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Preface

Dynamics of Information plays an increasingly critical role in our society. Networks
affect our lives every day. The influence of information on social, biological, ge-
netic, and military systems must be better understood to achieve large advances in
the capability and understanding of these systems. Applications are wide-spread and
include: the detection of terrorist networks, the design of highly functioning busi-
nesses and computer networks, modeling the distributed sensory and control physi-
ology of animals, quantum entanglement, genome modeling, multi-robotic systems,
and industrial and manufacturing safety.

Classical Information Theory is built upon the notion of entropy which states
that for a message to contain information it must dispel uncertainty associated with
the knowledge of some object or process. Hence, large uncertainty means more in-
formation, small uncertainty means less information. For a networked system, clas-
sical information theory describes information that is both joint and time varying.
However, for networked systems, information theory can be of limited value. It is
cumbersome if not confusing to define joint and conditional information in even
relatively small (Bayesian) networks. The curse of dimensionality is one large fac-
tor. So is causality, which is functionally critical to determine yet often difficult
to ascertain. Entropy does not attend to the value or influence of information, even
though in a network, some information, though potentially large in its entropy, could
have little value or influence on the rest of the network, while another, less entropic,
piece of information may have a great deal of influence on the rest of the system.
How information flows and is modified through a system is not dependent upon en-
tropy but more likely on how potentially useful the information is. How the value of
information is linked to the connectedness of the network (and vice versa) is criti-
cal to analyzing and designing high performing distributed systems, yet is not well
studied.

This book presents the state of the art concerning how information, usually in the
form of sensing and control, influences the evolution of a distributed or networked
system. Fundamentally, this deals with the potential influence information has on the
system and how that information flows through a system and is modified in time and
space. The chapters in this book relate to concepts that increase knowledge of the
relational aspects of information as opposed to the entropic content of information.

v
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Chapter 1
The Role of Dynamics in Extracting Information
Sparsely Encoded in High Dimensional Data
Streams

Mario Sznaier, Octavia Camps, Necmiye Ozay,
Tao Ding, Gilead Tadmor, and Dana Brooks

Summary A major roadblock in taking full advantage of the recent exponential
growth in data collection and actuation capabilities stems from the curse of dimen-
sionality. Simply put, existing techniques are ill-equipped to deal with the resulting
overwhelming volume of data. The goal of this chapter is to show how the use of
simple dynamical systems concepts can lead to tractable, computationally efficient
algorithms for extracting information sparsely encoded in multimodal, extremely
large data sets. In addition, as shown here, this approach leads to nonentropic infor-
mation measures, better suited than the classical, entropy-based information theo-
retic measure, to problems where the information is by nature dynamic and changes
as it propagates through a network where the nodes themselves are dynamical sys-
tems.

1.1 Introduction

The recent exponential growth in data collection and actuation capabilities has the
potential to profoundly impact society, with benefits ranging from safer, self- aware
environments, to enhanced image-based therapies. A major road-block to realizing
this vision stems from the curse of dimensionality. Simply put, existing techniques
are ill-equipped to deal with the resulting overwhelming volume of data.

This chapter discusses the key role that dynamics can play in timely extracting
and exploiting actionable information that is very sparsely encoded in high dimen-
sional data streams. Its central theme is the use of dynamical models as information
encoding paradigms. Our basic premise is that spatio-temporal dynamic informa-
tion can be compactly encapsulated in dynamic models, whose rank, a measure of
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the dimension of useful information, is often far lower than the raw data dimension.
This premise amounts to a reasonable “localization” hypothesis for spatio-temporal
correlations, and is a given in mechanical and biological processes. Embedding
problems in the conceptual world of dynamical systems makes available a rich,
extremely powerful resource base, leading to robust solutions, or in cases where the
underlying problem is intrinsically hard, to computationally tractable approxima-
tions with sub-optimality certificates. For instance, in this context, changes in the
underlying process can be detected by simply computing the rank of a Hankel ma-
trix constructed from the data and missing information can be recovered by solving
a rank minimization problem that can be relaxed to a tractable semidefinite program.
A third example is the comparison of data streams in order to establish whether they
correspond to time traces of the same phenomenon: it is vastly easier to quantify
the difference between two dynamic models (often requiring only a rank compari-
son) than to search for elusive overlapping time sequences and then compare two
such very high dimensional data streams. Finally, the use of dynamic models leads
naturally to nonentropic information measures, better suited for problems where the
information is by nature dynamic and changes as it propagates through a network
where the nodes themselves are dynamical systems. These ideas are illustrated with
several examples from different applications, including change detection in video
sequences, motion segmentation, and uncovering copromoted genes.

1.2 Key Subproblems Arising in the Context of Dynamic
Information Extraction

The challenges entailed in exploiting dynamic information sparsely encoded in very
large data sets are illustrated in Fig. 1.1: In all cases, decisions must be taken based
on events discernible only in a small fraction of a very large data record: a short
video sequence adds up to megabytes, yet the useful information (a change of be-
havior of a single target), may be encoded in just a portion of a few frames, e.g.,
less than 10−6 of the total data. Similarly, the data from the diauxic shift experiment
shown in Fig. 1.1(c) consists of 342 × 103 data points from the time traces of 1,920
promoters, (e.g., a total of 19 Mb of data), yet only a few critical time instants and
promoter correlations are of interest. Additional challenges arise from the quality
of the data, often fragmented and corrupted by noise. Addressing these challenges
requires solving the following subproblems:

A: Nonlinear Embedding of Dynamic Data Finding low dimensional manifold
structures in data, a hallmark of machine learning, is a key precursor to both dimen-
sionality reduction and robust information extraction. Existing static techniques ([2]
and references therein) provide low dimensional embeddings, but fail to exploit the
large gap between data dimension and dynamic rank. As we will show in this chap-
ter, this can be accomplished by employing low rank dynamic models to capture
time/parameter dependence on low dimensional manifolds that maximally absorb
stationary high dimensions and nonlinearities.
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Fig. 1.1 Examples of sparsely encoded information. (a) Detecting a traffic accident. (b) Tracking
a person in a crowd. (c) gfp-visualized promoter activation during a diauxic shift experiment in
E. coli [1]. In all cases fewer than O(10−3) to O(10−6) of the data is relevant

B: Uncovering Structures Embedded in Data A key step in information ex-
traction is the ability to find structures embedded in the data. For example, when
analyzing data generated by an unknown number No of sources, it is of interest
to identify the number of sources, associated substreams, and the individual dy-
namics. This is commonly accomplished by searching for statistical correlations or
exploiting a priori known structural constraints. For example, independently mov-
ing objects in a video clip are efficiently detected by factorizing a matrix of feature
trajectories [3–5]. However, methods based on correlations and (application depen-
dent) a priori information alone are fragile to missing/corrupted data and have trou-
ble disambiguating structures with overlapping kinematic or statistical properties.
As shown here, these difficulties can be avoided by seeking dynamically coherent
substreams, e.g., subsets that can be jointly explained by low rank models. Further,
this task can be efficiently carried out without explicitly finding these models, by
estimating ranks of Hankel matrices constructed from time traces. Incorporating
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a priori available information allows for retaining the advantages of existing meth-
ods while substantially improving robustness.

C: Dynamic Data Segmentation The goal here is to partition the data record into
maximal, disjoint sets within which the data satisfies a given predicate. Examples
include segmenting a video sequence of a person into its constituent activities, or
identifying time periods where a given group of gene promoters is active. While this
problem has been the object of considerable research in the past decade, it remains
very challenging in cases involving noisy data, where most existing methods lead
to computationally demanding problems [6, 7], with poor scaling properties. As we
will show in the sequel, the use of dynamics provides a unified, efficient approach to
robust segmentation. In its simplest form, the idea is to group data according to the
complexity of the model that explains it. Intuitively, models associated with homo-
geneous data, e.g., a single activity or metabolic stage, have far lower complexity
than those jointly explaining multiple datasets. Boundaries are thus characterized
by a step increase in model complexity. In turn, these jumps in model complexity
can be efficiently detected by examining the singular values of a matrix directly
constructed from the data.

D: Dynamic Interpolation Data streams are often fragmented: clinical trial pa-
tients may miss appointments, targets may be momentarily occluded. The chal-
lenges here are to (i) identify fragments belonging to the same data sets (for in-
stance, “tracklets” corresponding to a track of a single target, fragmented due to oc-
clusion), and (ii) interpolate the missing data while preserving relevant dynamical
invariants embedded in it. The latter is particularly important in cases where a tran-
sition is mediated by the missing data. An example is detecting an activity change
from video data, when the transition point is occluded. Formulating the problem as
a minimum order dynamical interpolation one leads to computationally attractive
solutions, whereby values for missing data are selected as those that do not increase
the complexity—or rank—of the model underlying the data record.

E: Hypothesis Testing and Distributed Information Sharing Examples include
determining whether (possibly nonoverlapping) data streams correspond to the same
process or assessing whether a data set is a realization of a given process. In turn, this
entails computing worst-case distances between data and model predictions, a task
that can be efficiently accomplished by combining concepts from dynamical sys-
tems and information based complexity. Situations involving multiple information
sources and users require the ability to (i) maintain consistent data labeling across
sources, and (ii) mitigate the communications and computational burdens entailed
in sharing very large datasets. Both issues can be efficiently addressed by exploiting
the dynamical models underlying the data. Briefly, the idea is to identify a dynamic
operator mapping the dynamic evolution of data projections over individual mani-
folds, amounting to a dynamical registration between sources. Sharing/comparing
data streams then entails transmitting only the (low order) projections of dynamic
variables and running these projections through the interconnecting operator.



1 Extracting Sparsely Encoded Dynamic Information 5

In the remainder of this chapter, we show how the use of dynamic models that
compactly encapsulate relevant spatio-temporal information provides a unified set
of tools leading to computationally efficient solutions to problems A–E above. In all
cases, these solutions will be illustrated with practical examples.

1.3 Nonlinear Embedding of Dynamic Data

In the past few years, considerable research has been devoted to the problem of
non-linear dimensionality reduction via manifold embedding. Briefly, the idea is
to obtain lower complexity data representations by embedding it into low dimen-
sional non-linear manifolds while preserving spatial neighborhoods. Commonly
used methods include locally linear embeddings (LLE) [8], Isomap [9], Laplacian
Eigenmaps [10], Hessian LLE [11], and Semidefinite Embedding [12, 13]. These
methods successfully exploit spatial correlations to achieve (often substantial) di-
mensionality reduction. However, they fail to take advantage of the temporal corre-
lations that are characteristic of dynamic data. As we show next, constraining target
manifolds to those spanned by feasible dynamical trajectories enables additional
(substantial) dimensionality reduction and provides robustness against missing data
and outliers.

The starting point is the realization that since projections to/from manifolds can
be modeled as memoryless nonlinearities, the problem of jointly identifying the
embedding manifold, the dynamics characterizing the evolution of the data on this
manifold, and the projection operators can be recast into the Hammerstein/Wiener
system identification problem illustrated in Fig. 1.2. Here, Πi(.) and Πo(.) are mem-
oryless nonlinearities, S is a linear time invariant (LTI) system that describes the
temporal evolution of the data on the manifold, and u ∈ Rnu , d ∈ Rnd , um ∈ Rnum

and y ∈ Rny , with nd � ny , nu � num represent the respective input (for instance,
a vector composed of past values of the output and a stochastic driving signal), the
raw data, and their projections on the low dimensional manifold. A potential diffi-
culty here stems from the fact that, as recently shown in [14], robust identification
of Hammerstein/Wiener systems is generically NP-hard. However, efficient, com-
putationally tractable relaxations that scale polynomially with problem size (both
manifold dimension and number of temporal data points) can be obtained by pur-
suing a risk-adjusted approach. The main idea is to identify first the (piecewise)
linear dynamics by sampling the set of signals (um,y), and attempting to find, for
each sample (typically a subset of a ball in �2) an LTI operator S (the dynamics on
the manifold) compatible with existing a priori information and such that y = Sum.
As shown in [15, 16], both steps reduce to a convex optimization problem via the
use of Parrot’s theorem on norm-preserving matrix expansions and standard results

Fig. 1.2
Hammerstein/Wiener System
Structure. Wiener system
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Fig. 1.3 (a) Sample 3-dimensional manifold extracted from a walking sequence. (b)–(d) Use of
dynamics on this manifold to predict target position and appearance

on interpolation. The effectiveness of this approach is illustrated in Fig. 1.3, where
the application of these ideas enabled sustained tracking of multiple subjects in a
cluttered outdoor scene. Here, recasting the problem into a nonlinear identifica-
tion form allowed for reducing the problem to an identification/prediction one in
a 3-dimensional manifold.

It is worth emphasizing that this approach has the, hitherto unavailable, ability to
exploit the synergy between the data embedding and dynamic modeling problems
to improve robustness and computational properties. Robustness is improved by au-
tomatically discarding manifolds incompatible with a priori existing information on
the dynamics, while computationally attractive models result from maximally ab-
sorbing nonlinearities in the manifold structure. Further, the consistency set [17]
associated with the identification problem provides the means to (in)validate as-
sumptions about the geometry of the manifolds and to quantify the approximation
error. Thus, viewing data as a manifestation of hidden dynamics allows a synergy
between machine learning (the manifold structure), identification theory (theoretical
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underpinnings, computational framework) and information based complexity (worst
case prediction-error bounds).

1.4 Structure Extraction from High Dimensional Data Streams

Structure extraction methods based on correlations and (application dependent)
a priori information alone are often fragile to missing/corrupted data and have
trouble disambiguating structures with overlapping kinematic or statistical prop-
erties. As an illustrative example, consider time traces pt i = (uti, vti )

T , t = 1 . . . n

of np features Pi , i = 1, . . . , np , from a single rigid object. Kinematic constraints
imply that the rank of the “measurements” matrix W1:F

.= [pt i] ∈ R2n×np is at
most 4 [18]. The number No of independent rigid bodies can thus be estimated
by factorizing that matrix into rank 4 submatrices. Yet this approach fails to dis-
ambiguate objects with partially shared motion, as illustrated in Fig. 1.4(a): Here,
rank(W ) = 7 due to shared propeller rotations; hence any segmentation based
solely on factorizing W will fail to distinguish this case from the case of just
two independently moving propellers. The root-cause is that properties that are
invariant under row permutations in W are limited to revealing geometric depen-
dencies but ignore dynamic constraints.1 As shown next, these ambiguities can
be solved through the use of dynamical models that exploit both sets of con-
straints.

The starting point is the realization that for two points pr ,ps belonging to the
same source, the time evolution of yr,s(k)

.= pr (k) − ps(k) does not carry informa-
tion about the overall group motion of the source. Equivalently, states associated
with group motion are unobservable from yr,s if pr and ps belong to the same dy-
namic cluster. Hence, the associated Hankel matrix is rank deficient [17] vis-a-vis
the case of points from different sources. This leads to the following simple dynamic
clustering algorithm:

(i) For each pair (r, s), form the Hankel matrix Hyr,s
of pairwise differences

yr,s(k) = pr (k) − ps(k):

Hy =

⎡
⎢⎢⎢⎢⎢⎣

y(1) y(2) · · · y( n
2 )

y(2) y(3) · · · ...

...
...

. . .
...

y( n
2 ) · · · · · · y(n)

⎤
⎥⎥⎥⎥⎥⎦

(1.1)

(ii) Group points according to the minimum value of rank[Hyr,s ].

1Any permutation of the rows of W satisfies the same geometric constraints, but corresponds to
different time trajectories.
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(a)

Fig. 1.4 (a) Right and left wing propellers move in opposite directions at the same speed. (b) Dy-
namics based segmentation. (c) Costeira–Kanade segmentation. (d) Zelnik–Manor–Irani segmen-
tation. (e) GPCA segmentation

In this context, robust handling of noisy measurements ŷ(k) = y(k) + η(k), is
accomplished by simply replacing “rank” by the number of singular values above
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the covariance of the measurement noise,2 leading to an algorithm computationally
no more expensive than a sequence of SVDs. The effectiveness of this approach
is illustrated in Fig. 1.4 where darker matrix elements indicate higher correlations:
As shown there, the dynamics based approach achieves perfect segmentation, while
methods relying solely on factorizations of W [5, 19, 20] fail.

An interesting property of the dynamics based approach to segmentation, illus-
trated in Fig. 1.5, is the ability to provide a hierarchical segmentation according to
the complexity of the joint dynamics. This is key to model the behavior of a target
composed by several components acting in a dynamically correlated fashion, e.g.,
the limbs of a walking person or co-regulated genes. The aggregate behaves as a
nonrigid object, whose components share motion modes.

Fig. 1.5 (a) Sample frame.
(b) Structures found using
dynamic rank (darker color
indicates higher dynamic
correlation). The hierarchy in
the lower right corner
corresponds to different
portions of the body.
(c) Dynamic correlation
between genes in the diauxic
shift experiment of
Fig. 1.1(c). The two identified
groups correspond to growth
related (top left) and
stationary (bottom right)
genes. The fainter correlation
between wrbA and
(rpsM,rplN) was unexpected

(a)

(b)

2In this case Hŷ = Hy + Hη , and, under ergodicity assumptions, HT
η Hη is an estimate of the covari-

ance matrix of the noise.
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Fig. 1.5 (Continued)

(c)

Fig. 1.6 Crash detection. (a) Frames 311 and 341. Hankel rank time traces: Car 1 (b) and Car 8 (c)

1.5 Robust Dynamic Data Segmentation

In principle, changes in the processes underlying a given data record can be de-
tected by a two-tiered approach: identification of an underlying set of models (the
consistency set) followed by a model (in)validation step to detect points at which
new data are inconsistent with all the models in the set. However, the entailed com-
putational complexity is high, roughly n5 for n data points. A fast, computationally
efficient alternative can be obtained by searching for points where the complex-
ity of the underlying model changes. The main idea behind this approach is the fact
that models associated with homogeneous data have far lower complexity than those
jointly explaining multiple datasets. Further, the complexity of the (unknown) model
can be estimated from the experimental data by computing the number Nsv,σ (Hy)

of (significant) singular values of a Hankel matrix similar to Hy in (1.1). Hence,
the data record can be segmented according to discontinuities in Nsv,σ (Hy). Fig-
ure 1.6 illustrates the effectiveness of this approach in detecting contextually abnor-
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Fig. 1.6 (Continued)
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Fig. 1.7 Detecting
transitions in an E. coli
culture via Hankel rank.
Jumps at 20 and 57
correspond to shifts from
metabolizing glucose to
lactose, to stationary phase,
respectively

mal behavior—an accident—evidenced by a jump in the Hankel rank. An applica-
tion of this technique to detecting changes in promoter activity in E. coli is shown
in Fig. 1.7.

The approach outlined above works well for cases where the noise is moderate
and adequately characterized as an �2 bounded signal. Cases where these conditions
do not hold (for instance, �∞ noise) can be handled by a modification of this idea
(detecting mode changes in piecewise affine models) as follows. The starting point is
the assumption that the data record has been generated by a piecewise affine model
of the form:

H : f (
pσ(t),

{
x(k)

}t+j

k=t−i

) = ηf (1.2)

where f is an affine function3 of the parameter vector pσ(t) which takes values
from a finite unknown set according to a piecewise constant function σ(t), and ηf

denotes an unknown noise signal. Here, i and j are positive integers that account for
the memory of the model (e.g., j = 0 corresponds to a causal model, or i = j = 0
corresponds to a memoryless model). Next, consider the sequence of first order
differences of the parameters pσ(t), given by

g(t) = pσ(t) − pσ(t+1) (1.3)

Clearly, a nonzero element of this sequence corresponds to a change in the under-
lying model. Hence, partitioning the data record into maximal homogeneous se-
quences is equivalent to finding a hybrid model of the form (1.2), consistent with
the a priori information (e.g., a bound on ‖η‖�∞ ) and experimental data, such that
the number of nonzero elements of the vector g(.) is minimized. Formally, defining

3That is, f (pσ(t), {x(k)}t+j
k=t−i ) = A(x)pσ(t) + b(x).
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δ(t) = ‖g(t)‖∞, the objective is to minimize ‖δ‖�o , the number of nonzero elements
of δ, subject to (1.2). Using the fact that the convex envelope of ‖ · ‖�0 in RN is the
�1-norm [21], this nonconvex problem can be relaxed to:

minimizep(t),η(t)

∥∥{g}∥∥
�1

subject to f
(
p(t),

{
x(k)

}t+j

k=t−i

) = η(t) ∀t (1.4)
∥∥{η}∥∥∗ ≤ ε

Since f is an affine function of p(t), (1.4) has a convex feasibility set F . Thus, using
the �1 norm leads to a convex, computationally tractable relaxation. The resulting
solution can be further improved using the iterative procedure proposed in [22],
based on solving, at each iteration, the following weighted �1-norm minimization
over the convex feasible set F :

minimizez,g,p,η

T −1∑
t=1

w
(k)
t zt

subject to
∥∥g(t)

∥∥∞ ≤ zt ∀t

f
(
p(t),

{
x(k)

}t+j

k=t−i

) = η(t) ∀t
∥∥{η}∥∥∗ ≤ ε

(1.5)

where w
(k)
i = (z

(k)
i + δ)−1 are weights with z

(k)
i being the arguments of the opti-

mal solution at the kth iteration and z(0) = [1,1, . . . ,1]T ; and where δ is a (small)
regularization constant that determines what should be considered zero.

The choice of ∗, the norm characterizing the noise, is application dependent.
For instance, the �∞-norm performs well in finding anomalies, since in this case the
change detection algorithm looks for local errors, highlighting outliers. On the other
hand, when a bound on the �1 or �2-norm of the noise is used, the change detection
algorithm is more robust to outliers and it favors the continuity of the segments (i.e.,
longer subsequences). In addition, when using these norms, the optimization prob-
lem automatically adjusts the noise distribution among the segments, better handling
the case where the noise level is different in different segments.

1.5.1 Example 1: Video Segmentation

Segmenting and indexing video sequences have drawn significant attention due to
the increasing amounts of data in digital video databases. Systems that are capable
of segmenting video and extracting key frames that summarize the video content
can substantially simplify browsing these databases over a network and retrieving
important content. An analysis of the performances of early shot change detection
algorithms is given in [23]. The methods analyzed in [23] can be categorized into
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two major groups: (i) methods based on histogram distances, and (ii) methods based
on variations of MPEG coefficients. A comprehensive study is given in [24] where
a formal framework for evaluation is also developed. Other methods include those
where scene segmentation is based on image mosaicking [25, 26] or frames are
segmented according to underlying subspace structure [27].

Given a video sequence of frames {I(t) ∈ R
D}Tt=1, the video segmentation prob-

lem can be solved by first projecting the data into a lower dimensional space, using
for instance Principal Component Analysis (PCA), and then applying the sparsifi-
cation algorithm described above to the projected data (to exploit the fact that the
number of pixels D is usually much larger than the dimension of the subspace where
the frames are embedded):

I(t) 	−→ x(t) ∈ R
d

Assuming that each x(t) within the same segment lies on the same hyperplane
not passing through the origin4 leads to the following hybrid model:

H1 : f (
pσ(t),x(t)

) = pT
σ(t)x(t) − 1 = 0 (1.6)

Thus, in this context algorithm (1.5) can be directly used to robustly segment the
video sequence. It is also worth stressing that as a by-product this method also per-
forms key frame extraction by selecting I(t) corresponding to the minimum ‖η(t)‖
value in a segment (e.g., the frame with the smallest fitting error) as a good repre-
sentative of the entire segment.

The content of a video sequence usually changes in a variety ways: For instance,
the camera can switch between different scenes (e.g., shots); the activity within the
scene can change over time; objects, or people can enter or exit the scene, etc. There
is a hierarchy in the level of segmentation one would require. The noise level ε can
be used as a tuning knob in this sense.

Figure 1.8 shows the results of applying this approach to a video sequence,
drama.avi, available from http://www.open-video.org. The original mpeg files
were decompressed, converted to grayscale, and title frames were removed. Each
sequence shows a different characteristic on the transition from one shot to the other.
The camera is mostly nonstationary, either shaking or moving. For comparison, re-
sults using GPCA, a histogram based method and an MPEG method for segmenting
the sequences with optimal parameters (found by trial and error) are also shown.
Table 1.1 shows the Rand indices [28] corresponding to the clustering results ob-
tained for this sequence and three others from the same database (roadtrip.avi,
mountain.avi, and family.avi) using the different methods, providing a
quantitative criteria for comparison. Since the Rand index does not handle dual
memberships, the frames corresponding to transitions were neglected while calcu-
lating the indices. These results show that indeed the sparcity method does well,
with the worst relative performance being against MPEG and B2B in the sequence

4Note that this always can be assumed without loss of generality due to the presence of noise in
the data.

http://www.open-video.org
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Fig. 1.8 Video segmentation as a hybrid system identification

Table 1.1 Rand indices
Roadtrip Mountain Drama Family

Sparsification 0.9373 0.9629 0.9802 0.9638

MPEG 1 0.9816 0.9133 0.9480

GPCA 0.6965 0.9263 0.7968 0.8220

Histogram 0.9615 0.5690 0.8809 0.9078

Roadtrip. This is mostly due to the fact that the parameters in both of these methods
were adjusted by a lengthy trial and error process to yield optimal performance in
this sequence. Indeed, in the case of MPEG based segmentation, the two parameters
governing cut detection were adjusted to give optimal performance in the Road-
trip sequence, while the five gradual transition parameters were optimized for the
Mountain sequence.

1.5.2 Example 2: Segmentation of Dynamic Textures

Modeling, recognition, synthesis, and segmentation of dynamic textures have drawn
a significant attention in recent years [29–32]). In the case of segmentation tasks,
the most commonly used models are mixture models, which are consistent with the
hybrid model framework.
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Fig. 1.9 Comparison of segmentation results for the Smoke sequence concatenated with its trans-
posed dynamics

In the sparsification framework described earlier in this section, the problem of
temporal segmentation of dynamic textures reduces to the same mathematical prob-
lem as the video segmentation problem, with the difference that now the underlying
hybrid model should take the dynamics into account. First, dimensionality reduc-
tion is performed via PCA (I(t) 	−→ y(t) ∈ R

d ) and then the reduced-order data is
assumed to satisfy a simple causal autoregressive model similar to the one in [31].
Specifically, in this case the hybrid model is given by

H2 : f (
pσ(t),

{
y(k)

}t

k=t−n

) = pT
σ(t)

⎡
⎢⎣

y(t − n)
...

y(t)

⎤
⎥⎦ − 1 = 0 (1.7)

where n is the regressor order. This model, which can be considered as a step driven
autoregressive model, was found to be effective experimentally.5 The power of this
approach is illustrated in Figs. 1.9 and 1.10 where two very challenging sequences
were segmented. The first sequence consists of a patch of dynamic texture (smoke)

5The independent term 1 here accounts for an exogenous driving signal. Normalizing the value of
this signal to 1, essentially amounts to absorbing its dynamics into the coefficients p of the model.
This allows for detecting both changes in the coefficients of the model and in the statistics of the
driving signal.
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Fig. 1.10 Comparison of segmentation results for the River sequence concatenated with its re-
versed dynamics

appended in time to another patch from the same texture but transposed. Thus, the
two subsequences have the same photometric properties but differ in the main mo-
tion direction. The second sequence was generated using another dynamic texture
(river) by sliding a window both in space and time (by going forward in time in the
first half and by going backward in the second), thus reversing the dynamics due to
the river flow.

1.6 Constrained Interpolation of High Dimensional Signals

Consider first the simpler case of interpolating noiseless data, generated by a single
LTI system, with McMillan degree bounded by some known no. Formally, given a
partial sequence dg = {d1, . . . , dq, dq+r , . . . , dn}, the goal is to estimate the miss-
ing elements dx = {dq+1, . . . , dq+r−1} that optimally fit the given data. Intuitively,
the best fitting missing elements are those that require adding the least number of
modes to the existing model in order to explain the new data. Using the fact that
the order of the underlying model is given by the rank of the corresponding Han-
kel matrix (under the assumption that n � no), this problem can be recast into the
following rank minimization form: dx o = argmindx

rank(H) where H is the Hankel
matrix associated with the completed sequence d = {di}. In this context, noise can
be readily handled by simply adding a new variable v such that the measured data
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y = d + v, and a suitable noise description of the form v ∈ N , a convex, compact
set. Finally, since rank minimization is NP-hard [33], using the convex relaxation
proposed in [34] leads to the following algorithm:

Algorithm 1: HANKEL RANK MINIMIZATION BASED INTERPOLATION/
PREDICTION

Input at time k: Nh: Horizon length; Ia ⊆ [k − Nh, k]: set of indices of available
measurements (with card(Ia) ≥ n); Ie ⊆ [k −Nh, k +1]: set of indices of data to be
estimated; with Ia ∪ Ie = I ; available data y�, � ∈ Ia ; set membership description
of the measurement noise v ∈ N .
Output: Estimates ζ̂� of ζ�, ∀� ∈ Ie ∪ Ia

1. Let ζ ∗ denote the following sequence:

ζ ∗
i =

{
yi − vi if i ∈ Ia

xi if i ∈ Ie

where v, x are free variables, and form the matrix

Hζ
.=

⎡
⎢⎢⎢⎢⎣

ζ ∗
i1

ζ ∗
i2

· · · ζ ∗
in+nu+1

ζ ∗
i2

ζ ∗
i3

· · · ζ ∗
in+nu+2

...
...

. . .
...

ζ ∗
in+1

ζ ∗
in+2

· · · ζ ∗
i2n+nu+1

⎤
⎥⎥⎥⎥⎦

2. (Approximately) minimize rank[H(x, v)] by solving the following convex prob-
lem in x, v, R, S:

minimize Tr(R) + Tr(S)

subject to

[
R H(x)

H(x)T S

]
≥ 0, {v�} ∈ N .

3. Estimate/predict the output ζ� from the noisy measurements y� by:

ζ̂i =
{

yi − vi if i ∈ Ia (estimation)

xi if i ∈ Ie (interpolation/prediction)

Examples of application of this idea are shown in Fig. 1.11, where it was used
to establish target identity across occlusion, and in Fig. 1.12 where nonlinear em-
beddings were used first to map the data to a low order manifold where the rank-
minimization based interpolation was performed, followed by a remapping of the
data to pixel space. Finally, Fig. 1.13 shows how a combination of dynamic interpo-
lation and Hankel-rank based segmentation is able to detect occluded events.

It is worth mentioning that the ideas discussed in this section are directly applica-
ble to hybrid models of the form (1.2). In this case, minimizing the rank is roughly
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Fig. 1.11 Data interpolation/association across occlusion. (Note that targets change relative posi-
tions while occluded)

Fig. 1.12 Missing data (second and fifth rows) interpolated by rank minimization on 3D manifolds
(third and sixth rows)



20 Sznaier et al.

Fig. 1.13 Occluded event detection. Top: Dynamic data interpolation. Bottom: Hankel rank plot
showing events

equivalent to interpolating the data so that the resulting underlying model exhibits
the minimum number of jumps.

1.7 Hypothesis Testing and Data Sharing

A salient feature of the dynamics-based information extraction framework is its abil-
ity to furnish application-relevant worst-case bounds on distances between data and
model predictions and, significantly, between nonoverlapping data streams, in terms
of their respective models. These bounds lead to computationally efficient hypothe-
sis testing techniques. Consider a data stream {yk}N−1

k=0 generated by an underlying
model of the form:

yk+1 = F [yk, ek], yk
.= [yk, . . . , yk−n], ek

.= [ek, . . . , ek−n] (1.8)
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Fig. 1.14 Top: Prediction
(black cross) versus Ground
Truth (white cross). Bottom:
Id error

where e is a stochastic input, and F is the (unknown) evolution operator. Collect-
ing all available a priori information about F and e (e.g., known dynamic modes
and noise statistics) into sets S and N reduces the problem of finding F to a finite
dimensional optimization via an extended Caratheodory–Fejer interpolation frame-
work [35]. This method is interpolatory, hence it generates a model

Fid ∈ T (y)
.= {

F ∈ S : yk+1 = F [y, e], e ∈ N
}

the set of all models consistent with both the a priori information and the experi-
mental data. Since the actual (unknown) model that generated the data must also
belong to T (y), a bound on the worst case prediction error of the identified model
Fid is given by

∥∥ŷ − y
∥∥∗ ≤ sup

F1,F2∈T (y)

∥∥F1[y, e] − F2[y, e]∥∥∗ = D
[

T (y)
]

(1.9)

where ‖.‖∗ is a suitable norm and D(.) denotes the diameter of the set T (y). When
the sets S and N are convex, computing this bound reduces to a convex optimization
problem [17, Lemma 10.3]. Note that these bounds are computed only once and
remain valid as long as the underlying dynamics do not change.

Figure 1.14 compares the actual and upper bound of the error in a human tracking
application. In this experiment the measured position in frame 12 was propagated
forward using the identified dynamics and the bounds computed by solving a single
linear programming problem. If other targets with similar dynamics or photometric
properties are present, trackers can safely discard candidates falling outside these
bounds.

In addition to the low cost data gating illustrated above, the worst case bounds
provided by D[T (y)] can be used to robustly assess the distance between non-
overlapping data streams. The idea is to measure this quantity in terms of the dis-
tance between the corresponding (model) consistency sets. Intuitively, two partial
data streams are considered to be manifestations of the same underlying process if
they can be generated by the same dynamic model. The introduction of the con-
sistency set in this context allows for taking into consideration data-quality issues
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Fig. 1.15 Top: Distance between data streams as a model (in)validation problem. Bottom: sample
joint traces for different activities

(relatively few observations, corrupted by noise) and a priori information. Comput-
ing the exact distance between consistency sets is costly, but it can be relaxed to the
model (in)validation form shown in Fig. 1.15 (top). Given data streams y1, y2, the
idea is to identify a nominal model S1 associated with y1 and a deformation operator
Δ so that the pair (S1,Δ) generates y2. As shown in [36], computing the minimum
norm γmin

.= min‖Δ‖∞ over the set of all operators with this property reduces to a
convex linear matrix inequality optimization problem. Thus, the value γmin provides
a computationally tractable upper bound on the distance between consistency sets.

This idea is illustrated next, using as an example the problem of gait classifica-
tion. The experimental data listed in Table 1.2 and plotted in Fig. 1.15 (bottom),
consists of 30 vector sequences, taken from 5 different persons, named A, B, C, D,
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Table 1.2 Experimental data
Person Walking Running Staircase

A 1,2 16 to 18 25 to 27

B 3 to 8 11 to 15 21 to 24

C 9,10 none 28 to 30

D none 19 none

E none 20 none

Fig. 1.16 Mapping manifolds between 2 sensors used to recreate an occluded person

and E. Each sequence contains measurements of the angles of the shoulder, elbow,
hip, and knee joints of a person walking, running, or walking up a staircase. For
illustrative sake, these sequences are numbered from 1 to 30 so that the first 10 cor-
respond to walking, the second set of 10 to running and the third set of 10 to walking
up a staircase.

Table 1.3 shows the distance from each data set to the dynamic model repre-
senting each activity. For each sequence, these nominal models were obtained by
first finding a model associated with each of the remaining sequences and then se-
lecting as representative of each class the model closest to its center (e.g., the one
solving mini maxj‖Si − Sj‖∞). Note that nearest neighbor classification using this
metric can successfully recognize 25 out of the 27 sequences under consideration;
it only confuses 2 sequences, (y26 and y29, belonging to persons A and C walking
up a staircase) as walking sequences. The failure is due to the fact that in these
instances the experimental data record is too short to disambiguate between activi-
ties.
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Table 1.3 Right: distance
between data and models (in
the H∞ norm). In each row †
denotes the model whose
output best matches the given
sequence

Sequence Swalk Srun Sstair

y1 0.1743† 0.6758 0.5973

y2 0.2333† 0.5818 0.2427

y3 0.0305† 0.6843 0.6866

y4 0.0410† 0.6217 0.5305

y5 0.0819† 0.6915 0.6069

y6 0.0001† 0.6879 0.7688

y7 0.0900† 0.6892 0.9188

y8 0.2068† 0.6037 0.7883

y9 0.0001† 0.6926 0.6028

y11 0.9265 0.3415† 1.0000

y12 0.9676 0.2452† 0.9325

y13 1 0.0002† 0.9323

y14 1 0.0002† 0.9903

y15 1 0.0002† 0.8999

y16 1 0.0005† 0.5707

y17 0.9220 0.0532† 0.5437

y18 1 0.0004† 0.6961

y19 1 0.3545† 0.8374

y21 0.9631 0.5002 0.3174†

y22 0.7952 0.4122 0.0577†

y23 0.7215 0.4089 0.0936†

y24 0.8499 0.4456 0.0805†

y25 0.7252 0.5928 0.3962†

y26 0.6828† 0.7127 0.8827

y27 0.5553 0.5818 0.4682†

y28 0.2650 0.6801 0.1699†

y29 0.0391† 0.6102 0.1470

In the case of distributed data sources, the high costs (both in bandwidth and
computational cost) entailed in sharing information can be avoided by (i) associat-
ing to each source a set of intrinsic coordinates on a low dimensional manifold, and
(ii) using robust identification techniques [36] to identify dynamic models for the
mappings between the projections of the different local data sources (e.g., sensors)
onto the respective manifolds (see Fig. 1.16). Then only these low dimensional pro-
jections need to be exchanged between nodes, and each node can reconstruct the
data observed by other nodes, simply by applying the interconnecting models. Fig-
ure 1.16 shows an application of these ideas to the problem of tracking and disam-
biguating two virtually identical targets.
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1.8 Conclusions

Arguably, one of the hardest challenges entailed in exploiting actionable informa-
tion sparsely encoded in high volume data streams is the development of scalable,
tractable methods capable of dealing with the overwhelming volume of data [37].
Recent work (manifold embedding [2], compressive sensing, [38–40]) have led to
substantial progress in addressing this issue. However, these methods stop short of
fully exploiting the gap between data dimensionality and the rank of the dynamical
system underlying the data record.

As shown in this chapter, the use dynamic models as an information encoding
paradigm, can lead to both, substantial dimensionality reduction and computation-
ally attractive algorithms for data extraction/interpretation. Dynamic structures can
be tractably discovered from the data in a way which leverages their inherently lower
dimensionality. One key feature is the ability of dynamic representations to produce
quantifiable measures of uncertainty as provable error bounds on the validity of the
data interpretation suggested by the model. Another is their relative computational
simplicity: in many cases postulating the existence of such a model and associated
invariants (e.g., model order) is enough to develop computationally attractive, robust
solutions to problems such as segmentation, interpolation, and event detection. We
believe that these techniques hold the key to render practical several applications,
ranging from self-aware environments to automatic discovery of co-regulated genes,
that are currently at the proof-of-concept stage, and where the major roadblock is
precisely the lack of techniques to robustly handle the extremely high volume of
(often relatively low quality) data.
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Chapter 2
Information Trajectory of Optimal Learning

Roman V. Belavkin

Summary The paper outlines some basic principles of geometric and nonasymp-
totic theory of learning systems. An evolution of such a system is represented by
points on a statistical manifold, and a topology related to information dynamics is
introduced to define trajectories continuous in information. It is shown that opti-
mization of learning with respect to a given utility function leads to an evolution
described by a continuous trajectory. Path integrals along the trajectory define the
optimal utility and information bounds. Closed form expressions are derived for two
important types of utility functions. The presented approach is a generalization of
the use of Orlicz spaces in information geometry, and it gives a new, geometric in-
terpretation of the classical information value theory and statistical mechanics. In
addition, theoretical predictions are evaluated experimentally by comparing perfor-
mance of agents learning in a nonstationary stochastic environment.

2.1 Introduction

The ability to learn and adapt the behavior with respect to changes in the environ-
ment is arguably one of the most important characteristics of intelligent systems.
The study of learning algorithms has become an active area of research in artifi-
cial intelligence closely related to different areas of mathematics, cognitive science,
psychology and neurobiology. The optimization and information theories are of par-
ticular importance. This paper presents a geometric approach to the evolution of a
learning system that is inspired by information geometry [1, 7], and it is closely
related to the information value theory of Stratonovich [23].

Learning can be considered as a process of incorporating new information to
improve the performance of a system. Thus, learning by this definition assumes
incomplete information. On the other hand, optimization is the main motivation for
learning. This duality principle of the utility and information in learning systems is
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fundamental for the theory presented [4]. We now briefly outline the main principles
of the classical methods and their limitations.

Without uncertainty, optimization problems are the problems of finding the ex-
trema (minimum or maximum) of some functions, which are called utilities, costs
or fitness functions depending on the particular convention. These functions repre-
sent someone’s preference relation on the underlying choice set, which can be the
set of lottery prizes, errors of an estimation algorithm, space-time evolutions of a
dynamical system and so on. The utility function may incorporate multiple con-
straints and objectives in a single Lagrange function, the extreme values of which
are used to find solutions to optimization problems in variational analysis and the
theory of optimal control. In particular, the maximum principle [15] defines the nec-
essary conditions of optimality in canonical form of the Euler system of differential
equations. This approach to optimal control is often referred to as the trajectory ap-
proach. An alternative is the dynamic programming approach [6] that is solved by
partial differential equations (i.e., the Hamilton–Jacobi–Bellman equation), and it is
often referred to as the wavefront approach.

Under uncertainty, the problem is usually formulated using methods of probabil-
ity theory. The elements of a choice set are drawn stochastically as the outcomes of
some lottery that is represented by a probability measure over the choice set. The
idea is then to ‘play’ a lottery that maximizes the utility (or minimizes the risk) on
average. Maximization of conditional expected utility is used in Bayesian approach
to stochastic optimal control and estimation [25, 26], and sequential stochastic opti-
mization is usually solved via dynamic programming [6]. A significant development
in this area was the theory of conditional Markov processes [22] that allows one to
reduce the number of variables for additive utility functions and represent the space-
time evolution of the system by stochastic differential equations [21].

These methods of optimal control have been also used in the design of intelligent
and adaptive systems [11, 24]. One of the main challenges, however, is that these
systems operate with incomplete information, and thus optimality of the described
above methods (which assume a given model of the system) is no longer guaranteed.
However, often one can consider asymptotic optimality under certain assumptions.
Some of these assumptions are:

1. The limits of empirical distributions exist.
2. Data is obtained from independent and identically distributed samples.
3. The ‘true’ distributions are stationary.

The first assumption allows one to pick some priors and then update them using
empirical frequencies [16]. If these frequencies converge to the ‘true’ distributions,
then asymptotically the system becomes optimal. The first assumption, however,
depends on the second (the weak law of large numbers). Its last part (identically
distributed) is equivalent to the third assumption. It is now becoming increasingly
apparent that these basic assumptions may be violated in learning systems.

Indeed, the last assumption may not be valid if the agents’ interaction with the en-
vironment changes the underlying distributions (i.e., there is a dependency between
the agents and their environment). Dropping the stationary assumption, however, is
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not a problem because the Bernoulli theorem is then replaced by the Poisson the-
orem, where the limit of empirical frequencies is the average of the distributions.
Much more important, however, is the assumption of independent trials. Note that
this does not mean that the evolution of the system is a sequence of independent
events. This can be a Markov or even the conditional Markov process. However, if
the Markov transitional probabilities are not known, then the samples updating the
empirical transitional frequencies are assumed to be independent.

To see that this assumption can be violated in a learning system, one has to con-
sider the exchangeability concept, introduced by Bruno de Finetti [8]. Exchange-
able sequences are such that their joint distributions are invariant under permutation
of the sequence order. For finite sequences, there are more exchangeable distribu-
tions than independent, and they coincide only when sequences are infinite (the de
Finetti’s theorem). Thus, if the sequence is not exchangeable, then it is also not inde-
pendent. Now, learning is a process when new information, obtained from samples,
is used to adapt the system in order to improve the performance. This means that
the order, in which data is sampled and used, may be important, and therefore learn-
ing sequences are generally not exchangeable and are not independent. Without this
condition, the first assumption is too strong, and therefore the limit may not exist
in the traditional sense (i.e., as convergence in the laws of large numbers). As an
illustration of this argument, consider a cat learning the distribution of mice. What
is the limit of this distribution, if the mice also learn the distribution of the cat?

The problem of incomplete prior information should not be confused with the
complexity issues arising in many optimization problems, such as the ‘curse of di-
mensionality’ in sequential optimization. Given unlimited computational power, one
theoretically could use the dynamic programming approach to optimize decisions
even over infinite sequences, and some researchers suggested that it could resolve
problems of incomplete information, such as the exploration-exploitation dilemma
[24]. This idea, however, contradicts the statistical nature of information, because
new information can only be obtained through measurements, and it can only be
lost in transmission (such as computation). The dynamic programming method is
a technique for optimization of utility over sequences, but it does not address the
problem of incomplete prior information.

Problems of optimization with information constraints have been considered in
information theory [12, 13, 18, 19] leading to optimal solutions in the form of ex-
ponential family of distributions. The dual problem of entropy maximization with
linear constraints was considered in statistical mechanics [9, 10]. The information
value theory was developed as an application of these results to cybernetics and sta-
tistical decisions [23]. It was shown also that the results of this theory hold for a
wide class of the entropically and informationally stable systems. In particular, this
class includes sequences of nonstationary, nonindependent random variables. These
results, therefore, can be applied to a more general class of learning systems than
those considered by the traditional methods.

This paper presents geometric approach to the analysis of learning systems, and
describes also a simple experiment as an illustration. The theory defines nonasymp-
totic optimality conditions relative to available information, and defines the evolu-
tion of an optimal learning by a trajectory on the statistical manifold. The analysis
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has similarities with the use of Orlicz spaces and exponential statistical manifolds in
non-parametric information geometry to describe systems of bounded entropy [14].
Here, however, the theory is developed for more general class of convex functionals
representing information. The corresponding spaces are quasi-pseudo-metric gen-
eralizing normed spaces. The approach leads to a nonasymptotic and nonparamet-
ric theory for optimization of the evolution of a learning system by empirical con-
straints. Some examples are closely related to information theory and statistical me-
chanics. The optimal trajectory also defines the utility and information bounds of
a learning system, which are given by the analogue of a gradient theorem for path
integrals in conservative vector fields.

2.2 Topology and Geometry of Learning Systems

In this section, we recall some elements of the theory of optimal choice under uncer-
tainty [25] and information value theory [23] that are relevant to our representation
of the learning systems. Then we define a topology on a functional space related to
information dynamics in such systems.

2.2.1 Problem Statement and Basic Concepts

Fundamental concept in the theory of rational choice is the preference relation on
a set Ω , which is a complete and transitive binary relation �⊆ Ω × Ω (i.e., total
pre-order). Subset of symmetric pairs ∼⊆� is the equivalence relation, and the
set of antisymmetric pairs <⊆� is a partial order on Ω . The quotient set Ω/∼
is totally ordered. We assume that Ω/∼ can be embedded into the extended real
line R ≡ R ∪ {±∞}. In this case, the preference relation can be represented by a
utility function u : Ω → R (i.e., ω1 � ω2 iff u(ω1) ≤ u(ω2)). The rational choice
(optimization) corresponds to maximization of the utility.

Under uncertainty, one considers probability measures y : R → R on a σ -algebra
R(Ω) ⊆ 2Ω . Probability measures can be interpreted as lotteries over the choice set
(Ω,�). For example, the Dirac δ-measures (δω(dω) = 1 if ω ∈ dω; 0 otherwise)
correspond to the elements ω ∈ Ω observed with certainty. Other probability mea-
sures are unique convex combinations of the δ-measures, and therefore the set P (Ω)

of all probability measures on R(Ω) is a simplex in some linear space L—a con-
vex hull of the set � of all δ-measures on Ω (P (Ω) is a Choquet simplex if Ω is
infinite).

The set of all probability measures, P (Ω), will be referred to as statistical man-
ifold, as in information geometry, and it is the set of all lotteries. The choice prob-
lem under uncertainty requires an extension of the preference relation (Ω,�) onto

P (Ω). This extension should be compatible with (Ω,�) in the following sense
(�,�) = (Ω,�). One such extension is given by the expected utility: Ey{u} =∫
Ω

u(ω)dy(ω). Thus, measure p is preferred to q if and only if Ep{u} ≥ Eq{u}.
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Furthermore, a fundamental result of game theory states that expected utility is the
only representation that also satisfies two additional axioms: continuity and substi-
tution independence [25].

The main difference problems of optimization under uncertainty, described
above, and the learning problems is that the latter are concerned with incomplete
information. In particular, this means that the probability measures on the choice
set are not known exactly, or in other words that the learner does not know pre-
cisely which lotteries he plays. For an agent with limited resources, this presents
a dilemma of collecting more information (exploration) or using already available
information for optimal control (exploitation).

The traditional approach to solving this dilemma is to treat it as a statistical prob-
lem of estimating unknown parameters θ ∈ R

m of some known family of distribu-
tions y(dω | θ). Points θ of the parameter space R

m define points on the statistical
manifold, and the corresponding relations and metrics are the subject of information
geometry [1, 7]. The approach taken in this work is similar to infinite-dimensional
nonparametric information geometry [14], where probability measures are studied
directly in the corresponding functional space. This allows for considering all fam-
ilies of measures and to derive nonasymptotic optimality conditions using the con-
jugate duality theory [17]. The topologies will be defined using quasi-norms and
quasi-metrics related to information constraints, which is more appropriate for de-
scribing learning systems, and it is a generalization of the standard approach using
normed spaces (i.e., Orlicz spaces in [14]).

Observe that optimization under uncertainty is concerned with at least two types
of real functions on the choice set (Ω,�)—utilities and probability measures.
Moreover, for a fixed utility function, the expected utility is a linear functional on
measures; for a fixed measure, the expected utility is a linear functional on util-
ity functions. Thus, measures and utility functions can be represented by elements
of dual linear spaces L and L∗, where the expected utility implements the pairing
〈·, ·〉 : L∗ × L → R:

〈x, y〉 =
∫

Ω

x(ω)dy(ω) (2.1)

Note that because we only deal with preference relations that have a utility rep-
resentation, set Ω/∼ is a separable, complete, metrizable space, and therefore we
only need to consider Radon measures. Such measures are finite on compact sub-
sets Ωc ⊆ Ω , and they are in one-to-one correspondence with linear functionals
y(f ) = 〈f,y〉 on the space Cc(Ω) of continuous functions with compact support.
Thus, we associate measures with nonnegative elements of space L ≡ C ∗

c (Ω), dual
of Cc(Ω). Utility functions are the elements of its second dual L∗ ≡ C∗∗

c (Ω).
The theory presented is also largely inspired by information value theory [23].

Consider two points on the statistical manifold, y0 (prior) and y (posterior), associ-
ated with an observation of some random event. The associated change 〈x, y − y0〉
of the expected utility represents the value of this event, and it is different for agents
with different utility functions x ∈ L∗. On the other hand, information is usually
represented by some functional F : L → R as a divergence of y from fixed point
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y0 on the statistical manifold, and it does not take the utility into account. Thus,
different y ∈ L with the same divergence F(y) = I may have different values for
the agent. The value of information amount I ∈ R is defined as the maximum of the
expected utility subject to information constraint F(y) ≤ I :

U(I) := sup
{〈x, y〉 : F(y) ≤ I

}
(2.2)

Note that the original definition in [23] is more specific using Shannon information
for F(y). Clearly, an optimization of information dynamics in a learning system
should be closely related to information value—the optimal system should adapt
to learn only the most valuable information. We now define a topology related to
information value to facilitate the analysis of such systems.

2.2.2 Asymmetric Topologies and Gauge Functions

Let L and L∗ be a dual pair of linear spaces over the field R with bilinear form
〈·, ·〉 : L∗ ×L → R separating L and L∗: 〈x, y〉 = 0, ∀x ∈ L∗ implies y = 0 ∈ L, and
〈x, y〉 = 0, ∀y ∈ L implies x = 0 ∈ L∗. We shall define topologies on L and L∗ that
are compatible with respect to the pairing 〈·, ·〉, but subbases of these topologies will
be formed by systems of neighborhoods of zero that are generally nonbalanced sets
(i.e., y ∈ M does not imply −y ∈ M). Thus, the spaces may fail to be topological
vector spaces. The gauge functions will define quasi-norms and quasi-metrics (i.e.,
nonsymmetric generalizations of a norm and a metric). The main motivation for this
asymmetry is to avoid nonmonotonic operations on functions, such as x �→ |x|.

First, we recall some properties that depend only on the pairing 〈·, ·〉, and not
on particular topologies chosen. Nonzero x ∈ L∗ are in one-to-one correspondence
with hyperplanes H := {y ∈ L : 〈x, y〉 = α} ⊂ L, 0 /∈ H , and inequality 〈x, y〉 ≤ α

defines a closed half-space. The intersection of all closed half-spaces containing set
M ⊂ L is a convex closure of M denoted by coM . Set M is a closed convex set if
M = coM . The polar of M is

M∗ := {
x ∈ L∗ : 〈x, y〉 ≤ 1, y ∈ M

}

The polar set is always closed, convex and 0 ∈ M∗. Also, M∗∗ = co[M ∪ {0}], and
M = M∗∗ if and only if M is closed, convex and 0 ∈ M . Without loss of generality,
we shall assume 0 ∈ M .

Set M is called absorbing if for each y �= 0 ∈ L there exists β > 0 such that
y ∈ βM ; set N is called bounded if N ⊂ βM for all β ≥ ε and some ε > 0. Set
M is absorbing if and only M∗ is bounded (to see this, observe that y �= 0 are in
one-to-one correspondence with closed half-spaces in L∗).

Given a closed convex set M ⊂ L absorbing with respect to 0 ∈ M , the collection
of sets M := {βM : β > 0} is the subbasis of closed neighborhoods of zero uniquely
defining a topology on L. If in addition M is bounded, then the polar M∗ � 0 is also
absorbing, and the collection M∗ := {β−1M∗ : β−1 > 0} is the subbasis of the polar
topology on L∗.
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Given set M ⊂ L, the gauge function pM : L → R is defined as

pM(y) := inf{β > 0 : y ∈ βM}, pM(0) := 0

If M is absorbing with respect to 0 ∈ M , then pM(y) < ∞ for all y ∈ L, and if M is
bounded, then pM(y) = 0 only if y = 0. The gauge is positively homogeneous func-
tion of the first degree, pM(λy) = λpM(y), λ > 0, and if M is convex, then it is also
subadditive, pM(y1 +y2) ≤ pM(y1)+pM(y2). Thus, the gauge of an absorbing con-
vex set satisfies all axioms of a semi-norm apart from symmetry, pM(y) �= pM(−y),
and therefore it is a quasi-pseudonorm. Function dM(y1, y2) = pM(y1 − y2) is a
quasi-pseudometric on L. If M is also bounded, then pM is a quasi-norm, and dM

is a quasi-metric (i.e., dM(y1, y2) �= dM(y2, y1)).
Gauge functions are closely related to support functions. The support of set M is

function hM : L∗ → R defined as

hM(x) := sup
{〈x, y〉 : y ∈ M

}

Generally, hM(x) = pM∗(x), and if M is convex, then hM∗(y) = pM(y) (otherwise,
hM∗(y) ≤ pM(y)).

2.2.3 Trajectories Continuous in Information

Observe now that the value of information, defined by (2.2), is equal to support hM

of subset M = {y ∈ L : F(y) ≤ I } of the statistical manifold, defined by information
constraint. It is common to represent information by a closed, convex functional, and
therefore M is closed and convex. For the theory of convex functions, see [17, 20].
Here, we recall some basic concepts.

Convex functional F : L → R is called proper if its effective domain domF :=
{y : F(y) < ∞} is nonempty and F(y) > −∞. Proper convex functional is closed
if sublevel sets {y : F(y) ≤ λ} are closed for each λ ∈ R. The dual functional F ∗ :
X → R is the Legendre–Fenchel transform of F :

F ∗(x) := sup
{〈x, y〉 − F(y)

}

It is always closed and convex. Closed convex functionals are continuous on the
(algebraic) interior of domF , and they have the property

x ∈ ∂F (y) ⇐⇒ ∂F ∗(x) � y

where set ∂F (y0) := {x ∈ L∗ : 〈x, y − y0〉 ≤ F(y)−F(y0), ∀y ∈ L} is called subd-
ifferential, and its elements are called subgradients (a generalization of the Gâteaux
differential and gradient). In particular, 0 ∈ ∂F (y0) implies F(y0) ≤ F(y) for all
y ∈ L (i.e., infF = F(y0)). If F(y) is strictly convex at y (or F ∗ is G-differentiable
at x ∈ L∗), then ∂F ∗(x) = {y} for all x ∈ ∂F (y). Consequently, if dual convex
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functionals are both strictly convex (or G-differentiable), then ∂F : L → L∗ is a bi-
jection. Below are examples of such dual convex functionals that are used often in
information theory.

Example 1 (Relative information) Given positive y0 ∈ L, let F : L → R be:

F(y) =
∫

Ω

ln
y(ω)

y0(ω)
dy(ω) −

∫
Ω

d
[
y(ω) − y0(ω)

]

if y is positive, F(0) := ∫
Ω

dy0(ω), and F(y) := ∞ for negative y. This functional
is closed, strictly convex, and its G-derivative is F ′

G(y) = ln y
y0

on the interior of
domF . Note that F(y) ≥ 0 for all y, because F ′

G(y0) = 0 and infF = F(y0) = 0.
When y and y0 are both probability measures, then relative information is equivalent
to the Kullback–Leibler divergence [13]. Relative information can be used also to
represent negative entropy or Shannon mutual information.

Example 2 The dual of relative information is the following functional

F ∗(x) =
∫

Ω

ex(ω) dy0(ω)

Indeed, F ′
G(y) = ln y

y0
= x, and therefore y = y0 ex = F ∗′

G (x), which is the gradient
of the above functional. It is also closed, strictly convex and positive for all x ∈ L∗.
Normalization of functions y = y0 ex(ω) corresponds to transformation F ∗(x) �→
lnF ∗(x).

If infF = F(0), then the gauge and the support functions of set {y : F(y) ≤ I }
can be computed as:

pF (y) = inf
{
β > 0 : F (

β−1 y
) ≤ I

}
(2.3)

hF (x) = sup
{〈x, y〉 : F(y) ≤ I

}
(2.4)

The support function above is the gauge of the polar set, which can also be computed
as pF ∗(x) = inf{β−1 > 0 : F ∗(βx) ≤ I ∗}.

Thus, information functional F : L → R can be used to define a topology on the
statistical manifold as the collection of all elements y ∈ L, for which set M = {y :
F(y) ≤ I } is absorbing (and therefore pF (y) < ∞). The topology on the dual space
(the space of utility functions) is the collection of x ∈ L∗ for which the polar set is
absorbing (and therefore hF (x) < ∞). We shall denote these topological spaces by
LF and L∗

F .
A topology related to information I ∈ R is useful for the analysis of learning

systems and their dynamics. In particular, an evolution that is continuous in infor-
mation is represented by a function y = f (I) that maps closed sets (−∞, I ] ⊂ R

into closed sets M = {y : F(y) ≤ I } on the statistical manifold. Note that such an
evolution is also order-preserving (monotonic) between (R,≤) and pre-order � on
LF , defined by the gauge pF . We shall refer to such an evolution of a learning
system as a continuous information trajectory.
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2.3 Optimal Evolution and Bounds

An evolution of a learning system, even if described by a continuous trajectory, may
not be optimal. As mentioned earlier, an optimal evolution is the totality of points
ȳ ∈ LF maximizing information value or the expected utility 〈x, y〉 subject to infor-
mation constraints. Thus, ȳ must satisfy the extrema of (2.2) (or the support func-
tion (2.4)) for a given utility. Optimal solutions are found by the standard method of
Lagrange multipliers, which we present below for completeness of exposition.

Theorem 1 (Necessary and sufficient optimality conditions) The least upper bound
U(I) = sup{〈x, y〉 : F(y) ≤ I < ∞} is achieved at ȳ if and only if the following
conditions are satisfied

ȳ ∈ ∂F ∗(βx), F (ȳ) = I, β−1 ∈ ∂U(I), β−1 > 0

Proof The Lagrange function is K(y,β−1, I ) = 〈x, y〉+β−1[I −F(y)], where β−1

is the Lagrange multiplier corresponding to F(y) ≤ I . Zero in the subdifferential of
K(y,β−1, I ) gives the necessary conditions of extrema:

∂yK
(
ȳ, β−1, I

) = x − β−1∂F (ȳ) � 0, ⇒ βx ∈ ∂F (ȳ)

∂β−1K
(
ȳ, β−1, I

) = I − F(ȳ) � 0, ⇒ F(ȳ) = I

Noting that K(ȳ,β−1, I ) = U(I), gives ∂IK(ȳ, β−1, I ) = ∂U(I) � β−1.
Sufficient conditions are obtained by considering convexity. Because F is con-

vex and 〈x, ·〉 is linear, the Lagrange function is concave for β−1 > 0 and convex
for β−1 < 0. Therefore, ȳ ∈ ∂F ∗(βx) with β−1 > 0 defines the least upper bound
of U(I). �

Corollary 1 The optimal trajectory y = ȳ(I ) is continuous in information.

Proof The optimality condition F(ȳ) = I implies that ȳ ∈ {y : F(y) ≤ I } for any
I ∈ R, and therefore y = ȳ(I ) cannot map any closed set (∞, I ] ⊂ R outside closed
set {y : F(y) ≤ I } in LF . �

Example 3 When F is the relative information from Example 1, the optimal solu-
tions are in the exponential form

ȳ(ω) = y0(ω) exp
{
β x(ω) − Ψ (β)

}

where Ψ (β) = ln
∫
Ω

eβx dy0(ω) from the normalizing condition. If y0 = const, then
optimal function ȳ is the canonical Gibbs distribution. When the utility function
is x = −|s|2 (i.e., negative squared deviation), then ȳ is Gaussian with variance
σ 2 = (2β)−1 and eΨ (β) = √

πβ−1 = σ
√

2π .
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The totality of optimal points ȳ can be considered as one parameter family
of distributions, where parameter β ∈ R is the gauge of ȳ with respect to set
{y : F(y) ≤ 1}, and it can be determined from the information constraint I ∈ R

(F(y) ≤ I ). Note, however, that β can also be determined from the expected utility
U = 〈x, ȳ〉. Indeed, consider function I (U) := inf{F(y) : U0 ≤ U ≤ 〈x, y〉}, where
U0 = 〈x, y0〉. Clearly, I (U) is the inverse of information value U(I). The Lagrange
function for I (U) is K(y,β,U) = F(y) + β[U − 〈x, y〉], and the solutions are de-
fined by

ȳ ∈ ∂F ∗(βx), 〈x, ȳ〉 = U, β ∈ ∂I (U), β ≥ 0

Thus, the optimal information trajectory can be parametrized by the information or
by the expected utility constraints through the inverse of mappings β �→ F(ȳ(β)) =
I and β �→ 〈x, ȳ(β)〉 = U . These mappings can be conveniently expressed by the
generalized characteristic potentials:

Φ
(
β−1) := inf

{
β−1I − U(I)

}
, Ψ (β) := sup

{
β U − I (U)

}
.

The potentials are real functions, and the extrema in their definitions are given
by conditions β−1 ∈ ∂U(I) and β ∈ ∂I (U). One can show also that Φ(β−1) =
−β−1Ψ (β). The parametrization is based on the following theorem.

Theorem 2 (Parametrization) Parameter β ∈ R defining solutions ȳ to problems
U = sup{〈x, y〉 : F(y) ≤ I } and I = inf{F(y) : U ≤ 〈x, y〉} is related to the con-
straints I ∈ R or U ∈ R by the following relations

I ∈ ∂ Φ
(
β−1), U ∈ ∂ Ψ (β)

I ∈ β ∂ Ψ (β) − Ψ (β), U ∈ β−1 ∂ Φ
(
β−1) − Φ

(
β−1)

Proof Consider the Legendre–Fenchel transforms of Φ and Ψ :

U(I) = inf
{
β−1I − Φ

(
β−1)}, I (U) = sup

{
βU − Ψ (β)

}

The extrema are satisfied when I ∈ ∂Φ(β−1) and U ∈ ∂Ψ (β), which is the first
pair of relations. Substituting them into the Legendre–Fenchel transforms gives the
second pair. �

Subdifferentials in Theorem 2 are replaced by derivatives Φ ′(β−1) and Ψ ′(β) if
Ψ and Φ are differentiable. This is the case when F(y) is strictly convex.

Example 4 When solutions ȳ are in the exponential from (Example 3), one obtains
U = 〈x, ȳ〉 = ∫

x eβx−Ψ (β) dy0, and condition U = Ψ ′(β) gives

Ψ (β) = ln
∫

Ω

eβ x(ω) dy0(ω)

The above is the cumulant generating function of measure y0. Potential Φ(β−1) =
−β−1Ψ (β) in this case is the free energy.
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Fig. 2.1 Parametric
dependencies of I = F(ȳ) on
U = 〈x, ȳ〉 in Examples 5
and 6

Information amount is often represented by negative entropy, which corresponds
to relative information F minimized at some uniform measure y0 = 1/|Ω| (if Ω is
finite) or a Lebesgue measure dy0 = dω/

∫
dω (if Ω is compact). Potential Ψ (β) in

these cases is

Ψ (β) = ln
∑
Ω

eβx(ω) − ln |Ω| or Ψ (β) = ln
∫

Ω

eβx(ω) dω − ln
∫

Ω

dω

The following examples give expressions for U(β) in two important cases.

Example 5 (Binary utility) Let Ω = {ω1,ω2}, and x : Ω → {c − d, c + d}. Then
using eβ (c−d) + eβ (c+d) = 2eβ c cosh(β d), we obtain

Ψ (β) = β c + ln cosh(β d), U(β) = c + d tanh(β d)

Example 6 (Uncountable utility) Let Ω be compact, x : Ω → [c − d, c + d] ⊂ R

such that dx/dω = 1. Then
∫
Ω

eβx(ω) dω = ∫ c+d

c−d
eβx dx = 2β−1eβ c sinh(β d),∫

Ω
dω = ∫ c+d

c−d
dx = 2d , and we obtain

Ψ (β) = β c + ln
∣∣sinh(β d)

∣∣ − ln |β d|, U(β) = c + d coth(β d) − β−1

Functions U = Ψ ′(β) and I = β Ψ ′(β) − Ψ (β) define parametric dependency
between U and I in a system evolving along the optimal information trajectory
y = ȳ(t), and it defines the following bounds on learning systems: U(I ) is the max-
imum expected utility for a given information amount; I (U) is the least information
amount required to achieve a given expected utility. Figure 2.1 shows I (U) for func-
tions in Examples 5 and 6 with c = 0 and d = 1.

Continuity in information, introduced earlier, allows us to consider path inte-
grals of expected utility and information along a continuous trajectory. The upper
and lower bounds on these quantities can be expressed in the following convenient
form [5]. Here, we assume that Ψ and Φ are differentiable.
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Theorem 3 (Optimal bounds) Let y = y(t), t ∈ [t1, t2] be a continuous information
trajectory of a learning system such that information F(y) = I (t) and expected
utility 〈x, y〉 = U(t) are increasing functions. Then

∫ y2

y1

〈x, y〉dy ≤ Ψ (β2) − Ψ (β1)

∫ y2

y1

F(y)dy ≥ Φ
(
β−1

1

) − Φ
(
β−1

2

)

where y1 = y(t1), y2 = y(t2), and β1, β2 are determined from I (t1), I (t2) or U(t1),
U(t2) using functions β−1 = (Φ ′)−1(I ) or β = (Ψ ′)−1(U), respectively.

Proof The first path integral is bounded above by a path integral along the optimal
information trajectory y = ȳ(t). Similarly, the second integral is bounded below.
These path integrals exist, because the optimal trajectory is continuous in topol-
ogy LF (Corollary 1). The expected utility, 〈x, ȳ〉 = U , in the optimal system is
given by U = Ψ ′(β), where β−1 = (Φ ′)−1(I ) (Theorem 2). Similarly, the infor-
mation amount, F(ȳ) = I , in the optimal system is given is I = Φ ′(β−1), where
β = (Ψ ′)−1(U). Because I = I (t) and U = U(t) are monotonic, the integrals
do not change if the trajectory is parametrized by β ∈ [β1, β2]. Thus, path inte-
grals along the optimal trajectory are equal to Riemann integrals

∫ β2
β1

dΨ (β) and
∫ β−1

1

β−1
2

dΦ(β−1). The final expressions are obtained by applying the Newton–Leibniz

formula. �

2.4 Empirical Evaluation on Learning Agents

The optimal learning trajectory is not an algorithm for optimal learning. It, however,
describes the equivalence class of evolutions of learning systems that is optimal
with respect to a utility function x and some measure of information F . Subdiffer-
ential ∂F ∗(x) of its dual defines the family of optimal distributions, which depends
also on the prior corresponding to the minimum of information. The points on the
optimal trajectory are then computed using the amount of empirical information
I ∈ R or empirical expected utility U ∈ R. Moreover, because I or U are local
constraints, the optimality is not asymptotic. Thus, an algorithm for nonasymptotic
optimal learning in the described above sense should be such that the evolution of
the system were as close as possible to the optimal information trajectory.

Here, we evaluate this idea in an experiment using an architecture for compar-
ing different action-selection strategies in agents, described in [3]. The architecture
consists of an agent placed in a virtual environment, and the main goal of the agent
is to find and collect as many rewards as possible. The rewards appear in the en-
vironment stochastically according to some probability law that is unknown to the
agent. The probabilities of rewards depend on some predefined initial pattern of the
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environment and also on the previous actions of the agent (recall the cat and mice
problem). Thus, the probability law defining the rewards is nonstationary.

The experiments, reported here, compare the performance of three agents in
an environment with five states Y = {y1, . . . , y5} and rewards with a binary util-
ity x(y) ∈ {0,1}. The results are reported for rewards distributed according to two
initial patterns {p,0,p,0,p} and {p,0,0,0,p}, where p ∈ [0,1] is the probability
P(x = 1 | yi, x = 0) of a reward appearing at state yi ∈ Y with no current reward.
Thus, p defines the average reward frequency in a state. The agent has three actions

Z = {z1, z2, z3}—moving left, right or do nothing.
The agent selected actions based on estimates x̃(y, z) of receiving a reward by

taking action z ∈ Z in state y ∈ Y (i.e., z(y) = arg maxz x̃(y, z)). These estimates
were computed using empirical probability Pe(x | y, z) based on joint empirical dis-
tribution Pe(x, y, z) stored in the agent’s memory. Using different methods to com-
pute x̃(y, z) may result in the agent selecting different actions in the same states
leading to differences in performance and empirical distributions Pe(x, y, z). The
empirical distribution P̄e(x, y, z) of an optimal system should evolve along the op-
timal learning trajectory.

Three agents were compared using the following estimation methods:

x̃(y, z) = E{x | y, z} (2.5)

x̃(y, z) = E{x | y, z} + ξ, ξ ∈ N
(
0, σ 2), σ 2 = Var{x | y, z} (2.6)

x̃(y, z) = F̄−1(ξ), ξ ∈ Rand(0,1), F̄ (x) =
∫ x

−∞
dP̄ (t | y, z) (2.7)

The first agent, referred to as ‘maxE{u}’ (max expected utility), estimates the utili-
ties by their empirical expectations. This strategy is known to be suboptimal in some
problems, and is often referred to as a greedy strategy. Note that maxE{u} corre-
sponds to optimization without information constraints. Indeed, the maximum of
information gives β−1 = 0 in Theorem 1, and the Lagrange function reduces to the
expected utility. Thus, the greedy strategy ‘overestimates’ the amount of empirical
information.

The second agent, referred to as ‘Noisy E{u}’, uses stochastic strategy, where
the conditional expectation is randomized by ξ , sampled from zero-mean normal
distribution with empirical variance. Thus, this method does not use statistics of
order higher than two. Generally, this corresponds to using less information than the
empirical distribution contains.

The third agent, referred to as ‘Rand ML(u)’ (for ‘random maximum likeli-
hood’), uses stochastic estimates sampled from probability measure P̄ (x | y, z) that
is optimal with respect to empirical information constraints. Sampling is performed
using the inverse distribution function method. Note that P̄ can be also parametrized
by the empirical expected utility U ∈ R, and for binary utility function x ∈ {0,1}
there is only one distribution such that E{x} = U . Thus, for binary utility P̄ = Pe ,
and x̃(y, z) are sampled directly from Pe(x | y, z).

The results are reported on Figs. 2.2, 2.3 and 2.4. Charts on the left are for pattern
{p,0,p,0,p} and on the right for {p,0,0,0,p}. All the points on the charts are
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Fig. 2.2 Average numbers of rewards collected (ordinates) as a functions of cycles (abscissae) for
three strategies

Fig. 2.3 Percentage of rewards collected as a function of rewards’ frequency

Fig. 2.4 Posterior information amount as a function of rewards’ frequency

the average values from 30 experiments. The error bars on all charts are standard
deviations.

Figure 2.2 shows the numbers of rewards against the number of cycles in the
experiments with p = .1. One can see that the best performance was achieved by
the Rand ML(u) agent, the second is the Noisy E{u} agent, and the least number of
reward was collected by the maxE{u} agent, as expected.

Figure 2.3 shows the percentage of rewards collected by the agents after 1000
cycles in different experiments with the control probability of rewards p ∈ [.01,1],
shown on the horizontal axis. Figure 2.4 shows, for the same experiments, the
amount of Shannon information Ix,y between rewards and states computed from
the empirical distribution Pe(x, y) = ∑

z Pe(x, y, z). One can see that the agent col-
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lecting the greatest number of rewards also often requires the least amounts of in-
formation (particularly for p ∈ [.01, .05]). These empirical results agree with the
theory, presented in previous sections.

2.5 Conclusion

This paper presented geometric representation of evolution of learning systems. The
representation is related to the use of Orlicz spaces in infinite-dimensional nonpara-
metric information geometry, but the topology considered here is based on more
general convex functions on linear spaces. The duality plays a very important role. In
particular, subdifferentials of dual convex functionals are (generally multi-valued)
monotone operators between the dual spaces, and they set up Galois connection
preserving pre-orders on the topological spaces. Monotone transformations are very
desirable in our theory, because when applied to utility functions, they also preserve
the preference relation (complete pre-order) on the space of outcomes. Note that
pre-order (order) is not symmetric (antisymmetric) binary relation, and preserving
this property was our main motivation for considering asymmetric topologies on the
statistical manifold.

The topology related to information allows for the definition of continuous tra-
jectories representing the evolution of a learning system. Optimality conditions have
been formulated using the information value theory, and generalized characteristic
potentials have been defined to parametrize the optimal information trajectory by
empirical constraints. Path integrals along the optimal trajectory define theoretical
bounds for a learning system that can be computed as a difference of the potentials
at the end points of the trajectory. This result has some similarity to the gradient
theorem about path independence of the integral in a conservative vector field.

The theory was illustrated not only on several theoretical examples, but also eval-
uated in an experiment. The results suggest that the theory can be very useful in
many applications of machine learning, such as nonasymptotic optimization of sys-
tems with dynamic information, optimization of communication networks based on
information value and optimization of the ‘exploration-exploitation’ balance in sta-
tistical decisions. The latter problem has been often approached using stochastic
methods based on Gibbs distributions with unknown parameter β−1 (temperature).
Optimality conditions β−1 ∈ ∂U(I) or β ∈ ∂I (U) define the parameter from empir-
ical constraints, and with it the optimal level of exploration. Previously, the author
applied the relation between parameter β−1 and information to cognitive models of
human and animals’ learning behavior [2], and it improved significantly the corre-
spondence between the models and experimental data. Further development of the
theory and its applications to machine learning problems is the subject of ongoing
research.
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Chapter 3
Performance-Information Analysis
and Distributed Feedback Stabilization
in Large-Scale Interconnected Systems

Khanh D. Pham

Summary Large-scale interconnected systems are characterized as large and com-
plex systems divided into several smaller autonomous systems that have certain au-
tonomy in local optimization and decision-making. As an example, a class of in-
terconnected linear stochastic systems, where no constituent systems need to have
global information and distributed decision making enables autonomous systems to
dynamically reconfigure risk-value aware performance indices for uncertain envi-
ronmental conditions, is considered in the subject research. Among the many chal-
lenges in distributed and intelligent control of interconnected autonomous systems
is performance uncertainty analysis and decentralized feedback stabilization. The
theme of the proposed research is the interplay between performance-information
dynamics and decentralized feedback stabilization, both providing the foundations
for distributed and autonomous decision making. First, recent work by the author in
which performance information availability was used to assess limits of achievable
performance will be extended to give insight into how different aggregation struc-
tures and probabilistic knowledge of random decision processes between networks
of autonomous systems are exploited to derive a distributed computation of com-
plete distributions of performance for interconnected autonomous systems. Second,
the resulting information statistics on performance of interconnected autonomous
systems will be leveraged in the design of decentralized output-feedback stabiliza-
tion, thus enabling distributed autonomous systems to operate resiliently in uncer-
tain environments with performance guarantees that are now more robust than the
traditional performance average.

3.1 Introduction

The research under investigation is adaptive control decisions of interconnected sys-
tems in stochastic and dynamic environments. The central subject matter of the
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Fig. 3.1 An architecture for
risk-averse based large-scale
interconnected systems

chapter is focused on two related perspectives: the performance-information analy-
sis perspective and the distributed feedback stabilization perspective. These seem to
be the two dominant perspectives in stochastic control of large-scale interconnected
systems. Specifically, the following two problems are associated with adaptive con-
trol decision. The first is the problem of designing a performance-information sys-
tem that can motivate and screen appropriate adaptive control decision by an inter-
connected system in charge of local operation in a stochastic and dynamic environ-
ment. The second is the problem of emphasizing the importance of adaptive control
decision in stochastic control under environmental uncertainty and exploring the
characteristics of an interconnected system conducive to adaptive control decision
by the autonomous system to whom operating authority is delegated.

What framework can be used to view that process in distributed stabilization for
large-scale interconnected systems? To be useful, perhaps, such a framework must
be simple, but at the same time it must be comprehensive enough that most of the
essential elements of a distributed control process can be discussed. The control
process envisaged here is a dynamic process surrounding performance assessment,
feedback and corrective action. Diagrammatically, the entire relationship may be
depicted as shown in Fig. 3.1. Each autonomous system has some goal in terms
of the performance riskiness of the operating process it has to control. The perfor-
mance uncertainty is affected not only by the control decision or action but also
by the environment in which the system (the local control decision and the local
operating process) must operate. The basic reason for the existence of control deci-
sion is uncertainty or incomplete knowledge on the part of the decision policy about
(1) the mechanism of the operating process and (2) the environmental conditions
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that should prevail at any point in time. In this diagram, each interconnected system
recognizes the need for action in congruence with the expected standard of per-
formance, e.g., risk aversion for performance against all random realizations from
environmental disturbances is considered herein. The autonomous system will use
the standard as a guideline to determine whether its action is called for or not. Its
recognition comes as a result of filtering feedback information through some criteria
such as risk modeling and risk measures for making judgment.

