sj differ very significantly (1% level). 
Figure 3.1 suggests that the log standard deviation at 260" is greater than the 
others. There are possible reasons for this. For example, the main failure 
mode at 260" differs from that at the other temperatures. Proper analyses for 
data with a mix of failure modes appear in Chapter 7. Also, other lots of raw 
materials were used in the 260" specimens. Should one use the 260" data? 
Insights gained from understanding the 260" data yield $l,OOO,OOO annual sav- 
ings. It is best to do two analyses, one with and the other without suspect 
data. If the results of both differ little, either can be used. If they differ 
much, decide which analysis is more accurate or more conservative. 

Two other tests for comparing standard deviations are: 

1. Cochran's test, presented by Draper and Smith (1981) and 
2. the maximum F ratio, presented by Pearson and Hartley (1954, p. 60). 

Tabulations for these apply only when the nj are all equal. Nelson (1982, p. 
481 fQ presents plots for simultaneous comparisons based on 2. These and 
Bartlett's test assume that the life distribution is (log) normal. If it is not, 
these comparisons are crude at best. Checks for normality appear next. 

33. Is the Life Distribution (Log) Normal? 

Analyses above assume that the life distribution is (log) normal at any 
stress level of interest. Estimates of percentiles and a fraction failing and 
certain confidence intervals are sensitive to this assumption. As indicated, 
other estimates and confidence limits are accurate enough with most life dis- 
tributions. 

A simple check on how well the (log) normal distribution fits the data 
employs the (log) normal probability plot in Section 2.2 of Chapter 3. Such 
plots appear in Figure 2.1 of Chapter 3. The plots should follow a straight 
line reasonably well. Pronounced curvature at most stresses indicates that 
the true distribution is not well described by the (log) normal. In judging 
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curvature, people tend to expect straighter plots than random samples yield. 
The erratic nature of such plots may be gathered from plots of Monte Carlo 
samples from a normal distribution by Hahn and Shapiro (1%7) and Daniel 
and Wood (1980). 

A more sensitive check employs a probability plot of residuals as follows. 
Other uses of such residuals are described by Draper and Smith (1981) and 
Daniel and Wood (1980). 

Calculate the adjusted residuals about the (log) mean at test stress j as 

ru = (yo -yj)[nj/(nj - 1)]1/2; (3.5) 

here yo is (log) observation i, and j j  is the average of the ni (log) observa- 
tions at stress j .  If the nj are all equal, the standardizing factor [nj/(nj - 1)]'j2 
is not necessary. The simple differences (yo - j j )  are called the raw residuals 
abouf fhe (log) mean . 

Most regression programs calculate a raw residual about the fitted line as 
r,; = yd-m(xl); this is the (log) observation minus the estimate of the (log) 
mean at that stress. Many statistical programs display such residuals in nor- 
mal probability plots and in crossplots (which are described in Section 5.5). 
The methods below also apply to such residuals, but the adjustment factor 
[nj/(nj - l)]'/* must be replaced by that in Section 5.3. 

Pool all standardized residuals into a single sample. They should look 
like a sample from a normal distribution with mean of zero and a standard 
deviation of u. Plot the pooled sample on normal probability paper as 
described in Chapter 3. The plot of the pooled sample reveals more than the 
separate plots of the data for each test stress. Assess whether the residuals 
reasonably follow a straight l i e .  If not, then the (log) normal distribution 
does not adequately describe time to failure. The curvature may indicate 
how the true distribution differs from the (log) normal distribution. Also, 
lack of fit may indicate that some observations are in error; that is, the speci- 
mens, the test, or the data handling are faulty. 

The standardized residuals for the Class-H insulation data are calculated 
in Table 3.1. Their normal plot appears in Figure 3.2. The plot is remark- 
ably straight. This suggests that the lognormal distribution fits the data well. 
This plot does not reveal that the 260" data have a larger u. This shows that 
no one plot reveals all information in the data. In view of the larger 0 at 
260"C, one might redo this plot without the 260" residuals. 

If the plot clearly curves, plot the residuals on other probability papers to 
assess how well other distributions fit. In particular, try extreme-value paper. 
If it yields a straight plot, then the Weibull fits better than the lognormal dis- 
tribution. The same residuals are plotted on extreme value paper in Fig- 
lire 3.3. The curved plot suggests that the Weibull distribution is not suitable. 
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Table 3.1. Calculation of Standardized Residuals of Class-H Data 

190°c 

S t d .  Res. 

(3.8590 - 3 . 9 3 9 6 ) m =  -0.085 

(3.8590 - 3.9396) -&m L -0.085 

(3.8590 .- 3.9396) = -0.085 

(3.9268 - 3.9396) = -0.013 

(3.9622 - 3.9396) @ =  0.024 

(3.9622 - 3.9396) m= 0.024 

(3.9622 - 3.9396) m= 0.024 

(3.9622 - 3.9396) = 0.024 

(4.0216 - 3.9396) 0 = 0.086 

(4.0216 - 3.9396) = 0.086 

-. Obs. Mean -- 

24OoC 

Oba. Mean S t d .  Res. 

(3.0700 - 3 . 1 9 4 0 ) m  = -0.131 

(3.0700 - 3 . 1 9 4 0 ) m  = -0.131 

(3.1821 - 3 . 1 9 4 0 ) m  = -0.012 

(3.1956 - 3 . 1 9 4 0 ) p  = 0.002 

(3.2087 - 3 . 1 9 4 0 ) m =  0.016 

(3.2214 - 3 . 1 9 4 0 ) m =  0.029 

(3.2214 - 3 . 1 9 4 0 ) m  = 0.029 

-- 

(3.2a38 - 3 . 1 9 4 o ) W =  0.042 

(3.2458 - 3 . 1 9 4 O ) m s  0.055 

(3.2907 - 3 . 1 9 4 O ) m x  0.101 

220°c 

Obs. Mean S t d .  Reg. 

(3.2465 - 3 . 4 1 5 0 ) m =  -0.177 

(3.3867 - 3 . 4 1 5 0 ) m -  -0.030 

(3.3867 - 3 . 4 1 5 0 ) m =  -0.030 

(3.3867 - 3 . 4 1 5 0 ) - m  = -0.030 

(3.3867 - 3 . 4 1 5 O ) G G  = -0.030 

(3.3867 - 3 . 4 1 5 0 ) d S  = -0.030 

(3.4925 - 3 . 4 1 5 0 m  = 0.082 

(3.4925 - 3.4150M-= 0.082 

(3.4925 - 3 . 4 1 5 0 h / f n =  0.082 

(3.4925 - 3.4150M-= 0.082 

-- 

Obs. Mean S t d .  Res. -- 
(2.7782 - 3 . 0 1 7 6 m  p -0.252 

(2.8716 - 3 . 0 1 7 6 ) m  = -0.154 

(2.8716 - 3 . 0 1 7 6 ) d m  = -0.154 

(2.8716 - 3.0176)-4% = -0.154 

(2.9600 - 3 . 0 1 7 6 0 =  = -0.061 

(3.0523 - 3 . 0 1 7 6 ) m  = 0.037 

(3.1206 - 3 . 0 1 7 6 ) f i i  = 0.109 

(3.1655 - 3 . 0 1 7 6 ) m  - 0.156 

(3.2063 - 3 . 0 1 7 6 ) m  = 0.199 

(3.2778 - 3 . 0 1 7 6 m -  0.274 

PERCENT 
OJ I 2 5 10 20 30 40 Yl 60 70 80 90 95 98 99 2 .5 99.9 

Figure 3.2. Normal plot of Class-H residuals. 
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01 02 05 I 2 5 10 20 40 60 Bo W 99 999 
PROBABILITY 

Figure 33. Extreme value plot of Class-H residuals. 

Analytic methods for testing data for normality are given, for example, by 
Wilk and Shapiro (1968). These methods are laborious but are sensitive to 
nonnormality. Such methods are correct only for the data from a single 
stress level. They are not correct for pooled residuals. Pooled residuals are 
"closer" to normal than a sample from a single stress level. Even after using 
such methods and finding nonnormality, one must look at the plot of residu- 
als to see the nature of the nonnormality. 

Normal probability papers are widely available. Sources include: 

1. TEAM, Box 25, Tamworth, NH 03886, (603)323-8843. 
3111 1-99% (11" horizontal) 100 divisions (8 1/2" vertical) 
3211 0.01 -99.99% (11" horizontal) 100 divisions (8 1/2" vertical) 
3311 O.OOO1-99.9!B9% (11" horizontal) 100 divisions (8 1/2"vertical) 
3111.5 0.2-99.8% (11" horizontal) 50 divisions (8 1/2" vertical) 

2. CODEX Book Co., 74 Broadway, Norwood, MA 02062, (617)769-1050. 

Y3 200 0.01 -99.99% (11" horizontal) 40 divisions (8 1/2" vertical) 
Y3 201 0.01 - 99.99% (11" horizontal) 100 divisions (8 1/2" vertical) 
Y3 09 0.01-99.99% (11" horizontal) 90 divisions (8 1/2" vertical) 

3. K t E (Keuffel & Esser Co.), 20 Whippany Rd., Morristown, NJ 07960, 

46 8OOO 0.01-99.99% (11" horizontal) 90 divisions (8 1/2" vertical) 
46 8003 is like 46 8OOO but has orange grid instead of green. 

(800)538-3355. 

4. Craver (1980) provides reproducible copies: 
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pg. 216 0.01-99.99% (11" horizontal) 40 divisions (8 1/2" vertical) 
pg. 217 0.01 -99.99% (11" horizontal) 80 divisions (8 1/2" vertical) 
pg. 218 0.01-99.99% (11" horizontal) 90 divisions (8 1/2" vertical) 
pg. 219 0.01-99.99% (11" horizontal) 100 divisions (8 1/2" vertical) 
pg. 227 0.01-99.99% (11" horizontal) 80 divisions (8 1/2" vertical) 

Papers with a narrow probability range (1 - 99%) are best for residual plots, 
since most accelerated tests have fewer than 100 specimens. 

3.4. Checks on the Data 

Suspect data are data subsets or individual observations that deviate from 
the assumed model. Such data can arise from faulty test methods, an inade- 
quate model, misrecording and handling the data, etc. The previous checks 
on the model also check the data. Nonlinearity of the life-stress relationship, 
dependence of t~ on stress, and poor fit of the assumed distribution - all may 
indicate suspect data. Probability plots of the data for the different stress lev- 
els (Figure 2.1 of Chapter 3) .may reveal suspect data. A probability plot of 
the pooled standardized residuals may reveal individual wild points called 
outliers; such points do not fall along the straight line determined by the bulk 
of the data. The points in the tails of a plot vary much from random sam- 
pling; thus outliers should be very out of line with the other data before they 
are suspect or discarded. Preferably, one should find a cause for suspect data 
before omitting the data. Knowledge of the cause may help improve the 
product, test method, or model. 

Formal numerical methods for identifying outliers in a sample from a sin- 
gle population are given by Beckman and Cook (1983), Barnett and Lewis 
(1984), and Daniel and Wood (1980). Flack and Flores (1989) extend such 
methods to residuals from fitting a regression model. 

35. Effect of Other Variables 

The effect of some other variable on life can be assessed by crossplotting 
residuals against the variable. Also, a plot of the residuals against the ac- 
celerating variable may yield information. Such crossplots are presented in 
detail by Draper and Smith (1981), Neter, Wasserman, and Kutner (1983), 
and Daniel and Wood (1980). Sections 6.3 and 6.4 give examples. 

4. LEAST-SQUARES METHODS FOR WEIBULL AND 
EXPONENTIAL LIFE 

This section describes least squares methods for fitting a model with a 
Weibull or exponential distribution to complete life data. The methods pro- 
vide estimates and confidence limits for model parameters, percentiles, frac- 
tion failing, and design stress. 
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The methods and calculations are slight modifications of those for a (log) 
normal life distribution in Section 2. Chapter 5 presents more accurate max- 
imum likelihood estimation for the Weibull and exponential distributions. 
Thus many readers may choose to skip this section. This section is intended 
to be self-contained for ease of use. The model and analyses are widely used. 
So they merit the separate detailed presentation here. Moreover, these 
modifications do not appear in regression texts nor in other sources. 

Least-squares fitting for a Weibull life distribution yields estimates that 
are not as accurate as those from maximum likelihood fitting (Chapter 5). 
However, least squares regression programs are widely available. Moreover, 
the least squares calculations are simple. Thus readers can do the (simple 
but laborious) calculations on a pocket calculator, or they can write their own 
computer programs. Of course, most standard programs have better 
round-off error and acceptance by other people. However, most standard 
programs lack some output useful to accelerated testing; examples include 
estimates and confidence limits for percentiles and a fraction failing. 
Readers can write programs with such output. In contrast, maximum likeli- 
hood calculations for fitting a Weibull distribution are complex; they require 
a sophisticated computer program, which some readers lack. 

4.1. Example Data and Weibull Model 

This section presents 1) data used to illustrate least squares analyses and 
2) the Weibull model fitted to the data. The model includes the 
power-Weibull and Arrhenius-Weibull models of Chapter 2. 

Data. The analyses are illustrated with the insulating oil data of Cramp 
(1959) in Section 3.1 of Chapter 3. Table 4.1 shows the In times (in minutes) 
to breakdown of 76 specimens tested at voltages from 26 to 38 kV. The main 
purpose is to estimate the relationship between time to breakdown and volt- 
age. This involves fitting the power-Weibull model, used to estimate the 
probability of oil failure during a transformer test at 20 kV. Another purpose 
is to assess the exponential distribution for time to oil breakdown. 

Model, assumptions, and notation. Least-squares analysis using a 
Weibull distribution for complete accelerated life test data involves the fol- 
lowing assumptions. A random sample of n units is put on test, and all run to 
failure. There are J test stress levels. nj units are tested at (transformed) 
stress level xi, j = 1, 2, * * * , J .  For example, for the inverse power law, xj = 

h(5) where vj is the (positive) stress. yq denotes the In time to failure of 
test unit i at test stress+ Such In times for the insulating fluid appear in Ta- 
ble 4.1. The total number of test units 11 = n1 t * * - t nJ. 

The model for the ith In failure timeyij at (transformed) stressxi is 

YO = & j )  t eq (4.1.1) 
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Table 4.1. In Times to Breakdown of an Insulating Fluid 

26 kV 28 kV 30 kV 32 kV 34 kV 36 kV 
1.7561 4.2319 2.0464 -1.3094 -1.6608 -1.0499 

7.3648 4.6848 2.8361 -0.9163 -0.2485 -0.5277 

7.7509 4.7031 3.0184 -0.3711 -0.0409 -0.0409 

6.05.16 3 . 0 3 5 4  -0,2358 0,2700 -0.0101 

------ 

6.9731 3.1206 1.0116 1.0224 0.5247 

3.7704 1.3635 1.1505 0.6780 

3.8565 2.2905 1.4231 0.7275 

4.9349 2.6354 1.5411 0.9477 

4.9706 2.7682 1.5789 0.9969 

5.1698 3.3250 1.8718 1.0647 

5.2724 3.9748 1.9947 1.3001 

4.4170 2.0806 1.3837 

4.4918 2.1126 1.6770 

4.6109 2.4898 2.6224 

5.3711 3.4578 3.2386 

3.4818 

3.5237 

3.6030 

4.2889 

38 kV 
-2.4080 

-0.9417 

-0.7551 

-0.3148 

-0.3012 

0.1222 

0.3364 

0.8671 

for i = 1, * * , nj and j = 1, * - - , J .  The rartrlorii variation or error eii of In 
lifeyo has an extreme value distribution with a mean of zero and an unknown 
scale parameter 6. The linear life-stress relationship 

/&j) = 7 0  + 7 1 x j  (4.1.2) 

gives the mean In life. The Arrhenius and inverse power relationships are 
special cases of (4.1.2). The extreme value location parameter [(xi) is related 
to the mean; namely, 

( ( X i )  = p(Xj) t 0.57726 = 7 0  + 71x1 t 0.57726- (4.1.3) 

This is the In of the Weibull scale parameter a(xj), and 0.5772 is Euler’s con- 
stant. In Chapter 2, the equation for ( (x i )  is written differently as [ (x j )  = 
76 + 7 1 ~  where 76 = 0.57726 t 70.  The form (4.1.2) and (4.1.3) is more con- 
venient for the purposes of Chapter 4. The random variations eo have the 
same standard deviation 

Q = 1.2836 = 1.28318, (4.1.4) 

where /3 is the Weibull shape parameter. Also, the eii are all assumed statis- 
tically independent. Except for the assumed extreme value distribution, these 
are the usual assumption for least squares regression theory; see Draper and 
Smith (1981) or Neter, Wasserman, and Kutner (1983,1985). This section 
presents least squares estimates and confidence intervals for the model 
parameters 70 ,71 ,  and 6 and for other quantities. 
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42. Estimates for the Parameters 

The least squares estimates for the model parameters and other quanti- 
ties of interest are presented below. Corresponding confidence intervals are 
in Section 4.3. The estimates and confidence intervals are modifications of 
those from standard regression theory (for example, in Draper and Smith 
(1981) or Neter, Wasserman, and Kutner (1983,1985)). Computer programs 
for these calculations are widely available. 

Preliminary calculations. First calculate the sample In averages and 
standard deviations for each test stress. For test stress level j ,  they are 

(4.2.1) 

= {[(YZj t * * * t y;ij) - (n j j j ) ] / (n j - l ) } l /Z ;  
(4.2.2) 

here the summations run over all nj observations at stress level j .  exp(jj ) is 
called the sample geometric average or mean. The second expression for sj is 
commonly used in computer programs. The first is recommended for 
greater accuracy. sj has vj = n j - 1  degrees of freedom. If nj = 1, sj is not 
calculated. These calculations are shown in Table 4.2 for the insulating fluid 
data. Intermediate calculations have six or more figure accuracy to assure 
three or four figure accuracy in final results. 

For a single distribution, Menon (1963) presents Weibull parameter esti- 
mates based on j ,  and s j .  He discusses their properties and gives their large 
sample variances. His estimates are closely related to the ones below. 

Yj = (Ylj + Y z j  + * * * + ynjj)/nj 9 

sj = { [ ( y l . -  I Y I )  . 2 -+ . . . t O n j j  -Yj)*l/(nj -1)1"~ 

Next calculate thegrand averages of all the data 

x = (n1X1 t * * ' tnJi,)/n , (4.2.3) 

j = (n& t * * ' t n J j , ) / n .  (4.2.4) 

Each of these is the sum over the entire sample divided by n. Calculate the 
sums of squares 

The double sum for S, runs over all n observations in the sample. These cal- 
culation are shown in Table4.2 for the example. Regression programs 
automatically do these calculations. 

Coefficient estimates. The least squares estimates of rl and ro are 

(4.2.8) 

(4.2.9) 
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Table 42. Least Squares Calculations for an Insulating Fluid 

26kV 28kV 32kV 34kV 36kV 30kV 38kV 
Total: 16.8718 26.6475 42.0415 33.4272 33.9405 13.5327 -3.3951 

exp(yj): 276.977 206335 45.6934 9.28574 5.96758 2.46497 0.65417 
A~g.yj: 5.62393 5.32950 3.82195 2.22848 1.78634 0.902180 -0.424388 

No.nj: n l  = 3  t 1 2  = 5 n3 = 11 n4 = 15 nS = 19 n6 = 15 n7 = 8 
n = 3  t 5 t 11 t 15 t 19 t 15 t 8  =76 

(4.2.2) SI  ={[(1.7561-5.62393)’t . * * t(7.7509-5.62393)’]/(3- l)}w=3.35520 
(4.2.2) S2={[(4.2319-5.32950)’ t * * . t(6.9731-5.32950)’]/(5- l)}m =1.14455 
(4.2.2) ~3={[(2.0460-3.82195)’ t . . 
(4.2.2) ~4={[(-1.3094-9.28574)’ t * t(5.3711-9.28574)2]/(15-1)}m~2.19809 
(4.2.2) ~g={[(-1.6608-1.78634)’t * * * t(4.2889-1.78634)2]/(19-1)}w~1.52521 
(4.2.2) S6={[(-1.0499-0.90218)’ t * * t(3.2386-0.90218)2]/(15-1)}~ =1.10989 
(4.2.2) ~ 7 = { [ (  -2.408Ot0.424388)’t . . * t(0.8671t0.424388)2]/(8-1)}m=0.991707 

t(5.2724-3.82195)2]/(ll - l)}w=l.lll19 

(4.2.3) 2 = (3(3.2581) tS(3.33221) t ll(3.4012) t lS(3.46754) 

(4.2.4) j = [3(5.62393) t S(5.32950) t ll(3.82195) + lS(2.22848) 
t 19(3.52637) t lS(3.58352) t 8(3.63759)]/76 = 3.49591 

t 19(1.78634) t lS(0.90218) +8( -0.424389)]/76 = 2.14561 
(4.2.5) S,,, =(1.7561 -2.14561)2t(7.3648-2.14561)2 t . . . t(0.8671-2.14561)2 

(4.2.6) S,=3(3.2581-349591)’ tS(3.3322-3.49591)’ t . . * t8(3.63759-3.49591)2 

(4.2.7) S, =3(3.2581-349591)5.62393 t5[3.33221( -3.49591)]5.32950 t . . . 

=370.228. 

=0.709319 

t 8(3.63759 -3.49591)( - 0.424388) = - 11.6264 
(4.2.8) C I  = -11.6264/0.709319= -16.3909 
(4.2.9) C O  =2.14561-(16.3909)( -3.49591)=59.4468 

(4.2.10) ~={[3(3.35520)’ +5(1.14455)’ t 

(4.2.11) ~’={[0.709319-(-16.3909)(-11.6264)]/(76-2)}~=1.558 

. . +8(0.991707)’]/(76-7)}’” ~1.587 
~=76-7 = 69 

U’ = 76 - 2=74 
(4.2.12) d =(0.7797)1.587= 1.237 

(4.2.13) b = 1.283/1.587=0.808 

Their calculation appears in Table 4.2. 

u estimate. Thepooled estimate of the standard deviation u is 

(4.2.10) 

here v = v1 t * * t v l  = n -J is its number of degrees of freedom. This is 
called the estimate of the In standard deviation based on replication orpure 
error. Another estimate of u is 

s’ = [(S, - C1Sv)/(!Z-2)]1/2. (4.2.11) 

This is called the estimate of the standard deviation based on lack of fit 
(scatter of the data) about the fitted line. It is also called the standard error 
of estimate. It has v’ = (n -2) degrees of freedom. Most regression pro- 
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grams give the s’ estimate. 

Either estimate of 0 can be used in later calculations. However, one must 
use the corresponding number of degrees of freedom. For analysis of 
accelerated life test data, the estimate s based on pure error is recom- 
mended; s is used throughout the example. s is recommended because s’ 
tends to overestimate 0, if the relationship between the mean In life and the 
stress x is not linear. However, s‘ may sometimes be preferable, since it is 
conservative in the sense that it tends to make the product spread look worse. 
Also, most computer programs give s’, not s. 

The estimate of the extreme value scale parameter 6 is 

d = (0.7797)s. (4.2.12) 

The estimate of the Weibull shape parameter /3 is 

b = l /d  = 1.283/~. (4.2.13) 

The calculations for these estimates are in Table4.2 for the example. 
The estimate of the Weibull shape parameter is b = 0.808. This value near 1 
indicates that the failure rate is near constant (decreases slightly with age). 
Thus the life distribution is close to exponential, which is suggested by en- 
gineering theory. Table 4.2 is used in examples throughout this section. 

Estimate of the mean In life. For any stress level xo, the least squares es- 
timate m(x0) of the In mean p(x0) = 70 + rlxo is 

m(xo) = co t qxo . (4.2.14) 

For example,xo may be the design level of stress. The estimate of the 42.8th 
Weibull percentile is t.428(~0) = exp[m(xo)J. (4.2.14) assumes that the 
life-stress relationship is linear. If not, the estimate may be inaccurate. 
Methods for assessing linearity appear in Sections. The estimate for the 
Weibull scale parameter is 

a*(xo) = exp[m(xo) t 0.5772dI. 

For the example, the estimate of the relationship is 

m(xo) = 59.4468 - 16.3909~~ = 59.4468 - 16.3909.1n(Vo); 

the values of co and c1 come from Table 4.2. This equation is the center line 
in Figure 4.1. The estimate of the In mean at 20 kV (xo = 2.99573) is 
m(2.99573) =59.4468 - 16.3909(2.99573) = 10.3439. The estimate of the 42.8th 
Weibull percentile at 20 kV is t.428(2.99573) = exp(10.3439) = 31,000 
minutes. The estimates of the In means and 42.8th percentiles at the design 
and test voltages appear in Table4.3. The estimate of the Weibull scale 
parameter at 20 kV is a*(2.99573) = exp[10.3439 + 0.5772 (1.237)] =: 63,400 
minutes (3-figure accuracy). The fitted line for the In mean in Figure4.1 
passes through these estimates. 
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l~igure 4.1. Log-log plot of thc fitted niodel for insulating fluid. 

Estimate of a fraction failing. For a (transformed) stressxo, the estimate 

(4.2.15) 

of the fraction failing by a given age t o  is 

~ * ( t o ; x o )  = 1 - exp{ - [ro/a*(xo>]*}. 

For the example, 

F * ( ~ ~ ; v ~ )  = 1 - exp{ - [ ~ o / ~ e 6 0 ~ 1 6 0 8 / ~ ~ 6 ~ 3 9 0 9 ) ~ o ~ 8 0 8 ~ .  

Table 43. Estimates of the Mean In Life vs. Voltage 

Voltage 

38 
36 
34 
32 
30 
28 
26 
20 
15 
10 
5 

(kV) 
Estimate of 

In Mean 

- 0.1767 
0.7096 
1.6464 
2.6401 
3.6980 
4.8288 
6.0435 

10.3439 
15.0592 
21.7052 
33.0666 

Estimate of 423th 
Percentile (minutes) 

0.838 
2.03 
5.19 

14.0 
40.4 

125. 
421. 

31,000 
3.45 x lo6 
2.67 x lo9 
2.29 x 1014 
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The estimate of the fraction failing on a t o  = 10 minute test at VO = 20 kV is 

F*(10;20) = 1 - exp{ -[10/63,400]0.808} =8.5 x 

Chapter 3 presents a graphical estimate of such a fraction failing. 

percentile tp(x0) of In life is 
Estimates of percentiles, For stress level xo, the estimate of the lOOPth 

yp(x0) = ~ ( x o )  t [0.5772t~(P)] 0.7797s 

= co t Clxo t [0.5772 t u (P)] 0.7797 S; (4.2.16) 

u ( P )  = In[-ln(l-P)] is the lOOPth standard extreme value percentile. The 
estimate of the 100Pth percentile of the Weibull life distribution is f p ( x 0 )  = 
exp[yp(xo)]. The estimate (4.2.14) of the In mean is a special case of (4.2.16), 
namely, the 42.8th percentile where ~(0.428) = - 0.5772. 

The estimate of the extreme value location parameter ((xo) is a special 
case of (4.2.16), namely, 

(*(xo) = 171(.ro) t 0.4501s, (4.2.17) 

since the location parameter is the 63.2th percentile and u(0.632) = 0. The 
estimate of Weibull characteristic life (63.2th percentile) at xo is 

o*(xo) = exp[(*(x~)] = exp[co t clxo t (0.4501)s]. 

For the insulating fluid at 20 kV, the estimate of the 1st percentile is 

y.oi(2.99573) = 10.3439 t [0.5772+ (-4.6002)]0,7797(1.587) = 5.3664; 

here -4.6002 = ~(0.01). The estimate of the 1st percentile of the Weibull 
life distribution is t.ol(2.99573) = exp(5.3664) = 214 minutes. This time can 
also be obtained graphically from Figure 4.1. Similarly, the estimate of the 
location parameter at 20 kV is 

(*(2.99573) = 10.3439 t 0.4501(1.587) = 11.0579. 

Then a*(2.99573) = exp(11.0579) = 63,400 minutes. The estimates of 
selected percentiles at the design and test stresses appear in Table 4.4. 

Estimate of design stress. In some applications, one seeks a design stress 
level such that a specified small percentage lOOP of the population will fail by 
a specified time 7;. The estimatex* of that stress level from (4.2.16) is 

x* = {&CO - [0.5772tu(P)]0.7797s}/q (4.2.18) 

where& = ln(r;). 

before T . : ~  = 10,000 minutes (r],il = 9.2103). The stress estimate is 
For the insulating fluid, suppose only 1% of the population is to fail 

X *  = (9.2103- 59.4468- [0.5772 t (- 4.6002)]0.7797(1.587)}/( - 16.3909) 

= 2.7612. 
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Voltage 

38 
36 
34 
32 
30 
28 
26 
20 
15 
10 
5 

(kV) 

Table 4.4. Percentile Estimates vs. Voltage 

Percentiles (in minutes) 
1st 63.2th 99th 

0.00058 
0.00140 
0.0358 
0.0966 
0.278 
0.862 
2.90 

214. 
23.9 x lo3 
18.4 x lo6 
1.58 x 1OI2 

1.71 
4.15 
10.6 
28.6 
82.4 
255. 
861. 

63,400 
7.08 x 106 

0.469 x los 
5.45 x lo9 

11.3 
27.5 
70.1 
189. 
545. 
1690. 
5690. 

420,000 
46.9 x lo6 
36.1 x lo9 
3.10 x 1015 

The corresponding estimate of voltage is V* = exp(2.7612) = 15.8 kV. This 
estimate can also be obtained graphically from Figure 4.1. Enter the graph 
on the time scale at 7;; go horizontally to the loop% line and then down to 
the stress scale to readx* (or the untransformed stress V' here). 

43. Confidence Intervals 

The accuracy of an estimate is given by its standard error and confidence 
interval. These are given below for the least squares estimates of the model 
parameters and other quantities of interest. Some of these approximate in- 
tervals are given by Draper and Smith (1981) and by Neter, Wasserman, and 
Kutner (1983,1985). This subsection presents only approximate confidence 
limits, as theory for exact limits is too complex. McCool (1980) presents 
simulation methods for better approximate limits; his work must be modified 
for least squares fitting. Lawless (1976) gives exact limits requiring a special 
computer program. 

Confidence limits for a In mean. For stress level xo, m(xo) = co + clxo is 
the estimate for the In mean p(xo) = 70 + rlx0. Its sampling distribution is 
approximately normal when n is large and has a mean equal to the true p(x0). 
Thus, m(xo) is an unbiased estimate for p(xo). The accuracy of m(xo) is given 
by its standard error 

a[m(xo)J = {(l/It)+[(X~ -X)2/Sn]}'/2 6. (4.3.1) 

Its estimate is 

s[m(xo)] = {(l/lt)+[(x~-X)*/Sn]}~~2s; (4.3.2) 

here s is an estimate of D and has v degrees of freedom. See equations 
(4.2.10) and (4.2.11) for estimates of 6. 
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A two-sided approximate lOh% confidence inletval for p(x0) has limits 

&o) = w - 0 )  - I(7’P) s”xo)l, i ( x 0 )  = m(xo> + t(7’P) s”xo>l; 

here r ( 7 ’ ; ~ )  is the low’ = 100(1+7)/2th I percentile with Y degrees of free- 
dom. Such limits for the 423th percentile of the life distribution are 

1.428(xO) = exp[r(xo)] and ?428(XO) = exp[&?l)l. (4.3.4) 

This and other confidence intervals in this section assume that the sampling 
distribution of the estimate is approximately normal. This is usually so if the 
sample size is moderately large. 

For the insulating fluid at 20 kV (xo = 2.99573), 

~[m(2.99573)] = { (1/76) t [(2.99573-3.49591)2/0.709319]}’~21.587 = 0.9598. 

The estimate s = 1.587 has Y = 69 degress of freedom. The limits of the 
95% confidence interval for ~(2.99573) are 

r(2.99573) = 10.3439 - 1.9949(0.9598) = 8.4292, 

G(2.99573) = 10.3439 t 1.9949(0.9598) = 12.2586; 

here 1.9949 = t(0.975;69). The corresponding confidence limits for the 
42.8th percentile at 20 kV are r.428(2.99573) = exp(8.4292) = 4,580 and 
-,(2.99573) = exp(l2.2586) = 211,000 minutes. The 95% confidence limits 
for the 42.8th percentiles at design and test voltages appear in Table 4.5. 
These limits are on the curves in Figure 4.1. 

The preceeding confidence intervals for the In mean are two-sided. 
Sometimes one wants only a lower limit for the In mean, since long life is 
desired. A lower one-sided approximate lO@y% confidence limit for p(xo) is 

&o) = 4 x 0 )  - I ( 7 ;4  s[nz(xo)l; (4.3.5) 

here f(7;v) is the 100yth I percentile with v degrees of freedom. This limit for 
the 42.8th percentile of the life distribution is _7.428(&)) = exp[tl(xo)]. 

For the insulating fluid at 20 kV (xo = 2.99573), the lower one-sided 95% 
confidence limit for ~(2.99573) is 

r(2.99573) = 10.3439 - 1.6672(0.9598) = 8.7437; 

here 1.6672 = 1(0.95;69). The lower confidence limit for the 428th percen- 
tile at 20 kV is ~..~8(2.99573) = exp(8.7437) = 6270 minutes. 

A lower limit for a two-sided lo@% confidence interval is also a lower 
limit for a one-sided 100(1+7)/2% confidence interval. Thus, in Table 4.5 
the lower limits of two-sided 95% confidence intervals are lower one-sided 
97.5% confidence limits. 

Confidence limits for a percentile. Approximate two-sided l m %  
confidence limits for the lOOPth In percentile rp(xo) at a stressxo are 
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Table 45. Estimates and Confidence Limits for 42.8th Percentiles 

Percentiles (in minutes) 
Voltage Estimate of 42.8th Two-sided 95% Confidence Limits 

(kV) 
38 
36 
34 
32 
30 
28 
26 
20 
15 
10 
5 

Percentile (minutes) 

0.838 
2.03 
5.19 

14.0 
40.4 

125. 
421. 
31.1 x Id 
3.47 x lo6 
2.67 x lo9 
0.229 x 1015 

Lower (minutes) 

0.440 
1.25 
3.55 
9.58 

24.3 
61.2 

161. 
4.58 x l@ 
0.176 x lo6 
0.0297 x lo9 
0.189 x 10” 

Upper (minutes) 

1.60 
3.32 
7.59 

20.5 
67.1 

256. 
1106. 
210. x lo3 
68.5 x lo6 

240. x 109 
0.278 x 1Ol8 

gp(x0) = yp(x0) - t (7’y)  s[m(xo)] = p(x0) + [u (P) + 0.5772]0.7797s, 
(4.3.6) 

Gp(x0) = yp(~0) i- t(7’;V) S [ I ? I ( X O ) ]  = &o) + [u (P)  + 0.577210.7797~ ; 

here the notation has the usual meaning. For the Weibull percentiles, 

TP(X0) = exp[p(xo)l and %xo) = exp[G&o)l. (4.3.7) 

These limits ignore the random variation in the estimate s. This is relatively 
small ifxo is far from the test stresses. 

Often a lower limit is desired in practice. One then wants at most a pro- 
portion P of the units at that stress to fail before the limit with l W %  
confidence. Replace 7’ by 7 to get such a limit from (4.3.7). A one-sided 
lower confidence limit for a percentile is also known as a statistical lower 
tolerance limit. ~ ~ ( x ~ )  = exp[p(xo)] is a lower approximate 1 m %  
confidence limit for the lOOPth percentile of the Weibull life distribution. 

For the insulating fluid, assume that p = 1/6 = 1; that is, the life distribu- 
tion is exponential. The approximate lower 95% confidence limit for the In 
1st percentile at 20 kV (xo = 2.99573) is 

g.ol(2.99573) = 8.7437 + [-4.6002 + 0.577211 = 4.7207. 

The approximate lower 95% confidence limit for the 1st percentile of the 
Weibull life distribution is r,01(2.99573) = exp(4.7207) = 112 minutes. 

Confidence limits for a design stress. Sometimes one wants a design 
stress x* such that its lOOPth percentile of life has a specified value T;. 

Two-sided approximate l W %  confidence limits ( x , i )  for x* are the solu- 
tions of 
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q; = co t c1 ,x t [0.5772+ u (fy0.7797~ -t(7’ ; v){ ( l /n)  t [@ -x )2/s,]}1/2s , 

q; = co t c1x  t[0.5772tu(P)]O.7797s tt(7’;v)((l/n)t[(i-X)2/S,]}’~2s; 
(4.3.8) 

here q; = ln(r;), and t(7’;v) is the lo@’ = 100(1+7)/2th percentile of the f 
distribution with v degrees of freedom. These limits assume that the 
transformed stress x is an increasing function of the actual stress. If not, 
interchange x and x and solve (4.3.8). These limits are crude and ignore the 
random variation in s. Ifx* is far from the test stresses, the error is smaller. 

One usually uses a one-sided lOO-y% limit x as a design stress. Then the 
true percentile qp@) at ,x is above q i  with probability 7. For a one-sided 
1OOy% confidence limit, replace 7’ by 7 in (4.3.8). 

The limits @,<) can be obtained graphically from a graph of p ( x )  and 
;ip(x) versus x. Such curves for 9.428(x) and i,42,3(x) appear in Figure 4.1. 
Enter the graph on the time axis at r p ;  go horizontally to each curve and then 
down to the stress scale to read the copespondingx andx values. Figure 4.1 
directly yields voltage y=  12.1 and I/ = 18.6 kV with 95% confidence for 
r,>28 = lo6 minutes. 

Confidence limits for the shape parameter. Least-squares regression 
theory for confidence limits for the Weibull shape parameter does not exist 
yet. Confidence limits based on maximum likelihood theory appear in 
Chapter 5. Lawless (1976,1982) gives other exact confidence limits. 

Confidence limits for the intercept 70. The least squares estimate co for 
the intercept coefficient 7 0  has a sampling distribution that is approximately 
normal and has a mean equal to the true value 70. Thus, co is an unbiased 
estimate for 70. The true standard error of co is 

o(c0) = [(l /n) t (22/S,)J’/2~. (4.3.9) 

Its estimate is 

s(c0) = [(l /n) t (22/S,)]’/2s ; (4.3.10) 

here s is an estimate for CT and has Y degrees of freedom. Two-sided approxi- 
mate lOOy% confidence limits for 7 0  are 

30 = C O  -t(T’;v)s(co), q o  = C o  t t ( j ; v ) s ( c o ) ;  (4.3.11) 

here l(7’ ; Y )  is the 1OOy’ = lOO(1 t 7)/2th t percentile with v degrees of free- 
dom. This interval is robust in the sense that its true confidence is close to 
lOOy%, if the sample size is moderately large. This interval is rarely used in 
accelerated testing work, because -yo usually lacks a useful physical meaning. 

For the insulating fluid, 

S(CO) = { (1/76) t [(3.49591)2/0.709319]}”2 1.587 = 6.589; 

the estimate s = 1.587 has 69degrees of freedom. Approximate 95% 
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confidence limits for 7 0  are 

20 = 59.4468 - 1.9949(6.589) = 46.30, 

;rO = 59.4468 + 1.9949(6.589) = 72.59, 

where 1.9949 = t(0.975;69). 

Confidence limits for the slope 71. The estimate cl for the slope 
coefficient 71 has a sampling distribution that is approximately normal, and 
its mean equals the true value 71. Thus, c1 is an unbiased estimate for 71. 
The standard error of c1 is 

a(c1) = [l/Su]”2a. (4.3.12) 

Its estimate is 

s(c1) = [l/Su]’/2s. (4.3.13) 

Two-sided approximate lw% confidence limits for 71 are 

71 = ~1 - t ( ~ ’ ; v ) s ( ~ l ) ,  = c1 + t (7’ ;v)s (~ l ) ;  (4.3.14) 

t(7’ ;v) is the lm’ = lOO(lt-y)/2th t percentile with v degrees of freedom. 

mate 95% confidence limits for the power 71 are 
For the insulating fluid, s(cl) = [1/0.709319]’/* 1.587 = 1.884. Approxi- 

71 = -16.3909-1.9949(1.884) = -20.149, 

51 = - 16.3909 t 1.9949( 1.884) = - 12.632 ; 

here 1.9949 = t(0.975;69). These limits could be rounded to one decimal 
place in view of the large uncertainty. 

Confidence limits for a fraction failing. Such approximate limits are not 
given here. Use the maximum likelihood ones in Chapter 5. 

Exponential Fit 

The exponential distribution is the Weibull distribution with a shape 
parameter value of /3 = 1. Thus the model, estimates, and confidence limits 
of Subsections4.1, 4.2, and 4.3 apply. However, the estimate b ( and d )  is 
replaced by the assumed value p = 1. The affected equations are listed 
below. Their equation numbers are the same as in those subsections. But 
they are distinguished here by a prime. These methods with suitable 
modification can be used with any specified value of /3; this is useful when the 
distribution is not exponential. 

Model. Because /3 = 1/6 = 1, model equations simplify as follows: 

1n[O(xj)] = ( (x i )  = p(xj) t 0.5772, 

ln[rp(xj)] = p(xj) + [0.5772 t u (P)]. (4.1.3 ‘ ) 

Estimates. Modified estimates for an exponential distribution follow. 

c = 1.283, 
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Other estimates are not modified. The estimate of a fraction failing is 

F*(to ; X O )  = 1 - exp{ -to/exp[nr (xo) +0.5772]}. (4.2.15‘) 

The estimate of a (In) percentile is 

In[tp(xo)] = m(~o)+[0.5772+~(P)] = co t ClXo t [0.5772+~(P)]. (4.2.16’) 

The estimate of the mean life is the special case P = 0.632; namely, 

I9* (XO)  = exp(0.5772 t co t c1x0). 

The estimate of the failure rate is 

A*(x~)  = 1/d*(x0) = l/exp(0.5772tc~+c~x~). 

The estimate of a design stress that yields a given percentile r i  is 

x* = { In(7;) -co - p.5772 t u ( P ) ] } / c ~  . (4.2.18 ‘) 

Confidence limits. Modified lOO-y% confidence limits for an exponential 
distribution (@ = 1) appear below. All limits are modified. The normal per- 
centile z7* replaces the t percentile r (7’ ; v) throughout, where 7’ = (1 t 7)/2. 
For a one-sided lW% limit, use 7 in place of 7’. 

Two-sided approximate lOOf% confidence limits for the mean In life are 

&o) = 4 x 0 )  - z,*u[m(xo)], G ( X 0 )  = m@o) + z,*u[m(xo)l (4.3.3’) 

where 

u[m(xo)] = {(l/n) +[(xo-X)2/S,]}1/z 1.283. 

Two-sided approximate lOOy% confidence limits for a l W t h  percentile are 

~ ~ 6 0 )  = exp{&d + [0.5772+u(P)J} , 
; ~ ( x o )  = exp{F(xo) t [0.5772 t u (P)]} . 

(4.3.1 ’) 

(4.3.7’) 

Confidence limits for the exponential mean are the special case P = 0.632 

! (xo) = exp[tc(xo) t 0.57721, e(x0) = exp[i;(xo) t 0.57721. 

Two-sided approximate 100.1% confidence limits for the failure rate are 

X (XO)  = l/e(xo) and x(xo) = l/fl(x0) . 

Two-sided approximate lODy% confidence limits (x, .6) for a design stress 

II;, = ~~t~~~t[O.5772+~(P)]-~,~{(l/~~)t[~-X)~/S,]}’/~1.283, 

$ = CO + c I ~  t (0.5772 +U (P)] tz,, { (l/n) t [(x’ -X )2/S,]}’/2 1.283. 

are the solutions of 

(4.3.8’) 

These limits assume that the transformed stress x is an increasing function of 
the actual stress V. If not, interchange 5 and .6 and solve (4.3.8’). Then 
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corresponds tox (and fitox). 

Two-sided approximate 1 m %  confidence limits for the intercept 70 are 

1 0  = co - 27' 4 c o ) ,  r o  = co +- 27' 4 c o )  , (4.3.11 ') 

where 

(I(C0) = [(l/n) t ( i2/~,)]1/21.283. (4.3.9') 

Two-sided approximate lOh% confidence limits for the slope 71 are 

1 1  =CI - ~;[l/S,]'/~1.283, r l  = CI + ~~*[l/S,]'/~1.283. (4.3.15') 

Two-sided approximate lOO-y% confidence limits for a fraction failing by 
age t o  are - 

F(to;xo) = 1 - e.p[-to/@o)l, W o ; x o )  = 1 - exp[-to/,e(xo)l. 

5. CHECKS ON THE LINEAR-WIBULL MODEL AND DATA 

The preceding estimates and confidence limits are based on certain as- 
sumptions. Thus, their accuracy depends on how well the assumptions are 
met. This section presents methods for checking the assumptions. From 
such checks one can judge how much to rely on various estimates and 
confidence limits. Of course, some are reliable even when the assumptions 
are far from satisfied, and others are quite sensitive to departures from the 
assumptions. Also, presented here are checks on the validity of the data. 
These checks reveal suspect data points that may result from faulty testing or 
blunders in handling the data. The checks examine 

linearity of the (transformed) life-stress relationship, 
dependence of the Weibull shape parameter on stress, 
that life has a Weibull distribution, 
the effect of other variables, 
deviant data. 

These checks also appear in Section 3. The effect of such departures from 
the assumptions on the estimates and confidence limits is discussed below. 

5.1. Is the Life-Stress Relationship Linear? 

The model assumes that the transformed life-stress relationship (4.1.2) is 
linear. Linearity is important if one extrapolates the fitted line outside the 
range of the test stresses. The data may be nonlinear for various reasons: 

1. The true relationship may be linear, but the observed relationship may be 
nonlinear, because the life test was run improperly. For example, speci- 
mens at some stress levels may differ in their fabrication or handling from 
those at other levels, or the actual levels may differ from intended ones. 
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2. The relationship may be nonlinear due to several failure modes acting, 
each with a different linear relationship. 

3. Also, the relationship may just be inherently nonlinear, that is, not de- 
scribed by the chosen life-stress relationship. 

A subjective assessment of the linearity of the relationship may be ob- 
tained from examination of a plot of the data on paper for the relationship. 
This is described in Section 3.5 of Chapter 3. For the insulating fluid, such a 
log-log plot appears as Figure 3.3 in Chapter 3 and is reasonably linear. 

The F test for linearity (Section 3.1) applies, but it is approximate for a 
Weibull life distribution. For the insulating fluid, the F statistic is 

F = [ (76 - 2) ( 1.55815)2 - (76 - 7 )  ( 1  .58685)2] /[ (7 - 2) ( 1.58685)2] = 0.47. 

Here the F distribution has J - 2 = 7 - 2 = 5  degrees of freedom in the numera- 
tor and n -J =76- 7=69 in the denominator. Since F = 0.47 < 2.35 = 
F(0.95;5,69), there is no statistically significant (convincing) evidence of non- 
linearity. The observed F value is so small that the F approximation may be 
quite crude and still suffice. Examination of the log-log plot of the data in 
Figure 3.3 of Chapter 3 supports this conclusion. 

If statistically significant nonlinearity is found, examine the relationship 
plot to determine how the relationship departs from linearity. Nonlinearity 
may result from curvature in the relationship, defective data, or different 
failure modes. If there are several failure modes, the relationship would be 
concave downwards (life on the vertical axis). If the data from a stress are 
out of line with data from the other stresses, those data may be in error. 
Reasons for that error must be examined to determine whether those data 
are valid and should be used or not. After examining the relationship plot, 
do one or more of the following. 

1. If the plot indicates that a smooth curve describes the relationship, fit a 
curve to the data or transform the data differently. A quadratic equation 
in the (transformed) stress may suffice. Before doing this, be sure that 
the apparent curvature is not a result of erroneous data. 

2. If the plot contains data points that are not consistent with the rest, set 
them aside and analyze the apparently valid data. Before doing this, one 
should try to justify rejecting those data, say, due to some flaw in the 
experimental work, It is most important to determine the cause of such 
data, as that can lead to improving the product or test method. 

3. Use the estimates and confidence limits as is, but subjectively take into 
account the nonlinearity in interpreting them and coming to conclusions. 

5.2. Is the Weibull Shape Parameter Constant? 

The model assumes that the shape parameter f l  has the same true value 
for all stress levels. /3 may depend on stress, or different /3 values may result 
from faulty testing. If so, the percentile estimates should not be calculated 
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with the pooled estimate of the shape parameter. Instead, an estimate of a 
percentile at a stress level should employ an estimate of ,9 for that level. If no 
data have been collected at a particular level, then one must express p as 
some function of the stress. That function would have to be estimated from 
the data. The following graphical method compares shape parameters at 
different stress levels. Analytic comparisons with maximum likelihood esti- 
mates appear in Chapter 5. One can subjectively assess whether the shape 
parameter is constant as described in Section 2.5 of Chapter 3 using Weibull 
paper. Weibull probability plots of the data should yield parallel lines with 
the same slope. When the samples are small as in Figure 3.1 of Chapter 3, 
one should expect much random variation in the plotted slopes. Only ex- 
treme or systematic differences in the plotted slopes are evidence that the 
shape parameter is not constant. In particular, a systematic change in the 
slope over successive stress levels suggests that the shape parameter depends 
on stress. A single slope that differs greatly from the other slopes indicates 
possibly faulty testing at that stress level. 

For the insulating fluid, the Weibull plot in Figure 3.1 of Chapter 3 sug- 
gests that the Weibull shape parameter is not the same at all test voltages. In 
particular, the slope at 32 kV is smaller than at the other test voltages. This 
may indicate that the test for the 32 kV data was faulty. The slope at 26 kV is 
also small; however, that sample is too small to warrant any conclusions. 

If the Weibull plot is not convincing, use an objective statistical test for 
equality of the shape parameters (Chapter 5). For the insulating fluid, such a 
test shows that the shape parameters estimates at different test voltages do 
not differ statistically significantly. 

53. Is the Life Distribution Weibull? 

Certain estimates and confidence limits are sensitive to the assumption 
that the life distribution is Weibull. These include estimates of percentiles 
and a fraction failing and certain confidence intervals. Also, only if the 
Weibull distribution fits, is the fitted life-stress line an estimate of the 423th 
percentile. Otherwise, the line is some vague nominal life. The following are 
subjective checks that the Weibull distribution is adequate. 

Weibull plot. As described in Section 3.2 of Chapter 3, use Weibull plots 
of the data from the different test stress levels. Examine them to assess if the 
plots are reasonably straight. A pronounced systematic curvature at most 
stresses suggests that the Weibull distribution is not adequate. In judging, 
inexperienced people tend to be too critical of such plots; they expect much 
better linearity than is usually observed. Subjective notions of how a plot 
should look tend to be too stringent and orderly. The great normal erratic- 
ness of such plots may be seen in plots of Monte Carlo samples in Hahn and 
Shapiro (1967) and Daniel and Wood (1980). Figure 3.2 of Chapter 3 looks 
erratic to the inexperienced eye. 
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Residuals plot. A more sensitive check on the Weibull assumption em- 
ploys a plot of the adjusted 111 residuals about the fitted line. Such a residual 
of the ith In observation yo at the test stressxj is 

ro = [yo -rn(xj)l / { 1 - (l/n - [(xi -X )'/s,])'/~ ; 

here m(xj) is the least squares estimate (4.2.14) of the In mean at stress x,. 
The notion is defined in Section 4.2. The differences r,$ = yii - m ( x j )  are 
called the raw residuals about the fitted line; they are easier to calculate and 
most regression programs calculate them. The raw residuals have unequal 
standard deviations, all slightly less than o; so they are not from distributions 
with the same standard deviation. The adjusted residuals are better, because 
each has a standard deviation equal to 0. But the raw residuals suffice for a 
moderately large sample, such as for the insulating fluid. 

All adjusted residuals are pooled as a single sample. They should look 
like a sample from an extreme value distribution with a mean of zero and a 
standard deviation equal to 0. Plot the pooled sample on (smallest) extreme 
value probability paper. Extreme value probability paper are available from 
TEAM, Box 25, Tamworth, NH 03886, (603)323 - 8843 

#111 0.01-99.99% (11" horizontal) 100 divisions (81/2" vertical) 
#112 0.0001 -99.9999% (14" horizontal) 100 divisions (11" vertical) 

These and most other extreme value papers are for the latgest extreme value 
distribution. For the smallest extreme value distribution, change each per- 
centage l O O F  on such probability papers to lOO(1 -F). 

Examine the plot to assess whether the data follow a straight line. The 
best way to judge straightness is to hold the paper horizontal at eye level and 
sight along the points. If the plot is not reasonably straight, then the Weibull 
distribution is inadequate. The nature of the curvature may indicate how the 
true distribution differs from the Weibull. Also, a non-straight plot may indi- 
cate that some observations are in error (that is, a faulty test) or that the 
life-stress relationship is inadequate. In view of this, one should plot these 
residuals only after checking the relationship plot. 

For the insulating fluid, the adjusted residuals about the fitted line are 
calculated in Table 5.1. Note that the raw and adjusted residuals differ little, 
since the adjusted factors are close to 1 (1.007 to 1.050). Thus, the raw resid- 
uals would do. The extreme value plot of the adjusted residuals appears in 
Figure 5.1. Note that the probability scale of the largest extreme value paper 
has been relabeled. Each percentage l O O F  was changed to lOO(1-F). The 
plot is relatively straight and shows no peculiarities. Thus, the Weibull distri- 
bution appears adequate. 

5.4. Estiinnte the Weibull Shape Parameter 

Shape parameter estimate. The plot of the pooled adjusted residuals 
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Table 5.1. Calculation of Adjusted Residuals 

26 kV 

1/ - 2 ~3.25810-3 .49591)r_  1.050 

(1.7561-6.0435)1.050 - -4.50 

(7.3648-6.0435)1.050 - 1.39 

(7.7509-6.0435)1.050 - 1.79 

72 0.709319 

28 kV 

3.3322 1-3.49 59 l)* I 1, 026 '/d - 4 .( 0.709319 

(4.2319-4.8288)1.026 - -0.61 

(4.6848-4.8288)1.026 - -0.15 

(4,7031-4.8288)1.026 - -0.13 

(6.0546-4.8288) 1.026 - 1.26 

(6,9731-4.8288) 1.026 = 2.20 

30 k V  

1/d1 - 4 - J3'40120-3'49591)t'= 1.013 
0.709319 

(2,0464-3.698)1.013 = -1.67 

(2.8361-3.698)1.013 -0.87 

(3.0184-3.698) 1.013 - -0.69 

(3.0454-3.698)1.013 - -0 .66  

(3,1206-3.698)1.013 - -0.58 

(3.7704-3.698)1.013 = 0.07 

(3.8565-3.698)1.013 - 0.16 

(4.9349-3.698)1.013 - 1.25 

(4.9106-3.698)1.013 - 1.29 

(5.1698-3.698)1.013 = 1.49 

(5.2724-3.698)1.013 - 1.60 

(-1,3094-2.64013)1.007 - -3.98 

(-0.9163-2.64013)1.007 - -3.58 

(-0.3711-2.64013) 1.007 = - 3.0 3 

(-0,2358-2.64013)1.007 = -2.90 

( 1.01 16-2.64013) 1.007 - ~ 1.64 

(1.3635-2.64013) 1.007 - -1.29 

(2.2905-2.64013)1.007 D -0.35 

( 2.6354-2.64013) 1.007 - - 0.00 

(2.7682-2.64013)1.007 - 0.13 

(3.3250-2.64013)1.007 - 0.69 

(3.9748-2.64013) 1.007 - 1.34  

(4.4170-2.64013)1.007 c 1.79  

(4.4918-2.64013)1.007 - 1.87 

(4.6109-2.64013)1.007 = 1.99 

(5.3711-2.64013)1.007 - 2.75 

34 kV 

- 2 - 13.52637-3.49591)*- 1,007 
72 

(-1,6608-1.64635)1.007 - - 3 . 3 3  

(-0.2485-1. M635)1.007 - -1 .91  

(-0.0409-1.64635) 1.007 = -1 .70  

(0.2700-1.64635)1.007 = -1.39 

(1.0224-1.64635)1.007 I -0 .63  

(1.1505-1.64635)1.007 = -0.50 

(1.4231-1.64635) 1.007 - -0 .22  

(1.5411-1.64635) 1.007 = -0.11 

(1.5789-1.64635) 1.007 - -0 .07  

(1.8718-1.64635)1.007 - 0.23  

(1.9947-1.64635)1.007 - 0 . 3 5  

(2.0806-1.64635)1.007 - 0 . 4 4  

(2.1126-1.64635)1.007 - 0.47 

(2.4898-1.64635)1.007 - 0 . 8 5  

(3.4578-1.64635)1.007 = 1.82  

(1.4818-1.64635) 1.007 - 1.85  

(3.5237-1.64635)1.007 - 1.89  

(3.6030-1.64635)1.007 = 1 . 9 7  

(4.2889-1.64635)1.007 - 2.66  

36 k V  

1/ 

(-1.0499-0.709603)1.012 = -1 .78  

(-0.5277-0.709603)1.012 - -1.25 

(-0.0409-0.709603) 1 ,012  c -0.76 

(-0.0101-0.709603)1.012 - -0 .73  

(0.5247-0.709603)1.012 = -0.19 

(0.6780-0.709603)1.012 - -0.03 

(0.7275-0.709603)1.012 - 0.02 

(0,9477-0.709603)1.012 r 0.24  

(0.9969-0.709603)1.012 - 0.29 

(1,0647-0.709603)1.012 - 0. 36 

(1.3001-0.709603)1.012 = 0.60  

(1.3837-0.709603)1.012 - 0 . 6 8  

(1,6770-0.709603)1.012 - 0.98  

(2.6224-0.709603)1.012 15 1 . 9 4  

(3.2386-0.709603)1.012 - 2.56 

- 6 - I3.58352-3.49591)*_ 1.012 
0.709319 

38 kV 

0.709319 
l/ - 4 i3.63759-3.49591)*- 1,021 

(-2,4080-0.176655)1.021 = -2 .28  

(-0,9417-0.176655)1.021 - -0 .78  

(-0,7551-0.176655)1.021 I -0.59 

(-0.3148-0.176655)1.021 - -0 .14  

(-0.3012-0.176655)1.021 - -0.13 

(0.1222-0.176655)1.021 = 0 . 3 1  

(0.3364-0.176655)1.021 - 0.52 

(0.8671-0.176655) 1.021 - 1.07  
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Figure 5.1. Insulating fluid residuals on extreme value probability paper. 

yields ii pooled graphical estimate of the Weibull shapc: parameter. Visually 
fit a straight line to the plot so its 42.8% point is zero. The 78.3th percentile 
of that line is an estimate of the extreme value scale parameter 6. Its recipro- 
cal is the shape parameter estimate. This is more accuracte than the graphi- 
cal estimate of Chapter 3. Such a fitted line in Figure 5.1 has a 78.3th per- 
centile of 1.24. The pooled estimate is @* = 1/1.24 = 0.81. 

Check. Using the plot, one can subjectively assess whether the data are 
consistent with a specified Po value. For example, theory for the insulating 
fluid says Po = 1. On the plot, mark the value 60 = l/Po at 78.3%. Draw a 
line through this point and through zero at 42.8%. Compare the slope of this 
line with that of the data. A convincing difference indicates that the data are 
not consistent with PO. For the insulating fluid, the line for PO = 1 can be 
added to Figure 5.1. The slope of that line borders on differing convincingly 
from that of the data. When the subjective assessment is marginal, an objec- 
tive assessment (Chapter 5)  is needed. The observed /3* = 0.81 is below the 
theorized Po = I. Such a lower estimate would result if the test conditions 
lacked control and varied slightly, causing greater scatter in (In) life. 

5.5. The Effect of Other Variables 

Sometimes there are other variables whose values are observed Tor each 
test specimen. Such variables include, for example, the shift (personnel) that 
made the specimens, the length of the test cycle (see Problem 3.9), and dissi- 
pation factor (of insulation). One wishes to know if and how such variables 
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affcct product life. The effect of such variables on life inay be examined (Sec- 
tion 6 )  through fitting multivariablc relationships and through crossplots. 

A variable not in a model can be examined in a crossplot of the residuals 
(from the fitted model) against that variable. If the variable affects life, the 
plot will have a trend. Figure6.7 of Section6 is such a plot of residuals 
against binder content. The residuals come from fitting the power-Weibull 
model to voltage endurance data from an insulating tape. The plot indicates 
that life decreases with increasing binder content, a measure of energy loss in 
the tape dielectric. 

Binder content (a percentage) is a continuous variable; that is, it can have 
any (positive) numerical value. Sonie variables have only discrete category 
values, for example, year of manufacture. Figure6.11 of Section6 is a 
crossplot of the tape residuals against year of manufacture. The crossplot 
slightly suggests that the recent years produced specimens with shorter life. 

Regression books explain in detail how to make and interpret such 
crossplots of residuals. See, for example, Draper and Smith (1981), Neter, 
Wasserman, and Kutner (1983), or Daniel and Wood (1980). A trend in such 
a crossplot by itself does not prove cause and effect of the variable. Other 
variables could be producing the effect on life and on the variable. 

Most regression packages calculate the raw residuals about the fitted re- 
lationship. Also, most crossplot residuals against other variables. 

5.6. Checks on the Data 

Suspect data are data subsets or individual observations that deviate from 
the assumed model or the bulk of tlie data. Such data can arise from faulty 
testing, errors in handling the data, the effect of other variables, etc. The 
previous checks on the model also are checks on the data. Nonlinearity of 
the life-stress relationship, dependence of the Weibull shape parameter on 
stress, inadequate fit of the Weibull distribution - each may indicate suspect 
data. In addition to these methods, one can examine the Weibull plots of the 
data and the extreme value plot of the residuals for individual extremely high 
or low points, called outliers. Such points may be erroneous; determine their 
cause and decide whether to use them in the analyses. Points in the extreme 
tails of a plot vary just from random sampling much more than most people 
expect. Thus, points must be much out of line before they are labeled 
outliers or discarded. Preferably, one should find the cause of suspect data. 
Then one can improve the testing and data handling. In a sense, suspect data 
are always right; that is, they reflect something real happening. Only the 
model or our understanding is inadequate. 

Formal numerical methods for identifying outliers are given by Beckman 
and Cook (1983), Barnett and Lewis (1984), and Daniel and Wood (1980). 



210 COMPLETE DATA AND LEAST SQUARES ANALYSES 

6. MULTIVARIABLE RELATXONSHIPS 

6.1. Introduction 

Overview. This section presents least squares fitting of multivariable rela- 
tionships to data. This section explains only how to interpret computer out- 
put on such fitting. Theory for such fitting is complex and is omitted here. 
Such theory appears in the references below. Needed background for this 
section includes multivariable relationships (Section 13 of Chapter 2) and 
Sections 2 and 3 of the present chapter. Section contents include 1) example 
data, 2) fitting a specified relationship, 3) assessing the fit and the data, and 
4) stepwise fitting of a general relationship. 

W h y  multivariable? As explained in Section 13 of Chapter 2, multivari- 
able relationships are used when there is more than one accelerating variable 
or there are other variables that may affect product life. For example, such 
relationships may serve as derating curves for the combined effects of a num- 
ber of accelerating stresses, a common practice for electronic devices. Also, 
such relationships may yield insights that improve a product’s manufacture, 
operation, or testing. Even tests with just an accelerating stress and presum- 
ably no other variable often involve other variables. Examples of such vari- 
ables include: 1) order of a specimen in going through each step of fabrica- 
tion and testing, 2) different technicians who carry out each step, and 3) posi- 
tion on the test rack. Good experimental procedure has the specimens go 
through each fabrication and testing step in a separate random order. 

Test planning. For principles of experimental design, refer to Box, 
Hunter, and Hunter (1978), one of many introductions to the subject. 
Chapter 1 discusses test design in detail. Few accelerated tests are statisti- 
cally designed. This usually results in less accurate information and some- 
times no information. A statistical consultant is most helpful at the test plan- 
ning stage. Most books, including this one, overemphasize data analysis. 
Few devote enough attention to test planning, which is more important. For 
most well planned tests, the conclusions are apparent without fancy data 
analyses. And the fanciest data analyses often cannot salvage a poorly 
planned test. 

References. There are many books that present least squares fitting of 
multivariable relationships to data. They explain how to interpret output of 
standard computer programs, and they derive the underlying theory. Exam- 
ples include Draper and Smith (1981) and Neter, Wasserman, and Kutner 
(1983,1985). Also, there are many computer programs that do the least 
squares calculations. Section 1 references some of these programs; consult 
them for more detail. This section can only briefly survey some basics of this 
vast subject. Also, note that such books and programs generally assume that 
the life distribution is (log) normal; many confidence limits are sensitive to 
that assumption. 
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Linear relationship. For most applications, the multivariable relationship 
is linear in the unknown coefficients, which are estimated from the data. Such 
relationships may be nonlinear in the independent variables. Section 13 of 
Chapter 2 presents such relationships, and the following examples employ 
them. Such “linear” relationships are employed for two reasons. First, they 
are easy to fit to data with standard computer programs. Second, they usual- 
ly adequately represent data. Often they do not have ? theoretical basis but 
are adequate empirical models in practice. This book does not address the 
difficult engineering problem of identifying important variables and the form 
of their relationship with life. Box and Draper (1987) treat this problem. 
This book treats the simpler problems of fitting chosen relationships to data 
and assessing a relationship and the data. 

Assumptions. Most computer programs assume that the standard devia- 
tion of (log) life is a constant. Of course, some products have a standard de- 
viation that is a function of the accelerating stress or other variables; 
Chapter 5 presents fitting of such models. Also, in some applications, the 
multivariable relationship is a nonlinear function of the coefficients. Such re- 
lationships can be fitted by the nonlinear least squares method as described 
in the references in Section 1 or by maximum likelihood (Chapter 5).  

Degradation. Least squares can be used to fit performance degradation 
relationships to multivariable data. This is described in Chapter 11. Then 
performance is the statistically dependent variable, and time is one of the in- 
dependent variables. 

6.2. Example Data 

Test purposes. This subsection describes insulation data that illustrate 
least squares fitting of a multivariable relationship. Each insulation specimen 
is production insulation on a conductor taken from a different electrical ma- 
chine. The data consist of design, manufacturing, and test variables in Ta- 
ble6.1. One hundred and six specimens underwent an accelerated 
voltage-endurance test. Purposes of data collection and testing include 

1. Estimate life (a low percentile) of insulation at its (low) design voltage. 
2. Evaluate the effect of manufacturing and design variables on life. 
3. Retrospectively assess quality control; that is, assess whether the life dis- 

tribution was stable over the manufacturing period of several years. If 
not stable, review of past data on manufacturing variables may reveal as- 
signable causes or variables that may be profitably controlled in future 
manufacture. 

4. Assess whether a Weibull or lognormal distribution fits the data better. 
Also, assess whether either fits adequately over the range of the data be- 
fore extrapolating far into the lower tail. This is related to purpose 1. 

The life data are complete. This is unusual (and usually undesirable) in ac- 
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ELNO 
INSLOT 
TAPLOT 
TPDATE 
INSWTH 
INSHGT 
INSTHK 
LAYERS 
MMPERL 
MATDAM 
DENSTY 
VOLTLE 
BINDER 
EXTRAC 
BKNKV 
KVSLOT 
KVBEND 
DFRTXV 
DFCDXV 
DFRTTU 
DFCDTU 
HOURS 
VPM 
STRINS 
LOGHRS 
LOGVPM 
ASPECT 

Table 6.1. List of Variables 

Electrode (specimen) number. 
The lot of insulating material used to make the electrode. 
The lot of tape used to make the electrode. 
The date the electrode was taped - year, month, day. 
The width in centimeters of the insulated electrode. 
The height in centimeters of the insulated electrode. 
The insulation thickness in mm. 
The number of layers of tape applied to the electrode. 
mm per layer = INSTHK/LAYERS. 
A measure of material damage during tape application. 
Insulation density. 
Percentage volatile content of the insulation. 
Percentage organic binder in the insulation. 
Percentage of unreacted organic binder in the insulation. 
Breakdown voltage in kV of insulation after binder is removed. 
Breakdown voltage in kV of the slot portion of the electrode. 
Breakdown voltage in kV of the bend portion of the electrode. 
Dissipation factor at room temperature and 10 V/mm. 
Dissipation factor at 100°C and 10 V/mm. 
Dissipation factor tip up at room temperature, 10 to 100 V/mrn. 
Dissipation factor tip up at loo", 10 to 100 V/mm. 
Life in hours of the insulation. 
The test stress in volts/mm applied to the electrode. 
The type of strand insulation used. 
Base 10 log of HOURS. 
Base 10 log of VPM. 
= INSHGT/INSWTH. 

celerated testing. One usually cannot wait until all specimens fail. A listing 
of the data is omitted, as the listing is not essential to the purposes here. 

Purpose of analyses. The analyses below are intended only to illustrate 
such least squares fitting. They are incomplete and address only purpose 2 
above. Thorough analysis would involve many such analyses. 

Details. It is useful to remark that the conductors have rectangular 
cross sections. Their heights and widths differ due to design differences 
among the machines. The electrical stress (VPM) is the applied voltage 
across the insulation divided by its thickness (INSTHK) in millimeters. 

Test plan. The test levels of voltage stress (the accelerating variable) 
were not chosen so the test plan yielded accurate estimates of life at the low 
design stress. The voltage stresses of the specimens were spread roughly uni- 
formly over the test range. This is inefficient for extrapolation. As shown in 
Chapter6, one can get more accurate estimates at a design stress with a 
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better choice of stress levels. This results from putting more specimens at 
the extremes of the test range and a few in the middle. Moreover, more 
specimens should be tested at low stress than at high. 

63.  Fitting a Specified Model 

Purpose. This section shows the fitting of a specified multivariable rela- 
tionship to data. The relationship expresses the mean of log hours to failure 
(LOGHRS) as a function of log voltage stress in volts per mm (LOGVPM) 
and of dissipation factor (DFRTTU), a measure of electrical loss. All loga- 
rithms are base 10. 

Model. The specified linear relationship for mean log life p is 

p = 71 t72 LOGVPM + 73 DFRTTU. (6.1) 

The coefficients are estimated from the data by least squares and denoted by 
C1, C2, and C3 below. The standard deviation Q of log life is assumed to be 
constant. Also, for estimating low percentiles, the life distribution is assumed 
to be lognormal. Interest centers on low percentiles of the life distribution. 
Because Q is assumed constant, any percentile equations are parallel to (6.1). 
Thus one need only work with (6.1). Those who use a relationship like (6.1) 
when interested in low percentiles need to be aware they implicitly assume Q 

is constant. 

Variables. DFRTTU or its log could be used here. Engineering 
knowledge does not suggest which is better, and both adequately fit the data 
over the observed range of DFRTTU. Also, engineering opinion is divided 
on whether LOGVPM or VPM is better in (6.1). Here (6.1) is the inverse 
power relationship for life versus VPM. 

Picture. The following mental picture of the data and the fitted equation 
aids understanding, For fitting this model, each specimen is regarded to have 
a numerical data value for LOGHRS, LOGVPM, and DFRTTU. Each 
specimen can then be plotted as a point in a three-dimensional space. The 
three perpendicular axes of the space correspond to LOGHRS (the vertical 
axis), LOGVPM, and DFRTTU. The points form a cloud in that space, 
where (6.1) is a plane passing through the cloud. Figure 6.1 shows three pro- 
jections of the data cloud onto a plane determined by a pair of axes. The 
high point in Figure 6.M is influential in determining the estimate C3 for 7 3 .  

Fitting. Fitting (6.1) to the data amounts to determining a “best” plane 
through the cloud. The least squares “best” plane minimizes the sum of the 
squared vertical LOGHRS distances between the plane and the data points. 
Each difference (vertical distance on the LOGHRS scale) between a point 
and the plane is the residual for that specimen. A constant Q corresponds to 
the points having the same vertical scatter around the plane everywhere. 

Significant variable. A variable in (6.1) is statistically significant if the 
estimate of its coefficient (C2 or C3) differs significantly from zero; this is so 
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Figure 6.1. Three projections of the data cloud onto a plane. 

if the confidence interval for the coefficient does not enclose zero. This is 
equivalent to the data cloud having a convincing slope along the axis of that 
variable. “Convincing” means relative to the scatter of the data points about 
the fitted plane. 

Centering. For various purposes, it can be better to write (6.1) as 

/L = 7; t 72(LOGVPM - LOGVPM’) t 73(DFR’ITU - DFRTTU’). (6.1’) 
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Here LOGVPM’ and DFRTTU’ are chosen values. Usually such a value is 
(1) the mean value of the independent variable for the sample specimens, 
(2) some other value near the center of the data values of the variable, or 
(3) some other meaningful value such as the design value. Then p = 7; for 
LOGVPM = LOGVPM’ and DFR’ITU = DFRTTU’. So 7; is the mean 
log life at those variable values - a simple, useful interpretation of that inter- 
cept coefficient. Such centering (or coding) of the independent variables is 
discussed further in Chapter 5. There such centering aids numerical compu- 
tation, in addition to interpretation. Of course, 

Output. Figure 6.2 shows output from fitting (6.1’) to the data. Key lines 
are numbered. Their meanings and interpretations follow. Consult regres- 

1) REGRESSION ALLCLOGHRS LOGVPP DFRTTU) 

S V M M A R Y  S T A T I S T I C S  

C A S E S  
1 0 6  

S T O  DEV 2) VARIABLE AVER4GE VARIANCE 

LOGVPM 2 .2481  3 1  0 . 1 0 7 7 3 2 8 E - 0 2  3 .3282267E-31  
OFRTTU 0 . 7 9 8 0 5 6 6  0 . 6 7 6 9 2 9 1 E - 0 1  0.2631 7 8 6  
LOGHRS 3.323656 0 .151  1960 0 .3838394  

CORRELATION M A T R I X  O f  VARIARLES 

V A R  I A O L E  LJGVPP D F R T T U  LOGHdS 

LQGVPM 1 .0000000  
DFRTTU -0.1461116 1 .0000030  
LOGHRS -0 .7389652  - 0 . 6 1 0 0 8 6 6 E - 0 1  1 . 0 0 0 0 0 3  

COVARIANCE M A T Q I X  O F  V A R I A B L t S  

VARIABLE L3GVPM DFRTTU LOGHRS 

LOGVPM 
DFRTTU -0 .1247757E-02  0 . 6 7 6 9 2 3 1 E - 0 1  
LOGHRS -0 .9431225E-02  - 0 . 6 1 7 2 1 0 5 E - 0 2  0 . 1 5 1 1 9 6 0  

0.107 7 328E -0 2 

LEAST SOUARES E S T I M A T E  O F  T H E  F I T T E D  E B J 4 T I O N  

3) M E A N  = 23.8.3226 
+ ( -9 .053152  )+LOGVPV 
+ ( -0 .2580513  ) + D f R T T U  

4 )  S T D  D E V  5 0 . 2 5 5 8 6 7 2  

LEAST SQUARES ESTIMATES O F  COEFFICIENTS W I T H  95X L I M I T S  

V A R  COEFF ESTIMATE LOUER L I M I T  UPPER L I M I T  

INTR COO000 23 .88226  2 0 . 4 2 7 4 0  2 7 . 3 5 7 1 3  

D f R T T U C 0 0 0 0 2 - 0 . 2 5 8 0 5 1 3  - 0 . 4 5 0 4 5 5 6  - 0 . 6 5 6 4 5 9 2 E - 0 1  
5, LOGVPMCOOOO1 -9 .053152  - i 0 . 5 7 8 3 0  - 7 . 5 2 8 3 0 2  

Figure 6.2. Output for model (6.1). 
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sion texts for interpretation of other output. Output is from STATPAC of 
Nelson and others (1983). 

Line 1 is the command for least squares fitting; LOGHRS is the dependent 

Line 2 and following lines show summary statistics on the sample data. 
Line 3 shows the fitted equation (6.1). The coefficient estimates for 
LOGVPM and DFRTTU are both negative; this indicates that life 
decreases as either variable increases, which is consistent with engineering 
experience. The coefficient estimate for LOGVPM is -9.05; thus insula- 
tion life decreases as the inverse of the 9.05 power of voltage stress 
(VPM). DFRTTU is an uncontrolled but measured covariate. Its physical 
effect on life is gauged from the size of (its coefficient)x(twice its standard 
deviation), namely, (-O.Z8)x(2xO.260)= -0.134. Then life is reduced by a 
factor antilog( -0.134) = 0.73, because DFRTTU is not controlled and not 
at the lower end of its range. Better manufacture or materials may 
increase life 27% or so. This is so only if there is a cause and effect rela- 
tionship between DFRTTU and life. Whether 27% improvement warrants 
the effort of controlling DFRTTU depends on engineering judgment. 
Also, engineering would have to know or learn how to control DFRTTU. 
Line 4 shows the estimate of the standard deviation 0 about the equation. 
This corresponds to the estimate s’ in previous sections. Its number of 
degrees of freedom is 103, the sample size (106 here) minus the number of 
coefficients (3 here) in the fitted equation. 
Line 5 and following lines show the coefficient estimates and correspond- 
ing two-sided 95% confidence limits. The confidence limits for the 
DFRTTU coefficient are -0.450 and -0.0656. These limits do not 
enclose 0. Thus the coefficient estimate - 0.258 is statistically significant 
(5% level). That is, there is convincing evidence that DFRTTU is related 
to life. Of course, this does not necessarily mean that there is a cause and 
effect relationship. Cause and effect should be supported by physical the- 
ory, a designed experiment, or experience. DFRTTU may depend on 
more basic manufacturing or material variables which also affect life. 

The other output is less useful, but it may be worthwhile in some applica- 
tions. Computer packages provide it mostly as a matter of tradition. 
Explaining such output usually causes more confusion than enlightenment. 

Specified coefficient. Sometimes it is useful to specify the value of a 
coefficient in a relationship - rather than estimate it from the data. Then 
the other coefficients are fitted to the data using the specified coefficient 
value. Section 4.4 of Chapter 5 describes why and how to do this. 

Test fit of the relationship. The following hypothesis test assesses how 
well the assumed relationship fits the data. It generalizes the test of linearity 
of Section 3.1. Suppose that the relationship contains P estimated 
coefficients, including the intercept. Also, suppose that there are n speci- 
mens among J distinct test conditions. Here J must be less than n;  that is, 
there must be replicates at some test conditions. Also, P must be less that J;  

variable, and LOGVPM and DFRTTU are independent variables. 
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otherwise, the P coefficients cannot all be estimated. Fit the relationship to 
the data (by computer) to get the estimate s’ of the standard deviation based 
on lack of fit, the multivariate extension of (2.2.12). Also, calculate the esti- 
mate s based on replication, the multivariate extension of (2.2.11). Roughly 
speaking, if s’ is much greater than s, then there is lack of fit. Section 3.1 
lists possible causes of lack of fit. 

F test of fit. The hypothesis test employs the F statistic for luck of fit 

F = [(n -P)s” - (n -J )S2] / [ (J -P)s z ] .  (6.2) 

The numerator may be a small difference between two large numbers. So 
carry extra significant figures in the calculation. The F test offit is 

If F < F ( l - a ; J - P , n - J ) ,  there is no evidence of lack of fi t  at the l o b %  

If F > F ( l - a ; J - P , n - J ) ,  there is statistically significant lack of fit at the 
significance level. 

l o b %  level. 

Here F ( l - a ; J - P , n - J )  is the 1-a point (upper a point) of the F distribu- 
tion with J - P  degrees of freedom in the numerator and n -J in the denomi- 
nator. This test is exact for a (log) normal life distribution. Also, it is a use- 
ful approximation for other distributions. If there is lack of fit, examine data 
and residual plots to determine why (Section 3.1). A more general relation- 
ship with other functions of the same or additional variables may yield a 
better fit. A relationship may show no lack of fit and yet not be satisfactory. 
This happens if other important variables are not in the relationship. Also, a 
relationship may show lack of fit and be adequate for practical purposes. 

Compare relationships. The following hypothesis test assesses whether 
one linear relationship fits the data better than another. This test applies 
only if one relationship contubis the other. Suppose that the general relation- 
ship has Q estimated coefficients (including the intercept), and the simpler 
“contained” one has P .  For example, a quadratic relationship in two vari- 
ables has Q = 6  coefficients. It contains a simpler linear relation in the two 
variables, which has P = 3  coefficients. In particular, if the quadratic and 
interaction coefficients equal zero, the linear equation results. The contained 
relationship can result from setting certain coefficients in the general one 
equal to each other (Problem 4.10) or to zero (example below) or to some 
other specified constant. (In the most general theory, the contained relation- 
ship can result from setting Q - P  specified distinct linear functions of the Q 
coefficients equal to constants.) Also, suppose that there are 11 specimens 
amongJ distinct test conditions, I <  n. 

Incremental F test. For the general relationship, calculate s h ,  the esti- 
mate of the standard deviation based on lack of fit. Also, for the contained 
relationship, calculate s i .  Roughly speaking, if sb is enough less than s i ,  
then the general relationship fits significantly better. The exact hypothesis 
test employs the incremental F statistic 
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F = [(n -P)si2 - (n -Q)sQ2]/[(Q-P)sb2] .  (6.3) 
Carry extra significant figures in this calculation. The incremeriful F tesf to 
compare the two relationships is 

If F 5 F(1-a;Q-P,n - Q ) ,  the general relationship does not fit the data 

If F > F ( l - a ; Q  -P,n - Q ) ,  the general relationship fits the data statisti- 

Here F ( l - a ; Q - P , n - Q )  is the 1 - a  point of the F distribution with Q - P  
degrees of freedom in the numerator and n - Q in the denominator. 

Discussion. s is the estimate of the standard deviation based on replica- 
tion; suppose its number of degrees of freedom n -J is large (say, over 20). 
Then use s in place of si, in the denominator of (6.3), and use its degrees of 
freedom n -J in place of n - Q in the F percentile. This usually yields a more 
sensitive comparison. If the general relationship is statistically significantly 
better, assess whether it yields any practical benefits over the simpler one in 
terms of insights to improve the product. Often sb is comparable to s i  for 
practical purposes. Then the general relationship is little better for estimat- 
ing product life. This incremental F test is also used in Section 6.4 for step- 
wise fitting; there coefficients are successively added to or deleted from a 
candidate relationship one at a time. This test is exact for a (log) normal life 
distribution. Also, it is a useful approximation for other distributions. 

Example. Relationship (6.1) has P=3 coefficients for the intercept and 
variables LOGVPM and DFRTTU. In Section 6.4, a more general “final” 
relationship has Q = 5 coefficients for the intercept and variables LOGVPM, 
BINDER, and INSTHK, and VOLTLE. These two relationships cannot be 
compared as described above for two reasons. First, neither relationship 
contains the other. Second, the relationships were fitted to different subsets 
of the data, due to missing values of some variables for some specimens. 

Residuals. The following are examples of residual plots to assess the 
model and data. A residual for a specimen is its (log) life minus the fitted 
equation evaluated at the variable values of the specimen. Numerical assess- 
ments for a model and data appear in the references of Section 3. 

Figure6.3 is a normal probability plot of the residuals. It is relatively 
straight; this suggests that the lognormal distribution adequately describes 
the data over its range. This plot merely suggests that the lognormal distri- 
bution may adequately extrapolate into the lower tail. The residuals can 
also be plotted on extreme value paper to assess a Weibull fit. However, 
least squares fitting makes the residuals “more normal.” 
Figure 6.4 is a crossplot of the residuals against LOGVPM, a variable in 
the relationship. It is good practice to plot the residuals against all vari- 
ables in and out of the relationship. The plot has two noteworthy features. 
There are five isolated points in the upper left corner that merit investiga- 

significantly better than the contained one. 

cally significant better at the 1OOa% level. 
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Figure 6.3. Noriiial plot of residuals. 
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Figure 6.4. Crossplot residuals vs. 
LOGVPM. 
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Figure 6.5. Crossplot residuals vs. 
DENSTY. 
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tion. There is a slight curvature; the peak is near the middle. Check this 
by fitting the relationship (6.1) plus a quadratic term in LOGWM. 

a Figure 6.5 is a crossplot of the residuals against DENSTY, a variable not in 
the relationship. The plot is horizontal; this suggests that DENSTY is not 
related to l ie  (LOGHRS). Here and in other plots, the lowest residual 
appears a bit too low. So it may be suspect and left out of some analyses. 
It is important to determine why it is low. 
Figure 6.6 is a crossplot of the residuals against INSTHK. The trend sug- 
gests that life decreases with increasing insulation thickness with constant 
voltage stress. This is a well-known insulation phenomenon. This suggests 
that the relationship would benefit from an INSTHK term. Such a term 
improves reliability prediction in the design process. The two points in the 
lower left corner seem outliers, which merit investigation. 
Figure 6.7 is a crossplot of the residuals against BINDER. The trend sug- 
gests that insulation life decreases as binder content increases. This is a 
well-known phenomenon. This suggests including a BINDER term in the 
relationship. Also, this suggests that putting insulation with low binder 
content into high voltage applications will improve reliability. 

a Figure6.8 is a crossplot of the residuals against VOLTLE. There is a 
slight suggestion of a trend. However, cover the point in the lower right 
corner, and there is no trend. Conclusions should generally not be based 
on one point. This shows the value of covering influential points with a 
finger while viewing a plot. 

a The vertical scatter of the points in Figures6.4 through 6.8 is constant 
versus each variable. This supports the assumption that c7 is constant with 
respect to those variables over their observed ranges. Bartlett’s test and 
the maximum F ratio cannot be used here to test the assumption of con- 
stant Q. These tests require replicate specimens with the exact same values 
of all variables. 

To help detect a relationship in such crossplots, one can calculate and plot 
the smoothed locally weighed regression for a scatterplot, as described by 
Chambers and others (1983, Sec. 4.6). 

Conclusions. The most important conclusion from the plots is that ad- 
ding other variables to equation (6.1) likely improves the fit and understand- 
ing. In particular, BINDER and INSTHK appear related to life. Otherwise, 
the model looks reasonable. Also, it would be useful to investigate outliers 
for assignable causes that may lead to better product. This example points 
out the general need for many analyses of a data set, especially data plots. 

6.4. Stepwise Fitting of a General Model 

Purpose. This subsection presents stepwise fitting of a general model. In 
some tests, there is data on a large number of engineering variables, and it is 
useful to know which of these “candidate” variables are related to product 
life. Stepwise fitting of a general relationship provides an answer. Stepwise 
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R E S l D U l  - C E L L  L O W E R  E W D P l  
C E L L  
L O Y E S  140 100 2 4 0  
E N O P T  1 6 5  2 1 5  

h n o v f  
( . . . . . . . . . . I . . . . . . . . . . . . . . + )  

0.65 .  
0.60' 
n.55. 1 

1 
1 1  .... 

O . 5 0 *  
0 . 4 5 .  1 
0.40' 1 1  
" - 3 5 .  7 

I 1  I 
..-. 

I I  1 
0.10' 
0 . 2 5 .  
0.201 1 1 2 2 1  1 

0 . 1 0 1  1 1 211 1 1112 
0.05' 1 1  I 2 1 2 2  

-0.00. 1 1 1  1 1  1 2 1  
1 1  I2 

1 1  
I I 1122 

- 0 . 0 5 .  
-0.10. 1 
-0.11. 1 1 1 1 
- 0 . 2 0 .  I 1  1 2 1 1  
- 0 . 2 5 ,  1 1 1  I 
-0.30, 1 1 0 2  
-0.15. 
-0.401 

1 1 1  1 
1 1 1  

1 1  
-0 .45 ,  
-0 .50*  
-0.ss. 
- 0 . 6 0 .  1 
- 0 . 6 5 '  
- 0 . 7 0 .  
-0 .15 .  
- 0 . 8 0 .  1 
B E L O # +  <....................( 

1 

t.....) 

Figure 6.6. Crossplot residuals vs. 
INSTHK. 
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Figure 6.7. Crossplot residuals vs. 

BINDER. 

fitting selects statistically significant variables and fits the relationship with 
those variables. The "selected" variables are merely related to life. Whether 
there is a cause and effect relationship must be decided from engineering 
considerations. A designed experiment is best for identifying cause and 
effect. 

Example data. The insulation data above are used to illustrate stepwise 
fitting. Data were collected on a number of design, manufacturing, and test 
variables (Table 6.1). The relationship between them and life may yield in- 
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Figure 6.8. Crossplot residuals vs. VOLTLE!. 
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sights to improving the product. Nine such variables are used in the follow- 
ing analyses. Eighty-three specimens have the values of all nine variables. 
They are analyzed here, ignoring the other 106-83 = 23 specimens with 
some values missing. Methods for analyzing data that are “in~omplete’~ or 
“missing” are presented by Little and Rubin (1987). References to such 
methods appear in the yearly Current Index of the American Statistical Asso- 
ciation (1987). There are no stepwise regression programs for missing data. 

* 9 XP. 
These variables may be functions of more basic variables; examples include 
squares, crossproducts, and logarithms. The general linear relationship for 
mean log life is 

General model. Suppose the data contain P variables XI, x2, * 

pL70+’%x1 -t ‘ ‘ ‘ + 7 f l P  (6.4) 

The coefficients are estimated from data. The standard deviation CT of log life 
is assumed to be constant. It is assumed that the form (or shape) of the log 
life distribution is constant. In stepwise fitting, certain coefficicnts are set 
equal to zero, because the corresponding variables do not improve the fit of 
(6.4) to the data. The resulting equation then contains only the statistically 
significant variables. For stepwise fitting of (6.4), it is recommended that 
there be at least 5P data cases (specimens). 

Picture. The following mental picture of the example data and the fitted 
equation aids understanding. The data for each specimen can be plotted as 
as a point in a 10-dimensional space. The 10 orthogonal axes correspond to 
life (LOGHRS) on the “vertical” axis and the 9 predictor variables. The 
points form a cloud in the space, where (6.4) is a hyperplane. Fitting of (6.4) 
amounts to finding the “best” plane through the cloud. Suppose a coefficient 
of (6.4) is zero (say, 71). Then (6.4) projected onto the plane of LOGHRS 
and xl is a horizontal line; that is, life is the same for any value of xl. Finding 
a “best” plane involves assigning coefficient values of zero to certain vari- 
ables, because the slope of the data cloud with respect to each such variable 
is close to zero. “Close to zero” means relative to the scatter in the data. 
The final equation of selected variables contains only the statistically 
significant variables; that is, inclusion or deletion of any such variable 
significantly affects the fit. 

Stepwise logic. Various schemes are used to select variables in the final 
equation. Draper and Smith (1981) review such schemes, including Mallow’s 
C’. In their Section 6.4, they present in detail the stepwise logic of most pro- 
grams. It is briefly stated here. The program can start with all or no vari- 
ables in the equation; the user makes that choice. “All” is recommended 
when possible. At a genera1 step, there is a number of variables in the cur- 
rent equation. The program adds or deletes a variable from the current 
equation as follows. 
rn Add step. For a variable not in the current equation, the program fits a 

new equation adding that variable to the current variables. After fitting 
such an equation for each such variable, the program identifies the vari- 
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able whose addition yields the smallest sample standard deviation about its 
fitted equation. The incremental F test (Section 6.3) determines if that 
standard deviation is statistically significantly smaller than the one for the 
current equation. If so, that variable is added to obtain the new current 
equation. Then the program tries to delete a variable from the new cur- 
rent equation as follows. 

0 Delete step. For each variable in the current equation, the program fits a 
new equation with the current variables except that one. After doing this 
for each current variable, the progrim identifies the one whose deletion 
yields the largest sample standard deviation about the resulting equation. 
The incremental F test is used to determine if that standard deviation is 
statistically significantly bigger than the one for the current equation. If it 
is not, that variable is deleted from the current equation. Then the pro- 
gram tries to add a variable as described above. 

The program continues to add and delete until it fails both to add or delete in 
adjoining steps. 

Find equation. Starting with all or no variables in the equation can yield 
different final equations. Changing the significance levels for adding and 
delcting variables can yield different final equations. Thus the final equation 
is not unique, and one must judge which is best. Some programs can “force” 
user-spccified variables to be in the equation at every step. Certain variables 
are forced, for example, if engineering expericnce or thcory suggcsts them. 

Categorical vnriubles. Most programs enter or delete a categorical vari- 
able as follows. The coefficients for the indicator functions for that variable 
are all added or deleted as a group - not one at a time. 

The variables in the general equation appear in line 1. 
Line 2 and following show summary statistics on the 83 specimens; they are 
used in the stepwise calculations, particularly the correlation matrix. 
Line 3 and following show step 1 where LOGVPM is added; line 4 shows 
the fitted equation, and line 5 shows the sample standard deviation about 
that equation. LOGVPM is the variable most strongly related to (log) life. 

0 Line 6 and following show step 2 where BINDER is added; line 7 shows 
the fitted equation, and line 8 shows the sample standard deviation s’. 
Line 9 and following show step 3 where INSTHK is added; line 10 shows 
the fitted equation, and line 11 shows the sample standard deviation. 
Line 12 and following show step 4 with an unsuccessful attempt to delete a 
variable. Line 13 and following show VOLTLE is added; line 14 shows the 
fitted equation, and line 15 shows the sample standard deviation. 
Line 16 and following show step 5 with an unsuccessful attempt to delete a 
variable. Line 17 and following show an unsuccessful attempt to add a 
variable. The stepwise fitting stops here. 
Lines 18 and 19 show the final equation and sample standard deviation 
about it. Following lines are statistics on the fit of the final equation. 

Output. Figure 6.9 shows output on stepwise fitting to the data. 
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Comments. Note how the sample standard deviation (of LOGHRS) de- 
creases as variables are added: 

line 1: 0.392, 
line 5: 0.262 with LOGVPM, 
line 8: 0.242 with BINDER added, 

line 11: 0.235 with INSTHK added, and 
line 15: 0.227 with VOLTLE added. 

Most of the decrease occurs with the first added variable LOGVPM ant little 
thereafter. Thus, for prediction purposes, little statistical accuracy results 
from additional variables. However, controlling such additional variables 

1) R E G R E S S I O N  STEP ALLCLOGHRS LOGVP’I S I N D E R  ASPECT J E I S T V  VOLTLE E X T R A C  

O F R T T U  I N S T H K  DFCDTUI 

2) S U M M A R Y  S T A T I S T I C S  

CASES 
8 3  

VARIABLE AVEH4GE VARIANCE S T D  D E V  

LOGVPM 2.248549 
BINDER 27.28711 
kSPECT 1.913630 
DENSTV 1.891712 

E X T R A C  14 .91487  
DFRTTU 0.7716145 
INSTHK 212.5422 
D F C D T U  0.8154458 
LOGHRS 3.337?46 

v0Lr i .E 0 . 6 4 5 2 5 3 0  

0.1075133E-02 

0 .5203001  
0 .1054115E-02  
0 .8201226E-31  

3.920270 . 

13.16459 

847.9700 
0 .6688810E-01  
0.1540612 

0 . 5 2 8 ~ 2 6 8 ~ - 0 1  

0.3278923E-01 
1.973967 

0.721 3 1 8 3  
0.3246714E-51 
0.2363778 

3.528304 
0.2 29362  3 

29.11 794 
0.2586273 
0.3925065 

CORRELATION MATRIX O F  VARIABLES 

VARIABLE LOGVPM B I N D E R  ASPECT DENSTV 

LOGVPM 1 .0000000  
BINDER -0.7127754E-01 1.000030 
ASPECT 0 .4152845E-01  0.24 1 7 1  1 0  1.3000000 
DENSTY -0 .4571351E-01  -0.6516124 -0.687803?E-01 1.000000 
VOLTLE 0.1855866 -0 .2745031  0 .1764015  -0.51 C7923E-01 
EXTRAC 0 .4996372E-01  -0 .3981158  3.1764735 0.2495507 

INSTHK -0 .5495313  0.1242588 -0 .38721  5 7  -0.7165637E-01 
D F C D T U  -0 .2060215 0.8406925E-02 0.1 867475  -0.1138306 
LOGHRS - 0 . 7 4 7 9 J 8 0  -0 .2097922 -0.1064552 0.21 8 0 1 6 2  

VARIABLE VJLTLE E X T R A C  D F R T T i l  INSTHK 

VOLTLE 1.0000000 
E X T R A C  0.6151215 1 .000310  
D F R T T U  0 .2609756E-01  0.4854147E-01 1,3303003 
INSTHK -0.383 3542  -0.3040712 3 .7373877E-01  1.000000 
DFCDTU 0 .4230557  C. 3 3 2 5 6 5 5  3.5564083 -0 .4472697E-01 
LOGHRS -0.1615158 0.2196694E-01 -0.498916SE-01 0.2556711 

VARIABLE DFCDTU LOGHlS 

DFCDTU 1.000000 
LOGHRS 0.71 83336E-01  1.0@0330 

DFRTTU -0.1055449 O . ~ C ~ ~ ~ I I E - O ~  o . z 5 ~ 3 9 3 i ~ - n i  -0.1007431 

Figure 6.9. Output on stepwise fitting. 



MULTIVARIABLE RELATIONSHIPS 225 

3) *STEP NO. 1 

T E S T  T O  ENTER * E d  VLRIARLE 

OLD E R R O R  M E A N  S J U A R E :  0.15411612 

IYCREMENTAL 
V A R  C O R R  F - R A T I O  
LOGVPM 0 .7479  10Z.R 
BINDER 0.2098 3.729 
ASPECT 0.1065 O.9ZRS 
OENSTV 0.2180 4.042 
VOLTLE 0 .1616  2.172 
E X T R A C  0 .2197E-01 0.3911E 

INSTHK 0.2517 5.665 
DFCDTU 0.7189E-01 0.4208 

D F R T T U  ~ . 4 9 8 9 ~ - o i  0.2021 

x PT. O F  
F - D I S T  

94.3 
66.2 
95.2 
85.6 

- 0 1  15.6 
34.6 
98.0 
48.2 

103. 

Y E d  E R R 0 4  
M E A Y  SQUAdE 
0.6372030E- 
0.1490988 
0.1 5 4 1 9 5 7  
0.1485501 
0.1 5 1 8 8 9 5  
0 .1559879  
0.1555750 
0.14 5 7 6 8 2  
0 .1551571  

INCREMENTAL 
E R R O R  MEAN S Q  

91 0.85 3409 1E-01 
U.4962385E-02 

-U. 13C5016E-03  
0.551 1109E-02  
0.2171716E-02 

-0.1826730E-02 
-0.151 37  7OE-02 

0.8292971E-02 
-0.1095869E-02 

.ENTERED: LOGVPM 4 . f l O f l O  IS THE SPECIF IED VI(LUE Fail  ENTERING A VARIABLE 

LEAST SQUAF!ES E S T I M A T E  O F  T H E  F I T T E D  E Q J A T l O N  

I!+) REAN = 23.46925 

5) S T D  D E V  0 .2621456 

t ( -8 .953018 ) *LOGVPI  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

T E S T  T O  E N T E R  ' I E W  VARIAELE 
*ENTERED: BINDER 4 . n O f l O  I S  T H E  S P t C I F I E D  VALUE F O R  ENTERING A VARIABLE 

LEAST SQUARES ESTIMATE O F  THE F I T T E D  EQUATION 

7) M E A N  I 2z .407np  

8) S T D  D E V  = 0 .242n586  

+ ( -9.178657 )*LOGVPY 
+ ( -0 .5242336E-01)+B INDER 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
9) *STEP NO. 3 

T E S T  T O  R E W O V E  5LD VARIAELE 
bRE4OVED N 3 N E  3.0000 I S  THE SPECIFIED VALUE F O R  DELETING A VARIABLE 

T E S T  T O  E N T E R  Y E W  VARIAALE 
*ENTERED: I N S T i K  4.0000 I S  T H E  SPECIF IED V4LUE F J R  ENTERING A VARIABLE 

LEAST SQUARES E S T I V A T E  O F  T H E  F I T T E D  EOUATIJN 

10) M E A N  28.68199 
+ ( -113.42966 )+LOGYP% 
t ( -0 .4916296E-01) *B INDER 
t ( -0 .2592094E-O2)*1NSTHK 

11) S T D  D E V  = 0 .2350513  

Figure 6.9. Continued 
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12) *STEP NO. 4 

T E S T  T O  R E M O V E  JLD VARIABLE 
* R E M O V E D  N O N E  3.0000 I S  T H E  SPECIFIED VALUE F O R  DELETING A VARIABLE 

TEST T O  E N T E R  Y t U  VARIABLE 

13) * E N T E R E D :  VOLTLE 4.0000 I S  THE SPECIF IED V4LUE Foil ENTERING A VARIABLE 

LEAST S Q U A R E S  E S T I M A T E  O F  T H E  F I T T E D  EQJATION 

I t $ )  MEAN = 29.47465 
+ 1 -10.50796 )*LOGVP‘I 
+ ( -0 .5726074E-Ol)*BINDER 
t ( -0 .3487699E-O2)* INSTHK 
+ ( -0 .2428519  )*VOLTLE 

15) STD D E V  = 0.2277949 

16) * S T E P  N O .  5 

TEST T O  R E M O V g  OLD VARIABLE 
* R E M O V E D  N O N E  3.0000 I S  T H E  SPECIFIED VALUE F O R  DELETING A VARIABLE 

TEST T O  E N l E R  4EU VARIABLE 

4.0000 I S  T H E  SPECIFIED VALUE F O R  ENTERIYG A VARIABLE 

VARIABLES I N  T H E  EQUATION: 
LOGVPM BINDER INSTHK VOLTLE 

PARTIAL CORREL4TIONS 

VARIABLE LOGVPM 3INDER I Y S T H K  VOLTLE 
L O G H R S  -n. 7 9 1 4 6 3 8  -0.4404 1 7 0  -0.331091 7 -0.2695911 

LEAST SQUARES E S T I M A T E  O F  T H E  F I T T E D  EQUATION 

18) MEAN = 29.47465 
t ( -13.50796 )*LOGVPM 
t ( -0 .5726074E-O l ) *B INDER 
t ( -0 .3487699E-O2) * INSTHL 
t (-0.2428519 )*VOLTLE 

19) S T D  D E V  = 0 .2277949  

LEAST SQUARES E S T I M A T E S  O F  COEFFICIENTS M I T H  9 5 %  CJNFIDENCE L I M I T S  

VClR C O E F F  ESTIMATE LOYER L I M I T  UPPER L I M I T  STANDARD E R R O R  

INTR COO000 29.47465 25 .01163  3 3.9 37 68 2.241773 
LOGVPMCOOOOl -10.50796 -12 .33721  -8.67871 4 0 .9188296  
BINDERC00002-0 .5726074E-01  -0 .8357311E-01 -3.3034339E-01 0.1321667E-01 
INSTHKC00008-0 .3487699E-02  -0 .5679076E-02  -0 .1296321E-02  0.1100726E-02 
VOLTLEC00005-0.2428519 -0.4383946 -3.4730327E-01 0.9822084E-01 

Figure 6.9. Continued 

may result in an increase in life that has practical value. The coefficient esti- 
mate for a variable changes when other variables are added or deleted. 
Designed experiments with “orthogonal” controlled variables avoid this. 

Interpretation. The practical effect of a variable on life is judged by the 
product of its coefficient in the final equation (in line 18) times twice its 
standard deviation (in line 1). For example, the product for BINDER is 
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.05726074(2~1.979967) = 0.22675, and its antilog is 1.686. The antilogs of 
these products are the factors: 4.8 for LOGVPM, 1.7 for BINDER, 1.6 for 
INSTHK, and 1.4 for VOLTLE. Life would be improved by the factor if 
such a variable could be controlled at the low end of its range. In particular, 
BINDER and VOLTLE are controlled in manufacture and might be better 
controlled. Also, batches of conductors with low (high) BINDER and VOL- 
TLE can be assembled into high (low) stress locations in machines. The 
negative coefficients are consistent with experience with insulations. It also is 
reassuring that the four selected variables are design and manufacturing vari- 
ables that are controlled. If an uncontrolled variable like DRFITU were 
selected, it could not be used to improve life. However, it might be used to 
decide which insulation to put into high stress applications. The “final” 
equation should be regarded as merely a working equation that may be re- 
vised with further data collection, understanding, analyses with other rela- 
tionships, etc. In particular, interaction terms are worth including in such a 
general relationship. 

Assess fit and data. Various plots of residuals of the final equation help 
one assess the fit and data. 
a Figure 6.10A is a normal probability plot of the residuals, and Figure 6.10B 

is an extreme value plot. Both plots have low points in the lower tail, sug- 
gesting possible outliers. The normal plot has less curvature. Thus the 
lognormal distribution looks slightly better than the Weibull. 

a Figure 6.11 is a crossplot of the residuals against TPDATE, year of manu- 
facture. There is a slight suggestion that more recent insulation has lower 
life. This was not a candidate variable in the stepwise fitting above. 
Figure6.12 is a crossplot of the residuals against ASPECT, the ratio of 
height to width of the conductor cross section. There is no trend of the 
points. This is consistent with the program not selecting this candidate 
variable to be in the equation. 

a Figure 6.13 is a crossplot of the residuals against BINDER, a selected vari- 
able. The lack of curvature of the plot suggests that a linear BINDER 
term is adequate. 

a Figure 6.14 is a crossplot of the residuals against MATDAM, a measure of 
damage to the insulation, measured after manufacture. The outlier is con- 
trary. That specimen has the greatest damage. Yet it has the longest life 
relative to the equation. This contradiction merits investigation. The oth- 
er points suggest little dependence of life on MATDAM. 
Crossplots of the residuals against each variable in the data set were made. 
This is always worth doing and usually informative. Only those plots 
presented above had any noteworthy features. 

Concluding remarks. The preceding analyses are not “the answer,” and 
likely none exists. However, they do provide understanding and insight. 
More important, they suggest further analyses. It is useful to do many such 
exploratory analyses to develop understanding of the data. Many analyses 
will be uninformative and ignored. Computer programs make this easy. 
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Figure 6.10A. Normal plot of residuals. Figure 6.10B. Extreme value plot of 
residuals. 
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Figure 6.14. Residuals vs. MATDAM. 

PROBLEMS (* denotes difficult or laborious) 

4.1. Three insulations. For each insulation in Problem 3.1, do the fol- 
lowing based on the Arrhenius-lognormal model. Use a regression program. 
(a) Calculate the mean and standard deviation of the log data for each tem- 

perature. Calculate the sums of squares. 
(b) Calculate estimates and two-sided 95% confidence limits for the 

coefficients and log standard deviation (use both estimates s and s' and 
both corresponding limits). 

(c) Plot corresponding estimates and confidence limits side by side for the 
three insulations. Judging by the confidence limits, are there any 
significant differences among the coefficients or log standard deviations? 

(d) Calculate the estimate and 95% confidence limits for the mean log life 
and median life at the design temperature of 200°C. Plot them as in (c). 

(e) Judging by the confidence limits, are there any significant differences 
among the three median lives? 

( f )  Repeat (d) and (e) for 225 and Z O T ,  occasional operating tempera- 
tures. 

(g) Calculate standardized residuals and make a normal probability plot. 
Assess (log) normality and the data. 

(h) Assess linearity with the F test. 
(i) Use Bartlett's test to compare the log standard deviations at the three 

test temperatures. Also, calculate two-sided 95% confidence limits for 
them at each temperature and plot them side by side. 

6) Use Bartlett's test to compare the pooled log standard deviations of the 
three insulations. 

(k) Plot the estimates and confidence limits on a separate Arrhenius paper 
for each insulation. 

(1) Write a short maiiagement report describing the findings on how the in- 
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sulations compare. Do not describe the statistical methods. Refer to 
plots where appropriate. 

4.2. Use ofs'. Repeal the calculations of the Class-H example using s' 
(and its degrees of freedom) in place of s. Comment on any important 
differences in estimates or confidence limits. 

4 3 .  Heater data. Use the data of Problem 3.3 and the Arrhenius-log- 
normal model. Use a regression program if you wish. Absolute (Rankin) 
temperature is the Fahrenheit temperature plus 459.7 Fahrenheit degrees. 
(a) Calculate the means and standard deviations of the log data at each test 

temperature. Calculate the sums of squares. 
(b) Calculate estimates and two-sided 95% confidence limits for the model 

coefficients and log standard deviation, Do the same for the activation 
energy in electron-volts. 

(c) Calculate the estimate and two-sided confidence limits for the log mean 
and the median at the test temperatures and design temperature 1100°F. 

(d) Repeat (c) for the 1% point. 
(e) Plot the estimates, confidence limits, and data on Arrhenius paper. 
( f )  Calculate two-sided 95% confidence limits for the log standard devia- 

tions for the four test temperatures, and plot them side by side. Com- 
pare them with Bartlett's test. 

(g) Test for linearity with the F statistic. 
(h) Calculate standardized residuals aiid plot them on normal and extreme 

value probability paper. Comment on the fit of the lognormal and 
Weibull distributions. Are there any peculiar data points? 

(i) Plot the residuals against temperature. Does the plot yield insights? 
6)  Suggest and carry out further analyses if useful. 

4.4. Eyring relationship. Fit the Eyring-lognormal model to the Class-H 
insulation data. In place of specimen life ti, use t,: = fj*Tj as the dependent 
variable, where Tj is absolute temperature. Do the analyses of Problem 4.3. 
Comment whether the Eyring relationship fits better than the Arrhenius rela- 
tionship. Is the difference in fit convincing? Explain. 