From this point of view, all respective measures of performance for intercon-
nected systems are viewed as random variables with mixed random realizations
from their own uncertain environments. Information about the states of environ-
ments is assumed to be common knowledge. Furthermore, it is assumed here that
each interconnected system will choose control decisions which will be best for
its own utility, whether it is an internalized goal of either (1) performance prob-
ing via an effective knowledge construct that can be able to extract the knowledge
of higher-order characteristics of performance distribution; (2) performance caution
that mitigates performance riskiness with multiple attributes beyond performance
averaging as such variance, skewness, flatness, etc., just to name a few; or (3) both.
The final process execution has only one category of factors. It is the implementation
of a risk-averse decision strategy where explicit recognition of performance uncer-
tainty brings to what constitutes a “good” decision by the interconnected system.
To the best of the author’s knowledge, the problem of performance risk congruence
has not attracted much academic or practical attention in stochastic multi-agent sys-
tems until very recently [8, 9] and [10]. Failure to recognize the problem may not
be harmful in many operating decision situations when alternative courses of ac-
tion may not differ very much in their risk characteristics. But in cases of important
and indispensable consideration in reliability-based design [3] and incorporation of
aversion to specification uncertainty [5], which may involve much uncertainty and
alternatives whose risk characteristics are wide ranged, consideration of the inter-
connected system’s goal toward risk may be a crucial factor in designing a high
performance system.

The chapter is organized as follows. Section 3.2 puts the distributed control
of adaptive control decisions for interconnected systems in uncertain environ-
ments into a consistent mathematical framework. In Sect. 3.3, the performance-
information analysis is a focal point for adaptive control decisions of interconnected
systems. The methodological characteristics of moment and cumulant generating
models are used to characterize the uncertainty of performance information with
respect to uncertain environments. Some interesting insights into how the value of
performance information are affected by changes in the attributes of a performance-
information system. Section 3.4 will develop a distributed feedback stabilization for
a large-scale interconnected system with adaptive control decision using the recent
statistical control development. Another main feature of this section is the explo-
ration of risk and preference for a stochastic control system. A generalization of
performance evaluation is suggested. The risk of a performance measure is express-
ible as a linear combination of the associated higher-order statistics. From Sect. 3.5,
construction of a candidate function for the value function and the calculation of
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decentralized efficient risk-averse decision strategies accounting for multiple at-
tributes of performance robustness are discussed. Finally, some concluding remarks
are drawn in Sect. 3.6. These final remarks will help put the novelty of this research
in perspectives of distributed control and performance-information analysis.

3.2 Problem Formulation

Before going into a formal presentation, it is necessary to consider some conceptual
notations. To be specific, for a given Hilbert space X with norm ‖ · ‖X , 1 ≤ p ≤ ∞
and a, b ∈ R such that a ≤ b, a Banach space is defined as follows

L
p

F (a, b;X)

�
{

φ(·) = {
φ(t,ω) : a ≤ t ≤ b

}
such that φ(·) is an X-valued

Ft -measurable process on [a, b] with E

{∫ b

a

∥∥φ(t,ω)
∥∥p

X
dt

}
< ∞

}
(3.1)

with norm

∥∥φ(·)∥∥F ,p
�

(
E

{∫ b

a

∥∥φ(t,ω)
∥∥p

X
dt

})1/p

(3.2)

where the elements ω of the filtered sigma field Ft of a sample description space
Ω that is adapted for the time horizon [a, b] are random outcomes or events. Also,
the Banach space of X-valued continuous functionals on [a, b] with the max-norm
induced by ‖ · ‖X is denoted by C(a, b;X). The deterministic version of (3.1) and
its associated norm (3.2) is written as Lp(a, b;X) and ‖ · ‖p .

More specifically, consider a network of N interconnected systems, or equiva-
lently, agents numbered from 1 through N . Each agent i, for i ∈ N � {1,2, . . . ,N}
operates within its local environment modeled by the corresponding filtered proba-
bility space (Ωi, Fi , {Fi}t≥t0>0, Pi ) that is defined with a stationary pi -dimensional
Wiener process wi(t) � wi(t,ωi) : [t0, tf ] × Ωi �→ R

pi on a finite horizon [t0, tf ]
and the correlation of independent increments

E
{[

wi(τ) − wi(ξ)
][

wi(τ) − wi(ξ)
]T } = Wi |τ − ξ |, Wi > 0

Assume that agent i generates and maintains its own states based on information
concerning its neighboring agents and local environment. The update rule of agent
i evolves according to a simple nearest-neighbor model

dxi(t) = (
Ai(t)xi(t) + Bi(t)ui(t) + Ci(t)zi(t) + Ei(t)di(t)

)
dt

+ Gi(t) dwi(t)

xi(t0) = x0
i

(3.3)
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where all the coefficients Ai ∈ C(t0, tf ;R
ni×ni ), Bi ∈ C(t0, tf ;R

ni×mi ), Ci ∈
C(t0, tf ;R

ni×qi ), Ei ∈ C(t0, tf ;R
ni×ri ), and Gi ∈ C(t0, tf ;R

ni×pi ) are deter-
ministic matrix-valued functions. Furthermore, it should be noted that xi ∈
L2

Fi
(t0, tf ;R

ni ) is the ni -dimensional state of agent i with the initial state x0
i ∈ R

ni

fixed, ui ∈ L2
Fi

(t0, tf ;R
mi ) is the mi -dimensional control decision, and di ∈

L2(t0, tf ;R
ri ) is the ri -dimensional known disturbance.

In the formulation the actual interaction, zi ∈ L2
Fi

(t0, tf ;R
qi ) represented by the

qi -dimensional process is of interest to agent i where Lij represent time-varying
interaction gains associated with its neighboring agents

zi(t) =
N∑

j=1,j 	=i

Lij (t)xij (t), i ∈ N (3.4)

For practical purposes, the process zi is however not available at the level of agent i.
It is then desired to have decentralized decision making without intensive commu-
nication exchanges. An approach of interaction prediction is therefore proposed to
resolve the communication difficulty by means of a crude model of reduced order
for the interactions among the neighboring agents that can exchange information
with agent i. In this work, the actual interaction zi(·) is now approximated by an
explicit model of the type

dzmi(t) = (
Azi(t)zmi(t) + Ezi(t)dmi(t)

)
dt + Gzi(t) dwmi(t), zmi(t0) = 0

(3.5)

where Azi ∈ C(t0, tf ;R
qi×qi ) is an arbitrary deterministic matrix-valued function

which describes a crude model for the actual interaction zi(·). In particular, Azi

can be chosen to be the off-diagonal block of the global matrix coefficient A corre-
sponding the partition vector zi(·). Other coefficients Ezi ∈ C(t0, tf ;R

qi×rmi ) and
Gzi ∈ C(t0, tf ;R

qi×pmi ) are deterministic matrix-valued functions of the stochas-
tic differential equation (3.5). The approximate interaction zmi(·) produced by the
model is affected not only by the known disturbance dmi ∈ L2(t0, tf ;R

rmi ) but also
by another local uncertainty wmi(t) � wmi(t,ωmi) : [t0, tf ]×Ωmi �→ R

pmi which is
an pmi -dimensional stationary Wiener process defined on a complete filtered prob-
ability space (Ωmi, Fmi, {Fmi}t≥t0>0, Pmi) over [t0, tf ] with the correlation of in-
dependent increments

E
{[

wmi(τ ) − wmi(ξ)
][

wmi(τ ) − wmi(ξ)
]T }

= Wmi|τ − ξ |, Wmi > 0

With the approach considered here, there is a need to treat the actual interaction zi(·)
as a control process that is supposed to follow the approximate interaction process
zmi(·). Thus, this requirement leads to certain classes of admissible control laws as-
sociated with (3.3) to be denoted by Ui ×Zi ⊂ L2

Fi
(t0, tf ;R

mi )×L2
Fmi

(t0, tf ;R
qi ),

e.g., given (ui(·), zi(·)) ∈ Ui × Zi , the 3-tuple (xi(·), ui(·), zi(·)) shall be referred
to as an admissible 3-tuple if xi(·) ∈ L2

Fi
(t0, tf ;R

ni ) is a solution of the stochastic
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differential equation (3.3) associated with ui(·) ∈ Ui and zi(·) ∈ Zi . Furthermore,
the nearest neighbor model of local dynamics (3.3) in the absence of its known dis-
turbances and local environment is assumed to be uniformly exponentially stable.
That is, there exist positive constants η1 and η2 such that the pointwise matrix norm
of the closed-loop state transition matrix associated with the local dynamical model
(3.3) satisfies the inequality

∥∥Φi(t, τ )
∥∥ ≤ η1e

−η2(t−τ) ∀t ≥ τ ≥ t0

The pair (Ai(t), [Bi(t),Ci(t)]) is pointwise stabilizable if there exist bounded
matrix-valued functions Ki(t) and Kzi(t) so that the closed-loop system dx(t) =
(Ai(t) + Bi(t)Ki(t) + Ci(t)Kzi(t))xi(t) dt is uniformly exponentially stable.

Under the assumptions of xi(t0) ∈ R
ni , zmi(t0) ∈ R

qi , ui(·) ∈ Ui , and zi(·) ∈
Zi , there are tradeoffs among the closeness of the local states from desired states,
the size of the local control levels, and the size of local interaction approximates.
Therefore, agent i has to carefully balance the three to achieve its local performance.
Stated mathematically, there exists an integral-quadratic form (IQF) performance
measure Ji : R

ni × R
qi × Ui × Zi �→ R

Ji

(
x0
i , z0

mi;ui(·), zi(·)
)

= xT
i (tf )Q

f
i xi(tf ) +

∫ tf

t0

[
xT
i (τ )Qi(τ )xi(τ ) + uT

i (τ )Ri(τ )ui(τ )

+ (
zi(τ ) − zmi(τ )

)T
Rzi(τ )

(
zi(τ ) − zmi(τ )

)]
dτ (3.6)

associated with agent i wherein Q
f
i ∈ R

ni×ni , Qi ∈ C(t0, tf ;R
ni×ni ), Ri ∈

C(t0, tf ;R
mi×mi ), and Rzi ∈ C(t0, tf ;R

qi×qi ) representing relative weightings for
terminal states, transient states, decision levels, and interaction mismatches are de-
terministic and positive semidefinite with Ri(t) and Rzi(t) invertible.

The description of the framework continues with yet another collection of ran-
dom processes {yi(t)}Ni=1 that carry critical information about, for instance, the
agents’ states and their underlying dynamic structures, e.g.,

dyi(t) = Hi(t)xi(t) dt + dvi(t), i ∈ N (3.7)

which is a causal function of the local process xi(t) corrupted by another stationary
si -dimensional Wiener process vi(t) � vi(t,ωi) : [t0, tf ] × Ωi �→ R

si on a finite
horizon [t0, tf ] and the correlation of independent increments

E
{[

vi(τ ) − vi(ξ)
][

vi(τ ) − vi(ξ)
]T } = Vi |τ − ξ |, Vi > 0

Within the chosen framework for decentralized decision making, each agent is fur-
ther supposed to estimate its evolving process that depends on both its own local
measurements and interaction approximates from other agents. Given observations
yi(τ ), t0 ≤ τ ≤ t , the state estimate at agent i is denoted by x̂i (t). Further, the state
estimate error covariance matrix of the state estimation error x̃i (t) � xi(t) − x̂i(t)
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is described by Σi(t) � E{[xi(t) − x̂i (t)][xi(t) − x̂i (t)]T }. With the additional as-
sumption of (Ai,Hi) uniformly detectable, it can then be shown that the estimate
x̂i (t) for each agent i is readily generated by the solution of the stochastic differen-
tial equation (Kalman-type filter)

dx̂i(t) = (
Ai(t)xi(t) + Bi(t)ui(t) + Ci(t)zi(t) + Ei(t)di(t)

)
dt

+ Li(t)
(
dyi(t) − Hi(t)x̂i (t) dt

)
, x̂i (t0) = x0

i (3.8)

where x̃i (t) is the state estimation error obtained from the error process

dx̃i(t) = (
Ai(t) − Li(t)Hi(t)

)
x̃i (t) dt + Gi(t) dwi(t) − Li(t) dvi(t)

x̃i(t0) = 0
(3.9)

and for each agent i it is remarked that the Kalman gain is given by

Li(t) = Σi(t)H
T
i (t)V −1

i (3.10)

The error covariance matrix Σi(t) is the solution of the matrix Riccati differential
equation

d

dt
Σi(t) = Ai(t)Σi(t) + Σi(t)Ai(t) + Gi(t)WiG

T
i (t)

− Σi(t)H
T
i (t)V −1

i Hi(t)Σi(t), Σi(t0) = 0 (3.11)

The aggregate autonomy-interaction arrangement that locally depicts the aspirations
and interaction details of each agent i then requires the following augmented sub-
system variables and parameters

xai(t) �

⎡
⎣

x̂i(t)

x̃i(t)

zmi(t)

⎤
⎦ ; x0

ai �

⎡
⎣

x0
i

0
0

⎤
⎦ ; wai(t) �

⎡
⎣

wi(t)

vi(t)

wmi(t)

⎤
⎦ (3.12)

The respective tradeoff interaction levels and local incentive (3.6) for agent i is
rewritten as follows

Ji

(
x0
ai;u(·), zi(·)

)

= xT
ai(tf )Q

f
aixai(tf ) +

∫ tf

t0

[
xT
ai(τ )Qai(τ )xai(τ ) + uT

i (τ )Ri(τ )ui(τ )

+ zT
i (τ )Rzi(τ )zi(τ ) − 2xT

ai(τ )Sai(τ )zi(τ )
]
dτ (3.13)

where some of the local weightings are given by

Q
f
ai �

⎡
⎣

Q
f
i Q

f
i 0

Q
f
i Q

f
i 0

0 0 0

⎤
⎦ ; Qai �

⎡
⎣

Qi Qi 0
Qi Qi 0
0 0 Rzi

⎤
⎦ ; Sai �

⎡
⎣

0
0

Rzi

⎤
⎦

(3.14)
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Fig. 3.2 Risk-averse control
process: performance-
information analysis and
risk-averse decision policies

subject to the local dynamics for strategic relations

dxai(t) = (
Aai(t)xai(t) + Bai(t)ui(t) + Cai(t)zi(t) + Dai(t)

)
dt

+ Gai(t)dwai(t)

xai(t0) = x0
ai

(3.15)

with the corresponding system parameters

Aai �

⎡
⎣

Ai LiHi 0
0 Ai − LiHi 0
0 0 Azi

⎤
⎦ ; Bai �

⎡
⎣

Bi

0
0

⎤
⎦ ; Cai �

⎡
⎣

Ci

0
0

⎤
⎦ (3.16)

Dai �

⎡
⎣

Eidi

0
Ezidmi

⎤
⎦ ; Gai �

⎡
⎣

0 Li 0
Gi −Li 0
0 0 Gzi

⎤
⎦ ; Wai �

⎡
⎣

Wi 0 0
0 Vi 0
0 0 Wmi

⎤
⎦

(3.17)

Thus, far only the structure and the circumstantial setting of a large-scale intercon-
nected system have been made clear. The next task is a discussion of a risk-averse
control process which can be divided into two phases: (1) performance-information
analysis and (2) risk-averse decision policy. The essence of these phases is, in a
sense, the setting of a standard. Standards in performance-information analysis pro-
vide a yardstick of performance evaluation and standards in risk-averse decision
policy phase communicate and coordinate acceptable levels of risk aversion efforts
to the interconnected systems. Essentially, Fig. 3.2 shows a model of the standards
in a risk-averse control system serving two purposes: (1) as targets for the intercon-
nected systems to strive for and (2) as an evaluation yardstick.

3.3 Performance-Information Analysis

Performance-information analysis affects the consequence factor to agent i at two
levels. First, it specifies the variable of performance measure to be looked at and thus
determines an important element in the consequence of control decision at agent i.
Second, performance risk analysis implies the existence of standards of compari-
son for the performance variables specified. This implies that some notions of risk
modeling and measures for which standards have great significance may be in need.
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As a basic analytical construct, it is important to recognize that, within the view
of the linear-quadratic structure (3.15) and (3.13), the performance measure (3.13)
for agent i is clearly a random variable with Chi-squared type. Hence, the degree
of uncertainty of (3.13) must be assessed via a complete set of higher-order perfor-
mance statistics beyond the statistical averaging. The essence of information about
the states of performance uncertainty regards as a source of information flow which
will affect agent i’s perception of the problem and the environment. More specifi-
cally, for agent i, first and second characteristic functions of the Chi-squared random
variable (3.13), denoted respectively, by ϕi(s, x

s
ai ) and ψi(s, x

s
ai ) which are utilized

to provide a conceptual framework for evaluation of performance information, are
given by

ϕi

(
s, xs

ai; θi

)
� E

{
eθiJi (s,x

s
ai

)
}

(3.18)

ψi

(
s, xs

ai; θi

)
� ln

{
ϕi

(
s, xs

ai; θi

)}
(3.19)

where small parameter θi is in an open interval about 0 for the information sys-
tems ϕi(s, x

s
ai) and ψi(s, x

s
ai) whereas the initial condition, (t0, x

0
ai) is now param-

eterized as the running condition, (s, xs
ai ) with s ∈ [t0, tf ] and xs

ai � xai(s). From
the definition, there are three factors as the determinants of the value of perfor-
mance information: (i) the characteristics of the set of actions; (ii) the characteris-
tics of consequence of alternatives; and (iii) the characteristics of the utility func-
tion.

The first factor relates to the action set, denoted by Ui via state-estimate feed-
back strategies to maintain a fair degree of accuracy on each agent behaviors and
the corresponding utility. Since the significance of (3.15) and (3.13) is the linear-
quadratic nature, the actions of agent i should therefore be causal functions of
the local process x̂i (t). The restriction of decision strategy spaces can be justi-
fied by the assumption that agent i participates in the large-scale decision mak-
ing where it only has access to the current time and local state estimates of the
interaction. Thus, it amounts to considering only those feedback strategies which
permit linear feedback syntheses γ̂i : [t0, tf ] × L2

Fi
(t0, tf ;R

ni ) �→ L2
Fi

(t0, tf ;R
mi )

and γ̂ z
i : [t0, tf ] × L2

Fi
(t0, tf ;R

ni ) �→ L2
Fi

(t0, tf ;R
qi )

ui(t) = γ̂i

(
t, x̂i (t)

)
� Ki(t)x̂i (t) + pi(t) (3.20)

zi(t) = γ̂ z
i

(
t, x̂i(t)

)
� Kzi(t)x̂i (t) + pzi(t) (3.21)

where matrix-valued gains Ki ∈ C(t0, tf ;R
mi×ni ) and Kzi ∈ C(t0, tf ;R

qi×ni ) to-
gether with vector-valued affine pi ∈ C(t0, tf ;R

mi ) and pzi ∈ C(t0, tf ;R
qi ) will be

appropriately defined, respectively.
The importance of the second factor comes from the consequence of actions,

denoted by the outcome function which maps the triplets of outcomes, actions and
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random realizations of the underlying stochastic process into outcomes, e.g.,

dxai(t) = (
Fai(t)xai(t) + Bai(t)pi(t) + Cai(t)pzi(t) + Dai(t)

)
dt

+ Gai(t) dwai(t)

xai(s) = xs
ai

(3.22)

where the time-continuous composite state matrix, Fai is given by

Fai �

⎡
⎣

Ai + BiKi + CiKzi LiHi 0
0 Ai − LiHi 0
0 0 Azi

⎤
⎦

The characteristics of the utility function Ji(s, x
s
ai) which maps outcomes into utility

levels can be influenced the value of performance information in various ways, e.g.,

Ji(s, x
s
ai) = xT

ai(tf )Q
f
aixai(tf ) +

∫ tf

s

[
xT
ai(τ )Nai(τ )xai(τ ) + 2xT

ai(τ )Oai(τ )
]
dτ

+
∫ tf

s

[
pT

i (τ )Ri(τ )pi(τ ) + pT
zi(τ )Rzi(τ )pzi(τ )

]
dτ (3.23)

where

Nai �

⎡
⎣

Qi + KT
i RiKi + KT

ziRziKzi Qi 0
Qi Qi 0

−2RziKzi 0 Rzi

⎤
⎦

Oai �

⎡
⎣

KT
i Ripi + KT

ziRzipzi

0
−Rzipzi

⎤
⎦

The next result investigates the perception of performance riskiness from the stand-
point of higher-order characteristics pertaining to probability distributions with re-
spect to all random realizations from the underlying stochastic environment. It pro-
vides a quantitative explication of the concept of performance risk which is express-
ible as a linear combination of its higher-order statistics, i.e., performance-measure
statistics whose mathematical descriptions are given below.

Theorem 1 (Performance-measure statistics) For each agent i, let the pairs
(Ai,Bi) and (Ai,Ci) be uniformly stabilizable and the pair (Ai,Hi) be uniformly
detectable on [t0, tf ] in the autonomous system governed by (3.22) and (3.23). Then,
for any given ki ∈ Z

+, the ki -th cumulant associated with (3.23) is given by

κi
ki

= (
x0

ai

)T
H i(t0, ki)x

0
ai + 2

(
x0
ai

)T
D̆i(t0, ki) + Di(t0, ki) (3.24)

where the cumulant variables {Hi(s, r)}ki

r=1, {D̆i(s, r)}ki

r=1 and {Di(s, r)}ki

r=1 eval-
uated at s = t0 satisfy the supporting matrix-valued differential equations (with the
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dependence of Hi(s, r), D̆i(s, r), and Di(s, r) upon the admissible Ki , Kzi , pi , and
pzi suppressed)

d

ds
H i(s,1) = −FT

ai(s)H
i(s,1) − Hi(s,1)Fai(s) − Nai(s) (3.25)

d

ds
H i(s, r) = −FT

ai(s)H
i(s, r) − Hi(s, r)Fai(s)

−
r−1∑
v=1

2r!
v!(r − v)!H

i(s, v)Gai(s)WaiG
T
ai(s)H

i(s, r − v),

2 ≤ r ≤ ki (3.26)

d

ds
D̆i(s,1) = −FT

ai(s)D̆
i (s,1) − Hi(s,1)

[
Bai(s)pi(s) + Cai(s)pzi(s) + Dai(s)

]

− Oai(s) (3.27)

d

ds
D̆i(s, r) = −FT

ai(s)D̆
i(s, r)−Hi(s, r)

[
Bai(s)pi(s)+Cai(s)pzi(s)+Dai(s)

]
,

2 ≤ r ≤ ki (3.28)

d

ds
Di(s,1) = −2(D̆i)T (s,1)

[
Bai(s)pi(s) + Cai(s)pzi(s) + Dai(s)

]

− Tr
{
Hi(s,1)Gai(s)WaiG

T
ai(s)

}

− pT
i (s)Ri(s)pi(s) − pT

zi(s)Rzi(s)pzi(s) (3.29)

d

ds
Di(s, r) = −2(D̆i)T (s, r)

[
Bai(s)pi(s) + Cai(s)pzi(s) + Dai(s)

]

− Tr
{
Hi(s, r)Gai(s)WaiG

T
ai(s)

}
, 2 ≤ r ≤ ki (3.30)

where the terminal-value conditions Hi(tf ,1) = Q
f
ai , Hi(tf , r) = 0 for 2 ≤ r ≤ ki ;

D̆i(tf , r) = 0; and Di(tf , r) = 0 for 1 ≤ r ≤ ki .

To anticipate for a well-posed optimization problem that follows, some sufficient
conditions for the existence of solutions to the cumulant-generating equations in the
calculation of performance-measure statistics are now presented in the sequel.

Theorem 2 (Existence of solutions for performance-measure statistics) Let (Ai,Bi)

and (Ai,Ci) be uniformly stabilizable. Also let (Ai,Hi) be uniformly detectable.
Then, any given ki ∈ Z

+, the time-backward matrix differential equations (3.25)–
(3.30) admit unique and bounded solutions {Hi(s, r)}ki

r=1, {D̆i(s, r)}ki

r=1 and

{Di(s, r)}ki

r=1 on [t0, tf ].

Proof Under the assumptions of stabilizability and detectability, there always ex-
ist some feedback control and filter gains, Ki(s), Kzi(s) and Li(s) such that the
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continuous-time composite state matrix Fai(s) is exponentially stable on [t0, tf ].
According to the results in [1], the state transition matrix, Φai(s, t0) associated with
the continuous-time composite state matrix Fai(s) has the following properties

d

ds
Φai(s, t0) = Fai(s)Φai(s, t0); Φai(t0, t0) = I

lim
tf →∞

∥∥Φai(tf , σ )
∥∥ = 0; lim

tf →∞

∫ tf

t0

∥∥Φai(tf , σ )
∥∥2

dσ < ∞.

By the matrix variation of constant formula, the unique and time-continuous solu-
tions to the time-backward matrix differential equations (3.25)–(3.26) together with
the terminal-value conditions are then written as follows

Hi(s,1) = ΦT
ai(tf , s)Q

f
aiΦai(tf , s) +

∫ tf

s

ΦT
ai(σ, s)Nai(σ )Φai(σ, s) dσ

H i(s, r) =
∫ tf

s

ΦT
ai(σ, s)

r−1∑
v=1

2r!
v!(r − v)!H

i(σ, v)Gai(σ )WaiG
T
ai(σ )

× Hi(σ, r − v)Φai(σ, s) dσ

for any s ∈ [t0, tf ] and 2 ≤ r ≤ ki . It is observed that as long as the growth rate of
the integrals is not faster than the exponentially decreasing rate of two factors of
Φai(·, ·), it is therefore concluded that there exist upper bounds on the unique and
time-continuous solutions {Hi(s, r)}ki

r=1 for any time interval [t0, tf ]. With the exis-
tence and boundedness of the solutions of the equations (3.25) and (3.26), it is rea-
sonable to conclude that the unique and time-continuous solutions {D̆i(s, r)}ki

r=1 and

{Di(s, r)}ki

r=1 of the remaining linear vector- and scalar-valued equations (3.28)–
(3.30) also exist and are bounded on the time interval [t0, tf ]. �

As for the problem statements of the control decision optimization, the results
(3.25)–(3.30) are now interpreted in terms of variables and matrices of the local
dynamical system by letting Hi(s, r), D̆i(s, r) and Gai(s)WaiG

T
ai(s) be partitioned

as follows

Hi(s, r) �

⎡
⎢⎣

Hi
00(s, r) H i

01(s, r) H i
02(s, r)

H i
10(s, r) H i

11(s, r) H i
12(s, r)

H i
20(s, r) H i

21(s, r) H i
22(s, r)

⎤
⎥⎦ ; D̆i(s, r) �

⎡
⎢⎣

D̆i
0(s, r)

D̆i
1(s, r)

D̆i
2(s, r)

⎤
⎥⎦

Gai(s)WaiG
T
ai(s)

�

⎡
⎢⎣

Πi
00(s) Πi

01(s) Πi
02(s)

Πi
10(s) Πi

11(s) Πi
12(s)

Πi
20(s) Πi

21(s) Πi
22(s)

⎤
⎥⎦
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=
⎡
⎢⎣

Li(s)ViL
T
i (s) −Li(s)ViL

T
i (s) 0

−Li(s)ViL
T
i (s) Li(s)ViL

T
i (s) + Gi(s)WiG

T
i (s) 0

0 0 Gzi(s)WmiG
T
zi(s)

⎤
⎥⎦

Hi(s, r)Gai(s)WaiG
T
ai(s) �

⎡
⎢⎣

P i
00(s) P i

01(s) P i
02(s)

P i
10(s) P i

11(s) P i
12(s)

P i
20(s) P i

21(s) P i
22(s)

⎤
⎥⎦

whose the matrix components for agent i are defined by

P i
00(s) � Hi

00(s, r)Π
i
00(s) + Hi

01(s, r)Π
i
10(s) + Hi

02(s, r)Π
i
20(s)

P i
01(s) � Hi

00(s, r)Π
i
01(s) + Hi

01(s, r)Π
i
11(s) + Hi

02(s, r)Π
i
21(s)

P i
02(s) � Hi

00(s, r)Π
i
02(s) + Hi

01(s, r)Π
i
12(s) + Hi

02(s, r)Π
i
22(s)

P i
10(s) � Hi

10(s, r)Π
i
00(s) + Hi

11(s, r)Π
i
10(s) + Hi

12(s, r)Π
i
20(s)

P i
11(s) � Hi

10(s, r)Π
i
01(s) + Hi

11(s, r)Π
i
11(s) + Hi

12(s, r)Π
i
21(s)

P i
12(s) � Hi

10(s, r)Π
i
02(s) + Hi

11(s, r)Π
i
12(s) + Hi

12(s, r)Π
i
22(s)

P i
20(s) � Hi

20(s, r)Π
i
00(s) + Hi

21(s, r)Π
i
10(s) + Hi

22(s, r)Π
i
20(s)

P i
21(s) � Hi

20(s, r)Π
i
01(s) + Hi

21(s, r)Π
i
11(s) + Hi

22(s, r)Π
i
21(s)

P i
22(s) � Hi

20(s, r)Π
i
02(s) + Hi

21(s, r)Π
i
12(s) + Hi

22(s, r)Π
i
22(s)

Then the previous result can be expanded as follows.

Theorem 3 (Performance-measure statistics) For each agent i, let the pairs
(Ai,Bi) and (Ai,Ci) be uniformly stabilizable and the pair (Ai,Hi) be uniformly
detectable on [t0, tf ] in the autonomous system governed by (3.3) through (3.7).
Then, for any given ki ∈ Z

+, the ki-th cumulant associated with (3.23) is given by

κi
ki

= (
x0
i

)T
H i

00(t0, ki)x
0
i + 2

(
x0
i

)T
D̆i

0(t0, ki) + Di(t0, ki) (3.31)

where the cumulant components {Hi
00(s, r)}ki

r=1, {Hi
01(s, r)}ki

r=1, {Hi
02(s, r)}ki

r=1,

{Hi
10(s, r)}ki

r=1, {Hi
11(s, r)}ki

r=1, {Hi
12(s, r)}ki

r=1, {Hi
20(s, r)}ki

r=1, {Hi
21(s, r)}ki

r=1,

{Hi
22(s, r)}ki

r=1, {D̆i
0(s, r)}ki

r=1, {D̆i
1(s, r)}ki

r=1, {D̆i
2(s, r)}ki

r=1 and {Di(s, r)}ki

r=1 eval-
uated at s = t0 satisfy the supporting matrix-valued differential equations

d

ds
H i

00(s,1) = −[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]T
H i

00(s,1)

− Hi
00(s,1)

[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]

− KT
i (s)Ri(s)Ki(s) − Qi(s) − KT

zi(s)Rzi(s)Kzi(s),
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Hi
00(tf ,1) = Q

f
i (3.32)

d

ds
H i

01(s,1) = −[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]T
H i

01(s,1) − Qi(s)

− Hi
00(s,1)Li(s)Hi(s) − Hi

01(s,1)
[
Ai(s) − Li(s)Hi(s)

]
,

H i
01(tf ,1) = Q

f
i (3.33)

d

ds
H i

02(s,1) = −[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]T
H i

02(s,1)

− Hi
02(s,1)Azi(s), H i

02(tf ,1) = 0 (3.34)

d

ds
H i

10(s,1) = −[
Li(s)Hi(s)

]T
H i

00(s,1) − [
Ai(s) − Li(s)Hi(s)

]T
H i

10(s,1)

− Hi
10(s,1)

[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

] − Qi(s),

H i
10(tf ,1) = Q

f
i (3.35)

d

ds
H i

11(s,1) = −[
Li(s)Hi(s)

]T
H i

01(s,1) − [
Ai(s) − Li(s)Hi(s)

]T
H i

11(s,1)

− Hi
10(s,1)Li(s)Hi(s) − Hi

11(s,1)
[
Ai(s) − Li(s)Hi(s)

]
,

H i
11(tf ,1) = Q

f
i (3.36)

d

ds
H i

12(s,1) = −[
Li(s)Hi(s)

]T
H i

02(s,1) − [
Ai(s) − Li(s)Hi(s)

]T
H i

12(s,1)

− Hi
12(s,1)Azi(s), H i

12(tf ,1) = 0 (3.37)

d

ds
H i

20(s,1) = −Hi
20(s,1)

[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]

− AT
zi(s)H

i
20(s,1) + 2Rzi(s)Kzi(s), H i

20(tf ,1) = 0 (3.38)

d

ds
H i

21(s,1) = −AT
zi(s)H

i
21(s,1) − Hi

20(s,1)
[
Li(s)Hi(s)

]

− Hi
21(s,1)

[
Ai(s) − Li(s)Hi(s)

]
, H i

21(tf ,1) = 0 (3.39)

d

ds
H i

22(s,1) = −AT
zi(s)H

i
22(s,1) − Hi

22(s,1)Azi(s) − Rzi(s), H i
22(tf ,1) = 0

(3.40)

d

ds
H i

00(s, r) = −[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]T
H i

00(s, r)

− Hi
00(s, r)

[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

00(s)H
i
00(s, r − v) + P i

01(s)H
i
01(s, r − v)
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+ P i
02(s)H

i
20(s, r − v)

]
, H i

00(tf , r) = 0, 2 ≤ r ≤ ki (3.41)

d

ds
H i

01(s, r) = −[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]T
H i

01(s, r)

− Hi
00(s, r)

[
Li(s)Hi(s)

] − Hi
01(s, r)

[
Ai(s) − Li(s)Hi(s)

]

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

00(s)H
i
01(s, r − v) + P i

01(s)H
i
11(s, r − v)

+ P i
02(s)H

i
21(s, r − v)

]
, H i

01(tf , r) = 0, 2 ≤ r ≤ ki (3.42)

d

ds
H i

02(s, r) = −[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]T
H i

02(s, r)

−
r−1∑
r=1

2r!
v!(r − v)!

[
P i

00(s)H
i
02(s, r − v) + P i

01(s)H
i
12(s, r − v)

+ P i
02(s)H

i
22(s, r − v)

] − Hi
02(s, r)Azi(s), H i

02(tf , r) = 0,

2 ≤ r ≤ ki (3.43)

d

ds
H i

10(s, r) = −[
Li(s)Hi(s)

]T
H i

00(s, r) − [
Ai(s) − Li(s)Hi(s)

]T
H i

10(s, r)

− Hi
10(s, r)

[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

10(s)H
i
00(s, r − v) + P i

11(s)H
i
10(s, r − v)

+ P i
12(s)H

i
20(s, r − v)

]
, H i

10(tf , r) = 0, 2 ≤ r ≤ ki (3.44)

d

ds
H i

11(s, r) = −[
Li(s)Hi(s)

]T
H i

01(s, r) − [
Ai(s) − Li(s)Hi(s)

]T
H i

11(s, r)

− Hi
10(s, r)

[
Li(s)Hi(s)

] − Hi
11(s, r)

[
Ai(s) − Li(s)Hi(s)

]

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

10(s)H
i
01(s, r − v) + P i

11(s)H
i
11(s, r − v)

+ P i
12(s)H

i
21(s, r − v)

]
, H i

11(tf , r) = 0, 2 ≤ r ≤ ki (3.45)

d

ds
H i

12(s, r) = −[
Li(s)Hi(s)

]T
H i

02(s, r) − [
Ai(s) − Li(s)Hi(s)

]T
H i

12(s, r)

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

10(s)H
i
02(s, r − v) + P i

11(s)H
i
12(s, r − v)

+ P i
12(s)H

i
22(s, r − v)

] − Hi
12(s, r)Azi(s), H i

12(tf , r) = 0,

2 ≤ r ≤ ki (3.46)
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d

ds
H i

20(s, r) = −AT
zi(s)H

i
20(s, r) − Hi

20(s, r)
[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

20(s)H
i
00(s, r − v) + P i

21(s)H
i
10(s, r − v)

+ P i
22(s)H

i
20(s, r − v)

]
, H i

20(tf , r) = 0, 2 ≤ r ≤ ki (3.47)

d

ds
H i

21(s, r) = −AT
zi(s)H

i
21(s, r) − Hi

20(s, r)
[
Li(s)Hi(s)

]

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

20(s)H
i
01(s, r − v) + P i

21(s)H
i
11(s, r − v)

+ P i
22(s)H

i
21(s, r − v)

] − Hi
21(s, r)

[
Ai(s) − Li(s)Hi(s)

]
,

H i
21(tf , r) = 0, 2 ≤ r ≤ ki (3.48)

d

ds
H i

22(s, r) = −AT
zi(s)H

i
22(s, r) − Hi

22(s, r)Azi(s)

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

20(s)H
i
02(s, r − v) + P i

21(s)H
i
12(s, r − v)

+ P i
22(s)H

i
22(s, r − v)

]
, H i

22(tf , r) = 0, 2 ≤ r ≤ ki (3.49)

d

ds
D̆i

0(s,1) = −[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]T
D̆i

0(s,1)

− Hi
00(s,1)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− Hi
02(s,1)Ezi(s)dmi(s) − KT

i (s)Ri(s)pi(s)

− KT
zi (s)Rzi(s)pzi(s), D̆i

0(tf ,1) = 0 (3.50)

d

ds
D̆i

1(s,1) = −[
Li(s)Hi(s)

]T
D̆i

0(s,1) − [
Ai(s) − Li(s)Hi(s)

]T
D̆i

1(s,1)

− Hi
10(s,1)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− Hi
12(s,1)Ezi(s)dmi(s), D̆i

1(tf ,1) = 0 (3.51)

d

ds
D̆i

2(s,1) = −Hi
20(s,1)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− AT
zi(s)D̆

i
2(s,1) − Hi

22(s,1)Ezi(s)dmi(s) + Rzi(s)pzi(s),

D̆i
2(tf ,1) = 0 (3.52)

d

ds
D̆i

0(s, r) = −[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]T
D̆i

0(s, r)
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− Hi
00(s, r)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− Hi
02(s, r)Ezi(s)dmi(s), D̆i

0(tf , r) = 0, 2 ≤ r ≤ ki (3.53)

d

ds
D̆i

1(s, r) = −[
Li(s)Hi(s)

]T
D̆i

0(s, r) − [
Ai(s) − Li(s)Hi(s)

]T
D̆i

1(s, r)

− Hi
10(s, r)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− Hi
12(s, r)Ezi(s)dmi(s), D̆i

1(tf , r) = 0, 2 ≤ r ≤ ki (3.54)

d

ds
D̆i

2(s, r) = −Hi
20(s, r)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− AT
zi(s)D̆

i
2(s, r) − Hi

22(s, r)Ezi(s)dmi(s), D̆i
2(tf , r) = 0,

2 ≤ r ≤ ki (3.55)

d

ds
Di(s,1) = −2

(
D̆i

0

)T
(s,1)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− 2
(
D̆i

2

)T
(s,1)Ezi(s)dmi(s)

− Tr
{
Hi

00(s,1)Πi
00(s) + Hi

01(s,1)Πi
10(s) + Hi

02(s,1)Πi
20(s)

}

− Tr
{
Hi

10(s,1)Πi
01(s) + Hi

11(s,1)Πi
11(s) + Hi

12(s,1)Πi
21(s)

}

− Tr
{
Hi

20(s,1)Πi
02(s) + Hi

21(s,1)Πi
12(s) + Hi

22(s,1)Πi
22(s)

}

− pT
i (s)Ri(s)pi(s) − pT

zi(s)Rzi(s)pzi(s), Di(tf ,1) = 0 (3.56)

d

ds
Di(s, r) = −2

(
D̆i

0

)T
(s, r)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− 2
(
D̆i

2

)T
(s, r)Ezi(s)dmi(s)

− Tr
{
Hi

00(s, r)Π
i
00(s) + Hi

01(s, r)Π
i
10(s)

}

− Tr
{
Hi

02(s, r)Π
i
20(s)

} − Tr
{
Hi

10(s, r)Π
i
01(s) + Hi

11(s, r)Π
i
11(s)

}

− Tr
{
Hi

12(s, r)Π
i
21(s)

} − Tr
{
Hi

20(s, r)Π
i
02(s) + Hi

21(s, r)Π
i
12(s)

}

− Tr
{
Hi

22(s, r)Π
i
22(s)

}
, Di(tf , r) = 0, 2 ≤ r ≤ ki (3.57)

Clearly, then, the compactness offered by logic from the state-space model de-
scription (3.3) through (3.7) has been successfully combined with the quantitativity
from the a priori knowledge about probabilistic descriptions of uncertain environ-
ments. Thus, the uncertainty of performance (3.23) at agent i can now be repre-
sented in a compact and robust way. Subsequently, the time-backward differential
equations (3.32)–(3.57) not only offer a tractable procedure for the calculation of
(3.31) but also allow the incorporation of a class of linear feedback syntheses so
that agent i is actively mitigating its performance uncertainty. Such performance-
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Fig. 3.3 The initial cost
problem (top) vs. the terminal
cost problem (bottom)

measure statistics are therefore, referred as “information” statistics which are ex-
tremely valuable for shaping the local performance distribution.

3.4 Problem Statements

Suffice it to say here that all the performance-measure statistics (3.31) depend in part
on the known initial condition xi(t0). Although different states xi(t) will result in
different values for “performance-to-come”, the values of (3.31) are, however, func-
tions of time-backward evolutions of the cumulant-generating variables Hi

00(s, r),
D̆i

0(s, r) and Di(s, r) that totally ignore all the intermediate values of xi(t) except at
the a priori initial system state xi(t0). This fact therefore makes this new optimiza-
tion problem in statistical control particularly unique as compared with the more
traditional dynamic programming class of investigations. In other words, the time-
backward trajectories (3.32)–(3.57) should be considered as the “new” dynamical
equations for which the resulting Mayer optimization and associated value function
in the framework of dynamic programming [4] thus depend on these “new” state
variables Hi

00(s, r), D̆i
0(s, r) and Di(s, r). See Fig. 3.3 for further illustrations of

the initial cost problem in statistical control as opposed to the terminal cost problem
in classical control.

For notational simplicity, it is now convenient to denote the right members of the
cumulant-generating equations (3.32)–(3.57) as the mappings on the finite horizon
[t0, tf ] with the rules of action

F
i,1
00

(
s, Y i

00;Ki,Kzi

) = −[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]T
Y

i,1
00 (s)

− Y
i,1
00 (s)

[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]

− KT
i (s)Ri(s)Ki(s) − Qi(s) − KT

zi (s)Rzi(s)Kzi(s)

F
i,1
01

(
s, Y i

00, Y
i
01;Ki,Kzi

)

= −[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]T
Y

i,1
01 (s)

− Y
i,1
00 (s)

[
Li(s)Hi(s)

] − Y
i,1
01 (s)

[
Ai(s) − Li(s)Hi(s)

] − Qi(s)

F
i,1
02

(
s, Y i

02;Ki,Kzi

)

= −Y
i,1
02 (s)Azi(s) − [

Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)
]T

Y
i,1
02 (s)
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F
i,1
10

(
s, Y i

00, Y
i
10;Ki,Kzi

)

= −[
Ai(s) − Li(s)Hi(s)

]T
Y

i,1
10 (s) − [

Li(s)Hi(s)
]T

Y
i,1
00 (s)

− Y
i,1
10 (s)

[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

] − Qi(s)

F
i,1
11

(
s, Y i

01, Y
i
10, Y

i
11

) = −Y
i,1
10 (s)

[
Li(s)Hi(s)

] − Y
i,1
11 (s)

[
Ai(s) − Li(s)Hi(s)

]

− [
Li(s)Hi(s)

]T
Y

i,1
01 (s) − [

Ai(s) − Li(s)Hi(s)
]T

Y
i,1
11 (s)

F
i,1
12

(
s, Y i

02, Y
i
12

) = −Y
i,1
12 (s)Azi(s) − [

Li(s)Hi(s)
]T

Y
i,1
02 (s)

− [
Ai(s) − Li(s)Hi(s)

]T
Y

i,1
12 (s)

F
i,1
20

(
s, Y i

20;Ki,Kzi

) = −Y
i,1
20 (s)

[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]

− AT
zi(s)Y

i,1
20 (s) + 2Rzi(s)Kzi(s)

F
i,1
21

(
s, Y i

20, Y
i
21

) = −AT
zi(s)Y

i,1
21 (s) − Y

i,1
20 (s)

[
Li(s)Hi(s)

]

− Y
i,1
21 (s)

[
Ai(s) − Li(s)Hi(s)

]

F
i,1
22

(
s, Y i

22

) = −AT
zi(s)Y

i,1
22 (s) − Y

i,1
22 (s)Azi(s) − Rzi(s)

F
i,r
00

(
s, Y i

00, Y
i
01, Y

i
20;Ki,Kzi

)

= −[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]T
Y

i,r
00 (s)

− Y
i,r
00 (s)

[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

00(s)Y
i,r−v
00 (s) + P i

01(s)Y
i,r−v
01 (s) + P i

02(s)Y
i,r−v
20 (s)

]

F
i,r
01

(
s, Y i

00, Y
i
01, Y

i
11, Y

i
21;Ki,Kzi

)

= −Y
i,r
01 (s)

[
Ai(s) − Li(s)Hi(s)

]

− Y
i,r
00 (s)

[
Li(s)Hi(s)

] − [
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]T
Y

i,r
01 (s)

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

00(s)Y
i,r−v
01 (s) + P i

01(s)Y
i,r−v
11 (s) + P i

02(s)Y
i,r−v
21 (s)

]

F
i,r
02

(
s, Y i

02, Y
i
12, Y

i
22;Ki,Kzi

)

= −Y
i,r
02 (s)Azi(s) − [

Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)
]T

Y
i,r
02 (s)

−
r−1∑
r=1

2r!
v!(r − v)!

[
P i

00(s)Y
i,r−v
02 (s) + P i

01(s)Y
i,r−v
12 (s) + P i

02(s)Y
i,r−v
22 (s)

]
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F
i,r
10

(
s, Y i

00, Y
i
10, Y

i
20;Ki,Kzi

)

= −[
Ai(s) − Li(s)Hi(s)

]T
Y

i,r
10 (s)

− [
Li(s)Hi(s)

]T
Y

i,r
00 (s) − Y

i,r
10 (s)

[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

10(s)Y
i,r−v
00 (s) + P i

11(s)Y
i,r−v
10 (s) + P i

12(s)Y
i,r−v
20 (s)

]

F
i,r
11

(
s, Y i

01, Y
i
10, Y

i
11, Y

i
21

)

= −[
Ai(s) − Li(s)Hi(s)

]T
Y

i,r
11 (s) − [

Li(s)Hi(s)
]T

Y
i,r
01 (s)

− Y
i,r
10 (s)

[
Li(s)Hi(s)

] − Y
i,r
11 (s)

[
Ai(s) − Li(s)Hi(s)

]

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

10(s)Y
i,r−v
01 (s) + P i

11(s)Y
i,r−v
11 (s) + P i

12(s)Y
i,r−v
21 (s)

]

F
i,r
12

(
s, Y i

02, Y
i
12, Y

i
22

)

= −Y
i,r
12 (s)Azi(s) − [

Li(s)Hi(s)
]T

Y
i,r
02 (s) − [

Ai(s) − Li(s)Hi(s)
]T

Y
i,r
12 (s)

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

10(s)Y
i,r−v
02 (s) + P i

11(s)Y
i,r−v
12 (s) + P i

12(s)Y
i,r−v
22 (s)

]

F
i,r
20 (s) = −AT

zi(s)Y
i,r
20 (s) − Y

i,r
20 (s)

[
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

20(s)Y
i,r−v
00 (s) + P i

21(s)Y
i,r−v
10 (s)

+ P i
22(s)Y

i,r−v
20 (s)

]

F
i,r
21

(
s, Y i

01, Y
i
11, Y

i
20, Y

i
21

)

= −AT
zi(s)Y

i,r
21 (s) − Y

i,r
20 (s)

[
Li(s)Hi(s)

]

−
r−1∑
v=1

2r!
v!(r − v)!

[
P i

20(s)Y
i,r−v
01 (s) + P i

21(s)Y
i,r−v
11 (s) + P i

22(s)Y
i,r−v
21 (s)

]

− Y
i,r
21 (s)

[
Ai(s) − Li(s)Hi(s)

]

F
i,r
22

(
s, Y i

02, Y
i
12, Y

i
22

)

= −AT
zi(s)Y

i,r
22 (s) − Y

i,r
22 (s)Azi(s) −

r−1∑
v=1

2r!
v!(r − v)!

[
P i

20(s)Y
i,r−v
02 (s)

+ P i
21(s)Y

i,r−v
12 (s) + P i

22(s)Y
i,r−v
22 (s)

]
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Ğ
i,1
0

(
s, Z̆i

0, Y
i
00, Y

i
02;Ki,Kzi;pi,pzi

)

= −Y
i,1
02 (s)Ezi(s)dmi(s) − Y

i,1
00 (s)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− KT
zi(s)Rzi(s)pzi(s) − [

Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)
]T

Z̆
i,1
0 (s)

− KT
i (s)Ri(s)pi(s)

Ğ
i,1
1

(
s, Y i

10, Y
i
12, Z̆

i
0, Z̆

i
1;pi,pzi

)

= −[
Ai(s) − Li(s)Hi(s)

]T
Z̆

i,1
1 (s)

− Y
i,1
10 (s)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− [
Li(s)Hi(s)

]T
Z̆

i,1
0 (s) − Y

i,1
12 (s)Ezi(s)dmi(s)

Ğ
i,1
2

(
s, Y i

20, Y
i
22, Z̆

i
2;pi,pzi

)

= −Y
i,1
20 (s)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− AT
zi(s)Z̆

i,1
2 (s) − Y

i,1
22 (s)Ezi(s)dmi(s) + Rzi(s)pzi(s)

Ğ
i,r
0

(
s, Y i

00, Y
i
02, Z̆

i
0;Ki,Kzi;pi,pzi

)

= −Y
i,r
02 (s)Ezi(s)dmi(s) − Y

i,r
00 (s)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− [
Ai(s) + Bi(s)Ki(s) + Ci(s)Kzi(s)

]T
Z̆

i,r
0 (s)

Ğ
i,r
1

(
s, Y i

10, Y
i
12, Z̆

i
0, Z̆

i
1;pi,pzi

)

= −[
Ai(s) − Li(s)Hi(s)

]T
Z̆

i,r
1 (s)

− Y
i,r
10 (s)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− [
Li(s)Hi(s)

]T
Z̆

i,r
0 (s) − Y

i,r
12 (s)Ezi(s)dmi(s)

Ğ
i,r
2

(
s, Y i

20, Y
i
22, Z̆

i
2;pi,pzi

)

= −AT
zi(s)Z̆

i,r
2 (s) − Y

i,r
22 (s)Ezi(s)dmi(s)

− Y
i,r
20 (s)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

Gi,1(s, Y i
00, Y

i
01, Y

i
02, Y

i
10, Y

i
11, Y

i
12, Y

i
20, Y

i
21, Y

i
22, Z̆

i
0, Z̆

i
2;pi,pzi

)

= −2
(
Z̆

i,1
0

)T
(s)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− 2
(
Z̆

i,1
2

)T
(s)Ezi(s)dmi(s)

− Tr
{
Y

i,1
00 (s)Πi

00(s) + Y
i,1
01 (s)Πi

10(s) + Y
i,1
02 (s)Πi

20(s)
}

− Tr
{
Y

i,1
10 (s)Πi

01(s) + Y
i,1
11 (s)Πi

11(s) + Y
i,1
12 (s)Πi

21(s)
}
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− Tr
{
Y

i,1
20 (s)Πi

02(s) + Y
i,1
21 (s)Πi

12(s) + Y
i,1
22 (s)Πi

22(s)
}

− pT
i (s)Ri(s)pi(s) − pT

zi(s)Rzi(s)pzi(s)

Gi,r
(
s, Y i

00, Y
i
01, Y

i
02, Y

i
10, Y

i
11, Y

i
12, Y

i
20, Y

i
21, Y

i
22, Z̆

i
0, Z̆

i
2;pi,pzi

)

= −2
(
Z̆

i,r
0

)T
(s)

[
Bi(s)pi(s) + Ci(s)pzi(s) + Ei(s)di(s)

]

− 2
(
Z̆

i,r
2

)T
(s)Ezi(s)dmi(s)

− Tr
{
Y

i,r
00 (s)Πi

00(s) + Y
i,r
01 (s)Πi

10(s) + Y
i,r
02 (s)Πi

20(s)
}

− Tr
{
Y

i,r
10 (s)Πi

01(s) + Y
i,r
11 (s)Πi

11(s) + Y
i,r
12 (s)Πi

21(s)
}

− Tr
{
Y

i,r
20 (s)Πi

02(s) + Y
i,r
21 (s)Πi

12(s) + Y
i,r
22 (s)Πi

22(s)
}

provided that all the ki -tuple variables are given by

Y i
00(·) �

(
Y

i,1
00 (·), . . . , Y i,ki

00 (·)) ≡ (
Hi

00(·,1), . . . ,H i
00(·, ki)

)

Y i
01(·) �

(
Y

i,1
01 (·), . . . , Y i,ki

01 (·)) ≡ (
Hi

01(·,1), . . . ,H i
01(·, ki)

)

Y i
02(·) �

(
Y

i,1
02 (·), . . . , Y i,ki

02 (·)) ≡ (
Hi

02(·,1), . . . ,H i
02(·, ki)

)

Y i
10(·) �

(
Y

i,1
10 (·), . . . , Y i,ki

10 (·)) ≡ (
Hi

10(·,1), . . . ,H i
10(·, ki)

)

Y i
11(·) �

(
Y

i,1
11 (·), . . . , Y i,ki

11 (·)) ≡ (
Hi

11(·,1), . . . ,H i
11(·, ki)

)

Y i
12(·) �

(
Y

i,1
12 (·), . . . , Y i,ki

12 (·)) ≡ (
Hi

12(·,1), . . . ,H i
12(·, ki)

)

Y i
20(·) �

(
Y

i,1
20 (·), . . . , Y i,ki

20 (·)) ≡ (
Hi

20(·,1), . . . ,H i
20(·, ki)

)

Y i
21(·) �

(
Y

i,1
21 (·), . . . , Y i,ki

21 (·)) ≡ (
Hi

21(·,1), . . . ,H i
21(·, ki)

)

Y i
22(·) �

(
Y

i,1
22 (·), . . . , Y i,ki

22 (·)) ≡ (
Hi

22(·,1), . . . ,H i
22(·, ki)

)

Z̆i
0(·) �

(
Z̆

i,1
0 (·), . . . , Z̆i,ki

0 (·)) ≡ (
D̆i

0(·,1), . . . , D̆i
0(·, ki)

)

Z̆i
1(·) �

(
Z̆

i,1
1 (·), . . . , Z̆i,ki

1 (·)) ≡ (
D̆i

1(·,1), . . . , D̆i
1(·, ki)

)

Z̆i
2(·) �

(
Z̆

i,1
2 (·), . . . , Z̆i,ki

2 (·)) ≡ (
D̆i

2(·,1), . . . , D̆i
2(·, ki)

)

Zi
0(·) �

(
Z

i,1
0 (·), . . . ,Zi,ki

0 (·)) ≡ (
Di

0(·,1), . . . ,Di
0(·, ki)

)

Now it is straightforward to establish the product mappings

F i
00 � F

i,1
00 × · · · × F

i,ki

00 F i
01 � F

i,1
01 × · · · × F

i,ki

01

F i
02 � F

i,1
02 × · · · × F

i,ki

02 F i
10 � F

i,1
10 × · · · × F

i,ki

10

F i
11 � F

i,1
11 × · · · × F

i,ki

11 F i
12 � F

i,1
12 × · · · × F

i,ki

12
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F i
20 � F

i,1
20 × · · · × F

i,ki

20 F i
21 � F

i,1
21 × · · · × F

i,ki

21

F i
22 � F

i,1
22 × · · · × F

i,ki

22 Ği
0 � Ğ

i,1
0 × · · · × Ğ

i,ki

0

Ği
1 � Ğ

i,1
1 × · · · × Ğ

i,ki

1 Ği
2 � Ğ

i,1
2 × · · · × Ğ

i,ki

2

Gi � Gi,1 × · · · × Gi,ki

Thus, the dynamic equations (3.32)–(3.57) can be rewritten compactly as follows

d

ds
Y i

00(s) = F i
00

(
s, Y i

00(s), Y
i
01(s), Y

i
20(s);Ki(s),Kzi(s)

)
, Y i

00(tf ) (3.58)

d

ds
Y i

01(s) = F i
01

(
s, Y i

00(s), Y
i
01, Y

i
11(s), Y

i
21(s);Ki(s),Kzi(s)

)
, Y i

01(tf ) (3.59)

d

ds
Y i

02(s) = F i
02

(
s, Y i

02, Y
i
12(s), Y

i
22(s);Ki(s),Kzi(s)

)
, Y i

02(tf ) (3.60)

d

ds
Y i

10(s) = F i
10

(
s, Y i

00(s), Y
i
10(s), Y

i
20(s);Ki(s),Kzi(s)

)
, Y i

10(tf ) (3.61)

d

ds
Y i

11(s) = F i
11

(
s, Y i

01(s), Y
i
10(s), Y

i
11(s), Y

i
21(s)

)
, Y i

11(tf ) (3.62)

d

ds
Y i

12(s) = F i
12

(
s, Y i

02(s), Y
i
12(s), Y

i
22(s)

)
, Y i

12(tf ) (3.63)

d

ds
Y i

20(s) = F i
20

(
s, Y i

00(s), Y
i
10(s), Y

i
20(s);Ki(s),Kzi(s)

)
, Y i

20(tf ) (3.64)

d

ds
Y i

21(s) = F i
21

(
s, Y i

01(s), Y
i
11(s), Y

i
20(s), Y

i
21(s)

)
, Y i

21(tf ) (3.65)

d

ds
Y i

22(s) = F i
22

(
s, Y i

02(s), Y
i
12(s), Y

i
22(s)

)
, Y i

22(tf ) (3.66)

d

ds
Z̆i

0(s) = Ği
0

(
s, Y i

00(s), Y
i
02(s), Z̆

i
0(s);Ki(s),Kzi(s);pi(s),pzi(s)

)
,

Z̆i
0(tf ) (3.67)

d

ds
Z̆i

1(s) = Ği
1

(
s, Y i

10(s), Y
i
12(s), Z̆

i
0(s), Z̆

i
1(s);pi(s),pzi(s)

)
, Z̆i

1(tf ) (3.68)

d

ds
Z̆i

2(s) = Ği
2

(
s, Y i

20, Y
i
22(s), Z̆

i
2(s);pi(s),pzi(s)

)
, Z̆i

2(tf ) (3.69)

d

ds
Zi(s) = Gi

(
s, Y i

00(s), Y
i
01(s), Y

i
02(s), Y

i
10(s), Y

i
11(s), Y

i
12(s), Y

i
20(s), . . .

Y i
21(s), Y

i
22(s), Z̆

i
0(s), Z̆

i
2(s);pi(s),pzi(s)

)
, Zi(tf ) (3.70)

where the terminal-value conditions are defined by

Y i
00(tf ) � Q

f
i × 0 × · · · × 0 Y i

01(tf ) � Q
f
i × 0 × · · · × 0
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Y i
02(tf ) � 0 × 0 × · · · × 0 Y i

10(tf ) � Q
f
i × 0 × · · · × 0

Y i
11(tf ) � Q

f
i × 0 × · · · × 0 Y i

12(tf ) � 0 × 0 × · · · × 0

Y i
20(tf ) � 0 × 0 × · · · × 0 Y i

21(tf ) � 0 × 0 × · · · × 0

Y i
22(tf ) � 0 × 0 × · · · × 0 Z̆i

0(tf ) � 0 × 0 × · · · × 0

Z̆i
1(tf ) � 0 × 0 × · · · × 0 Z̆i

2(tf ) � 0 × 0 × · · · × 0

Zi(tf ) � 0 × 0 × · · · × 0

Note that for each agent i the product system (3.58)–(3.70) uniquely determines
Y i

00, Y i
01, Y i

02, Y i
10, Y i

11, Y i
12, Y i

20, Y i
21, Y i

22, Z̆i
0, Z̆i

1, Z̆i
2, and Zi once the admissible

4-tuple (Ki,Kzi,pi,pzi) is specified. Thus, Y i
00, Y i

01, Y i
02, Y i

10, Y i
11, Y i

12, Y i
20, Y i

21,
Y i

22, Z̆i
0, Z̆i

1, Z̆i
2, and Zi are considered as the functions of Ki , Kzi , pi , and pzi .

The performance index for the interconnected system can therefore be formulated
in terms of Ki , Kzi , pi , and pzi for agent i.

The subject of risk taking has been of great interest not only to control system de-
signers of engineered systems but also to decision makers of financial systems. One
approach to study risk in stochastic control system is exemplified in the ubiquitous
theory of linear-quadratic Gaussian (LQG) control whose preference of expected
value of performance measure associated with a class of stochastic systems is min-
imized against all random realizations of the uncertain environment. Other aspects
of performance distributions that do not appear in the classical theory of LQG are
variance, skewness, kurtosis, etc. For instance, it may nevertheless be true that some
performance with negative skewness appears riskier than performance with positive
skewness when expectation and variance are held constant. If skewness does, in-
deed, play an essential role in determining the perception of risk, then the range of
applicability of the present theory should be restricted, for example, to symmetric
or equally skewed performance measures.

There have been several studies that attempt to generalize the present LQG the-
ory to account for the effects of variance [11] and [6] or of other description of
probability density [12] on the perceived riskiness of performance measures. The
contribution of this research is to directly address the perception of risk via a selec-
tive set of performance distribution characteristics of its outcomes governed by ei-
ther dispersion, skewness, flatness, etc. or a combination thereof. Figure 3.4 depicts
some possible interpretations on measures of performance risk for control decision
under uncertainty.

Definition 1 (Risk-value aware performance index) Associate with agent i the
ki ∈ Z

+ and the sequence μi = {μi
r ≥ 0}ki

r=1 with μi
1 > 0. Then, for (t0, x

0
i ) given,

the risk-value aware performance index

φi
0 : {t0} × (

R
ni×ni

)ki × (
R

ni
)ki × R

ki �→ R
+

over a finite optimization horizon is defined by a risk-value model to reflect the
tradeoff between value and riskiness of the Chi-squared type performance mea-
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Fig. 3.4 Measures of performance risk for control decision under uncertainty

sure (3.31)

φi
0

(
t0, Y

i
00(·,Ki,Kzi,pi,pzi), Z̆

i
0(·,Ki,Kzi,pi,pzi),Z

i(·,Ki,Kzi,pi,pzi)
)

� μi
1κ

i
1(Ki,Kzi ,pi,pzi)︸ ︷︷ ︸

Value Measure

+ μi
2κ

i
2(Ki,Kzi ,pi,pzi) + · · · + μi

ki
κi
ki

(Ki,Kzi,pi,pzi)︸ ︷︷ ︸
Risk Measure

= μi
1

[(
x0
i

)T
Y

i,1
00 (t0,Ki,Kzi ,pi,pzi)x

0
i + 2

(
x0
i

)T
Z̆

i,1
0 (t0,Ki,Kzi,pi,pzi)

+ Z
i,1
0 (t0,Ki,Kzi ,pi,pzi)

] + μi
2

[(
x0

i

)T
Y

i,2
00 (t0,Ki,Kzi ,pi,pzi)x

0
i

+ 2
(
x0
i

)T
Z̆

i,2
0 (t0,Ki,Kzi ,pi,pzi) + Z

i,2
0 (t0,Ki,Kzi,pi,pzi)

]

+ · · · + μi
ki

[(
x0
i

)T
Y

i,ki

00 (t0,Ki,Kzi,pi,pzi)x
0
i

+ 2
(
x0
i

)T
Z̆

i,ki

0 (t0,Ki,Kzi,pi,pzi) + Z
i,ki

0 (t0,Ki,Kzi,pi,pzi)
]

(3.71)

where all the parametric design measures μi
r considered here by agent i, repre-

sent for different emphases on higher-order statistics and agent prioritization toward
performance robustness. Solutions {Y i,r

00 (s,Ki,Kzi,pi,pzi)}ki

r=1, {Z̆i,r
0 (s,Ki,Kzi ,

pi,pzi)}ki

r=1 and {Zi,r (s,Ki,Kzi,pi,pzi)}ki

r=1 when evaluated at s = t0 satisfy the
time-backward differential equations (3.32)–(3.57) together with the terminal-value
conditions as aforementioned.

From the above definition, the statistical problem is shown to be an initial cost
problem, in contrast with the more traditional terminal cost class of investigations.
One may address an initial cost problem by introducing changes of variables which
convert it to a terminal cost problem. However, this modifies the natural context
of statistical control, which it is preferable to retain. Instead, one may take a more
direct dynamic programming approach to the initial cost problem. Such an approach
is illustrative of the more general concept of the principle of optimality, an idea
tracing its roots back to the 17th century and depicted in Fig. 3.5.
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Fig. 3.5 Value functions in
the terminal cost problem
(top) and the initial cost
problem (bottom)

Fig. 3.6 Admissible feedback gains and interaction recovery inputs

For the given (tf , Y i
00(tf ), Z̆i

0(tf ),Zi(tf )), classes of Ki

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
,

Kzi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
, P i

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
and P zi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
of

admissible 4-tuple (Ki,Kzi ,pi,pzi) are then defined.

Definition 2 (Admissible feedback gains and affine inputs) For agent i, the compact
subsets Ki ⊂ R

ni×ni , Kzi , P i ⊂ R
mi , and P zi ⊂ R

mzi be denoted by the sets of
allowable matrices and vectors as in Fig. 3.6.

Then, for ki ∈ Z
+, μi = {μi

r ≥ 0}ki

r=1 with μi
1 > 0, the matrix-valued sets

of Ki

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
∈ C(t0, tf ;R

mi×ni ) and Kzi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
∈

C(t0, tf ;R
mzi×ni ) and the vector-valued sets of P i

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
∈ C(t0, tf ;
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R
mi ) and P zi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
∈ C(t0, tf ;R

mzi ) with respective values Ki(·) ∈
Ki , Kzi(·) ∈ Kzi , pi(·) ∈ P i , and pzi(·) ∈ P zi are admissible if the resulting so-
lutions to the time-backward differential equations (3.32)–(3.57) exist on the finite
horizon [t0, tf ].

The optimization problem for agent i, where instantiations are aimed at reducing
performance robustness and constituent strategies are robust to uncertain environ-
ment’s stochastic variations, is subsequently stated.

Definition 3 (Optimization of Mayer problem) Suppose that ki ∈ Z
+ and the se-

quence μi = {μi
r ≥ 0}ki

r=1 with μi
1 > 0 are fixed. Then, the optimization prob-

lem over [t0, tf ] is given by the minimization of agent i’s performance index
(3.71) over all Ki(·) ∈ Ki

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
, Kzi(·) ∈ Kzi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
,

pi(·) ∈ P i

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
and pzi(·) ∈ P zi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
subject to the

time-backward dynamical constraints (3.58)–(3.70) for s ∈ [t0, tf ].

It is important to recognize that the optimization considered here is in “Mayer
form” and can be solved by applying an adaptation of the Mayer form verifi-
cation theorem of dynamic programming given in [4]. In the framework of dy-
namic programming where the subject optimization is embedded into a fam-
ily of optimization based on different starting points, there is therefore a need
to parameterize the terminal time and new states by (ε,Y i

00, Z̆
i
0,Z

i) rather than
(tf , Y i

00(tf ), Z̆i
0(tf ),Zi(tf )). Thus, the values of the corresponding optimization

problems depend on the terminal-value conditions which lead to the definition of a
value function.

Definition 4 (Value function) The value function V i : [t0, tf ] × (Rni×ni )ki ×
(Rni )ki × R

ki �→ R
+ associated with the Mayer problem defined as V i (ε, Y i

00,

Z̆i
0,Z

i) is the minimization of φi
0(t0, Y

i
00(·,Ki,Kzi,pi,pzi), Z̆

i
0(·,Ki,Kzi,pi,

pzi),Z
i(·,Ki,Kzi ,pi,pzi)) over all Ki(·) ∈ Ki

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
, Kzi(·) ∈

Kzi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
, pi(·) ∈ P i

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
, and pzi(·) ∈

P zi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
subject to some (ε,Y i

00, Z̆
i
0,Z

i) ∈ [t0, tf ] × (Rni×ni )ki ×
(Rni )ki × R

ki .

It is conventional to let V i (ε, Y i
00, Z̆

i
0,Z

i) = ∞ when Ki

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
,

Kzi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
, P i

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
and P zi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
are

empty. To avoid cumbersome notation, the dependence of trajectory solutions on
Ki , Kzi , pi and pzi is now suppressed. Next, some candidates for the value function
can be constructed with the help of a reachable set.
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Definition 5 (Reachable set) At agent i, let the reachable set Qi be defined as fol-
lows

Qi �
{(

ε,Y i
00, Z̆

i
0,Z

i
) ∈ [t0, tf ] × (

R
ni×ni

)ki × (
R

ni
)ki × R

ki such that

Ki

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
× Kzi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
×

P i

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
× P zi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
not empty

}

Moreover, it can be shown that the value function is satisfying a partial differen-
tial equation at each interior point of Qi at which it is differentiable.

Theorem 4 (Hamilton–Jacobi–Bellman (HJB) equation for Mayer problem) For
agent i, let (ε,Y i

00, Z̆
i
0,Z

i) be any interior point of the reachable set Qi at

which the value function V i(ε, Y i
00, Z̆

i
0,Z

i) is differentiable. If there exists an
optimal 4-tuple control strategy (K∗

i ,K∗
zi , p

∗
i , p

∗
zi) ∈ Ki

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
×

Kzi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
× P i

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
× P zi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
, the

partial differential equation associated with agent i

0 = min
Ki∈Ki,Kzi∈Kzi ,pi∈P i,pzi∈P zi

{
∂

∂ε
V i

(
ε,Y i

00, Z̆
i
0,Z

i
)

+ ∂

∂ vec(Y i
00)

V i
(
ε,Y i

00, Z̆
i
0,Z

i
) · vec

(
F i

00

(
ε;Y i

00, Y
i
01, Y

i
20;Ki,Kzi

))

+ ∂

∂ vec(Z̆i
0)

V i
(
ε,Y i

00, Z̆
i
0,Z

i
) · vec

(
Ği

0

(
ε;Y i

00, Y
i
02, Z̆

i
0;Ki,Kzi;pi,pzi

))

+ ∂

∂ vec(Zi)
V i

(
ε,Y i

00, Z̆
i
0,Z

i
)

· vec
(
Gi

(
ε;Y i

00, Y
i
00, Y

i
01, Y

i
02, Y

i
10, Y

i
11, Y

i
12, Y

i
20, Y

i
21, Y

i
22, Z̆

i
0, Z̆

i
2;pi,pzi

))}

(3.72)

is satisfied together with V i (t0, Y
i
00, Z̆

i
0,Z

i) = φi
0(t0, Y

i
00, Z̆

i
0,Z

i) and vec(·) the
vectorizing operator of enclosed entities. The optimum in (3.72) is achieved by the
4-tuple control decision strategy (K∗

i (ε),K∗
zi (ε),p

∗
i (ε),p

∗
zi (ε)) of the optimal deci-

sion strategy at ε.

Proof Detail discussions are in [4] and the modification of the original proofs
adapted to the framework of statistical control together with other formal analysis
can be found in [7] which is available via http://etd.nd.edu/ETD-db/theses/available/
etd-04152004-121926/unrestricted/PhamKD052004.pdf. �

Finally, the next theorem gives the sufficient condition used to verify optimal
decisions for the interconnected system or agent i.

http://etd.nd.edu/ETD-db/theses/available/etd-04152004-121926/unrestricted/PhamKD052004.pdf
http://etd.nd.edu/ETD-db/theses/available/etd-04152004-121926/unrestricted/PhamKD052004.pdf
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Theorem 5 (Verification theorem) Fix ki ∈ Z
+. Let W i (ε, Y i

00, Z̆
i
0,Z

i) be a contin-
uously differentiable solution of the HJB equation (3.72) and satisfy the boundary
condition

W i
(
t0, Y

i
00, Z̆

i
0,Z

i
) = φi

0

(
t0, Y

i
00, Z̆

i
0,Z

i
)

(3.73)

Let (tf , Y i
00(tf ), Z̆i

0(tf ),Zi(tf )) be a point of Qi ; 4-tuple (Ki,Kzi,pi,pzi) in

Ki

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
× Kzi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
× P i

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
×

P zi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
; and Y i

00, Z̆i
0, and Zi the corresponding solutions of (3.58)–

(3.70). Then, W i(s, Y i
00(s), Z̆

i
0(s),Z

i(s)) is time-backward increasing in s. If

(K∗
i ,K∗

zi , p
∗
i , p∗

zi) is a 4-tuple in Ki

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
×Kzi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi

× P i

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
× P zi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
defined on [t0, tf ] with cor-

responding solutions, Y i∗
00 , Z̆i∗

0 and Zi∗ of the dynamical equations such that

0 = ∂

∂ε
W i

(
s, Y i∗

00(s), Z̆i∗
0 (s),Zi∗(s)

) + ∂

∂ vec(Y i
00)

W i
(
s, Y i∗

00(s), Z̆i∗
0 (s),Zi∗(s)

)

· vec
(
F i

00

(
s;Y i∗

00(s), Y i∗
01 (s), Y i∗

20 (s);K∗
i (s),K∗

zi (s)
))

+ ∂

∂ vec(Z̆i
0)

W i
(
s, Y i∗

00 (s), Z̆i∗
0 (s),Zi∗(s)

)

· vec
(
Ği

0

(
s;Y i∗

00 (s), Y i∗
02 (s), Z̆i∗

0 (s);K∗
i (s),K∗

zi (s);p∗
i (s),p

∗
zi (s)

))

+ ∂

∂ vec(Zi)
W i

(
s, Y i∗

00 (s), Z̆i∗
0 (s),Zi∗(s)

)

· vec
(
Gi

(
ε;Y i∗

00(s), Y i∗
00(s), Y i∗

01 (s), Y i∗
02 (s), Y i∗

10 (s), Y i∗
11 (s), Y i∗

12(s),

Y i∗
20(s), Y i∗

21 (s), Y i∗
22(s), Z̆i∗

0 (s), Z̆i∗
2 (s);p∗

i (s),p
∗
zi (s)

))
(3.74)

then (K∗
i ,K∗

zi , p
∗
i , p

∗
zi ) in Ki

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
× Kzi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
×

P i

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
× P zi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
is optimal and

W i
(
ε,Y i

00, Z̆
i
0,Z

i
) = V i

(
ε,Y i

00, Z̆
i
0,Z

i
)

(3.75)

where V i (ε, Y i
00, Z̆

i
0,Z

i) is the value function.

Proof Due to the length limitation, the interested reader is referred to the work by
the author [7] which can be found via http://etd.nd.edu/ETD-db/theses/available/
etd-04152004-121926/unrestricted/PhamKD052004.pdf for the detail proof and
other relevant analysis. �

Note that, to have a solution (K∗
i ,K∗

zi , p
∗
i , p∗

zi) ∈ Ki

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
×

Kzi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
× P i

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
× P zi

tf ,Y i
00(tf ),Z̆i

0(tf ),Zi(tf );μi
well

http://etd.nd.edu/ETD-db/theses/available/etd-04152004-121926/unrestricted/PhamKD052004.pdf
http://etd.nd.edu/ETD-db/theses/available/etd-04152004-121926/unrestricted/PhamKD052004.pdf
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Fig. 3.7 Cost-to-go in the
sufficient condition to
Hamilton–Jacobi–Bellman
equation

defined and continuous for all s ∈ [t0, tf ], the trajectory solutions Y i
00(s), Z̆i

0(s)

and Zi(s) to the dynamical equations (3.58)–(3.70) when evaluated at s = t0 must
then exist. Therefore, it is necessary that Y i

00(s), Z̆i
0(s) and Zi(s) are finite for all

s ∈ [t0, tf ). Moreover, the solutions of the dynamical equations (3.58)–(3.70) ex-
ist and are continuously differentiable in a neighborhood of tf . Applying the results
from [2], these trajectory solutions can further be extended to the left of tf as long as
Y i

00(s), Z̆i
0(s) and Zi(s) remain finite. Hence, the existence of unique and continu-

ously differentiable solution Y i
00(s), Z̆

i
0(s) and Zi(s) are bounded for all s ∈ [t0, tf ).

As a result, the candidate value function W i (s, Y i
00, Z̆

i
0,Z

i) is continuously differ-
entiable as well.

3.5 Distributed Risk-Averse Feedback Stabilization

Note that the optimization problem is in “Mayer form” and can be solved by apply-
ing an adaptation of the Mayer form verification theorem of dynamic programming
as described in the previous section. In particular, the terminal time and states of
a family of optimization problems are now parameterized as (ε,Y i

00, Z̆
i
0,Z

i) rather
than (tf ,H i

00(tf ), D̆i
0(tf ),Di(tf )). Precisely stated, for ε ∈ [t0, tf ] and 1 ≤ r ≤ ki ,

the states of the performance robustness (3.58)–(3.70) defined on the interval [t0, ε]
have the terminal values denoted by Hi

00(ε) ≡ Y i
00, D̆i

0(ε) ≡ Z̆i
0 and Di(ε) ≡ Zi .

Figure 3.7 further illustrates the cost-to-go and cost-to-come functions in statistical
control.