4.5. Class-H without 260" data. For the Class41 insulation data of Ta- 
ble 2.1 without the 260" data, perform the analyses listed in Problem 4.3. The 
design temperature is 180°C. Use a regression program if you wish. 

4.6. Bearing data. Use the data in Problem 3.5, and omit the oullier. 
Use the power-Weibull model. Use a regression program if you wish. 
(a) For each test load, calculate the mean and standard deviation of the In 

data. Calculate the sums of squares. 
(b) Calculate estimates and two-sided approximate 95% confidence limits 

for the model coefficients and the shape parameter. Is the power 
coefficient estiinate consistent with the standard value of 31 

(c) Calculate estimates and two-sided approximate 95% confidence limits 
for the mean In life at the test and design loads. 
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(d) Repeat (c) for the 10th percentile. 
(e) Assess linearity with the approximate F test. 
( f )  Calculate standardized residuals and plot them on extreme value and 

normal probability papers. Assess the distribution fit and the data. 
(g) Plot the fitted 42.8 and 10th percentile lines and corresponding 

confidence limits on log-log paper. Also, plot the data. 

4.7. Weibull fit to Class-H data. Repeat the calculations of the Class-H 
example, using the Weibull distribution in place of the lognormal distribu- 
tion. Also, repeat the analyses of standardized residuals. 

4.8. Exponential fit. For the insulating fluid data, redo all calculations in 
the example, assuming an exponential distribution. 

4.9. Permalloy corrosion data. Analyze the Permalloy corrosion data of 
Problem 3.13 as follows. Assume a lognormal distribution for weight change 
and an exponential relationship. Use a regression program if you wish. 
(a) Fit the relationship to the data by least squares. 
(b) Calculate 95% confidence limits for all model parameters. 
(c) Use Bartlett's test for constant standard deviation. State conclusions. 
(d) Use the F test for fit of the assumed relationship. State conclusions. 
(e) Calculate residuals and plot them on normal and extreme value paper. 

Assess which distribution fits better and whether the fit is adequate. 
( f )  Estimate the population percentage above the specification for 10% and 

20% humidity. 
(g) Calculate 95% confidence limits for the two percentages in ( f ) .  
(h) Comment on the additional insights (or lack thereof) provided by these 

numerical analyses over those provided by the graphical analyses of 
Problem 3.13. Is there any question whether the Permalloy meets the 
corrosion specification? 

4.10. Oil. An accelerated test employed a pair of parallel disk electrodes 
immersed in an insulating oil. Voltage I/ across the pair was increased 
linearly with time t at a specified rate R, and the voltage at oil breakdown was 
recorded. Since I/=& time to breakdown equivalently could have been 
recorded. Below are 60 such breakdown voltages measured at each combina- 
tion of three rates of rise, R, and two electrode areas,A. The test purpose 
was to verify the engineering model for such data. Under the model, break- 
down voltage (and time to breakdown) has a Weibull distribution with the 
same shape parameter value at each of the six test conditions. Two proposed 
relationships for mean In breakdown voltage are 

&RP) = 'YO 'Ylln(R) i- 72ln(A), (1) 

(2) p(RA) = 'YO -k 'Ylln(R/A). 

(a) Plot the three samples from the electrodes with A = 1 in2 on a Weibull 
paper, and plot the other three samples with A =9 in2 on another. 
Comment on the fit of the Weibull distribution, whether the shape 
parameter is constant, and any peculiar data. 
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1 S q .  Inch  E l e c t r o d e s  
10 v o l t s / s e c  Rate  of  R i se  

41 43 42 43 44 40 3a 47 43 45 
3a 44 49 42 42 51 39 34 41 41 

44 41 44 3a 36 44 50 47 49 46 
34 47 49 43 43 4a 34 3a 47 35 

35 44 46 39 41 40 52 40 35 40 
39 46 47 44 41 46 46 42 45 42 

1 S q .  Inch E l e c t r o d e s  
100 v o l t s / s e c  Rate o f  Rise  

53 54 55 37 53 52 53 50 52 50 

46 42 46 46 52 47 53 52 45 47 
43 45 54 51 46 55 44 49 49 53 
53 54 53 53 51 40 49 52 45 49 

46 50 39 36 47 55 49 5a 50 48 

45 4a 53 50 43 50 42 45 47 34 

9 S q .  Inch  E l e c t r o d e s  
10 v o l t s / s e c  Rate of  Rise  

42 32 42 40 32 38 36 42 20 37 
33 37 3a 3a 3a 37 2 7  42 39.38 

43 40 3a 43 39 41 35 41 40 32 
3a 40 37 29 31 41 38 36 35 40 

37 43 3a 40 40 3a 33 40 35 41 
37 41 36 39 43 42 43 43 41 44 

9 S q .  Inch  E l e c t r o d e s  
100 v o l t s / s e c  Rate of  Rise  

43 42 45 4a 3a 44 37 44 43 42 
43 49 44 4 5  50 44 44 45 4 1  4a 
45 4a 43 49 50 45 45 46 47 42 
47 4a 47 ha 39 49 44 47 34 41 

49 45 45 4 5  47 39 44 37 47 4a 
45 40 44 47 45 50 40 47 47 43 

1 S q .  Inch  E l e c t r o d e s  9 S q .  Inch  E l e c t r o d e s  
1000 v o l t s / s e c  Rate o f  R i se1000  v o l t s / s e c  Rate o f  Rise  
55 57 59 57 55 60 53 51 57 54 50 53 50 49 53 51 47 44 53 42 
57 64 53 63 51 62 62 56 62 57 49 46 50 30 48 43 52 53 52 40 
41 41 51 5a 59 60 5a 55 59 63 45 53 52 50 55 50 43 52 50 54 
63 53 63 61 59 53 60 5a 62 56 51 40 52 53 47 45 53 47 54 50 
69 65 51 56 55 57 54 63 6 5  65 32 4a 53 52 45 4a 4a 51 53 4a 
56 54 65 60 60 64 60 54 57 6 1  54 51 50 54 35 56 51 40 4a 46 

(b) Graphically estimate the six 42.8% points from (a) and plot them on 
suitable relationship paper. Fit two lines to the estimates, one for A = 1 
and the other for A =9. Are the two plots straight enough? Explain. 
Graphically estimate the coefficients in (1). (2) is a special case of (1) 
where rl = -72. Are the coefficient estimates for (1) consistent with 
this? Explain. 

(c) Devise a suitable way to plot all observations on (b). Plot the data. 
(d) By computer, calculate the six sample In means and In standard devia- 

tions. Suitably plot them on the Weibull and relationship plots. 
(e) Use a least squares program to fit (1) to the In data. Plot the estimates 

and confidence limits for 71 and -r2 side by side on suitable paper. 
Comment on whether the results are consistent with (2). 

( f )  Estimate the Weibull shape parameter. 
(g) Use the F test for lack of fit of (1). State and explain your conclusions. 
(h) Make suitable probability and crossplots of the (In) residuals from (e). 

The observations are in the time order observed (going across rows at a 
test condition). Comment on what the plots reveal. 

(i) Use a least squares program to fit (2) to the In data. 
(j) Use the incremental F test to compare the fit of (1) and (2). State and 

explain your conclusions. 
(k) Do (h) to residuals from (i). 
(1) Suggest further analyses. 
(m) Carry out (k). 
(n) Write a short report for the dielectrics engineers, explaining your 

4.11. Au-AI Bonds. Do complete graphical and least squares analyses of 

findings. Include plots and output as appropriate. 

each data set in Problem 8.3. 



Censored Data and 
Maximum Likelihood Methods 

This important chapter presents maximum likelihood (ML) methods, 
which are basic for analyzing censored (and complete) data. These widely 
used methods are versatile; they apply to most models, types of data, and 
types of stress loading. This chapter pertains only to constant-stress tests and 
data with a single failure mode. Chapter 7 presents models and data analyses 
for a mix of failure modes. ML methods provide estimates and confidence 
limits for model parameters, a product life distribution at a design stress, and 
other quantities of interest. ML methods also provide checks on the validity 
of the model and data. In practice, it is most informative to use both ML 
methods and the data plots of Chapter 3. Although mathematically complex, 
ML methods are easy to apply in practice using special computer packages 
now widely available. Nelson (1990) explains the basics of ML methods for 
applied analysis of accelerated test data. 

Overview. Section 1 briefly surveys properties of ML methods and ML 
computer packages. Section 2 presents ML fitting by computer of a simple 
linear model to right censored data - the most common application; in par- 
ticular, Section 2.2 is most important. Section 3 describes methods Tor 
assessing the model and data; these include plots of censored residuals and 
likelihood ratio tests of model assumptions. Section 4 presents a variety of 
applications with various types of data and models. Section 5 presents theory 
underlying ML methods. 

Maximum likelihood methods apply to more complex models and data in 
subsequent chapters. For example, Chapter 7 employs ML methods for data 
with a mix of failure modes. Chapter 9 presents ML comparisons (hypothesis 
tests). Also, Chapter 10 employs ML methods for step-stress data. 
Chapter 11 employs ML methods for accelerated degradation data. 

Background. This chapter employs various models of Chapter 2. It par- 
ticularly employs the simple linear model (for example, the Arrhenius- 
lognormal and power-Weibull models). This chapter has the same goals oft 
concepts for, and approaches to data analysis as does Chapter 4; the only 
differences are that this chapter applies to censored data and uses ML fitting. 
Thus, Chapter 4, which deals with the simpler and more familiar topics of 
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complete data and least-squares fitting, is useful background. Also, this 
chapter employs probability and hazard plotting of Chapter 3. To follow Sec- 
tion 5 on ML theory, one needs to know partial differentiation, basic matrix 
algebra, and the multivariate normal distribution. Section 1 may be easier to 
read after Section 2, since Section 2 provides concrete examples of the con- 
cepts in Section 1. 

1. INTRODUCTION TO MAXIMUM LIKELIHOOD 

Overview. This section surveys maximum likelihood (ML) methods - 
the properties of ML estimators and confidence intervals. Topics include 
censoring, properties of ML methods, the method, asymptotic theory, invari- 
ance property, confidence intervals, computer packages (most important), 
other methods, and nonparametric methods. Background provided by this 
section is helpful for following sections on applications. Theoretical assump- 
tions and justification for ML methods appear in Wilks (1962), Rao (1973), 
Hoadley (1971), Rao (1987), and Nelson (1982). 

Censoring. ML methods apply to multiply time censored data (Type I); 
such data are common in practice and are treated in detail here. The 
methods also apply to multiply failure censored data (Type 11); such data are 
common in the theoretical literature, as they are mathematically more tract- 
able. Multiply censored data include as special cases singly censored data 
(Types I and 11) and complete data. ML methods also apply to right and left 
censored data, quantal-response data, interval data, and any combination of 
such types of censored and failure data. 

Value of censoring. In accelerated testing, tests are stopped or data are 
analyzed before all specimens fail. The estimates from the censored data are 
less accurate than those from complete data, if the model and data are valid. 
However, this is more than offset by the reduced test time and expense. Op- 
timum (most accurate) censored test plans appear in Chapter 6. Engineers 
now recognize the value of stopping a test before all specimens fail; examples 
of such tests include Crawford (1970) and Brancato and others (1977). 

Artificial censoring. In some applications, there may be benefits from 
artificially treating later failures as if they were censored at some earlier 
time. This is so if only the lower tail of Lhe life distribution is of interest and 
the assumed life distribution fits adequately in the lower tail but does not at 
the same time fit the upper tail. Figure 1.1 of Chapter 4 depicts this situa- 
tion. Hahn, Morgan, and Nelson (1985) discuss the choice of such censoring 
times and present a metal fatigue application. 

Basic assumption. Like other methods (e.g., those in Chapter 3) for 
analysis of multiply right (or left) censored data, ML methods depend on a 
basic assumption. It is assumed that units censored at any specific time come 
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from the same life distribution as the units that run beyond that time. This 
assumption does not hold, for example, if units are removed from service un- 
failed when they look like they are about to fail. Lagakos (1979) discusses in 
detail this assumption, which he calls random or noninformative censoring, 
and alternative assumptions about the censoring. 

Properties of ML methods. ML methods are very important for analysis 
of accelerated test data and other data because they are very versatile. That 
is, they apply to most theoretical models and kinds of censored data. Also, 
there are sophisticated computer programs that do the difficult ML calcula- 
tions. Moreover, most ML estimators have good statistical properties, as 
shown in the references in the Overview paragraph above. For example, 
under certain conditions (usually met in practice) on the model and data, ML 
estimators are best asymptotically normal (BAN). That is, for a “large” num- 
ber of failures in the sample, the cumulative distribution function of the sam- 
pling distribution of a ML estimator is close to a normal cumulative distribu- 
tion whose mean equals the quantity being estimated. Moreover, the stan- 
dard deviation (called the standard error of the estimator) of that normal dis- 
tribution is no greater than that of any other asymptotically normal estimator. 
A ML estimator also usually has good properties for samples with few 
failures. Also, for testing hypotheses, likelihood ratio tests based on ML the- 
ory (Chapter 9) have asymptotically optimum properties; for example, they 
are locally most powerful. In Section 3, such tests are used to assess the as- 
sumptions of a model. 

The method. In principle, the ML method is simple. One first writes the 
sample likelihood (or its logarithm, the log likelihood) as shown in Section 5. 
It is a function of the assumed model (distribution and relationships), the 
model parameters (or coefficients), and the data (including the censoring or 
other form of the data). The ML estimates of the parameters are the param- 
eter values that maximize the sample likelihood (or, equivalently, the log 
likelihood). The exact sampling distributions of many ML estimators, 
confidence limits, and test statistics are not known. However, the asymptotic 
(large-sample) theory gives approximate normal distributions for them. 
These distributions provide approximate confidence limits and hypothesis 
tests. The theory (Section 5 )  is mathematically and conceptually advanced. 
However, one need not understand the theory to use computer output for es- 
timates, confidence intervals, and hypothesis test statistics. 

Asymptotic theory. Section 5 presents the asymptotic theory for ML esti- 
mators, confidence limits, and hypothesis tests. For small samples, such 
intervals tend to be narrower than exact ones. Exact intervals from small 
samples are referenced; they have been developed for few distributions and 
only singly Type I1 (failure) censoring. For the asymptotic theory to be a 
good approximation, the number of failures in the sample should be large. 
How large depends on the distribution, what is being estimated, the 
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confidence level of limits, etc. A rough rule of thumb is at least 20 failures, 
but 10 may suffice. Such asymptotic theory is also called large-sample the- 
ory. This terminology is misleading for multiply and singly censored data, 
since the number of failures needs to be large. The theory is crude for a large 
sample (many specimens) with few failures. In practice, the asymptotic the- 
ory is applied to small samples, since crude theory is better than no theory. 
Confidence limits are then much too short, but usually are wide enough to be 
sobering. Shenton and Bowman (1977) give theory for higher-order terms 
for greater accuracy of the asymptotic theory for ML sampling distributions. 

Invariance property. The ML method provides estimates of the parame- 
ters of a model. In practice, one also wants estimates of functions of model 
parameters. Examples of such functions are (1) the reliability at some age, 
(2) a percentile of the life distribution at a design stress level, and (3) the 
design stress corresponding to a specified life (percentile). Due to the invari- 
ance of ML estimators, the estimate of such a function is simply the function 
evaluated at the ML estimates of the model parameters. The asymptotic the- 
ory (Sections 5.6 and 5.7) gives the variance of the ML estimator and approx- 
imate confidence limits for the true function value. 

Confidence intervals. The asymptotic theory provides approximate 
confidence limits for a true population value. They are based on a simple 
riomaf approximation to the sampling distribution of the corresponding esti- 
mator. A better approximation involves likelihood ratio (LR) limits (Sec- 
tion 5.8). Exact confidence limits for certain models and singly censored data 
have been developed. For example, Lawless (1982) and McCoun and others 
(1987) present exact theory for confidence limits for the power-exponential 
model and singly censored data. Such limits require a special computer pro- 
gram. McCool (1980) uses Monte Carlo simulation to tabulate exact 
confidence limits for the power-Weibull model and singly failure censored 
data. These intervals can be extended to lognormal and other distributions. 
Bootstrapping methods for better approximate confidence limits for regres- 
sion models may soon be extended to censored data. Recent work includes 
Freedman (1981), Shorack (1982), and Robinson (1983). 

LR limits. The maximized log likelihood as a function of a parameter 
can also be used to obtain better approximate fikefiliood ratio (LR) 
confidence limits for the parameter, as described by Lawless (1982), Do- 
ganaksoy (1989a,b), and Vander Wiel and Meeker (1988). Advantages of 
these limits include: (1) each one-sided confidence level is usually closer to 
the specified confidence, even for samples with few failures, and (2) the lim- 
its are never outside the natural range of the parameter. For example, 
confidence limits for a fraction failing should be in the range 0 to 1. Such 
LR limits (Section 5.8) are more laborious to calculate, and few maximum 
likelihood programs readily do such calculations. Such confidence limits will, 
no doubt, be a feature of such programs in the future. 
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Computer packages. The following information and Table 1.1 were provided 
by the package developers. 

LIMDEP is described in Greene's (2000) manual. 8.0 runs on Windows PCs. 
Contact: Econometric Software, Inc., sales@limdep.com, www.limdep.com. 
ReliaSoft's RELIABILITY OFFICE SUITE includes WEIBULL++ for life 
data analysis, ALTA for accelerated life data analysis, repairable systems 
analysis, and degradation analysis. They can be purchased as a suite or individ- 
ually. All run under Microsoft Windows (95, 98, NT, 2000 & XP). Download 
free evaluation copies from http://www.reliasoft.com/products.htm. Contact: 
ReliaSoft@ReliaSoft.com, www.ReliaSoft.com, (888)886-0410. 
The SAS RELIABILITY Procedure provides statistical modeling and analyses 
of life data, accelerated life test data, recurrence data, and regression models. 
It fits standard life distributions to data with interval, right, and left censoring. 
It makes graphs, including probability and percentile plots for survival data, 
and mean cumulative function plots for recurrence data. The SAS 9.1 System 
runs on Microsoft Windows, workstations (UNIX and OpenVMS), OS/2, and 
mainframes. Contact: software@sas.com. For general information and docu- 
mentation, visit www.sas.com/rnd/app/. 
JMP 5.1 from SAS Inst. is a general statistical package. Reliability features in- 
clude fitting of life distributions, competing risk models, accelerated test mod- 
els, the Cox model, user programmed models, and recurrence data analysis. 
Contact: jmpsales@jmp.com, www.jmp.com , (800)594-6567. 
SPLIDA is an add-on to S-PLUS, a general statistical package of Insightful, 
www.insightful.com, (800)569-0 123. SPLIDA fits life distributions and re- 
gression relationships to censored and truncated data. It analyzes recurrence 
data and degradation data from repeated and destructive measurements. Much 
SPLIDA output appears in Meeker and Escobar ( 1998), Statistical Methods&r 
Reliability Data, Wiley. SPLIDA runs on Windows 95/98 (and after) and on 
Windows NT4.0 (and after) using version 2000 (and after) of S-PLUS. SPLI- 
DA functions, their interface, and documentation can be downloaded from 
www.public.iastate.edu/-splida/. Contact: wqmeeker@iastate.edu. 
SURVIVAL is described in the 200-page manual of Steinberg and Colla 
(1988). A module of SYSTAT, it runs on PCs and the Macintosh. Contact: 
info-usa@systat.com, www.systat.com. 
IMSL Numerical Libraries for Fortran and C and the JMSL Numerical Library 
(for Java Applications) are comprehensive math and statistical code libraries 
provided by Visual Numerics. Detailed contact information, product system 
compatibility, product features, and more can be found at www.vni.com. 
WmSMITHTM comes bundled in SuperSMITHTM for probability plotting, 
growth modeling, and accelerated test analysis. User guides and DEMO soft- 
ware can be downloaded at www.weibullnews.com. WinSMITH 4.0WH runs 
on Windows-based systems (3.1, 95, 98, 2000, NT, XT). Contact: Wes Fulton, 
(3 10)548-6358, wes33@pacbell.net; or Dr. Bob Abernethy, (56 1)842-4082, 
Weibull@worldnet.att.net. 
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Hitz, Hudec, and Mullner (1985b) and Harrell (1988) also survey such pack- 
ages. Dallal (1988) warns about common deficiencies of packages. Many 
major companies unfortunately still lack such packages. 

Some general statistical packages require programming by the user to fi t  
accelerated testing models to censored data. These include BMDP, GLIM, 
and SPSS, which are included in the survey of Wagner and Meeker (1985), 
who also list a number of special purpose routines for such model fitting. 
For example, Aitkin and Clayton (1980) jury-rig GLIM to fit  a linear-Weibull 
model to censored data. NAG (1984) provides the GLIM manual. 

Numerical accuracy. Most packages print estimates, confidence limits, 
and other calculated quantities to six or seven digits. Such quantities typically 
are accurate to three or four digits, which suffices for most applications. 
Moreover, confidence limits often differ from the corresponding estimate in 
the second or even first digit. So the computational accuracy is usually satis- 
factory relative to the statistical uncertainty. Some packages achieve such ac- 
curacy of three or four digits through sophisticated algorithms and astute 
programming. It is best to use such mature programs. Those who write their 
own programs can expect to encounter numerical problems. Nelson (1982, 
Chap. 8, Sec. 6) discusses numerical techniques for ML calculations. Ken- 
nedy and Gentle (1980), Chambers (1977), Maindonald (1984), and especial- 
ly Thisted (1988) present other numerical aspects of statistical computation. 

Other estimation methods. Maximum likelihood methods are recom- 
mended for fitting parametric regression models to censored data. Other 
methods merit mention. Hahn and Nelson (1974) compare such methods. 
Schneider (1986) devotes a chapter to regression for the (1og)normal distri- 
bution. Viertl (1988) surveys in detail the theory of various methods. Of 
course, most important are the graphical methods of Chapter 3 - essential to 
any data analysis. The methods below yield estimators that have accuracy 
(standard errors) comparable to that of ML estimators. 

Linear. Estimates based on order statistics of failure (Type 11) censored 
samples are presented by Nelson and Hahn (1972,1973). They provide best 
(minimum variance) linear unbiased estimators and simple (and less accu- 
rate) linear unbiased estimators and their standard errors and approximate 
confidence limits. Exact confidence limits based on linear estimates have not 
been developed for regression models. Monte Carlo simulation of such lim- 
its could be carried out, as has been done for ML estimates. The calculation 
of linear estimates is generally much less laborious than the calculation of 
ML estimates. However, the calculation is still laborious, and no such com- 
puter programs exist. Bugaighis (1988) ran simulations where ML and linear 
estimates have comparable mean squared errors; however, for very few 
failures, the ML estimate is better. Mann (1972) and Escobar and Meeker 
(1986) study optimum test plans for such linear estimators. 
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Iterative least squares. Schmee and Hahn (1979,1981) and Aitkin (1981) 
present an iterative least-squares fitting method and computer program. 
Their method replaces a censored observation by an “observed” value equal 
to its expected failure time conditional on how long the specimen ran without 
failure, assuming a (1og)normal life distribution. Then the method fits the 
regression model by least squares to the failure times and such conditional 
expected times. At each iteration the method uses the previously fitted 
model to get the conditional expected failure times of censored observations. 
Neither exact nor asymptotic theory for the properties of the estimators has 
been developed. Monte Carlo simulation by Schmee and Hahn indicate that 
their estimators perform comparably to ML estimators. Morgan (1982) ex- 
tends their method to an extreme value (Weibull) life distribution. The 
method applies to both time (Type I) and failure (Type 11) censored data. 

Weighted regression. Lawless (1982), Nelson (1970), and Lieblein and 
Zelen (1956) calculate linear or ML estimates of distribution parameters sep- 
arately for each stress level. They then fit the relationship to the location pa- 
rameter estimates using weighted least squares regression. The weight for an 
estimate is the inverse of its variance. Also, they estimate the common scale 
parameter with a weighted sum of the estimates of the scale parameter. 

Bayesian analysis. Bayesian analysis involves expressing subjective 
knowledge or degree-of-belief about model parameter values as an a priori 
distribution for them. This distribution is then mathematically combined 
with observed data to yield the posterior distribution for the parameter 
values. The posterior distribution is narrower than the a priori one, thereby 
reflecting the added information from the data. The posterior yields a Baye- 
sian estimate and probability limits for the true parameter values and func- 
tions of them. After analyzing data, some practioners do not agree with the 
posterior distribution. They revise the a priori distribution until they get a 
“satisfactory” posterior distribution. Bayesian analysis is somewhere be- 
tween using assumed values for the parameters (corresponding to no spread 
in the a priori distribution) and using standard “classical” methods of this 
book (corresponding to a non-informative a priori distribution). As they 
often have subjective notions about model parameter values, engineers and 
others find Bayesian analysis philosophically attractive. The considerable 
theoretical literature reflects this interest. Statisticians talk about Bayesian 
analysis more often than the weather. However, it is rarely applied, due 
often to the difficulty of specifying an a priori distribution. Efron and others 
(1986) discuss the philosophical pros and cons of Bayesian analysis. Clarotti 
and Lindley (1988), Proschan and Singpurwalla (1979), and Viertl 
(1987,1988) survey Bayesian theory for accelerated testing. Martz and Waller 
(1982) present Bayesian reliability analysis but do not include accelerated 
testing and regression models. 

Nonparametric fitting. The method used to fit the Cox proportional haz- 
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ards model to data is a nonparametric form of maximum likelihood fitting. 
Biomedical books on such fitting include Lee (1980), Cox and Oakes (1984), 
Kalbfleisch and Prentice (1980), and Lawless (1981) among others. Many 
statistical packages do such fitting. Other regression methods appear in the 
nonparametric literature. As nonparametric methods are rarely used for ac- 
celerated test data, they are not discussed here. References include Viertl 
(1988), Shaked, Zimmer, and Ball (1979), and Basu and Ebrahimi (1982). 

2. FIT THE SIMPLE MODEL TO RIGHT CENSORED DATA 

Purpose. This important section presents ML fitting of the simple model 
to right censored data - the most common model and type of data. So they 
are presented in detail. Such data may be complete or singly or multiply cen- 
sored. The ML fitting yields estimates and approximate confidence limits for 
parameters, percentiles, reliabilities, and other quantities. This section ex- 
plains only how to interpret computer output on such fitting. The underlying 
ML theory and calculations appear in Section 5. 

Background. Needed background includes: 
Simple models of Chapter 2. 
An understanding of results of least-squares fitting of such models, as de- 

Basic understanding of statistical estimates, their standard errors, and 

Understanding of data plots in Chapter 3. 

Overview. Section 2.1 presents example data and the simple model. Sec- 
tion 2.2 explains how to interpret computer output on fitting a simple model 
to right censored data; this is the most important material, as most analyses 
use such output. Section 2.3 presents a number of special cases, namely, 

the exponential, Weibull, and lognormal distributions, 
complete and singly censored data, 
assumed (“known”) value of the slope coefficient (acceleration factor) or 

Section 3 provides checks on the model and data. Section4 presents ML 
fitting of other models to other types of data. Section 5 presents general ML 
theory and calculations. 

scribed in Chapter 4. 

confidence limits. Statistics books provide this background. 

Weibull shape parameter. 

2.1. Example Data and Model 

Data. Data that illustrate ML fitting appear in Table 4.1 of Chapter 3. 
The data come from a temperature accelerated life test of Class-B insulation. 
Ten specimens were tested at each of four test temperatures, and the data at 
each temperature were singly censored. The main purpose of the test was to 
estimate the median life of such insulation at the design temperature of 
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130°C. Periodic inspection of specimens determined when they failed. 
Below, each failure is treated as if it occurred at the midpoint of its interval. 
The effect of this is small, since the intervals are enough narrower than the 
life distribution at a temperature. 

Model. The model fitted to the example data is the Arrhenius-lognormal 
model. It is a special case of the general simple model of Chapter 2. Briefly, 
the general model consists of: 
a a distribution with a constant scale parameter v and 
a a location parameter p that is a linear function of a single (possibly 

transformed) stress x,  namely, 

&)=71 +72x- (2.1) 

Ins(x) = 71 t 72x. (2.2) 

Ina(x) =71 -t 7 2 ~ .  (2.3) 

4 x 1  =71t 72x- (2.4) 

In particular, for the exponential distribution, the mean 6' is 

For the Weibull distribution, the scale parameter (Y is 

For the lognormal distribution, the log mean p is 

ML programs fit these models to data. 

22.  MLOutput 

Overview. Figure 2.1 shows STATPAC output on ML fitting of the 
Arrhenius-lognormal model to the Class-B data. Such output usually in- 
cludes estimates and confidence limits for model coefficients and parameters 
and for percentiles and reliabilities at any stress level. These and other key 
output are discussed below. Most ML programs (Section 1) give such output. 

Line 1 marks STATPAC commands that specif) the Arrhenius-lognormal 
model. The stress variable is INTEMP, inverse (absolute) temperature. It 
equals 1000/(absolute temperature in degrees Kelvin). Degrees Kelvin 
equals the Centigrade temperature plus 273.16"C. 

Log likelihood. Line 2 contains the maximum log likelihood - 148.53734. 
It is used in various tests of fit of the model, described in Section 3. Its calcu- 
lation appears in Section 5. 

Matrices. Line 3 points out the Fisher matrix, and 5 and 6 point out the 
covariance and correlation matrices of the coefficient and parameter esti- 
mates. Their calculation and use are described with the theory in Section 5. 
Each matrix is symmetric about its main diagonal; so only the elements on 
and below the main diagonal are printed. 
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Estimates and confidence limits. Line 4 points out the ML estimates and 
approximate “normal” confidence limits for the coefficients (rl,7*) and u. 
For example, the ML estimate for u (SPREAD) is 2 = 0.259 . , and the ap- 
proximate 95% confidence limits are (0.181 e e . ,0.370 e - ). Such approxi- 
mate normal confidence limits tend to be narrower than exact ones. Thus 
the uncertainty of such estimates is greater than normal confidence limits 
suggest. The more failures in the data, the closer the approximate limits are 
to exact ones, roughly speaking. Section 5 describes the calculation of such 
estimates and confidence limits. Likelihood ratio (LR) limits of Section 5.8 
are generally a better approximation. In the output, C1 and C2 denote the 
coefficients in (2.5). 

Standard errors. To the extreme right of line 4 are estimates of the stan- 
dard errors of the ML estimators of the coefficients and u. The standard er- 
ror is the standard deviation of the sampling distribution of the estimator. 
For samples with many failures, the sampling distribution of most ML esti- 
mators is approximated well by a normal distribution. That normal distribu- 
tion has a mean (asymptotically) equal to the true value of the quantity es- 
timated, and it has a standard deviation equal to the true asymptotic standard 
error of the ML estimator. These estimates of the standard errors are calcu- 
lated as described in Section 5. Also, they are used to calculate the approxi- 
mate normal confidence limits as described in Section 5. 

Relationship. Line 7 points out the estimate of the linear relationship for 
p as a function of x = INTEMP in an equivalent form: 

4 x 1  =7 +72 (x -; 1; (2.5) 

here X is the average transformed stress (INTEMP) of the data. Line 7 
shows X = 2.201629. This form of the relationship is more numerically 
robust and yields more accurate estimates; also, it improves the speed and 
sureness of convergence of the ML fitting. Many ML packages do not 
automatically subtract the mean (or some other value near the center of the x 
variable) from the data. Users then should do so to assure accurate fitting. 
Below line 7 is the ML estimate of Q (SPREAD). The estimate for 7; is la- 
beled C1 in the output in line 4. 

Percentiles. Lines8 and 9 point out estimates, confidence limits, and 
standard errors of percentiles at a design and a test temperature. For exam- 
ple, the estimate of median (PCT = 50) life at 130°C (INTEMP = 

2.4804048) is 47,081 hours. Corresponding approximate 95% confidence lim- 
its are (24,089,92,017) hours. For reporting purposes, such values should be 
rounded to two (or at most three) significant figures. Most computer pro- 
grams do not round appropriately. Thus the estimate is reported as 
47,000 hours and the confidence limits as 24,000 and 92,000 hours. This in- 
formation suggested that the insulation life would be satisfactory at 130°C, 
the design temperature. 
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Figure 2.2. Lognormal plot of fitted distributions and confidence limits. 

Depiction. Figure 2.2 contains lognormal probability paper. There the 
fitted distributions (percentile estimates at a temperature) plot as straight 
lines. The 95% confidence limits for percentiles (Line 8 in Figure 2.1) plot as 
curves. Such limits are plotted at 130°C but could be plotted for any tem- 
perature. This plot usefully depicts the fitted model and the statistical uncer- 
tainty in the fit. Such a plot should also display the data, as in Chapter 3. 

Similarly, Figure 2.3 depicts the fitted model on Arrhenius (relationship) 
paper. The fitted percentile lines are straight, and the 95% confidence limits 
for a line are curves. The figure shows such curves for the median line. It is 
more informative if such plots also show the data. Then such a plot summar- 
izes much information well, but may be cluttered, as in Chapter 3. 

Reliabilities. Many ML programs provide estimates and confidence lim- 
its for a reliability or fraction failed at a user-specified age and stress level. 
STATPAC does so, but Figure 2.1 does not show them. One can easily cal- 
culate such estimates as described below. Also, the probability plot (Fig- 
ure 2.2) yields a reliability estimate and confidence limits. Enter the plot on 
the time scale at the desired age; go to the fitted distribution line for the 
stress level; and then go up to the probability scale to read the reliability esti- 
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Figure 2.3. Arrhenius plot of fitted percentile lines and 95% confidence limits. 

mate. Repeat this with the confidence limit curves to gel the confidence lim- 
its for that reliability. This relationship between estimates and confidence 
limits for percentiles and those for reliabilities applies to any model. 

Other estimates. Percentiles and reliabilities are functions of population 
(true model) coefficients and parameters. Other such functions are of in- 
terest in some applications. Examples include 1) the failure rate versus age 
at a particular stress level and 2) the design stress that yields a specified life 
(say, a percentile must have a specified value). The corresponding ML esti- 
mate is the function evaluated at the ML estimates for the model coefficients 
and parameters. The corresponding confidence limits appear in Section 5. 
Some ML programs have such functions as standard features, and some oth- 
ers let the user program such functions. Also, one can calculate such an esti- 
mate by hand from the coefficient and parameter estimates. Use many 
significant figures in the coefficient and parameter estimates and in inter- 
mediate calculations. This assures that final estimates and confidence limits 
are accurate to two or three figures. 
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23. Special Cases 

model and right censored data. These include: 
a the basic distributions (exponential, Weibull, and lognormal) and others, 
a simpler data (singly censored or complete), 
a known slope coefficient, 
a known acceleration factors, and 
a known Weibull shape parameter. 

Purpose. This section briefly surveys some special cases of the simple 

Exponential Distribution 

Misuse. The exponential distribution has been widely used (often with 
crude results) with the simple linear model. For example, it is used in MIL- 
HDBK-217 for electronic components. Many reliability texts state as gospel 
that most electronic components “follow” an exponential life distribution. In 
the author’s experience, only 10 to 15% of products are adequately described 
with an exponential distribution. There are reasons for the misuse of this dis- 
tribution. First, it can sometimes yield crude but useful results. Second, it 
has been sanctified by long usage. Third, its simplicity appeals to many; 
namely, it is characterized by a single number - the mean time to failure 
(MTTF) or the failure rate, which is usually more suitable. Fourth, data 
analysis methods for it are simpler than those for other distributions. It is 
presented here, because it adequately describes some products and because 
even knowledgeable people continue to use it despite its inaccuracy. They do 
so to facilitate dealing with less sophisticated clients, management, and asso- 
ciates. Also, many contracts specify the use of government reliability stan- 
dards based on the exponential distribution. A better alternative, described 
below, is the Weibull distribution with a specified shape parameter. Indeed, 
the exponential distribution is a Weibull distribution with a specified shape 
parameter of 1. Most products are described better with another value. 

Literature. The simple model with an exponential distribution appears 
widely in the literature. References include Evans (1969), Fiegl and Zelen 
(1965), Glasser (1967), Lawless (1976), Zelen (1%9), Mann, Schafer, and 
Singpurwalla (1974, Chap. 9), and many recent reliability texts. Most authors 
employ ML fitting to right censored data. Hamada (1988) compares asymp- 
totic variances of ML estimates with true variances from simulations. 

Simple censoring. ML fitting of such a model to right censored data is 
complex and laborious. It must be done by a computer program (Section 1). 
Such fitting is no less complex for singly censored or complete data. 

Confidence intervals. There are no tables for exact confidence limits for 
this model, even for complete data. Lawless (1976, 1982, Sec. 6.3.2) presents 
theory and a computer program for exact limits. McCoun and others (1987) 
extend this theory to generalizations of the exponential distribution such as 
the Weibull distribution with a known shape parameter. 
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Two stress levels. The ML estimates simplify if there are just two test 
stresses x1 and x2. Suppose that the number of failures at xi is ri, and suppose 
that the total running time of the ni specimens is T .  The total includes all 
failed and cepored specimens in the multiply censored sample at xi .  The 
ML estimate B i  of the mean at xi is 

A 

ei = TITi. (2.6) 

The estimate does not exist if ri = 2. The ML fit of the simple relationship 
(2.2) passes through both points (xi,di). Thus the coefficient estimates are 

The estimate of mean life at stress level x is 

e^(x) = exp(% + $ 2 4 .  (2.8) 

Approximate confidence limits for such quantities are calculated with 
methods of Section 5 and of Lawless (1976, 1982, Section 6.3.2). Tables for 
exact confiaence lim$s have not been developed. Of course, the failure rate 
estimate is A(x) = l / d (x ) .  

Weibull Distribution 

Use. The simple linear model with a Weibull distribution is widely used. 
For most products, it is more suitable than the exponential distribution. 

Literature. References on ML fitting of the model to right censored data 
include McCool (1981,1984), Lawless (1982), and Singpurwalla and Al- 
Khayyal (1977). Such fitting is complex and requires special computer pro- 
grams (Section 1). 

Simple censoring. The fitting does not simplify for singly censored or 
complete data. 

Confidence limits. Using methods of Section 5, computer programs cal- 
culate ML estimates and approximate confidence limits for model parame- 
ters and other quantities. Lawless (1982) gives exact limits calculated with a 
special computer program; such limits are exact only for failure censored 
data, including complete data. McCool(l980,1981) gives tables for exact lim- 
its for singly failure censored data, which includes complete data. McCool's 
tables apply only to equal sample sizes (inefficient for extrapolation), to 
equal numbers of failures at each test stress level, and to certain spacings of 
the stress levels. 

Two levels. ML fitting does not simplify for data with just two stress lev- 
els, even for singly censored or complete data. 

Lognormal Distribution 

For many products it is not clear if it or the Weibull distribution fits better. 
Use. The simple model with the lognormal distribution is widely used. 
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Literature. References on ML fitting of the model to right censored data 
include Glasser (1965), Hahn and Miller (1968a,b), Schneider (1986), Aitken 
(1981), and Lawless (1982). Such fitting is complex and requires special 
computer programs (Section 1). 

Simple censoring. The ML fitting is simpler only for complete data. 
Then ML fitting is equivalent to least-squares fitting (Chapter 4). 

Confidence intervals. Using methods of Section 5,  computer programs 
calculate ML estimates and approximate confidence limits for parameters 
and other quantities. Lawless (1982) presents theory for exact confidence 
limits, which require a special computer program. Schneider and Weisfeld 
(1987) present approximate normal limits based on other ML statistics. 
There are no tables for exact limits for singly censored data. For complete 
data, the confidence limits of Chapter 4 apply. 

Two levels. Only for complete data does ML fitting simplify with two 
stress levels. Then ML estimates are the same as those above for the ex- 
ponential distribution, Replace B by the mean log life p, For each stress lev- 
el, replace each estimate of 0 by the sample mean log life. Confidence limits 
in Chapter 4 apply. 

Other Distributions 

Literature. ML fitting of a simple linear relationship with other distribu- 
tions to right censored data appears in the literature. References on the log 
gamma distribution include Farewell and Prentice (1977), who offer a com- 
puter program, and Lawless (1982). Lawless (1982) presents the gamma and 
logistic distributions. The nonparametric Cox (proportional hazards) model 
is treated by many, including Lee (1980), Kalbfleisch and Prentice (1980), 
Cox and Oakes (1984), and Lawless (1982). 

Slope Coefficient Specified 

Motivation. In some applications, one may specify (or assume) a value 
7; for the slope coefficient 72. That is, 72 is not estimated from the data. 
This is done for various reasons including: 
rn The number of specimen failures is so small that the estimate of the slope 

is less accurate than the assumed value. 
rn Failures occurred at just one test stress. So the slope cannot be estimated. 
The following paragraphs explain how to analyze data using a specified slope. 
The method applies to right censored and other types of data. Singpurwalla 
(1971) treats this problem but does not note that it reduces to a simple one 
with a single sample, as shown below. 

Coefficient value. The slope coefficient corresponds, for example, to the 
power in the inverse power law and to the activation energy in the Arrhenius 
relationship. For certain products, experience suggests a coefficient value. 
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For example, the power in Palmgren’s equation is sometimes taken to be 3 
for steel ball bearings. The activation energy of semiconductor failures is 
sometimes taken to be 1.0 electron-volts or a value in the range 0.35 to 
1.8 eV, depending on the failure cause. Assuming (incorrectly) that life dou- 
bles for every 10°C decrease in temperature is equivalent to specifying the 
slope coefficient. In the Coffin-Manson relationship, the power is often as- 
sumed to be 2. It is important to realize that the slope is a characteristic of a 
failure mode. If a product has more than one failure mode, it is usually ap- 
propriate to use a different slope for each mode, as in Chapter 7. The follow- 
ing applies to the data on a failure mode. 

Equivalent data. The analysis proceeds as follows. Suppose one wishes 
to estimate some characteristic of the life distribution at stress level x’, which 
may be a design level. Suppose that the log failure or censoring time of 
specimen i isyj. Use the natural log for Weibull and exponential distribu- 
tions, and use the base 10 log for lognormal distributions. Use either log for 
unspecified distributions. Also, suppose that test stress level of the specimen 
isxi. Calculate each equivalent log lifeyi atx’ as 

yl = yj t (x’ -xj)7;. (2.9) 

This results in a single sample of equivalent log times all at x’. Figure 2.4 
motivates this; there each data point is translated to stressx’ by moving it 
along a line with slope 7;. One can also work with the original times ti = 

exp(yi), assuming natural logs. Then the equivalent times are 

tf = ti exp[(x’-xj)r;]. (2.10) 

Here exp[ ] is the “acceleration factor.” 

Analyses. Use standard graphical or numerical analyses for fitting a sin- 
gle distribution to such equivalent data, which are usually multiply censored. 

X’ Xi STRESSX 
Translation to equivalent times at stressx’. Figure 2.4. 
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Such analyses appear in, for example, Nelson (1982), Lawless (1982), Lee 
(1980), and others. Also, standard computer programs (Section 1) perform 
such analyses. Such analyses yield estimates and confidence limits for per- 
centiles and other quantities. Also, hazard plot (Chapter 3) such data. 

Other slopes. The specified 7; is seldom correct. So it is useful to repeat 
the analyses using other r2 values. This “sensitivity analysis” tells one how 
much other values affect results. 

Lubricant example. Table 2.1 shows data from a temperature accelerat- 
ed test for failure of lubricating oil in 50 compressors. The purpose of the 
test was to estimate the life distribution of the oil at the design temperature 
of 220°F. The equivalent data at 220°F were calculated by assuming that oil 
life doubles with every 18°F (10°C) drop in temperature, a naive rule of 
thumb from freshman chemistry. This widely used inverse power relation- 
ship approximates the more correct Arrhenius one. The equivalent time is 

t ;  = ti/2&VP/’8. (2.11) 

Table 2.1 shows the calculation of these equivalent times. Figure 2.5 is a 
Weibull plot of the equivalent times and the Weibull distribution fitted by 
ML. The life distribution was marginal for the 1,110-day design life. Fig- 
ure 2.5 also shows equivalent data from factors of 1.5 and 2.5 instead of 2. 
Here the percentage failing during design life changes greatly with the factor. 
This suggested it was important to determine the factor more accurately. 

Check slope. The assumed value of the slope coefficient can be checked 
as follows. Suppose that the test was run at several stress levels or that 
roughly equal numbers of specimens are grouped into several stress intervals. 
Calculate the equivalent times, and treat the equivalent data from each group 
(stress level) as a separate sample. Compare these samples with graphical or 
numerical methods to see if they are from the same distribution - a test of 
homogeneity. Such comparisons appear in the references in the Analyses 
paragraph above. Significant differences between the groups may indicate 
the specified slope is in error. If the observed group distributions are in the 
same (or reversed) order as their stress levels, then the slope may be in error. 

Table 2.1. Lubricant Data and Equivalent Times 

Temp. No. Days Equiv. Days at 220°F 

260°F 30 unfailed at 88t 8 8 ~ 2 ( ~ ~ ” ~ ) / ’ ~  = 411t 

310°F 1 failed at 25 25>c2(310”20)/’8 = 800 
1 failed at 43 43 1376 
1 failed at 75 75 2400 
1 failed at 87 87 2784 
1 failed at 88 88 2816 

15 unfailed at 88t 88 2816 t 

- -  - 
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D A Y S  

Figure 2.5. Weibull plot of lubricant data. 

If the observed group distributions are in a random order, then the model or 
data may be in error. 

Acceleration Factors 

Definition. In some applications, life i’ under design use is expressed in 
terms of life t at an accelerated test condition as 

i’ = Kt. (2.12) 

Here K is called the acceleration factor and is assumed known. As above, one 
can calculate equivalent times t’ from accelerated times i and estimate the 
life distribution under design conditions. 

Factor value. Such an analysis is only as accurate as the acceleration fac- 
tor. The value of the factor can be arrived at in a number of ways. 

Suppose the product is described by the simple model with a known slope 
coefficient. Then the model and known slope can be used to calculate K. 
The preceding lubricant application is an example of this. 
Many companies run traditional accelerated tests. They may include any 
number of accelerating variables and may involve complex sequences of 
different stressings. The acceleration factors are often company tradition, 
and their origins may be long forgotten. 
Some acceleration factors are estimated from data. This involves estimat- 
ing a typical accelerated life and a typical “use” life. The “use” life may 
come from field data or from test data from simulated use conditions. The 
K factor is the ratio of observed “use” life over accelerated life. 
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Other acceleration factors appear in handbooks. For example, MIL-STD- 

Separate factors. Each failure mode of a product needs its own K factor. 
Moreover, there may be more than one accelerated test for a product. Then 
each test is designed to accelerate different failure modes, and each combina- 
tion of test and mode has its own K factor. For example, a vibration test of 
an electronic system yields mechanical failures of solder and pin connections. 
A temperature-accelerated test of such systems yields thermal degradation 
failures of capacitors, semiconductors, and other system components; each 
component failure mode has its own K factor. In practice, some analysts 
apply a single factor to all modes of a component, to a group of components, 
or to the entire system. This is usually crude. 

Several tests. When there are several tests, each with its own K factor, 
the data can be combined. Each set of test data is converted to equivalent 
data at use conditions, and the data are suitably analyzed, for example, as 
data with competing failure modes (Chapter7). Also, the sets may be 
compared for equal distributions if appropriate. 

217 gives such factors for electronic components. 

Weibull Distribution - Shape Parameter Specified 

Motivation. In some applications, there are few or no failures. Then one 
has no estimate or a crude one for the shape parameter of an assumed 
Weibull life distribution. Assuming a value for the shape parameter, one can 
then analyze such data with no failures as follows. Also, one can then get 
more accurate estimates from data with few failures. Assuming an exponen- 
tial distribution is the same as assuming a Weibull distribution with a shape 
value of 1. Usually another shape value yields more accurate results. 

Relationship. The analyses below employ the following relationship be- 
tween the exponential and Weibull distributions. Suppose that is a ran- 
dom observation from a Weibull distribution with parameter values @ and ai 
at stress levelxi. Then 

Ti = Tf (2.13) 

is a random observation from an exponential distribution with mean 0, =a;. 

Analyses. The analyses employ the transformed exponential data Ti, 
which are analyzed with the preceding methods for an exponential distribu- 
tion. The fitted log-linear model for 0 must be transformed back to 

4)= {W1’~=eXP{(71 +72x)/B) (2.14) 

for the Weibull model. Nelson (1985) describes in detail this type of analysis 
for a single distribution, McCoun and others (1987) extend Lawless’s 
(1976,1982) exact limits to this model. 

Other shape values. The assumed shape value is, of course, in error 
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some. It is useful to redo the analyses with both smaller and larger values. 
Hopefully, the practical conclusions remain the same. If not, one must 
choose among them, for example, the most conservative. 

Assumed slope coefficient. Analyses may be based on assumed values of 
the shape parameter and slope coefficient. Then the data are converted to a 
single sample of exponential data at a selected stress level. The estimates for 
the exponential distribution must be converted back to those for a Weibull 
distribution with (2.14). 

3. ASSESS THE SIMPLE MODEL AND RIGHT CENSORED 
DATA 

Purpose. The analyses of Section2 depend on assumptions about the 
simple model and right censored data. The accuracy of estimates and 
confidence limits depend on how well those assumptions are satisfied. This 
section presents methods for assessing: 

3.1. 
3.2. 

3.3. 
3.4. 
3.5. 
3.6. 

This section follows the pattern of Section 3 of Chapter 4 on complete data. 
That section is useful, but not essential, background. This section provides 
graphical and numerical methods suitable for right censored data. Numeri- 
cal methods include likelihood ratio (LR) tests, which serve various purposes; 
theory for them appears in Chapter 9. Escobar and Meeker (1988) present 
further methods to assess assumptions and the influence of observations. 

a model characteristic has a specified value, 
the scale parameter (Weibull shape p or lognormal CJ) has the same 
value at all stress levels, 
the (transformed) life-stress relationship is linear, 
the assumed life distribution is adequate, 
the data are valid (identify outliers), 
the effect of other variables. 

3.1. A Model Characteristic Has a Specified Value 

Overview. In some applications, there is a standard, specified, or pro- 
posed value for a certain model coefficient, parameter, quantity, or charac- 
teristic (e.g., MTTF). Then one may want to assess whether the data are 
consistent with that value. Then the specified value, employed in further 
analyses, may yield more accurate results than those based on its estimate 
from the data. Examples include 

a Weibull shape parameter of 1.1 to 1.3 for life of rolling bearings, 
a power of 3 in Palmgren’s equation for life of ball bearings, 
a power of 2 in the Coffin-Manson relationship for thermal fatigue, 
an activation energy of 1.0 electron-volts for the Arrhenius relationship for 
solid state electronics. 
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In demonstration tests, one wants to assess whether a population value 
exceeds a specified value. Examples include 

Does the median life of a proposed Class-H motor insulation exceed 

Does the MTTF of a power supply exceed a specified value? 
Graphical and numerical methods for such problems follow. 

Graphical analysis. Using the methods of Chapter 3, one can graphically 
estimate a quantity. The specified value can also be plotted and compared 
with the estimate and data. Either they are consistent (relative to the scatter 
in the data), or they differ convincingly. For example, in Chapter 3, the 
graphical estimate of median life of  the Class-H insulation at 180°C is con- 
vincingly below the desired 20,000 hours. This can be seen in the Arrhenius 
plot (Figure 2.3 of Chapter 3). Another example is the insulating fluid in 
Chapter 3. In Figures 3.1 and 3.2 there, the data appear consistent with a 
theoretical value of p = 1 for the Weibull shape parameter. If a graphical 
analysis is not conclusive, a numerical analysis is helpful as follows. 

20,000 hours at 180°C ? 

Confidence limits. If confidence limits for a quantity enclose its specified 
value, then the data are consistent with that value. Otherwise, the data con- 
tradict that value. For example, in Chapter 4, the 95% confidence limits for 
the median life of Class-H insulation at 180°C are 9,730 and 13,700 hours. 
These limits are well below the specified 20,000 hours. Thus, the data con- 
vincingly indicate a true median below 20,000 hours. In reliability demonstra- 
tion, the confidence limit(s) must exceed the specified value. For example, 
the lower confidence limit for a MTTF must exceed the specified MTTF. 

Hypothesis tests. Much statistical theory concerns hypothesis tests. Such 
hypothesis tests simply answer yes or no to the question: are the data con- 
sistent with a specified value of a model (population) quantity? Confidence 
intervals answer the, same question but are more informative. In particular, 
the length of a confidence interval indicates the accuracy of the estimate and 
how much one may rely on the yes-or-no conclusion. See Chapters 8 and 9 
for such hypothesis tests. Likelihood ratio tests (Chapter9) apply to cen- 
sored data of all types. 

Demonstration tests. A reliability demonstration test of a product is run  
to decide whether some observed measure of product reliability is convinc- 
ingly better than a specified value. Long used for military products, such tests 
are now being used by more and more companies on commercial products. 
The language of a typical test is that “the (constant) product failure rate (or 
other measure of reliability) must meet a specified (constant) rate A* with 
C% confidence.” Operationally this means that the produc! passes the test if 
the test data yield a one-sided uppgr C% confidence limit X for the true (un- 
known constant) rate X such that X < A*. That is, the confidence limit must 
be better than the specification. Otherwise the product fails the test, and ap- 
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propriate action is taken (redesign, new supplier, etc.). Some product 
designers misunderstand this Ipguage and mistakenly design the product to 
have the specified A*. Then X falls above A* with a high probability C%. 
That is, the product fails the test with high probability C% . To ensure that 
the product passes with high probability, the designer must achieve a true X 
well below the specified X*. The designer can use the OC curve for the 
equivalent hypothesis test to determine a suitable X value - one that gives the 
product a desired high probability of passing the test. Unfortunately such 
OC curves have not been developed for accelerated tests. Nelson (1972~) 
presents an accelerated demonstration test. The preceding discussion could 
be in terms of the MTTF B or some other measure of reliability. Then the 
product passes if > 6*. The normal approximate confidence limits are inac- 
curate one-sided limits. The one-sided LR limits (Section 5.8) are more ac- 
curate and preferred for demonstration tests. Some standards for reliability 
demonstration tests assume a Weibull or other distribution with a noncon- 
stant failure rate. 

3.2. Constant Scale Parameter 

Overview. The simple model assumes that the scale parameter of log life 
(Weibull l/@ or lognormal 6) is constant. That is, the scale parameter has 
the same value at all stress levels of interest. Estimates of low percentiles are 
sensitive to a nonconstant scale parameter. Also, most analyses in Sec- 
tions 3.3 through 3.5 are based on this assumption. The following graphical 
and numerical methods assess this assumption. Each method yields different 
insights and is worth using. 

Graphical analysis. As described in Chapter 3, a probability plot pro- 
vides an assessment of a constant scale parameter. On probability paper, the 
plotted data from different stress levels should be close to parallel. In Fig- 
ure 4.1 of Chapter 3, the Class-B data from the three test temperatures do 
not look parallel. This may result from possible outliers at 190°C. 

Confidence limits. There is a crude comparison of scale parameters. It 
employs a separate estimate and confidence limits for the scale parameter at 
each stress level with at least two distinct failures. Thus one must fit a sepa- 
rate distribution to the data from each stress level. If an interval for one 
stress level overlaps the estimate for another level, the two estimates are 
comparable (do not differ statistically significantly). If two intervals do not 
overlap, the two estimates differ statistically significantly. An intermediate 
situation occurs if two intervals overlap, but neither overlaps the other esti- 
mate. Then one cannot draw a conclusion using this method. Then use the 
maximum ratio test below. 

Class-B insulation. For the Class-B data, such ML estimates and ap- 
proximate normal 95% confidence limits follow. 
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170" 

190" 

220" 

0.03 0.05 0.10 a 0.20 0.30 0.50 1.00 

Figure 3.1. Estimates and confidence limits for Q by temperature. 

Temp. u Estimate 95% Limits 
170 0.2028 (0.1158,0.3549) 
190 0.3996 (0.2013,0.7931) 
220 0.0728 (0.0366,0.1449) 

Figure 3.1 displays these estimates and limits on semi-log paper. The plot 
makes comparison easier. The estimates at 170" and 190" are consistent with 
each other, since the 190" interval overlaps the 170" estimate. The 190" and 
220" estimates differ significantly since their intervals do not overlap. The 
170" and 220" estimates are inconclusive, since their intervals overlap, but nei- 
ther interval overlaps the other estimate. Also, note that there is no trend to 
the u estimates as a function of temperature. Thus u does not appear to be a 
simple and plausible function of temperature. Outliers at 190" seem to be a 
more likely cause of differing 0's. 

LR test. The scale parameters can be compared for equality with the fol- 
lowing LR test. It generalizes Bartlett's test for equality of (1og)normal stan- 
dard deviations with complete data (Chapter 4). It applies to any distribution 
with a scale parameter. For example, for Weibull and lognormal life, the dis- 
tribution of log life has scale parameters 6 = l//3 and u, respectively. The 
test involves the following steps. 

Fit a separate distribution to the data from each of the J test stresses with 
two or more di?inct failye times. Obtain the corresponding J maximum 
log likelihoods f * * - , f,. For eymple, for the Cl2ss-B data, there are 
J,=3 such test temperatures, and f = -64.270, f = -43.781, and 

Fit a model with a common scale parameter and a separate location pa- 
rameter for each of the J stress levels. Such fitting employs J indicator 
variables in a relationship for the location parameter. Use only the data 
from the J stress levels with two or mole distinct failures. Obtai? the 
corresponding maximum log likelihood fo. For the Class-B data, f o  = 
- 145.198 for the data from J =3  temperatures with failures. 
Calculate the LR test statistic as 

f 2 0  = -32.302. 

A 

T=2(f1 t * * t&f^,). (3.1) 
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For the Class-B data, T = 2[ -64.270-43.781-32.302- (- 145.198)] = 
9.69. 

4. If the true scale parameters are all equal, the distribution of T is approxi- 
mately chi square with J-1 degrees of freedom. The approximation is 
better the larger the number of failures at each such stress, say, at least 5. 
If the true scale parameters differ, T tends to have larger values. Evalu- 
ate T as follows where ? ( l -a ; J - l )  is the 100(1-a) percentile of the 
chi-square distribution with J- 1 degrees of freedom. 
a If T 5 ?(l-a;J-l) ,  the J scale parameter estimates do not differ sta- 

If T >?(l-a;J-  l), the scale parameters differ statistically 

For the Class-B data, T = 9.69 > 9.210 = 2(0.99;2). Thus the u's differ 
highly significantly (at the 1% level). That is, if the population u's were 
equal, so large a T value would be observed less than 1% of the time. 
This unusually high T value suggests that the population u's differ. 

5. If T is significant, examine the estimates and confidence limits for the J 
scale parameters from step 1, and determine how they differ. Figure 3.1 
helps do this. Change the model or delete data, and reanalyze as 
appropriate. For the Class-B data, the high 0 estimate at 190" may be due 
to two low outliers at 408 hours. These outliers can be seen in Figures 4.1 
and 4.2 of Chapter 3. 

Maximum ratio. Another hypothesis test for equality of scale parameters 
employs a separate distribution fitted to each of the J stress levels with at 
least two distinct failures. The test statistic is the ratio of the largest to small- 
est ML estimates of the scale parameters. An example of this test is the max- 
imum F-ratio for complete normal data in Chapter 4. Specifically, the test 
employs the maximum ratio statistic 

tistically significantly at the 1OOa% level. 

significantly (convincing evidence) at the lOOa% level. 

R =max(G,/G,,). (3.2) 

The test employsR(1-a;J), the 100(1-a)% point of the distribution of R: 
If R <R(l-a;J), the estimates do not differ statistically significantly at the 

a If R >R(l-a;J), the estimates differ significantly at the l o b %  level. 
The distribution of R depends on the sizes and censorings of the J samples. 
For censored data, there is only one exact table of such R percentiles. 
McCool(l981,1974) gives such a table for comparing Weibull shape parame- 
ters; it applies only to equal sample sizes and single censoring with the same 
number of failures in each sample. For other distributions, approximate the 
percentiles of R with the Bonferroni inequality in Nelson (1982, p. 553). 

Relationship. Constancy of a scale parameter can also be assessed by 
fitting the model plus a relationship for the scale parameter. This method 
has an advantage over previous ones; it applies when there are many stress 
levels, each with one or a few specimens. Also, it applies when some stress 
levels have no failures. The simplest such relationship in stressx is 

1 W %  level. 
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4 x 1  = exp(73 +7d) .  (3.3) 

This relationship is a monotone function of x .  If the confidence interval for 
r4 does not contain zero, then there is convincing evidence that u depends on 
stress. Otherwise, there is no convincing evidence. 

The Arrhenius relationship and (3.3) were fitted to the Class-B data, 
including the 150" data with no failures. The ML estimate and approximate 
95% confidence limits for r4 are - 1.069 and (-6.764,4.626). Here x = 
1000/(absolute temperature). This interval contains zero. Thus there is no 
significant trend to u. Section 4 presents another example with this relation- 
ship. Fitting (3.3) is more sensitive means of detecting a trend of u than are 
the previous tests, which are more sensitive to detecting erratic behavior of u. 
Other relationships may be useful, for example, one including a quadratic 
term in x .  This test may also be sensitive to an inadequate relationship for 
the location parameter p ;  the previous ones are not. 

33. Is the Life-Stress Relationship Linear? 

Overview. The simple model includes a linear relationship for the 
(transformed) life-stress relationship. This assumption is critical for long ex- 
trapolations to low stress. Graphical and numerical assessments of this as- 
sumption follow. Each method yields different insights and is worth using. 

Graphical. Chapter 3 explains how to use data plots to assess linearity of 
the life-stress relationship. For the Class-B data, the relationship appears 
adequate in Figure 4.2 of Chapter 3. 

LR test. The following LR test checks linearity. It assumes that the scale 
parameter is a constant at all test stress levels. It generalizes the F test for 
linearity of Chapter 4. It employs only the data from the J stress levels each 
having at least one failure. For the Class-B insulation, the data at 150" are 
not used since they contain no failures. Perform the following steps. 

1. 

2. 

3. 

4. 

?it the simple model (Section 2.1), a%d obtain its maximum log likelihood 
f 0 .  For the Class-B data, J=3 and f 0 = - 145.867 for those 3 tempera- 
tures. 
Fit a model with a common scale parameter and a separate location pa- 
rameter for each of the J sgess levels, using indicat2r variables. Obtain 
its maximum log likelihood f . For the Class-B data, f = - 145.198. 
Calculate the LR test statistic 

T = 2(2-20). (3.4) 

For the Class-B data, T = 2[ - 145.198 - ( -  145.867)] = 1.34. 
If the relationship is linear, the distribution of T is approximately chi 
square with J-2 degrees of freedom. If the relationship is not linear, T 
tends to have larger values. Evaluate T as follows where 2(1-a;J-2)  is 
the lOO(1-a)th chi square percentile with]-2 degrees of freedom. 
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If T 5 ?(l-a;J-2), the data are consistent with a h e a r  relationship 
at the 1ooU% level. 
If T > $(l-a;J-2), the data differ statistically significantly from a 
linear relationship at the 100a% level. 

For the Class-B data, T = 1.34 < 3.842 = 2(0.95;1). Thus there is no 
evidence of nonlinearity at the 5% level. 

5. If there is significant nonlinearity, the reason should be sought. For ex- 
ample, examine the data in a relationship plot. Fit another model or 
delete data, as appropriate, and reanalyze the data. For example, for the 
Turn data in Figures 5.1 and 5.2 of Chapter 3, the 260” data are not con- 
sistent with the rest. Later discovery of the cause of this yielded 
$l,OOO,OOO yearly. Physical understanding of nonlinearity or other poor fit  
is usually,more valuable than a reanalysis. 

Nonlinear fit. Nonlinearity can also be assessed by fitting a more general 
relationship that includes the linear one. This method has an advantage over 
previous ones; it applies when there are many stress levels, each with one or a 
few specimens. Also, it applies when some stress levels have no failures. The 
simplest such relationship in stressx is 

Ax) = 71 t 72 (x - x O )  t 7 3  (x - x y  (3.5) 

This relationship has a quadratic term. x’ is some chosen value in the middle 
of the data; it “centers” the data and makes the ML fitting converge better. 
Some packages automatically center each independent variable. If not, users 
should do so to assure accurate fitting. If the confidence interval for 7 3  does 
not contain zero, then there is convincing evidence of nonlinearity. Other- 
wise, there is no convincing evidence. A quadratic was fitted to the Class-B 
data including the 150” data with no failures. The ML estimate and approxi- 
mate normal 95% confidence limits for r3 are 5.02 and (- 13.8, 23.8). Heres  
= 1000/(absolute temperature), and x’ = 2.201629 is the average of x over 
the data. This interval contains zero. Thus there is no significant nonlinear- 
ity. This test is more sensitive to detecting a curved relationship. Tests above 
are more sensitive than this one to detecting erratic behavior of the data. 
Also, a nonlinear life-stress relationship can be used with a relationship for 
the scale parameter, e.g., (3.3). Section 4 gives an example of this. 

3.4. Assess the Life Distribution 

Purpose. This section presents graphical and numerical methods for as- 
sessing the assumed life distribution. Estimates of low percentiles are sensi- 
tive to the assumed life distribution. Each method below yields different in- 
sights, and all are worth using. 

Graphical. Chapter 3 presents probability and hazard plots as a means of 
assessing an assumed life distribution. For example, the Class-B data appear 
in Figure 4.1 of Chapter 3. The plotted data from the three test temperatures 
are not straight and parallel, suggesting that the lognormal is a poor fit or 
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that the data have problems. Nelson (1973b) uses residuals for a more sensi- 
tive check on the distribution as follows. 

Plot of residuals. A (“raw”) residual ri = yi-$(xi) is the difference be- 
tween a log observation yi and the estimate of its location parameter $(xi) at 
its xi value. Such a residual is censored if the observation is censored. Ta- 
ble3.1 shows the calculation of such residuals for the Class-B data. The 
pooled sample of all such log residuals comes from the assumed (log) life dis- 
tribution. That distribution has a location parameter equal to zero and scale 
parameter equal to 0, the population value. This pooled sample is usually 
multiply censored. Make a hazard plot of such log residuals to assess the dis- 
tribution fit. Use normal paper to assess a lognormal fit. Use extreme value 
paper to assess a Weibull fit. Figure3.2 is a normal hazard plot of the 
Class-B residuals. The plot is not straight. The early failures are low relative 
to the rest of the data. In general, this may indicate that the distribution is 
inadequate or that there are low outliers. Figure 4.1 of Chapter 3 and Fig- 
ure 3.1 here suggest that low outliers are the more likely cause. This suggests 
redoing the analyses without the two low outliers at 190”. A cause of the 

Table 3.1. Calculation of Class-B Residuals (+ Denotes Censored) 

1511°C 190°C 

yi - i i (xi)  = ri - -  
3.9066t - 4.1684 = -0.2618t 
3.9066t - 4.1684 = -0.2618t 
3.9066t - 4.1684 = -0.2618+ 
3.9066t - 4.1684 = -0.2618t 
3.9066t - 4.1684 = -0.2618t 
3.9066t - 4.1684 = -0.2618t 
3.9066t - 4.1684 = -0.2618t 
3.9066t - 4.1684 = -0.2618t 
3.9066t - 4.1684 = -0.2618t 
3.9066t - 4.1684 = -0.2618t 

170°C 

3.2465 - 3.7077 = -0.4612 
3.4428 - 3.7077 = -0.2649 
3.5371 - 3.7077 = -0.1706 
3.5492 - 3.7077 = -0.1585 
3.5775 - 3.7077 = -0.1302 
3.6866 - 3.7077 = -0.0211 
3.7157 - 3.7077 = 0.0080 
3.7362+ - 3.7077 = 0.0285t 
3.7362t - 3.7077 = 0.0285t 
3.7362t - 3.7077 = 0.0285t 

Yi - @(XI)  = ri 

2.6107 - 3.2900 = -0.6973 
2.6107 - 3.2900 = -0.6973 
3.1284 - 3.2900 = -0.1616 
3.1284 - 3.2900 = -0.1616 
3.1584 - 3.2900 = -0.1316 
3.2253-k - 3.2900 = -0.0647t 
3.2253t - 3.2900 = -0.0647t 
3.2253t - 3.2900 = -0.0647t 
3.2253t - 3.2900 = -0.0647t 
3.2253t - 3.2900 = -0.0647t 

220°C 

- -  

2.6107 - 2.7217 = 
2.6107 - 2.7217 = 
2.7024 - 2.7217 = 
2.7024 - 2.7217 = 
2.7024 - 2.7217 = 
2.7226t - 2.7217 = 
2.7226t - 2.7217 = 
2.7226+ - 2.7217 = 
2.7226t - 2.7217 = 
2.7226t - 2.7217 = 

-0.1110 
-0.1110 
- 0.0193 
- 0.0193 
- 0.0193 

0.0009 t 
O.OOO9 t 
0.0009 + 
0.0009 t 
o.Oo09 t 
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Figure 3.2. Normal hazard plot of Class-B residuals. 

suspected outliers was sought without success. Most computer packages for 
life data calculate and plot such residuals. 

Other residuals. Other residuals can be plotted. These include 
Residuals from fitting a separate distribution to the data from each test 
stress level. Lack of fi t  of the linear relationship does not affect these log 
residuals. With lack of fit, raw residuals tend to be too large (absolute 
magnitude), and their distribution differs from the population distribution. 
Equation (3.5) of Chapter 4 gives this residual for complete data. 
Residuals adjusted for the fitting of the relationship to reduce the bias in 
the scale parameter estimate based on them. Cox and Snell (1968) derive 
such adjusted residuals for ML fitting. Section 5.3 of Chapter 4 gives the 
formula for such residuals for complete data and least-squares fitting. 

It is worth plotting such residuals. Each type reveals different informagon. 

Generalized gamma. The Weibull and lognormal often are candidate dis- 
tributions. To choose between them, one can fit the simple relationship and 
the generalized gamma distribution to log life data as described by Farewell 
and Prentice (1973). This distribution has a shape parameter q, as well as a 
location and a scale parameter. For q = 0, the distribution is normal (log- 
normal), and for q = 1, it is extreme value (Weibull). If the maximum log 
likelihood is greater for q = 0 than for q = 1, the lognormal distribution fits 
better. Otherwise, the Weibull fits better. Calculate twice the absolute 
difference of the two maximum log likelihoods. If this exceeds J(l-a;l), 
then the distribution with the higher log likelihood fits statistically 
significantly better than the other at the lOOa% level. 

For exaFple, for Class-B i%sulation data, the two maximum log likeli- 
hoods are & o  = - 148.54 and = - 147.02. The Weibull distribution fits 
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better since fhl > 20. T = 2(zl -fho) = 3.04 < 3.842 = $(0.95;1). Thus the 
Weibull fits better but not significantly better. This test does not require a 
program for fitting a simple relationship and generalized gamma distribution. 
Merely use the maximum log likelihoods from separately fitting the models 
with Weibull and lognormal distributions. Of course, a computer package 
must calculate Weibull and lognormal likelihoods consistent with each other. 
Some omit constants from the likelihood. This test is sensitive to outliers. 

Tests of fit. Standard tests of f i t  for various distributions are presented 
by D'Agostino and Stephens (1986). They apply only to a single sample from 
a single distribution. They do not apply to residuals from fitting a regression 
model. At best such standard tests are crude when applied to residuals. 
Moreover, such residuals, as a result of the model fitting, tend to resemble 
the fitted distribution. Also, such tests are sensitive to outliers, which do not 
come from the main population distribution. Outliers need to be investigated 
and understood and usually omitted from subsequent analyses. Moreover, if 
such a test is used and the assessed distribution has significant lack of fit, one 
must examine a probability plot to see why, Such tests give no indication of 
the nature of the lack of fit. Thus a probability plot of residuals is essential. 

3.5. Checks on the Data 

Purpose. This section briefly reviews graphical and numerical checks on 
the data. They mainly seek to identify outliers and other problems in the 
data. As always, determining the cause of such data is more important than 
deciding whether to include or exclude such data in analyses. 

Graphical. All of the plots of the data (Chapter 3) and plots of the resid- 
uals (Section 3.4) can reveal outliers and other problems in the data. For ex- 
ample, Figure 5.1 of Chapter 3 shows that the 260" data on Turn failures are 
not consistent with the rest of the data. Also, for example, Figure 4.2 of 
Chapter 3 suggests two low outliers in the Class-B data. Usually the adjusted 
residuals show outliers more clearly than do raw ones. 

Outlier tests. Standard outlier tests are presented by Barnett and Lewis 
(1984) and surveyed by Beckman and Cook (1983). Most of these tests apply 
only to a single sample from a single distribution. Few tests are suitable for 
regression models and complete data. Standard (single-sample) tests are 
crude for a sample of residuals, which tend to resemble the assumed distribu- 
tion as a result of fitting the model. Flack and Flores (1989) give outlier tests 
for residuals. Few tests apply to censored data. 

3.6. Effects of Other Variables 

for assessing the effect of other variables on product life. 
Purpose. This section briefly describes graphical and numerical methods 
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Crossplotting. Crossplotting of residuals against such a variable is useful 
for complete data, as described in Chapter 4. Censored data in such 
crossplots are often difficult to interpret. One knows only that the residual 
for the eventual failure is somewhere above the censored residual. See Fig- 
ures 4.7 and 4.8 (next section), which are such crossplots. There each cen- 
sored residual appears as an A, and the residual if observed would be above 
its A. The residuals come from fitting a model for life as a function of stress 
to metal fatigue data. The residual for each specimen is plotted against the 
pseudo stress in Figure 4.7. By imagining each censored residual as higher 
and observed, one might see a very slight positive trend - likely not statisti- 
cally significant. Lawless (1982, p. 281) recommends replacing each censored 
residual with its conditional expected failure time; this expected observed re- 
sidual is crossplotted as an observed residual. The GRAFSTAT package of 
Schatzoff (1985) calculates and crossplots such residuals. 

Hazard plots. The effect of other variables on product life can be as- 
sessed with hazard plots of residuals. Divide the residuals into two or more 
groups according ranges of the variable being examined. Make a separate 
hazard plot of each group. The plots can be put on the same or separate haz- 
ard papers. If the plots are comparable, the variable appears unrelated to 
product life. If there is a systematic trend in the distributions, the variable 
appears related to life. Nelson (1973) gives examples of such hazard plots. 

Numerical. One can assess the effect of other variables on life by includ- 
ing them in the model fitted to the data. Fitting of such multivariable models 
appears in Section 4.3. It is a useful means of assessing such variables. 

4. OTHER MODELS AND TYPES OF DATA 

Introduction. This section extends the methods of Sections 2 and 3 on 
the simple model and right censored data. Section 4.1 extends the methods 
to other types of data, including left censored, quantal-response, and interval 
data. Section 4.2 extends the methods to more complex models with one ac- 
celerating variable; these include fatigue (or endurance) limit models, and 
models where the spread in log life depends on stress. Section 4.3 extends 
them to multivariable models. Sections 2 and 3 are needed background. 

4.1. Fit the Simple Model to Other m e s  of Data 

Purpose. This section presents ML fitting of the simple model to inter- 
val, quantal-response, observed, and right and left censored data, as well as a 
mix of such data. This section extends the methods of Sections 2 and 3 to 
other types of data. In particular, this section presents ML estimates and 
confidence limits for model coefficients, parameters, and other quantities. 
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Also, this section provides methods to assess the model, the data, and the 
effect of other variables. Theory for such ML fitting appears in Section 5.  

Same information. The information one seeks from other data is the 
same as that from right censored data (Sections2 and 3). Indeed, one fits 
the same simple model to other types of data, and one gets the estimates and 
confidence limits for the same coefficients, parameters, etc. Also, one uses 
the same methods to assess the model and data. Only the form of the data 
differs from that in Sections 2 and 3. Indeed the computer output for other 
types of data has the same appearance as that for right censored data. 

Differences. Results of analyses of other types of data differ from results 
from right censored data in some respects. For censored, interval, and 
quantal-response data, standard errors of estimates tend to be greater and 
confidence intervals wider than if the data were observed. That is, there is 
less information (or accuracy) in other types of data. Also, the normal ap- 
proximation for the sampling distribution of an estimator requires more 
failures to be adequate for other types of data. The type of data on a speci- 
men determines the mathematical form of the specimen's likelihood; Sec- 
tion 5 presents such likelihoods. 

Interval data. Table 4.1 of Chapter 3 shows the Class-B insulation data. 
The data resulted from repeated inspection of the specimens. That is, they 
are interval data, but each failure was previously treated as if it occurred at 
the middle of its interval. The 220" and 190" specimens were inspected every 
48 hours, the 170" specimens every 96 hours, and the 150" specimens every 
168 hours. The Arrhenius-lognormal model was fitted to the correct interval 
data. STATPAC output on the fit appears in Figure 4.1. Statistical packages 
listed in Section 1 fit models to such data. 

Accuracy of estimates. In Figure 4.1, the normal confidence limits are 
close to those in Figure 2.1. However, those in Figure 4.1 are slightly wider. 
This results from interval data not being as informative as exactly observed 
failures. The inspection intervals for the Class-B data are narrow relative to 
the spread of the (log) life distribution. So the proper confidence limits in 
Figure 4.1 are only slightly wider than those in Figure 2.1. If the inspection 
intervals are wide compared to the distribution, the confidence intervals are 
much wider than those from data with exact failure times. Of course, all data 
are interval data since they are recorded to just a few figures accuracy. For 
most work, rounding is small and can be ignored. Problem 5.13 presents data 
where the inspection intervals are wide relative to the distribution. 

Literature on interval data. Various references treat ML analyses of in- 
terval data for a single distribution, for example, Nelson (1982, Chap. 9). In 
addition to such analyses, the following references present optimum choices 
of the inspection times. Ehrenfeld (1962) and Nelson (1977) do so for the ex- 
ponential distribution. Kulldorff (1961) does so for the (1og)normal distribu- 
tion. Meeker (1986) does so for the Weibull distribution. 
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MAXIMUM LOG LIKELIHOOD = -73.957765 

4 MAXIMUM LIKELIHOOD ESTIMATES FOR MODEL COEFFICIENTS 
WITH APPROXIMATE 95% CONFIDENCE LIMITS 

COEFFICIENTS ESTIMATE LOWER LIMIT UPPER LIMIT STANDARD ERROR 

CClOOOl -6.016456 -7.907212 -4.125699 0.9646718 
(:o 000 2 4.309538 3.437492 5.181584 0.4449215 
COO003 0.2588536 0.1658819 0.3518253 4.7434563-02 

A COVARIANCE MATRIX 

COEFFICIENTS COO001 c00002 COO003 

COO001 0.9305916 
cuooo2 -0.4284944 0.1979551 
COO003 -8.7286763-03 4.6133233-03 2.250037E-03 

* FISHER MATRIX 
COEE’FI CIENTS coooo 1 c00002 COO003 

coooo 1 428.5899 
coooo2 933.5882 2038.920 
COO003 -251.4781 -558.6667 614.2957 

PERCENTILES(130.) 

TEMP 130. 

* MAXIMUM LIKELIHOOD ESTIMATES FOR DIST. PCTILES 
WITH APPROXIMATE 95% CONFIDENCE LIMITS 

PCT. ESTIMATE LOWER LIMIT UPPER LIMIT STANDARD ERROR 

0.1 7463.632 3529.896 15781.15 2851.313 
0.5 10140.87 5057.636 20333.05 3599.356 
1 11766.47 5991.561 23107.47 4051.641 
5 17663.39 9334.361 33424.40 5747.740 
10 21936.28 11670.98 41230.98 7062.543 

15103.33 53849.93 9248.815 20 28518.65 
50 47091.56 23818.50 93104.73 16377.08 
80 77760.15 36069.61 167638.1 30476.36 
90 101093.5 44276.43 230820.1 42582.69 
95 125548.6 52189.44 302023.7 56228.65 
99 188468.9 70393.80 504619.0 94702.79 

Figure 4.1. Output on Arrhenius-lognorinal fit to Class-B interval data. 

Quantal-response data. Regression analyses of quantal-response data 
appear often in the biomedical literature. Key references include Finney 
(1968), Breslow and Day (1980), Miller, Efron, and others (1980), and Nel- 
son (1982, Chap.9). Nelson (1979) fits the power-Weibull model to such 
data on time to cracking of turbine disks. ASTM STP 731 (1981) presents 
analyses of such data on metal fatigue to estimate a strength (fatigue limit) 
distribution. Meeker and Hahn (1977,1978) present optimum inspection 
times for such data from a logistic distribution. Statistical packages listed in 
Section 1 fit models to such data. 

Left censored data. Left censored data arise when failures occur before 
the specimens are continuously monitored. For example, a test may start on 
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Friday and not be observed over the weekend. In some tests, failures occur 
so quickly that their times cannot be observed. Problem 3.10 presents such 
data. Such data yield less accurate estimates of lower percentiles of the life 
distribution. When such percentiles are sought, it is best to observe early and 
frequently to make such estimates more accurate. Statistical packages listed 
in Section 1 fit models to such data. 

Constant scale parameter. Whether the scale parameter is constant is 
assessed with the methods in Section 3.2. The methods include the LR test, 
the maximum ratio, and expressing the scale parameter as a function of 
stress. All of these methods are appropriate for the other types of data. 

Linearity. Adequacy of the simple linear relationship is assessed with the 
methods in Section 3.3. Namely, the LR test applies if there are a few test 
stresses, each with failures. Also, if there are many stress levels each with 
few specimens, then fitting a more general nonlinear relationship is suitable. 
Such a relationship must include the simple linear one. Examples include a 
quadratic relationship or a power relationship with an endurance limit. 

Distribution. Adequacy of the assumed distribution is assessed with the 
methods in Section 3.4. The log gamma distribution can be used to compare 
the Weibull and (1og)normal distributions. A plot of the residuals is more 
complex with the other types of data. Residuals can be left censored, right 
censored, and intervals, as well as observed. Often interval residuals are nar- 
row relative to the distribution spread. Such residuals can be treated as ob- 
served residuals equally spaced over their intervals and plotted on hazard pa- 
per. The Class-B interval residuals can be handled this way. If the interval 
residuals are wide or if there are left censored residuals, then a Pet0 (1973) 
plot must be made. Turnbull (1976) develops the Pet0 plot further. Some 
computer packages provide such Pet0 plots. 

Effect of other variables. Crossplots of interval and censored residuals 
against stress and other variables are difficult to interpret. It is best to fit re- 
lationships including such variables to the data to assess their effect. Sec- 
tion 4.3 presents fitting of such multivariable relationships. 

4.2. Other Models with a Single Stress 

Purpose. This section extends the methods for the simple model to other 
models with a single stress variable. In particular, this section presents ML 
fitting of other models to all types of data, and it presents methods for assess- 
ing the model and data. A variety of such models appear in Sections 11, 12, 
and 14 of Chapter 2. This section illustrates such fitting with two examples. 
The first employs a model with a fatigue limit, and the second employs a 
model with a log standard deviation that depends on the stress. 
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Fatigue or Endurance Limit Model 

Overview. The following paragraphs present ML fitting of the fatigue 
(endurance) limit model of Section 11 of Chapter 2. The topics below in- 
clude the example data, the model, computer output on the fit, assessments 
of the model and data, and extensions of the model. 

Insulation example. Data that illustrate such fitting come from a 
voltage-endurance test of electrical insulation. The purpose of fitting such a 
model was to assess whether the insulation has an endurance limit (a voltage 
stress above zero). If so, the simple power-lognormal model, typically used 
for such insulation, would be inadequate for extrapolation to the design 
stress. Also, the design voltage stress might be chosen below the endurance 
limit to eliminate insulation failure. The data contain 110 specimens, of 
which 92 are failures, and the rest are censored on the right. 

Model. The assumed model has a lognormal life distribution. The 
endurance-limit relationship for median life has the form 

(4.2.1) 

here V is the voltage stress, and 73 is the endurance limit, which is a voltage 
stress. They satisfy V>73 >O. This relationship has three coefficients; more- 
over, the relationship is nonlinear in them. Figure 11.1 of Chapter 2 depicts 
an endurance limit relationship. This is the (inverse) power relationship if 73 

= 0. The simple (transformed power) relationship has two coefficients and is 
linear in them. The relationship above is not a standard one in any package 
in Section 1. It must be programmed into a package. 

Model inadequacies. The preceding relationship assumes that there is a 
sharp endurance limit 73 which is the same for all specimens. Other models 
in Section 11 of Chapter 2 contain a strength distribution for the endurance 
limit. Such models seem more plausible; moreover, such a strength distribu- 
tion is observed in steels in fatigue tests. The sharp endurance limit may 
cause problems in fitting the relationship when the test stresses are near the 
endurance limit, as in Problem 5.14. In the insulation problem, the test 
stresses are well above the endurance limit, and there are no problems in 
fitting. In this example, the relationship appears adequate. 

Output. Figure 4.2 shows STATPAC output on the ML fit of the model. 
The ML estimate of the endurance limit is C3 =: 73 volts/mil. This is close 
enough to the design stress to interest the designers. Moreover, the approxi- 
mate 95% confidence limits 36 and 110 do not enclose zero. This is convinc- 
ing evidence of a positive endurance limit, provided that the model and data 
are valid. Even if the relationship is not valid outside the test stress range 
(116,207), this is convincing evidence that the true relationship is not an 
inverse power law. The correlation coefficient for C2 and C3 is -0.9841222. 
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M A X I M U M  LOO LIKELIHOOD -674.97635 

* I-ISHER MATRIX 

COEFFICIENTS C I c 2  c 3  c 4  

2 I n. 1343242 
C 2 5.298513 223.82n6 
2 3 0.3771258 16.0409 I I . I53382 
c 4 -n.9484622 -63.77421 -5.197079 229 8.933 

* MAXIMUM LIKELIHotD ESTIMATES FOR WDEL COEFFICIENTS 
I i ITH APPROXIMATt 95% CONFIDENCE LIMITS 

COEFFICIENTS ESTIMATE LOWER L I M I T  UPPER L IMIT STANDARD ERROH 

C I 258.1657 2 34.8524 2 R I  .47R9 I I .  89451 
3.611426 9.408574 I .47R864 C 2 6.510000 

C 3 73.24nno 36.78 775 109.6923 18.59809 
C 4 (T 0.2920000 0.2 499 6 3 I n.334036~ 0.21 44737E--01 

* COVARIANCE MATRIX 

COEFFICIENTS C I c 2  c 3  c 4  

c 2 -1n.3rw33 2. I 137040 

C 4 -n.815nIn6E-n2 -n.4772017E-n2 0.7111651E-01 0.4599897E-03 

C I 141.4793 

C 3 YI.08243 -21.06735 345.8889 

CORRELATION MATHIX 

COtkCICItNTS C I c 2  c 3  c 4  

L' I I .000000 
C 2 -0.5860783 I. D M 0 0 0  
c 3 0 . 4 3 ~ ~ 5 9 9  -n.w41222 I . n m x m  
C 4 -0.3194794E-nl -n. 1504778 n. 1782905 I .  nmno 

Figure 4.2. Output on ML fit of an endurancelimit relationship. 

The value is close to -1, but not close enough to cause concern that the 
fitting is not numerically accurate enough. The numerical fitting of another 
form of the relationship may be more accurate. 

LR test. An alternate test for r3 = 0 is the likelihood ratio test. Here let 
f^  dEnote the maximum log likelihood with the endurance-limit model, and 
let f' denote the maximum log likelihood^ with the power-lognormal model 
(r3 = 0). The LR test statistic is T = 2(E-P').  If T > ?(l-a;l), then the 
endurance limit significantly differs from zero at the l O k %  level. Otherwise, 
the estimate C3 is consistent with r3 = 0. For the insulation data, T = 
2[ -674.976- (-677.109)] = 4.266 > 3.841 = J(O.95;l). Thus the estimate 
C3 is significantly different from zero at the 5% level. 

Assess relationship. The adequacy of the endurance-limit relationship 
can be assessed two ways. First, fit other relationships. Usually one tries a 
more general relationship, say, with four coefficients. The LR test can be 
used to assess if the general relationship fits significantly better. Also, one 
can fit an entirely different relationship, say, a quadratic one in log(V). If 
used for extrapolation, the relationship should be physically plausible. A 
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Figure 43. Normal plot of the log residuals. 

quadratic relationship may not be plausible outside the test range. Second, 
crossplot the residuals against stress, and examine the plot. 

Constant scale parameter. The assumption of a constant scale parame- 
ter can be assessed with the methods of Section 3. 

Assess distribution. Adequacy of the assumed distribution is assessed as 
described in Section3. In particular, fit the log gamma distribution, and 
make a probability plot of the residuals. Figure 4.3 is a normal probability 
plot of the log residuals of the insulation. The plot is reasonably straight. 

Other variables. The effect of other variables is assessed as described in 
Section 3. In particular, one can fit relationships with other variables, as 
described in Section 4.3, or one can plot the residuals against such variables. 
For example, the insulation specimens were made on the first, second, and 
third shifts. A probability plot of the log residuals from each shift was made, 
and the plots were compared. They all have comparable medians (near zero) 
and comparable standard deviations. Thus shift does not appear to 
significantly affect insulation life. 

Model extensions. The model above can be made more realistic. For 
example, the model could contain a distribution for the endurance limit as 
described in Section 11 of Chapter 2. Also, the standard deviation of log life 
could be a function of stress. This effect is large in fatigue of steels and bear- 
ings, but it is smaller in dielectrics. 

Optimum plans. Test plans for endurance-limit models have not been 
investigated. Thus there is no guidance on the choice of the test stress levels 
and the number of specimens at each. 
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Spread Depends on Stress 

Overview. The following paragraphs present ML fitting of the log linear 
relationship for a scale parameter. In some applications, the usual assump- 
tion of a constant scale parameter is not adequate. This is particularly true 
for metal fatigue. Such relationships appear in Section 14 of Chapter 2. The 
topics below include the example data, the model, computer output on the 
fit, and assessments of the model and data. 

Fatigue example. Low cycle fatigue data from a strain-controlled test ap- 
pear in Table 4.1. For each of 26 specimens, the data consist of the pseudo 
stress (S, the specimen’s Young’s modulus times its strain), the number of 
test CYCLES, and the failure code (1 = failed, 2 = runout). In the analyses, 
failures in the uniform cross section of a specimen are treated as failures. 
Runouts and failures in the specimen radius, weld, or threads are treated as 
runouts (censored). Thus the uniform cross section of the specimen is treat- 
ed as the actual specimen in the analyses. Other definitions of failure and 
specimen could also be used. The purpose of the analyses is to obtain fatigue 
curves for use by designers. In applications of the alloy, designers typically 
use the “-W’ curve, roughly the 0.1% failure curve. The data appear in 
Nelson (1984). 

Model. The assumed model has a lognormal life distribution. The fitted 
relationship for the mean log life is quadratic in LPS = log@); namely, 

Table 4.1. Fatigue Data (l.= Failure, 2.= Runout) 

CYCLES 

57 3 3 . 0 0  

i3944.n 

15h 16.0 

5672 3 .O 

13n76.0 

i 5 7 6 ~ n .  

4 3 3 3 I .O 

I R Oh 7. I1 

Y750.00 

156725. 

I12YhH. 

I 3 H I I 4 

122372. 

CODE 

1.  

1 .  

1 .  

1 .  

1 .  

1 .  

1 .  

1. 

I .  

1 .  

2. 

7. 

?. 

? I  300.@ 

h 7 0 5 . 0 0  

112002. 

i it365.n 

1 3 1 8 1 . 0  

A4H9.0C 

1 2 4 3 4 . 0  

I 3 0  jri. n 

57913.0 

121n75. 

200027. 

2 1  16?Y. 

I5500U. 

(4.2.2) 
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1 .  

1 .  
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1. 

1 .  

?. 
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1 .  

1 .  

1 .  
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hereA is the average log@) over the test specimens. The log standard devia- 
tion 0 is assumed to be a log linear function of stress; that is, 

In[+)] =r4 t 75 (LPS -A) .  (4.2.3) 

Output. Figure 4.4 shows STATPAC output on the ML fit of the model. 
The approximate normal 95% confidence limits for are -8.89 and - 2.06. 
These limits do not enclose 0. Thus there is evidence that 0 depends on 
stress. Figure 4.5 displays the data and fitted percentile curves. Runouts are 
denoted by A; B denotes a runout and a failure; D denotes a runout and 
three failures. 

Other relationships. Various other relationships were fitted to the data: 

Model: 1 2 3 4 
4s):  linear quadratic linear quadratic 
In[a(z)]: constant constant linear linear 
max f -252.64 - 250.55 - 250.70 - 246.73 

Likelihood ratio tests (Chapter 9) were used to compare the various models. 
Model 2 is significantly better than model 1, and model 4 is significantly 
better than model 3; both results indicate the quadratic term improves the fit. 
Model 3 is significantly better that model 1, and model 4 is significantly 
better than model 2; both results indicate that the log-linear 0 is better than 
the constant c. Thus model 4 was used. 

Unitized residuals, Model 4 has a c that depends on stress. Thus the 
usual log residuals about the fitted equation do not have a common standard 
deviation. The following generalized definition of a residual is needed. We 
assume the distribution has a location parameter Ax) and a scale parameter 
O(X)  which are functions of stress x (and possibly other variables). Let yi 
denote the (log) life of specimen i, & the estimate of /.(xi) at its stress level xi,  

and $i = exp(G4 tqg;). The unitized (log) residual of specimen i is 

(4.2.4) ri = (yi -pi)/;;. 

Such residuals are, roughly speaking, a sample from the assumed distribution 
with p = 0 and u = 1, if the assumed distribution is correct. Such a residual 
is censored ify; is censored. 

Probability plot. Figure 4.6 is a normal plot of the unitized residuals 
(some of which are censored) from the example. The plot is curved in the 
middle of the distribution, and there is a high outlier. Thus the distribution 
appears inadequate, or the relationships are inadequate. Note that the lower 
tail of the plot is relatively straight. That is, the lognormal distribution ade- 
quately fits the lower tail. Hahn, Morgan, and Nelson (1985) suggest and 
explain how to censor observations in the upper tail to make the model fit 

A 
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Output on ML fit of the fatigue model. 
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Figure 4.7. Residuals versus pseudo Figure 4.8. Residuals versus blends. 
stress. 

better in the lower tail. In this application, only the lower tail is of interest; 
so their suggestion is useful. An interval observation yields an interval resid- 
ual (two endpoints). Interval residuals can be plotted as if observed at their 
midpoints or plotted with the method of Pet0 (1973) and Turnbull (1976). 

Crossplots. Crossplots of unitized residuals against stress or other vari- 
ables can yield useful information. Figure 4.7 shows these residuals plotted 
against pseudo stress. Censored residuals are plotted as A’s. B denotes an 
observed and a censored residual in that rectangle on the plot. If observed, 
the censored (unitized) residuals would be above their points in Figure 4.7. 
The crossplot shows no unusual features; thus the model and data appear sat- 
isfactory. Figure 4.8 shows these residuals plotted against blend. The metal 
is made in batches called blends. In the figure, 10 denotes a runout, and 11 
denotes a runout and a failure. The plot suggests that blend 185 has a short- 
er fatigue life. The reason should be sought if it is statistically significantly 
shorter. So a formal comparison of the blends is needed first. This can be 
done by fitting a model that includes indicator variables for blends. Nelson 
(1984) plots these residuals against other variables. 

Optimum plans. Test plans for models where 0 is a function of stress 
were investigated by Meeter and Meeker (1989). They provide guidance on 
the choice of the test stress levels and the number of specimens at each. 

43.  Multivariable Relationships 

Introduction. This section presents ML fitting of models with multivari- 
able relationships for the location and scale parameters of the life distribu- 
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tion. This section also includes methods for assessing the model and data. 
Such fitting and assessments extend those in preceding sections to multivari- 
able relationships. Thus preceding sections of this chapter are needed back- 
ground. Also needed are Sections 13 and 14 of Chapter 2 on multivariable 
relationships. This section first describes the example data and model. Then 
it presents the ML output and discusses how to assess the model and data. 
These methods extend, as described in previous sections, to all types of data. 
The example presents right censored data, the most common type. 

Two insulations. The example data come from two similar insulations, 
designated as 0 and 1. The data are from a voltage accelerated test with 
specimens of differing insulation thickness. The purpose of the analysis is to 
compare the insulations with respect to their dependence of life on voltage 
and thickness. All of the 106 specimens of insulation 0 are failed, and 92 of 
the 99 specimens of insulation 1 are failed. 

Model. The fitted model has a lognormal distribution for life in hours. 
The mean log life is a function of the insulation SOURCE (the 0-1  vari- 
able), LOGVPM (the log of voltage stress - volts per mm), and THICK (in- 
sulation thickness in cm); namely, 

p = yl + r2SOURCE + ..I~LOGVPM + 7,SOURCE x L O G W M  

+75 THICK + 76SOURCE X THICK. (4.3.1) 

This relationship uses the indicator variable SOURCE and its cross terms to 
compare the two insulations. Thus this relationship equivalent to two sepa- 
rate relationships for the two insulations; namely, 

(4.3.2) = 71 + 73LOGVPM +  STH HICK, 

= (71 +72) + ( 7 3  +74)LOGwM + (75 +76)THIcK. (4.3.3) 

Thus for an insulation, median life is an inverse power function of voltage 
stress and an exponential function of thickness. (4.3.3) shows that 72 is the 
difference between the intercepts of the two insulations. v4 is the difference 
between the powers in the power laws of the insulations. 7 6  is the difference 
between the thickness coefficients of the insulations. If an estimate of any of 
these three coefficients differs statistically significantly from zero, then the 
two insulations differ convincingly in that respect. 

The standard deviation of log life is assumed to depend on the insulation. 
The assumed relationship is 

In(a) = r7 + 7aSOURCE. 

The use of the indicator variable SOURCE is equivalent to 

0 0  = exp(77) and 01 = exp(77+7a)* 

(4.3.4) 

(4.3.5) 

The model fitting program STATPAC “centers” all variables (including 
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SOURCE and the cross terms) in the relationships above. That is, the sam- 
ple average of each variable is subtracted from each variable value before the 
variable is used in an equation. Thus the meaning and value of some 
coefficients in the output differs from that in the equations above. However, 
the key coefficients 72, 74, 76, and 7 8  are the same. Moreover, the relation- 
ships are the same but differently parameterized. It is better if a package lets 
the user decide how the relationship is parameterized. STATPAC uses its 
parameterization to make the iterative fitting converge more surely and rap- 
idly and to insure more accurate calculations. When a ML package does not 
center each independent variable, the user should to assure accurate fitting. 

More general models could use more general distributions and relation- 
ships. For example, the log gamma distribution may be useful when one 
needs to decide on the form of the distribution. Also, u could depend on 
LOGI/PM and THICK. 

Output. STATPAC output from fitting the model appears in Figure 4.9. 
Line 1 shows the variables in the relationship for p ,  where S R C L W  = 
SOURCExLOGWM and SCRBLD = SOURCExTHICK. Line 2 shows the 
variable SOURCE in the In linear relationship for u. Line 3 shows a max- 
imum log likelihood of - 1759.246; this can be used in various LR tests for 
the model. Line4 shows the coefficient estimates and approximate 95% 
confidence limits. Conclusions are: 

The ML estimate of y2, the difference in intercepts, is C2 = 0.17, and the 
confidence limits are (-8.51,8.86). The interval encloses zero; thus there 
is no convincing difference in the intercepts of the two insulations. 
The ML estimate of 74 ,  the difference in powers, is C4 = 0.01, and the 
confidence limits are (-3.58,3.61). The interval encloses zero; thus there 
is no convincing difference in the powers. 
The ML estimate of 76, the difference in thickness coefficients is C6 = 

-0.10, and the confidence limits are (-4.98,4.78). The interval encloses 
zero; thus there is no convincing difference in the thickness coefficients. 

Each of these three estimates is very close to zero compared to the width of 
its confidence interval. 

The ML estimate of r8, the difference of the In standard deviations, is C8 
= 0.41, and the confidence limits are (0.21,0.60). The interval does not 
enclose zero; thus there is a convincing difference in the 0’s. 

In summary, only the insulation u’s differ convincingly. 

Line 6 displays the form of the fitted relationship for p ,  called CENTER 
here. Note that all variables, including cross terms, are centered. Line 7 dis- 
plays the relationship for In(u), called SPREAD here. 

Adequate 0 relationship. Most models assume that the scale parameter 
(u here) is constant. Then one tests whether it is constant. In models with a 
relationship for 0, assess the fit of the ~7 relationship as follows: 

Crossplot the unitized residuals against each variable in the relationship. 
Censored residuals should be identified in the plot. If there are many cen- 
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DISTRIBUTION LOGNORMAL(H0URS) 

1 RELATION CENTER lSTORDER(S0URCE LOGVPM SRCLVM THICK SCRBLD) 

2RELATION SPREAD lSTORDER(S0URCE) 

CASES 
198 WITH OBSERVED VALUES. 
7 WITH VALUES CENSORED ON THE RIGHT. - -_- 

205 IN ALL 

3MAXIMUM LOG LIKELIHOOD = -1759.2480 

* MAXIMUM LIKELIHOOD ESTIMATES FOR MODEL COEFFICIENTS 
WITH APPROXIMATE 95% CONFIDENCE LIMITS 

PARAMETERS ESTIMATE LOWER LIMIT UPPER LIMIT STANDARD ERROR 

4 c00001 
coooo2 
COO003 
COO004 
COO005 
COO006 
COO007 
coooo8 

3.404593 
0.1765872 
-9.917424 
0.1156985E 
-2.220991 

-0.1013898 
-1.164480 
0.4115606 

3.359651 
-8.510413 
-11.68295 

-01 -3.588896 
-4.203069 
-4.984599 
-1.263478 
0,2131610 

* CORRELATION MATRIX 
PARAMETERS COO001 coooo2 

3.449536 
8.863587 
-8.171894 
3.612035 

. O .  2389132 
4.781819 
-1.065483 
0.6099603 

COO003 

0.229299lE-01 
4.432143 
0.8905768 
1.836972 
1.011264 
2.491433 

0.5050898E-01 
0.1012243 

COO004 

c00001 
coooo2 
COO003 

5 COO004 
COO005 
COO006 
COO007 
coooo8 

1.0000000 
0.0163908 1.0000000 
0.0005551 0.4917794 1.0000000 
-0.0124775 -0.9947363 -0.5000622 1.0000000 
0.0002882 0.2868598 0.5136944 -0,2552890 
-0.0045986 -0.6058051 -0.2153168 0.5215846 
0.0196192 -0.0374700 -0.0253823 0.0366767 
0.0197336 -0.0156666 0.0227263 0.0144723 

PARAMETERS COO005 COO006 COO007 coooo8 

COO005 1.0000000 
COO006 -0.4084182 1.0000000 
COO007 -0.0133711 0.0291553 1.0000000 
COO008 0.0120174 0.0199704 0.0435017 1.0000000 

* MAXIMUM LIKELIHOOD ESTIMATE OF THE FITTED EQUATION 
6CENTER 

3.404593 t (SOURCE - 0.4829268 1 * ( 0.1765872 ) 

t (LOGVPM - 2.248905. * ( -9.917424 ) 

t (SRCLVM - 1.086457 ) * ( 0.1156985E-01) 

+ (THICK - 0,2128927 * ( -2.220991 

+ fSCRBLD - 0.1025707 ) * f -0.1013898 

7SPREAD Inc 
-1.164480 + (SOURCE - 0,4829268 ) * ( 0.4115606 ) 

Figure 4.9. STATPAC fit to two insulations. 
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sored residuals, they can be replaced by their conditional expected values, 
as described by Lawless (1982, p. 281). If the spread of the unitized residu- 
als is not constant in a crossplot, then the effect of that variable is not ade- 
quately modeled. 
To help detect nonconstant u and see how it depends on a variable, one 
can extend the scatterplot smoothing of residuals of Chambers and others 
(1983, Sect. 4.7) to censored residuals. 
Divide the residuals into groups according to a variable, for example, low, 
middle, and high values of the variable. Make a hazard plot of the unitized 
residuals for each group and compare their slopes. If the scale parameter 
estimate (slope) for any plot is not near 1, then the effect of that variable 
on o is not adequately modeled. 
Fit to the data a more general relationship that includes the original rela- 
tionship for 0, say, one that includes quadratic or cross terms. If some 
added coefficients are statistically significantly different from zero, then 
the original relationship is not adequate. One can then add those 
coefficients (terms) to the relationship. 
Use the LR test below for a more general relationship. 

If the assumed relationship is not adequate, then these methods usually sug- 
gest how to improve it. Note that an inadequate relationship for the location 
parameter (p  here) can distort the fit  of the relationship for u. 

Adequate p relationship. For models with a multivariable relationship 
for the location parameter p ,  one needs to assess the fit of the relationship. 
Methods for this appear in preceding sections. They include: 

Crossplot the residuals against each variable in the relationship. Plot cen- 
sored residuals as described above. If such a plot is not a horizontal cloud 
of points, then the relationship needs to be improved with respect to that 
variable as suggested by the plot. 
Fit a more general relationship that includes the original relationship, say, 
one with quadratic or cross terms. If some added coefficients are statisti- 
cally significantly different from zero, then the original relationship is not 
adequate. Then add those coefficients (terms) to the relationship. 

If the assumed relationship for p is not adequate, then these methods usually 
suggest how to improve it. 

LR test for a relationship. A LR test can be used to compare the fit of a 
more general relationship and of the assumed one (for a scale or location pa- 
rameter). The assumed relationship must be a special case of the general 
one. Usually the assumed relationship is the general one with certain 
coefficients equal to zero. Suppose that the number of distinct estimated 
coefficients in the general relationship is J ,  and the number in the assumed 
relationship is <. Also, denote t,he maximum log likelihoods with the two re- 
lationshipsAbyA& (general) a:id &’ (assumed). Calculate the LR test statistic 
as T = 2(&-&’).  If the true values of the extra (J-J’ )  coefficients in the 
general relationship are all zero, then the distribution of T is approximately 
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? with (J-J’) degrees of freedom. If any true values of those coefficients 
differ from zero, then T tends to have larger values. Thus the LR test is: 

If T>?(l-a;J-J’), then the general relationship fits significantly better 

If T I g ( l - a ; J - J ’ ) ,  then the general relationship does not fit 

If the general relationship fits significantly better, then one should determine 
which extra coefficients differ from zero. This LR test corresponds to the in- 
cremental F test in least-quares regression theory; there the test usually ap- 
pears in an analysis-of-variance table. The test can also be simultaneously 
applied to location and scale parameter relationships, as shown next. 

Example. An example of this test comes from the data on two insula- 
tions. Another model fitted to the data involved (1) a linear relationship in 
LOGWM and THICK for p and (2) a constant u. That is, (4.3.2) was fitted 
to the pooled data. This model has J’ = 4 estimated coefficients (or parame- 
ters) - rl, r3, 75, and u, The maximum log likelihood is E ‘̂ = -1774.986. 
The more general model above has J = 8 estimated coefficients, and 2 = 

- 1759.246. The LR statistic is T = 2[ - 1759.246 - (-  1774.986)] = 31.48 and 
has (8-4) = 4 degrees of freedom. Since T = 31.48 > 18.47 = 2(0.999;4), 
the more general model fits very highly significantly better. The reason for 
this better fit can be seen from previous analyses; namely, the two u’s differ. 

Stepwise fitting. Another means of arriving at an adequate model is step- 
wise fitting. Some packages listed in Section 1 do such fitting to censored 
data, employing the LR test above. Then fit a very general model with many 
terms. And the stepwise procedure selects the significant ones. The discus- 
sion of stepwise fitting in Chapter 4 is useful background. Peduzzi, Holford, 
and Hardy (1980) discuss stepwise procedures for ML fitting. 

at the loOOr% level. Such 2 percentiles appear is Appendix A5. 

significantly better. 

Assess the distribution. Adequacy of the assumed distribution can be as- 
sessed as described in Section 3.4. For example, a normal plot of the pooled 
unitized residuals of the two insulations appears in Figure 4.10. The plot is 
quite straight except for the two lowest points, possible outliers. They should 
be investigated to seek a cause. Otherwise, the lognormal distribution ap- 
pears adequate. Also, the log gamma distribution can be fitted to assess 
whether the lognormal or Weibull distribution fits better. 

Assess the data. The data can be assessed as described in Sect ion35 
The chief methods are a probability plot and and crossplots of the residuals. 

Effect of other variables. The effect of other variables can be assessed as 
in Section 3.6. The chief methods are crossplots of residuals and fitting of 
models with the other variables. Figures 4.7 and 4.8 are such crossplots. To 
help detect a relationship in a crossplot like Figure4.7, one can extend to 
censored data the calculation and plot of the locally weighted regression scat- 
terplot smoothing of Chambers and others (1983, Sec. 4.6). 
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RESIDU CUMULATIVE PROBABILITY 
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Figure 4.10. Normal plot of unitized residuals for two insulations. 

Applications. Multivariable relationships have been fitted to censored 
life data on various products. Examples include 

Sidik and others (1980) on battery cells, 
Zelen (1959) on capacitors, 
Montanari and Cacciari (1984) on electrical insulation. 

The bibliography by Meeker (1980) contains multivariable applications. 

Cox model. The Cox model, described in Chapter 2, usually involves a 
multivariable relationship. The model is nonparametric in the sense that no 
form of the life distribution is assumed. Engineering applications generally 
employ parametric models. 