Since the performance index (3.71) is quadratic affine in terms of arbitrarily fixed
x0
i , this observation suggests a candidate solution to the HJB equation (3.72) may be

of the form as follows. For instance, it is assumed that (ε,Y i
00, Z̆

i
0,Z

i) is an interior
point of the reachable set Qi at which the real-valued function

W i
(
ε,Y i

00, Z̆
i
0,Z

i
) = (

x0
i

)T
ki∑

r=1

μi
r

(
Y

i,r
00 + Ei

r(ε)
)
x0
i

+ 2
(
x0
i

)T
ki∑

r=1

μi
r

(
Z̆

i,r
0 + T̆ i

r (ε)
)

+
ki∑

r=1

μi
r

(
Zi,r + T i

r (ε)
)

(3.76)
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is differentiable. The parametric functions of time Ei
r ∈ C1(t0, tf ;R

ni×ni ), T̆ i
r ∈

C1(t0, tf ;R
ni ) and T i

r ∈ C1(t0, tf ;R) are yet to be determined. Furthermore, the
time derivative of W i (ε, Y i

00, Z̆
i
0,Z

i) can be shown as below

d

dε
W i

(
ε,Y i

00, Z̆
i
0,Z

i
)

= (
x0
i

)T
ki∑

r=1

μi
r

[
F

i,r
00

(
ε;Y i

00, Y
i
01, Y

i
20;Ki,Kzi

) + d

dε
Ei

r(ε)

]
x0

i

+ 2
(
x0
i

)T
ki∑

r=1

μi
r

[
Ğ

i,r
0 (ε;Y i

00, Y
i
02, Z̆

i
0;Ki,Kzi;pi,pzi) + d

dε
T̆ i

r (ε)

]

+
ki∑

r=1

μi
r

[
Gi,r

(
ε;Y i

00, Y
i
00, Y

i
01, Y

i
02, Y

i
10, Y

i
11, Y

i
12, Y

i
20, Y

i
21, Y

i
22, Z̆

i
0, Z̆

i
2;

pi,pzi

)

+ d

dε
T i

r (ε)

]
(3.77)

The substitution of this hypothesized solution (3.76) into the HJB equation (3.72)
and making use of (3.77) results in

0 ≡ min
Ki∈Ki,Kzi∈Kzi ,pi∈P i,pzi∈P zi

{(
x0
i

)T
ki∑

r=1

μi
r

d

dε
Ei

r (ε)x
0
i +

ki∑
r=1

μi
r

d

dε
T i

r (ε)

+ 2
(
x0
i

)T
ki∑

r=1

μi
r

d

dε
T̆ i

r (ε) + (
x0
i

)T
ki∑

r=1

μi
rF

i,r
00

(
ε;Y i

00, Y
i
01, Y

i
20;Ki,Kzi

)
x0
i

+ 2
(
x0
i

)T
ki∑

r=1

μi
rĞ

i,r
0

(
ε;Y i

00, Y
i
02, Z̆

i
0;Ki,Kzi;pi,pzi

)

+
ki∑

r=1

μi
rG

i,r
(
ε;Y i

00, Y
i
00, . . . , Y

i
01, Y

i
02, Y

i
10, Y

i
11, Y

i
12, Y

i
20, Y

i
21, Y

i
22, Z̆

i
0, Z̆

i
2;

pi,pzi

)}
(3.78)

In the light of arbitrary x0
i with the rank of one, the differentiation of the expression

within the bracket of (3.78) with respect to Ki , Kzi , pi , and pzi yields the necessary
conditions for an extremum of (3.71) on [t0, ε]

Ki = −(
μi

1Ri(ε)
)−1

BT
i (ε)

ki∑
r=1

μi
rY

i,r
00 (3.79)
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Kzi = −(
μi

1Rzi(ε)
)−1

CT
i (ε)

ki∑
r=1

μi
rY

i,r
00 (3.80)

pi = −(
μi

1Ri(ε)
)−1

BT
i (ε)

ki∑
r=1

μi
r Z̆

i,r
0 (3.81)

pzi = −(
μi

1Rzi(ε)
)−1

CT
i (ε)

ki∑
r=1

μi
rZ̆

i,r
0 (3.82)

Replacing these results (3.79)–(3.82) into the right member of the HJB equation
(3.72) yields the value of the minimum. It is now necessary to exhibit {Ei

r(·)}ki

r=1,

{T̆ i
r (·)}ki

r=1, and {T i
r (·)}ki

r=1 which render the left side of the HJB equation (3.72)

equal to zero for ε ∈ [t0, tf ], when {Y i,r
00 }ki

r=1, {Z̆i,r
0 }ki

r=1, and {Zi,r}ki

r=1 are evaluated
along the solution trajectories of the dynamical equations (3.58) through (3.70). Due
to the space limitation, the closed forms for {Ei

r(·)}ki

r=1, {T̆ i
r (·)}ki

r=1, and {T i
r (·)}ki

r=1
are however, omitted here. Furthermore, the boundary condition (3.73) requires that

(
x0
i

)T
ki∑

r=1

μi
r

(
Y

i,r
00 (t0) + Ei

r(t0)
)
x0
i + 2

(
x0
i

)T
ki∑

r=1

μi
r

(
Z̆

i,r
0 (t0) + T̆ i

r (t0)
)

+
ki∑

r=1

μi
r

(
Zi,r (t0) + T i

r (t0)
)

= (
x0
i

)T
ki∑

r=1

μi
rY

i
00(t0) x0

i + 2
(
x0
i

)T
ki∑

r=1

μi
rZ̆

i,r
0 (t0) +

ki∑
r=1

μi
rZ

i,r (t0)

Thus, matching the boundary condition yields the initial value conditions Ei
r(t0) =

0, T̆ i
r (t0) = 0 and T i

r (t0) = 0.
Applying the 4-tuple decision strategy specified in (3.79)–(3.82) along the so-

lution trajectories of the time-backward differential equations (3.58)–(3.70), these
equations become the time-backward Riccati-type differential equations. Enforc-
ing the initial value conditions of Ei

r(t0) = 0, T̆ i
r (t0) = 0 and T i

r (t0) = 0 uniquely
implies that Ei

r (ε) = Y
i,r
00 (t0) − Y

i,r
00 (ε), T̆ i

r (ε) = Z̆
i,r
0 (t0) − Z̆

i,r
0 (ε), and T i

r (ε) =
Zi,r (t0) − Zi,r (ε) for all ε ∈ [t0, tf ] and yields a value function

W i
(
ε,Y i

00, Z̆
i
0,Z

i
)

= (
x0
i

)T
ki∑

r=1

μi
rY

i,r
00 (t0) x0

i + 2
(
x0
i

)T
ki∑

r=1

μi
rZ̆

i,r
0 (t0) +

ki∑
r=1

μi
rZ

i,r (t0)

for which the sufficient condition (3.74) of the verification theorem is satisfied.
Therefore, the extremal risk-averse control laws (3.79)–(3.82) minimizing (3.71)
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become optimal

K∗
i (ε) = −(

μ1Ri(ε)
)−1

BT
i (ε)

ki∑
r=1

μi
rY

i,r∗
00 (ε) (3.83)

K∗
zi(ε) = −(

μ1Rzi(ε)
)−1

CT
i (ε)

ki∑
r=1

μi
rY

i,r∗
00 (ε) (3.84)

p∗
i (ε) = −(

μ1Ri(ε)
)−1

BT
i (ε)

ki∑
r=1

μi
rZ̆

i,r∗
0 (ε) (3.85)

p∗
zi(ε) = −(

μ1Rzi(ε)
)−1

CT
i (ε)

ki∑
r=1

μi
rZ̆

i,r∗
0 (ε) (3.86)

In closing the chapter, it is beneficial to summarize the methodological character-
istics of the performance robustness analysis and distributed feedback stabilization
and reflect on them from a larger perspective, e.g., management control of a large-
scale interconnected system.

Theorem 6 (Decentralized and risk-averse control decisions) Let the pairs (Ai,Bi)

and (Ai,Ci) be uniformly stabilizable and the pair (Ai,Hi) be uniformly detectable
on [t0, tf ]. The corresponding interconnected system controlled by agent i is then
considered with the initial condition x∗(t0)

dx∗
i (t) = (

Ai(t)x
∗
i (t) + Bi(t)u

∗
i (t) + Ci(t)z

∗
i (t) + Ei(t)di(t)

)
dt + Gi(t) dwi(t)

dy∗
i (t) = Hi(t)x

∗
i (t) dt + dvi(t),

i ∈ N

whose local interactions with the nearest neighbors are given by

z∗
i (t) =

N∑
j=1,j 	=i

Lij (t)x
∗
ij (t), i ∈ N

which is then approximated by an explicit model-following of the type

dzmi(t) = (
Azi(t)zmi(t) + Ezi(t)dmi(t)

)
dt + Gzi(t) dwmi(t), zmi(t0) = 0.

Then, the local state estimate x̂∗
i (t) for each agent i is generated by

dx̂∗
i (t) = (

Ai(t)x
∗
i (t) + Bi(t)u

∗
i (t) + Ci(t)z

∗
i (t) + Ei(t)di(t)

)
dt

+ Li(t)
(
dy∗

i (t) − Hi(t)x̂
∗
i (t) dt

)
, x̂∗

i (t0) = x0
i
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and the Kalman-type gain is given by

Li(t) = Σi(t)H
T
i (t)V −1

i

The covariance for estimation error, Σi(t) is the solution of the time-forward matrix
differential equation

d

dt
Σi(t) = Ai(t)Σi(t) + Σi(t)Ai(t) + Gi(t)WiG

T
i (t)

− Σi(t)H
T
i (t)V −1

i Hi(t)Σi(t), Σi(t0) = 0

Further, let ki ∈ Z
+ and the sequence μi = {μi

r ≥ 0}ki

r=1 with μi
1 > 0. The optimal

decentralized and risk-averse control decision for agent i is given by

u∗
i (t) = K∗

i (t)x̂∗
i (t) + p∗

i (t); z∗
i (t) = K∗

zi (t)x̂
∗
i (t) + p∗

zi(t)

provided that

K∗
i (s) = −R−1

i (s)BT
i (s)

ki∑
r=1

μ̂i
rY

i,r∗
00 (s) (3.87)

K∗
zi(s) = −R−1

zi (s)CT
i (s)

ki∑
r=1

μ̂i
rY

i,r∗
00 (s) (3.88)

p∗
i (s) = −R−1

i (s)BT
i (s)

ki∑
r=1

μ̂i
r Z̆

i,r∗
0 (s) (3.89)

p∗
zi(s) = −R−1

zi (s)CT
i (s)

ki∑
r=1

μ̂i
r Z̆

i,r∗
0 (s) (3.90)

where normalized weighting preferences μ̂i
r � μi

r/μ
i
1’s are chosen by agent i

toward strategic design of its performance robustness. The supporting solutions
{Y i,r∗

00 (s)}ki

r=1, {Z̆i,r∗
0 (s)}ki

r=1, {Zi,r∗(s)}ki

r=1 optimally satisfy the time-backward
matrix-valued and vector-valued differential equations

d

ds
Y i∗

00(s) = F i∗
00

(
s, Y i∗

00(s), Y i∗
01 (s), Y i∗

20(s);K∗
i (s),K∗

zi (s)
)
, Y i∗

00(tf ) (3.91)

d

ds
Y i∗

01(s) = F i∗
01

(
s, Y i∗

00(s), Y i∗
01 , Y i∗

11(s), Y i∗
21 (s);K∗

i (s),K∗
zi(s)

)
, Y i∗

01 (tf )

(3.92)

d

ds
Y i∗

02(s) = F i∗
02

(
s, Y i∗

02 , Y i∗
12 (s), Y i∗

22(s);K∗
i (s),K∗

zi (s)
)
, Y i∗

02(tf ) (3.93)

d

ds
Y i∗

10(s) = F i∗
10

(
s, Y i∗

00(s), Y i∗
10 (s), Y i∗

20(s);K∗
i (s),K∗

zi (s)
)
, Y i∗

10(tf ) (3.94)
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d

ds
Y i∗

11(s) = F i∗
11

(
s, Y i∗

01(s), Y i∗
10 (s), Y i∗

11(s), Y i∗
21 (s)

)
, Y i∗

11(tf ) (3.95)

d

ds
Y i∗

12(s) = F i∗
12

(
s, Y i∗

02(s), Y i∗
12 (s), Y i∗

22(s)
)
, Y i∗

12 (tf ) (3.96)

d

ds
Y i∗

20(s) = F i∗
20

(
s, Y i∗

00(s), Y i∗
10 (s), Y i∗

20(s);K∗
i (s),K∗

zi (s)
)
, Y i∗

20(tf ) (3.97)

d

ds
Y i∗

21(s) = F i∗
21

(
s, Y i

01(s), Y
i
11(s), Y

i
20(s), Y

i
21(s)

)
, Y i∗

21(tf ) (3.98)

d

ds
Y i∗

22(s) = F i∗
22

(
s, Y i∗

02(s), Y i∗
12 (s), Y i∗

22(s)
)
, Y i∗

22 (tf ) (3.99)

d

ds
Z̆i∗

0 (s) = Ği∗
0

(
s, Y i∗

00(s), Y i∗
02 (s), Z̆i∗

0 (s);K∗
i (s),K∗

zi (s); . . . p∗
i (s),p∗

zi(s)
)
,

Z̆i∗
0 (tf ) (3.100)

d

ds
Z̆i∗

1 (s) = Ği∗
1

(
s, Y i∗

10(s), Y i∗
12 (s), Z̆i∗

0 (s), Z̆i∗
1 (s);p∗

i (s),p∗
zi (s)

)
,

Z̆i∗
1 (tf ) (3.101)

d

ds
Z̆i∗

2 (s) = Ği∗
2

(
s, Y i∗

20 , Y i∗
22(s), Z̆i∗

2 (s);p∗
i (s),p∗

zi(s)
)
, Z̆i∗

2 (tf ) (3.102)

d

ds
Zi∗(s) = Gi∗(s, Y i∗

00(s), Y i∗
01 (s), Y i∗

02 (s), Y i∗
10(s), Y i∗

11 (s), Y i∗
12 (s), Y i∗

20(s),

Y i∗
21 (s), Y i∗

22(s), Z̆i∗
0 (s), Z̆i∗

2 (s);p∗
i (s),p

∗
zi (s)

)
,

Zi∗(tf ) (3.103)

where the terminal-value conditions are defined by

Y i∗
00(tf ) � Q

f
i × 0 × · · · × 0 Y i∗

01 (tf ) � Q
f
i × 0 × · · · × 0

Y i∗
02(tf ) � 0 × 0 × · · · × 0 Y i∗

10 (tf ) � Q
f
i × 0 × · · · × 0

Y i∗
11(tf ) � Q

f
i × 0 × · · · × 0 Y i∗

12 (tf ) � 0 × 0 × · · · × 0

Y i∗
20(tf ) � 0 × 0 × · · · × 0 Y i∗

21 (tf ) � 0 × 0 × · · · × 0

Y i∗
22(tf ) � 0 × 0 × · · · × 0 Z̆i∗

0 (tf ) � 0 × 0 × · · · × 0

Z̆i∗
1 (tf ) � 0 × 0 × · · · × 0 Z̆i∗

2 (tf ) � 0 × 0 × · · · × 0

Zi∗(tf ) � 0 × 0 × · · · × 0

As pictorial illustrations, Fig. 3.8 shows how local interaction predictions be-
tween agent i and its neighbor agents as well as local perceptions of performance
risk associated with the Chi-squared performance random variable are integrated
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Fig. 3.8 Local control and
interaction coordination for
interconnected autonomous
systems

Fig. 3.9 Multi-level control
and coordination for
large-scale interconnected
systems

to yield a class of distributed feedback decision strategies. Such decentralized and
risk-averse decision laws shown in Fig. 3.8, are therefore robust and adaptable to
uncertain environments without reliance on intensive communication exchanges.
Consequently, these interconnected systems controlled by autonomous agent i for
i = 1, . . .N take active roles to mitigate performance variations caused by the un-
derlying stochastic disturbances via means of mixed random realizations and thus
the large-scale interconnected system is capable of shaping the performance distri-
bution and robustness whose multi-level control and coordination among intercon-
nected autonomous systems is illustrated in Fig. 3.9.

3.6 Conclusions

The chapter presents a new innovative solution concept to analytically address per-
formance robustness which is widely recognized as a pressing need in stochas-
tic control of large-scale interconnected systems. In the most basic framework of
performance-information analysis, a local performance-information system trans-
mits messages about higher-order characteristics of performance uncertainty to the
local decision maker for his use in future adaptive risk-averse decisions. The mes-
sages of performance-measure statistics transmitted are then influenced by the at-
tributes of decentralized decision settings and local decision makers. The risk of
a performance measure expressed as a linear combination of higher-order aspects
(beyond statistical averaging) of performance distribution in distributed control, not
only works as feedback information for future risk-averse decisions via local infor-
mation about the states of nature but also serves as an influence mechanism for the
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local decision maker’s current control behavior. This work contributes toward the
construction of a theory of performance robustness for stochastic control of a class
of large-scale systems in terms of both substantial results and research methodology.
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Chapter 4
A General Approach for Modules Identification
in Evolving Networks

Thang N. Dinh, Incheol Shin, Nhi K. Thai,
My T. Thai, and Taieb Znati

Summary Most complex networks exhibit a network modular property that is
nodes within a network module are more densely connected among each other
than with the rest of the network. Identifying network modules can help deeply
understand the structures and functions of a network as well as design a ro-
bust system with minimum costs. Although there are several algorithms identi-
fying the modules in literature, none can adaptively update modules in evolv-
ing networks without recomputing the modules from scratch. In this chapter,
we introduce a general approach to efficiently detect and trace the evolution
of modules in an evolving network. Our solution can identify the modules of
each network snapshot based on the modules of previous snapshots, thus dy-
namically updating these modules. Moreover, we also provide a network com-
pact representation which significantly reduces the size of the network, thereby
minimizing the running time of any existing algorithm on the modules identifica-
tion.
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4.1 Introduction

Network modules, also known as community structures in social networks, are
usually defined as groups of nodes densely connected inside and sparser between
groups. Modules in networks usually correspond to groups of nodes with the same
function in networks. In the case of World Wide Web, for example, modules are
groups of pages with a same topic. In biological networks, modules may be groups
of proteins, genes with same functions. Studying network modules becomes very
active and crucial in different scientific communities with an emerging of very large
and complex networks such as phone call networks in sociology, metabolic, protein-
protein-interaction, and gene-regulatory networks in biology, citation networks and
the power grid networks in physics, and communication networks and World Wide
Web in the technology field. Studying network modules is well-motivated as it is an
essential tool to study and understand the complexity of many natural and artificial
systems. It reveals the relationship between nodes in a same module as well as the
relationship between modules in networks. It also helps understand the interplay be-
tween network topology and functionality. Knowing the behavior of modules with
respect to the movements of nodes and links in evolving networks can directly help
predict the interdependent responses of network components and help to improve
the robustness of networks. Knowing the evolutionary of the structure provides the
basics construction/design topology we need to achieve so that it will be less sensi-
tive to the changes of structures.

Although the study of identifying network modules has been investigated exten-
sively [1–14], including the dynamics and evolution of a network in the analysis of
inherent modules is a new task that has not yet been well investigated. The study
of such evolution requires computing modules of the network at different time in-
stances. In previous approaches, [15–17] network modules are first identified sepa-
rately at each time point and then modular structures at two consecutive time points
are compared to each other in order to highlight evolution changes. However, iden-
tifying network modules in each state of the network from scratch may result in
prohibitive computational costs, particularly in the case of highly dynamic and ex-
tremely large networks, such as the online social networks MySpace and Facebook
with more than hundred millions of nodes. In addition, it may be infeasible in the
case of limited topological data. Moreover, identifying network modules of each
snapshot independently may lead to substantial and unexpected variation, thus in-
troducing incorrect evolution phenomena.

To overcome the above limitations, we propose a graph-based approach using
modular structure found in previous steps as a guide to incrementally identify mod-
ules in the next step. Adaptively updating modules in evolving networks not only
avoids recomputing them from scratch for each time point but also produces consis-
tent modular structures over time. For further reducing the running time and com-
putational cost, we provide a compact network representation with much smaller
size such that the modular structure of compact networks is as same as that of the
original networks. The modular information is embedded in this compact represen-
tation to allow detection of modules at next time point and modules’ evolving at the
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same time. Several experiments with real data sets show that our approach performs
extremely well, especially in term of the running time. In some cases, it can be 1000
times faster than that of computing the modules on each network snapshot.

The rest of the chapter is organized as follows. Section 4.2 presents the prelimi-
naries and the problem definition. In Sect. 4.3, we discuss the construction of com-
pact network representation together with detailed analytical results. Section 4.4
analyzes how network structure affected when elemental changes such as adding,
removing new nodes, links happen and presents an adaptively updating algorithm.
Section 4.5 shows the experimental evaluation. Finally, the Conclusion and future
work are discussed in Sect. 4.6.

4.2 Preliminaries and Problem Definition

4.2.1 Preliminaries

We study weighted undirected graph G = (V ,E) i.e., each link (u, v) ∈ E is asso-
ciated with a nonnegative number w(u,v). The weights on links take greater values
for node pairs that are closely related or similar in some way [18].

The weighted degree of a node v is defined as:

d(v) =
∑
u

w(u, v)

The volume of a subset S ⊆ V of nodes is defined as:

vol(S) =
∑
v∈S

d(v)

We recall that vol(V ) = 2m where m is the total weights of links in G. We denote
the total weight of links crossing two sets of nodes X,Y ∈ V by

Φ(X,Y ) =
∑

u∈X,v∈Y

w(u, v)

We note that vol(S) = Φ(S,V ). For simplicity, we also write Φ(X) instead of
Φ(X,X).

Recall that a modular structure, sometimes referred as partition, C = {C1,C2,

. . . ,Ck} is a division of network into disjoint sets of nodes Ci . To quantify the
strength of a partition, the most widely accepted quantitative measurement [19] is
called modularity Q which is defined as follows:

Q(C ) =
k∑

i=1

[
Φ(Ci)

2m
−

(
vol(Ci)

2m

)2]
(4.1)

If a node u belongs to the module Ci , we say it has the membership in Ci and
define the membership function mb(u) = i.
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Fig. 4.1 In an evolving
network, modules can split
into smaller modules when
connectivity inside modules
weakened, or they can also
merge together to form new
modules

4.2.2 Problem Definition

We study time dependent, weighted and undirected networks. All algorithms and
definitions can also be extended naturally for directed networks. In our network
model, new nodes and links are frequently added into or removed from the network.
See Fig. 4.1 for a pictorial representation. Assume that the network is G0(V 0,E0)

at time t0 and it evolves into Gi(V i,Ei) at time ti . Denote �V i the set of added
or removed nodes when the network evolves from Gi−1 to Gi i.e., the symmetric
difference V i � V i−1. Similarly, we denote �Ei = Ei � Ei−1 the set of added
or removed links when the network evolves from Gi−1 to Gi . Given the network
Gi−1(V i−1,Ei−1) at time ti−1 and the changes (�V i,�Ei) in the network between
ti−1 and ti , one can deduce Gi(V i,Ei) from the formulas V i = V i−1 � �V i and
Ei = Ei−1 � �Ei .

Problem Definition Given a network and its sequences of changes over time

G0(V 0,E0), (�V 1,�E1), . . . , (�Ei,�Ei
)
, . . .

Devise an online algorithm to efficiently

• Detect the modules in the network at everytime point without recomputing them
from scratch, i.e., adaptively update modules overtime.

• Trace the evolution of network modules (identify the relationship between mod-
ules at different time points).

4.3 Compact Representation of a Network

Given a network G = (V ,E) and its modular structure C = {C1,C2, . . . ,Ck} where
each disjoint subset of nodes Ci is called a module. Our goal is to construct a new
network with equivalent structure to G but contains a significant smaller number of
nodes and links. Such a network can be used in place of G to reduce the running
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time of identifying evolving modules and many existing modules identification al-
gorithms in the current literature.

One way to construct such a compression of the network is to replace every
module by a single node with a self-loop representing the connection inside the
module [20, 21]. However, this approach might not be suitable for a general purpose
as many modules identification algorithms will not work with the presence of self-
loops.

We are inspired by an observation in biological networks that two proteins with
identical set of neighbors belong to a same functional module. Hence, instead of
introducing self-loops, we replace each module Ci by two new nodes xi, yi that
share a same set of neighbors. The algorithm to construct the compact representa-
tion of G is presented in Algorithm 1. A link (xi, yi) with weight Φ(Ci)

2 is added
to represent the total weight of links inside module Ci , lines 8 and 9. The total
weights of links crossing modules Ci and Cj will be distributed equally to each link
(xi, xj ), (xi, yj ), (yi, xj ), (yi, yj ), lines 13 to 18. This weight assignment will help
preserve the modular structure. If a module contains only one single node, there
will be no links inside the module. We replace that module by a single node in the
compact representation to reduce the size of the compact representation as in line 6.

From the modularity optimization viewpoint, we will prove the structure equiv-
alence of the original network and its compact representation. When we refer to the
optimal partition, we mention the partition of network into modules that maximizes
the modularity value.

Algorithm 1 Compact representation of a network
1: Input: G(V,E), partition C = {C1,C2, . . . ,Ck}.
2: Output: Compact representation G′(V ′,E′).
3: Initialize G′(V ′,E′) ← (φ,φ)

4: for each module Ci in C do
5: if |Ci | = 1 then
6: Create a new module C ′

i = {xi} in the compact representation
7: else
8: Create a new module C ′

i = {xi, yi} in the compact representation

9: w(xi;yi) ← Φ(Ci )
2

10: end if
11: V ′ ← V ′ ∪ C′

i

12: end for
13: for all (u, v) ∈ E do
14: i ← mb(u), j ← mb(v)

15: ∀(x, y) ∈ C′
i × C′

j : w(x,y) ← Φ(Ci,Cj )

|C′
i ||C′

j |
16: end for
17: return G′(V ′,E′)
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4.3.1 Structure Preservation

Lemma 4.3.1 The contraction of G(V,E) into G′(V ′,E′) preserves the modularity
i.e. Q(C ′ = {C′

1,C
′
2, . . . ,C

′
k}) = Q(C ).

Proof From the Definition (4.1):

Q(C ′) =
∑

i

[
Φ(C′

i )

2m′ −
(

vol(C ′
i )

2m′

)2]
(4.2)

By the construction of G′:

Φ
(
C′

i

) =
{

Φ({xi}) = 0 = Φ(Ci) |Ci | < 2

Φ(xi, yi) = 2Φ(Ci)
2 = Φ(Ci) |Ci | ≥ 2

(4.3)

vol
(
C′

i

) = Φ
(
C ′

i

) +
∑
j 
=i

Φ
(
C′

i ,C
′
j

)

= Φ(Ci) +
∑
j 
=i

∑

u∈C ′
i
,v∈C′

j

w(u, v)

= Φ(Ci) +
∑
j 
=i

∣∣C ′
i

∣∣∣∣C ′
j

∣∣Φ(Ci,Cj )

|C′
i ||C ′

j |
= vol(Ci) (4.4)

m′ = 1

2

∑
i

vol
(
C ′

i

) = 1

2

∑
i

vol(Ci) = m (4.5)

From (4.2), (4.3), (4.4), and (4.5) it follows that Q(C ′) = Q(C ). �

Lemma 4.3.2 Let xi, yi ∈ C′
i obtained in construction of G′(V ′,E′) and C ∗ =

{C∗
1 ,C∗

2 , . . . ,C∗
k } be an arbitrary partition of G′ such that xi, yi belong to different

modules in C ∗. There exists a partition of G′ with modularity higher than Q(C ∗)
in which xi, yi belong to a same module.

Proof We show that either moving xi to the module contains yi or moving yi to the
module contains xi will result in increasing of modularity (Fig. 4.2).

We first calculate the change in modularity if we move a group of nodes S from
its module Ca ⊇ S to a new module Cb (Ca ∩ Cb = φ):

�QS
Ca,Cb

= 1

m

[
Φ(Cb,S) − Φ(Ca\S,S)

]

− 1

2m2
vol(S)

[
vol(Cb) − vol(Ca\S)

]
(4.6)
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Fig. 4.2 If two nodes xi , yi

are in different modules
Cx,Cy , we can increase the
overall modularity by either
moving xi to Cy or yi to Cx

We will also use this formula in later proofs.
Assume that xi ∈ Cx and yi ∈ Cy where Cx,Cy ∈ C ∗.
Moving xi from Cx to Cy : Using formula (4.6) with Ca = Cx , Cb = Cy , S = {xi}

we have:

�Q{xi }
Cx,Cy

= 2

[
Φ({xi}, { yi})

2m
− vol({xi})vol({yi})

4m2

]

+ 1

m

[
Φ

(
Cy\{yi}, {xi}

) − Φ
(
Cx\{xi}, {xi}

)]

− 1

2m2
vol

({xi}
)[

vol
(
Cy\{yi}

) − vol
(
Cx\{xi}

)]
(4.7)

We can similarly calculate the change in modularity moving yi from Cy to Cx .
Since xi and yi have same function in G′ i.e., ∀L ⊆ V \{xi, yi} → (Φ({xi},L) =
Φ({yi},L). We have:

�Q
{xi}
Cx,Cy

+ �Q
{yi }
Cy,Cx

= 4

[
Φ({xi}, { yi})

2m
− vol({xi})vol({yi})

4m2

]

= 2Φ({xi, yi})
2m

− vol2({xi, yi})
4m2

= 2Φ(Ci)

2m
− vol2(Ci)

4m2

>
Φ(Ci)

2m
− vol2(Ci)

4m2
> 0 (this follows Lemma 4.3.3) (4.8)

Hence, either �Q{xi }
Cx,Cy

> 0 or �Q
{yi }
Cy,Cx

> 0. �
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The only left part is to prove that modularity of each module is nonnegative i.e.,
for a module Ci in a network

Q(Ci) = Φ(Ci)

2m
−

(
vol(Ci)

2m

)2

≥ 0 (4.9)

The equality holds only when Ci contains only an isolated nodes or Ci = V (G).

Lemma 4.3.3 In the optimal partition of a network G(V,E), there is no module
with a negative modularity.

Proof Assume that there exists a module C in the optimal partition C ∗ =
{C∗

1 ,C∗
2 , . . . ,C∗

k } with Q(C) < 0. Denote N = {C ′| C′ ∈ C ∗,Φ(C,C ′) > 0} the
set of modules adjacent to C. Merging C with any modules in N will not increase
the modularity. Following (4.6), we have for all C∗

i ∈ N :

�QC
C,C′ = 1

m
Φ

(
C′,C

) − 1

2m2
vol

(
C′)vol(C) ≤ 0

Take the sum over all C′ ∈ N , we obtain:

∑
Ci∈N

1

m
Φ

(
C′,C

) −
∑

Ci∈N

1

2m2 vol(C)vol(Ci) ≤ 0

⇔ 1

m
Φ

( ⋃
C′∈N

(
C′,C

)) − 1

2m2
vol(C)vol

( ⋃
C′∈N

(
C′)

)
≤ 0

⇒ 1

m

(
vol(C) − Φ(C,C)

) − 1

2m2
vol(C)vol(V \C) ≤ 0

⇒ 2Q(C) ≥ 0

We obtain a contradiction. �

Theorem 4.3.1 If partition C maximizes the modularity in G(V,E), then C ′ =
{C′

1,C
′
2, . . . ,C

′
k} obtained in the construction of compact representation G′(V ′,E′)

using Algorithm 1 will be the partition with maximum modularity in G′.

Proof Let C ∗ = {C∗
1 ,C∗

2 , . . . ,C∗
t } be the partition with maximum modularity in G′.

We will prove that Q(C ∗) = Q(C ′). As shown in Lemma 4.3.2, if Ci = {xi, yi}
and xi ∈ C∗

j then yi ∈ C∗
j . Hence, we consider only partition of G′ in which xi, yi

are placed in a same module for all |C′
i | = 2. Thus, each C∗

j ∈ C ∗ can be decom-
posed into a union of modules in C ′. There exists a partition I = {I1, I2, . . . , It } of
{1,2, . . . , k} such that C∗

j = ⋃
i∈Ij

C ′
i , ∀j = 1 . . . t .

Construct a partition C ′′ = {C′′
1 ,C ′′

2 , . . . ,C′′
t } of G(V,E) corresponding to C ∗

of G′ by assigning C ′′
j = ⋃

i∈Ij
Ci, ∀j = 1 . . . t . Using similar proof showed in

Lemma 4.3.1, we can prove that Q(C ′′) = Q(C ∗).
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Since Q(C ′) = Q(C ) ≥ Q(C ′′) (Lemma 4.3.1) and Q(C ′′) = Q(C ∗) ≥
Q(C ′). We have Q(C ′) = Q(C ∗). �

4.3.2 Size of the Compact Representation

Worst Case Analysis In the worst case, the number of nodes in the compact rep-
resentation can reach to the number of nodes in the network. Each modules in the
network will have exactly two nodes.

Theorem 4.3.2 The size of a compact representation constructed by the Algorithm 1
is at most the size of its original network.

Proof The proof is based on the fact that each module is represented by two nodes
in the compact representation and each module in the network contains at least two
nodes.

Assume that there exists a module that contains only a single node. The modular-
ity of that module will be negative (unless the single node in the module is isolated,
but we remove isolated nodes from the network as the beginning as they have no
contribution to the modularity). We obtain the contradiction to Lemma 4.3.3.

In case the network has a module with a single node, we can always merge that
module to some neighbor module and obtain a new set of modules with higher
modularity. �

In our experiments, the actual size of the compact representation is far smaller
than the theoretical bound.

Social Networks The number of nodes in the compact representation is at most
the number of modules in the network. Hence, the average number of modules is
an upper bound for the average size of the compact representation. In some social
networks [11, 12, 22], the distribution of the module size s follows the power-law
form P(s) = c · s−α for some constant α ≈ 2 at least for a wide range of s. If the
network has n nodes, then the average number of modules k will be

k = n

s
= n × ∑n

s=2 c · s−α

∑n
s=2 c · s−α · s = n × ∑n

s=2 s−α

∑n
s=2 s1−α

(4.10)

where s is the average module size of the network.
When α = 2 the denominator in (4.10) can be approximated by lnn and the sum∑n
s=2 c · s−α in the numerator is bounded by a constant. Hence, the average size of

the compact representation is upper-bounded by O( n
logn

).
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Fig. 4.3 Small changes may affect network modular structure. (a) Removing inter-modules links
usually results in more separated modules. However, in this case removing yellow inter-modules
links make modules merged. (b) Adding intra-module links usually strengthen the module. How-
ever, in this case, adding 6 white links into the light blue module make it split into two

4.4 Partition Based on Evolution History

Assume that we have a network G = (V ,E) and its modular structure C =
{C1,C2, . . . ,Cl}. The connection inside a module is denser than connection be-
tween modules i.e., we should have more intra-module links than inter-modules
ones. Hence, intuitively adding intra-module links or removing inter-modules links
will make modules “stronger” and vice versa removing intra-module links or adding
inter-modules links will make the existing module structure less clear. In fact, re-
moving inter-modules links may cause merging of modules as shown in Fig. 4.3(a).
When two modules have less “distraction” caused by other modules, they become
more attractive to each other and can be combined as one. Other rare but pos-
sible events are splitting of the module when adding intra-links. Figure 4.3(b)
show an example in that adding 6 more white links make the module split into
two smaller ones. From the quantitative aspect, one can verify that adding an
intra-module link will not always increase the modularity of the module. Assume
that we have a module Ci that cannot be divided further in order to increase the
modularity. Among all possible bisections of Ci, consider {X,Y = Ci\X} that
X,Y are the most loosely connected e.g., X,Y are obtained through the sparsest
cut in the subgraph induced by Ci . In the case of new links crossing X and Y ,
they will enhance the local structure of Ci . Otherwise, adding new links that
both ends belong to X or Y will make the connection inside either subcompo-
nent X or Y stronger but weaken the structure of Ci , thus leading to the split-
ting of X and Y . Similar observations can be seen for adding and removing ver-
tices.

The behavior of splitting modules makes it extremely challenging to adaptively
update evolving modules, especially on the compact representation where each
module is represented by only two nodes. The modules splitting requires us to “un-
compact” the correcting modules. We will discuss our proposed solution in the next
section.
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4.4.1 Algorithm

The algorithm for Modules Identification in Evolving Networks (MIEN) is presented
in Algorithm 2. The presented algorithm is a general approach such that it allows the
use of any existing algorithm A on modules identification. The only requirement
for A is to work with weighted networks. This requirement is reasonable as most
existing modules identification algorithms have their weighted versions.

Assume that at time t , changes of the network are given by (�V t,�Et). Each
link (u, v) in �Et will affect the weights of links crossing some modules C ′

i ,C
′
j or

link that both ends lie in a same module C ′
i in the compact representation. Updating

the weight of corresponding links in the compact representation is easy as lines 8 to
15 in Algorithm 2.

However, the compact representation of a network may not reflect evolutionary
phenomena in its original network. We note that merging of two modules Ci and Cj

in the network G corresponds to the joining of C′
i and C ′

j in the compact represen-
tation of G. However, if a module is split or some of its member are leaving to join
in other modules,running module identification algorithm A only on the compact
representation will not be able to detect those changes. Hence, when the network
evolves, we will modify the compact representation based on the changes in such a
way that the new compact representation allows the module identification algorithm
to recognize the changing in memberships.

Note that the most sensitive nodes to changing membership are newly removed
or added nodes or the ones that are incident to recently added or removed links.
For each of those nodes, say node u, we ‘exclude’ it from its compact module Ci

where i = mb(u) and assign it to a new singleton module, say Ck . It is equivalent
to replacing the module C′

i in the compact representation by two compact modules
C′

i and C′
k . Figure 4.4 shows an example of excluding a node from its module.

At the beginning, the module contains 5 nodes and 10 links of unit weight. The
corresponding module in the compact representation has two nodes connecting by
a link of weight 10. After the network evolves, the node marked with star has some
new incident links and is excluded from its module. The module at the beginning
now contains only 4 nodes and the link weights in the compact representation are
redistributed as shown in the figure.

The sketch of the algorithm is as follows. At the very beginning, we obtain the
modular structure of the network G(V,E) using algorithm A , lines 3 to 4. The com-
pact representation G′(V ′,E′) of G is then constructed using Algorithm 1. From
now on, all operations will be performed on G′ to reduce the computational cost
and time complexity.

For each time point t , we update the compact representation according to the
given change (�V t ,�Et) as in lines 8 to 26. We handle with four separate type
of changes: set of old nodes removed (V t−1 ∩ �V t ), set of new nodes coming
(�V t\V t−1), set of old links removed (Et−1 ∩ �Et ) and set of new links com-
ing (�Et\Et−1).

The set of nodes that are removed at time t is given by V t−1 ∩ �V t . In lines 8
to 13, we remove those nodes from their modules. Whenever their modules contain
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Algorithm 2 MIEN—Modules Identification in Evolving Networks

1: Input: G0(V 0,E0), (�V 1,�E1), . . . , (�V s,�Es)

2: Output: Partitions C 1,C 2, . . . ,C s and ‘parents’ of each module.
3: Find the partition C 0 using the selected algorithm A .
4: C = C 0 ← A (G0) = {C1,C2, . . . ,Cl0}
5: G′(V ′,E′) ← Compact representation of (G0,C 0) using Algorithm 1.
6: for t ← 1 to s do
7: C ′ ← Partition of the compact representation G′ corresponding to C (as in

Algorithm 1).
8: for all u ∈ V t−1 ∩ �V t do
9: Remove u from C : Cmb(u) = Cmb(u) − {u}

10: if |Cmb(u)| = 1 then
11: Remove ymb(u) from C′

mb(u) and double link weights of links coming
from xmb(u)

12: end if
13: end for
14: for all u ∈ �V t\V t−1 do
15: Create a new module Ct−1

mb(u) = {u} in G

16: Create a new module C ′
mb(u) = {xmb(u)} in G′

17: end for
18: for all (u, v) ∈ �Et do

19: �u,v =
{

+w(u,v) (u, v) ∈ �Et\Et−1

−w(u,v) (u, v) ∈ Et−1\�Et

20: i ← mb(u), j ← mb(v)

21: if i 
= j then
22: ∀(u′, v′) ∈ C′

i × C ′
j : w(u′, v′) = w(u′, v′) + �u,v

|C ′
i
||C′

j
|

23: else
24: w(xi, yi) = w(xi, yi) + �u,v

25: end if
26: end for
27: Run algorithm A on the updated compact representation: C ← A (G′) =

{C ′
1,C

′
2, . . . ,C

′
lt
}

28: Refine the module structure C in G′ following Lemmas 4.3.2, 4.3.3.
29: Reconstruct partition C = {Ct

1,C
t
2, . . . ,C

t
lt
} from C.

30: C t ← C
31: for i ← 1 to lt do
32: parents(Ct

i ) ← {Ct−1
j |xj , yj ∈ C′

i}
33: end for
34: G′(V ′,E′) ← Compact representation of (G′,C)

35: end for
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Fig. 4.4 Excluding a node
from its module. Links’
weights are also updated
accordingly

only one node we simplify the corresponding module in the compact representation.
Lines 14 to 17 handle new coming nodes at time t that are given by �V t\V t−1. For
each new node, we create a new module contain only that node and a corresponding
module in the compact representation. We update removing links and adding links
in lines 18 to 26 in which we distinguish two cases: links crossing two modules
(lines 21 to 22) and links resting completely in one module (lines 23 to 25).

After the changes in links and nodes are fully incorporated into the compact rep-
resentation, we run the algorithm A again on the compact representation G′(V ′,E′)
to obtain the module structure in G′. To enable transforming back the modular struc-
ture in G′ to the modular structure in the network Gt(V t ,Et ), we refine the modular
structure C in G′ following Lemma 4.3.2 i.e., if the module Ct−1

i in V t−1 is rep-
resented by two nodes xi, yi in the compact representation and xi and yi be placed
in different modules in G′ we will move them to a same module (and increase the
modularity). We can also merge every module with negative modularity or module
with only a singleton node to one of its neighbor module to increase the modularity
as in Lemma 4.3.3 and the proof of Theorem 4.3.2.

Finally, we use the refined modular structure in G′(V ′,E′) to obtain the modular
structure in Gt(V t .Et ). It can be done easily by merging modules in the network.
For example, if xi and xj are identified to be in a same module in the compact rep-
resentation, then we merge corresponding modules Ct−1

i and Ct−1
j in the network

together and claim that the new module is originated from Ct−1
i and Ct−1

j as in lines
31 to 33.

4.4.2 Complexity

Time to construct the compact representation of a network G(V,E) using Algo-
rithm 1 is O(|V | + |E|). We iterate through each link exactly once.

Time complexity of Algorithm 2 depends on the selection of the algorithm A and
the size of the compact network representation. In the compact representation, the
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number of nodes is no more than twice the number of modules in the original net-
work that is relative small to the number of nodes in the original network. Updating
the compact representation can introduce at most O(vol(VC)) new nodes and links
into the compact representation. Hence, we only need to run the algorithm A on a
compact network that size is proportional to the amount of changes |�V t | + |�Et |
instead of running A on the complete network Gt(V t ,Et ).

For very large networks such as World Wide Web, the changing part is much
smaller than the scale of whole network. Hence, our online algorithm works much
faster than running algorithm A on individual snapshots. For dynamic biological
networks that the structures evolve rapidly, our algorithm can be applied to recom-
pute the structures whenever changes happen.

In the worst case, when all nodes are excluded from their modules i.e., VC = V t

the compact representation will be exactly the original network and the running
time is equal to the running time without using the compact representation plus
the overhead O(|V t | + |Et |) for updating the compact representation. Hence, if the
network changes too much since the last time point, our online algorithm will show
no advantages compared to using algorithm A directly. In this case, what we can
do is to divide the long evolving duration into smaller ones. Note that we should
not divide the duration into too small intervals due to the overhead of updating the
compact representation and running algorithm A . Or we can simply reconstruct the
compact representation at that time point and continue the updating process.

4.5 Experimental Evaluation

We test the performance of our approach with CNM algorithm [12] that is capable
of identifying modules in networks of millions nodes. We show that our approach
is faster in significant magnitude in the case of identifying modules in evolving
networks.

We perform extensive experiments on different types of networks. We present
here results for the Terrorist network, ENRON email network [23], and the citation
network of arXiv e-print provided in the KDD Cup 2003 [24]. Time information are
extracted in different ways for each network. In the terrorist network, the network
topology after and before September 11 are directly given. In the email network, a
link between the sender and the receiver is timed to the point the email sent. Based
on timing information, we construct two snapshots of the email network at two time
points; the later is one week after the former. Two snapshots have approximately
10K links. Two snapshots of the citation networks are also constructed in a same
way. Each snapshot includes around 30K nodes and 300K links.

For each data set, modules in the first snapshot of the network are identified using
CNM algorithm [12]. Then we run our approach on the second snapshot using the
information about the modules identified by CNM. To demonstrate the effectiveness
of our approach, we compare it with the results obtained by running CNM directly
on the second snapshot.
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Fig. 4.5 The growth of the terrorist network. Nodes with same color belong to the same module.
The modular structure returned by the MIEN algorithm is only different with the result using CNM
algorithm at place of one node (Nawaf Alhazmi)

We observe that the modules identified by our approach in the second snapshots
show high similarity in the structure with the results of running CNM directly, mean-
while the computation cost is significantly reduced as the size of compact repre-
sentation is much smaller than that of the original network. Figure 4.5 shows the
modules in terrorist networks. CNM detects 4 modules in the terrorist network be-
fore September 11 and 5 modules after September 11. Our approach also returns 5
modules for the network after September 11, different from the CNM in place of
only one node. Note that our partition has a slightly higher modularity, 0.408 com-
paring to 0.407 of CNM’s. We present the modularity and running time achieved by
CNM in comparison to our approach in Table 4.1. The difference in modularity is
small suggesting our approach results are consistent with the results of the selected
algorithm A , CNM in our experiments. However, our approach shows considerable
advantage in term of running time. For example, our approach is more than 1000
times faster in the citation network. We further perform an intensive experiment on
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Table 4.1 Performance of
our approach comparing to
CNM

CNM MIEN

Q Time Q Time

Terrorist network 0.407 <1 ms 0.408 <1 ms

ENRON email 0.568 50 ms 0.555 2 ms

ArXiv citation 0.617 105 s 0.615 5 ms

Fig. 4.6 Modules Identification of the Citation Network Through Time. Module structure of the
network is identified everymonth between Jan. 1997 and Jan. 2003 using CNM and MIEN al-
gorithms. The quantitative measurement modularity, running time, and size of the network are
measured at every time point

the Arxiv citation network. We identify modules in the citation network every month
in the duration between Jan. 1997 and Jan. 2003. The number of nodes and links in
the network are shown in the Figs. 4.6(a) and 4.6(b). The size of network increase
linearly and the number of links steps up slightly faster. The compact representation
shows its advantages with substantial reduction in size. The modularity and running
time at each time point is presented in Figs. 4.6(c) and 4.6(d). The running time
of the CNM algorithm increase almost linearly in term of the size of the network
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that conforms to the known average O(n log2 n) complexity of CNM. Because of
running on the small size compact representation, the MIEN algorithm is dramati-
cally faster as shown in Fig. 4.6(d). The graph for the modularity (Fig. 4.6(c)) is a
rough line that shows the significant changes in memberships at each time point. The
CNM produces inconsistent partition between consecutive time points. Only small
changes in the network can result in large changes in assigning nodes to modules.
On the other hand, the MIEN algorithm results in a smoother graph showing the
stability of module detection algorithm. Moreover, predicting the trend of module
structure in the network is also easier with MIEN algorithm than with the unstable
CNM.

4.6 Conclusions

In this chapter, we have analyzed the evolving of modules in networks and proposed
a general approach for adaptively updating modules in evolving networks. We show
that using modules information of the network at a given time can help ‘predicting’
effectively the modules of network later. Our algorithm is especially designed for
very large networks such as the World Wide Web in that the proportion of changes
is relatively small to the scale of the network. The approach shows enormous im-
provement in terms of running time compared to one of the fastest module identifi-
cation method, CNM, and promises tremendous applications as it can be integrated
to many different modules identification algorithms. Still the approach needs to be
further explored as it is limited to nonoverlapping modules. Our future work is to
find a more flexible and efficient representation of networks based on their modular
structures.
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Chapter 5
Topology Information Control in Feedback
Based Reconfiguration Processes

Alexandru Murgu, Ian Postlethwaite, Dawei Gu,
and Chris Edwards

Summary In this paper, we describe an information control and coding framework
devoted to reconfiguration processes based on a modified perspective on the Shan-
non information where the information flows are regarded as network commodities.
This interpretation is suitable for independent multipoint-to-multipoint channels in
group communication, such as the multiple-access or broadcast channels, and al-
lows the flow control class of techniques to implement the information coding by
invoking the multi-layered protocol stack. Iterative parametric dynamic program-
ming is a good modeling candidate for describing the reconfiguration process as
multi-objective relational optimization in a multilevel fashion. At the lower process-
ing level, an auxiliary weighted power Lagrangian problem is solved using dynamic
programming associated to the topology control. The upper processing level adjusts
the value of the weighting vector in a weighted power Lagrangian formulation which
is responsible for the information control monitoring. The low level solution process
is repeated until the optimal solution of the nonseparable optimization problem is
attained by the optimal solution of an auxiliary weighted power Lagrangian prob-
lem. The application of this information control framework is to the management
traffic in self-healing networks of UAV surveillance missions.

5.1 Introduction and Motivation

One of the features of the new information organizational forms that is of great inter-
est to the military establishment is to increase the ability to adapt to a dynamic envi-
ronment through networked and/or distributed information processing technologies.
Command and control of autonomous unmanned aerial vehicles (UAVs) by remote
supervision over ad-hoc networks is a demonstrated technology, including the two-
way communication of commands to the aircraft fleets and telemetry data to the
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headquartered supervisors [1]. The important aspect is that the network is not con-
figured in advance, but the ad-hoc networking protocols self-organize in response
to the dynamic environment, aircraft motion, and changing network demands. The
traffic transport allows the mobile nodes to store and carry delay-tolerant data be-
tween nodes in the network. This concept enables communication in stressed or
highly dynamic networks that otherwise would not be possible and, in some cases,
can improve the network performance over relaying or direct communication. De-
centralized adaptive model free control strategies can mitigate the interference and
uncertainty effects that cannot be predicted in advance. Multivariable extremum
seeking control is applied to the problem of UAV motion control in a communica-
tion field, and such an approach can lead to improvements of communication ability
over position-based policies [2]. Networked communication demands of UAVs are
large compared to manned aircraft since telemetry, command and control, health and
safety, and payload/mission management data must be sent from multiple UAVs to
other UAVs in the vicinity. Other communication needs are related to detecting,
sensing, and obstacle avoidance requirements. This may require onboard radar (ac-
tive sensing), backhauling of image data (passive sensing), transponders, or cooper-
ative sharing of information between UAVs. Amongst the networking technologies,
meshing is a networking architecture where each node (e.g., a radio on a UAV or
coordination center) can act as a relay to forward data. Communication between a
UAV and a supervisor can take place over several hops through intermediate nodes.
The shorter range simplifies the link requirements, and the bandwidth can be reused
more frequently and thus more efficiently. UAV-to-UAV communication can be di-
rect and also benefit from the mesh routing protocols that employ additional relays
as needed to maintain communication. However, such meshing requires intermedi-
ate nodes to be present for such relaying to take place. Nodes may be required to
move specifically in order to support communication.

Reconfiguration of the UAVs working in networked environments is primarily
seen as an operational planning framework concerning the optimal functional or-
ganization and deployment of the UAVs in the battlefield during ongoing missions
in the presence of subsystem failures, battle-damage or changes of asset function-
ality as a result of multi-standard cooperative tasks [3]. The defining attribute of
the networked operational framework is concerned with the control of dynamics of
the leaving/joining entities in the network and the information processing related
to failure localization and isolation in the network. Related features such as quality
of service (QoS), resilience, control of distributed interactions, resource allocation
and location based control are the basic artifacts that characterize the operational
means by which the mission success can be guaranteed. Increasing demand for the
overall system safety and reliability calls for integrating the fault detection and iso-
lation (FDI) and fault-tolerant control (FTC) methods at the very early stages of
control design. Typically, FDI involves checking the consistency of interactions and
measurements from the real-time system operation. With FTC, the problem is con-
trolling to the maximum extent possible, the interactions and operation of the system
in the presence of faults.

The paper is organized as follows. In Sect. 5.2, we discuss the group communica-
tion paradigm for realizing the FDI/FTC system functionality based on a modified
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perspective on the Shannon information where the information flows are regarded as
network commodities. Section 5.3 is devoted to the formal statement of the recon-
figuration process as a optimization problem. A feedback information control loop
is formulated via dynamic programming as multi-objective relational optimization.
In Sect. 5.4, the topology information control solution is presented and qualitative
results are discussed. Finally, in Sect. 5.5, we draw conclusions of this research work
and discuss some perspectives on the potential future work.

5.2 Group Communication Networking

With the growth of complexity and functional extent, the network management op-
erations are steadily becoming autonomous, scalable, interoperable and adaptable
to increasingly dynamic and distributed network demands. The emergence of dis-
tributed computing environments is a major shift in designing the Operations Sup-
port System (OSS) for current services. Packet switched networks use the spanning
tree protocol (IEEE 802.1d) for routing data packets in the network. Spanning Tree
Protocol (STP) is standardized in IEEE 802.1d and it is a Layer 2 protocol that can
be implemented in switches and bridges. STP essentially uses a shortest-path ap-
proach in forming a tree that is overlaid on top of the mesh engineered networks.
Spanning trees are used primarily to avoid the formation of cycles or loops in the
network. For example, unlike IP packets, the Ethernet frames do not have a time-to-
live field and the STP prevents the formation of loops in the network by blocking
the redundant links. Correspondingly, the load is concentrated on a single link which
leaves it at risk of failures and with no load balancing mechanism [4]. The root of the
information distribution tree is chosen based on the bridge priority, and the path cost
to the root is propagated throughout so that each switch can determine the state of its
ports. Only the ports that are in the forwarding state can forward incoming frames.
This ensures a shortest single path to the root. Whenever there is a change in the
connectivity topology, switches rerun the protocol that can take 30 to 60 seconds.
At any one time, only one spanning tree dictates the network [5]. These shortcom-
ings are listed as follows: (1) Spanning trees restrict the number of ports being used
(in high-capacity networks, this restriction translates to a very low utilization of the
network); (2) STP has reduced resiliency and a very high self-healing time (30 to 60
seconds) after a link failure; (3) STP does not have any mechanisms to balance the
traffic load across the network; (4) STP does not support directly the quality of ser-
vice (QoS) mechanisms. An improvement of STP is the Rapid Spanning Tree Proto-
col (RSTP) specified in IEEE 802.1w [6, 7]. RSTP is designed to reduce the number
of port states from five in STP to three: discarding, learning, and forwarding are the
fundamental options for connectivity enhancement. Through faster aging time and
rapid transition to forwarding state, RSTP is able to reduce the convergence time
depending on the network topology. Additionally, the topology change notification
is propagated throughout the network simultaneously, unlike STP, in which a node
first notifies the root and then the root broadcasts the changes. Similar to STP, there
is only one spanning tree over the whole network. RSTP still blocks the redundant
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links to ensure loop free paths leaving the network underutilized, vulnerable to fail-
ures, and with no load balancing facility. Multiple Spanning Tree Protocol (MSTP)
is defined in IEEE 802.1 [7]. MSTP uses a common spanning tree that connects all
of the regions in the topology. The regions in MSTP are multiple instances of the
spanning tree. Each instance is an instance of the RSTP. An instance of RSTP gov-
erns a region, where each region has its own regional root. The regional roots are in
turn connected to the common root that belongs to the common spanning tree. Since
MSTP runs a pure RSTP as the underlying protocol, it inherits some drawbacks of
RSTP as well. However, a failure in MSTP can be isolated into a separate region
leaving the traffic flows in other regions untouched. In addition, the administrators
can perform light load balancing manually by assigning certain flows to a specific
spanning tree. The primary motivation of this study is to allow the information al-
location flexibility of using more than one spanning tree while a flow is on its way
to the destination and describe a mathematical framework for modeling the con-
nectivity reconfiguration information to be broadcast around the faulty region of the
network. In order to avoid the formation of cycles in the network, certain restrictions
are imposed. The basic idea is to identify multiple spanning trees for management
information distribution and to index these trees sequentially in an ordered list. Typ-
ically, the Virtual Local Area Network (VLAN) identification numbers can be used
as sequences for the spanning trees. Frames of a flow start using one spanning tree
and can be switched over to the next spanning trees. None of the other variants of
spanning tree allow this flexibility in the information sequencing. This procedure
can be repeated until the cooperation information reaches the spanning tree which
has the highest identifier in the sequence, as seen in Fig. 5.1. At no point in time is
an information frame allowed to change from a spanning tree with a higher identifier
to a spanning tree with a lower identifier. A flow is switched, or crossed-over, from
one spanning tree to another spanning tree whenever one of the following events
occurs: (1) link failure; (2) load imbalance.

The main issue with the Spanning Tree Protocol for topology information distri-
bution used in a Local Area Network (LAN) is the potential conflict with the infor-
mation SPT. As shown in Fig. 5.2, suppose that the information flow dashed circuit
has two physical connections to provide redundancy in the event of a connection
or network failure. This creates the possibility of two physical loops due to the two
physical connections. The IEEE 802.1d Spanning Tree Protocols solution to heal the
problem of loops is to allow only one path by blocking and separating the redun-
dant paths [8]. Consequently, we are concerned with the modeling of a distributed
topology information control management system and the corresponding control

Fig. 5.1 UAV formation
involving three cooperating
layers
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Fig. 5.2 Physical loops of
information management

Fig. 5.3 Shannon model of point-to-point communication

processes among the cooperative network elements regarded as agents broadcasting
periodical signals to enable the network connectivity information propagation.

Let us consider a group communication network represented by a directed graph
G = (V ,E), where the set of nodes is V = {v0, v1, . . . , vM} and E ⊆ V × V is the
set of edges. For the edge (vi, vj ) ∈ E, node i can send messages to node j over a
discrete time memoryless channel represented as a triple (X̃ij ,pij (y|x), Ỹij ) having
the capacity Cij = maxpij (x) I (Xij ;Yij ). In the channel notation, X̃ij denotes the

transmitted control symbol, Ỹij represents the received control symbol, and pij (y|x)

is the transmission error conditional probability. Also, I (Xij ;Yij ) is the information
function of the transmission channel (Fig. 5.3) [9]. At the node vi ∈ V , a random
variable Ui , i = 0,1, . . . ,M , is observed and drawn from a known joint probability
distribution p(U0,U1, . . . ,UM). Node v0 represents the decoder and its goal is to
process the received information such that [U1, . . . ,UM ] can be reliably reproduced
at the node v0. The time is discrete and every N time steps, the node vi collects
a block UN

i of control symbols. The set of all blocks [UN
0 (k),UN

1 (k), . . . ,UN
M(k)]

collected at time kN , k ≥ 1, is called the control snapshot. Then, node vi sends a
control signal XN

ij to node vj related to a connectivity request. This control signal

depends on a window of K previous blocks of control sequences UN
i observed at

node vi and of T previously received blocks of channel outputs, corresponding to
noisy versions of the control signals sent by all nodes to the node vi in the previous
T signaling steps (corresponding to NT time steps).
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For a block of snapshots observed at time kN , at time (k + W)N , an attempt
is made to decode at v0. During the time a block of snapshots spends within the
network, arbitrarily complex coding operations are allowed, that is, nodes can ex-
change information, redistribute their load and perform joint source-channel coding
operations [10]. The only constraint imposed is that all the control information even-
tually be delivered to the destination in finite time. The decoder tries to produce an
estimate of the block of snapshots [UN

0 (k),UN
1 (k), . . . ,UN

M(k)] based on the local
observations UN

0 (k) and the previous W blocks of N channel outputs generated
by control signals sent to v0 by the other nodes. The topology information for this
network consists of:

• Parameters N , K , T and W

• Encoding functions at each node

gij :
K⊗

l=1

ŨN
i

T⊗
t=1

M⊗
m=0

Ỹ N
mi → X̃N

ij , 0 ≤ i, j ≤ M (5.1)

• Decoding function at node v0:

h : ŨN
0 ×

W⊗
w=1

M⊗
m=1

Ỹ N
m0 →

M⊗
m=1

ŨN
m (5.2)

• Block error probability:

P (N)
e = Pr

{[
UN

1 , . . . ,UN
M

] �= [
ÛN

1 , . . . , ÛN
M

]}
(5.3)

The blocks of snapshots [UN
1 , . . . ,UN

M ] can be reliably communicated to v0 if there
exists a sequence of control signals as presented above, which determines that
P

(N)
e → 0 as N → ∞, for some finite values K , T and W independent of N [11].

Proposition 1 Let S denote a nonempty subset of node indices that does not contain
node 0, S ⊆ {0,1, . . . ,M}, 0 ∈ Sc. Then, it is possible to communicate [U1, . . . ,UM ]
reliably to v0 if and only if, for all S as above,

H(US |USc) <
∑

i∈S,j∈Sc

Cij (5.4)

where H(US |USc) is the set cross-entropy function [10].

Proof We regard the network as a pipeline, in which “packets” (i.e., blocks of N

control symbols injected by each source) take NW units of time to flow and each
network element gets to inject L packets total. The interest is in the behavior of this
pipeline in the regime of large L. For any fixed L, the probability of at least one of
the L blocks being decoded in error is

P (LN)
e = 1 − (

1 − P (N)
e

)L (5.5)
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From the existence of a control signal with low block probability of error, we can
infer the existence of control signal s for which the probability of error for the entire
pipeline is low as well, by considering a large enough block length N . If there is a
suitable code as defined in the problem statement, then we must have

H
(
ULN

1 ,ULN
2 , . . . ,ULN

M |ÛLN
1 , ÛLN

2 , . . . , ÛLN
M

)

≤ P (LN)
e log

(∣∣ŨLN
1 × ŨLN

2 × · · · × ŨLN
M

∣∣) + h
(
P (LN)

e

)
(5.6)

where h(·) is the binary entropy function [10], and ÛLN
i = [ÛN

i (1), ÛN
i (2), . . . ,

ÛN
i (L)] denotes L blocks of N snapshots reconstructed at v0. We also define

δ
(
P (LN)

e

) = 1

LN

[
P (LN)

e log
(∣∣ULN

1 × ULN
2 × · · · × ULN

M

∣∣) + h
(
P (LN)

e

)]
(5.7)

It follows that

H
(
ULN

1 ,ULN
2 , . . . ,ULN

M |ULN
0 , Y BN

10 , YBN
20 , . . . , Y BN

M0

) ≤ LNδ
(
P (LN)

e

)
(5.8)

where YBN
ij = [YN

ij (1), Y N
ij (2), . . . , YN

ij (B)] are B = W + (L−1) blocks of N chan-
nel outputs observed by node vj while communicating with node vi . From the chain
rule for entropy and the fact that the conditioning does not increase the entropy, for
any S ⊆ {0, . . . ,M}, 0 /∈ S, it follows that

H
(
ULN

S |ULN
Sc , YBN

S→Sc , Y
BN
Sc→Sc

) ≤ H
(
ULN

S |ULN
Sc , YBN

S→0, Y
BN
Sc\{0}→0

)

≤ LNδ
(
P (LN)

e

)
(5.9)

H
(
ULN

S

) ≤ I
(
ULN

S ;ULN
Sc

) +
∑

i∈S,j∈Sc

BNCij

+ LNδ
(
P (LN)

e

)
(5.10)

Using the fact that the sources are independent, then (5.10) can be rewritten as

H(US |USc) ≤ B

L

∑
i∈S,j∈Sc

Cij + δ
(
P (LN)

e

) ≤ W + L − 1

L

∑
i∈S,j∈Sc

Cij + δ
(
P (LN)

e

)

(5.11)
We observe that this inequality holds for all finite values of L, so it must also be the
case that

H(US |USc) < inf
L

W + L − 1

L

∑
i∈S,j∈Sc

Cij + δ
(
P (LN)

e

) =
∑

i∈S,j∈Sc

Cij + δ
(
P (LN)

e

)

(5.12)
Since δ(P

(LN)
e ) → 0 as P

(N)
e → 0, then (5.4) holds. �

Adaptive decentralized mobility control algorithms can mitigate the noise and
networking environment uncertainties. Using these algorithms, relay nodes in a lin-
ear chain can be moved to locations that improve the overall throughput capacity of
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the network. This concept can also be extended to more general network configura-
tions. Likewise, the concept of data transport allows mobile nodes to store and carry
delay tolerant data between nodes in the network. This concept mitigates the de-
creased connectivity in stressed or fractured networks, enabling communication that
otherwise would not be possible. Quality of service demands can be mapped into a
phase space that indicates what mobility methods are needed to achieve a given de-
mand. Distributed control model is well suited for partial dynamic reconfiguration,
since it enforces a systematic way to deal with state, execution of operations and
information encapsulation. Reconfiguration can be provided as yet another service
of the middleware. The main objective is to provide an extra degree of transparency
(reconfiguration transparency) which has two implications: (1) reconfigurable ob-
jects will offer exactly the same interface as their static counterparts, thus will make
such capability transparent to the network operations; (2) reconfiguration manage-
ment (creation, destruction and control object persistence) will be performed auto-
matically (implicitly), although that will not prevent from having a higher degree
of control (explicit management). The important issue of dynamic reconfiguration
is state consistency. It may be of interest to keep state information of network con-
figurations, so it can be recovered at a later instantiation of the same environment
conditions, or even to be migrated to a software task.

5.3 Reconfiguration Process Optimization

5.3.1 Topology Information Model

Let ϕ(vi, vj ) be a feasible flow in such network, with M sources v1, . . . , vM , supply
Ri at source vi , and a single coordination node v0. If there is a feasible flow ϕ, then
this uniquely determines at each node vi the number of bits that need to be sent to
each of its neighbors. The topology information model is defined as follows:

• Consider the directed acyclic graph G′ of G induced by ϕ, by taking V (G′) =
V (G), and E(G′) = {(vi, vj ) ∈ E : ϕ(vi, vj ) > 0}. Let us define a permutation
π : {0,1, . . . ,M} → {0,1, . . . ,M}, such that [vπ(0), vπ(1), . . . , vπ(M)] is a topo-
logical sort of the nodes in G.

• For a block of snapshots U(k) = [UN
0 (k),UN

1 (k), . . . ,UN
M(k)] captured at time

kN, at time (k+ l)N , l = 0,1, . . . ,M , the node vπ(l) receives all bits with portions
of the encodings of U(k) generated by the nodes upstream in the topological
order. Together with its own encoding of UN

π(l)(k), all the bits for U(k) up to
and including node vπ(l) will be available there, and thus can be routed to nodes
downstream in the topological order.

• Consider all edges of the form (vπ(k), v
′) for which ϕ(vπ(k), v

′) > 0.

1. Collect m = ∑
v′ ϕ(v′, vπ(k)) information sent by the upstream nodes v′.

2. Consider now the set of all downstream nodes v′′, for which ϕ(vπ(k), v
′′) > 0.
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3. Due to flow conservation constraints, we have
∑
v′′

ϕ
(
vπ(k), v

′′) = m + Rπ(k) (5.13)

where Rπ(k) is the rate allocated to node vπ(k).

4. For each v′′ as above, define g
(k)

π(k)v′′ to be a message such that |g(k)

π(k)v′′ | =
ϕ(vπ(k), v

′). Partition the m + Rπ(k) according to the values of ϕ and send
them downstream.

• To decode at time (k +M)N , node v0 reassembles the set of bin indices out of the
noisy control signals received in the last M time steps (one from each neighbor)
and then performs typical set decoding to recover the delivered block of snapshots
[UN

1 (k), . . . ,UN
M(k)].

• Concerning the network flows, if the flow ϕ is feasible in a network G, then for
all S ⊆ {0,1, . . . ,M}, 0 ∈ Sc, we have

∑
i∈S

Ri =
∑

i∈S,j∈V

ϕ(vi, vj ) =
∑

i∈S,j∈Sc

ϕ(vi, vj ) ≤
∑

i∈S,j∈Sc

Cij (5.14)

where facts such as flow conservation property of a feasible flow (the flow in-
jected by the sources has to go somewhere in the network, and in particular all
of it has to go across a network cut with the destination on the other side) and
the fact that in any flow network, the capacity of any cut is an upper bound to the
value of any flow, are used. If for all partitions S as above, we have

H(US |USc) <
∑

i∈S,j∈Sc

Cij (5.15)

then

P (N)
e → 0, as N → ∞ (5.16)

Several topologies can be considered to realize the control information propaga-
tion, but the multistage interconnection topologies (Fig. 5.4) offer several model-
ing and implementation advantages [12]. In such topologies, the natural question is
the information control flow optimization, that is, given a nonempty set R̃ for the
feasible rates, choose among the multiple assignments of flow variables and find if
there is an optimal flow and the corresponding optimized topology. State persistence
refers to the state transitions to and from any kind of topological arrangement, so it
can be later restored or even migrated. This concept is better suited to the topology
information model, since state is explicitly defined.

Define the cost function

J (ϕ) =
∑

(vi ,vj )∈E

c(vi, vj ) · ϕ(vi, vj ) (5.17)

where c(vi, vj ) is a constant which when multiplied by the number of blocks
ϕ(vi, vj ) that a flow ϕ assigns to an edge (vi, vj ) determines the cost of sending
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Fig. 5.4 Multi-layer flow network

the information over the channel. The resulting optimization problem can be formu-
lated as follows

min
∑

(vi ,vj )∈E

c(vi, vj ) · ϕ(vi, vj ) (5.18)

subject to:

• Flow constraints (capacity/flow conservation):

ϕ(vi, vj ) ≤ Cij , 0 ≤ i, j ≤ M (5.19)

ϕ(vi, vj ) = −ϕ(vj , vi), 0 ≤ i, j ≤ M (5.20)
∑
v∈V

ϕ(vi, v) = 0, 1 ≤ i ≤ M (5.21)

• Rate admissibility constraints:

H(US |USc) <
∑
i∈S

ϕ(s, vi) ≤
∑

i∈S,j∈Sc

Cij (5.22)

S ⊆ {0,1, . . . ,M}, 0 /∈ S (5.23)

ϕ(s, vi) = Ri, 1 ≤ i ≤ M (5.24)

Dynamically controlled network elements do not differ from static ones from
the functional point of view. Both expose exactly the same functional interface to
the network signalling system. The main difference lies in the way the element is
created and destroyed, as well as how its networking persistence is managed. Con-
sidering these two aspects, the first one only affects to reconfigurable adapters, while
the second has also some implications on the element itself, since it must be able to
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import and export its internal state. The signalling core of a dynamically reconfig-
urable network element includes extra logic for controlling the execution state of the
element. A previous step for the eviction of the element from the reconfigurable area
will be to issue a stop request. This will disable the reception of incoming method
invocations, and wait for the completion of the pending ones, and thus guarantee
state coherence. On the other side, after the instantiation of a new object (creation)
an explicit start request will activate the object for incoming clients requests.

5.3.2 Information Control Problem

Due to sequential character of the interacting agents on the STP, the dynamic pro-
gramming is a natural candidate for the modeling framework [13]. While the dy-
namic programming can be applied to a variety of optimization problems, linear or
nonlinear, deterministic and stochastic, it has been applicable only to problems that
satisfy the conditions of separability and monotonicity. However, in the present de-
sign case of sequential decision making the problem is nonseparable reflecting the
constrained optimization under connectivity reliability requirements. Under these
circumstances, it is needed a self-healing scheme that has adaptation capabilities
to the dynamic environment changes and is able to cope with the uncertainties of
the managed elements in the Operations Support System. This is the meaning of
the local information allocator concept applied to the faulty service configuration
processes.

There are mathematical programming techniques dealing with nonseparable dy-
namic programming problems whose performance indices are of the form

∑
l

Fl(ϕl) + Φ

[∑
l

gl(ϕl)

]
(5.25)

where Φ(·) is either quasi-concave or quasi-convex. Other proposals include a gen-
eralized dynamic programming for a class of combinatorial optimization problems
where the monotonicity is not satisfied using information about the local preference
relations at each state of the optimization stage. For the purpose of modeling the
information control problem, let us consider the following class of nonseparable
optimization problems

minJ = Φ
[
J1(ϕ1), . . . , Jk(ϕk)

]
(5.26)

subject to
k∑

i=1

gji(ϕi) ≤ bj , j = 1,2, . . . ,m (5.27)

xi ∈ Xi, i = 1,2, . . . , k (5.28)

where Φ , Ji (i = 1,2, . . . , k), gji (j = 1,2, . . . ,m; i = 1,2, . . . , k) are second order
differentiable and Xi (i = 1,2, . . . , k) is a subset of ni dimensional real space. It is
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assumed that the objective function J is a nondecreasing function of each Ji ,

∂J

∂Ji

≥ 0, i = 1,2, . . . , k (5.29)

Furthermore, each Ji is assumed to have a nonnegative minimum under the con-
straints given in (5.27) and (5.28). Each Ji can be viewed as an individual per-
formance measure associated with the decision variable xi , while J serves as the
overall performance measure. Condition (5.29) implies that an improvement in an
individual performance measure always leads to the improvement of the overall per-
formance measure. Such assumption is motivated by the need that the control and
signaling processes among the cooperative agents broadcasting periodical connec-
tivity signals will help to obtain a better network connectivity performance. Problem
(5.26)–(5.28) is nonseparable in the sense of dynamic programming, that is, if there
do not exist the functions φi , i = 1,2, . . . , k, such that the overall objective function
J can be decomposed as follows:

Φ
[
J1(ϕ1), . . . , Jk(ϕk)

] = Φ1
[
ϕ1,Φ2

[
ϕ2,Φ3

[
ϕ3, . . . ,Φk(ϕk)

]]]
(5.30)

The optimality condition is derived under which the optimal solution of the origi-
nally nonseparable optimization problem is reached by the optimal solution of an
auxiliary weighted pth power Lagrangian formulation. The weighted pth power
Lagrangian form is of a separable structure and can be solved at the lower level
by dynamic programming for each given weighting vector. The convergence of this
multilevel solution scheme is discussed. The basis of performing the system recon-
figuration helping the prescribed performance of service classes is finding a control
signal path for a new incoming operational asset joining the network while being
able to guarantee the quality parameters such as bandwidth and delay of the already
existing operations in the networking environment. When more than one path satis-
fying the bandwidth demand exists, the selection of the path aims to minimize the
blocking probability of future reconfiguration requests.

The problem formulated in (5.26)–(5.28) is separable of order k if the assumption
(5.25) holds. We propose a separation strategy which enables the development of a
solution methodology of iterative parametric dynamic programming for the class
of nonseparable problems in (5.26)–(5.28). We formulate the following associated
multi-objective optimization problem as follows

min
{
J1(ϕ1), . . . , Jk(ϕk)

}
(5.31)

subject to constraints (5.27)–(5.28). In general, the solution to a multi-objective
optimization problem is not unique [14]. Solving such problem (5.31) yields a set of
the Pareto frontier. Conceptually, a noninferior solution is one that is not dominated
by other feasible solutions. The common way in dealing with highly complex and
dynamic systems is based on the hierarchical decomposition of the reconfiguration
problem into a sequence of lower level problems that can be solved more easily,
based on the “divide and conquer” principle. Such design results in the introduction
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of a hierarchy of control and decision making layers which are very attractive form
a conceptual point of view.

The reconfiguration controller (RC) is responsible for run-time management of
the creation and destruction processes, including the networking configuration state
persistence management. The RC holds an internal table where already known con-
figurations (those that have been used at any time even if they are not currently
instantiated) are registered. For each entry the RC controls: (1) region within the
reconfiguration structure where the network element was invoked; (2) a pointer to
the memory block where the configuration state was stored. That information can be
inserted, removed, updated and looked up through a set of administrative methods.

5.4 Topology Information Control

5.4.1 Lagrangian Solution

Definition 1 A solution ϕ̂ = [ϕ̂1, . . . , ϕ̂k] to problem (5.31) is said to be noninferior
if there is no other feasible solution ϕ = [ϕ1, . . . , ϕk] such that Ji(ϕ̂i) ≥ Ji(ϕi),
i = 1,2, . . . , k, with at least one strict inequality. We assume in this study that each
noninferior solution of (5.31) is attainable.

Proposition 2 At least one optimal solution of (5.26)–(5.28) is attained by a non-
inferior solution of the multi-objective optimization problem given in (5.31).

Proof If an optimal solution ϕ̂ to (5.26)–(5.28) is inferior in (5.31), then there exists
a feasible noninferior solution ϕ̃ such that Ji(ϕ̂i) ≥ Ji(ϕ̃i), i = 1,2, . . . , k, with at
least one strict inequality. From (5.29), we know that J is a nondecreasing function
of the Ji ’s, thus

φ
[
J1(ϕ̂1), J2(ϕ̂2), . . . , Jk(ϕ̂k)

] ≥ φ
[
J1(ϕ̃1), J2(ϕ̃2), . . . , Jk(ϕ̃k)

]
(5.32)

If the strict inequality holds, this is a contradiction to the assumption that ϕ̂ is an
optimal solution to (5.26)–(5.28). If the equality holds, we conclude that the optimal
solution of (5.26)–(5.28) can be also reached by ϕ̃ that is a noninferior solution of
(5.31).