4.4. Some Coefficients Specified 

Purpose. This section describes a method to estimate a multivariable re- 
lationship for life when the values of some coefficients are specified. There 
are two main reasons to specify the value of a coefficient. First, sometimes 
data are collected at just one level of the corresponding variable. The 
compressor oil test of Section 2.3 is an example; data were collected at just 
one test temperature. Then the coefficient for such a variable cannot be es- 
timated from the data, and it is otherwise not possible to extrapolate to other 
levels of that variable. Indeed, many of the tests of MIL-STD-883 involve a 
single level of a accelerating stress. By assuming or specifying a value for 
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such a coefficient, one can extrapolate as shown below. Second, if the data 
likely yield an inaccurate estimate of a coefficient, a specified value can yield 
more accurate results. 

Coefficient value. The specified value of a coefficient may be 
a An estimate based on data from a similar product. 

A handbook value (e.g., from MIL-HDBK-217). 
a A traditional value (life doubles with each 10°C decrease in temperature or 

An educated guess. 

method. Assume that the typical (log) life is a linear function 

the activation energy is 1.0 eV). 

Model. The following simple and concrete relationship illustrates the 

&1&2) = 7 0  71x1 72x2 (4.4.1) 

of two variables x1 and x2. Suppose that the specified value 7; is assigned to 
72; for most models, this value is negative. Then the coefficients 70 and 71 
are to be estimated from data. The method extends to nonlinear relation- 
ships, any number of variables, and any number of specified coefficients. 
Choose a reference value x i  of variable x2. x i  may be the design value or 
some other value including zero. The relationship can be rewritten as 

cl(xl&2z) = 7; 71x1 7;(x2 - x i ) *  (4.4.2) 

Here 7; = r0 t 7;~;. Then the relationship between typical (log) life andxl 
whenx2 = x i  (the reference value) is 

p’(x1) = 7; 71x1. (4.4.3) 

This relationship is fitted to transformed data as follows. 

Transformed data. Suppose that specimen i has variable values xlj and 
xz. Also, suppose its observed (or censored) log life is yi.  Calculate the 
transfoniied log life 

y j  = yj - 7;(Xz - x i ) .  (4.4.4) 

This is the log life that specimen i would have had if run at x z  = x i .  Such a 
transformed life may be observed or censored on the right or left. For inter- 
val data, calculate transformed lower and upper endpoints. Here Kj = 
exp[ -7;(xz - x i ) ]  is an acceleratiori factor that converts life ti = expbi) at 
stress levelxX to life ti  = expCy;) at stress levelxi. That is, ti  = Kiti. 

Data fitting. Then fit  the relationship (4.4.3) to the transformed data 
(4.4.4) by graphical or numerical means. This yields estimates and 
confidence limits for the unspecified coefficients and other quantities. For 
censored (and interval) data, use maximum likelihood fitting. For complete 
data, use ML or least squares fitting. The estimates are unbiased and the 
confidence limits are correct only if the specified coefficient values are 
correct. Thus the uncertainties in estimates are greater than such confidence 
limits indicate. Redo the fitting with other specified coefficient values to 
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assess their effect on results. Also, one can assess the fit of the model and 
the residuals as described in Section 3. 

5. MAXIMUM LIKELIHOOD CALCULATIONS 

This advanced section presents maximum likelihood (ML) theory and 
calculations for fitting a model to observed, censored, and interval data. 
These calculations yield ML estimates and approximate confidence intervals. 
In principle the ML method is simple and consists of three steps: 

1. f .  Write the sample log likelihood f (Section 5.3). It is (i) a function of 
the sample data (Section5.1) and the form of the life data (observed, 
censored, or interval) and (ii) a function of the model (Section 5.2) and 
i tsJ  parameters and coefficients 71. 
af/ari. From the sample likelihood f or from the likelihood equations 
X / % j  = 0 (5.12), calculate the ML estimates $, of the J model 
coefficients rj (Section 5.4). 

3. #f/hjiPyj*. From the JXT matrix (5.13) of second partial derivatives of 
f with respect to the model coefficients rj, calculate approximate 
confidence limits for model coefficients and other quantities 
(Sections 5.4-5.7). 

2. 

The presentation covers 
The form of the data, 
The model, consisting of a statistical distribution for the dependent vari- 
able and relationships for the distribution parameters in terms of the in- 
dependent variables and unknown model coefficients, 

a The sample log likelihood, 
Maximum likelihood estimates of model coefficients, 
Fisher and covariance matrices of the estimates, 
Estimate of a function of the coefficients and its variance, 
Approximate normal confidence intervals, 
Approximate LR confidence intervals. 

These are illustrated with the Arrhenius-lognormal model applied to the 
Class-B insulation data. Readers need to know the basics of matrix algebra 
and partial differentiation. Further theory appears in Chapters 6 (true co- 
variance matrix) and 9 (LR tests). Results and methods are presented 
without regularity conditions, proofs, and motivation, which are given by 
Wilks (1962), Rao (1973), Hoadley (1971), Rao (1987), and Nelson (1982). 

5.1. Data 

This section describes the general form of data from an accelerated test, 

Data matrix. The data are assumed to comprise a data matrix. Each of 

particularly, the data matrix and the censoring. 
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the n sample specimens has a value of a dependent variable y (usually life or 
log life) and a value for each of the J independent variables xl, . . * , xJ. For 
specimen i, these are denoted by (yi, xli ,  . . - , xJ;), called a data case, where 
i = 1,2, , i t .  The independent variables may be numerical or indicator 
variables. For the calculations, the data values of these variables are regard- 
ed as given and fixed. Also, the data include the censoring information. 

Censoring. For interval data, the dependent variable consists of two 
values y; and y;', the lower and upper limits of the interval. Also, for cen- 
sored or interval data, the form of the data is usually indicated by an addi- 
tional variable. For example, STATPAC of Nelson and others (1983) em- 
ploys a variable ii that takes on the value 1 for an exact observed failure time, 
2 for a right censored time, 4 for a left censored time, and 6 for an interval. 

Example. The Arrhenius-lognormal model is used for the Class-B insula- 
tion data (Table 4.1 of Chapter 3). The data on specimen i consist of its log 
time yi, its reciprocal absolute temperature xi = lOOO/T;, and the form 11;  

(censoring) of its data. In this application, times are either observed or cen- 
sored on the right. 

5.2. The Model 

A model fitted to data consists of a statistical distribution for the depen- 
dent variable (usually life) and relationships for the distribution parameters. 
The relationships express the distribution parameters as functions of the in- 
dependent variables and unknown model coefficients. These are described 
next in general terms. 

The statistical distribution. The dependent variable y is assumed to have 
a specified continuous cumulative distribution function 

p(y;el, ' * ' , eQ) ;  (5.1) 

( 5 4  

here el, * * * ,Be are the Q distribution parameters. The probability density is 

f(y ;el, ' ' ' , e Q )  dF(y  ;el, * * ,eQ)/@* 
More generally, the form of distribution can differ from specimen to spcci- 
men and would be denoted Fi or fi. This generality is not needed here and is 
omitted. It is needed in Chapter 10 for different step stress patterns. 

Example. For the Arrhenius-lognormal model, the cumulative distribu- 
tion fory, the (base 10) log of life, is 

F(Y ; P , 4  = @[(Y -P)/.I; 

here @[ J is the standard normal cumulative distribution function, and p and ~7 

are the Q =2 distribution parameters. The probability density is 

f (Y ; P , 4  = ( 1 / 4  d[(Y - P L ) / 4  

here 4[z] = (2?r)-'/'exp( - 2 * / 2 )  is the standard normal probability density. 
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Relationships for the distribution parameters. Each distribution param- 
eter is expressed as an assumed function of the J independent variables 
xl, * * ,XJ and the P distinct model coefficients rl, - - - ,rP; that is, 

81 = Bl(X1, * ’ * ,xJ;71, ’ * * 9 7 P ) ,  

(5.3) 

0Q = OQ(x1, . ’ ’  ,xJ;71, * ‘ *  97P). 

Usually a particular coefficient appears in only one of the relationships. The 
notation in (5.3) does not mean that each coefficient appears in each rela- 
tionship but only that a coefficient could do so. The functional form of each 
relationship is specified (assumed), but the values of the model coefficients 
are unknown. They are estimated from the data as described below. 

Example. For the Arrhenius-lognormal model, the relationships are 

p = 71+72& u = 73, 

where x is the reciprocal absolute temperature. This agrees with earlier nota- 
tion. The terms “parameter” and “coefficient” are sometimes equivalent 
when a distribution parameter is a constant, e.g., a=7,. Here P =3. 

Other parameterizations. One can reparameterize the relationships 
(5.3). This is done for various reasons. For example, sometimes one uses 
u = exp(7j). This form of u allows 7; to range from -co to +co while u 
remains positive; this allows unconstrained optimization and avoids negative 
trial values of as a program searches for the ML estimate. Also, the sam- 
pling distribution of the ML estimate of 74 may be closer to normal than that 
for 73. So the approximate normal confidence limits (Section5.7) for 7; 
yield positive limits for u that may be more accurate. The parameter u could 
also be modeled as a function ofx, for example, u = exp(73 +74x). 

Natation. For specimen i, the values of the distribution parameters are 

01i = h(xli, ‘ * ‘ ,xJi;%, ’ ’ * Y ~ P ) ,  

(5.4) 

SQi = eQ(xli, * * * ,xJi;71, * ’ ’ ,rP)* 

The distribution parameters for specimen i are denoted simply by el,, 1 * . ,dQj. 
Their dependence on xli, - * ,xJi and 71, * ,7p is thus not explicit in the 
notation but should be understood. For the Arrhenius-lognormal model, 

pi = 71 + 7 2 ~ ; ,  a, = u, for i = 1, * , / I .  

For example, consider the Class-B insulation data of Section 2, appearing in 
Table 4.1 of Chapter 3. Specimen 25 at 190°C is a failure at 1440 hours, and 
~ 2 5  = 1000/(190+273.16) = 2.1591. Its log mean and standard deviation are 
p25 = 71 +7,2.1591 and uu = u. 
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53. Likelihood Function 

The ML method for estimating the model coefficients is based on the 
sample (log) likelihood of a set of data. This section describes in detail its 
calculation. Its use is described below. 

Specimen likelihood. The likelihood for a specimen (or data case) is, 
loosely speaking, the probability of its observed value of the dependent vari- 
able (usually life). The dependent (or response) variable can be observed to 
have an exact value (failure age) or be censored and in an interval. In this 
context, left and right censored data are regarded as interval data. The speci- 
men likelihood for each type of data follows. 

Observed. Suppose specimen i has an observed valuey; of the dependent 
variable. Then its likelihood is 

Lj = f(yj;dlj,  ‘ * .  ,dQj) ;  (5 .5)  

heref( ) is the probability density of the assumed distribution, and Bli, . . ,dQ; 
are the specimen’s parameter values. This L; is the “probability” of an 
observed failure at y;. This L; is a function of y;,xl;, . - * ,XJ ,  and 71, . . . , 7 p .  

Class-B specimen 25 failed at log ageyv = log(1440) =3.1584, and 

L Z S  = (&D)-’ exp[ -(3.1584-rl - 7 2 2 . 1 5 9 1 ) 2 / ( G ) ] .  

Right censored. Suppose specimen i has the dependent variable censored 
on the right aty;; that is, its value is abovey;. Its likelihood is 

L; = 1 - F(yj;elj, * * * ,dQi). (5.6) 

This L; is the probability that the specimen’s life is aboveyi. The distribution 
parameters O l j ,  . * ,dQ; contain XI;,  * . . ,xJ; and 71, * . * , 7 p .  For example, 
Class-B specimen 26 survived log  age^^^ = log(1680) =3.2253, and 

L26 = 1 - @[(3.2253-71-722.1591)/6]. 

Left censored. Suppose specimen i has the dependent variable censored 
on the left aty;; that is, its value is belowy;. Its likelihood is 

Lj = F(yj;Ol;, * . ’ ,OQj). (5.7) 

This L; is the probability that the specimen’s life is belowy;. As before, the 
parameters dl; ,  - . * ,OQ; containxl;, * * ,XJ; and 71, * * . , 7 p .  

Interval. Suppose specimen i has a dependent variable value that is 
known only to be in an interval with endpointsy;<yj. Then its likelihood is 

Lj = F(y];dli ,  * * * ,dQj) - F(y;;Ou, * ’ ’ ,OQj ) .  (5.8) 
This L; is the probability that the specimen’s life is in the interval (y;,y;). As 
before, the parameters Oli, * * * , d ~ i  contain xlir * * * ,XJ; and 71, * * , 7 p .  This 
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likelihood reduces to (5.7) if the lower endpoint is -w or zero and to (5.6) if 
the upper endpoint is +w. 

Sample likelihood. It is assumed that the n sample specimens have sta- 
tistically independent random variations in their values of the dependent 
variable. Or, briefly stated, their lifetimes are statistically independent. 
Then, by independence, the likelihood (probability) L of the sample outcome 
is the product of likelihoods (probabilities) of the specimens: 

L =LlxL2x'-.xLn. (5.9) 

This sample likelihood is the joint probability of the 11 dependent variable 
outcomes. For example, for the Class-B data, the sample likelihood is the 
product of it = 40 specimen likelihoods like the two above. 

Log likelihood. The log likelihood of specimen i is 

f; = In(Li). (5.10) 

Note that this is the base e log and should be called the In likelihood if con- 
sistent with notation in this book. The sample log likelihood is 

f = In(L) = f1 tf2 + * - +in. (5.11) 

In what follows, f and f; are regarded as functions of 71, * - ,rP: 
f = f ( r l ,  * * ,yp), J$ = &;(rl, 3 . ,rP), i = 1, * * ,ti. 

Figure 5.1 depicts a sample likelihood that is a function of two coefficients. 
Such likelihoods depend implicitly on the assumed statistical distribution, on 
the assumed relationships for the distribution parameters (which are func- 
tions of the independent variables and model coefficients), on the form of the 
data, and on xli ,  * ,qi. The Class-B sample log likelihood is a function of 
rl, r2, and 0 and is the sum of 40 specimen log likelihoods like the two above. 

Figure 5.1. Sample log likelihood function. 
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Example. For the Arrhenius-lognormal model and an observed log life 
yi, the specimen log likelihood is 

.fi(71,72,g) = -(1/2)ln(2r) -ln(a)- (1/2)[(yi-71 -72xi)/aI2- 

Here zi = (yi-rl -72xi)/a is a standardized deviate. For a specimen life 
censored on the right at log ageyi, the specimen log likelihood is 

f i  (71 972 = In{ 1 - @[(Yi -71 -72xi) /.I 1. 
The sample log likelihood is a function of rl, 72 ,  and o. Namely, 

f(7lr72,u) = zi -(1/2)ln(2r)-ln(a) -(l/z)[(yi -71 -72xi)/aI2 } 

+xi’ 1; 
here the first sum x,: runs over the observed failures, and the second sum 
zj’ runs over the nonfailures (censored on the right). The Class-B sample 
log likelihood has 17 such failure terms and 23 such survivor terms. 

Basic likelihoods. Table 5.1 displays the log likelihoods for a specimen 
for the basic distributions and the various types of data. The notation for the 
distributions and their parameters is that in Chapter 2. The tabled log likeli- 
hoods are expressed in terms of standardized deviates zi. Their use simplifies 
the formulas and the calculations. Each zi may contain the specimen’s 
xli, * . . , x ~  and the 71, * * ,rP. These log likelihoods for data cases are used 
to calculate the sample log likelihood in (5.11). 

Table 5.1. Log Likelihood fi for Types of Data and Basic Distributions 

Distribution 

Normal (Ha) 

Loglonormal (Ha) z, = [Iog(t,) -c(~]/a, 

Standardized Deviate Observed Value y, 

2, = (y, -u)/a, - (1/2)1n(27r) - ln(u,) - (1/2) 2,’ 

- (1/2)1n(27raaf) + ln[log(e)] - (1/2) zf - In(rl) 

Extr. Value ((,Q 2, = (y, -&)/4 -WJ-exp(zJ + ZI 

Weibull (a,@ 

Exponential (0) I, = t,/0, - In(0,) -2, 

z, = [In(t,) - In(%)]@, In(@,) - exp(z,) +z, - ln(fl) 

Distribution Value aboveyi Value belowyi Interval Value Between yi andy,! 

Normal (Ha) In[ 1 -@(zi)] In[@(zi)] ln[@(zi) -0(.7i)] 

Loglonormal @,a) In[l -@(zi)l ln[@(zi)l ln[@(zJ’) -0Czi)l 

Extr. Value ((J) -exp(zi) 

Weibull (a,@ - exp(zi) 

Exponential (@ -zi In[ 1 - exp( -zi)]  In[-( -z i )  - exp( -231 

In { 1 - exp [ - e ‘ 1 1 In exp[ - e Ii 1 - exp[ - e “ 1 } 
In 1 - exp[ - e‘ 1 1 In { exp[ - e zi 1 - exp[ - e Ii 1 1 
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Other likelihoods. The preceding formulas also yield the log likelihoods 
for any other distribution. The log likelihoods are then used as described 
below to f i t  the model to data. 

5.4. ML Estimates of Model Coefficients 
A 

Estimates. The maximum likelihood estimates ?I, * - * ,7p of 71, * * * ,7p 

are the coefficient values that maximize the sample log likelihood (5.11) over 
the allowed ranges of 71, - * . , 7 p .  Figure 5.1 depicts a sample log likelihood 
and the corresponding ML estimates. Thus, the estimates are the coefficient 
values that maximize the probability (likelihood) of the sample data. This in- 
tuitively plausible criterion for fitting yields estimators with good properties, 
as theory shows. Usually the estimates are obtained by iterative numerical 
optimization methods described by Nelson (1982, Chap. 8), Kennedy and 
Gentle (1980), and especially Ross (1990) and Thisted (1987). For some 
models each ML estimate ?, is a function of al l  the sample values (yi, XU, 

x ~ ) ,  i = l , . . -  ,n. An estimate can in theory be written as 
7, =7p(ylIX11, - - ; ,x~1;  ;ynIxh, - * ,XI,,). In practice, however, one usu- 
ally cannot write 7~ as an explicit function of the data. The marimum log 
likelihood va$e is f = f(q1, * * ,?p). For the Class-B example in Figure 2.1, 
line 2 shows f ,  and line 4 shows the ML estimates. 

. ,?p that maximize f(71, * 3 * , 7 p )  

sometimes can be found by the usual calculus method. Namely, set equal to 
zero the P derivatives of L ( n ,  * * , 7 p )  with respect to 71, * ,rP, and solve 
the following likelihood equations for * . . , 7 p :  

A A  

Likelihood equations. The values ;ll 

A 

a f ( 7 1 ,  ’ * , 7 P ) / ~ 1  = 0, 

(5.12) 

af(711 ‘ * * ,7P)/%P = 0. 
Usually these nonlinear equations in 7, ,  . ,rP cannot be solved algebrai- 
cally. Then they must be solved with numerical methods. Alternatively, 
many computer programs directly optimize &( ) by numerical search. Nelson 
(1982, Chap. 8) and his references discuss numerical aspects of such optimi- 
zation methods. After solving (5.12), one needs to check that the solution is 
at the global maximum - not at a local maximum nor saddle point. For 
example, the solution is at an optimum if all eigenvalues of the  local Fisher 
matrix are positive. Such optimization converges faster and more accurately 
if each independent variable is “centered” by subtracting from it some value 
near the center of the data on that variable, such as the mean. 

Example. For the Arrhenius-lognormal model and complete data, the 
likelihood equations can be solved explicitly. The equations are 
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These are the same as the least-squares estimates of Chapter 4. However, in 
Chapter 4, the estimate s’ for u contains (n -1) in place of n. That is, 
G = s‘-. 

Existence and uniqueness. For some models and data, the estimates may 
not exist; for example, they may have physically unacceptable values such as 
infinity or zero (say, for a standard deviation). For most models and data, 
the ML estimates are unique. But log likelihood functions for some models 
and data can have any number of local maxima. Of course, the ML estimates 
correspond to the global maximum. Then special numerical optimization 
techniques are needed to locate the global maximum. 

Asymptotic theory. The following asymptotic theory for ML estimates 
applies to samples with many failures and models that satisfy certain regular- 
ity conditions referenced in Section 1. Most models used in practice satisfy 
such conditions. Then the joint sampling distribution of ql, * * ,qp is close to 
a multivariate normal cumulative distribution with means 71, * * ,7p and the 
covariance matrix estimated below. That is, the cumulative sampling distri- 
bution of ql, . * , q p  converges “in law” (“in distribution”) to a joint normal 
cumulative distribution. This does not necessarily mean that the true means, 
variances, and covariances of 71, * * ,qp converge to those of the asymptotic 
normal distribution. However, the asymptotic (approximate) normal distri- 
bution is valid for calculating the usual approximate normal confidence limits 
(Section 5.7) for 71, * * * ,7p. Such limits employ the (normal) probability that 
a ML estimate is within a specified multiple of its standard error from its 
true value. Chapter 6 presents the true theoretical asymptotic covariance 
matrices. The asymptotic normality depends on central limit theorems for 
independent but not identically distributed random variables; see, for exam- 
ple, Hoadley (1971). The LR confidence limits (Section 5.8) generally are 
closer to the specified confidence level in each tail. However, the normal ap- 
proximate limits are calculated by most ML packages. 

A 
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F =  

5.5. Fisher and Covariance Matrices 

After obtaining $1, * - - ,$p, one estimates their covariance matrix as de- 
scribed next. This matrix, calculated from the Fisher matrix, later yields ap- 
proximate confidence intervals for various quantities. 

Fisher matrix. The local Fisher information matrix is the PxP sym- 

- -z:/*: -a'2&+71%2 ... -a';/%l%P 

-a'f/ay&1 -#f/& . . .  - a ' f / % 2 a r ,  

-a':/%P%l -a '2 /aYpaY2 - * - -a'2/ay; 

. (5.13) 

A 

The caret * * * , 7 p = 7 p .  
F estimates the true (asymptotic) Fisher matrix, which appears in Chapter 6 
with the asymptotic theory. For the Class-B example, line 3 of Figure 2.1 
shows the local Fisher matrix. However, C3 = In@) is the parameter there. 

indicates that the derivative is evaluated at yl 

Some computer packages evaluate F from analytic expressions for the 
derivatives. Others numerically approximate the derivatives by a perturba- 
tion calculation of second differences. Then, for accuracy, the package must 
first calculate the second difference for each data case and then sum the 
second differences over the sample. 

second partial derivatives are 
Example. For the Arrhenius-lognormal example with complete data, the 

@f/%: = $(-1/d), $f/*1%2 = i ( -xi /d),  
i = l  i = l  

n n 

i - 1  i - 1  
#i/aY~au = -2C(yi-rl-72xi)/d, 

$f/%2% = -2&i(Yi-% -72xi)/d, 

#f/& = k { (1/2 -3[(~i  - 71 -72xi)2/u411. 

a'P/a-y: = - I +  , a'f^/aylay2 = -xi/$, a'f^/ay2au = 0, 

a'&^/aYl% = 0, a'?/%; = - p2, a'f/ac? = -an/$. 

#f/*$ = z(-xf /$>, 

i = l  

i = l  
A h A 

Evaluated at 71 = rl, r2 = 72,  and o = u, 
A2 
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Thus the local Fisher information matrix is 

ML programs give the numerical value of the matrix. 

(asymptotic) cordance inarrir for ?l, * 9 ,?p. That is, 
Covariance matrix. The inverse of F is the local estiinufe V of the 

V estimates the true (asymptotic) covariance matrix, which appears in 
Chapter 6. Note that the variances and covariances in V are in the same posi- 
tions as the corresponding second partial derivatives in F. For the Class-B 
example, line 5 of Figure 2.1 shows the numerical value of this estimate of the 
covariance matrix. There the parameter is u instead of C3. The added calcu- 
lations for this substitution are not explained here; see Nelson (1982, p. 374). 

Standard error. The standard error u($,,) of $ is the standard deviation 
of its asymptotic normal distribution. The estimate of u($) is 

s($) = [var(+,,)~~/'. (5.15) 

This is used below for approximate confidence intervals for the true 7,, value. 
For the Class-B example, line 4 of Figure 2.1 shows these estimates of the 
standard errors. 

Example. For the Arrhenius-lognormal example with complete data, the 
local estimate of the symmetric covariance matrix is 
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n 

here S,  = Ex; -itX2. The estimates of the standard errors are 
i - 1  

5.6. Estimate of a Function and Its Variance 

Estimate. Often one wants to estimate the value of a given function 
It = I t ( r l ,  - - * ,7p) of the model coefficients. Distribution pargmeters and 
percentiles are examples of such functions. The ML estimate la of h is the 
function evaluated at 71 = ql, * * ,7p = rP; that is, 

ĥ  = h($l, * * - ,$p). (5.16) 

For the Class-B example, lines 8 and 9 show such percentile estimates at two 
temperatures. 

Variance. The estimate of the variance of h is calculated as follows. It is 
used later to obtain approximate confidence intervals for the true 12 value. 
Calculate the column vector of partial derivatives aJz /13-yp: 

A 

A 

(5.17) 

The caret indicates that the derivative is evaluated t t  71 = Gl, , rP = 

$p. The local estimate of the (asymptotic) variance of It is 

var(h^) = H’VH (5.18) 
A h  

P 
= c (aC/aP12 var($p> + 2C ~ ( l ; l a r , > ( ~ ~ / a ~ , , c o v ( $ ~ , $ ~ , )  ; 

p = l  P < P *  
A 

here V is theJocal estimate (5.14) of the covariance matrix, and H’ is the 
transpose of H and is a row vector. The t p e  theoretical (asymptotic) vari- 
ance appears in Chapter 6. The estimate s(Ii) of the standard error of It is 

s ( / t )  = [var($)p/s. (5.19) 

This is used below in approximate confidence intervals for the true It value. 
For the Class-B example, lines 8 and 9 of Figure 2.1 show such estimates of 
standard errors for percentile estimates. 

Example. For the Arrhenius-lognormal model, one usually wishes to esti- 
mate the 100Pth percentile at a design temperature. Denote the reciprocal 
absolute design temperature byxo. The ML estimate is 

A 
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EP(X0) = ?I + ? P O  +ZP? 

$PP(xO)laTl = 1, $ P ( X O ) / a r Z  = xo, $dxo)/& = ZP.  

here z p  is the standard normal lOOPth percentile. The partial derivatives are 

Then, for any types of data, the estimate of the variance is 

For complete data, this becomes 

Wy^p(xo)l = a ( l / n ) + K x o  -a2/~x,I+[~~/(w11. 
The estimate s[yhp(xo)] of the standard error is the square root of this. 

5.7. Approximate Normal Confidence Intervals 

Approximate normal l m %  confidence intervals for the true value of a 
model coefficient (or of a function of such coefficients) follow. The form of 
the interval depends on whether It is mathematically unbounded ( -M,M), 
positive, or a fraction in (0,l); this assures that the limits are not outside the 
range of I t .  The approximaiion is poorer, the larger 7 is and thz smaller the 
number of failures is. Let h denote the ML estimate and let s (h )  denote the 
estimate of its standard error. 

Unbounded limits. Suppose that the mathematically possible range of 11 

is (-oa,oa). Then a two-sided approximate normal lOO-y% confidence inter- 
val for the true I1 value has lower and upper limits 

A 

4 = h - K+( i ) ,  h' = h  ̂ t K + ( l ) ;  (5.20) 

here K, is the 100(1+7)/2th standard normal percentile. The limits require 
that thz number of failures be large enough that the distribution of the esti- 
mate 11 is approximately normal. For the Class-B example, line 4 in Fig- 
ure 2.1 shows the numerical values of such confidence limits for 7 1  and 7 2 .  

Example. For the Arrhenius-lognormal model, the lOOPth percentile of 
log life y p ( x 0 )  is unbounded. Two-sided approximate lOO-y% confidence lim- 
its are 

J ' P ( ~ o )  = ?&o) - K7 s[yh(xo)], Y P ( ~ o )  = &(xo) + K7 S[Yh&0)1. 

Corresponding limits for the percentile are 

f P@O) = antilog[yP(xo)l, &o) = a n t i h m x o ) l .  

For the Class-B example, lines 8 and 9 of Figure2.1 show the numerical 
values of such confidence limits for percentiles at two temperatures. 
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Positive limits. If the range of 11 is (0,00), appropriate two-sided approxi- 

14 = 12 exp[-~+(lz)//z], I; = I; exp[~+(l;)/l;]. (5.21) 

These limits cannot take on negative values, They require that there be 
enough failures so that the distribution of In(h) is approximately normal. A 
negative range (-00, 0) requires the obvious modification of (5.21). For the 
Class-B example, line 4 of Figure 2.1 shows the values of such limits form. 

Example. For the Arrhenius-lognormal model, 0 must be positive. For 
complete data, two-sided approximate normal lOCt-y% confidence limits are 

_a = $ exp{ - K ~ [ $ / ( ~ ~ ) ’ ” I / $ I }  = a  ̂ exp{-K7/(2n)’”}, 

6 = $ exp{K7/(2n)’D 1. 

mate normal lo@% confidence limits are 
A A A  

Limits in (0,l). Suppose the mathematically possible range of It is (0,l). 
Here lz is usually the fraction failing or surviving. Then appropriate two- 
sided approximate normal 100.1% confidence limits are 

These limits cannot take on the values outside the range (0,l). They reguire 
that there be enough failures so that the distribution of In[h/(l-k)] is 
approximately normal. 

One-sided limits. A one-sided approximate 100.1% confidence limit for Iz  
is the corresponding two-sided limit with Kl replaced by z l ,  the 10hth stan- 
dard normal percentile. For example, for the Arrhenius-lognormal model, a 
one-sided lower apfroximate low% confidence limit for yp(x0)  is 
y p ( x 0 )  = ~p(x~)-z7s[yp(xo)]. The true confidence level of a normal two- 
sided interval is usually close to 100.1%. However, the true confidence level 
of such a one-sided interval can be far from 1m%, since many sampling dis- 
tributions are far from symmetric. For one-sided limits, the LR intervals 
(Section 5.8) are better. Vander Weil and Meeker (1988) and Doganaksoy 
(1989b) show this; 

Improved limits. Authors have presented various improvements for the 
normal limits: 

1. 

2. 

Transformations such as those above assure that such limits are in the 
natural range of the quantity estimated. 
Other transformations make the sampling distribution of the ML estima- 
tor of the transformed parameter closer to normal. For example, one can 
find a transformation such that, at the maximum, the third derivative of 
the sample log likelihood with respect to the transformed parameter 
equals zero. Thus the log likelihood with the transformed parameter is 
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closer to quadratic, and the sampling distribution of the transformed ML 
estimate is closer to normal. 

3. Corrections for the bias of ML estimators make one-sided limits more ac- 
curate. Most such corrected estimators are meatr unbiased. Median un- 
biased corrections would be better, since the normal approximation then 
better matches percentiles. 

4. Schneider and Weisfeld (1988) use selected functions of ML estimates to 
approximate asymmetric sampling distributions better. 

The LR limits (Section 5.8) are generally better than normal limits, particu- 
larly one-sided limits. 

Simultaneous limits. If one calculates L intervals each with 1 0 h %  
confidence, then probability that they all simultaneously contain their true 
values is less than 7. L simultaneous intervals for I l l ,  * ,hL contain all L 
true values with a specified probability 7. Such intervals are described in de- 
tail by Miller (1966) and Nelson (1982, Chapter 10). They are usually used 
for simultaneous comparisons where the Iq’s are differences or rahtios. S5p- 
pose that the ML estimates for the L quantities h l ,  *i * , h ~  a r e j l ,  . - * , h ~ ,  
respectively, and their standard error estimates are s(Itl), - , s ( h ~ ) .  Simul- 
taneous approximate lOOy% confidence intervals for h 1, . * ,hL are 

h A - A  A 

41 = h1-K7,s(h1), Ill = hl+K,,S(hl), 

(5.23) 

where 7’ = l-[(l-7)/(2L)], These inkervals require the approximate nor- 
mality of the sampling distributions of h l ,  * * * , h L .  They also depend on the 
Bonferroni inequality, described by Miller (1966). The intervals (5.21) and 
(5.22) can also be used as simultaneous intervals with K,,. 

5.8. Approximate Likelihood Ratio Intervals 

This section presents LR confidence limits and how to calculate them 
with ML packages of Section 1. 

Properties. The preceding confidence intervals all ernployha normal ap- 
proximation to the sampling digribution of a ML estimator h (or to some 
transformation of it, such as In(It)). For such one-sided limits, especially for 
samples with few failures, the true confidence level may differ much from the 
intended one. A better interval employs the likelihood ratio as described by 
Lawless (1982, Sections 6.4 and 6.5), Vander Wiel and Meeker (1988), Do- 
ganaksoy (1989a,b), and Ostrouchov and Meeker (1988). This “LR interval” 
has other advantages besides a confidence level closer to the stated level in 
each tail. First, the limits are always in the natural range o t the  quantity be- 
ing estimated. Thus an artificial transformation, such as In(h), is not needed. 
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Second, the limits are invariant. That is, the same limits result no matter how 
h is parameterized. For example, the parameterizations Q = 73 and 
Q = exp(r3) yield the same LR limits, but they yield different limits based on 
the norm21 approximation. Third, the LR limits are asymmetric about the 
estimate 11 and roughly have the same probability in each tail, as do the exact 
limits where available, In contrast, the limits from the normal approximation 
are symmetric about h .  Disadvantages of LR limits are that they are more 
laborious to calculate, and standard packages do not yet calculate them. 
Vander Wiel and Meeker (1988) and Doganaksoy (1989a) present programs 
that calculate such limits. Doganaksoy (1989b) investigates improvements of 
LR intervals, including the corrected signed square root of the log LR statis- 
tic and Bartlett’s correction to the log LR statistic. He concludes that in gen- 
eral the simpler LR intervals perform as well as the corrected ones. 

LR method. Suppose the confidence interval is to be calculated for a 
coefficient or parameter 71, and suppose the remaining model coefficients 
are 72, * * * ,7p. Denote the sample log likelihood by f(~~,7~, * - ,7p). Define 
the constrained maximum log likelihood for 71 as 

This is the log likelihood maximized with respect to all other parameters for 
a f i e d  value of rl. The ML estimate q1 maximizes fl(T1).  fl($l) = 

f ($1,$2,  - * ,$p) is the global maximum. If 7, is the true value, the statistic 

T = 2[f1(?1) - fl(71)I 
has a distribution that is approximately chi square with one degree of free- 
dom. Thus, the 71 values that satisfy 

T = 2[fl($l) - fl(71)l I ? W )  (5.25) 

are an approximate loo&% confidence interval for 71. The lower and upper 
LR confidence limits yl and rl are the 71 values that satisfy 

(5.26) 

Figure 5.2 depicts .fl(n) as a heavy curve and shows $1, rl, and ql. These 
limits usually must be found by numerical search. Under the asymptotic nor- 
mal theory the sample log likelihood is approximately quadratic near its max- 
imum and given by 

here the derivative is evaluated at the ML estimates of all the coefficients. 
Figure 5.2 depicts this quadratic function and the corresponding limits 11 and rl from the approximate normal theory. The quadratic approximation gets 
closer to the true fl(rl) over the range of interest as the number of failures 
in the sample gets large. 
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Figure 5.2. LR and normal confidence limits. 

Example. For the Arrhenius-lognormal model and complete data, expli- 
cit LR limits for a can be obtained as follows. 

1 
= ( - n /2)1n(2?r) - rt In(a) - - (n 2 1, 202 

f,(â) = (-n/2)ln(2?r)-nln(a^)-(rt/2) 

where 2 is given earlier. The loo&% LR limits are the two solutions of 
&,(a) = fu($) - (1/2)?(~;1); this simplifies to calculating the two solutions 
P1 <P2 of 

-ln(p)-l t p = ,$(&;l)/ri 

where p = ($/a)’. Thus the limits are a = â /& and (T = :/&. 
Calculation. Most computer programs (Section 1) do not yet calculate 

LR intervals. However, they can be used to solve (5.26) for a LR limit for a 
parameter. As follows, use a program to evaluate the constrained maximum 
log likelihood (5.24) for the parameter at’ selected parameter values near a 
LR limit. Then calculate the limit that satisfies (5.26) by interpolation. Fig- 
ure 5.3 depicts such calculations. For example, suppose one wants a LR 
interval for a coefficient 71 in a linear relationship for the location parameter 

= 7 0  71x1 i- 72x2 ’ ’ ’ 7flP 

Also, suppose that specimen i has log time yi (observed, censored, or inter- 
val) and variable values (xli, * * - ,xpi), i = 1,2, - - - ,n. For a trial limit value r;, 
calculate the transformed observations 

y; = yj - y;.Qj. 

For the intercept coefficient -yo, calculatey,: = yi - 7;. Then use a computer 
package to fit the model to the transformed data but with the relationship 
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'dL (Y,) 
L q-. 

1 n - 
71 Yl 71 

Figure 53. LR limit from interpolation of constrained log likelihood. 

/'=TO 72x2 -I- * . '  7flP, 

this lacks the term with 71. The resulting maximum log likelihood is the con- 
strained log likelihood fl(71) evaluated at 71 = 7;. Repeat this calculation 
for other 7;  values near the limit, and interpolate to solve (5.26) for the limit. 
The LR limit is near the normal limit, which should be the first trial value. 

Example. For the insulating fluid data, use the power-Weibull model. 
The method above yields two-sided 95% LR limits for the power coefficient, 
as follows. Its ML estimate from SAS is $1 = - 17.73, and the SAS maximum 
log likelihood is fl(ql) = -137.748. Its upper normal limit is 71 = -14.58. 
The LR limits are the solutions of (2.6), namely, of 

fl(71) = -137.748- (1/2)2(0.95;1) = -139.668. 

Constrained maximum log likelihoods for nearby power values are 
fl( - 14.58) = - 139.715, fl (- 14.61) = - 139.677, and f1(- 14.64) = 

- 139.641. Linear interpolation yields the upper LR limit jl = - 14.62. It is 
an upper one-sided approximate 97.5% confidence limit. Figure 5.3 depicts 
these calculations and interpolation, which can be done graphically. Simi- 
larly, the lower normal limit is 11 = -20.88. Nearby values are 
fl ( - 20.88) = - 139.532, fl (- 20.95) = - 139.609, and f ( - 21.00) = 
- 139.664. Interpolation yields the lower LR limit 71 = -21.00. It is a lower 
one-sided approximate 97.5% confidence limit. 

Other parameters. The above calculation of LR limits extends to a linear 
function of such coefficients. An example is the location parameter at 
specified values of xi ,  . . . J;, say, a design condition. To do this, 
reparameterize the relationship so 

/' = 70 t 71(~1 -xi) + . . . t 7p(~p -x i ) .  

Then yo is the desired value of the location parameter. Similarly calculate 
LR limits for a Weibull shape parameter p as follows. For specimen i, use 
the life ti - not the log life. Use a trial value p' to calculate transformed lives 

t; = 1:. 
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Fit the same model but with an exponential distribution to the transformed ti 
data. The resulting maximum log likelihood is the constrained maximum log 
likelihood (5.24) evaluated at /3 = f l .  As above, repeat this for other p’ 
values and interpolate between them to get a LR limit. 

Example. For the insulating fluid, the above method yields the following 
95% LR limits for the characteristic life at 15 kV and for the Weibull shape 
Earameter. The maximum likelihood estimates from2AS are $0 = 64.85 and 
p = 0.7766, and the SAS maximum Log likelihood is E = - 137.748. The nor- 
mal 95% limits are p = 0.6535 and /3 = 0.9228. The LR limits for /3 are the 
solutions of (2.6), namely, of 

f p ( @  = - 137.748-(1/2)2(0.95;1) = - 139.668 

Constrained log likelihood values near a lower limit for /3 are fp(0.6535) = 

- 139.506, i~(0.6450) = - 139.769, and fp(0.6480) = - 139.674. Interpolation 
yields /3 = 0.6482. Similarly, the upper LR limit is p = 0.9160. For LR limits 
for the-characteristic life at 15 kV, the reparameterized relationship is 

P = 70 -I- 71[ln(~-ln(15)]* 

Here 7 0  is the In characteristic life at I/ = 15 kV. For LR limits for 70, solve 

fo(70)  = - 137.748- (1/2)2(0.95;1) = - 139.668. 

Constrained log likelihood values near a lower limit for 70 are fo(53.8) = 

- 139.732, .f0(54.0) = -139.661, and f0(54.2) = - 139.591. Interpolation 
yields 7 0  - = 54.0. Similarly, the upper LR limit is qo = 76.3. 

A function. The LR limits are more difficult to calculate if the quantity h 
is not simply a coefficient or parameter of the model. For example, for the 
Arrhenius-lognormal model, one may seek such limits for a percentile at 
stress level xo, namely, vP = 71 t 7 2 ~ 0  tzpo, a function of the usual model 
coefficients (or parameters) 71,72, and 6. One method of getting LR limits is 
to reparameterize the model, using v p  as a parameter in place of 71. That is, 
substitute 71 = vp -72x0 -zpa into the likelihood (for complete data) to get 

Use this likelihood as described above to get LR limits for y p .  Another 
method of getting LR limits is to use constrained optimization as described 
by Lawless (1982, Section 5.1.3). In the future, statistical packages will 
automatically calculate such confidence limits, and users will not need to be 
concerned about the complex calculations. 

Joint confidence region. One can use a LR approach to obtain a joint 
confidence region for two or more model coefficients or parameters as 
described by Lawless (1982, Section 5.1.3). Such regions are rarely needed in 
accelerated test analyses. Figure 3.4 of Chapter 9 depicts such a joint 
confidence region. The simultaneous limits (5.23) provide a “rectangular” 
joint confidence region. 
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PROBLEMS (* denotes difficult or laborious) 

5.1. Capacitors. Meeker and Duke (1982) give simulated data from a 
voltage-accelerated life test. The data on 150 capacitors are singly censored 
at 300 days. The purpose is to estimate life in days at the design voltage of 
20 V. At 20 V, 0 of 25 failed; at 26 V, 11 of 36 failed; at 29 V, 13 of 52 failed; 
at 32 V, 30 of 37 failed. Use the following CENSOR output on the power- 
Weibull model to answer the questions. Output is in terms of the extreme 
value distribution. The assumed relationship is 

MAXIMUM VALUE OF 'Ill€ LOCLl  KEL 111000 I S -122.1596 

PARAMETER E S I  IMATES 
FOR T l l E  SMALLEST EXTREME VALUE D I S T R I B U T I O N  

95.00% CONFIDENCE L I M I T S  
TERM EST I MA I E SlANOARD ERROR LOWER UI'PCR 

SCALE 1.2103 
B O  67.91156 
8 1  - 18.5460 

0. 1349 
8.1513 
2.3956 

0.9720 1.5058 
51.9659 83.9253 

-23.2423 - 13.8497 

VARIANCE-COVARIANCE M A l R l X  O f  TI IE E S T l H A l E D  PARAMETCRS 

SCALE 8 0  8 1  
SCALE U.lB21)-01 0.5970 00 -0.175D 00 
B 0 0.5970 00 0.664D 02 -0.1950 02 
B 1 -0.1750 00 -0.1950 0 2  0.5740 0 1  

CORRLLAT I O N  M A T R I X  OF TIIE EST I M A l E D  PARAMETERS 

SCALE 8 0  8 1  
SCALE 1. onoo 0.5429 -0.5422 
8 0  0.5029 1 . 0000 -0.9998 
8 1  -0.51122 -0.9990 1 ,0000 

PERCENTILE E S l l M A l E S  FOR T E S T  C O N D I T I O N S  
C I  

1 2.9957 2ocv. 
SMALLESl  EXTREME VALUE D I S T R I B U T I O N  
LOCATION PARAMETER = 12.3867 AND SCALE PARAMETER = 1.2103 

PERC€NT I I.€ 
0.0100 
0.0500 

0.5000 
0 .  lono 

1. o m 0  
5.0000 

10.0000 
20.0000 
30.0000 
110. onno 
5 0 .  ciuon 
60. no00 
70.0000 
80.0000 
90. onoo 
95.0000 
99.0000 
99.3000 

WEIBULL DISTRIBUTION ( r  

TllAT 
3.4535 

24.2289 
56.0794 

394.2903 
915.1363 

6580.1691 
15725.3249 
38998.3391 
68797.2696 

153711 7.6739 
2 15529.6184 

106262.21183 

299936.3631 
42618h. 1660 
657430.0036 
9011008.7763 

1521207.3321 

S( I I I A T )  
3.7662 

23.3553 
51.5864 

334.7625 
763.11020 

55 30. II 5 72 
135113.8629 
34854.3601 
63232.8222 
99909.5935 

147761.7507 
21  13117.4767 
300 14 7 .  114 16 
436028.6702 
691672.1697 
97 1 1116.21 3 3  

1691579.9219 
28551104. 3760 

= E X P ( Y ) )  

95.00% C O N F l O t N C E  I . I M I T S  
LOWER UPPER 
0.4072 29.2915 
3.6614 160.3338 
9 .2391 3110.3924 

74.6430 2082.864 1 
178.31153 11695.8033 

1266.6020 311 182.71 78 
2906.11199 05090.5336 
6762.7965 22M381 .a047 

11351.2676 416963.5023 
16797.6193 612218.1995 
23365.0614 101 1695.60117 
31523.80~19 111 73505. 3284 
1121 73.6575 2 1  33128.2912 
57351.1639 31611l31.5125 
83583,001 3 5 17 l(J90. 4686 

1100110.97 17 74266111.h242 
I 7  1967.21 35 13456S 10.5695 
261192.7069 23640911.7132 
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c 
c 

c 
c 

C 

c 

c c 
c 

c c  
c 

c 
c 

C 
c 

C 

(a) Examine the Weibull plot of the data at the three test stresses. Is the 
Weibull distribution adequate? Why? 

(b) Calculate the ML estimate and confidence limits for the Weibull shape 
parameter from those for the extreme value scale parameter. 

(c) On Weibull paper, plot the estimate and confidence limits for the life 
distribution at 20 volts. 

(d) Examine the log-log plot of the data. Use selected sample percentiles to 
judge whether the relationship is linear. 
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(e) Plot the fitted relationships for the 0.1, 10, and 90% lines on log-log 
paper. 

( f )  Examine the correlation matrix and note any high correlations. Explain 
the reason for each high correlation and how to reduce it. 

(g) Suggest further analyses. 

5.2. Insulating fluid. The power-Weibull model was fitted to the insulat- 
ing fluid data of Table 3.1 of Chapter 3. Prof. William Meeker provided the 
following STAR output on the ML fit from Meeker (1984~). Note that out- 
put is in terms of the extreme value distribution for In life. 
(a) Convert all estimates and confidence limits to those for the Weibull 

distribution and inverse power law. 
(b) Plot the selected data and the fitted distribution lines on Weibull prob- 

ability paper. 

D i s t r i b u t i o n  is W e i b u l l  

The n a t u r a l  logs o f  these  o b s e r v a t i o n s  f o l l o w  a l n l  ex t reme-va lue  
di s t r i bu t I o n .  

I n t e r c e p t  t e rm i n c l u d e d  in mode l .  

flap i r w m  v a l u e  o f  t h e  l o g - l i k e l i h o o d  is -137.7476 

Parameter  e s t i m a t e s  f o r  t h e  ex t reme-va lue  d i s t r i b u t i o n :  

95.0% Conf i d r n c e  Limi t s  

L r t i r f l a t e  S t d  E r r o r  Lower Upper 
S c a l  B 1.287739 0.1133354 1.083667 1.530239 
I n r e i c e p t  64.84719 5.619756 53.83025 75.86414 
OOLTAGE -17.72958 1.606833 -20.87961 -14.57955 

Var iance -Covar iance  I h t r i x r  
I n  t e r c e p  t VOLTaGE S c a l e  

S c a l e  0,01284431 -0.00886925 0.0003Z4538 
I n t er cep t -0.008869254 31.58166 -9.026538 

0.000924538. -9.026538 2.581914 UDLTrrGE 

C o r  r el a t  i on M a t  r i x : 

S c a l e  1.000000 -0.0139S668 0 .O0507678 
I n t e r c e p t  -0.01395668 1.000000 -0.9996150 
VOLTAGE 0.0050'C;?Y -0.3996150 1 . 0 0 0 0 0 0  

S c a l e  I n t e r  cep t VOLTAGE 

20 kV I n s u l a t i n g  F l u i d  ALT 

WEIBULL PUANTILE ESTIMATES WITH 95% CONFIDENCE LIMITS 

UUANT I LE 
0.01 
0 -05  
0.10 
0.20 
0.30 
0.40 
0.50 

M 1 NUTES 
333.728 
2722.430 
6879.012 
18080.41 
3307%. 44 
52528.29 
77819.17 

STD ERROR 
333.521 
2465.738 
6009 730 
15319.34 
27611 . 8 0  
43464 .lo 
64022.72 

LOW€R Ci 

461,151 7 
47.04631 

1240.865 
3434.279 
6438.064 
10373.33 
15510.37 

UPPER CL 

16C71.99 
38135.30 
951 87.78 

2367,302 

169924.5 
E69991.7 
390421.7 
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WEIBULL PROBABILITY PLOT 

0.999 

0.90 

0 . 9  
0 . 0  

0 .6  

0 . 4  
0.3 

0 . 2  

0 . 1  

0.05 

0 . 0 2  

0.01 

0.005 

0 .01  0.05 0 . 1  0.5 1 5 

Plot all the data and selected percentile lines on log-log paper. 
Calculate the ML estimate of the characteristic life at 20 kV. 
Calculate approximate 95% confidence limits for (d). 

( f )  

(g) 

In view of the plot of residuals, comment on the adequacy of the 
assumed Weibull distribution. 
Comment on the high correlation -0.9996150. How can the relation- 
ship be reparameterized to reduce the correlation? 

53. Bearings. The power-Weibull model was fitted by ML to the bear- 
ing data of Problem 3.5 without the outlier. STATPAC output follows. 

Compare the ML estimates and confidence limits fbr the power and 
Weibull shape parameters with the graphical and least-squares ones 
from Problems 3.5 and 4.6. In particular, are the estimates consistent 
with each other relative to the widths of the confidence limits? Are the 
ML confidence limits shorter as predicted by theory? 
Is the shape parameter estimate consistent with lab experience? That 
is, are the data consistent with a true value in the range 1.3 to 1.5? Is 
there convincing evidence that the failure rate is increasing? 
Calculate the ML estimate of the 10th percentile at a design load 0.75. 
Calculate approximate 95% confidence limits for the 10th percentile at 
the design load 0.75. 
Examine the extreme value plot of the unitized log residuals, and com- 
ment on the adequacy of the Weibull distribution. 
Examine the crossplot of the residuals against LSTRES (In(stress)), 
and comment on the linearity of the relationship. Comment on any 
other noteworthy features of the plot, e.g., which way each sample dis- 
tribution is skewed, constant spread (p), etc. 
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P O P S  . .  . .  

2.00 . . .  
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0. . 
+ ?  

2 *  
2. 

*.. -1 .00  

*2 .. 
- 2 . 0 0 .  * .  . .  
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0 . 9 0 .  
0 . 8 0 .  
0 . 1 0  
0 . b O  t 1 
0 .50 * 
0.LO * 1 
0.30 + 
0.20 * 1 
0 .10.  I 
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- 0 . 1 0 .  1 
- 0 . 1 0  * 1 
-0.10 + 
-0.40. 
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- 0 . b O  * 1 
- 0 . 1 0  * 1 
-0.80. 
- 0 . P O  + I 
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- 1 . 1 0 .  1 1 
-1.LO. I 
- t . 5 0  1 1 
-1  . b O  * 1 1 
- 1 . 7 0 .  1 
- 1 . 1 0 .  t 

............. 

The following table summarizes various ML fits to the data. Use them to 
assess the model as follows. 

Max h ( L )  Weibull Shape Parameter Million Revolutions 

a A  7.10 7.10 ?.I0 Model r^ a" B 
1) Separ.a's, -49.012 1.430 1.118 1.832 2.680 1.345 5.342 

common /3 0.8856 0.4743 1.654 
0.0795 0.0423 0.1496 
0.0512 0.0277 0.0946 

2) Separ. dist's -33.528 0.953 0.600 1514 0.%9 0.221 4.253 
-22.398 1.574 0.943 2.627 1.046 0.405 2.702 
2.900 1.950 1.232 3.085 0.1298 0.0623 0.2704 
7.282 1.963 1.197 3.221 0.0837 0.0397 0.1763 

Make a separate Weibull probability plot of each of these two fitted 
models and of the fitted power-Weibull model. Include the data in 
each plot. Subjectively comment on the adequacy of the models. 
Carry out the LR test for a constant Weibull shape parameter. Plot all 
shape parameter estimates and confidence limits from the various 
models on appropriate paper. State conclusions. 
Use McCool's (1981,1974) exact test in eq. (3.2) for (h). 
Plot the fitted relationship and the separate tabled estimates (Model 2) 
of the 10th percentiles on log-log paper. Include confidence limits. 
Subjectively comment on the fit of the relationship. 
Calculate the likelihood ratio test for adequacy (linearity) of the power 
relationship, assuming a common p. State conclusions. 
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(1) Carry out (k), assuming the p’s differ. See Chapter 9. 
(m) Suggest further analyses and other models. 
(n) Carry out (m). 

5.4. Transistor. A temperature-accelerated life test of 27 microwave 
power transistors yielded the following data. The main aim was to estimate 
reliability for 10 years at 100°C. Only “graceful” failures are treated as 
failures. Others are treated as censoring times (denoted t). Most others 
were caused by test equipment failures. Use the Arrhenius-Weibull model. 
(a) Plot the data on Weibull and Arrhenius papers. Comment on the ade- 

quacy of the model. 
(b) Graphically estimate the Weibull shape parameter and comment on its 

accuracy. Is the failure rate increasing or decreasing with age? Is the 
shape value convincingly different from l ?  

(c) Graphically estimate the activation energy. Gauge its uncertainty. 

215°C 

Hours 

346 + 
346t 

1416 
2197 t 
2533 
2630 
2701 + 
3000 
3489 
6720 t 

Reason 

TWT failure 
TWT failure 
Graceful 
Removed - f i u r e  failed 
Graceful 
Graceful 
Removed - power failed 
Graceful 
Graceful 
Removed - test stopped 

190°C 

Hours 

2403 
2668 t 
3669 + 
3863 
4400 t 
M o t  
4767 
4767 
5219 
5276 t 
5276 t 
5276 t 
5276 t 
7517 
7517 
7840 
8025 
8025 
8571 t 

Reason 

Graceful 
Removed - fixture failed 
Removed - fixture failed 
Graceful 
TWT failure 
Source failure 
Graceful 
Graceful 
Graceful 
Removed - floor failed 
Removed - floor failed 
Removed - floor failed 
Removed - floor failed 
Graceful 
Graceful 
Graceful 
Graceful 
Graceful 
Removed - test stopped 

(d) Use a ML program to fit the model to the data. How well do the ML 
estimates and confidence limits compare with graphical ones? 

(e) Obtain the ML estimate and confidence limits for reliability for 10 years 
at 100°C. Comment on the magnitude of the uncertainty. 

(f) Plot estimates and confidence limits on Weibull and log-log paper. 
(6) Plot the (log) residuals on extreme value paper, and comment on the 

adequacy of the Weibull distribution. 
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(h) Suggest further analyses. 
(i) Carry out (h). 

5.5. Turn failures. Do the following analyses of the Turn failure data in 
Table 5.1 of Chapter 3. Below is a summary of the ML fit of the Arrhenius- 
lognormal model to data from all four temperatures. 

Parameter Estimate 95% Conf. Limits 

76 3.526604 3.499121 3.553648 
71 3.478935 3.111346 3.786524 
U 0.07423483 0.05710498 0.09650315 

$(x) = 3.526684 + 3.478935(~ - 2.044926) 
Maximum log likelihood: 17.25 

(a) Review the data plots in Section 5 of Chapter 3. Comment on the validi- 
ty of the model and data. 

(b) Calculate the log residuals about the fitted relationship. 
(c) Plot the log residuals on normal hazard paper. Comment on the plot 

and the adequacy of the lognormal distribution. 
(d) Crossplot the observed and censored residuals against temperature on 

square grid. Comment on the appearance of the plot. 
Below is a summary of the ML fit  of a model with a separate log mean for 
each temperature (no relationship) and a common u. 

Log Mean 
Temp. Estimate 95%Conf. Limits 

190 3.9396 3.8964 3.9828 
220 3.4220 3.3777 3.4664 
240 3.2183 3.1746 3.2621 
260 3.2246 3.1155 3.2131 

0: 0.06976 0.05272 0.08680 
Maximum log likelihood: 36.42 

(e) Calculate the log residuals about the log means. 
(f) Plot the log residuals on normal hazard paper. Comment on this plot, 

the plot from (c), and the adequacy of the lognormal distribution. 
(g) Calculate the likelihood ratio test statistic for linearity. Compare it with 

the appropriate 2 percentiles, and comment on the linearity. In view of 
all plots here and in Section 5 of Chapter 3, is a formal test of linearity 
necessary? Why? 

(h) Is a formal test of homogeneity of 0 necessary in view of such plots? 
What do you conclude about the homogeneity of a? 

(i) Suggest further analyses. 
(j) Carry out (i). 
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5.6. Class-B without outliers. Re-analyze the Class-B data without the 
two low outliers. Redo all analyses applied in this chapter and in Chapter 3 
to the Class-B data. 

5.7. Later Class-B insulation data. Redo Problem 3.8 using ML analy- 
ses. Include analyses of residuals and tests for a common 0 and for linearity. 
Repeat all analyses using a Weibull distribution; note where results are com- 
parable and differ much. Suitably plot estimates and confidence limits. 

5.8. Relay. Redo Problem 3.11 using ML analyses. Suitably plot esti- 
mates and confidence limits. Include analyses of residuals and tests for a 
common shape parameter and for linearity. Write a short report for en- 
gineers to summarize your findings, incorporating plots, output, etc. 

5.9. Transformer turn data. Redo Problem 3.12 using ML analyses. 
Suitably plot estimates and confidence limits. Include analyses of residuals 
and tests for a common shape parameter and for linearity. 

5.10. Lubricant. For the data of Table 2.1, do the following. 
(a) Recalculate the equivalent times at 2WF, assuming that life increases by 

a factor of 1.5 for each 18°F decrease in temperature. 
(b) Plot the equivalent times on 3-cycle Weibull paper. 
(c) Plot the equivalent times (including nonfailures) on Arrhenius paper. 
(d) Repeat (a) for a factor of 2.5. 
(e) Plot the data from (d) on the same Weibull paper. 
( f )  Plot the data from (d), including nonfailures, on the Arrhenius paper. 
(g) Plot the original (untransformed) data on the Weibull and Arrhenius pa- 

pers. Also, plot the equivalent data based on a factor of 2 (Table 2.1) on 
both papers 

(h) Compare the sets of equivalent data with respect to the percentage fail- 
ing by 1,100 hours. Is the conclusion sensitive to the factor? 

(i) Estimate the Weibull shape parameter, and comment on the nature of 
the failure rate. 

(j) Fit a Weibull distribution to each transformed set of data and plot the 
ML estimate and confidence limits on Weibull papers with the data. 

(k) Suggest further analyses. 
(1) Carry out (k). 

5.11. Quantal-response data on a turbine disk. Each of 356 turbine 
disks were inspected once for fatigue cracking, each at a different age. 100 
were found cracked. The power-Weibull model was used to describe time to 
crack initiation as a function of the thickness of the web that was cracking. 
Use the adjoining STATPAC output on the fit of the model to the quantal- 
response data. Hopefully, thickness could be used to predict crack initiation 
better. Nelson (1979) presents and analyzes these data in more detail. 
(a) Comment on the nature of the failure rate (increasing or decreasing 
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MAXIMUM LOG L I K E L I H 0 O D  = - 1 6 4 . 6 5 1 8 8  

MAXIMUM L I K E L I H O O D  E S T I M A T E S  F O R  D I S T .  PARAMETERS 
W I T H  APPROXIMATE 9 5 %  C U N F l D E N C t  L I M I T S  

PARAME TERS E S T  I MATE L O W E R  L I M I T  UPPER L I M I T  STANUAHD E R R O R  

8 . 4 0 2 2 1 8  8 . 2 7 4 5 0 4  8 . 5 2 Y 9 3 1  0 . 6 5 1 5 9 8 0 E - 0 1  
2 . 9 6 7 6 2 9  

c 0 u 0 0 1  
2 . 2 0 6 2 9 7  c o o 0 0 2  - 3 . 6 1  U?56 - 9 . 4 2 6 8 0 8  

1 . 6 8 7 2 7 4  2 . 8 1 H 3 Y 6  0 . 2 8 5 4 1 0 9  SPHEAn 0 2 . 1 8 0 6 H 9  

s C O V A R I A N C E  M A T R I X  

P A H A M E I E H S  C O O O O l  c 0 0 0 0 2  0 S P R E A D  

C O O O O l  0 . 4 2 4 5 7 9 9 t - 0 2  
C O O 0 0 2  - 0 . 7 9 1 1 3 4 2 E - 0 1  8 , 8 0 6 8 2 1  
SPREAD - 0 . 1 2 4 4 5 1 1 t - U 1  0 . 3 1 0 6 0 5 8  0 . 8 1 4 5 9 3 7 E - U 1  

MAXIMUM L I K E L I H O O D  E S T I M A T E  OF THE F l T T E U  E O U A l l O N  

CENTER In(&) 
8 . 4 0 2 2 1 8  

( L W F R  - - 1 . 5 6 5 0 2 5 )  ( - 3 . 6 1 0 2 5 6 )  

2 . 1 8 0 6 8 9  FEAD 
PC T I L E  S ( - 1 . 6 1  ) 

I WEB 

- 1 . 6 1 0 0 0 0 0  

MAXIMUM L l K F L l H O O D  E S T l M A T t S  FUR O I S T .  P C T I L E S  
W I T H  APPROXIMATE 9 5 X  C U N f l U E N C E  L I M I T S  

PCT. EST 1 MATE LOWER L I H I T  UPPER L I M I T  STANUARD E R R O R  

0 . 1  
0 . 5  
1 
5 
1 0  
2 0  
5 0  
8 0  
Y O  
9 s  
9 9  

2 2 0 . 7 7 0 6  
4 6 2 . 2 4 0 1  
6 3 5 . 9 3 4 1  
1 3 4 2 . 8 4 2  
1 8 6 8 . 0 2 3  
2 6 5 5 . 3 1 9  
4 4 3 1 . 6 0 0  
6 5 2 1 . 2 0 8  
7 6 8 5 . 1 9 2  
8 6 7 0 . A R 7  
1 0 5 6 0  . M 3  

1 1 0 . 6 1 9 8  
2 7 3 . 8 1 Q 8  
4 0 2 . 7 7 2 8  
9 6 7 . 5 9 6 3  
1 3 9 2 . 9 5 1  
1 9 8 8 , 8 7 4  
3 2 5 8 . 8 8 2  
4 5 1 2 . 7 8 1  
S l 6 8 . 9 M 6  
5 7 0 2 . 8 0 8  
6 6 8 1 . 8 6 0  

440.61153 
7 8 0 . 5 1 5 7  
1 0 0 4 . 0 7 0  
1 8 6 3 , 6 1 4  
2 5 0 5 . 1 5 6  
3 4 9 1  .880  
6 0 6 3 . 5 3 6  
Y 4 2 3 . 4 9 1  
1 1 4 2 6 . 2 6  
1 3 1  8J. 7 3  
1 6 6 9 1 . 6 k  

7 7 . 8 3 5 7 4  
1 2 3 . 4 8 7 5  
1 4 8 . 1 8 6 3  
2 2 4 . 5 3 4 8  

5 7 8 . 4 0 4 7  
7 0 8 . 9 0 5 2  
1 2 2 4 . 8 7 6  
1 5 5 5 . 1 5 0  

2 4 6 6 , 4 7 3  

2 7 9 . 6 9 ~ 8  

1 ~ 5 3 . 6 7 8  

with age?). Is the evidence (confidence interval) convincing? Why? 
Note the sign of the coefficient -3.61 * * * for LWEB (In web thick- 
ness). Is it consistent with the theory that thicker webs tend to take 
longer to crack? Comment on the fact that the confidence interval for 
the coefficient encloses zero. 

(c*) Use the coefficient estimates and their covariance matrix to calculate a 
(positive) percentile estimate and approximate confidence limits at 
LWEB = - 1.61. Compare them with the output. 

(b) 
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(d) Describe how to test for adequacy of the model and how to calculate 
and analyze the residuals. 

(e*) Carry out (d). 
( f )  Suggest further analyses. 
(g) Carry out ( f ) .  

5.12. Left and right censored data. Analyze the data of Problem 3.10 us- 
ing a ML program. Suitably plot estimates and confidence limits. Include 
analyses of residuals, and assess the model and data. 

5.13. Thermal cycling. 18 cable specimens attached to an electronic 
module were thermally cycled over ranges of 190,140, and 100°C. Specimens 
were inspected after 12, 50, 100, and 200 cycles. The resulting interval data 
appear below. The purpose is to estimate cable life for a 40°C cycle. Use the 
power-lognormal model ( k ,  the Coffin-Manson relationship). 

AT(C‘) (0,12) (12,50) (50,100) (100,200) (200,oo) 

190 1 1 2 1 1 
140 2 1 3 
100 6 

_ _ _ - - _ _ _ _  

Plot the data as intervals on lognormal probability paper and on log-log 
relationship paper. Locate the failures evenly over their interval. 
Obtain ML estimates and 95% confidence limits for the model param- 
eters from the interval data. Is the confidence interval for the power 
parameter consistent with a value of 2, the rule of thumb? 
Obtain ML estimates and confidence intervals for percentiles of the life 
distribution at a temperature range of 40°C and at each test range. 
Plot the estimates and confidence limits for the distribution lines on 
probability paper with the data. Comment on consistency of the fitted 
distributions and the data. 
Calculate “interval” and censored (log) residuals. Locate failure resid- 
uals evenly over their intervals and treat them as observed. Pool (log) 
residuals and plot them on normal probability paper. Comment on the 
fit  relative to the sample size and interval nature of the data. 
Make a Peto plot of the interval residuals, using a computer package. 
Calculate and plot the estimate of the life distribution for AT = 40”C, 
assuming the power is 2. Plot confidence limits. 
Suggest further analyses. 
Carry out (h). 

5.14. Fatigue limits. Steel specimens were fatigue tested in a four-point 
bending test with stress ratio -1. There were two steels, each in two forms 
- Standard and Induction Hardened. The purpose of the testing was to 
compare the fatigue curves of all four steels, particularly with respect to fa- 
tigue limit. In the table below, stress is in ksi and life is in lo6 cycles. Speci- 
mens unfailed at 10 x lo6 cycles were runouts (censored t). 
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Steel A (Std) Steel A (I.H.) Steel B (Std) Steel B (I.H.) 

Stress Cycles 
57.0 0.036 
52.0 0.105 
42.0 10. t 
47.0 0.188 
42.0 2.221 
40.0 0.532 
40.0 10.t  
45.0 0.355 
47.0 0.111 
45.0 0.241 

Stress Cycles 
85.0 0.042 
82.5 0.059 
80.0 0.165 
80.0 0.223 
75.0 0.191 
75.0 0.330 
74.0 10.t  
72.0 10.t 
70.0 10. t 
65.0 10.t 

Stress Cycles 
75.0 0.073 
72.5 0.115 
70.0 0.144 
67.5 0.184 
65.0 0.334 
62.5 0.276 
60.0 0.846 
57.5 0.555 
57.5 3.674 
57.5 lo . t  
55.0 0.398 
55.0 lo . t  
55.0 10.t 

Stress Cycles 
85.0 0.126 
82.5 0.165 
80.0 0.313 
75.0 0.180 
65.0 lo.+ 
70.0 10. t  
91.6 0.068 
72.5 1.020 
75.0 0.6009 

(a) Plot both data sets from Steel A on semi-log paper. Place the linear 
scale vertical as the stress scale. Use the horizontal log scale for life. 
Comment whether the fatigue curves of the Standard and Induction 
Hardened forms differ convincingly, in particular the fatigue limits. 
Repeat (a) for Steel B on another plot. 
Graphically compare Standard Steels A and B. Comment whether they 
differ convincingly. 
Graphically compare Induction Hardened Steels A and B. Comment 
whether they differ convincingly. 
Obtain graphical estimates of the four endurance limits. Plot them as 
horizontal lines on the plots. Are these estimates convincingly different 
from zero? 

The following table presents key results from separate fits of the following 
endurance limit model to the four steels, Life is assumed to have a lognor- 
mal distribution. The fitted equation for median life is 

9s I 7 3  ; 

(b) 
(c) 

(d) 

(e) 

{lo^”/(s -73) -  , s > 7 3  
7 5 0  = oo 

here S is the stress in ksi and r3 is the fatigue limit. 
A A A # A 

Steel f^ r l - r 3 2 L r 3 -  72 U 

A Std -3.347 3.696 3.877 34.2 17.1 51.4 0.533 
A IH 7.847 -0,542 0.563 74.0 do not exist 0.212 

B IH 6.380 0.258 0.998 70.5 61.9 79.2 0.174 
pooled IH 2.067 0.153 1.034 72.0 71.8 72.2 

( f )  

B Std -7.775 3.440 3.237 48.6 25.3 71.9 0.529 

On the data plots, plot the estimates G3 and the 95% confidence limits 
(y3,r3). Comment why the upper limit is above a stress where failures 
were observed. That is, explain why the approximate theory for 
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confidence limits fails. Are the fatigue limits convincingly different 
from zero? Why? 
Calculate LR limits for 73.  

Suggest why the Fisher matrix for Induction Hardened Steel A is singu- 
lar, and thus approximate confidence limits cannot be calculated. 
Calculate and plot the median curve for each of the four steels. 
For each of the four steels, calculate the log residuals (log observation 
minus log median) and make a normal hazard plot. Is the lognormal 
distribution adequate? Why? 
Pool the residuals from both Standard steels and make a normal haz- 
ard plot. Is the lognormal distribution adequate? Why? Do this for 
the residuals from both Induction Hardened steels. 
Explain why it is not suitable to pool raw residuals from all four steels. 
Crossplot all Standard residuals (including censored ones) against 
stress. Comment on the appearance of the plot. 
Do (m) for the Induction Hardened residuals. 
Divide the Standard residuals in to two equal size groups (low versus 
high stress). Make a hazard plot of each group, and comment on their 
appearance. For most metal fatigue, is greater at lower stress than at 
high. Can this be seen here? 
Do (0) for the Induction Hardened residuals. 
Calculate unitized residuals for the four steels. Pool them all and 
crossplot them against stress. Comment on the plot. 
Make a normal plot of the residuals from (9). Comment on the plot. 
Repeat (0) for the residuals from (9). 

following table present key results of separately fitting the power- 
lognormal model (r3 =0) to the four steels. Here 7 5 0  = 10n/Sn. 

h A 
Steel L $2 (T 

A Std - 3.717 - 0.2524 - 15.07 0.552 
A IH -0.437 0.1975 -37.93 0.598 
B Std - 8.056 - 0.0701 - 14.88 0,536 
B IH - 1.090 -0.1950 - 17.71 0.397 
pooled IH - 4.289 -0.0212 - 24.91 0.578 

For each of the four steels, use the likelihood ratio test for r3 =O. 

Comment on the width of the confidence limits for r3. How much do 
you think an improved choice of test stresses would reduce the width? 
Can you justify your opinion? 

(w*) Write the expression for the log likelihood for (i) a failure at a stress 
above the fatigue limit, (ii) a survivor at a stress above the fatigue limit, 
and (iii) a survivor at stress below the fatigue limit. 

(x*) Sketch the general appearance of sample log likelihoods as a function 
of r3, using a “typical” set of data, say, one of the four above. 

5.15. $1,000,000 experiment. Redo Problem 3.9 using ML analyses. 

(t) 
(u) Suggest further analyses. 
(v) 
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Properly analyze the data as interval data; failures times as given in Prob- 
lem 3.9 are the midpoints of intervals. Analyze the residuals; for simplicity 
treat each failure as if it is at the center of its (log) residual interval. Test for 
a common u and for adequacy of any models you propose and fit. 

5.16. Oil. Do ML analyses for Problem 4.10. 

5.17.* Simple exponential model. This problem concerns ML theory and 
methods for fitting an exponential distribution and a log linear relationship to 
right censored data. The assumed relationship for the mean O(x) as a func- 
tion of the (possibly transformed) stressx is 

Write the likelihood for a sample of n units with r failure times and 
11 - r  right censoring times. ti andxi denote time and stress for unit i. 
Write the sample log likelihood. 
Derive the likelihood equations. 
Derive explicit ML estimates of the coefficients for a test with just two 
test levels of stress. Express these estimates in terms of the separate 
ML estimates of the two means at those two stress levels. Show that 
the fitted equation passes through those estimates. 
For a general test, calculate the matrix of negative second partial 
derivatives. 
For a test with two stress levels, evaluate the matrix (e) using the ML 
estimates for the unknown coefficient values. Express this local infor- 
mation matrix in terms of the separate ML estimates of the two means. 
Calculate the inverse of matrix (f) to get the local estimate of the 
covariance matrix. 
For a general test, calculate the expectation of (e), as described in 
Chapter 6, to get the theoretical Fisher information matrix. 
Calculate the inverse of (h) to get the theoretical covariance matrix. 
For a test with two stress levels, evaluate the matrix (i) using the ML 
estimates for the coefficients. Express this matrix in terms of the sepa- 
rate ML estimates of the two means. 
Give the ML estimates for the mean and failure rate at stress levelxo. 
Calculate the theoretical variances of the estimates (k). 
Calculate approximate normal confidence limits for (k) that are posi- 
tive. Calculate LR limits. 
Repeat (a)-(m) for interval data. 
Repeat (a)-(m) for quantal-response data, a special case of (n). 

5.18.* Simple Weibull model with known B. Repeat Problem 5.17 using 
a Weibull distribution in place of the exponential, assuming the shape param- 
eter /3 has a known value. For (k)-(m), estimate the lOOPth percentile. 

5.19.* Simple Weibull model with unknown B. Repeat Problem 5.18 
assuming the shape parameter jl is unknown and must be estimated. 
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5.20.* Endurance limit model. As follows, derive the ML theory for the 
fatigue limit model of Section 4.2. Use a lognormal life distribution. 
(a) Write the log likelihood for a sample of n specimens with r failure times 

and n - r  right censoring times. Let ti and Si denote the time and stress 
for specimen i. 

(b) Derive the likelihood equations. 
(c) Calculate negative second partial derivatives for the local Fisher matrix. 
(d) Assume you have the local estimate of the covariance matrix (the 

inverse of (c) evaluated at the ML estimates). Derive approximate 
confidence limits for (i) the fatigue limit 73 and (ii) the 100Pth percen- 
tile at stress So. 

5.21.* o depends on stress. Derive the ML theory for the model (4.2.2) 
and (4.2.3) of Section 4.2. Do (a)-(c) of Problem 5.20. 
(d) Assume you have the local estimate of the covariance matrix. Derive 

approximate confidence limits for (i) 75 and (ii) the lOOPth percentile at 
stress So. 
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Test Plans 

Purpose. This chapter presents accelerated tcst plans. I t  also gives thc 
accuracy (standard errors) of estimates from such plans and guidance on how 
many specimens to test. Presented here are optimal, traditional, and good 
compromise plans. Optimal plans yield the most accurate estimates of life at 
the design stress. Traditional plans consist of equally spaced test stress lev- 
els, each with the same number of specimens. Test engineers traditionally 
use such plans, which yield less accurate estimates than optimum and good 
compromise plans. As this chapter shows, traditional plans generally require 
25 to 50% more specimens for the same accuracy as good plans. So they 
rarely should be used. Good compromise plans run inore speciriierts at low 
stress than at high stress - an important general principle. Good plans based 
on principles presented here will yield better results for given test cost and 
time. Poor plans waste time and money and may not even yield the desired 
information. Nelson (1990) presents the most basic and useful test plans. 

Background. The simple models of Chapter 2 are essential background. 
Chapters 4 and 5 are desirable background, since the plans employ least 
squares and maximum likelihood estimates. However, this chapter can be 
read before Chapters 4 and 5. Indeed, in practice, one must decide on a test 
plan before analyzing the data. The test plans here are best suited to prod- 
ucts with a single failure mode, but they can be used for products with any 
number of failure modes. Sections4 and 6 of Chapter 1 describe many 
important considerations in planning a test which are not dealt with below. 

Overview. Section 1 presents traditional, optimum, and good comprom- 
ise plans for the simple model and complete data. Section 2 docs so for 
singly censored data, the most important case in practice. Section 3 explains 
a general method for evaluating the performance of any test plan with any 
model and type of data. Section 4 surveys the literature on accelerated test 
plans. Section5 provides the maximum likelihood (ML) theory used to 
evaluate test plans and to derive optimum ones. 

1. PLANS FOR THE SIMPLE MODEL AND COMPLETE DATA 

Purpose. This section deals with test plans for the simple linear model 
and complete data. It shows how to evaluate the accuracy of a plan and how 
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to determine sample size. This section also compares optimum and tradi- 
tional plans. Generally, tests yielding complete data run too long. However, 
theory for complete data appears here because it is simple and yields results 
that extend to more complex models and data. Chapter 4 is needed back- 
ground. However, Section 1.1 here briefly presents what is needed. Readers 
may prefer to skip to Section 2 on plans for censored data. 

Literature. There is much literature on optimum test plans for least 
squares fitting of linear relationships to complete data. For the simple linear 
relationship considered below, Gaylor and Sweeny (1965) summarize that 
literature and derive the optimum plan presented bclow. Daniel and Heerc- 
ma (1950) investigate plans for optimal extrapolation and cocfficienl estima- 
tion. Stigler (1971) presents good compromise plans. Little and Jcbe (1969) 
present optimal plans for extrapolation when specimens are tested individu- 
ally one after another, subject to a fixed total test time, where the standard 
deviation of log life may not be constant. Hoe1 (1958) derives optimum plans 
for polynomial extrapolation, rarely useful in accelerated testing. 

Overview. Section 1.1 presents needed background on the assumed 
model, estimates, and test constraints. Section 1.2 derives the optimum plan 
and its properties. Section 1.3 presents traditional plans, and Section 1.4 
compares them with each other and with the optimum plan. Section 1.5 de- 
scribes “good” test plans. 

1.1. Background 

Purpose. This section reviews needed background for Section 1. This in- 
cludes the simple linear-lognormal model, least squares estimates, the vari- 
ance of the least squares estimate (this variance is minimized by the optimum 
plan), and test constraints. 

Model. The assumptions of the simple linear-lognormal model are: 

1. Specimen life f at any stress level has a lognormal distribution. 
2. The standard deviation c of log life is constant. 
3. The mean log life at a (possibly transformed) stressx is 

A x )  = 70 + 71x. (1.1) 

Here 70, 71, and (T are parameters to be estimated from data. It is also 
assumed that 

4. The random variations in the specimen lives are statistically independent. 

The following results extend to any simple linear model with obvious 
modifications (Chapter 4). Of course, the following results are valid to the 
extent that the model adequately represents product life. 

Estimates. Suppose n specimens are tested at stress levels XI., x2 ,  - * * , Xn 

(some may be equal), and the observed log lives are y1, y2,  * * , yfi. From 
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Chapter 4, least squares estimates of 71 and 7 0  are 
- -  

c1 = [ D i ( x i  -X)] / [C(x;  -X)2], co = y -clx; (1.2) 

here each sum runs over the n specimens, and X = (xl t x 2  t - - * tx,,)/rz and j 
=(yl ty2 t * * * ty,)/n. The least squares estimate of the mean log life p(xo)  
at a specifiedxo (say, design stress) is 

m (xo) = co t qxo . (1.3) 

This is often the estimate of greatest interest. This estimate is statistically 
unbiased. That is, the mean of its sampling distribution equals the true value 
p(x,-,). The standard deviation of the sampling distribution is the standard 
error of the estimate in (1.5). 

Accuracy. The variance of 17z(xo) is 

var[nz(xo)] = ( 1  t (xo - X ) 2 [ r t / ~ ( x ;  -X)2]>02/rz. 

a[m(xo)l = { 1 t ( x o - ~ ) 2 [ r t / ~ ( x ; - ~ ) 2 ~ } * ~ a / ~ .  (1.5) 

(1.4) 

The square root of this variance is the standard error of m(x0); namely, 

Statisticians often work with the variance, because it is proportional to 1/11; 
thus it is more convenient for comparing sample sizes. However, the stan- 
dard error is easier to interpret for most people. In particular, the estimate 
m(xo) is within kK,a[ni(xo)] of the true p(x0) with probability 7; here K, is 
the standard normal 100(1+7)/2th percentile. The accuracy of nz(xo) for any 
test planq, * - ,x,, is calculated from (1.4) (or equivalently (1.5)) as shown in 
the following example. Section 1.2 presents the optimum choice ofx1, * - * , .r, 
to minimize (1.4) or equivalently (1.5). Section 4 discusses other critcria 
used to optimize tests. 

Heater example. For a test of sheathed tubular heaters, an engineer 
chose the four test temperatures (1520,1620,1660, and 1708°F) and allocated 
each six heaters - a traditional test. The Arrhenius-lognormal model is 
used. The variance of the estimate of mean log life at the design temperature 
of 1100°F is calculated as follows. The reciprocal absolute temperatures are 

= 

~7 = 

x i3  = 

3 1 9  = 

' ' = x6 = 1,0oo/(1520 t460) = 0.5051, 
* * = xi2 = 1,000/(1620t460) = 0.4808, 

* * *  = Xi8 = 1,000/(1660t460) = 0.4717, 
* * * = ~ 2 4  = 1,000/(1708t460) = 0.4613, 

X O  = 1,OOO/(1100t460) = 0.6410. 

Thenx = [6(0.5051) t 6(0.4808) t 6(0.4717) t 6(0.4613)]/24= 0.47975, and 

C(xj -X)2/~1 = [6(0.5051- 0.47975)2 t 6(0.4808 -0.47975)2 

t 6(0.4717- 0.47975)2 t 6(0.4613 - 0.47975)2]/24 

= 0.00026183. 
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By (1.4), for the actual plan, 

Var[m(0.6410)] = { 1 t [(0.6410- 0.47975)2/0.00026183]} d / 2 4 =  4.18$. 

The optimum variance below is 2.16c?, about half of this variance. 

* * ,  x,, are unconstrained, (1.4) 
and (1.5) are minimized by running all specimens at xo; that isxl = * * * = x,, = 
x o .  Then the test is not accelerated and is usually much too long. Thus it is 
necessary to choose a lowest allowed test stress level x ~ ,  which produces long 
life. This is chosen as low as possible to minimize (1.4). But x~ must be high 
enough so the specimens all fail soon enough. The highest allowed test stress 
xH, which produces short life, is chosen as high as possible to minimize (1.4). 
But xH must not be so high that 'it causes other failure modes or that the 
linear relationship (1.1) is inadequate. Then one wants to minimize (1.4) 
subject t o q ,  * * * ,x, all being in the test rangexL toxH. 

Test constraints. If the test stresses L ~ ,  

13. The Optimum Plan 

Optimum stress levels. The following optimum test plan for a simple 
linear-lognormal model (such as the Arrhenius-lognormal model) and com- 
plete data appears in Daniel and Heerema (1950) and in Gaylor and Sweeny 
(1965). The optimum stress levels are the minimum and maximum in the al- 
lowed test range. Intermediate levels are not used. For comparisons with 
other plans, the optimum allocation of ti test units to those two levels is 
derived here. The minimum variance of the least squares estimate (1.3) of 
the mean log life for the specified design stress level is also given. This op- 
timum plan does not take into account the length or cost of the test. 

Extrapolation factor. For a stress level x ,  define the extrapolation factor 

c =  ( x H - M - w - x L ) ;  (1.6) 

herexL is the lowest allowed stress level andxH is the highest one. Figure 1.1 
depicts the meaning of [ as the ratio of the length of the long arrow over the 

Figure 1.1. Depiction of the extrapolation factor (. 
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short arrow. Thus € is how far x is from XH as a multiple of the test range 
(XH-XL).  A large ( corresponds to long extrapolation, and a f close to 1 
corresponds to short extrapolation. Then & = O  for x = x ~ ,  and &=l  for 
x = x ~ .  For the design stressxo, €0 = (xH-xO)/ (xH-xL)  is greater than 1, since 
the design stress level is assumed to be below the test range. 

Optimum allocation. A derivation of the optimum allocation of 11 test 
specimens follows. Let p denote the proportion tested at XL ((= 1); 1 - p  are 
tested at XH ( ( = O )  . Thus the = (XH -xi)/(xH - x ~ )  values of the specimens 
a ree l=  * * - = ( p = l a n d ( , , n + l =  ... =&=O,and 

since Di=iip, <=p, and D:=np. Such variance formulas contain the 
unknown true 0. The fractionp* that minimizes (1.7) is 

P* =(o/(Xo - 1). (1.8) 

var,"~l(x,)l=[1+~0(€0 - W / n .  (1.9) 

This always exceeds 1/2 for extrapolation (to > 1). Thus, test more specimens 
at the low stress than at the high one. The minimum variance is 

The number of specimens allocated to the low test stress is the integer 
nearest to np*. Such rounding results in a variance slightly larger than (1.9). 
The optimum plan may be impractical in many applications, as explained in 
Section 1.5. This allocation also minimizes the variance of the least squares 
estimate of the lOOPth percentile of log life yp(x0)  = m(x0) t zps. For the 
simple linear-lognormal model (1.1) and complete data, this optimum plan 
does not depend on the true, unknown values of the parameters 70,71, and u. 

Extreme allocations. Two extreme cases of (1.9) are informative. First, 
if the lowest test stress equals the design stress ( x ~ = x ~ )  , then b = 1  and 
p* =l. That is, all specimens should be run at the lowest test stress XI-.  

Second, ifxo is much belowxL (that is, as to-) , thenp* = 1/2. That is, the 
specimens are allocated equally to XL and xH. The curve for Varl[in(xo)] 
versus co appears in Figure 1.2. 

Class-H example. For the Class-H insulation discussed in Chapters 3 and 
4, the optimum allocation and variance follow. The design temperature is 
To=180"C (xo = 1,000/453.2"K = 2.207), and the extreme allowed test tem- 
peratures are TL = 190°C (XL = 1,000/463.2"K = 2.159) and TH = 260°C 
(xH= 1,000/533.2"K = 1.875). The extrapolation factor is €0 = (1.875- 
2.207)/(1.875-2.159)=1.17. Here €0 is close to 1; that is, the design tern- 
perature is close to the test range. The optimum fraction of specimens allo- 
cated to 190°C isp* = 1.17/(2(1.17) - 1) =0.87. That is, 87% of the specimens 
are tested at 190°C and 13% at 260"C, a very unequal allocation due to the 
short extrapolation. Of 40 specimens, 0.87(40) =: 35 would be tested at 190°C 
and 0.13(40) =: 5 at 260°C. The minimum variance from (1.9) is 



322 TEST PLANS 

P 

c 
iz 



PLANS FOR THE SIMPLE MODEL AND COMPLETE DATA 323 

Var&n(xo)] = [1+4(1.17)(1.17- l)][d/n] = l.sod/n. 

The value 1.80 can be read from Figure 1.2, Enter the figure on the horizon- 
tal scale at €0 = 1.17, go up to the curve labelled Vari  and then horizontally to 
the variance scale to read 1.80. For n =40, Var,”nt(2.207)] = 0.049. 

Heater example. An accelerated life test was to estimate the life of 
sheathed tubular heaters at a design temperature of To = 1100°F 
(XO = 1O00/(1100 t 460) =0.6410). The extreme allowed test temperatures 
were TL = 1520°F (XL = 1Oo0/(1520 t 460) = 0.5051) and TH = 1708°F 
(XH = 1OOo/(1708 t 460) =0.4613). Then €0 = (0,4613-0.6410)/(0.4613- 
0.5051)= 4.10. Here the design temperature is far from the test range. The 
optimum fraction of specimens at TL isp* =4.10/[2(4.10) - 1]=0.57. That is, 
57% of the specimens are to be tested at 1520°F and 43% at 1708”F, almost 
equal allocation. Of 24 test units, 0.57(24) = 14 would be tested at 1520°F 
and 0.43(24) 

Var,”m(0.6410))=[1t4(4.10)(4.10-1)] $ / n  =51.8 $ / ) I .  

51.8 can be read from Figure 1.2. This variance is 29 times that for the previ- 
ous example. This high multiple results from much greater extrapolation 
here. For n =24, Var;[m(O.6410)] = 2.1@. 

While optimum (minimum variance) allocation is seldom used in prac- 
tice, it provides useful guidance in the choice of a test plan. A good test plan 
for estimating mean log life at the design stress level should use unequal allo- 
cation and be close to the optimum one within the practical constraints dis- 
cussed in Section 1.5. 

10 at 1708°F. The minimum variance from (1.9) is 

13. Traditional Plans 

Definition. A commonly used test plan has equally spaced test stress lev- 
els and equal numbers of specimens at each. Such traditional plaits with 
equal allocation of specimens to two, three, and four stress levels are de- 
scribed here for comparison with better plans. Traditional plans are not 
recommended. Better plans yield more accurate estimates of the life distri- 
bution at the design stress level. Optimum and good compromise plans with 
unequal allocation should be used instead. 

”ko stress levels. For two levels with equal allocation (it/2 specimens at 
each level), & = - - * = &n/2) = 1, and f (n /2 ) t  = * * * = f,, = 0. Then 

Var&n(xo)] = [1+4(& -0.5)2]$/n, (1.10) 

since Ei = n/2, 
appears in Figure 1.2 as the curve Varz. 

= 0.5, and ET = r t /2 .  Var2[nt(xo)] as a function of €0 

Three stress levels. For three equally spaced levels with equal allocation 
( n / 3  specimens at each level), El = * - * = € n / s  = 1, €(n/3)t1 = * * * = 
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h n / 3  1/29 €(2n/3)+1 = * ' * = en = 0. For the theory here, spacing is equal 
on the transformed x scale - not on the scale of the original accelerating 
variable. This small difference can be ignored for simplicity. Then 

Var3 [in (xo)] = [ 1 t 6(& - 0.5)2]# /n, (1.11) 

since Di = n/2, 
in Figure 1.2 as the curve Var3. 

= 0.5, and zf = 51/12. Var3[nt(xo)] versus &-, appears 

Four stress levels For four equally spaced levels with equal allocation 
(n/4 specimens at each level), €1 = * * * = &/4 = 1, C(n/4)+1 = * ' * = 

tn/2 2/3, @1/2)+l = * ' = h n / 4  =: 1/39 and <(3n/4)+1 = * ' ' = en = 0. 
Then 

va4 [m (xo)] = 11 t (36/5) (b - 0.5)2 12 / I t ,  (1.12) 

since Ei = n /2, = 1/2, and Ej = 711 /18. Var4[nt(xo)] versus (0  appears 
in Figure 1.2 as the curve Var4. 

Class-H example. The test plan for the Class-H insulation consisted of 
four roughly equally spaced test temperatures with equal allocation. For the 
design temperature 18O"C, c0 = 1.17, and 

Var4[m(x0)] =: [l t (36/5)(1.17-0.5)2]d/n = 4.23 $/n, 

The value 4.23 can be read from Figure 1.2 from the Var4 curve. 

1.4. Comparison of the Test Plans 

Comparisons. The test plan variances in Figure 1.2 can be compared by 
looking at their ratios for limiting values. For €0 = 1, the design stress level 
is at the lower end of the test range. For to+oo, the design stress level is far 
below the test range. These ratios appear in Table 1.1. These ratios and 
their reciprocals are graphed versus fo in Figure 1.3. The reciprocals give the 
fraction of the sample needed with the better plan to achieve the same accu- 
racy as the poorer plan. For any extrapolation, to, Figure 1.3 shows 
Var;cVa2<Var3<Var4. Table 1.1 and Figure 1.3 show the following. For 
a given variance, equal allocation with two levels requires 0 to 100% more 
specimens than the optimum plan. Similarly, equal allocation with three lev- 

Table 1.1. Extreme Variance Ratios for Optimum and Traditional Plans 
Ratio fo = 1 (O+OO 

var2/var; 2.00 1.00 
Var3/Var2, 2.50 1.50 
Var4/Var2 2.80 1.80 
Var3/Var2 1.25 1.50 
var4/var2 1.40 1.80 
~ a r 4 / ~ a r 3  1.12 1.20 
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Figure 13. Variance ratios versus the extrapolation factor to 

els requires 50 to 150% more specimens, and equal allocation with four levels 
requires 80 to 180% more. For a given standard error of an estimate, a tradi- 
tional plan with three levels requires 25 to 50% more specimens than one 
with two levels. A traditional plan with four levels requires 40 to 80% more 
specimens than one with three levels. 

Class-H example. The Class-H insulation test employed four roughly 
equally spaced test temperatures with equal allocation. The ratio of the vari- 
ances of the optimum plan (1.9) and this plan (1.12) for CO = 1.17 is 

Var~[m(xo)]/Var;[m(xo)] = 4.23/1.80 = 2.35. 

2.35 can be read from Figure 1.3 for to = 1.17. Thus, the actual plan requires 
135% more specimens than the optimum one for the same accuracy. 
Equivalently, the accuracy achieved with 40 specimens with this traditional 
plan could have been achieved with the optimal plan with 40/2.35 17 speci- 
mens. This statement ignores the rounding of the optimum allocation to an 
integer; namely 17(0.87) =: 15 specimens at 190°C and 17(0.13) ~2 at 260°C. 
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1.5. Good Test Plans 

Drawbacks. An optimum (minimum variance) test plan has two stress 
levels and yields the most accurate estimate of the mean log life, provided 
the model and data are valid. However, an optimum plan has drawbacks, 
and there are practical reasons to employ more stress levels as follows. 

The high stress may cause some failures from modes different from those 
at the design stress. Then those data are less informative. Also, they must 
be analyzed with the methods of Chapter 7. This suggests there should be 
at least three test levels. 
The assumed simple linear relationship may be inadequate. There must be 
at least three test levels to check linearity or to fit a nonlinear relationship. 
Specimens at a test level may have to be discarded due to some problem 
with them. For example, one of the test ovens may not properly hold the 
temperature, and those specimens must be omitted from analyses. 
It is possible that no specimens at the low stress fail by the time the data 
must be analyzed. Then the relationship cannot be estimated. Specimens 
at an intermediate stress are likely to fail in time. 

Figure 1.3 shows that little additional accuracy is lost with four rather than 
three levels. Three or four test stress levels give a plan robustness against 
such difficulties. For extrapolation, the variance of the estimate is still 
greater with more than four levels. The main drawback of traditional plans is 
that they have poor accuracy. 

Good plans. A good plan should be multi-purpose and robust and pro- 
vide accurate estimates. Such a plan consists of three or four equally spaced 
test levels with unequul allocation. Such unequal allocation puts more speci- 
mens at the extremes of the test range and fewer in the middle. Also, allo- 
cate more specimens to the lowest level; this is especially effective if the 
design stress is close to the test range. The accuracy of such a plan is ob- 
tained by evaluating (1.4) or (1.5). Of course, more specimens at the lowest 
test level results in longer test time until all specimens fail. The time to com- 
plete the test can be controlled in part by the choice of the lowest test stress 
level. In summary, if one is sure that there will be no difficulties, then use the 
optimum plan. Otherwise, use more than two test stress levels and unequal 
allocation so the plan will be robust. Stigler (1971) describes some 
compromise plans. 

Wire varnish example. A temperature-accelerated test of wire varnish 
(electrical insulation) for motors was planned to estimate median life of var- 
nish at 180"C, the design temperature. The chosen test range was 220 to 
260°C. The proposed compromise plan had 16 twisted-pair specimens at 
220"C, 6 at 24", and 8 at 260". The variance of the estimate of mean log life 
at 180" is calculated from (1.4) as 0.469d. The variance of the optimum plan 
is 0 . 3 7 9  by (1.9); then 65% of the specimens are at 220°C and 35% at 
260°C. This same 2 to 1 ratio is used in the compromise plan, that is, 16 at 
220°C to 8 at 260°C. The variance of the traditional plan with 10 specimens 
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at each temperature is 0.595? by (1.11). The ratio 0.595/0.469=1.27 indi- 
cates that the traditional plan needs 27% more specimens than the 
compromise plan to achieve the same accuracy. Similarly, the compromise 
plan requires 25% more specimens than the optimum plan. 

1.6. Sample Size 

Purpose. Preceding discussions compare plans when the number n of 
specimens is given. As follows, one can determine the number 11 that 
achieves a desired accuracy of the estimate of the mean log life or median life 
at a design stress. Odeh and Fox (1975) give charts to determine sample size 
for linear and quadratic relationships. 

Mean log life. To determine n, one can specify that the estimate m ( x 0 )  is 
to be within fw of the true p(xo) with high probability 7. For any test plan, 
the I I  that achieves this is (1.5) rewritten as 

n = { 1 + (xo --X)2[n /C(q -X)2]}(K,u/w)2. (1.13) 

The quantity in [ ] does not depend on n. As before, 0 must be guessed or 
estimated from comparable data. 

Class-H example. For Class-H insulation, suppose that m(180") is to be 
within w =0.10 of Lc(180") with probability 7=0.95. Also, suppose that equal 
allocation will be used with the same four test temperatures. The needed 
sample size is obtained from (1.12) rewritten as n -[1t7.2(1.17-0.5)2] 
(1.96~0.1053)2/(0.10)2 -19; here to = 1.17, and s = 0.1053 estimates u. This 
would be rounded to 20 to get 5 specimens for each test temperature. 

Other estimates. The preceding method for determining an appropriate 
11 extends to any parameter estimate. Formulas for the standard errors of the 
various estimates appear in Chapter 4. They can be rewritten to express the 
desired n in terms of a specified multiple K ,  of the standard error. 

Median life. An equivalent formula for determining sample size n uses 
the relationship 7 5 0 ( ~ 0 )  = antilog[p(xo)]. One can specify that the estimate 
f , 5 o ( ~ o )  = antilog[m(xo)] be within a factor r of r , 5 0 ( ~ 0 )  with high probability 
7. That is, t . 5 0 ( ~ 0 )  is in the range ~ , 5 0 ( ~ o ) / r  to ~ ~ , 5 0 ( ~ 0 ) .  For any test plan, the 
sample size that achieves this is (1.13) rewritten as 

n = { 1 + (xo -X)2[n /C(Xj -X)2]}[K,u/log(r)]? (1.14) 

Class-ZI example. Suppose that the estimate of median life at 180°C is to 
be within a factor r=1.10 (within about 10%) of the true median with 95% 
probability. Also, suppose that the test plan uses four equally spaced tem- 
peratures as before. The sample size that achieves this is (1.12) rewritten as 

t~ =[1 t7.2(1.17-0.5)2][1.%~0.1053/1~g(l.10)]2 105; (1.15) 

here to = 1.17 and 0.1053 estimates 0. 
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2. PLANS FOR THE SIMPLE MODEL AND SINGLY CENSORED 
DATA 

2.1. Introduction 

Purpose. This section presents optimum accelerated life test plans for 
ML estimates of median life with a simple model and singly censored data. 
Also, “traditional plans” (with equal numbers of specimens at equally spaced 
test stresses) and good compromise plans (including the Meeker-Hahn 
plans) are presented and compared with the optimum plans. The plans are 
illustrated with a temperature-accelerated life test of Class-B insulation, as- 
sumed to have a lognormal life distribution. Experience with such insulation 
supports this assumption. The plans indicate a general result. Namely, to get 
more accurate estimates of the life distribution at a low design stress, run 
more specimens at the lowest test stress than at the highest one. 

Literature. Various authors have studied accelerated test plans for the 
simple linear model and singly censored data. References are listed below 
according to the distribution. 
0 Exponentid. Chernoff (1962) presents optimum plans for estimating the 

mean or, equivalently, the failure rate, assuming a log-linear relationship 
and others. 

0 Lognonnal. Kielpinski and Nelson (1975) present optimum and best tradi- 
tional plans for estimating a simple linear relationship for mean log life. 
Nelson and Kielpinski (1976) derive the ML theory for such plans. Meek- 
er (1984) and Meeker and Hahn (1985) present good compromise plans 
for estimating a percentile; they compare their plans with optimum and 
traditional plans. Barton (1987) adapts the optimum plan to minimize the 
maximum test stress while achieving a desired accuracy. Meeter and 
Meeker (1989) investigate plans for models with nonconstant 0. 

0 Weibull. Meeker and Nelson (1975) present optimum plans for estimating 
selected percentiles (lst, loth, and 50th), assuming a log-linear relationship 
for the characteristic life a. Nelson and Meeker (1978) derive the ML the- 
ory for such plans. Meeker (1984) and Meeker and Hahn (1985) present 
good compromise plans for estimating a percentile; they compare their 
plans with optimum and traditional plans. Meeter and Meeker (1989) in- 
vestigate plans for models with nonconstant /3. 
Logistic. Meeker and Hahn (1977) present optimum plans for estimating a 
low failure probability from quantal-response data. 

Computer program. Jensen (1985) provides a computer program that 
evaluates all tests plans in Section2 and others listed below. The user 
specifies a simple (transformed) linear-Weibull or -lognormal model, its as- 
sumed parameter values, the common censoring time, the highest test stress 
level, the design stress level, and a percentile of interest at the design stress 
level. The program optimizes and calculates the asymptotic variance of the 
ML estimate of that percentile for the following plans: 
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Completely specified user plan (Section 5). The user specifies all test 
stress levels and the allocation of specimens to them. Here the program 
does not optimize the plan. 
Optimum plan with two test stress levels (Section 2.4). The program op- 
timizes the low stress level and the allocation. 
Best traditional plan with three equally spaced test stress levels and equal 
allocation (Section 2.3). The program optimizes the low stress level. 
Best compromise plan with three equally spaced test stress levels and 
10% or 20% of the specimens allocated to the middle level (not in this 
book). The program optimizes the low test stress and the allocation of 
the remaining 80 or 90% to the low and high stress levels. 
Best plan with three equally spaced test stress levels and (A) the same ex- 
pected number failing at each (not in this book, as it compares poorly 
with other plans). The program optimizes the low test stress while satis- 

Meeker-Hahn plans with three equally spaced test stress levels and 4:2:1 
allocation (Section 2.6). The program optimizes the low test stress. 
Adjusted Meeker-Hahn plans (Section 2.6), which use a lower low stress 

fying (A). 

The program runs on IBM PCs and compatibles. 

Overview. Section 2.2 presents the accelerated test problem, including 
the test method and model; it also discusses ML estimation and other back- 
ground material. Section 2.3 presents the best traditional plans with equally 
spaced test stresses, each with the same number of specimens. Section 2.4 
presents the optimum plans. Section 2.5 compares the traditional and op- 
timum plans and suggests good compromise plans. Section 2.6 presents good 
compromise plans of Meeker and Hahn (1985). 

22. Background 

Purpose. This section presents the test method, the assumed model, an 
example, estimation methods for censored data, the criterion for an optimum 
test, and other needed background. 

Test method. It is assumed that 

1. Each test unit runs a specified test time T (the censoring time) if it does 
not fail sooner. That is, the data are time censored. 

2. The highest test stressxH is specified. 
3. The specified design stressxo is below the test stresses. 

The test time T should be as long as practically and economically feasible to 
minimize the variance of estimates from the test. A test could continue 
beyond T for a later analysis. Q 3 log(7) is the log of the censoring time. In 
practice, sometimes high-stress specimens are removed from test before time 
7; then the estimates are less accurate. The highest test stress XH should be as 
high as possible. This minimizes the standard error of the estimate of any 
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percentile at the design stress. However, the highest stress should not cause 
failure modes different from those at the design stress (Chapter 7), and the 
model should be valid over the range of the design and test stresses. 

Model. The assumptions of the simple linear-lognormal model are: 

1. At any stress, life has a (base 10) lognormal distribution. 
2. The standard deviation Q of log life is a constant. Meeter and Meeker 

(1989) investigate optimum plans for nonconstant Q. 

3. The mean log life is a linear function of a (possibly transformed) stressx: 

&) = 7 0  71x. (2.1) 

The model parameters 70,71, and Q are to be estimated from test data. 
4. The lives of the test units are statistically independent. 

Then the lOOPth percentile of life T - ~  ( x )  or log life p(x)  at a stress x is 

VP ( x )  = logbf (x) ]  = /&) z fu  = 7 0  -t 71x -t ZPU; (2.2) 

here z p  is the standard normal lOOPth percentile. T - . ~ ~ ( X )  = antilog[p(x)] is 
the median and is commonly used as a typical life. The following results 
extend to other life distributions, as described in the literature above. 

Estimates. ML estimates are used here, rather than linear estimates or 
the other estimates, because: 

1. Optimum plans for ML estimates are easier to calculate than those for 
linear and other estimates. 

2. ML estimates have a minimum standard error for large samples. For 
small samples, the ML estimates are generally as accurate as others. 

3. Linear and other methods are more suited to data with failure censoring. 
They are not strictly correct for the time censoring considered here, 
whereas ML methods are correct. 

4. The optimum design for ML estimates is close to optimum for any other 
estimates, even graphical ones. 

5. In addition, available computer programs do the laborious ML calcula- 
tions. There are no such programs for the laborious linear estimates. 

Hahn and Nelson (1974) compare various estimation methods in detail. 

Optimization criterion. Here an optimum test plan minimizes the vari- 
ance (or standard error) of the ML estimate of the median life at a specified 
(design) stress XO. Median life is of greatest interest in the example and 
many other applications. The estimate of another percentile (2.2) could be 
optimized; this would require a different plan. Meeker (1984) presents 
optimum plans for estimating the 1st and 10th lognormal percentiles. 
Meeker and Nelson (1975) present such optimum plans for estimating per- 
centiles with the linear-Weibull model. 

Class-B example. An insulation life test illustrates the test plans. To 
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evaluate a new Class-B insulation for electric motors, a temperature- 
accelerated life test was run. The purpose was to estimate the median life of 
such insulation at the design temperature of 130°C using the Arrhenius- 
lognormal model, which is a special case of the model above. Here stress is 
x = l,OOO/T, where T is the absolute temperature. Ten insulation specimens 
were run at each of four test temperatures (l5O0C, 170"C, 190°C, 220°C). 
Crawford (1970) gives the data, which are time censored at 8,064 hours. Fol- 
lowing sections present test plans that are better than the actual one. For 
convenience, specimens at different temperatures started on test at different 
times and so have different censoring times. However, if started together, 
they would have yielded more information earlier. For illustrative purposes, 
we assume that all specimens start together. 

Notation. Suppose that the specified highest test stress is x ~ ,  and the 
mean log life is p ~ = 7 0  t 7 l x H .  Also, suppose that the specified design stress 
is xo, and the mean log life is h '70 t71~0. Figure 2.1 depicts these quanti- 
ties and the model in a relationship plot. We use the standardized censoring 
time and slope 

Q 3 ( t l - l r H ) / 0 ' ( t l - 7 0 - 7 l x H ) / 0 ,  b ( h - p H ) / a = 7 l ( x o - x H ) / a .  (2.4) 

Q and b characterize a test plan and must be approximated. Optimum plans 
for censored data require one to specify values for the (usually unknown) 
true model parameters r0, yl, and a to calculate a and b .  In  contrast, 
optimum plans for linear models and complete data do not depend on 
parameter values. So for censored tests one must approximate parameter 
values from experience, similar data, or a preliminary test. An optimum test 
plan using crude values is generally better than a plan devised by other 
means. Chernoff (1953,1962) calls such plans "locally optimum," since they 
are optimum only for the assumed parameter values. 

'0 'L 'H ' 

Figure 2.1. Relationship plot of model and notation. 
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Class-B example. For the Class-B insulation of Chapter 5, q = 
A A l0g(8,064) = 3.9066, 70 = -6.0134, 71 = 4.3083, G = 0.2592, XH = 1,OOO 

/(220 t 273.16) = 2.0277, andxo = 1,O00/(130 t 273.16) = 2.4804. Thus, 

u = [3.9066 - ( - 6.0134) - 4.3083(2.0277)]/0.2592=4.57, 

b = 4.3083(2.4804 - 2.0277)/0.2592= 7.52. 

23, Best Traditional Plans 

Traditional plans. This section presents traditional plans, which are 
commonly used. Traditional plans have K equally spaced test stresses, each 
with the same number of test units. The highest test stress XH must be 
specified. The "best" plan uses a lowest test stress xL that minimizes the 
standard error of the ML estimate of the log mean at a specified design 
stress x o .  Best traditional plans are not recommended despite their wide use. 
It is better to use an optimum plan (Section 2.4) or a good compromise plan 
(Sections 2.5 and 2.6). Traditional plans are presented only to show they are 
generally inferior and to discourage their use. 

Lowest test stress. The best lowest test stressxL is given by Nelson and 
Kielpinski (1976) as 

XL = X H  t EK (xo - x H )  ; (2.5) 

Figure 2.1 depicts &. Figures 2.2A and B give e2 and E4 as a function of K, a, 
and b. €3 = (& tE4)/2; Nelson and Kielpinski (1972) give such a graph of c3. 
Their graphs for K=2, 3, and 4 include b values down to 0.1. To use Fig- 
ure 2.2, find the b value on the horizontal scale; go straight up to the curve 
for the a value (interpolate); and then go horizontally to the vertical axis to 
read the & value. Note that the definition of fK here differs from that of < in 
Section 2.1. A transformed valuexL must be converted to the stress value. 

Class-B example. For K =4 test stresses and a =4.57 and b =7.52, 
c4=0.72 from Figure2.2B. For the highest test temperature of 220"C, 
~ ~ = 2 . 0 2 7 7 ;  for the design temperature of 130°C, xo=2.4804. So the best 
lowest stress is xL = 2.0277 t 0.72(2.4804- 2.0277) = 2.3536, which is 
TL = (l,O00/2.3536) -273.16= 152°C. The experimenter had used 15OoC, and 
four roughly equally spaced temperatures. But each temperature had a 
different censoring time; this is ignored for the purpose of an example. 

Several censoring times. For some tests, the data are analyzed at various 
points in time. For example, TL = 152°C is best only for the censoring time of 
8,064 hours (a time when the data were analyzed). The test was terminated 
at 17,661 hours, and the data were reanalyzed. For this censoring time, 
T~=140'C is best. There may be several censoring times when the data are 
analyzed. Then choose the most important time or a compromise, and use 
its best plan. 
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Equal spacing. The charts for best traditional plans assume that the 
transformed stresses are equally spaced. For the Arrhenius relationship, 
reciprocal absolute temperatures are equally spaced rather than tempera- 
tures. In practice, either can be equally spaced, and the charts are close 
enough. 

Standard error. For such a best plan with n specimens, the large-sample 
standard error of the ML estimate j& = $o +qlx0 of = qo +ylxo is 

&)=am(VK/n)l’l ; (2.6) 
here VK depends on K, a, and b. Figures 2.3 and 2.4 are graphs of V, and V4. 
V, H (V, + V4)/2, and Kielpinski and Nelson (1975) give such a graph of V,. 
For the example, a =4.57 and b =7.52, and Figure 2.4 gives V4 = 10.2. VK is a 
decreasing function of a and an increasing function of b. The minimum pos- 
sible V, value is 1. For practical values of a and b, the best traditional plan 
with two stresses is more accurate (smaller o(&)) than that with three 

I .o 2.0 3.0 5.0 10.0 b 20 30 50 I00 
Figure 23. Variance factor V, for the best traditional plan with two stresses. 
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Figure 2.4. Variance factor V4 for the best traditional plan with four stresses. 

stresses, which is more accurate than that with four stresses. That is, 
V, c V, c V, for practical a and b. 

Sample size. Determine a sample size as follows. One requires that, with 
a desired high probability 7, &, fall within +w of the true A. The sample size 
iiK that achieves this is approximately 

nK I/K(K7u/w)* (2.7) 

To determine nK, one must approximate the model parameters, since their 
true values are not known. After the data are collected, one obtains a 
confidence interval for p,-, and ignores w. 

Too big a sample. If the calculated n~ is impractically large, one must be 
content with fewer specimens and less accuracy. Otherwise, one must use a 
better plan which a) has fewer test stresses, b) has a higher highest test stress, 
c) has a higher censoring time, or d) is closer to an optimum plan. 
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Median. One can specify the accuracy of the ML estimate of the median 
r.so(xo)=antilog(&,) as follows. One requires that, with a high probability 7, 
the estimate falls between r.so(xO)/r and rT.so(xo). For r near 1, 100 I r -  1 I is 
the approximate percent error in the estimate. Then use w =log@) in (2.7) to 
calculate nK. 

Class-R example. Suppose the median estimate for 130°C is to be within 
20% of the true median with 90% probability. That is, r = 1.20 and w = 

log(1.20)=0.0792. Also, V4 = 10.2 and Q = 0.259. Then n4 = 10.2 
[1.645(0.259)/0.0792]* = 295. The actual sample size was 40; this 
corresponds to a factor r H antilog[1.645(0.259)(10.2/40)'p] = 1.7. Thus, 
with 90% probability, the estimate ?-s0(2.4804) will be within a factor of 1.7 of 
the true median. 

A 

2.4. Optimum Test Plans 

Purpose. This section describes optimum test plans. They use two test 
stresses with unequal numbers of specimens. It is assumed that the high test 
stress XH is specified. The low test stress XL and its proportion of the speci- 
mens are chosen to minimize the standard error of the ML estimate & of the 
median at a specified stress xo. Such optimum plans are also good for com- 
paring medians of a number of products at xo; then an optimum plan yields 
the most precise estimate of each product median at the stress. 

Optimum stress. The optimum low test stress is given by Nelson and 
Kielpinski (1976) as 

XI. =xH+(*(xo-XH); (2.8) 

here (* is a function of a and b and is given in Figure 2.5. (* corresponds to 
(K in Figure 2.1. 

Class-B example. For the insulation, a =4.57, b =7.52, x~=2.0277, and 
xo = 2.4804. Then XI. = 2.0277 + 0.63(2.4804 - 
2.0277) = 2.3129, and Ti = (1,000/2.3129) - 273.16= 159°C. The actual lowest 
test temperature was 150°C. 159°C is optimum only for the censoring time of 
8,064 hours (a time when the data were analyzed). The test was terminated 
at 17,661 hours; then the optimum low test temperature is 148°C. 

Optimum allocation. The optimum proportion p* of specimens at XI. 
depends on a and b as shown in Figure 2.6. Charts of Nelson and Kielpinski 
(1972) cover b values down to 0.1. For the example, Figure 2.6 yields 
p* =0.735. That is 73.5% of the specimens would be tested at 159°C. For a 
sample of 40, (0.735)40 = 29 specimens would be tested at 159°C and 11 at 
220°C. p* >0.50 for practical a and b values. 

Standard error. For an optimum plan with ti specimens, the large- 
sample standard error of &, is 

Figure 2.5 yields E* = 0.63. 
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I .o 2.0 3.0 5.0 10.0 b 20 30 50 100 

Figure 2.7. Variance factor V* for the optimum plan. 

here Ir* depends on a and b and is given in Figure2.7. For the example, 
V* =6.5. For any u and b, the optimum plan has a smaller standard error 
than any plan with the samexH and log censoring time 9. Comparisons of the 
best trhditional and optimum plans appear in Section 2.5. 

Sample size. (2.7) gives the desired number n* of specimens, but use V* 
in place of VK. For the example, suppose that the median estimate at 130" is 
to be within 20% of the true median with 90% probability. Then r = 1.20 and 
V* = 6.5. So, for the optimum plan, n* = 6.5[1.645(0.259) / 10g(1.20)]~ = 
188. The corresponding sample size for the best traditional plan with four 
test temperatures is n4=295. Here the best traditional plan requires 57% 
more specimens than the optimum plan for the same accuracy. 

No failure. With the optimum plan, there is a possibility that none of the 
nyl =p*n specimens at low test stress fail. That is, each specimen's log life Y 
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exceeds the log censoring time q. Then 7 0  and 71 cannot be estimated. It is 
useful to calculate the probability of this to assure it is negligible; namely, 

P{fZone}=[P(Y>rl)lnt = { @ [ - ( q - P L ) / . ] } " t  . (2.10) 

For the Class-B example, p~ = 70+7lxt = -6.0134 + 4.3083(2.3129) = 

3.9513 and P{nonel = {O[ -(3.9066-3.9513)/0.2592]}29 = 7 .7~10-~ .  This is 
small enough to ignore, provided the parameter values are accurate enough. 
It is useful to recalculate this probability with other parameter values. 

2.5. Comparison of Optimum, Best Traditional, and Good Compromise 
Plans 

Purpose. This section compares the optimum and best traditional plans 
with respect to: 

1. their standard errors (2.6) and (2.9) and 
2. their robustness to an incorrect model or data. 

Compromise plans with both good accuracy and robustness are suggested. 

Compare accuracy. Nelson and Kielpinski (1972) give graphs for 
n 2 / n * =  V 2 / P ,  n3/n*=V3/V*, and n 4 / f Z * = v 4 / / * ;  these are the ratios of 
the sample sizes of traditional and optimum plans with equal standard errors 
(2.6) and (2.9). For the example, we compare the optimum plan and the best 
traditional plan (K =4). Since a =4.57 and b =4.52, n4/1~*  = V4/V* = 1.57 
from their graph. Thus the best traditional plan here needs 57% more speci- 
mens than the optimum plan. 

Plans with two stresses. Figure 2.5 for (* and Figure 2.2A for (2 are 
similar. For most practical a and b values, the two plans have about the same 
low test stress. However, the optimum plan allocates more specimens there 
and has a slightly lower stress. 

Drawbacks of optimum and traditional plans. Section 1.5 lists draw- 
backs of optimum plans for complete data. For censored data, there are ad- 
ditional drawbacks. 

If thex; of an optimum plan is too low, there may be no failures by the 

The assum tion of a constant u cannot be checked if there is no or one 

Both drawbacks can be avoided with a third test stress level between the two 
optimum levels. It must be high enough to insure enough failures. The op- 
timum plan is suitable only if the preliminary parameter values and all data 
are valid. As discussed in Section 1.5, the main drawback of traditional plans 
is their poorer accuracy. 

Compromise plans. The following discussion explains how lo  choose 
good compromise plans. As before, it is assume that the highest test stress 

censoring time. Then the relationship cannot be estimated. 

failure at xL. 
P 
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xH has been chosen on the basis of criteria discussed earlier. Then one must 
chose the lowest test stressxL , the intermediate stress or two, and the alloca- 
tion (number) of specimens to each as follows. 

A good compromise plan needs three or four test stresses and at least two 
stresses should yield failures by the censoring time. For more accurate esti- 
mates at the design stress, the lowest test stress should have more specimens 
than the highest one, as suggested by optimum plans. A reasonable lowest 
test stress for a compromise plan is between those for the optimum and the 
best traditional plan with three or four test stresses. The relative numbers of 
specimens for the two stresses for the optimum plan could be used for the ex- 
treme stresses for a compromise plan. The proportions of the sample at in- 
termediate stresses should be small for accuracy or large for robustness and 
early failures. Meeker (1984) and Meeker and Hahn (1985) present 
compromise plans, which appear in Section 2.6. 

Compromise standard errors. For a compromise plan, the standard er- 
ror of the log mean estimate is generally between those for the optimum plan 
and the best traditional plan. The standard error can be evaluated with the 
program of Jensen (1985), simulation methods of Section 3, or the ML theory 
of Section 5. 

Optimum anyhow. A compromise plan is usually preferable to the op- 
timum plan, unless the model, assumed parameters values, and the data are 
likely all valid. An optimum plan was nevertheless used in a temperature- 
accelerated demonstration test of GaAs FETs, high reliability solid-state de- 
vices for a satellite application (Problem 6.19). Those responsible for the test 
felt that the accuracy, even with the optimum plan, was marginal. Specimens 
were very costly and were not to be used for fundamental research to verify 
the assumed Arrhenius relationship by allocating specimens to a third test 
temperature. They were content with a reasonable test demonstration that 
would provide a legal basis for evaluating the GaAs FET reliability. 

Sensitivity analysis. The calculated accuracy or sample size for any plan 
- optimum, traditional, or compromise - depends on the assumed values of 
the model parameters. Of course, the assumed values differ from the true 
ones. Thus the calculated accuracy or sample size differs from the correct 
one. It is useful to re-evaluate a plan using other assumed values, changing 
one parameter at a time. Use at least a 20% change in a parameter to reflect 
the uncertainty in its true value. Hopefully, the plan and its accuracy are lit- 
tle affected. If the plan or accuracy is sensitive to a parameter value, then 
one must choose a compromise plan or a conservative one. Such an analysis 
can also be carried out on other characteristics of the plan, such as the proba- 
bility of no failures at the lowest test stress level. Meeker (1984) illustrates 
such sensitivity analyses for a range of a and b values. 
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2.6. Meeker-Hahn Plans 

Purpose. This section briefly presents the compromise plans of Meeker 
and Hahn (1985) for a censored test. Their plans apply to the simple linear- 
lognormal (Section 2.2) and linear-Weibull models. The following includes 
the plans, how to determine a plan, an example, standard error, sample size, 
adjusted plans, and remarks. Meeker and Hahn (1985) propose these plans 
merely as a starting point for developing plans - not as final plans. Their 
plans are more robust than optimum plans and usually more efficient than 
traditional plans. Jensen's (1985) program calculates their plans. 

The plans. The plans contain three (transformed) stress levels - xIj,  xhf, 

and XL - High, Middle, and Low. XH is specified from practical considera- 
tions above. XM = (XH+XL)/~ is midway between the others. The best x i  is 
chosen to minimize the asymptotic variance of ML estimate of the 100Pth 
percentile of log life at the (transformed) design stress xD, denoted above by 
xo. The allocation of specimens is TL = 4/7, ~ , 4 4  = 2/7, and TH = 1/7 for all 
plans. These are in the ratio 4:2:1. This unequal allocation is a compromise 
that extrapolates reasonably well. For a sample of n specimens, I I L  = 4/1/7, 
n,44 = 2fi/7, and I I H  = n/7. Other notation is like that in previous sections. 

Class-B example. For the Class-B example above, XH = 2.0277 (220"C), 
xD = 2.4808 (130°C), and IZ = 40. Thus the allocation is I Z L  = 4(40)/7 = 23, 
nM = 2(40)/7 = 11, and I Z H  = 6, rounded to the nearest integer. 

Best XI>. Determine the best low test stress x i  as follows. Determine p D  
and p ~ ,  the probabilities of failure by the log censoring time q at X D  and sH. 
Figure 2.1 depictspD andpH. In terms of a and b of Section 2.2, 

PH = @(a) = @[(tl-70-71-~~)/"], PO = @(a - b )  = @[(a-'Yo - W D ) / ~ ] .  (2.11) 

As before, one assumes values for the unknown parameters. The best XL is 

= X D  +((xH - x D ) .  (2.12) 

Here the factor ( is a function of P , p H ,  andpD; it appears in Tables 2.1 and 
2.2 for lognormal and Weibull distributions. Note that the previous formulas 
(2.5) and (2.8) and factor ( differ from those in (2.12). c' is in the range (0,l). 
For g' = 0 , x i  = xD, the design stress; for ( = l ,x i  = x H ,  the high stress. 

Class-B example. For the example, q = log(8,064) = 3.9066, a = 4.57, 
and b = 7.52. Thus, p~ = a(4.57) = 1.0000, and p~ = O(4.57-7.52) = 

0.0016. We wish to estimate the 50th percentile (P = 0.50) at 130". How- 
ever, Table 2.1 does not contain this percentile. Instead we find the best such 
plan for estimating the 10th percentile (P = 0.10). From Table 2.1, for pIf = 
1 andpD = 0.0010, g' = 0.324. That is, the low stress is 0.324 of the distance 
from xD to xH. The value 0.324 is close enough for the example. Interpola- 
tion is difficult, because the table is sparse. Then x i  = 2.4804 + 0.324 
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(2.0277-2.4804) = 2.3337, and T i  = (1000/2.3337) - 273.16 = 155°C. Also, 
xM = (2.0277 t 2.3337)/2 = 2.1807 (185°C). 

Standard error. The asymptotic standard error of the ML estimate of 
the 1 W t h  percentile of log life atxD is 

a f i p ( x D ) ]  = a*(R’V*/n)’/’. (2.13) 

Here (T is the log standard deviation for the lognormal distribution, and D = 
1/p for the Weibull distribution. The factors R’ and V* appear in Tables 2.1 
and 2.2; they are functions of P,pH, a n d p ~ .  V* is the variance factor (2.9) 
for the optimum plan of Section 2.4, and R’ the ratio of the compromise vari- 
ance over the optimum variance. 

Class-B example. From Table 2.1, forpH = 1 andpD = 0.0010, R’V* = 
1.37(6.530) = 8.95. Thus ofi10(2.4804)] = ~(8.95/40)’/~ = 0.47%. 

Sample size. Determine sample size n as follows. Suppose that with high 
probability 7, &(x,) is to be within +w of the true value. The approximate 
sample size n’ that achieves this is 

n’ = R’VY(Kq/w)’. (2.14) 

Here K7 is the standard normal lOO(lt7)/2 percentile. After the data are 
collected, obtain a confidence interval from the data and ignore w. 

Class-B example. Suppose that the estimate is to be within 20.10 of the 
true 10th percentile of log life with 95% probability (7 = 0.95). The sample 
size that achieves this is n’ = 1.37~6.530(1.%~0.259/0.10)’~2 = 57 specimens. 

Tables. The meanings of other quantities in Tables2.1 and 2.2 follow. 
For the optimum plan (Section 2.4), 

<* 
A* 

p~ 
E ( r f )  
V* 

For the Meeker-Hahn plan (optimized 4 2 1  allocation), 

<’ 
pL 
pM 
E (r:) 

R‘ 

is optimum the factor in (2.12). 
is the optimum sample fraction at the low stress. 
is the fraction failing at the low stress by the censoring time. 
= lOo(hr*p~ is the expected number of failures at x~ when n = 1O00. 
is the optimum variance factor. 

is the best factor in (2.12). 
is the fraction failing at the low stress by the censoring time. 
is the fraction failing at the middle stress by the censoring time. 
= 1000(4/7)pL is the expected number of failures at the low stress 
whenn = 1OOO. 
is the ratio of the Meeker-Hahn variance over the optimum variance. 

Adjusted plans. Meeker and Hahn (1985) offer adjusted plans. These 
plans use a lower rz to reduce extrapolation in stress and possible model 
error. Their adjusted plans use a fraction of <” of g’ in (2.12). They table 
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plans for fractions 0.90, 0.80, 0.70, 0.60. The adjusted plan for c’’ = 0.8%’ 
appears in Tables2.1 and 2.2. For the Class-B example, the adjusted plan 
uses (’ = 0.80(0.324) = 0.292. Then x;l = 2.4804 t 0.292(2.0277-2.4804) = 

2.3482 or 153°C. The standard error of the percentile estimate is 

The factor R”  appears in Tables 2.1 and 2.2. 

Remarks. Some useful remarks on the plans follow. 

1. As discussed in previous sections, the plans depend on assumed values of 
model parameters. Thus it is useful to do a sensitivity analysis with other 
values to see if they affect the plan much. 

2. The Meeker-Hahn (4:21) plans use very unequal allocation, which is 
close to optimum for short extrapolation. For long extrapolation, tradi- 
tional plans (Section 2.3) with three test stress levels may be more accu- 
rate and as robust. 

3. The Meeker-Hahn plans use a fixed (4:2:1) allocation and do not try to 
optimize allocation. A promising class of plans with three equally spaced 
stress levels follows. Allocate a sample proportion 7r each to XH and XM 

and (1-27r) toxL. Then choose ?r andxL to minimize the asymptotic vari- 
ance of the ML estimate of a percentile of log life at XD. These plans 
should yield a smaller variance and be as robust. Moreover, if the speci- 
mens at xL are lost, the equal allocation at xM and XH is good for the long 
extrapolation toxD. Such plans merit investigation. 

3. EVALUATION OF A TEST PLAN BY SIMULATION 

Purpose. Many test plans are too complex to evaluate by means of the 
ML theory of Section 5. This section presents a simple alternative - simula- 
tion, as presented by Nelson (1983b) but previously unpublished. It applies 
to most models and forms of censoring. It provides standard errors of esti- 
mates of interest. These standard errors allow one to judge whether the esti- 
mates and test plan are accurate enough for the application. Here one ana- 
lyzes the (simulated) data before running the test - a practice recommended 
in Chapter 1 to avoid unpleasant surprises. 

Overview. Section 3.1 presents a proposed test plan for insulation life. 
Section 3.2 presents models used in the computer simulation of data from the 
plan. Such models would be fitted to the actual experimental data. Sec- 
tion 3.3 describes the computer simulation of test data. Section 3.4 presents 
computer output from fitting the models to such data. The output, for exam- 
ple, shows how accurately 1) insulation life is estimated at design stresses, 2) 
how accurately the effect of insulation thickness is estimated, 3) how accu- 
rately conductors are compared, and 4) how accurately another plan esti- 
mates such quantities. 
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3.1. The Proposed Plan 

The plan. The proposed test plan involves 170 test specimens. The speci- 
mens have various combinations of three insulation thicknesses (0.163 cm, 
0.266cm, and 0.355cm), four voltage stresses (200, 175, 150, and 120 
volts/mm), and four types of conductor (S, SS, G, and SO). Table 3.1 shows 
the number of specimens at each combination of insulation thickness, voltage 
stress, and conductor. For example, there are five specimens with insulation 
thickness 0.163 cm, voltage stress 200 volts/mm, and conductor S. Figure 3.1 
displays the number of specimens of S conductors at each combination of 
thickness and voltage stress. There are 12 test combinations of thickness 
(THICK) and voltage stress (VPM). The two X’s in the plot show the extra- 
polated conditions of 65 and 80 volts/mm at a thickness of 0.266 cm. 

Purpose. The investigators chose this test plan for various purposes. 
They sought to estimate insulation life at the extrapolated conditions, to esti- 
mate the effect of insulation thickness on life, and to compare the effects of 
the conductors on insulation life. The test range of thickness is greater than 
that in practice; thus this experiment would provide a more accurate estimate 
of the effect of thickness than would production specimens. The center thick- 
ness 0.266 cm is allocated more specimens, because it is a proposed thick- 
ness. Following good practice for more accurate extrapolation with respect 
to stress, this plan has more specimens at low test stress than at high, as sug- 
gested by optimum plans. Engineering judgment and statistical design con- 
siderations (Chapter 1) were used to choose the experimental combinations 
of stress, thickness, and conductor and the number of specimens for each. 

Caution. Statistical theory for traditional experimental design is correct 
only for complete data. Do not assume that properties of standard experi- 
mental designs ( 2 “ - P ,  Box central composite, etc.) hold for censored and in- 
terval data. They usually do not hold. For example, ML (and other) esti- 
mates of certain model coefficients (“effects”) may not exist with censored 
data. Coefficient estimates that are orthogonal for complete data may be 
correlated for censored data. Also, aliasing of effects depends on the censor- 
ing. In addition, the variance of an estimate of a model coefficient depends 

Table 3.1. Numbers of Specimens at the Test Conditions 

Thickness: .163cm .266cm .355cm 

Conductor: 2 S_ Ss G 3 Ss 

200 5 1 1 0 1 1 3  5 1  
175 8 2 1 4 2 2 4  8 2  
150 8 2 1 4 2 2 4  8 2  
120 1 1 3 1 8 3 3  7 1 1 3  

V/mm 
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Figure3.1. Test conditions for S conductors and the sp percentile plane - all 
scales are logarithmic. 

on the amount of censoring at all test conditions and on the true values of 
(possibly all) model coefficients. Thus the censoring times at each test condi- 
tion are part of an experimental design and affect its statistical properties. 

32. Models 

Model. The assumed model has a Weibull distribution for the scatter in 
insulation life. The lOOPth percentile r p ,  as function of an insulation thick- 
ness (THICK) and voltage stress (WM), is 

ln(rp) = C1 + C2(LWM - LVPM) + C3(LTHICK - LTHICK) 
+ (I/@ In[-ln(l-~)]. (3.1) 

Here LVPM = In(VPM), and L W M  is the average LVPM over the test 
specimens; LTHICK = In(THICK), and LTHICK is the average LTHICK 
over the test specimens. (3.1) is an inverse power function of VPM and 
THICK. Experience suggests that coefficient C3 for thickness is negative. 
That is, thick insulation tends to have shorter life than thin insulation for the 
same voltage stress. Figure 3.1 depicts r p  as a plane in three dimensions with 
log scales. 

Lognormal. For a model with the lognormal distribution, the lOOPth per- 
centile has the same equation (3.1), but log base 10 is used, and zpu replaces 
(l/,!?)ln[ -In(l-P)]. That is, 

log(~p)=Cl+C2(LWM-LVPM)+C3(LTHICK-LTHICK) + Zpu; (3.2) 

here D is the standard deviation of log life, zp is the standard normal 100Pth 
percentile. The lognormal percentile planes fitted to such test data are much 
closer together then Weibull ones. The Weibull distribution is used below. 
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Quadratic relationship. Previous data suggest that the relationship 
between life and voltage stress on a log-log plot is slightly curved, producing 
longer life at low stress than the inverse power law does. To model this cur- 
vature, a squared term LWM2 in In volts/mm is added to (3.1); namely, 

ln(rp) = C1 t C2(LvPM - L w )  t C3(LWM2 - L m )  
(3.3) 

t C4(LTHZCK - LTHICK) t (1/p) In[-In(l-P)J. 

Here LWM2 = (LWM - LVPIV)~, and LWM2 is the average L W M 2  
over the test specimens. C1 is the intercept coefficient. C2 no longer 
corresponds to a power in the relationship between log life and log stress. C3 
is the coefficient for the quadratic term. C4 is the coefficient for the effect of 
thickness. The final term in (3.3) incorporates the Weibull distribution. 

The models (3.1) and (3.3) are fitted by computer to simulated test data 
as described in Section 3.3. The program output provides standard errors of 
estimates of parameters, percentiles, and other quantities of interest for the 
test plan. The standard errors indicate the accuracy of the estimates, as de- 
scribed in Section 3.4. 

33. Simulation 

Simulated life. The STATPAC program was used as follows to generate 
a Monte Carlo life time of each specimen, according to its voltage stress and 
insulation thickness. The assumed numerical value of (3.1) is 

ln(rp) = 7.416910- 12.27645(LWM - 5.090002) 
(3.1’) 

The equation comes from a test of comparable insulation. Here the shape 
parameter is @= 1/0.673422= 1.484953. For each specimen in the test plan, 
calculate the simulated random Weibull life ti for specimen i as 

- 1.296141[LTHZCK - (- 1.552109)] t 0.673422 In[ - In(1 -P)]. 

In&) = 7.416910 - 12.27645(LWMi - 5.090002) (3.4) 

- 1.2%141[LTHZCKi - (- 1.552109)] t0.673422 In[ - ln(ui)]. 

Here ui is a random observation from a uniform distribution on the interval 

Table 32. Test Conditions and Simulated Lives of 170 Specimens 

1 V1 Ti ti 15 V1 T2 ti5 165 v4 T3 t16.5 

2 V 1  Ti t2  16 V 1  T2 I16 l66 v 4  T3 t166 . . . .  . . . .  * * . .  
. . . .  . . . .  etc. * . * . . . .  . . . .  . . . .  

14 V1 Ti t14 45 V 1  T2 I45 l70 v4 T3 I170 
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Figure 3.2. Simulated log life data versus log voltage stress, LVPM. 

[0,1]. Table 3.2 depicts such simulated Weibull lives for the 170 specimens. 
Various packages (Section 1 of Chapter 5)  can generate such random obser- 
vations. Ripley (1987) presents simulation theory and methods. 

Example. Figure 3.2 depicts such simulated log life data at four log volt- 
age stresses. This plot does not distinguish differences in specimen thickness. 
The lines drawn at 1,000, 4,000, and 10,OOO hours show which failures are 
observed by those censoring time. This plot shows that, at 120volts/mm, 
only two failures are observed by 4,000 hours and only seven by 10,000 hours. 
A computer package is used as explained below to fit the various models to 
such data. The package output gives the accuracy (standard errors) of ML 
estimates of various quantities. 

Lognormal simulation. To simulate a lognormal life from (3.2), replace 
z p  by a random observation from a standard normal distribution (with a 
mean of zero and a standard deviation of one). 

3.4. Accuracy of Estimates 

Overview. This section presents the accuracy of estimates from two test 
plans for various censoring times and models, in particular for: 

The linear relationship (3.1) - the accuracy of the estimates of the Weibull 
p, the power C2 in the power law, the thickness coefficient C3, and per- 
centage points of the Weibull life distribution at 65 and at 80 volts/mm. 
A test plan with the 120-vpm specimens reallocated to the higher test 
stresses. Few specimens fail at 120 vpm and thus yield little information. 
The preceding information on accuracy is desired. 
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The quadratic relationship (3.3) - the preceding information plus the ac- 
curacy of the estimate of the quadratic coefficient is desired. 
A comparison of two types of conductors - the accuracy of the estimate of 
the difference between their intercept coefficients C1, their Weibull shape 
parameters /3, and their powers C2 in the inverse power law, all under an 
assumed linear relationship (3.1). 

Model fitting. A statistical package is used to fit a model such as (3.1) to 
the simulated data. Then the confidence intervals and standard errors indi- 
cate the accuracy of the estimates. For a simulated set of data on 170 speci- 
mens, the data are analyzed four times: 1) all specimens are run to failure, 2) 
the data are censored at 10,OOO hours (output in Figure3.3), 3) at 
4,000 hours, and 4) at 1,000 hours. 

Output. Figure 3.3 shows STATPAC output from fitting (3.1) to a simu- 
lated data set censored at 10,OOO hours. In the figure, Line 1 points out that 
114 of the 170 specimen lives are observed by 10,000 hours. Line 2 shows the 
ML estimates, approximate confidence limits, and local estimates of asymp- 
totic standard errors. Line 3 shows percentile estimates with their confidence 
limits and standard errors. It is better to work with $p and its stan- 
dard error s($p)=s($)/&. For example, at 65 vpm and 0.266 cm, the esti- 
mate 9.00~ = In(&,l) has s ( $ , ~ ~ )  =567,750.8/1,197,913 =0.4739; such stan- 
dard errors are ordinarily rounded to two significant figures. The approxi- 
mate 95% uncertainty is 1.96 times a standard error; here it is 
l.%xQ.4739=0.93, which appears in Table 3.3 Such standard errors were ob- 
tained for the following. 

Linear relationship. The linear relationship (3.1) was fitted to all 170 
specimens, as if they are all from the same population. This ignores possible 
differences between conductors. The resulting standard errors are smaller 
than and thus a lower bound for those obtained from just one conductor. 
The 95% uncertainties (twice the standard errors) of various estimates ap- 
pear in Table3.3 for two such simulated data sets. The approximate 95% 
confidence limits are the estimate plus or minus the tabled uncertainty. A 
plot of such uncertainties can help one see subtler differences and patterns. 
As expected, Table 3.3 shows that the earlier the censoring time, the larger 
the uncertainty. These uncertainties can be examined to see if they are small 
enough for practical purposes. For example, the assumed C3=1.30 for 
LTHZCK is an estimate from comparable data, but that estimate was not sta- 
tistically significant (i.e,, different from zero). Table 3.3 shows 95% uncer- 
taintie5from 0.36 to 0.62. Thus, if the proposed plan yields the same esti- 
mate C3=1.30 with 95% tncertainty 20.62, it will be statistically significant. 
The added accuracy of C3 is mostly due to the wide range of specimen 
thicknesses in the proposed test - much wider than in the comparable data. 

Accuracy of standard errors. Table 3.3 displays estimates of the 95% un- 
certainties (2 times the standard errors). The accuracy of such estimates can 
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Figure 3.3. STATPAC fit of (3.1) to simulated data censored at 10,000 hours. 
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Table 33. 95% Uncertainties with All Data and the Linear Relationship 

Cens. No. LVCM LTHLCK 65vpmY0,266cm 80vpm,0,266cm 
Time Failed ,!? a(,!?) a(C2) a(C3) &(ln(t.ool)) 2s(ln(t.ool)) ----- 
00 170 1.60 0.19 0.48 0.35 0.69 0.64 

170 1.53 0.18 0.52 0.37 0.71 0.65 
10,000 114 1.64 0.22 0.88 0.44 0.93 0.80 

113 1.47 0.20 1.01 0.48 1.03 0.88 
4,000 98 1.73 0.28 1.10 0.46 1.06 0.88 

104 1.49 0.22 1.18 0.51 1.20 1.01 
1,OOO 66 1.66 0.34 2.11 0.63 1.90 1.50 

71 1.45 0.27 1.96 0.62 1.91 1.56 

be gauged as follows. One could reasonably assume that the estimates come 
from a sampling distribution that is approximately normal with a mean equal 
to the true uncertainty. Then one uses the two (or more) such estimates 
from the two (or more) simulations to calculate a confidence interval for the 
true uncertainty. This interval is the usual one for the mean of a normal dis- 
tribution and employs a t percentile. When there are two estimates, the esti- 
mates themselves are then the endpoints of a 50% confidence interval, and 
then an 80% confidence interval is three times as wide. 

More accuracy. The estimates of certain standard errors can be made 
more accurate as follows. Suppose the model distribution has a scale param- 
eter o, and its assumed value in a simulation is Q’. Also, suppose that the es- 
timate of d from the simulation is a .̂ Suppose the estimate of a standard er- 
ror (or 95% uncertainty) is s. The adjusted (more accurate) standard error is 

s’ = (.’/.̂)s. 

s‘ = (?/a’)S. 

For a Weibull distribution, the estimate and f l  are inverted: 

This is so because the shape parameter p is the reciprocal of the scale param- 
eter of the corresponding extreme value distf;ibution of In life. For example, 
the estimates of the 95% uncertainties of C2 at 10,OOO hours are 0.88 and 
1.00 in Table 3.3. The adjusted 95% uncertainties are 0.88(1.64/1.485) = 0.97 
and 1.01(1.47/1.485) = 1.00. These adjusted uncertainties are closer to each 
other and likely to the true 95% uncertainty. These adjusted uncertainties 
can be used as described above to calculate confidence limits for the true 
95% uncertainty. The adjustment is valid if the theoretical standard error of 
an estimate is proportional to the distribution scale parameter 4. This is 
roughly so for any coefficient in a linear relationship for the location parame- 
ter, for a constant scale parameter, and for any linear combination of such 
coefficients and (T (for example, a percentile). 
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Larger samples. The large sample of 170 specimens, most of which fail, 
assures that the simulated data yields estimates of asymptotic standard errors 
that are accurate enough for practical purposes. If a test involves fewer than, 
say, 50 failures, accuracy of standard errors can also be improved as follows. 
In the simulation, use four specimens for each specimen of the actual test. 
The standard errors from the bigger sample must be multiplied by 4'p = 2 to 
get the correct standard errors for the actual test. Greater multiples like 9 
and 16 can be used, if necessary, with multiples 9"' = 3 and 16l'' = 4. Of 
course, for small samples, the (asymptotic) large sample theory tends to give 
standard errors and confidence intervals that are too small. Then the LR 
confidence limits are better approximations. However, few ML fitting pack- 
ages provide such limits yet. 

Sensitivity analyses. Such simulations employ assumed models and 
assumed values for the model parameters and coefficients. Possibly the stan- 
dard errors of interest are sensitive to such assumptions, This can be 
checked with further simulations using different parameter values or models. 
Hopefully a proposed plan performs well with different parameter values and 
models. Otherwise, one must find a more robust plan or be content with the 
possibility that the actual standard errors are not know accurately enough. 

Failures are informative. By 10,OOO hours few specimens at 120 vpm fail. 
Thus they contribute little to the accuracy of estimates. In general, if there 
are few failures in a data set, the resulting estimates have poor accuracy. 
Many engineers prefer to have no failures in their test, since that indicates 
that a product is reliable. A statistician prefers many failures, since they pro- 
vide more accurate estimates. It is important to recognize that many ac- 
celerated tests are intended to measure reliability, whether good or bad, and 
to do so accurately. The way the test is run and the number of observed 
failures do not determine how good the product is; they merely measure it. 
Of course, engineering design and manufacturing determine how good the 
product is. So it is generally best to have failures when measuring reliability. 

Reallocated plan. In view of this, the 59 specimens at 120 vpm were real- 
located to the lower stress levels, where there were originally 111 specimens. 
Thus at each remaining test condition the new number of specimens is 
170/111 times the original number. Specimen lives were simulated for this 
reallocated plan, using the assumed linear-Weibull model (3.4). The result- 
ing (unadjusted) standard errors of various estimates appear in Table 3.4, 
which inclutes the average (unadjusted) standard errors of the original plan. 
The tabled p is from the simulation with the reallocated plan. The following 
obseyations on Table 3.4 are generally true for such a reallocation. 

s(B) for :he reallocated plan is smaller if there is censoring. This is so be- 
cause s ( p )  decreases strongly with an increase in the sample fraction fail- 
ing at a stress level, and the reallocated plan uses stresses where this frac- 
tion is larger than at 120 vpm. 
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Table 3.4. Standard Errors with/without Reallocation of 120 vpm Speci- 
mens - Linear Relationship 

Cens. L T M  LTHJCK 65vpm,.266cm 80vpm,.266cm 

00 1.54 .093/.094 0.4410.26 0.18/0.18 0.51/0.36 0.4410.33 
10,OOO 1.54 .095/.107 0.4510.48 0.19/0.23 0.52/0.50 0.4410.43 
4,000 1.54 .102/.127 0.5310.58 0.2010.25 0.55/0.58 0.4610.48 
1,OOO 1.45 .117/.156 0.91/1.04 0.2810.32 03710.97 0.7010.78 

-- Time B̂  s@) s(C4 s(C3) ~(W-?:.ool)) s(lnG.:.oo1>> 

4 6 2 )  for L W M  for the reallocated plan isAsmaller for censoring at 
10,OOO hours or earlier. This is so because s(C2) decreases strongly with 
the width of the test range of LWM, as well as with the number of failures. 
The test range for the original plan is effectively 150-200vpm up to 
10,OOO hours since there %re so few failures at 120 vpm. Of course, for the 
un%ensored data (oo), s(C2) is much smaller for the original plan. 
s(C3) for LTHICK for the reall9cated plan is slightly smaller with censor- 
ing. Without censoring (=), s(C3) is the same for both plans. The depen- 
dence of life on LWICK over the test range is much smaller than that on 
LWM. Thus, the effective width of the test range of LTHICK is little 
affected by the censoring, and the reduced number of failures as a result of 
censoring has less effect than the test range. 
For both extrapolated conditions, s(lnGool)) is slightly smaller for the real- 
located plan for early censoring. Thus, for censoring before 10,OOO hours, 
the few failures at 120 vpm with the original plan little affect the accuracy 
of extrapolation. Of course, for the original plan, s(ln(?wl)) is smaller for 
no censoring or high censoring time. 

In general, for the linear relationship (3.1), the reallocated plan performs 
better in the 10,OOO hours allotted the test. However, this conclusion is quite 
different with the quadratic relationship, as shown below. 

Quadratic relationship. The quadratic relationship was fitted to simulat- 
ed data from the linear relationship. That is, the quadratic coefficient C3=0. 
This is reasonable, since in practice such relationships have only slight curva- 
ture and C3 is close to zero. Table 3.5 shows (unadjusted) standard errors of 
selected estimates for the test plans with and without reallocation of the 
specimens at 120 vpm. The same set of data was used for both test plans and 
all four censoring times. Thus comparisons of standards errors are within the 
same sample, and their ratios should be more accurate than those from 
different samples. The simulated lives of the 111 specimens below 120 vpm 
were used to obtain standard errors of the reallocated plan. But those stan- 
dard errors must be multiplied by (111/170yp to get the standard errors for 
170 specimens reallocated below 120 vpm in the same proportions as in the 
original plan. Comments on Table 3.5 follow. 
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Table 35. Standard Errors for the Quadratic Relationship with/without 
Reallocation of 120 vpm Specimens 

Cens. LVXM’ LTHICK 65vpm,.266cm 80vpm,.266cm 

00 1.55/1.48 .093/.090 5.111.9 0.1810.19 4.711.35 0.7610.38 
10,000 1.5411.53 .094/.112 5.112.7 0.1910.23 4.812.2 0.7610.41 
4,000 1.54/1.55 .104/.127 5.413.9 0.18/0.25 5.113.4 0.8310.56 
1,000 1.4711.46 .123/.152 8.118.5 0.28/0.34 8.318.6 1.6311.71 

Time ,? 4;) 4C3) 4C4) s(ln(;?..ool)) ~(~n(;?..ool>> 

Note that the s(,?) estimates are close to those in Table 3.4 for the linear 
relationship. This illustrates a general fact; namely, the chosen form of the 
relationship for the location parameter does not affect the accuracy of the 
estimate of a constant scale parameter. Only the amount of censoring 
affects that accuracy (th: censoring is the same in both tables). 
Th: same is true for s(C4), the thickness coefficient. 
s(C3) for the quadratic term in LWM is smaller with the original plan 
(with 59 specimens at 120 vpm) with a censoring time of 4,000 hours or 
more. This is especially so without censoring (w), since the effective range 
of L W M  is peatest then (120-200vpm). For early censoring 
(1,OOO hours), s(C3) is slightly smaller with the reallocated plan, as expect- 
ed, since there are no failures at 120vpm. Then the original plan 
effectively has 111 specimens and the reallocated plan has 170. 
s(ln(?ml)) at the two extrapolated conditions is larger with the reallocated 
plan, except for the earliest censoring (1,000 hours). This is expected be- 
cause the 120 vpm data are closer to the extrapolated conditions, and the 
extrapolation is shorter. These standard errors are much larger than those 
in Table 3.4 for the linear relationship, especially so at 65 vpm, a greater 
extrapolation. This exemplifies another general fact; namely, the accuracy 
of an estimate depends not just on the test plan but also on the model 
fitted to the data. Note that a good test plan for one model (or relation- 
ship) may not be a good plan for a different one. 

The comments above show that the 120vpm specimens contribute more to 
the accuracy of estimates with the quadratic relationship than with the linear 
one. Thus one must decide whether the linear or quadratic model is more 
appropriate before deciding whether to run specimens at 120 volts/mm. 

Comparison of conductors. One test purpose is to compare the effects of 
the conductors on insulation life. Conductors S and SS are compared below 
with respect to their two intercept coefficients (C1 and Cl’), two power pa- 
rameters (C2 and C2’) in the power law, and two Weibull shape parameters 
(B and 8). Such comparisons use relationship (3.1) and assume certain pa- 
rameters are equal or differ for the two conductors, as depicted in Figure 3.4. 
Four such assumed models were fitted to simulated data. Table 3.6 shows 
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Figure 3.4. Various assumed models to compare two conductors. 

95% uncertainties (2 standard errors) for differences under the four models. 
Indicator variables were used in these models for such differences as de- 
scribed in Chapter 2. There are many specimens of S and SS conductors, and 
few of the other conductors. Thus comparisons of other pairs of conductors 
have much greater uncertainty. Table 3.6 shows that the uncertainties of esti- 
mates are the same unier similar models as follows. 

The column for 2r(/3) is the same under models 1) and 2), whereihe two 
conductors have a common p. Similarly the column for s(1.P - Inp) is the 
same under models 2) an$4), where the two conductors have different Ps. 
The column for 2s(Cl’-Cl) is the same under models 1) and 3). Similarly 

Table 3.6. 95% Uncertainties for Comparing S and SS Conductors 

Model: 1) Common C2 & /I 3) Common C2 
Cens. 
Time el0-& e2 Ci*-& 62 I&-$ 
00 .30 0.6 .20 .29 0.6 .35 

10,Ooo .39 1.2 .22 .39 1.2 .40 
4,000 .42 1.4 .25 .42 1.4 .43 
1,OOo .55 2.5 .27 .57 2.5 .52 

2) Common /3 4) Different C2’s & p’s 

00 .30 1.7 .20 .30 1.6 .36 
10,OOo .59 4.0 .22 .57 4.0 .42 
4,000 .76 4.9 .25 .76 5.0 .44 
1 , m  1.5 8.0 .28 1.5 8.2 .55 
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the column for 2(&* - 21) is the same and larger under models 2) and 4). 
All four models have iifferent Cl’s for the two conductors. 

0 The columns for 24C2) are the same under models 1) and 3), wher% the 
tyo conductors have a common C2. Similarly, the columns for a(C2’- 
C2) are the same under models 2) and 4), where the two conductors have 
different C2’s. 

Lognormal standard errors. The standard errors above are based on an 
assumed Weibull distribution for insulation life. The analyses could be be 
redone assuming a lognormal distribution. The standard errors for the 
power in the power law and other coefficients in the relationships would be 
about the same. However, those for estimates of low percentiles are greater 
for the Weibull than for the lognormal distribution. Thus, a lognormal simu- 
lation and analysis is needed to obtain standard errors of estimates of low 
lognormal percentiles. In general, one may evaluate a test plan using any 
number of models (distributions and relationships). 

Concluding remarks. Overall the test plan satisfied the responsible en- 
gineers. They chose to run the original test with the 120vpm specimens. 
Their reasons were: 
0 The accuracy of the original plan is comparable to that of the reallocated 

plan for the linear relationship and censoring at 10,000 hours (the key time 
when decisions would be made). 
The quadratic relationship, if needed, would be estimated more accurately 
with the original plan. 

4. SURVEY OF TEST PLANS 

Purpose. This section surveys further literature on plans for accelerated 
testing, that is, for extrapolation. Sections 1,2, and 3 are helpful background. 
Much further work on plans is needed. 

General literature. There is much literature on design of experiments for 
regression models with complete data and least squares fitting to estimate 
the relationship for the mean. Most regression texts discuss test plans that 
are not suitable for extrapolation. References on general theory include 
Ford, Titterington, and Kitsos (1989), Elfving (1952), Chernoff (1953,1972), 
Silvey (1980), Karlim and Studden (1966), Herzberg and Cox (1972), and 
Fedorov (1972). Applications to metal fatigue include Little (1972) and Little 
and Jebe (1975). 

Estimation method. Most references here assume that the model is 
fitted to the data by maximum likelihood or least squares. There are also op- 
timum plans for best linear estimation using order statistics. Mann (1972) 
gives such theory for plans to estimate the log characteristic life a (of a 
Weibull distribution) which is a polynomial function of a stress. Escobar and 
Meeker (1986) do the same to estimate percentiles of the (log) normal, 
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Weibull, and other location-scale distributions; they assume the location pa- 
rameter is multivariable linear function. Such theory is strictly correct only 
for failure censoring, which is mathematically tractable but rare in practice. 

Simple model. Test plans for the simple model appear in Sections 1 and 
2. Section 1 references literature for complete data and least squares estima- 
tion, and Section 2 references literature for singly censored data and ML esti- 
mation. Such simple models are widely used; thus such plans are important. 

Other relationships. There are test plans for other relationships, more 
complex than the simple linear one. Test plans for multivariable relation- 
ships are studied by Escobar and Meeker (1986) and by Elfving (1952). The 
following authors give test plans for nonlinear relationships in a single vari- 
able. Hoe1 (1958) and Hoe1 and Levine (1964) derive optimum plans for a 
polynomial for the mean, fitted by least squares to complete data; similarly 
Stigler (1971) presents good compromise plans for a quadratic relationship. 
Mann (1972) derives optimum plans for fitting a polynomial for the log 
characteristic Weibull life cu to failure censored data. Chernoff (1962) 
presents optimum plans for ML estimation of a quadratic relationship for the 
failure rate of an exponential distribution from singly censored data. Little 
and Jebe (1969) derive test plans for a model with a nonconstant standard 
deviation and a simple linear relationship for the mean, estimated from com- 
plete data by least squares. Meeter and Meeker (1989) investigate test plans 
for a simple linear model where the scale parameter is a loglinear function of 
stress. 

Failure or time censoring. In this section most plans are for time cen- 
sored data. Such data are common in practice and result from analyzing the 
data at a point in time when some specimens have not failed. Failure censor- 
ing is rare in practice. It requires that the test at each stress continue until a 
specified number of failures occurs. Failure censoring is merely mathemati- 
cally more tractable. Only Mann (1972) and Escobar and Meeker (1986) 
give plans for failure censoring. 

Inspection data. The references in this section contain plans for com- 
plete or singly censored data. Schatzoff and Lane (1987) for a Weibull distri- 
bution and Yum and Choi (1987) for an exponential distribution investigate 
optimum plans for inspection data (interval or quantal-response) and fitting a 
regression model. Meeker and Hahn (1977,1978) develop plans for quantal- 
response data and a linear-logistic model. Interval data arise in many tests of 
electrical insulation and solid state electronics. The following references for 
estimating a single distribution from interval data provide guidance on the 
choice of inspection times for an accelerated test. For an exponential distri- 
bution, Kulldorff (1961), Ehrenfeld (1962), and Nelson (1977) present op- 
timum inspection times for ML estimation. For a (log) normal distribution, 
Kulldorff (1%1) presents optimum inspection times for ML estimation of the 
mean and standard deviation. For a Weibull distribution, Meeker (1986) 
presents optimum inspection times for ML estimation of percentiles; he also 
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discusses other inspection times and provides guidance on good inspection 
times. Equally spaced inspection times are convenient in practice, but the re- 
sulting estimates usually have poorer accuracy. 

Simultaneous versus successive. In most tests, specimens are tested si- 
multuneously. That is, all specimens start and run at the same time. For ex- 
ample, in the Class-B insulation test, specimens for the four test temperature 
were running simultaneously in four separate ovens. Most references here 
concern such testing. In contrast, for some tests, there is only one test ap- 
paratus, and it can test just one specimen at a time. So specimens must be 
tested successively one after the other. The insulating fluid data come from 
such a test. References on test plans for successive testing are Chernoff 
(1962) and Little and Jebe (1969). Sequential testing is successive testing but 
is concerned with when to stop testing; Bessler and others (1962) apply it to 
accelerated testing. Another situation is studied by Disch (1983). His work 
concerns a single large vacuum chamber which runs at elevated tempera- 
tures. The available test time for the chamber had to be divided into inter- 
vals. During each interval, a different group of specimens (batteries) was run 
at a different high temperature. His problem was to choose the duration, 
temperature, and number of specimens for each interval, subject to the con- 
straint that the sum of the interval lengths equal the available time. 

Optimization criteria. For complete data, most references here mini- 
mize the variance of the least squares estimate of the (log) mean at the 
design stress. For censored data, most references minimize the asymptotic 
variance of the ML estimate of a (log) percentile at the design stress. Other 
possible criteria are: 

Minimize the variance of an estimate over a range of stress. For the sim- 
ple model, Gaylor and Sweeny (1965) minimize the maximum variance of 
the least squares estimate of the (log) mean over a specified range. 
Minimize the variance of the estimate of a particular coefficient. Daniel 
and Heerema (1950) do this for complete data and the least squares esti- 
mate of a multivariable linear function for the mean. For example, the 
plan for the simulation example of Section 3 is far from optimum for es- 
timating the Thickness coefficient. 
Minimize the variance of the estimate of the scale parameter (lognormal o 
or Weibull /I). 
Be most sensitive for detecting nonlinearity of the relationship. For com- 
plete data, Stigler (1971) develops plans that minimize the variance of the 
least squares estimate of a quadratic coefficient, while achieving a 
specified variance for the estimate of the mean at the design stress. 

Cost. Most references above do not take cost into account. Menzefricke 
(1988), Chernoff (1%2), and Little and Jebe (1969) model the cost of speci- 
mens and running time. Subject to a fixed total cost, they minimize the vari- 
ance of their estimates. 

Stress loading. All references above concern constant stress testing. 
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Miller and Nelson (1983) present optimum plans for simple step-stress tests 
with two stress levels. 

5. ML THEORY FOR TEST PLANS 

Purpose. This advanced section presents maximum likelihood (ML) the- 
ory for evaluating good plans or optimizing test plans with data singly time 
censored on the right. In particular, this section shows how to calculate the 
theoretical asymptotic variance of the ML estimate for a quantity of interest, 
usually a percentile of life at the design stress. As shown here, one can mini- 
mize such a variance by optimally choosing the test stresses and the number 
of specimens allocated to each. The computer program of Jensen (1985), de- 
scribed in Section 2.1, does these calculations. Such theory extends to inter- 
val and other data. For example, Schatzoff and Lane (1987) present such 
theory for accelerated test plans with interval data. Nelson (1982, Chap. 9) 
presents general theory for interval and quantal-response data. 

Background. This advanced section requires extensive background, par- 
ticularly the ML theory of Section 5 of Chapter 5. Needed mathematical 
background includes partial differentiation, integral calculus, and simple ma- 
trix algebra. In addition, one needs to know the basic properties of statistical 
expectation. Also, one needs to read about test plans for censored data in 
Section 2 of this chapter. This section does not state the regularity conditions 
on the model that must be satisfied for the theory here to hold. For such 
conditions, consult Hoadley (1971), Rao (1987), and Rao (1973). Such condi- 
tions hold for most models used in practice. 

a general model for accelerated testing, 
specimen and sample likelihoods for censored data, 
ML estimates and likelihood equations, 
the matrix of second partial derivatives, 
the theoretical Fisher information matrix, 
the theoretical covariance matrix of the ML estimates, 
variances and covariances of function estimates, 
optimum plans. 

The order of presentation is much like that of Section 5 of Chapter 5. 

Model. For specimen i, the random (log) time to failure isyi, and the 
values of its K stress or other variables are xli ,  xu, * * , xKi for i = 1, 2, - * - , 
n. The cumulative distribution of (log) timejii to failure is F(y;; 8, xi) where 
x; = (xu, xzi, * * * , xKi) is the vector of variable values and 8 =  S2, - * * , BM) is 
the vector of M model parameters. Such parameters may be distribution pa- 
rameters or coefficients in a relationship. The probability density f(yi;e,xi) 
=dF(yi$,Xi)/dyi is assumed to exist, and the reliability function is 

Overview. This section covers the following main topics: 
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R(yi;B,Xj) = l-F(yi;B,xi). This model is general enough to include all others 
in this book. 

Example model. The simple linear-normal model has 

F(~i;70,71 PJ) = @[(yi - 70 - 71*r)/oI, 

f(yi;'YO ,7l ,oJ) = (l/o) '$[( J'i - 70 - 71x)/U], ( 5 4  

R(yi;70,71ioJ) = 1-@[(Yi -70 -71X)/0] .  

Here +[ ] is the standard normal probability density, and the rest of the nota- 
tion follows Sections 1 and 2. The model is expressed here in terms of log 
lifeyi and the normal distribution. It could also be expressed in terms of life 
and the lognormal distribution, which is equivalent but more complex. Re- 
gardless, the results (estimates and their variances) are the same. Nelson 
and Kielpinski (1976) present the following theory for this model. Nelson 
and Meeker (1978) do so for the simple linear-Weibull model. 

Specimen likelihood, If specimen i fails at age yi, its log likelihood fi is 
the natural log of the probability density at yi, namely, 

fi ( yi $,xi) = W ( y i  $9 xi 11 - (5.2) 

Suppose specimen i is censored at ageyi. That is, it is censored on the right, 
and its failure time is aboveyi. Then its log likelihood is the natural log of 
the distribution probability above yi (i.e., of the reliability at age yi ) ;  namely, 

fi=fi(yi;d,Xj) = ln[R (yi;d,xi)]. (5.3) 
Each fi is a function of the time yi, the parameters 61, - , OM, and variable 
values xG, - * , x K .  Suppose specimen i will be censored at (log) age qi, if it 
does not fail sooner. Let Zi =Zi(yi) be an indicator function such that Zi(yi) = 1 
ifyi<qi (a failure is observed), and Zi(yi) =O ifyi 2 qi ( the observation is cen- 
sored). In the following Zi and yi are regarded as rurtdonl variables, and the 
censoring time r)i may differ for each specimen. Then the theoretical log 
likelihood for specimen i is reexpressed as 

fi = Zi(yi)lnlf(yi;fl,xi)I t [ 1 - , i ( ~ i ) l l n [ R ( r l i ; d , ~ i ) l .  (5.4) 

Sample likelihood. For a sample of ri specimens, the theoretical sample 
log likelihood is 

f = f 1  t.f2 t . - ' tfn, (5.5) 

since theyl, * * * ,y,, are assumed statistically independent. It is a function of 
the random variables yl,  * an and the constants el, * * ,eM and xl, - * * ,xn. 
That is, in this section, theyl, * * ,y,,  are regarded as random quantities that 
will be observed. In Chapter 5, the same function was used but contained the 
actual observed data, regarded as given numbers. In Chapter 5, it would be 
better to call f the observed sample log likelihood. 
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D =  

I i  = I(Yi) ,  4 3 4(Si), @i W i ) .  

Then, for singly right censored data, the theoretical specimen likelihood is 

--$L/%llh!il 

-a2f/ae,lh!ile, -a"f/aSi: . . . -$ f /%2% 

=a'f/ae: -a2f /aS,%2 . . . 

(5.9) 

* * *  1. , 

-a'f/%M%l -$&/I%A& ' * ' -$f/& 

(5.10) 
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F =  

These set equal to zero are the likelihood equations. The six second partial 
derivatives are 

E {  -a'f/ae,a1} E {  -a'f/ae$} . . . E {  -a2L/aS,as,,} 
-EE-WaB:I  E{-a'f/a9,a2} . . . E{-a'f/f/ae,ae, 

. (5.12) : I  . 
E {  -a'f/%,&} E {  -a'f/lW,&} * * * E {  -aZf/8&} 
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= I_" W { -~~i/am~m* 1 f(yi;fi,xi)dyi, 

+ { - a 2 1 n [ ~ ( r l i ; e , x i ) l / a , , , e , , , }  R(Vi;e,xi )  

where nt and in' run over 1, 2, * - , M. Since f=&fi, the expectations for 

the derivatives of the sample log likelihoods are 

~{-a2f/ail}= C , ~ { - a 2 ~ j / & }  

E {  -a2f/amae,,,}= C . E {  -a'f,/a,,a",,}. (5.15) 

The expectations (5.14) can be equivalently calculated as 

~{-a2fi/ak>= E{(afi /am>2}= I_" W <afi/am)2 f(yi;fi,xi)dyi, 

E { - a'fi/aS,ae,, 1 = E { (afi / a n t  ) (ali / a m ,  1 (5.16) 

= I_" W (afi / a m  (afi / a m  * ) f(Yi ;e, xi MYi* 

These may be easier to evaluate than (5.14). The expectations of the M first 
derivatives always satisfy 

E { a f j / a m }  =o, (5.17) 

which are similar to the likelihood equations (5.8). Relations (5.16) and 
(5.17) often simplify the calculation of theoretical results. 

Example expectations. For the simple linear-normal model, 

These expectations are calculated from (5.14) with the aid of the expectations 
E[Zi]=@i (which is a consequence of the definition of Zi) and 
E{~fi/~~}=E{~fi/~l}=E{~fj/a(T}=O from (5.17). Since 4i and @i are 
function of just gi, the formulas in braces { } are functions only of  ci. Denote 
them by A ( f i ) ,  B(ci), and C(ci), respectively. Thus, for the example, the true 
Fisher information matrix F,, for an observation at xi has the form 
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Escobar and Meeker (1986, 1989) give a computer algorithm for calculating 
A(  ), B( ), and C( ) for the extreme value (Weibull) distribution. 

For a test with n specimens, suppose that the / I  test stress levels are xl, x2, 

. . .  ,xn. Then the true Fisher information matrix (5.19) of the sample is 

(5.20) I m(Si) BA(Si) m(Si) I m(Si) BiB(Si) CC(Si) 

F = F,, +Fx, + * * * +F, = ( l /d )  D,A($j) BsA((j) DjB(<j)  . 

For example, consider a plan with single censoring at (log) time r] and with 
two stresses - a low stressxL and a high stressxfI. Also suppose that a frac- 
t ionp of the n specimens are to run at xL and the rest at xH. Then the true 
Fisher information matrix for that test plan is 

P&I(SL)+(~ -pbAAACH) P.v.B(sL)+U - P h B ( S H )  (5.21) I AQL) t(l -p)A (SH) P"rp (SL)+U - P h A  (SH) Y5(SL) +(I - P ) B ( S H )  

symmetric PC(SL)+(1 -P)c(SH) F2 = 7 n l  
Here SL = ('I-70 -7lXL)/U and SH = (r]-70 -71xH)/U* 

Covarianct matrixA The true (asymptotic) covariance matrix )c of the 
ML estimates 01, * * * , O M  is the inverse of the true Fisher information matrix 
F: 

(5.22) 

The true variances and covariances of the parameter estimates are in the 
same positions in the covariance matrix as th,e corresponding partial deriva- 
tives in the Fisher matrix. For example, Var(B1) is in the upper left corner of 
$, since E {  -$f/%:} is in the upper left corner of F. The variances all 
appear on the main diagonal of $, and $ is symmetric about that diagonal. 

The variances and covariance in this matrix are generally functions of the 
true values 01, * * * , OM. For most models, the formulas for these variances 
and covariances are too complex to express analytically. So in practice one 
evaluates them numerically. In Chapter 5, the local estimate of this covari- 
ance matrix was used to obtain approximate confidenc: limits. A beiter esli- 
mate of $ is the true matrix (5.22) evaluated a el =el ,  - * , &+,=OM. It is 
called the ML estimate for $ and is denoted by A . In practice the local and 
ML estimates are usually numerically comparable, and either can be used to 
calculate approximate confidence limits. 
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Variance OF a function estimate. Suppose that 11 =!I (191, * , t 9 ~ )  is a con- 
tinuous function of el, - * * , &. For the linear-normal model, such a function 
is the 100Pth percentile qf(x)=70 - t 7 1 ~ + z p 0  at stress x ( z p  is the standard 
normal 100Pth percentile). So is the reliability R(y;x)= 1-Q[(y -70 - 
7 x)/$ Th,e ML estimate for the true ^value h =It(%, * * * ,OM) is 
k = h ( d l ,  - @M), the function evaluated at dl = e l ,  * - - , d~ = B M .  For sam- 
ples with many failures, the cumulative distribution function of 6 is close to a 
normal one, with mean h and a true (asymptotic) variance 

Var(h‘) = ~ah/ t~, , , )2var( i , , , )  
m 

+2= (aI~/am)(aI1//ae,,)Co~()Bhm,)Bhm,) =H$H’ . 
(5.23) 

m <m’ 

Here m and m ’ run over 1,2, * , M, and H = (ah /aS,,  a11 /a2, - 6 ,811 /asM) 
is the row vector of partial derivatives evaluated at the true parameter values. 
To evaluate a test plan for estimating 11, one calculates this theoretical vari- 
ance of a ML estimate of interest. The complexity of this calculation is why 
Section 3 presents simulation as a simpler alternative. The partial derivatives 
must be continuous functions of 01, * * * ,OM in the neighborhood of their true 
values. The ML and local estimates for Var(1;) are obtained by using respec- 
tively the ML and local estimate (Ch2pter 5)hof the variances and covariances 
in (5.23) and using the estimates e l ,  * * * , O M  for 01, . . - , O M  in the partial 
derivatives. (5.23) and (5.24) are based on propagation of error (Taylor 
expansions); see Hahn and Shapiro (1967) and Rao (1973). The square root 
of (5.23) is the true (asymptotic) standard error of 1; and is denoted by 
o(h^). Its local estimate (Chapter 5) or its ML estimate is used to obtain 
approximate confidence limits as described in Chapter 5. 

Covariance of function estimates. Suppose that g=g(O1, * * ,Oh,) is 
anothfr fuytion of el, - - * ,OM. Then the asymptotic covariance of 
gh=g(dl, - - - ,dM) and h  ̂is 

(5.24) 

= H$G’ . 
Here m and m ’ run over 1,2, - J4, and G =  (@/aS1, E&/aS2, * - , E&/C%A[) is 
the row vector of partial derivatives evaluated at the true parameter values. 
For large samples, the joint cumulative distribution of ĝ  and 6 is approxi- 
mately a joint normal one with means equal to the true g and It and with vari- 
ances from (5.23) and covariance (5.24). The preceding extends to the joint 
distribution of any number of such ML estimates. 
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Example. The ML estimate of the l00Pth (log) percentile at the design 
stress XD is & ( X D ) = $ ~  +$1XD+z$; here z p  is the standard normal lOOPth 
percentile. The needed derivatives for its variance are 

* f ' / h l =  1, %f /%l =xD (3rf/h 'ZP. (5.25) 

The variance is 

Var(i;p(xD)l=[lxD ZPl$[lxD ZPl' * (5.26) 

The plans in Section 2 minimize this variance. 

Optimum plans. For an optimum plan, the IZ test stresses xl, - * . , x, 
(subject to the constraints) are chosen as follows to minimize the variance 
(5.26). For the example and the plan with two stressesxL  and^^, 

VarfiP (XD)] = 11 X D  ZF']F; [1 X D  ZPl' 3 (5.27) 

where F2 appears in (5.21). For P =0.50, the optimum plan in Section 2 mini- 
mizes this with respect to xL and p. The optimum x t  and p* must be found 
by numerical search, as described by Meeker and Nelson (1976). 

Interval data. Theory above extends readily to interval and quantal- 
response data. The necessary theoretical log likelihoods and expectations of 
their second partial derivatives appear in Nelson (1982, Chap. 9) and Meeker 
(1986). All other aspects of the theory are the same as for singly censored 
data. Schatzoff and Lane (1987) present optimum plans for interval data. 

Normal approximation. The ML theory above is asymptotic theory. 
That is, it is valid for samples with many failures. Many authors mislead by 
saying large samples, seeming to imply large n .  However, for a large sample 
with few failures, the asymptotic normal theory does not provide a good ap- 
proximation to the sampling distribution of a ML estimate. In practice, 20 
failures often suffice. Nelson and Kielpinski (1976) present simulations of 
censored samples with 11 =40; they show that the sampling distribution of the 
ML estimate of the median at design stress is well approximated by the 
asymptotic normal distribution for the situation they consider. Other authors 
examine the accuracy of the approximate normal ML confidence limits 
(which is another matter) and recommend larger numbers of failures than 20. 

PROBLEMS (* denotes difficult or laborious) 

6.1. Wire varnish - censored data. Do the following for the wire varnish 
example of Section 1.5. Assume that the test is to run 1,800 hours, and that 
~(260") = log(300), ~(180") = log(20,000), (T= 0.10, and that the highest allowed 
test temperature is 260°C. 
(a) Calculate the standardized a and b. 
(b) For the optimum plan, determine the optimum low test temperature. 
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(c) Determine the optimum proportion of the sample to test at the low test 
temperature. 

(d) Determine the optimum variance of the ML estimate of p(180"C). 
(e) Compare this variance with that for complete data. In particular, does 

the censoring affect the accuracy much? 
(f) Repeat (a)-(e) for the Meeker-Hahn plan. 

6.2. Wire varnish - complete data. Do the following for the wire varnish 
example of Section 1.5, assuming all specimens run to failure. 
(a) For the given test plan, calculate the variance of the LS estimate of 

mean log life at 180°C. 
(b) Calculate the allocation for the optimum plan for the given range of 

test temperatures. 
(c) Calculate the variance for the optimum plan. 
(d) For equal allocation of the specimens to the three test temperatures, 

calculate the variance of the traditional plan. 
(e*) For the given plan and the traditional plan (d), calculate the variance, 

assuming i) the 220" specimens are lost, ii) the 240" specimens are lost, 
and iii) the 260" specimens are lost. 

(f) Compare the variances from (a), (c), (d), and (e) with each other. 

63. Insulating fluid. For the insulating fluid test (Section 3 of 
Chapter 3) ,  do (a) through (f) of Problem 6.2, using the appropriate design 
and test voltage stresses. 
(g*) Suppose specimens run successively (one at a time). Calculate the total 

expected test time for the optimum plan and the actual plan. 

6.4. Lost specimens. For the Heater example of Section 1.1, calculate 
the resulting variance of the LS estimate of mean log life at 1100°F as follows. 
(a) Assume that the data on the 1520" specimens are not valid (or lost). 
(b) Do  (a) but without the 1620" data. 
(c) Do (a) but without the 1660" data. 
(d) Do (a) but without the 1708" data. 
(e) Compare the preceding variances with each other and with the variance 

for the complete sample. 

6.5. Linear-Weibull model. For complete data, rewrite the LS results 
(key equations) of Section 1 in terms of the simple linear-Weibull model and 
its parameters. Note where results are approximate. 

6.6. Linear-exponential model. Repeat 6.5 for the simple linear- 
exponential model and complete data. 

6.7. Sensitivity analysis. For the Class-B insulation example, 
(a) Recalculate the optimum plan, its variance, and the probability of no 

failures at the low test temperature using a (T that is 20% larger. 
(b) Do (a) for the best traditional plan with four stress levels. 
(c) Do (a) using a 71 that is 20% larger. 
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(d) Do (c) for the best traditional plan with four stress levels. 
(e) Do (a) using a value of antilog(Yo) that is 20% larger. 
(9 Do (e) for the best traditional plan with four stress levels. 
(g) Comment on your findings. 
(h) Suggest further analyses. 
(i) Carry out (h). 

6.8. Adjusted 95% uncertainties. Use Table 3.3 for the following. 
(a) Calculate the.adjusted 95% uncertainties for the entire table. Are the 

adjusted uncertainties of the two simulations mostly closer to each other 
than are the unadjusted uncertainties? 

(b) Provide the 50% confidence interval for each true uncertainty. 
(c*) Calculate the 95% confidence interval for each true uncertainty. 
(d) State your conclusions on viewing (a)-(d). 
(e*) Calculate adjusted uncertainties (standard errors) for Tables 3.4 and 3.5. 

6.9. Equal allocation. Redo the simulation of Section 3 to generate a 
new Table 3.3. However, use equal allocation of specimens to the four volt- 
age stresses. Keep the same unequal allocations to conductors and 
thicknesses. Comment on the differences between your table and Table 3.3. 
Which allocation do you prefer and why? 

6.10. Lognormal life. Redo the simulation of Section 3 to generate a new 
Table 3.3. However, use a lognormal life distribution that “matches” the 
Weibull distribution used in the simulation. Comment on differences be- 
tween your table and Table 3.3. To help you do this, devise informative and 
revealing ways to plot the tables. 

6.11. Linear-normal - censored data. For the example of Section 5, sup- 
ply all missing steps in the derivation. Write out all formulas in complete de- 
tail, showing all parameters and data values. 

6.12. Linear-normal - complete data. For the example of Section 5, 
derive all formulas there for a complete sample. 

6.13. Exponential life - complete data. Derive an optimum test plan for 
the following model and complete data. Specimen i has an observed failure 
time ti from an exponential distribution with mean 0, =exp(-yo + r l x i )  where xi 

is the (possibly transformed) stress, i = 1, 2, * , 1 1 .  70 and +yl are parame- 
ters to be estimated from the data. 
(a) Write the likelihood and log likelihood for specimen i. 
(b) Write the sample log likelihood. 
(c) Calculate the likelihood equations; and discuss how to solve them. 
(d) Calculate second partial derivatives of the log likelihood of specimen i. 
(e) Evaluate the negative expectations of (d) to obtain the theoretical Fisher 

information matrix for specimen i and for the sample. 
( f )  Calculate the theoretical covariance matrix for qo and 
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(g) For a design stress of xo, give the ML estimate of the log mean 

(h) Calculate the theoretical variance of &. 
(i) Assume that np specimens are tested at XL, the lowest allowed test 

stress, and n(1-p) at xH, the highest allowed test stress. Calculate 
Var(&) from (h). 

6) Find thep value that minimizes (i). 
(k) Calculate the minimum value of (i). 
(I) Express G) and (k) in terms of (= (xo - x ~ ) / ( x ~  -xH). 
(m) Compare the previous results with those in Section 1. 
(n) Calculate the ML estimate of X(x,) = 1/fl(xD) and its theoretical vari- 

PD = In($) = 70 -I- 7lxD. 

ance. Is that variance minimized? 

6.14.* Exponential life - censored data. Repeat Problem 6.13 (a)-(.) but 
assume the data are censored at time T.  

(0) For a two-stress plan with specified stressesq and XH and allocationspL 
andpH = 1-pL, derive the variance as a function of T.  

(p) For a particular ( value, calculate and plot the variance versus T.  

6.15.8 Quadratic relationship. For the following, use a normal distribu- 
tion for log lifey. Assume the mean is a quadratic function of a single (possi- 
bly transformed) stressx; that is, p(x)=7,, trl(x -X) t 7 2 ( ~ - X ) ~ .  Assume that 
the standard deviation (T is a constant, and the data are complete. Thus the 
data on n specimens are (yl,xxl), - * ,(y,,,x,,), Here.? =(xl t . - - tx,)/n. 
(a) Write the likelihood and log likelihood for specimen i. 
(b) Write the sample log likelihood. 
(c) Calculate the likelihood equations and solve them for 7 0 , 7 1 , 7 2 ,  and G. 
(d) Calculate second partial derivatives of the log likelihood of specimen i. 
(e) Evaluate the negative expectations of (d) to obtain the theoretical infor- 

mation matrix for specimen i and for the sample. 
(f) Calculate the theoretical (asymptotic) variance for q2. 
(g) Evaluate this variance for the wire varnish plan of Section 1.5. 
(h) Evaluate (f) for traditional plans with (i) three and (ii) four stresses. 
Find the optimum test plan to minimize Var(q2) as follows. Assume that the 
test stresses must be in the range XL to XH. Assume that there are three test 
stressesxL,xM, andxH with proportionspL,pM, and pH of the n sample speci- 
mens (PL t p M  t P H  = 1). 
(i) Evaluate Var(q2) for this test plan. 
(j) DeterminexM,pI,, andpM that minimize Va&). 

derive the theory of Section 5. 

model and singly censored data of Section 5. 
(a) 

A A A  

6.16.. Linear-Weibull. For the simple linear-extreme value model, 

6.17.* Expectations. Do the following for the simple linear-normal 

Verify E{dfi/&y0}=O, E { a f i / h l }  =0, and E{df i /&}=O,  using prop- 
erties of expectations or by evaluating the integrals. 
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(b) VerZyE{ -# f i /&}  =E{(tlfi/%o)2} by evaluating each side. 
(c*) Repeat (b) for each of the second partial derivatives. 
(d*) Prove (5.17) for a general model. Do not concern yourself with the 

validity of interchanging the order of integration and differentiation. 
(el) Repeat (d) for (5.16). 

6.18. Capacitor test. By simulation, evaluate the following plan for a ca- 
pacitor life test. "Hours" is the censoring time at that test condition. As- 
sume life has a Weibull distribution with a constant shape parameter /I and 

In[a(T,V)1 = 70 71'ln(v> + (%/TI ; 

here V is the voltage and T is the absolute temperature in O K .  Use 7 0  = 

-23.1,~l = - 1 2 . 8 , ~ ~  = 40,000"K, and /? = 0.29. The main purpose is to esti- 
mate early life at the design (and test) condition (290 V, 75°C). 

Volts: 550 550 550 440 440 440 380 380 290 
"C: 70 85 100 70 85 100 70 85 75 

No.: 40 20 20 70 50 40 100 50 1342 
Hours: 2300 2300 126 2320 2320 126 2140 2220 3119 

(a) On suitable paper, plot the test plan. That is, plot the number of speci- 
mens at each voltage-temperature condition. Explain whether the plan 
is reasonable. 

(b) On (a), plot contours of constant 1% life. 
Run a simulation using 1) the actual censoring hours and 2) censoring at 
10,000 hours (with the two conditions still terminated at 126 hours). Give 
95% uncertainties for: 
(c) Each model parameter. 
(d) The 0.1%, 0.5%, and 1% points at the design condition. 
(e) Repeat (c) and (d) for a plan with all specimens at the design condition. 
( f )  Repeat (c) and (d) for a test plan where the 1342 specimens at 290 V 

are proportionally distributed among the other 8 test conditions. 
(g) Discuss the preceding results and pros and cons of each plan. 
(h) Discuss pros and cons of running the test to 10,000 hours. 

6.19. GaAs FET demonstration. A new GaAs FET (semiconductor 
device) was to undergo a temperature-accelerated reliability demonstration 
test. The device was to demonstrate a median life of lo7 hours at a design 
temperature of 125°C with 95% confidence. The test was to run 24 devices 
and to terminate at 5000 hours. Use the Arrhenius-lognormal model, and 
assume that the median life is lo' hours at 125°C. Determine and evaluate 
optimum test plans under the following assumptions. That is, evaluate TL, 
p; ,  nL, ni, and Irc. 
(a) 
(b) 
(c) 
(d) 

Assume TH = 295"C, u = 0.421, and E = 1.8 eV. 
Assume TH = 275"C, u = 0.482, and E = 1.5 eV. 
Assume TH = 250"C, u = 0.482, and E = 1.5 eV. 
Plot the assumed models (a)-(c) on Arrhenius paper. Show design and 
test temperatures and the 5000-hour termination time. 
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(e) For (a)-(c), calculate the value that the estimate of median life must 
exceed to pass a demonstration test with 95,90, and 60% confidence. 

( f )  For (a)-(c), calculate (1) the population fraction failing at TL by 
5000 hours and (2) the probability that none of the 11; specimens fail. 

(g) Compare the pros and cons of (a)-(c). 
(h*) In a satellite application, there are 22 such devices, all of which must 

survive a long mission. Discuss and derive a more suitable demonstra- 
tion test in terms of device reliability for the mission. 
Repeat (a)-(g) for the Meeker-Hahn plans. (i) 
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Competing Failure Modes 
and Size Effect 

Introduction. Many products have more than one cause of failure. Any 
such cause is called a failure ntode or failure ntechariisnt. Examples include: 

Fatigue specimens of a certain sintered superalloy can fail from a surface 

In ball bearing assemblies, a ball or the race can fail. 
In motors, the Turn, Phase, or Ground insulation can fail. 
A cylindrical fatigue specimen can fail in the cylindrical portion, in the 

0 Any solder joint on a circuit board can fail. 
0 A semiconductor device can fail at a junction or at a lead. 

Specimens fail from a cause of interest or from an extraneous cause such 

Purpose. Accelerated tests that yield a mix of failure modes long trou- 
bled experimenters. They lacked a valid way to extrapolate such data to esti- 
mate the product life distribution at a design stress. It is clearly wrong to use 
data on one failure mode to estimate the life distribution of another failure 
mode. Yurkowski and others (1967) state this was a major unsolved problem 
at that time. This chapter presents valid models and graphical and maximum 
likelihood analyses for such data; namely, 

Series-system model. 
Analyses of data on individual failure modes. 
Estimation of product life when all failure modes act. 
Estimation of product life with some failure modes eliminated. 
Checks on the model and data. 

These models and analyses are not yet widely known in engineering and 
other fields. Nelson (1990) briefly presents the basics of this topic. 

Background. Needed background for this chapter is the basic models 
(Chapter 2) and graphical (Chapter 3) and maximum likelihood (Chapter 5 )  
analyses of multiply censored data. The theory (Section 7) requires partial 
differentiation and basic matrix algebra. 

Overview. Section 1 presents the series-system model for competing 
failure modes; this model is basic to the rest of this chapter. Section2 
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defect or an interior one. 

fillet (or radius), or in the grip. 

as test equipment failure that damages specimens. 
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extends the model to systems of identical parts. Section 3 extends the model 
to a product that comes in differing sizes. Section 4 extends the model to a 
product subjected to a nonuniform stress across it. Sections 2, 3, and 4 are 
specialized and may be skipped. Section 5 presents basic plots for analysis of 
such data. Section6 explains maximum likelihood (ML) analyses of such 
data. Section 7 presents the advanced theory for such ML analyses. 

1. SERIES-SYSTEM MODEL 

This section presents the series-system model for products with a num- 
ber of failure modes. Included are: series systems, the product rule for reli- 
ability, the addition law for failure rates, and the resulting distribution when 
some failure modes are eliminated. This presentation applies to product life 
at any stress level, say, the design stress. However, the stress level does not 
appear in the notation. 

Series system. Suppose that a product has a potential time to failure 
from each of M causes (also called conrpefiiig risks or failure modes). Such a 
product is called a series system if its life is the smallest of those M potential 
times to failure. Such a system fails when the first failure mode occurs. In 
other words, if T I ,  - * * ,  TM are the potential random times to failure for the 
M causes (or modes), then the system random time T to failure is 

T = min(T1, * * * ,TM). (1.1) 

In reliability, the term “series system” does not imply physical series connec- 
tions of electrical or mechanical components. It refers only to how such 
product failure depends on component failure. Such a product is also called 
a weakest link system, a more descriptive term. Here a “failure mode” is 
defined in whatever way is useful. For example, it can be any failure of a par- 
ticular subassembly or component, or it can be a failure cause within a com- 
ponent. Many consumer and industrial products are series systems of com- 
ponents or subsystems. 

Product rule. For a particular stress level, let R ( I )  denote the reliability 
function of the product at age t. Let R l ( t ) ,  * * * , R,,,(t) denote the reliability 
functions of the M causes, each in the absence of all other causes. Suppose 
that the times to failure for the different causes (components or failure 
modes) are statistically independent. Such a product is said to have indepen- 
dent failure modes or to be a series system with independent failure modes. 
For such a system, 

R ( t )  = P { T > f } = P { T l > t  and T z > t  and and T M > t }  

= P{ Ti > t  }P{ Tz > I }  * * * P {  TM > I  }, 

since TI, - * - ,TM are statistically independent. Thus 
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R ( t )  = R l ( r ) R z ( t )  - .  .RM(r) .  (1.2) 
This key result is the product rule for reliability of series systems (with 
independent components). In contrast, for a mixture of distributions (Sec- 
tion 7 of Chapter 2), units come from different subpopulations, and the popu- 
lation reliability function is a weighted sum of their reliability functions. Cox 
(1959) and Hahn and Meeker (1982) make this distinction. 

Class-H example. A Class-H insulation is a series system with three 
failure modes - Turn, Phase, and Ground failures. The Arrhenius- 
lognormal models for each mode are: 

Rr(t ;T) = iP{ -[log([) - (-3.587481) - (3478.935/T)]/0.07423483), 

Rp(f  ;T) = @{ - [log@) - (- 1.639364) - (2660.203/T)]/0.2034712}, 

&(I ;T) = iP{ - [lOg(f) - (-5.660613) - (4624.660/T)]/0.2110285). 

Evaluated at I = 10,OOO hours and T = 180 t 273.16 = 453.16"K, the reliabil- 
ities are 0.886, 0.872, and 0.995 respectively. By the product rule, the system 
reliability is R( 10,OOO;453.16"K) = 0.886~0.872~0.995 = 0.769. Repeat this 
calculation for a number off values to obtain the reliability function at 180°C 
(or any other temperature), displayed in Figure 5SA. In this example, the 
three failure modes all occur in the same test. For products subjected to 
several accelerated tests, failure modes may occur in different tests with 
different accelerating variables and models. 

Literature. Many authors have used the series-system model for prod- 
ucts with more than one cause of failure. Examples include 

McCool(l978) for bearings, 
Sidik and others (1980) for battery cells, 
Nelson (1983a) for metal fatigue, 
IEEE Standard 101 for electrical insulation. 

Redundancy. Some products, particularly some military and aerospace 
products, are not series systems. They have redundant (duplicate) com- 
ponents. A redundant component is one whose failure does not cause system 
failure. For example, a car has two headlights and can still operate at night if 
one fails. Such redundancy is a means of improving system reliability. Shoo- 
man (1968) among others describes different types of redundancy and their 
statistical models. Redundancy is not treated in this book. 

Addition law for failure rates. For series systems with statistically 
independent failure modes, the hazard function (failure rate) and cumulative 
hazard functions are simple. Consider the cumulative hazard functions H ( f )  
of the system and H I ( [ ) ,  * * * , HM(t)  of each of the M causes at a stress level. 
The product rule (1.2) can be written as 

exp[-H(t)] = exp[ -Hl(t)]exp[ -H2(t)] - exp[ - H M ( ~ ) ]  
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AGE t 

Figure 1.1. Hazard functions of a series system and of its two failure modes. 

or 

H ( f )  = H I ( t )  +H&) + * * - +&(I). 

h ( f )  = h l ( t ) + h l ( t ) t  ... th,(f). 

(1.3) 

(1.4) 

Its derivative is the system hazard function (instantaneous failure rate) 

This is called the addition law for failure rates for sfatistically independertf 
failure modes (or competing risks). So, for such series systems, failure rates 
add. Figure 1.1 depicts this addition law. It shows the hazard functions of a 
system and its two failure modes at a particular stress level. 

Appearance on plotting paper. Suppose a probability or hazard plot of 
data is curved as in Figure 1.2. Such curvature may indicate that another 
failure cause with an increasing failure rate becomes dominant as the product 
ages. There the lower tail of the distribution spreads over a wide age range. 
The upper part of the distribution extends over a narrow age range; this 
reflects the higher failure rate there. The curve in Figure 1.1 is the derivative 
of that in Figure 1.2. Curvature in the other direction suggests that the distri- 
bution is a mixture or that the plotting paper is not suitable. 

- 
CUMULATIVE PROBABILITY OR H A Z A R D  

Figure 1.2. Cumulative distribution with competing failure modes. 
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Exponential distributions. Suppose that a product is a series system with 
M statistically independent failure modes with exponential life distributions 
and constant failure rates X1, - - * , AM. Then, by the addition law, the product 
has an exponential life distribution with a constant failure rate 

X = x 1 t  - . .  tXM. 

This simple relationship is widely used to model many components and sys- 
tems. Use of constant failure rates is correct only if all M distributions are 
exponential. Similarly, the mean time to failure for such series systems is 

(1.5) 

B = [ ( l /B,)  t * * - t (l/flM)]-l; (1.6) 

here the exponential mean lives are 61 = l / A l ,  * - * , OM= 1/XM. 

rate X of monolithic MOS, bipolar, and CCD memories as 
MIL-HDBK-217. On pages 5.1.2.4-1, this handbook expresses the failure 

x = A1 t x 2 .  (1.7) 

Here A1 represents electrical failure due to temperature and voltage, and X2 
represents mechanical failure due to vibration. Many other devices in this 
handbook have failure rates expressed as such a sum. 

Weibull distributions. Suppose that a product is a series system with M 
independent failure modes with Weibull life distributions with scale parame- 
ters al, - - a ,  aM and the same shape parameter /3. Then the product has a 
Weibull life distribution with a scale parameter 

a = l /[( l /af)  t * - * t (l/afi)]'/P 

h( t )  = p(t@-'/aQ) t * - . +p(f@-l/afi) = p(t@-'/aP), 

(1.8) 

(1.9) 

and the same shape parameter /I. This can be seen from the hazard function 

which is the hazard function for a Weibull distribution. 

Boltholes. Cracks initiate in boltholes in a flange in an engine. The dis- 
tribution of time to crack initiation of individual boltholes was modeled with 
a Weibull distribution with Q = 31,65)9 hours and /3 = 2.1914 (which are esti- 
mates and uncertain). A flange is regarded as cracked when the first of its 30 
boltholes cracks. The series-system model for the time t (in hours) to crack 
initiation of flanges is 

R3,,(t) = exp{ -30(t/31,699)2.'914} . 
Actually the boltholes in a flange do not have independent times to crack ini- 
tiation. Thus this formula predicts lower reliability than is observed. Flange 
life is roughly that of series system of about 5 statistically independent bolt- 
holes. A later paragraph discusses dependent component lifetimes. 

Other distributions. For a series system whose failure modes have a log- 
normal distribution, the system distribution is not lognormal. This is true of 
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most other distributions. Similarly, (1.8) does not hold for Weibull distribu- 
tions with different shape parameters. 

Elimination of failure modes, Often it is important to know how design 
changes that would eliminate failure modes would affect a product life distri- 
bution. As before, suppose those causes are independent and that, say, cause 
1 is eliminated. Cause 1 may be a group of causes. Then R ,(f) = 1,h l ( f )  =0, 
H l ( t )  =0, and Fl(t)=O. The life distribution with the remaining causes has 

R*(t)  = Rz(t)x..*xR~(f), F*(t)=l-[l-Fz(f)]X...~[l-F~(t)], 

h * ( f )  = h z ( f )  t * * ' t I t M ( f ) ,  H* (Y)=H2( t )  t ' * +H& (1.10) 

These equations assume (1) that the distributions of the remaining failure 
modes are unaffected, (2) that no other failure modes are introduced by the 
design change, and. (3) the eliminated failure mode is completely eliminated 
(over any time span of interest). Nelson (1982, pp. 182-185) shows analyses 
of data where a failure mode is not completely eliminated. 

Class-H insulation. Suppose that the Class-H Turn failures could be 
eliminated. Then the resulting reliability for 10,000 hours at 180°C would be 
0.872 x 0.995 = 0.868. This is the Phase reliability 0.872 times the Ground 
reliability 0.995. This calculation can be repeated for a number of survival 
times to calculate the reliability function at 180°C shown in Figure 5.6A. 

Dependent failure modes. Some series systems have failure modes with 
statistically dependent lifetimes. For example, adjoining segments of a cable 
may have positively correlated lives, that is, have similar lives. Models for 
dependent failure modes are complicated. General theory is given by Birn- 
baum (1979), David and Moeschberger (1979), Harter (1977), and Moesch- 
berger (1974). Galambos (1978) presents theory for asymptotically large sys- 
tems with many failure modes that may be statistically dependent. Nadas 
(1969) uses the bivariate lognormal distribution to model two dependent 
failure modes. For a multivariate exponential distributions for such systems, 
Proschan and Sullo (1976) give some data analyses and references on a fatal 
shock model. Barlow and Proschan (1975, Chap. 5 )  present some work on 
multivariate life distributions. Block and Savits (1981) survey multivariate 
distributions. The multivariate lognormal distribution has satisfactory prop- 
erties. However, multivariate exponential and Weibull distributions thus far 
invented (for example, shock models) have properties not suited to most ap- 
plications. Harter (1977) comprehensively surveys models for the effect of 
size. There are simple upper and lower limits for the system life distribution 
when lives of failure modes are positively correlated. The lower limit is the 
life distribution for a series system of independent failure modes. This first 
approximation (using the product rule) is pessimistic. The upper limit is the 
lowest life distribution for a single failure mode. These crude limits may 
bracket the true distribution accurately enough for some practical purposes. 

Other models. Other models have been used to describe competing 
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failure modes. For example, Derringer (1982,1989) provides such a model 
that is similar to a mixture of distributions. His model gives just an equation 
for mean log life and does not employ an assumed distribution of life. MIL- 
HDBK-217 uses other models for the effect of size, say, of capacitors. 

2. SERIES SYSTEMS OF IDENTICAL PARTS 

Introduction. Some series systems consist of nominally identical parts, 
each from the same life distribution. Examples include: 

Tandem specimens are sometimes used in creep-rupture studies of an al- 
loy. Pairs of specimens are linked end to end and stressed until one rup- 
tures. Such pairs hasten the test and yield more information on the lower 
tail of the distribution of time to rupture. 

0 A power cable may be regarded as a series system of a large number of 
small segments of cable. The cable life is the life of its first segment to fail. 
The life of a battery is the life of its first cell to fail. 

0 An assembly of ball bearings fails when the first ball fails. 
0 Some integrated circuits (ICs) fail when the first gate fails. Such gate 

failures may not be statistically independent. More recent IC designs have 
redundant gates which can fail and not cause circuit failure; such circuits 
are not series systems. 
An amplifier in a satellite has a series system of 22 GaAs FETs (transis- 
tors). 

Either the product or the test specimens may be series systems. Tests of 
series-system specimens are called “sudden death tests” by some authors. 
The following theory for such systems is a special case of the general theory 
in Section 1. As before, the theory applies to the distribution at any stress 
level. Many readers may prefer to skip this specialized section and go direct- 
ly to Sections 5 and 6. 

System life distribution. Suppose that a series system consists of M sta- 
tistically independent components from the same life distribution. Suppose 
individual components have a reliability function R a cumulative distribu- 
tion function F l ( t ) ,  a hazard function h I ( t ) ,  and a cumulative hazard function 
H 1 ( t ) .  For a series system of M such components, let Rw(t) denote the sys- 
tem reliability function, FM(t) the system cumulative distribution function, 
hM(t) the system hazard function, and HM(t )  the system cumulative hazard 
function. Then 

R&)=[R1(t)]M, FM(t)=l-RM(I) = l-[l-F&)]M, 
(2.1) 

hw(t) =M.h ( t ) ,  HM( t )  =M.H1 (I). 

These are special cases of (1.2), (1.3), and (1.4). The life of such a system is 
the smallest of a random sample of M (component) lives from the same 
component distribution. 
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Tandem specimens. A model for the life of creep-rupture specimens em- 
ploys a lognormal life distribution for time t to failure. Specimen mean log 
life as a function of stress S is modeled with p(S) = 7 0  t7110g(S), and u is 
assumed constant. Pairs of such specimens are linked end to end (in tan- 
dem) and loaded with the test stress and run until one fails. This doubles the 
number of specimens on the test equipment, thereby utilizing it better, By 
(2.1) the reliability function for first specimen failure at stress level S is 

Exponential components. Suppose components have independent life 
times from the same exponential life distribution with failure rate X1. Then 
series systems of M such components have an exponential distribution with 

AM = MX1. (2.2) 

19, = 91/M; (2.3) 

This is a special case of (1.5). Similarly, the mean system life SM is 

here dl = l /X1 is the mean component life. 

Weibull components. Suppose the identical components have a Weibull 
life distribution with shape parameter p and scale parameter al. Then series 
systems of M such independent components have a Weibull life distribution 
with the same /3 and a scale parameter 

ah4 = a1/M1IP. 

This is a special case of (1.8). 

Bearings. Morrison and others (1984) report a load-accelerated test of 
ball bearings. The distribution of time to first ball failure in test bearings is 
described with a Weibull distribution with p=1.40, and a1 = 2016 million 
revolutions for a load of 4.45kN. In applications, such bearings have twice as 
many balls. Thus the bearing life distribution is Weibull with p = 1.40 and 
a2 = 2016/21/1.40 = 1229 million revs. 

Extreme value components. Suppose statistically independent com- 
ponents have a smallest extreme value distribution with a scale parameter 6 
and a location parameter El .  Then series systems of M such components 
have an extreme value distribution with the same 6 and a location parameter 

‘ 5 4  = €1 -6  ln(M)* (2.5) 

Residuals example. Nelson and Hendrickson (1972) give an example of 
M = 360 standardized residuals from a smallest extreme value distribution 
with (1=0 and 6=1. The smallest residual is -8.90 and seems too small. 
This residual comes from a smallest extreme value distribution with 
(360 =0- ldn(360) = -5.886 and 6= 1. The probability that the smallest such 
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residual is - 8.90 or less is F (- 8.90) = 1 - exp( - exp{ [ - 8.90 - ( - 5.886)] 
/1})=0.049. This probability is small enough to suspect the residual as a 
possible outlier worth investigating. An “outlier” is an observation that is not 
consistent with the model and the bulk of the data. 

Other component distributions. For lognormal component life, the life 
distribution of series systems of M such independent components is not log- 
normal. However, for any distribution (satisfying mild restrictions), the dis- 
tribution of system life is approximately Weibull or extreme value for large 
M, according to whether the original distribution is respectively bounded 
below or not. This is an important limit theorem for extreme values (Galam- 
bos, 1978 and Gumbel, 1958). The result suggests that life of some large 
series systems may be adequately described by the Weibull or extreme value 
distribution, for example, cables. 

Dependent components. Little work has been done on life of series sys- 
tems of identical statistically dependent components. Components in a system 
may tend to have similar lives because they are made at the same time and 
from the same batch of materials. However, systems may differ more, 
because they are made at different times and from different batches of com- 
ponents and materials. Also such dependence may exist because components 
in a particular system are under the same environment, but the environment 
differs from system to system. MIL-HDBK-217 uses an empirical relation- 
ship to model the failure rate A, of an integrated circuit containing M gates: 

A, = &MP; (2.6) 

here XI andp are constants characteristic of the IC. Typically, 0.3 5 p  5 0.5. 

3. SIZE EFFECT 

Some products come in various sizes. They may have failure rates that 
are proportional to product size. Examples include: 

The failure rate of a capacitor dielectric is often assumed to be proportion- 

The failure rate of cable insulation is often assumed to be proportional to 

The failure rate of conductor in microelectronics is assumed proportional 

The failure rate of electrical insulation is sometimes assumed proportional 

For some products, the specimen and product sizes differ. Such size 
differences are erroneously ignored for some products. Examples of 
differences include: 

Test motorettes differ somewhat from motors with respect to size and 

Insulating oil is tested between parallel disk electrodes. Transformers con- 

al to the area of the dielectric. 

the cable length. 

to its length (and number of bends). 

to its thickness. 

geometry of insulation. 
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tainiig such oil are much bigger and have complicated geometries. 

whereas generators contain much greater length. 

whereas actual parts are bigger and have other geometries. 

great length of such wire is wound into a motor. 

generator has a single thickness of insulation. 

Specimens of Class-F generator insulation come in different short lengths, 

Fatigue specimens of a superalloy have hourglass and cylindrical shapes, 

Wire varnish (insulation) is tested on twisted pairs of wires, whereas a 

Specimens of generator insulation come in different thicknesses, whereas a 

Harter (1977) surveys models for the effect of size on material strength. 
Many readers may prefer to skip this specialized section and go directly to 
Sections 5 and 6. 

The model. In general, if h o ( t )  is the failure rate for an amount A0 of a 
product, then the failure rate h (t) of an amount A is 

h (0 = (A/Ao)ho(t). (3.1) 

That is, such products are regarded as series systems of M =(A /A o )  nomi- 
nally identical components from the same life distribution. A/Ao need not 
be an integer and may be less than 1. (3.1) assumes that adjoining portions 
of the product have statistically independent lifetimes. Other formulas for 
the life distribution of an amount A of product at a stress level are 

R ( t )  = [ R o ( t ) P A O ,  W )  = (A/AOWO(t)l 

P ( t )  = l -R( t )= l - [ l -Fo( t )pA";  ( 3 4  

here the zero subscript denotes the distribution for an amount Ao. These 
formulas are equivalent to (2.1) where A /A replaces M. 

Exponential life. Suppose an amount A. of product has an exponential 
life distribution with failure rate A,,. Then (3.1) implies that an amountA has 
an exponential life distribution with failure rate 

= (A/Ao)h. (3.3) 

0 = do/(A/Ao); (3.4) 

The product mean life is 

here B= 11x0 is the mean life of an amount A 0 of product. 

Motor insulation. Test specimens of motor insulation were modeled 
with an exponential life distribution with X, =3.0 failures per million hours at 
design conditions. The insulation area of specimens is A0 =6 in.*, and its 
area in motors is A =500 in?. Then the life of motor insulation is exponen- 
tial, with A =  (500/6)3.0=250 failures per million hours. 

Weibull life. Suppose an amount A0 of product has a Weibull life distri- 
bution with shape parameter /3 and scale parameter c t ~ .  Then an amount A 
has a Weibull distribution with the same /3 and scale parameter 
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o = % / ( A / A ~ ) ' / S  (3.5) 
This follows from (3.1) and is like (2.4). 

Capacitors. At design voltage, time to dielectric breakdown of a type of 
100-pf capacitor is modeled with a Weibull distribution with /3=0.5 and 

= 100,OOO hours. The 500 pf capacitor has the same design but A / A o  = 5 
times the dielectric area. Thus the dielectric life of 500 pf capacitors is 
Weibull with @=O.S and a= 100,000/5~/~~~ =4OOO hours. For /3c 1, the 
decrease in life is big. 

Cryogenic cable. Accelerated tests of cryogenic cable insulation indicated 
that specimen life at design conditions approximately has a Weibull distribu- 
tion with = 1.05~10" years and /3=0.95. The volume of dielectric of such 
specimens is 0.12in.3, and the volume of dielectric of a particular cable is 
1.984~10' in?. Suppose that the cable is a series system of independent 
specimens. Then its (approximate) life distribution is Weibull, with 
a= 1.05~10~~/(1.984~10~/ 0.12)'/0.95 =234 years and /3=0.95. The cable en- 
gineers wanted to know the 1% point of this distribution. It is = 234 * 

[ - h(1- 0.01)]'/"." = 1.8 years. If adjoining "specimen lengths" of the cable 
have positively correlated lives, the cable life distribution is greater than 
predicted by the series system model. However, the cable life distribution 
cannot exceed that for the life of a single specimen. These two distributions 
differ appreciably because (A /A 0) is large, but even the pessimistic series- 
system distribution showed that the design was adequate. Brookes (1974) 
proposes a model for cable life involving length and conductor size. 

Insulating fluid. A life test of insulating fluid was run as follows. A pair 
of parallel disk electrodes was immersed in the fluid, and the voltage across 
the disks was raised linearly with time until the fluid broke down (a spark 
passing through the fluid between the electrodes). Time to breakdown has a 
Weibull distribution. Disks with areas of 1 and 9 in2 were used. Thus the 
characteristic lives with these disks satisfy q =al/91/@. Nelson (1982, p. 190) 
and Problem 4.10 present such data. 

Dependent lives. Adjoining portions of such a product may tend to have 
positively correlated lives. MIL-HDBK-217 uses an empirical relationship to 
model the failure rate X, of capacitors of capacitance C; namely, 

x, = X I  c p ;  (3.6) 

here XI andp are constants characteristic of the type of capacitor. Typically 
0.3 < p  5 0.5. 

4. NONUNIFORM STRESS 

4.1. Introduction 

Purpose. Some products (or specimens) are subjected to a stress that is 
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not uniform across the product. The example below concerns insulation for 
an electrical machine. At one end of a machine circuit, the insulation is 
under high voltage, and at the other end it is under low voltage. For such 
products, engineers often (and incorrectly) use only the maximum stress. 
Also, they implicitly assume that failure occurs at the point of maximum 
stress. Thus they ignore the size of the product and possible failure at other 
points. Previous models assume that the product is under uniform stress or 
that the specimen and product have the exact same shape and nonuniform 
stress and differ only in size. Not previously published, this section presents a 
model for the life of products (or specimens) under nonuniform stress. It is 
an extension of the series-system model. The model also extends to products 
and specimens whose geometries differ. Many readers may prefer to skip 
this specialized section and go directly to Sections 5 and 6. 

More complex modeling. The following theory is presented with the aid 
of a simple application. Namely, for such machine insulation, the stress is 
nonuniform along one dimension (length). The theory readily extends to 
more complicated products where geometry and stress may be nonuniform in 
three dimensions. For example, ceramic and metal fatigue specimens are 
usually simple cylinders. Moreover, they are usually subjected to simple 
torque, bending, or uniaxial load. Actual parts have complex geometries and 
experience complex tensor loads in use. The life of such specimens only 
crudely approximates the life of actual parts. Someday, using extensions of 
the theory here, ceramicists, mechanical engineers and metallurgists will do a 
finite-element type of analysis to predict the fatigue life of actual parts. Simi- 
larly, engineers and physicists will predict the reliability of microelectronic 
circuitry from conductor lengths and number of bends, from local tempera- 
tures and voltages, and from the numbers of diodes, connections, etc. 

Overview. Section 4.2 summarizes the uniform-stress model and its as- 
sumptions. Section 4.3 presents the model for life of aproduct under nonuni- 
form stress in terms of the life of specimens under uniform stress. The theo- 
ry also extends to specintens under nonuniform stress. 

42. Uniform-Stress Model 

Overview. This section reviews the assumptions of the uniform-stress 
model. This is necessary background for the nonuniform-stress model. Ma- 
chine insulation is used as an example. Topics include 1) the insulation life 
distribution, 2) the effect of the size (length here) of insulation on its life dis- 
tribution, and 3) the relationship between insulation life and voltage stress. 

Distribution. It is assumed that insulation specimens of length Lo have a 
Weibull life distribution with characteristic life q, and shape parameter /3 at a 
particular uniform stress level. The characteristic life q, (and possibly B) 
depends on voltage stress, insulation thickness, environment, etc. The reli- 
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ability function of such specimens at age c is 

Other distributions, such as the lognormal, can be used to model the life 
of insulation, dielectrics, metals, semiconductors, and other products. The 
Weibull distribution is used here for various reasons. 1) The distribution is 
widely used for the life of insulation and other materials; thus, it provides a 
common consistent basis for comparison. 2) The distribution adequately fits 
life data on many materials, including such insulation. 3) The Weibull model 
and its results here are simple. A lognormal life distribution leads to a more 
complicated model and results. For the insulation example, the lognormal 
distribution represents life more accurately, however. 

Size effect. By (3.2) and (3.9, insulation of length L has the Weibull reli- 
ability function 

R ( t ; L )  = exP[-(L/Lo)(t/%)fll. (4.2.2) 
This assumes that adjoining lengths of insulation have independent lives. 
This is a reasonable first approximation for most materials. Adjoining pieces 
tend to have similar (correlated) lives, and distant pieces tend to have unre- 
lated lives. This is especially so of cable insulation and metal parts made as a 
continuous single piece. However, such a machine consists of many indepen- 
dently fabricated, insulated conductors. Thus, the assumption of indepen- 
dence appears satisfied here. 

Size. The measure of "size" depends on the application. For the 
machine insulation, size is its length. Experience shows that the conductor 
cross-section, insulation thickness, and other characteristics of insulation 
negligibly affect life. For some products, material volume or exposed area is 
the size. For example, for fatigue of metals that fail from interior (surface) 
defects, specimen volume (area) is the size. 

Life-stress relationship. For specimens of length Lo under a stress V, the 
characteristic life is assumed given by the inverse power relationship 

= K / V ;  (4.2.3) 

here the factor K and power p are positive parameters characteristic of the 
material and test conditions. Other relationships between life and stress 
could be used, for example, Arrhenius and multivariable relationships. The 
following results extend to other relationships. 

Example. For specimens with Lo = 21 cm, the parameter estimates are 
K = 3.3770915x1d6, p = 10.18498, and /3 = 1.140976. Thus the reliability 
function (4.2.2) of insulation of length L at a voltage stress I/ is 

R (I  ; L )  = exp{ - (L/21)[tV'0~'8498/(3.3770915 x ld6)]'.'40976}. 

Here I is in hours, L is in cm, and Vis in volts per mm. 
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43. Nonuniform Stress Model 

Overview. This section presents the nonuniform stress model, namely: 

1. the reliability function (4.3.1) of machines represented by I discrete 
lengths Li of insulation with differing voltage stresses 6, i = 1,2, - 

2. the reliability function (4.3.5) of machines whose voltage stress is a func- 
tion V(Z) of position 1 along the length of the circuit, 

3. the probability (4.3.7) of machine survival during its design life, 
4. the equivalent length L** (4.3.4) of insulation at the maximum stress VI 

that would have the same life distribution as a machine. 

Differing stress levels. Suppose that a machine is conceptually divided 
into I pieces of insulation, and piece i has length Li and is at a uniform (or 
nominal) stress 6. Let ai denote the characteristic life of a standard (or 
specimen) length L o  of insulation at uniform stress 6. Suppose that ma- 
chines are series systems of such pieces. Then the reliability function of ma- 
chines is the product of the reliabilities from (4.2.2); namely, 

, I, 

(4.3.1) 

Accurately represent the stress pattern by using very small lengths in (4.3.1) 
at high voltage stress or an accurate equation like (4.3.5) below. 

Example. It follows from (4.2.3) and (4.3.1) that the reliability function of 
such a machine is approximately 

(4.3.2) 

This is a Weibull reliability function with a shape parameter of B and a scale 
parameter 

a* = K/ C(L,/L,)W@ . (4.3.3) Ir, 1’” 
That is, R*(t) = exp[ - (t/a*)p]. 

Bounds. In a machine, the voltage stress is a continuous function of posi- 
tion along a circuit. Thus the sum in (4.3.1) is a discrete approximation to a 
continuous stress. Lower and upper bounds on the exact a* and distribution 
result from using, respectively, the highest and lowest voltage stresses on 
each length Li in (4.3.3). 

Stress pattern. One can also describe the voltage stress as a continuous 
function V(Z) of distance Z from one end of the machine. For the insulation, 
voltage stress is zero at one end ( l = O )  of the circuit, and it increases linearly 
to its maximum value V* at the other end (l =L*). That is, 

V(1) = VI(Z/L*), 0 5 1  s*. (4.3.4) 
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Continuous voltage stress. Suppose the voltage stress V(l) is a continu- 
ous function of position 1 along the length of the circuit. Then in (4.3.1), the 
differential df replaces Lj, V(l) replaces K, and the integral I replaces the 
sum C in (4.3.2). That is, 

R* ( t )  = exp{ -[ta/(LoKP)J kL* [V(l))"@ d l }  ; (4.3.5) 

here the integral runs over the length 0 to L* of the machine insulation. This 
equation shows that insulation life of a machine has a Weibull distribution 
with a shape parameter /3 and a scale parameter 

(4.3.6) 

Example. For the linear stress pattern (4.3.4), (4.33, and (4.3.6) are 
evaluated to yield 

R*(t)  = exp{ -(t/a*)P] (4.3.7) 

where 

a* = K [ @ p  t l ) L o / L * ] ' q ( P y .  (4.3.8) 

Here t can be the design life, warranty period, or any other time. For a typi- 
cal machine, the total length of insulation is L* = 30,240 cm. For a max- 
imum voltage stress of V* = 65 volts per mm, 

a* = 3.377W15x1d6[ (10.18498-1.140976 + 1)21/30,240]'/'~'40976 /(65)'0.'8498 

= 1,823,782.5 hours = 208.0519 years. 

Machine reliability is R* ( t )  = exp[ - (t/208.0519)'~'40976], where t is in years. 
For t=40 years (design life), R* (40) = exp[ - (40/208.0519)'.'40976] = 0.859 
(85.9%). For t = 5 years (typical current age in service), R* (5) = 
exp[ - (5/208.0519)'.'40976] = 0.986 (98.6%). 

Equivalent length. The total length L* of insulation is not at a single uni- 
form voltage stress. For comparisons, it is useful to know what length of 
insulation L** at the (uniform) maximum voltage stress P has the same life 
distribution (4.3.7) as a machine. Equate (4.3.7) and (4.2.3) to get 

L** = L*/(P@tl).  (4.3.9) 

L** does not depend on V*. If K,p, and p are not constants but depend on 
V, then their values at V* should be used in (4.3.9) and previous equations. 