Proposition 2 enables the search of the optimal solution of problem (5.26)–(5.28)
to be confined to the set of noninferior solutions of problem (5.31). If the solution
to problem (5.26)–(5.28) is unique, this optimal solution must be a noninferior solu-
tion. Note that all Ji , i = 1,2, . . . , k, are nonnegative. There always exists an integer
p greater than or equal to one such that every noninferior solution of (5.31) can be
generated by the following weighted pth power Lagrangian form

min

{
J1(ϕ1)

p +
k∑

i=2

λiJi(ϕi)
p

}
(5.33)
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subject to constraints (5.27)–(5.28), where all weighting coefficients λi , i =
2, . . . , k, are nonnegative. Denote the weighting vector by λ = [1, λ2, . . . , λk]. In
the above weighted pth power Lagrangian formulation, without loss of generality,
the pth power of J1 is chosen as the primal objective with weighting coefficient
equal to 1. The pth power of any Ji can be chosen as the primal objective. Similar
to the definition in the weighted p-norm method, a noninferior solution of (5.31) is
said to be of degree d if it can be found using any weighted pth power Lagrangian
formulation with p ≥ d . The degree of the set of noninferior solutions is further
defined as the supremum of the degree of all the noninferior solutions. If p = 1,
the formulation (5.33) is of a weighting like form. If p = ∞, the formulation (5.33)
becomes the weighted minimax formulation. We consider only the cases where the
degree of the set of noninferior solutions is finite. This weighted pth power La-
grangian formulation is very general in generating noninferior solutions. If problem
(5.31) is convex, all noninferior solutions are of degree 1. If the noninferior frontier
is nonconvex to some degree, a higher power Lagrangian formulation is needed. In
most cases, the degree of the set of noninferior solutions of a given multiobjective
problem is difficult to determine. A large enough p needs to be chosen to guarantee
the generation of any specific noninferior solution. Let us further examine the exis-
tence of supporting hyperplanes on the noninferior frontier in both objective spaces
{J1, . . . , Jk} and {Jp

1 , . . . , J
p
k }. For example, consider that ϕ is two-dimensional,

Ji(ϕi) = ϕi , i = 1,2, and the constraint ϕ2
1 + ϕ2

2 ≥ 1. The feasible region in the
space {J1, J2} space for this example problem is J 2

1 + J 2
2 ≥ 1. It is easy to see that

there are no supporting planes on the noninferior frontier, that is, J 2
1 + J 2

2 = 1.
This shows why the weighting method fails to generate the set of noninferior solu-
tions in such nonconvex situations. If we recast the feasible region in the {J 4

1 , J 4
2 }

space, the feasible region becomes
√

J 4
1 +

√
J 4

2 ≥ 1 and it is convex, where the
supporting planes exist at every point on the noninferior frontier. This shows that by
selecting p large enough, the supporting hyperplane will exist everywhere on the
noninferior frontier. If the supporting hyperplanes exist everywhere on the noninfe-
rior frontier in {Jp

1 , . . . , J
p
k } space, the pth power Lagrangian form can be applied

successfully in identifying any noninferior point that reaches the optimum point of
problem (5.26)–(5.28). The existence of the supporting hyperplanes guarantees the
convergence of the solution scheme proposed in this paper. The problem (5.33) is of
a separable structure and is solved using the dynamic programming. If the optimiza-
tion problem (5.33) is solved for various values of the weigth vector λ, the set of
noninferior solutions can be generated and theoretically expressed in the objective
space as a parametric form

Ji = Ji(λ), i = 1,2, . . . , k (5.34)

It is assumed that each Ji(λ) is differentiable with respect to λ. With Ji(λ), i =
1,2, . . . , k, substituted into (5.26)–(5.28), the overall objective function J becomes
a function of λ. From Proposition 2, we know that the solution of problem (5.26)–
(5.28) can be attained by a noninferior solution of problem (5.31). The specific
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solution that reaches the optimum point of (5.26)–(5.28) must satisfy the Kuhn–
Tucker conditions

λj

[
k∑

i=1

(∂J /∂Ji)(∂Ji/∂λj )

]
= 0, j = 2, . . . , k (5.35)

The optimal conditions given in (5.35) are hard to check in the solution process. It
is unnecessary to generate the whole set of noninferior solutions in order to search
for the optimal solution of the nonseparable problem given in (5.26)–(5.28). Since
∂Ji/∂λj is unavailable in the iterative process, we will find an alternative optimal
condition which uses only the current point-wise values of Ji ’s and λi ’s in the iter-
ative process. �

Proposition 3 If Ji(λ̂), i = 1, . . . , k, is a noninferior solution generated by a
weighted pth power Lagrangian formulation with all values of λ̂j , j = 2, . . . , k,
strictly positive, the following holds

J
p−1
1

(
λ̂
)∂J1(λ̂)

∂λj

+
k∑

i=2

λ̂iJ
p−1
i

(
λ̂
)∂Ji(λ̂)

∂λj

= 0, j = 2, . . . , k (5.36)

Proof Since J
p

1 (λ̂) + ∑k
i=2 λ̂iJ

p
i (λ̂) is the minimum point of the weighted pth

power Lagrangian problem of minimizing J
p

1 + ∑k
i=2 λ̂iJ

p
i , any admissible vari-

ation dJ about the point [J1(λ̂), . . . , Jk(λ̂)] must satisfy

pJ
p−1
1

(
λ̂
)
dJ1

(
λ̂
) +

k∑
i=2

λ̂ipJ
p−1
i

(
λ̂
)
dJi

(
λ̂
) ≥ 0 (5.37)

where

dJi

(
λ̂
) =

k∑
j=2

∂Ji(λ̂)

∂λj

	λj + 1

2

k∑
j=2

k∑
l=2

∂2Ji(λ̂)

∂λj ∂λl

	λj	λl + · · · (5.38)

Since λj , j = 2, . . . , k, are assumed to be strictly positive and 	λj , j = 2, . . . , k,
can thus take any sign, (5.16) must be held to guarantee that the inequality (5.17) is
satisfied. �

We conclude from Proposition 3 that in the objective space {Jp

1 , . . . , J
p
k }, the

vector [1, λ2, . . . , λk] is orthogonal to the tangent hyperplane S at {Jp

1 (λ), . . . ,

J
p
k (λ)} which is spanned by

⎡
⎢⎣

J
p−1
1 ∂J1/∂λ2

...

J
p−1
k ∂Jk/∂λ2

⎤
⎥⎦ ,

⎡
⎢⎣

J
p−1
1 ∂J1/∂λ3

...

J
p−1
k ∂Jk/∂λ3

⎤
⎥⎦ , . . . ,

⎡
⎢⎣

J
p−1
1 ∂J1/∂λk

...

J
p−1
k ∂Jk/∂λk

⎤
⎥⎦ (5.39)
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The nondegenerate cases where the optimal solution (5.26)–(5.28) is attained by
a solution of (5.33) with all corresponding weighting coefficients strictly positive,
will be considered in the following development. In degenerate cases where the
optimal solution of (5.26)–(5.28) is attained by a solution of (5.33) with one or more
weighting coefficients equal to 0, two or more objective functions Ji , i = 1,2, . . . , k

in problem (5.31) do not conflict with each other in the neighborhood of the optimal
solution of problem (5.26)–(5.28).

5.4.2 Distributed Implementation

Motivated by sustainable and maintainable information retrieval functionality which
collects all the QoS related data (e.g., usage utility, capacity, bandwidth, CPU and
memory consumption, current numbers of application running), we adopt a hier-
archical server-client architecture as shown in Fig. 5.5. When more than one path
satisfying the bandwidth demand exists, the information management system helps
the selection of the path minimizing the blocking probability of future reconfigu-
ration requests [15]. The connectivity request is processed independently at each
network node, based only on the node identifier which is carried in the connectivity
request signal. When network resources are not available on such shortest paths, the
quality of service degrades. Resource Reservation Protocols allow the signaling and
instantiation of the channel trails in a path oriented networking environments [16].

Dynamic reconfiguration can be explicitly or implicitly triggered. In the former,
the reconfiguration process is initiated through an invocation to the allocate method,
while implicit reconfiguration starts when the reconfiguration controller detects that

Fig. 5.5 Reconfiguration Controller information patterns
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a required network element is not invoked. The invocation sequence for explicit re-
configuration is the following: (1) RC looks up for the requested network element
identity in the known object table; (2) Resource Reservation Protocol generates a
new configuration request; (3) if the request has a persistent trail, the RC transfers
the serialized state from the lookup table to the element; (4) RC activates the net-
work element (start invocation); (5) RC updates the network element in the location
service.

Proposition 4 If the optimal solution of problem (5.26)–(5.28) is attained by a non-
inferior solution with all corresponding weighting coefficients strictly positive, the
following optimal condition must be satisfied:

∂J/J1

J
p−1
1

= ∂J/J2

λ2J
p−1
2

= · · · = ∂J/Jk

λkJ
p−1
k

(5.40)

Proof Since the tangent space S at the noninferior solution that attains the opti-
mal point of problem (5.26)–(5.28) is a (k − 1)-dimensional hyperplane, we know
from Proposition 3 that the vector [1, λ2, . . . , λk] constitutes the basis of a one-
dimensional space S∗ which is the orthogonal complementary space of S. Equation
(5.35) can be rewritten as

λj
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∂J
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p
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)(
∂Ji
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)]
= λj

[
k∑

i=1

(
∂J

∂J
p
i

∂J
p
i

∂λj

)]
= 0, j = 2, . . . , k

(5.41)
Note that the vectors [∂J

p

1 /∂λj , . . . , ∂J
p
k /∂λj ]T , j = 2, . . . , k, constitute the (k −

1)-dimensional basis for tangent hyperplane S, we conclude from (5.41) that the
optimal solution of problem (5.26)–(5.28) is the vector

[
∂J/∂J

p

1 , . . . , ∂J /∂J
p
k

]T = 1

p

[
∂J/∂J1

J
p−1
1

, . . . ,
∂J /∂Jk

J
p−1
k

]T

(5.42)

belongs to the one-dimensional orthogonal complementary space of the tangent hy-
perplane S when all weighting coefficients are strictly positive. Equation (5.30)
holds since the vectors [1, λ1, . . . , λk] and [∂J/∂J1/J

p−1
1 , . . . , ∂J /∂Jk/J

p−1
k ] are

proportional. �

Proposition 4 provides a necessary condition for implementing the optimal value
of weighting vector λ. The weighting vector λ is viewed as the signaling infor-
mation that occurs among the cooperating agents involved in controlling the net-
work connectivity. Let Ji(λ

t ), i = 1, . . . , k, be the optimal solution generated by the
weighting pth power Lagrangian formulation with weighting vector λt at iteration t .
The gradient of the objective function at point [J p

1 (λt ), . . . , J
p
k (λt )] in the objective

space is given by

∇J
(
λt
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∂J/∂J

p
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p
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]T
|λt =

[
∂J/∂J1

pJ
p−1
1

, . . . ,
∂J /∂Jk

pJ
p−1
k

]T

|λt

(5.43)
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It is known from Proposition 3 that the vector

λt = [
1, λt

2, . . . , λ
t
k

]T (5.44)

is a normal vector on the noninferior frontier at point [Jp

1 (λt ), . . . , J
p
k (λt )] in the

objective space. The projection of the negative gradient −∇J on the tangent hyper-
plane at the current noninferior point can be calculated by

	J(λt ) = [
	J

p

1

(
λt

)
, . . . ,	J

p
k

(
λt

)]T = −∇J
(
λt

) + 	J t
(
λt

)T
λt λt

‖λt‖2
(5.45)

where ‖λt‖ is the norm of vector λt ,

∥∥λt
∥∥2 = 1 +

k∑
i=2

(
λt

i

)2 (5.46)

From the Cauchy–Schwarz inequality, we have

∇J
(
λt

)T ∇J
(
λt

) = −∥∥∇J
(
λt

)∥∥2 + ∥∥∇J
(
λt

)
λt

∥∥/
∥∥λt

∥∥2 ≤ 0 (5.47)

We further need a way to adjust the value of the weighting vector λ in order to
achieve the improvement in the objective space {Jp

1 , . . . , J
p
k }. The tangent hyper-

plane at point [Jp

1 (λt ), . . . , J
p
k (λt )] is of dimension (k − 1), so only (k − 1) of the k

terms 	J
p
i (λt ) in (5.45) are independent. The following ε-constraint problem can

be formulated to realize the descent direction

minJ
p

1 (5.48)

subject to J
p
j ≤ J

p
j

(
λt

) + α	J
p
j

(
λt

)
, j = 2, . . . , k (5.49)

where α is a step size parameter which can be adjusted on line to guarantee a decre-
ment of the overall objective function J . The dual function of (5.48)–(5.49) is

H(λ) = minJ
p

1 +
k∑

j=2

λj

[
J

p
j − J

p
j

(
λt

) − α	J
p
j

(
λt

)]
(5.50)

subject to (5.47) and (5.48). The descent direction [	J
p

1 (λt ), . . . ,	J
p
k (λt )] at it-

eration t + 1, needs the new values of λi , i = 1, . . . , k, which can be obtained
through maximizing the dual function with respect to λ at current noninferior point
[J p

1 (λt ), . . . , J
p
k (λt )]. The derivative of the function H(λ) with respect to λj at the

current point [Jp

1 (λt ), . . . , J
p
k (λt )] is

∂H(λ)

∂λj

= −α	J
p
j

(
λt

)
, j = 2, . . . , k (5.51)
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The value of λ is the gradient control process algorithm

λt+1
j = λt

j + ∂H(λ)

∂λj

= λt
j − α	J

p
j

(
λt

)
, j = 2, . . . , k (5.52)

The dual function H(λt+1) in (5.50) is equivalent to the following weighted pth
power Lagrangian problem for a selected λt+1

minJ
p

1 +
k∑

j=2

λt+1
j J

p
j (5.53)

This sets the weighted pth power Lagrangian formulation with an updated value of
λ at iteration t + 1 for the lower level.

The main purpose of the system-level reconfiguration is to provide transparency
(for location, access, transport mechanism). Location transparency allows clients
to invoke service requests without any prior knowledge of the real location of the
service. This is of special interest in dynamic reconfiguration environments, since
the reference (address assigned in the network information map) of a reconfigurable
component can be deferred to the instantiation inside a certain reconfigurable area,
at runtime. The location service, then is in charge of providing a valid endpoint
(the address where the instantiated component is located) when a client requests the
location of concrete service [17].

Two entities are involved in the location process. The proxy stores a reference
for the locator object, instead of a static endpoint to the server hardcoded at design
time. On the other side, the location service (or directory service), provides the
valid endpoint from the requested networked element identity. When an invocation
is received from the client network element, the proxy will first request the current
location of the remote element (using the object identifier). The location service
contains a location table where object identities are linked with valid endpoints.
Once the location is obtained, the networked element will perform a second request:
the real invocation. However, the indirection doesn’t necessarily imply two requests
per invocation. That can be easily avoided simply caching the obtained location. The
interface for the locator object has two kind of methods. The locate method provides
the location functionality previously described [18].

Another problem in the dynamically reconfigurable environments is that the need
for information processing may be difficult to predict at design time. Bitstreams
for new networked element types may be deployed at any time, and extra unpre-
dictable space is also needed for state storage of object instances with persistence
capabilities. The solution is to define a dynamic memory allocation service that will
transparently provide basic primitives for information management. The service is
provided by an specialized object called the Allocator. The Allocator has two main
characteristics. On one side it centralizes information management for the whole
system. On the other side it offers a well-known interface, completely independent
from the implementation technology or information hierarchy. The service interface
is based on two methods. The allocate method requests the allocation of a certain
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memory block size, while the release method frees the information block. The return
value for the allocate method is a proxy to network information map.

5.4.3 Summary of Computational Results

In this section, we briefly discuss sample results for the topology information con-
trol framework applied to self-healing UAV formations dedicated to surveillance
missions. Two double tree networking topologies are represented in Fig. 5.6 as start
configurations on which the information control and coding schemes previously de-
scribed are applied. Figure 5.7 shows the corresponding converged topologies after
the reconfiguration process was terminated. In the group communication network-
ing, the decrease of the constraints number and the use of the intrinsic parallelism

Fig. 5.6 UAV formations: start topologies
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Fig. 5.7 UAV formations: converged topologies

of the signalling channels, the data control processing is based on coding of coarse-
grain control symbols. Each networking element has a local register file, filled from
external caches of control data, global for the whole network. The processing is
applied on larger data sets and the control is distributed. Reconfigurable network ar-
chitectures face the problem of keeping under control the communication delays in
reconfigurable devices designed in advance technologies. Together with algorithmic
and technological evolutions, reconfigurable architectures have to face another chal-
lenge related to their communication energy efficiency. Fixed architectures can not
address this kind of energy optimizations when various services or accuracy con-
straints are concerned. Reconfigurable architectures can be specifically configured
depending on the particular piece of code fragment to be implemented which leads
to interesting group communication behaviors.

The dependency of information control savings on the kth modeling order is
shown in Fig. 5.8. Design flow consists first in selecting the applicative domain, and
defining the kind of computations that are typically found into the loop kernels and



122 A. Murgu et al.

Fig. 5.8 Information control savings versus order k

frequently executed code fragments. Creating a bench representative of the targeted
application domain can greatly facilitate the design space exploration by further
refinements of the architecture. Selecting operations at a too low level, such as sum
of absolute differences in image and video processing, or selecting an insufficient
number of functions for the bench will lead to optimize only the peak performance
of the architecture, but this will prove to be not representative enough of a real
applicative behavior, in particular because control statements have a great impact
on the overall performance.

The fundamental objective in topology information control is to maximize the
throughput carried in a networked environment. The closed loop performance was
studied computationally on sample networks that are subject to various traffic ma-
trices. The goal was to assess the performance levels of reconfiguration processes in
dynamic networking environments.

5.5 Concluding Remarks

In this paper, we have introduced a mathematical framework for information con-
trol and coding occurring in reconfiguration processes in systems of systems. As
a feedback control mechanism, the iterative parametric dynamic programming is a
good modeling candidate in describing the reconfiguration computations, where a
multi-objective relational optimization problem is considered in enabling a separa-
tion strategy and finding the optimal solution in a multilevel fashion. At the lower
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processing level, an auxiliary weighted power Lagrangian problem is solved using
dynamic programming associated to the topology control. The iterative paramet-
ric dynamic programming for a class of nonseparable optimization problems ap-
proach extends the reach of dynamic programming and provides an efficient solution
scheme through separation, convexification, decomposition, and coordination. The
insights offered by such modeling are useful in deriving resource management pro-
tocols allowing the path selection and QoS parameters monitoring to be taken into
account by the system reconfiguration mechanism. Distributed topology informa-
tion control among the cooperative network elements regarded as agents broadcast-
ing periodical signals to enable the network connectivity information propagation.

Future work will continue to characterize wireless communication networks and
the information control techniques for guaranteeing the mission performance and
safety of the networked UAVs. In this consideration, communications will be key
and will require further advances based on the results described in this paper. Mul-
tivariable extremum seeking control can be applied to the problem of UAV motion
control in a communication environment, and such approach should lead to im-
provements in the communication ability over position-based policies.
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Chapter 6
Effect of Network Geometry and Interference
on Consensus in Wireless Networks

Sundaram Vanka, Vijay Gupta,
and Martin Haenggi

Summary We study the convergence of the average consensus algorithm in wire-
less networks in the presence of interference. It is well known that convergence of
the consensus algorithm improves with network connectivity. However, from a net-
working standpoint, highly connected wireless networks may have lower through-
put because of increased interference. This raises an interesting question: what is
the effect of increased network connectivity on the convergence of the consensus
algorithm, given that this connectivity comes at the cost of lower network through-
put? We address this issue for two types of networks: regular lattices with peri-
odic boundary conditions, and a hierarchical network where a backbone of nodes
arranged as a regular lattice supports a collection of randomly placed nodes. We
characterize the properties of an optimal Time Division Multiple Access (TDMA)
protocol that maximizes the speed of convergence on these networks, and provide
analytical upper and lower bounds for the achievable convergence rate. Our results
show that in an interference-limited scenario the fastest converging interconnection
topology for the consensus algorithm crucially depends on the geometry of node
placement. In particular, we prove that asymptotically in the number of nodes, form-
ing long-range interconnections improves the convergence rate in one-dimensional
tori, while it has the opposite effect in higher dimensions.

6.1 Introduction

Consensus has become an area of increasing research focus in recent years (e.g.,
see [1–8] and the references therein). Given n nodes each with a scalar value and
a possibly time-varying interconnection graph defined on these nodes, a consensus
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algorithm specifies the updating rule that every node should follow. The updated
value of each node at every time step is a function of the value held by itself and its
neighbors at the previous time step. The conditions on graph connectivity that permit
convergence to a common value have been fairly well-characterized. The focus has
now shifted to analyzing the convergence properties in the face of communication
constraints such as quantization [9], packet erasures [2, 10], additive channel noise
[11, 12], and delays [13].

Such works typically assume that the communication channels between each pair
of nodes are uncoupled. However, consensus algorithms are often employed over
wireless networks, where channels are inherently coupled due to their broadcast na-
ture and the presence of interference. Long-range interconnections lead to a smaller
graph diameter, but also to decreased spatial re-use. The effect of long-range inter-
connections on the rate of convergence of the consensus algorithm is, thus, not clear.
Moreover, in a wireless network, a communication graph cannot be considered to be
given a priori, since any two nodes can communicate by spending enough energy.
The communication topology in wireless networks thus depends on the network
protocols and is, in fact, a design parameter.

In this work, we consider the rate of convergence of the average consensus algo-
rithm while explicitly accounting for interference. We analyze the performance of
scheduling algorithms that are optimal with respect to the rate of convergence. We
also provide an analytical understanding of the impact of transmission power, and
thus communication topology, on the rate of convergence.

This article is organized as follows. We begin in Sect. 6.2 by formulating the
problem and introducing our notation. We concentrate on two geographical place-
ments of the nodes: (i) nodes that are physically placed on a grid with periodic
boundary conditions (considered in Sect. 6.3), and (ii) hierarchical networks with
randomly placed sensor nodes and a regular communication backbone (considered
in Sect. 6.4). Some avenues for future work are presented in Sect. 6.5.

6.2 Problem Formulation

Average Consensus Algorithm Consider n nodes that aim to reach consensus
with the final value being the average of their initial scalar values. Denote the value
held by the ith node at time k as xi(k). Also denote by x(k) the n-dimensional vector
obtained by stacking the values of all the nodes in a column vector. Let the nodes
be connected according to a given interconnection topology at every iteration step.
The topology can be described by a consensus graph, with an edge present between
two nodes if and only if they can exchange information. Denote the neighbor set of
node i at time k by Ni (k). An iteration consists of every node i exchanging its state
variable xi(k) with all nodes in Ni (k). In the standard description of the consensus
algorithm, this exchange of information is assumed to happen in a single packet
transmission interval (also referred to as a time slot and normalized to 1). Then, the
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value of each node i evolves as

xi(k + 1) = xi(k) − h
∑

j∈Ni (k)

(
xi(k) − xj (k)

)
(6.1)

where h is a scalar constant designed to ensure convergence of the algorithm.
Denote the interconnection graph at time k by G(k). The system thus evolves

according to the discrete-time equation

x(k + 1) = (
I − hL(k)

)
x(k), x(0) = x0 (6.2)

where L(k) denotes the Laplacian matrix of the graph G(k). It can be shown (see,
e.g., [5]) that under proper connectivity assumptions, if the parameter h is small
enough, consensus is achieved with each node assuming the average value xav =
1
n

∑
i xi(0). Throughout our presentation, we will assume that h is fixed and has a

value h < 1
2dmax

where dmax is the maximum degree corresponding to any node in the
consensus graph over all time, i.e., dmax = maxi,k |Ni (k)|. To ensure that the nodes
converge to the average of x0, it is also essential that the graph at every time step be
balanced, i.e., at every node the in-degree equals the out-degree. The protocols we
consider below will ensure that the graph is undirected, which trivially satisfies this
condition.

The rate of convergence of the value of the nodes is a function of the graph
topology. In the case of a static graph topology (i.e., G(k) = G for all time k), it can
be shown (see, e.g., [5, 14, 15]) that the convergence of the consensus protocol is
geometric, with the rate being governed by the second largest eigenvalue modulus
(SLEM) of the matrix I − hL. In general, a consensus algorithm on a graph with
smaller SLEM converges more quickly.

However, in practice, a number of transmissions, each occupying a single time
slot, may be necessary for this information exchange among the nodes to occur.
This scenario is common in wireless networks, where concurrent transmissions in
the same frequency band can interfere at a node, and hence, may not be decodable.
Therefore, if each node can receive data from at most one neighbor at any given
time, the exchange of information necessary for iteration k will require at least 1 +
maxi |Ni (k)| time slots. This idea is developed further in this article.

Communication Protocols We consider a situation in which the physical loca-
tions of the nodes are given in a d-dimensional space. The communication model is
along the lines of the disk connectivity graph model considered, e.g., in [16]. Every
node then decides on the power with which it transmits. This power determines the
communication radius of the node according to the relation

P = P0r
α
c

where P0 is a normalization constant, α is the path-loss exponent (typically 2 ≤ α ≤
5), P is the transmission power and rc is the communication radius. All nodes at a
distance smaller than rc from the transmitter can receive the transmitted message.
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We assume a Manhattan connectivity model, in which communication is possible
only along axial directions. Such a model is suitable for a situation when only line
of sight (LOS) communication is possible. In 2-dimensions, this is a good model
for urban environments where the presence of buildings inhibits most nonline of
sight links. In an 1-dimensional node arrangement, this model is identical to other
connectivity models such as those based on communication disks centered at the
nodes.

Similar to the communication radius, we can also define an interference radius ri .
A node at position x can receive a message successfully from a node at position
y only if ‖y − x‖ < rc, and there is no node at position z that is simultaneously
transmitting, such that ‖z − x‖ < ri (interference constraint). The above equations
should also be interpreted in the framework of the Manhattan connectivity model,
i.e., the distances should be measured only along the axial directions. In this article,
for simplicity, we assume rc = ri. The results can be generalized to other cases.

Given the above condition for successful transmission, we require a medium ac-
cess control (MAC) protocol for the nodes. We focus on Time Division Multiple Ac-
cess (TDMA)-based MAC protocols in this article rather than random access proto-
cols. Such protocols assure successful communication by scheduling transmissions
in time such that messages do not interfere. They demonstrate better throughput
than collision-based MAC protocols, at the expense of greater synchronization and
coordination requirements among the nodes [17, 18].

Problem Formulation The operation of the average consensus protocol can be
divided into two phases that are repeated at every update of the node values. In the
first phase, the nodes exchange their values through possibly multiple transmissions.
We consider each transmission to consume one time slot. The effective communica-
tion graph at each update is composed of edges (i, j) such that node j has received
the value of node i during the previous communication phase. In the second phase,
the nodes update their values according to (6.1). As in the standard model, this step
is assumed to be instantaneous. Therefore, due to multiple transmissions to set up
the consensus graph, in our model, the state update does not occur at every time slot.
In fact, assuming that each communication phase is completed in T time slots, the
kth update can be expressed as

x(kT + T ) = (I − hL)x(kT ) (6.3)

Therefore, the effect of finite communication time, possibly due to interference, is
to slow down the convergence rate.

We are interested in the following problem: Given a set of nodes at known loca-
tions, what is the effect of increasing the transmit power on the convergence rate of
the consensus algorithm when the channel-access mechanism accounts for interfer-
ence? In this context, we characterize the convergence of the consensus algorithm
for the optimal MAC protocol that minimizes the number of time slots needed for
communication in order to form a desired consensus graph G (thus, maximizing the
update rate). We analyze this problem for two physical distributions of the nodes on
a torus:
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1. A regular grid of sensor nodes.
2. A regular grid of nodes that form a backbone communication network for sensor

nodes that are distributed as a binomial point process.

The transmit power at each node determines its neighbors. The periodic boundary
condition is chosen for analytical tractability; the analysis becomes accurate also for
the case without periodic boundaries as the number of nodes becomes large.

For analytical tractability, we make the following assumptions:

• We assume equal transmission power for all nodes.
• We limit the transmission policy to be time-invariant. Thus, we assume that the

same effective communication graph is generated for every iteration of the node
values.

• At the time of an update of the values of the nodes, we require that the effective
communication graph be undirected, i.e., for any two nodes i, j in the network,
j ∈ Ni ⇔ i ∈ Nj . Note that this is slightly stronger than the necessary and suffi-
cient condition for convergence of the average consensus algorithm that the graph
be balanced [5].

• We assume no explicit routing of values through nodes since the consensus algo-
rithm itself incorporates implicit routing and in-network computation.

• We assume half-duplex operation, and that packets that suffer collisions cannot
be decoded.

Under these assumptions, the following are the main results of the article:

1. We characterize the rate of convergence for the optimal MAC scheduling proto-
col for the average consensus algorithm for tori in n dimensions.

2. We show that the network geometry plays a key role in identifying the optimum
power allocation that maximizes the speed of convergence. In particular, while
the convergence rate increases with the transmission power in 1-dimensional tori,
the opposite is true in higher dimensions.

3. In hierarchical networks, we show that a positive fraction of nodes can always
achieve consensus for certain scalings of backbone node density.

In the next section, we begin by studying the convergence properties of MAC pro-
tocols that maximize the speed of convergence for a given consensus graph G . We
begin by considering nodes placed on a regular grid with periodic boundary condi-
tions.

6.3 Analysis of a Ring and a 2D Torus

6.3.1 The 1-D Case: Nodes on a Ring

Consider n nodes numbered {0,1, . . . , n − 1} placed uniformly on a circle of radius
r centered at the origin, as shown in Fig. 6.1. Suppose that the transmission power
is such that every node can transmit information to m of its nearest neighbors on
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Fig. 6.1 Schematic of nodes
placed along a ring

either side. As an example, in Fig. 6.1, m = 1. Define Pm, m ≤ �n
2 �, as the transmit

power that provides a communication radius rc = 2r sin(mπ
n

). Hence,

Pm ∝
(

2r sin

(
mπ

n

))α

(6.4)

where α ≥ 2 is the path-loss exponent. As stated above, for simplicity, we will as-
sume that the interference radius ri = rc.

We note here that an alternative interpretation of this geometry of node placement
is to consider the n nodes placed on a regular one-dimensional torus [0,1] (hereafter,
called a “1-torus” or T1(n)). This interpretation is useful when connecting these
results with those for higher dimensional tori, which are discussed later. In this case,
if the first node is placed at the origin, the position of the kth node is given by k

n
,

0 ≤ k ≤ n − 1, with a periodic boundary condition. In this geometry, the expression
for Pm would be Pm ∝ (m

n
)α .

If the wireless channel could support simultaneous transmissions by every node,
the system would evolve according to (6.2), with I − hL being an n × n circulant
matrix with the first row given by

[1 − 2mh 1∗
m 0 0 · · · 0 1∗

m]
where

1∗
m = [1 1 · · · 1]1×m

For future reference, denote by G1,m, L1,m and F1,m the consensus graph, the Lapla-
cian and the update matrix, respectively, for such a situation. Given the nodes placed
on a ring, G1,m is the consensus graph with the highest connectivity that can be
formed for a given Pm, and therefore will have the fastest convergence. The MAC
protocol that we propose guarantees that the system evolves according to this ma-
trix. However, the communication phase occurs over multiple steps.
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Fig. 6.2 Variation of the convergence rate with the transmission power for a ring of n = 31 nodes

We begin by bounding the number of time slots required to form G1,m. Denote
the smallest number of time slots used to form G1,m by T ∗

1 (m), or, more compactly,
as T ∗

1 . Also denote by P ∗(m) the optimal TDMA protocol that forms the graph
G1,m in T ∗

1 number of steps. Observe that for all m1 ≤ m2, G1,m1 ⊆ G1,m2 . Then
G1,m can always be formed in at most T ∗

1 (m1) ≤ T ∗
1 (m2) slots. This implies that

m1 ≤ m2 =⇒ T ∗
1 (m1) ≤ T ∗

1 (m2). We say a link is formed from node v to node
u whenever the message from v is successfully decoded at u. Since G1,m is undi-
rected and balanced, an edge e ∈ E1,m connecting v and u is formed if and only if
both v and u form links with each other. The following result bounds the length of
the shortest TDMA schedule that forms the consensus graph G1,m (and hence the
smallest time T in the update equation (6.3)) and was proven in [19].

Lemma 1 (From [19]) Consider the set-up described above, where the consensus
graph G1,m is to be formed in the smallest number of time slots. The optimal TDMA
protocol forms G1,m in the smallest possible number of time slots T ∗

1 where

2m + 1 ≤ T ∗
1 (m) ≤ 4m + 1

Using this result in conjunction with the spectral properties of G1,m yields the
following characterization of the fastest convergence rate that is possible for a given
G1,m.

Theorem 1 (From [19]) Consider the problem set-up described above. If the op-
timal TDMA protocol is used to construct G1,m for each iteration, the error vec-
tor ε(k) = x(k) − 1nxav converges geometrically to zero with the rate of decay β
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bounded as

ρ
1

2m+1
1 ≤ β ≤ ρ

1
4m+1
1

where

ρ1 =1 − h(2m + 1) + hS
(m,n)
1

S
(m,n)
p = sin(

(2m+1)πp
n

)

sin(
πp
n

)
, p = 0,1, . . . n − 1

(6.5)

Remarks

1. For any given transmission power Pm, we see that the MAC constraints reduce
the rate by a factor of T where 2m + 1 ≤ T ≤ 4m + 1.

2. The speed of convergence is an increasing function in m, and hence in Pm. An
illustration of this fact is provided in Fig. 6.2. For the purpose of the plot, we
show the time taken for the error norm to become half, termed the “half-value
period”, as a function of transmission power for 31 nodes arranged regularly on a
ring of radius 1 unit. We have assumed α = 2 and the constant of proportionality
in (6.4) to be unity. For each Pm, we chose h ∝ 1

2m+1 . The results are somewhat
counter-intuitive since the rate reduction due to a larger number of steps in the
communication phase is always compensated by the increase in rate due to higher
connectivity. That forming long range communication links would lead to faster
convergence even in networks with interference was not evident a priori.

3. The effect of increasing the transmission power are the most prominent at small
Pm. This can again be seen from Fig. 6.2. If θ = pπ/n and p  n,

sin θ ≈ θ − θ3/3 (6.6)

We use (6.6) to express the spectral gap SG � 1 − ρ
1
T

1 when m  n as

SG = 1 −
(

1 − h(2m + 1) + h
sin(

(2m+1)π
n

)

sin(π
n
)

) 1
T

≈ ηmh(m + 1)(2m + 1)T −1n−2

where η � 4π2

3 . Since h ∝ 1
2m+1 and T = Θ(m) for the optimal schedule, the

spectral gap scales as m
n2 .

6.3.2 Nodes on a Two-Dimensional Torus

We now generalize our results to higher dimensional tori. Consider a set Td(n) of
n = ld regularly spaced points on a d-dimensional torus located at [0,1]d . An ex-
ample when d = 2 is shown in Fig. 6.3. Choose a node as the origin, and label each
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Fig. 6.3 The toroidal lattice
T2(9). The shaded nodes
indicate those physically
placed in [0,1]2. Node (0,0)

represents the node at the
origin, with each of the
shaded nodes (i, j) being
placed at (i/3, j/3). Nodes
that are left unfilled are the
image nodes that arise due to
the periodic boundary
condition

Fig. 6.4 Schematic of nodes
placed along a 2-dimensional
torus. The periodic square
grid being considered can be
considered a limiting case of
a large torus, so that the effect
of its curvature on small
distances is not important

node using its displacements along each of the d axes (referred to as the d axial
directions of the torus in this article). For example, in Fig. 6.3, n = 9 and the node
(1,1) is located at r11 ≡ r(1,1) � (1

3 , 1
3 ). An alternative interpretation of a toroidal

arrangement in the two-dimensional case is shown in Fig. 6.4. Both these interpre-
tations yield similar results in the limiting case of a large torus in which case local
distances are not significantly affected by the curvature. We will focus on the former
interpretation.

Suppose all nodes on a torus Td(n) participate in an average consensus algorithm
of the form (6.2) with a power allocation of Pm per node. The results for a disk con-
nectivity model were provided in [19]. Here, we present results for the Manhattan
connectivity model. Figure 6.5 describes the connectivity model for a set of trans-
mitting nodes on a two-dimensional torus of n = 25 nodes and m = 1.

We now formally define the desired consensus graph Gd,m = (V , Ed,m). The ver-
tex set

V = {0,1, . . . , l − 1}d
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Fig. 6.5 Effect of network
geometry on choosing the
transmitter set, shown for

T2(25) and m = 1. The
transmitters are at the center
of each disk (e.g., the node
labeled (0,0)). Note that the
dimensionality is exploited to
allow more concurrent
transmissions. The nodes that
do not lie in any of the disks
(e.g., (4,0)) are covered by
transmitters via their images
(that have the same label)

is the set of all points in T2(n). We note that if each node can transmit at power Pm,
the Manhattan connectivity model places edges between two distinct nodes v and u

if and only if the following conditions are satisfied:

1. The locations of v and u must differ in at most one coordinate; and
2. At the co-ordinate where they differ, the absolute difference between the respec-

tive values can be at most m/l

Denote the set of all these edges by Ed,m.
In keeping with the notation developed for the one-dimensional case, we will

denote the Laplacian and the update matrix for Gd,m by Ld,m and Fd,m � I −hLd,m,

respectively. Assuming as before that each transmission occupies one time slot, we
now study the convergence properties of the optimal MAC protocol that will form
Gd,m in the smallest number of time slots. In this article, we set d = 2; the results
can be generalized to tori of higher dimensions.

Using similar arguments as in the one-dimensional case, we can show that the
optimal TDMA protocol assigns an equal power Pm to each chosen transmitting
node i in any time slot. Denote by T ∗

2 (m), or more compactly by T ∗
2 the number

of time slots required by an optimal schedule to construct G2,m. The optimal MAC
schedule places the maximum number N∗

2 (t) of non-interfering transmitters on the
torus in every time slot t = 1,2, . . . , T ∗

2 .
Note that increased network dimensionality plays an important role in constrain-

ing N∗
2 (and consequently, T ∗

2 ). This makes the problem of analytically finding T ∗
2

nontrivial. This effect is illustrated in Fig. 6.5 for a 2-torus of n = 25 nodes and
m = 1. The transmitters are chosen from the entire two-dimensional lattice. With
power P1, each node can reach its 4 nearest neighbors as shown. Since every node
must transmit at least once, at least 4 + 1 = 5 slots are necessary to form the con-
sensus graph G2,1. Figure 6.5 shows the optimal transmitting set in the first time
slot.
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As before, we begin by characterizing the length T ∗
2 of the shortest TDMA sched-

ule that constructs G2,m. Thereafter, we exploit the properties of the consensus al-
gorithm along with the optimality of the MAC protocol and the constraints imposed
by our problem to bound the convergence rates for a 2-torus.

As before, define Pm to be the transmit power that enables a node to form error-
free links with m neighbors in the axial directions. Given that there are

√
n nodes in

either of the axial directions,

Pm ∝
(

m√
n

)α

We now define the update matrix F2,m. Define circulant matrix Qm to be a cir-
culant matrix with the first row [1 − 4mh h1∗

m 0 · · · 0 h1∗
m]1×l . Further, define

Rm � h1∗
m ⊗ I = h[I I · · · I ]l×lm.

If each node uses power Pm, the Manhattan connectivity model results in a block
circulant update matrix F2,m with its first row being

[Qm Rm 0 · · · 0 Rm]l×n (6.7)

We now bound the number of time slots required to form G2,m.

Lemma 2 If each node transmits at power Pm and the optimal schedule over the
2-torus constructs G2,m in T ∗

2 time slots, for 1 < m < �l/2�, T ∗
2 always satisfies

Tl ≤ T ∗
2 ≤ Tu

where

Tl = m2 + 2m + 2

and

Tu = 16m2 + 8m + 1

Proof Using similar arguments as in Lemma 1, it is easy to show that the transmit
power for any node should be at least Pm. Define a feasible TDMA schedule for
a power allocation Pm per node as one that constructs G2,m while satisfying the
half-duplex and interference constraints described in Sect. 6.2.

Without loss of generality, suppose node (0,0) transmits in the first time slot with
power Pm. From the definition of a feasible schedule, during this time there cannot
exist a transmitter inside the square with vertices (1,1), (1,m), (m,m), (m,1). As
a result, each node that is contained in the square requires time slot each. It is easy
to see that there are (m − 1)2 such nodes. Moreover, any of the 4m nodes that are
currently receiving a message from (0,0) cannot transmit at this time. Therefore,
accounting for the current slot, the length of a feasible schedule cannot be shorter
than Tl = (m − 1)2 + 4m + 1 = m2 + 2m + 2 slots. In particular, since T ∗

2 is the
length of the shortest feasible schedule, T ∗

2 ≥ Tl .
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If Tu is number of time slots taken by any feasible schedule to form G2,m, T ∗
2 ≤

Tu. Consider the following schedule: in the first time slot, choose (0,0) as a trans-
mitter and schedule nodes (0+p(2m+1),0+q(2m+1)) for p,q = 1, . . . , � l

2m+1�
to transmit. In other words, we attempt to tile the torus with squares of side 2m+1√

n
.

Clearly this is feasible, since each node receives from at most one transmitter. In
every subsequent time slot, repeat this process by choosing some other node (i, j)

inside the square of side (2m + 1)/
√

n centered at the origin and schedule nodes
(i + p(2m + 1), j + q(2m + 1)) for transmission. Repeat this process until all the
(2m + 1)2 nodes in this square have been chosen once. Using arguments similar to
those used in Lemma 1, a maximum of � l

(2m+1)
�2 simultaneous transmissions can

be scheduled per time slot. After (2m + 1)2 time slots,

n −
⌊

l

(2m + 1)

⌋2

(2m + 1)2

= 2

⌊
l

2m + 1

⌋
(2m + 1) rem

(
l, (2m + 1)

) + (
rem(l,2m + 1)

)2

nodes are yet to transmit. In the first term, we can schedule �l/(2m + 1)� nodes in
each of the 2 rem(l,2m + 1) ≤ 4m “rows”, that require at most 4m(2m + 1) addi-
tional time slots. Scheduling one node per time slot, all the remaining (rem(l,2m +
1))2 nodes can transmit in at most 4m2 time slots. Therefore, the schedule con-
structs G2,m in (2m + 1)2 + 4m(2m + 1) + 4m2 = 16m2 + 8m + 1 time slots. Thus,
we conclude that T ∗

2 ≤ 16m2 + 8m + 1. �

As compared to the 1-torus, the optimal schedule for a 2-torus is bounded by two
quadratic terms. This is due to the interference constraints to the given geometry of
node placement. As we shall see, this quadratic—rather than linear—dependence
on m is the key to understanding the effect of transmit power on the convergence
behavior.

6.3.2.1 Bounding the Rate of Convergence

We now find the eigenvalues of F2,m by exploiting its block circulant property.

Lemma 3 Let G2,m be the consensus graph formed over T2(n) using the Manhattan
connectivity model. If L2 m is its Laplacian then the eigenvalues of the F2,m = I −
hL2,m are

λa,b = 1 − 2h(2m + 1) + hS(m,l)
a + hS

(m,l)
b

where, as defined above S
(m,l)
a = sin(

(2m+1)πa
l

)

sin( πa
l

)
, a = 0,1, . . . , l − 1.
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Proof From (6.7) F2,m is an n × n block circulant matrix with its first block row
being

[Qm Rm 0 0 · · · 0 Rm]l×n

where Rm = h1∗
m ⊗ I . As noted earlier, Qm is circulant. Since the identity and the

all-zero matrices are also circulant, all these matrices share the same eigenvectors.
Using this in conjunction with the properties of block circulant matrices, we com-
pute the eigenvalues μr,s of F2,m as

μr,s =
l−1∑
t=0

ηr,t e
−j 2πst

l (6.8)

where ηr,t is the r th eigenvalue of Qm∀r, s = 0,1, . . . , l − 1. Using the eigenvalues
for the 1-torus and simplifying yields the eigenvalues of F2,m = I − hL2,m are

λa,b = 1 − 2h(2m + 1) + hS
(m,

√
n )

a + hS
(m,

√
n )

b (6.9)

which is the desired result. �

We are now in a position to bound the rate of decay for the case of the torus. We
have the following result.

Theorem 2 Consider a consensus algorithm of the form (6.2) on G2,m. If each node

transmits at Pm for 1 ≤ m < �
√

n
2 �, the rate of convergence β of an optimal MAC

schedule on G2,m that drives δ(k) = x(k) − 1nxav to zero is bounded as

λ

1
m2+2m+2
1 < β < λ

1
16m2+8m+1
1

where

λ1 = (
1 − h(2m + 1) + h(2m + 1)S

(m,
√

n)

1

)
.

Proof From Lemma 3 above, the eigenvalues of the update matrix are

λa,b = 1 − 2h(2m + 1) + hS
(m,

√
n )

a + hS
(m,

√
n )

b

The largest eigenvalue is obtained by maximizing both the sinc terms, i.e., by choos-
ing (a, b) = (0,0). The second largest eigenvalue is doubly degenerate and obtained
for (a, b) = (0,1) or (a, b) = (1,0). Any of these choices will simplify (6.9) to

λ0,1 = λ0,1 = 1 − h(2m + 1) + hS
(m,

√
n )

a = λ1

From Lemma 1, we know that the length T ∗
2 of the optimal schedule length is

bounded as Tl ≤ T ∗
2 ≤ Tu, where Tl = m2 + 2m + 2 and Tu = 16m2 + 8m + 1.
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The rate of convergence of G2,m with the optimal schedule is λ
1/T ∗

2
1 ≤ λ

1/Tu

1 since

T ∗
2 ≥ Tu. Similarly, λ

1/Tl

1 ≤ λ
1/T ∗

2
1 . Hence, the result follows. �

To understand the effect of higher transmit power on the convergence rate in
2-tori, first simplify the expressions for λ1 in Theorem 2 using h = γ /(4m + 1),
0 < γ < 1:

λ1 = 1 − γ
(2m + 1)

(4m + 1)
+ γ

sin((2m + 1)π/
√

n )

(4m + 1) sin(π/
√

n )

We can compare this to the 1-torus case with h = γ /(2m + 1), where

ρ1 = 1 − γ + γ
sin((2m + 1)π/n)

(2m + 1) sin(π/n)

Clearly, λ1 is of similar form as ρ1 in Theorem 1, except that the term
√

n is replaced
by n.

However, there is a significant difference between the two cases in the length of
the optimal schedule. This length was shown to be Θ(m) for the 1-torus, and Θ(m2)

for the 2-torus. This means that the effect of interference depends on the geometry
of node placement. High transmit powers reduce available network throughput by
causing more interference. In TDMA-scheduling MAC protocols, this effect is re-
flected in longer schedules. For a 1-torus, this is still offset by the resultant long-
range connections. However, this is no longer true for higher dimensions where

6.3.2.2 Tori in Arbitrary Dimensions

The results in Lemma 2 can be extended to higher-dimensional grids with toroidal
boundary conditions. Similarly, to find the upper bound one can generalize the
schedule described in Lemma 1 that was used to find an upper bound. It can be
shown that the length of the optimal schedule will be Θ(md).

The results in Lemma 3 can also be generalized to d−dimensions as λ1 = 1 −
h(2m + 1) + hS

(m,l)
1 . Thus, the convergence rate increases with transmit power in

geometries having dimension 2 or more.

6.4 Hierarchical Networks

Since the calculation of the rates of convergence for average consensus for arbitrary
graphs is not possible even without the interference constraints, we do not expect
to be able to extend our results for arbitrary graphs. In this section, we consider
another useful class of graphs that allow us to state analytical results. We consider a
variation on the random geometric graphs by adding a backbone of dedicated (long-
distance) communication nodes. Thus, we consider a hierarchical network with N
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Fig. 6.6 Schematic of
backbone nodes placed along
a 1-dimensional torus. The
ith backbone node is placed
at ri = (i − 1

2 ) 1
K

from the
origin, for i = 1,2, . . . ,K

sensing nodes uniformly randomly placed on a torus in [0,1]d , and Kd identical
regularly spaced backbone nodes on the torus, as shown in Fig. 6.6 for d = 1.

We assume that the backbone nodes do not participate in sensing, and only com-
municate with each other in the network. Each backbone node has a fixed exclusive
region of coverage, i.e., it (alone) collects data from all the sensing nodes within a
sphere of radius r = 1/2K . Initially, each backbone node collects and averages the
data from all the sensing nodes in its region of coverage. All the backbone nodes
now run an average consensus algorithm among themselves with their respective
averaged data as initial values. We again assume the Manhattan connectivity model.
It is possible to pass on this (global) average back to all the nodes within their cov-
erage regions in O(1) steps. Therefore for analyzing the rate of convergence, it is
sufficient to analyze the time taken for collecting data by the backbone nodes and
the time taken to reach consensus among these nodes.

We begin by characterizing the number of sensors reporting to each backbone
node.

Lemma 4 For large N and if the number of backbone nodes scales as o( N
logN

),

asymptotically almost surely1 (a.a.s.) the number of sensors per coverage area is

n = Nπd/2

Γ (1+d/2)(2K)d
, where K is the number of nodes per dimension.

Proof This can be proven by a variation of the argument used in the theory of
random geometric graphs [20] to show regularity. Our approach here closely fol-
lows [21]. Consider a sphere S of radius r centered at point P on the torus. Mark-
ing the points 1,2, . . . ,N , we can associate with each point k a random variable Xk

(1 ≤ k ≤ N ) defined as:

Xk = 1S (k)

where 1(.) is the indicator function. That is, 1S (k) = 1 if k ∈ S , and 0 otherwise.
Since the sensing nodes are placed on the torus uniformly and independently of each
other, {Xk} are i.i.d. Bernoulli with success probability

p = Vol. of sphere

Vol. of torus
= πd/2

Γ (1 + d/2)(2K)d

1In this article, a property UN is said to hold asymptotically almost surely if and only if
P(UN is true) tends to 1 as N → ∞.
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The number of sensors inside the sphere is thus a binomial random variable

Y �
N∑

k=1

Xk

with μ � EY = Np. We can now use the Chernoff bound:

P
(|Y − μ| > μδ

) ≤ 2 exp

(
−μδ2

2

)

For 0 < δ < 1, since the number of nodes Kd = o( N
logN

) we can always choose

δ =
√

4 logN

N
· γKd = o(1), N → ∞

for some γ > 0. Plugging this value into the bound, we see that

P
(
Y /∈ [

μ(1 − δ),μ(1 + δ)
]) ≤ 1

N2ηγ
≤ 1

N3

where η = πd/2

2dΓ (1+d/2)
and γ is chosen such that ηγ > 2. So a.a.s.,

Y = Np
(
1 ± o(1)

)

Thus, the probability that any coverage area does not have n(1 ± o(1)) nodes is

P

(⋃
k

{
Yk /∈ [

μ(1 − δ),μ(1 + δ)
]}) ≤

⋃
k

P
(
Yk /∈ [

μ(1 − δ),μ(1 + δ)
])

= Kd 1

N3
< N

1

N3
= 1

N2

where we have used the union bound. The result now follows readily. �

Since each of the Kd backbone nodes has n sensors in its coverage region a.a.s.
when N is large, a total of nKd sensing nodes will be covered by the backbone
network. Therefore for large N , it is always possible to achieve consensus over a
positive fraction

κ = nKd

N
= πd/2

2dΓ (1 + d/2)

of the sensing nodes, independent of N and K .
We will now study specific cases for d = 1 and 2. To begin, we note that for

d = 1,

κ1 = π1/2

2Γ (3/2)
= 1
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and for d = 2,

κ2 = π

4Γ (2)
= π

4
≈ 78.5%

As stated above, we assume that each backbone node collects data by polling all
the sensing nodes in its coverage region. This is done in parallel over all backbone
nodes, by a suitable choice of transmit power. Assuming each node transmits in one
time slot, we need n time slots to initialize the consensus algorithm, where a.a.s.

n = αN

Kd

During the consensus phase, the network topology is identical to the (regular) ring
and torus topologies discussed previously. As before, let each node transmit at fixed
power Pm to reach m ≤ �K/2� neighbors per direction per dimension. Using the
results in Theorems 1 and 2, we obtain that for Kd = o( N

logN
), a.a.s.,

(
1 − h(2m + 1) + hS

(m,K)
1

) 1
4m+1 ≥ β ≥ (

1 − h(2m + 1) + hS
(m,K)
1

) 1
2m+1

for the ring or 1D torus and

(
1 − h(2m + 1) + hS

(m,K)
1

) 1
16m2+8m+1 > β >

(
1 − h(2m + 1) + hS

(m,K)
1

) 1
m2+2m+2

for the 2D torus.

6.5 Conclusions

We have introduced a framework that considers the effects of realistic communi-
cation constraints on average consensus algorithms. In particular, we analytically
characterize the performance of the medium access control algorithm that maxi-
mizes the speed of convergence. We study the effect of transmit power on conver-
gence in the presence of interference. In interference-limited wireless networks, the
geometry of node placement plays a key role in deciding the fastest converging con-
sensus graph. While forming long-range links (using more power) always improves
the convergence on ring topologies, it is not so for higher-dimensional tori.

This work could be extended to other classes of graphs, like Cayley graphs and
expander graphs that have good convergence properties [22]. Another issue is the
effect of stochastic data loss through effects due to fading and interference, using a
different framework as compared to [2, 10], to explicitly account for interference.
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Chapter 7
Analyzing the Theoretical Performance
of Information Sharing

Paul Scerri, Prasanna Velagapudi,
and Katia Sycara

Summary Individuals in large, heterogeneous teams will commonly produce sen-
sor data that is likely useful to some other members of the team, but it is not pre-
cisely known to whom the information is useful. Some recent work has shown that
randomly propagating the information performed surprisingly well, compared to
infeasible optimal approaches. This chapter extends that work by looking at how
the relative performance of random information passing algorithms scales with the
size of the team. Additionally, the chapter looks at how random information pass-
ing performs when sensor data is noisy, so that individuals need multiple pieces of
data to reach a conclusion, and the underlying situation is dynamic, so individuals
need new information over time. Results show that random information passing is
broadly effective, although relative performance is lower in some situations.

7.1 Introduction

Exciting applications are emerging that involve large, heterogeneous teams acting
in complex environments. Examples include search and rescue [4], disaster re-
sponse [13], and military applications [3]. In such domains, team members will
often collect local information that is necessary or useful to other members of the
team. For example, in urban search and rescue operations, an aerial robot might be
able to locate a victim, but be unable to assess their condition or determine a route to
them. A ground robot on the team could perform these tasks, but might be unable to
locate the victim by itself. Efficiently getting such information from those collecting
it to those requiring it is one of the keys to effective team performance. However,
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teammates often have limited information about which, if any, team members re-
quire particular pieces of information. Thus, the team member collecting some piece
of information needs to determine whether and where to send collected information
with limited knowledge of who might need it and how important it is to them. At
the same time, team members must also be careful about what they communicate as
the volume of incoming information is typically dramatically higher than available
communication bandwidth.

Recognizing the utility of such information and delivering it efficiently across
a team has been the focus of much research, with proposed approaches ranging
from flooding [2] to channel filters [1] and matchmakers [7]. Interestingly, random
forwarding of information has been found to be a surprisingly effective informa-
tion sharing approach in some domains [2]. In previous work, we investigated this
phenomena in detail and showed that, in certain systems, random forwarding of
information performs almost half as well as a globally optimal approach [15].

In small teams or static environments, a variety of approaches have been ap-
plied to the information sharing problem. One example, STEAM [14], requires team
members to keep others informed of their current state, allowing members to intel-
ligently reason about which teammates need which information. Approaches using
matchmakers [7] allow team members to keep some central point informed of their
state, while the control point is responsible for directing information as required.
More recently, for applications such as sensor networks, algorithms drawing on in-
tuitions of how human gossip [2] works have been shown to be effective, but often
wasteful with bandwidth. Token-based algorithms have also been shown to be effec-
tive for large-scale team coordination [17] and belief sharing [15] in some domains.

An interesting feature of both gossip and token algorithms is that little knowl-
edge of the team is known or assumed. Nearly random communication coupled
with local reasoning is sufficient to produce surprisingly competitive results [16].
It is this surprising effectiveness of lightweight, decentralized, and largely random
algorithms that is the focus of this paper. The intention in this work is to understand
and quantify when and how these simple strategies will be effective.

In previous work, we established an upper-bound on average case performance of
information sharing in large teams and showed that in certain circumstances random
policies can achieve a significant portion of that performance [16]. By adding simple
heuristics to avoid redundant communications, it was possible to improve the per-
formance of a purely random policy significantly. This means that in domains where
network and utility distributions are similar to these cases, random information shar-
ing policies may present an efficient and robust information sharing solution.

This paper extends that previous work in two important ways. First, it looks at
how the relative performance of the random policies vary with the size of the net-
work. Two opposing forces influence the performance. On the one hand, bigger
networks allow random strategies to revisit the same agent less often, improving
their relative performance, but bigger networks give more options for an intelligent
strategy to exploit, reducing the relative performance of random strategies. Second,
this paper looks at cases where agents might need more than one piece of informa-
tion, either because the information is noisy or because the environment is dynamic.
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In one case, there are multiple, overlapping, noisy sensor readings generated by the
team over time. Here, even team members with very high interest in a particular
piece of information will not need to know every reading, only a subset that allows
the underlying features or state to be inferred correctly. In another case, the un-
derlying environment changes over time and agents need to track features. Results
show that random information propagation is relatively better in the noisy case, but
relatively worse in the dynamic case.

7.2 Information Sharing

In this section, we formally describe the information sharing problem. Consider
a team of agents, A, working to achieve some goal. Suppose there is a piece of
information η obtained by team member a ∈ A. If any other member b ∈ A were
to obtain that information, it would impact their ability to perform the team goal.
Define the utility ξa(η) as the quantification of this change in performance. In order
for b to get the information, it must be communicated across the network, N . This
requires some members of the team to spend resources such as time and power on
communicating the information. Thus, there is some communications cost κ(a, b, η)

associated with transmitting η from a to b.
The best team performance is achieved when information is shared with the set

of team members that have a higher utility for the information than the cost of com-
municating it to them. If the communication cost is expressed in the same units as
the utility, this is represented by the maximization:

A∗ = arg max
A⊆T

∑
a∈A

(
ξa(η) − κ(·, a, η)

)
(7.1)

In order to address the specific problem of information sharing in a large, dynamic
team, we make several key assumptions. First, communications are assumed to be
peer-to-peer and of a constant cost per transmission. Rather than representing the
communications cost of every pair of agents, κ(a, b, η) can be compactly repre-
sented as some fixed cost κ when agents are neighbors in the network, and infinite
when they are not. This is reasonable for domains with peer-to-peer communica-
tions, as transmission between distant teammates in a network can be decomposed
into a sequence of transmissions to their intermediate neighbors. The only solutions
that are lost in this decomposition are solutions where teammates forward informa-
tion along but do not make use of it, a rare case for a team.

Given this assumption, it is possible to condition the performance of an infor-
mation sharing algorithm by the number of communications it has used. In many
domains, the tradeoff between communication cost and utility is not well character-
ized or fixed. Avoiding it allows results to be generalized by removing the second
term from (7.1) and allowing us to compare performance across algorithms which
make multiple communications per time step.

Second, while the utility of some information will change over time, we assume
that communication is sufficiently fast that utility is constant while a single piece



148 P. Scerri et al.

of information is being shared across the network. For example, in a search and
rescue domain, the utility of knowing where a fire is will change if the fire spreads
or team members move relative to it. However, the speed of these changes is orders
of magnitude slower than the millisecond scale transmission speeds of a modern
wireless network connecting the team members.

Finally, in a large team, rather than modeling the utility explicitly for each mem-
ber, we assume that it can be summarized in a utility distribution over all agents.
This distribution represents the probability that team member A has some utility
ξ for a piece of information η. For a given domain, the utility distribution can be
computed empirically by conditioning on relevant variables and sampling utility as
information is shared in the team. For analytic purposes, we can approximate this
distribution by a number of canonical probability distributions such as normal, uni-
form, and exponential distributions.

7.2.1 Token Algorithms

Given these assumptions, we consider two extremes of token-based algorithm de-
sign in addressing this problem. In these algorithms, a token is created that contains
some information η. This token is atomically passed from teammate to teammate.
When a team member receives the token, it can make use of the information inside,
then decide to either forward the token to a neighbor or delete it. Since tokens use
exactly one communication per time step, token algorithms can control the number
of communications by using tokens that are deleted after a fixed number of steps.

If we take advantage of all possible knowledge of agent utility and network prop-
erties, the optimal approach is to directly solve the maximization in (7.1). This is
done using an exhaustive search of all possible network paths of length t . We call
this a t -step lookahead approach.

On the other hand, if we ignore all available knowledge of agent utility, we
can propose a simple algorithm of randomly passing information from neighbor
to neighbor. This equates to simply performing a random walk across the network.
We therefore call this the random walk approach.

Given that no knowledge of utility is used in routing a random walk, its efficiency
is primarily determined by its coverage of the network. We therefore introduce two
intermediate algorithms that are equally naïve with regards to utility, but signifi-
cantly more intelligent about coverage. A token will maximize coverage if it never
revisits the same agent in a network. Thus, a straightforward improvement to the
random walk approach is the addition of a history of nodes carried within the token.
As the token moves around the network, visited agents are marked in this history,
and when the token is being routed, this history is used to exclude visited agents
from selection. If all neighbor nodes are visited, the algorithm selects a link at ran-
dom. This approximates a self-avoiding walk over the network, so we term this the
random self-avoiding walk approach.
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This approach is reasonable when the size of the history is expected to be
bounded to a reasonable size. However, in very large teams or systems where to-
kens visit many agents of the team, this is not a practical solution. In these cases, if
there are a bounded number of tokens in existence at any given time, an alternative
solution is to maintain a local history at each agent for each active token, consist-
ing of its previously used incoming and outgoing network connections. Similarly to
the random self-avoiding approach, agents that receive a token multiple times will
attempt to send it to different neighbors each time, selecting randomly from the out-
going edges if all of them have been previously used. We designate this the random
trail approach.

7.3 Experimental Results

A highly abstracted information sharing token simulator was created to empirically
test the performance of token-based information sharing methods. The simulation
consists of a network of agents that are assigned utilities for a given piece of in-
formation from a specified distribution. A token representing that information is
initialized at a randomly chosen agent within the network. The agents propagate the
token around the network according to some routing policy, and the accumulated
utility is recorded at each step until the simulation executes some fixed number of
steps. Results are averaged over 20 runs.

Five canonical network types were examined: small-worlds, scale-free, hierar-
chical, lattice, and random. Unless otherwise stated, each was generated to contain
1000 nodes with an average degree of 4. The small-worlds network was generated
by adding random links to a doubly-connected ring. The scale-free network was
generated using a tunable variant of the Barabási–Albert algorithm [9]. The hierar-
chical network was formed by adding nodes evenly to a balanced tree. The lattice
was a four-connected 2D grid with wraparound, and the random network was cre-
ated by adding random links until the average degree was reached. In most cases,
results for random networks were analogous to those of scale-free networks, thus
some results for random networks were omitted for brevity.

Three canonical distributions were examined: uniform, normal, and exponential.
The uniform distribution was over the interval [0,1]. The exponential distribution
had a rate parameter of λ = 1.0, but was scaled by a factor of 0.2. In the case of
the normal distribution, the mean and variance of the distribution were sometimes
altered for various trials, but the nominal parameters were μ = 0.5, σ = 0.2.

Four information sharing methods were considered: optimal, random walk, ran-
dom trails, and self-avoiding walks. The optimal policy was approximated using a
finite lookahead policy with global knowledge. Every m-steps, an exhaustive search
of paths of length m was executed to determine an optimal path. This path was ex-
ecuted fully, followed by another m-step planning phase. Ideally, this stage would
consist of a single path search of the final path length, but computing this path is ex-
tremely expensive due to the nonMarkovian nature of the utility function (as agents
are visited, their utility drops to zero, so the joint distribution of utility is always
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dependent on complete network state). Instead, smaller values of m were chosen
empirically from the results of early experiments.

7.3.1 Optimality of the Lookahead Policy

In order to determine a sufficient approximation of optimality, an experiment was
conducted in which the depth of the lookahead policy was varied over the four net-
work types with a normal utility distribution (μ = 0.5, σ = 0.2), and the utilities
of the resulting communication paths computed. The results of these tests can be
seen in Fig. 7.1, where the utility obtained by each token is plotted against the num-
ber of communications the token was allowed. As lookahead depth increases, the

Fig. 7.1 Optimality of n-step lookahead over four network types with a normal utility distribution
(μ = 0.5, σ = 0.2). The utility obtained by each token is plotted against the number of communi-
cations used
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obtained utility converges asymptotically to the optimal. Interestingly, while looka-
head depths of 1, 4 and 8 converge toward an asymptote, 2-step lookaheads, denoted
by the circle symbols, appear to perform pathologically poorly. It is possible that
this is due to a negative interaction between the width of the networks and the depth
of the search pattern, where the lookahead policy may consistently make myopic
routing decisions. From these results, a lookahead policy with a depth of 4 was se-
lected as a baseline for future experiments, as a compromise between computational
complexity and optimality of performance.

It is also possible to evaluate the optimality of token-based lookahead policies
against the upper bound established in [16]. The dashed lines in Fig. 7.1 corre-
spond to these bounds. Two key characteristics are immediately evident. First, the
lookahead policies often converge very closely to the upper bound on performance,
suggesting that in the ideal case, token routing methods can perform very close to
optimal. Second, while the bound is independent of network structure, clear differ-
ences are visible in the optimality of the lookahead policy over different network
types. Most notably, in Fig. 7.1(d), the hierarchical network performs much worse
than the upper bound, suggesting that information propagation via tokens in this
type of structure is either highly inefficient or requires an extremely deep lookahead
depth.

7.3.2 Optimality of the Random Policies

The four information sharing methods were tested in normal and exponential dis-
tributions. Figures 7.2 and 7.3 show the results of these experiments. It is evident
that performance is heavily influenced by network type, with all policies perform-
ing significantly worse in hierarchical networks with both distributions and random
policies performing proportionally much worse in the small worlds and hierarchical
networks (Figs. 7.2(d) and 7.3(d)). Random policies perform best in the scale-free
and lattice networks, with purely random walks attaining almost half the utility of
the lookahead policy in the scale-free network with a normal utility distribution.
The addition of self-avoiding heuristics appears to improve random policy perfor-
mance significantly, primarily in the lattice and scale-free networks. The similar
performance of the random trail and self-avoiding walk policies suggests that they
are comparably effective at avoiding previously visited agents when covering the
network. Further experiments focused on the random trail policy, as it typified the
performance of the heuristic random policies.

As an example of the surprisingly efficient performance of random policies, con-
sider Fig. 7.2(b). In it, we find that a utility of 175 is attained by a lookahead policy
using an average of 300 communications. The same utility is obtained by a random
self-avoiding policy in 425 communications. However, the random self-avoiding
policy has no computational or structural overhead as it is completely unaware of
utility. This suggests that under these conditions, if the cost of maintaining the nec-
essary knowledge to perform an optimal strategy is on par with the cost of the extra
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Fig. 7.2 Performance of random and lookahead policies over four network types with a normal
utility distribution (μ = 0.5, σ = 0.2). The utility obtained by each token is plotted against the
number of communications used

125 communications, a randomized policy is in fact a competitive strategy for in-
formation sharing.

7.3.3 Effects of Noisy Estimation

Exploring this tradeoff further, we examine the effects of noisy estimates of utility
on performance of the lookahead policy. Gaussian noise was introduced into the
utility estimates of unvisited team members used by the lookahead policy. The utility
of visited members was fixed at zero and not affected by this noise. To simulate the
compounded inaccuracy of estimating the utility of team members further away in
the network, the standard deviation of the noise (γ ) was scaled exponentially by the
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Fig. 7.3 Performance of random and lookahead policies over four network types with an exponen-
tial utility distribution (λ = 1.0, scale factor of 0.2). The utility obtained by each token is plotted
against the number of communications used

network distance between teammates (da,b) using the following equation

γa,b = (γ + 1.0)da,b − 1.0 (7.2)

As seen in Fig. 7.4, as the amount of noise was increased, the performance of the
lookahead policies degraded. This suggests that even when using an ideal routing
policy, incorrect estimates of utility can disrupt intelligent routing policies. How-
ever, at γ = 1.0, the noise was so large that estimates of utility were approximately
random. The only usable information available in this condition was that the util-
ity of visited teammates was fixed at zero. Without the ability to discern high- and
low-utility team members, the remaining difference in performance between the
lookahead and random policy in the high noise condition cannot be attributed to
the selection of higher utility paths. However, it may be the result of the lookahead
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Fig. 7.4 Effects of noise on lookahead and random trail policy over four network types with a
normal utility distribution (μ = 0.5, σ = 0.2). The utility obtained by each token is plotted against
a noise scaling parameter γ

policy’s ability to avoid myopic routing decisions that might force future communi-
cations to pass through visited teammates.

7.3.4 Properties Affecting Optimality

Another observation was that the proportional gap between the lookahead policy
and the random trail policy varied repeatably over networks and utility distributions
across trials, suggesting that a combination of network structure and utility distribu-
tion properties affect the efficiency of the random trail policy. To explore this further,
a wide array of networks and utility distributions were tested across a constant num-
ber of communications of t = 250 to study how the optimality of the random trail
policy was affected by various properties. A cross section of these results can be
found in Figs. 7.5 and 7.6. It was found that certain characteristics clearly affected
optimality, while most had negligible effects.
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Fig. 7.5 Effects of network density on optimality of random trail policy over four network types
with a normal (μ = 0.5, σ = 0.2), exponential (λ = 1.0, scale factor of 0.2), and uniform utility
distribution. The proportion of lookahead utility refers to the utility of the random trail policy
scaled by that of a 4-step lookahead policy

The type of network had a clear impact on optimality. Interestingly, small worlds
and hierarchical networks were similar in performance and contrasted with scale-
free networks. In this experiment, particularly interesting results were obtained for
random networks, so these results are presented in lieu of the grid results.

The network density was another property that showed a clear effect on optimal-
ity. At low network densities (ρ = 2), the average case performance of the random
trail algorithm matched or exceeded the optimal policy on the small worlds and
random networks. The consistency of this result, and its specificity, suggest that cer-
tain combinations of network structure, utility distribution, and network density are
pathological for the lookahead policy. At higher densities, the optimality seemed to
converge to a constant value dependent on network type.

Aside from inconsistent behavior at low network densities, the variance of the
utility distribution also affected optimality, with the random trail policy performing
better as variance was decreased. This makes sense, as a perfect self-avoiding policy
over a network of members with constant utility (no variance) will always take an
optimal path.
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Fig. 7.6 Effects of variance on optimality of random trail policy over four network types with a
normal utility distribution (μ = 0.5, σ varied) and varying network densities. The proportion of
lookahead utility refers to the utility of the random trail policy scaled by that of a 4-step lookahead
policy

Fig. 7.7 Effects of varying
value distribution as a scale
free network is scaled up on
relative optimality of random
policies

7.3.5 Scaling Network Size

In the initial set of scaling experiments, distribution type, routing type and network
type were varied as the size of the network was scaled up. The results are shown
in Figs. 7.7–7.9. Each of the figures use log scaling on both the x- and y-axes. In
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Fig. 7.8 Effects of varying routing type as a scale free network is scaled up on relative optimality
of random policies

Fig. 7.9 Effects of varying network type as a scale free network is scaled up on relative optimality
of random policies

the first of the experiments, varying the distribution type, random trails routing was
used on a scale free network (Fig. 7.7). In all cases, overall value for a fixed token
propagation length is shown. The slight improvement in value received with big-
ger networks was due to the larger network resulting in less situations where the
token unavoidably retraced its own path. Notice that this effect lessens as the net-
work gets bigger and will asymptotically reach some limit when it never retraces it
path. In the second of the experiments, the routing type was varied on a scale free
network, with an exponential value distribution, while the network size was scaled
up. Notice that the lookahead policy, which knows the whole network improves its
value much more with the increasing network size than any of the random policies.
This is because the larger network offers more opportunities for the lookahead to
exploit. Since the scale-free network has a small worlds property, the width of the
network, i.e., the average distance between any two nodes in the network increases
only slowly, thus offering many more opportunities for the lookahead to exploit, at
relatively low cost. While the random policies benefit from retracing their steps less
often, they do not proactively exploit the new opportunities. In the third scaling ex-
periment, the network type is varied, with random trails routing and an exponential
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Fig. 7.10 Confirming the
impact of revisits on random
policies by varying network
density of a scale free
network with network size
scale up

Fig. 7.11 The performance of the lookahead algorithm on small worlds networks of varied density,
with TTL = 25

value distribution, while the network size is scaled up. The improvement in value for
the bigger networks was much less pronounced for the hierarchy, because the struc-
ture of that network does not make it easy for the token to avoid revisiting agents,
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Fig. 7.12 The performance of the lookahead algorithm on small worlds networks of varied density,
with TTL = 250

even in very big hierarchies. The other network types offer many more alternative
paths, hence lead to a bigger value increase for the bigger network.

To confirm that it is the reduced need to revisit agents that allows the value in-
crease with scale up for the random routing policies, we varied the network density
of a scale free network and used random trails routing on the networks, while the
overall network size was scaled up. The results are shown in Fig. 7.10. Notice that
for the larger networks, random trails performed relatively better on denser networks
(average density 4 or 8) than on sparser networks (average density 2), confirming
the hypothesis. There is no significant difference in the average density 4 and aver-
age density 8 case, because the token already has sufficiently many options in the
density 4 case to avoid most revisits.

The next set of experiments looked at the performance of the lookahead routing
on small-worlds networks and hierarchies as the network density is increased (see
Figs. 7.11–7.14). The network density makes relatively little difference to overall
effectiveness, since these social networks have relatively low width, even when the
density is quite low. The line labeled “0.2 0.7” uses a normal distribution of values
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Fig. 7.13 The performance of the lookahead algorithm on hierarchies of varied density, with
TTL = 25

with a mean value of 0.2 and a standard deviation of 0.7, and similarly for the other
lines. As expected, when the mean is higher, the lookahead is able to find better
agents to deliver the information to and when the standard deviation is higher, the
lookahead exploits the high value agents efficiently.

Finally, we looked at how random routing performs when an agent might need
multiple pieces of information. Two possibilities were modeled. First, when propa-
gated information was noisy sensor readings, with agents potentially needing multi-
ple readings to reduce uncertainty sufficiently. Second, when information was prop-
agated about something that was changing over time, hence requiring new infor-
mation occasionally. Measuring the average value received by the tokens was not
an appropriate metric, in this case, because it incentivized behavior where there
was maximal delay between delivering dynamic information to agents that needed
it most, since that would be high value. Instead, the performance metric used was
the sum of information needs over both agents and time. For this metric, lower is
better, since lower implies agents needing information the most have received it ear-
liest (and more often, in the dynamic case). Figure 7.15 shows the results. In the
dynamic case, the relative advantage of lookahead over random policies increases
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Fig. 7.14 The performance of the lookahead algorithm on hierarchies of varied density, with
TTL = 250

almost linearly, since the lookahead policy can repeatedly exploit its search to find
agents with highest value for the information. However, in the noisy case, the differ-
ence gets smaller over time because there is less value for the lookahead to exploit
after the highest value agents have received the information. Notice that in this case,
the random trails and random self avoid policies do not attempt to avoid repeated
visits across tokens, only for the single token.

7.4 Related Work

The problem of communication in teams has been well-studied in a variety of fields.
Approaches such as STEAM [14] and matchmakers [8] share knowledge about in-
formation requirements in order to reason about where to direct information. Gossip
algorithms [2] and token passing algorithms [15, 17] use randomized local policies
to share information and are thus particularly suited to large scale problems. To ad-
dress the expense of synchronizing beliefs over teams, several techniques have been
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Fig. 7.15 The relative performance of random strategies when multiple pieces of information are
required per agent, either due to noise or dynamics on a scale free network

developed in conjunction with decentralized Bayesian filtering techniques, includ-
ing channel managers [1] and query-based particle filters [11].

A number of approaches to communication for multi-agent coordination have
evolved around the concept of multi-agent partially observable Markov decision
processes (POMDPs). Some approaches augment the decentralized problem with
actions for synchronization [10], while others model communications as an ex-
plicit choice and seek to maximize the tradeoff between communication cost and
reward [5, 18] to achieve goals such as minimizing coordination errors [12].

7.5 Conclusions and Future Work

This chapter extends previous work that established upper bounds on token-based
propagation. Specifically, it was shown the that relative performance of random
token-passing policies scaled well with overall network size and were actually rela-
tively better when noisy. Overall random policies were found to perform relatively
poorly on small-worlds networks, while performing well on scale-free and lattice
networks. In addition, hierarchical networks were shown to be ill-suited to even op-
timal token-based information sharing algorithms. The empirical conclusions sup-
port the idea that for some domains, random information sharing policies will be a
very reasonable approach to take.

In future work, we will apply these results to a variety of physical domains, in-
cluding urban search and rescue and mobile mesh networking. Using these analysis



7 Analyzing the Theoretical Performance of Information Sharing 163

methods, it should be possible to determine which information sharing methods are
best suited to these domains, including if and when random policies should be used.
In addition, by modeling the utility distributions of these domains, it may be possi-
ble to gain insight into the fundamental properties of real-world information sharing
problems, in turn improving the information sharing algorithms that must address
them. Further graph-theoretic and probabilistic analysis should yield tighter bounds
on performance, and additional experiments can determine the optimality of other
common information sharing algorithms such as classic flooding [6], gossiping [2],
and channel filtering [1].
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Chapter 8
Self-Organized Criticality of Belief Propagation
in Large Heterogeneous Teams

Robin Glinton, Praveen Paruchuri, Paul Scerri,
and Katia Sycara

Summary Large, heterogeneous teams will often be faced with situations where
there is a large volume of incoming, conflicting data about some important fact. Not
every team member will have access to the same data and team members will be
influenced most by the teammates with whom they communicate directly. In this
paper, we use an abstract model to investigate the dynamics and emergent behaviors
of a large team trying to decide whether some fact is true. Simulation results show
that the belief dynamics of a large team have the properties of a Self-Organizing
Critical system. A key property of such systems is that they regularly enter criti-
cal states, where one additional input can cause dramatic, system wide changes. In
the belief sharing case, this criticality corresponds to a situation where one addi-
tional sensor input causes many agents to change their beliefs. This can include the
entire team coming to a “wrong” conclusion despite the majority of the evidence
suggesting the right conclusion. Self-organizing criticality is not dependent on care-
fully tuned parameters, hence the observed phenomena are likely to occur in the real
world.

8.1 Introduction

The effective sharing and use of uncertain information is key to the success of large
heterogeneous teams in complex environments. Typically, noisy information is col-
lected by some portion of the team and shared via the social and/or physical net-
works connecting members of the team [2]. Each team member will use incoming,
uncertain information and the beliefs of those around them to develop their own be-
liefs about relevant facts. For example, in the initial reaction to a disaster, members
of the response team will form beliefs about the size, scope, and key features of the
disaster. Those beliefs will be influenced both by what they sense in the environ-
ment and what they are told by others in the team. Human teams have developed
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processes and strategies for managing this messy information and acting without
necessarily having convergent beliefs [8]. However, in heterogeneous teams, where
team members are not exclusively humans, but may be intelligent agents or robots,
and novel network structures connect the team members, we cannot assume that
the same tactics will help convergence or that undesirable and unexpected effects
will not be observed. Thus, before such teams are deployed in important domains,
it is paramount to understand and potentially mitigate any system-wide phenomena
that affect convergence. There have been previous attempts in the scientific litera-
ture to describe the information dynamics of complex systems, however, due to the
complexity of the phenomena involved, mathematical formulations have not been
expressive or general enough to capture the important emergent phenomena.

To investigate the dynamics and emergent phenomena of belief propagation in
large heterogeneous teams, we developed an abstracted model and simulator of the
process. In the model, the team is connected via a network with some team mem-
bers having direct access to sensors and others relying solely on neighbors in the
network to inform their beliefs. Each agent uses Bayesian reasoning over beliefs of
direct neighbors and sensor data to maintain a belief about a single fact which can
be true or false. The level of abstraction of the model allows for investigation of
team level phenomena decoupled from the noise of high fidelity models or the real-
world, allowing for repeatability and systematic varying of parameters. Simulation
results show that the number of agents coming to the correct conclusion about a
fact and the speed of their convergence to this belief, varies dramatically depending
on factors including network structure and density and conditional probabilities on
neighbor’s information. Moreover, it is sometimes the case that significant portions
of the team come to have either no strong belief or the wrong belief despite over-
whelming sensor data to the contrary. This is due to the occasional reinforcement
of a small amount of incorrect sensor data from neighbors, echoing until correct
information is ignored.

More generally, the simulation results indicate that the belief propagation model
falls into a class of systems known as Self Organizing Critical (SOC) systems [1].
Such systems naturally move to states where a single local additional action can
have a large system wide effect. In the belief propagation case, a single additional
piece of sensor data can cause many agents to change belief in a cascade. We show
that, over an important range of conditional probabilities, the frequency distribution
of the sizes of cascades of belief change (referred to as avalanches) in response to a
single new data item follows a power law, a key feature of SOC’s. Specifically, the
distribution of avalanche sizes is dominated by many small avalanches and expo-
nentially fewer large ones. Another key feature of SOCs is that the critical behavior
is not dependent on finely tuned parameters, hence we can expect this criticality to
occur often, in real-world systems. The power law suggests that large avalanches
are relatively infrequent, however when they do occur, if sparked by incorrect data,
the result can be the entire team reaching the wrong conclusion despite exposure
to primarily correct data. In many domains such as sensor networks in the military,
this is an unacceptable outcome even if it does not occur often. Notice that this phe-
nomena was not revealed in previous work, because the more abstract mathematical
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models were not sufficiently expressive. Finally, our simulation results show that
the inclusion of humans resulted in fewer and smaller avalanches.

8.2 Self-Organized Criticality

Self Organized Criticality is a property of a large number of many body complex
systems identified in the pioneering work of Bak et al., characterized by a power
law probability distribution in the size of cascades of interaction between system
constituents. In such systems, these cascades are frequently small and punctuated
by very large cascades that happen much less frequently. Self Organized Criticality
(SOC) has been used in an attempt to explain the punctuated equilibrium exhibited
by many systems [3, 7]. The defining characteristic of systems that exhibit SOC
Systems is an attractor in the system state space which is independent of parameter
values and initial conditions. Such an attractor, typically called a critical state, is
characterized by a lack of a characteristic scale in the interactions of system con-
stituents. For a system in a critical state long range correlations exist, meaning that
perturbations caused by individual system constituents can have system-wide ef-
fects. There are many systems which exhibit criticality, but require fine tuning of a
global control parameter to enter the critical state. For a system that exhibits SOC,
the system will spontaneously enter a critical state due to the intrinsic interactions
within the system, independent of system parameters [1].

Systems which exhibit SOC share certain fundamental characteristics. Chief
among these are large numbers of constituents interacting on a fixed lattice. Further-
more, for each unit in the system, the number of its neighbors on the lattice which
it interacts with is typically a small percentage of the constituents of the system.
There are three primary system influences that lead to systems which exhibit SOC.
The first is an external drive which attempts to change the state of the individual.
Examples include market forces which influence an individual’s stock purchasing
decisions in economic models or gravity acting on the particles of a sandpile. The
second factor is a resistance of the individual to change. In the economic model,
this would be the individual’s cognitive resistance to purchasing a stock, while in
the sandpile, friction would play this role. The last factor is a threshold in the lo-
cal resistance at which the individual relents and changes (toppling grains in the
sandpile or the point at which an individual is satisfied that a stock is a worth-while
purchase).

These three factors interact to create the conditions necessary for the character-
istic scale-free dynamics of SOC. For the power law dynamics of SOC, external
events can have temporal effects on the system well beyond the instant at which the
external influence acted, which in turn results in long range temporal and spatial
synchronization. In a system which exhibits SOC the local resistance is naturally
balanced such that, most of the time, most individuals are below the threshold to
change and building towards it (they are remembering external events). The result
is that most of the time only a few agents will change and propagate information.
However, infrequently, many agents will simultaneously reach the threshold and a
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massive avalanche will occur. For a system in which the local resistance is too large,
the system will quickly dissipate local perturbations. We refer to this as a system
with a static regime. In the static regime, local perturbations do not lead to system-
wide effects. In systems where, local resistance is too low, local perturbations are
quickly propagated and massive avalanches are frequent. We refer to this as a system
with an unstable regime.

To make the SOC concept clear, consider the concrete example of dropping
sand onto different parts of a sandpile. If friction is low corresponding to the first
regime, dropping sand on the sandpile would always result in many small scale local
“avalanches” of toppling sand. Conversely, if friction is too high, grains of sand will
not be able to start a flow and avalanches will never occur. However, when friction
is balanced between these two extremes, some parts of the sandpile would initially
resist toppling due to the addition of sand. Sand would collect on many different
parts of the sandpile until a critical threshold was reached locally where the weight
of the sand would exceed the friction forces between grains. The friction results
in system “memory” which allows for many parts of the pile to reach this critical
state simultaneously. As a result, a single grain of sand acting locally could set off
a chain reaction between parts of the pile that were simultaneously critical and the
entire pile would topple catastrophically. This is why power laws are typical in the
statistics of “avalanches” in SOC systems.

8.3 Belief Sharing Model

Members of a team of agents, A = {a1, . . . , aN }, independently determine the
correct value of a variable F , where F can take on values from the domain
{true, false,unknown}. Note that the term agent is generic in the sense that it rep-
resents any team member including humans, robots, or agents. We are interested in
large teams, |A| ≥ 1000, that are connected to each other via a network, K . K is a
N ×N matrix where Ki,j = 1, if i and j are neighbors and 0 otherwise. The network
is assumed to be relatively sparse, with

∑
j Ki,j ≈ 4,∀i. There are six different

network structures we consider in this paper: (a) Scalefree, (b) Grid, (c) Random,
(d) Smallworld, (e) Hierarchy and (f) HierarchySLO. A comprehensive definition
of networks a–d can be found in [6]. A hierarchical network has a tree structure.
A hierarchySLO has a hierarchical network structure where the sensors are only at
the leaves of the hierarchy. Some members of the team, H ⊂ A are considered to
be humans. Certain members of the team, S ⊂ A with |S| � |A|, have direct access
to a sensor. We assume that sensors return observations randomly on average every
second step. A sensor simply returns a value of true or false. Noise is introduced into
sensor readings by allowing a sensor to sometimes return an incorrect value of F .
The frequency with which a sensor returns the correct value is modeled as a random
variable Rs which is normally distributed with a mean μs and a variance σ 2

s . Agents
that are directly connected to sensors incorporate new sensor readings according to
the belief update equation, given by (8.1), this is the version used to calculate the
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probability that F is true to incorporate a sensor reading that returns false:

P ′(bai
= true) = A

B + C
(8.1)

A = P(bai
= true)P (sai

= false|F = true) (8.2)

B = (1.0 − P(bai
= true))tP (sai

= false|F = false) (8.3)

C = P(bai
= true)P (sai

= false|F = true) (8.4)

Agents use (8.5) to incorporate the beliefs of neighbors:

P ′(bai
= true) = D

E + G
(8.5)

D = P(bai
= true)P (baj

= false|F = true) (8.6)

E = (1.0 − P(bai
= true))P (baj

= false|F = false) (8.7)

G = P(bai
= true)P (baj

= false|F = true) (8.8)

where P(bai
) gives the prior belief of agent ai in the fact F and P(sai

|F) gives the
probability that the sensor will return a given estimate of the fact (true or false) given
the actual truth value of the fact. Finally, P(baj

|F), referred to interchangeably as
the belief probability or the conditional probability or CP, gives a measure of the
credibility that an agent ai assigns to the value of F received from a neighbor aj

given F . Humans are assigned a much larger credibility than other agents. That is,
for ah ∈ H and ak /∈ H , P(bah

|F) 	 P(bak
|F) ∀i,h,k . Humans also have a higher

latency between successive belief calculations.
Each agent decides that F is either true, false, or unknown by processing its belief

using the following rule. Using T as a threshold probability and ε as an uncertainty
interval the agent decides the fact is true if P(bai

) > (T + ε), false if P(bai
) <

(T − ε), and unknown otherwise. Once the decision is made, if the agents decision
about F has changed, the agent reports this change to its neighbors. Note that in
our model, neither P(bai

), the probability that F is true according to agent ai , or
the evidence used to calculate it, is transmitted to neighbors. Communication is
assumed to be instantaneous. Future work will consider richer and more realistic
communication models.

8.4 System Operation Regimes

This section gives insight into the relationship between the local parameter regimes
discussed in Sect. 8.2 and the parameters of the belief model introduced in Sect. 8.3.

When P(baj
|F), the credibility that agents assign to neighbors, is very low,

agents will almost never switch in response to input from neighbors so no propaga-
tion of belief chains occurs. This is the static regime. The unstable regime occurs
in the belief sharing system for high values of P(baj

|F). In this regime, agents take
the credibility of their neighbors to be so high that an agent will change its belief
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Fig. 8.1 The system in a critical state

based on input from a single neighbor and large chains of belief propagation occur
frequently.

The SOC regime occurs for values of P(baj
|F) between the two other ranges.

Within the SOC regime, most of the time there are small avalanches of belief prop-
agation. Much more infrequently there are large system wide avalanches. The large
avalanches occur because in this regime P(baj

|F) acts as a local resistance to
changing belief when receiving a neighbors belief. As described in Sect. 8.3 for
an agent in the unknown state, there are thresholds on P(bai

) above which the agent
will change to the true state, (and vice versa). In certain circumstances given the data
received by agents thus far, many agents will simultaneously reach a state where
they are near the threshold. In this case, a single incoming piece of data to any of
the agents will cause an avalanche of belief changes. Figures 8.1 and 8.2 give an
example. In the figure, P0 gives the prior on each agent and St a sensor reading
received at time step t . Figure 8.1 shows a critical state where many agents are si-
multaneously near the threshold of P = 0.8 as a result of sensor readings S1 . . . S9.
Figure 8.2 shows what happens when one additional sensor reading, S10 arrives at
time t = 10. The numbered arrows shows the ordering of the chain of changes as
every message passed causes each agent to change its belief since they all need one
additional message to rise above the threshold. The result is a system-wide propa-
gation of belief changes.

8.5 Simulation Results

We performed a series of experiments to understand the key properties and predic-
tions of the system. First, we conducted an experiment to reveal that the system
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Fig. 8.2 One additional reading causes a massive avalanche of changes

exhibits SOC. The result of this experiment is shown in Fig. 8.3. The x-axis gives
the length of a cascade of belief changes and the y-axis gives the frequency with
which a chain of that length occurred. The plot is a log-log plot so we expect a
power law to be evident as a straight line. The underlying network used to produce
the figure was a scale-free network. The 7 lines in the figure correspond to CP val-
ues (judgement of a neighbors credibility) of 0.52, 0.54, 0.56, 0.58, 0.6, 0.7, and
0.8. Each point in the graph is an average over 500 runs. While CP values from 0.52
to 0.6 exhibit a power law, values greater than 0.6 do not. This is because if agents
have too much faith in their neighbors (large values of CP) then all agents change
their beliefs immediately upon receiving input from a neighbor and the system con-
verges quickly. This is the unstable regime. While we produced this figure solely for
a scalefree network due to space constraints, our experiments show that this trend is
true across all networks.

The existence of the SOC regime for a particular range of credibility is important
for real world systems because the massive avalanches of belief changes could be
propagating incorrect data. Furthermore, this occurs rarely and would be difficult to
predict. It would be desirable to avoid or mitigate such an eventuality. Understand-
ing the particular parameter responsible and the ranges over which this phenomena
occurs allows system designers to reliably do this.

Having revealed the SOC regime in the model, we wanted to obtain a deeper
understanding of the relationship between the parameters of the model and the dy-
namics of belief propagation in this regime. We concisely capture the dynamics of
belief cascades using a metric that we refer to as center of mass. Center of mass is
defined as: ∑

i=1toN (AvalancheFrequency ∗ AvalancheSize)∑
i=1toN AvalancheFrequency



172 R. Glinton et al.

Fig. 8.3 The straight line
plots mean that the avalanche
distribution follows a power
law for the associated
parameter range

and can be thought of as the expected length of a chain of belief changes. The next
experiment studies the relationship between CP (assessment of a neighbors credi-
bility) and center of mass across the six different network types. Experiments had
1000 agents and 6 different networks. Results are averaged over 500 runs. Figure 8.4
gives the result of these experiments. The x-axis gives CP and the y-axis captures
the averaged center of mass. The figure shows a uniform trend across all the net-
works that when agents have more faith in their neighbors, the center of masses
of the avalanches become larger. However, this effect is much less extreme for the
networks that are hierarchies. This is because in a hierarchy there are relatively few
paths between random pairs of nodes along which belief chains can propagate (all
paths go through the root node for example). The effect is particularly prevalent in
the networks like the Scalefree and Smallworld networks, because these networks
all have a large number of paths between random pairs of nodes.

Next, we conducted an experiment to understand the effect of increasing the num-
ber of sensors, and thus the amount of information available to the system, on belief
dynamics. The x-axis of Fig. 8.5, represents the number of agents that have sensors
(out of 1000) while the y-axis represents the center of mass. Each point in the graph
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Fig. 8.4 Conditional Probability vs Center of Mass Graph

Fig. 8.5 Effect of the increasing the number of sensors on center of mass

represents an average of 500 runs over 6 different networks. For this experiment, CP
is set to 0.56. The graph shows that as the number of sensors increases the center of
mass across all the networks types decreases (or increases by only a small amount).
A particularly sharp drop is observed for scalefree networks. This is because agents
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Fig. 8.6 Density vs. Center of mass plot

with sensors have more access to information and are thus more certain in their
own beliefs and less likely to change belief in response to information from neigh-
bors. This means that cascades of belief changes are smaller. Conventional wisdom
dictates that if information received is primarily accurate then more information is
better. We see here, however, that increasing the number of individuals that have
access to a sensor can discourage the desirable sharing of information. This could
be a problem if some sensors in a system are receiving particularly bad data and
thus need information from their neighbors.

The next experiment looks at the impact of the average network density on the

center of mass where average network density =
∑

ai
Ki,j

|A| , which is the average num-
ber of links that an agent has in the network. The x-axis of Fig. 8.6 shows the aver-
age network density increasing from 2 to 8 and the y-axis gives the center of mass.
As the network density increases, the center of mass either increases (for scalefree,
smallworld, and random) or remains constant (for grid, hierarchySLO and hierar-
chy). This is due to the fact that each agent can influence more neighbors and hence
lead to the formation of bigger avalanches resulting in a higher or at least equal
center of mass.

Next, we conducted an experiment to study the effect that humans have on belief
propagation within the system. The model of a human used is described in Sect. 8.3.
Human agents have higher credibility and are slower to change beliefs. The x-axis of
Fig. 8.7 shows the percentage of humans in the network increasing from 0 to 100%
and the y-axis gives the center of mass. Figure 8.7 shows that at first increasing
the percentage of humans in a team up to about 20% increases the center of mass
of the length of avalanches. The length of avalanches decreases when more than
20% of the agents are human. This effect was noted across all network types. The
higher credibility of humans tends to encourage changes in others who receive hu-
man input, and thus humans can encourage avalanches. Conversely, the long change
latency of humans has the effect of impeding avalanche formation. When the per-
centage of humans is below 20%, the avalanche enhancing effect of the high human
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Fig. 8.7 Human percent vs. Center of mass plot

CP predominates, while above this value the impedance effect caused by the long
latency predominates.

The previous experiments were aimed at understanding the dynamics of belief
propagation and the parameters that impact it. However, they did not reveal the na-
ture of the convergence. That is, how many agents actually converge to the correct
belief. Our next experiment was conducted to study the impact of network type
on the nature of convergence. There are three graphs presented in Fig. 8.8 corre-
sponding to random, Small world and Scale free networks, respectively. Each graph
represent a total of 2500 simulations of the system. The sensor reliability in all the
three graphs is fixed to 0.75. A sensor reliability of 0.75 would mean that the sensor
gives a true reading with a 0.75 probability. The x-axis gives sizes of clusters of
agents that reached a correct conclusion and the y-axis gives the number of simula-
tions out of the 2500 in which such a cluster occurred. The plot corresponding with
the scale free network shows a particularly interesting phenomena. There are two
humps in the graph. The larger of the two shows that large numbers of agent con-
verge to the correct conclusion quite often. However, the smaller hump shows that
there is a smaller but still significant number of simulations where only very small
clusters of agents converge to the correct result. This is a startling result because it
says that despite having the same number of sensors with the same reliability the
system can come to drastically different conclusions. This is probably due to the
nature of the information (correct or incorrect) that started an SOC avalanche which
led to convergence. This has important implications in many domains where scale
free networks are becoming increasingly prevalent.

The previous experiment gave us insight into the nature of convergence of the
system and its relationship to system parameters and network type. However, all
previous experiments were conducted using 1000 agents and we wanted to find out if
the scale of the system, in terms of number of agents, had any effect on information
propagation. In addition, we wanted to understand the sensitivity of the system to
changes in system scale, given a particular communication network structure. To this
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Fig. 8.8 Correct conclusions
as a function of network type

end, we conducted an experiment in which the size of the agent team and network
type were both varied and the percentage of agents within the system that converged
to true was recorded. For this experiment, 10% of the agents had a sensor up to a
maximum of 200 sensors. Sensor reliability was set to 0.75 with CP = 0.8, ε =
0.3 and P(bai

) = 0.5. Figures 8.9–8.14 give the results of this experiment. For all
graphs, the x-axis gives the percentage of agents within the system that converged
to true and the y-axis gives the number of simulation runs (out of 500) in which the
corresponding percentage of agents converged to true. Note that there is an implied
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Fig. 8.9 Frequency for which a certain percentage of agents converge to true over different net-
work sizes. The agents use a Grid communication network

Fig. 8.10 Frequency for which a certain percentage of agents converge to true over different net-
work sizes. The agents use a Hierarchy for communication
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Fig. 8.11 Frequency for which a certain percentage of agents converge to true over different net-
work sizes. The agents use a HierarchySLO communication network

Fig. 8.12 Frequency for which a certain percentage of agents converge to true over different net-
work sizes. The agents use a Scalefree communication network
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Fig. 8.13 Frequency for which a certain percentage of agents converge to true over different net-
work sizes. The agents use a Random network

Fig. 8.14 Frequency for which a certain percentage of agents converge to true over different net-
work sizes. The agents use a small-world ring communication network
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temporal progression in the graphs. Specifically, if in a particular simulation run the
maximum number of agents that converged to true was 90%, this implies that there
was an intermediate time step within the simulation run at which 50% of the agents
had converged to true. For each unit on the x-axis, the corresponding histogram bars
correspond (from left to right on the plot) to 100, 500, 1000, 2000, and 5000 agents.

Figure 8.9 gives the results of the scale experiment when the agents communi-
cated using a Grid network (network types are discussed in Sect. 8.3). This graph
shows that scale has a significant impact when a grid is used as a communication
network. For the larger systems, with greater than 100 agents, the system infre-
quently has more than 70% of the agents converging to true. This is not surprising
because on a grid each agent can only influence a small number of other agents in
the system and hence information propagation cascades are easily dampened. What
is surprising is that this trend is reversed below 70%. That is below this threshold
the larger the system, the more frequently it attains the corresponding percentage of
convergence. This cannot be explained by the network structure and must then be a
result of the large-scale interaction of the agents.

Figures 8.10 and 8.11 give the results for the two communication networks that
are organized as tree structures (Hierarchy and HierarchySLO). Both graphs show
that scale has a profound effect on information propagation through a hierarchy.
This is because a tree structure isolates large portions of the system from each other.
In the extreme case, any information that originates in roughly one half of the nodes
in the system must pass through the root node to reach nodes in the other half of the
system. This bottleneck acts to dampen the majority of the cascades in the system
because the root node is solely responsible for passing this information between
the two halves of the system. This means that if the root node makes a mistake, it
has a disproportionately large effect. This effect is more pronounced at larger scales
because there is always a single root node in all cases but the size of the isolated
sections of the system do scale.

To produce Fig. 8.12 a communication network with a Scalefree structure was
used. This figure shows, as intuition would dictate, that scale has little effect on
convergence for this type of network. This is because the hubs (few agents with
high connectivity) act as cascade multipliers, widely disseminating information in
the system. However, it is surprising that for the Grid structure (Fig. 8.9) the system
more frequently reaches higher percentages of agents converging to true. This can
be again explained by the hubs present in the system. Just as in the case of the
hierarchy networks, the negative decisions of the hubs have a disproportionately
large effect on the system resulting in lower convergence to the correct result.

Figure 8.13 shows the results when a Random network was used. The results are
very similar to those for when a Scalefree communication network was employed.
This is not surprising because they have similar properties, for example similar av-
erage network width. Random connections mean that independent of scale there is
a high probability of a short path between any two nodes in the system independent
of scale.

Figure 8.14 was produced for a system employing a communication network
with the properties of a small-world ring network. The sensitivity of the system em-
ploying the small-world ring system to scale seems to share properties with both the
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Grid-network and the Random network. Like the system employing the Grid net-
work, the percentage of agents converging to true, seems to be much higher for 100
agents than when greater numbers of agents are used. However at other scales the
small world ring system behaves in a similar fashion to the Random network. This
is reasonable because the small-world ring consists of primarily structured connec-
tions similar to the Grid network, however, unlike the grid network the small world
ring contains of a few random connections.

8.6 Related Work

Many studies have been conducted to discover systems which exhibit SOC. SOC
has provided an explanation for the distribution of earthquake intensity [7]. Drossell
showed that forest fire models exhibit SOC dynamics [3]. SOC has been used to
explain the avalanche dynamics of a wide range of “pile” models including, sand-
piles [1], and rice grains [4]. In addition, a number of researchers have attempted to
use SOC to describe models of evolution [10].

In all of these treatments, simulations of simple models of networked nodes are
used to investigate the self-organized criticality of the respective systems. In these
treatments, the nodes are homogeneous and change there state according to a simple
rule that is the same for all nodes. The model described in this paper differs from
these others through the use of nodes which are heterogeneous in their decisions
about changing state. The heterogeneity is a result of the distribution of priors across
the system. In addition, these distributions of probabilities introduces a dynamic
thresholding that is not present in these other models. This means that in the model
described in this paper, each node makes a decision about changing state using a
unique rule.

The model used in the paper, due to Watts [9], is similar to our own in that it also
uses heterogeneous nodes which change state based on a distribution of thresholds
to change. There are, however, a number of key differences between our work and
that of Watts. The first is that, in our model, we introduce a simple model of a hu-
man. The technical difference introduced by the introduction of human nodes is that
some nodes in our system have increased latencies before changing with respect to
changes made by their neighbors. Unlike Watts, we explore the effect of these la-
tencies which includes novel system dynamics which fall outside of self-organized
criticality. Another key difference is that our model is a three state model (true,
false, unknown), while Watts uses a two state model (1, 0 equivalent to true, un-
known in our model). The result of this is an increase in complexity of the decision
rules used by nodes which also introduces regimes of system dynamics outside of
self-organized criticality. Finally, in the Watts model once an agent changes to the
true state, it remains in that state for the remainder of the simulation, this is not the
case in our model. This has a dramatic effect on the information propagation in the
system as well as on the types of emergent effects that are possible. Consequently,
in the case of Watts’ model only avalanches of true states are possible. In [5], Mot-
ter discusses cascading failures in electrical networks. Motter investigates cascades
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due to removing nodes as opposed to cascades of decisions as in our work. Unlike
the work discussed here, Motter does not examine the relationship between system
properties and the distribution and sizes of cascades.

8.7 Conclusions and Future Work

This work demonstrated that a system of belief sharing agents exhibits SOC dynam-
ics for a particular range of agent credibility. SOC dynamics are likely to exist in
real-world systems because of the relatively wide parameter range over which this
regime occurs. In addition, we discovered that humans can have a dramatic effect on
information propagation. Small numbers of humans encourage information propa-
gation in the system while large numbers of humans inhibit information propaga-
tion. Finally, we found that for scale free networks, SOC dynamics often propagate
incorrect information widely even when much correct information is available.

In the future, we plan to investigate the effects of using a more complex model
of the belief maintained by an agent, including multivariate beliefs. Of particular
interest are multivariate beliefs where variables are conditionally dependent. In real
world systems, beliefs are often abstracted as they move up a hierarchy, we plan to
include this effect in future belief models and to study the resulting effect on the
convergence of the system. We also plan to investigate richer models of the rela-
tionship between agents and the resulting effects on belief propagation, including
authority relationships, trust, and reputation. Finally, we plan to investigate the ef-
fects of malicious manipulation by an intelligent adversary on the convergence of
the system.
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Chapter 9
Effect of Humans on Belief Propagation
in Large Heterogeneous Teams

Praveen Paruchuri, Robin Glinton, Katia Sycara,
and Paul Scerri

Summary Members of large, heterogeneous teams often need to interact with dif-
ferent kinds of teammates to accomplish their tasks, teammates with dramatically
different capabilities to their own. While the role of humans in teams has progres-
sively decreased with the deployment of increasingly intelligent systems, they still
have a major role to play. In this chapter, we focus on the role of humans in large,
heterogeneous teams that are faced with situations, where there is a large volume
of incoming, conflicting data about some important fact. We use an abstract model
of both humans and agents to investigate the dynamics and emergent behaviors of
large teams trying to decide whether some fact is true. In particular, we focus on
the role of humans in handling noisy information and their role in convergence of
beliefs in large heterogeneous teams. Our simulation results show that systems in-
volving humans exhibit an enabler-impeder effect, where if humans are present in
low percentages, they aid in propagating information; however when the percentage
of humans increase beyond a certain threshold, they seem to impede the information
propagation.

9.1 Introduction

As intelligent systems get increasingly deployed in the real world, humans need
to work in cooperation with various other entities such as agents and robots. The
effective sharing and use of uncertain information in decision-making is the key
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to the success of such large heterogeneous teams in complex environments. Typ-
ically, noisy information is collected by some portion of the team and shared
with others via a network [3]. Each team member will then use this uncertain
information and the beliefs of those around them to develop their own beliefs
about relevant facts. For example, consider the case of Network Centric War-
fare [6, 13]. In this domain, a large number of agents and humans must do a variety
of tasks, such as planning, information fusion and resource allocation. All these
tasks need the exchange of potentially uncertain information between the differ-
ent team members to arrive at a decision required to achieve joint goals. In this
chapter, we focus on the role of humans in handling noisy information and their
role in convergence of beliefs in large heterogeneous teams that include machine
agents.

We developed an abstracted model and simulator for studying the dynamics and
interaction between the various members of large, heterogeneous teams. In our
model, the team is connected via a network with some team members having di-
rect access to sensors, while others relying solely on neighbors in the network to
provide inputs for their beliefs. Each agent then uses Bayesian reasoning over the
beliefs of direct neighbors and sensor data to maintain it’s own belief about a sin-
gle fact which can be true, false, or unknown. Simulation results indicate that the
number of agents coming to a correct conclusion about a fact and the speed of their
convergence to this belief depends on various factors including network structure,
the percentage of humans in the team and the conditional probability of belief in
neighbor’s information.

Our experiments show that our belief propagation model exhibits the property
that a single additional piece of data can cause a cascade of belief changes, re-
ferred to as avalanches. In particular, we observed that the frequency distribution of
these avalanches follows a power law over a certain conditional probability range,
a key feature of SOC’s (Self-organizing critical systems). Our results also indicate
that humans have a significant effect on the way these avalanches occur. In par-
ticular, we uncovered a new effect due to the presence of humans which we call
the enabler-impeder effect which holds across a general range of experimental set-
tings.

The rest of this chapter is organized as follows. Section 9.2 provides a brief
description of the Self Organized Criticality property. Section 9.3 describes the
enabler-impeder effect, a new effect that we uncovered in this work. Section 9.4
provides the actual model of a heterogeneous team that we use for purposes of sim-
ulation. Section 9.5 provides the results of the various experiments we performed
using our simulator. In particular, we present extensive simulation results that shows
the influence of humans under different system parameters on the behavior of large
scale heterogeneous teams. Our results uncover the enabler-impeder effect due to
the presence of humans and the SOC nature of such teams. Section 9.6 provides the
related work while Sect. 9.7 summarizes the chapter and provides a list of possible
extensions for this work.
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9.2 Self-Organized Critical Systems

There has been a lot of focus on identifying systems that exhibit Self Organized
Criticality (SOC) as a property [1, 5, 7, 8, 12]. The main reason that SOC behav-
ior is considered important is that most of the observed phenomenon in SOC sys-
tems occur for a large range of parameters [1], as opposed to the dependency on
fine-tuning of parameters in general complex systems. Systems which exhibit SOC
share the following fundamental characteristics. All SOC systems consist of a large
number of interacting constituents which interact with a relatively small percentage
of the other system elements. The behavior of these constituents are dominated by
three factors: (a) An external drive that changes the state of the individual; (b) Re-
sistance of the individual to change; (c) Threshold in the local resistance at which
the individual changes its belief or behavior. In our experimental section, we show
that the system modeled here indeed exhibits these features over a large parameter
range. A key feature of SOC’s is that the avalanches caused by a single additional
piece of data exhibits a power law property over a certain conditional probability
range. The power law implies that the distribution of avalanche sizes is dominated
by many small avalanches and exponentially fewer large ones. Identifying this be-
havior is important since the critical behavior of SOC’s is not dependent on finely
tuned parameters, and hence we can expect this criticality to occur often in real-
world systems too. The power law suggests that large avalanches are relatively in-
frequent. However, when they do occur, when sparked by incorrect data, the result
can be that the entire team reaches a wrong conclusion despite exposure to primar-
ily correct data. In many domains, such as our Network Centric Warfare, this is an
unacceptable outcome even if it does not occur often.

9.3 The Enabler-Impeder Effect

Addition of humans to large heterogeneous teams result in changing the interaction
dynamics of the existing system. In particular, we uncovered a new team dynamic
which we refer to as the enabler-impeder effect. This effect means that up to a cer-
tain percentage, humans enable belief propagation and above that percentage they
actually impede the propagation. Thus, big avalanches occur most often in teams
with some humans, but less often in teams with few or many humans. The reason
behind the enabler-impeder effect is as follows: The enabler effect is due to the fact
that agents have a higher belief in humans while the impeder effect is due to the
fact that humans have a high latency between successive belief calculations. More
details of our model of humans is presented in Sect. 9.4.

We now provide a brief discussion on the effect of the enabler-impeder effect on
the formation of avalanches. In general, occurrence of avalanches is good as it im-
plies that agents are able to convey their beliefs to many other agents in the network.
Bigger avalanches imply that each agent is able to convey and influence the beliefs
of a larger set of agents. However, really large avalanches can potentially be harmful
since agents can start imposing their beliefs on others or manipulate the network.
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We mention the word potentially here because there can be situations where we may
want one agent’s opinion to be instantaneously propagated across the network. Such
situations can include an emergency where we want an instantaneous propagation
of beliefs or it can be that the new input is the truth, and hence propagating it instan-
taneously is the correct thing to do. Considering the fact that avalanches are good
up to moderate sizes and potentially harmful thereafter, the enabler-impeder effect
of humans can be classified as a positive effect on the team. This is because while
a moderately high percentage of humans in a team helps in forming avalanches,
addition of humans thereafter impedes the formation of big avalanches that are po-
tentially harmful.

9.4 Model of Information Dissemination in a Network

We now introduce the network model similar to the one presented in [7]. In this
model, there is a team of agents, A = {a1, . . . , aN }, where an agent is a generic term
to imply humans, robots, or agents. We are interested in large teams, |A| ≥ 1000,
that are connected to each other via a network, K . K is represented by |A| × |A|
matrix where Ki,j = 1, if i and j are neighbors and 0, otherwise. The network is
assumed to be relatively sparse, with

∑
j Ki,j ≈ 4,∀i. There are six different net-

work structures we consider in this chapter: (a) Scalefree, (b) Grid, (c) Random,
(d) Smallworld, (e) Hierarchy and (f) HierarchySLO (a hierarchy network with sen-
sors only at the leaf nodes). A comprehensive definition of these networks can be
found in [11].

Some members of the team, H ⊂ A are considered to be humans. Certain mem-
bers of the team, S ⊂ A with |S| � |A|, have direct access to a sensor. A sensor
simply returns a value of true or false with a particular probability. Sensor read-
ings are noisy, so the sensor could return incorrect values with some probability.
The frequency with which a sensor returns the correct value is modeled as a random
variable Rs which is normally distributed with a mean μs and a variance σ 2

s . Agents
that are directly connected to sensors incorporate new sensor readings according to
the following belief update equation.

P ′(bai
= true) = A

B + C

A = P(bai
= true)P (sai

= false/F = true)

B = (1.0 − P(bai
= true)tP (sai

= false/F = false)

C = P(bai
= true)P (sai

= false/F = true)

Agents use the following equation to incorporate the beliefs of neighbors:

P ′(bai
= true) = D

E + G

D = P(bai
= true)P (baj

= false/F = true)
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E = (1.0 − P(bai
= true)P (baj

= false/F = false)

G = P(bai
= true)P (baj

= false/F = true)

where, P(bai
) gives the prior belief of agent ai in the fact F and P(sai

/F ) gives the
probability that the sensor will return an estimate of the fact (true or false) given the
actual truth value of the fact. We refer to, P(baj

/F ), interchangeably as the belief
probability or the conditional probability or CP. P(baj

/F ) gives a measure of the
credibility that an agent ai assigns to an estimate of the value of F received from a
neighbor aj given F .

Each agent decides that F is either true, false, or unknown by processing its belief
using the following rule. If T is a threshold probability and ε an uncertainty interval,
the agent decides that the fact is true if P(bai

) > (T + ε), false if P(bai
) < (T − ε),

and unknown otherwise. Once the decision is made, if the agents decision about F

has changed, the agent reports this change to its neighbors. Note that in our model,
neither P(bai

), the probability that F is true according to agent ai , or the evidence
used to calculate it, is transmitted to neighbors. Instead, the only parameter that is
transmitted is the actual value of F when there is a change in belief (i.e., either true,
false or unknown).

We use a distinct model for the humans in our simulator. In particular, we make
the following two assumptions with respect to humans: (a) Humans are given much
larger credibility than other agents. In other words, agents have a higher belief in
human’s estimation of the value of F than in the value of F given to them by other
agents. That is, for ah ∈ H and ak /∈ H , P(bah

/F ) 	 P(bak
/F ) ∀h,k . This is to ab-

stract away the fact that humans are good at analyzing (given particular information)
and hence agents believe in humans more. (b) Humans have a higher latency be-
tween successive belief calculations. Effectively, this means that humans are slower
to sense the environment or update their beliefs. This is to account for the fact that
humans do not just believe others at face value, but change their beliefs using more
complicated reasoning models without getting into the detailed modeling issues.
We believe that these two assumptions help in achieving our goal of building more
realistic human models.

9.5 Simulation Results

We performed a series of seven experiments to understand the effects of humans
on the key properties and predictions of the system. All our experiments were per-
formed with networks of 1000 agents with six different network topologies [11].
These six different topologies as mentioned earlier are: (1) Scalefree, (2) Grid,
(3) Random, (4) Smallworld, (5) Hierarchy and (6) HierarchySLO. Before present-
ing the details of our experiments, we introduce a metric named center of mass
which is useful to concisely capture the dynamics of belief cascades. Center of mass
is defined as:

∑
i=1...N (AvalancheFrequencyi ∗ AvalancheSizei )∑

i=1...N AvalancheFrequencyi
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Fig. 9.1 Enabler–Impeder effect of humans

where AvalancheSizei = i, AvalancheFrequencyi is the frequency of avalanche size
i and N is the maximum possible avalanche size (which is 1000 in our experiments
since there are 1000 agents in our simulation).

Our first experiment studies the effect that humans have on belief propagation
within the system. Recall that our modeling assumption about humans is that:
(a) They have higher credibility, i.e., an agent believes a human with higher prob-
ability than it believes another agent and (b) Humans are slower to make decisions
i.e., they have a higher latency between successive belief calculations. In our first
experiment, we varied the percentage of humans in the team from 0 to 100 in in-
crements of 20 across the six different network topologies and measured the center
of mass of the avalanches obtained. The x-axis of Fig. 9.1 shows the percentage
of humans in the network increasing from 0 to 100% and the y-axis represents the
center of mass. The figure shows the enabler–impeder effect due to the presence
of humans in the team. In particular, we observe that the center of mass increases
till the percentage of humans in the team reaches 20%, the enabler effect, and then
decreases thereafter, the impeder effect. This effect was noted across all the net-
work types. The higher credibility of humans tends to encourage a change of belief
in others who receive human input and thus humans can encourage or enable the
formation of avalanches. Conversely, the long latency of humans in changing their
beliefs has the effect of impeding the avalanche formation. When the percentage of
humans is below 20% the avalanche enhancing effect of the high human CP pre-
dominates, while above this value the impedance effect caused by the long latency
predominates.

In our second experiment, we show that the network convergence rate is a func-
tion of percentage of humans in the team for a Scalefree network. Figure 9.2 shows
the varying percentages of humans on the x-axis and the frequency of convergence
to the ground truth on the y-axis. The total number of runs for this experiment is
5000 and the ground truth is True. Each line in the graph corresponds to a particu-
lar percentage or greater number of agents converging to the ground truth. Note that
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Fig. 9.2 Network convergence rate as a function of human percentage

greater than 90% of agents, never converged to the ground truth and hence the graph
shows only four lines corresponding to greater than or equal to 50, 60, 70, and 80
percent. An example data that can be obtained from this graph is: If the percentage
of humans in the team is 20, then at least 50% of the agents have converged to the
ground truth 3833 times out of the total 5000 runs. When there are no humans in the
team more than 60% of the agents never converged to the ground truth.

Figure 9.2 confirms our observation that there is an enabler–impeder effect. In
particular, addition of humans to the team helped in formation of avalanches, thus
implying that humans play a key role in propagating the ground truth. This observa-
tion is true here since more than 50% of the team converges to the ground truth in
almost all the settings of the graph. However, once the percentage of humans crosses
60, the frequency of convergence to the ground truth decreases since humans impede
the propagation of information and hence the propagation of the ground truth.

Our third experiment shows that our system exhibits SOC behavior with a vary-
ing CP and percentage of humans in the team. In particular, we performed the exper-
iment varying the CP values from 0.52 to 0.58 in increments of 0.02 and the human
percentage from 0 to 100 in increments of 20. The results of this experiment are
shown in Fig. 9.3. The five plots in the figure correspond to varying the human per-
centage in the system. The x-axis in all the plots denotes the size of the avalanches
and the y-axis denotes the frequency with which avalanches of various sizes occur.
Both the axes are plotted on a log–log scale, and hence we expect a power law to be
evident as a straight line. The underlying network used to produce this figure was a
scale-free network. The 4 lines in the figure correspond to CP values of 0.52, 0.54,
0.56, and 0.58. Each point in the graph is an average over 5000 runs. In general, CP
values greater than or equal to 0.6 did not exhibit the power law. This is because
if agents give their neighbor’s estimates high credibility (large values of CP), all
the agents change their beliefs immediately upon receiving input from a neighbor.
Hence, the bigger avalanches occur frequently without having a distribution over
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Fig. 9.3 Avalanche size versus frequency across various percentages of humans

the small and medium size avalanches which led to the power law. While we show
this figure solely for a scalefree network, our experiments show that this trend is
true across all the network topologies we examined.

From Fig. 9.3, we notice that most of the plots follow the power law in the CP
range from 0.52 to 0.58. However, the addition of humans has a significant effect.
When the percentage of humans was zero, the plot was more spread out i.e., CP
had a greater effect and hence there is a greater spread between the lines even with
small CP increments. However, the effect of CP decreases even with the addition of
a small percentage of humans in the team i.e., there is not much spread between the
various CP lines when the percentage of humans in the team is greater than zero.
The explanation for this is as follows. When there are no humans in the team, the
main parameter affecting the avalanche sizes was the belief in neighbors. Hence,
when CP increases there is a great variation in the occurrence of various avalanche
sizes. However as humans get added to the team (even by a small percentage), given
that agents have a higher belief in humans, they have a much greater effect on the
dynamics of avalanche formation. Thus, increasing the CP in teams with humans



9 Effect of Humans on Belief Propagation in Large Heterogeneous Teams 191

Fig. 9.4 Number of sensors versus Center of Mass

has a small effect on the dynamics of avalanches formed as opposed to the large
effects seen when there are no humans.

Our fourth experiment looks at the relationship between the number of sensors
and the center of mass for a Scalefree network as the percentage of humans in the
team is varied. A similar trend holds for the other network topologies considered
in this chapter. Figure 9.4 shows the number of sensors varying from 10 to 485
on the x-axis and the center of mass on the y-axis. We assume that sensors return
observations randomly on an average of every second step. The six lines in the graph
correspond to human percentages of 0, 20, 40, 60, 80, and 100. Each point in the
graph is generated using 1000 agents and averaged over 1000 runs. The graph shows
that as the number of sensors increase the center of mass of avalanches decreases
(or increases by a negligible amount), across the various human percentages. This
is because agents with sensors have access to more information and are thus more
certain in their own beliefs. Hence, they are less likely to change their beliefs in
response to information from neighbors and hence the cascades of belief changes
are likely to be smaller. This effect of low probability of beliefs in neighbors can be
a problem if some sensors in the system give out particularly bad data since such
agents are likely to ignore potentially correct information from their neighbors.

Another interesting point to note from this graph is the enabler–impeder effect
described in our earlier experiment. In Fig. 9.4, let us consider the center of mass
values when the number of sensors is fixed to 210. The center of mass values at this
point are 〈1.29,1.39,1.40,1.33,1.21,1.02〉 corresponding to the following percent-
ages of humans: 〈0,20,40,60,80,100〉. The enabler effect is predominantly visible
here since the center of mass increases until the percentage of humans reaches 40.
However, above 40% the center of mass values decrease. This shows that varying
the human percentage has a strong effect on the outcome even if the other parame-
ters of the experiment change significantly. A similar pattern is observed in all our
experiments presented below even though a variety of parameters are changed, thus
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Fig. 9.5 Density versus Center of Mass

showing the generality of this effect. To avoid repetition, we indicate the occurance
of this effect in the rest of the experiments without repeating the description.

Our fifth experiment looks at the relationship between the network density and
the center of mass values across six different network topologies as the percentage
of humans in the team is varied. Figure 9.5 shows six plots each corresponding
to a different network type. In each plot, the network density is plotted on the x-
axis and the center of mass on the y-axis. The six lines in each plot correspond
to the six different percentages of humans in the team. Each point in the graph is
generated using 1000 agents averaged over 1000 runs. The plots show that as the
network density increases the center of mass in general increases except for the
grid network where the center of mass mostly remains constant. This is due to the
fact that each agent can influence more neighbors and hence lead to the formation of
bigger avalanches resulting in a higher or at least equal center of mass. As mentioned



9 Effect of Humans on Belief Propagation in Large Heterogeneous Teams 193

Fig. 9.6 Effect of increase in agent’s belief in humans

earlier, the enabler–impeder effect of humans remains a predominant effect in this
experiment too across all the networks except the smallworld network.

Our next experiment looks at the effect of the increase in agent’s belief in hu-
mans over the center of mass as the percentage of humans in the team is varied.
Figure 9.6 shows the agent’s belief in humans on the x-axis and the center of mass
on the y-axis. The six lines in the figure correspond to the human percentage in the
team varied from 0 to 100. From the plot we can see that, as the agent’s belief in
humans increase, the center of mass in general increases across all percentages of
humans in the team except when the percentage is 0 or 100. When the percentage of
humans is 0, since there are no humans in the team the parameter belief probability
in humans has no effect as expected. Similarly, when the percentage of humans is
100, i.e., when there are no agents in the team, the size of the center of mass remains
constant since the parameter cannot have any effect. Similar to all our earlier plots,
the enabler–impeder effect is observed in this plot too.

Our last experiment looks at the effect of increase in human’s belief in other
humans on the center of mass as the percentage of humans in the team is varied.
Figure 9.7 shows the belief probability of humans in humans varying from 0 to 1
on the x-axis and the center of mass on the y-axis. The six lines in the figure corre-
spond to the percentage of humans in the team varying from 0 to 100. When there
are no humans in the team the belief probability parameter does not affect the sim-
ulation and hence a straight line is obtained as expected. For the rest of the lines,
when the belief probability is zero it means that humans do not believe other hu-
mans and hence disregard other human’s inputs. As the belief probability increases,
humans start considering others beliefs, but still remain skeptical. This trend con-
tinues till 0.5 where the situation becomes equivalent to information coming from
an unbiased coin toss. Due to this skeptical nature of humans in other humans, they
effectively impede the formation of avalanches and hence lower the center of mass.
As the belief probability in other humans crosses 0.5 and moves towards 1, humans
start believing other humans more, enabling the formation of bigger avalanches and
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Fig. 9.7 Effect of increase in agent’s belief in humans

hence increase the center of mass. As obtained in all our earlier plots the enabler–
impeder effect is observable across the various human percentages in the team.

9.6 Related Work

Many studies have focused on the belief propagation models for large heteroge-
neous teams. While most of these studies focus on the cascade effects of belief
propagation, not much effort has been put into studying the specific effect of hu-
mans on such teams. For example, in [14] a belief propagation model is used for
a large heterogeneous team. Using this model, the paper shows that the cascades
generated by their system follows a power law and hence exhibits SOC dynamics.
Our model is similar to theirs, in the sense that they too use a heterogeneous nodes
model with state change based on a distribution of thresholds. However, they do
not introduce an explicit model of the human. The main difference introduced due
to the presence of humans is that humans have a higher credibility and increased
latency for changing as compared to other agents. We then explored the effects of
these changes and uncovered two key properties: (a) The presence of humans re-
sults in the enabler–impeder effect, a new effect that has not been uncovered earlier.
(b) The belief dynamics of our system across various human percentages exhibits
the properties of a Self-Organizing Critical system. In [9], Motter discusses cascad-
ing failures in electrical networks. In particular, Motter investigates cascades due to
removal of nodes as opposed to cascades of decisions as in our work. Furthermore,
there is no explicit model of humans considered in their work.

In contrast, [2, 4], and [10] study the properties of heterogeneous human teams.
While each of these papers presents a different way in which the team members
update their beliefs, all these works uncover the cascading effects in large scale
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teams with humans. For example, [10] studies the cascading effects in heteroge-
neous teams where the individuals are modeled as naive Bayesian norm followers.
Using this model, they uncovered the herding behavior in human societies, a direct
result of the cascading effect of belief propagation. However, none of these works
uncover the enabler–impeder effect that humans bring in nor the SOC nature of such
teams.

9.7 Conclusions and Future Work

Our conclusions from this work are the following. We built an abstract model and
a simulator that studies the dynamics and interactions between the various mem-
bers of a heterogeneous team. We then performed various experiments to study the
properties of the simulator. In particular, we focused on the role of humans in all
our experiments. Our main results are as follows: (a) Humans can have a dramatic
effect on information propagation which we characterized as the enabler–impeder
effect. In particular, the effect means that small percentages of humans encourage
information propagation in the system while large percentages inhibit the informa-
tion propagation. (b) We also found that the enabler–impeder effect is consistent
even if other parameters of the domain change significantly. (c) We demonstrated
that our system of belief sharing agents with varying percentages of humans in the
team exhibits SOC dynamics for certain parameter ranges, thus providing a basis
for why our results might hold in a real situation.

In the future, we plan to build more realistic models of humans. In particular, we
would like to model the fact that humans may not maintain exact numbers for beliefs
but a more complicated model. This complicated model could be maintaining beliefs
as intervals or as probability distributions. We also plan to attribute psychological
factors for humans such as optimism, pessimism etc. and other personal attributes
such as motivations and emotions. Effectively, such a modeling can bring out the
notion that humans are decision makers rather than just accumulators of belief. We
would also like to model the fact that humans do not just communicate belief prob-
abilities but also the reasoning behind them. This would require us to develop richer
communication models.
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Chapter 10
Integration of Signals in Complex Biophysical
Systems

Alla Kammerdiner, Nikita Boyko, Nong Ye,
Jiping He, and Panos Pardalos

Summary There is clear evidence of fusion processes exhibited by biophysical sys-
tems, such as the brain. One simple example is the way a human brain processes
visual information. In fact, one of the consequences of normal integration of the vi-
sual information from two retinas in the visual cortex is ability for depth perception.
In actuality, a primate brain is capable of integrating visual, auditory, cutaneous, and
proprioceptive signals in order to extract crucial information that may not otherwise
be fully present in any single type of signal.

Our analysis of neural data collected from primates during sensory-motor exper-
iments shows a clear presence of transient fusion of neural signals. In particular,
the activity in the brain regions responsible for motor planning and control exhibit
cointegration among the instantaneous phase measures, which is associated with
generalized phase synchronization of neural activity.
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10.1 Introduction

When viewed as a self-organized cooperative biological information system, the
brain can be used as a model for developing biologically inspired approaches to
intelligent information fusion. The brain of primates is an incredibly complex bio-
physical system that consists of an extremely large number of interacting neurons
(e.g., estimated 50–100 billion neurons in a human brain) grouped into functionally
diverse areas and is capable of simultaneous processing and continuous integration
of large amounts of multi-modal information.

A process of transmission, fusion, aggregation and distribution of information in
the brain is reflected in spatio-temporal patterns of excitation spread over a large
number of neurons. The brain handles large volumes of sensory information in
parallel via coordinated dynamical interaction of large number of neurons that are
distributed within and across different specialized brain regions. Amazingly, such
complex neuronal interactions allow for very high, efficient and flexible informa-
tion processing. The brain’s ability of creating an internal model of the environment
through learning and self-organization enables effective behavior in response to ex-
ternal changes.

The visual information processing in the human brain provides an example of fu-
sion processes exhibited by biophysical systems. In normal vision, the inputs from
both eyes are fused by sensory systems in the brain into a single percept. In particu-
lar, this neural process, known as binocular integration, is responsible for our depth
perception ability. Because of the distributed organization of sensory systems, the
representation of real-world objects calls for integration of neural activity across var-
ious cortical areas [22]. Since many objects are multisensory in their nature and, as
such, may possess a combination of visual, auditory, haptic and olfactory character-
istics, this integration must be supported by the apparatus for fusion of signals across
different modalities. In fact, as indicated in [22], at all levels of sensory processing,
the neuronal activity is modulated by top-down attentional mechanisms that allow
to dynamically select and fuse sensory signals in a context specific way [3]. Addi-
tionally, flexible dynamic binding of neural activity in sensory and motor cortical
regions is necessary for the sensory-motor coordination [18]. Short-term synchro-
nization of neuronal discharges has been long attributed as a mechanism that facil-
itates dynamical integration of widely distributed collections of neurons into func-
tionally coherent groups that guides execution of cognitive and motor tasks [6, 19].
Moreover, neural synchronization appears to be involved in large-scale integration
of distributed neural activity, which occurs across distant cortical regions [18].

A number of studies have found clear evidence that neural synchronization plays
an important role in a variety of cognitive functions, such as sensory-motor integra-
tion [9, 24]. Specifically, large-scale frequency-specific synchronization of neural
activity has been linked with information integration in associative learning [14],
meaningful perception [17], perceptual awareness [13, 21], and internal cortical in-
teraction and top-down information processing [25]. Interestingly, a recent study [9]
discovered a close relationship between the noise-induced changes in behavioral
performance and the respective changes in phase synchronization between widely
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separated brain areas. The authors conclude that these findings imply that noise-
induced large-scale neural synchronization may play a significant role in the trans-
mission of information in the brain.

Furthermore, importance of neural synchronization processes for normal cogni-
tive functioning is highlighted by the studies of synchronization in the brain activity
of the patients affected by several neurological disorders [22]. In fact, abnormal
neural synchrony patterns are present in certain brain disorders, such as epilepsy,
autism, Alzheimer’s disease, schizophrenia, and Parkinson’s Disease.

10.2 Methods for Analysis of Phase Synchronization

Synchronization can be loosely defined as a process of active adjustment in the
rhythms of the oscillating systems (or subsystems) due to some interaction that can
be characterized by an emergence of the stable relationship between the rhythms
of the systems. The synchronized systems, i.e., the systems in which such stable
relationship between their respective rhythms has been achieved, are often said to
exhibit phase-locking.

Since the first studies describing presence of synchronization in biophysical sys-
tems, such as the heart [23] or the brain, a number of different types of synchroniza-
tion have been introduced, including identical synchronization [4], generalized syn-
chronization [1], phase synchronization [15] and, most recently, generalized phase
synchronization [8]. Here, we will focus our attention on the concepts of phase syn-
chronization and generalized phase synchronization.

In the last decade, phase synchronization has been used extensively to investi-
gate large-scale integration between neural signals [24]. Most of the approaches for
studying phase synchronization utilize instantaneous phase in some way or another.

10.2.1 Instantaneous Phase

A general approach for measuring instantaneous phase has originally been devel-
oped by Gabor [5] and is based on the notion of analytical signal. For an arbitrary
continuous real-valued function x(t) of time parameter t , its analytical signal ξx(t)

is a complex-valued function of t defined as

ξx(t) = x(t) + i x̃(t) (10.1)

where i is an imaginary unit and x̃(t) is the Hilbert transform of x(t), which is
calculated using the following formula:

x̃(t) = C.P.V .

∫ +∞

−∞
1

π

x(s)

t − s
ds (10.2)
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where the abbreviation C.P.V . symbolizes that the integral is taken in the sense of
Cauchy principal value [2].

Since ξx(t) is complex-valued, it can alternatively be written via its polar form
as follows:

ξx(t) = rx(t) exp
{
i φx(t)

}
(10.3)

where rx(t) and φx(t) denote the instantaneous amplitude and instantaneous phase
of the function x(t), respectively. By combining formulas (10.1) and (10.3), it is
easy to see that the instantaneous phase can be directly computed from x(t) as

φx(t) = arctan

{
x̃(t)

x(t)

}
(10.4)

An alternative approach for calculating the instantaneous phase of a given func-
tion, which was proposed by Lachaux et al. [10], is based on the wavelet transform
and is simply analogous to the Hilbert transform approach, which was presented
earlier. In the wavelet transform method, the instantaneous phase is extracted from
x(t) by means of convolution of x(t) with a complex Morlet wavelet (also called
Gabor function):

ϕ(t, f ) = exp

{
− t2

2σ 2
+ i 2πf t

}
(10.5)

where f is a frequency parameter at which ϕ(t, f ) is centered at, and σ is a chosen
rate of decay. Since the result of the convolution of x(t) with the complex wavelet
ϕ(t, f ) for a fixed value f0 of frequency parameter is also a complex-valued func-
tion of t , like ξx(t) in the Hilbert transform approach, then the instantaneous phase
can be obtained analogously to (10.4) as:

φx(t) = arctan

{�(Wx(t))

�(Wx(t))

}
(10.6)

where � and � denote real and imaginary parts, respectively of the convolution of
x(t) with the wavelet ϕ(t, f0):

Wx(t) =
∫ +∞

−∞
ϕ(s, f0) x(t − s)ds (10.7)

Not only are these two approaches for extracting the instantaneous phase anal-
ogous, but also the instantaneous phases obtained by the Hilbert and the wavelet
transform methods are shown to be closely connected, which was first demonstrated
experimentally in [11] and later explained theoretically in [16]. Loosely speaking,
the phase determined using the wavelet transform approximately corresponds to the
phase computed via the Hilbert transform applied to the band-pass filtered data. Ba-
sically, the wavelet transform limits the extracted information to the main frequency
band centered at a given frequency f0 with the rate of decay σ , whereas the Hilbert
transform is parameter free and therefore preserves the entire power spectrum of the
data.



10 Integration of Signals in Complex Biophysical Systems 201

Although both approaches could be used depending on whether one is interested
in a narrow band or a broad band synchronization, in our analysis of experimental
data, we focused our attention on phase synchronization in a broad band sense.

10.2.2 Phase Synchronization

As mentioned above, synchronized systems exhibit a stable relationship between
their respective rhythms called phase-locking. In terms of the instantaneous phases,
the phase-locking relationship between x(t) and y(t) can be defined as

n φx(t) − m φy(t) = const (10.8)

where φx(t) and φy(t) are the instantaneous phases of x(t) and y(t) respectively,
and n and m are integers that define the phase-locking ratio.

Several techniques for examining phase synchronization have been proposed.
One of the most commonly used among these approaches is based on the concept
of the phase locking value [10]. The phase locking value (PLV) at time t is defined
via the average of the phase differences among N trials as follows:

PLV(t) = 1

N

∣∣∣∣∣
N∑

n=1

exp
{
i
(
φ(n)

x (t) − φ(n)
y (t)

)}
∣∣∣∣∣ (10.9)

where φ
(n)
x (t) and φ

(n)
y (t) denote the instantaneous phase estimates in trial n for x(t)

and y(t), respectively, and i symbolizes an imaginary unit.
The PLV quantifies the internal variability of the difference of instantaneous

phases at time t on average across all the trials. To detect statistically significantly
different PLV values, the test is constructed using the surrogate data technique, de-
veloped in [20].

There are two main disadvantages of the PLV approach to measuring phase syn-
chronization. First, it requires performing multiple trials while assuming the phase-
locking ratio of 1:1. Second, the PLV method is inherently bivariate and cannot be
easily extended to study phase synchronization among multiple systems. On the
contrast, an approach based on the idea of generalized phase synchronization that
has been recently developed in [8] can be applied in either bivariate or multivariate
case.

10.2.3 Generalized Phase Synchronization

The concept of generalized phase synchronization is based on modeling of the in-
stantaneous phases of multiple systems by means of cointegrated vector autoregres-
sive processes.
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Suppose the measurements of dynamical changes in K interacting systems are
collected. Let φi(t) denote the instantaneous phase of system i (1 ≤ i ≤ K) at time t .
Combining single time series of φi(t) together for all K systems into a common
K-dimensional process, we obtain φ(t) = (φ1(t), φ2(t), . . . , φK(t))�. Using vector
autoregressive (VAR) processes, multiple series φ(t) of instantaneous phases can be
modeled as follows:

φ(t) = μ + A1φ(t − 1) + A2φ(t − 2) + · · · + Apφ(t − p) + ε(t),

t = 0,±1,±2, . . . (10.10)

where μ = (μ1,μ2, . . . ,μK)� is a fixed K × 1 vector of process mean Eφ(t), Ai,

i = 1, . . . , p are fixed K × K real matrices of regression coefficients, and ε(t) =
(ε1(t), ε2(t), . . . , εK(t))� is a K-dimensional white noise process.

The conditions of stability and stationarity along with Gaussian distributed noise
are the usual assumptions for vector autoregressive processes [12]. In practice stabil-
ity and stationarity assumptions are often too restrictive. In fact, many real-life time
series, including those representing biophysical signals such as electroencephalo-
gram, have more complex nature and, therefore, are better fit by unstable, nonsta-
tionary processes. The stationarity assumption can easily be relaxed by successively
estimating the model parameters on relatively short time intervals. The stability con-
dition assumes that the reverse characteristic polynomial RCP(z) has no roots on or
inside the complex unit circle:

RCP(z) = det
(
IK − A1z − A2z

2 − · · · − Apzp
) �= 0 for complex z, |z| ≤ 1

(10.11)
where IK is a (K × K) identity matrix.

A special class of autoregressive processes for which this condition is violated
are integrated processes. Here, we assume that some of the univariate components
in the multiple series φ(t) of instantaneous phases in (10.10) may be integrated.

The generalized phase synchronization is then defined by introducing the rela-
tionship among univariate components of phase series, which extends the bivariate
condition (10.8) as follows:

cφ(t) = c1φ1(t) + c2φ2(t) + · · · + cKφK(t) = η(t) (10.12)

where c = (c1, c2, . . . , cK)� is a (K ×1) real vector, and η(t) is a stationary stochas-
tic process, which represents the deviation from the constant relation (equilibrium).
The relationship (10.12) also implies that the multiple time series φ(t) of instanta-
neous phases are cointegrated.

A cointegrated vector autoregressive process φ(t) is said to be cointegrated of
rank r , if the correspondent matrix Π = IK −A1 −A2 −· · ·−Ap has rank r . Coin-
tegration rank r is an important characteristic of cointegrated processes. As shown
in [8], the cointegration rank can be interpreted as a measure of the generalized
phase synchronization in the multiple time series.
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Fig. 10.1 The setup, in
which a monkey repeatedly
performed the reach to grasp
task

Fig. 10.2 The five major stages of a successful trial, where CHT, RT, MT, and THT denote time
intervals between Center Pad Hit and Central Light Off/Target Light On, Target Light On and
Central Pad Release, Pad Release and Taget Hit, and Target Hit to Trial End, respectively

10.3 Analysis of the Data Collected During Sensory-Motor
Experiments

This section describes some peculiar patterns of the instantaneous phases of the
data collected from motor and premotor cortical areas during the sensory-motor
experiments. In particular, the computational results show transient integration in
subgroups of neural channels.

10.3.1 Sensory-Motor Experiments and Neural Data Acquisition

To investigate synchronization of neural activity in the brain of primates during plan-
ning, execution and control of upper limb movements, local field potential (LFP)
data was collected using chronically implanted microwire arrays in the following
experiments. A rhesus macaque was trained to perform reach and grasp tasks in re-
sponse to available visual clues. As depicted in Fig. 10.1, the setup, in which the
monkey performed the tasks, included LED lights (to signal visual clues), a cen-
ter pad and two targets (left and right). Although the experiment focused on the
five key stages, the neural signals were recorded continuously, including in between
consecutive trials.
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Each successful trial can be subdivided into the five stages (or phases) according
to the intervals shown in Fig. 10.2. The monkey was trained to touch the central
holding pad when the central LED was turned on. The first stage of each trial began
with the central LED light on and lasted until the animal hit the central pad. As soon
as the animal placed its hand on the pad, a target LED would light up, providing the
monkey with a visual cue as to which target, left or right, must be reached for. So,
the second stage was the time immediately following the center pad hit and preceded
the central light being shut off and instead one of two target LEDs being turned on.
In fact, after a short delay, the central LED would shut off indicating to the animal to
begin reaching for the target according to which of two target LEDs was activated.
That is when stage three began, which lasted until the monkey released the central
pad. The period from the time the animal released the central pad and until the
target was grabbed by the monkey was defined as the fourth stage. Upon grasping
the target in a power grip, the animal were trained to hold the target for a predefined
period of time after which the animal would be rewarded. So, the fifth and final
stage spanned the time from the target hit to the animal receiving the reward, which
concluded the trial.

LFP data was recorded using two chronically implanted microwire arrays. Each
array included two rows of eight microwire electrodes. The length of wire varied as
shown on Fig. 10.3 and the array was designed in such a way that each wire had
a length of 1.5 mm, 2 mm, or 2.5 mm from the tip of the electrode to the array’s
land. The purpose of the land was to keep the electrodes evenly spaced and to limit
the wire depth during an insertion. The diameter of each electrode was 50 microns,
while the spacing between electrodes in each row was 250 microns and the spacing
between each row was 500 microns.

Recordings were performed from the motor and premotor cortical regions, which
have been shown to contribute to planning and execution of upper limb movement.
In particular, neurons located in the motor area are responsible for activation of
muscles in the upper limb, whereas the neurons in the premotor regions can be
involved in planning of a motor action.

10.3.2 Computational Analysis of the LFP Data

The collected experimental data was analyzed statistically to investigate presence of
generalized synchronization during normal sensory-motor activity. Since two mi-
crowire arrays, each having two 8-electrode rows, were used during recordings and
the data was sampled at 20 kHz, we obtained extended 32-dimensional time series
of LFP measurements. Most of the computations were coded and implemented in
the R 2.8.1 statistical software. First, the corresponding instantaneous phases were
computed for each single time series based on the Hilbert transform approach as
described in Sect. 10.2.1. Next, individual univariate time series of instantaneous
phases for different electrode channels were grouped together into respective mul-
tiple series according to specific rows in the arrays. As a result, we obtained four
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Fig. 10.3 Illustration of
microwire array placement
for neural data acquisition.
Each microwire array had 16
electrodes in two rows. Side
view for row 1, side view for
row 2, and top view of both
rows are displayed (from top
to bottom)

8-dimensional time series of the instantaneous phases, each representing neural ac-
tivity measured from the eight electrodes in a given row of two microwire arrays. Fi-
nally, VAR modeling and testing were performed separately on each of four grouped
multiple time series.

Four 8-dimensional time series of the instantaneous phases corresponded to four
groups of channels from which local field potentials were collected, i.e., the first
series included LFP 1–8, the second combined LFP 9–16, the third LFP 17–24, and
the fourth LFP 24–32. To study synchronization in each of these multiple series, we
applied the generalized phase synchronization approach described in Sect. 10.2.3.
Since neural signals are nonstationary and we focused on transient synchronization,
the time was subdivided into relatively small intervals of 0.25 seconds with 500
sample points. This procedure produced over 2000 time intervals. The time scale
was the same for all four multiple series. Next, for each 8-dimensional time series
we estimated the VAR model parameters p, Ai , and μ on each time interval. By
applying Johansen–Juselius cointegration rank procedure [7] with p-values of 0.01
to test the rank of the estimated VAR, we found the cointegration rank values for
each multiple time series of phases on every time interval.

Figures 10.4 and 10.5 illustrate the dynamic changes in the generalized phase
synchronization of four different groups of eight microwire electrodes by plot-
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ting the respective cointegration rank of the respective 8-dimensional phase series
against time interval values. The top picture in Fig. 10.4 and the bottom picture in
Fig. 10.5 include a legend that specifies which group (or row) of channels is repre-
sented by each line. Four plots are displayed, each containing 200 consecutive time
intervals. The horizontal axis represents time interval indexes, and the vertical axis
denotes the value of cointegration rank. In Fig. 10.4, the top plot depicts cointegra-
tion rank values for time intervals 1–200, and the bottom plot shows cointegration
ranks on intervals 201–400. In Fig. 10.5, the top and the bottom plots correspond to
intervals 401–600 and 601–800, respectively.

As can be seen from Figs. 10.4 and 10.5, most of the time all four groups of
channels exhibit a zero cointegration rank, which implies the absence of general-
ized phase synchronization. On the other hand, at certain times there are sudden
short spikes in cointegration rank that can be detected in all four 8-channel rows.
Interestingly, the patterns of the sharp transient increases in the rank values are com-
plex, characterized by a number of different combinations of rows often displaying
a simultaneous increase in their respective cointegration ranks.

Furthermore, the increased values of cointegration ranks range between 4–8, with
the cointegration rank of 8 being observed the second most often after the prevalent
rank of 0. The patterns in the range of cointegration rank values were further studied
using scatter plots of the experimental stage against the cointegration rank values
during the respective stage. Recall from Sect. 10.3.1 that each successful trial in the
experiment consisted of five distinct stages, and note that the intervals in between
trials were designated as experimental stage 0.

Figures 10.6 and 10.7 display the scatter plots of experimental stage versus the
respective cointegration ranks for each of the four groups of LFP channels. The in-
dexes of experimental stages, ranging from 0 to 5, are represented by the horizontal
axis, and the cointegration rank values found during each stage are displayed on the
vertical axis and range from 0 to 8. Although all the coordinates (the stages and
the ranks) are integers, we added a random jitter to the cointegration rank values
in order to be able to display multiple points having the same coordinates. The four
scatter plots in Figs. 10.6–10.7 correspond to four different groups of channels, with
the top left plot displaying stage indexes versus cointegration ranks for LFP 1–8, the
top right presenting the scatter plot for LFP 9–16, and the bottom left and bottom
right plots illustrating the stage/rank relationship for LFP 17–24 and LFP 25–32
groups, respectively. Figures 10.6 and 10.7 highlight some interesting similarities
among the four different groups of electrode, each of which represents a single row
of the microwire array. In particular, whereas no synchronized activity in terms of
generalized phase synchronization can be detected at stages 2 and 3 (after the center
pad is hit and until it is released) in all four groups with a single instance exception
of stage 3 for LFP 17–24, stages 0, 1, 4, and 5, are all characterized by a short but
strong presence of generalized phase synchronization. Although the rank results for
stage 0 (between trials) are difficult to interpret with certainty, the cointegration of
the instantaneous phases during experimental stage 1 may be attributed to the mo-
tor planning induced by activation of the central light at the beginning of each trial
and/or execution of motor action that leads to central pad hit. Similarly, for experi-
mental stage 4, the positive and large rank values may be associated with execution
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Fig. 10.4 Linear plots of cointegration rank values on 200 consecutive time intervals for four
groups of LFP channels. Top: First 200 time intervals (i.e., intervals 1–200). Bottom: Time inter-
vals 201–400
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Fig. 10.5 Linear plots of cointegration rank values on 200 consecutive time intervals for four
groups of LFP channels. Top: Time intervals 401–600. Bottom: Time intervals 601–800

of the movement beginning upon the release of the central pad and ending with the
target being hit. Finally, the evidence of short-term synchronization at stage 5 may
be connected to maintaining the grasp for a certain time until the reward is given.
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Fig. 10.6 Scatter plots of
cointegration rank vs.
experimental stage for four
groups of LFP channels.
A random jitter is added to
the cointegration rank values
to display coinciding points.
Top: LFP 1–8. Bottom:
LFP 9–16

10.4 Conclusion

Experimental data recorded during reach and grasp experiments in monkeys were
analyzed using a novel technique of generalized phase synchronization. Our inves-
tigation into the dynamics of neural activation in the motor and premotor cortical
areas engaged in movement planning and execution discovered the presence of short
term cointegration in the instantaneous phases of neural channels located in a com-
mon row of the implanted microwire arrays. Since short-term synchronization of
neuronal discharges is widely believed in neuroscience research community to be
responsible for the dynamical integration of activity of distributed groups of neurons
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Fig. 10.7 Scatter plots of
cointegration rank vs.
experimental stage for four
groups of LFP channels.
A random jitter is added to
the cointegration rank values
to display coinciding points.
Top: LFP 17–24. Bottom:
LFP 25–32

that is necessary for execution of cognitive and motor tasks, the strong presence of
cointegration in instantaneous phases may be attributed to transient fusion of neural
signals.
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Chapter 11
An Info-Centric Trajectory Planner
for Unmanned Ground Vehicles

Michael A. Hurni, Pooya Sekhavat,
and I. Michael Ross

Summary We present a pseudospectral (PS) optimal control framework for au-
tonomous trajectory planning and control of an Unmanned Ground Vehicle (UGV)
with real-time information updates. The algorithm is introduced and implemented
on a collection of motion planning scenarios with varying levels of information. The
UGV mission is to traverse from an initial start point and reach the target point in
minimum time, with maximum robustness, while avoiding both static and dynamic
obstacles. This is achieved by computing the control solution that solves the ini-
tial planning problem by minimizing a cost function while satisfying dynamical and
environmental constraints based on the initial global knowledge of the area. To over-
come the problem of incomplete global knowledge and a dynamic environment, the
UGV uses its sensors to map the locally detected changes in the environment and
continuously updates its global map. At each information update, the optimal con-
trol is recomputed and implemented. Simulation results illustrate the performance
of the planner under varying levels of information.

11.1 Introduction

Autonomous trajectory planning of unmanned vehicles has been one of the main
goals in robotics for several years. In recent years, this problem has become partic-
ularly important as a result of rapid growth in its applications to both military and
civilian missions. Various control methods have been proposed and examined for
autonomous guidance and control of unmanned vehicles [4, 13].

There are two approaches to optimal trajectory planning for a dynamic system:
The decoupled approach and the direct approach. The decoupled approach involves
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first searching for a path (using a path planner) and then finding a time-optimal con-
trol solution on the path subject to the actuator limits. The direct approach searches
for the optimal control trajectory directly within the system’s state space [4].

Optimal control trajectory planning using numerical optimization, as described
in [4], is a direct approach to the complete motion-planning problem, which deter-
mines the path to the target by searching for the optimal control trajectory within
the vehicle’s state space. The result is the complete state space and control solu-
tion from start to goal. The basic concept of how optimal path planning works fol-
lows from [4, 9]. The planner is given the kinodynamic equations of the vehicle,
the obstacles’ approximate location and geometry (to be coded into smooth path
constraint functions), and the mission’s boundary conditions and cost function. The
kinodynamic equations can also be viewed as constraints (similar to the obstacles),
defining the relationship between the vehicle state and the control input. The actual
obstacles’ geometry need not be smooth, but the constraints used to mathematically
define the obstacles must be made up of one or more smooth functions. The optimal
control technique finds a solution to the state equations that takes the vehicle from
the initial state at time zero to the final state at the final time, while avoiding obsta-
cles, obeying vehicle state and control limits, and minimizing the cost function. The
cost function can be any function of state variables, control variables and time, as
long as it is sufficiently smooth (i.e., continuous and differentiable).

Recent advances in optimal control and numerical optimization tools have made
the method a viable approach for many applications. It has been demonstrated that
using the initial (open-loop) trajectory generated off-line as the bias (guess) can
produce run times of sufficient speed. Subsequently, each real-time solution can be
used as the bias for the next run, thus maintaining solution speed and autonomy. This
approach involves using the optimal control algorithm in a feedback form (closed
loop), thus self-generating the needed bias. References [1–3, 6–8, 11, 12] solve var-
ious path planning problems using optimal control with numerical optimization in a
feedback control algorithm. In [1, 3, 6–8, 11], the use of optimal control in a feed-
back form using a bias that is obtained autonomously is demonstrated on a Reusable
Launch Vehicle, a tricycle, an Unmanned Ground Vehicle, an Unmanned Air Vehi-
cle, and a spacecraft. In reference to the computational speed (cost), it has been
shown in [1–3, 6–8, 11, 12] that the use of a bias to help steer the solution trajectory
speeds up the run times significantly from seconds to fractions of a second. So the
bias does not just aid in achieving feasible solutions, but also speeds up the solution
process considerably. Also, advancements in sparse linear algebra, development of
new algorithms, and improved computer processor speeds have made solving op-
timization problems relatively easy and fast [3]. Recent applications of real-time
optimal control [1–3, 6–8, 11, 12] have proven to be very promising in facilitating
feedback solutions to complex nonlinear systems [3].

This paper presents the implementation of a pseudospectral (PS) optimal control
framework for autonomous trajectory planning and control of a UGV with real-time
information updates on numerous motion planning scenarios with varying levels of
available information. Simulation results illustrate the effects of varying levels of
information and how more or less information would influence the performance of
the planner.
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11.2 Problem Formulation and Background

The UGV that is used in this paper is modeled as a four-wheeled car with front-
wheel steering [6]. Only the front wheels are capable of turning and the back wheels
must roll without slipping. L is the length of the car between the front and rear axles.
rt is the instantaneous turning radius. The state vector is composed of two position
variables, x and y (m), an orientation variable, θ (rad), the car’s velocity, v (m/sec)
and the angle of the front wheels, φ (rad) with respect to the car’s heading, (11.1).
The x–y-position of the car is measured at the center point of the rear axle.

x ∈ X :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x : xmin ≤ x(t) ≤ xmax
y : ymin ≤ y(t) ≤ ymax
θ : −2π ≤ θ(t) ≤ 2π

v : −1 ≤ v(t) ≤ 1
φ : −1 ≤ φ(t) ≤ 1

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(11.1)

The control vector consists of the vehicle’s acceleration, a (m/sec2) and the rate
of change of the front wheel angle, ω (rad/sec), (11.2).

u ∈ U :=
{

a : −0.5 ≤ a(t) ≤ 0.5
ω : −0.33 ≤ ω(t) ≤ 0.33

}
(11.2)

Using the fact that L = rt tan(φ) and v = rt θ̇ , assigning the length L = 0.5 m
results in the following kinematic equations of motion for the UGV:

ẋ =

⎡
⎢⎢⎢⎢⎣

ẋ

ẏ

θ̇

v̇

φ̇

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

v cos(θ)

v sin(θ)

2v tan(θ)

a

ω

⎤
⎥⎥⎥⎥⎦

(11.3)

The p-norm was used to algebraically model the shapes of the obstacles used in
this work. Using the p-norm, one can easily model any square, rectangle, circle, or
ellipse. These shapes are all that is needed in path planning since any obstacle can
be modeled by fitting one of those shapes around it. Modeling an obstacle’s exact
shape and size is more complex and unnecessary. Equation (11.4) shows the general
form of the equation used to model the obstacles.

hi

(
x(t), y(t)

) =
∣∣∣∣∣
(

x(t) − xc

a

)p
∣∣∣∣∣ +

∣∣∣∣∣
(

y(t) − yc

b

)p
∣∣∣∣∣ − ∣∣cp

∣∣ = 0 (11.4)

Development of the cost function is discussed next. The objective is to minimize
maneuver time while simultaneously maximizing robustness. Robustness is charac-
terized by the vehicle being able to execute the mission in the presence of a certain
amount of uncertainty and not hit any obstacles. This uncertainty can come from
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numerous sources: Approximations in the modeling of the vehicle, errors in sensor
data, sensor accuracy, external unforeseen forces, and the error that is inherent in
executing the previous control solution while calculating an updated solution (the
lag between the two). The control interpolation error comes from the fact that low
node solutions are necessary to effect lower run times, which are required for real
time operation. A node is simply a discrete time point that describes the complete
vehicle state and control vectors at that specific time. If high number of nodes are
used, the trajectory can be made collision free, but at the expense of higher algorithm
run times. The proposed solution to this problem is the addition of the robustness
factor to a low-node problem definition. Since we desire to include robustness in
the cost function, it is necessary to derive a Robustness Function, r(t), whose in-
tegral over time will be minimum when robustness is maximized. To derive r(t),
we take (11.4) (which has a value of zero when on the obstacle and increases as
you move away from the obstacle) and apply a double exponential operation on
it [6]. This is done for each obstacle and the result is summed. The resulting r(t)

with n equal to the number of obstacles is (11.5). In the case of a single obsta-
cle, r(t) = 14.15 at its center, r(t) = 1.72 on its edge, and r(t) will continue to
decrease exponentially to zero as the distance to the obstacle is increased. Equa-
tion (11.6) is the final cost function expressed in terms of the endpoint cost (fi-
nal time) and the running cost (integral of r(t)) with appropriate weighting factors
(ωtf ,ωr).

r(t) =
n∑

i=1

(
ee−hi (x(t),y(t)) − 1

)
(11.5)

J
[
x(.), u(.), tf

] = ωtf tf + ωr

∫ t

0
r(t) dt (11.6)

More details of UGV modeling/kinematics, obstacle modeling, and the trajec-
tory planning framework can be found in [5]. For all scenarios in this work, the
UGV mission is to traverse from an initial start point and reach the target point
in minimum time, with maximum robustness, while avoiding both static and dy-
namic obstacles. This is achieved by deriving the control solution that carries out
the initial planning problem while minimizing a cost and satisfying dynamical
and environmental constraints based on the initial global knowledge of the area.
To overcome the problem of incomplete global knowledge and a dynamic envi-
ronment, the UGV uses its sensors to map the locally detected changes in the
environment and continuously updates its global map; then recomputes and up-
dates the optimal trajectory at each information update [5]. The numerical solver
used to compute the optimal trajectories is the DIDO software package [10],
which is a MATLAB based software package that utilizes pseudospectral meth-
ods to determine an extremal for a properly formulated optimal control prob-
lem.
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Fig. 11.1 Configuration for sliding door problem

11.3 Obstacle Motion Studies

11.3.1 The Sliding Door

We start with the sliding door scenario of Figs. 11.1(a) and 11.1(b), which show the
initial and final configurations of the environment obstacle, respectively. The start
and finish positions of the vehicle are as shown. All obstacles and the vehicle are
initially at rest. At 3 seconds into the maneuver, obstacle 2 moves north at a speed of
0.5 m/sec, gradually blocking the north passage and opening up the south passage.