Example. For the typical machine, L*=30,240 cm. For p=10.18498 and 
/3= 1.140976, L** =30,240/(10.18498~1.140976t 1) = 2,396 cm. 

Extensions. The results above can be extended in a number of ways. (1) 
Another distribution could be used, for example, the lognormal distribution; 
the resulting equations are more complex. (2) In other applications, an ap- 
propriate measure of size may be area or volume; the theory readily extends 
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to such applications. (3) The theory above extends to situations where speci- 
mens and product are under nonuniform stress. (4) The machine insulation 
can fail anywhere along the circuit length, but failure is more likely near the 
high voltage end. One can determine the probability that the failure occurs 
on the conductors with the highest voltage stress. This would indicate the po- 
tential value of using better insulation in the high stress locations, for exam- 
ple, insulation not made by the third production shift. 

5. GRAPHICAL ANALYSIS 

This section presents graphical methods to 

1. Analyze data on a failure mode. 
2. Estimate a product life distribution when all failure modes act. 
3. Estimate a product life distribution with certain failure modes eliminated. 
4. Check the model and data. 

Section 6 presents analytic methods (maximum likelihood) for such purposes. 
It is most informative to use graphical methods first and then analytic 
methods as necessary. The validity of the data, model, and analytic methods 
should f i s t  be assessed with graphical methods. Both methods check the 
other and provide information not provided by the other. The methods re- 
quire that the mode (cause) of each failure be identified. These methods al- 
low higher test stresses that save time, since other failure modes are properly 
taken into account. Data from a temperature-accelerated life test of motor 
insulation illustrate the methods. 

Literature. Graphical analyses of such data were developed by Nelson 
(1973,1975b) and Peck (1971). Nelson (1983a) presents an application to 
metal fatigue. Peck (1971) presents semiconductor applications. 

5.1. Data and Model 

Test purpose. Data in Table 5.1 illustrate the methods here. The data 
are times to failure of a Class-H insulation system in motorettes tested at 
high temperatures of 190, 220, 240, 260°C. A test purpose was to estimate 
the median life of such insulation at its design temperature of 180°C (Sec- 
tion 5.3). A median life of 20,000 hours was required. Other purposes were 
to determine the main cause of failure at the design temperature (Sec- 
tion 5.2) and to determine if redesign to eliminate that cause would improve 
the life distribution appreciably (Section 5.4). 

Data. Ten motorettes were run at each temperature and periodically in- 
spected for failure. The recorded time in Table5.1 is midway between the 
inspection time when the failure was found and the previous inspection time. 
Times between inspections are short enough that the effect of rounding to 
the midpoint is small. Table 5.1 gives the failure time for each cause (Turn, 
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Table 5.1. Class-H Failure Mode Data (Hours) 

19OoC - 
M- 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

- 2200c 
M o t o r  
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Hours to Failure 
T u r n  Phase Ground 

7228 10511 10511+ 
7228 11855 11855+ 
7228  11855 1185k 
8448 11855 1185k 
9167 12191+ 12191+ 
9167 12191+ 12191+ 
9167 12191+ 12191+ 
9167 12191+ 12191+ 
10511 12191+ 12191+ 
10511 12191+ 12191+ 

Hours to Failure 
T u r n  Phase Ground 

1764 2436 2436 
2436 2436 2490 
2436 2436 2436 
2436+ 2772+ 2772 
2436 2436 2436 
2436 4116e 4116+ 
3108 4116c 4116t 
3108 4116+ 4116+ 
3108 3108 310k 
3108 4116t 4116+ 

24OOC 

21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

26OoC 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

- 

- 
Hotor 

Phase, or Ground); each occurs on a separate 

Hours to Failure 
Turn Phase Ground 

1175 1175+ 1175 
1881+ 1881+ 1175 
1521 1881+ 1881+ 
1569 1761 1761+ 
1617 1881+ 1881+ 
1665 1881+ 1881+ 
1665 1881+ 1881+ 
1713 1881+ 1881+ 
1761 1881+ 1881+ 
1953 1953+ 1953+ 

Hours to Failure --- Turn Phase Ground 

1632+ 1632+ 600 
1632+ 1632+ 744 
1632+ 1632+ 744 

1632+ 1632+ 912 

1512 1512+ 1320 
1464 1632+ 1632t 

1632+ 1632+ 744 

1128 112k 1128 

1608 1608, 1608 
1896 1896 1896 

part of the insulation system. 
Each failed part was isolated electrically and could not fail again, and the 
motorette was kept on test and run to a second or third failure. In actual use, 
the first failure from any cause ends the life of the motor. For most prod- 
ucts, only one failure mode is observed on each specimen. However, the 
methods here apply to any observed number of failure modes on each speci- 
men. Figure5.1 depicts these data. The history of each motorette is 
represented by a line. Each failure appears on the line, and the length of the 
line is the length of the test on that motorette. 

First failure. Here the data on time to first failure are complete; that is, 
each motorette has a failure time. Complete data are usually analyzed with 
standard least-squares regression analysis (Chapter 4). Such analysis may be 
misleading for data with a mix of failure modes. Use the analyses below. 

1. 

2. 

Model. The model for these data with competing failure modes has: 

A separate Arrhenius-lognormal model (Chapter 2) for each failure 
mode. The following data analyses apply to other models. 
A series-system model (Section 1) for the relationship between the failure 
times for the different failure modes and the failure time for a specimen. 

These models are briefly reviewed below. The following data analysis 
methods extend to other life-stress models in the obvious way. 

Arrhenius-lognormal. The assumptions of the Arrhenius-lognormal 
model for failure mode rn are: 

1. For (absolute) temperature T, life has a lognormal distribution (base 10). 
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MOTORETTE 1000 
HOURS TO FAILURE 

2000 5000 

I I  
12 
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21 ri= 22 

I _ .  
38 
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40 

500 I000 

240"  

260' 

10,000 

220" 

e T U R N  
I PHASE 
A GROUND 

10,000 

Figure 5.1. Display of the Class-H life data. 

2. The log standard deviation am is a constant. 
3. The mean log life as a function ofx = 1000/T is 

(XI = a m  + Bmx- (5.1) 

4. The random variations in specimen lifetimes are statistically independent. 

%, B,, and Om are parameters characteristic of the failure mode, product, 
and test method. The antilog of ~ ( x )  is the median life and is regarded as a 
nominal life. Equation (5.1) is an Arrhenius relationship. This model is dep- 
icted in Figure 5.2A on Arrhenius plotting paper and in Figure 5.2B on log- 
normal probability paper. For units run at a stress x,  the probability that 
failure mode m survives time t is the reliability function 

R m  (f) = Q{ - [ W t )  - ~ l m  (x)I/om 1. (5.2) 

See the Class-H example of Section 1. The following data analysis methods 
extend to other life-stress models in the obvious way. Such models may 
include different tests and accelerating variables for different failure modes 
and different distributions and relationships (including multivariable ones). 
Model parameters are usually estimated from data as shown below. Also, 
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some parameters (e.g., activation energy and Weibull shape) may be assigned 
values from handbooks, the literature, similar products, or educated guesses. 

Series system. The series-system model assumes: 

1. Each unit has M potential times to failure, one from each mode. 
2. The M times are statistically independent. 
3. The time to failure of a system is the smallest of its M potential times. 

The reliability R,(t) at a stress level is the probability that failure mode nt 
does not occur by time t, if only mode i n  were acting. For the insulation, 
each reliability function comes from the Arrhenius-lognormal model (5.2) for 
that mode. The reliability function R (t) of specimens by the product rule is 

R ( t )  = R l ( t )RZ( t )  9 * . Rw(t). (5.3) 

This is used in Sections 5.3 and 5.4 to estimate life distributions from data 
with competing failure modes. If a separate Arrhenius-lognormal model 
describes each failure mode, then an Arrhenius-lognormal model does not 
describe the life of specimens when all failure modes act. The correct model 
appears in Figures 5.5 and 5.6. Section 5.3 describes how to estimate it. 

52. Analysis of a Failure Mode 

This section describes graphical methods that, for each failure mode, esti- 
mate its life-stress model and life distribution at any stress. The methods re- 
quire that the cause of each failure be known. 

Point of view. The following point of view simplifies the data analyses on 
a particular failure mode. Each specimen has a time to failure with that 
mode or else a running time without that mode. Such a running time results 
when the specimen fails by another mode or when it is removed from the 
test. The running time is a censoring time for the failure mode, since the 
failure time for that mode is beyond the running time. Table5.2A shows 
such data for Turn failures at the four test temperatures. The tabulations of 
Turn, Phase, or Ground failure data come from Table 5.1. Such data with in- 
termixed failure and censoring times are multiply censored data. 

Graphical analysis. Graphical analysis of data with a mix of failure 
modes involves the usual two plots (Chapter3) for each failure mode: 1) a 
hazard plot of the multiply censored data and 2) a relationship plot. These 
plots provide the desired information. Also, they can be used to assess the 
validity of the model and data as described in Chapter 3. Table 5.2A shows 
the hazard calculations for the Turn data, and Figure 5.2A shows the hazard 
plots. Similar calculations for the Ground and Phase failures appear in 
Tables 5.2B and C. Plots appear in Figures 5.3A and 5.4A. 

Interpretation. Such a hazard plot is used and interpreted as described in 
Chapter 3. For example, the estimate of the median time (50th percentile) to 
Turn failure at 220°C is 2,900 hours from Figure 5.2A; there median esti- 
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Table 5.2. Hazard Calculations for Class-H Failure Modes 

A. f i r n  
190" Cum. 
Hrs. Haz. Haz. 
7228 10.0 10.0 
7228 11.1 21.1 

8448 14.3 47.9 
9167 16.7 64.6 
9167 20.0 84.6 
9167 25.0 109.6 
9167 33.3 142.9 
10511 50.0 192.9 
10511 100.0 292.9 

B. Phase 
10511 10.0 10.0 
11855 11.1 21.1 
11855 12.5 33.6 
11855 14.3 47.9 
12191 t 
12191 t 
12191 t 
12191 t 
12191 t 
12191 t 

C. Ground 
10511 t 
11855t None 
11855 t 
11855 t 
12191 t 
12191 t 
12191 t 
12191 t 
12191 t 
12191 t 

--- 

72% 12.5 33.6 

220" Cum. 
Hrs. Haz. Haz. 
1764 10.0 10.0 
2436 11.1 21.1 
2436 12.5 33.6 
2436 t 
2436 16.7 50.3 
2436 20.0 70.3 
3108 25.0 95.3 
3108 33.3 128.6 
3108 50.0 178.6 
3108 100.0 278.6 

--- 

2436 10.0 10.0 
2436 11.1 21.1 
2436 12.5 33.6 
2436 14.3 47.9 
2772 t 
3108 20.0 67.9 
4116 t 
4116 t 

4116t 
4116 t 

2436 10.0 10.0 
2436 11.1 21.1 
2436 12.5 33.6 
2490 14.3 47.9 
2772 16.7 64.6 
3108 t 
4116t 
4116 t 
4116t 
4116t 

240" Cum. 
Hrs. Haz. Haz. 
1175 10.0 10.0 
1521 11.1 21.1 
1569 12.5 33.6 
1617 14.3 47.9 
1665 16.7 64.6 
1665 20.0 84.6 
1713 25.0 109.6 
1761 33.3 142.9 
1881 t 
1953 100.0 242.9 

--- 

1175 t 
1761 11.1 11.1 
1881 t 
1881 t 
1881 t 
1881 t 
1881 t 
1881 t 
1881 t 
1953 t 

1175 10.0 10.0 
1175 11.1 21.1 
1761 t 
1881 t 
1881 t 
1881 t 
1881 t 
1881 t 
1881 t 
1953 t 

260" Cum. 
Hrs. Haz. Haz. 
1128 10.0 10.0 
1464 11.1 21.1 
1512 12.5 33.6 
1608 14.3 47.9 
1632 t 
1632 t 
1632 t 
1632 t 
1632 t 
1896 100.0 147.9 

--- 

1128t 
1512t 
1608 t 
1632 t 
1632 t 
1632 t 
1632 t 
1632t 
1632 t 
1896 100.0 100.0 

600 10.0 10.0 
744 11.1 21.1 
744 12.5 33.6 
744 14.3 47.9 
912 16.7 64.6 
1128 20.0 84.6 
1320 25.0 109.6 
1608 33.3 142.9 
1632 t 
1896 100.0 242.9 

mates are shown iis crosses. Also, for example, the estimate of the percent- 
age failing at 220°C by 3,000 hours is 55% from Figure 5.X. The 
corresponding reliability estimate is 100% - 55% = 45%. The estimate of 0 

is the difference between the log of [he 84th and 50th percentiles at a tem- 
perature. For 220"C, these estimates are 3,100 and 2,900 hours. The esti- 
mate of D is log(3400)-log(2900) = 0.069. 

A discovery. Figure 5.2A shows two noteworthy features. 1) The data 
plots at the four temperatures are parallel; this indicates that the log standard 
deviation for Turn failures has the same value at all test temperatures. In 
contrast, the Class-H data with all failure modes acting (Chapter 4) has a 
larger log standard deviation at 260°C. 2) The 260°C data coincide with the 
240°C data but should be lower. There are two possible explanations for this. 
a) The motorettes tested at 260°C were made after the other motorettes, and 
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Figure 53A. Lognormal hazard plot Figure 53B. Arrhenius plot of Turn 
of Turn failures. failure medians x .  

failures. If cycled daily, the 260°C motorettes might have had a shorter life 
they may differ with respect to materials and handling. b) During the test, 
the motorettes are heated going into the oven and cooled coming out for in- 
spection. The cycle is 7 days at 190"C, 4 days at 220"C, and 2 days at both 
240°C and 260°C. One day at 260°C would be consistent with other cycle 
lengths and IEEE Std. 117. Frequent thermal cycling may accelerate Turn 

Figure 53A. Lognormal hazard plot 
of Phase failures. 

1 

TEMPERATURE C' 

Figure 53B. Arrhenius plot of Phase 
failure medians x. 
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TEMPERATURE 

Figure 5.4A. Lognormal hazard plot of Figure 5.4B. Arrhenius plot of Ground 
Ground failures. failure medians x. 

consistent with the data at the other test temperatures, A subsequent experi- 
ment (Problem 7.8) showed that insulation life depends on cycle length. The 
graphical analyses were valuable because they revealed problems in the data 
and experimental method. This discovery lead to a $l,OOO,OOO yearly cost 
savings. Namely, motors that run continuously in service (not thermally cy- 
cled) can be built with a cheaper insulation. 

Relationship plot. The relationship between (median) life for a failure 
mode and temperature is graphically estimated as described in Chapter 3. 
Figure5.2B shows such an Arrhenius plot of the median times to Turn 
failure against test temperature. A straight line fitted to the medians esti- 
mates the Arrhenius relationship for Turn failures. For example, the esti- 
mate of the median Turn life at the design temperature of 180°C is 
12,300 hours. The 260°C Turn failure data do not jibe with the model and 
were not used to estimate the line. A proper analysis (Problem 7.8) takes 
thermal cycling into account. Similar plots in Figures5.3B and 5.4B yield 
median estimates of 17,000 hours for Phase failure and 19,OOO hours for 
Ground failure at 180°C. 

Eliminate Turn failures? Turn failures have the lowest median life at 
180°C. Thus they are the main cause of failure there. If Turn failures could 
be eliminated through redesign, the Phase failures would have the lowest 
median (17,000 hours). This is still below the required 20,000 hour life. 
These results indicated that the insulation system could not be improved 
enough. So it was abandoned. 

Life at any stress. An estimate of the entire Turn failure distribution at 
any temperature is obtained as in Chapter 3. For example, for 180"C, get the 
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estimate of the median from the Arrhenius plot in Figure5.2B. Mark this 
median as an x on the hazard plot (Figure 5 2 4 ) .  Then draw a straight line 
through the median so its slope is the same as those for the test tempera- 
tures. This line in Figure 5.2A estimates the Turn life distribution at 180°C. 

Maximum likelihood. Lines fitted to the data plots would ordinarily be 
fitted by eye. However, the models could also be fitted by the method of 
maximum likelihood as described in Section6. The plotted lines are the 
maximum likelihood estimates. A benefit of maximum likelihood fitting is it 
provides confidence intervals that indicate the uncertainty in the estimates. 
Such intervals (say, for medians) are often quite wide. 

53. The Life Distribution When All Failure Modes Act 

Purpose. When a product is in actual use, all failure modes act. Thus, in- 
terest centers on the life distribution at a design stress when all modes act. 
This section presents methods for estimating such a distribution at any stress. 
The methods employ the estimates of the life distribution of each failure 
mode (Section 5.2). 

Simple distribution estimate. The following is a simple estimate of the 
life distribution at a stress when all failure modes act. Examine the separate 
estimates of the life distributions (from Section 5.2) for each mode. The life 
distribution when all modes act is slightly below the shortest life distribution, 
especially if the other modes have much longer lives. For example, Turn 
failures have the lowest median (12,300 hours) at 180°C. So the median life 
when all failure modes act is slightly below 12,300 hours. 

Exact distribution estimate. The following is an exact method to esti- 
niate the life distribution with all failure modes acting. First separately esti- 
mate the reliability at an age and temperature of interest for each failure 
mode as described in Section 5.2. Then the estimate of reliability at that age 
for specimens with all failure modes acting is the product of those reliabili- 
ties. This is an application of the product rule (5.3). For example, for the in- 
sulation, estimate the reliability at 10,000 hours and 180°C as follows. The 
reliability for Turn failure is estimated from Figure 5.2A as 0.886. Similarly, 
the reliability is 0.872 for Phase failure and 0.995 for Ground failure. Thus 
the estimate of reliability with all failure modes acting is 0.886 x 0.872 x 0.995 
= 0.769. The estimate of the fraction failing is 1 - 0.769 = 0.231. This frac- 
tion is plotted as an x against 10,OOO hours on lognormal paper in 
Figure5.5A. There the 180°C curve estimates the life distribution with all 
failure modes acting. It and the other curves were obtained by such calcula- 
tions for other ages and temperatures as shown in Table5.3. These are 
curves, rather than straight lines, since the distributions are not lognormal. 
The plotted data on Figure 5.5A are explained below. 

Life-stress relationship. The life-temperature relationship is depicted on 
Arrhenius paper in Figure 5.5B. This plot differs from the Arrhenius model 



400 COMPETING FAILURE MODES AND SIZE EFFECT 

Figure 5.5A. Fitted model and Figure 5.5B. Arrhenius plot of the 
lognormal plot with all model with all failure 
failure modes. modes. 

for a single failure inodc depictcd in Figure 5.2A. 111 particular, the relalion- 
ships in Figure 5.33 are curves. Also, the distribution is not symmetric; that 
is, the 1% and 99% lines are not equally far from the 50% line. Figure 5.5B 
shows an estimate of the median life at 180°C of 11,600 hours with all failure 
modes acting. The median curve is obtained by (1) estimating the medians 
for different temperatures from the lognormal plot (Figure 5.5A), (2) pulting 
them on the Arrlienius plot, and (3) drawing a smooth curve through lhe 
medians. A relationship for any other percentile is cstimated the same way. 
Such percentile curves are concave downwards for competing failure modes. 
If one fits a simple h e a r  model and ignores the cause of failure, the 
straight-line estimate of a percentile at a low stress is generally above the 
correct estimate. 

Hazard plot. Most data sets contain no more than one failure per speci- 
men. For such data, make a hazard plot for each test stress level, using all 
failures and ignoring their failure modes. Assess the above estimate of the 
life distribution with all failure modes acting by examining a plot of it wit11 
the data. The Class-H data could be plotted this way by using just the first 
failure on each specimen, ignoring its failure mode and subsequent failures 
on a specimen. The following plot (Figure 5.5A) makes use of the informa- 
tion in the subsequent failures. The method sums the sample cumulative 
hazard functions of each failure mode (Section 5.2) to obtain a sample cumu- 
lative hazard function with all failure niodes acting. To do this for a tempera- 
ture, order all failure times in Table 5.2 from smallest to largest without re- 
gard to the failure mode. Table 5.4 shows this for each test temperature. In- 
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clude with each failure its hazard value from Table 5.2. Then cumulate the 
hazard values as shown in Table 5.4. If desired, modify these cumulative haz- 
ard values by averaging each with the previous one. Plot each failure time 
against its (modified) cumulative hazard value on hazard paper. This plot is 
an estimate of the distribution with all failure modes acting. Figure 5.5A 
shows such plots for each test temperalure. There the agreement betwecti 
the plotted data and the calculated curves is satisfactory. This plot provides a 
check on the data, the model, and the calculated estimate. Poor agreement 
in the upper tail should be expected when the distributions of the competing 
failure modes do not overlap appreciably. The upper tail of the 260" data 
does not agree well with the calculated curve, because 260" Turn failures oc- 
cur late due to less frequent thermal cycling at 260". Regardless, points 
above lOO(n - O S ) / t i  % should be ignored; here II is the number of speci- 
mens at that stress level. 

5.4. The Life Distribution with Certain Failure Modes Eliniinated 

Purpose. To improve products, certain failure modes can be elimiiiatecl 
by design changes. This section shows how to graphically estimate the result- 

Table 5.3. Reliubility Csllciilatioris for All Modes Acting 

Hours 
1800 - 
5,000 
6,000 
7,000 
8,000 
9,000 
10,000 
11,000 
12,000 
13,000 
14,000 
16,000 
18,000 
20,000 

1900 - 
3,000 
4,000 
5,000 
6,000 
7.000 
8,000 
9,000 
10,000 
11,000 
12,000 
13,000 

Re 1 iab L 1 L t v  All 
Turn Phase Ground Acting --- 

1.000 x 
1.000 x 
.999 x 
.994 x 
,966 x 
.886 x 
.7$2 x 
.556 x 
.372 x 
. 2 2 3  x 
.061 x 
.013 x 
.002 x 

.996 x 1.000 = .996 

.987 x 1.000 = .987 

.971 x 1.000 = .970 

.946 x .999 = .940 

.913 x .997 = .880 

. a 7 2  x .995 = ..769 

.824 x .991 = .606 

.772 x .906 = .423 

.717 x .97Y = ,261 

.662 x .971 5 .143 

.553 x .947 = .032 

.452 x .915 5 .005 

.365 x .876 = .001 

1.000 x .999 x 1.000 
1.000 x .993 x 1.000 
.999 x .977 x .998 
.975 x .945 x '.995 
.856 x .899 x .988 
.610 x .839 x .977 
.341 x .769 x .960 
.I52 X .696 X .938 
.057 x .621 x .910 
.018 x .549 x .877 
.005 x .481 x .841 

.999 

.993 

.974 

.918 

.760 

.500 

.252 

.loo 

.032 

.009 

.002 

Hours 
2200 - 
1,300 
1,600 
2,000 
2,500 
3,000 
4,000 
5,000 

240' - 
500 
600 
700 
800, 
9 00 

1,000 
1,300- 
1,600 
2,000 
2,500 

260' - 
2 50 
300 
400 
500 
600 
700 
800 
900 

1,000 
1,300 

Reliability All 
Turn Phase Ground Actlng --- 

1.000 x .999 x .998 = .997 
1.000 x .997 x .992 - .986 
.987 x .987 x .976 = .951 
. 8 2 3  x .960 x .935 .739 
.445 x ,914 x .872 = .355 
.034 x .774 x .707 = .019 
.0009 x .608 x .534 - .0003 

1.000 x 1.000 x .999 = .999 
1.000 x 1.000 x .997 = .997 
1.000 x 1.000 x .992 = ,992 
1.000 x .999 x .983 = .982 
.999 x .998 x .970 = .967 
.995 x .996 x .952 = .944 
-853 x .983 x .870 = .729 
.435 x '  .953 x .758 = .314 
.071 x ,884 x .595 - .037 
.003 x .764 x .413 - .001 

1.000 x 1.000 x 
1.000 x 1.000 x 
1.000 x 1.000 x 
.999 x .999 x 
.984 x .998 x 
.a94 x .993 x 
.679 x .986 x 
.411 x .974 x 
.zoo x .957 x 
.009 x .877 x 

.998 

.994 

.974 

.932 

.868 

.787 

.699 

.610 

.525 
,317 

- .998 
= .994 - .974 - .930 - .852 - .699 
= .468 
= .245 
= .lo1 
m .002 
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Table 5.4. Cumulative Hazard Calculations with All Failure Modes 

cum. Cum. 
Hours Cause 
190" 
-- 
- 
7,228 Turn 
7,228 Turn 
7,228 Turn 
8,448 Turn 
9,167 Turn 
9,167 Turn  
9,167 Turn  
9,167 Turn 
10,511 Turn 
10,511 Turn  
10,511 Phase 
11,855 Phase 
11,855 Phase 
11,855 Phase 

220" - 
1,764 Turn 
2,436 Phase 
2,436 Turn 
2,436 Ground 
2,436 Phase 
2,436 Turn 
2,436 Ground 
2,436 Phase 
2.436 Turn  
2,436 Ground 
2,436 Phase 
2,436 Turn 
2,490 Ground 
2,772 Ground 
3,108 Turn 
3,108 Turn 
3,108 Phase  
3,108 Turn 
3,108 Turn 

Hazard Hazard -- 
10.0 10.0 
11.1 21.1 
12.5 33.6 
14.3 47.9 
16.7 64.6 

25.0 109.6 
33.3 142.9 

20.0 84:6 

50.0 192.9 
100.0 292.9 
10.0 302.9 
11.1 314.0 
12.5 326.5 
14.3 340.8 

10.0 10.0 
10.0 20.0 
11.1 31.1 
10.0 41.1 
11.1 52.2 
12.5 64.7 
11.1 75.8 
12.5 88.3 
16.7 105.0 
12.5 117.5 
14.3 131.8 
20.0 151.8 
14.3 166.1 
16.7 182.8 
25.0 207.8 
33.3 241.1 
20.0 261.1 
50.0 311.1 
100.0 411.1 

Hours Cauas Hazard Hazard ---- 
240" 

1,175 Ground 
1,175 Turn 
1,175 Ground 
1,521 Turn 
1,569 Turn 
1,617 Turn  
1,665 Turn 
1,665 Turn 
1,713 Turn 
1,761 Phase 
1,761 Turn 
1,953 Turn 

260" - 
600 Ground 
744 Ground 
744 Ground 
744 Ground 
912 Ground 

1,128 Turn 
1,128 Ground 
1,320 Ground 
1,464 Turn 
1,512 Turn 
1,608 Ground 
1,608 Turn 
1,896 Ground 
1,896 Turn  
1,896 Phase 

10.0 
10.0 
11.1 
11.1 
12.5 
14.3 
16.7 
20.0 
25.0 
11.1 
33.3 
100.0 

10.0 
20.0 
31.1 
42.2 
54.7 

85.7 
105.7 
130.7 
141.8 
175.1 
275.1 

69.0 

10.0 10.0 
11.1 21.1 
12.5 33.6 
14.3 47.9 
16.7 64.6 
10.0 74.6 
20.0 94.6 
25.0 119.6 
11.1 130.7 
12.5 143.2 
33.3 176.5 
14.3 190.8 
100.0 290.8 
100.0 390.8 
100.0 490.8 

ing lie distribution at any stress level from the existing data. This estimate 
avoids the time and expense of making the redesign and testing it. This esti- 
mate employs the cstimate of the life distribution of each remaining mode 
(Section 5.2). This estimate assumes such modes are completely eliminated 
for all practical purposes, and all remaining failure modes are unaffected. 

Simple distribution estimate. The following is a simple estimate of the 
improved life distribution at a stress when certain failure modes are elimi- 
nated. Examine the separate fitted models (Section 5.2) for the modes left in 
the product. Determine the remaining mode that has the shortest life at the 
stress level. The improved lire distribution is slightly below the distribution 
of that inodc, cspecially if the other riiodes have much longer lives. For ex- 
ample, after elimination of Turn failures from the insulation, Phase failures 
have the shortest life at 1SO"C and a median of about 17,000 hours. The im- 
proved distribution is slightly below that. 

Exact distribution estimate. The following exact method estimates the 
improved life distribution when certain failure modes are eliminated. Sup- 
pose that the reliability of the redesign at a given age and temperature is to 
be estimated. Obtain the estimate of the reliability at that age and tempera- 
ture for each remaining failure mode as described in Section 5.2. Calculate 
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the estimate of the reliability for the redesign as the product of those reliabil- 
ities. This is an application of the product rule (5.3) where the reliability of 
an eliminated failure mode is 1. 

Class-H example. For the insulation, the earliest failure mode at 180°C is 
Turn failure. Turn failures could be eliminated through a redesign of the in- 
sulation system. Suppose that the reliability of the redesign at 10,OOO hours 
at 180°C is to be estimated. Obtain the corresponding reliability estimates 
0.872 for Phase failure and 0.995 for Ground failure from Figures 5.3A and 
5.4A. Thus the reliability estimate for the redesign at 10,OOO hours at 180°C 
is 0.872 x 0925 = 0.868, and the fraction failing is 0.132. This is plotted as an 
x on the lognormal paper in Figure 5.6A. The 180°C curve estimates the life 
distribution of the redesign. It and the other curves result from repeated cal- 
culation of the reliability for different ages and temperatures as shown in Ta- 
ble 5.5. These are curves rather than straight lines, since they are not lognor- 
mal distributions. The plotted data on this figure are explained below. The 
180" curve yields a median estimate of 16,400 hours. This is much below the 
desired 20,000 hours. Thus elimination of Turn failures would not provide a 
satisfactory insulation, and the insulation was abandoned. 

Life-stress relationship. The Arrhenius plot in Figure 5.6B is obtained 
from Figure 5.6A as described in Section 5.3. The relationship is not an Ar- 
rhenius one; it is curved and always concave downward on Arrheniiis paper. 

PERCLYTACE 

Figure 5.6A. Fitted model and 
lognormal plot with Turn 
failures eliminated. 
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Figure 5.6B. Arrhenius plot of the 
model with Turn failures 
eliminated. 
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Table 5.5. Reliability Calculations with Turn Failures Eliminated 

Re 1 L a b i l i t y  Without 
Hours Phase Ground Turn -- - - 
180° - 
4,000 .999 X 1.000 = .999 
5,000 .996 x 1.000 = .996 
6,000 .987 x 1.000 = .987 
7,000 .971 x 1.000 = .971 
8,000 .946 x .999 = .945 
9,000 .913 x .997 = .911 
10,000 .872 x .995 = .868 
11,000 .824 x .991 = .817 
12,000 .772 x .a86 = .762- 
13,000 .717 x .979 = .703 
14,000 .662 x .971 = .642 
16,000 .553 x .947 = .523 
18,000 ,452 x .915 = .414 
20,000 ,365 x .876 = ,320 
25,000 ,206 x ,757 = .156 
30,000 .113 x .626 = .071 
40,000 .034 x .393 = .013 
50,000 .011 K .232 = .002 

- 1900 
3,000 .999 x 1.000 = -999 
4,000 .993 x 1.000 = .993 
5,000 ,977 x .998 = .975 
6,000 .945 x .995 = .940 
7,000 .899 x .988 = .a88 
8,000 .a39 x .977 = ,819 
9,000 .769 x .960 = .739 
10,000 .696 x .938 = .653 
11,000 .621 x .910 = .565 
12,000 .549 x .877 = .482 
13,000 .481 x ,841 = .404 
14,000 .418 x .801 = -268 
16,000 .312 x .716 = .223 
18,000 .229 x .628 = .I44 
20,000 .167 x .544 = .091 
25,000 .074 x .364 = -027 
30,000 ,033 x .235 = .008 
40,000 .007 x .094 = ,001 

Hours 
2200 - 
1,300 
1,600 
2,000 
2,500 
3 , 000 
4,000 
5,000 
6,000 
7,000 
8,000 
9,000 
10,000 
11,000 
12 , 000 
13 , 000 

Re 1 i a b  i1 i t y  Without 
Phase Ground Turn - -- 

240° - 
500 
600 
700 
80 0 
900 

1,000 
1 , 300 
1,600 
2,000 
2,500 
3,000 
4,000 
5,000 
6,000 
7,000 

.999 x .998 = 

.997 x .992 = 

.987 x .976 = 

.960 x .935 = 
,914 x .872 = 
,774 x .707 = 
.608 x .534 = 
,454 x .386 = 
.329 x ,272 = 
.233 x .189 = 
.163 x .130 = 
.114 x .090 = 
,080 x ,062 = 
.055 x .043 = 
.039 x .030 = 

260' - 
2 50 
300 
400 
500 
600 
700 
800 
900 

1,000 
1,300 
1,600 
2,000 
2,500 
3,000 

.997 

.989 

.963 

.898 

.797 
,547 
.325 
.175 
.089 
.044 
.021 
,010 
.005 
.002 
.OOl 

1.000 x .999 = .999 
1.000 x .997 = .997 
1.000 x .992 = .992 
.999 x ,983 = ,982 
.998 x .970 = .968 
.996 x ,952 = .949 
.983 x ,870 = .855 
.953 x .758 = .722 
.a84 x .595 = ,526 
.764 x .413 = .316 
.630 x .276 = .174 
,389 x .118 = .046 
.224 x .050 = .011 
.126 x .022 = .003 
.070 x .010 = .001 

1.000 x .998 = .998 
1.000 x ,994 = .994 
1,000 x .974 = ,974 
.999 X .932 = .931 
.998 X .867 = .865 
.993 X .787 = .782 
.986 X .699 = .690 
.974 X .610 = .595 
,957 X .525 = .503 
.877 .317 = ,278 
,764 .183 = .140 
.595 .086 = .051 
.407 X .034 = ,014 
.266 X .014 = .004 
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Hazard plot. For each test stress, one can make a hazard plot of the data 
with certain failure modes eliminated. The method provides a check on the 
validity of the data, the model, and the calculated estimate. Section 5.2 pro- 
vides a separate estimate of the cumulative hazard function for each remain- 
ing failure mode. Sum them to get the sample cumulative hazard function as 
follows. For the example, assume that Turn failures will be eliminated. In 
Table 5.2 identify the failure times from Table 5.2 with the remaining failure 
modes. Order them from smallest to largest as shown in Table 5.6 for the 
Ground and Phase failures. Include with each failure its hazard value from 
Table 5.2. Then cumulate the hazard values as shown in Table 5.6. Plot each 
such failure time on hazard paper against its (modified) cumulative hazard 
value. This plot is an estimate of the life distribution with just the remaining 
failure modes. Such plots of the data appear in Figure5.6A. The plotted 
data and the calculated curves can be compared. As before, poor agreement 
may be found in the upper tail. 

Partial elimination. Sometimes a redesign does not completely eliminate 
a failure mode. Subsequent testing may reveal this. The estimate of the new 
distribution for that mode may be combined with the distributions of other 
remaining modes as described above. Nelson (1982, pp. 182-5) g' ives an ex- 
ample of this. 

5.5. Checks on the Model and Data 

Purpose. This section briefly describes other graphical analyses of data 
with competing failure modes. These include checks for independence of the 
competing failure modes and for the validity of the model and data. 

Table 5.6. Cumulative Hazard Calculations with Turn Failures Eliminated 

Cum. Cum. 
Hours Cause Hazard Hazard Hours Cause Hazard Hazard 

190" 
10,511 Phase 10.0 10.0 i , i 7 5  Ground 10.0 10.0 
11,855 Phase 11.1 2 1 . 1  1,175 Ground 11.1 21 .1  
11,855 Phase 12.5 33.6 1,761 Phase 11.1 32.2 
11,855 Phase 14.3 47.9 

---- ---- 
2400 - 

220" 
2 , 436 
2,436 
2 , 436 
2,436 
2,436 
2,436 
2,436 
2,490 
2,772 
3,108 

Phase 
Ground 
Phase 
Ground 
Phase 
Ground 
Phase 
Ground 
Ground 
Phase 

10.0 10.0 
10.0 20.0 
11.1 31.1 
11.1 42.2 
12.5 54.7 
12.5 67.2 
14.3 81.5 
14.3 95.8 
16.7 112.5 
20.0 132.5 

260" - 
600 Ground 
744 Ground 
744 Ground 
744 Ground 
912 Ground 

1,128 Ground 
1,320 Ground 
1,608 Ground 
1,896 Ground 
1,896 Phase 

10.0 10.0 
11.1 21 .1  
12.5 33.6 
14.3 47.9 
16.7 64.6 
20.0 84.6 
25.0 109.6 
33.3  142.9 

100.0 242.9 
100.0 342.9 
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Independence. The series-system model assumes that the failure times 
for the different modes in a specimen are statistically independent. The fol- 
lowing briefly describes how to check this assumption and what to do if the 
assumption is not satisfied. 

Life distribution with dependence. When there are correlations between 
the lifetimes for different failure modes, they are usually positive. Positive 
correlation means that long-lived specimens with respect to one failure mode 
tend to be long lived with respect to another mode, and short-lived specimens 
with respect to one failure mode tend to be short lived with respect to anoth- 
er mode. When a failure mode is positively correlated with other failure 
modes, the estimate of Section 5.2 for its life distribution is biased toward 
long life. Thus, that estimate is an upper bound for the distribution. To ob- 
tain a lower bound, treat the times for all other failure modes correlated with 
that mode as if they were from that mode and use the estimate of Section 5.2. 
A correct estimate would be between the two bounds. The two bounds may 
suffice if they are close for practical purposes. 

Crossplot. Independence may be checked with a simple crossplot of the 
pairs of failure times for two modes at a test temperature. This works if 
there are enough specimens with both failure times. Figure 5.7 shows such 
crossplots for Turn and Ground failures for two of the test temperatures. An 
arrow points in the direction of a censored failure mode. If all failure times 
were observed, one would look for a positive trend in the plot, since that indi- 
cates a correlation. One must imagine where the censored times would fall. 
The three plots in Figure 5.7 do not have convincing trends. Thus Turn and 
Ground failure times appear statistically independent. 

Another check of independence. Nadas (1969) gives a check for indepen- 
dence for normal and lognormal life distributions. His graphical method es- 

TURN HOURS 
Figure 5.7. Crossplot of Turn and Ground failure times. 



ML ANALYSIS FOR COMPETING FAILURE MODES 407 

timates the correlation coefficient of a joint (log) normal distribution for two 
failure modes. A very positive or negative estimate indicates dependence. 
His method applies if there is only one failure mode per specimen. 

Checks on each model and data. The graphical methods of Chapter 3 
provide checks on the assumed model and the data for each failure mode. 

6. ML ANALYSIS FOR COMPETING FAILURE MODES 

This section describes maximum likelihood (ML) methods for analysis of 
such data with competing failure modes, namely, 
An estimate for a separate relationship between life and stress for each 

An estimate of the life distribution at any stress with all modes acting. 
0 An estimate of the life distribution that would result if certain modes are 

The value of ML methods is that they provide objective estimates, confidence 
limits, and hypothesis tests (to check the model). They are best used along 
with graphical methods (Section 5). The Class-H data illustrate the methods. 
Chapter 5 and Sections 1 and 5 provide needed background. 

Literature. ML analyses for data from a single population (test condi- 
tion) with competing failure modes are given by Cox (1959), Moeschberger 
(1974), Moeschberger and David (1971), Herman and Patell (1971), Nelson 
(1982), and Birnbaum (1979). For fitting regression models to such data, Al- 
len (1967) briefly suggests the ML method. Nelson (1971,1974) and Nelson 
and Hendrickson (1972) develop the details of the ML method, present ap- 
plications, and provide the STATPAC computer package for the ML regres- 
sion calculations. Sidik and others (1980) apply the method to battery cells. 
Glasser (1967) and Klein and Basu (1981) present ML theory for a model 
with exponential distributions. Sidik (1979) and Klein and Basu (1982) 
present ML theory for models with Weibull distributions.. Section 1 of 
Chapter 5 describes ML programs that fit such models to data. 

Identified modes. The following method requires that the mode of each 
failure be identified. If each failure mode is riot identified, ML fitting of the 
model is more complex. Nelson (1982, Problem 8.15) gives an example of 
ML fitting to data with unidentified failure modes. Faraone (1986) gives 
such data from an accelerated test. 

failure mode. 

eliminated. 

Overview. This section presents 

1. The illustrative data and model. 
2. The ML estimate of the model for each failure mode. 
3. The ML estimate of the model when all failure modes act. 
4. The ML estimate of product life that would result if certain failure modes 

were eliminated by product redesign. 
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5. Methods for checking the validity of the model and the data. 

Section 7 presents ML theory for analysis of such data. 

6.1. Data and Model 

Data. Data in Table 5.1 illustrate the ML methods. The data are hours 
to failure of the Class-H insulation tested in motorettes at high temperatures 
of 190,220,240, and 260°C. Table 5.1 gives the cause of each failure, namely, 
Turn, Phase, and Ground failures - separate parts of the insulation system. 
The cause is determined by engineering examination. More than one cause 
of failure may occur in an inspection period. Each failed part of a specimen 
was isolated electrically and could not fail again by that cause. Such a speci- 
men was put back on test and run to a second or third failure. Figure51 
depicts the data. 

In use, the first failure from any cause ends the life of a motor. For most 
products, only one of the failure modes is observed on a specimen. The 
methods apply whether one or more failure modes occur on each specimen. 

A purpose was to estimate the median life of such insulation at its design 
temperature of 180°C. A median life of 20,OOO hours was desired. Another 
purpose was to determine which cause of failure is dominant (earliest) at the 
design temperature and to determine if eliminating that cause would improve 
the life distribution enough. 

Model. The model for the data is the one in Section 5.1. Namely, there is 
a separate life-stress model for each failure mode. The Arrhenius-lognormal 
model is used for each failure mode in the example. Also, one uses the 
series-system model for the relationship between the life distribution of the 
product and those of the failure modes. An Arrhenius-lognormal model does 
not describe product life when more than one failure mode is acting. Fig- 
ure 5.5 depicts the correct model. The following describes how to estimate 
the correct model by ML. 

6.2. ML Estimates for Each Failure Mode 

For each failure mode, the following ML methods estimate its 
Arrhenius-lognormal model and its life distribution at any temperature. The 
methods are easy carry out with the computer programs of Chapter 5. 

Censoring. For an analysis of the data on a failure mode, each specimen 
has a time to failure with that mode or else a running time without that 
failure mode. Such a running time results when the specimen fails by anoth- 
er mode or is removed unfailed from test. Such a running time is a censoring 
time for the failure mode. Table 5.2 shows such multiply censored data for 
insulation Turn, Phase, and Ground failures. The data for each failure mode 
are separately analyzed with ML methods for multiply censored data as de- 
scribed in Chapter 5. 



ML ANALYSIS FOR COMPETING FAILURE MODES 409 

ML fit. An accelerated-test model, such as the Arrhenius-lognormal 
model, is fitted to such multiply censored data on a failure mode by a ML 
program. ML fitting of the model to the data for each failure mode was 
done by the STATPAC program of Nelson and Hendrickson (1972). The 
260°C data on Turn failures were omitted from the fitting. Table 6.1 shows 
the estimates and confidence limits for the model parameters, their (estimat- 
ed) covariance matrix, the estimates of the Arrhenius relationships, and esti- 
mates and confidence intervals for the median lives at the design tempera- 
ture of 180°C. For example, the ML estimate of the mean log life for Turn 
failures at 180°C is G(2.2067261) = (2.2067261 - 2.044926) 3.526684 t 

Table 6.1. ML Fits to Failure Mode Data 

TURN FAILURES a' B 0 180'Me d i a  n 
Es t imate  : 3.526684 3.478935 0 A7423483 12,290 
Lower 95% L i m i t :  3.499721 
Upper 95% L i m i t :  3.553648 

A 
Cov. Matr ix :  GJ 

9' 0.001892482 .- 
@ -0.000032680 
6 0.000004606 

3.171346 0.05710498 10,797 
3.786524 0.09650315 13,990 

A A B CJ 
s y mme t r i c 

2 0.02462799 
9 -0.00003613455 0.0000987278 

Maximum Log L i k e l i h o o d :  r219.69875 
~ ( x )  = 3.526684 + (x-2 .044926)3 -478935 
PHASE FAILURES a' p 0 180'Me d i an 
E s t i m a t e :  3.693313 2.660203 0.2034712 17,020 
b w e r  95% L i m i t :  3.574233 1.850073 0.1288536 11,650 
Upper 95% L i m i t :  3.812393 3.470332 0.3212990 24;866 

h A 
Cov. M a t r i x '  $ 1  B CJ 

*' ' 0.00361172 symmetric [ -0.008941888 0.1708428 
CJ 0.2013194 -0.005933364 0.002249245 

Maximum Log Like l ihood:  -32.534989 
p ( x )  = 3.693313 + (x-2 .004613)2.660203 

1 8 O W M e  d i a  n GROUND FAILURES a' P 3 

E s t ima t e : 3.610041 4.624660 0.2110285 35,054 
Lower 95% L i m i t :  3.502661 3.667628 0.1442328 19 ,023  
Upper 95% L i m i t :  3.717421 5.581691 0.3087580 64,595 

h A Cov. Matrix:h LY B 3 h 

a' 0.0030001463 symmetric 

8 0.001352738 0.008563337 0.001678907 
0,01385714 0.2384186 

Maximum Log Like l ihood:  -136.97398 
,U ( x )  = 3.610041 + (x-2.004613)4.624660 
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3.478935 = 4.089576; here 2.2067261 = 1000/(273.16 t 180) is the reciprocal 
absolute temperature. The ML estimate of the median is anti- 
log(4.089576) = 12,290 hours. 95% confidence limits are 10,797 and 
13,990 hours. The interval is well below the desired 20,OOO hour-life. Also, 
the ML estimate of th%fraction failing by 10,000 hours at 18O"C, if only Turn 
failures are active, is F( 10,000) = a{ [log(lO,OOO) -4.089576]/0.07423483} = 
0.114. Confidence limits for estimated quantities are calculated as described 
in Chapter 5. Lognormal and Arrhenius plots of the fitted models appear in 
Figures 5.2,5.3, and 5.4. 

63. ML Estimate When All Failure Modes Act 

When a product is in actual use, all failure modes act. Presented below 
are two methods for estimating the product life distribution at a stress level 
when all failure modes act. Both methods employ the ML estimate of the life 
distribution of each failure mode. 

Simple estimate. Examine the plotted estimate of the distribution for 
each failure mode at that stress level. The distribution with all modes acting 
is generally slightly below the earliest such distribution. For the insulation, 
Turn failures are.earliest at 180°C. Thus, the insulation median life is slightly 
below that for Turn failures (12,290 hours). The exact estimate (obtained 
below) is 11,600 hours. Approximate other percentiles this way. 

ML estimate. Estimate the reliability at some age and stress level as fol- 
lows. Calculate the ML estimate of the reliability at that age and stress level 
for each failure mode as described above. The product of those reliability es- 
timates is the ML estimate of product reliability with all failure modes acting. 
For example, estimate insulation reliability for 10,000 hours at 180°C as fol- 
lows. Calculate the ML estimate of that reliability as 0.886 for Turn failure, 
0.872 for Phase failure, and 0.995 for Ground failures. Calculate the ML esti- 
mate of insulation reliability as 0.886xO.872x0.995 = 0.769. The ML estimate 
of the fraction failing is 1-0.769 = 0.231. This is plotted as an x on lognor- 
mal paper in Figure 5.5A. There the 180" curve is the ML estimate of the in- 
sulation life distribution with all modes acting. Such calculations (Table 5.3) 
for various ages yield the distribution estimate. For any temperature, such 
calculations yield a distribution curve in Figure MA, not a straight line; such 
a distribution is not lognormal. 

Life-stress relationship. The relationship between insulation life and 
temperature appears on Arrhenius paper in Figure 5.5B as percentile curves. 
Figure 5.5A yields an ML estimate of 11,600 hours for the median life at 180" 
with all modes acting. Similarly, obtain such median estimates for other tem- 
peratures and plot them on Arrhenius paper as in Figure 5.5B. Then draw a 
smooth curve through the median estimates. This curve could also be calcu- 
lated. Estimate the relationship for any other percentile the same way. Not 
an Arrhenius relationship, such a curve for competing modes is always con- 
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cave down on Arrhenius paper. Thus a fitted Arrhenius relationship ignoring 
failure modes (as in Problem 7.6(a)-(f)) usually yields estimates of percen- 
tiles at low (design) temperatures that are biased high. Confidence limits for 
such relationships are calculated as described in Section 7. 

6.4. ML Estimate with Some Failure Modes Eliminated 

Some failure modes may be eliminated by design changes, Presented 
below are two estimates of the resulting improved life distribution with the 
remaining failure modes. These methods avoid the time and expense of 
making the redesign and testing it. Both methods employ the ML estimate of 
the life distribution of each remaining failure mode. 

Simple estimate. For a stress level, determine which remaining failure 
mode has the earliest distribution. The improved distribution when all 
remaining modes act is slightly below the earliest one. For example, after el- 
imination of Turn failures, Phase failures have the earliest distribution at 
180°C; the median estimates in Table 6.1 show this. Then insulation median 
life would be slightly below that of Phase failures - about 17,020 hours. The 
exact value (obtained below) is 16,400 hours. 

ML estimate. Estimate the improved reliability at some age and stress as 
follows. Calculate the ML estimate of reliability at that age and stress level 
for each remaining failure mode as described above. The product of those 
reliability estimates is the ML estimate of the reliability of the redesign. This 
method assumes that reliability for an eliminated failure mode is 1. For ex- 
ample, the dominant insulation failure mode at 180°C is Turn failure. Turn 
failures could be eliminated through redesign. (The method applies to elimi- 
nation of any number of failure modes.) The ML estimate of the improved 
reliability for 10,OOO hours at 180°C follows. The ML estimate for reliability 
for 10,OOO hours at 180°C is 0.872 for Phase failures and 0.995 for Ground 
failures. Thus the ML estimate of the reliability of the redesign is 0 . 8 7 2 ~  
0.995 = 0.868. The estimate of the fraction failing is 1-0.868 = 0.132. This 
estimate is plotted as an x on the 180" curve on lognormal paper in 
Figure 5.6A. There the 180°C curve is the ML estimate of the life distribu- 
tion of the redesign. The ML curves there come from such calculations (Ta- 
ble 5.5) for various ages and temperatures. These are curves, since they are 
not lognormal distributions. In Figure 5.6A, the estimate of the median at 
180°C is 16,400 hours. This is well below the desired 20,000 hours. Thus el- 
imination of Turn failures would not improve the insulation enough. The Ar- 
rhenius plot in Figure 5.6B is obtained graphically from Figure 5.6A or nu- 
merically. Confidence limits for such curves are described in Section 7. 

6.5. ML Checks on the Model and Data 

Other ML analyses of such data include checking the life-stress relation- 
ship, the distribution, and independence of the failure modes. Section 5.5 
presents graphical checks, which are effective combined with ML checks. 
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Linearity. The likelihood ratio test for linearity (Chapter 5) applies to 
the data on a failure mode. The following example is a test of fit of the Ar- 
rhenius relationship to the Turn failure data (Table 5.1). The fitted model 
has three parameters and a maximum log likelihood of 17.25. Fitting a 
model with a different log mean for each of the four test temperatures and a 
common c to the same data yields a maximum log likelihood of 36.42. The 
test statistic is T = 2(36.42-17.25) = 38.34. Its number of degrees of free- 
dom is 5-3 = 2. Since T = 38.34 > 13.82 = 2(0.999;2), there is very highly 
significant lack of fit of the Arrhenius relationship at the 0.1% level. 
Figure 5.2B shows that the 260" data are not consistent with the rest of the 
Turn data. The 260" data were omitted, and the Arrhenius relationship was 
fitted to the remaining Turn failure data and provided a satisfactory fit. Of 
course, this ignores the effect of cycling rate (Problem 7.8). 

Distribution fit. Adequacy of the Weibull and lognormal distributions 
can be assessed by fitting a mode1,with II log gamma distribution. Farewell 
and Prentice (1977) describe ML theory and a computer program for such 
fitting. SAS, STAR, and SURVCALC (Chap. 5, Sec. 1) do such fitting. 

Residuals. It is useful to calculate residuals for each failure mode from 
the fitted model and to graphically analyze them as described in Chapter 5. 
Such plots help one assess the distribution, relationship, and data. For 
crossplots of residuals against independent variables, it may be useful to re- 
place censored residuals by their (conditional) expected values, as described 
by Lawless (1982, pp. 281-282). 

Independence. The following provides a check on the independence as- 
sumption of the series-system model. Namely, the failure times for the 
different modes in a specimen are statistically independent. Maximum likeli- 
hood may be used to estimate the joint distribution of correlated failure 
modes. For example, a joint lognormal distribution could be used, and the 
estimates of the correlations examined to determine if they are significantly 
different from zero. General theory given by Moeschberger and David 
(1971) extends to the regression models here. Section 5.5 describes graphical 
checks of independence. 

Correlated modes. Correlations between the lifetimes for different 
modes are usually positive. This means that long (short) lives of one failure 
mode tend to go with long (short) lives of another mode. That is, a specimen 
is generally strong or generally weak or sees severe or mild usage. With such 
correlation, the ML estimate in Section 6.2 for the life distribution of a par- 
ticular failure mode is usually biased toward long life. Thus, that ML esti- 
mate is an upper bound for the distribution of that mode. For a lower 
bound, treat the failure times for the correlated failure modes as if they were 
from that mode and estimate the distribution. If close, the two bounds may 
serve practical purposes. 
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7. ML THEORY FOR COMPETING MODES 

This section presents ML theory for fitting life-stress models to data with 
competing failure modes. The theory provides estimates, confidence inter- 
vals, and tests of hypotheses. Results appear without proof. David and 
Moeschberger (1979), Rao (1973), and Lawless (1982) derive such theory. 
This section covers the general model, log likelihood, ML estimates, Fisher 
and covariance matrices, and estimate and confidence limits for a function. 
ML theory in Section 5 of Chapter 5 is needed background. 

7.1. General Model 

A general model for life data with independent competing failure modes 
follows. Suppose that each of M failure modes has a separate distribution of 
time to failure. For mode m, denote the reliability function by R, (y ; pnl,an,) 
at (log) age y, where p,,, and a,,, are the distribution parameters, 
m = 1, * - * ,M. Denote the probability density by fm (y ; p,,, ,am). For the insu- 
lation, each of the M =3 failure modes has a lognormal distribution of time 
to failure. For concreteness, two parameters appear here, but one may use a 
distribution with any number. 

Denote the J independent variables by x l ,  - * ,xJ.  For the insulation, 
there is J = 1, namely, temperature. For mode m, the parameters p,,, and ant 
are given functions of the independent variables; namely, 

h 'pm (x1, * * XJ ; 7 m  1, ' ' ' ,7mpm), 

arn=('rn(xl, "',xJ;7ml, ' * ' , 7 r n P , , , ) *  
(7.1) 

Here 7,,,1, * - ,7,,,p, are P,,, unknown coefficients to be estimated from the 
data. Some coefficients may appear in both functions. Also, one function 
may have some coefficients, and the other has the rest. However, the 
coefficients in b( ) and om( ) are distinct from those in pm*( ) and 
om,( ). Let P =Pl + - - * +PM denote the total number of coefficients mlP. 
For the insulation, PI =Pz =Pj =3 coefficients for each model, and P =9. 
Independent variables may be indicator (zero-one) variables for category 
variables in analysis-of-variance relationships. 

72. Log Likelihood 

The sample log likelihood follows. Suppose there are IZ specimens in the 
sample, and they are statistically independent of each other. First consider 
specimens that fail once from some cause and do not run further. Let 
x u ,  - - - ,q denote values of the independent variables for specimen i. Simi- 
larly, for i = 1, * . * ,n and ni = 1, . * ,M, let 
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umi = um(xli ,  * * '  &Ji ;7n11, * ' ' ,7mP,,,). 

Throughout, pmi and a,i depend on rml,  9 * ,rmp,. The following likelihood 
for failed specimen i takes into account its cause of failure and that other 
failure modes have not occurred. Suppose that specimen i fails at (log) time 
yi by modem. Then its likelihood is 

Li = R fi * * * R,, - 1,i fnti R ,  + 1,i * * * R,cli ; 

here R,-i = R,,, ( y i ;  p,,,*i,unl,i) and fnli = fn l  (y i ;  p n , i , ~ n l i ) .  If specimen i does 
not fail from any cause by censoring ageyi, its likelihood is 

Li = R i i R z  * * *  R M ~ .  

These likelihoods are products of factors for the failure modes, because the 
modes are statistically independent. These Li are correct for both Type I and 
Type I1 censored data. The ML theory of Moeschberger and David (1971) 
for dependent modes can be extended to the regression models here. 

Next consider a specimen that may fail from more than one cause. Its 
likelihood takes into account the times of failure modes that occurred and the 
running times of those that did not occur. Suppose that specimen i fails by 
Mi modes in the set Mi = {mv, ma, . , m M , i }  at (log) times ym,i,  Y , , ~ ,  

* * * , y ~ , i .  Also, suppose, it does not fail by the other modes by a (log) time 
y i .  Then its likelihood is 

Li = n f m i b m i )  fl R m i b i ' )  ; (7.4) 
mcMi n t /Mi  

here the notation has the obvious meaning. Some insulation motorettes 
failed by more than one mode. The log likelihood for specimen i is 

f i  = In(Li). (7.5) 

f = f 1  + - . .  t L,. (7.6) 

The log likelihood f for the sample of I statistically independent units is 

73. ML Estimates 

Estimates. The ML estimates qmp of the P model coefficients rnlp are the 
coefficient values that maximize f. Under regzilurity conditions on the model 
and data (that usually hold), the ML estimates are unique. Also, for asymp- 
totic sample sizes (many failures), the ML estimates are usually approximate- 
ly jointly normally distributed with a mean vector equal to the true coefficient 
values and an asymptotic covariance matrix given later. Moreover, their 
asymptotic variances are smaller than those for any other asymptotically nor- 
mally distributed estimates. 

Calculation. The estimates must usually be obtained from iterative nu- 
merical optimization o f f  with respect to the P coefficients yfllp. If P is large, 
the calculations are time consuming and convergence may be uncertain. The 
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following method simplifies the calculations. It splits the problem into 
simpler ones, which can be solved with existing computer programs - one 
failure mode at a time. 

Likelihood equations. For some models, f can be maximized by the usu- 
al calculus method. Namely, the P partial derivatives of f with respect to 
each rnlP are set equal to zero: 

a,f/L+-ynlp = 0, rn = 1, ..., M andp =1, a * - ,  P,,,. (7.7) 

These are called the likelihood equations. The 7,,1p values that solve this set 
of P simultaneous nonlinear equations are the ML estimates GflIp.  A simple 
approach to solving (7.7) follows. 

Separate modes. Suppose that the coefficients rnlP for mode 111 differ 
from those ym’p for mode ni’. That is, each mode has a distirzcf model with 
no common parameter values. Then (7.7) can be rewritten and solved as 
separate small sets of P, equations for the coefficients of the model for a sin- 
gle failure mode. The following argument applies to specimens with one 
observed failure mode. However, it extends to specimens subject to more 
than one observed failure mode. The P,,, likelihood equations for failure 
mode 111 are obtained from (7.7), (7.6), and (7.3) or (7.4) as 

Here the f i s t  (second) sum runs over specimens that do (not) have failure 
mode m. These P,,, equations are solved for Gm1, 7,,,2, * * * , G,,,p,. The 
probability densities, reliability functions, and model coefficients for other 
failure modes do not appear in these equations for mode m. This is so 
because their log likelihoods do not contain coefficients for mode in ,  and 
thus their partial derivatives are all zero. Thus one can solve equations for 
one failure mode at a time. Moreover, these equations for a failure mode are 
equations for a multiply censored sample, and they may be solved with a 
computer program for such data. 

Optimize likelihood. The preceding result also comes from an argument 
involving maximizing the log likelihood function. Then the likelihood terms 
are regrouped so all coefficients for only one failure mode are in a group, 
and the likelihoods for such groups are separately maximized. 

A 

7.4. Fisher and Covariance Matrices 

Purpose. The Fisher information matrix and the asymptotic covariance 
matrix for the qmp yield approximate confidence limits for the rmP and func- 
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tions of them. Such functions include, for example, a percentile of the life 
distribution at the design stress level. 

Derivatives. First calculate the P by P matrix of the negative second par- 
tial derivatives 

-$f/3ymp3ym*p* for ri t ,rn'  = 1, ,My 
(7.9) p = 1, . . *  ,P,, p' = 1, -**,P,*, 

For m f m ' ,  these derivatives are zero, since af/i3ym:p* does not contain 
coefficients rmP for failure mode riz.  Suppose the matrlx is arranged so the 
derivatives for mode 1 are in the first PI rows and columns, the derivatives 
for mode 2 are in the next P2 rows and columns, etc. Then the matrix is 
block diagonal, with zeros off the block diagonal. 

Fisher matrix. The expectation of the matrix (7.9) with elements 

(7.10) 

evaluated at the true coefficient values, is the true Fisher inforination matrix 
and is denoted by F. An expected value depends on the type of censoring 
(Type I, Type 11, or other) and on all of the models for all failure modes. 
General expressions for such expectations for a single population are given 
by Moeschberger and David (1971). Those expressions extend to the regres- 
sion models here but are so complex, they are not given here. 

Covariance matrix. The inverse $ = F-' of Fisher matrix is the tnie 
(asymptotic) covanartce ritatriv of the qmp. A covariance C O V ( ~ , , , ~ , - ~ ~ , ~ , )  in $ 
is in the same position as corresponding term (7.10) in F. Similarly, a vari- 
ance Var(Gmp) in $ is in the same position as the corresponding term 
E {  -a"f /3y ip} .  The ML estimate for the covariarice matrix is obtained by 
substituting the qmp for the unknown true rmP. Often one estimates $ with 
the simpler local estimate below. 

Uncorrelated. The Fisher information matrix is block diagonal. Thus its 
inverse, the covariance matrix, is block diagonal and zero elsewhere. Thus 
the ML estimates of coefficients for different failure modes are asymptoti- 
cally statistically uncorrelated. Moreover, when the ML estimates are asymp- 
totically jointly normally distributed, the estimates of coefficients for different 
modes are asymptotically statistically independent. Estimates of coefficients 
for the same failure mode generally are correlated. 

Local estimate. The matrix (7.9) of negative second partial derivatives 
evaluated for rmP = 7,,,p is the local irifoniiatiort matrix. Its inverse is the 
local estimate of $. It is easier to calculate than the ML estimate, since it 
does not require the difficult expectations (7.10). An estimate of $ yields as 
follows approximate confidence intervals. 

A A  

A 



ML THEORY FOR COMPETING MODES 417 

7.5. Estimate and Confidence Limits for a Function 

Estimate. Hereafter the model coefficients are relabelled 71, 72, - - - ,rp 
where P is the total number of coefficients for all failure modes. Suppose 
that an estimate is desired for the value of a function h = h (71, * * * ,rp) of 
the model coefficients 71, * - ,7p. Model coefficients and distribution pa- 
rameters and percentiles are such functions. For the insulation, such a func- 
tion is the median time to Turn failure at 18rC,  namely, h = antil0g{7~ + 
72[1000/(273.16+ 180)]}. The ,ML estimate h is the function evaluated at 
71 = 71, * * * , 7 p  = 7p; that is, h = h(q1, - * - ,7p). 

Variance. Calculate the estimate of the variance of ĥ  as follows. First 
calculate the column vector of first partial derivatives of h with respect to 
each coefficient rP, namely, 

H = [$/%I * * r3i’/%p]’. (7.11) 

Here the prime ’ denotes the transpose and the caret indicates that each 
derivative is evaluated at 71 =ql, - * . , 7p = $p. By propagation of error (Rao 
(1973)), the variance estimate is 

A A A 

(7.12) 

+ 2m (ai’/%p)(ai’/ap,, cov($p,?p,); 
P <P‘ 

here 
of the standard error of h is 

is an estimate ofLhe covariance matrix of the $. The estimate s ( i )  

s(i’) = [var(i’)]l~. (7.13) 

This standard error is used to calculate normal confidence limits as described 
in Section 5.7 of Chapter 5. 

PROBLEMS (* denotes difficult or laborious) 

7.1. Class-H insulation. Verify selected calculations for the life distribu- 
tions with all failure modes acting in Table 5.3. 

7.2. Turn failure eliminated. Verify selected calculations for the life dis- 
tributions at the design and test temperatures for the Class-H insulation, as- 
suming that Turn failures are eliminated. 

73. Tandem specimens. Nelson and Hahn (1973) give the following data 
on hours to first failure of five pairs of tandem specimens in a creep-rupture 
test of a metal. When the first specimen of a pair fails, the other specimen is 
removed from test. These data are failure censored - rare in practice. 
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Stress (ksi): 29 32 34 37 44 
Hours: 11,495 8322 5578 2435 1350 

Plot the data (including runouts) on log-log paper. Comment on the 
adequacy of the inverse power relationship. 
Appropriately plot the data on lognormalprobabilily paper. 
By maximum likelihood, fit the power-lognormal model for individual 
specimens to the 10 data points. 
Estimate the life distribution of individual specimens at a design load 
of 25 ksi. In particular, calculate the ML estimate and 95% confidence 
limits for the 5th percentile. 
Plot the fitted model (life distributions) for individual specimens for 
the test and design loads on the lognormal paper. 
Plot selected percentile lines for individual specimens on (a). 
Calculate the (log) residuals and plot them on normal paper. Com- 
ment on the adequacy of the (log) normal distribution. 
Crossplot the residuals versus stress, comment on the plot. 
Suggest further analyses. 
Carry out (h). 
Repeat (a)-(i) using a power-Weibull model. Which distribution fits 
better and how much better? 

7.4. Class-B insulation. The temperature-accelerated life test of the 
Class-B motor insulation yielded the following data in hours on its three 
failure modes. The main purpose was to estimate insulation median life at 
the design temperature of 130°C. Ignore the cycle length. 
(a) Plot the data as in Figure 5.1. Use different colors for the three failure 

modes. Comment on what you see. 
(b) Graphically analyze the data on each failure mode, and estimate each 

Motor 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Motor 
11 
12 
13 
14 

150°C (28 days) 
Turn Phase Ground --- 
12453 12453t 11781 

14637 14637t 13897 
15309 14637 15309t 
15645 t 15645 t 15645 t 
15645t 15645t 15645t 
15645 t 15645 t 15645 t 
15645 t 15645 t 15645 t 
15645t 15645t 15645t 
15645 t 15645 t 15645 t 

170°C (7 days) 
Turn Phase Ground 
1932 1932t 1764 
2970t 2970 2722 
3612 3612+ 3444 

14637 14637 12453 

--- 

3780 3780t 3780 

Motor 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Motor 
31 
32 
33 
34 

190°C (4 days) 
Turn Phase Ground 
552 552+ 408 
600 408 600 t 
1764 1764+ 1440 

2208 1344 2208t 
1920 2232t 2232t 
2304 2304t 2208 
2496 2400t 2400 
2592 3264t 3264 
3360 3360 3360t 

220°C (2 days) 
Turn Phase Ground 
504 504+ 408 
600 600t 504 
648 648t 648 
504 696t 696 

--- 

2112t 2112 1344 

--- 
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15 3948 3948+ 2612 35 504 696+ 696 
16 4680 5196 5196t 36 696+ 696 600 
17 5796 5796t 5796 37 696 696+ 648 
18 6204 6204+ 6204 38 408 768+ 768t 
19 7716 9648 9818 39 600 768t 768+ 
20 9648 9 9 O O t  7884 40 696 768+ 768+ 

life distribution at 130°C. Use modified hazard plotting positions. 
Viewing (b), comment on the validity of the model and data for each 
failure mode. 
By ML fit a model to the data on each failure mode. Plot each model 
and confidence limits on separate lognormal and Arrhenius papers. 
Calculate and plot the log residuals from (d) for each failure mode on 
normal paper. Comment on each plot. 
Assess (1) the Arrhenius relationship and (2) constant d for each 
failure mode, using a LR or other test. 
For all failure modes acting, calculate the estimate of the insulation life 
distribution at the test and design temperatures. Plot these distribu- 
tions on lognormal paper. Make hazard plots of the data with all 
modes acting for each test temperature, (1) using only the first failure 
on each specimen and (2) using all subsequent failures. Comment on 
the agreement between the data and fitted model. 
Determine the dominant (earliest) failure mode at 130°C. Calculate 
the ML estimate of the life distribution at 130" that would result if that 
failure mode were eliminated. Plot it on (g). 

7.5. Ball bearings. Morrison and others (1984) give the following data 
on a load-accelerated life test of ceramic ball bearings. They analyze the data 
with the power-Weibull model. Each of the 59 test bearings contains 7 balls, 
and 1 or more balls in a bearing may fail during the test. 

Bearing Life in Millions of Revolutions (No. of failed balls) 

4.45 kN 5.00 kN 6.45 kN 9.56 kN 

88(1) 217(1) 499+ 47.1(1) 240.0t 14.5(1) 
144(2) 236t 561+ 68.1(1) 240.0(1) 25.6(3) 
492(1) 281(1) 574+ 68.1(1) 278.0+ 26.2(1) 

492+ 346(1) 574t 90.8(1) 278.0t 52.4t 
582t 346+ 699+ 103.6(1) 289.0+ 66.3(1) 

631(1) 411+ 699t 106.0(1) 289.0(1) 69.3+ 
631(1) 414+ 998+ 115.0(1) 367.0(1) 69.3t 

638+ 414+ 998+ 126.0(2) 385.9+ 69.8+ 
769t 423(1) 1041+ 146.6(1) 392.0+ 76.2(1) 
769+ 423+ 1041t 229.0t 505.0+ 

Graphically analyze the data on the life of individual balls, using all ball 
failures. Use modified hazard plotting positions. In particular, esti- 
mate the life distribution of such balls at the test loads and the power 
relationship for the 10th percentile. 

(a) 
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Using (a) comment on the validity of the model and data. 
By ML, fit the model to the data on individual balls. Plot the fitted life 
distributions and confidence limits for the test loads on Weibull paper. 
Plot the estimate and confidence limits for the 10th percentile line for 
balls on log-log paper. 
Graphically analyze the residuals from (c), and comment on the data 
and Weibull distribution. 
Assess whether the shape parameter is constant using (1) the LR test 
and (2) a In-linear relationship for as a function of load. 
Assess the fit of the power relationship using the LR test for linearity. 
Use the results of (c) to estimate the model for the life of actual bear- 
ings with 14 balls. Plot the estimates of the actual bearing life distribu- 
tions for the test loads. Plot the estimate of the 10th percentile line for 
actual bearings on log-log paper. 
A bearing test “fails” when its vibration reaches a specified level. Then 
its balls are examined to determine how many were damaged 
(“failed”). Make a case for ignoring the number of failed balls (pros 
and cons). 
Repeat (a)-(f) using data on test bearing failure (ignoring the number 
of failed balls ). Redo (g) and comment on differences. 
Suggest further analyses. 
Do 6). 

7.6. Heaters. The following data are from a temperature-accelerated life 
test of industrial heaters, which have two failure modes - open and short. 
Use the Arrhenius-lognormal model. 

Heater Hours Cause 
1820°F 116 72.7 Short 1675°F 108 1532.0 Open 

119 343.9 Short 105 2125.0 Open 
117 347.6 Short 107 2212.0 t Censored 

106 2242.0t Censored 

--- Heater Hours Cause --- 

175OOF 111 320.0 Short 
110 1035.0 Short 1600°F 103 1547.0 Open 
112 1154.4 Short 104 1726.5 Open 
113 1979.0 Short 101 1729.3 Short 

102 2539.0 t Censored 

Ignoring failure modes, make Arrhenius and lognormal plots of all 
data. Use modified hazard plotting positions. 
Assess the Arrhenius-lognormal model and data using (a). 
Using (a), graphically estimate the life distribution at the design tem- 
perature of 1150°F. 
By ML, fit the Arrhenius-lognormal model to all data, ignoring failure 
modes. Estimate the life distributions for the design and test tempera- 
tures. Plot the estimates of these distributions and 95% confidence 
limits on lognormal paper. 
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Calculate (log) residuals from (d). Plot them on normal paper, and 
comment on the adequacy of the lognormal distribution. 
Crossplot residuals versus heater number. Comment on the effect of 
no randomization in the assignment of heaters to test temperatures. 
Repeat (a)-(f) for Short failures, breakdown of the electrical insulation. 
Repeat (a)-(f) for Open failures, breaking of the heating element wire. 
Assess the fit of the Arrhenius relationship for each failure mode, using 
the LR test for a “quadratic” relationship. 
Analytically assess whether Q is constant for each failure mode. 
At the design and test temperatures, estimate the heater life distribu- 
tion with both failure modes acting, using the product rule (1.2). 
Plot the distributions from (k) on lognormal paper. How do these dis- 
tributions compare with those from (d). 
Plot selected percentile lines of the fitted model with both failure 
modes on Arrhenius paper. Comment on how this plot differs from 
that from (a). 
The responsible engineers concluded that Open failures “occurred due 
to di€€erential [thermal] expansion combined with low wire strength at 
the test temperatures. We further decided that at normal operating 
conditions, this would not be a problem.” What are the practical impli- 
cations of this respect to heater life? 
Specify a better test plan. 
Assume that failure modes were not identified. Fit a model with two 
competing failure modes to the data. Plot the fitted model and com- 
pare it with (m). 

7.7. Other heaters. The following data on hours to failure are from a 
temperature-accelerated life test of industrial heaters like those of Prob- 
lem 7.6. (S) denotes Short, and (0) denotes Open. 

1750°F: 108.2(S) 181.8(S) 232.2(S) 476.0(S) 
1675°F 450.9(0) SOl.O(S) 515.2(0) 608.1(0) 
1600°F: 487.1(S) 575.5(0) 600.6(0) 702.7(0) 
1525°F 557.0(0) 1171.2(S) 
1750”F*: 24.1(S) 24.6(S) 35.7(S) 83.6(S) 

The four heaters marked * are from a different production lot. Assume that 
their log mean is not consistent with those of the other heaters, but their log 
standard deviation is. Repeat the analyses of Problem 7.6 for these data. 

7.8. $l,OOO,OOO experiment. Problem3.9 gives data on hours to Turn 
failure on test of a Class-H insulation. Ground and Phase failure data from 
that test follow. This experiment showed the effect of oven cycle length on 
life. Moreover, it showed that cheaper insulation can be used in applications 
with no cycling, thus saving $l,OOO,OOO yearly. 

Ground failure hours: 
9 survived 7392 t 2OO”C/7 days: 
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215"C/28 days: 8400,7 survived 11424t 
215"C/2 days: 
230QC/7 days: 
245"C/28 days: 3 at 2352,3696,4368,5712 
24YC/2 days: 
260°C/7 days: 1088,1256,1592,1764 

2oo"C/7 days: 
215"C/28 days: 
215"C/2 days: 
23O0C/7 days: 
245"C/28 days: 
24YC/2 days: 
260"C/7 days: 

Graphically analyze the data for each failure mode, and estimate the 
life distribution for each at the design temperature 180°C. Comment 
on the validity of the data and model. 
How does cycle length effect each failure mode? 
Choose a relationship to model the combined effect on life of tempera- 
ture and cycle length. Separately fit it by ML to the data on each 
failure mode. 
Analyze the residuals for each failure mode. 
Assess the fit of your relationship for each failure mode, using the LR 
test or a more general relationship. 
Analytically assess whether u is constant for each failure mode. 
Write a short report for engineers on your findings. 
Suggest further analyses. 
Carry out (h). 
Do the preceding analyses for the Class-H data of Section 5. 

6 survived 2784 t 
2451,2955,3444,3780,3948,l survived 6216 t 

892,2 at 988,l survived 3072+ 

Phase failure hours: 
9 survived 7392 + 
10416,7 survived 11424 + 
6 survived 2784 + 
2 at 4620,4 survived 5040 t 
6384,5040,4 survived 6048 t 
4 survived 1824 t 
1424,1592,2 survived 2018 t 

7.9. Power lognormal. Suppose that a standard size A 0 of a product has 
a lognormal life distribution with log mean p and log standard deviation a. 
That is, the reliability function is R (t;p,u,Ao) =@{ -[log@)-p]/a}. A size 
A = p40 of the product then has reliability function R (t;p,a,pAo) = 
(a{ -[log@) - p ] / ~ } ) ~ .  Derive the properties of this power lognonnal distri- 
bution and make suitable plots of its density, reliability, and hazard functions. 

7.10. Nonuniform stress. Develop the theory for Section4 using the 
power lognormal distribution in place of the Weibull distribution. The re- 
sulting integrals can be evaluated only numerically. 

7.11.* Specimen size. Suppose that product life is described by a linear- 
exponential model, Also, suppose that life depends on sizeA according to 
the model of Section 3. Suppose that the 100Pth percentile of In life rp(x0)  

for product of size A0 is to be estimated at (transformed) stress level xg. 

Also, suppose that specimen i may have any length Ai (i = 1, * - - , i t ) ,  that the 
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test is censored at time 7, and that the highest allowed test stress is XH. 

(a) 

(b) 
(c) 

Find the optimum test plan with two stresses that minimizes the asymp- 
totic variance assuming the Ai are specified. 
Derive the optimum choice of theAi. 
Repeat (a) and (b) for the linear-WeibulI model with @ unknown. 

7.12. Size compensation. A voltage-accelerated life test of electrical insu- 
lation involved specimens of two lengths L and L'. The power-Weibull 
model was employed. To combine and analyze data on both specimen sizes, 
an engineer used the following. For specimen i of length L', t,f (the failure or 
censoring time) was converted to an equivalent time ti = ti (L'/L)'/fl' where 
B* is an estimate of the Weibull shape parameter. These equivalent times 
were combined with the times ti on specimens of length L, and the model was 
fitted to the combined data. 
(a) Comment on the pros and cons of this analysis. This analysis gets 

around the need for a special computer program that fits a size-effect 
model. 
Suggest other analyses, including those possible with a standard com- 
puter package. 

7.13.* Turn failures eliminated. For the Class-H insulation with Turn 

Following the theory of Section 7, develop all the theoretical equations 
there for the model with two remaining failure modes. 
Develop the estimate and confidence limits for median life at the 
design temperature of 180°C. 

(b) 

failures eliminated, Phase and Ground failures would remain. 
(a) 

(b) 

7.14.* Unidentified modes. Assume failure modes are independent. 
Develop all equations for ML fitting of a model with two failure modes 
to data where each specimen can fail only once and the failure mode is 
not identified. Use an Arrhenius-lognormal model for each mode. 
For the Class-H data, assume that Turn failures will be eliminated. Fit 
the model to the first time to Phase or Ground failure for each speci- 
men, assuming the cause is unknown. 
Plot the fitted model for each failure mode and the model with both 
modes acting. Compare with previous fits. 
Calculate confidence limits for quantities of interest. 
Comment on the relative size of confidence intervals from analyses 
with failure modes identified and not identified. 
Suggest how to calculate and plot suitable residuals for such a model. 
Carry out ( f )  and comment on the plots. 

7.15. Two modes. For two competing failure modes with Arrhenius- 
exponential models, 
(a) Calculate and plot the series-system model on Arrhenius and Weibull 

papers, assuming E l  = 0.3eV and E2 = 0.8 eV, and S1(1500C) = 
l$(l5OoC) = 5,000 hours. 
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For two Arrhenius-Weibull models, 
(b) Repeat (a) with = 0.5 and /?z = 2.0. 

cumulative hazard functions rather than reliability functions. 
7.16. Hazard function. Reexpress the theory of Section 4.3 in terms of 



Leas t-Squares Comparisons 
for Complete Data 

Purpose. This chapter presents graphical and least squares (LS) compar- 
isons for complete data. They are used to compare product designs, materi- 
als, suppliers, production periods, test labs, and other such populations. 
Also, such comparisons are used in demonstration tests to assess whether a 
product meets reliability specifications. A combination of graphical and ana- 
lytic methods is always most informative. 

Background. Needed background for this chapter includes the graphical 
methods of Chapter3 and the LS methods of Chapter4. Also, previous 
acquaintance with statistical hypothesis tests is helpful, as their introduction 
in Section 1 is brief. 

W h y  least squares? The maximum likelihood comparisons of Chapter 9 
can be used for complete data. Indeed least squares methods are a special 
case of maximum likelihood methods. Nevertheless, LS methods merit sepa- 
rate presentation because: 

1. The methods are well known, and many would prefer to use these fami- 
liar methods, when they suffice. This is true for those who do such analy- 
ses and for their clients. 

2. These familiar methods serve to introduce the maximum likelihood com- 
parisons of Chapter 9, which are less familiar and more complex. 

3. The methods are exact (if the assumed linear-(1og)normal model is 
correct). That is, estimates are unbiased, and confidence limits and 
hypothesis tests are exact. ML methods are approximate. 

4. Computer programs for the calculations are widely available. 
5. Certain LS comparisons often yield good approximations when the distri- 

bution is not (log) normal. That is, such comparisons are robust. 
6. The methods apply to aging-degradation data (Chapter 11). 

Overview. Section 1 briefly introduces comparisons with confidence 
intervals and hypothesis tests. Section 2 presents graphical comparisons. 
Sections 3,4, and 5 present least squares comparisons of (log) standard devi- 
ations, means, and relationships for the simple linear-(1og)normal model. 
Section 6 extends these comparisons to multivariable relationships. This 
chapter treats in detail the simple linear-(1og)normal model with one 
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accelerating variable, because it is widely used. Moreover, this model avoids 
the complexity of least squares theory for multivariable relationships. The 
least squares notation follows that of Chapter 4. 

1. HYPOTHESIS TESTS AND CONFIDENCE INTERVALS 

The following paragraphs briefly review basics of comparisons with hy- 
pothesis tests and confidence intervals. The basics include: reasons for com- 
parisons, models, hypotheses, actions, tests, confidence limits, significance 
(statistical and practical), test performance, and sample size. Introductory 
statistical texts discuss hypothesis testing in detail. Draper and Smith (1981) 
and Neter, Wasserman, and Kutner (1985) give intermediate discussions. 
Without such basic background, readers may find this and the next chapter 
difficult. Lehman (1986) presents advanced theory of hypothesis testing. 
Many readers can skip this section. Others may wish to return to it after 
reading later sections, as it is relatively general and abstract. 

Reasons for comparisons. The following are some reasons for compari- 
sons. (1) In reliability demonstration, a product must demonstrate that its re- 
liability, mean life, failure rate, or other parameter is better than a specified 
value. (2) To verify engineering theory, one may check estimates of model 
parameters are consistent with theoretical values; for example, a Weibull 
shape parameter equals 1. (3) In development work, one may compare two 
or more designs to select one. (4) In analyzing sets of data collected over 
time, one wants to confirm that model parameters are not changing; this is 
often done before pooling data to get a more precise pooled estimate of a pa- 
rameter. Such comparisons have two basic objectives. One is to demon- 
strate that a product parameter surpasses a requirement or that a product 
surpasses others. The other is to assess (a) whether an estimate of a product 
parameter is consistent with a specified value or (b) whether corresponding 
estimates of a number of products are comparable (equal). Here “parame- 
ter” means any model value, including coefficients, percentiles, and reliabili- 
ties. 

Models. Below, data are assumed to be random observations described 
by a parametric model, which is assumed correct. In practice, one usually 
does not know this. Such a model must first be assessed through data plots 
or formal tests of fit (Chapters 4 and 5). Below, the model is assumed ade- 
quate for the intended purposes. Engineering experience and theory indicate 
that certain models adequately describe certain products. 

Hypotheses. A hypothesis is a proposed statement about the value(s) of 
one or more model (population) parameters. Some examples are: 

1. The mean life (of an exponential distribution) at the design stress level 
exceeds a specified value. This is common in reliability demonstration. 
2. Product reliability at a specified age and stress level exceeds a given value. 
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3. A Weibull shape parameter equals 1. That is, product life has an ex- 
ponential distribution. 
4. The median of a (log) normal distribution for product 1 exceeds that for 
product 2 at a particular stress level. This is common in comparing designs, 
materials, methods of manufacture, manufacturing periods, etc. 
5. The activation energies for a number of designs are equal. 
6. The (log) standard deviations of a number of (log) normal distributions 
are equal. 
7. The shape parameters of a number of Weibull distributions are equal. 
8. The 10th percentiles of a number of Weibull distributions are equal (a 
common hypothesis in ball bearing life tests). 

The alternative (hypothesis) is the statement that the hypothesis is not 
true. In contrast, the “hypothesis” above is also called the null hypothesis. 
Examples of alternatives are: 

1. The mean life is below the specified value. 
3. The Weibull shape parameter differs from 1 (greater or smaller). 
4. The median of product 1 is below that of product 2. 
5. Two or more of the true activation energies differ. 
7. Two or more of the Weibull shape parameters differ. 

Such a hypothesis (or its alternative) about a parameter may be one sided. 
That is, the parameter is above (below) a specified value. (1) and (2) are ex- 
amples of this. (4) is a one-sided example concerning two parameters. Also, 
a hypothesis (or alternative) may be two sided. That is, (a) a parameter has a 
specified value, or (b) parameters of different populations are equal. (3) and 
(5) through (8) are examples of two-sided (or equality) hypotheses (and al- 
ternatives). In practice, one must decide whether a one- or two-sided hy- 
pothesis is appropriate to the application. The choice is determined by the 
practical consequences of the true parameter value(s). 

Actions. If the hypothesis is true, the engineer wants to take one course 
of action. If the alternative is true, the engineer wants to take another, 
depending on the parameter values. Some examples are: 

1. In reliability demonstration, a product with a mean life that “exceeds a 
specified mean” (the hypothesis) is accepted by the customer. Otherwise, 
the customer rejects the product (the alternative action). Then the prod- 
uct must be redesigned, abandoned, or the contract renegotiated. 

4. If the median of product 1 exceeds that of the standard product 2, then 
product 1 replaces 2 (the hypothesis action); otherwise, product 2 is re- 
tained (the alternative action). 

5. If the activation energies of designs are equal (the hypothesis), their data 
may be pooled to estimate the common activation energy. Otherwise, es- 
timate their activation energies separately (the alternative action). 

7. If the Weibull shape parameters are equal (the hypothesis), then the data 
can be pooled to estimate the common value. Otherwise, use a separate 
estimate for each product (the alternative action). Such pooling is often 
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considered for data collected on the same product under different condi- 
tions or from different production periods. 

Hypothesis test. Of course, model parameter values are not known, and 
one must take actions based on data. One wants convincing evidence in the 
data that an action is appropriate. For example, an observed difference be- 
tween a sample estimate for a parameter and a specified value should be 
greater than the normal random variation in the estimate; then it is convinc- 
ing that the observed difference is due to a real difference between the true 
and specified parameter values. A statistical test involves a test statistic, 
which is a suitable function of the data. Such statistics include sample means, 
medians, and f statistics. If the hypothesized parameter values are the true 
ones, the statistic has a known (“null”) sampling distribution. For true pa- 
rameter values under the alternative, the statistic tends to have larger (or 
smaller) values. An observed value of the statistic, if unusual (in an extreme 
tail of its null distribution), is evidence that the hypothesis is false, and an al- 
ternative action is appropriate. If the observed statistic is beyond the upper 
(or lower) 5% point, it is said to be statistically significant, that is, convinc- 
ing evidence. If beyond the (0.1%) 1% point, it is said to be (very) highly 
statistically significant, that is, more convincing evidence. The percentage of 
the null distribution beyond the observed statistic is called the significance 
level o r p  value of the statistic. The smaller thep value, the more convincing 
the evidence that the alternative is true. 

Confidence intervals. Most comparisons are best made with confidence 
intervals. Most such intervals are equivalent to but more informative than a 
corresponding hypothesis test. Such intervals can (1) indicate that the data 
are consistent with specified parameter values or (2) demonstrate that the 
data surpass (or fall short of) specified parameter values as follows: 

1. A lm% confidence interval for a parameter is consistent with a 
specified parameter value if the interval encloses that value. If such an 
interval does not enclose that value, then the corresponding hypothesis 
test shows a statistically significant difference at the lOO(1 -r)% level. 
For example, if a confidence interval for a Weibull shape parameter en- 
closes 1, the data are consistent with an assumed exponential life distribu- 
tion (for this way of assessing adequacy of the exponential distribution). 

2. A confidence interval for a parameter demonstrates a specified parame- 
ter value (or better) if the interval encloses only “better” parameter 
values. For example, a specified mean 8* of an exponential life distribu- 
tion is “demonstrated with lOh% confidence’’ if the lOO-y% lower 
confidence limit for the true 8 is above 8*. 

3. A confidence interval for the difference (or ratio) of corresponding pa- 
rameters of two products is consistent with their equality if the interval 
encloses zero (one). Similarly, such an interval that does not enclose zero 
(one) “demonstrates” that one product parameter exceeds the other. 
For example, one wants convincing evidence that the mean life of a new 
design surpasses that of the standard design before adopting the new one. 
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4. Simultaneous confidence intervals for differences (or ratios) of 
corresponding parameters of K products are consistent with their equali- 
ty, if all such intervals enclose zero (one). 
Significance. It is important to distinguish between practical and statisti- 

cal significance. Observed sample differences are statistically significant if 
they are greater than would normally be observed by chance. That is, such 
observed differences are large and convincing compared to the normal ran- 
dom variation in the data. Hence, they are presumed due to a real difference 
in the products. Observed differences are practically significant if they are 
large enough to be important in real life. Observed differences can be statis- 
tically significant but not practically significant; that is, they are convincing 
but so small that they have no practical value. This can happen for large 
samples that reveal even small differences. Then the corresponding true 
product parameters, although convincingly different, are equal for practical 
purposes. Observed differences can be practically significant (important) but 
not statistically significant (convincing). This can happen when sample sizes 
are small. Then a larger sample is needed to resolve whether the observed 
important differences are real and not due just to normal random variation in 
the data. In practice, one needs observed differences that are both statisti- 
cally and practically significant, that is, convincing and important. 
Confidence intervals are most informative for judging both practical and sta- 
tistical significance. Hypothesis tests merely indicate statistical significance. 
A confidence interval for a difference should ideally be smaller than an im- 
portant practical difference. If it is not, one needs more data or a better test 
plan to discriminate adequately. Mace (1974) shows how to choose sample 
size to obtain confidence intervals of desired length. 

Performance and sample size. The performance of a confidence interval 
is usually judged by its “typical” length. That of a hypothesis test is judged by 
its operuling cliuructeristic (OC) fitnction, defined in most statistics texts. 
Such performance, of course, depends on the assumed model(s), the 
parameter(s) compared, the sample statistic(s) used, the sample size(s), and 
test plan(s). Mace (1974) gives methods for choosing sample sizes for 
confidence intervals. Cohen (1988), IDEA WORKS (1988), Odeh and Fox 
(1975), Brush (1988), Kraemer and Thieman (1987), Bowker and Lieberman 
(1972), and Lehmann (1986) give methods for choosing sample sizes for hy- 
pothesis tests. This chapter assumes that the sample size has been deter- 
mined. In practice, it is often determined by nonstatistical considerations 
such as limited budget, time, and number of specimens or test fixtures. 

2. GRAPHICAL COMPARISONS 

This section presents simple graphical comparisons for distribution per- 
centiles at a stress level, relationships over a range of stress, the slope 
coefficients of the relationships, and (log) standard deviations. Chapter 3 
provides needed background on graphical methods. 
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Table 2.1. Life Data (Hours) on Three Insulations 

Insulation System 1 
Hours to Failure Plotting Positions 

200°C 225°C 250°C Rank i lOO(i-O.S)/n l00i/(n t 1) 

1176 624 204 1 10 16.7 
1512 624 228 2 30 33.3 
1512 624 252 3 50 50.0 
1512 816 300 4 70 66.7 
3528 1296 324 5 90 83.3 

Insulation System 2 
Hours to Failure Plotting Positions 

200°C 225°C 250°C Rank i lOO(i-O.S)/n lOOi/(n t 1) 

2520 816 300 1 10 16.7 
2856 912 324 2 30 33.3 
3192 1296 372 3 50 50.0 
3192 1392 372 4 70 66.7 
3258 1488 444 5 90 83.3 

Insulation System 3 
Hours to Failure Plotting Positions 

200°C 225°C 250°C Rank i lOO(i-O.S)/n lOOi/(n t 1) 

3528 720 252 1 16.7 25 
3528 1296 300 2 50.0 50 
3528 1488 324 3 83.3 75 

- - - -  

- - - -  

- - - -  

Graphical methods are subjective. Sometimes there is a question wheth- 
er such subjectively observed differences are convincing. Then use the 
analytical methods in following sections. 

2.1. Data and Model 

Data. Three sets of data in Table 2.1 from three types of motor insula- 
tion illustrate the graphical methods. The data are the times (hours) to 
failure of specimens at test temperatures of 200, 225, and 250°C. A failure 
time is the midpoint of the inspection period in which the failure occurred. 
Such rounding of the data is negligible here and is ignored. The test purpose 
was to compare the median lives (a) at the design temperature of 200°C and 
(b) over the range of test temperatures, since the aerospace application 
sometimes involves temperatures up to 250°C. 

Model. The Arrhenius-lognormal model is used. However, the graphical 
methods apply to other relationships and distributions. 

2.2. Compare Percentiles at a Stress Level 

The following graphically compares a chosen percentile of the products at 
a stress level. For each product, make a separate relationship plot of the data 
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as described in Chapter3. In each plot fit a line for the percentile. Then 
compare those lines at the stress level of interest. For example, Figure 2.1 
shows the data on the three insulations on Arrhenius paper. Comparison of 
the three median lines at u)o"C indicates that insulations 2 and 3 have com- 
parable medians, and insulation 1 has a slightly lower one. Usually such plots 
are best on separate papers. Then stack up the papers and hold them up to 
the light to compare them. Transparencies of plots (especially in different 
colors) make this comparison easier and clearer. 

23. Compare Relationships 

The following method compares the life-stress relationships of products. 
In particular, it compares the intercept and slope coefficients. 

To compare the entire relationships, make a relationship plot of the data 
for each product as described in Chapter 3. Fit a line to each plot. Stack 
them up and hold them up to the light. If the fitted lines roughly coincide, 
then the relationships are the same for practical purposes. Figure 2.1 shows 
that the three insulations have roughly the same temperature dependence 
(slope) from 200 to ZOT, but insulation 1 has slightly lower life. The analyt- 
ic comparison in Section 5 indicates that three intercepts differ statistically 
significantly (convincingly). 

2.4. Compare Slope Coefficients 

For many products, the slope coefficient of the life-stress relationship has 
physical meaning. For example, the slope of the Arrhenius relationship is 
proportional to the activation energy of the failure process. The following 
graphical method compares slope coefficients. Equal slopes may result when 
products contain the same materials but have different geometry or usage. 
Seldom used, comparisons of intercept coefficients are not given here. 

Make relationship plots on separate papers. Stack them up and hold 
them up to the light to compare the slopes. Figure 2.1 suggests that the three 
insulations have slightly different slopes (activation energies). Insulation 1 
has a low slope. The analytic method of Section 5 is needed to assess wheth- 
er they differ statistically significantly. They do not. 

2.5. Compare Distribution Spreads 

Compare the spreads of the life distributions of products as follows. Do 
this before using analytic methods, since they assume that all spreads are 
equal. The following method assesses equality of log standard deviations for 
the example. This method also applies to Weibull shape parameters. 

Probability plots. For each product, make a probability plot of the data 
at each stress level as described in Chapter 3. Fit parallel lines to the data for 
a product. The spread of (log) life at a stress level corresponds to the slope 
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Figure 2.1. Arrhenius plots for three 
insulations. 

PERCENTAGE 

INSULATION 3 

Figure 2.2. Lognormal plots for three 
insulations. 
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of the plotted data. Then stack up the plots and hold them up to the light. 
Nearly parallel plots indicate that the products have comparable spread of 
(log) life. Such samples usually have few specimens. So the slopes of the 
fitted lines for the different test stresses and products usually differ much, 
even when the true product spreads are all equal. Thus, only pronounced 
differences in the slopes are evidence of real differences among products. 

Figure 2.2 shows lognormal plots for the three insulations. The samples 
are small, and the slopes are roughly equal. This is consistent with equal true 
log standard deviations of the insulations. 

Residual plots. Probability plots of the (log) residuals are a more sensi- 
tive means of comparing (log) spreads. For a product, calculate and pool 
such residuals and plot them as described in Chapter 4. Compare the slopes 
of such plots for each product, since the slopes correspond to the spread in 
log life. Figure 2.3 shows such plots for the three insulations on normal prob- 
ability papers. The slopes are roughly comparable, consistent with equal log 
standard deviations. 

3. COMPARE LOG STANDARD DEVIATIONS 

Purpose. Compare the (log) standard deviations (a’s) of different prod- 
ucts, because: 

1. The Q’S are a measure of the spread in log life of the products. 
2. The Q’S indicate the behavior of the product failure rates. 
3. Other statistical methods that compare products assume that the true 

product 0’s are all equal. 

The following comparisons assume that the a for each product does not 
depend on stress. Methods for checking this assumption appear in 
Chapter 4. The following methods compare the u’s of one, two, and K prod- 
ucts. Nelson (1982, Chap. 10) gives further methods and examples for such 
comparisons, particularly for simultaneous comparisons. 

Robustness. All comparisons of standard deviations below are valid only 
for (log) normal distributions. If the true distribution is far from (log) nor- 
mal, the comparisons are crude no matter how large the samples or degrees 
of freedom. Methods for checking (1og)normality appear in Chapter 4. Also, 
it is important to note that the estimate s’ for Q can be biased too large and 
be misleading if the assumed relationship does not adequately fit the data. 

Example. The least squares comparisons are illustrated with the data on 
three insulations in Section 2. The Arrhenius-lognormal model is used for 
each insulation. The linear relationship for the mean log life pk(x) of insula- 
tion k is written as 

&(x)  = cuk -t pkx; 



COMPARE LOG STANDARD DEVIATIONS 435 

Table 3.1. Summary of the LS Calculations for the Three Insulations 

INSULATION Pooled 
1 2 3 Data 

n 

y j  (2.2.1) 
200" 
225" 
250" 

200" 
225" 
250" 

X (2.2.4) 

Sw (2.2.6) 

S, (2.2.8) 
b (2.2.9) 

5j (2.2.2) 

j (2.2.5) 

s, (2.2.7) 

a (2.2.10) 
s (2.2.11) 

5' (2.2.12) 
u=n -3 

u'=n -2 
m(xo) (2.2.13) 

200" 
225" 
250" 

200" 
225" 
250" 

Antilog[m (xo)] 

15 

3.23134 
2.88198 
2.41130 

0.1832 
0.1384 
0.0829 
2.01133 
2.85154 

1.93144 
0.102093 
0.413109 
4.04639 

.5.29709 
0.1408 

12 
0.1414 

13 

3.25697 
2.82805 
2.43960 

1,807 
673 
275 

15 

3.48258 
3.06010 
2.55520 

0.0558 
0.1166 
0.0653 
2.01 133 
3.03263 

2.23969 
0.102093 
0.467640 
4.58052 

.6.18032 
0.0836 

12 
0.0867 

13 

3.50289 
3.01736 
2.57763 

3,183 
1,04 1 

378 

9 

3.54750 
3.04750 
2.46300 

0 
0.1674 
0.0559 
2.01 133 
3.01933 

1.83009 
0.061256 
0.328181 
5.35753 

- 7.75645 
0.1019 

6 
0.1013 

7 

3.56937 
3.00147 
2.48715 

3,710 
1,003 
307 

39 

3.40093 
2.98868 
2.95606 

- 
2.01133 
2.95606 

6.32192 
0.265443 
1.20893 
4.55439 

- 6.20434 
- 

0.1485 
37 

3.42365 
2.94088 
2.50366 

2,652 
873 
319 

here x= 1000/T where T is the absolute temperature in OK. The correspond- 
ing log standard deviation is ok . Table 3.1 summarizes the least squares cal- 
culations for the log life data for each insulation and for the pooled data. 
Equations numbers in the table are for equations in Chapter 4. In practice, 
such results are calculated with a standard least squares program. 

3.1. Compare One cr 

Interval. To compare a sample (log) standard deviation s (or s') with a 
specified value 00, use the confidence interval (2.3.6) for o from Chapter 4. 
If a 1m% confidence interval encloses 00, then s is consistent with 00. Oth- 
erwise, s differs convincingly (statistically significantly) from no at the 
100(1-7)% level. Such an interval may be one- or two-sided. Such a com- 
parison is rare in practice. 
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32. Compare Two Q’S 

Interval. Suppose that the estimates of u1 and u2 for two products with 
(log) normal life distributions are s1 and s2, and they have vl and v2 degrees 
of freedom. A lOO+y% confidence interval for the ratio ul/q has lower and 
upper limits 

here F[(1t7)/2;v1,v2] is the (1+7)/2 point of the F distribution with vl 
degrees of freedom in the numerator and v2 in the denominator. Such F 
values are tabled in Appendix A6. v1 and v2 are reversed in the upper and 
lower limits. If this interval encloses 1, then the sample (log) standard devia- 
tions do not differ convincingly (statistically significantly) at the 100(1-7)% 
level. Otherwise, they differ convincingly at the lOO(l-7)% level. One must 
determine whether a convincing difference is large enough to be important in 
practice. A convincing difference indicates that the statistical methods in fol- 
lowing sections may be inaccurate. 

Example. For insulations 2 and 3, the observed ratio (Table3.1) is 
(0.0836/0.1019) = 0.820; here the numerator has 12 degrees of freedom and 
the denominator has 6. The 95% confidence interval for the true ratio has 
limits 0.820/(5.37)’D = 0.35 and 0.820(3.73)ID = 1.58; here 5.37 (3.73) is the 
97.5 F-percentile with 12 (6) degrees of freedom in the numerator and 6 (12) 
in the denominator. This interval does enclose 1. So the two log standard 
deviations do not convincingly differ. 

The following table shows the estimates and 95% confidence limits for 
such ratios for each pair of insulations. All of these intervals enclose 1. Thus 
no two log standard deviations differ convincingly. 

Ratio Estimate 95% Conf. Interval 
U ~ / U Z  1.68 0.93 3.04 
U Z / U ~  0.82 0.35 1.58 
u3/ul 0.72 0.38 1.68 

33. Compare K Q’S 

Bartlett’s test. The following hypothesis test compares the uk of K prod- 
ucts with (log) normal life distributions. Suppose that, for product k, the esti- 
mate for uk is sk, which has vk degrees of freedom. Either estimate sk or s; 
could be used. Calculate the pooled sample standard deviation 

here v* = vl t * - tvK is its pooled number of degrees of freedom. Calcu- 
late Badett’s test statistic: 

Q = C{V*lOg(S*) - [VllOg(Sl) + * * * t VKIO~(SK)]}; (3.3) 
here base 10 logs are used, and 
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1 1 
C = 4.6051 1 + { 3(K-1) [;+ ' * .  

The approximate level Q test for equality of the uk is 

1) If Q &(l-a;K-l) ,  the sk do not differ convincingly (statistically 
sigruficantly) at the l a %  level. 

2) If Q > ?(l-a;K - l), they differ statistically significantly at the l o b %  
level. 

Here ?( l -a ;K - 1) is the lOO(1-a)th chi-square percentile with (K - 1) 
degrees of freedom. This is Bartlett's test for homogeneity of variance. The 
same test appears in Chapter 4, where its purpose is different. 

If the sk differ convincingly, examine them and their confidence limits to 
determine how they differ. Take those differences into account to interpret 
the data. For example, then one might not act on marginally significant 
results from methods in later sections. 

Example. For the three insulations (Table 3.1), the calculations are: 

S *  = {[12(0.1408)2 + 12(0.0836)* +6(0.1019)2]/30}'/2 = 0.1132, 

C = 4.6051 1 + - -+- t--- { 3(:-1) [ 1'2 1'2 
= 4.386, and 

:O]} 

Q = 4.386{3OI0g(0.1132) - [1210g(O.l4O8) 

+ 1210g(0.0836) t 610g(0.1019)]} = 3.13. 

The chi-square distribution for Q has K - 1 = 2 degrees of freedom. Since 
Q = 3.13 < 5.99 = ?(0.95;2), the three sk do not differ convincingly at the 
5% level. So comparisons in following sections appear accurate enough. 

Maximum F ratio. Sometimes the estimates sk have nearly the same 
number vk of degrees of freedom. If so, they can be simultaneously com- 
pared graphically with the maximum F ratio, as described by Nelson (1982, 
Chap. 10). If the vk differ much, the sk can be compared by means of the 
Bonferroni inequality, as described by Nelson (1982, Chap. 10). Such simul- 
taneous pairwise comparisons are described in general by Miller (1966) and 
Hochberg and Tamhane (1987). 

4. COMPARE (LOG) MEANS 

The following analytic methods compare mean (log) lives of one, two, 
and K products at a stress level. Such comparisons often help decide which 
product is best. Nelson (1982, Chap. 10) gives further methods and examples 
for such comparisons, particularly for simultaneous comparisons. 
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Robustness. The following methods often are good approximations if the 
life distribution is not (log) normal. This is so provided the sample size is 
large enough so the sample (log) means have sampling distributions that are 
near normal. Such normality of sample (log) means is a consequence of the 
central limit theorem. Bootstrapping of sample estimates can be used to as- 
sess normality of such a sampling distribution. Also, note that the assumed 
relationship, if not adequate, may make the comparisons crude. The follow- 
ing comparisons assume that the true product u’s are all equal. However, the 
comparisons are not sensitive to modest differences in the u’s. In particular, 
if the sample log standard deviations do not differ statistically significantly, 
then one may assume that the methods are satisfactory. Moreover, one can 
apply the ML methods of Chapter 9 when the true u’s differ. 

Percentiles. Below it is assumed that the products 0’s are equal. Under 
that assumption, if product means are equal, then corresponding percentiles 
are equal. Thus, the following comparisons of means are also comparisons of 
percentiles. If the product u’s differ, the percentiles must be compared with 
the maximum likelihood methods of Chapter 9. 

4.1. Compare One (Log) Mean 

Interval. Suppose m (xo) is the LS estimate of the log mean at a specified 
(transformed) stress level x o .  To compare it with a specified value k, use 
the confidence interval (2.3.3) of Chapter 4. If a 100.1% confidence interval 
encloses h, then m (xg) is consistent with h. Otherwise, nt (xo)  differs con- 
vincingly (statistically significantly) from at the lOO(l-7)% level. Such an 
interval may be one- or two-sided. In a derttoristratiori test, use a one-sided 
lower limit. The limit must be above p,-, for the product to “demonstrate a 
life h with lO@% confidence.” 

4.2. Compare W o  (Log) Means 

Interval. Denote the LS estimates of two (log) means pl(x0) and pz(x0) 
at the stress levelxo by nt 1 and n12. Denote the sample (log) standard devia- 
tions by s1 and s2, which have v1 and v2 degrees of freedom. A two-sided 
lO@y% confidence interval for the difference pl(xg) -p2(xo) is 

(m1 -m2) & t [(lt7)/2;v*]{(l/n 1) t (xo -X1)2S;’l ( 4 4  

t (l/rt2) t (xg -x2)2S~:}1’2s*. 

Here t[(lt7)/2;v*] is the 100(1+7)/2th t-percentile with v* = y t v 2  
degrees of freedom. The sums of squares Snl and Sn2 are each defined by 
(2.2.7) of Chapter 4; XI and X 2  are the two sample averages; n 1 and n2 are 
the two sample sizes. Also, 

s* = {(v& tv2s;)/v*}”2 (4.2) 

is thepooled estimate of u and has u* degrees of freedom. 
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If this interval encloses zero, then m 1 and n12 do not differ convincingly at 
the 100(1-4% significance level. If it does not enclose zero, then nt 1 and 
m2 differ convincingly at the 100(1--y)% significance level. 

Example. For insulations 2 and 3 in Table 3.1, s* = {[12(0.0836)2 t 
6(0.1019)2]/18}’/2 = 0.0912, which has v*= 1 2 t 6  = 18 degrees of freedom. 
The 95% confidence interval for the difference in true means at 200°C is 

(3.503 - 3.569) 5 2.101[(1/15) + (2.114 - 2.011)20.1021-’ 

t (1/9) t (2.114-2.011)20.0613-1]1~20.~12 = -0.066+0.129 

or -0.195 to 0.063. Here t[(lt0.95)/2;18] = 2.101 is the 97.5th t-percentile 
with 18 degrees of freedom. This 95% confidence interval encloses 0. So 
there is no convincing evidence at a 5% significance level that the two true 
means at 200°C differ. Thus the median lives of insulations 2 and 3 appear 
comparable at 200°C. 

Such 95% intervals for each pair of insulations means appear below. 

Insulations Estimate and 95% Conf. Interval 
1 - 2  -0.246 f 0.136 

2 - 3  -0.066 k 0.129 

3 - 1  0.312 k 0.175 

The first and third intervals do not enclose 0. This means that insulations 2 
and 3 are convincingly better than insulation 1. The middle interval encloses 
0. This means that insulations 2 and 3 do not convincingly differ. Examine 
such convincing differences for engineering importance. 

The example is unusual in that there are data at the temperature where 
the comparison is made. Hahn and Schmee (1980) discuss some advantages 
of using just the data at that temperature. For example, one need not specify 
an assumed (and possibly inaccurate) relationship. 