The first simulation was completed using snapshots of the environment taken
just prior to each iteration of the algorithm, with no prediction of obstacle position.
Thus, during the time it takes to generate a new solution, the vehicle maneuvers
based on the previous solution with no knowledge of obstacle motion until the next
snapshot is taken and the vehicle “senses” the environment has changed. Each run
produces a trajectory that solves the instantaneous static problem, even though the
environment is dynamic. The resulting trajectory is shown in Fig. 11.2(a). The ve-
hicle heads toward the north passage until it is closed off, at which point the vehicle
stops, repositions (as required by the algorithm), generates a new bias, and then con-
tinues along the new path through the south passage. The trajectory in this case is
not perfectly smooth, which can be attributed to the fact that a low node PS-solution
results in higher propagation error. Figure 11.2b shows the smooth trajectory that
could be achieved with higher node solutions. Less smooth trajectories are accept-
able in trying to keep the number of nodes (and thus the run times) to a minimum.

The sliding door scenario was repeated with the addition of obstacle position
prediction using course and speed. This can be achieved simply by comparing suc-
cessive environment snapshots to estimate a moving obstacle’s course and speed,
and then using that course and speed to predict the obstacle’s future position as part
of the trajectory planning problem. Figure 11.2(c) shows the resulting trajectory.
The vehicle initially heads toward the northern passage. Once obstacle 2 begins to
move north, the algorithm determines the obstacle’s future position using its course
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Fig. 11.2 Various scenarios for sliding door problem

and speed, resulting in the vehicle autonomously changing its course to steer clear
of the obstacle. Obstacle 2 then stops moving, resulting in the vehicle making a new
course correction further to the south in order to steer clear. This course correction is
necessary because while the obstacle was moving, the prediction of its position was
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based on the assumption that it would continue on its current course and speed. The
trajectory planner generates each new trajectory based on the current information
on obstacle positions, courses and speeds. It does not attempt to predict course or
speed changes. Any changes in the obstacle’s course and speed (including complete
stoppage) will require the planner to correct the vehicle’s trajectory accordingly.

Finally, the sliding door scenario was repeated with complete a priori knowl-
edge of obstacle 2 motion; i.e., all future course and speed changes of the obstacle
are known in advance. Figure 11.2(d) shows the resulting trajectory. The vehicle,
having complete knowledge of the future movement of obstacle 2, simply heads
immediately down the optimal path through the south passage.

The three sliding door scenarios with various levels of information are plotted to-
gether on Fig. 11.2(e). The scenarios using no prediction and using course and speed
for prediction start on the same trajectory, because obstacle 2 does not start moving
until the three-second point into the simulations. Without obstacle motion, the two
scenarios are identical. Once obstacle motion begins, using prediction results in a
trajectory that is closer to the time-optimal solution based on complete a priori in-
formation. When the obstacle position is not predicted, the maneuver time is 41.3
seconds, which does not include the extra time it takes to calculate a new southerly
bias when the north passage becomes blocked. When prediction is used, the maneu-
ver time is 33.5 seconds. With complete a priori knowledge of the environment, the
maneuver time is even shorter at 33 seconds.

11.3.2 The Cyclic Sliding Door

The sliding door scenario is modified so that the door continuously slides back and
forth, thus alternately blocking the north and south passages. This type of prob-
lem provides the opportunity to examine the trajectory planning algorithm’s per-
formance at all three information levels (i.e., no prediction, prediction, and a priori
knowledge). It allows us to simulate success or failure in algorithm performance
by simply adjusting the cycling speed of obstacle 2 (i.e., raising and lowering its
cycling frequency). It should be noted at the outset that given the maximum vehicle
speed of 1 m/sec and the obstacle widths of 3 m (not including their expansion to
account for vehicle size, see [5]), any obstacle 2 speed greater than 0.6 m/sec will
result in failure, because the vehicle cannot traverse through the opening quickly
enough. In other words, above a cycling speed of 0.6 m/sec there can be no solution
to the problem due to the physical limit on the vehicle speed.

We start at the lowest information level (i.e., no prediction using course and
speed) and the slowest cycling speed for obstacle 2 set at 0.1 m/sec. In this scenario,
obstacle 2 moves so slowly that it never has a chance to reverse course and head
south before the end of the vehicle’s mission. In other words, it doesn’t even com-
plete a half cycle. The resulting trajectory is shown in Fig. 11.3(a). The position of
obstacle 2 in Fig. 11.3(a) corresponds to its final position at the end of the scenario,
and does not indicate its position at the time the vehicle passed through the north
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Fig. 11.3 Cyclic sliding door (no prediction; 0.1 m/sec cycle speed)

passage. Figure 11.3(b) shows the evolution of the trajectory at 4 sample instances
in time, and is composed of both the DIDO generated trajectory (circles correspond-
ing to discrete nodes) and the propagated path. The propagated path is obtained by
taking DIDO’s discrete control solution, applying control trajectory interpolation,
and then propagating the state trajectory using a Runge–Kutta algorithm. The fact
that the propagated and DIDO solutions fall on top of each other is the proof of
dynamic feasibility of the control solution. Obstacle 2’s movement is slow enough
that the vehicle need not change course to traverse the passage. The maneuver time
for this scenario was 33.5 seconds. Future figures showing the full vehicle trajec-
tory from start to finish will indicate obstacle positions at the final time only (as in
Fig. 11.3(a)). Snapshots in time (as in Fig. 11.3(b)) will be given where appropriate.

The cycle speed of the sliding door was then raised to 0.2 m/sec, which prevented
the vehicle from reaching the north passage in time to pass through. Since predic-
tion is not being used, the vehicle does not know the north passage will be closed
off until it actually happens. When the vehicle senses that the passage is blocked, it
stops, repositions, and reformulates a new bias. Figure 11.4 shows the resulting col-
lision (the dotted lines are the obstacle boundaries adjusted for the vehicle size). The
obstacle is moving slow enough to infer a solution exists, but, without prediction,
the vehicle cannot pass. The algorithm with this level of information also failed to
safely guide the vehicle through the passage (north or south) for all other speeds up
to the 0.6 m/sec limit. Suffice it to say that without more information the algorithm
cannot safely guide the vehicle through this cyclic sliding door example.

The same scenarios presented above in Figs. 11.3(a) and 11.4 were simulated
again using obstacle position predicted from course and speed data. Figure 11.5(a)
shows the trajectory when the cycle speed is set to 0.1 m/sec. The maneuver time
was 33.4 seconds. The obstacle speed is too slow to show any significant improve-
ment of the trajectory over the case of not utilizing current course and speed data to
calculate and include future obstacle positions while planning the vehicle’s trajec-
tory. The significance of again showing the evolution of the trajectory (Fig. 11.5(b))
is in the change of the trajectory in the second frame of the figure. We see the tra-
jectory jump further away from the obstacle in frame 2, because the algorithm is
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Fig. 11.4 Cyclic sliding door
(no prediction; 0.2 m/sec
cycle speed)

Fig. 11.5 Cyclic sliding door (with prediction; 0.1 m/sec cycle speed)

predicting the position of obstacle 2 as being further north at the time when the
vehicle traverses the north passage.

The cycle speed was again raised to 0.2 m/sec to show that with the addition of
prediction using course and speed, what was previously a trajectory planning fail-
ure became a success, as shown in Fig. 11.6(a). The vehicle initially heads to the
north passage. Once obstacle 2 begins moving, the algorithm predicts an infeasibil-
ity, because the intercept time of the vehicle with either passage results in complete
blockage of both passages (obstacle 2, when expanded to account for vehicle size,
completely blocks the path). The result is the vehicle stops, repositions, and refor-
mulates a new bias. In the time it takes the vehicle to stop and reposition, the inter-
cept time changes, and a solution then exists to allow the new bias to be generated
through the south passage. The total maneuver time in this case was 40 seconds.
The reason for the large increase in maneuver time is the fact that the vehicle stops
and repositions. It is obvious that rather than stop and reposition, the vehicle could
simply change its speed slightly to affect a different intercept time that would result
in an open south passage; however, it is counter to the minimum time formulation
of the optimal control problem to slow down (use less control effort) in order to
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Fig. 11.6 Cyclic sliding door (with prediction; 0.2 m/sec cycle speed)

achieve a feasible path; therefore, its output indicates an infeasible trajectory us-
ing the maximum control effort. Figure 11.6(b) shows the evolution of the vehicle
trajectory. Notice the infeasibility in frame 2 of said figure.

The speed of obstacle 2 was further raised in 0.1 m/sec increments to determine
where the algorithm would fail when course and speed is used to predict obstacle
position. Figure 11.7(a) represents the trajectory corresponding to the fastest cycling
speed (0.5 m/sec) that the algorithm could handle. The total maneuver time was 36.3
seconds, which was faster than the case in Fig. 11.6(a), because the vehicle did not
have to stop and reposition. Figure 11.7(b) represents the evolution of the vehicle
trajectory. Frame 1 shows the trajectory prior to the commencement of obstacle 2
movement. In frames 2 and 3, obstacle 2 is moving north, resulting in the prediction
that the trajectory could wrap around the south side of the obstacle as it travels north.
In frames 4 and 5, obstacle 2 has changed directions to head south, which results
in a spontaneous replanning of the vehicle trajectory to wrap around the north side
of the obstacle. In frame 6, obstacle 2 has changed directions again and is headed
north, but by that point the vehicle has already safely navigated the north passage.
Clearly, if the algorithm can predict obstacle position using course and speed, it is
more effective than simply using still snapshots of the environment.

The next logical step here is to show the failure of the algorithm when the speed
of obstacle 2 is raised to 0.6 m/sec. Figure 11.8 illustrates that trajectory, which
changes direction (by prediction using course and speed) as the direction of obstacle
motion changes, but the obstacle motion is too fast for this method to be successful,
resulting in collision.

Finally, the cyclic sliding door scenario was repeated for different cycle speeds,
but this time more information was known by the algorithm; specifically, the al-
gorithm was given complete a priori knowledge of the motion of obstacle 2. Not
only were the instantaneous course and speeds known, but all the future course and
speed changes were also known in advance. Knowing the exact future position of
obstacle 2 resulted in a trajectory that headed directly for the correct position that
gave the vehicle safe passage. No replanning was necessary. Maneuver times at all
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Fig. 11.7 Cyclic sliding door (with prediction; 0.5 m/sec cycle speed)

Fig. 11.8 Cyclic sliding door
(with prediction; 0.6 m/sec
cycle speed)

cycle speeds were the fastest possible (33.4 seconds). Figure 11.9 shows the tra-
jectory for the cycle speed of 0.6 m/sec, above which there can be no solution to
the problem due to the physical limit on vehicle speed. It follows that with advance
knowledge of environmental changes, the algorithm will always generate feasible
and safe trajectories within the physical limits of the vehicle.

Table 11.1 shows a summary of the results of executing the cyclic sliding door
scenario at various cycle speeds up to the vehicle’s limit using the three different
levels of information known to the algorithm. As expected, being able to predict
obstacle positions resulted in a higher success rate and better maneuver time than
not using prediction; and having a priori knowledge of environmental conditions
produced even better results. However, knowing the future positions of obstacles
beyond predicting them from their current course and speed is highly unlikely. It’s
assumed in this work that if an obstacle’s course and speed changes can be known
in advance, then it is likely another vehicle being controlled by the same home base,
which falls under multi-vehicle trajectory planning. For this reason, further motion



224 M.A. Hurni et al.

Fig. 11.9 Cyclic sliding door
(a priori knowledge;
0.6 m/sec cycle speed)

Table 11.1 Summary of results for cyclic sliding door scenario

Cycle speed (m/sec) Maneuver time (sec) Maneuver time (sec) Maneuver time (sec)

No prediction With prediction a priori knowledge

0.1 33.5 33.4 33.4

0.2 collision 40 33.4

0.5 collision 36.3 33.4

0.6 collision collision 33.4

studies will be limited to the comparisons between using prediction based on course
and speed and not using prediction (i.e., still snapshots of the environment).

11.3.3 Obstacle Crossing (No Intercept)

This scenario can be described by any obstacle whose motion results in it cross-
ing over the trajectory of the vehicle, but does not pose a danger of collision. Fig-
ure 11.10 shows an example of the expected effect of a crossing obstacle on vehicle
trajectory. The obstacle starts out motionless, but after 5 seconds it moves from
(x, y = 20,5) meters to (x, y = 20,25) meters at the speed of 1.5 m/sec across the
vehicle’s path as the vehicle travels from (x, y = 0,15) meters to (x, y = 30,15)

meters. The result shown in Fig. 11.10 was generated using course and speed to
predict the obstacle position. The overall maneuver time was 32.3 seconds.

If prediction is not used, the results are significantly worse. The scenario of
Fig. 11.10 was repeated without prediction, and the resulting trajectory is shown in
Fig. 11.11(a) with a maneuver time that is significantly higher at 49.9 seconds. Fig-
ure 11.11(b) shows the trajectory’s evolution over time. The figure shows that due to
the sensitivity of numerical optimization techniques (DIDO [10] in this case) to the
bias, the trajectory is pushed over the crossing obstacle, even though no collision
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Fig. 11.10 Obstacle crossing
vehicle path (with prediction)

Fig. 11.11 Obstacle crossing vehicle path (no prediction)

course existed. The trajectory essentially gets shaped by any obstacles that cross its
path. The same effect can be produced by laying a string on a table whose endpoints
correspond to the desired start and goal positions, then sliding objects around the
table across the string, resulting in the string wrapping itself around those objects.
Adding prediction allows obstacles to skip over the string (trajectory) when encoun-
tered. Another situation that would allow for the obstacle to cross without adversely
affecting the trajectory is when the obstacle travels fast enough to cause it to skip
over the trajectory in successive environment snapshots.

11.3.4 Obstacle Intercept

The same obstacle crossing scenario was used, except the obstacle speed was
slowed down to 0.6 m/sec, which put it on a collision course with the vehicle.
Figure 11.12(a) shows the trajectory of the vehicle when using prediction, and the
maneuver time was 34.5 seconds. The time evolution of the trajectory is shown in
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Fig. 11.12 Obstacle intercept (with prediction)

Fig. 11.13 Obstacle
intercept (no prediction)

Fig. 11.12(b). For the first 5 seconds, before obstacle motion begins, the vehicle
heads straight at the goal. Once the vehicle detects obstacle motion, it estimates the
obstacle’s course and speed, and autonomously makes a course correction (assum-
ing the obstacle’s course and speed stays the same) to avoid collision.

This obstacle intercept scenario was repeated without the use of course and speed
to predict obstacle position. The resulting trajectory collided with the obstacle, as
shown in Fig. 11.13.

11.3.5 Obstacle Intercept Window

The intercept window is defined, in this work, as a finite period in an obstacle mo-
tion in which it is on a collision course with the vehicle, but the obstacle’s course
and speed is not constant and, therefore, the threat of collision only exists during a
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Fig. 11.14 Obstacle intercept
window (no prediction)

Fig. 11.15 Obstacle intercept window (with prediction)

finite period of time. For example, two cars approaching an intersection have an in-
tercept window when after being on a collision course for a while one car turns onto
another road or slows down, thus, eliminating the chance of intercept. The obstacle
intercept problem was repeated, but the obstacle’s motion was modified to stop at
(x, y) = (20,10) meters, eliminating any possibility of collision. In this scenario
the obstacle never obstructs the vehicle’s path to the goal. Figure 11.14 shows the
vehicle trajectory when prediction is not used. The small alteration in the vehicle’s
trajectory is due to the effect of the robustness term in the cost function [5]. The
overall maneuver time was 32.3 seconds.

The scenario was repeated using prediction, and the resulting trajectory is shown
in Fig. 11.15(a). The vehicle was baited off its original trajectory due to the fact that
it incorrectly predicted the obstacle’s collision course and autonomously replanned
to avoid the collision. The maneuver time for this scenario was 33.8 seconds, which
is longer than when prediction was not utilized (32.3 seconds). The evolution of the
trajectory is shown in Fig. 11.15(b). Frame 1 shows the trajectory before obstacle
motion commenced. Frames 2 and 3 show the predicted trajectory once the algo-
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Fig. 11.16 Vehicle faster than target (no prediction)

rithm determined the obstacle’s course and speed. Frame 4 shows the new trajectory
after the obstacle stopped. Essentially, the obstacle’s motion faked out the vehicle
into executing an extra maneuver, resulting in it taking a longer time to reach the
goal. This intercept window scenario is the one instance when not using prediction
actually results in a less maneuver time than when using prediction. However, given
the fact that prediction still produced a valid trajectory (albeit a little longer) and
the fact that in all other cases prediction is the better way to go, this issue is an
acceptable disadvantage.

11.4 Target Motion Studies

11.4.1 Target Rendezvous: Vehicle Faster than Target

In this scenario, the vehicle must rendezvous with a moving target. Figure 11.16(a)
shows the vehicle trajectory without predicting the target position, and Fig. 11.16(b)
shows the evolution of that trajectory. Initially, the target is motionless, and after 15
seconds it commences its movement at 0.6 m/sec. Since the algorithm does not use
the target’s course and speed to predict a rendezvous point, each trajectory plan-
ning iteration simply aims the vehicle at the current target position. This results in
the vehicle falling in behind the target and catching up to it. The maneuver time
was 37.2 seconds. Using the target’s course and speed to predict a rendezvous point
resulted in the trajectory of Fig. 11.17(a) and a faster maneuver time of 33.3 sec-
onds. Figure 11.17(b) shows the evolution of that trajectory. Notice that the trajec-
tory follows an intercept course based on the prediction of the target future posi-
tions.
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Fig. 11.17 Vehicle faster than target (with prediction)

Fig. 11.18 Vehicle slower
than target (no prediction)

11.4.2 Target Rendezvous: Vehicle Slower than Target

The same target rendezvous scenario was simulated, but this time the target speed
was faster than the vehicle’s maximum speed limit at 1.2 m/sec. The resulting
trajectory for the case of no prediction is shown in Fig. 11.18. The vehicle falls
in behind the target and can never catch up. Unless the target slows down, the
vehicle can never complete the mission. Figure 11.19 shows the optimal trajec-
tory using target course and speed to predict its future position. In this case, the
vehicle was able to rendezvous with the target by calculating an intercept ma-
neuver. It follows that if we want to maximize the vehicle’s chances of being
able to catch a moving target, then prediction is the way to achieve the best re-
sults.
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Fig. 11.19 Vehicle slower
than target (with prediction)

Fig. 11.20 Variable target
motion

11.4.3 Target Rendezvous: Variable Target Motion

In this section, we study the effect of changes in the target motion during the ve-
hicle’s maneuver. The scenario is the same as in Sect. 11.4.1, except instead of
the target moving indefinitely, it stops after 10 seconds of motion. Figure 11.20
shows both cases with and without prediction. The case of no prediction pro-
duced a less tortuous maneuver as well as a faster one, posting a 33.9 second ma-
neuver time as opposed to the 36.8 second maneuver time when prediction was
used. This scenario shows that in a small number of cases where the obstacle’s
course and speed varies frequently and significantly, not using prediction can ac-
tually produce better results than when using prediction. However, as stated pre-
viously, the price paid is acceptable when weighing the benefits of using predic-
tion.
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11.5 Conclusion

An information-oriented pseudospectral optimal control framework provides a nat-
ural approach for autonomous trajectory planning. Simulation results illustrate the
effects of varying levels of information and how more or less information influences
the performance of the planner. The simulations and discussions in this paper ex-
plain how the trajectory planning framework developed in [5] is an information cen-
tric planner that, with some exceptions, produces better results with more informa-
tion. Predicting obstacle and target positions using course and speed data produced
faster (with a few exceptions) and more reliable trajectories than using still snap-
shots of the environment. Having a priori knowledge of environmental conditions
will always produce the best results, however, providing such a level of information
is not always practical. In summary, when conducting trajectory planning, it is de-
sirable to include as much information in the optimal control problem formulation
as possible.
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Chapter 12
Orbital Evasive Target Tracking and Sensor
Management

Huimin Chen, Genshe Chen, Dan Shen,
Erik P. Blasch, and Khanh Pham

Summary In this chapter, we consider the sensor management problem for track-
ing space targets where the targets may apply evasive maneuvering strategy to avoid
being tracked by the space borne observers. We first study the case of single target
tracking by a single observer and formulate the pursuit–evasion game with complete
information. Then we extend the tracking problem to a set of collaborative observers
and each observer has to decide when to sense which target in order to achieve the
desired estimation error covariance. A popularly used criterion for sensor manage-
ment is to maximize the total information gain in the observer-to-target assignment.
We compare the information based approach to the game theoretic criterion where
the observers are assigned according to the best response of the terminal result in
the pursuit–evasion game. Finally, we use realistic satellite orbits to simulate the
space resource management for situation awareness. We adopted NASA’s General
Mission Analysis Tool (GMAT) for space target tracking with multiple space borne
observers. The results indicate that the game theoretic approach is more effective
than the information based approach in handling intelligent target maneuvers.

12.1 Introduction

Over recent decades, the space environment has become more complex with a sig-
nificant increase in space debris among densely populated satellites. Efficient and
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reliable space operations rely heavily on the space situation awareness where search
and tracking space targets and identifying their intent are crucial in creating a con-
sistent global picture of the space. Orbit determination with measurements pro-
vided by a constellation of satellites has been studied extensively [6, 7, 14, 16].
The tracking and data relay satellite system uses satellites in geostationary orbits
(GEO) to track the satellites in low-Earth orbit (LEO). The global positioning sys-
tem (GPS) uses a constellation of satellites with pseudo-range measurements, i.e.,
range measurements with clock differentials to determine the location of a user.
Unlike ground targets whose motion may contain frequent maneuvers, a satellite
usually follows its orbit so that long-term prediction of its orbital trajectory is pos-
sible once the orbital elements are known [6]. However, a space target can also
make an orbital change owing to its desired mission or intentionally hiding from the
space borne observers. Existing maneuvering target tracking literature mainly fo-
cuses on modeling target maneuver motion at random onset time (see, e.g., [1, 13]).
In space surveillance, the constellation of satellite observers is usually known to
the adversary and very unlikely to change frequently due to energy constraint. In
this case, evasive maneuvering motion can be intelligently designed to take advan-
tage of the sensing geometry, e.g., transferring to an orbit with maximum dura-
tion of the Earth blockage to an observer with known orbital trajectory. Accord-
ingly, a sensor management method has to optimally utilize the sensing resources
to acquire and track space targets with sparse measurements, i.e., with a typically
large sampling interval, in order to maintain a large number of tracks simultane-
ously.

Sensor management is concerned with the sensor-to-target assignment and a
schedule of sensing actions for each sensor in the near future given the currently
available information on the space targets. Sensor assignment and scheduling usu-
ally aim to optimize a certain criterion under energy, data processing and communi-
cation constraints. One popularly used criterion is the total information gain for all
the targets being tracked [11]. However, this criterion does not prioritize the targets
with respect to their types or identities. Alternatively, covariance control optimizes
the sensing resources to achieve the desired estimation error covariance for each
target [10]. It has the flexibility to design the desired tracking accuracy according to
the importance of each target. We want to compare both informative based criterion
and the covariance control method in a game theoretic setting where the target can
intelligently choose its maneuvering motion and onset time based on the knowledge
of observers’ constellation.

The rest of the chapter is organized as follows. Section 12.2 presents the
space target motion and sensor measurement model. Section 12.3 provides a game
theoretic formulation of target maneuvering motion. Section 12.4 discusses the
information based performance metric for sensor management and covariance
control method with possibly evasive target maneuvering motion. Section 12.5
compares the performance of the proposed tracking and sensor management
scheme with the existing methods. Conclusions and future work are presented in
Sect. 12.6.
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12.2 Fundamentals of Space Target Orbits

12.2.1 Time and Coordinate Systems

Several time systems are popularly used in the orbit determination problems. Satel-
lite laser ranging measurements are usually time-tagged in coordinated universal
time (UTC) while global positioning system (GPS) measurements are time tagged
in GPS system time (GPS-ST). Although both UTC and GPS-ST are based on
atomic time standards, UTC is loosely tied to the rotation of the Earth through the
application of “leap seconds” while GPS-ST is continuous with the relation GPS-
ST = UTC + n where n is the number of leap seconds since January 6, 1980. The
orbital equation describing near-Earth satellite motion is typically tagged with ter-
restrial dynamical time (TDT). It is an abstract, uniform time scale implicitly de-
fined by the motion equation and can be converted to UTC or GPS-ST for any given
reference date.

The Earth centered inertial (ECI) coordinate system used to link GPS-ST with
UTC is a geocentric system defined by the mean equator and vernal equinox at
Julian epoch 2000.0. Its XY -plane coincides with the equatorial plane of the Earth
and the X-axis points toward the vernal equinox direction. The Z-axis points toward
the north pole and the Y -axis completes the right hand coordinate systems.

The Earth centered Earth fixed (ECEF) coordinate system has the same XY -plane
and the Z-axis as in the inertial coordinate system. However, its X-axis rotates with
the Earth and points to the prime meridian and the Y -axis completes the right hand
coordinate systems.

The local Cartesian system commonly referred to as east-north-up (ENU) coor-
dinate system has its origin at some point on the Earth surface or above (typically at
the location of an observer). Its Z-axis is normal to the Earth’s reference ellipsoid
defined by the geodetic latitude. The X-axis points toward the east while the Y -axis
points toward the north. The conversion among these three coordinate systems is
provided in Appendix 1.

12.2.2 Orbital Equation and Orbital Parameter Estimation

Without any perturbing force, the position r of a space target relative to the center
of the Earth in ECI coordinate system should satisfy

r̈ = − μ

‖r‖3
r (12.1)

where μ is the Earth’s gravitational parameter. The target velocity is v �= ṙ and the

radial velocity is vr
�= v·r

r
where r

�= ‖r‖ is the distance from the target to the cen-
ter of the Earth. In order to determine the position and velocity of a satellite at any
time instance, six parameters are needed, typically, the three position components
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and three velocity components at a certain time instance. Alternatively, the orbital
trajectory can be conveniently described by the six components of the Keplerian ele-
ments. The description of Keplerian elements and their relationship to the kinematic
state of the target can be found in Appendix 2.

In reality, a number of forces act on the satellite in addition to the Earth’s gravity.
To distinguish them from the central force created by the satellite target, these forces
are often referred to as perturbing forces. In a continuous time state space model,
perturbing forces are often lumped into the noise term of the system dynamics.
Denote by x(t) the continuous time target state given by

x(t)
�=

[
r(t)
ṙ(t)

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

x(t)

y(t)

z(t)

vx(t)

vy(t)

vz(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

(12.2)

For convenience, we omit the argument t and write the nonlinear state equation as
follows.

ẋ = f (x) + w (12.3)

where

f (x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

vx

vy

vz

−(μ/r3)x

−(μ/r3)y

−(μ/r3)z

⎤
⎥⎥⎥⎥⎥⎥⎦

(12.4)

and

w =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0

wx

wy

wz

⎤
⎥⎥⎥⎥⎥⎥⎦

(12.5)

is the acceleration resulting from perturbing forces. As opposed to treating the per-
turbing acceleration as noise, spacecraft general propagation (SGP) model maintains
general perturbation element sets and finds analytical solution to the satellite motion
equation with time varying Keplerian elements [12]. For precise orbit determination,
numerical integration of (12.3) is often a viable solution where both the epoch state
and the force model have to be periodically updated when a new measurement is
available [17].
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12.3 Modeling Maneuvering Target Motion in Space Target
Tracking

12.3.1 Sensor Measurement Model

We consider the case that a space satellite in low-Earth orbit (LEO) observes a
target in geostationary orbit (GEO). A radar onboard the space satellite can provide
the following type of measurements: range, azimuth, elevation, and range rate. The
range between the ith observer located at (xi, yi, zi) and the space target located at
(x, y, z) is given by

dr(i) =
√

(x − xi)2 + (y − yi)2 + (z − zi)2 (12.6)

The azimuth is

da(i) = tan−1
(

y − yi

x − xi

)
(12.7)

The elevation is

de(i) = tan−1
(

z − zi√
(x − xi)2 + (y − yi)2

)
(12.8)

The range rate is

dṙ (i) = (x − xi)(ẋ − ẋi ) + (y − yi)(ẏ − ẏi ) + (z − zi)(ż − żi )

dr

(12.9)

Measurements from the ith observer will be unavailable when the line-of-sight
path between the observer and the target is blocked by the Earth. Thus, the con-
stellation of multiple observers is important to maintain consistent coverage of the
target of interest.

The condition of Earth blockage is examined as follows. If there exist α ∈ [0,1]
such that Dα(i) < RE , where

Dα(i) =
√[

(1 − α)xi + αx
]2 + [

(1 − α)yi + αy
]2 + [

(1 − α)zi + αz
]2

(12.10)

then the measurement from the ith observer to the target will be unavailable. The
minimum of Dα(i) is achieved at α = α∗ given by

α∗ = −xi(x − xi) + yi(y − yi) + zi(z − zi)

(x − xi)2 + (y − yi)2 + (z − zi)2 (12.11)

Thus, we first examine whether α∗ ∈ [0,1] and then check the Earth blockage con-
dition Dα∗(i) < RE .
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12.3.2 Game Theoretic Formulation for Target Maneuvering
Onset Time

We consider the case that a single observer tracks a single space target. Initially,
the observer knows the target’s state and the target also knows the observer’s state.
Assume that the target can only apply a T second burn that produces a specific thrust
w with a maximum acceleration of a m/s2. The goal of the target is to determine
the maneuvering onset time and the direction of the thrust so that the resulting orbit
will have the maximum duration of the Earth blockage to the observer. The goal of
the observer is to maintain the target track with the highest estimation accuracy. To
achieve this, the observer has to determine the sensor revisit time and cuing region as
well as notify other observers having better geometry when Earth blockage occurs.
Without loss of generality, we assume that the target can transfer its orbit to the
same plane as the observer. In this case, when the target is at the opposite side of the
Earth with respect to the observer and rotating in the same direction as the observer,
the duration of the Earth blockage will be the maximum compared with other orbits
with the same orbital elements except the inclinations. Note that in the pursuit–
evasion game confined to a two dimensional plane, the minimax solution requires
that the target applies the same thrust angle as the observer’s (see Appendix 4 for
details). Thus, an intelligent target will choose its maneuvering onset time as soon as
its predicted observer’s orbital trajectory has the Earth blockage. The corresponding
maneuvering thrust will follow the minimax solution to the pursuit–evasion game.

When a target is tracked by multiple space borne observers, an observer can
predict the target’s maneuvering motion based on its estimated target state and the
corresponding response of the pursuit–evasion game from the target where the ter-
minal condition will lead to the Earth blockage to the observer. Thus, there is a need
for the sensor manager to select the appropriate set of sensors that can persistently
monitor all the targets especially when they maneuver.

12.3.3 Nonlinear Filter Design for Space Target Tracking

When a space target has been detected, the filter will predict the target state at any
time instance in the future based on the available sensor measurements. Denote by
x̂−
k the state prediction from time tk−1 to time tk based on the state estimate x̂+

k−1 at
time tk−1 with all measurements up to tk−1. The prediction is made by numerically
integrating the state equation given by

˙̂x(t) = f
(
x̂(t)

)
(12.12)

without process noise. The mean square error (MSE) of the state prediction is ob-
tained by numerically integrating the following matrix equation

Ṗ (t) = F
(
x̂−
k

)
P(t) + P(t)F

(
x̂−
k

)T + Q(t) (12.13)
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where F(x̂−
k ) is the Jacobian matrix given by

F(x) =
[

03×3 I3
F0(x) 03×3

]
(12.14)

F0(x) = μ

⎡
⎢⎢⎣

3x2

r5 − 1
r3

3xy

r5
3xz
r5

3xy

r5
3y2

r5 − 1
r3

3yz

r5

3xz

r5
3yz

r5
3z2

r5 − 1
r3

⎤
⎥⎥⎦ (12.15)

r =
√

x2 + y2 + z2 (12.16)

and evaluated at x = x̂−
k . The measurement zk obtained at time tk is given by

zk = h(xk) + vk (12.17)

where

vk ∼ N (0,Rk) (12.18)

is the measurement noise, which is assumed independent of each other and indepen-
dent to the initial state as well as process noise.

The recursive linear minimum mean square error (LMMSE) filter applies the
following update equation [2]

x̂k|k
�= E∗[xk|Zk

] = x̂k|k−1 + Kk z̃k|k−1 (12.19)

Pk|k = Pk|k−1 − KkSkK
′
k (12.20)

where

x̂k|k−1 = E∗[xk|Zk−1]

ẑk|k−1 = E∗[zk|Zk−1]

x̃k|k−1 = xk − x̂k|k−1

z̃k|k−1 = zk − ẑk|k−1

Pk|k−1 = E
[
x̃k|k−1x̃′

k|k−1

]

Sk = E
[
z̃k|k−1z̃′

k|k−1

]

Kk = Cx̃k z̃k
S−1

k

Cx̃k z̃k
= E

[
x̃k|k−1z̃′

k|k−1

]

Note that E∗[·] becomes the conditional mean of the state for linear Gaussian dy-
namics and the above filtering equations become the celebrated Kalman filter [2].
For nonlinear dynamic system, (12.19) is optimal in the mean square error sense
when the state estimate is constrained to be an affine function of the measurement.
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Given the state estimate x̂k−1|k−1 and its error covariance Pk−1|k−1 at time tk−1,
if the state prediction x̂k|k−1, the corresponding error covariance Pk|k−1, the mea-
surement prediction ẑk|k−1, the corresponding error covariance Sk , and the crossco-
variance E[x̃k|k−1z̃′

k|k−1] in (12.19) and (12.20) can be expressed as a function only
through x̂k−1|k−1 and Pk−1|k−1, then the above formula is truly recursive. However,
for general nonlinear system dynamics (12.3) and measurement equation (12.17) ,
we have

x̂k|k−1 = E∗
[∫ tk

tk−1

f
(
x(t),w(t)

)
dt + xk−1|Zk−1

]
(12.21)

ẑk|k−1 = E∗[h(xk,vk)|Zk−1] (12.22)

Both x̂k|k−1 and ẑk|k−1 will depend on the measurement history Zk−1 and the corre-
sponding moments in the LMMSE formula. In order to have a truly recursive filter,
the required terms at time tk can be obtained approximately through x̂k−1|k−1 and
Pk−1|k−1, i.e.,

{x̂k|k−1,Pk|k−1} ≈ Pred
[
f (·), x̂k−1|k−1,Pk−1|k−1

]

{ẑk|k−1, Sk,Cx̃k z̃k
} ≈ Pred

[
h(·), x̂k|k−1,Pk|k−1

]

where Pred[f (·), x̂k−1|k−1,Pk−1|k−1] denotes that {x̂k−1|k−1,Pk−1|k−1} propagates
through the nonlinear function f (·) to approximate E∗[f (·)|Zk−1] and the corre-
sponding error covariance Pk|k−1.

Similarly, Pred[h(·), x̂k|k−1,Pk|k−1] predicts the measurement and the corre-
sponding error covariance only through the approximated state prediction. This
poses difficulties for the implementation of the recursive LMMSE filter due to insuf-
ficient information. The prediction of a random variable going through a nonlinear
function, most often, can not be completely determined using only the first and sec-
ond moments. Two remedies are often used: One is to approximate the system to the
best extent such that the prediction based on the approximated system can be carried
out only through {x̂k−1|k−1,Pk−1|k−1} [20]. Another is by approximating the den-
sity function with a set of particles and propagating those particles in the recursive
Bayesian filtering framework, i.e., using a particle filter [8].

12.3.4 Posterior Cramer–Rao Lower Bound of the State
Estimation Error

Denote by J (t) the Fisher information matrix. Then the posterior Cramer–Rao lower
bound (PCRLB) is given by [18]

B(t) = J (t)−1 (12.23)
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which quantifies the ideal mean square error of any filtering algorithm, i.e.,

E
[(

x̂(tk) − x(tk)
)(

x̂(tk) − x(tk)
)T |Zk

] ≥ B(tk) (12.24)

Assuming an additive white Gaussian process noise model, the Fisher information
matrix satisfies the following differential equation

J̇ (t) = −J (t)F (x) − F(x)T J (t) − J (t)Q(t)J (t) (12.25)

for tk−1 ≤ t ≤ tk where F is the Jacobian matrix given by

F(x) = ∂f (x)

∂x
(12.26)

When a measurement is obtained at time tk with additive Gaussian noise N (0,Rk),
the new Fisher information matrix is

J (t+k ) = J (t−k ) + Ex
[
H(x)T R−1

k H(x)
]

(12.27)

where H is the Jacobian matrix given by

H(x) = ∂h(x)

∂x
(12.28)

See Appendix 3 for the numerical procedure to evaluate the Jacobian matrix for a
non-perturbed orbital trajectory propagation. The initial condition for the recursion
is J (t0) and the PCRLB can be obtained with respect to the true distribution of
the state x(t). In practice, the sensor manager will use the estimated target state to
compute the PCRLB for any time instance of interest and decide whether a new
measurement has to be made to improve the estimation accuracy.

12.4 Sensor Management for Situation Awareness

12.4.1 Information Theoretic Measure for Sensor Assignment

In sensor management, each observer has to decide when to measure which target
so that the performance gain in terms of a certain metric can be maximized. For
a Kalman filter or its extension for the nonlinear dynamic state or measurement
equations, namely, the recursive LMMSE filter, the error covariance of the state
estimate has the following recursive form [2].

P −1
k+1|k+1 = P −1

k+1|k + H(xk+1)
T R−1

k+1H(xk+1) (12.29)

Thus the information gain from the sensor measurement at time tk+1 in terms of the
inverse of the state estimation error covariance is H(xk+1)

T R−1
k+1H(xk+1) where

Rk+1 is the measurement error covariance. Consider M observers each of which can
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measure at most one target at any sampling time. When there are N space targets
being tracked by M observers, sensor assignment is concerned with the sensor to
target correspondence so that the total information gain can be maximized. Denote
by χij the assignment of observer i to target j at any particular time tk+1. The sensor
assignment problem is

min
χij

cijχij (12.30)

subject to
M∑
i=1

χij ≤ 1, j = 1, . . . ,N; (12.31)

N∑
j=1

χij ≤ 1, i = 1, . . . ,M; (12.32)

and χij ∈ {0,1}. The cost cij is

cij = Tr
{
H

(
xj

(
(tk+1)

))T
R−1

i (tk+1)Hi

(
xj

(
(tk+1)

))}
(12.33)

if there is no Earth blockage between observer i to target j . In the above formulation,
all targets are assumed to have the same importance so the observes are scheduled to
make the most informative measurements. This may lead to a greedy solution where
those targets close to the observers will be tracked more accurately than those away
from the observers. It may not achieve the desired tracking accuracy for each target.

12.4.2 Covariance Control for Sensor Scheduling

Covariance control method does not optimize a performance metric directly in the
sensor-to-target assignment, instead, it requires the filter designer to specify a de-
sired state estimation error covariance so that the selection of sensors and the corre-
sponding sensing times will meet the specified requirements after the tracker update
using the sensor measurements as scheduled. Denote by Pd(tk+1) the desired error
covariance of the state estimation at time tk+1. Then the need of a sensor measure-
ment at tk+1 for this target, according to the covariance control method, is

n(tk+1) = −min
(
eig

{
Pd(tk+1) − Pk+1|k

})
(12.34)

where the negative sign has the following implication: A positive value of the eigen-
value difference implies that the desired covariance requirement is not met. The goal
of covariance control is to minimize the total sensing cost so that all the desired co-
variance requirements are met. If we use the same notation cij as the cost for the
observer i to sense the target j at tk+1, then the covariance control tries to solve the
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following optimization problem.

min
χij

cijχij (12.35)

subject to nij (tk+1) = −min
(
eig

{
Pdij (tk+1) − Pk+1|k+1(χij )

}) ≤ 0,

i = 1, . . . ,M, j = 1, . . . ,N (12.36)

and χij ∈ {0,1}. In this setting, more than one observer can sense the same target
at the same time. The optimization problem is combinatorial in nature and one has
to evaluate 2MN possible sensor-to-target combinations in general, which is compu-
tationally prohibitive. Alternatively, a suboptimal need-based greedy algorithm has
been proposed [10]. It also considers the case where certain constraints can not be
met, i.e., the desired covariance is unachievable even with all the sensing resources.

12.4.3 Game Theoretic Covariance Prediction for Sensor
Management

In the formulation of the sensor management problem, we need the filter to provide
the information on the state estimation error covariance which is based on the or-
bital trajectory propagation assuming that the target does not maneuver. If the target
maneuvers, then the filter calculated error covariance assuming the non-maneuver
motion model will be too optimistic. There are two possible approaches to account
for the target maneuver motion. One is to detect target maneuver and estimate its on-
set time as quickly as possible [15]. Then the filter will be adjusted with larger pro-
cess noise covariance to account for the target maneuvering motion. Alternatively,
one can design a few typical target maneuvering motion models and run a mul-
tiple model estimator with both non-maneuver and maneuver motion models [2].
The multiple model filter will provide the model conditioned state estimation error
covariances as well as the unconditional error covariance for sensor management
purposes. Note that the multiple model estimator does not make a hard decision
on which target motion model is in effect at any particular time, but evaluates the
probability of each model. The corresponding unconditional covariance immedi-
ately after target maneuver onset time can still be very optimistic, which is needed
to support the evidence that a maneuvering motion model is more likely than a non-
maneuvering one. As a consequence, the scheduled sensing action in response to
the target maneuver based on the unconditional covariance from a multiple model
estimator can be too late for evasive target motion.

We propose to use generalized Page’s test for detecting target maneuver [15] and
apply the model conditioned error covariance from each filter in the sensor manage-
ment. Denoted by Sm(tk+1) the set of targets being classified as in the maneuvering
mode and S−m(tk+1) the set of targets in the nonmaneuvering model, respectively.
We apply covariance control for sensor-to-target allocation only to those targets in
Sm(tk+1) and use the remaining sensing resources to those targets in S−m(tk+1) by
maximizing the information gain. The optimization problem becomes
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min
χij

cijχij (12.37)

subject to nij (tk+1) = −min
(
eig

{
Pdij (tk+1) − Pk+1|k+1(χij )

}) ≤ 0,

i = 1, . . . ,M, j ∈ Sm(tk+1) (12.38)

M∑
i=1

χij ≤ 1, j ∈ S−m(tk+1) (12.39)

∑
j∈S−m(tk+1)

χij ≤ 1, i = 1, . . . ,M (12.40)

and χij ∈ {0,1}. The cost cij is

cij =
{

Tr
{
H

(
xj

(
(tk+1)

))T
R−1

i (tk+1)Hi

(
xj

(
(tk+1)

))}
j ∈ S−m(tk+1)

0 j ∈ Sm(tk+1)
(12.41)

Given that target j ∈ S−m(tk), we assume that observer i will declare j ∈ Sm(tk+1)

if the predicted target location has Earth blockage to the observer i at tk+1. If the
target is declared as in the maneuvering mode, then the predicted error covariance
will be based on the worst case scenario of the pursuit–evasion game between the
observer and the target (see Appendix 4 for details).

12.5 Simulation Study

12.5.1 Scenario Description

We consider a small scale space target tracking scenario where four satellite ob-
servers collaboratively track two satellite targets. The nominal orbital trajectories
are generated from realistic satellite targets selected in the SpaceTrack database.
The four observer satellites are (1) ARIANE 44L, (2) OPS 856, (3) VANGUARD 1,
and (4) ECHO 1. They are in low-Earth orbits. The two target satellites are:
(1) ECHOSTAR 10, and (2) COSMOS 2350. They are in geostationary orbits. The
simulation was based on the software package that utilizes the general mission anal-
ysis tool (GMAT).1 Figure 12.1 shows the orbital trajectories of the observers and
targets. The associated tracking errors were obtained based on the recursive linear
minimum mean square error filter when sensors are assigned to targets according to
the nonmaneuvering motion. The error increases in some time segments are due to
the Earth blockage where no measurements are available from any observer.

1General Mission Analysis Tool, released by National Aeronautics and Space Administration
(NASA), available at http://gmat.gsfc.nasa.gov/.

http://gmat.gsfc.nasa.gov/
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Fig. 12.1 The space target tracking scenario where four observers collaboratively track two targets

12.5.2 Performance Comparison

We now consider the case in which the target performs an unknown thrust maneu-
ver that changes the eccentricity of its orbit. In particular, both targets are initially
in the GEO orbit and at time t = 1000 s, target 1 performs a 1 s burn that produces a
specific thrust, i.e., an acceleration w = [0 0.3 0]T km/s2, while, at time t = 1500 s,
target 2 performs a 1 s burn that produces a specific thrust w = [0 0.5 0]T km/s2.
The eccentricity change of target 1 after the burn is around e ≈ 0.35 while the eccen-
tricity change of target 2 after the second burn is e ≈ 0.59. Another type of target
maneuver is the inclination change produced by a specific thrust. Two inclination
changes are generated with i ≈ 0.16 for target 1 and i ≈ 0.09 for target 2. Each
observer has the minimal sampling interval of 50 s and we assume that all observers
are synchronized and the sensor manager can make centralized coordination based
on the centralized estimator for each target. We consider two cases: (i) the observer
has range and angle measurements with standard deviations 0.1 km and 10 mrad, re-
spectively, and (ii) the observer has range, angle and range rate measurements with
standard deviations 0.1 km, 10 mrad, 2 m/s, respectively.

We applied the generalized Page’s test (GPT) without and with range rate mea-
surement for maneuver detection while the filter update of state estimate does not
use the range rate measurement [15]. The reason is that the nonlinear filter designed
assuming non-maneuver target motion is sensitive to the model mismatch in the
range rate when target maneuvers. The thresholds of the generalized Page’s test for
both case (i) and case (ii) were chosen to have the false alarm probability PFA = 1%.
The average delays of target maneuver onset detection for both cases are measured
in terms of the average number of observations from the maneuver onset time to
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Table 12.1 Comparison of tracking accuracy for various orbital changes of the targets

Cases e → 0.35 e → 0.59 i → 0.09 i → 0.16

(i) Average delay per observations 7.3 6.4 12.1 9.6

(i) PTR, peak position error (km) 33.7 54.8 14.5 18.9

(i) IMM, peak position error (km) 48.1 66.5 12.4 22.3

(i) PTR, peak velocity error (km/s) 0.38 0.40 0.22 0.25

(i) IMM, peak velocity error (km/s) 0.41 0.44 0.21 0.26

(ii) Average delay per observations 1.3 1.0 2.9 2.4

(ii) PTR, peak position error (km) 6.9 7.4 3.1 3.8

(ii) IMM, peak position error (km) 8.3 11.2 3.2 4.1

(ii) PTR, peak velocity error (km/s) 0.28 0.31 0.16 0.19

(ii) IMM, peak velocity error (km/s) 0.30 0.34 0.16 0.21

the declaration of the target maneuver. Once target maneuver is declared, then an-
other filter assuming the white noise acceleration with process noise spectrum of
0.6 km/s2 was used along both tangential and normal directions of the estimated tar-
get motion. Alternatively, an interacting multiple model (IMM) estimator [2] with
nonmaneuver and maneuver motion models using the same parameter settings as
the model switching filters embedded in the target maneuvering detector was used
to compare the tracking accuracy. Table 12.1 compares the peak errors in position
and velocity for each target maneuvering motion using model switching filter and
the IMM estimator. The average detection delays for both cases are also shown
in Table 12.1 for GPT algorithm. We can see that the range rate measurement, if
available, can improve the average detection delay of target maneuver significantly
and thus reducing the peak estimation errors in both target position and velocity.
The model switching filter using GPT has better tracking accuracy than the IMM
estimator in most cases even for the peak errors. It should be clear that the filter
based on nonmaneuver motion model outperforms the IMM estimator during the
segment that the target does not have an orbital change. Interestingly, even though
the inclination change takes longer time to detect compared with the eccentricity
change for both targets, the resulting peak estimation errors in position and velocity
are relatively smaller for both the model switching filter and the IMM estimator.
The extensive comparison among other nonlinear filtering methods for space target
tracking can be found in [4].

Next, we assume that both target 1 and target 2 will choose their maneuver on-
set times intelligently based on their geometries to the observers. Both targets can
have a maximum acceleration of 0.05 km/s2 with a maximum of 10 s burn. We as-
sume that each observer can measure target range, angle, and range rate with the
same accuracy as in the case (ii) of the tracking scenario considered previously. We
implemented the following configurations of the sensor management schemes to
determine which observer measures which target at a certain time instance. (i) In-
formation based method: Sensors are allocated with a uniform sampling interval of
50 s to maximize the information gain. (ii) Covariance control based method: Sen-
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Table 12.2 Performance comparison for various sensor management methods

Configuration Peak position Average position Peak velocity Average velocity Average sampling
error (km) error (km) error (km/s) error (km/s) interval (s)

(i) Target 1 89.7 24.4 2.1 0.16 50

(i) Target 2 76.3 14.2 1.6 0.14 50

(ii) Target 1 16.7 2.4 0.36 0.10 13.5

(ii) Target 2 15.2 1.8 0.29 0.09 16.8

(iii) Target 1 12.2 1.8 0.28 0.08 37.6

(iii) Target 2 10.9 1.3 0.27 0.08 39.2

sors are scheduled with the sampling interval such that the desired position error is
within 10 km for each target. The state prediction error covariance for nonmaneuver
or maneuver motion model is computed based on the posterior Cramer–Rao lower
bound. (iii) Game theoretic method: Sensors are allocated by maximizing the infor-
mation gain for nonmaneuvering targets and covariance control will be applied to
maneuvering targets. The maneuvering onset time is predicted based on the pursuit
evasion game for each observer-to-target pairing. In all three configurations, model
switching filter is used for tracking each target. We compare the peak and average
errors in position and velocity for both targets as well as the average sampling inter-
val from all observers for configurations (i)–(iii). The results are listed in Table 12.2.
We can see that the information based method (configuration (i)) yields the largest
peak errors among the three schemes. This is due to the fact that both targets apply
evasive maneuver so that the peak errors will be much larger compared with the re-
sults in Table 12.1 based on the same tracker design and sampling interval. In order
to achieve the desired position error, covariance control method (configuration (ii))
achieves much smaller peak and average errors compared with configuration (i) at
the price of making the sampling interval much shorter. Note that the peak position
errors are larger than 10 km for both targets owing to the detection delay of maneu-
vering onset time. The proposed game theoretic method (configuration (iii)) has the
smallest peak and average errors because of the prediction of maneuvering onset
time by modeling target evasive motion from the pursuit evasion game. Note that
it also has longer average sampling interval than that of configuration (ii) due to a
quicker transient when each target stops its burn, indicating possible energy saving
for the overall system. The sensing resources saved with configuration (iii) can also
be applied to search other potential targets in some designated cells. One possible
approach to perform joint search and tracking of space targets was discussed in [5].

12.6 Summary and Conclusions

In space target tracking by satellite observers, it is crucial to assign the appropriate
sensor set to each target and minimizes the Earth blockage period. With complete
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knowledge of the space borne observers, a target may engage its evasive maneu-
vering motion immediately after the Earth blockage occurs and change its orbit
to maximize the duration of the Earth blockage. We presented a game theoretic
model for the determination of maneuvering onset time and consequently, the co-
variance control is applied to the maneuvering targets in the sensor-to-target assign-
ment. For nonmaneuvering targets, we try to maximize the total information gain
by selecting sensors that will provide the most informative measurements on the
target’s state. We simulated a multi-observer multi-target tracking scenario where
four LEO observers collaboratively track two GEO targets. We found that the mul-
tiple model estimator assuming random maneuvering onset time yields much larger
estimation error compared with the model switching tracker based on maneuver-
ing detection from the solution to the pursuit–evasion game. In addition, sensor
assignment based on maximum information gain can lead to large tracking error
for evasive targets while using the same desired error covariance for all targets can
only alleviate the issue at the price of more frequent revisit time for each target.
Fortunately, the sensor assignment based on covariance control for maneuvering
targets and maximum information gain for nonmaneuvering targets achieves a rea-
sonable tradeoff between the tracking accuracy and the consumption of sensing re-
sources.

There are many avenues to extend the existing work in order to achieve space
situational awareness. First, target intent can be inferred based on its orbital history.
It is of great interest to separate the nonevasive and evasive orbital maneuvering
motions and allocate the sensing resources accordingly. Second, our model of the
pursuit–evasion game relies on the complete knowledge of the observer’s and tar-
get’s state which may not be known to both players in real life. This poses challenges
in the development of the game theoretic model with incomplete information which
is computationally tractable for the sensor management to allocate sensing resources
ahead of time. Finally, the current nonlinear filter does not consider the clutter and
closely spaced targets where imperfect data association has to be handled by the fil-
tering algorithm. It should be noted that the posterior Cramer–Rao lower bound for
single target tracking with random clutter and imperfect detection [19] can be read-
ily applied to the covariance control. However, it is still an open research problem
to design efficient nonlinear filtering method that can achieve the theoretical bound
of the estimation error covariance.
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Appendix 1: Conversion of the Coordinate Systems

The following conversion schemes among different coordinate systems are based
on [3]. Given the position r = [ξ η ζ ]′ in the ECEF frame, the latitude ϕ, longitude
λ and altitude h (which are the three components of rgeo) are determined by
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STEP 1 ϕ = 0

repeat

ϕold = ϕ

Dϕ = Re

[
1 − εe sin2 ϕold

]− 1
2

ϕ = atan

(
ζ + Dϕε2

e sinϕold√
ξ2 + η2

)

until |ϕ − ϕold| < TOL

STEP 2 λ = atan(
η
ξ
)

h = ζ

sinϕ
− Dϕ

(
1 − ε2

e

)

where Re = 6378.137 km and εe = 0.0818191 are the equatorial radius and eccen-
tricity of the Earth, respectively. TOL is the error tolerance (e.g., 10−10) and the
convergence occurs normally within 10 iterations.

The origin of the local Cartesian frame O is given by

O = [
0 Dϕε2

e sinϕ cosϕ Dϕ

(
ε2
e sin2 ϕ − 1

)]′
(12.42)

and the rotation matrix is given by

A =
⎡
⎣

− sinλ cosλ 0
− sinϕ cosλ − sinϕ sinλ cosϕ

cosϕ cosλ cosϕ sinλ sinϕ

⎤
⎦ (12.43)

The position r in the local Cartesian frame is given by

rloc = Ar + O (12.44)

Appendix 2: Keplerian Elements

The specific angular momentum lies normal to the orbital plane given by h = r × v

with magnitude h
�= ‖h‖. Inclination is the angle between the equatorial plane and

the orbital plane given by i
�= cos−1(

hz

h
) where hz is the z-component of h. Eccen-

tricity of the orbit is given by

e �= 1

μ

[(
v2 − μ

r

)
r − rvrv

]
(12.45)

with magnitude e
�= ‖e‖. The longitude of the ascending node is given by

Ω
�=

{
cos−1( nx

n
) ny ≥ 0

2π − cos−1( nx

n
) ny < 0

(12.46)
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where n is the vector pointing towards the ascending node with magnitude n
�= ‖n‖.

The argument of perigee is angle between the node line and the eccentricity vector
given by

ω
�=

{
cos−1(ne

ne
) ez > 0

2π − cos−1(ne
ne

) ez < 0
(12.47)

with the convention that

ω = cos−1
(

ex

e

)
(12.48)

for an equatorial orbit. The true anomaly ν is the angle between the eccentricity
vector and the target’s position vector given by

ν
�=

{
cos−1( er

er
) vr > 0

2π − cos−1( er
er

) vr < 0
(12.49)

with the convention that ν = cos−1( rx
r
) for a circular orbit. The eccentric anomaly

is the angle between apogee and the current position of the target given by

E = cos−1
(

1 − r/a

e

)
(12.50)

where a is the orbit’s semi-major axis given by a = 1
2
r − v2

μ

. The mean anomaly is

M = E − e sinE. The orbital period is given by T = 2π

√
a3

μ
.

The six Keplerian elements are {a, i,Ω,ω, e,M}. The orbit of a space target can
be fully determined by the parameter set {i,Ω,ω,T , e,M} with initial condition
given by the target position at any particular time [17]. The angles {i,Ω,ω} trans-
form the inertial frame to the orbital frame while T and e specify the size and shape
of the ellipsoidal orbit. The time dependent parameter ν(t) represents the position
of the target along its orbit in the polar coordinate system.

Appendix 3: Algorithm for Orbital State Propagation

Presented below is an algorithm that propagates the state of an object in an or-
bital trajectory around the Earth following [3]. Both the trajectory propagation
and the corresponding Jacobian matrix of the nonlinear orbital equation are given.
Let x(t)′ = [r(t)′ ṙ(t)′] be the unknown state to be computed at time t , given
the state x′

0 = x(t0)
′ = [r′

0ṙ′
0] at the time t0. The gravitational parameter μ =

3.986012 × 105 km3/sec2 and the convergence check parameter TOL = 10−10 are
used.
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STEP 1 r0 := ‖r0‖; v0 := ‖ṙ0‖; q0 := 1

μ
r′

0ṙ0

a0 := 2

r0
− v2

0

μ
; p0 := 1 − a0r0√

μ

STEP 2 α := a0(t − t0)√
μ

; β := a0α
2

STEP 3 c := 1 − cos(
√

β)

β
; s :=

√
β − sin(

√
β)

β
√

β

STEP 4 τ := p0α
3s + q0α

2c + r0√
μ

α

dτ

dα
:= p0α

2c + q0α(1 − sβ) + r0√
μ

α := α +
[

dτ

dα

]−1[
(t − t0) − τ

]

STEP 5 if
([

(t − t0) − τ
]
> TOL

)

gotoSTEP 3

STEP 6 f := 1 − α2c

r0
; g := (t − t0) − α3s√

μ

r(t) := f r0 + gṙ0; r := ∥∥r(t)
∥∥

STEP 7 ḟ :=
(√

μ

r0

)
(sβ − 1)

(
α

r

)
; ġ := 1 − α2c

r
; ṙ(t) := ḟ r0 + ġṙ0

The above steps yield the required state x(t)′ = [r(t)′ṙ(t)′] at time t . In order to
predict the covariance of the position r(t) by propagating the covariance of r(t0)
from t0 to t , we need to compute the 6 × 3 matrix ∇x0 r(t). The computation of this
matrix involves the following additional steps.

STEP 8 ∇x0r0 :=
[

r0
0

](
1

r0

)
; ∇x0v0 :=

[
0
ṙ0

](
1

v0

)

∇x0q0 :=
[

ṙ0
r0

](
1

μ

)

∇x0a0 := (∇x0r0)

(−2

r2
0

)
+ (∇x0v0)

(−2v0

μ

)

∇x0p0 := (∇x0r0)

(−a0√
μ

)
+ (∇x0a0)

(−r0√
μ

)
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STEP 9
ds

dβ
:= c − 3s

2β
; dc

dβ
:= 1 − sβ − 2c

2β

STEP 10 b1 := (∇x0q0)
(−α2c

) + (∇x0p0)
(−α3s

) + (∇x0r0)

( −α√
μ

)

b2 := (∇x0a0)
(−α2)

A :=
[

3p0α
2s + 2q0αc + r0√

μ
p0α

3 ds

dβ
+ q0α

2 dc

dβ

2a0α −1

]

[
(∇x0α)(∇x0β)

] := [b1b2]A−1

STEP 11 ∇x0f :=
[
(∇x0r0)

(
αc

r0

)
− (∇x0α)(2c) − (∇x0β)

(
α

dc

dβ

)][
α

r0

]

∇x0g :=
[
(∇x0α)(3s) − (∇x0β)

(
α

ds

dβ

)][−α2

√
μ

]

STEP 12 ∇x0 r(t) =
[
f I3
gI3

]
+ (∇x0f )r′

0 + (∇x0g)ṙ′
0.

Appendix 4: Pursuit Evasion Game in a 2D Plane

Consider the space target orbiting the Earth with the polar coordinate system fixed
on the Earth’s center. The motion of the target is given by

r̈ − rθ̇2 = − μ

r2 + F sinα

m
(12.51)

rθ̈ + 2ṙ θ̇ = F cosα

m
(12.52)

where α is the angle the thrust vector and the local horizontal as shown in Fig. 12.2.
Denote by vθ and vr the tangential and radial velocities of the target, respectively.
The dynamic equation of the space target can be written as

v̇r − v2
θ

r
= − μ

r2 + F sinα

m
(12.53)

v̇θ + vrvθ

r
= F cosα

m
(12.54)

It is desirable to normalize the parameters with respect to a reference circular
orbit with radius r0 and velocity v0, so that significant figures will not be lost due to
linearizing the target motion equation. Define the following normalized state vari-
ables.

x1 = r

r0
(12.55)
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Fig. 12.2 Simplified 2D
geometry of a space target

x2 = vr

v0
(12.56)

x3 = vθ

v0
(12.57)

x4 = θ (12.58)

Let τ = v0
r0

t . The state equation with respect to τ can be written as

ẋ1 = x2 (12.59)

ẋ2 = x2
3

x1
− 1

x2
1

+ F0 sinα (12.60)

where F0 = r0F

v2
0m

is a constant depending the thrust F and target’s mass m.

ẋ3 = −x2x3

x1
+ F0 cosα (12.61)

ẋ4 = x3

x1
(12.62)

In the standard pursuit evasion game, the objective is to find the minimax solu-
tion, if exists, to the objective function

J = φ
(
x(tf )

)
(12.63)

with the state dynamics given by

ẋ = f (x, u, v, t) (12.64)

and the initial condition x(t0) = x0 as well as the terminal constraint ψ(x(tf )) = 0.
Here u and v represent the controls associated with the pursuer and the evader,
respectively. The goal is to determine {u∗, v∗} such that

J
(
u∗, v

) ≤ J
(
u∗, v∗) ≤ J

(
u,v∗) (12.65)
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The necessary condition for the minimax solution to exist is that the costate λ satis-
fies the following transversality condition.

λ = φx(tf ) + νψx(tf ) (12.66)

H(tf ) = φt (tf ) + νψt (tf ) (12.67)

where ν is a Lagrange multiplier and H is the Hamiltonian associated with λ that
has to be optimized

H ∗ = max
v

min
u

H(x,λ, u, v, t) (12.68)

It has been shown in [9] that at the optimal solution, the thrust angles of the pursuer
and the evader are the same.
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Chapter 13
Decentralized Cooperative Control
of Autonomous Surface Vehicles

Pedro DeLima, Dimitri Zarzhitsky,
and Daniel Pack

Summary Many pressing issues associated with control of cooperative intelligent
systems involve challenges that arise from the difficulty of coordinating multiple
task objectives in highly dynamic, unstructured environments. This chapter presents
a multi-objective cooperative control methodology for a team of autonomous sur-
face vehicles deployed with the purpose of protecting a waterway against hostile
intruders. The methodology captures the intent of a human commander by break-
ing down high-level mission objectives into specific task assignments for a fleet of
autonomous boats with a suite of on-board sensors, limited processing units, and
short-range communication capabilities. The fundamental technologies supporting
our control method have already been field-tested on a team of autonomous aerial
vehicles, and the aim of this work is to extend the previously developed theories to
multiple problem domains using heterogeneous vehicle platforms.

13.1 Introduction

Over the course of the past several years, the research team from the Sensor-based
Intelligent Robotics Laboratory at the U.S. Air Force Academy has been working on
a comprehensive and principled approach to the design of decentralized mobile sen-
sor networks [5]. A significant amount of this ongoing effort is presently dedicated
to the development of a scalable control algorithm that can coordinate activities of
mixed robot-human teams on a variety of battlefield scenarios. The emphasis of the
current work is on the management of the cooperative behaviors of autonomous sur-
face vehicles (ASVs) through a decentralized decision-making mechanism based on
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a periodic analysis of current mission objectives and the overall mission progress.
The on-board vehicle controller is based on a multi-tiered architecture, and accom-
modates multiple short- and long-term objectives using a consistent mathematical
formulation. The decentralized approach is necessary for any desired scalable sys-
tem with minimal communication requirements among cooperative vehicles [10].
This chapter provides a more in-depth description of this novel control framework.

13.2 Motivation

To better focus our discussion on task-level vehicle control, we assume an exis-
tence of a low-level drive mechanism responsible for actuating control surfaces of
an ASV, so that the vehicle can navigate toward a specified waypoint with the help
of reactive obstacle avoidance technique when necessary [4]. We also assume the
existence of a general path-planning module capable of charting optimal routes (on
a coarse scale) from one location to another, e.g., [1]. To help with the evaluation of
our methodology for designing cooperative control algorithms, we plan to deploy
several ASVs tasked with a sequence of multi-objective missions [9], such as transit
from one port to another, search for threats within a specific area, protect stationary
and mobile assets, as well as investigate, pursuit, and engage hostile targets.

In order to realize our solution in an efficient manner, we should rely as much
as possible on the intelligence and autonomy of our robotic platform, and our con-
trol algorithm must address two important challenges. First, a decision logic that
allows a cooperative vehicle to determine its current operating mode and associated
sub-tasks for each operating mode must be formulated. This decision logic must
incorporate inputs from a participating human observer, in addition to the informa-
tion and requests sent by other autonomous vehicles. The vehicle operating modes
are general goals, such as surveillance, transit, pursuit, and engagement. Within the
context of each mode, a vehicle can perform different sub-tasks depending on the
environmental circumstances, human intervention, and interaction with other vehi-
cles. Second, given a specific mode of operation and a particular task selected within
it, a vehicle must compute, in real time, a sequence of waypoints that will guide it
in a manner appropriate to each situation. Although in the envisioned decentralized
control approach each vehicle must determine its own path independently, the ulti-
mate collective, cooperative behaviors rely significantly on the coordination among
vehicles in order to improve the group’s combined performance. Likewise, knowl-
edge of the on-board payload and essential characteristics of cooperating vehicles,
as well as timely communication is essential for the creation of such trajectories.

13.3 Decentralized Hierarchical Supervisor

In this section, we present a novel decentralized hierarchical supervisor for the ASV
task allocation technique during missions with multiple objectives. The supervisor
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Fig. 13.1 The four layers of
the decentralized hierarchical
supervisor

Fig. 13.2 Decision logic for
mode selection

module is composed of four layers (shown in Fig. 13.1). The top layer contains
the decision logic for making the mode selection, which is shown in Fig. 13.2. The
mode selection decision logic is responsible for evaluating the conditions neces-
sary for making a transition between the five principal modes of operation: idle,
surveillance, transit, engagement, and pursuit. Upon entering a new mode, vehi-
cles examine the current modes in which their neighbors operate in order to select
potential agents for cooperation. Once those candidates are identified, a sequence
of negotiations involving requests and current constraints results in making a de-
cision whether or not vehicles should join the cooperative effort, and may in turn
lead to changes in the tasks performed by members of the new group. For example,



260 P. DeLima et al.

during a surveillance mission, vehicles that cooperate with other craft operating in
the surveillance mode can do so in a passive or active fashion. Passive cooperation
is possible with vehicles operating in other modes, as long as they have at least
one operational sensor covering a portion of the designated mission area. Active
cooperation requires that supporting vehicles alter their routes in order to realize
the benefits from expanded coverage of their sensors. Since different search areas
can be delegated to different vehicles, an interesting form of active collaborative
surveillance occurs when there exists a partial overlap between the search areas of
the two vehicles, and they must adjust their search routes accordingly in order to
cooperatively maximize collective coverage.

The second layer of the supervisor focuses on allocating tasks within the oper-
ational regime specified by the mode selection layer described above. Tasks within
a given mode share the same general goal, and specify the role taken by each indi-
vidual craft to achieve that goal. For instance, within the surveillance mode, asset
protection and persistent intelligence, surveillance, and reconnaissance (ISR) are
two tasks that both share the common goal of searching an area for potential threats.
However, in order to achieve the ISR objectives, the ships can operate within a well-
defined, static area; on the other hand, protection of mobile assets requires that the
search area be altered in real-time in a quasi-unpredictable manner (i.e., escorting a
moving asset). Within the transit mode, one can find tasks such as dedicated transit,
in which the ASV focuses exclusively on minimizing its travel time to the desti-
nation, but note that even this mode permits the ASVs to pursue other secondary
goals, such as increasing the threat detection probability, by sharing the results of
area coverage obtained with their on-board sensors.

We developed specific task allocation algorithms for each mode. In some cases,
such as the surveillance mode, the task allocation is determined by the character-
istics of the mission and the various constraints provided by a human operator. In
other cases, such as the transit mode, the tasks determine different roles that can be
carried out simultaneously by multiple ASVs to achieve the common goal. In this
case, the allocation of individual duties is solely a result of the active negotiation
between the cooperating agents.

The third layer of the decentralized hierarchical supervisor is the trajectory gen-
erator, responsible for the generation of the navigation paths for the ASV, with the
implicit goal of maximizing the vessel’s performance on the current task. During
the persistent ISR task, the goal of the trajectory generator is to plot a route that
maximizes the cooperative coverage of an area, while during a transit task, the tra-
jectory generator may concern itself only with computing a sequence of waypoints
that guide the vehicle from its current position to its desired location along the short-
est, feasible path, i.e., without violating the traversable constrains (such as terrain)
of the given mission area.

The fourth and final layer in the supervisor architecture is the tracking controller.
Fundamentally different from the other three layers, this component is strongly plat-
form dependent, because its goal is to execute all the commands that are specific to
the vehicle’s actuators in order to advance it toward the trajectory assigned by the
third layer.
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Fig. 13.3 Three vehicles
cooperate performing the
persistent ISR task, while
operating in the surveillance
mode

This chapter provides a detailed analysis of two of the four modes: surveillance
and transit. Discussion of the surveillance mode focuses on a cooperative persistent
ISR task, while the description of the transit mode emphasizes the two tasks involv-
ing autonomous negotiations between the ASVs to assign leader and follower roles,
each with a different set of objectives. The following sections explain the objectives
and challenges of each operating mode, and provide an overview of the algorithms
implemented to support the trajectory generation layer. A trajectory generation de-
vice, such as a standard autopilot, is assumed to be available for the implementation
of the described technique.

13.3.1 Persistent ISR Task

In this section, we consider the surveillance mode, and in particular the persistent
ISR task, in which ASVs monitor a specified region of space for potential threats. An
example of the implementation of such a task is shown in Fig. 13.3, where three craft
position themselves in a way that increases the likelihood of detection of potential
threats moving across the traversable area of the designated search area (shown in
the illustration as the region delimited by the dotted rectangle). As detailed in [6], the
likelihood of detecting a mobile threat in such scenarios is directly proportional to
the average frequency of the surveillance coverage, and is inversely proportional to
the variability of the coverage rate frequency across the search area. In other words,
an effective ISR strategy must cover the entire area of interest in a homogeneous
manner as frequently as possible.

The search task for surface vehicles described here was initially proposed and
developed (see [2]) in the context of ISR missions for unmanned aerial vehicles
(UAVs). Our decentralized search algorithm expresses individual and collective
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Fig. 13.4 Example of the
four search vectors acting on
a single UAV. The search
boundary is on the left and a
cooperating UAV is to the
right. Shaded areas represent
regions that were already
scanned by the UAVs

goals in four weighted directional vectors which, when summed, provide the de-
sired future heading h of a vehicle,

h = wgvg + wvehvveh + wcvc + wmvm (13.1)

where vg is the goal vector, vveh is the vehicle spread vector, vc is the vector that
repels the vehicles from the search area boundaries, vm is the momentum vector, and
the w’s are their corresponding weights (see Fig. 13.4). New desired headings are
calculated at fixed discrete moments, triggered by the arrival of new sensor data [2].

In practice, additional factors need to be considered to adapt this search method
for aquatic surface vehicles. Because the vessels operate in the same horizontal
plane, collision avoidance procedures must be considered, and since navigable ar-
eas are limited by shore lines and coastal rights of way, the ASV controller has to
ensure that multiple external constraints are satisfied [1]. To restrict the search to
a traversable area (assumed to be known a priori), the search algorithm originally
developed for UAVs was modified to account for the change in the spatial coverage.
To prevent nontraversable areas, such as land masses and bridge structures, from
misdirecting the goal vector vg, the map of traversable areas is treated as an overlay
onto the coverage map to assign a zero probability to the detection of targets in the
nontraversable areas (independent of the spatial coverage history). This overlay is
applied only during the calculation of the goal vector vg, while the overall target de-
tection probability map is transferred to the next iteration, preserving the complete
sensor coverage information stored within it.

Having determined the desired heading h via a consideration of the traversable
area, the next step is to anticipate whether the ASV will attempt to cross non-
traversable sections of the space while maintaining its assigned heading. Consider
the case shown in Fig. 13.5 where the heading h, derived from the four intentionality
vectors of (13.1), indicates the direction with the greatest impact on the likelihood
of target detection. If we were to assess the feasibility of the heading h, we would
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Fig. 13.5 Illustration of the
determination process for
computing a feasible heading
h′ and the valid heading ho.
Shaded areas represent
regions that were already
scanned by the UAVs, while
the black area on the right
side of the image represents a
nontraversable zone

conclude that it was a safe maneuver for the ASV to perform. However, restrictions
on vehicle dynamics under the specific trajectory tracking controllers will limit the
turn rate by some maximum value. This maximum turn rate, assumed to be known
as part of the physical characteristics of the vehicles, can be translated into a “feasi-
bility” cone, such as the one shown in Fig. 13.5, centered around the craft’s current
heading, with an extension equal to the distance that can be reached by the ves-
sel under its current speed within the discrete time evaluation period of (13.1), and
the aperture based on the maximum turning angle achievable by the craft within
the same time interval. If the intended heading h falls within the angle range con-
strained by the feasibility cone, the heading h is assigned as the feasible heading h′
(i.e., h′ = h). On the other hand, if the intended heading h, as shown in Fig. 13.5, is
located outside of the feasibility cone, the boundary of the feasibility cone with the
smallest included angle with respect to h is selected as h′.

Before being relayed to the low-level tracking controller, the feasibility of h′
must be confirmed. This is accomplished by evaluating the direction indicated by
the vector h′ at fixed spatial intervals against the traversability map. If any of the
evaluated points indicate a nontraversable section of the space, we iteratively com-
pute other heading candidates within the feasibility cone, starting with those that
have the smallest angle change from the original h′ vector. Once a heading vector is
found such that it results in a traversable path, it is labeled as the valid heading ho,
and is given to the tracking controller for execution.

However, note that in certain circumstances, such as the one pictured in Fig. 13.6,
no valid heading ho may exist within the feasibility range determined by the craft’s
current speed. In such circumstances, progressive reductions in the craft’s speed are
considered. Note that with each reduction in the speed, the feasibility cone decreases
its extension, since the amount of ground covered until the next iteration is also
reduced. Also, through a similar process, the aperture of the cone increases as the
dynamic characteristics of the vehicle allow for greater turn rates at slower speeds.
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Fig. 13.6 Determination of
the feasible heading h′ and
the valid heading ho in
situations that require a speed
reduction. Feasibility cones
A, B , and C are related to
progressively slower speeds.
Shaded areas represent
regions that were already
scanned by the UAVs, while
the black area on the right
side of the image represents a
nontraversable zone

As in the example depicted in Fig. 13.6, the process of progressive speed reduction
continues until a valid heading ho is found.

13.3.2 Transit

The primary objective of the transit task is to transport an ASV from its current lo-
cation to a goal destination. In particular, for the purposes of this chapter (in which
only the surveillance and transit modes are considered), the transitions between the
two modes, shown in Fig. 13.2, suggest that all transit tasks terminate when the
designated search area is reached. Thus, if at a particular moment in time, a sin-
gle craft is on its way to a specific search area performing the transit task, then the
minimization of travel time is of the highest priority to the ASV controller. There-
fore, the challenge for the single craft operating in the transit mode is to determine
a path to its final destination; a path that does not violate the restrictions embed-
ded in the traversability map. In such cases, the same technique as was described in
Sect. 13.3.1 can be applied, with the intended heading h determined as a unit vector
in the direction of the destination search area center.

On the other hand, if multiple vehicles share a common destination, then a ne-
gotiation among the craft is necessary. One of the ships declares itself as the group
leader, while the rest of the fleet will take up the follower role. The selection of
the leader can be based on proximity to the destination, but other characteristics,
such as speed of vehicles, can also act as decision factors in heterogeneous teams
of ASVs. The leader craft selects a trajectory generation algorithm identical to the
one employed in the single craft case. The boats that follow, however, in addition
to reaching the specified destination, must also assist in increasing the joint sen-
sor coverage range during the transit by assuming one of the positions indicated by
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Fig. 13.7 Resource assignment for the cooperative transit task. The highlighted semi-arch rep-
resents the area of relative position candidates where a follower craft (F) can be positioned with
respect to the leader craft (L) in order to maximize the joint coverage of omni-directional sensors
with range s. The displacement angle α is measured from an orthogonal line to the leader’s current
valid heading ho

the highlighted area in Fig. 13.7. The leader ASV does not consider the followers’
actions in this implementation in order to avoid the risk of creating potentially un-
stable feedback loops, as well as to ensure that the leader arrives at the destination
as quickly as possible. Note that the actual location of the semi-arch of potentially
suitable locations is determined based on the position of the leader and its currently
reported valid heading ho. Similarly, the distance s is defined as the range of the
on-board omni-directional sensor, while α is a small variable angle related to the
speed adjustment function, discussed at length in Sect. 13.3.2.2.

The discussion that follows presents the task allocation algorithm for the tran-
sit mode, as well as the trajectory generation algorithm for the ASVs operating as
transit followers.

13.3.2.1 Transit Mode Task Allocation

In some circumstances, mission priorities may not allow a transit vehicle to deviate
from its course; still, it may be able to passively assist others. For instance, the path
of a vehicle dedicated solely to transit may cross a surveillance area assigned to
another vehicle. Without deviating from its path, the transit vessel can scan the area
with its sensors for the same types of threats that the surveillance boat is targeting,
thus momentarily increasing the total sensor coverage of the fleet and eliminating
the need to search the transit corridor [8]. On the other hand, when the constraints
on the transit task assigned to the ASV are flexible, it may be possible to temporar-
ily deviate from the transit path in order to meet secondary mission goals [2]. When
multiple ASVs simultaneously engage in the transit task along adjacent routes, ad-
vantageous cooperation may be realized with minimal extra effort.

Consider a simplified scenario in which two crafts, operating in transit mode and
sharing the same destination, find themselves out on the open water having the same
orientation with respect to a common reference frame. For this straightforward con-
figuration, it is almost obvious that it would be more efficient to have the vessel
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Fig. 13.8 Formation control
for sensor coverage
optimization during transit

Fig. 13.9 Relative spatial
regions for mode transition

closest to the final destination select itself as the group leader, and leave the other to
position itself in formation behind the leader. However, if the poses of the two ships
do not match at the beginning of this task, the ASV nearest to the goal may need
to move further away to execute the desired maneuver, with each vessel obeying
the constraints of its physical dynamics and propulsion limitations. Furthermore, in
more realistic scenarios, such as the one visualized in Fig. 13.8 where the geome-
try of the waterway impedes the boats’ movements, predicting which specific craft
can achieve the shortest arrival time at the final destination in a distributed fashion
(in which information is only available locally and subject to change by other un-
controlled actors in the environment) is extremely difficult, and is subject to change
several times before the goal location is reached.

Consider the diagram shown in Fig. 13.9 in which the angle β is added to the
original configuration of Fig. 13.7, defining three separate regions (A, B , and C)
relative to the position and valid heading ho of the fleet leader. The task allocation
algorithm listed in Fig. 13.10 makes use of such regions to establish the negotiation
protocol that is employed by each and every member of the group operating in the
transit mode and having the same destination; the purpose of this procedure is to
select a single fleet leader in a distributed manner by iteratively converging to a
consensus. Note that the information required to execute this real-time negotiation
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1 if no leader is present
2 become leader
3 else
4 if there are multiple leaders that share the same destination
5 if this is the closest vehicle to the destination
6 become leader
7 else
8 become follower
9 else
10 if this vehicle is the current leader
11 and a follower is located within the region A

12 become follower
13 else
14 if this vehicle is currently a follower
15 and it is located within the leader’s region A

16 become leader

Fig. 13.10 Task allocation algorithm for the transit mode

protocol consists of the current position, pose, mode, and task of the neighboring
vessels.

Note that the evaluation of the other possible scenarios, such as the presence of
no leaders or of multiple leaders, is necessary for the successful resolution of the
transitory states that can be generated in the practical implementation of the nego-
tiation algorithm due to communication delays, for example. Furthermore, instead
of a direct threshold for the mode transitions in the final else statement, the use of
the relative region A creates a hysteresis space which encompasses regions B and
a part of C, and prevents the emergence of oscillatory transitions between the ASV
roles due to the use of different trajectory generating strategies for each task.

13.3.2.2 Follower Trajectory Generating Algorithm

Having previously described the trajectory generating algorithm of the leader craft
as a simplification of the search procedure described in Sect. 13.3.1, here, we in-
troduce a trajectory generation algorithm for the follower craft. As previously men-
tioned, as a follower, an ASV must achieve both the primary goal of arriving at
the destination, and the secondary goal of maximizing the overall sensor coverage
of the entire group. While the process of evaluating the desired heading h remains
the same (see Sect. 13.3.1), the algorithm for generating the h is modified to better
fit the priorities of a follower unit. For these boats, the desired heading h is a nor-
malization of the sum of the two vectors: the tracking vector t, and the positioning
vector p, as illustrated in Fig. 13.11. The purpose of the tracking vector t is to ensure
that the followers maintain their relative positions with respect to the current leader,
hence t is defined along the same direction as the valid heading ho of the leader.
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Fig. 13.11 Example scenario for the generation of the tracking vector t, and the positioning vec-
tor p for the determination of the desired heading h of a follower craft. Shaded areas represent
regions that were already scanned by the ASVs, while the black area on the right side of the image
represents a nontraversable zone

The positioning vector p guides the craft to a point around the leader craft within
the semi-arch of a radius equal to twice the sensor range of the vehicles, so that
the joint area coverage of the group is maximized. The direction of p is defined in
terms of the current position of the follower, and the position along the previously
computed semi-arch around the leading vessel that is both feasible, and results in the
greatest gain for the combined sensor coverage of the fleet, taking into consideration
the traversability map and the mission’s coverage status map [7]. This position is
selected from a set of finite, equally spaced candidates along the formation semi-
arch, as in the example configuration depicted in Fig. 13.11. While the direction
vector t is a unit vector, the norm of vector p is equal to the distance between the
current position of the follower craft and the selected position along the formation
semi-arch. Constructed in this manner, the resulting desired heading h is dominated
by p at greater distances, but as the desired position is approached, the influence of
t increases gradually, allowing the vehicles to maintain formation. Once a desired
heading h is established, it evaluates h′ before generating the craft’s final navigation
vector ho. Recall that the obstacle avoidance routine, which constantly operates at a
lower control level, will prevent any collision-prone ho from being undertaken by a
vehicle.

We should note that in order to generate the necessary formations in all of the
potential collaborative transit scenarios, control of the heading alone is insufficient.
In order to “catch up” with a distant leader, or to yield when moving ahead of the de-
sired relative position, it is also necessary to implement some form of speed control.
For this purpose, we developed a new speed control function shown in Fig. 13.12,
where fixed speed-differential values are assigned based on the relative positions
of the followers with respect to the transit leader. The speed control map is tuned
to fit the vehicle’s dynamic constraints, particularly with respect to the maximum
achievable and minimum effective speeds. In all cases, however, it is important that
the final curves traced by the craft’s control algorithm through the state space be
smooth and at least piece-wise continuous. To fulfill both of these requirements, the
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Fig. 13.12 Sample speed adjustment maps shown in 3D and 2D perspectives. White circles in-
dicate task leader location (L) and optimal follower locations (F); the map orientation vector ho

indicates the leader’s current valid heading. Bright shaded areas represent a neutral relative speed
and serve as follower attractors, while the darker area in the circular section in the center is related
to slower speeds, and the darker area outside corresponds to faster speeds
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generated speed map was constructed from sigmoidal primitives of the form:

�S = A
x√

1 + x2

where �S is the speed differential over the vehicle’s standard cruise speed, A is the
amplitude of the maximum allowed speed differential (A = 10 m/s in the example
shown in Fig. 13.12), and x is the distance to a relative point in the speed map with
respect to the leader’s location (a valid heading is chosen to generate the desired
shape).

From the speed map’s three dimensional representation (Fig. 13.12, left), observe
that in the formation semi-arch region, the speed differential is zero, and since the
heading of the follower at these locations matches that of the leader (i.e., p has a zero
norm), these areas represent followers’ convergence points. The speed-differential
map is not defined in region A because as soon as a follower moves into this po-
sition, the task assignment algorithm (see Sect. 13.3.2.1) will select it as the new
leader, and the ASV will not alter its speed from the standard cruise value.

13.4 Simulation Results

To demonstrate the benefit of cooperation that can be realized with the proposed
search and transit task algorithms, we simulated missions using both cooperating
and noncooperating ASVs. The simulated mission conducted under both configura-
tions consisted of searching two separate locations within a designated mission area.
These two search regions were located in different portions of the mission area, sep-
arated by a “river” (i.e., a narrow traversable channel such that no single constant
heading can be used to navigate from one search area to another).

The mission began with the two ASVs at different traversable locations selected
at random within the south-east (SE) search area. After 20% of the total mission time
had elapsed, both ASVs were instructed to perform the search of the north-west area,
followed by another search command after 65% of the mission time, indicating once
more the need to search the original SE search area. Figure 13.13 shows an example
trace of the cooperative ASV simulation in which the search begins at the bottom-
right corner, then switches to the second search area at the top-left corner of the
mission area.

In order to generate results for the same mission operating without cooperation
among ASVs, we eliminated the ship-to-ship communication in the second set of
simulations. During the search task, a lack of communication results in each unit
not being aware of the area covered by the sensors of the other, therefore causing
each craft to compute its movements based solely on the information contained in
the individual on-board dynamic coverage map. During the transit task, since each
vehicle lacks the knowledge of the common destination it shares with its neighbor,
both assume the role of leaders, and proceed to minimize the arrival time without
attempting to increase the joint sensor coverage. An example of a run without the
cooperation between the craft can be seen in Fig. 13.14.
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Fig. 13.13 Visualization of the multi-objective mission involving the collaborative search of a des-
ignated area in the SE corner of the map (left) by two autonomous ASVs, followed by a search-in–
transit while navigating a river channel in formation (middle), and resumption of the search within
the NW zone (right)

Fig. 13.14 Visualization of the multi-objective mission without communication between ASVs.
The map on the left shows the self-perceived coverage of the first ASV. The map on the right
displays the same content from the perspective of the second ASV. The map in the center shows
the combined effect on sensor coverage from both ASVs, generated after the end of the mission by
a global observer

To generate statistically accurate results, a total of 20 empirical experiments were
performed for each mission scenario. The comparison between the average coverage
of the entire search region (i.e., the two search areas and the river channel connect-
ing them) over time in the two scenarios is plotted in Fig. 13.15. Note that a marked
improvement in the search coverage due to the cooperation between the two boats
can be seen during the initial moments of the simulation, when the mission goal
is to search the SE area. The difference in slopes of the two curves increases as
the cooperative behavior exhibited by the craft that assumes the follower role dur-
ing transit provides additional coverage in the region between the two search areas.
A pronounced increase in the sensor coverage performance can also be seen dur-
ing the search performed in the NW search area, where the absence of cooperation
between the ASVs becomes particularly detrimental. This result is due in part to
the fact that the lack of communication caused the craft to use nearby entry points
into the search area after emerging from the river channel, which subsequently leads
to highly similar navigation decisions (i.e., the two craft end up covering the same
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Fig. 13.15 Comparison of the coverage of the total mission area achieved during each of the
search and transit intervals of the mission for the cooperative (solid) and independent (dashed)
scenarios

regions). On average, within the parameters of the constructed mission, the sensor
coverage of the SE area increased by 17.53% when cooperation was allowed, while
the much larger gain of 48.89% was realized in the NW area. During the transit
from the SE area to the NW area, the execution of the proposed cooperative transit
algorithm resulted in a 47.06% increase in the coverage of the region connecting
the two search areas. Using the Wilcoxon rank sum test [3], we found that the task
performance improvements achieved by the cooperative controller are statistically
significant from the noncooperative version (p = 0.01).

13.5 Conclusion and Future Work

In this chapter, we presented a novel decentralized hierarchical supervisor archi-
tecture for unmanned surface vehicles composed of four layers for mode selection,
task allocation, trajectory generation, and tracking control. For vehicles deployed
on surveillance missions involving multiple disjoint areas, we have developed the
modes of surveillance and transit, and described the autonomous algorithms that
compose each of the corresponding supervisor layers. Simulation results from test-
ing the application of the proposed architecture revealed statistically significant ben-
efits of the cooperative control algorithm over conventional, independent approaches
in terms of increasing the performance of concurrent search and transit objectives
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with only a modest increase in the ASVs’ on-board hardware and communication
requirements.

Advances outlined here comprise a part of a much larger research effort concern-
ing the technological gap between current state-of-the-art manned and unmanned
systems. The long-term goal of this work is to construct a comprehensive frame-
work for analysis and development of such collaborative technologies, and the over-
all feasibility of our approach for solving real-world problems is evident from the
numerous successful outcomes we achieved with multiple autonomous platforms on
a set of nontrivial, complex, challenging tasks [10].
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Chapter 14
A Connectivity Reduction Strategy
for Multi-agent Systems

Xiaojun Geng and David Jeffcoat

Summary This paper considers the connectivity reduction of multi-agent systems
which are represented with directed graphs. A simple distributed algorithm is pre-
sented for each agent to independently remove some of its incoming links based
on only the local information of its neighbors. The algorithm results in an infor-
mation graph with sparser connections. The goal is to reduce computational effort
associated with communication while still maintaining overall system performance.
The main contribution of this paper is a distributed algorithm that can, under certain
conditions, find and remove redundant edges in a directed graph using only local
information.

14.1 Introduction

Groups of multiple agents have been studied with the aid of algebraic graph the-
ory, for example, in [2, 4, 7, 8, 10, 11], and [5]. Directed or undirected, weighted
or unweighted graphs are used to characterize a network of multiple agents, in
which agents are represented by vertices of a graph and information interactions
by arcs/edges. Once a graph is constructed for the networked agents, decentralized
control laws are applied to drive the behavior of each agent using only information
available to that agent. This information comes from its own sensing devices or from
other agents through communications.

Generally, more local information available to each individual agent results in
better performance for the overall group. The second smallest eigenvalue of the
Laplacian matrix, also called the algebraic connectivity of the graph, has been used
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as a measure of network connectivity [6, 12]. For undirected graphs (correspond-
ing to bidirectional communications or sensing), Fielder [6] shows that the second
smallest eigenvalue of the Laplacian grows monotonically with the number of edges.

The network connectivity may change dynamically due to agent motion or com-
munication failure. For this reason, preservation of network connectivity has been
a goal of multi-agent coordination. Along this line, a control law is designed in [1]
by transforming the connectivity requirement into motion constraints on each agent.
Special potential functions are used in [7] to design control laws to guarantee con-
nectedness. The above approaches preserve all the initial connections under the as-
sumption that the initial graph is connected.

Instead of preserving connectivity, this paper aims to simplify network connec-
tions by removing some redundant edges. A motivation of this idea comes from situ-
ations where significant dispersion behaviors of agents may be expected. A meshed
network with intricate information exchanges offers fault tolerant capability to the
system, but at the price of heavy computational and communications burden. In ad-
dition, preserving all initial connections may impose too much restriction on the
motion of agents resulting in performance degradation, especially for coordination
tasks requiring significant dispersion.

This paper uses directed graphs (digraphs) to represent the information interac-
tion between agents, in which information may flow in one direction only. Unidirec-
tional communication exists when some agents have only transmitter or receivers,
or when transmission power varies between agents. In addition, different weights
can be assigned to different communication links to represent the level of trust on
the information received through a particular link.

In this paper, a simple distributed scheme is developed for each agent to select
its information sources based on only local communication topology. The result of
this algorithm is a relatively sparser graph, which will be referred to as “reduced
digraph” in the paper. It is expected that coordination of agents based on reduced
digraphs will be more efficient in some applications.

The paper is organized as follows. In Sect. 14.2, we introduce the system model
of multiple agents, some definitions and results from graph theory, and a measure
of edge robustness. Section 14.3 defines triangle closures, presents the principles
used to select redundant edges in triangle closures, and describes the distributed
algorithm for each agent to select its information sources using only local trian-
gle topologies. The algorithm produces a reduced system digraph. Some discussion
about the graph reduction and an illustration of the algorithm are in Sect. 14.4, fol-
lowed by concluding remarks in Sect. 14.5.

14.2 Background

14.2.1 Model

Consider a group of n heterogeneous vehicles in 2-dimensional Euclidean space.
Each agent is assigned a label 1,2, . . . , n. Let I = {1,2, . . . , n} be the index set
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(adopted as IDs in the paper) of the agents. Each vehicle i is associated with a
position vector xi(k) ∈ R

2 at time k, where i ∈ I. We assume each vehicle i is
equipped with a transceiver for which the transmission range is δi . Note that we
allow the transmission range for each agent to be different to model the situation
where agents may carry different equipment or different power capacity. With the
above setup, if agent i is located within a closed disk of radius δj centered at xj (k),
then agent i can receive information from agent j at time k.

A weighted simple directed graph G(k) = (V ,E(k),W(k)) is used to model the
communication topology among agents at time k, where V is the set of n vertices
corresponding to n agents, E(k) ⊆ V (k)×V (k) is the edge set consisting of ordered
pairs of vertices, and W(k) is the set of weights assigned to each communication link
in E(k). For any edge (i, j) ∈ E(k), there corresponds a directed edge from j to i

in the graph, where i is called the terminal node/vertex and j the initial node/vertex,
and we say that i is reachable from j , or j can reach i. It also implies that i is within
the transmission range of j , i.e.,

∥∥xi(k) − xj (k)
∥∥ = δj

For edge (i, j) ∈ E(k), wij (k) ∈ W(k) is its weighting factor, perhaps reflecting the
reliability or significance of the information flow from j to i. In this paper, we define
the in-degree of vertex i as the number of edges whose terminal nodes are i, and the
out-degree of vertex i as the number of edges whose initial nodes are i.

The communication topology represented by G(k) may change from time to time
due to vehicle movements. At time k, all the agents from which i can receive mes-
sages constitute the neighbor set of i, denoted as

Ni(k) = {
j ∈ V (k)|(i, j) ∈ E(k), & i �= j

}

In the following sections, we sometimes drop k from the notation of G(k) since the
algorithm does not depend on past or future graph topologies.

A directed walk in a digraph G is a sequence of directed edges (i1, i2), (i2, i3),
. . . , (ip−1, ip) in E where i1, . . . , ip ∈ I, and it is a directed path if further i1 �=
i2 · · · �= ip−1. If so, we say i1 can be reached by ip . A digraph is strongly connected
if there is a directed path between any pair of distinct vertices. A subgraph Ĝ =
(V̂ , Ê) of a directed graph G = (V ,E) is a directed graph that satisfies V̂ ⊆ V and
Ê ⊂ E. A directed tree is a digraph in which every vertex is a terminal node of one
and only one edge, except one node which is called the root of the tree. A spanning
tree of a digraph G is a subgraph of G and a tree that connects all nodes of G.

14.2.2 Edge Robustness

In this paper, we allow each agent to drop messages from some of its neighbors ac-
cording to the reliability measure of these communication links. The motivation is
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that an agent would rather ignore certain information if the associated link is not reli-
able, assuming that the same piece of information may be obtained elsewhere. Com-
munication flows, represented as directed edges, are selected in this paper in terms
of their robustness. The concept of robust connectivity is taken from [4], where edge
robustness is defined for undirected graphs in which bidirectional communications
are assumed.

Denote the transmission range of agent Ai as δi , and let the distance between
Ai and Aj be dij (k) := ‖xi(k) − xj (k)‖, where i, j = 1, . . . , n. We define the edge
robustness as follows.

Definition 1 Given a directed graph G(k) = (V ,E(k),W(k)), for edge (i, j) ∈
E(k), the robustness at time k is given by

rij (k) = δj − dij (k)

δj

× wij (k)

From the above definition, it follows that the robustness value satisfies 0 = rij =
1 for edge (i, j) ∈ E(k), assuming the weight satisfies 0 = wij (k) = 1. This robust-
ness value won’t be negative due to the fact that dij (k) is not greater than δj if i

can hear j . The robustness is a measure of the flexibility agent i has in its relative
motion with j . The higher the robustness of the link, the more maneuver range the
agent has, and the more reliable the link is. Note that the robustness of the edges
(i, j) and (j, i) may be different, even when wij = wji . Applying this idea to paths
with two edges, we can define the path robustness as described below.

Definition 2 Consider a directed graph G(k) = (V ,E(k),W(k)), with (i, j) ∈ E(k)

and (j, h) ∈ E(k). The path from h to i through j , denoted by (i, j, h), has the
following robustness:

rijh(k) = min(rij (k), rjh(k))

The above definition can be extended to directed paths of any number of edges.
When transmission ranges for all edges are the same, i.e., δ1 = · · · = δn, the com-
munication topology becomes an undirected graph, in which we have rij = rji for
any undirected edge (i, j).

14.3 A Distributed Scheme of Graph Reduction

In Sect. 14.2, edge robustness is quantified for directed communication topologies.
Using edge robustness as a measure, a distributed scheme will be presented here
to drop some of the information links in the communication graph. As a result of
executing this local scheme on each agent, a reduced graph of the group topology is
formed.



14 A Connectivity Reduction Strategy for Multi-agent Systems 279

Fig. 14.1 (a) A triangle
closure for vertex i, and
(b) a directed triangle cycle

14.3.1 Redundant Edges and Triangle Closures

First, we define redundant edges in directed graphs. Given a directed graph G(k) =
{V,E(k)}, we say that an edge (i, j) ∈ E(k) is redundant if the vertex i is still reach-
able from j after the edge (i, j) is removed. Finding and removing all the redundant
edges in a directed graph is called a transitive reduction problem [1] or minimum
equivalent graph problem [3]. This problem is proven to be NP-hard; approximation
algorithms in polynomial time are studied [9]. However, to the best of our knowl-
edge, no distributed algorithm using only local information from neighbors has been
reported in the literature.

In this paper, we study a distributed algorithm of deleting redundant edges for di-
rected graphs. Our objective is to allow each agent to select its information sources
according to simple rules based only on the local information of its neighbors. In-
spired by Spanos and Murray [4], we consider triangle topologies defined below.

Given a directed graph G = (V ,E), we say that three vertices i, j, h ∈ V form a
triangle closure if the edges (i, j), (j, h), and (i, h) are contained in E. An example
is given in Fig. 14.1(a), where the in-degree of the vertex i is two and it has two
neighbors j and h. There are two paths from h to i; one is the edge (i, h) and
the other (i, j, h) consisting of two edges. For the case in Fig. 14.1(a), we say that
the node i possesses a triangle closure, denoted by �(i, j, h) where (i, j, h) is an
ordered triple corresponding to the longest path in the topology. Clearly, for this
triangle closure, the reachability relation remains between i and its neighbors if the
edge (i, h) is deleted.

For comparison, a directed triangle cycle for vertices i, j , and h is shown in
Fig. 14.1(b). A directed cycle is a directed path in which the initial vertex of the
path is also the terminal vertex of the path. Note that each vertex in this triangle
cycle has only one neighbor, therefore no redundant edge exists in this topology.
The following statement about directed cycles is true for strongly-connected graphs.

Lemma 1 The minimum equivalent graph (no redundant edges) of a strongly-
connected digraph is either a directed cycle of length n, or a group of joined directed
cycles, where n is the number of vertices of the graph.

Proof (Main idea) Since the graph is strongly connected, there is a directed walk
from any agent i back to agent i going through all the other agents in the network.
This walk is a directed cycle or a group of joined cycles, and furthermore, it doesn’t
contain redundant edges. �
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Fig. 14.2 Each possible edge
among these three
vertices i, i1, and iq is
assigned a Boolean variable
e1, . . . , e6, which is 1 if there
is a link and 0 otherwise

14.3.2 Local Triangle Topologies

In this paper, we build a distributed algorithm using local information to identify
triangle closures and redundant edges. As a major part of this algorithm, each agent
determines the redundancy of its two incident edges based on the local topology
with a pair of its neighbors, for which the details are stated below. Note that in the
following discussion, we assume the communication links are unweighted.

First of all, we assume the following information is included in the messages that
an agent i broadcasts to its neighbors:

{
i, xi(k), δi(k)

}
(14.1)

i.e., the agent ID, the current position, and the present transmission range. In other
words, each agent transmits only its own current information. Using received mes-
sages from its neighbors, agent i forms its neighbor set Ni(k), and computes the
distance between any pair of its neighbors and the distance from any neighbor to
itself. For example, if agent i receives messages from i1 and iq , it knows that they
are its neighbors, i.e., {i1, iq} ∈ N

i
(k), and knows their positions xi1(k), xiq (k) and

their transmission ranges δi1(k), δiq (k). Using this information along with its own
position xi(k) and transmission range δi(k), agent i can obtain the local communi-
cation topology among itself and these two neighbors.

According to the local communication topology among the three vertices, agent
i will make one of three possible decisions: no redundant edge; edge (i, i1) is redun-
dant; or (i, iq ) is redundant. The decision is made according to a set of rules given
below.

To simplify the description, we assign a variable to each possible edge joining
any pair of the three vertices, as illustrated in Fig. 14.2. Each variable, e1, . . . , e6,
takes a Boolean value: 1 if the corresponding edge exists and 0 otherwise. These
values are essentially the off-diagonal entries of the adjacency matrix for the lo-
cal communication graph of these three vertices. If i1 and iq are neighbors of i in
Fig. 14.2, the agent i knows that e1 = e2 = 1 without calculation.

When the two neighbors of i are not connected, there is no triangle closure
formed; therefore, no redundant edge can be identified, as illustrated in Fig. 14.3(a).

Suppose that the two neighbors of i are linked in one direction, for example, i1
can reach iq , as depicted in Fig. 14.3(b, c, and d). For the connection topology in
Fig. 14.3(b), no matter whether i can reach i1 (e6 = 1) or not (e6 = 0), only one
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triangle closure exists in this local triangle topology, and it is for agent i. There-
fore, (i, i1) is labeled redundant by agent i. However, when both e3 and e5 appear
in the graph, as depicted in Fig. 14.3(c), there are two triangle closures in the net-
work, one for i, and the other for iq . In the triangle closure for agent i, (i, i1) is
redundant assuming (iq, i1) is available, while in agent iq ’s triangle closure, (iq, i1)

is redundant assuming (i, i1) is present. It can be seen that only one edge of (i, i1)

and (iq , i1) can be removed to maintain the reachability of this local network; oth-
erwise vertex i1 becomes isolated. Note that nodes i and i1 make their decisions
independently. To ensure that they achieve an agreement, edge robustness is used as
a criterion for judgment: the less robust edge should be removed. For edges (i, i1)

and (iq , i1), longer edge length results in less robustness. Thus, for agent i, if (i, i1)

is shorter than (iq , i1), no redundant edge is reported; otherwise, agent i declares
(i, i1) to be redundant. In a trivial case when the two edge lengths are the same, the
edge incident to a larger agent ID will be considered redundant. In other words, if
i > iq , then (i, i1) is redundant. For the case when both e5 and e6 exist, as depicted
in Fig. 14.3(d), we will postpone the discussion.

Now, consider the case in which agent i’s two neighbors i1 and iq can reach
each other (e3 = e4 = 1). When i cannot reach i1 and iq , as shown in Fig. 14.3(e),
agent i possesses two triangle closures. The robustness of the two options, i.e., the
robustness of the two-edge paths (i, i1, iq) and (i, iq, i1), will be compared by agent
i to make a decision on redundancy.

Now, let us look at the last three types of topologies for these three nodes, as
illustrated in Fig. 14.3(d, f, and g). A common feature of these three triangle topolo-
gies is that they all possess triangle cycles; in other words, the local graph of these
three nodes is strongly connected. To preserve the connectedness, each agent needs
to help maintain the directed cycle. Therefore, the agent i can only declare (i, i1) to
be redundant for Fig. 14.3(d) and (f). Figure 14.3(g) contains two triangle cycles;
only one of them needs to be preserved. To guarantee a consensus among these three
nodes, robustness values of the two directed cycles (i, i1, iq, i) and (i, iq , i1, i) will
be used as a measure. For agent i, either the edge (i, i1) or (i, iq ) must be redundant,
depending on which cycle to keep.

In the case where two cycles have the same robustness, agent IDs will be used to
reach unanimous decision. One approach, which is used in the algorithm below, is
to keep the triangle cycle in the direction so that the agent IDs follow the ascending
order in a circular way. An alternative solution for breaking triangle closures while
maintaining reachability is to remove the two longest (least robust) edges of the
same length. As a result, four edges will remain for the local graph of Fig. 14.3(g).

14.3.3 Distributed Algorithm

The rules described in Sect. 14.3.2 are applied in our distributed algorithm to each
agent and each pair of the neighbors of the agent. Each agent makes independent
decisions on determining redundant incoming edges, based on only the local infor-
mation of its neighbors. When an agent marks an edge as redundant, it will ignore
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Fig. 14.3 Possible topologies
for vertex i with its two
neighbors i1 and iq . The solid
circles in (b), (d), (f) indicate
the edges that will be
removed; the two dashed
circles in (e) and (g) show
that one of the edges will be
removed depending on the
robustness; and the diamond
in (c) signifies the edge that
will be used determine the
robustness of the edge with a
circle on. The parenthesis
includes another possibility

the information coming through that link. Consequently, the edge corresponding to
the link is dropped in the communication topology. Overall, the algorithm results in
a group network with reduced connectivity.

Assume the neighbor set of agent i is Ni = {i1, i2, . . . , ip} where i1, . . . ip ∈ I.
Let the set of redundant edges of agent i be Ri with initial value ∅ (empty set).
The algorithm works in two rough steps for any agent i. First, it sequentially scans
through each pair of agent i’s neighbors to examine the existence of triangle clo-
sures. When triangle closures are found, the algorithm determines redundant edges
and adds them to Ri , based on the local communication topology between these
three nodes. The algorithm given below applies at any vertex i in the network.

In the algorithm, for agent i, a set denoted as Ni is maintained to keep track of
neighbors which wait for examination. As the algorithm is carried on, the neighbors
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that are incident to the identified redundant edges will be removed from Ni grad-
ually, as well as the neighbors that have been examined. The algorithm halts when
Ni contains only one neighbor. At the end of the algorithm, the set Ri keeps all
the redundant edges that will be dropped by agent i. For simplicity, we define the
following actions A1˜A3 that are used in the algorithm:

Action 1 (A1): Repeat Step 2 with q = q + 1;
Action 2 (A2): Ri = Ri ∪ {(i, i1)} and go to Step 3;
Action 3 (A3): Ri = Ri ∪ {(i, iq )} and repeat Step 2 with q = q + 1, where Step 2

and Step 3 are given in the algorithm below.

Algorithm 4 (For agent i)
Step 1: Let m = p, Ni = Ni = {i1, i2, . . . , im}, and the set of the corresponding
transmission range

δi = {δi1 , δi2 , . . . , δim}
where i1, . . . im ∈ I. Let q = 2, and Ri = ∅.
Step 2: If q > m, go to Step 3; otherwise, calculate the distance (denoted as d3)
between i1 and iq , and compute e3 and e4.
Cases:
(a) If e3 = e4 = 0, do A1.
(b) For e3 + e4 = 1, compute distances of i1 and iq from i, denoted as d1 and d2,
and further get e5 and e6.

(b1) If e3 = 1, e5 = 0, do A2.
(b2) If e4 = 1, e6 = 0, do A3.
(b3) For e3e5 = 1 and e6 = 0, if d1 < d3, do A1; if d1 > d3, do A2; for d1 = d3, do

A1 if i < iq , and do A2 otherwise.
(b4) For e4e6 = 1 and e5 = 0, if d2 < d3, do A1; if d2 > d3, do A3; for d1 = d3, do

A1 if i < i1, and do A3 otherwise.
(b5) If e5e6 = 1, do A2 for e3 = 1, and do A3 for e4 = 1.

(c) For e3e4 = 1, compute d1, d2 and e5, e6.

(c1) For e5 = 1 and e6 = 0, do A3.
(c2) For e5 = 0 and e6 = 1, do A2.
(c3) For e5 = e6 = 0, compute the robustness values r1 := r(i, i1, iq) and r2 :=

r(i, iq , i1). If r1 > r2, do A3; if r1 < r2, do A2; for r1 = r2, do A3 if i1 < iq and
do A2 otherwise.

(c4) For e5 = e6 = 1, compute the robustness values r1 := r(i, i1, iq, i) and r2 :=
r(i, iq , i1, i). If r1 > r2, do A3; if r1 < r2, do A2; for r1 = r2, sort i, i1, iq in a
ascending circular list, then, do A3 if i1 is right after i, and do A2 if iq is right
after i.

Step 3: Let Ni = Ni\(Ri, {i1}), and reindex Ni = {i1, i2, . . . , im}, where m = |Ni |.
The algorithm terminates if m = 1; go to Step 2 with q = 2 otherwise.
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Fig. 14.4 Illustration of the
algorithm iterations: black dot
is agent i itself; grey dots are
currently in the set Ni for
redundancy check; and white
dots have been removed from
Ni as a result of the previous
run

Step 1 of the algorithm is the initialization stage where Ni is initialized to con-
tain all the neighbors of agent i. Step 2 computes distances between i and its neigh-
bors i1, iq in Ni ; checks the existence of triangle closures for agent i with these
two neighbors; and determines redundant edges based on the rules described in
Sect. 14.3.2. This step fixes one neighbor (i.e., i1) and iterates through each one
of the other neighbors (i.e, iq ) in Ni , for q = 2,3, . . . ,m until q > m or (i, i1) is
redundant. This is referred to as one run in the paper, as illustrated in Fig. 14.4. At
the end of each run, all the redundant edges are included in Ri , and, the neighbors
incident to these edges and the node i1 are removed from Ni . Step 3 checks the
terminating condition (only one neighbor is left in Ni ) to see if Step 2 (i.e., more
runs) needs to be repeated.

The above algorithm will be performed on each agent in the network, and as a
result, each agent obtains a set of redundant edges, i.e., Ri , i = 1, . . . , n. Note that
all the edges in Ri have common terminal vertex i. For many applications, agent i

could ignore the information received through these links to achieve the same task
objective without significantly impairing system performance, while at the same
time, saving computational power and time. Consequently, these links are dropped
in the group topology of the network, resulting in a reduced graph of the initial
communication topology.

Suppose that the communication graph of the network is G(k) = (V ,E) and the
reduced group graph resulting from the above algorithm is Ĝ(k) = (V , Ê). We have
the following relation between G(k) and Ĝ(k). For each agent i, denote its in-degree
in G(k) as di and in Ĝ(k) as d̂i , then, d̂i = di − |Ri |. Group the redundant edges
together as the set R = ⋃

i=1,...,n Ri . Then, we have Ê = E\R.

14.4 Discussion and Simulation

Given the local triangle communication topology of three agents, it can be seen from
the distributed algorithm that all the agents make unanimous decisions on delet-
ing redundant edges without impairing the reachability relation of this local graph.
However globally, the collective behavior of this algorithm guarantees to preserve
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Fig. 14.5 An application of
the distributed algorithm
presented in the paper

the original reachability only under some additional conditions. This is illustrated
in Fig. 14.5 with simulation results.

In the initial communication graph of Fig. 14.5(a), vertices are randomly de-
ployed in the 2-dimensional Euclidean space, and the transmission range of each
vertex is also randomly generated. The reduced graph resulting from the application
of Algorithm 4 is shown in Fig. 14.5(b). It is observed that the reduced graph does
not maintain reachability between all possible pairs of agents. Below we study a
scenario where all reachability is preserved in the reduced network.

Suppose that the agents in the network agree on a common transmission range.
In this case, each communication link becomes bidirectional. Then, whenever agent
i receives information from agent j , agent j also receives information from i. Thus,
the digraph G(k) can be treated as an undirected graph. When Algorithm 4 applies
to such networks, we have the following results.

Proposition 1 Consider a multi-agent system (formulated as G(k)), in which all
agents share the same transmission range. If G(k) is completely-connected, the re-
duced graph Ĝ(k) resulting from Algorithm 4 is a directed cycle. In addition, the
information flow of the cycle follows the ascending (or descending, with a corre-
sponding change in the algorithm) order of the agent IDs.

Proof Assume the index set (or IDs) of the agent is {1, . . . , n}. Since G(k) is com-
pletely connected, any agent i has n− 1 neighbors in Ni . Further, the triangle topol-
ogy of i with its any two neighbors, has the structure shown in Fig. 14.3(g) and the
two cycles in the topology possess the same robustness. According to the algorithm,
the cycle in the direction of ascending order of the agent IDs is reserved, after three
edges are removed. Each time i picks two neighbors in Ni , one neighbor will be
dropped. After exactly n − 2 times such operations, only one neighbor remains at
the termination of the algorithm, which is agent i − 1 if i > 1 and n if i = 1.

In this way, each agent independently eliminates n − 2 of its neighbors. Collec-
tively, the information flow graph of the group is a directed cycle in the direction of
1 → 2 · · · → n → 1. Changing the algorithm so that the triangle cycle in the other
direction is preserved, we can have the cycle following the descending order of the
agent IDs. �
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Corollary 1 Consider a multi-agent system in which each agent has the same trans-
mission range, represented with a communication graph G(k). If G(k) is strongly
connected, the reduced graph Ĝ(k) resulting from Algorithm 4 is also strongly con-
nected.

Proof The completely-connected bidirectional subgroups will be reduced to single
directional cycles, and the rest of the edges connecting these subgroups remain bidi-
rectional after reduction. Therefore, Ĝ(k) is still strongly connected. �

14.5 Conclusion

In this paper, we develop a distributed algorithm by which each agent selects its
information sources (i.e., transmitting agents) based on only the local information
of its neighbors. As a result, a reduced group graph is produced. In this graph, con-
nectivity is reduced which allows agents to respond or maneuver with less compu-
tational effort and higher maneuverability. One direction in the future work will be
to explore various applications with the aid of such reduced graphs. Other prob-
lems that need to be addressed in the future include more scenarios under which the
proposed algorithm preserves the reachability of the original network.
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Chapter 15
The Navigation Potential of Ground Feature
Tracking

Meir Pachter and Güner Mutlu

Summary Navigation System aiding using bearing measurements of stationary
ground features is investigated. The objective is to quantify the navigation infor-
mation obtained by tracking ground features over time. The answer is provided by
an analysis of the attendant observability problem. The degree of Inertial Naviga-
tion System aiding action is determined by the degree of observability provided by
the measurement arrangement. The latter is strongly influenced by the nature of the
available measurements—in our case, bearing measurements of stationary ground
objects—the trajectory of the aircraft, and the length of the measurement interval.
It is shown that when one known ground object is tracked, the observability Gram-
mian is rank deficient and thus full Inertial Navigation System aiding action is not
available. However, if baro altitude is available and an additional vertical gyroscope
is used to provide an independent measurement of the aircraft’s pitch angle, a data
driven estimate of the complete navigation state can be obtained. If two ground fea-
tures are simultaneously tracked the observability Grammian is full rank and all the
components of the navigation state vector are positively impacted by the external
measurements.

15.1 Introduction

Inertial Navigation System aiding using optical measurements [1–6] is appealing
because passive bearings—only measurements preserve the autonomy of the inte-
grated navigation system. In this paper, an attempt is made to gain an understanding
of the nature of the navigation information provided by bearings—only measure-
ments taken over time, of stationary ground objects, whose position is not necessar-
ily known.
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In this article, the crucial issue of processing the images provided by a down
looking camera for the autonomous—without human intervention—measurement
of optic flow, or, alternatively, image correspondence for feature tracking, or, mo-
saicing, [7, 8] is not addressed. We do however note that these tasks are neverthe-
less somewhat easier than full blown Autonomous Target Recognition (ATR) and/or
machine perception. In this article it is assumed that autonomous feature detection
and tracking is possible so that bearings measurement records of stationary ground
objects are available. We exclusively focus on gauging the navigation potential of
bearings—only measurements of stationary ground objects taken over time.

In this article, we refer to purely deterministic, i.e., noise free, corrupted bearing
measurements, where many measurements would naturally help wash out the noise.
Even so, both the number of bearing measurements taken and the number of simul-
taneously tracked ground objects is of interest. Obviously, increasing the number of
tracked features should increase the navigation information content. Thus, our main
thrust is focused on the quantification and measurement of the degree of observabil-
ity of the optical bearings-only measurement arrangement. In this respect, we follow
in the footsteps of [9] and [10]. The absolute minimal number of tracked features
such that additional features do not further increase the degree of observability, is
established.

Concerning observability: The measurement equations are time-dependent and
therefore one cannot ascertain observability from an observability matrix. Hence,
the information content of passive optical bearings-only measurements will be
gauged by deriving the observability Grammian of the bearing-only measurement
arrangement. It is however very important to first nondimensionalize the navigation
state, the bearings measurement geometry, and also the time variable, so that the de-
rived observability Grammian is nondimensional. This guarantees that the observ-
ability Grammian correctly reflects the geometry of the measurement arrangement,
so that meaningful conclusions can be drawn. The rank, or the condition number of
the observability Grammian is established—it is the ultimate purveyor of the navi-
gation potential of vision.

A word of caution concerning information fusion is in order. It is often much too
easy to first thing jump head first and set up a Kalman Filter (KF) for fusing, e.g.,
optical and inertial measurements—in which case one then refers to INS aiding us-
ing bearings-only measurements [11]. The point is that a KF output will always be
available. Even in the extreme case of an optical measurement arrangement where
observability is nonexistent, a KF can be constructed and a valid navigation state es-
timate output will be available, except that no aiding action is actually taking place:
the produced navigation state estimate then exclusively hinges on prior information
only—in this case, inertial measurements, whereas the optical measurements don’t
come into play.

In light of the above discussion, the real question is whether there is aiding action
so that the optical measurements are actually brought to bear on a KF provided
navigation state estimate, thus yielding enhanced estimation performance relative to
a stand alone INS. One would like to determine how strong the aiding action is and
into precisely which components of the navigation state the aiding action trickles
down into. The answer is provided by our deterministic observability analysis.
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A KF will help enhance the accuracy of the complete navigation state if, and only
if, the system is observable, that is, the observability Grammian is full rank. We’ll
also address the case of partial observability.

Strictly speaking, the herein outlined analysis should be carried out whenever the
use of a KF is contemplated, to get a better understanding of the data fusion process.
For example, it is known that when during cruise, GPS position measurements are
used to aid an INS, no aiding action will be realized in the critical aircraft heading
navigation state variable, unless the aircraft is performing high-g horizontal turns.
And in the extreme case of an object in free fall—for example, a bomb—it can be
shown that GPS position measurements will not enhance the estimate of any of the
object’s Euler angles.

Naturally, the use of bearings-only measurements can yield information on an-
gular components only of an air vehicle’s navigation state. We refer to the measure-
ment of the aircraft “drift” angles, namely, the angles included between the ground
referenced velocity vector and the aircraft body axes. A dramatic improvement in
the navigation state information can be obtained if additional passive measurements
become available. A case in point is baro-altitude measurement. The latter is also
used in inertial navigation—to the extent that high precision inertial navigation is
not possible without passive baro altitude, or, GPS—provided, altitude information.
Indeed, the combined use of optical measurements and baro-altitude for navigation
has a long history, from the days when navigators where seated in the glazed nose
of aircraft and would optically track a ground feature using a driftmeter, or, on the
continent, a cinemoderivometer.

We are also interested in the use of additional passive measurements and side in-
formation. We refer to known landmarks, digital terrain elevation data, LADAR pro-
vided range measurements, GPS provided position measurements, and, finally, the
mechanization of an autonomous navigation system akin to an INS which however
exclusively and continuously uses bearing measurements of ground features—one
would then refer to an Optical Navigation System (ONS).

By augmenting the navigation state with the coordinates of the tracked ground
features/objects, Simultaneous Location and Mapping (SLAM) is achieved in a uni-
fied framework. Furthermore, the analysis can be extended to include the tracking of
moving objects, whether on the ground, or in the air. Under standard kinematic as-
sumptions, the motion of ownship relative to said tracked objects can be measured:
think of obstacle avoidance or “see and avoid” guidance.

15.2 Modeling

We are cognizant of the fact that the degree of INS aiding provided by bearing
measurements might strongly depend on the trajectory flown. For example, this cer-
tainly is the case when GPS position measurements are used for INS aiding. All
this notwithstanding, in this paper we confine our attention to the most basic two-
dimensional scenario where the aircraft is flying wings level at constant altitude in
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Fig. 15.1 Flight in the
vertical plane

the vertical plane. The two-dimensional scenario under consideration is illustrated
in Fig. 15.1.

In 2-D, the navigation state is

X = (x, z, vx, vz, θ)

and the “disturbance”

d = (δfx, δfz, δω)

consists of the biases δfx and δfz of the accelerometers and the bias δω of the rate
gyro. The error equations are

δẊ = AδX + Γ d (15.1)

We assume the Earth is flat and nonrotating—this, in view of the short duration
and the low speed of the Micro Air Vehicle (MAV) under consideration. Conse-
quently, in level flight the dynamics are

A =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0
0 0 0 0 g

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

, Γ =

⎡
⎢⎢⎢⎢⎣

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎦

(15.2)

The tracked ground object is located at P = (xp, zp). From the 2-D geometry in
Fig. 15.1, we derive the measurement equation:

xp − x

z − zp

= cot(θ + ξ) (15.3)

and thus the measurement

tan(ξ) = z − zp − (xp − x) tan θ

xp − x + (z − zp) tan θ
= f

xf
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or

xf = xp − x + (z − zp) tan θ

z − zp − (xp − x) tan θ
f (15.4)

Now, the INS output xc = x + δx, zc = z + δz, θc = θ + δθ where x, z, and θ

are the true navigation states. In order to linearize the measurement equation, we
need the information x−

p , z−
p , that is, prior information on the position of the tracked

ground feature.
Let

x−
p = xp + δxp, z−

p = zp + δzp

The true augmented state

x = xc − δx, z = zc − δz, vx = vxc − δvx, vz = vzc − δvz,

θ = θc − δθ, xp = x−
p − δxp, zp = z−

p − δzp

where δx, δz, δvx, δvz, δθ, δxp, δzp are the augmented state’s estimation errors.
During level flight, and using the small angle approximation, the measurement

equation is

xf

f
= xp − x + (z − zp)θ

z − zp − (xp − x)θ
(15.5)

and the measurement, expressed as a function of the state perturbations δx, δz, δθ ,
δxp , δzp is:

xf

f
= x−

p − δxp − xc + δx + (zc − δz − z−
p + δzp) · (θc − δθ)

zc − δz − z−
p + δzp − (x−

p − δxp − xc + δx) · (θc − δθ)

= x−
p − xc + (zc − z−

p )θc + δx − θcδz + (z−
p − zc)δθ − δxp + θcδzp

zc − z−
p + (xc − x−

p )θc − θcδx − δz + (x−
p − xc)δθ + θcδxp + δzp

= x−
p − xc + (zc − z−

p )θc

zc − z−
p + (xc − x−

p )θc

+ 1

[zc − z−
p + (xc − x−

p )θc]2

· {[zc − z−
p + (xc − x−

p )θc + (
x−
p − xc + (zc − z−

p )θc

)
θc

]
δx

+ [−(
zc − z−

p + (xc − x−
p )θc

)
θc + x−

p − xc + (zc − z−
p )θc

]
δz

+ [(
zc − z−

p + (xc − x−
p )θc

)
(z−

p − zc)

+ (
x−
p − xc + (zc − z−

p )θc

)
(xc − x−

p )
]
δθ

+ [
z−
p − zc + (x−

p − xc)θc + (
xc − x−

p + (z−
p − zc)θc

)
θc

]
δxp

+ [(
zc − z−

p + (xc − x−
p )θc

)
θc + xc − x−

p + (z−
p − zc)θc

]
δzp

}
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= x−
p − xc + (zc − z−

p )θc

zc − z−
p + (xc − x−

p )θc

+ 1

[zc − z−
p + (xc − x−

p )θc]2

· {[zc − z−
p + (zc − z−

p )θ2
c

]
δx + [

x−
p − xc + (x−

p − xc)θ
2
c

]
δz

− [
(x−

p − xc)
2 + (z−

p − zc)
2]δθ + [

z−
p − zc + (z−

p − zc)θ
2
c

]
δxp

+ [
xc − x−

p + (xc − x−
p )θ2

c

]
δzp

}

= x−
p − xc + (zc − z−

p )θc

zc − z−
p + (xc − x−

p )θc

+ 1

[zc − z−
p + (xc − x−

p )θc]2

· [(1 + θ2
c

)
(zc − z−

p )δx + (
1 + θ2

c

)
(x−

p − xc)δz

− [
(x−

p − xc)
2 + (z−

p − zc)
2]δθ + (

1 + θ2
c

)
(z−

p − zc)δxp

+ (
1 + θ2

c

)
(xc − x−

p )δzp

]

= x−
p − xc + (zc − z−

p )θc

zc − z−
p + (xc − x−

p )θc

+ 1 + θ2
c

[zc − z−
p + (xc − x−

p )θc]2

· {(zc − z−
p )δx + (x−

p − xc)δz − [
(x−

p − xc)
2 + (z−

p − zc)
2]δθ

+ (z−
p − zc)δxp + (xc − x−

p )δzp

}

Hence, for level flight the linearized measurement equation is

xf

f
− x−

p − xc + (zc − z−
p )θc

zc − z−
p + (xc − x−

p )θc

= 1

[zc − z−
p + (xc − x−

p )θc]2
· {(zc − z−

p )δx + (x−
p − xc)δz − [

(x−
p − xc)

2

+ (z−
p − zc)

2]δθ + (z−
p − zc)δxp + (xc − x−

p )δzp

}
(15.6)

15.3 Special Cases

If the position (xp, zp) of the tracked ground object is known, the state is the navi-
gation state x, z, vx , vz, θ and the linearized measurement equation is

xf

f
− xp − xc + (zc − zp)θc

zc − zp + (xc − xp)θc

= 1

[zc − zp + (xc − xp)θc]2

· {(zc − zp)δx + (xp − xc)δz + [
(xp − xc)

2 + (zp − zc)
2]δθ}
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If only the elevation zp of the tracked ground object is known, the augmented
state is x, z, vx, vz, θ, xp . Without loss of generality, we set zp = 0, and the lin-
earized measurement equation is:

xf

f
− x−

p − xc + zcθc

zc + (xc − x−
p )θc

= 1

[zc + (xc − x−
p )θc]2

· {zcδx + (x−
p − xc)δz

+ [
(x−

p − xc)
2 + z2

c

]
δθ − zcδxp

}

Remark For the purpose of analysis, on the right-hand side of the measurement
equation one can replace xc by the true—that is, the nominal—state component x,
zc by the true—that is, the nominal—state component z, and θc by θ ≡ 0.

Hence, if the position of the tracked ground object is known, and, in addition,
without loss of generality, we set zp = 0 , then the linearized measurement equation
is

xf

f
− xp − xc + zcθc

zc + (xc − xp)θc

= 1

z2 · {zδx + (xp − x)δz− [
(xp − x)2 + z2]δθ}

(15.7)

If only the elevation zp of the tracked ground object is known, and, as before
without loss of generality, we set zp = 0, then the state error is δx, δz, δvx , δvz,
δθ , δxp , and the linearized measurement equation is

xf

f
− x−

p − xc + zθc

zc + (x − xp)θc

= 1

z2 · {zδx + (x−
p − x)δz − [

(x−
p − x)2 + z2]δθ − zδxp

}

If the position of the ground object is not known, the navigation state error
is δx, δz, δvx, δvz, δθ, δxp, δzp and the linearized measurement equation—see,
e.g., (15.6)—is

xf

f
− x−

p − xc + (z − z−
p )θc

z − z−
p + (x − x−

p )θc

= 1

(z − z−
p )2

· {(z − z−
p )δx + (x−

p − x)δz − [
(x−

p − x)2 + (z − z−
p )2]δθ

+ (z − z−
p )δxp + (x − x−

p )δzp

}

Furthermore, for the purpose of analysis, on the right-hand side of the last two
equations we can also replace x−

p and z−
p by the true position (xp, zp) of the tracked

object. Hence, the respective measurement equations are

xf

f
− x−

p − xc + zθc

zc + (x − xp)θc

= 1

z2
· {zδx + (xp − x)δz − [

(xp − x)2 + z2]δθ − zδxp

}

(15.8)
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and

xf

f
− x−

p − xc + (z − z−
p )θc

z − z−
p + (x − x−

p )θc

= 1

(z − zp)2
· {(z − zp)δx + (xp − x)δz − [

(xp − x)2 + (z − zp)2]δθ

+ (z − zp)δxp + (x − xp)δzp

}

Furthermore, without loss of generality, in the last equation we set zp = 0:

xf

f
− x−

p − xc + (z − z−
p )θc

z − z−
p + (x − x−

p )θc

= 1

z2 · {zδx + (xp − x)δz − [
(xp − x)2 + z2]δθ + zδxp + (x − xp)δzp

}

During the initial geo-location phase where one is exclusively interested in the
ground object’s position, one takes the INS calculated aircraft navigation state vari-
ables x, z, θ at face value and the linearized measurement equation is used to esti-
mate δxp, δzp :

xf

f
− x−

p − x + (z − z−
p )θ

z − z−
p + (x − x−

p )θ
= 1

(z − z−
p )2

· [(z−
p − z)δxp + (x − x−

p )δzp

]
(15.9)

This equation would be used if a recursive geo-location algorithm is applied.
Note however that if one is exclusively interested in geo-locating the ground object,
a batch algorithm might be preferrable. Finally, one would use (15.9) and iterate

x−
p := x−

p − δxp (15.10)

z−
p := z−

p − δzp (15.11)

In practice, the first guesses of x−
p and z−

p are generated as follows. We have the
INS provided “prior” information on the navigation state x, z, θ . Bearing measure-
ments of the ground feature P are taken over time. One can use the first two bearing
measurements to obtain the “prior” x−

p and z−
p information. Hence, initially one is

exclusively concerned with the geo-location of the feature on the ground. To this
end, one uses (15.3) and upon recording two measurements one obtains a set of two
linear equations in the unknowns x−

p and z−
p :

xp + cot(θc1 + ξm1)zp = xc1 + zc1 cot(θc1 + ξm1) (15.12)

xp + cot(θc2 + ξm2)zp = xc2 + zc2 cot(θc2 + ξm2) (15.13)
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whereupon

(
x−
p

z−
p

)
= 1

cot(θc2 + ξm2) − cot(θc1 + ξm1)
·
[

cot(θc2 + ξm2) − cot(θc1 + ξm1)−1 1

]

·
(

xc1 + zc1 cot(θc1 + ξm1)

xc2 + zc2 cot(θc2 + ξm2)

)

Obviously, one could use more than two bearing measurements and obtain an
overdetermined linear system in x−

p and z−
p , but then one performs geo-location

only and completely foregoes the task of INS aiding. Since at time instants k = 1
and k = 2 the INS is not aided, the original prior information on the navigation state
error δx−, δz−, δθ− must be propagated forward to time step k = 2. From this point
on, the updated prior information δx−, δz−, δθ− and the prior information x−

p and
z−
p are employed to start the Kalman filter such that the aircraft navigation state and

the ground object’s position are simultaneously updated using the bearing measure-
ments obtained at time k = 3,4, . . . . In conclusion: When unknown ground objects
are tracked, they first must be geo-located. This delays the INS aiding action by at
least two time steps. Furthermore, the aircraft’s navigation state prior information
must be propagated ahead two time steps, without it being updated with bearing
measurements, while one exclusively relies on the INS. The measurement equation
is then relinearized using the ground object’s prior information obtained during the
preliminary geo-location step, and the two time steps propagated ahead navigation
state prior information. From this point on, the INS aiding action and the ground ob-
ject’s geo-location is simultaneously performed during the ground object’s tracking
interval.

If the ground object’s elevation zp is known, say from a digital terrain data-base,
one can make do with one bearing measurement only:

x−
p = xc + (zc − zp) cot(θc + ξm) (15.14)

15.4 Nondimensional Variables

The aircraft’s nominal altitude is h and its nominal ground speed is v. Set

x → x

h
, z → z

h
, vx → vx

v
, vz → vz

v
, t → tv

h
, T → v

h
T ,

δfx → δfx

g
, δfz → δfz

g
, δω → h

v
δω

Introduce the nondimensional parameter ( 1
2 the ratio of the aircraft’s potential

energy to its kinetic energy):

a ≡ hg

v2
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Fig. 15.2 Simple
measurement scenario

Then the aircraft’s nondimensional navigation state error dynamics are specified
by the matrices

A =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0
0 0 0 0 a

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

, Γ =

⎡
⎢⎢⎢⎢⎣

0 0 0
0 0 0
a 0 0
0 a 0
0 0 1

⎤
⎥⎥⎥⎥⎦

(15.15)

The scenario considered is wings level flight in the vertical plane (x, z).
For example, for a MAV, v = 20 [ m

sec ], h = 40 [m], and g = 10 [ m
sec2 ] ⇒ a = 1.

The geometry of the measurement scenario is characterized by the two nondi-
mensional parameters

α1 = tanη1

α2 = tanη2

Consequently, the nondimensional measurement interval

T = tanη1 + tanη2

Consider first a symmetric measurement scenario where η1 = η2 = η. Since x =
vt, xp = h tanη, using nondimensional variables, we obtain from the measurement
equation (15.9)

y = δx + (tanη − t)δz − [
1 + (tanη − t)2]δθ,

0 ≤ t ≤ 2 tanη (15.16)

i.e., the measurement matrix

C = 1,

[
tanη − t,0,0,2t tanη − t2 − 1

cos2 η

]
(15.17)

the measurement

y ≡ xf

f
− xp − xc + zcθc

zc + (xc − xp)θc

(15.18)
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and the measurement interval

T = h

v
(tanη1 + tanη2)

Note that, as is often the case in INS aiding, the measurement matrix C is time
dependent.

15.5 Observability

The observability Grammian [12] is

W(T ) =
∫ T

0
eAT tCT (t)C(t)eAtdt (15.19)

where T is the measurement interval.
We calculate

eAt =

⎡
⎢⎢⎢⎢⎣

1 0 t 0 1
2at2

0 1 0 t 0
0 0 1 0 at

0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

(15.20)

The geometry of the symmetric measurement arrangement is specified by the
nondimensional parameter α ≡ tanη. Then the nondimensional observation inter-
val T = 2α and the measurement matrix

C(t) = [(
1, α − t,0,0,−1 − (α − t)2)] (15.21)

We calculate

C(t)eAt =
[

1, α − t, t, (α − t)t,
1

2
at2 − 1 − (α − t)2

]
(15.22)

and

eAT tCT (t)C(t)eAt

=

⎡
⎢⎢⎢⎢⎣

1 α − t t (α − t)t f (t)

α − t (α − t)2 (α − t)t (α − t)2t (α − t)f (t)

t (α − t)t t2 (α − t)t2 tf (t)

(α − t)t (α − t)2t (α − t)t2 (α − t)2t2 (α − t)tf (t)

f (t) (α − t)f (t) tf (t) t (α − t)f (t) f 2(t)

⎤
⎥⎥⎥⎥⎦

(15.23)

where f (t) ≡ 1
2at2 − 1 − (a − t)2. We integrate the time-dependent entries of the

matrix in (15.23) and obtain the observability Grammian elements

W1,1 = 2α, W1,2 = 0, W1,3 = 2α2, W1,4 = −2

3
α3,
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W1,5 = 4

3
aα3 − 2α − 2

3
α3,

W2,2 = 2

3
α3, W2,3 = −2

3
α3, W2,4 = 2

3
α4,

W2,5 = 2α2 − 2α3 − 2

3
aα4,

W3,3 = 8

3
α4, W3,4 = −4

3
α4, W3,5 = 2aα4 − 2

3
α4 − 2α2,

W4,4 = 16

15
α5, W4,5 = 2

5
α5 − 6

5
aα5 + 2

3
α4,

W5,5 =
(

2

5
− 16

15
a + 8

5
a2

)
α5 + 4

3
(1 − 2a)α3 + 2α

Consider the MAV scenario where a = 1 and the measurement scenario shown
in the Fig. 15.2, where α = 1

The observability Grammian is then

W = 2

15

⎡
⎢⎢⎢⎢⎣

15 0 15 −5 −10
0 5 −5 5 −5

15 −5 20 −10 −5
−5 5 −10 8 −1
−10 −5 −5 −1 12

⎤
⎥⎥⎥⎥⎦

(15.24)

The 5 × 5 real, symmetric, positive, semi-definite matrix W is not full rank:
Rank(W) = 3. This implies: no observability.

Next, consider the alternative measurement geometry where the tracked ground
feature P is at the origin (xp = 0). Then η = 0 so that α = 0 and

eAT tCT (t)C(t)eAt =

⎡
⎢⎢⎢⎢⎣

1 −t t −t2 f (t)

−t t2 −t2 t3 −f (t) · t
t −t2 t2 −t3 f (t) · t

−t2 t3 −t3 t4 −f (t) · t2

f (t) −f (t) · t f (t) · t −f (t) · t2 2f 2(t)

⎤
⎥⎥⎥⎥⎦

where f (t) = 1
2 (a − 1)t2 − 1.

The nondimensional measurement interval T = 2, and the elements of the ob-
servability Grammian are

W1,1 = 2, W1,2 = −2, W1,3 = 2, W1,4 = −8

3
, W1,5 = 2

3
(2a − 7),

W2,2 = 8

3
, W2,3 = −8

3
, W2,4 = 4, W2,5 = 2(3 − a),

W3,3 = 8

3
, W3,4 = −4, W3,5 = 2(a − 3),
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W4,4 = 32

5
, W4,5 = 8

15
(17 − 6a),

W5,5 = 32

5

(
1

2
a − 1

)2

+ 8

3
(2 − a) + 2

As before, assume a = 1. The observability Grammian is

W = 2

15

⎡
⎢⎢⎢⎢⎣

15 −15 15 −20 −25
−15 20 −20 30 30
15 −20 20 −30 −30

−20 30 −30 48 44
−25 30 −30 44 47

⎤
⎥⎥⎥⎥⎦

(15.25)

The matrix W has two identical columns (columns 2 and 3) and two identical
rows, rows 2 and 3. This implies Rank(W) = 3.

When both features are tracked, the observation matrix is the 2 × 5 matrix

C(t) =
[

1 1 − t 0 0 2t − t2 − 2
1 −t 0 0 −1 − t2

]
(15.26)

As before, for a = 1, we obtain

eAt =

⎡
⎢⎢⎢⎢⎣

1 0 t 0 1
2 t2

0 1 0 t 0
0 0 1 0 t

0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

(15.27)

and we calculate

C(t)eAt =
[

1 1 − t t t − t2 2t − 1
2 t2 − 2

1 −t t −t2 − 1
2 t2 − 1

]
(15.28)

and

eAT tCT (t)C(t)eAt =
⎡
⎢⎢⎢⎣

2 1 − 2t 2t t − 2t2 2t − t3 − 3
1 − 2t 1 + 2t2 − 2t t − 2t2 t − 2t2 + 2t3 t3 − 5

2 t2 + 5t − 2

2t t − 2t2 2t2 t2 − 2t3 2t2 − t3 − 3t

t − 2t2 t − 2t2 + 2t3 t2 − 2t3 2t4 − 2t3 + t2 t4 − 5
2 t3 + 5t2 − 2t

2t − t2 − 3 t3 − 5
2 t2 + 5t − 2 2t2 − t3 − 3t t4 − 5

2 t3 + 5t2 − 2t 1
2 t4 − 2t3 + 7t2 − 8t + 5

⎤
⎥⎥⎥⎦

Integration yields the entries of the observability Grammian

W1,1 = 30, W1,2 = −15, W1,3 = 30, W1,4 = −25, W1,5 = −35,

W2,2 = 25, W2,3 = −25, W2,4 = 35, W2,5 = 25,
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W3,3 = 40, W3,4 = −40, W3,5 = −35,

W4,4 = 56, W4,5 = 43,

W5,5 = 59

The matrix W is full rank. Hence, we have observability.
Concerning a shortcut: A sufficient condition for observability is Rank(W) = 5,

where W = Wp1 +Wp2 and Wpi
is the observability Grammian when ground object

i is tracked, i = 1,2; this is indeed the case.

15.6 Only the Elevation zp of the Tracked Ground Object
is Known

The augmented state’s error is (δx, δz, δvx, δvz, δθ, δxp)T ∈ �6. Set xp → xp

h
.

The augmented system’s dynamics are specified by

Aa :=

⎡
⎢⎢⎢⎣

A
... 0

· · · ... · · ·
0

... 0

⎤
⎥⎥⎥⎦

6×6

, Γa :=
⎡
⎣

Γ

· · ·
0

⎤
⎦

6×3

(15.29)

Ca(t) := (
C(t),−1

)
(15.30)

where, recall, for wings level, constant altitude flight,

A =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
0 0 0 1 0
0 0 0 0 a

0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

, Γ =

⎡
⎢⎢⎢⎢⎣

0 0 0
0 0 0
a 0 0
0 a 0
0 0 1

⎤
⎥⎥⎥⎥⎦

(15.31)

and

C(t) = [
1, α − t, 0, 0, 2αt − t2 − 1 − α2

]
(15.32)

We calculate

eAat :=

⎡
⎢⎢⎢⎣

eAt
... 0

· · · ... · · ·
0

... 1

⎤
⎥⎥⎥⎦

Cae
Aat = (

CeAt ,−1
)

eAT tCT
a (t)Ca(t)e

Aat =
[
eAT tCT CeAt −eAT

CT

−CeAt 1

]

(15.33)
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and

C(t)eAt =
(

1, α − t, t, αt − t2,
1

2
at2 − 1 − α2 − t2 + 2αt

)

Let

wT ≡
∫ 2α

0
C(t)eAtdt =

(
2α,0,2α2,−2

3
α3,

2

3
(2a − 1)α3 − 2α

)

Wa =
(

W −w

−wT 2α

)

When a = 1,

wT =
(

2α,0,2α2,−2

3
α3,

2

3
α3 − 2α

)

and for α = 1,

wT =
(

2,0,2,−2

3
,−4

3

)

When α = 0,

wT =
(

2,−2,2,−8

3
,−10

3

)

Hence, when a = 1 and α = 1,

W1 = 2

15

⎡
⎢⎢⎢⎢⎢⎢⎣

15 0 15 −5 −10 −15
0 5 −5 5 −5 0

15 −5 20 −10 −5 −15
−5 5 −10 8 −1 5
−10 −5 −5 −1 12 10
−15 0 −15 5 10 30

⎤
⎥⎥⎥⎥⎥⎥⎦

(15.34)

When a = 1 and α = 0

W2 = 2

15

⎡
⎢⎢⎢⎢⎢⎢⎣

15 −15 15 −20 −25 −15
−15 20 −20 30 30 15
15 −20 20 −30 −30 −15

−20 30 −30 48 44 20
−25 30 −30 44 47 25
−15 15 −15 20 25 15

⎤
⎥⎥⎥⎥⎥⎥⎦

(15.35)

Rank(W1) = 4 and Rank(W2) = 3. Rank(W1 + W2) = 6.



302 M. Pachter and G. Mutlu

15.7 Partial Observability

When the observability Grammian W is rank deficient, that is,

Rank(W) = r < n

where n is the state space dimension, the system is not observable; we then refer
to the system as being partially observable. Strictly speaking, the aiding action of
bearing-only measurements does not percolate into all the state components. One is
thus interested in determining which states are (positively) impacted by the aiding
action. The answer is provided by the Singular Value Decomposition (SVD) of the
observability Garammian matrix W . The following holds.

The n × n real symmetric positive semi-definite matrix W can be factored as

W = HK

where H is a n × r matrix and K is a r × n matrix. Furthermore, Rank(H) = r and
Rank(K) = r ; in other words, this is a full rank factorization.

From the SVD, we conclude that the measurement process allows us to estimate
the parameter θ ∈ �r :

θ = (
HT H

)−1
HT

∫ T

0
eAT tCT (t)y(t) dt

The latter is related to the navigation state X as follows.

θ = KX0 (15.36)

The navigation information provided by the bearing measurements is encapsulated
in (15.36). The complete initial state X0 cannot be calculated from the measure-
ment record y(t), 0 ≤ t ≤ T and in order to obtain a data driven estimate of the full
state vector, n − r additional independent measurements of the navigation state are
needed. In 2-D, and when the position of the ground object is known, the dimen-
sion of the state, n = 5. When one known ground feature is tracked, r = 3. This tells
us that two additional independent measurements of the navigation state are needed.
The availability of the passively measured baro altitude immediately comes to mind,
so that one additional independent measurement is needed for establishing the nav-
igation state. The latter could be the aircraft’s pitch angle θ , which is independently
provided by a vertical gyroscope.

15.8 Conclusion

In this paper, the simplest 2-D scenario of INS aiding using bearing measurements
of stationary ground features is investigated. The measurements are taken over time
and the attendant observability problem is formulated and analyzed. The degree of
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INS aiding action is determined by the degree of observability provided by the mea-
surement arrangement. The latter is strongly influenced by the nature of the available
measurements—in our case, bearing measurements of stationary ground objects—
the trajectory of the aircraft, and the length of the measurement interval. Whereas
observability guarantees that all the navigation state’s components are positively
affected by the external measurements, we are also interested in the possibility of
partial observability where not all the navigation state components’ estimates are
impacted by the external measurements. It is shown that when one known ground
object is tracked, the observability Grammian is rank deficient and thus full INS aid-
ing action is not available. However, if baro altitude is available and an additional
vertical gyroscope is used to provide an independent measurement of the aircraft’s
pitch angle, a data driven estimate of the complete navigation state can be obtained.
If two ground features are simultaneously tracked the observability Grammian is full
rank and all the components of the navigation state vector are positively impacted
by the external measurements.
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Chapter 16
Minimal Switching Time of Agent Formations
with Collision Avoidance

Dalila B.M.M. Fontes
and Fernando A.C.C. Fontes

Summary We address the problem of dynamically switching the topology of a for-
mation of a number of undistinguishable agents. Given the current and the final
topologies, each with n agents, there are n! possible allocations between the ini-
tial and final positions of the agents. Given the agents maximum velocities, there
is still a degree of freedom in the trajectories that might be used in order to avoid
collisions. We seek an allocation and corresponding agent trajectories minimizing
the maximum time required by all agents to reach the final topology, avoiding col-
lisions. Collision avoidance is guaranteed through an appropriate choice of trajec-
tories, which might have consequences in the choice of an optimal permutation.
We propose here a dynamic programming approach to optimally solve problems of
small dimension. We report computational results for problems involving forma-
tions with up to 12 agents.

16.1 Introduction

We consider the problem of cooperation among a collection of vehicles performing
shared tasks using vehicles formation to coordinate their actions. In this work, we
consider a formation of autonomous undistinguishable agents that, for some external
reason, has to reconfigure the geometry of its formation. The problem we address
is, given the information of the current and final formation geometry as well as
each agent velocity, to decide which agents are allocated to the new positions in
the formation, guaranteeing that there are no collisions in the transition process. In
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particular, we seek the agent-target allocation that minimizes the time required for
all agents to assume their new position.

Recent technological advances, such as the growth in computation and commu-
nication power and the advent of miniaturization technologies have boosted the in-
terest in vehicles which can interact autonomously with the environment and other
vehicles to perform tasks beyond the ability of individual vehicles. Research in co-
ordination and control of teams of several agents (that may be robots, ground, air or
underwater vehicles) has been growing fast in the past few years. The main reason
behind such growth is the wide range of military and civil applications where such
teams can be used efficiently. Application areas include unmanned aerial vehicles
(UAVs) [4, 17], autonomous underwater vehicles (AUVs) [15], automated highway
systems (AHSs) [3, 16], and mobile robotics [19, 20]. While each of these applica-
tion areas poses its own unique challenges, several common threads can be found.
In most cases, the vehicles are coupled through the task they are trying to accom-
plish, but are otherwise dynamically decoupled, meaning the motion of one does
not directly affect the others. For a recent survey in cooperative control of multiple
vehicles systems, see for example the work by Murray [10].

Team formation is a common and critical task in many cooperative agent appli-
cations, since shape formation may be considered as the starting point for a team of
agents to perform cooperative tasks. Also, formation switching or reconfiguration
arises in a variety of applications due to the need to adapt to environmental changes
or to new tasks, possibly determined by the accomplished ones. The cooperative
behavior we focus on in this paper is formation switching with collision avoidance.

Possible applications arise from reactive formation switching or reconfiguration
of a team of autonomous agents, when performing tasks such as surveillance, patrol,
intruder detection, containment of chemical spills, forest fires, etc. For example,
when a team of agents that moves in formation through a trajectory has to change to
another formation to avoid obstacles and then change back to the original formation.
Figure 16.1 depicts an example when reorganization is needed since the formation
has to go through a narrow passage.

Some application examples are the following. Consider that a team of agents is
performing surveillance using a specific formation and detects some intrusion. In
such event it should change to another formation more appropriate to the new task
at hand. This new formation may, or may not, be a predefined or structured forma-
tion. An example of a nonpredefined case is described in [18], where the formation
mission involves containment of chemical spillage. The agents task, which initially
is monitoring, after detection occurs becomes to determine the perimeter of the spill.
Another type of application requiring switching within specific formations happens,
for example, when a robot soccer team loses the ball. In such even, the team has to
switch from an attack formation to a defense formation with a different geometry
more appropriate to the new task.

In a previous work [6], we have addressed the problem of formation switching,
that is the problem of determining the actions that have to be taken by each indi-
vidual agent so that the overall group moves into a specific formation. Among the
possible actions to reorganize the formation into a new desired geometry, we would
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Fig. 16.1 Reconfiguration of
a formation to avoid obstacles

found the ones that optimize any predefined additive performance measure, e.g.,
minimal distance traveled by all agents in the formation.

Here however, we also wish to guarantee that the actions found are collision free
and our objective is to minimize the overall time required for all agents to assume
their new positions. Therefore, given the current vehicles formation, i.e., current
positions, and the positions they are supposed to assume, we wish to determine
where which vehicle should go to such that the overall formation switching time is
minimal, while at the same time enforcing collision avoidance. While we realize the
importance of dynamic analysis of the control trajectory of each agent, our focus
here is on the static optimization problem of deciding where each agent should go
to rather than how it should go there. The problem addressed here should be seen
as a component of a framework for multiagent coordination, incorporating also the
trajectory control component [7], that allows to maintain or change formation while
following a specified path in order to perform cooperative tasks.

Research on the static optimal formation switching problem is not abundant, al-
though it has been addressed by some authors. Desai et al., in [5], model mobile
robots formation as a graph. The authors use the so-called “control graphs” to rep-
resent the possible solutions for formation switching. In this method, for a graph
having n vertices there are n!(n − 1)!/2n−1 control graphs, and switching can only
happen between predefined formations. The authors do not address collision issues.

Hu and Sastry [8] study the problems of optimal collision avoidance and optimal
formation switching for multiple agents on a Riemannian manifold. It is assumed
that the underlying manifold admits a group of isometries, with respect to which the
Lagrangian function is invariant. A reduction method is used to derive optimality
conditions for the solutions.
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In [18], Yamagishi describes a decentralized controller for the reactive formation
switching of a team of autonomous mobile robots. The focus is on how a structured
formation of agents can reorganize into a nonrigid formation based on changes in
the environment. The controller utilizes nearest-neighbor artificial potentials (social
rules) for collision-free formation maintenance and environmental changes act as a
stimulus for switching between formations.

A similar problem, where a set of agents must perform a fixed number of dif-
ferent tasks on a set of targets, has been addressed by several authors. The methods
developed include exhaustive enumeration (see Rasmussen et al. [12]), branch-and-
bound (see Rasmussen and Shima [11]), network models (see Schumacher et al.
[13, 14]), and dynamic programming (see Jin et al. [9]).

We propose a dynamic programming approach to solve the problem of forma-
tion switching with collision avoidance, that is the problem of deciding which agent
moves to which place in the next formation guaranteeing that at any time the dis-
tance between any two of them is at least some predefined value. Conditions spotted
during the execution of the current task are used to determine the following tasks
and therefore formation, at least partially. The formation switching performance is
given by the time required for all agents to reach their new position, which is given
by the maximum traveling time amongst individual agent traveling times. Since we
want to minimize the time required for all agents to reach their new position, we
have to solve a minmax problem. However, the methodology we propose can be
used with any separable performance function. Since dynamic programming is the
main tool used in the algorithm, the computational times grow, as expected, ex-
ponentially with the problem dimension. Here, we report computational results for
problems involving formations of up to 12 agents. Naturally, the maximum dimen-
sion that is possible to address by the proposed methodology depends on several
factors, namely, whether the solution is to be computed ahead of time or in real
time. In the latter case, we also have to take into account the time constants of the
application at hand, as well as the available memory dimension and computational
power.

This paper is organized as follows. In Sect. 16.2, the problem of optimal reor-
ganization of agent formations with collision avoidance is described and a dynamic
programming formulation of such problem is given and discussed. In Sect. 16.4,
we discuss computational implementation issues of the dynamic programming al-
gorithm, namely an efficient implementation of the main recursion as well as effi-
cient data representations. A detailed description of the algorithms is also provided.
Computational experiments are reported in Sect. 16.5, where the computational im-
plementation options are analyzed and justified. Also, some examples are explored.
Some conclusions are drawn in Sect. 16.5.

16.2 Problem Definition

In our problem, a team of n identical agents has to switch from their current for-
mation to some other formation (i.e., agents have a specific goal configuration not
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related to the positions of the others), possibly unstructured, with collision avoid-
ance. To address collision avoidance, we impose that the trajectories of the agents
must satisfy the separation constraint that at any time the distance between any two
of them is at least ε, for some positive ε. The optimal (joint) trajectories are the ones
that minimize the maximum trajectory time of individual agents.

Our approach can be used either centralized or decentralized, depending on the
agents capabilities. In the latter case, all the agents would have to run the algorithm,
which outputs an optimal solution, always the same if many exist, since the proposed
method is deterministic.

Regarding the new formation, it can be either a prespecified formation or a for-
mation to be defined according to the information collected by the agents. In both
cases, we do a pre-processing analysis that allows us to come up with the desired
locations for the next formation.