43. Compare K Log Means 

The following method simultaneously compares the mean (log) lives of K 
products at a stress level x o .  Suppose, for product k, the LS estimate of the 
mean at x o  is mk. Also, suppose the estimate of u is s k  and has vk degrees of 
freedom. Calculate the pooled sample mean at xg: 

m* = (Nlni l t  . . .  tNKmK)/(Nlt tNK). (4.3) 

Here 

Nk = 1/{(1//1k) [(xO-~k)2/s*rkl} 

is the “equivalent sample size” at x o .  It is not an integer. The notation fol- 
lows Chapter 4. Calculate the pooled sample log standard deviation 
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s* = {[vls: t - . .  tvKs;]/v*}'/? 

M = Nl(ml-m*)2 t -.. t NK(mK-m*)2, 

(4.4) 

This has v* = v1 + * + - tvK degrees of freedom. Calculate the mni of 
squares for the means: 

(4.5) 

which has (K - 1) degrees of freedom. 

F test. Calculate the F statistic for the means 

F == [ M / ( K -  l ) ] / ~ * ~ .  (4.6) 

The level a test for equality of the true (log) means is: 

1) If F 5 F(l -a; K - ly*), the (log) means do not differ convincingly (statisti- 
cally significantly) at the l o b %  level. 

2) If F > F(1-a;K - l,v*), the means differ convincingly at the l o b %  level. 

Here F(1-a;K-l,v*) is the l-a point of the F distribution with (K-1) 
degrees of freedom in the numerator and v* in the denominator. F values 
are tabled in Appendix A6. This test is like that for one-way analysis of vari- 
ance with unequal sample sizes N k .  

If the means differ convincingly, determine how they differ and whether 
the differences are important in practice. The confidence interval (4.1) for 
pairs of means often helps determine which differences are convincing and 
important. Also, the confidence intervals (2.3.3) of Chapter 4 for individual 
means may yield insight. Plot such estimates and intervals for insights. 

Example. For the three insulations (Table 3.1), the calculations to com- 
pare the log means at 200°C are 

N1 = N2 = 1/{(1/15) t[(2.114-2.011)2/0.1021]} = 5.863, 

N3 = 1/{ (1/9) + [(2.114-2.011)2/0.0613]} = 3.519, 

ni* = [5.863(3.257) t 5.863(3.503) t 3.519(3.569)]/[5.863 t 5.863 t 3.5191 

= 3.424, 

v* = 12+12t6 = 30, 

s*2 = [12(0.1408)2 t 12(0.0836)2 t 6(0.1019)2]/30 = 0,01281, 

M = 5.863(3.257 - 3.424)2 t 5.863(3.503 - 3.424)2 t 3.519(3.569 - 3.424)2 

= 0.275. 

M has K - 1  = 3-1 = 2 degrees of freedom. Then F = [0.275/(3-l)] 
/0.01281 = 10.7. Since F = 10.7 > 8.77 = F(0.999;2,30), the sample means 
differ very highly significantly (0.1% level). The previous comparison of pairs 
of means indicates that the log means of insulations 2 and 3 at 200°C are 
comparable and convincingly higher than that of insulation 1. One must then 
decide whether such convincing differences are large enough to be important. 
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Tukey's comparison. Sometimes the estimates of mk of the means have 
nearly the same true standard errors, and the sk have nearly the same num- 
ber uk of degrees of freedom. Then the mk can be simultaneously compared 
with Tukey's method, as described by Nelson (1982, Chap. 10). Sometimes 
the true standard errors or the vk differ much. Then the mk can be simulta- 
neously compared using the Bonferroni inequality, as described by Nelson 
(1982, Chap. 10). Such simultaneous pairwise comparisons are described in 
general by Miller (1966) and Hochberg and Tamhane (1987). 

5. COMPARE SIMPLE RELATIONSHIPS 

Presented below are product comparisons for simple linear relationships 
(one accelerating variable) and for slope and intercept coefficients. The dis- 
cussion of robustness in Section 4 applies here. 

5.1. Compare Slope Coefficients 

Purpose. For many products, the slope coefficient p has physical mean- 
ing. For example, in the Arrhenius relationship, /3 is proportional to the ac- 
tivation energy of a failure mechanism. Products made of the same materi- 
als, but differing with respect to geometry or usage, may have the same 8 
value. If so, one can pool their data to estimate p more accurately. The fol- 
lowing methods compare one, two, and K slope coefficients. 

One slope. Suppose b is the LS estimate for a slope coefficient. To com- 
pare it with a specified value 8 0 ,  use the confidence interval (2.3.12) of 
Chapter 4 for p. If a lOOy% confidence interval encloses pa, then b is con- 
sistent with Po. Otherwise, b differs convincingly (statistically significantly) 
from 

Two slopes. Suppose that the LS estimates of p1 and p2 are b l  and b2.  

Also, suppose the corresponding estimates of (I are s1 and s2 with v1 and v2 
degrees of freedom. A l W %  confidence interval for (PI -82) is 

( 5 4  

at the lOO(l--y)% level. Such an interval may be one- or two-sided. 

[bl -b21 2 t[(l+r)/2;v*I[(l/S,1) + (l/sm2)1'/2s*. 

Here t[(l+$/2;u*] is the 100(1+7)/2th t-percentile with v* = v1 tv2 
degrees of freedom. S,, and Sar2 for the two samples are defined in (2.2.7) 
of Chapter 4. 

s*  = [(vp: tv2s;)/u*]1/2 (5.2) 

is thepooled estimate of u and has u* degrees of freedom. 

If this interval encloses 0, b l  and b2 do not differ convincingly (statisti- 
cally significantly) at a lOO(1 --y)% level. Otherwise, they differ convincingly 
at that level. Determine whether a convincing difference is large enough to 
be important in practice. Also, the interval should be narrow enough to 
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detect a difference PI - 82 that is important in practice. If not, use Chapter 6 
to choose a larger sample or better test plan before the test is run. 

Example. For insulations 2 and 3 (Table 3.1), s* = 0.0912 and v* = 
12 t 6 = 18. The 95% confidence interval is 

(4.581 - 5.358) 22.101[(1/0.1021) t (1/0.0613)]'~20.0912 = -0.77720.978; 

here t[(lt0.95)/2;18] = 2.101. This interval encloses 0; thus the two 
coefficients do not differ convincingly at the 5% level. One must decide 
whether the uncertainty k0.978 is small enough for practical purposes. The 
95% confidence intervals for the slopes of each pair of insulations follow. 

95% Conf. Interval 
- p2 -0.535 ? 1.074 

P2 - 83 -0.777 2 0.978 
8 3  - 1.312 ? 1.385 

Each interval encloses 0. Thus the coefficients of each pair of insulations do 
not differ convincingly. It is useful to plot the differences and their 
confidence limits. 

K slopes. The following method simultaneously compares slope 
coefficients of K products. Suppose that, for product k, bk is the LS estimate 
of pk. Also, suppose the estimate of u is sk and has vk degrees of freedom. 
Calculate the pooled slope coefficient 

b* = [blSnit * * t b ~ S ~ ~ ) l / [ S = i  t * * tSu~];  (5.3) 

here the notation follows Chapter 4. Calculate the pooled sample (log) start- 
dard deviation as 

s* = [@Is: t . * *  tv&)/v*]'/2; (5.4) 

v* = v1 t * * - tvK is its number of degrees of freedom. Calculate the sum of 
squares for the slope coefficients as 

B = S,.[b1 -,*I2 t * * * t S d [ b ~ - b * ] ~ .  (5.5) 

F test. Calculate the F stafistic for the slopes 

F = [ B / ( K  - l ) ] / ~ * ~ .  

The level a test for equality of the slopes is: 

1) If F 5 F(1-or;K - 1, v*), the sample slope coefficients do not differ con- 
vincingly (statistically significantly) at the lOOa% level. 

2) If F > F(1 -or;K - 1, v*), they differ convincingly at that level. 

Here F(1-a;K -1, v*) is the l-or point of the F distribution with (K -1) 
degrees of freedom in the numerator and v* in the denominator. This test is 
like that for a one-way analysis of variance with unequal sample sizes S,. 
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If the slopes bk differ convincingly, examine them to determine how they 
differ and whether the differences are important. Confidence intervals 
(2.3.12) of Chapter 4 for the pk help determine this. Also, the confidence 
intervals (5.1) for comparing pairs of slopes help. 

Example. For the three insulations (Table 3.1), the calculations to com- 
pare the slopes are 

b* = [4.046(0.1021) t 4.581(0.1021) t 5.358(0.0613)]/[0.1021+ 0.1021 t 0.06131 

= 4.554, 

v* = 12t12+6 = 30, 

S* = { [12(0.1408)2 t 12(0.0836)2 t6(0.1019)2]/30}'~2 = 0.1132, 

B = 0.1021(4.046-4.554)2 t 0.1021(4.581 -4.554)2 +0.0613(5.358 - 4.554)2 

= 0.0659, 

F = [0.0659/(3- 1)]/(0.1132)' = 2.57. 

Since F = 2.57 < 3.32 = F(0.95;2,30), the three slopes do not differ convinc- 
ingly at the 5% level. 

5.2. Compare Intercept Coefficients 

Methods for comparing the intercept coefficients a k  of products are not 
given here. Such comparisons are seldom used for accelerated tests since the 
intercept rarely have a useful physical meaning. The comparisons are the 
same as those in Section 4 for (log) means at xo = 0. 

53. Simultaneously Compare Slopes and Intercepts 

The following test compares the simple relationships of IQ2 products. It 
tests for equality of all intercepts (al =a2 = - - =aK) arid sirnultarieously for 
equality of all slopes (PI =p2 = =&). The discussion of robustness in 
Section 4 applies here. The notation follows Chapter 4. 

Product calculations. For product k, suppose the LS coefficient esti- 
mates are ak and bk, based on itk specimens. Calculate the sum ofsqiiares 
about the relationship for product k as 

Ak = SWk - bkSVk = (nk -2)s;'. (5.7) 

Here s i 2  is the standard deviation about the fitted relationship for product k. 
Most regression programs give s;. Calculate the total sum of squares about 
the relationships 

A = A ~ +  a * *  tAK = (nl-2)s;2t +(nK-2)siZ. (5.8) 

Pooled calculations. Pool the data on all K products, and treat the data 
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as a single sample of n = n t - * - + n ~  specimens. For the pooled data, cal- 
culate the grand sample averages .? and j and the grand sums of squared 
deviations S,, S,, and S,, as in Table 3.1. Calculate the pooled coefficient 
estimates 

b* = Sv/Sz, a* =y-b*Z. (5.9) 

Calculate the pooled sum of squares about the relationship 

A* = S,-b*Sv = (n -2)~’~ .  (5.10) 

Here s’ is the standard deviation about the fitted relationship for the pooled 
data. Most regression programs give s’. Table 3.1 shows all such calcula- 
tions for the pooled data on the three insulations. 

F test. Calculate the F statistic for equality of the relationships 

F = [(A* -A)/(~K-~)]/[A/()I -2K)l. (5.11) 

Carry extra significant figures (say, six) in all preceding calculations. This 
helps assure that the F value is accurate to three figures. The level a test for 
equality of the relationships is 

1) If F 5 F(l-a;2K -2, n-w, the relationships do not differ convincingly 
(statistically significantly) at the l o b %  level. 

2) If F > F( 1 -a;X - 2, n - 2K), they differ convincingly at the 1OOa% level. 

Here F(1-a;X -2, n-2K) is the 1-0 point of the F distribution with (2K-  
2) degrees of freedom in the numerator and (n -2K) in the denominator. If 
the relationships differ significantly, examine plots of the uk and bk and their 
confidence intervals. Determine how the coefficients differ and whether the 
differences are important in practice. 

Example. For the three insulations, compare their relationships as fol- 
lows. This assesses whether the insulations have comparable mean log life 
over operating temperatures from 200 to 250°C. The calculations are 

A 1 = 1.93144-4.04639(0.413109) = 0.259840, 

A2 = 2.23969- 4.58052(0.467640) = 0.097656, 

A3 = 1.83009-5.35753(0.328181) = 0.071850, 

A = 0.259840 t 0.097656 t 0.071850 = 0.429346, 

n = 15t15t9 = 39, 

S, = 6.32192, S, = 0.265443, S, = 1.20893, 

b* = 1.20893/0.265443 = 4.55439, 

A* = 6.32192- 4.55439(1.20893) = 0.815981, 

F = ((0.815981-0.429346)/[2(3) -2]}/{0.429346/[39-2(3)]} = 7.43. 
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Since F = 7.43 > 5.99 = F(0.999;4,33), the Arrhenius relationships differ very 
highly convincingly (0.1% level). Such differences may be among the slope 
coefficients, the intercept coefficients, or both. To determine which, examine 
the estimates and their confidence intervals. Also, use confidence limits for 
the difference of each pair of coefficients. Such comparisons above indicate 
that the slopes are comparable, that insulations 2 and 3 have comparable 
intercepts, and insulation 1 has a convincingly lower intercept. 

6. COMPARE MULTIVARIABLE RELATIONSHIPS 

Purpose. This section extends the comparisons of preceding sections to 
multivariable relationships. Such comparisons include 1) log standard devia- 
tions, 2) log means, 3) coefficients, and 4) relationships. Where robust in 
preceding sections, such comparisons are robust here. Section 6 of Chapter 4 
provides needed background. Theory appears in Draper and Smith (1981) 
and Neter, Wasserman, and Kutner (1985). Only analytic comparisons ap- 
pear here, as graphical ones are generally cumbersome. 

Model. The assumed model follows. Life has a lognormal distribution. 
The standard deviation c of log life is a constant. The mean log life is a 
linear function of P engineering variables xl, x 2 ,  . * * , xp; namely, 

&1, * * * ,-rP) = 7 0  i- 71x1 + ' * -t 7 f l P  * (6.1) 

Such anxp may be an indicator variable (0- 1) for a categorical variable. The 
coefficients 7, are estimated from the data. If there are two or more popula- 
tions, the same model is separately fitted to the data from each population. 
The following comparisons assume that the relationship (6.1) is correct for 
each population. If not correct, the significance level of comparisons may be 
in error. If 0 is a function ofxl,  * * - , x p ,  use ML fitting (Chapters 5 and 9). 

6.1. Compare Log Standard Deviations 

Section 3 presents comparisons for one, two, and K standard deviations. 
These comparisons apply to multivariable relationships. Compare estimates 
sk (based on pure error) or s; (based on lack of fit) for population k. Least 
squares regression programs always calculate such an s;. However, for (6.1), 
the number of degrees of freedom for s; is u; = i l k  - Q; here i l k  is the number 
of specimens from population k, and Q =P t 1 is the number of coefficients in 
the relationship, including the intercept. Such comparisons can also be made 
graphically, using residuals as described in Section 2.5. If the standard devia- 
tions differ significantly, then the fitted models need to reflect that. Also, 
then it is better to make comparisons with maximum likelihood methods 
(Chapter 9). However, the following comparisons are robust to moderate 
differences among the o k .  
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6.2. Compare (Log) Means 

This section extends the comparisons of means of Section 4 to multivari- 
able relationships. Below 1711, denotes the LS estimate of the log mean of 
population k at a specified condition (values of the P variables). Many LS 
programs calculate /ilk. Its variance is Vkd. Some LS programs calculate 
r/ks’2. Denote a pooled estimate of the log standard deviation by s, and 
denote its degrees of freedom by v. 

One log mean. Calculate 1 0 h %  confidence limits for such an estimate 
111;  namely, 

p = 112 - t [ ( l t7 ) /2 ;~]V’ /~s ,  6 = 171 t t [ ( l t 7 ) /2 ;~ ]V’ /~s .  (6.2) 

Here t [(1+7)/2;u] is the lOO(lt7)/2 t-percentile with v degrees of freedom. 
Compare this interval with a specified value h as follows. If the interval 
encloses h, then in  is consistent with h. Otherwise, /it differs convincingly 
(statistically significantly) from h. For a one-sided lo@% interval, replace 
(1+7)/2 by 7 in the desired limit (6.2). In a demortsrrurio!t rest, use a one- 
sided lower limit. The limit @ must be above h for the product to “demon- 
strate a life (better than) 

and 1112 for the mean log lives p1 and p2 at a particular condition. Two-sided 
lo@% confidence limits for the true difference A=pl  -p2 are 

with lOO-y% confidence.” 

Two log means. Suppose data from two populations yield estimates in 

4 = (n11-nt2) - t[(1+7)/2;v][V1tV2]1/2s, 

a = ( / ? t 1 - I 1 1 2 )  t r[(1+7)/2;v][V,tV2]1/2s. (6.3) 

If this interval encloses zero, in1 and m 2  do not convincingly differ at the 
lOO(l-y)% level. Otherwise, they differ convincingly. Here v = v1 tv2, and 

K log means. To compare K log means, use the F test of Section4.3. 

s = [(vls: tv2s;)/v]’fi. 

Replace Nk there by 1/Vk. The pooled estimate of a common mean is 

I ~ Z *  = [(IlIi/Vi)+ * * *  +(1lt~/V~)]/[(1/1/1)+ +(~/VK)] .  (6.4) 

6.3. Compare CoefFicients 

This section extends the coefficient comparisons of Section 5.1 to mul- 
tivariable relationships. For population k, ck denotes the LS estimate of a 
particular coefficient (say, 71) in (6.1). The variance of ck equals D k d .  Most 
Ls regression programs calculate Dks’2, which appears as diagonal term of 
the covariance matrix of coefficient estimates. 

One coefficient. Sometimes there is a specified or theoretical value 7’ for 
a particular coefficient, say, 71. To compare the LS estimate c with 7’, use a 
1008% confidence interval for 71, namely, 

71 = ~1 - t [ ( l t ~ ) / 2 ; ~ ] D ~ ’ ~ s ,  = ~1 t t[(1+7)/2;v]Di/*s. (6.5) 
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Here t [(l + E ) / ~ ; v ]  is the 100(1+~)/2 t-percentile with v degrees of freedom. 
Most LS regression programs calculate such an interval. If this interval con- 
tains y', c1 is consistent with y'. Otherwise, c1 differs convincingly 
(statistically significantly) from 7' at the 100(1-~)% level. 

W o  coefficients. Suppose that data from two populations yield LS esti- 
mates c1 and c2 of the same coefficient. Calculate the lm% confidence 
limits for the true difference A = yl -72  of the two population coefficients as 

4 = (C1-Cz) - t[(lty)/2;v][D1+D2]'/2s, 

= (c1-c2) t t[(lty)/2;v][D1 +D~]'/*s. (6.6) 

v = vl t 4, and s = [(vls: + V ~ S $ ) / V ~ ~ .  If this interval encloses zero, c 1  
and c2 do not differ convincingly at the lOO(l--y)% level. Otherwise, they 
do. 

K coefficients. Suppose that data from K populations yield LS estimates 
c1, c2, - a ,  c~ for the same coefficient in (6.1), say, 71. The following F test 
for their equality extends the F test of Section 5.1. Calculate thepooled esti- 
mate of the coefficient 

c*  = [(Cl/Dl)+ - . *  +(CK/DK)I / [ ( l /Dl)+ .'*(1/DK)I. 

D = (l/Dl)(Cl -c*)2 t * * * t (l/DK)(cK-c*)Z. 

(6.7) 

(6.8) 

Calculate the sum of squares for rlie K coefficients 

Use (3.2) to calculate the pooled estimate s* of the sample K sample stan- 
dard deviations with v* degrees of freedom. Calculate the F statistic fur the 
coefficients 

F = [ D / ( K  - l)] / s * ~ .  (6.9) 

The level a test for equality of the K population coefficients is 

1) If F 5 F(l-a;  K - l,v*), the K coefficient estimates do riot differ convinc- 
ingly (statistically significantly) at the 1&% level. 

2) If F > F(1-a; K - l ,v*), they differ convincingly. 

Here F(1-a;K -1,v*) is the 1-a point of the F distribution with K -1 
degrees of freedom in the numerator and v* in the denominator. To under- 
stand how such ck differ, examine them as described in Section 5.1. 

6.4. Compare Relationships 

The following comparison of K relationships extends that in Section 5.3 to 
multivariable relationships. For each of the K data sets, separately fit the re- 
lationship to the data. The assumed relationship has Q = P  t 1 coefficients, 
including the intercept. Its fit to sample k yields an estimate s; of the stan- 
dard deviation based on lack of fit. Suppose sample k has nk specimens, and 
n =n + +nK. Calculate the pooled estimate 



448 LEAST-SQUARES COMPARISONS FOR COMPLETE DATA 

s ’ ~  = [ ( n l - Q ) ~ ; ~  t t ( I ~ K - Q ) s ~ ’ ] / ( I ~  -KQ) .  (6.10) 

Next pool the K data sets, and fit the relationship to the pooled data. Sup- 
pose that s; is the resulting estimate of the standard deviation based on lack 
of fit. Calculate the F statistic for equality of the K relationships 

F = {[(II -Q)s i2  -61 - K Q ) s ” ] / [ ( K - ~ ) Q ] }  / s ’ ~ .  (6.11) 

Carry at least six significant figures in this and preceding calculations. This 
helps assure that this F value is accurate to three figures. The level a test for 
equality of the K relationships is 

1)  If F 5 F[1 -a;(K - l)Q,n -KQ], the K relationships do not differ convinc- 
ingly (statistically significantly) at the lo&% level. 
2) If F > F[1-a; (K - l )Q,n -KQ],  they differ convincingly. 

Here F[1-a;(K-1)Q,n -KQ] is the l-a point of the F distribution with 
(K - l ) Q  degrees of freedom in the numerator and n - KQ in the denomina- 
tor. If the relationships differ convincingly, examine their coefficients, aided 
by confidence limits, to determine which differences are important. 

PROBLEMS (* denotes difficult or laborious) 

8.1. Insulations revisited. Further analyze the data on the three insula- 
tions (Tables 2.1 and 3.1). 
(a) Calculate 95% confidence limits for the difference of each pair of log 

means at 250°C. Suitably plot the estimates of the differences and the 
confidence limits. Comment on how the insulations compare at 250°C. 

(b) Simultaneously compare the three log means at 250°C with the F test. 
Interpret the results. 

(c) Repeat (a) and (b) for 225°C. 

(a) Throughout use the estimate s; in place of sk. Comment whether 
confidence limits or hypothesis tests based on s; give appreciably 
different results. Do you prefer sk or s;? Why? 

(b) In comparisons of two insulations, use the pooled standard deviation 
from all three and its degrees of freedom. Comment whether results 
differ appreciably from those in the chapter. Comment on the validity 
of using this pooled standard deviation for such comparisons. 

1 

8.2. Insulations with s’. Reanalyze the example data in this chapter. 

(c) Suggest further analyses. 
(d) Carry out (c). 

83.  Au-AI bonds. A temperature-accelerated life test of gold-aluminum 
bonds in three encapsulating resins for integrated circuits yielded the follow- 
ing failure data in hours, kindly provided by Dr. Muhib Khan of AMD. The 
purpose of the test was to compare the effects of the resins on bond life at 
120°C. Use the Arrhenius relationship and a suitable distribution. 
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Resin Temp. LifeinHours - -  
I 175°C 110.0 82.2 99.1 82.9 71.3 91.7 76.0 79.2 

194 45.8 51.3 26.5 58.0 45.3 40.8 35.8 45.6 
213 33.8 34.8 24.2 20.5 22.5 18.8 18.2 24.2 
231 14.2 16.7 14.8 14.6 16.2 18.9 14.8 
250 18.0 6.7 12.0 10.5 12.2 11.4 

175 12.3 17.7 12.3 4.3 6.8 8.5 5.7 
194 4.0 4.0 3.1 4.9 6.3 6.2 3.5 3.7 
250 3.6 1.7 3.8 4.1 1.3 3.4 1.2 2.8 

200 240.1 238.3 140.4 142.1 223.4 173.1 
225 63.0 102.0 125.0 67.8 81.0 101.0 76.0 
250 40.3 33.0 34.3 38.3 29.5 35.3 39.5 

Graphically compare the three resins. State conclusions. 
Compare the resins using least squares methods. State conclusions. In 
view of (a), are least squares comparisons necessary? Why? 
Write a brief report on your findings for the materials engineer. 
Suggest further analyses. 
Carry out (d). 

8.4. Transformer oil. Data Set 2 below came from a repeat of the experi- 
ment of Problem 4.10 (Data Set 1). The following analyses assess consisten- 
cy of the two data sets. Where possible use a computer. 

1 S q .  Inch Electrodes 
10 volts/sec Rate o f  Rise  
40 45 44 40 51 36 47 41 44 45 
41 42 47 44 35 46 40 51 47 38 
41 3 5  39 46 48 46 39 38 49 41 
42 48 38 41 46 48 46 46 48 52  
45 38 45 50 36 49 36 47 41 43 
46 41 50 50 50 49 46 45 48 52  

1 S q .  Inch Electrodes 
100 volts/sec Rate of Rise 

40 51 52 51 47 54 55 52 50 31 
44 50 39 53 50 51 47 46 57.55 
53 51  50 42 43 45 42 43 47 58 
51 5 3  55  52  48 40 41 54 57 5 3  

43 44 49 54 52  50 56 48 52 50 
57 48 52 55 56 49 43 5 2  52  49 

1 S q .  Inch Electrodes 
1000 volts/sec Rate of Rise 
57 59 56 56 58 64 58 55 58 54 
65 61 64 65 65 52 53 60 58 63 
60 62 54 63 60 52 62 50 60 57 
63 57 57 58 52  67 52  62 56 59 
55 65 63 57 67 64 62 58 66 60 
57 64 66 52 65 57 58 62 60 59 

9 S q .  Inch Electrodes 
10 volts/sec Rate of Rise 
42 38 40 42 37 3 3  41 37 39 3 5  
43 4 2 ’ 4 1  34 40 40 38 38 2 5  36 
36 39 41 29 37 37 40 38 39 37 
40 38 40 38 40 37 42 42 44 39 
40 41 44 39 38 43 46 40 38 40 
42 44 50 40 38 42 45 37 43 48 

9 S q .  Inch Electrodes 
100 volts/sec Rate of Rise 

39 45 46 46 47 45 3 2  46 47 44 
45 44 47 47 47 45 48 50 45 44 
48 50 44 44 34 43 34 50.46 52  
47 51 51 44 43 50 50 46 43 54 
46 49 46 5 1  49 45 51 51 49 45 
54 53 50 49 52 52  5 3  5 3  44 48 

9 S q .  Inch Electrodes 
1000 volts/sec Rate of R i s e  
57 49 49 41 52  40 48 48 43 45 
57 54 49 49 52 53 51 46 55 54 
49 41 50 49 51 49 47 55 49 51 
51 50 50 55 46 55 57 53  54 54 
54 41 60 50 55 54 53 54 53 46 
55 50 59 58 60 55 55 56 59 51 
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Graphically compare the two data sets for consistency. State and ex- 
plain your findings. 
For Data Set 2, repeat the analyses of Problem 4.1. 
Fit relationship (1) of Problem 4.10 to Data Set 2, and calculate sepa- 
rate confidence limits for the differences between the three pairs of 
corresponding coefficients 70, rl, and 72, for the two data sets. State 
and interpret your findings. 
Test for equality of the two fitted relationships (1). State and interpret 
your findings. 
Repeat (c) for relationship (2) of Problem 4.10. 
Repeat (d) for relationship (2). 
Pool the two data sets, and fit relationships (1) and (2). Comment on 
the validity of pooling the data and resulting estimates. 
Compare the Weibull shape parameters for the two data sets, using 
plots of the In residuals. 
Write a short report summarizing your findings on consistency of the 
two data sets. 
Suggest further analyses. 
Carry out 0). 

8.5'. ' h o  means. Develop a method for comparing the LS estimates of 
the means of two products at a design stress level. Assume that each is de- 
scribed by a simple linear-(1og)normal model, where the two models have 
differing (log) standard deviations. This is the Behrens-Fisher problem in a 
regression setting. Use your method to compare two insulations of Table 2.1. 
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Maximum Likelihood 
Comparisons for 
Censored and Other Data 

1. INTRODUCTION 

Purpose. This advanced chapter presents maximum likelihood (ML) 
methods for comparing samples. These methods include hypothesis tests and 
confidence intervals. Presented are comparisons for one sample (Section 2), 
two samples (Section 3), and K samples (Section 4). Section 5 explains the 
general theory for likelihood ratio (LR) tests. But one can use the ML 
methods without reading Section 5. Needed background includes knowledge 
of ML estimation (Chapter 5 )  and basics of hypothesis testing (Chapter 8). 

ML comparisons. ML comparisons have good properties. Most impor- 
tant, they are versatile. They apply to most models and types of data, includ- 
ing interval and multiply (time or failure) censored data. Such models in- 
clude the constant stress models used in the examples in this chapter and cu- 
mulative exposure models for step-stress tests (Chapter 10). ML compari- 
sons have good statistical properties. Asymptotically they provide the shor- 
test confidence intervals and the (locally) most powerful hypothesis tests. 
For small samples, they generally perform well. In particular, for complete 
data, ML methods yield more accurate estimates and more sensitive compar- 
isons than least squares methods for models with Weibull and exponential 
distributions. Computer programs that do the laborious ML calculations are 
described in Chapter 5. The ML methods are approximate, since tables for 
exact confidence limits and hypothesis tests have not been developed for cen- 
sored and interval data. 

Graphical analysis. A combination of ML and graphical comparisons is 
most effective. ML analyses without graphical analyses may be misleading. 
This happens when the model does not adequately describe the data, or when 
the data contain outliers or other peculiarities. Graphical comparisons may 
be made as described in Section 2 of Chapter 8. Of course, then the proba- 
bility plots must take into account the censored and interval data, and the re- 
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lationship plot is more difficult to interpret. Also, check the model and data 
as described in Section3 of Chapter 5. This chapter assumes that such 
checks have been made. 

2. ONE-SAMPLE COMPARISONS 

Purpose. This section presents ML comparisons for a model fitted to a 
single sample, namely, 

1. Compare a ML estimate of a “quantity” for equality with a specified 
value. Examples include a slope or intercept coefficient, a log standard 
deviation, and the median life at a design stress condition. Section2.1 
presents such comparisons. 

2. Compare a one-sided confidence limit for a quantity with a specified 
value to demonstrate that the product surpasses that value - a demon- 
stration test (Section 2.1). 

3. Simultaneously compare a number of ML estimates each with a (possibly 
different) specified value. For example, compare separate estimates of 
the Weibull shape from each test condition with the value 1. Section 2.2 
presents such comparisons. 

4. Compare a number of ML estimates for equality to each other. Exam- 
ples include separate estimates of the log standard deviations or Weibull 
shape parameters from each test condition. Section 2.3 presents such 
comparisons. 

Many such comparisons appear in Chapter 5, mostly as checks on the model. 

Example. The insulating oil data (Table3.1 of Chapter 3) and the 
power-Weibull model illustrate the comparisons. The following comparisons 
assess 1) whether the exponential distribution (suggested by engineering the- 
ory) adequately fits the data and 2) whether the Weibull shape parameter is 
the same at all seven voltages. Table2.1 summarizes ML fits of various 
models to the data. This example has complete data and a simple linear 
model. However, the methods apply to censored and interval data and com- 
plex models with multiple variables. 

2.1. Compare an Estimate with a Specified Value 

This section presents comparisons of a single ML estimate with a 
specified value, using a confidence interval or LR test. 

Confidence interval. Chapter 5 presents approximate normal and LR 
confidence intervals for a quantity. If such an interval contains the specified 
value, then the estimate is consistent with that value. Otherwise, it is not con- 
sistent with that value. To test for consistency, two-sided intervals are usually 
used. In contrast, a product passes a demonstration test if the intervaI con- 
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Table 2.1. ML Fits to Insulating Oil Data 

Voltage nj  

26 3 
28 5 
30 11 
32 15 
34 19 
36 15 
38 8 

- -  f i  

- 23.717 
-34.376 
- 58.578 
- 65.737 
- 68.386 
-37.691 
- 6.765 

-295.250 

1. Separate Weibull Distributions 
A 

o ^ d  99% limits ff: 
‘ I  1 

0.545 0.16 1.84 955.7 
0.979 0.45 2.15 352.5 
1.059 0.61 1.84 77.59 
0.561 0.35 0.91 25.93 
0.771 0.51 1.16 12.22 
0.889 0.58 1.36 4.292 
1.363 0.71 2.60 1.001 

Total 

Voltage n j  

26 3 
223 5 
30 11 
32 15 
34 19 
36 15 
38 8 

_ _ _ -  

2. Sep. Expo. Dists. 

ti ijj ~- 
-24.517 1303. 
-34.378 356.2 
-58.606 75.79 
-70.763 41.16 
-69.623 14.36 
-37.910 4.606 
- 7.300 0.916 

-303.097 Total 

3. Weib. Dists.. Common D 
A 

ai 

1174. 0.799 = /? 
349.9 
104.7 0.670 = p 
68.81 
38.88 0.953 = 

12.41 
1.851 -299.648 = .? 

4. Power-Weibull Model 

f = - 137.748 /? = 0.777 (0.653,0.923) 
;; = 64.84719 = -17.72958 

5. Sinele Weibull Distribution (Pooled Data) 

a? = -339.654 2 = 26.61 /? = 0.4375 

6. Single Exponential Distribution (Pooled Data) 

.? = -424.889 8 = 98.56 (p = 1) 

tains only values that surpass the specified value. Usually a one-sided inter- 
val is used for demonstration tests. 

Example. Seven Weibull distributions with a common shape parameter 
were fitted to the oil data at the seven test voltagesJTable 2.1), model 3. The 
ML estimate of the common shape parameter is /3 = 0.799, and the normal 
approximate 95% confidence limits are 0.670 and 0.953. 99% limits are 0.558 
and 1.144. The 95% interval does not enclose 1. Thus there is a convincing 
evidence (5% level) that the life distribution is not exponential. As noted be- 
fore, this may result from varying test conditions that increase the scatter in 
the life data, thereby reducing the shape estimate. The samples at some volt- 
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ages are small (3 and 5 failures). Thus the normal approximate interval may 
be much too short. The LR interval would be much better here. 

Another such comparison consists of fitting the power-Weibull model to 
the data (Problem 5.2), model 4 in Table 2.1. Then /3 = 0.777, and normal 
95% limits are 0.653 and 0.923. 99% limits are 0.632 and 0.953. Thus there 
is very convincing evidence (1% level) against an exponential distribution. If 
the assumed relationship is inadequate, this /3 estimate is biased low, and the 
confidence interval is inaccurate. Thus the previous comparison, which does 
not employ a relationship, is preferred in most applications, as that /3 esti- 
mate is not biased small by possible lack of fit of the relationship. 

LR statistic. The following is the LR test that ,a model parameter B 
equals a specified value e'. C$culate the ML estimate B and the correspond- 
ing maximum log likelihood f .  Also, calculate the constrained maximum log 
likelihood f" with B = e'. Both likelihoods are also yaximized with respect to 
all other parameters. The LR test statistic is T = 2(f - 2). 

LR test. When 6 = e', the large-sample distribution of T is approximate- 
ly chi square with one degree of freedom. If B f e', then T tends to have 
larger values. Thus the approximate LR teit is 

If T 5 ?(l-a;l), then the ML estimaie B is consistent with 8. 
If T>?(l-a;l), then the estimate B differs convincingly from e' at the 

Here ?(l-a;l) is the lOO(1-a)th chi-square percentile with one degree of 
freedom. Figure 2.1 depicts T and the sample likelihood f(t9) as a function of 
just B, maximized with respect to all ̂ other parameters. T/2 is the difference 
between the log likelihood at B = 0 and at 8 = e'. This two-sided test is 
equivalent to using the LR interval for B with 100(1-a)% confidence. This 
test, suitably modified to be one sided, can be used as a demonstration test to 
determine whether B convincingly surpasses a specified value e' 

1OOa% significance level. 

23. Compare Q Estimates with Specified Values 

This section presents simultaneous comparisons of Q ML estimates Each 
with a (possibly different) specified value. In particular, suppose that B ,  is 

Figure 2.1. Likelihood f(8) and test statistic T for B=8. 
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the ML estimate for a quantity O,, and 6, is the specified value, q = 1, * . - ,Q. 
8, may be a model parameter or coefficient or a function of them. Such com- 
parisons employ simultaneous confidence intervals or a LR test as follows. 

Simultaneous intervals. Q parameter estimates can be compared with 
specified values with simultaneous lOO-y% confidence limits. For each O,, cal- 
culate a separate 1m’% confidence interval (exact, normal, or LR) where 
7’ = l-[(l-7)/Q]. Such intervals may be one- or two-sided, as appropriate. 
Then the probability that all Q intervals simultaneously enclose their true pa- 
rameter values is at least 7. This is a result of the Bonferroni inequality. If 
all such intervals enclose their specified values, then they are all consistent 
with those values. If an interval does not enclose its specified value Oi, then 
that estimate convincingly differs from its specified value. 

Example. Table 2.1, model 1, shows the separate ML estimates and 99% 
confidence limits (normal approximation) for the Q = 7 Weibull shape pa- 
rameters at the test voltages. Here 7’ = 0.99, and working backwards, 7 = 

1-7(1-7’) = 0.93. Thus the intervals are simultaneous 93% confidence in- 
tervals. Only the interval (0.35,0.91) for 32 kV does not enclose 1. Thus that 
estimate 0.561 differs convincingly from 1 at the 7% significance level. A 
Weibull plot of the 32 kV data (Figure 3.1 of Chapter 3) merely shows that 
those data have a lower slope (shape estimate). So the low estimate is not 
explained by an outlier or other problem data. The numbers of specimens 
are small (3 and 5) at some test voltages. So these intervals are too short 
here, and the true simultaneous confidence is below 93%. LR intervals 
would be better, and exact intervals of McCool(l981) would be correct. 

LR statistic. What follows is the LR test for the null hypothesis that the 
Q parameters simultaneously equal their specified values: O1 = O;, - . , OQ = 

Ob. Fit the model with those parameters equal toh!eir specified values. This 
yields the constrained maximum log likelihood f , which is maximized with 
respect to all other model parameters. Also, fit the unconstrained model 

Figure 2.2. Likelihood f(0, ,0,) and test statistic T for 0, =0; and 0, =&. 
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with ML estimates of the Q parametep and all other model parameters. 
This yields a maximum log likelihood f. qftenAeither mode; consists %f Q 
identical models fitted to Q samples. Then f = f 1 + * * + f Q,  where f qA9 
the maximum log likelihood for sample q. This equation may applyJoR 
with the specified parameter values. The LR test statistic is T = 2(f -f'). 
Figure 2.2 depicts such a sample likelihood and LR statistic. That likelihood 
is a function of Q = 2 parameters O1 and B2 with specified val:es!; and 0;. 
T/2 is the difference between the maximum log likelihood at (el, 42) and at 
(Oi, 8;). 

LR test. If the null hypothesis is true, T asymplotically has a chi-square 
distribution with Q degrees of freedom. The alternative is that one or more 
parameters differ from their specified values. Under the alternative, T tends 
to have larger values. Thus the approximate LR test is 

If T&(l-a;Q), then all Q estimates are consistent with their specified 

If T>?(l-a;Q), then some estimates differ convincingly from their 

Here ?(l-a;Q) is the 100(1-a)th chi-square percentile with Q degrees of 
freedom. If T is significant, examine individual confidence intervals for the 0, 
to determine which are responsible. 

values. 

specified values at the l o b %  significance level. 

Example. For the oil data, we test the hypothesis that the Weibull shape 
parameter at each test voltage equals 1; that is, the life distribution is ex- 
ponential. A separate Weibull distribution was fitted to the subset of data 
from each of the Q = 7 test v$tages. From Table 2.1, model 1, the sum of 
the 7 log likelihoods is f = - 23.717 - 34.376 - 58.578 - 65.737 -68.386 - 
37.691 - 6.765 = - 295.250. A separate exponential distribution (8; = 1) was 
fitted to the data from each voltage (Table 2.1, model 2), and ?= -24.517- 
34.378 - 58.606 - 70.763 - 69.623 - 37.910 - 7.300 = - 303.097. Then T = 2[ - 
295.250-(-303.097)] = 15.69. This has Q = 7 degrees of freedom. Since 
T = 15.69 > 14.07 = 2(0.95;7), some estimates convincingly differ from 1 at 
the 5% significance level. Because there are so few failures (3 and 5 )  at 
some voltages, the chi-square approximation is crude, and the result should 
be viewed as marginal. The individual confidence intervals for the flq (Ta- 
ble 2.1, model 1) merely show that the data at 32 kV are not consistent with 
83; = 1. There is no trend of the aq estimate versus voltage or any other pat- 
tern. This can best be seen from a plot of the estimates and confidence inter- 
vals. 

23. Compare Estimates for Equality 

This section presents the LR test for equality of J model parameters 
81, * = BJ. For example, one 
can test for equality of the Weibull shape parameters (or lognormal log stan- 
dard deviations) at all test conditions. 

, 8,. That is, the null hypothesis is B1 = - 
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Figure 23. Likelihood f(0,,02) and test statistid for 0, =02. 

LR statistic. Fit the model with separ$e ML estimates of the J parame- 
ters; this yields a maximum log likelihood f .  Also, fit the model with a com- 
mon estim3te for el = - a e = 0, = fl; this yields a constrained maximum log 
likelihood f'. Often the model consists of separate mzdels, which are fitted 
to J distinct and exhaustive sEbse2 of the samgle. If fj is the maximum log 
lik$iiood for subset j ,  then f = f t - * + fJ. The LR test statistic is T = 
2(f -?). Figure 2.3 depicts such a LR statistic and sample likelihood, which 
is a function of J:2 parameters dl and 0,. T/2 is the difference between the 
global maximum f and the constrained maximum 3 along the line 81 = 0,. 

LR test. Under the null hypothesis, T asymptotically has a chi-square dis- 
tribution with J -  1 degrees of freedom. Under the alternative of inequality, T 
tends to have larger values. Thus the approximate LR test is 

If T 5 ?(l-a;J- l), then the estimates are consistent with equality. 
If T>?(l-a;J-l), then some estimates differ convincingly from others at 

Here ?(l-a;J-l)  is the 100(1-a)th chi-square percentile withJ - 1 degrees 
of freedom. 

Example. For the oil data, we test the equality hypothesis that the 
Weibull shape parameter has the same value at allJ=7 test voltages. Fitting 
a, separate Weibull distribution for each voltage (Table 2.1, model 1) yields 

Fitting Weibull distributions with a common shape parameter and differing 
scale parameters (Table 2.1, model 3) yields f̂ - = -299.648 and 2 = 0.799. 
Then T = 2[ -295.250-( -299.648)] = 8.80. This has J - 1 = 7- 1 = 6 de- 
grees of freedom. Since T = 8.80 c 10.64 = 2(0.90;6), the 7 shape estimates 
do not convincingly differ even at the 10% significance level. Because there 
are so few failures (3 and 5) at some voltages, the chi-square approximation 
is crude. So the result should be viewed as even less significant. 

the 1&% significance level. 

f = - 23.717 - 34.376 - 58.578 - 65.737 - 68.386 - 37.691 - 6.765 = - 295.250. 
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3. TWO-SAMPLE COMPARISONS 

Purpose. This section presents ML methods for comparing two samples. 
Here the same model is fitted to each sample, and pairs of estimates of 
corresponding quantities are compared for equality. Here “quantity” means 
any model coefficient, parameter, or function of them. Examples include 
slope coefficients and median lives at a design stress condition. Section 3.1 
shows how to compare one pair of corresponding quantities, one from each 
sample. Section3.2 shows how to simultaneously compare two or more 
pairs. Meeker (1980) presents such comparisons for accelerated test models. 
Nelson (1982) and Lawless (1982) do so for life distributions. 

Example. The comparisons are illustrated with data on two types of insu- 
lation for an electrical machine. The life of insulation k is modeled with a 
lognormal distribution with a constant log standard deviation Uk. The mean 
log life pk is described with a linear function of log voltage stress (LVPM) in 
volts per rnm and insulation thickness (THICK) in cm. That is, 

pk = 7;k+ 7u((LWM-LWMi) t ~N(THZCK-THZCK~). (3.1) 

76  72, 7 ~ ,  and uk are estimated from the data. L W M i  and THZCKi are 
specified values of the variables; here each equals its sample average. Such 
“centering” of the independent variables aids convergence of the iterative 
fitting and a more accurate fit. (3.1) is an inverse power relationship 
between life and voltage stress. Figure 3.1 shows output on ML fits of the 
model to the data. These results are used in comparisons below. 

3.1. Compare One Pair of Quantities 

Each data set yields an estimate of a model quantity. The two estimates 
are compared below by 1) normal approximate confidence limits, 2) LR 
confidence limits, and 3) the LR test. These comparisons are roughly 
equivalent, especially for samples with many failures. So in practice, one usu- 
ally uses just one of them. 

Normal Limits 

Difference. Suppose 0, is the true value of a particular quantity for popu- 
lation k. Separately fit theAmodel to each sample (no common parameter 
values). Also, suppose that Bk is its ML estimate, and V, is the sample vari- 
ance of that estimate. The normal approximation for two-sided lOO%7 
confidence h i t s  for the difference A = 0, - 0, is 

4 = (e^,-e^,)-K(I/1+V2)1”, = (e^,-e^,)+K(V1+V;)’”. (3.2) 

Here K is the 100(1+7)/2th standard normal percentile. If the interval 
encloses zero, the data are consistent with equality (dl = 02). Otherwise, the 
estimates differ convincingly at the lOO(l-7)% level. Such normal intervals 
tend to be too narrow. That is, the true confidence level is less than 7, but it 
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is closer to 7 for larger numbers of failures. Also, sometimes the approxima- 
tion improves with a transformed parameter whose estimate has a sampling 
distribution closer to normal (Chapter 5). 

Example. For the two insulations, such 95% confidence limits for A2 = 
721 -rU (the LVPM coefficients) are 

4 = [ - 9.692341 - ( - 10.60784)] - 1.960(0.7828414+ 2~49870)’~ = - 2.609, 

& = 0.915 + 3.524 = 4.439. 

Equivalently, the limits are 0.915k3.524. These limits enclose zero. Thus 
these coefficient estimates do not differ convincingly. That is, both insula- 
tions appear to have the same power for the inverse power relationship. This 
is physically reasonable, as the insulations contain similar materials. Simi- 
larly, such 95% confidence limits for A3 = 731 -732 (THICK coefficients) are 
-4.08 and 5.66 (0.79+ 4.87). These limits enclose zero. Thus the thickness 
coefficients do not differ convincingly. The intercept coefficients 71; and 
7; cannot be readily compared this way, since L W M ;  # L W M ;  and 
THICK; # THICK; for the two samples. 

Ratio. To compare some parameters, it is better to use their ratio p = 
dl/d2. This is so if 8, must be mathematically positive, foi example, a log 
standard deviation or Weibull shape parameter. Then In@,) is treated as 
approximately normally distributed. Suppose thai the model is separately 
fitted to each sample, and the sample variance of d k  is Vk. Normal approxi- 
mate two-sided l o b %  confidence limits for p are 

Here K is the 100(1+7)/2th standard normal percentile. If the interval 
encloses 1, the data are consistent with d1 = d2. Otherwise, the estimates 
differ convincingly at the lOO(l-7)% level. 

Example. For the insulations, 95% confidence limits for p = a l /02  are 

e = (0.2555/0.3862)/exp{ 1.960[(0.003076/0.25552) 

t (0.0008230/0.38622)~”’ } = 0.5426, 

= (0.6616)*1.219 = 0.8067. 

The limits can be written as 0.6616x/1.219. Similarly, 99% limits are 0.5098 
and 0.8585 (0.6616x/1.298). Neither interval encloses 1. So the log standard 
deviations differ very convincingly at (at least) the 1% level. Insulation 1 has 
a smaller log standard deviation. This needs to be taken into account in 
modelling and comparing the insulations. 

Common parameter values. The simple limits above employ separate 
fits of the model to each data set. This assures that the two estimates of a 
quantity are statistically independent, and the above formulas for the limits 
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are correct. In contrast, one could fit a combined model where the two pop- 
ulations have the same value for some other pair(s) of parameters. One does 
this, if physically and statistically plausible, to more accurately estimate the 
common value or other parameter values. Also, most ML programs insist on 
fitting a single common value of the lognormal u (or Weibull shape parame- 
ter) in a combined model for two populations, whether physically plausible or 
not. For most combined models, estimates of pairs of parameters are statis- 
tically dependenr, and the formulas above are not valid. The following LR 
methods are always valid. In practice, one often analyzes the data with both 
separate and combined models. Usually they lead to the same conclusion. If 
not, they yield further insight into the data and product. 

Combined model. The limits above employ separate fits of the model to 
the two data sets and a hand calculation. Such normal limits for a difference 
of a pair of coefficients from the two fits can be directly calculated with some 
ML packages. To do this, specify a combined model with an indicator vari- 
able (0-1) for the two populations; see Section 4.3 of Chapter 5 for this. Such 
a combined model may have common values for some parameters. Specify 
the model so an interaction coefficient equals the desired difference of the 
two coefficients. Fit the model. Then the package’s approximate normal 
limits for that coefficient are the correct limits for the difference, even if 
some other pairs of parameters have a common value. Most packages fit  
only models with a common log standard deviation (or Weibull shape paraa-  
eter) for all populations. Thus they could not fit a proper combined model 
for the two insulations, which have different uk’s. 

LR Limits 

As discussed in Chapter 5, the LR interval is often a better approximation 
than the normal one. Most packages for ML fitting do not yet automatically 
calculate such LR intervals. Section 5.8 of Chapter 5 explains how to manip- 
ulate such packages to obtain LR limits for a coefficient. To  obtain LR limits 
for a difference of coefficients, use a combined model where an interaction 
coefficient is that difference, as described above. Such a combined model 
may have common values for some pairs of other parameters. 

LR Test 

LR statistic. The LR test for equality of corresponding parameters B1 
and e2 of two populations follows. While a confidence interval for their 
difference (or ratio) is more informative, this test is usually easier to calculate 
and often suffices. The model for the two populations may be a combined 
one, and some of the other pairs of model coefficients may have common 
Xalue% Suppose th? the 9axiFum log likelihood for the model with ? = 
B1 = e2 is f’ and is f with B 1  # B2. Then the LR test statistic for the equality 
hypothesis is 

T = 2(fh-Eh,). (3-4) 
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b 

A 
Figure3.2. Likelihood and test statistic T for A=O1 -0, =O. 

Sometimes none of the other pairs of coefficients in the model are assumed 
equal. Then the model is separ2tely fitted to each data set, and sample k 
yields a maximum log likelihood fk. The LR test statistic then is 

T = 2(21 t22 -2). 
Figure3.2 depicts this statistic and the log likelihood as a function of A = 
61-62. Other model parameters are not depicted. 

LR test. When el = S2, the large sample distribution of T is approxi- 
mately chi square with one degree of freedom. Otherwise, T tends to have 
larger values. Thus the LR test for equality is 

If T 5 ?(l-a;l), the two parameters do not differ convincingly (statisti- 

If T>?(l-a;l), they differ convincingly at the 1&% level. 
Here 2(1-a;1) is the lOO(1-a)th chi square percentile with 1 degree of 
freedom. If the parameters differ convincingly, examine their estimates to 
see why. Transforming a parameter to improve normality of its ML estimate 
improves the approximate normal limits. Such a transformation has no effect 
on the LR limits and LR test. 

Example. For the two insulations, the intercept coefficients are com- 
pared as follows. A separate modeLwas fitted to each data set; see (4.3.1) - 
(4.3.4) of Chapter 5. This yielded f = -905.455 and f2 = -853.660 (Fig- 
ure3.1). Another model was fitted with a common value of the intercept 
coefficient; while all other coefficients (and u) differed for the two popula- 
tions. This model yielded 2 = -1759.269. Then T = 2[-905.455- 
853.660-(-1759.269)]= 0.31. Since T = 0.31 < 3.841 = 2(0.95;1), the 
intercept estimates do not differ convincingly at the 5% level. 

cally significantly) at the l o b %  level. 

3.2. Simultaneously Compare Q Pairs of Coefficients 

Hypothesis and model. As follows, one simultaneously compares Q pairs 
of coefficients of the same model fitted to two samples. The equality (null) 
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hypothesis for Q pairs is 711 = 7 ~ ,  - * * , 7 ~ 1  = 7Q2. Other pairs of model 
coefficients may have common or different values, whatever is assumed. The 
following methods for such simultaneous comparisons are the LR test, simul- 
taneous confidence intervals, and the LR confidence region. The Wald and 
Rao tests (Section 5) also apply. 

LR statistic. Suppose that the constrained maximum log likelihood for 
the model with equality of those Q pairs of coefficients is f'. Also, suppose 
that the unconsFained maximum log likelihood for the model with those 
pairs unequal is f. Then the (log) LR statistic for the equality hypothesis is 

T = 2(2?-f'). (3.5) 

Sometimes none of the other pairs of coefficients in the model are assumed 
equal. Then the model is separztely fitted to each data set, and sample k 
yields a maximum log likelihood E k .  Then the statistic is 

T = 2(2?1 t2?2 -2). (3.6) 

LR test. When the Q pairs are equal, the large sample distribution of T is 
approximately chi square with Q degrees of freedom. Otherwise, T tends to 
have larger values. Thus the LR test for equality is 

If T <?(l-a;Q), the Q coefficient pairs do not differ convincingly 
(statistically significantly) at the 1oOar% level. 
If T>?(l-a;Q), some pairs differ convincingly at the l a %  level. 

Here ?(l-a;Q) is the 100(1-a)th chi square percentile with Q degrees of 
freedom. If the parameters differ convincingly, examine their estimates and 
confidence limits to see why. Plotting confidence limits for individual pairs 
(Section 3.1) will help. For Q = 1, this LR test is one in Section 3.1. 

Example. As follows, simultaneously compare the two insulations with 
respect to all Q = 4 pairs of coefficients (including q). The maximum log 
likelihood for the model (with common parameter values) fitted to the 
poolec insulation data is? = -1774.986. Separate fits of the model (3.1) 
yield f = -905.455 and f2 = -853.660. Then T = 2[-905.455 - 853.660 - 
(- 1774.986)] = 31.74. Since T = 31.74 > 16.27 = ?(0.!3!39;4), the coeffi- 
cients differ very highly significantly (0.1% level). Confidence limits in Fig- 
ure 4.9 of Chapter 5 show which pairs of coefficients differ convincingly, 
namely, just the two log standard deviations. 

The Q =3  pairs of coefficients in the relationship could be simultaneously 
compared as follows, assuming q # 0 2 .  Fit the model with common values of 
the three pairs of coefficients and c1 # a2 to get I?'. Tten  fit the model with 
differing coeffiEients and o1 # a2 (separate fits) to get f l  = -907.544 for In- 
sulation 1 and f 2  = -854.451 for Insulation 2. Then use the LR test above. 

Simultaneous intervals. Q pairs of parameters can be compared for 
equality by using simultaneous l m %  confidence intervals. For each of the 
Q differences 4 (or ratios), calculate a l m ' %  confidence interval (normal 
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Figure 33. Rectangular simultaneous confidence region (Bonferroni inequality). 

or LR), where 7’ = 1-[(1-7)/Q]. Such intervals may be one- or two-sided, 
as appropriate. Then the probability that all Q intervals siinultaneously en- 
close the Q true differences is at least 7. This is a result of the Bonferroni 
inequality. If the Q intervals all enclose zero for a difference (or one for a ra- 
tio), then all Q pairs do not differ statistically significantly at the lOO(l-7)% 
level approximately. Otherwise, intervals that do not enclose zero 
correspond to convincing differences. This test is roughly equivalent to the 
LR test above. These intervals can also be viewed as a confidence region in a 
&-dimensional parameter space of (Al,A2, * - ,4). The Q confidence in- 
tervals specify a “rectangular” low% confidence region consisting of all 
(Al,A*, * * * ,AQ) such that A- A l a l & , *  A * - , &%*. The “center” of 
this region is the estimate (A1,A2, - * - ,Ae). If this region encloses the origin 
of the Q-dimensional space, then no pairs differ statistically significantly. 
Figure 3.3 shows such a region for Q = 2 differences. 

Example. For the two insulations, the Q =2 approximate 95% intervals 
above for A2 = (721 - 72) and A3 = (731 -732) are 0.915 f 3.524 and 0.79 k 4.87. 
They are simultaneous 90% confidence intervals for both differences. 

LR confidence region. As follows, Q pairs of parameters can be simulta- 
neously be compared with a LR confidence region in the Q-dimensional 
space of the Q differences (Al,A2, * * * ,4) or ratios. The combined log 
likelihood f(A1, * * ,&) of the two samples can be written as a function of 
the Q differences (or ratios). The other model parameters in f() are not 
shown in this notation, but are implicit. Such other pairs of corresponding 
parameters for the two populations may have common values. An approxi- 
mate lOO-y% simulfaneous confidence region for Q true differences are the 
points (Al,A2, - * * ,4) satisfying. 

(3.7) 

Here f^ is the maximum log likelihood evaluaEd at (a,, ,&) and at the 
ML estimates of all other parameters. Also, f (A1, * - * ,4) is the log likeli- 
hood at Al, - * - ,4 but maximized with respect to all other parameter 

2[f^-f^(Ai, * * * ,&)I Sg (7 ;Q) .  
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Figure 3.4. Likelihood and simultaneous LR confidence region. 

values. For Q =2, some ML programs calculate and plot the perimeter of 
this region. Figure 3.4 depicts such region for Q =2. There a plane inter- 
sects the lo& likelihood function f(Al,A2) a distance (l/2)2(7;2) below the 
maximum f = f(&,&). The projection of that intersection on the (Al,A2)- 
plane is the perimeter of the confidence region. If the confidence region 
encloses the origin of the space of Q differences, the Q differences are not 
convincingly (statistically significantly) different from zero at the 100( 1 - 7)% 
level. This test for simultaneous equality of the Q pairs is equivalent to the 
LR test above. For large samples with many failures and normally distrib- 
uted ML estimates, such a confidence region has a shape close to an ellipsoid 
in Q dimensions. In contrast, the simultaneous (Bonferroni) limits above 
yield a rectangular region. These two types of regions usually roughly coin- 
cide in practice. 

4. K-SAMPLE COMPARISONS 

Purpose. This section presents ML comparisons for K samples using the 
same model for each sample. Section 4.1 shows how to compare K estimates 
of a quantity for equality, one from each population. Section 4.2 shows how 
to simultaneously compare Q sets of K estimates for equality. Nelson (1982) 
and Lawless (1982) present such comparisons for life distributions. 

Example. Complete data on three motor insulations (Table 2.1 of 
Chapter 8)  illustrate the comparisons. The comparisons apply also to cen- 
sored and inspection data and other models with more variables. The model 
for life of insulation k is a lognormal distribution with a log standard devia- 
tion uk. The assumed Arrhenius relationship for mean log life is 

Clk(X) = ak + Bf l  ; ( 4 4  

here x = 1000/T and T is the absolute temperature. ak, Pk, and ak are 
estimated from the data. Table 4.1 shows results of ML fits of three models 
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Table 4.1. ML Fits to Data on Three Insulations 

1. Separate Fits 

k 1  
T k  15 
f k  9.128 

$ -5.302 
ak -3.70 
a -6.91 

j k  4.050 
pk 4.85 
@k 3.25 

0.1317 2 0.1787 
_a* 0.0846 

2 
15 

16.463 

-6.177 
- 5.20 
-7.15 

4.580 
5.07 
4.09 

0.08075 
0.1096 
0.0519 

3 
9 

8.960 

- 7.758 
- 6.37 
-9.15 

5.360 
6.05 
4.67 

0.08941 
0.1307 
0.0482 

2. Common a, p; 
01, u2, u3 

3. Pooled Data 
Common a, p, u 

39 39 
f̂ ' = 24.710 20.079 

a" = -6.502 - 6.204 

= 4.731 4.554 

a^; = 0.2222 
& = 0.0844 0.1446 
5 = 0.1036 

to the data. These results are used in comparisons below. The exact com- 
parisons of Chapter 8 apply to this model and are preferable. However, the 
following comparisons apply to models for which there are no exact methods. 

4.1. Compare K Estimates of the Same Quantity 

Suppose that sample k yields a ML estimate e?, of a quantity d,. The K es- 
timates are compared below with 1) a quadratic statistic, 2) a LR ratio test, 
and 3) simultaneous confidence intervals for pairs of estimates. These com- 
parisons are roughly equivalent, especially for samples with many failures. 
The equality (or homogeneity) hypothesis is dl = 82 = * * =8,. The altentative 
is some d, # d,.. 

Quadratic Statistic 

Statistic. Suppose that the ?ode1 is separately fitted to each data set. 
Denote the sample variance of 8 ,  by V,. ML programs calculate such Vk. 
Calculate the linearly pooled estimate of a common B: 

8* = V[(e^,/V,) t - * ' t (e^,/V,)]. 

v = l/[(l/Vl) t - .  * t (l/VK)] 

Q = [@I -8*)2/Vl] t - * + [(e^~-d*)~/V'].  

(4.2) 

(4.3) 

(4.4) 

is an estimate of the variance of 8*. The quadratic statistic is 

Test. If the equality hypothesis is true, the distribution of Q is approxi- 
mately chi square with K - 1 degrees of freedom. If the alternative is true, Q 
tends to have larger values. Thus the approximate test is 
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If Q S,$(l-a;K-l), the K estimates do not differ convincingly (statisti- 

If Q >,$(l-a;K- l), they differ convincingly at the looCU% level. 
Here g(1-a;K-1) is the 100(1-a)th chi square percentile with K-1  
degrees of freedom. If the estimates differ convincingly, determine why. 
Examine plots of confidence limits for the estimates (Chapter 5 )  and for 
pairs of estimates (Section 3.1). 

Example. F y  the the? insulations, th: ML estimates of the slope 
coefficients are = 4.050, PZ = 4.580, and P3 = 5.360. Their sample vari- 
ances are V1 = 0.1659, Vz = 0.0614, and V,  = 0.1239. V = 1/[(1/0.1659)+ 
(1/0.0614) t (1/0.1239)] = 0.03291. The pooled common slope estimate is 
P* = 0.03291[(4.050/0.1659) t (4.580/0.0614) t (5.360/0.1239)] = 4.682. Q = 

= 6.29. Since Q = 6.29 > 5.991 = ,$(0.95;2), the three estimates differ con- 
vincingly at the 5% level. Note that the exact test (Chapter 8) was not 
significant at the 5% level. This illustrates that the approximate test usually 
shows higher significance than the corresponding exact one. 

Other parameters equal. The test above employs a separate fit of the 
model to each data set. This assures that the K estimates are statistically 
independent, and that the test is correct. In contrast, one could fit a com- 
bined model where the K populations have a common value for some other 
parameter(s). One does this, if physically and statistically plausible, to more 
accurately estimate the common value or other parameter values. For such 
combined models, most estimates of corresponding parameters are statisti- 
cally dependent, and the formulas above are not valid. The LR test below is 
valid for a combined model with some common parameter values. In prac- 
tice, one often analyzes the data with both separate and combined models. 
Usually they lead to the same conclusion. If not, they yield further insight 
into the data and product. 

cally significantly) at the lOoQ% level. 

[(4.050-4.682)2/0.1659] t [(4.580- 4.682)2/0.0614] + [(5.360-4.682)*/0.1239] 

LR Test 

LR statistic. Suppose that the corresponding model parameters of the K 
populations are el, * * * ,ex. For example, these may be the K log standard de- 
viations, the K intercept coefficients, or K slope coefficients. The LR test for 
their equality (a common value) follows. The model for the K populations 
may be a combined one; that is, some of the other model coefficients may 
have common values for the K populations. Suppo2e that the maximum log 
likelihood for the model with equality is i?' and is f without equality. Then 
the LR test statistic for the equality hypothesis is 

T = 2(E^-i?'). (4.5) 
Sometimes no other coefficient is assumed to have a common value. Then 
the model is separatzly fitted to each data set, and sample k yields a max- 
imum log likelihood f k. Then the statistic is 
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T = 2(21 t * * t2K-P). 

LR test. Under equality, the large sample distribution of T is approxi- 
mately chi square with K - 1 degrees of freedom. Otherwise, T tends to have 
larger values. Thus the LR test for equality is 

If TS g ( l - a ; K  -l), the K estimates do not differ convincingly (statisti- 

If T > ?(l-a;K-l) ,  some estimates differ convincingly at the 1OOa% 

Here g(1-a;K-1)  is the 100(1-o)th chi square percentile with K - 1  
degrees of freedom. If the estimates differ convincingly, examine a plot of 
them and their confidence limits to see why. 

Example. For the three insulations, compare the ak as follows. From 
Table 51, model 2 with a common slope, a common intercept, and different 
q has f = 24.710. Model 3 with a common slope, a common intercept, and 
common u has J?= 20.079. T = 2(24.710-20.079) = 9.26 > 9.21 = 
?(0.99;2). Thus the three uk estimates convincingly differ at the 1% 
significance level. This is misleading. Keep in mind that such a test really 
tests equality of the estimates - not of the true parameter values. Using a 
common slope and intercept, when those coefficients do not have a common 
value, results in biased estimates of the ok. This test is really detecting 
differences among the relationships. This shows the need for care in using 
models with common parameter values and in interpreting hypothesis tests 
employing them. 

cally significantly) at the 1OOa% level. 

level. 

Simultaneous Painvise Confidence Intervals 

Intervals. All pairs of the K estimates can be compared for equality with 
siinultaneous 1 m %  confidence intervals. For each of the D = K(K - 1)/2 
such pairs, calculate a lw’ % confidence interval (Section 3.1) for the 
difference (or ratio) of the pair, where 7’ = l-[(l-7)/D]. Such limits may 
be one- or two-sided as appropriate. The Bonferroni inequality guarantees 
that all D intervals simultaneously enclose the true differences (or ratios) with 
probability at least 7. If all D intervals for differences (or ratios) enclose zero 
(one), then the K estimates do not differ convincingly at the loO(1-7)% 
significance level. Otherwise, some estimates differ convincingly, and the 
intervals not enclosing zero (one) show which pairs. A plot of such intervals 
and estimates for differences (or ratios) is revealing. 

Example. For the three insulations, compare the uk as follows. There are 
D = 3(3- 1)/2 = 3 pairs. For low = 90% simultaneous confidence, each 
interval has 1w’ = 1-[(l-0.90)/3] = 96.6667% confidence. The normal 
approximate intervals (3.3) for the ratios are: (1.02 , 2.62) for al/02, (0.39, 
1.56) for u2/03, and (0.39, 1.17) for u3/al. Only the first interval barely does 
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not enclose one. Discount that one as not significant, since normal intervals 
tend to be too short. Thus the estimates do not differ convincingly at even 
the 10% level, according to this method. Exact intervals (Chap. 8) are better. 

4.2. Simultaneously Compare Q Sets of K Coefficients 

Hypothesis and model. As follows, one simultaneously compares Q sets 
of K corresponding coefficients of the same model fitted to the K sets of data. 
Then there are Q simultaneous equality (null) hypotheses: 711 = 7 1 2  = 

* . .  =7lK, * . .  , 7 Q l = 7 Q 2  = * * * = r Q K .  That is, there is a common value rq 
for each such coefficient. The alternative is some 7 q k h q k ' .  Other sets of K 
corresponding model coefficients may have common or different values, 
whatever is assumed. The LR test for this null hypothesis follows. If Q =P, 
the number of model parameters, the test compares the K models for equali- 
ty. The Wald and Rao tests (Section 5.3) also apply. 

LR statistic. Suppose that the maximum log likelihood for the model 
with equality is if'. Also,Asuppose that the maximum log likelihood for the 
model without equality is f .  Then the LR test statistic for equality is 

T = 2(E^-if'). (4.7) 

Suppose any other set of K corresponding coefficients in the model have dis- 
tinct values. Then the model is sepharately fitted to each data set, and sample 
k yields a maximum log likelihood ifk. Then the LR statistic is 

T = 2(E^l+ . * * + & K - f  ). (4.8) 
A A, 

LR test. When the Q sets of coefficients are equal, the large sample dis- 
tribution of T is approximately chi square with Q ( K -  1) degrees of freedom. 
Otherwise, T tends to have larger values. Thus the LR test for equality is 

If T <  ?(l-a;Q(K-l)), the Q coefficient sets do not differ convincingly 

If T > g ( l - a  ;Q(K- l)), some differ convincingly at the l o b %  level. 
Here g ( l - a ;Q(K- l ) )  is the lOO(1-a)th chi square percentile with Q ( K -  
1) degrees of freedom. If the parameters differ convincingly, examine their 
estimates and confidence limits to see why. LR tests for Q = 1 set of 
coefficients (Section 4.1) will help. 

Example. For the three insulations, test the hypothesis of a common 
relationship. That is, test a1 = a 2  = a3 and /31 = p2 = /33. This consists of 
Q = 2 simultaneous equality hypotheses of K = 3 parameters each. The 
are assumehd to differ. From model 1 of T2ble 4.1, a separate fi t  to each data 
set yields f l  = 9.128, f 2  = 16.463, and & 3  = 8.960. The fit  of a common 
relationship with different ok (model 2) yields if' = 24.710. T = 

2(9.128+16.463+8.960-24.710) = 19.68. It has Q (K -1) = 2(3-1)= 4 
degrees of freedom. Since T = 19.68 > 18.47 = 2(0.999;4), the relationships 

(statistically significantly) at the l o b %  level. 
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differ very highly significantly (0.1% level). Further data analysis indicates 
that the intercept coefficients differ convincingly. 

The three models are compared for equality (compon a, p, and a) as fol- 
lows. Fitting the model to the pooled data yields E’ = 20.079 (Table4.1, 
model 3). Then T = 2(9.128 t 16.463 t 8.960-22.079) = 28.94. It has Q (K - 
1) = 3(3-1) = 6 degrees of freedom. Since, T = 28.94 > 22.46 = 

2(0.999;6), the models differ very highly convincingly (0.1% level). Other 
analyses indicate that this is due to differences among the intercept 
coefficients. 

5. THEORY FOR LR AND RELATED TESTS 

Purpose. This advanced section informally presents theory for likelihood 
ratio (LR) tests. It is for those who seek a deeper understanding or wish to 
develop their own models and hypothesis tests. Rao (1973), Wilks (1962), 
and Lehmann (1986) rigorously present the formal theory. Nelson (1982) 
gives examples of LR tests for life data, and Lawless (1982) gives applications 
to accelerated testing. LR tests have good asymptotic properties; namely, 
they are consistent and uniformly or locally most powerful. Also, they gen- 
erally perform well for small sample sizes. Chapter 8 is helpful background. 
Section 5 of Chapter 5 is essential background. 

LR test. In principle, a LR test is simple. It is a means of assessing 
whether a general model fits a data set better than a constrained model. One 
fits to the data a general model with P seJarately estimated parameters. This 
yields a global maximum log likelihood f. Also, one fits a constrained model 
(a special case of the general model) with P’ c P separately estimated pa- 
rameters. This yields a constrained maximum log likelihood ?. The con- 
strainedAmodel fits the data nearly as well as the general model if the statistic 
T = 2(f-Eh,) is small. If the constrained model is the true one, then the 
sampling distribution of T is approximately chi square with (P -P’ )  degrees 
of freedom for samples with many failures. Otherwise, T tends to have larger 
values. Thus the approximate LR test is 

If T 5 ?(l-a;P -P’) ,  accept (use) the constrained model. 
If T > ,$(l-a;P-P’), reject the constrained model and use the general 

Here ?(l-a;P -P’) is the lOO(1-a)th chi square percentile with P -P’ de- 
grees of freedom. This chapter presents many such LR comparisons of gen- 
eral and constrained models. This section presents underlying theory. 

Overview. Section 5.1 states the hypothesis testing problem, namely, the 
general model, parameter space, null hypothesis, and alternative. Section 5.2 
presents the LR test, exact and approximate critical values for it, and its OC 
function. Section 5.3 describes Rao’s and Wald’s tests, which are asymptoti- 
cally equivalent to the LR test. 

one. 
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5.1. Problem Statement 

Overview. This section describes the general hypothesis testing problem. 
It first presents the general model for a sample. Then it describes the pa- 
rameter space and the subspaces of a null hypothesis and its alternative. It 
also shows how to specify constant, equality, and constraint hypotheses. 
Several examples illustrate these ideas. 

General model. The following formulation of a general model includes 
all models considered in this book. Suppose that a sample of n specimens 
yields data valuesyl, - * * ,yn. Such a data value may be a failure or a censor- 
ing time or an interval. For simplicity at the moment, regard them as failure 
times. Censoring times and interval data are treated later. For specimen i ,  
xi = (xuryz, * - * ,xJ) denotes its values of the J independent variables in the 
model, i = 1,5 * ,n. Denote parametric joint probability density of y l ,  - * * , 
yn byfo(y1, * * * ,y,,;B,xl, - * ,xn). Here B = (el, - * * ,Or) denotes t h e P  numer- 
ical parameters of the model. Such a density may be continuous, discrete, or 
a mix. Such a density may include independent samples from two or more 
populations. Then usually the same submodel is fitted to each sample, and 
the collection of submodels is the general model. Usuallyyl, * - * ,yn are as- 
sumed statistically independent. Then their joint density is the product 

f 0 6 ~ 1 ,  ***,Yn;B,xl, . * * , x n )  = f l O l  ;fl,xl)x..*xfn(~n ;d,xn)- 

Here fibi ;@,xi) is the probability density foryi. Often the fi( ) are the same 
for allyi. However, fi( ) may be a different model for each specimen. That 
is, each fi( ) may involve a different distribution or different functions of the 
independent variables (xl, * * jJ) .  This is so if specimens come from 
different populations or if they have a mix of failure modes each with its own 
distinct model. Also, a parameter Op may be a distribution parameter (e.g., 
lognormal o or log-gamma shape parameter), a coefficient in a relationship, 
or whatever. The log-gamma shape parameter lets one compare how well 
the Weibull and lognormal distributions fit  a sample. The model also can 
include AOV relationships with categorical (indicator) variables. The model 
may include a cumulative exposure model for step-stress testing 
(Chapter 10). Thus the model here is quite general. 

Parameter space. The value of the parameters B =(01, * , O p )  is 
regarded as a point in a P-dimensional parameter space fl which is the set of 
all theoretically possible parameter values. fl is a subset of Euclidean P- 
space. Usually fl is an open subset, excluding parameter values on its bound- 
ary, since such boundary points create theoretical complications. Both fl and 
fi(Vi ;B,xi) are assumed specified. Examples follow. 

Example A. Suppose that t l ,  * - - ,tn are independent observations from a 
single exponential distribution with mean 8. The probability density for ti is 

fi(ti ;e) = (l/e)exp( - t i le) .  
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The parameter space il for 6 is (0,00), the positive half of the real line. 
Figure 5.lA depicts this parameter space. 

Example B. Suppose that t l ,  * * - ,tnl are n independent observations 
from a single exponential distribution with mean 61, and t ; ,  - * - ,tn5 are n2 
independent observations from an exponential distribution with mean d2.  
The probability density for an observation ti from population k is 

The parameter space il of points (6&) consists of the positive quadrant 
(6, > O  and 6, > O )  of the plane. Figure 5.1B depicts R. 

Example C. Suppose that ti is from an exponential distribution with mean 
B(xi) = exp(a t&), i = 1,2, - * * ,n. xi is the (possibly transformed) value of an 
independent variable. The probability density for ti is 

f i ( t i  ;aJJi) = [ l / e ~ ( a + b i ) I  ex~[-ti/exp(a+&)I 

Since -00 < a < 00 and -00 < /3 < 00, the parameter space R of points (a, 
/3) is the plane. Figure 5.1C depicts R. 

Example D. Suppose that yi is a (log) observation from a (log) normal 
distribution with variance v and mean p(xi) = a t  pui. Here xi is the (possibly 
transformed) value of an independent variable, i = 1,2, * * ,n. The 
probability density for yi is 

fibi ;a,P,vJii) = ( 2 m ) - ” 2 e ~ [ -  Oi - a - ~ i ) ~ / ( 2 ~ ) 1 *  

The parameter space of points (a, /3, v) is half of 3-dimensional space where 
v > 0, -00 < a < 00, and -00 < /3 < 00. Figure 5.1D depicts il. 

Null hypothesis. To better understand the following view of a null 
hypothesis, reread this paragraph after reading the examples below. In terms 
of the general model and parameter space, a null hypothesis can be viewed as 
a statement that the model parameters B = (el, * - ,6p)  are a point in a P’- 
dimensional subspace 0‘ of 0. R‘ is called the subspace of the null hypothesis. 
If the true 8 is in il’, the null hypothesis is true. For LR tests, P’ c P. That 
is, il’ is a lower dimensional subspace of R. il’ is usually a (hyper)plane, line, 
or point in il. In other words, the constrained model under the null 
hypothesis is a special case of the (unconstrained or full) general model. For 
example, the following theory for a likelihood ratio test cannot compare a 
normal distribution and an exponential distribution, since neither distribution 
is a special case of the other. It can compare a Weibull distribution and an 
exponential distribution, since the exponential distribution is a special case of 
the Weibull distribution with a shape parameter of 1. 

Alternative. If the true B is not in n’, the alternative is true. Thus the 
subspace of the alternative consists of the points of n that are not in R’. This 
subspace is fl-il’ in set notation. The natural alternative for a LR test is 
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usually two-sided, as in the examples below. Generally, such a two-sided test 
can be suitably modified for a one-sided alternative as shown later. 

Example A continued. Consider a null hypothesis that the exponential 
mean d equals a specified value 6, that is, B = 6 ‘ .  Here the subspace of the null 
hypothesis fl’ consists of a single point 6‘. Figure 5.2A depicts this subspace 
as a point at 6‘. Here 0 has P = 1 dimension (a line), and 0’ has P’ = O  dimen- 
sions (a single point). The subspace of the alternative is the positive half line 
minus the point e‘, that is, all positive points d # 6‘. However, in most appli- 
cations, a one-sided alternative (b 6‘) is required. 

Example A’. Consider Example A but with a null hypothesis that the 
reliability R(r’) at age r’ has a specified value R’. Then the parameter space 
fl for R(t’) is the unit interval (OJ), and the subspace of the null hypothesis 
consists of the single point R’. Figures5.M’ and 5%’ depict fl and fl’. 
Here fl has P = 1 dimension (the unit interval), and 0’ has P‘=O dimensions 
(a single point). This null hypothesis is equivalent to that in ExampleA 
where B = 6‘ = -t’ln(R’). The alternative is R(r’) # R’ or equivalently d # 
6‘. However, most applications have a one-sided alternative (R (t’) >R’). 

Example B continued. Consider a null hypothesis that the two exponen- 
tial means are equal; that is, B1 =62. Here the subspace of the null hypothesis 
0’ consists of all points (61,O2) such that O1 =d2. Figure 5.2B depicts this sub- 
space as a 45” line through the origin in the positive quadrant of the plane. In 
this example, fl has P = 2  dimensions, and fl’ has P ‘ = l  dimension. The sub- 
space of the alternative is the positive quadrant minus the line, that is, the 
positive points (el,&) satisfying 61 f 6,. Most applications use such a two- 
sided alternative. 

Example C continued. For the simple linear-exponential model, consider 
a null hypothesis that the mean life at stress level x’ has a specified value 6‘; 
that is, fl=exp(a+@’). Here the subspace of the null hypothesis fl’ consists 
of the (a, 8) values that satisfy atm’ = ln(6‘) = a’. That is, they are the 
points on a straight line as depicted in Figure 5.2C. In this example, fl has 
P =2 dimensions (the plane), and fl’ has P‘= 1 dimension (a line). The sub- 
space of the alternative consists of the points (a,@) satisfying atm’ # 
In(8‘)a’. However, in most applications, a one-sided alternative is required, 
namely, a t  @’ c ln(6‘)a’. 

Example D continued. Fot the simple linear-normal model, consider a 
null hypothesis that the mean (log) life at stress levelx’ has a specified value 
a’; that is, p(x’)=at@’=a’. Here the subspace of the null hypothesis fl’ 
consists of the (a,p,v) values that satisfy at@’=a’. These values are the 
points on the half plane depicted in Figure 5.2D. In this example, fl has P = 3 
dimensions (half a 3-space), and 0’ has P’=2 dimensions (half a plane). The 
subspace of the alternative consists of the points (a, By v) satisfying v > O  and 
at@’ f a’. However, in most applications, a one-sided alternative is 
required, namely, at@‘ca‘. 
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Ways to specify n’. There are various ways to specify a null hypothesis, 
that is, its subspace. Three such ways follow. For many problems, they are 
equivalent, if the model is suitably reparameterized. 

Constant hypothesis. Some null hypotheses are specified by setting cer- 
tain parameters equal to specified constants. For example, 

el =e;, e2 =e;, - . . , e Q- - e  Q ’; 

here the primed values are specified. Examples A and A’ have such a null 
hypothesis. Such an fl’ is a hyperplane in fl and has P’ =P - Q dimensions. 
P’ is the number of unconstrained parameters eQ+l, eQtZ, * * , $. 

Equality hypothesis. A null hypothesis for equality (a common value) of 
K parameters is 

O1 =02 = - - - =OK = 8‘, the common value. 

Example B has such a null hypothesis. Also, when the same submodel is sep- 
arately fitted to K samples, a common hypothesis is that the K values of the 
same parameter are equal, for example, equal intercept coefficients. Then fl’ 
is a hyperplane in fl and has P’ = P - K + 1 dimensions. P’ is the number of 
unconstrained parameters; namely, OK 1, . . - ,$ plus the common value 
8‘ =dl = - - =OK. This equality hypothesis can be expressed as a constant 
hypothesis. Reparameterize the model with the K- 1 parameters A1 =el -OK, 
A2 =& - e K ,  * - - , AK-l = t9K-l -OK. Then the constant hypothesis 

A1=0, Az=O, . * *  , A ~ - 1 = 0  

is equivalent to the equality hypothesis above. 

constmints on parameters (functions of them) equal to zero. For example, 
Constraint hypothesis. Some null hypotheses are specified by setting Q 

hl(dl, - - .  ,ep) = 0, . - a , itQ(el, . - ,ep) = 0. 

Examples C and D have one such constraint. In general, then n’ is a hyper- 
surface (line or point) in fl and has P’=P -Q dimensions. The theory 
requires that each function have continuous first partial derivatives with 
respect to all parameters. 

Later we maximize the sample log likelihood subject to such constraints. 
The method of Lagrange multipliers may help solve such constrained optimi- 
zation. The theory here applies to hypotheses with equality constraints. 
Robertson and others (1988) treat in detail the subject of hypotheses with 
inequality constraints. 

52. Likelihood Ratio Test 

Section 5.1. This section presents 
This section presents the LR test for the model and null hypotheses of 
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the sample likelihood, 
the ML estimates of parameters under the general model and under the 

the LR test, 
its critical values (exact and approximate), and 
its OC function. 

Examples from Section 5.1 illustrate these concepts. 

constrained (null hypothesis) model, 

Sample likelihood. Section 5 of Chapter 5 presents sample likelihoods 
for observed, censored, interval, and quantal-response data. Denote the gen- 
eral sample likelihood for the model and form of data by 

u e 1 ,  . . - ,ef) = L ~ C Y ~ ,  . - + ,Y,,;B~, - - ,eP,Xlr . . A ) .  

Here the notation is the same as in Section 5.1. This likelihood includes the 
form of the data - observed, censored, interval, and quantal-response. The 
sample log likelihood is 

f ( 4 ,  * * * J P )  = ln[Lo01, - * * ,Y44 x1, * - * ,xn>l * 

If y , * * * , yn are statistically independent, 

L(4, . * * h) = L 1 (YI; fl,xl) x * x Ln bn; @,xn), 

and 

f(4, . * #P) = ~ I ( Y I ;  4x1) t * * * + faCYn; 4Xn)s 

where f i (y i ,B ,x i )  =ln[Li(yi;O, xi)] is the log likelihood for specimen i. The 
notation for the (log) likelihood explicitly shows that it is a function of the 
parameters 8=(B1, * * * ,dP) ,  but it is also a function of the data yl ,  * * * , y,,, 
xl, * - , x,,. Similarly, denote the constrained log likelihood under the null 
hypothesis as f'(dl, - - . ,ef) where the point (el, - - J p )  is constrained to 0'. 
As shown below, the constraints of the null hypothesis are incorporated into 
this likelihood, which then is a function of the remaining unconstrained 
parameters. Examples follow. 

Example A continued. To make this exponential example more general, 
assume that the data are multiply censored (on the right), that t l ,  * * * , tr are 
observed failure times, and tr+l, - * * , t,, are censoring times. The general 
sample likelihood then is 

The general sample log likelihood is 

f(e) = -rln(8) - (T/B);  

here T = t l  t * - * t t , ,  is the total time for the sample. The constrained log 
likelihood under the null hypothesis (8=8') is 

f($) = -rln(8') - (T/o'). 
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Example A‘ continued. As in Example A, assume that the data are mul- 
tiply censored. Express the exponential likelihood in terms of the parameter 
R =exp( - r ’ / O ) .  Then the general sample log likelihood is 

f(R) = -rln[-t’/ln(R)] + (T/t’)ln(R); 

here T = t l  + - - * +tn is the total of all n times. The constrained log likeli- 
hood under the null hypothesis (R =R’)  is 

f‘(R’) = -An[ -t’/ln(R’)] t (T/t’)ln(R’), 

Example B continued. For the two exponential distributions, assume that 
the data are multiply censored (on the right). Then tl, , t,, are rl 
observed failures times, and tr,+l, * - * , tnl are n -rl censoring times from 
sample 1. Similarly, t i ,  * * * ,&are r2 observed failure times and tiz+l, * * * , tn’z 

are n2 -Q censoring times from sample 2. Since the samples are statistically 
independent, the sample log likelihood is the sum of two log likelihoods like 
that in Example A. That is, 

f(el,e2) = --rlln(el) - ( W e 1 )  -r21n(e2) - 

here Tk is the total time for sample k. The constrained log likelihood under 
the null hypothesis (8, =02 =$, the common value) is 

f($) = f($,$) = - (rl +r2)ln($) - [ ( T I  t T ~ ) / o ‘ ] .  

Example C continued. For the simple linear-exponential model, assume 
that the sample is multiply censored (on the right). Then t l ,  * * . , t, are r 
observed failure times, and f r+ l ,  * . - , t,, are 11 --r censoring times. The gen- 
eral sample log likelihood is 

f(a,P) = - z = , ( a + @ i )  - c=, t iexp(-a-@i) .  

The constraint for the null hypothesis is 19(x’) =exp(a+@’) =8’. 
Equivalently, a+@’=ln($) = a’ or a=a’-@’. Thus the constrained log 
likelihood as a function of f l  is 

f‘(p’) = f(a’-p’x’,fl)= - ~ = , [ a ’ + p ’ ( x i - x ’ ) ]  -r / = 1  tiexp[-a’-p’(xi-x’)]. 

Example D continued. For the simple linear-(1og)normal model and 
complete data, the sample log likelihood is 

f(a,a,v) = -(n/2)ln(2~)-(n/2)ln(v) - (o.~/v)z / = I  bj-a-fij)2* 
The constraint for the null hypothesis is &’) = a+@’ = a’ or a = a’-@’. 
Thus the constrained log likelihood as a function of /3’ and v’ is 

f‘(fl,v’) = f(a’ - flx’,fl,v’) 

= -(n/2)ln(2?r)-(r1/2)ln(v’)-(OS/v’)~ I = I  fyi-a’-B(xi--~’)]~. 
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ML Estimate. The ML estiTateAunder f*e general model for the parame- 
ters 8 =  (el, - * * ,$) is the point 19 = (Sl, * * , f l P )  in the parameter space fl that 
maximizes the sample likelihood L (el, ; - ,t9p)Aor (equivalently) the log like- 
lihood f(Ol, * * * ,&). The value e " = ( d ; ,  * * * $;) in fl' that maximizes the 
constrained likelihood L'(B1, * - * , O p )  or f'(Ol, * * - , B p )  is the coytrained ML 
estimate under the null hypofliesis. Each parameter estimate B, or ŝ ,. is a 
functip of the datayl, . * * ,y,, xl, - * * , x,. Usual9 the constrained ML esti- 
mate 0; differs from the unconstrgned 9tim:te BPi,Denote the maximum 
value of these (log) likelihoods by L and L' (f and f ). In theory, such ML 
estimates are found by the usual calculus method. Namely, set equal to zero 
the first partial derivative of the (log) likelihood with respect to each parame- 
ter and solve the resulting likelihood equafions; this is described in Chapter 5. 
In practice, such equations usually cannot be solved explicitly. Then a com- 
puter program yields such estimates by an iterative numerical calculation. 
Nelson (1982, Chap. 8, Sec. 6) describes such calculations. Examples follow. 

Example A continued. The general (unconstrained) ML estimate ê  of the 
exponential mean is the solution of the likelihood equation 

0 = af/M = - (r /d)  t (T/ez).  

Thus ê  = T/r ,  and f^ = -rln(T/r) -r. Under the null hypothesis, S=e'  and 
2 = -rln(()-(T/(). 

Example B continued. For LheJwo exponential distributions, the general 
(unconstrained) ML estimates B1, f12 are the solution of the likelihood equa- 
tions 

o = af/al = -(rl/ol) t ( T ~ / O : ) ,  o = af/a2 = - (r2/e2)  t (T2/6$). 
A A 

Thus 81 = T1/r l ,  82 = T2/r2 and f = -rlln(Tl/rl)-rl-r21n(T2/r2)-r2. 
The constrained ML estimate e". is the solution of the likelihood equation 

0 = af./ae. = - [ ( r l t r 2 ) / e ' ]  t [(T,+T2)/e'2]. 

Thus 2 = ŝ; = e ;̂ = (T1tT2)/(r1tr2) ,  and i?' = -(r1tr2)ln[(T,tTz) 

Example C continued. For the simp12 linear-exponential model, the gen- 
eral (unconstrained ) ML estimate (;,a) is the solution of the likelihood 
equations 

/(rl +r2)1 - (r1 t r2 ) .  

In general, these equations cannot be solved explicitly for $ and a .̂ Suppose 
there are just two test stress levels x1 and x2. Also, suppose that n and t i 2  

are the numbers of specimens, r l  and r2 the numbers of failures, and T I  and 
T2 the totals of the n and n 2  (failure and censoring) times. Then 
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o = af/& = - ( r l  t r 2 )  t Tlexp(-a-@l) + ~ ~ e x p ( - a - @ ~ ) ,  

0 = af/ap = - r lx l  -r2x2 + Tlxlexp( -a-@l) t T2x2exp( -a-@2), 

Their solut@ is â  = [ln(02)-ln(~l)]/(x2-xl) and a= In{[T1 exp( -@XI) 

+T2 exp(-/3x2)]/(r1tr2)} where Bk = T k / r k .  Then f = -rlln(T1/rl)-rl 
- r21n(T2/r2)-r2. Under the null hypothesis (a = a’-@’), the likelihood 
equation is 

A A A 

n 

O = af‘/aq = -z=,(~i-~’) t Ctj(xi - x ’ )  exp[-a’ -p’ (x; -x’ ) ]  
i = l  

= -rlxl - r g 2  t ( r l  +r2k’ t Tl(xl -x ’ )  exp[ -a’-p’(xl -x  ’)I 

+ T2(x2 -x’ )  exp[ -a ’ -$(x2 -x  ’)I. 

This equation in f?’ cannot be solved explicitly for $’ nor can i?‘ be evaluated 
explicitly. This requires numerical solution in practice. 

Example D continued. For the simple linear (1og)normal model, the gen- 
era1 (unconstrained) ML estimates a, p, v are the solution of the likelihood 
equations (in notation of Chapter 4) 

A A A  

0 = af/& = ( l / v ) c ( y ; - a - @ i )  = ( n / v ) @ - a - / 5 ) ,  

0 = af/ap = ( l / v ) B i ( y i - a - p w i )  = ( l / v ) ( C r i y j - r t r a t m f ) ,  

o = X/aV = -(n/2)(1/~)+(0.S/~’)cOi-a-pwi)~. 
A 

The solutions are /3 = ,S , /Sm and 2 = j - $  (which are also LS estimates) 
and c = ( l / n ) c ( y i - $ - p ~ ; ) ~ .  Then f = -(n/2)1n(c)-(n/2). Under the null 
hypothesis constraint (a = a’-@’), the likelihood equations are 

0 = a f p q  = ( l / v ’ ) ~ ( x j - x ’ ) ~ j  -a’-p’(x; -x ’ ) ] ,  

o = aC/a~’ = - (n /2>( l /v’ ) t (0 .5 /~~~)~1yi -a’ -p’ (~ i -x’ )1~ .  

Their solution is $’ = “ j J ~ ~ - x ’ ) ( y ~ - a ’ ) ] / [ C ( x ~ - x ’ ) ~ ]  and G’ = ( l /n )  

~ i - a ’ - @ ( ~ ; - x ’ ) ] ~ .  Then i?‘ = -(n/2)ln(G’)-(n/2). 

Likelihood ratio. Consider the sample data y l ,  - - , y , ,  xl, - * , x, and 
the assumed general model n. The likelihood ratio (LR) A for testing the 
null hypothesis Q’ is the ratio of the constrained and unconstrained ntauirnurtt 
likelihoods; namely, 

A A  

A = Ahl, * * - ,y,;xl, . * * ,x,) = L‘/L 

The LR is a function of just the data, a sample statistic that does not depend 
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on the unknown true paLameter values (el, 
maximum log likelihoods f and 2 and the equivalent (log) LR test statistic 

- , O p ) ,  Usually one uses the 

T = -2ln(A) = 2(fh-f") = 2[maxf(01, * * - , O p )  - maxf'(O1, - ,Op)] 
Binn  e in n' 

T is also loosely called the likelihood ratio. Examples follow. 

O=e' ,  the (log) LR statistic is 
Example A. For the exponential distribution and a specified constant 

U = 2{ [ -rln(T/r) -r] - [ -An(#) - (T/e')] } = 2r[ - In($/#) - 1 t ($/#)I. 

Example C. F2r the simple linear-exponential model, the sample (log) 
LR statistic T =2(f -2) cannot be writtea as a 2  explicit formula. In prac- 
tice, it must be numerically evaluated from f and f'. 

Example D. For the simple lipear-(1og)normal model with complete 
data, the (log) LR statistic is 

T = 2{ - (n /2)ln(S') - (n /2) - [(it  /2)ln(?) - (ti /2)]} = 11 ln(?/S'), 

Likelihood ratio test. For different random samples, the likelihood ratio 
A would take on different values between 0 and 1. That is, A is a function of 
random variables yl ,  - * - , y,, and it is a random variable. An observed A 
value near 1 indicates that the corresponding data values yl ,  * * * , y,, are 
likely under the constrained model R', and a A value near 0 indicates that the 
data y - , y,, are not likely under R' compared to under the general model 
Q-Q'. This suggest the likelihood ratio test: 

1. If A > X,, accept Q' (the constrained model). That is, the general model 
does not fit convincingly better than the constrained model. 

2. If A 5 X, , reject the null hypothesis 0' (the constrained model). That is, 
the general model fits convincingly better than the constrained model. 

Here ?(. i: a chosen constant called the critical value. The (log) LR statistic 
T = 2(f -f ') = - 21n(A) yields the equivalent test: 

1. If T 5 t,, accept the null hypothesis 0' (the constrained model). 
2. If T>t,, reject the null hypothesis 0'. That is, the general model fits the 

data convincingly better than the constrained one. 

Here t,= -2ln(&) is the equivalent critical value. How to choose it is 
described below. 
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LR test depicted. Figure 5.3 adds insight to the LR test. There the sam- 
ple log likelihood f(a,/3) on the vertical axis is a function of parameters (a,@). 
0 is the horizontal plane and P =2. The subspace 0’ of the null hypothesis 
/3=fl, a specified constant, is the labeled line in the figure; P’= 1. Figure 5.3 
shows the (unconstrained) ML estimates ($$) under 0 and the maximum log 
likelihood f̂ . Figure 5.3 also shows the constrained ML estimate $,fl under 
0’ and 2. I f f  is much above ?‘, the general model fits the dtta much better 
than the (constrained) null hypothesis model. Then T =2(f -2) is large. 
For different samples the f@3) differs because it is a function of the ran- 
dom data. Thus a, /3, a , f ,  f ’, and T differ from sample to sample and have 
sampling distributions. 

Critical value. The critical value (X, or t,) is chosen so the probability of 
rejecting the null hypothesis 0’ is small when 0’ is true. One chooses t ,  so 
that the maximum rejection probability equals a, called the level of the test. 
That is, 

A ’”A, 

a = maxPr(reject0’;O) = maxPr{T>t,;B}.  
Binn’ 0 in n’ 

Thus the LR test is a level a test. Roughly speaking, f, is the upper a point 
of the sampling distribution of T under a parameter value 0 in the null 
hypothesis 0’. Two methods provide this distribution and fa: 

1. Show that T is a function of a statistic U with a known sampling distribu- 
tion. Then the LR test employs the critical value of the hypothesis test 
based on U. 

2. Approximate the distribution of T under the null hypothesis. This yields 
an approximate critical value. For samples with many failures, the ap- 
proximate large-sample distribution of T under the null hypothesis 0’ is 
chi square with (P -P’) degrees of freedom. That is, t,“&l -a; P -P’). 
Wilks (1962) and Rao (1973) state regularity conditions on the model and 
null hypothesis for the validity of this approximation. Even when such 

n 

> 
Figure 53. Likelihood function and maxima for P=/7’’, specified. 
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mathematical conditions are satisfied, there is no simple rule of thumb 
for the number of failures that provide a satisfactory approximation. 
Thus the true level of the test is usually bigger than a. In practice, one 
often has only the approximation and must use it, since it is better than no 
test. Then marginally significant results are not convincing. Also, one 
can simulate the sampling distribution of T to assess the chi-square ap- 
proximation. 

Examples follow. 

Exayple A. Fo,’ the exponential distribution, the (logkLR statisticAU = 

2r[-ln(8/8‘)-1+(8/8‘)] is a function of th,e ML estimate 8 =T/r .  Fo58 =d‘, 
U =0, the minimum. Also, U increases as 8 goes away [rom 8‘. Thus 8 is an 
equivalent statistic. For a failure censored sample, 2r8/8‘ has a chi-square 
distribution with 2r degrees of freedom under the null hypothesis 8=8‘. For a 
time censored sapple, the chi square distribution approximates the sampling 
distribution of 2r8/6“. Thus the equivalent test has the form: 

1. If ?(a’;%) 5 2r8/6‘ 5 ?(l-a’’;?r), accept the null hypothesis 6 = 6‘. 
2. Otherwise, reject the equality hypothesis. 

Here a = a’ta” is the level of the test. Usually a’ = a” = a/2. This 
equivalent test suggests a one-sided demonstration test of the form 

1’. If 2r$/f>?(l-a;2r), reject the null hypothesis 8=8‘. That is, accept the 
prodFct as demonstrating that it surpasses the specified mean life 8‘. 

2’. If 2rB/B‘<~(l-a;2r), accept the null hypothesis. That is, reject the 
product as not proving it surpasses the specified mean 8‘. 

The approximate LR test is 

1”. 

2”. Otherwise reject 8=8. 

Here the number of degrees of freedom is P -P’ = 1 -0= 1. This test is 
equivalent to 

1’”. 
2”‘. Otherwise, reject O=d‘. 

Here p’cl<p” are the two solutions of -ln(p)+p=l+[&l-a;1)/(2r)]. 
This test is similar to the first one above. 

Example B. ForJheAtwo exponent$l djstributions, the LR test statistic is 
T =2{Qln[rl + r2(fl2/O1)] t r2ln[rl(81/82) t r2]-(rl tr2)ln(rl trz)}. For 
F = 82/81 = 1, T = 0, the minimum. Also, T increases as F goes away from 
1. Thus F is an equivalent statistic. For failure censored samples, F has an F 
distribution with 2r2  degrees of freedom in the numerator and 2rl in the 
denominator, under the null hypothesis 4 =82. For time censored data, the F 

If U=2r[ -ln(e^/6‘)- 1t (8/6‘)] 5 ?(l-a;l), accept the null hypothesis 
fl=8‘. 

If p*<e^/@‘< p”, accept the null hypothesis 8=8‘. 
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distribution is an approximation to the sampling distribution of F =e^,/e^,. 
Thus the equivalent test has the form: 

1. If F(a’;2r2,2r1) 5 F 5 F(1-a”;2r2,2rl), accept the null hypothesis O1 =02. 
2. Otherwise, reject the equality hypothesis. 

Here a = a’+a” is the level of the test, and F(a’;2r2,2r1) is the 100cr’th F 
percentile with 2 2  (2rl) degrees of freedom in the numerator (denomina- 
tor). This two-sided test suggests an obvious one-sided test. The approxi- 
mate LR test is 

1’. If T=2{rlln[rl +rzF] tr21n[(rl/F) t r z l -  (rl +r2)ln(rl +r2)}Q(l-a; l ) ,  
accept the null hypothesis Ol =O2. 

2’. Otherwise, reject the equality hypothesis. 

Here the number of degrees of freedom is P-P’=2-1=1. This test is 
equivalent to 

1”. If F’ 5 F 5 F”, accept O1 =02. 
2”. Otherwise, reject O1 =02. 

Here F’<l<F” are the two solutions of 2{rlln[rl tr2F]+r21n[(rl/F) +r2] 
- ( r l  tr2)1n(rl + r 2 ) )  = ?(l-a;l). 

Example C. For the simple linear-exponential model, the sampling distri- 
bution of the statistic T cannot be expressed in terms of another statistic 
whose distribution is known. The approximate LR test is 

1. If T 5 ?(l-a;l), accept the null hypothesis a+@’=a’. 
2. If T > $(l-a;l), reject a+@’=a’. 
Here the number of degrees of freedom is P - P’ = 2 - 1 = 1. 

Example D. For the simple linear-(1og)normal model, after some heroic 
algebra (Problem 9.11), the LR statistic becomes T =n4n{l+[t2/(n -2)]}. 
Here t=(m’-a’ ) / {~[ ( l /n)+(x’ -x)2  /S=]}’” is the t statistic (n -2 degrees 
of freedom) for the difference m’-a’, and m’ is the LS estimate of p(x’). 
T = O  at t = O ,  that is, at m’=a’. Also, T is an increasing function of I t I . 
Thus I t I is an equivalent statistic. Thus the (exact) equivalent test is: 

1. If I t I 5 t[l-(a/2);n -21, accept the null hypothesis p(x’) = a’. 
2. Otherwise, reject equality. 

Here t [ 1 - (a/2); n - 21 is the 100[ 1 - (a/2)]th t-percentile with n - 2 degrees of 
freedom, and a is the level of the test. This two-sided test suggests the fol- 
lowing one-sided demonstration test 

1’. If t 5 t[l-a;n -21, reject the product. It does not convincingly surpass 

2’. If t > t[l-a;n-2], accept the product at the lOO(l-a)% confidence 
level. That is, the product convincingly surpasses p(x’) =a’. 

p(x’) =a’. 
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The approximate two-sided LR test (level a) is 

1”. If n.h{ 1 t [t2/(n -2)]} 5 ?(l-a;l) ,  accept the null hypothesis 

2”. Otherwise, reject p(x’) =a’. 

Here the number of degrees of freedom is P - P’ = 3 - 2 = 1. This could also 
yield an approximate one-sided test. 

&’) =a’. 

Test that K parameters are equal. The general theory yields the LR test 
(Section 4) for equality of K corresponding parameter values. Suppose that 
there are K independent samples, and sample k comes from the same model 
with J parameters 7 ~ ~ 7 2 ,  - * ,7J&. The parameter space fl consists of all al- 
lowed points (yll, * - ,7j1; - e e ; rlX, - - ,7,~). fl has P=J.K dimensions. 
The subspace fl’ for the null (equality) hypothesis yll =r12 = * * = r ~ = 7 1  
(the common value) consists of all allowed points (71,721, * * * , T J ~ ;  * * ; 
rl,-yx, * , ~ J K ) .  fl’ has P’=JK - (K - 1) dimensions. 

Suppose that sample k has log likelihood fk(-yu, * - * , Y J ~ ) .  Then the log 
likelihood for the general model is f(r11, * - - , T J ~ ;  * * ; y ~ ,  - * - , ~ J K )  = 
fl(711, * * , ~ J I )  t . * * t f K ( r W ,  * ,7JK). Also, the log likelihood for the null 
hypothesis model is 

f (71~721,  ’ * ’ ,7J1; ’ * ;71,72K, ’ ‘ ’ 97JK) = f1(71,721~ * ‘ ’ ,7Jl)  
’ ’ * 

+fK(71,72K, * * ’ 97JK). 

Under n, the ML estimates rhW, -,?J& maximize the log likelihood 
f k ( - y l k ,  * * ,rJk). That is, separately fit ihe  model to sample k to obtain these 
ML estimates and the maximum value f k. Tkenihe uncon$rained maximum 
log likelihood for the combined samples is f =f + . * - t f  K. Under fl’, the 
ML estimates (71;72A, * ,$;I; - - ;&, * - * ,$;K) rnaxihmize f‘( ), which has a 
maximum value off’. The LR test statistic is T =2(f -?). Under the null 
hypothesis, its distribution is approximately chi square with P -P‘=JX - 
[JK-(K -1)] = K - 1  degrees of freedom. Under the general model 0, the 
parameter estimates from different samples are statistically independent, 
since the samples are statistically independent and the models for the sam- 
ples have no common parameter values. Under the constrained model fl’, !${ 
is a common estimate, and the other parameter estimates are generally 
correlated (not statistically independent). 

Ar A, 

Test that K models are identical. The general theory yields the LR test 
(Section 4) that K models are identical. Suppose that there are K indepen- 
dent samples, and sample k comes from the same model with J parameters 
7 ~ ,  * .  * , T J ~ .  The parameter space fl consists of all allowed points 
(711, - * * , 7 ~ 1 ;  - * * ; 7 ~ ,  * * * ,r/~). fl has P = J X  dimensions. The null (equal- 
ity) hypothesis is 711 = * * . = rVc = yl (the common value), * * - , p 1  = 
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* * * = 7 , ~  = 7, (the common value). Its subspace n’ consists of all allowed 
points (71, * * - , 7~ ;  * * ; 71, - * . ,rJ). a’ has P’=J dimensions. 

,7,k). Then the log 
likelihood for the general model is f = f(711, * - ,7,1; * * ;rW, - - ,7,~) = 
fi(711, * ,rJ1) + * + fK(7%, - - - ,rJK). The log likelihood for the null 
hypothesis model is f‘(71, * * * ,7,) = +(?I, * * * ,7,) + * * t fK(71, * * - , 7,). 
Under Cl, the ML estimates GR, - * ,7,k maximize fk(7a, * - - ,7,k). That is, 
the model is separately fifted to sa%pleAk to obtai; the ML estimates and the 
maximum log likelihood f k .  Then f = f + * * +f K. Under n’, the ML esti- 
mates, ${, - * * ,$j maximize f‘(~~, - * - ,7~), and its maximum value is 2. That 
is, a single model is fitted to the pooled data from all K samples to get 
qi, - - * ,7,, since f‘ is the likeliho2d for a single model and the pooled data. 
Under fl‘, the test statistic T=2(f -2) has a distribution that is approxi- 
mately chi square with P -P’ = JK-J = J(K-  1) degrees of freedom. 

OC function. The Operating Characteristic (OC) function of a hypothesis 
test is the probability P{ T >I, ; O} that the test rejects the null hypothesis n’as 
a function of the parameter values O= (el, - - ,/Ip). The OC function gives the 
performance of a LR test as a function of B in n. Sometimes the distribution 
of T is known or the test is equivalent to a known one, as in Examples A, B, 
and D. Then one can get the OC function from various sources such as 
Kraemer and Thiemann (1987). If, as in Example C, the sampling distribu- 
tion of T is not known, one cannot find the exact OC function. The following 
result assures that the approximate LR test is “good” (consistent) for a large 
sample with many failures. 

Consistency. A level a test of a null hypothesis n’ against the alternative 
n-n’ is called a consistent test if P{reject n’; B}+l as the sample size n-coo 
for any O in n-n’. This just says that the test is almost sure to reject the null 
hypothesis when it is false (i.e., 0 is in 0-n’) if the sample size is large 
enough. For example, consider yl,  * * * ,yn from a normal distribution with 
unknown mean p and known standard deviation q. Consider testing n’; 
p = h against p # h. The level a test is: if I j  - j ~  I 5 Kuo/n’”, accept n’, 
and if 1j-h I > Kuo/nl”, reject n’. Here K is the 100[1-(a/2)]th stan- 
dard normal percentile. Then P {  reject n’ ; p }  =P{ l j  -16 I >Kuo/n”’ ;p} 

For p #h, P{reject n ’ ; p }  -+ 1 as n --t 00. So the test is consistent. In gen- 
eral, the LR test is consistent under some mild conditions on the model 
FCyl, - - - ,y,,;O). That is, if T,, is the log LR test statistic based on n failures, 
then P{T,,>?(l-q P - P ’ ) ; B ) }  -+ 1 as n -00 for any 0 in n-n’. More- 
over, no other test achieves this limit faster. Consequently, the likelihood ra- 
tio test is said to be “asymptotically” uriifomly most powe@l. The previous 
sentence is not intended to be precise. Rao (1973) and Wilks (1962) state 
such regularity conditions and prove this consistency result. Also, they and 
Nelson (1977) show how to calculate an asymptotic OC function. 

Suppose that sample k has log likelihood fk(7u, * 

A, 

=a{ [h - K(u0 /n ” ) - p] ( I F  /ao)} + 1 - a{ [h + K(r0 /n ‘/a) - p] (n / g o )  } . 



486 MAXIMUM LIKELIHOOD COMPARISONS FOR CENSORED AND OTHER DATA 

53. Related Tests 

There are other tests that are asymptotically equivalent to the LR test. 
This section presents two such tests - Rao’s and Wald’s. For some applica- 
tions, these tests are easier to calculate in practice than the LR test. 

Rao’s test. Rao (1973, p. 418) gives the following test statistic. Suppose 
that the Pxl column vector of scores is (prime ‘ denotes vector transpose) 

s(B)=(af/ae,, * * ,af/aep)’. 

Here f is the sample log likelihood, and B= (el, * * - ,OP) in II is the vector of 
the P parameters under the general model. Under the null hypothesis II’, the 
expectation of the score vector is the zero vector. Otherwise, its expectation 
differs from the zero vector. Denote the PxP theoretical Fisher matrix under 
n by 

F(B)={ -E[&f/t#$,ae,*]}={ -E[(af/aB,)(af/ae,,)]}, p,p’=l, * * ,P. 

Suppose that e^’=(e^;, * * * is the Pxl column vector of ML estimates 
under the null hypothesis n’ with P’ iimensions. For example, soTe 8; will 
be (a) constants, (b) equal to other ed, or (c) functions of other 6,. Rao’s 
statistic for testing the null hypothesis that B is in n’ is the quadratic form 

R =S’(e^’)[F(e^’)]-’S(e“). 

This statistic measures how far the observed score vector is from zero. 
Under the null hypothesis, R is asymptotically equal to the log LR statistic 
and to Wald’s test statistic below. That is, R then has an asymptotic chi- 
square distribution with P-P’ degrees of freedom. R is not convenient for 
multiply censored data, since the expectations for F(B) are difficult to calcu- 
late. Then one can use the local estimate of the Fisher information matrix 
provided by most ML programs. The SURVREG program of Preston and 
Clarkson (1980) does this. R employs only the ML estimates under the null 
hypothesis. Thus R avoids the sometimes greater labor of calculating the ML 
estimates for the general model. 

Equality of Poisson A,. The following is an example of Rao’s test. Sup- 
pose that Y1, - - * ,YK are independent Poisson counts where A, is the oc- 
currence rate and tk is the length of observation, k = 1, * * ,K. The null 
(equality) hypothesis is A1 = - - * =AK. The sample log likelihood under II is 

f(A1, * * - JK)=  [ -Aktk t YkIn(&tk)-In(~~!)]. 
k = l  

The kth s q r e  is af/a&= -% t (Yk/&), k = 1, * - * ,K. Under the null 
hypothesis, A; = - - & = A’= (Y1+ . . . tYK)/(tl t - - - ttK), and the 
vector of scores is 

A A, 
A A 

S(&, * *  *,A;)=[-f,+(Y,/A ), . . *  ,--tKt(YK/A’)]’. 

The terms in the Fisher matrix are 
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~ { - # f / a x ; }  = E{Y~/x~}=x~~~/x~=I~/s~ 

E{-#f/a&3&,} = E{O}  = 0 for&#&’. 

The Fisher matrix is diagonal. Its estimate under the null hypothesis has 
X i  =? in place of &. Then Rao’s test statistic is 

This is the chi-square test statistic (quadratic form) for equality of Poisson 
occurrence rates (Nelson (1982, Chap. 10)). Under the null hypothesis, R 
has an asymptotic chi square distribution with K- 1 degrees of freedom. 

Wald’s test. Rao (1973, p. 419) gives Wald’s test statistic. It is asymptoti- 
cally equivalent to the LR statistic. Suppose that the subspace Cl’ of the null 
hypothesis is specified by Q constraints 

hl(el, - ,ep)=o, . . . , hQ(el, - ,ep)=o. 
The test uses the PxQ matrix of partial derivatives 

H ( 8 ) = { c 3 h , / ~ p } ,  q = l , * - . , Q ,  p=l ,  * - * , P .  

They depend on 8. Suppose that 8 =(el ,  - - ,iP)’ are the ML estimates 
under i2, the general modej, De!ote their asymptotic covariance matrix by 
$e(8); it dyends on 8. h=h(8) denotes the Qxl  vector of constraints 
evaluated at 8. The asymptotic covariance matrix of h(e )̂ is the QxQ matrix 

n h  

$ss = H’@)$e(B)H(8). 

This is estimated by using the derivatives at 8 = ê  and the ML or local esti- 
mate of gb. Wald’s statistic for testing the null hypothesis (the Q con- 
straints) ii 

This is a quadratic form in the observed values of the constraints; it is a mea- 
sure of how close they are to zero. Under the (constrained) null hypothesis, 
W is asymptotically equal to the log LR statistic and to Rao’s test statistic. 
That is, W has a chi square distribution with Q degrees of freedom. W is con- 
venient to use with multiply censored data. Then one can use the local esti- 
mate of $e(8) in place of its ML estimate. Most ML programs give this 
local estimate. W employs only the ML estimates under the general model. 
This is convenient, since calculating estimates for the constrained null 
hypothesis model often requires special features not in some ML programs. 
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Snubber example. Life test data on an Old and a New type of snubber 
for a toaster were assumed to come from normal life distributions. One can 
compare the two types with a test of the hypothesis fl’: h = p ~ ,  assuming 
00 =uN =n. The alternative is: # p ~ ,  assuming uo =ON =u. Expressed as 
Q = 1 constraint, the null hypothesis is h l(p(),pN,u) =h - p ~  = 0. The partial 
derivatives are ah I/t3h = 1, 811 l / 8 p ~  = - 1, 811 l/&=O. The matrix of partial 
derivatives is (the column vector) H = (1 - 1 0)’. The ML estimates under 
n are & =974.3, & = 1061.3, and $=458.4. The local estimate of the covari- 
ance matrix of the ML estimates under n is 

h A 
&I P N  U 

I 7930.61 1705.42 2325.45 
= 1105.42 8515.93 2435.20 . 4 2325.45 2435.20 3320.58 

The estimate of the 1x1 covariance matrix of hhl is $i = (1 -1  O ) $ t  
(1 -1 O)’= 13035.7. The Wald statistic is W =(974.3- 1061.3)’(13035.7)-’ 
(974.3 - 1061.3) =0.58. Under = p ~ ,  the distribution of Wis approximately 
chi square with one degree of freedom. Since W=0.58~2.706=~(0.90;1), 
the two means do not differ convincingly at even the 10% level. 

PROBLEMS (* denotes difficult or laborious) 

9.1. Insulating oil. Analyze the data of Section 2, omitting the 32 kV 
data, which have a much lower shape estimate. 
(a) Repeat all analyses of Section 2. What conclusions change? 
(b) Suitably plot all estimates and confidence limits from (a). 

9.2. Power-lognormal. For the insulating oil data, repeat the analyses of 
Section 2, using the power-lognormal model. Note any differing conclusions. 

93. Arrhenius-Weibull. Repeat the analyses of the data on the three 
motor insulations in Section 4, but use the Arrhenius-Weibull model. Note 
any markedly different results. Does the model fit adequately? 

9.4.* Transformer oil. Use the transformer oil data of Problem 8.4. Use 
the first model of Problem 4.10. 
(a) For the two samples, compare each coefficient in the relationship, using 

the LR test and confidence intervals. Plot individual and pairwise 
confidence limits. 

(b) Do (a) for the Weibull shape parameter. 
(c) Simultaneously compare all model parameters. 
(d) Suggest further analyses, for example, using the other proposed relation- 

ship in Problem 4.10. 
(e) Carry out (d). 
( f )  Make probability and relationship plots of the data. 
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95. $l,OOO,OOO experiment. Do ML comparisons of the data of Prob- 
lem 3.9. Treat the data from each cycling rate as a separate sample. Fit a 
separate Arrhenius-lognormal model to each sample. Treat the data as in- 
terval data if you wish. 
(a) Compare the activation energies, using the LR test and confidence inter- 

vals. Plot individual and pairwise confidence limits. 
(b) Do (a) for the intercept coefficients. 
(c) Do (a) for the log standard deviations. 
(d) Simultaneously compare all model parameters. 
(e) Suggest further analyses. 
( f )  Carry out (e). 
(g) Make probability and relationship plots of the data. 
(h) For the insulation engineer, write a short report on your analyses and 

conclusions. 

9.6. Au-AI bonds. Use the data of Problem 8.3. 
(a) Carry out all the ML comparisons of Section 4. 
(b) Suitably plot the exact confidence limits and test statistics of Chapter 8 

and those of Section 4. Comment on how they compare. In particular, 
do the approximate ML methods yield different conclusions? 

9.7. Exact limits. Calculate exact 99% confidence limits of McCool 
(1974,1981)for the seven Weibull shape parameters for the insulating oil 
(Section 2). Suitably plot these exact limits, normal approximate limits, and 
corresponding estimates. What do you conclude from these simultaneous 
93% confidence intervals. 

9.8. Relays. Make all ML comparisons of the data on two relays in Prob- 
lem 3.11. Suitably plot estimates and confidence limits where possible. Also, 
make hazard and relationship plots of the data. 

9.9.. Fatigue limits. Make ML comparisons of the fatigue data of Prob- 
lem 5.14. Also make relationship plots of the data. Write a short report for a 
fatigue expert, summarizing your findings and incorporating output, plots, 
etc., as appropriate. 

9.10.. Linear-exponential model. For Example C of Section 5, assume 
that there are two test stress levels and the data are multiply time censored. 
(a) Derive formulas for the LR confidence interval for mean life at a 

specified stress levelxo. 
@) Do (a) for the slope coefficient. 
(c) Do (a) for the intercept coefficient. 

9.11.* Linear-lognormal model. For Example D of Section 5, supply all 
steps in the derivations of all equations. In particular, show that the LR 
statistic is a function of the Student f statistic. 

9.12.* Behrens-Fisher problem. Suppose samples of two products are 
compared in a life test with one accelerating variable. Also, suppose that log 
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life of each product is described with a simple linear-normal model, where 
the true model parameters differ for the two products. Also, suppose that 
the data for the two samples are complete. 
(a) Derive the likelihood ratio test for equality of the two sigmas. 
(b) Derive the normal and LR confidence intervals for the ratio of the two 

log standard deviations. 
(c) Compare the widths of (b) with that of the exact interval based on the F 

statistic (Chapter 8). 
(d) Derive the LR test for equality of the two log means at a design stress 

level, assuming the other parameters differ. 
(e) Derive the normal and LR confidence intervals for the difference of the 

two mean log lives at a design stress level. 
( f )  Compare the widths of (e) with that of the usual Student’s t interval, 

which assumes that the sigmas are equal. 
(g) Derive the LR test for equality of the two slope coefficients, assuming 

the other parameters differ. 
(h) Derive the normal and LR confidence intervals for the difference of the 

two slope coefficients. 
(i) Compare the widths of (h) with that of the exact interval, which assumes 

that the sigmas are equal. 
(g) Use these results to calculate such LR comparisons of data on two of 

the three motor insulations. Compare mean log lives at 200°C. 

9.13.. Bartlett’s test. Use a lognormal distribution, and assume that the 
data at the J test stress levels are complete. Derive the LR test for homo- 
geneity of the J log standard deviations at those stress levels as follows. 

Write the sample log likelihood, assuming the uj and pj all differ. 
Derive the likelihood equations, and so& them for Gj  and $1. 
Evaluate the maximum log likelihood f at the solutions (b). 
Write the sample log likelihood for the data, assuming a common cr’ 
value and differing pi. 
Derive the likelihood equations, and solve them for the common 2 and 
the cj. 
Evaluate the maximum log likelihood E“ at the solutions (e). 
Evaluate the LR test statistic. It differs from Bartlett’s test statistic 
(Chapter 8) by the factor C there, which improves the approximation. 
State the LR test and the number of degrees of freedom of the approx- 
imate chi square distribution. 
Repeat (a)-(h) for a singly time censored sample at each stress level. 

9.14. 9.13 revisited. Derive Wald’s test for Problem 9.13 as follows. Use 
the J -  1 constraints h, =u, -6, + 1 =0, q = 1,2, * - - ,J-  1. 
(a) Evaluate the matrix of first partial derivatives of the h, with respect to 

(b) Derive the theoretical covariance matrix of the ML estimates Gj and Gj 
each of the model parameters q and pj. 

and invert it. 
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(c) Derive the Wald statistic, state the number of degrees of freedom of its 
chi square approximation, and state the Wald test. 

(d) Apply this test to the Class-H data, and state your conclusions. 
(e) Repeat (a)-(d), using the transformed parameter Bj = In(aj). 
( f )  Repeat (a)-(d), using Bj =.,!I3, a normalizing transformation to improve 

the approximation. 
(g*) Repeat (a)-(f) for a singly time censored sample at each stress level. 

9.15. Test for linearity. Use the LR theory of Section 5 to derive the test 
of linearity for the simple linear-lognormal relationship appearing in Sec- 
tion 3.3 of Chapter 5. State all models and assumptions. 

9.16. GaAs FET demonstration. For a demonstration test of Prob- 
lem 6.19, derive its asymptotic OC curve. Numerically evaluate and plot it as 
a function of median life at 125°C. 
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Models and Data Analyses for 
Step and Varying Stress 

Purpose. This advanced chapter is an introduction to simple cumulative 
exposure models and data analyses for life tests with step and varying stress, 
described in Section 3 of Chapter 1. Such models are used here to estimate 
product reliability. However, they are useful background for those who run 
such “elephant” tests only to identify and fix failure modes (Chapter 1). 
These models also apply to the life of products under varying stress in ser- 
vice. Needed background includes the description of such tests in Chapter 1, 
constant-stress models of Chapter 2, ML fitting of Chapter 5, and possibly 
ML comparisons of Chapter 9. 

As noted in Chapter 1, step-stress and ramp tests are used to assure 
failures quickly. However, the accuracy of estimates from such a test is 
inversely proportional to its length. Such a test yields no greater accuracy 
than a constant-stress test of the same length. However, the asymptotic 
theory is a better approximation when there are many failures. 

rn A model like that in Sections 2.2 and 3.2 applies to a single faihtre mode. If 
the product has a number of failure modes, each must be described with a 
separate model. Then such models must be combined as described in 
Chapter 7. The basic cumulative exposure model of Sections 2.2 and 3.2 is 
a simple, plausible one that has been used in some applications. It serves 
as a simple introduction to such models. In applications, one may need a 
more elaborate model. 
In practice, it is easier to hold a stress constant than to vary it exactly in a 
prescribed manner. Thus varying-stress tests have an added source of 
experimental error. 

Overview. Section 1 briefly surveys theory and applications of cumulative 
exposure models. For step-stress tests, Section 2 presents example data, 
develops a cumulative exposure model, and presents ML fitting of the model. 
Section 3 does the same for a test with varying stress of any form. The gen- 
eral cumulative exposure model appears in equations (3.3) and (3.4). The 
rest of this chapter presents special cases and other formulations of it. 

Limitations. Such testing and models have limitations, including: 
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1. SURVEY OF THEORY FOR TESTS WITH VARYING STRESS 

Purpose. This section briefly surveys a few references from the vast 
literature on cumulative damage models for accelerated tests with varying 
stress. Many authors note that such models have not been adequately 
verified by experiment. Thus all models need critical evaluation. The survey 
covers early work, metal fatigue, electronics, other products, and statistical 
developments. 

Early work. Yurkowski and others (1967) survey early work on applica- 
tions of such testing and physical and statistical theory for it. Since then 
there have been few major advances in physical models and their application. 
Also, since then statistical methods for fitting such models to data have been 
developed and computerized so that virtually any model can be properly 
fitted to such data. 

Metal fatigue. Metal fatigue under varying load in service is a major re- 
search area. Fatigue researchers have developed and evaluated many cumu- 
lative damage models. The large ongoing effort in this area indicates that 
such fatigue is not well enough understood. Saunders (1970,1974) briefly sur- 
veys such models, and Murthy and Swartz (1972,1973) provide a bibliography. 
The simplest such model is Miner’s rule, which Palmgren (1924) proposed 
before Miner (1945) popularized it. It is a deterministic model based on 
linear damage theory. Its inadequacies for metal fatigue are well known, but 
it is widely used. The basic cumulative damage model of this chapter is a 
probabilistic extension of Miner’s rule. Fatigue books that treat such models 
include Bolotin (1969) and Bogdanoff and Kozin (1984). Prot (1948) was 
first to propose ramp stress for fatigue testing. Also, much fatigue testing in- 
volves a distribution (spectrum) of loads applied in a random order. Jaros 
and Zaludova (1972) and Holm and de Mare’ (1988) model fatigue life 
under such random loading. 

Electronics. Step- and progressive-stress testing are widely used in elec- 
tronics applications to reveal failure modes (elephant testing), so they can be 
designed out of the product. The following references treat another problem 
- that of estimating reliability of electronics. In early applications, Endicott 
and others (1%1a,b,1965) and Starr and Endicott (1961) tested capacitors 
with a linearly increasing voltage (“rranzp stress”). Hatch, Endicott, and oth- 
ers (1962) report that the cumulative exposure model they use (Section 3.2 
here) and their ramp data were consistent with constant-stress data. Yur- 
kowski and others (1967) reference a number of electronics applications. 

Other products. Goba’s (1969) bibliography on thermal aging of electri- 
cal insulation lists references on progressive-stress tests and models. Rosen- 
berg and others (1986) and Yoshioka and others (1987) present models for 
stability of pharmaceuticals. Rabinowicz and others (1970) report on life 
tests of light bulbs, electric hand drills, electric motors, and bearing balls. 
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They repeatedly alternated the stress between a design level (a fraction of the 
time) and an overstress level (the other fraction). They conclude that 
Miner’s rule describes the life of these products. Problem 10.17 provides a 
statistical version of Rabinowicz’s deterministic model. 

Statistical developments. Developed by experts in engineering and physi- 
cal sciences, most cumulative damage models are deterministic. Statisticians 
have helped extend such models to probabilistic ones. For example, Birn- 
baum and Saunders (1968) develop a probabilistic version of Miner’s rule, 
and Shaked and Singpurwalla (1983) generalize the basic model of Section 2. 
Also, statisticians have developed methods for ML fitting of such models to 
data and for evaluating their adequacy. Nowadays such methods can fit most 
any model to such data. Yurkowski and others (1967) survey early statistical 
methods. Allen (1959) presents a cumulative damage model and describes 
data analyses for it. Nelson (1980) was first to implement ML fitting of a cu- 
mulative damage model (Section 2) to step-stress data. Schatzoff and Lane 
(1987) extend that model to multiple accelerating stresses and interval 
(read-out) data. Also, they developed a computer program that calculates 
optimum test plans. Miller and Nelson (1983) present optimum test plans for 
simple step-stress tests. The textbook by Tobias and Trindade (1986) devotes 
a section to step-stress testing. This chapter is the first devoted to the topic 
from a statistical viewpoint. 

2. STEP-STRESS MODEL AND DATA ANALYSES 

Purpose. This section presents an example of and a basic model for 
step-stress data. This section also presents maximum likelihood (ML) fitting 
of the model to the data. This expands on work of Nelson (1980). 

2.1. Stepstress Data 

Purpose. Data in Table2.1 illustrate the basic model and analyses for 
step-stress data. A step-stress test of cryogenic cable insulation was run to 
estimate insulation life at a constant design stress of 400 volts/mil. Also, this 
insulation was to be compared with another insulation that was tested. 

Data. Each specimen was first stressed for 10 minutes each at steps of 
5kV, lOkV, 15kV, and 20kV before it went into step 5 at 26kV. Thereafter 
one group of specimens was stressed 15 minutes at each step (5 through 11 
below), and three other groups were held 60, 240, and 960 minutes at each 
step. Thus there were four step-stress patterns. 

Step: 5 6 7 8 9 10 11 
Kilovolts: 26.0 28.5 31.0 33.4 36.0 38.5 41.0 

Figure 3.2 of Chapter 1 depicts such step-stress patterns and data. Table 2.1 
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Table 2.1. Step-Stress Data on Insulation 1 

Hold Final Total Time to Thickness 
(mm) Step Failure (min) (mils) 

15 9 102 27 
15 9 1 I3 27 
15 9 1 I3 27 

60 10 370+ 29.5 
60 10 345+ 29.5 
60 10 345 28 

240 10 I249 29 
240 10 1333 29 
240 10 1333+ 29 
240 9 1 106.4 29 
240 10 1250.8 30 
240 9 1097.9 29 

960 7 2460.9 30 
960 7 2460.9+ 30 
960 7 2703.4 30 
960 8 2923.9 30 
960 6 1 160.0 30 
960 7 1962.9 30 
960 5 363.9+ 30 
960 5 898.4+ 30 
960 9 4142.1 30 

+ denotes a running time without failure. 

shows the step number and the total time on test when a specimen failed. All 
failures were due to the same failure mode. The stress on a specimen is the 
voltage divided by its insulation thickness. Specimens removed from test 
before failure are noted by t . Thus the data are censored. 

2.2. Step-Stress Model 

Purpose. This section presents a step-stress model, which consists of 

1. the model for the distribution of life as a function of constant stress, 
2. the model for the effect on life of the ‘size’ of a unit, and 
3. the basic model for the cumulative effect of exposure in a step-stress test. 

In applications, one needs to verify each part of the model. Such a model de- 
scribes a single failure mode. Section 3.2 (equations (3.3) and (3.4)) presents 
an equivalent, simpler version of this model. 

Constant stress model. The following power-Weibull model describes 
specimen life as a function of constant stress. Its assumptions are: 
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1. For any constant stress V(which must be positive), the life distribution is 
Weibull. 

2. The Weibull shape parameter /3 is constant. 
3. The Weibull scale parameter a is 

4 V )  = (Vo/v)p. (2.1) 

Here 8, VO, and p are positive parameters characteristic of the product and 
the test method. (2.1) is the inverse power law. Other constant-stress 
models could be used. Ea+ product failure mode would be described with 
such a model. Then such models are combined as described in Chapter 7. 

The assumptions imply that the population fraction F (t ; V) of specimens 
failing by time t under constant stress V is 

F ( t ; V )  = 1-exp[-{t(V/Vo)P}fl], t > 0. (2.2) 

(2.3) 

The F fractile of the life distribution for a stress V is 

v ( V )  = expIpIn(Vo/V) + (1/8) u(F)I; 

u(F)  = In{ -ln(l-F)} is the standard extreme value F fractile. 

Size effect. Here the specimens are smaller than actual cable. A* is the 
size of a cable and A is the size of a specimen. A cable is modeled as a series 
system (Chapter 7) of A */A specimens with statistically independent life 
times. That is, the cable fails when the first “specimen” fails. Some insula- 
tion engineers use dielectric volume as size, and others use “exposed area.” 
The series-system assumption and (2.2) imply that the fraction of cables of 
sizeA* failing by time t under constant stress Vis 

(2.4) F (t ; V, A *) = 1 - exp[ - (A * / A  ){I ( v / v ~ )  P } f l ] .  

This reduces to (2.2) ifA* =A. 

Dependence. Eq. (2.4) may underestimate life of cables. Adjoining 
specimen-size pieces of cable can have dependent (positively correlated) life- 
times, instead of statistically independent ones. That is, if a piece has a short 
(long) life-time, pieces adjoining it tend to have short (long) lifetimes. Posi- 
tive correlation implies longer cable life than predicted by (2.4). As an 
extreme, if pieces in a cable were perfectly correlated, all pieces would have 
the exact same lifetime, and the cable would have the lifetime of a specimen. 
Thus, for positive correlation, the life distribution (2.2) of specimens is an 
upper bound on the life distribution of cables. For some applications, such 
lower (2.4) and upper (2.2) bounds for the distribution suffice. 

Cumulative exposure. For a step-stress pattern, there is a distribution 
Fo( t )  of time t to failure on test. Data from this distribution are observed in 
the test. But one usually wants the life distribution under constant stress, 
which units see in use. Thus one needs a cumulative exposure (or damage) 
model for a failure mode that relates the distribution (or cumulative expo- 
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sure) under step-stressing to the distribution (or exposure) under constant 
stress. The following describes one such model. 

Model inadequacy. The basic cumulative exposure model below does not 
display the following observed behavior of some products. Some products 
frequently fail during the brief time while the stress is being raised from one 
step to the next. According to the cumulative exposure model here, such rise 
times are too brief to produce so many failures on a rise. Such products are 
better described with a degradation model (Chapter 11). For example, sup- 
pose that the breakdown voltage of an insulation degrades with time during a 
voltage step-stress test. The breakdown voltage of a specimen at the time of 
a rise may be between the applied voltage on the previous step and the volt- 
age on the next step. Such a specimen fails during the rise. The cumulative 
exposure model below is inadequate for such products. 

Assumptions. The model for the failure mode assumes that the remain- 
ing life of specimens depends only on the current cumulative fraction failed 
and current stress - regardless how the fraction accumulated - a Markov 
property. Moreover, if held at the current stress, survivors will fail according 
to the cumulative distribution for that stress but starting at the previously ac- 
cumulated fraction failed. Also, the change in stress has no effect on life - 
only the level of stress does. Thus, this model does not describe thermal cy- 
cling that produces failure. Nachlas (1986) proposes a cumulative damage 
model that includes the effect of cycling damage and of exposure at different 
levels of constant stress. 

Depiction. Figure 2.1 depicts the basic cumulative exposure model for a 
failure mode. Part A depicts a step-stress pattern with four steps and failure 
and censoring times of specimens. Part B depicts the four cumulative distri- 
butions for the constant stresses (Vl, V2, V3,  V4). The arrows show that the 
specimens first follow the cumulative distribution for V1 up to the first hold 
time t l .  When the stress increases from Vl to V,, the unfailed specimens fol- 
low the cumulative distribution for V2, starting at the accumulated fraction 
failed. Similarly, when the stress increases from V2 to V,, from V3 to V4, 
etc., the unfailed specimens follow the next cumulative distribution, starting 
at the accumulated fraction failed. The cumulative distribution for life under 
the step-stress pattern appears in part C. It consists of the segments of the 
cumulative distributions for the constant stresses. In this simple way, this 
basic model takes into account the previous exposure history of a specimen. 
Note that this and other cumulative exposure models have not been ade- 
quately verified by experience. 

Mathematical formulation. The basic cumulative exposure model for a 
failure mode is mathematically formulated as follows. This yields the cumu- 
lative distribution F&) of time to specimen failure under a particular step- 
stress pattern. A simpler equivalent formulation of Fo( t )  appears in (2.12). 
Those not interested in the mathematics can skip to Section 2.3. Suppose 



STEP-STRESS MODEL AND DATA ANALYSES 499 

v 4  

v3 

v2 

VI 

( A )  

0 

- - 
" o+" - 
n n  - I-ZEJ - 

" Y n 

I I 
TIME t 

e 

I 

0 

(C) 

Figure 2.1. Relationship between constant- and step-stress distributions. 
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that, for a particular pattern, step i runs at stress 6, starts at time t i -1 ,  and 
runs to time ti (fo=O). The cumulative distribution for specimens at a con- 
stant stress 6 is Fi(t). For the example with the power-Weibull model, 

Fi( t )  = ~-exp[ -{ t ( l / , /~~) J ‘}~] .  

Step 1. The population cumulative fraction of specimens failing in step 1 
is 

Fo( f )  = Fl(t), O I t 5 l 1 ,  (2.5) 

For the example for step 1, 

Fo(t) = 1-exp[-{t(~1/~o)P)~] ,  0 5 t ~ t l .  

Step 2. Step 2 has an equivalent start time s1 which would have produced 
the same population cumulative fraction failing (see Figure 2.1B). Thus, s is 
the solution of 

F z ( s 1 )  = Fl(l1). (2.6) 

For the example, the equivalent time s1 at V2 is given by (2.6) as 

$1 = f l ( W V 2 ) J ’ .  (2.6’) 

The population cumulative fraction of specimens failing in step 2 by total 

Step 3. Similarly, step 3 has the equivalent start time $2 given by 

F3(s2)  = F 2 ( t 2 - t l  +s1)* 

Then 

Fo(t)  = F3[(f -t2) +s2 1, i2 I t 5 t3. 

For the example for step 3, 

s2 = ( f 2 - t l  t s l ) (v2/V3)p,  

~ o ( t )  = 1 -exp[- {(t - t2  + s ~ ) ( v ~ / v O ) P ) ~ ] ,  t z  L t 5 13. 

(2.7) 

(2.7’) 

(2.8) 

(2.9) 

(2.8‘) 

(2.9 ’) 

Step i. In general, step i has the equivalent start time si - 1  given by 

Fj(Sj-1) = F i - l ( t j - 1 - t j - 2 t s i - 2 ) .  (2.10) 

Then 
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Fo(t) = Fj[(f-tj-1)tsj-1], t i -1  Sf S f j .  (2.11) 

Thus, Fo( t )  for a step-stress pattern consists of segments of the cumulative 
distributions F1( ), F2( ), etc., as shown in Figure 3.1C. A different step- 
stress pattern has a different Fo( t )  distribution for a failure mode. For the 
example for step i ,  

(2.10’) 

Fo( t )  = 1 - e x p [ - { ( t - ~ ~ - ~ t s ~ _ ~ ) ( ~ ; : / ~ ~ ) ~ ) ~ ] ,  t i - 1  ~t Iti. (2.11 ’) 

Thus, Fo(r)  for a failure mode consists of segments of Weibull distributions. 

Cumulative exposure. The cumulative exposure model above and the 
power-Weibull model can be expressed in a simpler, equivalent form to yield 
Fo(f) for a failure mode. For the model, the fraction failed after any step- 
stress pattern is independent of the order of the steps as follows. Suppose 
that step i is at stress level V;: with corresponding characteristic life ai =K/V 
for a time 4. =ti -ti -1 (to = O ) .  Then it can be shown that the population frac- 
tion failed by time fI= Al t A2 t * * + A1 after I steps is 

(2.12) ~ o ( t 1 )  = 1 - exp( -8); 
here the “cumulative qos i i re”  c for the failure mode is 

E = (A1/”1)+ (A2/02) t * * * t ( A h ) .  (2.13) 

A1 may be only a fraction of the planned time at step I. Moreover, the values 
of F o ( f I )  and E are the same regardless of the order of the I steps, each with 
its corresponding time 4 at the stress level V;:. (2.12) is an equivalent, 
simpler form of the basic cumulative exposure model. However, for some 
failure modes, products, and materials, the failure behavior depends on the 
order of the steps, called the sequence effect. (2.13) has no sequence effect. 
It is a probabilistic analog of Miner’s rule, usually stated deterministically. 

General model. The results (2.12) and (2.13) extend to any model where 
the life distribution F ( f  ; V) for a failure mode depends on constant stress V 
only through a scale parameter B ( V ) ,  namely, 

W ; V )  = G[t/fl(731; 

here G [  ] is the assumed cumulative distribution with the scale parameter set 
equal to 1. The simple linear-lognormal, linear-Weibull, and linear- 
exponential models have this property. The lognormal scale parameter is the 
median. The exponential scale parameter is the mean. Other distribution 
parameters are constants and are not explicitly shown here. Then F&) = 
G(G) where G = [Al/B(V,)]t[A2/B(V2)]t * t [Al/B(V,)]. For example, 
for the power-Weibull model above and t l - 1  < I I tr, 

t -t1-1 
t + . . .  t1-0 t 2  - t 1  

€(I) = t 
(Vo / V1) (Vo / V2 Y (VO/VIY * 
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These results hold for multivariable life-stress relationships and step- 
stressing with more than one accelerating variable and other engineering 
variables; see Schatzoff and Lane (1987). 

Test plans. Little work has been done on optimum plans for step-stress 
tests. Miller and Nelson (1983) present optimum plans for a simple step- 
stress test with two stress levels where all specimens run to failure. They use 
the simple linear-exponential model and the basic cumulative exposure 
model here. Their plans minimize the (asymptotic) variance of the ML esti- 
mate of the mean life at a design stress. They consider two types of such a 
simple step-stress test: 1) a time-step test which runs a specified time at the 
first stress, and 2) a failure-step test which runs until a specified proportion 
of specimens fail at the first stress. Their results include: 1) the optimum 
time at the first stress for a time-step test, 2) the optimum proportion failing 
at the low stress for a failure-step test, and 3) the asymptotic variance of 
these optimum tests. Both the optimum time-step and failure-step tests have 
the same asymptotic variance as the corresponding optimum constant-stress 
test. Thus step-stress tests yield the same accuracy of estimates as constant- 
stress tests for their model with an exponential distribution. Schatzoff and 
Lane (1987) use the cumulative exposure model here, a Weibull life distribu- 
tion, and a multistress relationship. For inspection (read-out) data, they 
optimize the ML estimate of a percentile at a constant design stress level. 
This requires their special computer program. 

23. Maximum Likelihood Analyses 

A description of ML fitting. 
The ML fitted model. 
ML estimates and confidence limits for the model parameters (B,Vo,p) 
and fractiles @(v>. 
Comparisons with data on another type of cable insulation. 

ML fitting. Estimates and confidence limits for the model parameters 
and functions of them are calculated with the ML methods of Chapter 5. 
The estimates are the parameter values that maximize the sample likelihood 
with the segmented distribution F o ( f )  in Figure 2.1C. From the data such as 
in Figure 3.2 of Chapter 1, one can calculate the sample cumulative distribu- 
tion function for Fo( f )  and plot it on Figure 2.1C. Then ML fitting in some 
sense fits the F o ( f )  so it is close to the sample cumulative distribution. A 
specimen life may be 1) observed, 2) censored on the right (or left), or 3) in 
an interval (r’”’’). The corresponding specimen likelihoods are 1) 
fo(f)=dFo(t)/dt, 2) l-Fo(t)  (or Fo( t ) ) ,  and 3) Fo(f”)-Fo(t’). If there is a 
number of step-stress patterns, the corresponding distribution is used for 
each, and the sample likelihood contains them. Such a likelihood must be 
programmed and added to a ML package. The ML theory also provides 

Purpose. For the cable insulation data, this section presents: 
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comparisons (hypothesis tests and confidence intervals), as described in 
Chapter 9. This section illustrates such fitting and comparisons. Of course, a 
complete analysis of such data also includes suitable graphical display and 
analysis. 

Fitted model. Fitted by ML to the data of Table 2.1, the model for the 
fraction of cables that fail by age t in minutes is 

F ( t  ;V,A*)  = 1 - exp[-(A*/9.425){t(V/1619.4)19.937}0.75597]. 
Here A: is the area of the dielectric on a cable; test specimen area is 9.425 
sq. in. /3 = 0.75597 is the Weibull shape parameter,; = 19.937 is the power 
in the power law for the failure mode. V is the constant stress in volts per 
mil. The parameters are not known as accurately as the number of 
significant figures might imply. The estimate of the lOOPth percentile of 
cable life in minutes at voltage stress Vis 

A 
.p(V, A*) = (1619.4/V)19.937 {(9.425/A*)[ -ln(l-P)]}1/0.75597. 

Estimates. Tables 2.2 and 2.3 present ML estimates and approximate 
normal 95% confidence limits for the model parameters and the 1% point of 
specimen life at the design stress, 400 V/mil. For such a small sample, the 
intervals tend to be too narrow. Figure 2.2 depicts the first percentile of the 
failure mode versus stress on log-log paper. Other information in the table is 
explained later. ML fitting was done with a user-written likelihood function 
in STATPAC of Nelson and others (1972,1983). 

Residuals. The ML fitting assumes that the modcl and data are valid. So 
they should be checked as described in Section 3 of Chapter 5. The residuals 
come from the distribution F o ( f ) ,  which is not a standard distribution. For a 

Table 22. ML Results for Cable Insulation 1 

95% Conf. Limits 
Parameter Estimate Lower Upper 

VO 1616.4 1291.0 1941.8 

P 0.75597 0.18 1.33 

at 400 V/mil 2.81~10~ 2.65~10~ 2.98~10'~ 

P 19.937 6.2 33.7 

1% point (min) 

Asymptotic Covariance Matrix 

PO p  ̂ 2 
PO 27566. symmetric 

- 1145.7 49.004 
41.572 - 1.7561 0.086575 

i 
P 

Maximum Log Likelihood = - 103.53 
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Table 23. ML Results for Cable Insulation 2 

95% Conf. Limits 
Parameter Estimate Lower Upper 

VO 3056.3 2177.6 3934.9 
P 9.6015 5.6 13.6 
P 0.96910 0.54 1.40 

at 400 V/mil 2.62~1 O6 2.96~10~ 2.32~10' 
1% point (min) 

Asymptotic Covariance Matrix . -  

PO 
PO 200,957 

p̂  ; 
symmetric 

- 901 .I 1 4.1599 
61.017 - 0.27439 0.047608 

i 
P 

Maximum Log Likelihood = - 141.66 

A 

failure or censoring time t i ,  one can then use ui = F&) as a transformed 
residual. Such residuals come from a uniform distribution on the unit inter- 
val (OJ). Also, one can use ei = exp(iri), which come from a standard 
exponential distribution (e= 1). Such transformed residuals can be observed, 
censored, or in an interval. Plot such residuals on suitable distribution paper. 

STRESS, volts/mil 

Figure 22 .  1% line and 95% confidence limits vs. stress - cable insulation 1. 
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For example, use Weibull paper for the ei; this suitably displays the lower tail 
of the sample. Also, crossplot the ui (on a linear scale) or ei (on a log scale) 
against other variables (on a suitable scale) to examine their effect. Such 
residuals are transformed to an artificial range. (3.13) below defines a better 
equivalent residual for any varying stress. That residual has the natural range 
of the time data. 

Comparisons. The step-stress test was run on another type of cable insu- 
lation - insulation2 - with a single failure mode. ML results appear in 
Tables2.2 and 2.3. A test purpose was to compare the two insulations. 
Methods of Chapter 9 assess whether corresponding parameter estimates 
differ convincingly relative to their uncertainties. The two insulations are 
compared below with respect to their 

1. shape parameters, ,9, 
2. power parameters, p, 
3. entire models (,9,p, and VO simultaneously), 
4. 1 percent points (in minutes) of life at 400 volts per mil. 

Shapes. Each confidence interval for a in Tables 2.2 and 2.3 overlaps 
the other estimate. Thus the two ,9 estimates do not differ convincingly. The 
following formal comparison for the power parameters could be used for ,9. 

Powers. The observed difference of the two power parameter estimates is 
19.937-9.601 = 10.336. These estimates are statistically independent. So the 
variance of their difference is the sum of their variances, 49.004 +4.1599 = 

53.1639. Approximate 95% confidence limits for the true difference are 
10.336 ? 1.960(53.1639)”’ or -3.955 and 24.627. This interval encloses zero. 
So the observed difference is not convincingly different from zero. 

Models. One compares entire models for equality with the LR test, 
which simultaneously compares corresponding parameter estiFates. For the 
two insulations, the sum of their maximum log likelihoods is f = (- 103.53) 
+ (-141.66) = -245.19. For the same model fitted to the pooled data, the 
maximum log likelihood is = -265.15. The LR test statistic is T = 

2{ -245.19-(-265.15)) = 39.92. If the two models are the same, this statis- 
tic is approximately chi-square distributed with three degrees of freedom. 
Since T = 39.93 > 16.27 = $(0.999;3), the parameter estimates of the two 
models differ very highly significantly (0.1% level). This is due largely to the 
difference between the Vo estimates; they can be compared as the power pa- 
rameters were. 

1% points. The confidence interval for each 1% point of specimens in 
Tables 2.2 and 2.3 overlaps the other estimate. This indicates that the two es- 
timates do not convincingly differ. The estimates could be formally com- 
pared with the method used for the power parameters. 
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3. VARYINGSTRESS MODEL AND DATA ANALYSES 

Purpose. Section 3.1 presents an example of varying-stress data, Sec- 
tion 3.2 extends the basic cumulative exposure model to such data, and Sec- 
tion 3.3 presents results of fitting such a model to the example data. 

3.1. Varying-Stress Data 

Purpose. The insulating oil data of Problem 4.10 illustrate the model and 
data analyses for a varying-stress test. The main purpose of the test and anal- 
yses was to estimate a model for time to oil breakdown under constant volt- 
age. A second purpose was to assess whether the model and an exponential 
distribution adequately describe time to breakdown at constant voltage, as 
suggested by engineering theory. 

Test method. The accelerated test employed a pair of parallel disk elec- 
trodes immersed in the oil. The voltage V across the electrodes was in- 
creased linearly with time t .  That is, V=Rt is a ramp voltage where R is the 
rate of rise in volts/sec. The voltage at oil breakdown was recorded (Prob- 
lem 4.10). Equivalently time to breakdown could have been recorded. 60 
breakdown voltages were observed at each of six combinations of three rates 
of rise R (10, 100, lo00 V/sec) and two electrode areas A (1 and 9 sq. in.). 
So the data consist of 360 breakdown voltages. Figure 3.3 of Chapter 1 dep- 
icts ramp stress and data. 

Test plans. A test plan consists of selected stress patterns and the num- 
ber of specimens to be subjected to each pattern. The oil breakdown exam- 
ple involves rate of voltage rise and electrode area. The plan involves two 
areas and three equally spaced rates of rise (on a log scale). Each of the six 
combinations of rate of rise and area has the same number of specimens. In 
statistical parlance, this is a 2x3 design with 60 replicates. Engineering test 
plans traditionally (and inefficiently) use equal allocation of specimens and 
equally spaced stress levels. There appears to be no work on optimum or 
efficient test plans for ramp tests or other tests with varying stress. A better 
plan for the oil breakdown test no doubt has unequally spaced rates of rise 
and unequal specimen allocation with respect to both rate of rise and area. 

3.2. Varying-Stress Model 

Overview. This section presents a general model for varying-stress test- 
ing. It extends the basic cumulative-damage model for step-stressing of Sec- 
tion 3.2 to varying stress. While plausible, this basic cumulative-damage 
model lacks adequate experimental verification. The varying-stress model 
consists of a constant-stress model and the basic cumulative-damage model. 
The model applies to a single failure mode. 
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Constant-stress model. For the theory here, the assumed constant-stress 
model follows. For simplicity, assume that life is a function of one accelerat- 
ing stress V and possibly other (constant) variables x. Also, the model has a 
scale parameter a(V,x) that is a function of V,x ,  and coefficients. Those 
coefficients and all other model parameters are constants to be estimated 
from data. The power-Weibull and Arrhenius-lognormal models are such 
models. Also, the following theory extends to such constant-stress models 
with more than one accelerating variable. 

Oil example. For the oil example, the constant-stress model consists of a 
Weibull life distribution with a constant shape parameter p. The characteris- 
tic life q, is an inverse power function of voltage stress V; namely, q,(V) = 
(Vo/V)P where Vo and p are parameters characteristic of the oil and test 
method. The effect of the area A of the test electrodes is modeled as in 
Chapter 7. Thus the constant-stress model for time t breakdown is 

F( t  ; V, A )  = 1 - exp{ -A [ ~ ( V / V ~ ) P I ~ ~ ) .  

a(V, A )  = (Vo/V)P/A lip. 

(3.1) 

( 3 4  

Its characteristic life is a function of V and A, namely, 

Thus this model has one accelerating variable, voltage V, and one other vari- 
able, area A. 

Types of varying stress. For purposes of this section, the applied 
accelerating stress V ( t )  is any (integrable) function of time t .  In practice, 
V ( t )  usually is one of the following. 

1. A step stress, as described in Section 2. 
2. A rump stress. That is, stress increases linearly (from zero) with time. 
3. A cyclical stress. Examples include sinusoidal and square waves. 
4. A randomly varying stress over time (stochastic loading) with a given load 

distribution and autocorrelation. 
5. A nonrepeating pattern. 

Also, the following theory readily extends to situations with more than one 
accelerating stress and other engineering variables. 

Cumulative exposure. When the stress V ( f )  is a function of time, the dis- 
tribution scale parameter a(V,x)  is a function of time; namely, a(t) = 

a[V(t),x]. The corresponding cumulative exposure s(t )  (or damage), which 
appears as a sum in (2.13), becomes the integral 

E ( f )  = dt /a[V( t ) ,x ] .  (3.3) 

This is the limit of a step-stress approximation to V(t )  which approaches 
V ( t )  as all intervals 4-0. e(t) is a function of V(t) ,  x, and the model param- 
eters. Some authors assume (3.3) as the basic ctimulutive exposure model. 
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This limiting argument shows that the step-stress model (with a segmented, 
cumulative distribution) of Section 2.2 is equivalent to (3.3). Most authors 
assume (3.3) and regard the step-stress model as a special case. Then the 
population fraction failed by time t under varying stress V ( t )  is 

Fo[t;‘Y(t)”,~] = G[c(t)]; (3.4) 

here G[ ] is the assumed cumulative distribution with the scale parameter 
set equal to 1. ‘ V ( t ) ”  in quotes emphasizes that V ( t )  does not merely 
replace V in the constant-stress model. Other distribution parameters do not 
depend on V but may depend on x. All other results in this chapter are spe- 
cial cases of this model. 

Oil example. The oil is subjected to a ramp voltage V ( t )  = Rt where R is 
the rate ofrise of voltage stress in volts per minute. The cumulative exposure 
at time t is 

.(I)=( d ! / ~ [ V ( t ) ~ ] = ( A ’ / B ( R t / V o ) P d l  =A’/@(R/Vo)PtP+l/@ t 1). (3.5) 

The distribution of time r to oil breakdown is 

Fo(r ;“RI”,A) = I-exp{-[c(t)]@} 

= l -exp{- [ tP+’A1/B(R/ I /o )P/ (p  +I)]@} 

= 1 - exp{ - (t/a’)fl). (3.6) 

(3.7) 

This is a Weibull distribution with shape and scale parameters 

B’ = /3(p tl), a’ = [@ tl)(vo/R)P/A’l@]1/@+’). 

F O  (V ; “RR~ ”, A ) = 1 - exp[ - (~/a”)@”].  

p” = p(p f l), a” = [vg (p t 1)R /A l/@]’/@ +I). 

Yurkowski and others (1967) present this result. Equivalently, the distribu- 
tion of breakdown voltage V=Rt is 

(3.8) 

(3.9) 

This is a Weibull distribution with shape and scale parameters 

Moreover, the distribution of ln(V) is extreme value with location parameter 

ln[a”(R,A)] = v0 t rlln(R) t r2ln(A). (3.10) 

This is a linear relationship where 

72 = -I/[/@ i- I)], 71 = I/@ +I), 70 = [I/@ tl)]ln[@(p +1)]. (3.11) 

The extreme value scale parameter is 

6 = l/F’ = I/[@@ +I)] = -72. (3.12) 

For the linear relationship (3.10), the four parameters 70,71, 72, and 6= -r2 
are fitted to the oil data in the next section, using standard features of a ML 
program. Directly fitting the model with three parameters Vo,p, and /3 yields 
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more accurate estimates of those parameters but requires a user written 
likelihood for a ML package. 

Varying use stress. Preceding material concerns varying test stress. 
Some products in actual use undergo a varying stress V*(t).  The model and 
method above also yield the product life distribution Fo[t ; “V*(t)”] under the 
stress pattern V*(t) in actual use. To estimate this distribution, first estimate 
the parameters of the constant-stress model from test data (constant or vary- 
ing test stress). Then use those estimates in Fo[t ; “V*(t)”] from (3.4) to esti- 
mate this distribution. 

33. Maximum Likelihood Analyses 

Overview. This section describes ML fitting of the basic varying-stress 
model (3.4) to data. This section also presents the results of the ML fit of 
the model (3.8) to the oil data and checks on the model and data. Of course, 
a complete analysis of such data includes graphical display and analysis. 

ML fit. According to the model, the cumulative distribution of time 1 to 
failure of specimen i is Fo[fi ; “14(t)”ji] = G ( q )  in the notation of Sec- 
tion 3.2. Here the exposure E; of specimen i is a function of its stress pattern v(t), its other variable valuesxj, and the model parameters. Usually F o (  ) is 
written as a function of the parameters of the constant-stress model. For the 
oil example, p ,  Vo, and @ are those parameters. Also, Fo( )can be written as 
a function of parameters more suited to the varying-stress model. For the oil 
example, 70, 71, and 72 in (3.10) are such parameters. The ML estimates of 
either set of parameters are the parameter values that maximize the sample 
likelihood with Fo( ). Of course, for an observed failure time t i ,  the likeli- 
hood isfo[ti ; “ ~ ( t ) ” , x i ] ,  the probability density. For a right censored time fi, 
the likelihood is l - F o [ f i  ; “v.(fi)”,xi] .  Left censored and interval data have 
their corresponding likelihoods. The ML theory and methods of Chapter 5 
apply to this likelihood and such varying-stress data. Such a likelihood must 
be programmed and added to a ML package. 

Fitted models. For the oil breakdown data, the fitted model (3.6) for 
time t to breakdown under constant stress is 

F( t  ; V, A )  = 1-exp{ -A[f(V/42.298)’6.40]0.8204}. 

The fitted model for (3.8) for voltage Vat breakdown under ramp stress Rt is 

Fo(V; “Rt ”, A )  = 1 - exp[ - exp{ [In(v) - 3.69370 -0.057471n(R) 

+ 0.070051n(A )]/0.07005}]. 

Table 3.1 displays the ML estimates and (normal approximate) 95% 
confidence limits for both sets of model parameters. The confidence interval 
for p is (0.7396,0.9101). This does not enclose 1, which suggests that the life 
distribution at constant voltage is not exponential. On the other hand, varia- 
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Table 3.1. ML Fit for Oil Breakdown under Ramp Voltage 

Progressive-Stress Model (3.11) and (3.12) 
ML Est. 95% Conf. Limits 

70 3.69370 3.67176 3.71564 
71 0.05747 0.06180 0.05314 

72 = -6 -0.07005 -0.07475 -0.06535 

Covariance Matrix (multiply each hy lo-’) 

70 71 72 
A h h 

ill 12.5354 -2.2702 -0.5331 
- 2.2102 0.4885 0.0298 
-0.5331 0.0298 0.5761 72 

11 

Maximum Log Likelihood = 1050.4205 

Constant-Stress Model 
ML Est. 95% Conf. Limits 

16.40 15.09 17.71 
42.298 - - 

P 0.8204 0.7396 0.9101 
P 
VO 

bility of test conditions could increase the scatter in the data and thereby 
lower the /3 estimate below 1. 

Assess model and data. Assess the model and data with the ML methods 
of Chapter5 The following paragraphs include a test for equal shape 
parameters at all test conditions, a test of fit of the assumed relationship, and 
examination of residuals. 

Equal shape parameters. The varying-stress model for breakdown volt- 
age has the same shape parameter value fl’ = p(p t 1) at all six test condi- 
tions. The following LR test (Chapter 5) assesses this assumption. Table 3.2 
displays results of fitting 1) six separate Weibull distributions to the six data 
sets and 2) a model with six Weibull distributions with a common shape 
parameter and six separate scale parameters for the six data sets. The test 
statistic is T = 2[-1023,92508-( -1029.0448)] = 10.24. The two models 
have 12 and 7 parameters. So the statistic has u = 12-7 = 5 degrees of free- 
dom. Since T = 10.24 < 11.07 = ?(0.95;5), the shape parameter estimates 
do not differ significantly at the 5% level. However, T = 10.24 > 9.236 = 

2(0.90;5), the shape parameter estimates differ significantly at the 10% level 
- very slight evidence. This suggests that further examination of such esti- 
mates may yield further insight. A plot of the six estimates and confidence 
limits suggests that p” may depend on rate of rise. 

Assess 1/B‘ = -%. In the progressive-stress model for oil breakdown 
voltage (3.12), l/P” = -r2. A LR test for this equality follows. The ra,mp- 
stress model has three parameters yo, 71, and 72 = -l/p” and f‘ = 
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Table 3.2. ML Fits to Oil Breakdown Data 

1) SEPARATE WEIBULL DISTRIBUTION FOR EACH TEST CONDITION 

Rate Area 2 a & T 4  var(Z) var(p^*’) cov(a ,P A,, A,, 

10 1 - 174.69513 44.56709 10.83883 0.3150676 1.133066 0.1941754 
100 1 - 176.59302 50.67680 12.52561 0.3013819 1.642074 0.2168922 

1000 1 - 181.65427 60.05503 13.31633 0.3764391 1.716795 0.2539894 
10 9 - 165.58370 39.69478 12.21972 0.1917803 1.678554 0.1638259 

100 9 - 155.44341 46.24801 16.45265 0.1455555 1.870928 0.1993759 
lo00 9 - 169.95555 50.85969 14.68103 0.2182360 2.432529 0.2107394 

-1023.92508 = total 

2) COMMON T# AND SEPARATE Li’ FOR EACH TEST CONDITION 

- 1029.0448 12.99680 0.2932445 

3) RELATIONSHIP (3.10) AND l/P” f -72 (4 PARAMETERS) 

Covariance Matrix (multiply each term by 

ML Est. 7 0  71 72 1 lP” 
70 3.673202 15.332557 symmetric 
71 0.05843506 - 2.401 166 0.494523 
71 -0.058626 -2.094359 0.103338 1.445912 

l/P” 0.07856677 - 0.631478 0.024987 0.072873 1.059068 

Maximum Log Likelihood = - 1035.4269 

- 1050.4205 ( fym Table 3.1). The model (3.11) where l//3”+ -y2 has four 
parameters and f = - 1035.4269 (from model 3 of Table 3.2). The LR statis- 
tic for the equality is T = 2[ - 1035.4269- (- 1050.4205)] = 29.99. This statis- 
tic has 4-3 = 1 degree of freedom. Since T = 29.99 > 10.83 = 2(0.999;1), 
l/p” differs very highly significantly (0.1% level) from -72. This suggests 
that the ramp-stress model does not adequately fit the data. The separate es- 
timates are 4 2  = 0.058626 and 1 /2*  = 0.07856677 (Table 3.2). l/p” is the 
ML estimate of the scale parameter of the extreme value distribution of In 
voltage. It estimates the scatter of the data about the fitted relationship, 
whereas ;2 estimates the slope of the relationship. Thus there is more scatter 
in the breakdown data than predicted by the ramp-stress model. The greater 
scatter may be due to varying test conditions. The estimate (model 2 of Ta- 
ble 3.2) of a common B’ (wi$ a separate estimate for the scale parameter a;’ 
for each test condition) is l/B* = 1/12.99680 = 0.076942. It is another esti- 
mate of l/p” which is not inflated by possible lack of fit of the relationship 
(3.10). The previous estimate (0.07856677) could be inflated by lack of fit.  
Both estimates of 1/f’ reflect greater scatter in the In voltage data than 
predicted by the progressive-stress model (3.8). The equality hypothesis 
above could equivalently be tested with Wald’s test (Chapter 9). In conclu- 
sion, the four-parameter model represents the data better. 
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Assess the relationship. The progressive-stress model for breakdown 
voltage employs the relationship (3.10). The following LR test (Chapter 5 )  
assesses adequacy of that relationship. Constrained model 3 with the rela- 
tionship (3.10) and a separate shape parameter was fitted to the data. Thus 
here l/p” # -72, and this model has four parameters, w h p a s  the model 
(3.6) has three. The resulting maximum log likelihood is f‘ = -1035,4269. 
Model 2 with six Fparate scale parameters (for the six test conditions) and a 
common /3” has f = - 1029.0448 (model 2 of Table 3.2). The test statistic is 
T = 2[ - 1029.0448- (- 1035.4269)] = 12.76. The models have 4 and 7 pa- 
rameters. So T has Y = 7-4 = 3 degrees of freedom. Since T = 12.76 > 
11.34 = 2(0.99;3), there is highly statistically significant evidence (1% level) 
that the relationship does not adequately fit  the data. A possible explanation 
of this is that the 1 and 9sq. in. electrodes may not have the exact same 
separation. An analysis (omitted here) shows that a 3% difference in this tiny 
separation (of a few mils) would produce such a lack of fit. 

Residuals. For a test with varying stress, the definition of a residual is 
not obvious. Suppose, as above, that the constant-stress model has a cumula- 
tive distribution G(t /a;B) with a constant shape parameter B and scale pa- 
rameter a(V, x )  that is a function of the accelerating stress(es) I/ and other 
variable(s) x.  For concreteness, regard G( ) as a Weibull distribution. Sup- 
pose that specimen i has varying stress y(t), other values xi ,  and observed 
life t i .  Its ‘%iiniiilative exposure” residual is 

ei = Jd’ d t / 2 [ V $ ) j i ] .  (3.13) 

Here $(V, x )  is the ML estimate of the constant-stress relationship. These 
residuals are (approximately) a random sample from the constant-stress dis- 
tribution G(e ; p )  where cr = 1. To check the assumed distribution G( ), plot 
these residuals on paper for the distribution. For example, for the oil data, 
plot such residuals on Weibull paper. The definition (3.13) applies also to 
censored and interval residuals. Also, one can crossplot such residuals 
against any variables of interest to examine them. The residuals used in 
Chapters 4 and 5 are the logs of these residuals. Thus one could equivalently 
plot the In residuals. For example, if G( ) is a Weibull distribution, then the 
In residuals come from an extreme value distribution. Invented by the 
author, cumulative exposure residuals have not been previously published. 

Oil example. For the oil data, (3.13) and (3.6) give the constant-stress 
residual for a specimen i at Ri,Ai as 

A A A  

ei = A ~ / ~ ( R ~ / v ~ > P ~ + J + ~ / G  + 1). 

These residuals come from (approximately) a Weibull distribution with scale 
parameter 1 and shape parameter /3. Equivalently expressed in terms of volt- 
age V, = Riti, 

ej = A ~ / ~ ( v , / v ~ > P ^ ( v ; . / R ~ ) / G  + I). 
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For the oil data model, one could also use the natural residuals er’= 
V;./g’(Ri,Ai), which come from a Weibull distribution with scale parameter 
1 and shape parameter /?” = ,9(p + 1). For a general V(t),  such simple natu- 
ral residuals el’often do not exist, and the ei must be used. 

Comparisons. Preceding paragraphs present ML comparisons to assess 
the model. ML comparisons of Chapter 9 can also be used to compare two 
or more data sets from varying-stress tests. For example, Problem 8.4 con- 
cerns least-squares comparisons of two sets of oil breakdown data. Prob- 
lem 10.6 concerns ML comparisons of those two sets. Problem 10.8 concerns 
ML comparisons of two sets of oil breakdown data - one under ramp stress 
and the other under constant stress. 

PROBLEMS (* denotes difficult or laborious) 

10.1. Cable plots. Devise and make suitable probability, relationship, 
and other plots of the data on cable insulation 1 of Section 2. State your 
findings and conclusions from your plots. 

10.2. Oil breakdown plots. Devise and make suitable probability, rela- 
tionship, and other plots for the oil breakdown data of Section 3. State your 
findings and conclusions from your plots. 

(a*) In a ML program, install an appropriate likelihood function for the 
three-parameter model of Section 2.2 and fit the model. Calculate and 
plot Figure 2.2. 
Carry out the analytic checks on the model. 

103. Cable fit. Use the data on cable insulation 1. 

(b) 
(c) Calculate and plot residuals. 
(d) Suggest further analyses. 
(e) Carry out (d). 
(f*) Do (a)-(e) using a lognormal distribution (see Problem 10.14). Com- 

ment on results different from the Weibull ones. 

10.4. Oil fit. Use the oil breakdown data (Set 1) of Section 3 (Prob- 
lem 4.10). Do (a)-(f) of Problem 10.3. The breakdown voltages are recorded 
to the nearest volt. Taking into account the interval data, do (a) and (b) of 
Problem 10.3. Comment on different results from the interval data analyses. 

105. Oil set 2. Use the oil breakdown data (Set 2) of Problem 8.4. Suit- 
ably plot the data. Do (a)-(f) of Problem 10.3. The breakdown voltages are 
recorded to the nearest volt. Taking into account the interval data, do (a) 
and (b) of Problem 10.3. Comment on differences in results from the inter- 
val data analyses. 

10.6. Oil comparisons. Compare Sets 1 and 2 of the oil breakdown data 
as follows. 
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(a) 

(b) 

(c) 
(d*) Do (a)-(c) using a lognormal distribution. Comment on results 

(e) Suggest further analyses. 
( f )  Carry out (e). 

10.7. DriR and correlation. The oil breakdown data of Section 3 were 
collected with same oil sample and the same two pairs of electrodes. The 
dielectric experts wish to find out whether repeated breakdown of the oil im- 
proved or degraded its breakdown strength, as the breakdowns could be re- 
moving defects or creating them. The data (Problem 4.10) were collected in 
the following order. The six test conditions were applied in a cycle with the 
order: 

Order: 1 2 3 4 5 6  
RateofRise(V/sec): 1000 1000 100 100 10 10 

Each cycle yielded six breakdown voltages, and the cycle was repeated 60 
times to yield the 360 breakdown voltages. In Problem 4.10, for the time or- 
der of the data at a test condition, read across row 1, then row 2, etc. 
(a) Graphically analyze the original data to assess whether there is a trend 

to the breakdown voltage at each test condition. Also, make a plot of 
cumulative voltage versus order. 

(b) Do (a) for residuals. 
(c) Use a relationship and analytic (ML) methods to assess for a trend. 

All data analysis methods in this book (and most others) assume that the ob- 
servations are statistically independent. The breakdown voltages may be posi- 
tively serially correlated. That is, low voltage may tend to follow low voltage, 
and high voltage may tend to follow high voltage. Such serial correlation 
could arise from drifting test conditions, for example, drifting temperature. 

Compare probability and relationship plots of the data sets, and state 
your conclusions. 
Use ML methods to compare parameters for equality - separately and 
simultaneously. State your conclusions. 
Plot residuals and state your conclusions. 

difference from those with the Weibull distribution. 

Electrode Area (in2): 9 1 9 1 9 1  

(d) For a test condition, crossplot each observation against the one preced- 
ing it. Does the plot show evidence of trend (correlation)? Note that 
the marginal distributions are Weibull rather than (log) normal. 

(e) Use the following nonparametric test for correlation. Divide the plot 
into four quadrants at the median observation on each scale. Equal 
numbers of observations should fall into each quadrant when there is no 
correlation. Use an appropriate contingency table test with fixed mar- 
ginal numbers. 
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( f )  Repeat (d) and (e) for the autocorrelation plot of each observation plot- 
ted against the second one preceding it (a lag of 2). In view of the two 
plots, is looking at the plot for lag 3 worthwhile? Why? 

10.8. Assess oil model. To assess the cumulative-exposure model of Sec- 
tion 3, a ramp test and constant-stress test were run with the same oil sample 
and same two pairs of electrodes. The resulting data appear below. The 
constant-voltage data are censored on the right and the left. At high voltage, 
some breakdowns occurred before the applied voltage reached its constant 
value. These are noted with a failure time of 1-, that is, less than one 
second. It may be best to treat all early failures as censored on the left, say, 
below 3,4, or 5 seconds. 

Constant-Stress Times (Seconds) to Breakdown 

45kV 40kV 35kV 30kV 25kV 50kV 45kV 40kV 35kV 30kV 

1- 1 30 50 521 1- 1- 49 287 908 
1- 1 33 134 2,517 1- 1- 60 301 908 

2 3 87 882 12,553 2 15 211 582 3,245 
2 12 93 1,443 40,290 3 23 245 966 3,263 
3 25 98 1,468 50,560t 6 35 259 1,184 9,910 
9 46 116 2,290 52,900+ 21 50 274 1,208 38,990 

13 56 258 2,932 67,270t 83 61 440 1,585 41,310 
47 68 461 4,138 83,990t 112 93 619 2,036 44,170 

55 323 1,350 29,180t 85,700t 154 143 776 4,962 78,750t 
71 417 1,495 86,100+ 86,420t 303 229 920 68,730t 86,620t 

(a) Graphically display the data from both tests. Graphically estimate 
model parameters, and assess each model and the data. Are the esti- 
mates from the two data sets consistent with each other? 

(b) By ML separately fit the appropriate model to each data set. Are the 
data consistent with a shape parameter of 1 in the constant-stress 
model? Why? 

(c) Examine the residuals from (b), and comment on your findings. 
(d) Make ML comparisons of corresponding parameter estimates from the 

two tests - separately and simultaneously. State conclusions. 
(e) Describe how to simultaneously fit the two models to the two data sets 

to get pooled estimates of parameters. 
( f )  The ramp data appear in the order collected. Make plots to assess for 

trend and serial correlation, as described in Problem 10.7. 
(g) Suggest further analyses. 
(h) Carry out (g). 

9 sq. in. electrode 1 sq. in. electrode 

---------~ 

1- 2 41 187 4,056 1- 5 133 531 2,458 

50 109 1,182 15,750 85,500+ 113 142 704 3,150 74,520t 
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Ramp Test Breakdown Voltages 

1 v / s  1ov/s loOV/s lOoOV/s -- 
1219--- 1 9 1  

28 18 37 35 37 40 58 
32 35 44 40 42 41 46 
36 37 43 37 47 40 41 
32 19 35 36 46 41 52 
30 22 37 33 50 43 56 
37 38 42 40 50 46 57 
39 37 42 32 50 42 58 
35 37 39 38 42 42 62 
38 34 41 38 51 41 52 
34 24 43 26 47 44 52 
36 37 40 32 52 48 53 
37 45 46 36 51 49 60 
35 32 33 34 57 49 57 
38 32 38 40 51 44 56 
34 35 45 35 50 43 57 
38 32 42 36 53 46 53 
38 38 47 33 59 42 63 
40 40 44 37 45 43 62 
39 37 39 39 52 50 57 
38 39 50 39 49 50 53 
39 35 43 42 48 50 67 
42 32 44 41 57 46 61 
41 33 43 44 53 48 57 
43 38 41 45 56 43 61 
38 30 45 37 46 43 62 
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47 
37 
47 
44 
50 
48 
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47 
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46 
41 
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43 
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44 
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45 
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52 
48 
50 
41 
50 

- 

10.9.* Cable insulations. A voltage step-stress test of three types of 
cryogenic cable insulation yielded the following data. Each pair of lines 
shows the time (in minutes) at each voltage for a specimen. 
(a) Separately fit the model of Section 2.2 to each type of cable. 
(b) In view of the small number of specimens, do you think that assessing 

the model and residuals is worthwhile? Why? 
(c) Compare corresponding parameter estimates - separately and simulta- 

neously. 
(d) Suggest further analyses. 
(e) Carry out (d). 

Insulation A 

Volt. 250 500 768 845 929 1022 
Min. 15 15 15 15 15 12.2 

Volt. 285 500 768 845 929 
Min. 15 15 15 15 12.3 
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Volt. 
Min. 
Volt. 
Min. 
Volt. 
Min. 
Volt. 
Min. 

500 
20 
665 
25 
500 
15 
500 
15 

Insulation B 
Volt. 250 
Min. 15 
Volt. 250 
Min. 15 
Volt. 500 
Min. 15 
Volt. 500 
Min. 15 

Insulation C 
Volt. 250 
Min. 15 
Volt. 250 
Min. 15 
Volt. 500 
Min. 15 
Volt. 500 
Min. 15 
Volt. 500 
Min. 15 
Volt. 605 
Min. 1015 
Volt. 605 
Min. 1020 

66.5 
20 
732 
10 
550 
15 
698 
15 

732 
20 
805 
15 
605 
15 
768 
10 

805 
20 
886 
15 
665 
15 
805 
10 

886 929 
20 20 
929 974 
15 15 
732 805 
15 15 
845 886 
10 10 

500 768 805 
15 15 3.0 
500 550 605 665 698 
10 15 15 15 15 
605 665 732 768 805 
15 15 15 15 15 

605 665 732 768 805 
15 20 25 25 5.6 

500 
15 
500 
15 
605 
15 
605 
15 
698 
15 
665 
270 
665 
15 

768 
15 
768 
15 
698 
15 
698 
15 
768 
15 
719 
945 
732 
15 

845 
15 

805 
15 
768 
15 
805 
15 
845 
15 
768 
15 
805 
15 

929 
0.4 
845 
15 
805 
15 
886 
15 
886 
15 
805 
15 
886 
10 

886 
3.3 
845 
15 
929 
15 
929 
15 
845 
15 
929 
20 

974 
20 
1022 
15 
886 
15 
929 
10 

1022 1072 1123 1179 
10 10 10 1.1 
1072 
0.75 
974 1072 
15 13.55 
974 1022 1072 
10 10 8.4 

732 768 
15 15 
845 886 
15 0.01 

886 929 
15 15 
974 1022 
15 15 
974 1022 
15 7.5 
886 929 
15 15 
974 1022 
15 14.4 

805 
0.05 

974 1022 1072 1124 
15 15 15 5.0 
1072 
5.4 

974 1022 1072 1124 
15 15 15 1.9 

10.10.8 Derive model. Derive all formulas for the model and example of 
Section3.2, showing all intermediate steps. Make a numbered list of all 
assumptions used in the derivation and model. 

the constant-stress model when the test stress is constant. 
10.11.8 Constant stress. Verify that the model of Section 3.2 reduces to 

10.12.* Step stress. Verify that the model of Section 3.2 reduces to the 

10.13.8 No sequential effect. Derive (2.12) and (2.13) from the model of 

10.14.* Lognormal. Repeat the derivation of the model of Section 3.2, 

step-stress model of Section 2.2 when the varying stress is a step stress. 

Section 2.2, and show that (2.13) holds for any order of the Z steps. 

but use the lognormal distribution in place of the Weibull. 
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10.15. Lognormal fit. Use the oil breakdown data of Section 2. 
(a*) With a ML program, fit the lognormal model of Problem 10.14. 
(b) Carry out the analytic checks on the model. 
(c) Calculate and plot residuals. 
(d) Suggest further analyses. 
(e) Carry out (d). 
( f )  Point out and discuss differences between these results and those using 

a Weibull distribution. 

10.16.* Read-out data. Use the step-stress model of Section 2.2 with the 
power-Weibull model. Assume that the n specimens are inspected for failure 
at the end of each step i at stress level q, i = 1,2, - - * , I. 
(a) 
(b) Calculate the likelihood equations. 
(c) 

Write the sample log likelihood. 

Calculate the true theoretical Fisher information matrix. The expecta- 
tions are easy to evaluate, since the number of failures in an interval 
has a binomial distribution. 
Calculate approximate normal confidence limits for a percentile of the 
life distribution at constant design stress V,. 
Do (a)-(c) for a test with removal of specimens. That is, n specimens 
enter interval 1, n2 specimens enter interval 2 (after removals at in- 
spection l), * - - , nx specimens enter interval I (after removals at in- 
spection I - 1). 

(f*) Do (a)-(e) for a general distribution where the In of the scale parame- 
ter is a linear function of a (possibly transformed) stressx. 

10.17.* Square-wave stress. Use the general model of Section 3.2 where 
the life distribution is G [I /O(x)] and O(x) is the scale parameter at stress level 
x. Other distribution parameters do not depend on x. Suppose that speci- 
mens on test run under a cyclic square-wave stress which has length r and al- 
ternates between two levels, x’ and x” with scale parameters e‘ and e”. In 
each cycle, a specimen is at stressx’ a time fr and at x” a time (1-f)r. As- 
sume that the time t to specimen failure is much greater than the cycle length 
r. The following is a probabilistic version of the deterministic model of Rabi- 
nowicz and others (1970). Note that this model makes no assumption about 
the life-stress relationship. 
(a) 
(b) 

(c) 

(d) 

(e) 

Calculate the approximate cumulative exposure to time t. 
Give the distribution of time to failure on test. Give the expression for 
the scale parameter of the distribution as a function off. 
Suppose x’ is the design stress and x” is an elevated stress. Suppose 
there are two groups of specimens where ni specimens run at x’ a frac- 
tion of time fi, i = 1,2. Show how to use such data (complete or cen- 
sored) to estimate 0‘ and the life distribution at x’, which is constant, in 
actual use. 
Write the sample log likelihood for (c) for complete data and a lognor- 
mal distribution with a constant u. This likelihood is a function of the 

(d) 
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two medians. Derive the likelihood equations, ML estimates, and the 
local estimate of asymptotic covariance matrix. Derive approximate 
confidence limits for a percentile at design stress x’. 

(e*) Repeat (d) for a singly time censored sample (times t’ and t”) for each 
group. 

( f )  Repeat (d) for an exponential distribution and time censored data. 
Formulas are simpler with failure rates rather than means. 

(g*) Repeat (d) for a Weibull distribution and time censored data. 
(h) Describe a test plan and hypothesis test for the validity of the relation- 

ship from @) between the scale parameter I9 and f. 
(i*) Develop optimum test plans for such a model. 
(i*) Assume that ln[e(x)] is a linear function ofx. Repeat (a)-(h). 

10.18.* Sinusoidal stress. Use the general model of Section 3.2 where 
the In scale parameter is a simple linear function of a (possibly transformed) 
stress x. Suppose that specimens run under sinusoidal stress x ( f )  = 
Asin(27rt/r) with period r. Assume that the time t to specimen failure is 
much greater than r. 

Calculate the (approximate) cumulative exposure to time t .  
Give the general distribution of time to failure. Give the expression for 
the distribution scale parameter as a function of the amplitude A and 
period r. The life of some products is a function of frequency 1/r. 
Does this model have such behavior? 
Consider a test plan where specimen i runs at amplitude Ai, 
i = 1,2, * * - ,n. Write the sample log likelihood for (b) for a lognormal 
distribution and complete data. Derive the likelihood equations, the 
ML estimates, and the asymptotic covariance matrix. Derive approxi- 
mate confidence limits for a percentile at a design stress amplitude A’. 
Do (c) for an exponential distribution, specimens at two stress ampli- 
tudes, and multiply right censored data. 
Do  (c) for a Weibull distribution with an assumed value of the shape 
parameter, specimens at two stress amplitudes, and multiply right cen- 
sored data. 
Do (c) for a Weibull distribution and multiply right censored data. 

10.19.* Random stress. Suppose that stress on a specimen is random. 
That is, the amount of time a specimen is under stress level x is given by a 
known probability density f ( x )  or “load spectrum.” Use the general model of 
Section 3 where the In scale parameter is a simple linear function of a (possi- 
bly transformed) stress x. Assume that a specimen undergoes the spectrum 
many times before failure. Do (a) to ( f )  of Problem 10.18. 

1020.* Optimum simple plan. A “simple” step-stress plan consists of 
two stress levels. Use the cumulative exposure model of Section 2.2, an ex- 
ponential life distribution, and a simple In linear relationship between mean 
fife I9 and a (possibly transformed) stress x,  namely, lnS(x) = a+/&. Assume 
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that the first step at level x1 lasts a time T,  and the second step at level x2 

lasts until all specimens fail. 
Write the sample log likelihood for 11 specimens. 
Derive the likelihood equations and the ML estimates of a and 8. 
Derive their true asymptotic covariance matrix. 
Derive the true asymptotic variance of the ML estimate of the mean 
at a design stress levelxo. 
Derive the time T* that minimizes the variance (d) and its minimum 
value. Calculate and plot T* and the minimum variance IrC as a func- 
tion of the standardized extrapolation < = (xo -xl)/(xl -xz). 
Compare this minimum variance with that from an optimum 
constant-stress plan with the same two stress levels and ~t specimens. 
Comment on the results. 
Do (a)-(f) for a test where the second step is censored at time T' > T. 

Do (a)-(g) for a Weibull distribution. 
Investigate such optimum plans to get further results. 



11 

Accelerated Degradation 

Purpose. Accelerated degradation is concerned with models and data 
analyses for degradation of product performance over time at overstress and 
design conditions. This chapter briefly introduces basics of accelerated 
(aging) degradation. This vast topic merits entire books for each area of 
application. 

Advantages. Accelerated degradation tests have some advantages over 
accelerated life tests. Performance degradation data can be analyzed earlier, 
for example, before any specimens “fail.” This further accelerates the test. 
This is done by extrapolating performance degradation to estimate a time 
when performance reaches a failure level. Such extrapolation allows one to 
examine the effect on life of different design choices or assumptions about 
the performance level resulting in failure. Such performance degradation 
data may even yield more accurate life estimates than life test data with few 
failures. Also, performance degradation can yield better insight into the deg- 
radation process and how to improve it. However, most such advantages can 
be achieved only if one has a suitable model for extrapolation of performance 
degradation and an appropriate definition of failure in terms of performance. 
Because of insufficient knowledge of such models for adhesive degradation, 
Ballado-Perez (1986,1987) suggests treating such data as life data to simplify 
modeling and data analysis. 

Overview. Section 1 briefly surveys applications of accelerated degrada- 
tion. Section 2 presents basic accelerated degradation models. Section 3 
shows how to analyze degradation data, using a specific application. Readers 
preferring simplicity and concreteness should first read Sections 2.1 and 3. 
Other sections, which are more abstract, can later be read more easily. 

1. SURVEY OF APPLICATIONS 

This section briefly surveys applications of accelerated (or aging) degra- 
dation. The survey includes bibliographies, various products and materials, 
and statistical methods. The survey in Section 1 of Chapter 1 is useful back- 
ground and includes relevant technical societies, journals, and meetings. 
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Bibliographies. Devoted to degradation applications are bibliographies 
by Carey (1985) and Kulshreshtha (1976). General bibliographies that con- 
tain degradation among other topics include those by Meeker (1980), Losickij 
and Chernishov (1970), Goba (1969), and Yurkowski, Schafer, and Finkel- 
stein (1969). Books and articles referenced in Section 1 of Chapter 1 contain 
such bibliographies and references on specific degradation applications, par- 
ticularly Section 1.4, which surveys wear, corrosion, creep, etc. 

Metals. Degradation of metal properties includes creep, crack initiation 
and propagation, wear, corrosion, oxidation, and rusting. References include 
ASTM STP 738 (1981) and 748 (1981), Bogdanoff and Kozin (1984), Yoko- 
bori and Ichikawa (1974), Zaludova (1981), and Zaludova and Zalud (1985). 
Many references in Section 1 of Chapter 1 pertain to such degradation. 

Semiconductors and microelectronics. The degradation of electronic 
performance of many such devices is observed in accelerated tests. Then a 
device is often defined to “fail” when its performance degrades below a 
specified value. Many references of Section 1 of Chapter 1 are pertinent, for 
example, Howes and Morgan (1981). Recently Carey and Tortorella (1987) 
and LuValle and others (1986,1988a,b) developed probabilistic degradation 
models based on physical mechanisms. 

Dielectrics and insulations. Measured properties include breakdown 
voltage, elongation, and tensile and flexural strength. Goba’s (1969) bibliog- 
raphy includes degradation references. Selected references include Simoni 
(1974,1983), Vincent (1987), Bernstein (1981), Whitman and Doigan (1954), 
Vlkova and Rychtera (1974), and Veluzat and Goddet (1987). 

Food and drugs. Virtually all accelerated food and drug testing is degra- 
dation testing for stability and shelf life. Performance includes the amount of 
active ingredient and bacteria level. All references of Section 1 of Chapter 1 
are pertinent, particularly Young (1988), Labuza (1982), FDA (1987), Beal 
and Sheiner (1985), and pharmacokinetic references of Lu and Meeker 
(1989). 

Plastics and polymers. Most accelerated testing of plastics and polymers 
is degradation testing of mechanical and other properties. Most references 
of Section 1 of Chapter 1 are pertinent. 

Statistical methods. Standard regression methods apply to most aging 
degradation data, as such data are usually complete. Such methods are refer- 
enced in Chapter 4. Nonlinear regression methods are often needed; books 
include Seber and Wild (1989), Gallant (1987), Borowiak (1989), Ratkowsky 
(1983), and Bates and Watts (1988). Especially useful and versatile are max- 
imum likelihood methods, which Chapters 5 and 9 cover. Lancaster (1990) 
presents statistical models that may extend to degradation processes. 
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2. DEGRADATION MODELS 

Purpose. This section briefly surveys some basic degradation models for 
consrunt stress. For the large and rapidly developing literature on such 
models, see the references of Section 1 and Chapter 1. Here Section 2.1 
presents the widely used Arrhenius rate relationship in detail. Section 2.2 
presents a general simple relationship for constant degradation rate. Sec- 
tions 2.3 and 2.4 extend that relationship to models with random coefficients 
and with random increments. Section 2.5 introduces mathematical rate func- 
tions. Section2 draws from and expands on the expositions of Zaludova 
(1981) and Zaludova and Zalud (1985), which draw from Gertsbakh and 
Kordonskiy (1969). Lu and Meeker (1989) present such models more 
abstractly and include pharmacokinetic references and other data analysis 
methods. The following paragraphs provide general background. 

Assumptions. Assumptions of all models below include: 

1. Degradation is not reversible. That is, performance always gets monotoni- 
cally worse. For example, cracks in metal continue to get longer, and 
breakdown voltage of insulation always decreases. Such models do not 
apply to products that can improve with exposure. For example, anneal- 
ing can increase the life of fatigued metal or plastic. 

2. Usually a model applies to a sirigfe degradation process (mechanism or 
failure mode). If there are simultaneous degradation processes and 
failure modes, each requires its own model. LuValle and others 
(1986,1988a,b) model competing processes. 

3. Degradation of specimen performance before the test starts is negligible. 

Another assumption that is separate from the degradation model is: 

4. Performance is measured with rtegfigibfe random error. Measurement 
error could be, but is not, included here in such models. Such error is 
important (“large”) when performance changes little compared to it. 
Young (1988) notes that pharmaceutical measurement errors are large. 

Statistical models. Much engineering work uses only a relationship be- 
tween performance, age, and the accelerating variable(s). Thus such a rela- 
tionship describes the “typical” performance. The statistical models below 
include a statistical distribution of performance around the typical value. 
Such a distribution is important in high reliability applications concerned with 
early failure in the lower tail. 

Advances. For many applications, adequate engineering relationships for 
degradation have not been developed. Engineers and scientists with 
knowledge of degradation physics will advance such theory. Also, statisti- 
cians will contribute. Abdel-Hameed and others (1984) present some recent 
developments. Various models in the engineering literature have not been 
well validated by comparison with data. On the other hand, once a model is 



524 ACCELERATED DEGRADATION 

specified, most statistical planning of degradation tests and data analyses are 
routine matters in principle. That is, they are standard or easy to develop but 
may be computationally laborious. 

Non-constant stress. Models for degradation testing with non-constant 
stress require a cumulative damage model (Chapter 10). Most such models 
assume that the product has a “Markov property.” That is, the rate of dam- 
age (degradation) depends only on the current stress and cumulative damage 
and not on other features of the previous stress history. This is not so for 
metal fatigue and other phenomena. Bogdanoff and Kozin (1984) present 
such cumulative damage models for structural materials. Iuculano and Zan- 
ini (1986) apply such a model to metallic layer resistors. Rosenberg and oth- 
ers (1986) and Yoshioka and others (1987) present such a model for stability 
of pharmaceuticals. The bibliography of Goba (1969) contains references on 
such models for electrical insulations. 

2.1. The Arrhenius Rate Relationship 

Applications. The Arrhenius rate relationship below is widely used for 
temperature-accelerated degradation. Applications and references include: 

Phamaceuficals - Bently (1970), Carstensen (1972), Connors and others 

Insulations and dielectrics - Whitman and Doigan (1954), Veluzat and 

0 Plastics andpolymers - Hawkins (1971,1984). 
Adhesives - Beckwith (1979,1980) and Ballado-Perez (1986,1987). 
Batteries and cells - Linden (1984) and Gabano (1983). 

The presentation below follows Nelson (1981). 

(1979), Grimm (1987), FDA (1987), and Young (1988). 

Goddet (1987), and Goba (1969). 

Assumptions. The assumptions of the Awhenius rate model are: 

1. For any temperature and exposure time, the distribution of (positive) per- 
formance u is lognormal (base 10). Thus, the distribution of log perfor- 
mancey = log(u) is normal. Other distributions could be used. 

2. The standard deviation Q of log performance is a constant. That is, 0 
does not depend on temperature or exposure time. 

3. The relationship between the mean log performance p (the log of median 
performance u.50) and absolute temperature T and exposure time f is 

p(t ,T) = log(u.50) = a - t-pexp( -7 /T) .  (2.1) 

Log( ) is the base 10 logarithm here; the base e logarithm is an alternative. 
The parameters a, /3, 7, and Q are characteristic of the product, degradation 
process, and test method. They are estimated from data (Section3). The 
relationship is linear in parameters a and /3 and nonlinear in 7. Figure 2.1 
depicts the relationship (2.1) on semilog paper. There the median perfor- 
mance u.50 versus f is a straight line for each temperature. This figure also 
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Figure 2.1. Arrhenius rate model on semilog paper. 

depicts assumptions 1 and 2 with normal distributions with the same spread. 
In practice, the linear dependence of (2.1) on time t may not adequately 
describe product behavior near time zero nor for great times; Section2.2 
discusses this further. 

Interpretation. a is the log of median performance w o  at time zero. In 
Figure 2.1, the median lines for all temperatures have the value 140 at time 
zero. Then (2.1) becomes 

log(. .so/. 0) = -Wexp( - 7 m .  (2.1’) 

An interpretation of this equation is that degradation is 1) governed by a sim- 
ple first order chemical reaction where 2) the rate /3exp(-r/T) has an 
Arrlienius dependence on temperature. Whitman and Doigan (1954) present 
this equation. Here 7 = E/k where k is Boltzmann’s constant and E is the 
activation energy for the reaction. Also, (2.1’) is used to express the percent- 
age 1 0 0 ( ~ . ~ ~ / u o )  of the initial performance uo remaining at age t. 

Percentiles. The l00Pth population percentile of log performance 
yp(t ,T)  = log[up(t,T)] at absolute temperature T and age t is 

yp(t ,T) = &,T) + zpu = a - t-/+exp( - y / T )  + zpu; (2.2) 

here zp is the 100Pth standard normal percentile. Such percentile lines for a 
temperature are parallel to the median line in Figure 2.1. 

Design temperature. In some applications, a design teniperuhtre T* is 
determined as follows. The design life t* is specified, and it is required that 
at most a specified percentage 100P* be below a specified log performance 
y*. The P that achieves this comes from (2.2) rewritten as 



526 ACCELERATED DEGRADATION 

T* = ~/ln[/3t*/(atzp~a-y*)J. (2.3) 

Median time. (2.1) yields the median time t.50 for log performance to 
degrade to a specified value y* (corresponding to “failure”); namely, 

l.50 = [(a-y*)//31 eq(r/T). 

This is the Arrhenius relationship for (median) time to failure (Chapter 2). It 
applies if the log performance must be above a log design value y*. For 
example, y* would be the log of the design voltage applied to insulation. For 
pharmaceuticals, y* is the guaranteed (median) amount of drug on the pack- 
age label, and t.50 is the shelf life that assures that amount. 

Life distribution. The following gives the product life distribution at 
design temperature T’. It is assumed that a specimen “fails” when its log 
performance degrades belowy’ = log(V), the design value. Figure 2.2 dep- 
icts the distributions of specimen life and of performance V. The line shows 
median performance as a function of time t at the design temperature T’, 
which determines the slope of the line. The figure shows how the distribu- 
tion of performance descends as the population ages, and how the population 
fraction of “failed” specimens increases with time. The population fraction 
F ( t )  failed (with log performance belowy’ ) at time t is the shaded fraction 
of the performance distribution in Figure 2.2; namely, 

F ( ~ ; T ’ )  = @{b’-att@exp( -7/7“)]/0}; (2.4) 

here ip{ } is the standard normal cumulative distribution function. Thus 
time t to failure has a normal distribution with mean and standard deviation 

/.4 = [(a-y’)/@I ev(r/T‘), 0, = (./@I exp(r/T‘). (2.5) 

BREAKDOWN 
VOLTAGE V 

t 

Yo FAILED 

WEEKS 1 1 1 TIME TOFAILURE 
I DlSTR I BUT1 ON 

20 40 60 80 WEEKS 

Figure 22. Relation between performance and life distributions. 
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The lWPth percentile of this normal life distribution is t p  = /A, tzpq,  where 
zp is the lOOPth standard normal percentile. Different performance levels y’ 
at failure can be tried to see how sensitive the life distribution is to the 
assumed value. A more realistic model would have a distribution of perfor- 
mance y’ at failure. For example, insulation with a design voltage y’ sees 
slightly different voltage from one unit to the next. Moreover, the applied 
voltage may vary over time. Thus the actual uf tends to be larger. 

Some readers may wish to skip to Section 3 where the model is fitted to 
insulation breakdown data. 

22. Simple Constant Rate Models 

In a general framework, this section presents simple constant rate models 
for degradation under constant stress. They include the Arrhenius rate rela- 
tionship of Section 2.1. 

Motivation. Figure 2.3 shows a “typical” plot of specimen performance 
(or its log) of some products versus age. Initially the rate (slope) of perfor- 
mance degradation is high - a wear-in period. After a short time, the rate of 
degradation becomes relatively constant and remains constant for a consider- 
able time, corresponding to the straight portion of the plot. Finally, the rate 
(slope) of degradation may increase at great age as shown - a wear-out 
period. For some products, degradation rate is constant over all time. This 
motivates the following model, which applies to the straight portion of Fig- 
ure 2.3. To fit a straight line to such data with an initial wear-in, one usually 
omits the performance data from time zero from the fitting. 

General relationship. The simplest degradation relationship for “typi- 
cal” fog performance p(t) is a simple linear function of product age f; namely, 

p(t) = a-fit. (2.6) 

For concreteness, regard p(t) as the mean or median of the population distri- 
bution of log performance at age t .  Figure 2.1 depicts such relationships for 

. 
0 AGE t 

Figure 23. “Typical” performance degradation versus specimen age. 
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several f l  values. The intercept coefficient cz is the “typical” log performance 
at age zero. The degradation rate f l  is assumed constant over time. More- 
over, f l  depends on the constant accelerating stresses, as described below. 
Use of log performance assures that this degradation relationship does not 
yield negative performance values. Exponentiate (2.6) to get typical perfor- 
mance as exp(cz-flt), which decreases exponentially with age t. For some 
applications, p(t) is typical performance rather than log performance, for 
example, for mechanical wear applications. If the amount of degradation is 
small, performance and its log work equally well. If “performance” increases 
with age (for example, crack length), use t in place of - in (2.6). 

Failure. If the product fails when typical log performance degrades to a 
value p*, the typical failure time is (2.6) rewritten as 

t = ( c y - - c ( * ) / f l .  (2.7) 

Arrhenius dependence. For degradation accelerated by (absolute) tem- 
perature T, the Arrlienius degradation rate is 

B’ = Pexp(-r/T). (2.8) 

Here /3 and 7 are constants characteristic of the product and degradation pro- 
cess. With this rate parameter, (2.6) becomes the Arrhenius rate relationship 
(2.1). Then typical log performance is 

p(t,T) = a- t -pexp(-7/~) .  

The typical failure time, when log performance reaches a value p*, is 

t = t (a - P*)/Bl.exp(r/T). 

This is the Arrhenius relationship for life (Chapter 2). 

rate is represented by apowerfunction of a positive stress V, namely, 
Power dependence. For some degradation processes, the degradation 

f = pv7 . (2.9) 

Here /3 and 7 are constants characteristic of the product and degradation pro- 
cess. This is often used for electronics and dielectrics where Y is voltage. It 
is used in Taylor’s model for wear of machine tools as a function of cutting 
velocity V; see Boothroyd (1975). Then the typical log performance is 

p(f,v) = a-t;Ov7 . 

t = [(.-p*)/Pl/v7 
The typical failure time, when log performance reaches a value p*, is 

This is the inverse power relationship for life (Chapter 2). 

exponentialfunction of a stress V;, namely, 
Exponential dependence. Some degradation rates are represented by an 
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a’ = B.exp(rV) - (2.10) 

Here p and 7 are constants characteristic of the product and degradation pro- 
cess. For example, this exponential function is used for weathering variables 
such as humidity. Then the typical log performance is 

p( t ,V)  = a-t.B.exp(7V) . 
The typical failure time, when log performance reaches a value p*, is 

t = [(a-r*)/Pl.exp(-7V) * 

This is the exponential relationship for life (Chapter 2). 

Eyring dependence. Some rate parameters are a function of absolute 
temperature T and a second (possibly transformed) stress V. The generalized 
Eyring degradation rate is 

f l  = B.exp[-(r/T)-6V-€(V/T)] . (2.11) 

Here p, 7,6, and c are constants characteristic of the product and degradation 
process. This is used, for example, for electronics and dielectrics, where V is 
voltage or In voltage. Then the typical log performance is 

p(t,T,V) = Q - t .p .exp[-(r /T)-6V-&(V/T)]  . 
The typical failure time, when the log performance reaches a value p* is 

t = [(a-cc*)/BI exPI(r/T)+6V+&(~/T)I * 

This is the general Eyring relationship for life (Chapter 2). 

Distribution. The preceding relationships model “typical” performance. 
At any population age, performance has a distribution. In Section 2.1, the 
distribution is lognormal and has a constant 8. (The models of Sections 2.3 
and 2.4 below have non-constant spread.) Other distributions with a constant 
spread can be used with such relationships. For an assumed distribution of 
performance, the distribution percentiles can be written in terms of model 
parameters, analogous to (2.2). Also, a design level of stress can be deter- 
mined from an equation like (2.3). 

Other models. This paragraph briefly surveys some recent degradation 
models based on physical mechanisms. Carey and Tortorella (1987) present 
a model for degradation of MOS oxides. It employs a birth and death pro- 
cess for charge carriers. The model fits their data better than a simple birth 
process. LuValle and others (1986,1988a,b) present a variety of degradation 
models based on chemical kinetics and probabilistic considerations. By 
fitting a number of such plausible models to a data set and assessing which fit  
well, they gain physical insight. Also, in microelectronic applications, rela- 
tively small numbers of atoms are involved. So such probabilistic models 
appear suitable and yield insights. For example, they present a model with 
competing reactions where some specimens never degrade enough to fail. 
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That is, some specimens survive forever (Chapter 2), an observed 
phenomenon in some electronic devices. 

Geometry. Note that most models based on kinetic theory do not include 
product geometry in the model. That is, such models implicitly ussume that 
the reacting materials are homogeneously mixed at the start. This is often so 
for the Arrhenius rate relationship. In contrast, some degradation in mi- 
croelectronics results from atomic diffusion of adjoining (different) materials, 
and material geometry affects the degradation process. Thus, where impor- 
tant, geometry should be modeled. However, it is often overlooked. 

23. Random Coefficients Model 

specimen i as a function of age t is 
Model. Another simple degradation model for log performance yi of 

(2.12) 

Here ai and bi are the constant intercept and constant degradation rate for 
specimen i. Thus each specimen exactly follows its own linear relationship as 
it ages, as depicted in Figure 2.4. The intercept ai and rate bi vary from 
specimen to specimen and have a joint distribution. Thus the model (2.12) is 
said to have random Coefficients or, better said, a joint distribution of 
coefficients, since the coefficients ui and bi of specimen i are constant. 

Mean and variance. Denote the population mean and standard deviation 
of the intercepts ui by a and a,. Here cy and a, are the mean and standard 
deviation of log performance at time zero. a, usually reflects variability in 
manufacturing tolerances and process variables. Denote the mean and stan- 
dard deviation of the rates bi by f and Ub.  ub usually reflects variablility in 
material composition, which determines degradation rate. Within a homo- 
genous lot ub is usually small. But ub can be large when specimens come 
from a number of lots and there is lot-to-lot variability in composition. Also, 
one assumes that the constant mean rate f depends on the accelerating 
stress(es), as described in Section 2.2. Assume that the coefficient pairs 
(ui,bi) are uncorreluted. Then the distribution of log performance y i ( t )  at 
time I has a mean and variance 

p(t)  = cy-P’t, d ( f )  = u:+oZbt2. (2.13) 

The relationship for the mean is the simple linear one (2.6), where f 
depends on stress as described in Section2.2. o(t) reduces to that for the 
previous model (constant u) if uf =0, that is, if all specimens have the same 
rate b i = f .  For example, specimens with the same composition may all 
degrade at the same rate. Other assumptions could lead to this mean and 
variance. Note that this model is not well verified. Beal and Scheiner (1988) 
investigate methods for fitting heteroscedastic models to data. Lu and 
Meeker (1989) survey references on random coefficients models and data 
analyses. 
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Figure 2.5. Random variation ei ( t )  

Life distribution. If the ai and bi are further assumed to have nonital dis- 
tributions, the distribution of time to failure (when log performance reaches 
a value y*) is 

F ( t )  = a[@* -a+p’t)/(o; t a b f  2 2 ) 1/2 1. (2.14) 

This Bemstein disfribution appears in Gertsbakh and Kordonskiy (1%9), Lev- 
itanus (1973), and Peshes and Stepanova (1972). Ahmad and Shiekh (1981) 
describe how to estimate its parameters from censored data. 

Random variation. In the preceding model, specimen i exactly follows its 
own linear relationship (2.12) as it ages. A more plausible model includes 
random variation e i ( f )  in log performance as the specimen performance 
wanders about its linear relationship, as depicted in Figure 2.5. That is, at 
age t ,  log performanceyi(f) of specimen i differs from (2.12) by an amount 
ei(f) .  Assume, for any time t ,  the mean of e i ( f )  is zero and its variance is a 
constant a:. The model then is 

If ui, bi, and ei( t )  are assumed statistically independent, then the distribution 
ofyi(t) has mean and variance 

p ( t )  = a-p’t, $ ( t )  = (a:+d)t&*. (2.13 ‘ ) 

The relationship for the mean is the simple linear one (2.6). Also, a(r) is the 
same as before, but (a: td) is in place of a:. (2.13’) with (a; +at) in place 
of 0: gives a Bernstein distribution (2.14) for time to failure for this model. 

Batches. The preceding model is appropriate for a single homogenous 
population. If there is batch-to-batch variability, the model can be extended 
to represent such variability. 

yi(t) = ai - bir t ei(f) .  (2.12’) 

2.4. Random Increments Model 

Model. The following model involves random increments in the perfor- 
mance degradation. It is another type of model with random coefficients. 



532 ACCELERATED DEGRADATION 

For specimen i, denote the (log) performance at time zero by ai; that is, 
yi(0)=ai. To model (log) performanceyi(t) at age I, divide the interval (0 , f )  
into J short intervals of equal length r=t /J .  Suppose that the (log) perfor- 
mance of specimen i at time j7  (j = 1,2, * * * , J )  is 

yj(j~) =yi[(j-l)~]-bjj~. 

Here b ,y  is the random non-negative increment in (log) performance 
between time (j -1)~ and j r ,  and bu is the random rate of degradation of 
specimen i over interval j. Then, at time t, 

yj(t) = yj(J~) = aj-(bjl t b j 2  t * * * t b i J ) T .  

Zaludova and Zalud (1985) apply this model to wear of diesel engines, as 
measured by the metal debris content of their lubricating oil. 

Mean and variance. Denote the population mean and standard deviation 
of the ai by (I! and 0,. Assume that the mean of any bii is the constant degra- 
dation rate g’. g’ depends on stress as described in Section2.2. Thus the 
mean of the population distribution of (log) performanceyj(t) at time t is 

p(t) = a-(Jf l ) r  = a-B’t. (2.15) 

This relationship is independent of the number J of intervals. This is the sim- 
ple linear relationship for the mean (2.6). To get a variance d(t) for the per- 
formance distribution at time t ,  assume that the aj, bjl, bj2, - - - ,  b~ are 
itncorrelafed and that the variance of any bii is a constant of.  Note that the 
meaning of of here differs from that in Section 2.3. Here of could be a func- 
tion of stress. (The assumption that the ai, bjl ,  bi2, * - - , bu are uncorrelated 
also simplifies the fitting of this model to data.) Then the variance of the 
population distribution ofyj(t) is 

$ ( t )  = o: t (J& = o: t off. (2.16) 

This relationship is independent of the number J of intervals. This variance is 
a linear function of time 1. The previous variance (2.13‘) of the random 
coefficients model is function of t2. Other assumptions could yield (2.15) and 
(2.16). Thus, if these relationships fit data well, it does not necessarily follow 
that the model above is a suitable description. Tomsky (1982) describes how 
to estimate parameters of this model from repeat measurements on speci- 
mens over time. 

Life distribution. Suppose a specimen “fails” when its (log) performance 
degrades below a specified valuey*. By (2.15) the typical age at failure is 

t = (a-y*) /B’ . 
If ai, bjl ,  biz, - * , bg have normal distributions (an assumption inconsistent 
with non-negative increments), then yi(f) has a normal distribution, and the 
population fraction failed by age t is 



DEGRADATION MODELS 533 

For this distribution, the above typical age at failure is the median. Suppose 
that the measurement scale of performance is rescaled so a=O. Also, sup- 
pose that all specimens have the Same initial performance ai; that is, 0: =O.  
Then this life distribution becomes the Bimbaunt-Saunders (1969) distn‘bn- 
tion, which has been proposed for metal fatigue. 

2.5. Mathematical Rate Functions 

Many rate relationships fitted to degradation data are merely reasonable 
mathematical functions or curves that are not based on physical theory. Such 
curves should be mathematically sensible, as in the Weibull example below. 
They merely smooth the data and usually interpolate adequately. However, 
they may provide no physical insight and may extrapolate badly. This section 
gives examples of such curves. 

Weibull relationship. Crow and Slater (1969) used the following 
“Weibull relationship” to model the degradation of mechanical properties of 
plastic building materials under accelerated weathering. The “typical” per- 
formance as a function of aging time t is 

p(t) = a - exp[ - t 6 . (2.18) 

Here the positive parameters a, 8,7, and 6 are characteristic of the property 
(for example, percent elongation), the plastic, and the weathering variables 
(for example, humidity, ultraviolet, temperature). Here exp[ - (1 / p ) 7  looks 
like the Weibull reliability function. However, it is a relationship here - not 
a distribution. Crow and Slater do not use a distribution to describe the 
scatter in performance. 

Interpretation. There is no physical basis for (2.18). It merely has suit- 
able mathematical properties. For example, it is positive and monotone de- 
creasing. The parameters can be interpreted as follows. (at6) is the initial 
typical value at f =O. 6 is the ultimate typical value at great age. Usually 6 is 
zero; then is the age when the typical value reaches 36.8% of its initial 
value. Use of such a relationship is merely curve fitting, since it is not based 
on engineering theory. Crow and Slater also expressed the parameters as 
mathematical functions of the weathering variables with further curve fitting. 

Larsen-Miller. Dieter (1961) gives various generalizations of the 
Larsen-Miller relationship for creep-rupture. Some merely provide an im- 
proved fit to data and have no physical basis or interpretation. They are 
merely mathematical functions. 

Polynomials. Much data smoothing is done by fitting polynomials. Poly- 
nomials are often adequate for interpolation, but they are notoriously bad for 
extrapolation and sometimes for interpolation. For example, designers use 
materials properties curves for metals and ceramics to design components. 
Many such curves are polynomial fits. Also, for example, Zaludova and 
Zalud (1985) fit a cubic polynomial to wear data on diesel engines, and 
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Underwriters Lab (1975) fits a cubic polynomial to degradation data on poly- 
mer properties. Such a polynomial can be a function of time and any number 
of other variables. 

3. ARRHENIUS ANALYSIS 

Purpose, This section describes analyses for degradation data with the 
Arrhenius rate model (Section 2.1). The analyses provide estimates of 1) the 
model parameters, 2) the distribution of time for product performance to de- 
grade to failure, and 3) the design temperature that achieves a specified small 
percentage failed over design life. The analyses are applied here to a specific 
degradation model and data. However, they apply to other products and oth- 
er constant rate models. Here performance of each specimen is measured 
just once at some age, as breakdown is destructive. Analyses for data with re- 
peat measurements on specimens are complicated; so they are not described 
here. For example, Tomsky (1982) analyzes repeat measurements. 

Overview. Section3.1 describes the data and model that illustrate the 
analyses. Section 3.2 presents graphical analyses and model fitting. Sec- 
tion 3.3 presents analytic model fitting, which requires special computer pro- 
grams. Section 3.4 provides checks on the model and data. The presentation 
below follows Nelson (1981). 

3.1. Insulation Breakdown Data and Model 

Data. The following analyses are illustrated with data on the dielectric 
breakdown strength of insulation specimens. Each insulation specimen was 
held at a high test temperature for a specified time in weeks. Then its break- 
down voltage was measured - a destructive test. Such performance data are 
typically complete (i.e., not censored). The data (Table 3.1) consist of the 
breakdown voltage (in kV) of four specimens (equal allocation) for each 
combination of four test temperatures (180,225,250,275"C) and eight aging 
times (1,2,4,8, 16,32,48,64 weeks). For example, the first specimen in Ta- 
ble 3.1 ran 1 week at 180"C, and its breakdown voltage was then measured as 
15.0 kV. Note that no specimens were measured at age 0 weeks. Beckwith 
(1979,1980) notes that estimates are more accurate if some specimens are 
measured at age 0. Of course, this is true only if the product degrades linear- 
ly and has no wear-in. Better said, there should be more specimens at early 
(and late) measurement ages, that is, unequal allocation. In all, there were 
4~4x8 = 128 specimens. The test purpose was to estimate the insulation life 
distribution. The insulation fails when its breakdown strength degrades 
below the design voltage 2.0 kV at a design temperature of 150°C. 

Test plans. The test plan above is statistically inefficient for the Ar- 
rhenius rate model. Reduce the statistical uncertainty in estimates as follows: 
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1. Test specimens at or near time zero. This yields a better estimate of a, 
the median (log) performance at time zero. Also, it yields a better esti- 
mate of the slope /3, since a wider range of time is used. Of course, this 
assumes there is no wear-in near time zero. 

2. For each temperature, measure more specimens at or near time zero and 
at the longest test time, and fewer at intermediate times. This yields a 
more accurate estimate of /3, since a wider range of time is used, provided 
that the model is suitable. Intermediate times allow for a test of linearity 
and provide some early information. 

3. Test more specimens at the lowest test temperatures than at the highest. 
The lowest test temperature is nearest the design temperature. To extra- 
polate most accurately, use more specimens near the design condition. 

4. Make the highest test temperature as high as possible. This yields a more 
accurate estimate of 7 for the effect of temperature. However, the tem- 
perature should not introduce new failure modes or degradation incon- 
sistent with that at design temperature. 

Beckwith (1979,1980) studies improved test plans. Haynes and others (1984) 
describe sequential plans. Ford, Titterington, and Kitsos (1989) survey ex- 
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perimental design for nonlinear models for chemical reactions. Accuracy of 
estimates from proposed test plans can be studied by simulation (Chapter 6). 

1. 

2. 

3. 

Model. The Arrhenius rate model of Section 2.1 (in brief) assumes 

At any absolute temperature T and after exposure time 1, the distribution 
of specimen breakdown voltage I/ is lognormal (base 10). Some authors 
use base e. 
The log standard deviation ~7 is a constant for all temperatures and expo- 
sure times. 
The mean log (base 10) breakdown voltagey = log(V) is 

p(t,T) = log(V,/s0) = a - t@exp(-y/T). (3.1) 

Depiction. Figure 3.1 depicts the 32 test conditions (temperature-age 
combinations) as dots and the relationship (3.1) as a surface. 

Independence. All of the data analyses in this book assunie that the ran- 
dom variations in the observations of performance are statistically kdeperi- 
dent. This assumption simplifies data analyses. Indeed, most statistical the- 
ory makes this assumption. Moreover, the assumption is usually appropriate 
in practice. It is usually appropriate for performance degradation where each 
specimen is measured once. This is so when the measurement is destructive. 
For example, the insulation breakdown measurement is destructive. If speci- 
men performance is repeatedly measured (nondestructively), successive mea- 
surements on a specimen may be statistically autocorrelated. Analysis of 
such autocorrelated data requires multivariate methods, which are more 
complex and less familiar. Methods developed for growth/wear curves apply 
to such correlated (dependent) data. Recent work by Timm (1980) and 
O’Rear and Leeper (1983) references the Kleinbaum (1973) model, the 
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Figure 3.1. Depiction of the relationship surface and test conditions . 
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Pothoff-Roy (1964) model, and early work by Box (1950) for such data. 
Tomsky (1982) treats a reliability application. Treating such successive 
repeat measurements as independent yields less accurate estimates and 
misleading confidence limits. 

3.2. Graphical Analyses 

The following graphical analyses provide estimates of model parameters 
and the relationship between performance, exposure time, and stress. Also, 
they assess the validity of the model and data. 

Relationship plot. Use plotting paper on which the theoretical relation- 
ship for product performance plots as a straight line against stress or expo- 
sure time. For the insulation, the assumed relationship (3.1) between break- 
down voltage and exposure time is a straight line on semilog paper, as shown 
in Figure 2.1. Plot each (average log) performance value against its stress (or 
exposure time). Then fit a straight line to the data by eye. This is shown in 
Figure 3.2, which has a straight line relationship between (log) breakdown 
voltage and exposure time for each temperature. According to (3.1), the 
straight lines all pass through the same voltage at time zero. So fit the lines 
to pass through a common point. 

Coefficient estimates. Graphically estimate the coefficients a, B, and 7 as 
follows. The estimate a+ of a is the log of the estimate Kj of the common 
breakdown voltage Vo at time zero, From Figure 3.2, V$ = 13.5 kV and 
a* = log(13.5) = 1.130. To estimate B and 7, choose two (absolute) test tem- 
peratures TI and T2, which are widely separated, and a long exposure time t. 
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From the fitted lines for T1 and T2, obtain estimates Vf and of the typical 
breakdown voltages Vr and V$ at time t. The true voltages V1 and V2 satisfy 
(Section 2.1): 

log(V1) = lOg(V0) - @ eV(-7/Ti),  

lOg(V2) = lOg(V0) - gt eV(-7/T2)* (3.2) 

Rewritten these yield 

7 = [Tl T2/(T1- T2)l In[log(Vo/V1)/log(Vo/V2)1, 

= (l/t) eq(7/T1) hdVO/Vl)* (3.3) 

These yield estimates of 7 and 8 from the estimates of Vo, V1, V2. For the 
insulation, use t = 32 weeks, T1 = 250°C = 523.16"K and T2 = 275°C = 
548.16"K. By Figure 3.1, V$ = 13.5 kV, Vf = 9.8 kV, and v;t = 3.27 kV. So 

7* = [523.16(548.16)/( - 25)]xln[log(13.5/9.8)/log(13.5/3.27)] = 17065"K, 

@* = (1/32)exp(17065/523.14)10g(13.5/9.8) = 6.375 x 10"/week. 

u estimate. The log standard deviation Q of log breakdown voltage is 
graphically estimated in Section 3.4 or analytically in Section 3.3. 

Life distribution and design temperature. Estimate the mean and stan- 
dard deviation of the normal life distribution, using the graphical estimates of 
the model coefficients in (2.5). Analytic estimates appear below. Similarly, 
estimate distribution percentiles (2.2) and a design temperature (2.3). 

33. Analytic Methods 

This section describes 1) fitting a degradation model to data by maximum 
likelihood and 2) the estimate of the distribution of time to specimen failure. 
Such fitting requires special computer programs. 

Fitting. The following model fitting applies to other models. Here one 
estimates the unknown model parameters a, /I, 7, and Q from the data. The 
relationship (3.1) is not a linear function of 7. Standard computer programs 
for linear least squares regression fitting cannot fit (3.1). To fit (3.1), use 
maximum likelihood or nonlinear least squares fitting. The STATPAC pro- 
gram of Nelson, Morgan, and Caporal (1983) was used to fit the model to the 
breakdown data. Young (1988) presents a computer program that calculates 
maximum likelihood estimates and confidence limits. Beckwith (1980) 
presents traditional engineering estimates for such data. Such estimates are 
less accurate than the ML ones for the Arrhenius rate model. Also, non- 
h e a r  least squares fitting applies to the model here, Bates and Watts 
(1988), Seber and Wild (1989), and Gallant (1987) present such fitting. 

Example. STATPAC output from fitting (3.1) to the breakdown data ap- 
pears in Figure 3.3. The estimates for a, /f, 7, and Q are CI = 1.123568, b = 
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Figure 33. STATPAC fit of the Arrhenius rate model to the breakdown data. 

0.29614€7~10~~, c = 16652.63, and s = 0.07495586. The output shows seven 
significant figures - more than justified by the accuracy of the data and esti- 
mates. However, all figures are retained in calculations, and final results are 
rounded appropriately. This minimizes round-off error. The fitted (3.1) is 

rn(l,T) = 1og(V.50) = 1.123568 - 2.961467x1O1’.t*exp( - 16,652.63/T); (3.4) 

here t is in weeks, V in kV, and T in degrees Kelvin, This relationship is in 
Figure 3.1. It appears to fit the data reasonably well. Figure 3.3 includes 
confidence intervals for estimated quantities. 

Percentiles. The fitted relationship (3.4) estimates the distribution 
median. The estimate of the lOOPth percentile of the distribution of 
breakdown voltage at absolute temperature T and exposure time t is 

6 = antilogla - b.t.exp( - c / T )  t zps]; 

here z p  is the lOOPth standard normal percentile. 

Life distribution, Suppose “failure” occurs when product performance 
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degrades to a specified value V .  For the insulation V = 2.0 kV, its design 
voltage at a design temperature of T' = 423.16"K. (150°C). Section 2.1 shows 
that the distribution of time to failure is normal with the mean and standard 
deviation in (2.5). Substitute the parameter estimates into (2.5) to get 

m, = (1/2.961467 x 10") [1.123568 - log(V')]-exp(l6,652.63/T'), 
s, = (0.07495586/2.961467 x 1011).exp(16,652.63/T). 

Evaluated at V = 2.0 kV And T' = 423.16, nt, = 342,000 weeks N 6560 years 
and s, = 31,200 weeks H 600 years. Approximate confidence limits for p,, a,, 
and percentiles of this life distribution can be calculated with STATPAC or 
by hand from the covariance matrix in Figure 3.3. 

3.4. Checks on the Model and Data 

Purpose. This section describes checks on the model (assumptions 1, 2, 
and 3) and data. These include whether the degradation rate is constant, 
whether the assumed dependence of rate on stress is adequate, whether there 
is uncontrolled variation in performance, whether there are outliers, and 
whether Q is constant. These checks follow. They employ the relationship 
plot and the residuals. Such checks are essential for a complete data analysis. 

Constant rate. If the constant rate relationship (2.6) describes degrada- 
tion, the relationship plot (Figures 3.2 and 3.4) should be straight for each 
stress level. Systematic departure from a straight line at a number of stress 
levels indicates that the rate is not constant. For the insulation breakdown 
data, the plot is relatively straight for each temperature. 

Rate dependence. In some applications, one does not know how the deg- 

Figure 3.4. Individual breakdown voltages versus age. 
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radation rate depends on the accelerating stress. Common practice is to sep- 
arately estimate the degradation rate f l  in (2.6), using data from each test 
stress level. For example, for the breakdown data, use the relationship plot 
to estimate the slope (rate) of the straight line through the (log) data (by eye 
or least squares) for each test temperature. Figure 3.2 shows such lines for 
the four test temperatures. Then plot these rate estimates against their stress 
levels as in Figure 3.5 - a rate plot. Use linear, log-log, semilog, Arrhenius, 
or other paper to straighten the rate plot, and thereby determine which best 
describes the dependence of rate on stress. The straight lines in the relation- 
ship plot may be separately fitted by least squares to the data from each 
stress level; then each line has a different intercept at age 0. Alternatively, 
the lines in the relationship plot can be fitted through a common intercept at 
age 0; this usually yields more accurate rate estimates. For the breakdown 
data and separate intercepts, such rate estimates are .000669, .00174, .00408, 
and .0173 for 180, 225, 250, and 275"C, respectively. These Ls estimates are 
plotted on Arrhenius paper in Figure 3.5. 

The rate plot is relatively straight. This suggests that the Arrhenius rate 
dependence (2.8) adequately describes the data. Judging straightness is aid- 
ed by confidence limits for the rate parameter estimates at each stress level. 
Such 95% limits appear in Figure35 The slope of the straight line in the 
figure is the ML estimate c = 16652.63. Engineers traditionally use such a 
plot (without confidence limits) to graphically estimate this slope; the result- 

Figure 3.5. Arrhenius plot of degradation rate estimates versus temperature. 
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ing estimate has poor accuracy. A formal LS hypothesis test of linearity can 
be complex. It depends on the number of specimens at each temperature, 
the exposure ages, and whether there are separates estimates of the intercept 
coefficient or a common estimate. A LR test (Chapter 9) is simpler to do. 

Uncontrolled variation. The fitted straight lines in Figure 3.2 do not ade- 
quately fit the data, according to an F test of linearity (Chapters4 and 8). 
Moreover, the data do not have systematic curvature (different rate depen- 
dence). Thus the random variation of the average log performance about a 
straight line for a temperature is great compared to the variation between 
specimens within a test age. This suggests that uncontrolled factors in the 
test affect the breakdown voltages, and their cause should be sought. Better 
control of the test and measurement methods may reduce such variability and 
yield a better fit. Also, outliers may cause this. 

Outliers. Questionable data points are appreciably out of line with the 
others. For example, in Figure 3.2, the average at 275°C and 64 weeks seems 
high. Review such “outliers” to determine their cause. Also, decide to in- 
clude or exclude them from analyses. In practice, it is best to analyze both 
with and without suspect data to see if they appreciably affect results. Such 
outliers may also appear in residual plots below. 

Constant u. o is assumed constant for all combinations of temperature 
and exposure time. The model fitting employs that assumption. Moreover, 
the confidence limits are inaccurate if the assumption is not satisfied. Check 
this assumption with the methods of Chapter 4 and with a relationship plot of 
individual observations (Figure 3.4). In that plot, the data scatter for each of 
32 test conditions should be about the same. Pronounced trends in the 
scatter as a function of exposure time or temperature indicate that o is not 
constant. No such trends appear in Figure 3.4. Thus u appears constant, ex- 
cept Figure 3.4 slightly suggests that the 275” data at 48 and 64 weeks have 
greater scatter than the rest of the data. The greater scatter in those low 
voltage measurements may be due to the coarseness of the measurements 
(nearest 0.5 volts) at low voltage. A chi-square probability plot of the 32 vari- 
ances would be informative. 

Residuals. As defined in Chapter 4, a log residual is an observed log 
breakdown voltage minus the fitted log relationship at its test condition. 
STATPAC calculates these residuals. Another residual is the observed log 
voltage minus the average log voltage at its test condition. If the relationship 
fits the data badly, these residuals are better for assessing the assumed distri- 
bution and whether o is constant. Plots of residuals are multipurpose and 
often more informative than formal tests of the fit of a relationship, of homo- 
geneity of variance, of distributional assumption, etc. Moreover, such formal 
tests require special computer routines. 

Distribution check. The log residuals should look like a sample from a 
normal distribution, if the lognormal distribution describes voltage break- 
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Figure 3.6. Normal plots of log residuals. 

down. Alternatively, they should look like a sample from an extreme value 
distribution, if the Weibull distribution adequately describes voltage break- 
down. Selected normal probability plots of log residuals (about the relation- 
ship) appear in Figure3.6. The plot of all residuals has tails that are too 
long. This indicates that a lognormal distribution does not adequately de- 
scribe breakdown voltage. This may be due to outliers noted below. Such a 
probability plot also yields a graphical estimate of ~7 (Chapter 4). 

Crossplots. Crossplots of the residuals against variables in or outside the 
model often reveal information. Figure 3.7 shows a crossplot of the residuals 
against their temperature values. If the relationship (3.1) adequately fits the 
data, the median of the residuals at each temperature should be close to zero. 
The figure suggests slight systematic variation in the medians (shown as -) 
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Figure 3.8. Residuals versus week. 

over temperature. One possible explanation is that the actual test tempera- 
tures differ from the intended ones. The plot shows that the scatter at 275" is 
much larger than at other temperatures. This may be due to the previously 
noted high data at 275°C and 64 weeks. Figure 3.8 shows a crossplot of the 
residuals against their weeks on test. This plots shows no peculiarities. Thus, 
the relationship seems to fit the data with respect to exposure time. 

Concluding remarks. The preceding analyses suggest reanalysis of the 
data, omitting data at 275°C and 64 weeks and possibly at 275'C and 
32 weeks. Such reanalysis may yield better estimates and further insight. 

PROBLEMS (* denotes difficult or laborious) 

11.1. Literature. Do a literature search and develop a bibliography on 
an applied area of aging degradation. 
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11.2. Weibull. In Section 2.1, replace the lognormal distribution by a 
Weibull one and suitably modify all equations. 

113. Random coemcients. For the random coefficients model, assume 
that the rate parameter has a power dependence on stress V. Express all re- 
sults of Section 2.3 as functions of stress. 

11.4. Random increments. For the random increments model, assume 
that the rate parameter has an Arrhenius dependence on temperature. Ex- 
press all results of Section 2.4 as functions of temperature. 

11.5. Birnbaum-Saunders. Assume that the rate parameter has a power 
dependence on stress V, and derive the Birnbaum-Saunders distribution of 
Section 2.2. Show how the distribution parameters depend on stress. 

11.6.* Measurement error. Include random measurement error in a 
model. Young (1988) discusses the importance of such error in pharmaceuti- 
cal measurements. 
(a) Derive all results for the random coefficients model of Section 2.3. 
(b) Derive all results for the constant rate model from (a), using the fact 

that the rate parameter is a constant. 
(c) Repeat (a) for the random increments model of Section 2.4. 

11.7.* Batches. Extend the random coefficients model to data from sam- 
ple batches from a population of (infinitely) many differing batches. 

lid.* Breakdown data. Use the insulation breakdown data of Section 3. 
(a) Repeat the analyses of Section 3, omitting data from 275"C, 64 weeks. 
(b) Do (a) omitting data from any test conditions you think suitable. 
(c) Use the methods of Chapter 9 to assess the fit of the relationship with a 

hypothesis test. 
(d) Suggest further data plots and analyses. 
(e) Carry out (d). 
( f )  Repeat all analyses using a Weibull distribution of breakdown voltage. 

Which distribution do you prefer and why? 

11.9. Rate plot. Use the breakdown data of Section 3.1. For each test 
temperature, calculate the least squares estimate and 95% confidence limits 
for the rate coefficient p'. 
(a) Assuming a separate intercept a for each temperature. 
(b) Assuming a common intercept a for all temperatures. 
(c) Plot these estimates and confidence limits on Arrhenius paper and 

comment on the plot. 
(d*) Develop a hypothesis test of linearity of the Arrhenius rate dependence 

of such estimates. 
(e) Apply (d) to the data. 

11.10. Adhesive data. The following data on shear strength (in pounds) 
for adhesive specimens were provided courtesy of Prof. J. Phil Beckwith 
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Croup A Group B 

150.C I 8140 6080 
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Group C 

4684 
b550 
8780 
10060 
5800 

A - 1 Day 
B - 4 Day 
C - 5 Day 

5430 4713 
5060 4547 
2620 2222 
4700 4275 

130.C 
A - 1 Day 
B - 5 Day 
C - 10 Day 

2390 
5000 5800 5669 
8050 7190 6398 

100Y 
A - 1 Day 
B - 20 Day 
C - 40 Day 

ll0'C 

A - 1 Day 
B - 10 Day 
C - 20 Day 

11190 7960 
8810 7570 

9250 7590 

1740 7770 11010 
1760 8380 7550 
6670 6120 8350 
6050 6020 9170 
6450 6960 9380 

80% 

A - 1 Day 
B - 100 Day 
C - 200 Day 

10960 
11260 9400 
10920 11120 7320 
11040 7920 
9150 4970 10568 

A - 1 Day 
B - 50 Day 
C 1.100 Day 

8300 9480 8110 
7550 9080 11590 
10380 9650 9150 
8840 7940 8230 
10580 11900 7480 

I I I 
I i 

(1980). Note that the three measurement ages (A, B, and C) differ from 
temperature to temperature. 
(a) Plot the data on semilog paper. Comment on the linearity of the plot 

for each temperature. 
(b) Use the constant rate relationship (2.6). For each temperature, sepa- 

rately estimate the degradation rate f l  by least squares. Repeat this 
with a common intercept. 
On Arrhenius paper, plot the rate estimates and their confidence lim- 
its. Does the Arrhenius rate relationship adequately describe the 
dependence of rate on temperature. That is, is the plot straight? 

(d) Fit the Arrhenius rate model of Section 2.1. 
(e*) Do all other analyses of Section 3. 

(c) 
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( f )  Calculate and plot trade-off curves of constant percent degradation on 
suitable time-temperature paper. 

(g*) Delete all initial data (Group A), and redo (a)-(f). This is appropriate 
if the data show initial "wear-in" (Figure 2.3). Note results differing 
from those with all the data. 
Suggest and carry out further analyses. 
Write a brief report stating your findings for the adhesives experts. 

(h) 
(i) 

11.11.8 Test plans. Standard test plans for temperature degradation in- 
volves I (absolute) test temperatures T. (i =1,2, ... , I )  and Ji ages fii 
(j = 1,2, - * * ,Ji) when specimen performance is measured once. Suppose that 
Nu specimens are measured at test exposure (7&). Use the Arrhenius rate 
model of Section 2.1 with a normal distribution for log performance. Denote 
the measured log performance of specimen n at exposure ( T i , t ~ )  byyiin. 

Write the sample log likelihood for all measurements. 
Derive the likelihood equations for the model parameters. 
Describe how to solve the likelihood equations for the ML estimates. 
Derive the theoretical Fisher information matrix. Evaluate it for the 
breakdown data of Section 3. 
Derive the theoretical covariance matrix of the ML estimates. Evaluate 
it for the breakdown data. 
Suppose that the product fails when its log performance degrades below 
a value y' at (absolute) design temperature T'. Give the ML estimates 
of the mean and standard deviation of the normal life distribution and 
derive their theoretical covariance matrix. Evaluate them for the break- 
down data. 
Do ( f )  for the 100Pth percentile of the life distribution. Estimate the 
f i s t  percentile for the breakdown data. 
Assume that an optimum test plan use three test exposures (To,O), 
(T l , t l ) ,  and (T2,rz) with numbers of specimens N o ,  N1, and Nz. The 
total number N =NOtNI+NZ is fixed. Test constraints are 0 5  t1  I 
t2  5 t* (a specified maximum test time) and T1 5 T2 5 T* (a specified 
maximum test temperature). 
For each parameter estimate, determine the optimum plan that mini- 
mizes its theoretical variance. That is, determine optimum To, T I ,  t l ,  

T2, t z ,  No, N1, and Nz. Evaluate them for an optimum breakdown test, 
and compare the variances. 
Determine the optimum plan that minimizes the variance for (g). 
Evaluate the optimum plan for the breakdown test. 
Compare the optimum plans with a standard plan with the same number 
N' of specimens (equal allocation) at each of I d  combinations of test 
temperatures T I ,  * - ,TI and measurement ages f I ,  - - ,rJ. The total 
number of specimens is N = I x l x " .  Apply these results to an op- 
timum breakdown test. 
Assume that the degradation rate is a quadratic function of 1/T. Find 
an optimum plan that minimizes the theoretical variance of the ML esti- 
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mate of the coefficient for (1/7‘)*. Such a plan would be sensitive for 
testing adequacy of the assumed Arrhenius dependence (2.8). Evaluate 
such an optimum breakdown test. 

(m) Explain how to use the optimum plans above for other rate dependence 
(power, exponential, etc.). 

(n) Suggest and investigate good compromise plans. 
(0) Repeat the preceding, replacing (T0,O) with (To,to) where 0 < to’ 5 I0 I 

t*, and I; is a minimum measurement age. 

11.12.* Consistent models. The lognormal-Arrhenius model of 
Chapter 2 has a lognormal life distribution. The life distribution for the 
model of Section 2.1 is normal. Show that these distributions are close, that 
is, that the models are quite similar. 

11.13. Reaction order. According to chemical kinetic theory, the remain- 
ing amount &) at time I of a chemical being consumed in a chemical reac- 
tion satisfies the differential equation dp/dt = FpP. Here /3’ and p are pa- 
rameters characteristic of the reaction. f is the rate parameter and depends 
on the accelerating stress, andp is a constant called the order of the reaction. 
Usuallyp equals 0, 1, or 2 and is the number of molecules in the rate deter- 
mining step of the reaction. When there is more than one reaction taking 
place, p may not be integer. Young (1988) gives a computer program that 
fits the model forp = 0,1,2. 
(a) Solve the differential equation for arbitraryp. Explicitly give the rela- 

tionship p(f) for Oth, lst, and 2nd order reactions. 
(b) Write the relationship p(t) with a random term e, to represent the dis- 

tribution of the amount of chemical u ( t )  about the typical amount p(t). 

(c) Describe how to fit 0th and 2nd order relationships to the voltage 
breakdown data. 

(d*) Fit those relationships to the data. Which relation fits best and why? 

11.14. Permalloy corrosion. In view of Chapter 11, do Problems 3.13 and 
4.9. 

11.15.* Distribution of design stress. The life distribution (2.4) assumes 
that every unit has the same (log) design stressy’. Extend the theory for the 
life distribution to a situation where the design stress applied to a unit comes 
from a distribution with mean p’ and standard deviation 0’. Compare your 
results with (2.4) and (2.5). 
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Appendix Al. Standard Normal Cumulative Distribution Function @(u) 

U 

- '0 
- .I 
- .2 

- '3 
- '4 

- ' 5  
- .6 
- '7 
- 4 
- '9 
- 1'0 
- 1'1 
-1.2 

- 1.3 
- 1.4 

- 13 
- 1.6 
- 1.7 
- 1.8 
- 1.9 

-2 .0  
-2.1 
- 2'2 
- 2.3 
-2.4 

- 2.5 
- 2.6 
- 2.7 
- 2.8 
-2.9 

-3.0 
-3.1 
-3.2 
-3.3 
- 3'4 

-3.5 
-3.6 
-3.7 
-3.8 
-3.9 
-4.0 
-4.1 
- 4.2 
- 4'3 
- 4'4 

-4.5 
-4.6 
-4.7 
-4.8 
- 4'9 

'00 '01 .02 '03 '04 '05 .06 '07 .08 '09 



APPENDIXES: STATISTICAL TABLES 551 

U 

'0 
'I 
'2 

~ 

'3 
'4 

'5 
.6 
'7 
43 
'9 

I '0 

1.1 

1'2 

1 '3 
1.4 

I '5 
I .6 
"7 
I .8 
1 '9 
2 '0 
2'1 

2'2 

2'3 
2'4 

2 '5  
2.6 
2'7 
2 4 
2'9 

3'0 
3'1 
3'2 
3'3 
3'4 

3'5 
3.6 
3.7 
3 4  
3'9 

4'0 
4'1 
4'2 
4'3 
4'4 

4 '5  
4.6 
4'7 
4.8 
4'9 

5000 

5398 
'5793 
.6179 
,6554 

,6915 
.7257 
,7580 
.7881 
,8159 

,8413 
4643 
.a849 
'90320 
'91924 

'93319 
,94520 
'95543 
.96407 

'97725 
Tj8214 
,98610 
,98928 
'9' 1802 

'9'3790 
.9l5339 
.9'6533 
'9l7445 
'9'8134 

,918650 
'9'0324 
,933129 
.93 5166 
'9' 663 I 

,97128 

'9' 7674 
'93 8409 
'9' 8922 
9' 2765 
'9'5190 

'9' 6833 
'9' 7934 
.g' 8665 
'9' 1460 
,9' 4587 

Appendix Al.  * ( u )  (Continued) 
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.9' 7748 

.9'8542 
,950655 
'95 4066 
'9s 6268 

'95 8566 
.9'1235 

.966821 

,98124 

,98870 

,93 2636 

'95 7675 

,964696 

'09 

'5359 
'5753 
.6141 
,6517 
43379 

'7224 
'7549 
,7852 
,8133 

.a621 
,8830 
'90147 
'9'774 
.93189 

,94408 
'95449 
96327 
,97062 
.97670 

,98574 
.98899 
'9'1576 
.9136~3 

.9'5201 
,916427 
'9' 7365 
'91 8074 
,918605 

'9' 8999 
'9' 2886 
'93 4991 
'9' 6505 
'9' 7585 

'93 8347 
'9' 8879 
,94 2468 
'9' 4988 
'9' 6696 

'9' 7843 
,94 8605 
'95 1066 
'95 4332 
'95 6439 

'9' 7784 
'9' 8634 

'9' 4958 

,8389 

,98169 

.96 166 I 

.96 6981 

From A. Hald, StmisricaI Tables and Fomiulas, Wiley, New York, 1952, Table 11. Reproduced 
by permission. 
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Appendix A2. Standard Normal Percentiles zp 

lOOP% zp 1oop4/o zp 
10-4 - 4.753 
10-3 - 4.265 
0.01 -3.719 
0.02 -3.540 
0.05 -3.291 
0.1 - 3.090 
0.2 - 2.878 
0.5 - 2.576 
1.0 - 2.326 
2.0 - 2.054 
2.5 - 1.960 
5 - 1.645 

10 - 1.282 
20 - 0.842 
25 - 0.675 
30 - 0.524 
40 - 0.253 

50 0. 
60 0.253 
70 0.524 
75 0.675 
80 0.842 
90 1.282 
95 1.645 
97.5 1.960 
98 2.054 
99 2.326 
99.5 2.576 
99.9 3.090 
99.95 3.291 
99.99 3.119 

Appendix A3. Standard Normal Two-sided Factors Kp 

1OOpo/o K p  

50 0.675 
60 0.842 
70 1.036 
80 1.282 
90 1.645 
95 1.960 
99 2.576 
99.9 3.291 
99.99 3.890 
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Appendix A4. I-Distribution Percentiles t(P;v) 

0.750 0.900 0.950 0,975 0.990 0.995 0.999 0.9995 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 

I5 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
40 
60 

I20 
a, 

1.000 
0.816 
0.765 
0.741 

0.727 
0.718 
0.71 1 
0.706 
0.703 

0.700 
0.697 
0.695 
0.694 
0.692 

0.691 
0.690 
0.689 
0.688 
0.688 

0.687 
0.686 
0.686 
0.685 
0.685 

0.684 
0.684 
0.684 
0.683 
0.683 

0.683 
0.681 
0.679 
0.677 
0.674 

3.078 
1.886 
1.638 
1.533 

1.476 
1.440 
1.415 
1.397 
1.383 

1.372 
1.363 
1.356 
1.350 
1.345 

1.341 
1.337 
1.333 
1.330 
I .328 

1.325 
1.323 
1.321 
1.319 
1.318 

1.316 
1.315 
1.314 
1.313 
1.311 

1.310 
1.303 
1.296 
1.289 
1.282 

6.314 
2.920 
2.353 
2.132 

2.015 
1.943 
1.895 
1.860 
1.833 

1.812 
1.796 
1.782 
1.771 
1.761 

1.753 
1.746 
1.740 
1.734 
1.729 

1.725 
1.721 
1.717 
1.714 
1.711 

I .708 
1.706 
1.703 
1.701 
1.699 

1.697 
1.684 
1.671 
1.658 
1.645 

12.706 
4.303 
3.182 
2.776 

2.571 
2.447 
2.365 
2.306 
2.262 

2.228 
2.201 
2.179 
2.160 
2.145 

2.131 
2.120 
2.110 
2.101 
2.093 

2.086 
2.080 
2.074 
2.069 
2.064 

2.060 
2.056 
2.052 
2.048 
2.045 

2.042 
2.021 
2.000 
1.980 
I .960 

31.821 
6.965 
4.541 
3.747 

3.365 
3.143 
2.998 
2.896 
2.821 

2.764 
2.718 
2.681 
2.650 
2.624 

2.602 
2.583 
2.567 
2.552 
2.539 

2.528 
2.518 
2.508 
2.500 
2.492 

2.485 
2.479 
2.473 
2.467 
2.462 

2.457 
2.423 
2.390 
2.358 
2.326 

63.657 
9.925 
5.841 
4.604 

4.032 
3.707 
3.499 
3.355 
3.250 

3.169 
3.106 
3.055 
3.012 
2.977 

2.947 
2.921 
2.898 
2.878 
2.861 

2.845 
2.831 
2.819 
2.807 
2.797 

2.787 
2.77.9 
2.771 
2.763 
2.756 

2.750 
2.704 
2.660 
2.617 
2.576 

318.31 
22.326 
10.213 
7.173 

5.893 
5.208 
4.785 
4.501 
4.297 

4.144 
4.025 
3.930 
3.852 
3.787 

3.733 
3.686 
3.646 
3.610 
3.579 

3.552 
3.527 
3.505 
3.485 
3.467 

3.450 
3.435 
3.421 
3.408 
3.396 

3.385 
3.307 
3.232 
3.160 
3.090 

636.62 
3 1.598 
12.924 
8.610 

6.869 
5.959 
5.408 
5.041 
4.781 

4.587 
4.437 
4.318 
4.221 
4.140 

4.073 
4.015 
3.965 
3.922 
3.883 

3.850 
3.819 
3.792 
3.767 
3.745 

3.725 
3.707 
3.690 
3.674 
3.659 

3.646 
3.551 
3.460 
3.373 
3.291 

From N. L. Johnson and E C. Leone, Staristics and Experimental Design in Engineering and the 
Physical Sciences, 2nd ed., Wiley, New York, 1977, Vol. 1, p. 466. Reproduced by permission of 
the publisher and the Biornetnka Trustees. Use t ( P ; v ) =  - t ( l - P ; v )  forP<O.SO. 
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Appendix A5. Chi-square Percentiles ~ ( P ; v )  

0.005 0.010 0.025 0.050 0.100 0.250 0.500 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
40 
50 
60 

70 
80 
90 

100 

0.00004 
0.0100 
0.0717 
0.2070 

0.4177 
0.6757 
0.9893 
1.344 
1.735 

2.156 
2.603 
3.074 
3.565 
4.075 

4.601 
5.142 
5.697 
6.265 
6.844 

7.434 
8.034 
8.643 
9.260 
9.886 

10.52 
11.16 
11.81 
12.46 
13.12 

13.79 
20.71 
27.99 
35.53 

43.28 
51.17 
59.20 
67.33 

0.00016 
0.0201 
0.1148 
0.2971 

0.5543 
0.8721 
1.239 
1.646 
2.088 

2.558 
3.053 
3.571 
4.107 
4.660 

5.229 
5.812 
6.408 
7.015 
7.633 

8.260 
8.897 
9.542 

10.20 
10.86 

11.52 
12.20 
12.88 
13.56 
14.26 

14.95 
22.16 
29.71 
37.48 

45.44 
53.54 
61.75 
70.06 

0.00098 
0.0506 
0.2158 
0.4844 

0.8312 
1.2373 
1.690 
2.180 
2.700 

3.247 
3.816 
4.404 
5.009 
5.629 

6.262 
6.908 
7.564 
8.231 
8.907 

9.591 
10.28 
10.98 
11.69 
12.40 

13.12 
13.84 
14.57 
15.31 
16.05 

16.79 
24.43 
32.36 
40.48 

48.76 
57.15 
65.65 
74.22 

0.00393 
0.1026 
0.3518 
0.7107 

1.145 
1.635 
2.167 
2.733 
3.325 

3.940 
4.575 
5.226 
5.892 
6.571 

7.261 
7.962 
8.672 
9.390 

10.12 

10.85 
11.59 
12.34 
13.09 
13.85 

14.61 
15.38 
16.15 
16.93 
17.71 

18.49 
26.51 
34.76 
43.19 

51.74 
60.39 
69.13 
77.93 

0.01579 
0.2107 
0.5844 
1.064 

1.610 
2.204 

3.490 
4.168 

4.865 
5.578 
6.304 
7.041 
7.790 

8.547 
9.312 

10.09 
10.86 
11.65 

12.44 
13.24 
14.04 
14.85 
15.66 

16.47 
17.29 
18.11 
18.94 
19.77 

20.60 
29.05 
37.69 
46.46 

55.33 
64.28 
73.29 
82.36 

2.833 

0.1015 
0.5754 
1.213 
1.923 

2.675 
3.455 
4.255 
5.071 
5.899 

6.737 
7.584 
8.438 
9.299 

10.17 

11.04 
11.91 
12.79 
13.68 
14.56 

15.45 
16.34 
17.24 
18.14 
19.04 

19.94 
20.84 
21.75 
22.66 
23.57 

24.48 
33.66 
42.94 
52.29 

61.70 
71.14 
80.62 
90.13 

0.4549 
1.386 
2.366 
3.357 

4.351 
5.348 
6.346 
7.344 
8.343 

9.342 
10.34 
I I .34 
12.34 
13.34 

14.34 
15.34 
16.34 
17.34 
18.34 

19.34 
20.34 
21.34 
22.34 
23.34 

24.34 
25.34 
26.34 
27.34 
28.34 

29.34 
39.34 
49.33 
59.33 

69.33 
79.33 
89.33 
99.33 
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Appendix AS. Chi-square Percentiles ~ ( P ; v )  (Confinued) 

0.750 0.900 0.950 0.975 0.990 0.995 0.999 

1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
I 1  
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
40 
50 
60 

70 
80 
90 

100 

1.323 
2.773 
4. I08 
5.385 

6.626 
7.841 
9.037 

10.22 
11.39 

12.55 
13.70 
14.85 
15.98 
17.12 

18.25 
19.37 
20.49 
21.60 
22.72 

23.83 
24.93 
26.04 
27.14 
28.24 

29.34 
30.43 
31.53 
32.62 
33.71 

34.80 
45.62 
56.33 
66.98 

77.58 
88.13 
98.65 

109.1 

2.706 
4.605 
6.251 
7.779 

9.236 
10.64 
12.02 
13.36 
14.68 

15.99 
17.28 
18.55 
19.81 
21.06 

22.31 
23.54 
24.77 
25.99 
27.20 

28.4 I 
29.62 
30.81 
32.01 
33.20 

34.38 
35.56 
36.74 
37.92 
39.09 

40.26 
51.80 
63.17 
74.40 

85.53 
96.58 

107.6 
118.5 

3.841 
5.991 
7.815 
9.488 

11.07 
12.59 
14.07 
15.51 
16.92 

18.31 
19.68 
21.03 
22.36 
23.68 

25.00 
26.30 
27.59 
28.87 
30.14 

31.41 
32.61 
33.92 
35.17 
36.42 

37.65 
38.89 
40. I 1  
41.34 
42.56 

43.77 
55.76 
67.50 
79.08 

90.53 
101.9 
113.1 
124.3 

5.024 
7.378 
9.348 

11.14 

12.83 
14.45 
16.01 
17.53 
19.02 

20.48 
21.92 
23.34 
24.74 
26.12 

27.49 
28.85 
30.19 
31.53 
32.85 

34.17 
35.48 
36.78 
38.08 
39.36 

40.65 
41.92 
43.19 
44.46 
45.72 

46.98 
59.34 
7 1.42 
83.30 

95.02 
106.6 
118.1 
129.6 

6.635 
9.210 

11.34 
13.28 

15.09 
16.81 
18.48 
20.09 
21.67 

23.21 
24.72 
26.22 
27.69 
29.14 

30.58 
32.00 
33.41 
34.81 
36.19 

37.57 
38.93 
40.29 
41.64 
42.98 

44.31 
45.64 
46.96 
48.28 
49.59 

50.89 
63.69 
76.15 
88.38 

100.4 
112.3 
124.1 
135.8 

7.879 
10.60 
12.84 
14.86 

16.75 
18.55 
20.28 
21.96 
23.59 

25.19 
26.76 
28.30 
29.82 
31.32 

32.80 
34.27 
35.72 
37.16 
38.58 

40.00 
41.40 
42.80 
44.18 
45.56 

46.93 
48.29 
49.64 
50.99 
52.34 

53.67 
66.77 
79.49 
91.95 

104.2 
116.3 
128.3 
140.2 

10.83 
13.82 
16.27 
18.47 

20.52 
22.46 
24.32 
26.12 
27.88 

29.59 
31.26 
32.91 
34.53 
36.12 

37.70 
39.25 
40.79 
42.31 
43.82 

45.32 
46.80 
48.27 
49.73 
51.18 

52.62 
54.05 
55.48 
56.89 
58.30 

59.70 
73.40 
86.66 
99.61 

112.3 
124.8 
137.2 
149.4 

From N. L. Johnson and F. C. Leone, StntisticC and Experitnental Design in Engineering and the 
Physical Sciences, 2nd ed., Wiley, New York, 1977, Vol. 1, pp. 511 -512. Reproduced bypermis- 
sion of tire publisher and the Biometrika Trustees. 
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!38.88 
9.371 
8.8452 
6.0410 

4.8183 
4.1468 
3.7257 
3.4381 
3.2296 

3.0717 
2.9480 
2.8486 
2.7669 
2.6987 

2.6408 
2.591 I 
2.5480 
2.5102 
2.4768 

2.4471 
2.4205 
2.3965 
2.3748 
2.3551 

2.3371 
2.3205 
2.3053 
2.291 3 
2.2782 

2.2662 
2. I802 
2.0970 
2.0164 
1.9384 

- 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
I I  
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
40 
60 

120 
a, 

- 

240.54 
19.385 
8.8123 
5.9988 

4.7725 
4.0990 
3.6767 
3.388 1 
3.1789 

3.0204 
2.8962 
2.7964 
2.7144 
2.6458 

2.5876 
2.5377 
2.4943 
2.4563 
2.4227 

2.3928 
2.3661 
2.3419 
2.3201 
2.3002 

2.2821 
2.2655 
2.2501 
2.2360 
2.2229 

2.2107 
2.1240 
2.0401 
1.9588 
1.8799 

Appendix A6a. F-Distribution 95% Points F(0.95;vl,v2) 

I 

161.45 
18.513 
10.128 
7.7086 

6.6079 
5.9874 
5.5914 
5.3177 
5.1 174 

4.9646 
4.844'3 
4.7472 
4.6672 
4.6001 

4.543 1 
4.4940 
4.4513 
4.4139 
4.3808 

4.3513 
4.3248 
4.3009 
4.2793 
4.2597 

4.2417 
4.2252 
4.2100 
4.1960 
4. I830 

4. I 709 
4.0848 
4.0012 
3.9201 
3.8415 

2 

99.50 
9.000 
9.5521 
6.9443 

5.7861 
5.1433 
4.7374 
4.4590 
4.2565 

4.1028 
3.9823 
3.8853 
3.8056 
3.7389 

3.6823 
3.6337 
3.5915 
3.5546 
3.5219 

3.4928 
3.4668 
3.4434 
3.4221 
3.4028 

3.3852 
3.3690 
3.3541 
3.3404 
3.3277 

3.3158 
3.2317 
3.1504 
3.0718 
2.9957 

3 

!15.71 
19.164 
9.2766 
6.5914 

5.4095 
4.7571 
4.3468 
4.0662 
3.8626 

3.7083 
3.5874 
3.4903 
3.4105 
3.3439 

3.2874 
3.2389 
3.1968 
3.1599 
3.1274 

3.0984 
3.0725 
3.049 I 
3.0280 
3.0088 

2.9912 
2.9751 
2.9604 
2.9467 
2.9340 

2.9223 
2.8387 
2.7581 
2.6802 
2.6049 

4 

124.58 
9.247 
9.1172 
6.3883 

5.1922 
4.5337 
4.1203 
3.8378 
3.6331 

3.4780 
3.3567 
3.2592 
3.1791 
3.1 122 

3.0556 
3.0069 
2.9647 
2.9277 
2.8951 

2.8661 
2.8401 
2.8167 
2.7955 
2.7763 

2.7587 
2.7426 
2.7278 
2.7141 
2.7014 

2.6896 
2.6060 
2.5252 
2.4472 
2.3719 

5 

!30. I 6  
19.296 
9.0135 
6.2560 

5.0503 
4.3874 
3.9715 
3.6875 
3.4817 

3.3258 
3.2039 
3.1059 
3.0254 
2.9582 

2.9013 
2.8524 
2.8100 
2.7729 
2.7401 

2.7109 
2.6848 
2.6613 
2.6400 
2.6207 

2.6030 
2.5868 
2.5719 
2.5581 
2.5454 

2.5336 
2.4495 
2.3683 
2.2900 
2.2141 

6 

133.99 
9.330 
8.9406 
6.1631 

4.9503 
4.2839 
3.8660 
3.5806 
3.3738 

3.2 I72  
3.0946 
2.9961 
2.9153 
2.8477 

2.7905 
2.7413 
2.6987 
2.6613 
2.6283 

2.5990 
2.5727 
2.549 I 
2.5277 
2.5082 

2.4904 
2.4741 
2.4591 
2.4453 
2.4324 

2.4205 
2.3359 
2.2540 
2.1750 
2.0986 

7 

E36.77 
19.353 
8.8868 
6.0942 

4.8759 
4.2066 
3.7870 
3.5005 
3.2927 

3.1355 
3.0123 
2.9134 
2.8321 
2.7642 

2.7066 
2.6572 
2.6143 
2.5767 
2.5435 

2.5140 
2.4876 
2.4638 
2.4422 
2.4226 

2.4047 
2.3883 
2.3732 
2.3593 
2.3463 

2.3343 
2.2490 
2.1665 
2.0867 
2.0096 

From C. A. Bennett and N. L. Franklin, Siatisiicol AnoIysis in Chemisn)? and the Chemical In- 
dusv ,  Wiley, New York, 1954, pp. 702-705. Reproduced by permission of the publisher and 
the Bionietrika Trustees. 
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Appendix A6a. F-Distribution 95% Points F(0.95;vl,v2) (Continued) 
- 

10 

- 
41.88 
9.396 
8.7851 
5 . 9 M  

4.7351 
4.060( 
3.6361 
3.347; 
3.137: 

2.978; 
2.853t 
2.7534 
2.671C 
2.6021 

2.5437 
2.4935 
2.4499 
2.41 17 
2.3779 

2.3479 
2.3210 
2.2967 
2.2747 
2.2547 

2.2365 
2.2197 
1.2043 
1. I900 
1.1768 

?. 1646 
!.0772 
1.9926 
1.9105 
1.8307 
- 

- 
12 

- 

!43.91 
9.4 I3 
8.7446 
5.91 17 

4.6777 
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Appendix A6b. F-Distribution 99% Points F(O.W,vl,vz) 
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Many phrases are listed according to the main noun, rather than the first word, for example: 
Distribution, normal; Data, multiply censored; Comparison, binomial. For distribution proper- 
ties, consult: Distribution, name. Many data analysis methods are under the name of the 
method, for example: Least squares and maximum likelihood. 

A priori distribution, 241 
non-informative, 241 

A-ratio, 21 
Absolute temperature, 76,78 
Accelerated testing, 3f 
Accelerated tests, 37fl 
Accelerating stresses, 6,7,29 
Acceleration, by censoring, 17 

high usage rate, 15 
types of, 15fl 

Acceleration factor, 77,151,251,253,283 
Arrhenius, 77,152 
assumptions, 42 
definition, 40 
estimated, 41,253 
generalized Eyring, 111 
inverse power, 88 
known, 41 
multiple, 154 
separate factors, 254 
traditional value, 253 
uncertainty, 154 
value, 253 

Acceptance sampling, 23 
Accuracy, computational, 240 

ML estimate, 266 
numerical, 240 

Actions, 427 
Activation energy, 76,122,525 

Addition law, exponential failure rates, 381 
assumed value, 152 

for failure rates, 379 
Weibull failure rates, 381 

Adhesives, 7,102,524 
Allocation, 36 

equal, 321,373 

optimum, 321 
unequal, 321,326,350 

subspace, 473 
Alternative, hypothesis, 427,473 

Analyses, variety of, 114 
Analysis, least squares, 167fJ 

maximum likelihood, 233ff 
sensitivity, 252 

Analysis of variance, one-way, 440 
Analytic methods, 113,168 
Area effect, 231,386,507 
Arrhenius, acceleration factor, 77,152 

activation energy assumed, 154 
degradation, 524 
degradation data analysis, 534 
degradation rate, 528 
life relationship, 76 
paper, 78,120,142 
papers, 122 
rate law, 76 
relationship, 75 
relationship plot, 120,138,142 

Arrhenius-exponential model, 83ff 
failure rate, 84 
fraction failed, 84 
percentiles, 85 

assumptions, 80 
data checks, 189 
fraction failed, 80 
graphical analysis, 114 
graphical estimates, 138,143 
ML fit, 243 
model, 79,114,124,285ff, 393 
percentiles, 81 
plots, 114 

Arrhenius-lognormal model, assess, 138,144 
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Arrhenius-Weibull model, assumptions, 82 
design temperature, 83 
fraction failed, 83 
model, 82 
percentile, 83 

Artificial censoring, 135 
Assess, Arrhenius-lognormal, 124,144 

constant lognormal u, 125,184,257 
constant scale parameter, 257,268 
constant standard deviation, 125,184,257 
constant Weibull shape @, 204,257 
data, 124,223 
data with failure modes, 405,411 
degradation data, 540 
degradation model, 540 
distribution, 117,211,261,268,412 
distribution of degradation, 542 
independence of failure modes, 406,412 
independent observations, 514 
linearity, 183,204,260,412 
lognormal distribution, 125,185 
model, 124 
model for failure modes, 405,411 
power-Weibull model, 134 
relationship, 223,280,512 
right censored data, 255 
scale parameter is constant, 280 
simple model, 255 
varying stress data, 510 
varying stress model, 510 
Weibull distribution, 205 

Assumed coefficient value, 250,255 
Assumptions, degradation, 523 

model, see each model 
ASI'M E739-80,168 
ASI'M !SlT 313,168 
ASI'M 731,267 
ASI'M Srp 738,522 
Asymptotic theory, ML, 23,291 
Average, grand, 174 

life, 55 
sample, 174 

generalized, 258 
Bartlett's test, 184,436,490 

Bartlett's test statistic, 184,436 
Bathtub, curve, 70 

hazard function, 70 
Batteries, 10,75,282,407,524 
Bayesian, analysis, 241 

estimate, 241 
Bearing capacity, 86 
Bearings, 11,85,86,89,383,494 

ceramic, 419 
failure, 420 

Behrens-Fisher problem, 489 
Bemstein distribution, 531 

Beta @ parameter, 63 
Bias, 169 

ML estimate, 297 
sampling, 26 

Bias comction, ML estimate, 297 
Bibliographies, accelerated testing, 5 
Bipolar memories, 381 
BimbaumSaunders distribution, 70,533 
Birth and death process, 529 
Black's formula, 101 
Blunders, 183 
BMD, 169 
BMDP, 169,240 
Boltzmann's constant, 76,123,175 
Bonds, 10 
Bonferroni inequality, 259,297,437,441,455, 

Bootstrapping, 236,438 
Boundary points, parameter space, 471 
Breakdown, 522 

insulating fluid, 387 
Breakdown stress distribution, 548 
Building materials, 8,533 
Bum-in, 23,43,70 

Cable, 383,385 
Calculations, ML fit, 284 

Capacitors, 9,282,385,494 
Cause and effect, 33,209 
Cause of failure, 378, see Failure mode 
CCD memories, 381 
Cells, 10,75,282,407,524 
Cement, 8 
CENSOR, 237,302 
Censored data, 1,13,233 

464,467 

numerical, 48 

ML comparisons, 45lff 
ML fit, mff 
multiply, 15,139fi 233ff 
on the left, 13 
on the right, 13,134#, 233fl 
singly, 13,134fi 233ff 

artificial, 135,234,273 
choice of, 234 
experimental design, 351 
failure, 235 
failure modes, 408 
informative, 235 
noninformativc, 235 
random, 235 
Type 11,235 
value of, 234 

Censoring, 17,234,285 

Centered variable, 172 
Centering, 215 
Central limit theorems, 291 



INDEX 581 

Ceramics, 7,87,533 
Checks, see Assess 

data, 189,209 
linear-lognormal model, 182 
linear-Weibull model, 203 

Chemical acceleration, 6 
Chemical kinetics, 529,548 
Chemical reaction, 75,548 
Circuit boards, 9 
Class-F insulation, 386 
Coatings, 6,s 
Cochran’s test, 185 
CODEX, 120,132,133,188 
Coefficient, 99 

graphical estimate, 123,537 
interaction, 461 
intercept, 103 
LS estimate, 172,175,192 
ML estimate, 243ff 
relationship, 286 
slope specified, 250 
specified, 216,255,282 
value assumed, 216,255,282 

Coefficients, random, 530 
uncomlated, 530,532 

Coffin-Manson relationship, 86,97,251 
Common parameter values, 460 
Comparable estimates, 426 
Comparison, 154,42513; 451ff, see Hypothesis 

test 
coefficients, 278 
complete data, 425ff 
confidence limits, 256,257,426 
designs, 425 
difference of two ML estimates, 458 
estimate with a specified value, 255 
graphical, 114,429J7, 451 
hypothesis test, 426 
independent samples, 460 
intercepts, 278,431,443 
K coefficients, 447 
K estimates for equality, 466 
K means, 439 
K multivariable means, 446 
K multivariable relationships, 447 
K samples, 465ff 
K slope coefficients, 442 
K standard deviations, 436 
least-squares, 4297 
lognormal and Weibull, 263 
lognormal u’s, 257 
LR test for a specified value, 454 
LR test for scale parameters, 258 
materials, 425 
means, 437ff 
means pairwise, 441 

ML, 45lJ7 
ML censored data, 45lff 
ML confidence interval, 452 
ML estimate with a specified value, 452 
ML estimates for equality, 456 
ML interval data, 451ff 
ML properties, 451 
ML quantal-response data, 45lff 
ML two-sample, 458J7 
models, 273,426 
multivariable means, 446 
multivariable relationships, 217,445f 
one coefficient, 446 
one mean, 438 
one multivariable mean, 446 
one slope coefficient, 441 
one standard deviation, 435 
one-sample, 452 
pairwise, 437 
pairwise means, 441 
percentiles, 430 
probability plots, 431 
production periods, 425 
Q ML estimates with specified values, 

Q sets ofKcoefficients, 469 
ratio of two ML estimates, 460 
reasons for, 426 
relationships, 431 
robust for means, 438 
u’s, 278 
scale parameters, 431 
simple relationships, 441 
simultaneous Q ML estimates, 455 
simultaneous Q pairs of coefficients, 462ff 
slope coefficients, 431,441 
slopes and intercepts simultaneously, 

spreads, 431 
standard deviations, 434,445ff 

stepstress models, SO5 
suppliers, 425 
test plans, 324ff 
Tukey’s for means, 441 
two coefficients, 447 
two means, 438 
two ML estimates, 458 
two multivariable means, 446 
two slope coefficients, 441 
two standard deviations, 436 
varying stress data, 513 
Weibull and lognormal, 211,263 
Weibull ps, 257,259 
Weibull shape to PO, 208 

Comparisons, 42,43,47 

454 

443ff 

stepstress, 505 
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Competing failure modes, 15,377 
Competing risks, 378 
Complete data, 13 

avoid, 168 
graphical analysis, 114,128 
LS analyses, 167ff 

Components of variance, 107 
Compressed time test, 15 
Computation, statistical, 240 
Computer, least squares output, 172 
Computer plot, 113 
Computer programs, 151,168 

least squares, 169 
ML, 237ff 
user written, 170 

Concrete, 8 
Condition, single test, 40 
Conditions, test, 27 

uncontrolled, 511 
use, 27 

demonstration test, 257 
Confidence, 168 

Confidence interval, 46,47,48, see 
Confidence limits 

advantage of, 113 
Confidence limits, binomial, 149 

compare a standard deviation, 435 
comparisons with, 256,4245 
consistent with a specified value, 428 
difference of coefficients, 441 
difference of two means, 438 
difference of two ML estimates, 458 
exponential distribution, 248 
hypothesis test, 428 
improved ML, 2% 
inspection data, 266 
least squares, 173,178. 
linear-Weibull model, 197ff 

LS design stress, 182, 199 
LS fraction failing, 181 
LS intercept coefficient, 180,200 
LS linearexponential, 202 
LS In mean, 197 
LS log mean, 178 
LS percentile, 179,198 
LS shape parameter, 200 
LS slope coefficient, 180,201 
LS standard deviation, 180 
ML, 235,245 
ML improved, 2% 
ML normal approximation, 236,245,295 
ML positive, 2% 
ML simultaneous, 297 
ML too short, 236 
ML transformed, 2% 

LR, 236,236,297ff 

nonparametric, 149 
one-sided, 296,297 
Poisson approximation to binomial, 149 
power-exponential, 236 
power-Weibull, 236 
simultaneous pairwise, 467 
unbounded, 295 

Confidence region, joint, 300 
LR simultaneous, 463 
rectangular, 300 
simultaneous rectangular, 464 

Connections, electronics, 10 
Considerations, engineering, 22ff 

Consistent hypothesis test, 485 
Constant degradation rate, 540 
Constant hypothesis, 475 
Constrained maximum log likelihood, 457 
Constraint hypothesis, 475 
Constraints, 36 

model, 487 
test plan, 363 
null hypothesis, 476 

Contacts, electrical, 10 
Contour plot, 101 
Convergence, in distribution, 291 

in law, 291 
iteration, 245,290 

Convincing, 214 
evidence, 429 

Correlated failure modes, 382,412 
Correlated lives, positively, 387 
Correlation, 514 

engineering, 33 
matrix, 243 
near 21,269 
statistical, 33 

Corrosion, 6,12,522 
Covariance, LS coefficient estimates, 172 

statistical, 43ff 

ML estimates, 243 
ML estimates of functions, 370 

Covariance matrix, failure modes, 415 
local estimate of, 293 
ML estimate of, 369 
of ML estimates, 243,293 
true theoretical, 369 

Covariates, 33,99 
Cox model, 71,104,242 

reliability function, 105 
Crack initiation, 6,310,522 
Crack propagation, 6,522 
Cracking, 12 
Creep, 6,12,522 
Creep-rupture, 6,383 
Critical value, equivalent, 480 

test statistic, 480,481 
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Cross terms, 2 7 6 , s  
Crossplot, failure modes, 406 

residuals, 209,218,265,276,505,543 
trend, 209 

deterministic, 495 
model, 494ff 
theory, 494ff 

Cumulative damage, cycling e5ect, 498 

Cumulative distribution function, 53 
Cumulative distribution plot, 74,79,116ff 
Cumulative exposure, 507, see Cumulative 

damage 
basic model, 498,507 
definition, 501 
model, 497 
model inadequacy, 498 
residual, 512 

Cumulative hazard, definition, 57 
value, 140 

Cutting tools, 87 
Cutting velocity, 87 
Cycle length, 397 
Cycling damage, 498 
Cycling rate, 397 

Damage theory, 494ff 
Data, see Example 

all-or-nothing response, 15 
assess degradation, 540 
autocomlated, 536 
binary, 15 
case, 285 
censored, 1,13,233ff, 45lff 
checks, 189,209,264 
cloud, 213,222 
collection, 46 
complete, 1,13,167 
equivalent, 251 
erroneous, 209 
failure modes, 392ff 
field, 44 
grouped, 15,145ff 
inspection, 15, 145ff 
interval, 15,312,371,451ff 
interval analpis, 145 
laboratory, 44 
left censored, 267 
matrix, 284 
missing, 222 
multiply censored, 139,395 
peculiar, 127 
performance, 13, 52lff 
plots, 46,113fJ 
probit, 15 
quantal-response, 15,95,104,310,371, 

451ff 

read-out, 15, 145g 518 
right censored, 242 
sensitivity, 15 
singly censored graphical analysis, 134fl 
step-stress, 495ff 
suspect, 189,209 
transformed, 283 
types of, 12 
valid, 127,44 
varying stress, 506 

Data analysis, 45 
exploratory, 46 
graphical, 113ff 
least squares, luff, 425ff 
maximum likelihood, 233ff, 407ff, 45lff 
methods, 47 

Data banks, 5 
Data handbooks, 5 
Data scale, 116 
Dead on arrival, 68 
Defectiw, 43 
Defects, interior, 389 

Degradation, 13,17,75,97,211 
surface, 389 

accelerated, 52lf 
adhesive, 521 
applications, 521 
Arrhenius, 524f 
Arrhenius data analysis, 534ff 
Arrhenius rate, 528 
assumptions, 523 
bibliographies, 522 
competing modes, 529 
constant rate, 527 
dielectrics, 522 
drugs, 522 
exponential rate, 528 
Eyring rate, 529 
failure, 528 

graphical analysis, 537 
initial, 525 
insulation, 522 
Larsen-Miller generalizations, 533 
Larsen-Miller polynomial rate function, 

Larsen-Miller rate function, 533 
life distribution, 526,539 
linear, 525,527 
literature, 544 
mathematical rate function, 533 
mechanisms, 11 
median failure time, 526 
metals, 522 
microelectronics, 522 
ML fit, 538 

. food, 522 

533 
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model assumptions, 523 
models, 529 
models needed, 523 
non-constant stress, 524 
percentiles, 525 
performance, 521f 
pharmaceuticals, 522 
plastics, 522 
polymers, 522 
power function rate, 528 
processes, 522 
random coefficient6 model, 530 
random increments model, 531 
rate, 528 
rate depends on stress, 541 
rate is constant, 540 
rate plot, 541 
residuals, 542 
semicondutors, 522 
temperature-accelerated, 524 
test advantages, 521 
test plans, 534 
wear-in, 527 
wear-out, 527 
Weibull rate function, 533 

Degradation test, advantages, 521f 
Degrees of freedom, number of, 174 
Demonstrate reliability, 23,428 
Demonstration test, 255,426,428,452,482, 

483 
confidence of, 257 
fail, 257 
for a mean, 438 
GaAs FET, 375 
pass, 257 

Density, probability, 55,285 
Dependent, component lives, 497 

failure modes, 406 
failures, 381 
observations, 536 

Derating curves, 84,98,210 
Derivations, 3 
Design, experimental, 45 
Design life, 152 
Design of experiments, 361 
Design principles, 32 
Design stress, 89 

confidence limits LS, 182,199 
estimate, 134 
graphical estimate, 123 
LS estimate, 177 
ML estimate, 247 

Design temperature, 81,83,525 
Arrhenius-lognormal, 81 
Arrhenius-Weibull, 83 

Dielectrics, 7,75,85,89,385,522,524 

Diesel engines, 532,533 
Difference of coefficients, confidence limits, 

Difference of means, confidence limits, 438 
Difference of ML estimates, confidence lim- 

its, 458 
Dihsion, 530 
Dissipation factor, 98 
Distribution, a priori, 241 

441 

all failure modes act, 3991f 
assess, 268 
Bernstein, 531 
Bimbaum-Saunders, 70,533,545 
bivariate lognormal, 382 
breakdown stress, 548 
,$ percentiles table, 554 
curved, 410 
degradation, 531 
estimate for degradation, 539 
exponential, S3ff 
extreme value, 65fi 206 
F percentiles table, 556 
failure modes eliminated, 3Olff, 402 
fatigue-limit, 94 
function, 53 
gamma, 70 
generalized gamma, 70,263, see log- 

largest extreme value, 206 
line slope, 122 
lines, 117 
log gamma, 278,412, see generalized 

gamma 
lognormal, 115 
lognormal xrsus Weibull, 263 
mixture, 69,379 
multivariate, 382 
multivariate exponential, 382 
multivariate lognormal, 382 
multivariate normal, 291 
multivariate Weibull, 382 
non-central f ,  181 
normal, 5 8 .  
normal cumulative distribution table, 550 
normal percentiles table, 552 
normal two-sided factors table, 552 
others, 250 
parameter, 286 

posterior, 241 
power lognormal, 422 
single, 251 
size effect, 386 
skewed, 305 
smallest extreme value, 65fi 206 
statistical, 73,285 

gamma 

plot, 73 
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strength, 94,269 
system of identical parts, 383 
r percentiles table, 553 
test of fit, 264 
under stepstress, 498 
valid, 121 
volume effect, 387 
Weibull, 63ff 
Weibull versus lognormal, 263 
with eternal survivors, 69 
with failure at time zero, 68 

Distributions, cross, 107 
parallel lines, 74 

Drugs, 8,522, see Pharmaceuticals 

Effect of area, 386 
Effect of size, 38.5ff 
Effect of mlume, 387 
Elastic term, 97 
Elastic-plastic relationship, 97 
Elastics, 7 
Electrical insulation, see Insulation 
Electromigration, 101 
Electron-volts, 76 
Electronic components, 73 
Electronics, 10,101,494 
Elephant test, 493~7 
Eliminate failure modes, 398,401ff 
Empirical model, 211 
Encapsulants, 9, see Example, Au-AI bonds 
Endurance limit, 93,269ff 

LR test, 270 
ML fit, 269 
sharp, 269 

Engineering considerations, 22 
Environmental stress screening, 39,43,70 

Equal allocation, 321 
Equality hypothesis, 466,475 
Equivalent hypothesis test, 482 
Equivalent life, 251 
Equivalent size, 391 
Equivalent start time, 500 
Equivalent time, 251,423 
Error, mean squared, 172,240 

random, 172,191,523 
mot mean squared, 172 
standard, 172,293 

Errors, independent, 172 
ESS, see Environmental stress screening 
Estimate, accuracy by simulation, 353ff 

EPOXY, 101 

activation energy, 123 
Bapsian, 241 
coefficient, 175,537 
confidence interval, 47, see Confidence 

limits 

degradation life distribution, 539 
distribution line, 122 
distribution with all failure modes, 399 
failure mode distribution, 398 
failure mode model, 398 
failure modes eliminated, 411 
graphical, 118ff 
Greenwood’s, 151 
Kaplan-Meier, 146,151 
least squares, l72ff 
LS design stress, 1?7 
LS fraction failing, 177 
LS mean (log) life, 176 
LS percentile, I77 
life at a stress, 121 
linear, 240 
linear unbiased, 240 
linearly pooled, 466 
minimum variance, 240 
ML, 245,290fi 366 
ML all failure modes act, 410 
ML bias correction, 297 
ML existence, 291 
ML exponential mean, 249 
ML failure modes eliminated, 411 
ML for a function, 417 
ML invariance, 236 
ML of function, 294 
ML standard error, 235 
ML uniqueness, 291 
ML variance, 294 
percentage failing, 142 
percentile, 141 
percentile for degradation, 539 
Peto, 151 
robust, 121 
standard deviation, 124,538 
standard error of, 245 
Turnbull, 151 
Weibull shape parameter, 130 

Estimates, dependent, 461 
independent, 460 
ML for failure modes, 414 

Estimation, methods, 240 
Estimator, ML best asymptotically normal 

(BAN), 2% 
ML sampling distribution, 235 
ML standard error, 235 

Eternal suMvors, 530 
Euler’s constant, 66, 191 
Example, $1,OOO,OOO discmry, 144,261,398, 

158,314,489 
$l,OOO,OOO experiment failure modes, 421 
Au-AI bonds, 232,448 
Au-AI bonds comparison, 489 
battery cells, 99 
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bearing ball failures, 419 
bearings, 157,230,305,384 
bolthole cracks, 381 
cable, 312 
cable insulation, 503ff, 513 
capacitor, 63,100,302,387 
capacitor test plan, 375 
Class-B failure modes, 418 
Class-B insulation, 108,109,135,157, 

158,242,257ff, 266,28.5#, 330 
Class-B test plan, 332,337,343,372 
Class-H failure modes, 379,382,393fi 

Class-H insulation, 32,61,77,80ff, 115, 
403,408fi 417 

121, 123, 126, 144, 156, 171f, 230, 
231 

Class-H test plan, 321,324,325,327 
CMOS RAM, 164 
coffee maker, 2.5 
compressor, 31,252 
cookware, 38 
corrosion, 162 
cryogenic cable, 387,495fi503fl 
degradation of insulation, S34fl 538 
electric cord, 28 
electrical machine insulation, 388 
encapsulant, 163 
engine fan, 54 
equality of Poisson A,, 486 
exponential comparison, 471# 
fatigue limit, 313 
fatigue limits comparison, 489 
GaAs FET demonstration, 491 
GaAs FET test plan, 375 
Ground insulation, 395ff 
heater, 155,230 
heater failure modes, 420 
heater test plan, 319,323 
insulating fluid, 104,107,128,159,300, 

insulating fluid test plan, 372 
insulating oil, lWfi506f 
insulating oil comparison, 452fi 488 
insulating tape, 32,33,98 
insulation, 32,59 
insulation degradation, 5348,538 
insulation endurance limit, 269 
left censored data, 159 
linear-exponential comparison, 4nff 
linear-normal comparison, 473f 
lost specimens, 372 
low cycle fatigue, 272 
lubricant, 252,310 
lubricating oil, 252 
machine insulation, 211ff 
machine insulation test plan, 35Of 

304,387, see Example, oil 

machine insulations comparison, 458ff 
material strength, 66 
microprocessor, 145,149,152,164 
motor insulation, 26,28,386 
oil, 231,315 
oil breakdown, 513 
oil comparison, 513 
oil residuals, 384 
other heater failure modes, 421 
permalloy corrosion, 162,231,548 
Phase insulation, 395f 
production shifts, 102 
relay, 110,160,310 
relays comparison, 489 
satellite amplifier test plan, 376 
snubber comparison, 488 
steel fatigue, 312 
superalloy fatigue, 110 
tandem specimens, 417 
tape insulation, 98 
taping experiment, 99 
three cable insulations, 516,154,229, 

three motor insulations comparison, 

toaster, 28 
toaster comparison, 488 
transformer oil, 86,90,92 
transformer oil comparison, 449,488 
transformer turn, 161,310 
transistor, 308 
turbine disk, 310 
Turn failure eliminated, 417,423 
Turn failures, 139,309,395fl 
TV transformer, 38 
two ergonentials, 473ff 
two insulations, 276,281 
wire varnish, 163 
wire varnish test plan, 326,371,372 

4Gff 

430f, 448 

Existence, ML estimate, 291 
Expectation, 55,367 
Expected life, 55 
Experimental design, 32,99,536 

effect of censoring, 351 
principles, 45 

Experimental principles, 32,45 
Experimental procedures, 210 
Exponent, in power law, 86 
Exponential distribution, 53f, 107 

degradation rate, 528 
hazard function, 57 
identical parts, 384 
likelihood, 289 
literature, 248 
mean, 56 
misuse, 53,248 
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ML fit, 248,374 
ML theory, 373 
paper, 132 
percentile, 55 
probability density, 55 
relationship to Weibull, 254 
size effect, 386 
standard deviation, 57 
variance, 56 

Exponential relationship, 96 
Exponential-power relationship, 96 
Exposure, 25 

cumulative, 494ff 
Extrapolation, 318 

polynomial, 318 
Extrapolation factor, 320 
Extreme value distribution, 6Sf 

cumulative distribution, 66 
density, 66 
hazard function, 67 
identical parts, 384 
likelihood, 289 
mean, 66 
percentile, 66 
probability papers, 206 
relationship to Weibull, 67 
reliability function, 66 
standard deviation, 66 
standard percentile, 66 

Extreme value theory, 63 
Eyring, degradation rate, 529 

generalized relationship, 100 
model, 109 
relationship, 97,230 

F ratio, maximum, 437 
F statistic, 183 

for equality of K relationships, 444,448 
for equality of means, 440 
for equality of K slop coefficients, 442 
incremental, 217, 
ratio of exponential means, 483 

for linearity, 183 
for linearity, 204 
incremental, 217,218 

Failure, bearing, 420 
catastrophic, 25 
cause, 378 
component, 378 
customer-defined, 25 
defined, 25 
defined degradation, 526 
definition, 25,272 
definition for degradation, 521 
degradation, 526,528,539 

F test, fit of a multivariable relationship, 217 

distribution of degradation, 527 
first mode, 392 
mode, 378 
on stress step, 498 
single cause of, 114 
subassembly, 378 
temperature, 381 
vibration, 381 

Failure analysis, 5 
Failure censored, 13 
Failure censoring, 235 
Failure mechanism, 377 
Failure mode, eliminated, 398 

estimation of, 382 
extraneous, 377 
graphical analysis of, 395f 
graphically estimate distribution, 398 
likelihood equations, 415 
partly eliminated, 405 
point of view, 395 
residuals, 412 
separate analysis, 415 
single, 75,493 

Failure modes, 30,31,40,41,43,76, 183,204, 
251,326,377ff 

censoring, 408 
competing, 3737,413 
correlated, 382,412 
covariance matrix, 415 
crossplot, 406 
dependent, 382,406 
distinct models, 415 
Fisher matrix, 415 
graphical analysis, 392f 
identified, 407 
independent, 378 
life-stress relationship, 399 
literature, 392,407 
local covariance matrix, 416 
log likelihood, 413 
ML estimate of a function, 417 
ML estimates, 414 
ML fit, 407ff 
ML theory, 413f 
models, 393 
not identified, 407 
positively correlated, 382 
two, 423 
unidentified, 423 

Failure rate, 53,110 
bathtub, 70 
decreasing, 65 
design value, 257 
increasing, 64 
instantaneous, 57 
ML estimate, 247 



588 INDEX 

size effect, 386 
specified, 257 

Failure rates, addition law, 379 
Failures, dependent, 381,406 
Failures are informative, 357 
Faith, leap of, 28 
Fatigue, 6,11,26,73,85,89,97,110,386, 388, 

389,392,494 
Fatigue limit, 92,269,312 
Fatigue limit relationship, ML fit, 269 
Final equation, 223 
Finite-element analysis, 388 
First failure, 393 
Fisher information matrix, 243,292,367 

failure modes, 415 
local estimate, 292,366 
true theoretical, 367 
Weibull, 369 

Fitting, LS, 167ff 
ML, 2 4 O f f  
nonparametric, 241 

Foods, 8,522 
Force of mortality, 57 
Fraction failing, Arrhenius-exponential, 84 

F I T S ,  53 

Arrhenius-lognormal, 80 
Arrhenius-Weibull, 83 
confidence limits LS, 181 
LS estimate, 177 
power-exponential, 92 
power-lognormal, 88 
power-Weibull, 90 

Freaks, 43,69 
Frequency, stress cycle, 21 
Function, ML estimate of, 294,417 

GaAs FET, 375,383,491 
Gamma distribution, 70 
Gaussian distribution, 58 
Generalized Eyring relationship, 100 
Generalized gamma distribution, 70, 263, see 

Distribution, log gamma 
Generator insulation, 386 
Geometric average, sample, 174 
Geometric mean, sample, 174 
Geometry, 18,76,386,530 
GLIM, 240 
Global maximum log likelihood, 457 
GRAFSTAT, 237,265 
Grand average, 174 
Graphical analysis, 113fi 168 

advantages, 113 
Arrhenius-lognormal, 143 
complete data, 113fi 128ff 
degradation data, 537ff 
disadvantages, 113 

failure modes, 392ff 
interval data, 145ff 
multiply censored data, 139 
power-Weibull, l28f 
read-out data, 145f 
singly censored data, 134f 

Greenwood’s variance, 151 

Handbooks, acceleration factors, 2.54 
Haphazard sampling, 44 
Hazard calculations, 140,395 
Hazard bnction, 57,105 

addition law, 379 
base, 105 
bathtub, 70 
sizc effect, 386 
system of identical parts, 383 

Hazard papers, 141 
Hazard plot, 140ff 

all failure modes, 400 
failure modes eliminated, 405 
interpretation, 141,395 
lognormal, 142 
residuals, 262,265 

Hazard rate, 57, see Hazard function 
Hazard scale, 141 
Hazard value, 140 

cumulative, 140 
modified cumulative, 141 

Heteroscedastic model, 1058 530,532 
Higher-order terms, ML theory, 236 
Homogeneity hypothesis, 466 
Homogeneity of variance, Bartlett’s test for, 

Humidity, 102,162 
Hypothesis, 426 

actions, 427 
alternative, 427,466,473 
constraint, 475 
equality, 427,466,475 
homogeneity, 466 
null, 427,473 
one-sided, 427 
parameters have specified values, 475 
two-sided, 427 
ways to specify, 475 

437 

Hypothesis test, see LR test and Compar- 
ison, 47,428,482 

comparisons, 426 
confidence interval, 428 
consistent, 485 
homogeneity of u, 309 
level of, 481 
locally most powerful ML, 235,451 
ML, 235 
normality, 188 
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other parameters assumed equal, 467 
outlier, 264 
performance, 429 
RBO’S, 486 
sample size, 429 
statistical, 428 
theory, 426 
uniformly most powerful, 485 
Wald’s. 487 

Identical parts, dependent, 385 
exponential life, 384 
extreme value life, 384 
other distributions, 385 
series system, 383ff 
system hazard function, 383 
system life distribution, 383 
Weibull life, 384 

IEEE Std 101,168 
IEEE Std 117,159,397 
Incremental F statistic, 217 
Incremental F test, 217,218 
Independence, 536 

assess failure modes, 406 
Independent, errors, 172 

failure modes, 412 
observations, 471,536 
statistically, 288,536 

Infant mortality, 57 
Information, needed, 45 

numerical, 45 
Inspection, periodic, 34 
Inspection data, 145 
Insulating oil, 385 
Insulation, 7,73,75,79,85,89,282,385,522, 

524 
thickness, 386 

Integrated circuit, 9,383 
Interaction, 276 

coefficient, 461 
term, 100,103,461 

Intercept coefficient, 103 
confidence limits LS, 180,200 
LS estimate, 172 

Interpretation of results, 47 
Interval data, computer packages, 151 

confidence limits, 146,149 
graphical analysis, 145 
literature, 266 
ML comparisons, 45lff 
ML estimate, 266 
ML fit, 265ff 

Invariance property, ML estimate, 236 
Inverse absolute temperature, 80 
Inverse power, law, 85 

relationship, Sff 

relationship plot, 132 
Iterative least squares, 241 

Journals with accelerated testing, 4 

K t E, 120,122,133,188 
Kaplan-Meier estimate, 146 
Kelvin temperature, 76 
Kinetic theory, 548 

Lack of fit, 511 
Lamps, 10,75,85 
Laxsen-Miller, parameter, 77 

relationship, 77 
Least squares, advantages, 168 

analyses, l67ff 
compare intercepts, 443 
compare K coefficients, 447 
compare K multivariable means, 446 
compare means, 438ff 
compare multivariable relationships, 

compare one coefficient, 446 
compare one mean, 438 
compare one multivariable mean, 446 
compare one standard deviation, 435 
compare percentiles, 438 
compare relationships, 441 
compare slope coefficients, 441 
compare standard deviations, 434,445ff 
compare two coefficients, 447 
compare two multivariable means, 446 
comparisons, 425ff 
complete data, l67ff 
confidence limits, 173,178fl 
disadvantages, 168 
iterative, 241 
linear-exponential model, 189ff, 
linear-lognormal model, 170ff 
linear-Weibull model, l89fl 

references, 210 
regression, l68ff 
stepwise fitting, 220ff 
weighted, 241 
why used, 425 

linear-lognormal, 171ff 
lognormal life, 170 
multivariable relationship, 2lOff 
Weibull life, 189ff 

Left censored data, 159 
ML fit, 26Sff 

Level of a hypothesis test, 481 
Life, 12,121 

445ff 

output, 172 

Least squares fit, linear-exponential, 201ff 

equivalent, 251 



590 INDEX 

typical, 121 
Life doubles, 110 
Life line, 121 
Life-stress relationship, 71fi see Relation- 

ship 
Likelihood, see Log likelihood 

basic, 289 
equations, 290 
exponential, 289 
extreme value, 289 
function, 287 
interval data, 287 
left censored data, 287 

lognormal, 289 
normal, 289 
obsemd data, 287 
right censored data, 287 
sample, 288,476 
specimen, 287,365 
Weibull, 289 

failure mode, 415 

confidence limits, 236 
definition, 479 
test, 235,475ff 

lo& 288 

Likelihood equations, 366,478 

Likelihood ratio, see LR test, 470 

LINDEP, 237 
Linear damage theory, 494 
Linear estimate, 240 
Linear function, 99 
Linear-exponential model, 190,201,315,372 

confidence limits LS, 202 
LS fit, 189& 201 
ML fit, 249,473ff 
stepstress, 501 

checks, 182 
estimate of u, 175 
LS coefficient estimates, 175 
LS confidence limits, 178ff 
LS estimate of a fraction failing, 177 
LS estimate of a percentile, 177 
LS estimate of design stress, 177 
LS estimate of mean (log) life, 176 
LS fit, 171ff 
ML fit, 249 
stepstress, 501 

Linear-lognormal model, 171 

Linear-normal model, ML theory, 373 
Linear-Weibull model, 190,372 

checks, 203 
confidence intervals, 197ff 
data checks, 209 
LS coefficient estimates, 192 
LS estimate mean In life, 194 
LS estimate of a percentile, 196 

LS estimate of design stress, 196 
LS estimate of fraction failing, 195 
LS fit, 189ff 
LS parameter estimates, 192 
LS u estimate, 193 
ML fit, 249,315 
ML theory, 374 
stepstress, 501 

F test for, 183,204 
lack of, 182,203 
LR test for, 260 

statistical, 4 

Linearity, assess, 183,204,268 

Literature, engineering, 5 

Literature searches, 52 
Loading, constant, 18 

cyclic, 20,507 
progressive, 20 
ramp, 494,507 
random, 22,494 
stress, 18ff 

Local information matrix, failure modes, 416 
Location parameter, 66 
Log likelihood, 243,288 

constrained, 476 
constrained maximum, 455,457,470 
failure modes, 413 
global maximum, 457,470 
maximum, 290 
maximum with equality, 467 
maximum without equality, 467 
observed sample, 365 
sample, 288 
theoretical sample, 365 
unconstrained maximum, 455,457 

Log mean, 60 
Log standard deviation, 60 
Log-log paper, 133 
Logistic relationship, 103 
Lognormal distribution, assess, 60f, 125,185 

base 10,60,108 
base e, 62,80,108 
cumulativc distribution, 60 
hazard function, 62 
hazard plot, 140 
likelihood, 289 
mean, 61 
median, 60,61 
ML fit, 249 
papers, 119 
percentile, 61 
plot of singly censored data, 136 
probability density, 61 
probability plot, 116 
relationship to normal, 62 
reliability function, 61 
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o depends on stress, 105 
standard deviation, 61 
versus Weibull, 65,211,263 

Lognormal versus Weibull, 65,211,263 
LR limits, 297~7 

advantages, 297 
calculation, 299 
for a coefficient, 300 
for a function, 300 

chi-square approximation, 470 
compare ML estimate with a specified 

compare Q sets of K coefficients, 469 
equalityoflML estimates, 457 
equality of K ML estimates, 467 
equality of Q ML estimates, 455 
equality of Q pairs of coefficients, 463 
equality of two ML estimates, 461 

LR test, 470,475ff, 480 
assess relationship, 280 
Behrens-Fisher, 490 
compare ML estimate with a specified 

value, 454 
compare Q sets of K coefficients, 469 
consistent, 485 
depicted, 481 
endurance limit, 270 
equal shape parameters, 510 
equality of K ML estimates, 468 
equality of ML estimates, 457 
equality of Q ML estimates, 456 
equality of Q pairs of coefficients, 463 
equality of two ML estimates, 462 
K models are equal, 484 
K parameters are equal, 484 
linearity, 260,491 
statistic, 480 
theory, 470ff 

Lubricants, 8,75 
Lubricating oil, 532 

Markw property, 498,524 
Materials, 6J7 
Matrix, correlation, 243 

covariance, 243,293 
data, 284 
Fisher, 243,292 
local Fuher, 292 

Maximum, global, 291 
local, 291 

Maximum F ratio, 185,437 
Maximum likelihood, all failure modes act, 

LR statistic, 470 

value, 454 

410 
Arrhenius-lognormal, 243 
assumptions, 234 

asymptotic theory, 291 
asymptotically optimum estimate, 235 
calculations, 284J7 
censored data, 265fi 451ff 
censoring, 234 
compare K ML estimates, 466ff 
compare Q pairs of coefficients, 462ff 
compare Q sets of K coefficients, 4 6 w  
comparisons, 45lff 
computer programs, 235f 
confidence limits, 23Si,236,24S,29Sf 
constrained, 479 
degradation data, 538 
dependent estimates, 461 
endurance limit, 316 
estimate of a function, 247 
estimates, 245,2Wff 
estimate under the general model, 478 
estimate under null hypothesis, 478 
estimator, 23S 
exponential distribution, 248 
failure modes, 407ff 
failure modes eliminated, 411 
fitting, 24Off 
independent estimates, 460 
interval data, 26.5fl, 371,451ff 
invariance property, 236 
left censored data, mff 
linearexponential fit, 249 
linear-lognormal fit, 249 
lognormal distribution, 249 
LR limits, 236 
LR theory, 470ff 
method, 233ff, 235,284ff 
multivariable relationship, 276J7 
nonconstant u fit, 273 
nonlinear relationship, 261 
normal confidence limits, 245 
numerical methods, 240 
one-sample comparisons, 452 
other distributions, 250 

percentile estimate, 245 
properties, 235 
quantal-response data, 265fl451ff 
reliability estimate, 246 
right censored data, 242f 
u depends on stress, 316 
same model fitted to Q samples, 456 
sampling distribution, 235,245 
simple model, 242fJ 
standard emr, 245 
statistical properties, 235 
stepstress, 502ff 
stepwise fitting, 281 
theory, 364ff 

output, 245 
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theory for failure modes, 413ff 
three simple steps, 284 
twosample comparisons, 458ff 
unconstrained estimate, 479 
variance of a function estimate, 370 
varying stress, SO9 
varying stress data, 506 
versatile, 235 
Weibull distribution, 249 

Maximum log likelihood, 290 
constrained, 455 
unconstrained, 455 

Maximum ratio test, scale parameters, 259 
McCool’s test, 307 
Mean, 55 

confidence limits LS, 178,197 
geometric, 121,122 
pooled sample, 439 

Mean log life, LS estimate, 176 
Mean squared error, 172,240 
Mean time to failure, 53,56,248 
Means, LS compare K, 439 

LS compare two, 438 
LS comparison, 431ff 

error, 34,545 
nondestructive, 536 
repeat, 534 
single, 534 
stress, 35 

Measurement, destructive, 536 

Mechanical components, 11 
Median, 55 
Metal diffusion, 75,76 
Metal fatigue, 97, 361,494 
Metals, 6,21,73,85,89,389,522,533 
Method, LR, 297ff, 454ff, 470ff 

LS, 170ff 
Mi,  2i3ff 
sampling, 44 

Methodology, statistical, 4 
Methods, analytic, 113,168 

estimation, 240 
graphical, 113ff, 168 
multivariate, 536 
numerical, 290 
optimization, 290 

Metrology, 6 
Microcircuits, 9 
Microelectronics, 9,101,385,388,522,529 
MILHDBK-217,72,84,91,96,98, 110,248, 

MILSTD-883,38,152,282 
254,381,383,385,387 

Miner‘s rule, deterministic, 494 

Minitab, 169 
Missing data, 222 

probabilistic, 501 

Mixture, 108 
Model, 35,45,46 

Arrhenius rate, 536 
Arrhenius rate assumptions, 524 
Arrheniuscxponential, 83,84 
Arrhenius-lognormal, 79 
Arrhenius-Weibull, 82 
assess degradation, 540 
basic cumulative exposure, 498,507 
bias, 169 
check, 47 
choice of, 3.5 
coefficient, 286 
combined for independent data sets, 461 
components-of-mriance, 107 
constant degradation rate, 527 
constrained, 470,473 
constraints, 487 
Cox, 71, lOQ, 242,282 
cumulative damage, 19,494,524 
cumulative exposure, 19,494,497 
cumulative exposure assumptions, 498 
definition, 51 
degradation, 13,523 
distinct for each failure mode, 415 
empirical, 211 
endurance limit, 93,269fl 316,489 
error, 169 
Eyring-lognormal, 98,109 
failure modes, 393,413 
fatal shock, 382 
for comparisons, 426 
general, 285,364,470 
general for hypothesis test, 471 
heteroscedastic, 530,532 
Kleinbaum, 536 
linear-exponential, 190,201,315 
linear-lognormal, 171 
linear-normal, 365 
linear-Weibull, 190,315 
needed, 35 
nonlinear, 536 
nonuniform stress, 390 
physical, 36 

power-exponential, 91 
power-lognormal, 88 
power-Weibull, 89,102,128 
proportional hazards, 104,242 
Rabinowicz, 518 
random coefficients, 530 
random increments, 531 
series-system, 37813; 395 
shock, 382 
simple, 242 
simple exponential, 315 

Pothoff-Roy, 537 



INDEX 593 

size effect, 382,386 
standard, 52 
statistical, 44 
stepstress, 495,4% 
uncertainties, 170 
uniform-stress, 388f 

Models, compare K, 465 
LR comparison, 273 

Monte Carlo simulation, 240,241,352 
MOS, 111,529 
MOS memories, 381 
Motors, 11,385,494 
MTI’F, 53,56,248 
Multiply censored data, 15 

graphical analysis, 139ff 
ML analyis, 233f 

Multivariable methods, 536 
Multivariable relationship, 98,210f 

varying-stress, 493f, SO6 

LS fit, 210f 

Nominal life, 77 
Nonsentral t distribution, 181 
Non-constant stress, 493f 

degradation, 524 
Nonconstant spread, 272 
Nonlinear relationship, ML fit, 261 
Nonlinearity, 204,261 

reasons for, 182,203 
Nonparametric, analysis, 71 

fitting, 241 
Nonuniform stress, 387ff 

model, 390 
model extensions 

Normal distribution, 58ff 
approximation for confidence limits, 150 
cumulative distribution function, 58 
deviate, 58 
hazard function, 60 
likelihood, 289 
mean, 60 

percentile, 59 
percentiles table, 552 
probability density, 59 
probability papers, 188 
standard cumulative distribution, 58,80 
standard deviation, 60 
standardized deviate, 58 
table of standard cumulative distribution, 

two-sided factors table, 552 

Papers, 188 

550 

Notation, 52,286 
Nuclear reactor materials, 9 
Null hypothesis, 427,473 

constraints, 476 

subspace, 473 
ways to specify, 475 

Numbering of book, 2 
Numerical methods, 290 

OC function, 429,485 
One-way analysis of variance, 440 
Operating Characteristic function, 429,485 
Optimization, convergence, 290 

methods, 290 
numerical, 290 
unconstrained, 286 

low stress, 337 
test plan, 320 
u depends on stress, 276 

Optimum plan,allocation, 321,337 

Order of a chemical reaction, 548 
Organization of book, 2 
Outlier, 125,128,189,209,220,262,264,385, 

451,542 
test, 264 

Overstress testing, 16 
Overview of book, 1 
Oxidation, 6,12,522 

p value, 428 
Paints, 8 
Palmgren’s equation, 86,251 
Paper, Arrhenius, 78,122 

exponential, 132 
extreme value, 206 
hazard, 141 
inverse power, 87 

lognormal, 119 
normal, 188 
Weibull, 131 

log-log, 87, 133 

Parallel distribution lines, 80,117 
Parameter, of distribution, 285 

. of relationship, 286 
slope, 83 
transformed, 296 

Parameter space, 471f 
of the alternative, 473 
of the null hypothesis, 473 

Parameterization, other, 286 
Parameters, 80,471 

assumed equal, 467 
common value, 460 
compare for equality, 426 

Peck’s relationship, 102 
Percent failed, graphical estimate, 118,123 

Is estimate, 177,195 
ML estimate, 246 

Percentile, Arrhenius-Weibull, 83 
confidence limits Is, 179,198 
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definition, 54 
degradation model, 525 
graphical estimate, 118,123,133,141 
lines, 73,81,121,246 
lognormal, 61 
LS estimate, 177 
ML confidence limits, 245 
ML estimate, 245,539 
sample, 121 
standard normal, 59 

compare graphically, 430 
F table, 556 
normal table, 552 
t distribution table, 553 

Performance, 11,13,24 
degradation, 211, 52lff 
initial, 525 
percent remaining, 525 
percentiles degradation, 525 

Percentiles, 2 table, 554 

Pet0 estimate, 151 
Peto plot, 312 
Pharmaceuticals, 8,494,526 

Pharmacokinetics, 523 
Planning, 36 

ahead, 37 
aids, 37 
scientific, 22 

Plans, test, 317fi see Test plan 
Plastic term, 97 
Plastics, 6,75,522,524 
Plot, 46 

stability, 524 

Arrhenius, 78 
computer, 113 
contour, 101 
data, 113,114 
degradation rate, 541,545 
degradation relationship, 537 
hazard, 140ff 
lognormal, 116 
probability, 114ff 
relationship, l14ff 
Weibull, 129 

Plotting paper, 72, see Paper 
Plotting positions, 115,116, 136,141,155 

expected, 116 
hazard, 141 
median, 116 
midpoint, 116 
modified hazard, 141 
table, 560 

Poisson approximation to binomial confid- 
ence limits, 149 

Polymers, 522,524,534 
Polynomial, degradation rate, 533 

Pooled estimate, sample mean, 439 
standard deviation, 175 

Population, 29,44 
infinite, 44 
sampled, 29 
sub, 69 
target, 29,44 

Posterior distribution, 241 
Power law, 85 
Power parameter, 86 
Power relationship, 85 
Powerzxponential model, 91 

confidence limits, 236 
design stress, 92 
failure rate, 91 
fraction failed, 92 
LS fit, 201ff 
ML fit, 2426 473ff 
percentiles, 92 

Power-function, degradation rate, 528 
Power-lognormal model, 88 

assumptions, 88 
design stress, 89 
LS fit, 170ff 
ML fit, 242ff 
percentiles, 89 

Power-Weibull model, 89,128 
assess, 134 
confidence limits, 236 
design stress, 91 
fraction failed, 90 
graphical analysis, 128 
graphical estimates, 133 
LS fit, 189ff 
ML fit, 242fJ 
percentiles, 91 
plots, l28ff 

Press type, 120 
Probability density, definition, 55 

general, 285 
joint, 471 
standard normal, 285 

Probabilitypaper, 74 
Probability papers, extreme value, 206 

lognormal, 119 
normal, 188 
Weibull, 131 

curved, 125,380 
extreme value, 208 
interpretation, 125 
interval data, 146 
linearity of, 127 
lognormal, 116,136 
nonparallel lines, 126 
nonparametric fit, 125 

Probability plot, comparisons, 431 
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oil model assessed, 515 
oils compared, 513 
order of a reaction, 548 
other heater failure modes, 421 
permalloy cornion, 162,231,548 
power-lognormal, 422 
power-lognormal comparison, 488 
random coefficients model, 545 
random increments model, 545 
random stress, 519 
real, 45 
relay, 160,310 
relays comparison, 489 
sinusoidal stress, 519 
size compensation, 423 
specimen size, 422 
square-wave stress, 518 
statement of, 45 
statistical, 45 
steel fatigue, 312 
tandem specimens, 417 
test plan for degradation, 547 
three cable insulations, 516 
three insulations, 154,229 
three insulations comparison, 448 
transformer oil comparison, 449,488 
transformer turn, 161,310 
transistor, 308 
turbine disk, 310 
Turn failure eliminated, 417,423 
Turn failures, 309 
two failures, 423 
unidentified failure modes, 423 
Weibull limits exact, 489 
wire varnish, 163 
wire varnish test plan, 371,372 

Problem statement, 45 
Procedures, experimental, 210 
Product of likelihoods, 288 
Product rule, for reliability, 378,3% 
Product size, 388 

Progressive stress, literature, 494,495 
Progressive test, 231,449 
Proportional hazards model, 104,242 
Prot test, 20,494 
Pseudo stress, 272 
Purpose, engineering, 24 

Products, 9f 

statement of, 45 
statistical, 24 
test. 23 

normal, 187 
read-out data, 146ff 
residuals, 186,206,434 
Weibull, 129 

Probability plots, parallel, 3% 
Probability plotting positions, 116 

Probability scale, 116 
Problem, Sl,OOO,OOO experiment, 158,314, 

489 

table, 560 

Sl,OOO,OOO experiment failure modes, 421 
adhesive degradation, 545 
Arrhenius-Weibull comparison, 488 
Au-AI bonds, 232,448 
Au-AI bonds comparison, 489 
Bartlett’s test, 490 
bearing, 157,230,305 
bearing ball failures, 419 
khrens-Fisher, 450,489 
BirnbaumSaunders distribution, 545 
cable, 312 
cable insulation, 513 
capacitor, 302 
capacitor test plan, 375 
Class-B failure modes, 418 
Class-B insulation, 157,158,310 
Class-B test plan, 372 
Class-H failure modes, 417 
Class-H insulation, 156,230,231 
CMOS RAM, 164 
compare two means, 450 
corrosion, 162 
degradation rate plot, 545 
degradation test plan, 547 
encapsulant, 163,232,448,489 
Eyring relationship, 163 
fatigue limit, 313 
fatigue limits comparison, 489 
GaAs FPT demonstration, 491 
GaAs FET test plan, 375 
hazard rate for nonuniform stress, 424 
heater, 155,230 
heater failure modes, 420 
insulating fluid (see oil und insulating 

insulating fluid test plan, 372 
insulating oil comparison, 488 
insulation degradation, 545 
linear-exponential comparison, 489 
linear-lognormal comparison, 489 
lost specimens, 372 
lubricant, 310 
measurement error, 545 
microprocessor, 164 
oil, 231,315 
oil breakdown, 513 

oil), 159,304 

Quadratic statistic, 466 
Quadratic terms, 99 
Quality control, 23,126 
Quantal-response data, 15,267 
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ML comparisons, 45lff 
ML fit, 265ff 

Rabinowia model, 518 
RAM Symposium, 9 
Ramp stress, 494 
Ramp voltage, 506 
Random coefficients model, 530 
Random error, 172,191,523 
Random failures, 57 
Random increments model, 531 
Random variation, 172,191 

degradation, 531 
Random vibration, 22 
Randomization, 34,45 
Range, of a distribution, 53 

Rao’s hypothesis test, 486 
Rate plot, 545 
Reaction order, 548 
Reaction rate, 75,97,100,525 
Readsut data, see Intend data 

confidence limits, 146, 149 
graphical analysis, 145 

of test stress, 21,320,329 

Reciprocal scale, 120 
Reduced off time, 16 
Redundancy, 379 
References, 561-577 
Regression, books, 168 

least squares, l68fl 
least squares theory, 172 
maximum likelihood, 233ff 
methods, 522 
nonlinear, 522 
weighted, 241 

Regularity conditions, 291,364,414,481,485 
Relationship, Arrhenius, 75,76,80, l lS,  524, 

assess with LR test, 280 
Black’s, 101 
cause-and-effect, 33 
coefficient, 286 
Coffin-Manson, 86,97,251 
cumd, 403,410 
distribution parameters, 286 
elastic-plastic, 97 
eliminated failure mode, 403 
endurance limit, 92 
endurance limit fit, 269 
exponential and Weibull, 254 
exponential function, 96 
exponential-power, 96 
Eyring, 97,109,163,230 
failure modes, 403 
fatigue limit, 92 
fatigue limit fit, 269 
final, 227 

for u, 105,273 
general, 222,286 
generalized Eyring, 100 
heteroscedastic, 105,273 
inverse power, 85 
known parameters, 41,251 
Larsen-Miller, 77 
Larsen-Miller rate function, 533 
least squares fit, 168f 
life-stress, 71 
life-temperature, 75 
line, 132 
log-linear, 99 
log-linear for spread, 106,276 
logistic, 103 
maincffects, 103 
maximum likelihood fit, 233f 
multivariable, 98,210fi 276fi 282,351 
multivariable depicted, 213 
multivariable linear, 211 
nonlinear, 104 
not Arrhenius, 144 
Palmgren’s, 86,251 

partially specified, 41,251 
Peck’s, 102,111 
plane, 100 
plot, 72,398 
plot of degradation, 537 
polynomial, 97 
Power, Uff 
quadratic, 96,99,261,273, 352,358,374 
reparameterized, 286 
scale parameter, 259,278 
single-stress, 95 
spread, 105 
Taylor‘s, 87 
temperature, 76,80,109,115,144,163, 

230 
test of fit, 216 
test of linearity, 260 
three-dimensional, 100 
with failure modes, 399 
working, 227 
ZhurkoAs, 102,111 

Arrhenius, 120,138,142 
inverse power, 132 
nonlinear, 127 

LS comparison, 441 

demonstration, 23,255,375,426,438,452, 
482 
estimation, 43 
field, 28 

paper, n 

Relationship plot, acceleration factor, 151 

Relationships, compare graphically, 431 

Reliability, books, 42 
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high, 78 
measure, 23 
ML confidence limits, 246 
ML estimate, 246 
test, 28 

exponential, 54 
lognormal, 61 
Weibull, 64 

Removal, 145,146 
Repairable system, 52 
Repeat measurements, 534 
Residual, adjusted for ML fit, 263 

Reliability function, definition, 54 

censored, 262 
cumulative exposure, 512 
degradation, 542 
exponential, 504 
interval, 276 
raw, 262 
step-stress, 503 
uniform, 504 
unitized, 273,278 

Residuals, 186,218 
adjusted about the fitted line, 206 
adjusted about the mean, 186 
crossplot, 209,218,505 
extreme value plot, 206 
failure mode, 412 
hazard plot, 186,262 
normal plot, 218 

pooled, 186 
raw about the fitted line, 186, 206 
raw about the mean, 186 
standardized, 186 

plot, 434 

Resistors, 10 
Risks, competing, 378, see Failure modes 
Robust, comparison of means, 438 

comparison of standard deviations, 434 
numerically, 245 

Robust estimate, 121 
Root mean squared error, 172 
Rounding properly, 245 
Rubber, 7 
Runout, 95 
Rupture of solids, 102 
Rusting, 6 

Sample, 29,44 
asymptotically large, 235 
biased, 26 
extreme values, 27 
homogeneous, 27,34 
misleading, 44 
random, 27,44 
representative, 27 

Sample average, 174 
Sample likelihood, for model, 476 
Sample size, 36,336,340 

choice, 327 
equivalent, 438 
for hypothesis test, 429 

Sample standard deviation, 174 
Samples, independent, 460 
Sampling, bias, 26 

haphazard, 44 
method, 44 
simple random, 44 
stratified, 44 
two-stage, 44 

normal approximation, 371 
null hypothesis, 428 

SAS, 151,169,172,237,412 
Scale, activation energy, 122 

cumulative hazard, 141 
probability, 116 
temperature, 78 

Scale parameter, 66 
constant, 268 
nonconstant ML fit, 272 
relationship, 259 

Sampling distribution, ML estimate, 245 

Scale parameters, graphical comparison, 431 
Scatter of data, 73 
Screening, environmental stress, 39 
Semiconductors, 9,75,79,392,522 
Sensitivity analysis, 252, 357, 372 

Sequence effect, 501,517 
Series system, 395 

definition, 378 
identical parts, 383f 
literature, 379 
model, 378f 
size effect, 386 
with independent failure modes, 378 

of test plan, 342 

Shape parameter, Weibull, 63 
Shelf life, 522,526 
Shock model, 382 
Significance, 429 

level, 428 
practical, 48,429 
statistical, 48,429 

Significant, 48 
highly, 428 
practically, 429 
statistically, 428, 429 
very highly, 428 

Significant figures, 218 
Simple random sampling, 44 
Simulation, for a test plan, 352ff 

larger sample for, 357 
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Simultaneous confidence limits, 297 
Simultaneous confidence region, 464 
Simultaneous intervals, Q differences, 463 
Q ML estimates, 455 
Q pairs of ML estimates, 463 

Singly censored data, 13 
graphical analysis, 134ff 
M L  analysis, 242ff 

definition, 389 
equivalent, 391 

Size effect, 377,385E 389,497,507 
exponential distribution, 386 
failure rate, 386 
model, 382,386 
pessimistic, 387 
strength, 386 
Weibull distribution, 386 

Size of sample, 36,327,336,340,429 
Sizes, several specimens, 423 
Slope, common distribution, 117 
Slope coefficient, confidence limits LS, 180, 

Sue, 17 

201 
LS estimate, 172 
specified, 250 

Slope parameter, 63,83 
Software, statistical, 237ff 
Solder, 86 
Solid state devices, 76 
Specified coefficient, 250 

Specimen, 27 
error in, 252 

creep-rupture, 384 
definition, 272 
design, 17 
geometry, 18,388 
measured once, 534 
measured repeatedly, 534 
realistic, 26 
standard, 34 

Specimens, 26 
number of, 36 
tandem, 383,384,417 
various sizes, 423 

SPREAD, 245 
Spread depends on stress, 105,272 
Spreads, compare graphically, 431 

LS comparisons, 434f 
ML comparisons, 451f 

SPSS, 240 
SPS!?, 169 
Stability, product, 522,524 
Standard deviation, confidence limits LS, 180 

constant, 80 
definition, 56 
depends on age, 530 

estimate, 538 
estimate based on lack of fit, 175 
estimate based on replication, 175 
graphical estimate, 124 
heteroscedastic, 530,532 
LS comparison, 435 
pooled estimate, 175,438 
pooled sample, 436,438 
sample, 174 
test for constant, 184ff 

LS compare two, 436 
LS comparison, 434R 

Standard error, 168,172,293 
accuracy of, 354 
estimate, 245 
log mean, 178 
LS intercept coefficient, 180 
LS slope coefficient, 180 
ML estimate, 235,245 
more accurate estimate of, 356 
true asymptotic, 370 

Standard deviations, LS compare K, 436 

Standardized censoring time, 331 
Standardized deviate, 181,289 
Standardized slope, 331 
Standards, engineering, 5,28,38,39 
Standards, reliability, 248 
STAR, 151,237,304,412 
Statistic, hypothesis test, 428 

LR, 470 
quadratic, 466 
Rao's, 486 
Wald's, 487 

Statistical tables, 549ff 
Statistical test, see Hypothesis test 
Statistically independent, see Independent 
Statistically significant, 428 
STATPAC, 216,237, 243, 269, 273, 278, 310, 

354,407,503,538 
Step-stress, 30,493f 

advantages, 19 
data analysis, 502ff 
disadvantages, 19 
general model, 501 
interval data, 518 
life distribution, 498 
limitations, 493 
linear-exponential, 501 
linear-lognormal, 501 
linear-Weibull, 501 
literature, 494,495 
metal fatigue, 494 
ML estimates, 503 
M L  fit, S02ff 
models, 493ff, 496 
multivariable, 502 
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pattern, 498 
read-out data, 518 
residuals, 503 
sequence effect, 501 
test plans, 502 

Stepwise, logic, 222 
W fitting, 220 
ML fitting, 281 

Stratified sampling, 44 
Strength, distribution, 269 

mean, 94 
size effect, 386 
standard deviation, 94 

Stress, amplitude, 21 
choice of levels, 36 
constant, 18,30,31,51 
corrected, 35 
cyclic, 20,507 
frequency, 21 
history, 524 
inaccurate, 183 
loading, 18f, 30 
lowest test, 332 
maximum, 388 
nonrepeating, 507 
nonuniform, 387n 390 
one level, 282 
optimum levels, 320 
pattern, 390 
progressive, 20 
pseudo, 272 
ramp, 494,507,508 
random, 22,494,507,519 
range, 21 
real, 30 
single, 30 
single condition, 37,51, 282 
sinusoidal, 21,519 
spectrum, 494 
square-wave, 518 
step, 18, 493ff 
test, 31 
two levels, 249 
uniform, 388 
varying, 31,493fl, 507,509 
voltage, 35 

Stress screening, 39,43,70 
Stresses, multiple, 29, 100 
Structural materials, 524 
Subpopulations, 69 
Subspace, alternative, 473 

null hypothesis, 473 
Successive test, 363 
Suddendeath test, 17,383 
Sum of squares, 172,175 

for means, 440 

SURVCALC, 237,412 
Survivor function, 54 
Survivorship function, 54 
SURVREG, 237,486 
System, identicalparts, 383 

redundant, 379 
weakest link, 378 

t statistic to compare mean, 483 
Table, 2 percentiles, 554 

F percentiles, 556 
normal curnulahe distribution, 550 
normal factors two-sided, 552 
normal percentiles, 552 
probability plotting positions, 560 
t percentiles, 553 

Tables, statistical, 549f 
Taylor’s model, 87 
TEAM, 119,122,131,133,188,206 
Technology Associates, 122,153 
Temperature, absolute, 76,78 

acceleration, 97 
corrected, 35 
design, 81, 525 
inverse power approximation, 252 
Kelvin, 76 
range, 86 
Rankine, 76 

Terminology, engineering, 3 
statistical, 3 

Test, see Hypothesis test 
accelerated, 37 
compressed time, 15 
constraints, 36,320 
cost, 320 
degradation advantages, 521 
demonstration, 255,426,428,452 
elephant, 37,493 
engineering, 28 
hypothesis (see Hypothesis test and Com- 

index, 28 
length, 36,320 
pilot, 37 
planning, 36 
progressive, 231,449 

parison) 

Prot, 494 
pu’pose, 23 
ramp, 493 
statistical hypothesis, see Hypothesis test 
stopping, 234 
successive, 363 
sudden death, 383 
temperature-humidity, 101 

voltagecndurance, 211 
up-down, 95 
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Test condition, one, 151 
Test conditions, 27 

number of, 43 
uncontrolled, 131 

Test equipment, 5 
Test labs, 5 
Test of fit, distribution, 264 

multivariable relationship, 217 
simple relationship, 183,260 

Test plan, 2 stresses, 323 
2x3 factorial, 506 
3 stresses, 323 
4 stresses, 324 
accuracy, 319 
allocation unequal, 317 
assumptions, 318,329 
best low stress, 343 
best traditional, 332ff 
censored data, 328ff 
Class-H, 321,324 
comparison of optimum, best traditional, 

complete data, 318ff 
compromise, 341 
compromise standard error, 342 
computer program, 328 
constraints, 363 
cost, 363 
degradation, 534,547 
drawbacks of optimum, 326,341 
drawbacks of traditional, 341 
efficient, 317 
equal allocation, 321,332 
equally spaced stresses, 335 
evaluate by simulation, 349ff 
exponential distribution, 328 
for endurance-limit, 271 
good, 326ff 
heater, 319,323 
inefficient, 212 
inspection data, 362 
literature, 328,361 
locally optimum, 331 
logistic distribution, 328 
lognormal distribution, 328 
lowest stress, 332 
LS estimates, 318 
Meeker-Hahn, 343. 
Meeker-Hahn standard error, 348 
minimum variance, 321,330 
ML estimates, 330 
ML theory, 364f 
model, 318,330 
no failures, 326,340 
notation, 331 
optimization criteria, 330,363 

and good compromise, 341 

optimum, 240,32Of, 337ff 
optimum allocation, 321,337 
optimum drawbacks, 326 
optimum low stress, 337 
optimum ramp, 506 
optimum stepstress, 495 
optimum stresses, 320 
optimum variance, 320 
other relationships, 362 
robust, 326 
sample size, 327 
sample size Meeker-Hahn, 348 
sample size optimum, 340 
sample size traditional, 336 
sensitivity analpis, 342 
simple model, 328ff 
simulation to evaluate, 349ff 
standard error best traditional, 335 
standard error Ls, 319 
standard error optimum, 340 
step-stress, 20,502 
successive testing, 363 
survey, 361ff 
test length, 326 
traditional, 36,116,323ff 
unequal allocation, 317 
variance, 319 
Weibull distribution, 328 
without failures, 326,340 

Test planning, 22fi 210 
Test plans, 317ff 

comparison, 341 
complete data, 318ff 
general principle, 317 
literature, 318 
quantal-response, 95 

Test statistic, 428 
critical value, 480,481 

Tests, multiple, 52 
Theory, large-sample, 236 
Thermal cycling, 144,163,312,397 
Time, 25 

equivalent, 251 
Time censored data, 13 
Tolerance limit, 179,199 
Tools, cutting, 87 
Traditional test plan, 332ff 
Transfer lettering, 120 
Transformation, parameter, 296 
Transformers, 385 
Transistors, 9,383 
Trend, 265 
Tukey’s comparison of means, 441 
lbo-stage sampling, 44 
Type I censored data, 13, see Time censored 
Type I1 censored data, see Failure censored 
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Typical life, 55 

Uncertainty, of estimates, 170 
model, 170 
of ML estimate, 354 

Uncorrelated coefficients, 530,532 
Uniformly most powerful hypothesis test, 485 
Uniqueness, ML estimate, 291 
Unitized residuals, 273 
Updown testing, 95 
Usage, 25 
Use conditions, 27 

Variability, lot-to-lot, 530 
Variable, 0-1,103,276 

categorical, 32,102,223 
centered, 172,215,276 
coded, 172,215,276 
confounded, 34 
constant, 32 
continuous, 31,209 
controlled, 32 
dependent, 24 
dummy, 103 
effect of, 189,208,226,264,268 
engineering, 31 
experimental, 32,98 
explanatoly, 31 
identifying an important, 211 
independent, 31,471 
indicator, 102,103 
performance, 24 
predictor, 98 
response, 24 
significant, 213 
standard accelerating, 52 
statistically significant, 213 
transformed, 99 
uncontrolled, 98,183 
uncontrolled observed, 32 
uncontrolled unobsemd, 33 
unobservcd, 33 

Variance, components of, 1W 
definition, 56 
Greenwood’s estimate, 151 
ML estimate, 294 
of ML estimate of a function, 370 

Variation, uncontrolled, 542 
Varying stress, data analpis, SWfl 

literature, 494,495 
ML fit, SWfl 
model, 49313; 506 

Vibration, 22,40,381 
VLSI, 9, 101 
Volts per mil, 35 
Volume effect, 387 

Wald’s hypothesis test, 487,490 
Wald’s statistic, 487 
Weakest link product, 6 3 , a  
Weakest link system, 378 
Wear, 6,12,522 
Wear-in, data, 527 

period, 527 
Wear-out, 58,527 
Weathering, 8,12,533 
Weibull degradation rate, 533 
Weibull distribution, 63f 

assess, 205 
/3 parameter, 63 
characteristic life, 63 
constant shape parameter 8,89 
cumulative distribution, 63 
hazard function, 64 
identical components, 384 
known /3, 315,248 
likelihood, 289 
mean, 64 
ML fit, 249 
nonuniform stress, 391 
papers, 131 
percentile, 64 
probability density, 64 
probability plot, 129 
relationship to exponential, 65,254 
reliability function, 64 
scale parameter, 63 
shape depends on stress, 105 
shape parameter p, 63 
shape parameter constant, 204 
shape parameter equals 1, 131 
shape parameter estimate, 131,206 
shape parameter specified, 131,254 
size effect, 386 
slope parameter, 63 
spread in log life, 64 
standard deviation, 64 
three-parameter, 6.5 
versus lognormal, 65,211,263 

Weighted regression fitting, 241 
Wire varnish, 386 
Wood composites, 102 

Zhurkov‘s relationship, 102 