This problem can be restated as the problem of allocating to each new position
exactly one of the agents, located in the old positions. From all the possible solu-
tions, we are only interested in the ones where collision is prevented. Among these,
we want to find one that minimizes the time required for all agents to move to the
target positions, that is an allocation which has the least maximum individual agent
traveling time.

Consider that there are N agents to be relocated. Each agent i ∈ I with I =
{1,2, . . . ,N} has associated a velocity value vi and a vector containing the initial
location coordinates (e.g., a triplet (xi, yi, zi) if we consider the agent to move in a
3D space). Consider also a set J indexing the M possible target locations (again a
triplet (xj , yj , zj ) is associated to each target j ∈ J ). Let dij denote the distance of
the predefined trajectory.

The problem can be formulated as follows:

Min

{
max

[∑
j

t1j ξ1j ,
∑
j

t2j ξ2j , . . . ,
∑
j

tNj ξNj

]}

subject to
∑

i

ξij = 1 ∀j ∈ J

∑
j

ξij = 1 ∀i ∈ I

ξij · ξab · c(i, j, a, b) = 0 ∀i ∈ I, ∀j ∈ J, ∀a ∈ I \ {i}, ∀b ∈ J \ {j}
ξij ∈ {0,1} ∀i ∈ I,∀j ∈ J

Here, the decision variable ξ takes the values

ξij =
{

1 if agent i is to travel to target j ,
0 otherwise

and the variable tij , the time it takes for agent i to travel to position j , is defined as
dij /vi . The function c describes whether there is collision between the trajectories
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of agents i and a, traveling to positions j and b, respectively. This function takes
the values

c(i, j, a, b) =
{

1 if the trajectory from i to j , intersects the trajectory from a to b,
0 otherwise

We say that the trajectories intersect if at any instant of time the position of the
agents get closer than a predefined distance. The precise definition of when collision
occurs will be discussed in the next section.

16.3 Dynamic Programming Formulation

Dynamic Programming (DP) is an effective method to solve combinatorial prob-
lems of a sequential nature. It provides a framework for decomposing an optimiza-
tion problem into a nested family of subproblems. This nested structure suggests a
recursive approach for solving the original problem using the solution to some sub-
problems. The recursion expresses an intuitive principle of optimality for sequential
decision processes; that is, once we have reached a particular state, a necessary con-
dition for optimality is that the remaining decisions must be chosen optimally with
respect to that state. Richard Bellman coined the terms dynamic programming and
principle of optimality and pioneered the development of the theory and applica-
tions. These seminal results are reported in his monograph [2].

16.3.1 Derivation of the Dynamic Programming Recursion

In this section, a DP formulation for the minimal switching time of agent formations
with collision avoidance is proposed. In the derivation of the DP formulation that
follows, no reference is made to the conditions that must be satisfied in order to
guarantee collision avoidance. This is introduced after the assignment recursions
have been explained. Let us for now consider that somehow this is being guaranteed.
In the recursions, we will make use of the notation a ∨ b to denote the maximum
value between a and b.

We want to allocate exactly one of the agents to each position in the new forma-
tion, guaranteeing that there are no agent collisions. In our model, a stage i contains
all states S such that |S| ≥ i, meaning that i agents have been allocated to the targets
in S. The DP model has N stages, with a transition occurring from a stage i − 1 to
a stage i, when a decision is made about the allocation of agent i.

Define f (i, S) to be the best allocation of agents 1,2, . . . , i to i targets in set S,
that is as the allocation requiring the least maximum time the agents take to go to
their new positions. Such value is found by determining the least maximum agent
traveling time between its current position and its target position. For each agent, i,
the traveling time to the target position j is given by dij /vi . By definition, the min-
imum traveling time of the i − 1 agents to the target positions in set S \ {j} without
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Fig. 16.2 An example of a
possible decision at stage 4 of
the DP Recursion

collisions is given by f (i −1, S \ {j}). From the above, the minimum traveling time
of all i agents to the target positions in S they are assigned to, given that agent i

travels at velocity vi , without agent collisions, is obtained by examining all possible
target locations j ∈ S (see Fig. 16.2 ).

The dynamic programming recursion is then defined as

f (i, S) = min
j∈S

{
dij /vi ∨ f

(
i − 1, S \ {j}) ∨ M ∗ C

(
i, j, i − 1, S \ {j})} (16.1)

where M is a very high positive number and C is the collision function that takes
the value 1 if collision occurs under some conditions, which are to be defined later.

The initial conditions for the above recursion are provided by

f (1, S) = min
j∈S

{d1j /v1}, ∀S ⊆ J (16.2)

and all other states are initialized as not yet computed.
Hence, the optimal value for the performance measure, that is the minimum trav-

eling time needed for all N agents to assume their new positions in J , is given by

f (N,J ) (16.3)

16.3.2 Collision Avoidance

Let us now discuss the collision constraints. Collisions may occur between two (or
more) agents when they travel from their current position to the target positions they
are to be in. Therefore, each time an agent-target assignment is made we must check
if the agent traveling through this newly defined trajectory is at any time closer than
a predefined allowed distance to any of agent trajectories already defined. In order
to do so, we analyze the collision conditions between pairs of agents as follows.

Consider the following pair of agents starting their trajectory at the same time:
agent i which travels at velocity vi to position j that is reached in time Ti and agent
a which travels at velocity va to position b that is reached in time Ta . Collision
between these two agents occurs if the following condition is satisfied (see Fig. 16.3)
∥∥∥∥(xi, yi) + vi

(xj , yj ) − (xi, yi)

‖(xj , yj ) − (xi, yi)‖ t −
[
(xa, ya) + va

(xb, yb) − (xa, ya)

‖(xb, yb) − (xa, ya)‖ t

]∥∥∥∥ < ε

(16.4)
for some t ∈ [0,min{Ti, Ta}].
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Fig. 16.3 Collision condition
between two agents

Fig. 16.4 Data involved in
the collision recursion

We define the function c(i, j, a, b) that takes value 1 if the condition in (16.4)
is met and value 0 otherwise. To analyze if the agent traveling through a newly
defined trajectory collides with any agent traveling through previously determined
trajectories, we define a recursive function. This function checks the satisfaction of
the separation constraint (or collision condition), given by (16.4), in turn, between
the agent which had the trajectory defined last and each of the agents for which
trajectory decisions have already been made.

Consider that we are in state (i, S) and that we are assigning agent i to target j .
Further let vi−1 be the traveling velocity for agent i − 1. Since we are solving state
(i, S) we need state (i − 1, S \ {j}), which has already been computed. (If this is not
the case, then we must compute it first.) In order to find out if this new assignment is
possible, we need to check if at any point in time agent i will collide with any of the
agents 1,2, . . . , i − 1, for which we have already determined the target assignment.

Let us define a recursive function C(i, j, k, S) that assumes the value one if a
collision occurs between agent i traveling to j and any of the agents 1,2, . . . k ,
with k < i, traveling to their targets, in set S, and assumes the value zero if no such
collisions occurs. This function works in the following way (see Fig. 16.4):

1. First it checks c(i, j, k, Bj ), that is, it verifies if there is collision between tra-
jectory i → j at velocity vi and trajectory k → Bj at velocity vk , where Bj is
the optimal target for agent k when targets in set S \ {j} are available for agents
1,2, . . . , k. If this is the case, it returns the value 1.

2. Otherwise, if they do not collide, it verifies if trajectory i → j at velocity vi

collides with any of the remaining agents. That is, it calls the collision function
C(i, j, k − 1, S′), where S ′ = S \ {Bj }.
The collision recursion is therefore written as:

C(i, j, k, S) = c(i, j, k, Bj ) ∨ C
(
i, j, k − 1, S \ {Bj }

)
(16.5)

where

Bj = Bestj (k, vk, S)
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The initial conditions for recursion (16.5) are provided by

C(2, j,1, S) = min
i∈S

{
c(2, j,1, i)

}
, ∀j ∈ J, S ⊆ J \ {j} (16.6)

and all other states are initialized as not yet computed.

16.4 Computational Implementation

A pure forward Dynamic Programming (DP) algorithm is easily derived from the
DP recursion, (16.1) and (16.2). Such implementation may result in considerable
waste of computational effort since, generally, complete computation of the state
space is not required. Furthermore, since the computation of a state requires in-
formation contained in other states, rapid access to state information should be
sought.

The DP procedure we have implemented exploits the recursive nature of the DP
formulation by using a backward–forward procedure. Its main advantage is that the
exploration of the state space graph, i.e., the solution space, is based upon the part of
the graph which has already been explored. Thus, states which are not feasible for
the problem are not computed, since only states which are needed for the computa-
tion of a solution are considered. The algorithm is dynamic as it detects the needs
of the particular problem and behaves accordingly.

States at stage 1 are either nonexistent or initialized as given in (16.2). The
DP recursion, (16.1), is then implemented in a backward-forward recursive way.
It starts from the final state (N,J ) and while moving backward visits, without
computing, possible states until a state already computed is reached. Initially, only
states in stage 1, initialized by (16.2) are already computed. Then, the procedure is
performed in reverse order, i.e., starting from the state last identified in the back-
ward process, it goes forward through computed states until a state (i, S′) is found
which has not yet been computed. At this point, again it goes backward until a
computed state is reached. This procedure is repeated until the final state (N,J )

is reached with a value that cannot be improved by any other alternative solution.
The main advantage of this backward-forward recursive algorithm is that only in-
termediate states needed are visited and from these only the feasible ones that may
yield a better solution are computed. As will be shown later, the number of states
computed using this method is very small. For our test problems it varies between
25% (for the smallest problems) and 8.33% (for the largest problems) of the state
space.

As said before, due to the recursive nature of (16.1), state computation implies
frequent access to other states. Recall that a state is represented by a number and a
set. Therefore, set operations like searching, deletion, and insertion of a set element
must be performed efficiently. A computationally efficient way of storing and op-
erating sets is the bit-vector representation, also called the boolean array, whereby
a computer word is used to keep the information related to the elements of the set.
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In this representation a universal set U = {1,2, . . . , n} is considered. Any subset of
U can be represented by a binary string (a computer word) of length n in which the
i-th bit is set to 1 if i is an element of the set, and set to 0 otherwise. So, there is
a one-to-one correspondence between all possible subsets of U (in total 2n) and all
binary strings of length n. Since there is also a one-to-one correspondence between
binary strings and integers, the sets can be efficiently stored and worked out simply
as integer numbers. A major advantage of such implementation is that the set oper-
ations, location, insertion, or deletion of a set element can be performed by directly
addressing the appropriate bit. For a detailed discussion of this representation of sets
see, for example, the book by Aho et al. [1].

The flow of the algorithm is managed by Algorithm 1, which starts by labeling
all states (subproblems) as not yet computed, assigning to them the value infinity.
Then, it initializes states in stage 1, that is subproblems involving 1 agent, as given
by (16.2). After that, it calls Algorithms 2 and 4 in turn with parameters (N,J ). Al-
gorithm 2, that implements recursion (16.1), calls Algorithm 3 every time it attempts
to define one more agent-target allocation. This algorithm is used to find out whether
the newly established allocation satisfies the collision regarding all previously de-
fined allocation or not, feeding the result back to Algorithm 2. Algorithm 4, also
implements a recursive function with which the solution structure, i.e., agent-target
allocation is retrieved.

Algorithm 1: DP for finding agent-target allocations.

Read agents set, locations and velocities; the1

target set and locations; and the distance
functions;

Compute the distance for every pair agent-target2

(dij );

Label all states as not yet computed3

f (N,S) = ∞ for all N = 1,2, . . . , n and S ∈ J ; (16.7)

Initialize states at stage one as4

f (1, S) = min
j∈S

{d1j /v1}, ∀S ⊆ J. (16.8)

Call Compute(N,J );5

Call Allocation(N,J );6

Algorithm 2 is a recursive algorithm that computes the optimal solution cost,
i.e., it implements (16.1). This function receives two arguments: the agents to be
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allocated and the set of target locations available to them, both represented by
integer numbers (the latter using the bit-vector representation, as discussed pre-
viously). It starts by checking whether the specific state (i, S) has already been
computed or not. If so the program returns to the point where the function was
called, otherwise the state is computed. To compute state (i, S), all possible tar-
get locations j ∈ S that might lead to a better subproblem solution are identi-
fied. The function is then called with arguments (i − 1, S ′), where S ′ = S \ {j},
for every j such that allocating agent i to target j does not lead to any col-
lision with previously defined allocations. This condition is verified by Algo-
rithm 3.

Algorithm 2: Recursive function: compute optimal performance.

Recursive Compute(i, S);1

if f (i, S) �= ∞ then2

return f (i, S) to caller;3

end4

Set min = ∞;5

for each j ∈ S ′ do6

S′ = S \ {j};7

Call Collision(i, j, i − 1, S ′)8

if Col(i, j, i − 1, S′) = 0 then9

Call Compute(i − 1, S′);10

tij = dij /vi;11

aux = max(f (i − 1, S ′), tij );12

if aux ≤ min then13

min = aux; bestj = j;14

end15

end16

end17

Store information:18

target Bj (i, S) = bestj;19

value f (i, S) = min;20

Return: f (i, S);21

Algorithm 3 is a recursive algorithm that checks the collision of a specific
agent-target allocation with a set of allocations previously established, i.e., it im-
plements (16.5). This function receives four arguments: the newly defined agent-
target allocation i → j and the previously defined allocations to check with, that
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is agents 1,2, . . . , k and their target locations S. It starts by checking the colli-
sion condition, given by (16.4), for the allocation pair i → j and k → Bj , where

Bj is the optimal target for agent k when agents 1,2, . . . , k are allocated to tar-
gets in S. If there is collision it returns 1; otherwise it calls itself with arguments
(i, j, k − 1, S \ {Bj }).

Algorithm 3: Recursive function: find if the allocation i → j collides with any
of the existing allocations.

Recursive Collision(i, j, k, S);1

if Col(i, j, k, S) �= ∞ then2

return Col(i, j, k, S) to caller;3

end4

Bj = Bj (k, S);5

if collision condition is not satisfied then6

Col(i, j, k, S) = 1;7

return Col(i, j, k, S) to caller;8

end9

S′ = S \ {Bj };10

Call Collision(i, j, k − 1, S ′);11

Store information: Col(i, j, k, S) = 0;12

Return: Col(i, j, k, S);13

Algorithm 4 is also a recursive algorithm and it backtracks through the infor-
mation stored while solving subproblems, in order to retrieve the solution structure,
i.e., the actual agent-target allocation. This algorithm works backward from the final
state (N,J ), corresponding to the optimal solution obtained, and finds the partition
by looking at the target stored for this state Bj (N,J ), with which it can build the
structure of the solution found. Algorithm 4 also receives two arguments: the agents
and the set of target locations. It starts by checking whether the agent current lo-
cations set is empty. If so, the program returns to the point where the function was
called; Otherwise the backtrack information of the state is retrieved and the other
needed states evaluated.

At the end of the algorithm, f (I, J ) gives the performance associated with the
best agent-target allocation.
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Algorithm 4: Recursive function: retrieve agent-target allocation.

Recursive Allocation(i, S);1

if S �= ∅ then2

j = targetBj (i, S);3

Alloc(i) = j;4

S′ = S \ {j};5

Call Allocation(i − 1, S′);6

end7

Return: Alloc;8

Table 16.1 Agents random
initial location Location

xi yi

Agent 1 30 113

Agent 2 183 64

Agent 3 348 349

Agent 4 30 200

16.5 Computational Experiments

In this section, we report on the computational experiments performed. We consider
several standard structured formations for a team of agents: line, column, square,
diamond, and wedge. We also considered nonrigid formations, which are randomly
generated. The agents initial positions were randomly generated and are fixed for
all experiments. In our experiments, we have decided to use dij as the Euclidian
distance although any other distance measure may have been used. All agents are
considered to travel at the same velocity v. Therefore, traveling times for each pos-
sible agent-target allocation are computed as tij = dij /v. The separation constraints
impose, at any point in time, the distance between any two agent trajectories to be
at least 10 points; otherwise, it is considered that those two agents collide.

Let us first show how a solution is recomputed in order to guarantee collision
avoidance, using a small example. Consider 4 agents A,B,C, and D, positioned as
given in Table 16.1 and four target positions 1, 2, 3, and 4 as in Table 16.2.

In Figs. 16.5 and 16.6, we give the graphical representation of the optimal agent-
target allocation found, when collisions are allowed and no collisions are allowed,
respectively. Since the separation constraints are active, the time required for all
agents to travel to the targets they have been assigned to is larger when they are
enforced. This value goes up from 4.4197 units of time when collisions are allowed
to 4.4702 when they are not.
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Table 16.2 Target random
locations Location

xi yi

Target 1 95 258

Target 2 147 78

Target 3 248 362

Target 4 293 228

Fig. 16.5 Collisions allowed

The algorithm was implemented in Matlab and all examples run in between 0.034
seconds and 13.117 seconds. We note that the Matlab functions were interpreted
and not compiled. In the case of faster solutions being required, the code could
be compiled. As it can be seen, in the last two columns of Table 16.3, the total
percentage of the state space used is very small and decreases with problem size. The
full representation of the state space comprises n × (2n − 1) states. However, in our
implementation just a small percentage of the state space is computed. This value is
25% for the smallest problems and comes down to just over 8% for the largest ones.
The efficiency of the proposed method can also be seen from the ratio between the
number of subproblems used and the number of potential feasible solutions for the
problem (n!). This value comes down from 62.50% to less than 0.001%.

The benefits of our particular implementation can be seen both from (1) the fact
that computation of an optimal solution is very fast; and (2) from the fact that only
a small part of the states is actually computed, either when this number is compared
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Fig. 16.6 No collisions allowed

Table 16.3 Running time
and efficiency of the
computational
implementation

Number
of agents

Running
time (s)

Used states, percentage of

State space Feasible sol.

4 0.034 25.00 62.50

5 0.064 20.00 25.83

6 0.109 16.67 8.75

7 0.212 14.28 2.52

8 0.519 12.50 0.63

9 1.181 11.11 0.14

10 2.706 10.00 0.03

11 5.947 9.09 0.01

12 13.117 8.33 8E−04

to the total number of states in our representation, or when it is compared to the
number of possible feasible solutions.

16.6 Conclusion

We have developed an optimization algorithm to decide how to reorganize a for-
mation of vehicles into another formation of different shape with collision avoid-
ance, which is a relevant problem in cooperative control applications. The method
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proposed here should be seen as a component of a framework for multiagent coor-
dination/cooperation, which must necessarily include other components such as a
trajectory control component.

The algorithm proposed is based on a dynamic programming approach that is
very efficient for small dimensional problems. As explained before, the original
problem is solved by combining, in an efficient way, the solution to some subprob-
lems. The method efficiency improves with the number of times the subproblems
are reused, which obviously increases with the number of feasible solutions. This
can be seen from the very small percentage of states use when compared with the
number of states represented or the number of potential feasible solutions.

Moreover, the proposed methodology is very flexible, in the sense that it easily
allows for the inclusion of additional problem features, e.g., imposing geometric
constraints on each agent or on the formation as a whole, deciding on the agents
velocity, among others.
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Chapter 17
A Moving Horizon Estimator Performance
Bound

Nicholas R. Gans and Jess W. Curtis

Summary Moving Horizon implementations of the Kalman Filter are widely used
to overcome weaknesses of the Kalman Filter, or in problems when the Kalman
Filter is not suitable. While these moving horizon approaches often perform well, it
is of interest to encapsulate the loss in performance that comes when terms in the
Kalman Filter are ignored. This paper introduces two methods to calculate a worst
case performance bound on a Moving Horizon Kalman Filter.

17.1 Introduction

Since its introduction, the Kalman Filter (KF) [2] has enjoyed widespread and suc-
cessful use in estimating the state of a dynamic system assailed by noise. Given
an accurate model and appropriate noise statistics, the KF provides state estimates
that are mean-square-optimal. Fields that make wide use of the KF include avia-
tion, localization, navigation, and economics. For its strengths, the performance of
the KF will suffer if the provided system model is inaccurate, the noise statistics
are inaccurate, or the noise signals can not be modeled as white, Gaussian random
processes with known noise statistics. Furthermore, the recursive nature of the KF
requires that measurement data arrive in order and at known period [6]. This makes
the KF inappropriate for use in distributed and networked inappropriate for use in
distributed and networked estimation schemes that may have transmission delays.

For these reasons, Moving Horizon Kalman Filter (MHKF) approaches (also re-
ferred to as receding horizon and limited memory approaches) have been inves-
tigated for over forty years [3]. These various approaches are often designed to
address specific problems with the standard Kalman Filter. Problems addressed
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through the use of a moving horizon include modeling error and bias [3, 8], un-
known (possible nonGaussian) noise statistics [1], constrained state or noise distri-
butions [7], and unknown initial state statistics [4]. Some authors note that the filter
length is a tunable parameter [5], or that the system must be observable within the
window length [1] but there appears to be little investigation into the effect of filter
length on the accuracy of the estimate.

The investigation in this chapter is primarily interested in using the MHKF for
overcoming data-rate and order dependency and hidden measurement-state correla-
tion that may render standard Kalman filtering results inconsistent. Consider a cen-
tral facility is estimating a dynamic system state via measurements from a collection
of distributed sensors. If the communication between the sensors and the central fa-
cility is subject to random delays, and the central estimator is running a KF, the
central estimator might receive a measurement from time t − N at time t . It thus is
currently carrying an estimate x̂t and error covariance matrix Pt that do not allow
a fusion with the delayed measurement. The problem of out-of-sequence measure-
ments has been a well-studied topic in optimal estimation. Several approaches (both
optimal and suboptimal) have been proposed to deal with the problem of filtering
measurements that arrive for fusion out of their proper sequence [6].

One approach for solving this problem is to save a window of estimates x̂i and
their associated uncertainty matrices Pi . Then, in the event that a late measurement
is received, the filter can be re-run from time t − N to the present. The difficulty
of this approach is that it requires a great deal more storage than a standard KF,
and the computational requirements become likewise more severe (since instead of
being required to perform a single time-update and measurement update, the central
estimator might be required to do N times this computation at any given time).

One of the key questions in terms of analyzing this moving horizon strategy is
how the performance degrades as a function of horizon length. In particular, is it
possible to define a bound as a function of the horizon length such that if we desire
some given level of estimation performance then a horizon length can be found to
guarantee that minimal level of accuracy?

This paper attempts to address this question. Two error bounds are formulated
that encapsulate worst case performance of a MHKF. Guarantee of worst case per-
formance is essential in many robust estimation problems.

17.2 Linear State Estimation

Consider the linear, discrete-time system

xk+1 = Axk + ωk

yk = Hxk + νk

(17.1)

where k ∈ [0,∞] is the discrete time index, xk ∈ �n is the system state at time k,
yk ∈ �m is the measurement vector at time k, and ω ∈ �n and ν ∈ �n are white,
zero-mean, Gaussian, noise process with covariance matrices Q ∈ �n×n and R ∈
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�m×m, respectively. The matrix H ∈ �m×n maps a state vector into a measurement
vector.

The well-known Kalman Filter equations [2] provide an optimal estimate in the
sense that is provides the minimum mean square error estimate for linear estimators.
The one-step KF equations are given as

x̂k+1 = Ax̂k + Kk(yk − Hx̂k) (17.2)

Kk = APkH
T
(
R + HPkH

T
)−1

(17.3)

Pk+1 = A
(
P−1

k + HT R−1H
)−1

AT + Q (17.4)

where Kk is the Kalman gain and Pk is the covariance of the estimate error ek =
x̂k − xk . It is known that if {H, A} is observable and {A, Q} controllable, then Kk

and Pk will converge to a steady state values K and P such that

K = APHT
(
R + HPHT

)−1

P = A
(
P −1 + HT R−1H

)−1
AT + Q

17.2.1 Kalman Filter as an IIR Filter

Assume that the conditions for observability and controllability have been met, and
that we have a collected measurements for time i = {0 . . . k} (denote the batch of
measurement by Y ), which will be used to estimate the current state at time k.
Further assume that all of the measurement come from a single sensor with error
covariance matrix R, and that we have an initial estimate of the state, x̂k−N , whose
associated covariance matrix Pk−N is such that the filter is in steady state. That is,
for all i

x̂i+1 = Ax̂i + K(yi+1 − HAx̂i)

where K is the constant, steady-state Kalman gain. An artificial measurement is
created to capture this initial condition as

Ky0
�= x̂0

Assume then that the measurement list contains this artificial measurement whose
effect is to initialize the filter with our a priori information.

The time history of the state can be estimated as

x̂1 = AKy0 + K(y1 − HAKy0)

= Ky1 + (A − KHA)Ky0 (17.5)



326 N.R. Gans and J.W. Curtis

x̂2 = AKy1 + A(A − KHA)Ky0

+ K
(
y2 − HAKy1

− HA(A − KHA)Ky0
)

= Ky2 + (A − KHA)Ky1

+ (A − KHA)(A − KHA)Ky0 (17.6)

...

x̂k =
k∑

i=0

(A − KHA)iKyk−i (17.7)

This derivation provides a method to approximate a KF given a batch or list of
measurements from a single known sensor. First, precompute the Kalman gain K

and the discount matrix A − KHA. Then sum the individual contributions from
each measurement as expressed in (17.7) to obtain a final estimate. If our initial
information was such that the filter began in steady state, then this would yield an
optimal estimate in the sense that the estimate xk exactly equals the output from
running a KF from time 0 up to k.

If there is insufficient a priori information to begin the estimation filter in steady
state, the estimate produced by this technique would be suboptimal. This problem
can be by addressed by simply assuming that the filter achieves steady-state oper-
ation after s time-steps (an assumption that is true in practice whenever the sys-
tem is observable, stabilizable, and well modeled). This would imply that the mea-
surements made on or after time s could be used in the final estimate as specified
in (17.7). However, the first s terms would be wrong; alternatively we could re-
define time-step s as the temporal origin and redefine all subsequent time-steps as
k′ = k + s.

17.2.2 Moving Average Implementation

Assume again that we have augmented the measurement list Y such that it contains
a pseudo-measurement at time 0, which guarantees an optimal filter would operate
in steady state for all time. Then, from (17.7), the optimal estimation of xk is given
by

x̂k =
k∑

i=0

(A − KHA)k−iKyi (17.8)
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Now suppose that we wish to implement a truncated summation (moving aver-
age) of the measurements as

x̂k =
k∑

i=k−N

(A − KHA)k−iKyi + Φ(k − N) (17.9)

where N is the length of the moving horizon and Φ(k − N) is the sum of the ne-
glected terms. Define a new estimator given by

x̂MH
k

�=
k∑

i=k−N

(A − KHA)k−iKyi (17.10)

Clearly, the error between this estimate and the KH estimate will be

eMH = ∥∥x̂MH
k − x̂k

∥∥
= ∥∥Φ(k − N)

∥∥

17.3 MHE Performance Bound

The aim of this paper is to characterize the size of Φ(k −N), i.e., derive a bound on
‖Φ(k − N)‖ as a function of N . Note that eMH does not refer to the true estimate
error x̂MH

k − xk , which is generally unknown.
The eigenvalues of the matrix A − KHA will lie inside the unit circle, since we

have assumed a steady-state KF. When the eigenvalues of A − KHA have mag-
nitude less than one, (17.10) represents a convergent geometric series with a finite
sum.

Write the error eMH as

eMH �= ∥∥x̂t − x̂MH
t

∥∥

=
∥∥∥∥∥

t∑
i=0

(A − KHA)t−iKyi −
t∑

i=t−N

(A − KHA)t−iKyi

∥∥∥∥∥

=
∥∥∥∥∥

t−N∑
i=0

(A − KHA)t−iKyi

∥∥∥∥∥

≤
t−N∑
i=0

∥∥(A − KHA)t−iKyi

∥∥,

≤
t−N∑
i=0

∥∥(A − KHA)
∥∥t−i‖Kyi‖
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Let ȳ be the largest expected value of ‖Kyi‖ (or the norm of known sensor satura-
tion) on the interval i ∈ [0, t − N ]. Then we have that

eMH ≤ ȳ

t−N∑
i=0

∥∥(A − KHA)
∥∥t−i

(17.11)

If ‖A − KHA‖ < 1, the sum in (17.11) converges as follows (where F
�= ‖A −

KHA‖)

S = FN + FN+1 + · · · + F t

FS = FN+1 + · · · + F t+1

S − FS = F N − F t+1,

(1 − F)S = (
FN − F t+1)

S = FN − F t+1

1 − F

S = ‖A − KHA‖N − ‖A − KHA‖t+1

1 − ‖A − KHA‖
The bound on eMH can then be characterized as

eMH ≤ ȳ
‖A − KHA‖N − ‖A − KHA‖t+1

1 − ‖A − KHA‖
eMH ≤ C1

(‖A − KHA‖N − ‖A − KHA‖t+1)

where C1
�= ȳ

1−‖A−KHA‖ . As t + 1 − N > 0 implies ‖A − KHA‖t+1−N < 1, it can
be seen that

eMH ≤ C1‖A − KHA‖N
(
1 − ‖A − KHA‖t+1−N

)

eMH ≤ C1‖A − KHA‖N

This allows the derivation of an explicit algorithm for choosing a horizon length,
given some maximum desired error level e0

ln e0 ≤ ln C1 + N ln‖A − KHA‖ (17.12)

so choose a horizon length N such that

N ≥ ln e0 − ln C1

ln‖A − KHA‖
Note that in (17.12) the horizon length might be negative if the error is chosen
too large. This situation implies that using a zero-length horizon would satisfy the
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performance requirement. Note also that N grows to infinity as e0 goes to zero
(because the denominator in (17.12) is always negative).

17.3.1 Situation When ‖A − KHA‖ ≥ 1

Having all eigenvalues of A − KHA less than one does not guarantee that ‖A −
KHA‖ < 1. In this case, the matrix series in (17.10) will converge, but the series in
(17.11) will not. This can be detected easily by testing whether the ‖A−KHA‖ ≥ 1.
If so, the bound calculation can be amended to address this issue.

Test ‖(A − KHA)p‖ for increasing values of p until ‖(A − KHA)p‖ < 1. Take
Cp = ȳ

1−‖(A−KHA)p‖ and

eMH ≤ Cp

∥∥(A − KHA)p
∥∥N

p

The conditions under which the eigenvalues of A − KHA are in the unit circle but
‖A − KHA‖ > 1 are not clear at this time, though it appears to depend on ‖A‖ and
‖R‖. This is an avenue of open investigation and future work.

17.3.2 Alternative Derivation

The bound developed in Sect. 17.3 is overly conservative, sometimes larger than the
true error by several orders of magnitude. A similar approach can produce a tighter
bound at the expense of greater computation time. However, given reasonable length
horizon and dimension of state, the additional computation time is negligible.

Again take the error eMH as

eMH �= ∥∥x̂t − x̂MH
t

∥∥,

=
∥∥∥∥∥

t−N∑
i=0

(A − KHA)t−iKyi

∥∥∥∥∥

and set F = (A − KHA). Then we have

eMH = ∥∥FNKyt−N + FN+1Kyt−N−2 + · · · + F tKy0
∥∥

There must exist a vector ȳ such that
∥∥FN ȳ + FN+1ȳ + · · · + F t ȳ

∥∥
= ∥∥(

FN + FN+1 + · · · + F t
)
ȳ
∥∥

>
∥∥FNKyt−N + FN+1Kyt−N−2 + · · · + F tKy0

∥∥ (17.13)
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We take advantage of two properties. First, given the singular value decompo-
sition of a matrix F = U�V , the vector of V corresponding to the largest singu-
lar value will give max‖Fv‖. Second, given the svd’s of matrices F, F 2, . . . ,F t ,
as the power increases, the V matrices quickly converge to a constant, i.e., given
F i = Ui�iVi and F i+1 = Ui+1�i+1Vi+1, then Vi ≈ Vi+1 for a appropriately
large i. In practice, Vi and Vi+1 are the same to within i decimal places. There-
fore, for sufficiently large N , ȳ will point along a direction close to the vector of VN

corresponding to the largest singular value, and ‖ȳ‖ can be chosen appropriately,
such as the maximum expected value or known saturation of the sensors. Then

eMH = ∥∥(
FN + FN+1 + · · · + F t

)
ȳ
∥∥

≤ ∥∥F N
(
I + F + · · · + Fk−N

)∥∥‖ȳ‖
≤ ∥∥F N

(
Fk−N+1 + I

)
(F + I )−1

∥∥‖ȳ‖
≤ ∥∥(

Fk+1 + FN
)
(F + I )−1

∥∥‖ȳ‖
It may be undesirable to have k explicitly in the expression for eMH , since it will
then have to be recomputed for each time. Under the assumption that FN ≤ FN+1

(in the sense that ‖FNx‖ ≤ ‖FN+1x‖ for any vector x), eMH can be upper bounded
as

eMH ≤ ‖ȳ‖∥∥2FN(F + I )−1
∥∥

17.4 Simulation and Analysis

Simulations and Monte Carlo analysis have been conducted to confirm the accuracy
of the bound.

17.4.1 Simulation of Moving Horizon Estimator and Error Bound

First, an illustrative test of the Moving-horizon estimator is preformed, and its per-
formance is compared to the maximum error eMH bound. A two-dimensional linear
time-invariant system of the form (17.1) is simulated with

A =
[

1 .1
0 1

]
, H =

[
1 0
0 1

]

Q = 0.75

[
0.033 0.05
0.05 1

]
, R = 0.3

[
1 0.3

0.3 1

]

This represents 2nd order random walk process with sampling time 0.1 sec, full state
feedback, and correlated sensor noise. For the moving-horizon estimator, a horizon
length of 5 time-steps was used.
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Fig. 17.1 Simulation of KF and MHKF estimators

Fig. 17.2 The norm of estimation errors and the estimated bound

Figure 17.1 shows the system state simulated for 20 seconds (200 time samples)
and the state estimates from both the Kalman filter and the moving horizon estima-
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Fig. 17.3 Monte Carlo analysis of Bound 1

tor. Both the Kalman filter and the moving-horizon estimator track the true signal
well.

The bound on eMH for this system using the method in Sect. 17.3.1 is
eMH ≤ 8.96. The bound using the method in Sect. 17.3.2 is eMH ≤ 0.92. This is
illustrated in Fig. 17.2. A semi-log plot is used since the errors are rather small.
Both bound estimates are met, and as expected, the second method of calculating
the bound produces a lower bound.

17.4.2 Monte Carlo Analysis of Error Bound

The performance for a common system was demonstrated in Sect. 17.4.1. However,
we wish to evaluate the performance for a wide variety of systems. To this end, a
Monte Carlo analysis was performed with a large number of random systems.

One thousand (1000) random systems are generated as follows. First, generate
four random matrices Zi ∈ R

2×2, i ∈ {1 . . .4} where each element is a zero-mean
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Fig. 17.4 Monte Carlo analysis of Bound 2

Gaussian random variable with unit variance. If the condition number of Zi > 10,
recalculate Zi until a suitable matrix is found. Take initial system matrices

A0 =
[

1 .1
0 1

]
, H0 =

[
1 0
0 1

]

Q0 =
[

.1 .01
.01 .1

]
, R0 =

[
.1 .01
.01 .1

]

and create random matrices

A = Z1A0Z
−1
1 , H = Z2H0Z

−1
2

Q′ = Z3Q0Z
−1
3 , R′ = Z4R0Z

−1
4

To ensure that the covariance matrices are positive-semidefinite and symmetric, the
final values of Q and R are generated as

Q = (
Q′Q′T ) 1

2 , R = (
R′R′T ) 1

2
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where (·) 1
2 represent the matrix square root.

Each of the 1000 random systems are tested for both the Kalman filter and
moving-horizon estimators. Histograms are generated of the results in Figs. 17.3
and 17.4. It can be seen that both bounds have some outliers that are very large,
though the second method of producing a bound is typically smaller. To best illus-
trate the tightness of the bound, we consider the ratio bound

eMH . Any ratio less than one
indicates the bound was violated. Motivated by robust control applications, where
min/max performance is critical, we focus on the 100 smallest values of this ratio
from the distribution, representing the cases where the bound was closest to the true
value of eMH . It is seen that both bounds are never violated by eMH , and the second
bound is roughly an order of magnitude tighter, even for the minimum ratios.

17.5 Future Work

There are several avenues of future work. The bounds in this paper represent useful
measures to ensure robust performance, but for many cases the bounds are typically
much larger than the true errors, so some method to get a tighter, more accurate
bound is desirable. Another approach is to generate a stochastic bound, that is a
tighter bound with a known probability that the bound is not exceeded. Experiments
will also be performed to test the bound in real scenarios when the system is not
perfectly modeled.

References

1. Alessandri, A., Baglietto, M., Battistelli, G.: Receding-horizon estimation for discrete-time
linear systems. IEEE Trans. Autom. Control 48(3), 473–478 (2003)

2. Brown, R.G., Hwang, P.Y.C.: Introduction to Random Signals and Applied Kalman Filtering
with Matlab Exercises and Solutions, 3rd edn. Wiley, New York (1996)

3. Jazwinski, A.: Limited memory optimal filtering. IEEE Trans. Autom. Control 13(5), 558–563
(1968)

4. Kwon, W.H., Kim, P.S., Park, P.G.: A receding horizon Kalman fir filter for discrete time-
invariant systems. IEEE Trans. Autom. Control 44(9), 1787–1791 (1999)

5. Ling, K.V., Lim, K.W.: Receding horizon recursive state estimation. IEEE Trans. Autom. Con-
trol 44(9), 1750–1753 (1999)

6. Plett, G.L., Zarzhitsky, D., Pack, D.: Out of order sigma point Kalman filtering for target
localization using cooperating unmanned aerial vehicles. In: Advances in Cooperative Control
and Optimization, pp. 21–43 (2007)

7. Rao, C.V., Rawlings, J.B., Lee, J.H.: Constrained linear state estimation–a moving horizon
approach. Automatica 37(10), 1619–1628 (2001)

8. Wang, Z.-O., Zhang, J.: A Kalman filter algorithm using a moving window with applications.
Int. J. Syst. Sci. 26(8), 1465–1478 (1995)



Chapter 18
A p-norm Discrimination Model for Two
Linearly Inseparable Sets

Pavlo Krokhmal, Robert Murphey,
Panos M. Pardalos, and Zhaohan Yu

Summary We propose a new p-norm linear discrimination model that generalizes
the model of Bennett and Mangasarian (Optim. Methods Softw. 1:23–34, 1992)
and reduces to linear programming problems with p-order conic constraints. We
demonstrate that the developed model possesses excellent methodological and com-
putational properties (e.g., it does not allow for a null separating hyperplane when
the sets are linearly separable, etc.). The presented approach for handling linear pro-
gramming problems with p-order conic constraints relies on construction of poly-
hedral approximations for p-order cones. A case study on several popular data sets
that illustrates the advantages of the developed model is conducted.

18.1 Introduction

Consider two discrete sets A, B ∈ R
n comprised of k and m points, respectively:

A = {a1, . . . ,ak}, B = {b1, . . . ,bm}. One of the principal tasks arising in machine
learning and data mining is that of discrimination of these sets, namely, constructing
a surface f (x) = 0 such that f (x) < 0 for any x ∈ A and f (x) > 0 for all x ∈ B.
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Of particular interest is the linear separating surface (hyperplane):

f (x) = w�x − γ = 0 (18.1)

Clearly, existence of such a separating hyperplane is not guaranteed;1 in general, a
separating hyperplane that minimizes some sort of misclassification error is desired.

Observe that if points y(1), y(2) ∈ R
n satisfy the inequalities

w�y(1) − γ > 0, w�y(2) − γ < 0

for some w and γ , then they are located on the opposite sides of the hyperplane
w�x − γ = 0. Consequently, the discrete sets A, B ⊂ R

n are considered linearly
separable if and only if there exists w ∈ R

n such that

w�ai > γ > w�bj for all i = 1, . . . , k, j = 1, . . . ,m

with an appropriately chosen γ , or, equivalently,

min
ai∈A

a�
i w > max

bj ∈B
b�

j w (18.2)

Definition (18.2) is not amenable for use in mathematical programming models
since it involves strict inequalities. However, the fact that the separating hyperplane
can be scaled by any nonnegative factor allows one to formulate the following result,
whose proof we include for completeness of exposition.

Proposition 1 (Bennett and Mangasarian [5]) Discrete sets A, B ⊂ R
n represented

by matrices A = (a1, . . . ,ak)
� ∈ R

k×n and B = (b1, . . . ,bm)� ∈ R
m×n, respec-

tively, are linearly separable if and only if

Aw ≥ eγ + e, Bw ≤ eγ − e for some w ∈ R
n, γ ∈ R, (18.3)

where e is the vector of ones of the appropriate dimension, e = (1, . . . ,1)�.

Proof Let A and B be linearly separable, then in accordance to definition (18.2),
there exists v ∈ R

n such that

min
i=1,...,k

a�
i v =: a∗ > b∗ := max

j=1,...,m
b�

j v (18.4)

Denote w = 2v/(a∗ − b∗), and γ = (a∗ + b∗)/(a∗ − b∗); then for any ai ∈ A

a�
i w − γ − 1 = 2

a∗ − b∗ a�
i v − 2a∗

a∗ − b∗ = 2

a∗ − b∗
(

a�
i v − min

i=1,...,m
a�
i v

)
≥ 0

which means that Aw − eγ − e ≥ 0. The second inequality in (18.3) follows analo-
gously. �

1It is easy to see that a separating hyperplane exists if the convex hulls of sets A and B are disjoint.
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In the next section, we introduce a new linear separation model that is based on
p-order conic programming, and discuss its key properties.

18.2 The p-norm Linear Separation Model

In this chapter, we generalize the robust linear discrimination model proposed by
Bennett and Mangasarian [5].

min
1

k
e�y + 1

m
e�z (18.5a)

s.t. y ≥ −Aw + eγ + e (18.5b)

z ≥ Bw − eγ + e (18.5c)

z,y ≥ 0 (18.5d)

The linear programming model (18.5) determines a hyperplane w∗�x − γ ∗ = 0 that
minimizes the average misclassification error. Indeed, in accordance to the definition
(18.3), the points of sets A and B that violate (18.3) will correspond to the nonzero
components of vectors y and z in the constraints (18.5b) and (18.5c), respectively.

This interpretation allows us to reformulate the optimization problem (18.5) in
the form of a stochastic programming problem

min
(w,γ )∈Rn+1

{
E
[(−a�w + γ + 1

)
+
] + E

[(
b�w − γ + 1

)
+
]}

(18.6)

where a and b are uniformly distributed random vectors with support sets A and B,
correspondingly:

P{a = ai} = 1

k
, P{b = bj } = 1

m
for all ai ∈ A, bj ∈ B (18.7)

and (x)± = max{0,±x}. In this sense, the misclassification errors of points from
A and/or B can be viewed as realizations of random variables XA = XA(w, γ ) and
XB = XB(w, γ ), whose smaller values are preferred, and thus the parameters w and
γ must be selected so as XA and XB assume values that are “small”.

As it is well known in stochastic programming and risk analysis, the “risk” asso-
ciated with random outcome is often attributed to the “heavy” tails of the probability
distribution. The risk-inducing “heavy” tails of probability distributions, are, in turn,
characterized by the distribution’s higher moments. Thus, if the misclassifications
introduced by a separating hyperplane can be viewed as “random”, the misclassi-
fication risk may be controlled better if one minimizes not the average (expected
value) of the misclassification errors, but their moments of order p > 1. This gives
rise to the following formulation for linear discrimination of sets A and B:

min
(w,γ )∈Rn+1

δ1
∥∥(−a�w + γ + 1

)
+
∥∥

p
+ δ2

∥∥(
b�w − γ + 1

)
+
∥∥

p
, p ∈ [1,+∞]

(18.8)
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where ‖ · ‖p is the “functional” Lp norm, which in the probabilistic context can be
written as

‖X‖p =
{(

E|X|p)1/p
, p ∈ [1,∞)

sup |X|, p = ∞
Assuming again that points of the sets A and B are “equiprobable” (or, in other
words, all points of set A, and, correspondingly, B, have equal “importance”), linear
discrimination problem (18.8) can be written as follows

min δ1k
−1/pξ + δ2m

−1/pη (18.9a)

s.t. ξ ≥ ‖y‖p (18.9b)

η ≥ ‖z‖p (18.9c)

y ≥ −Aw + eγ + e (18.9d)

z ≥ Bw − eγ + e (18.9e)

z,y ≥ 0, ξ, η ≥ 0 (18.9f)

In the mathematical programming formulation (18.9), ‖ · ‖p denotes the “vector”
norm in finite-dimensional space, i.e., for x ∈ R

n,

‖x‖p =
{(|x1|p + · · · + |xn|p

)1/p
, p ∈ [1,∞)

max
{|x1|, . . . , |xn|

}
, p = ∞

(in the sequel, it shall be clear from the context whether the “functional” or “vector”
definition of p-norm is used).

Model (18.9) constitutes a linear programming problem with p-order conic con-
straints (18.9b)–(18.9c). Using the “vector” norm notation, formulation (18.9) can
be more succinctly presented as

min
(w,γ )∈Rn+1

δ1

k1/p

∥∥(−Aw + eγ + e)+
∥∥

p
+ δ2

m1/p

∥∥(Bw − eγ + e)+
∥∥

p
(18.10)

The p-conic programming linear separation model (18.8)–(18.9) shares many
key properties with the LP separation model of Bennett and Mangasarian [5], in-
cluding the guarantee that the optimal solution of (18.9) is nonzero in w for linearly
separable sets.

Proposition 2 When sets A and B, represented by matrices A and B, are linearly
separable (i.e., they satisfy (18.2) and (18.3)), the separating hyperplane w∗�x =
γ ∗ given by an optimal solution of (18.8)–(18.9) satisfies w∗ 
= 0.

Proof Zero optimal value of (18.9a) immediately implies that at optimality y∗ =
z∗ = 0, or, equivalently,

−Aw∗ + eγ ∗ + e ≤ 0, Bw∗ − eγ ∗ + e ≤ 0
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If one assumes that w∗ = 0, then the above inequalities require that

γ ∗ ≤ −1, γ ∗ ≥ 1

The contradiction furnishes the desired statement. �

Secondly, the p-norm separation model (18.9) can produce a w = 0 solution only
in a rather special case that is identified by Theorem 1 below.

Theorem 1 Assume that the p-order conic programming problem (18.9)–(18.10)
is strictly feasible and, without loss of generality, 0 < δ1 < δ2. Then, for any
p ∈ (1,∞) the p-order conic programming problem (18.9) has an optimal solu-
tion where w∗ = 0 if and only if

e�

k
A = v�B, where e�v = 1, v ≥ 0, ‖v‖q ≤ δ2

δ1m1/p
(18.11a)

where q satisfies 1
p

+ 1
q

= 1. In other words, the arithmetic mean of the points in
A must be equal to some convex combination of points in B. In the case of δ1 = δ2

condition, (18.11a) reduces to

e�

k
A = e�

m
B (18.11b)

i.e., the arithmetic means of the points of sets A and B must coincide.

Proof From formulation (18.10) of problem (18.9), it follows that in the case when
w = 0 at optimality, the corresponding optimal value of the objective (18.9a) is
determined as

min
γ∈R

f (γ ) = δ1

k1/p

(
k∑

i=1

(1 + γ )
p
+

)1/p

+ δ2

m1/p

(
m∑

j=1

(1 − γ )
p
+

)1/p

Clearly,

f (γ ) =
⎧⎨
⎩

δ1(1 + γ ), γ ≥ 1,

δ1 + δ2 + γ (δ1 − δ2), −1 < γ < 1,

δ2(1 − γ ), γ ≤ −1

whence

min
γ∈R

f (γ ) = f (1) = 2δ1 (18.12)
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due to the assumption 0 < δ1 < δ2. Next, consider the dual of the p-conic program-
ming problem (18.9):

max e�u + e�v

s.t. −A�u + B�v = 0

e�u − e�v = 0

0 ≤ u ≤ −s

0 ≤ v ≤ −t

‖s‖q ≤ δ1k
−1/p

‖t‖q ≤ δ2m
−1/p

(18.13)

where q is such that 1
p

+ 1
q

= 1. Since (18.9) is strictly feasible and bounded from
below, the duality gap for the primal-dual pair of p-order conic programming prob-
lems (18.9) and (18.13) is zero. Then, from the first two constraints of (18.13), we
have A�u∗ = B�v∗ as well as e�u∗ = e�v∗, which given that the optimal objective
value (18.13) is 2δ1, implies that an optimal u∗ must satisfy

e�u∗ = δ1 (18.14a)

Also, from (18.13) it follows that

‖u∗‖q ≤ δ1k
−1/p (18.14b)

Then, it is easy to see that the unique solution of system (18.14) is

u∗ = δ1

k
e =

(
δ1

k
, . . . ,

δ1

k

)
(18.15)

which corresponds to the point where the surface (u
q

1 + · · · + u
q
k )1/q = δ1k

−1/p is
tangent to the hyperplane u1 + · · · + uk = δ1 in the positive orthant of R

k .
Similarly, an optimal v∗ must satisfy e�v∗ = δ1 and ‖v∗‖q ≤ δ2m

−1/p . Note,
however, that in the case when δ2/δ1 > 1 such v∗ is not unique. By substituting the
obtained characterizations for u∗ and v∗ in the constraint A�u∗ = B�v∗ of the dual
(18.13) and dividing by δ1, we obtain (18.11a). When δ1 = δ2, the optimal v∗ is
unique: v∗ = δ1

m
e, and yields (18.11b). �

Observe that Theorem 1 implies that in the case of δ1 = δ2 (i.e., when misclassi-
fication of points in one set is not favored over that for points of the other set), the
p-norm discrimination model (18.9) produces a separating hyperplane with w = 0
only when the “geometric centers” (arithmetic means) of the sets A and B coincide.
In many situations, this would mean that there is significant “overlap” between the
convex hulls of sets A and B. In practice, this means that such sets, indeed, cannot
be efficiently separated, at least by a hyperplane, thus occurrence of w∗ = 0 solution
in (18.9) should not be regarded as the shortfall of the particular formulation (18.9),
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but rather the general inapplicability of the linear discrimination method to the spe-
cific sets A and B.

In the case when a “bias” with regard to the importance of misclassification of
points of sets A and B needs to be introduced by setting δ2 > δ1, occurrence of a
w∗ = 0 solution in (18.9) does not necessarily imply that sets A and B are hardly
amenable to linear separation. Indeed, in this case Theorem 1 only claims that the
“geometric center” of set A must coincide with some convex combination of points
of set B, i.e., it must coincide with some point inside the convex hull of set B. In
this case, linear discrimination can still be a feasible approach, albeit at a cost of
significant misclassification errors.

In order to have the stricter condition (18.11b) for the occurrence of w∗ = 0
solution in the situation when the preferences for misclassification error are different
for sets A and B, the p-norm linear discrimination model can be extended to the case
where misclassifications of points in A and B are measured using norms of different
orders:

min
(w,γ )∈Rn+1

k−1/p1
∥∥(−Aw + eγ + e)+

∥∥
p1

+ m−1/p2
∥∥(Bw − eγ + e)+

∥∥
p2

,

p1,2 ∈ [1,∞) (18.16)

Intuitively, a norm of higher order places more “weight” on outliers; indeed, ap-
plication of the p = 1 norm would minimize the average misclassification error, in
effect regarding all misclassifications as equally important. In contrast, application
of the p = ∞ norm would minimize the largest misclassification error. Thus, by
selecting appropriately the orders p1 and p2 in (18.16) one may introduce tolerance
preferences on misclassifications in sets A and B. At the same time, it can be shown
that the occurrence of w∗ = 0 solution in (18.16) would signal the presence of the
aforementioned singularity about the sets A, B. Namely, we have the following
corollary.

Corollary 1 The statement of Theorem 1 carries over to model (18.16) practically
without modifications.

In the next section, we discuss the details of practical implementation of the p-
norm linear discrimination model (18.9).

18.3 Implementation of p-order Conic Programming Problems
via Polyhedral Approximations

Constraints (18.9b)–(18.9c) in the p-norm linear separation model (18.9) consti-
tute p-order cones in R

m+1 and R
k+1, correspondingly, and are central to practical

implementation of the p-norm separation method. Depending on the value of the
parameter p, the following cases can be identified.
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p = 1: in this case, given the nonnegativity of variables y, z, constraints (18.9b)–
(18.9c) reduce to linear inequalities

ξ ≥ e�y, η ≥ e�z.

This particular case has been considered in [5]; in general, the amenability of the
1-norm, also known as the “Manhattan distance”, etc., to implementation via lin-
ear constraints has been exploited in a of variety approaches and applications, too
numerous to cite here.

p = ∞: in this case ‖x‖∞ = maxi |xi |, whereby the conic constraints (18.9b)–
(18.9c) reduce to a system of m + k inequalities

eξ ≥ y, eη ≥ z

Due to the linearity of the above constraints, we do not pursue this case further, as
our main interest is in models with “true” (or nonlinear) p-cone constraints.

p ∈ (1,∞): this is the “general” case that constitutes the focus of the present
endeavor. In addition to the data mining application described above, the general
p-order conic programming has been considered in the context of Steiner minimum
tree problem on a given topology [19], stochastic programming and risk optimiza-
tion [8, 9]; an application of p-order conic programming to integer programming
problems is discussed in [6].

Of particular importance is the case p = 2, when the constraints (18.9b)–(18.9c)
represent second-order (quadratic, “ice cream”, or Lorentz) cones,

ξ ≥ ‖y‖2 = (
y�y

)1/2

η ≥ ‖z‖2 = (
z�z

)1/2
(18.17)

The second-order conic programming (SOCP), which deals with optimization prob-
lems that contain constraints of form (18.17), constitutes a well-developed subject
of convex programming. A number of efficient SOCP algorithms have been devel-
oped in the literature (e.g., [12, 13], and others, see an overview in [1]), and some
of them were implemented into software solver codes such as MOSEK, SeDuMi
[2, 15].

From the computational standpoint, the case of general p, when the cone is not
self-dual, has received much less attention in the literature compared to the conic
quadratic programming. Interior-point approaches to p-order conic programming
have been considered by Xue and Ye [19] with respect to minimization of sum of
p-norms; a self-concordant barrier for p-cone has also been introduced in [10].
Glineur and Terlaky [7] proposed an interior point algorithm along with the cor-
responding barrier functions for a related problem of lp-norm optimization (see
also [17]). In the case when p is a rational number, the existing primal-dual methods
of SOCP can be employed for solving p-order conic optimization problems using a
reduction of p-order conic constraints to a system of linear and second-order conic
constraints proposed in [11] and [3].
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Our approach to handling p-order conic constraints (18.9b)–(18.9c) in the case
of p ∈ (1,2) ∪ (2,+∞) consists in constructing of polyhedral approximations for
the p-order constraints and thus reducing the p-norm linear separation problem
(18.9) to an LP. In many respects, the proposed approach builds upon the work
of Ben-Tal and Nemirovski [4] where an efficient lifted polyhedral approximation
for the second-order (p = 2) cones was developed, and whose motivation was to
devise a practical method of solving problems with second-order conic constraints
that would utilize the powerful machinery of LP solvers. Recently, Ben-Tal and
Nemirovski’s polyhedral approximation has been proven very effective in solving
mixed integer conic quadratic problems in [18].

18.3.1 Polyhedral Approximations of p-order Cones

The proposed approach to solving the p-norm linear separation model (18.9) is
based on the construction of polyhedral approximations for p-order conic con-
straints. Without loss of generality, we restrict our attention to a p-order cone in
the positive orthant of (N + 1)-dimensional space:

K(N+1)
p = {

x ∈ R
N+1+

∣∣ xN+1 ≥ (
x

p

1 + · · · + x
p
N

)1/p}
(18.18)

where R+ = [0,+∞). By a polyhedral approximation of K(N+1)
p , we understand a

(convex) polyhedral cone in R
N+1+κm , where κm may be generally nonzero:

H(N+1)
p,m =

{(
x
u

)
∈ R

N+1+κm+
∣∣∣∣ H(N+1)

p,m

(
x
u

)
≥ 0

}
(18.19)

having the properties that

(H1) Any x ∈ K(N+1)
p can be extended to some (x,u) ∈ H(N+1)

p,m

(H2) For some prescribed ε > 0, any (x,u) ∈ H(N+1)
p,m satisfies

(
x

p

1 + · · · + x
p
N

)1/p ≤ (1 + ε)xN+1 (18.20)

Here, m is the parameter of construction that controls the approximation error ε.
In constructing the polyhedral approximations (18.19) for p-order cone (18.18),

we follow the approach of Ben-Tal and Nemirovski [4] (see also [3, 11]), which
allows for reducing the dimensionality of approximation (18.19) by replacing the
(N + 1)-dimensional conic constraint with an equivalent system of 3-dimensional
conic constraints, and then constructing a polyhedral approximation for each of the
3D cones.
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18.3.2 “Tower-of-Variables” (Ben-Tal and Nemirovski [4])

The “tower-of-variables” technique has been originally proposed by Ben-Tal and
Nemirovski [4] for construction of a polyhedral approximation for quadratic (p = 2)

cones, but it applies to p-order cones as well. Assuming that N = 2d for some
integer d , a p-cone in R

N+1

xN+1 ≥ (
x

p

1 + · · · + x
p
N

)1/p (18.21)

can equivalently be represented as an intersection of three-dimensional p-cones in
a higher-dimensional space R

2N−1

x
(�)
j ≥ ∥∥(

x
(�−1)
2j−1 , x

(�−1)
2j

)∥∥
p
, j = 1, . . . ,2d−�, � = 1, . . . , d (18.22)

The set of constraints (18.22) can be visualized as a “tower” or “pyramid” consisting
of d + 1 “levels” denoted by the superscript � = 0, . . . , d , with 2d−� variables x

(�)
j

at level �, such that the 2d = N variables x
(0)
j ≡ xj represent the “foundation” of

the “tower”, and the variable x
(d)
1 ≡ xN+1 represents its “top”.

Observe that the number of three-dimensional p-cones in the “tower-of-
variables” representation (18.22) of (2d + 1)-dimensional p-order cone is 2d − 1 =
N − 1. Further, it is easy to demonstrate that a “tower-of-variables” representation
can be constructed for p-order cones of general dimension N 
= 2d , such that the
number of resulting three-dimensional p-cones is still N − 1.

Proposition 3 For any integer N > 2, a p-order cone in R
N+1 can be represented

as intersection of N − 1 three-dimensional p-order cones.

Proof For an integer N > 2, let

N =
d̄∑

k=0

πk2k (18.23)

where

d̄ = log2 N�
and πk ∈ {0,1}, i.e., πk is the k-th digit in the binary representation of the integer N .
Let ΠN denote the (ordered) set of those k in (18.23) for which πk are nonzero:

ΠN = {k0 < k1 < · · · < ks−1 | δki
= 1}, s = |ΠN | =

d̄∑
k=1

πk (18.24)

Then, for each k such that 1 ≤ k ≤ d̄ and πk 
= 0, the following conic inequalities
can be written:
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x
(�)
j ≥ (∣∣x(�−1)

2j−1

∣∣p + ∣∣x(�−1)
2j

∣∣p)1/p
,

j = 1 +
d̄∑

r=k+1

πr2r−�, . . . ,

d̄∑
r=k

πr2r−�, � = 1, . . . , k, k ∈ ΠN\{0} (18.25)

For every k ∈ ΠN\{0} expressions (18.25) define a “sub-tower of variables”, each
having k + 1 “levels” including the “foundation” (� = 0) comprised of 2k variables
x

(0)
j and the “top” variable

x
(k)
jk

, where jk =
d̄∑

r=k

πr2r−k (18.26)

To complete our representation of (N + 1)-dimensional p-order cone, we must
formulate the corresponding conic inequalities that “connect” the “top” vari-
ables (18.26). This can be accomplished in a recursive manner as follows

x
(κr+1)
νr+1 ≥ (∣∣x(kr)

jkr

∣∣p + ∣∣x(κr )
νr

∣∣p)1/p
, r = 1, . . . ,

d̄−2∑
k=0

πk (18.27)

where

κ1 = k0, ν1 = jk0 and

κr+1 = kr + 1, νr+1 = jkr + 1

2
for r = 1, . . . ,

d̄−2∑
k=0

πk

It is straightforward to verify that the projection of the set defined by (18.25), (18.27)

on the space of variables x
(0)
j ≡ xj , (j = 1, . . . ,N), x

(d̄)
1 = xN+1 is equal to the

set (18.21). It is also evident that when N = 2d = 2d̄ , the set ΠN will contain just
one element: ΠN = {d̄}, whereby (18.25) reduces to (18.22) with cones (18.27)
being absent.

Observe that set (18.25) comprises
∑d̄

k=1 πk “sub-towers”, each containing 2k −
1 cones, and set (18.27) consists of

∑d̄−2
k=1 πk cones, therefore the representation

(18.25), (18.27) of the p-order cone in R
N+1 contains

d̄∑
k=1

πk

(
2k − 1

) +
d̄−2∑
k=1

πk =
d̄∑

k=1

πk2k − πd̄−1 − πd̄ = N − 1 (18.28)

three-dimensional p-order cones. Indeed,

πd̄−1 + πd̄ = 1

since πd̄ = 1, πd̄−1 = 0 if N = 2d = 2d̄ , whereas πd̄ = 0, πd̄−1 = 1 for N < 2d̄ . �
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18.3.3 Polyhedral Approximations of 3-dimensional p-order Cones

The “tower-of-variables” technique discussed in Sect. 18.3.2 reduces the problem of
developing a polyhedral approximation (18.19) for the p-order cone K(N+1)

p in the
positive orthant of R

N+1 to constructing a polyhedral approximation to the p-cone
K(3)

p in R
3

H(3)
p,m =

{(
x
u

)
∈ R

3+κm+
∣∣∣∣ H(3)

p,m

(
x
u

)
≥ 0

}
(18.29a)

with the approximation quality in (H2) measured as

(
x

p

1 + x
p

2

)1/p ≤ (
1 + ε(m)

)
x3 (18.29b)

Assuming for simplicity that N = 2d +1, and the 2d−� three-dimensional cones at a
level � = 1, . . . , d are approximated using (18.29a) with a common approximation
error ε(m�), the approximation error ε of the p-order cone of dimension 2d + 1
equals to

ε =
d∏

�=1

(
1 + ε(m�)

) − 1 (18.30)

According to the preceding discussion, the cone K(3)
p is already polyhedral for p = 1

and p = ∞:

K(3)
1 = {

x ∈ R
3+

∣∣ x3 ≥ x1 + x2
}
, K(3)∞ = {

x ∈ R
3+

∣∣ x3 ≥ x1, x3 ≥ x2
}

In the case of p = 2, the problem of constructing a polyhedral approximation of
the second-order cone K(3)

2 was addressed by Ben-Tal and Nemirovski [4], who

suggested an efficient polyhedral approximation of K(3)
2 ,

u0 ≥ x1,

v0 ≥ x2,

ui = cos

(
π

2i+1

)
ui−1 + sin

(
π

2i+1

)
vi−1, i = 1, . . . ,m,

vi ≥
∣∣∣∣− sin

(
π

2i+1

)
ui−1 + cos

(
π

2i+1

)
vi−1

∣∣∣∣, i = 1, . . . ,m,

um ≤ x3,

vm ≤ tan

(
π

2m+1

)
um,

0 ≤ ui, vi, i = 0, . . . ,m

(18.31)
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with an approximation error exponentially small in m:

ε(m) = 1

cos( π

2m+1 )
− 1 = O

(
1

4m

)
(18.32)

Their construction is based on a clever geometric argument that utilizes a well-
known elementary fact that rotation of a vector in R

2 is an affine transformation
that preserves the Euclidian norm (2-norm) and that the parameters of this affine
transform depend only on the angle of rotation.

Unfortunately, Ben-Tal and Nemirovski’s polyhedral approximation (18.31) of
K(3)

2 does not seem to be extendable to values of p ∈ (1,2) ∪ (2,∞), since rotation
of a vector in R

2 does not preserve its p-norm. Therefore, we adopt a “gradient”
approximation of K(3)

p using circumscribed planes:

Ĥ(3)
p,m = {

x ∈ R
3+

∣∣ (−α
(p)
i ,−β

(p)
i ,1

)
x ≥ 0, i = 0, . . . ,m

}
(18.33a)

where

α
(p)
i = cosp−1 πi

2m

(cosp πi
2m

+ sinp πi
2m

)
p−1
p

, β
(p)
i = sinp−1 πi

2m

(cosp πi
2m

+ sinp πi
2m

)
p−1
p

(18.33b)

The following proposition establishes approximation quality for the uniform gradi-
ent approximation (18.33) of the cone K(3)

p .

Proposition 4 For any integer m ≥ 1, the polyhedral set Ĥ(3)
p,m defined by the gra-

dient approximation (18.33) satisfies properties (H1)–(H2). Particularly, for any
x ∈ K(3)

p one has x ∈ Ĥ(3)
p,m, and any (x1, x2, x3) ∈ Ĥ(3)

p,m satisfies ‖(x1, x2)‖p ≤
(1 + ε(m))x3, where

ε(m) =
{

O
(
m−2

)
, 2 ≤ p < ∞

O
(
m−p

)
, 1 ≤ p < 2

(18.34)

Proof The gradient approximation (18.33) of the p-cone K(3)
p represents a polyhe-

dral cone in R
3+ whose facets are the planes tangent to the surface of K(3)

p Given
that the plane tangent to the surface x3 = ‖(x1, x2)‖p at a point (x0

1 , x0
2 , x0

3) ∈ R
3+

has the form

(
x0

3

)p−1
x3 = (

x0
1

)p−1
x1 + (

x0
2

)p−1
x2 (18.35)

the gradient approximation (18.33) can be constructed using the following para-
metrization of the conic surface x3 = ‖(x1, x2)‖p :

x1

x3
= cos θ

(cosp θ + sinp θ)1/p
,

x2

x3
= sin θ

(cosp θ + sinp θ)1/p
(18.36)
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where θ is the azimuthal angle of the cylindrical (polar) coordinate system. Then,
the property (H1), namely that any x ∈ K(3)

p also satisfies (18.33), follows imme-
diately from the construction of the polyhedral cone (18.33). To demonstrate that
(H2) holds, we note that the approximation error ε(m) in (18.29b) can be taken as
the smallest value that for any x ∈ Ĥ(3)

p,m satisfies

ε(m) ≥ ∥∥(x1/x3, x2/x3)
∥∥

p
− 1 (18.37)

By introducing x = x1/x3 and y = x2/x3, the analysis of approximation of the p-
cone K(3)

p by the gradient polyhedral cone Ĥ(3)
p,m (18.29) can be reduced to consider-

ing an approximation of the set K′ = {(x, y) ∈ R
2+ | xp + yp ≤ 1} by the polyhedral

set H′ = {(x, y) ∈ R
2+ | α

(p)
i x + β

(p)
i y ≤ 1, i = 0, . . . ,m}. Immediately, we have

that ε(m) in (18.37) is bounded for any integer m ≥ 1.
To estimate ε(m) in (29) for large values of m we observe that it achieves (local)

maxima at the extreme points of H′. Let (xi, yi) and (xi+1, yi+1) be the points of the
“p-curve” xp + yp = 1 that correspond to polar angles θi = πi

2m
and θi+1 = π(i+1)

2m

in (18.33b). Then, a vertex (x∗
i , y∗

i ) of H′ located at the intersection of the lines
tangent to K′ at these points is given by

x∗
i = y

p−1
i+1 − y

p−1
i

(xiyi+1)p−1 − (xi+1yi)p−1
, y∗

i = x
p−1
i − x

p−1
i+1

(xiyi+1)p−1 − (xi+1yi)p−1
(18.38)

and the approximation error εi(m) within the sector [ πi
2m

,
π(i+1)

2m
] is given by

εi(m) = (
(x∗

i )p + (y∗
i )p

)1/p − 1 (18.39)

It is straightforward to verify that εi(m) = ε(m) = 1
8 ( π

2m
)2 for p = 2. Similarly,

for a general p 
= 2 and values of m large enough the p-curve within the sec-
tor [ πi

2m
,

π(i+1)
2m

] can be approximated by a circular arc with a radius equal to the
radius of the curvature of the p-curve, and the approximation error εi(m) within
this segment is governed by the corresponding local curvature κ(θ) of the p-curve
xp + yp = 1.

Given that θ = π
4 is the axis of symmetry of K′, for general p 
= 2 it suffices to

consider the approximation errors εi(m) on the segments [0, π
2m

], . . . , [π
4 − π

2m
, π

4 ],
where it can be assumed without loss of generality that the parameter of construction
m is an even number.

It is easy to see that the curvature κ(θ) of the p-curve xp + yp = 1 of K′ is
monotonic in θ when p 
= 2, which implies that the approximation error εi(m) on
the interval [ πi

2m
,

π(i+1)
2m

] is monotonic in i for i = 0, . . . , m
2 − 1. Indeed, using the

polar parametrization (18.36) of the p-curve xp + yp = 1, the derivative of its cur-
vature κ with respect to the polar angle θ can be written as
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d

dθ
κ(θ) = (p − 1)γ p−1(1 + γ 2)(1 + γ p)

1
p

(γ 2 + γ 2p)2(1 + γ 2p−2)
1
2

× [
(p − 2)

(
γ 2 − γ 3p

) + (1 − 2p)
(
γ 2p − γ p+2)] (18.40)

where γ = tan θ ∈ (0,1) for θ ∈ (0, π
4 ). Then, the sign of d

dθ
κ(θ) is determined by

the term in brackets in (18.40); for p > 2 we have that γ 2 > γ 3p and γ 2p < γ p+2,
whence the term in brackets is positive, i.e., κ(θ) is increasing on (0, π

4 ). Similarly,
for 1 < p < 2, one has that the term in brackets in (18.40) is negative, meaning that
κ(θ) is decreasing in θ on (0, π

4 ).
Thus, the largest values of εi(m) for p 
= 2 are achieved at the intervals [0, π

2m
]

and [π
4 − π

2m
, π

4 ]. Taking

x0 = 1, y0 = 0, x1 = cos π
2m

(cosp π
2m

+ sinp π
2m

)1/p
, y1 = sin π

2m

(cosp π
2m

+ sinp π
2m

)1/p

and plugging these values into (18.38) and (18.39), we have

ε0(m) ≈ 1

p

(
1 − 1

p

)p(
π

2m

)p

Similarly to above, we obtain that the error at the interval [π
4 − π

2m
, π

4 ] is

εm/2−1(m) ≈ 1

8
(p − 1)

(
π

2m

)2

Thus, for p ∈ (1,2) we have ε(m) = maxi εi(m) = O(m−p), and for p ∈ (2,∞) the
approximation accuracy satisfies εm = maxi εi(m) = εm/2−1(m) = O(m−2). �

The gradient polyhedral approximation (18.33) of the p-cone K(3)
p requires much

larger number of facets than Ben-Tal and Nemirovski’s approximation (18.31) of the
quadratic cone K(3)

2 to achieve the same level of accuracy. On the other hand, the
approximating LP based on the gradient approximation (18.33) has a much simpler
structure, which makes its computational properties comparable with those of LPs
based on lifted Ben-Tal and Nemirovski’s approximation on the problems of smaller
dimensionality that are considered in the case study.

18.4 Case Study

We test the developed p-norm separation model and the corresponding solution
techniques on several real-world data sets from UCI Machine Learning Repository
(University of California-Irvine). In particular, we compare the classification accu-
racy of the 1-norm model of Bennett and Mangasarian [5] versus p-norm model on
the Wisconsin Breast Cancer data set used in the original paper [5].
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The algorithm for p-norm linear discrimination model 18.9 has been imple-
mented in C++, and ILOG CPLEX 10.0 solver has been used to solve the its LP
approximation as described Sect. 18.3. The approximation accuracy has been set at
10−5.

Wisconsin Breast Cancer Data Set This breast cancer database was obtained
from the University of Wisconsin Hospitals by Dr. William H. Wolberg. Each en-
try in the data set is characterized by an ID number and 10 feature values, which
were obtained by medical examination on certain breast tumors. The data set con-
tains a total of 699 data points (records), but because some values are missing, only
682 data points are used in the experiment. The entire data set is comprised of two
classes of data points: 444 (65.1%) data points represent benign tumors, and the rest
of 238 (34.9%) points correspond to malignant cases.

To test the classification performance of the proposed p-norm classification
model, we partitioned the original data set at random into the training and testing
sets in the ratio of 2:1, such that the proportion between benign and malignant cases
would be preserved. In other words, training set contained 2/3 of benign and ma-
lignant points of the entire data set, and the testing set contained the remaining 1/3
of benign and malignant cases. The p-norm discrimination model (i.e., its LP ap-
proximation) was solved using the training set as the data A and B, and the obtained
linear separator was then used to classify the points in the testing set. For each fixed
value of p in (18.9), this procedure has been repeated 10 times, and the average mis-
classification errors rates for benign and malignant cases have been recorded. The
cumulative misclassification rate was then computed as a weighted (0.651 to 0.349)
average of the benign and malignant error rates (note that the weights correspond to
the proportion of benign and malignant points in the entire database).

The value of the parameter p has been varied from p = 1.0 to p = 5.0 with 0.1
step. Then, an “optimal” value of the parameter p has been selected that delivered
the lowest cumulative average misclassification rates.

In addition to varying the parameter p, we have considered different weights
δ1, δ2 in the p-norm linear separation model (18.9). In particular, the following com-
binations have been used:

δ1 = kp, δ2 = mp, δ1 = kp−1, δ2 = mp−1, δ1 = 1, δ2 = 1.

Finally, the same method was used to compute cumulative misclassification rates for
p = 1, or the original model of Bennett and Mangasarian [5]. Table 18.1 displays the
results of our computational experiments. It can be seen that application of higher
norms allows one to reduce the misclassification rates.

Other Data Sets Similar tests have been run also run on Pima Indians Diabetes
data set, Connectionist Bench (Sonar, Mines vs. Rocks) data set, and Ionosphere
data set, all of which can be obtained from UCI Machine Learning Repository. Note
that for these tests only δ1 = δ2 = 1 and δ1 = kp, δ2 = mp weights in problem (18.9)
are used. Table 18.2 reports the best average error rates obtained under various val-
ues of p for these three data sets, and compares them with the best results known in
the literature for these particular data sets.
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Table 18.1 Classification results of the p-norm separation model for the Wisconsin breast cancer
data set

δ1 = kp , δ2 = mp δ1 = kp−1, δ2 = mp−1 δ1 = δ2 = 1

Optimal value of parameter p 2.0 1.9 1.5

Average cumulative error 3.22% 2.77% 2.82%

Improvement over p = 1 model 8.78% 3.48% 1.74%

Table 18.2 Classification results of the p-norm separation model for the other data sets

δ1 = kp , δ2 = mp δ1 = δ2 = 1 Best results known
in the literature1

Ionosphere 16.07% 17.35% 12.3%

Pima 26.14% 28.98% 26.3%

Sonar 28.43% 27.83% 24%

1The results are based on [14, 16], and algorithms other than linear discrimination methods

18.5 Conclusions

We proposed a new p-norm linear discrimination model that generalizes the model
of Bennett and Mangasarian [5] and reduces to linear programming problems with
p-order conic constraints. It has been shown that the developed model allows one
to finely tune preferences with regard to misclassification rates for different sets. In
addition, it has been demonstrated that, similarly to the model of Bennett and Man-
gasarian [5], the p-norm separation model does not produce a separating hyperplane
with null normal for linearly separable sets; a hyperplane with null normal can occur
only in situation when the sets to be discriminated exhibit a particular form of linear
dependence.

The computational procedures for handling p-order conic constraints rely on
constructed polyhedral approximations of p-order cones, and thus reduce the p-
norm separation models to linear programming problems.

Acknowledgement The authors would like to acknowledge support of the Air Force Office of
Scientific Research.
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Chapter 19
Local Neighborhoods for the Multidimensional
Assignment Problem

Eduardo L. Pasiliao Jr.

Summary The Multidimensional Assignment Problem (MAP) is an extension of
the two-dimensional assignment problem in which we find an optimal matching
of elements between mutually exclusive sets. Although the two-dimensional assign-
ment problem is solvable in polynomial time, extending the problem to three dimen-
sions makes it N P -complete. The computational time to find an optimal solution
of an MAP with at least three dimensions grows exponentially with the number of
dimensions and factorially with the dimension size. Perhaps the most difficult im-
plementation of the MAP is the data association problem that arises in multisensor
multitarget tracking. We define new local search neighborhoods using the permu-
tation formulation of the multidimensional assignment problem, where the feasible
domain is defined by permutation vectors. Two types of neighborhoods are dis-
cussed, the intrapermutation and the interpermutation k-exchange. If the exchanges
are restricted to elements within a single permutation vector, we classify the moves
as intrapermutation. Interpermutation exchanges move elements from one permu-
tation vector to another. Since combinatorial optimization heuristics tend to get
trapped in local minima, we also discuss variable neighborhood implementations
based on the new local search neighborhoods.

19.1 Introduction

Given a batch of n jobs and a group of n workers, the assignment problem gives
each worker a job, so that all jobs are performed proficiently. This is a linear two-
dimensional assignment and is the most basic type of assignment problem. We now
formally pose the job-to-worker problem.

Let us denote the cost of worker i performing job j as cij . The binary decision
variable xij is defined as

xij =
{

1 if worker i is assigned job j

0 otherwise
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The assignment problem assigns each job to a worker so that all the jobs are done
with minimum total cost. We formulate this problem as a 0-1 integer program below.

min
n∑
i

n∑
j

cij · xij

s.t.
n∑
j

xij = 1 ∀i = 1,2, . . . , n

n∑
i

xij = 1 ∀j = 1,2, . . . , n

(19.1)

The constraints guarantee that only one worker is assigned to each job; and that all
jobs are accomplished.

Since each worker may only perform a single job, we may denote φ(i) as the job
assigned to worker i. We guarantee that each job is assigned to only one worker by
requiring φ to be a permutation vector. The assignment problem is now described
by the following permutation formulation:

min
n∑
i

ciφ(i)

s.t. φ(i) �= φ(j) ∀j �= i

φ(i) ∈ {1,2, . . . , n}

(19.2)

The 0-1 integer programming and permutation formulation are equivalent, but they
offer different approaches to finding an optimal assignment.

When the number of dimensions in an assignment problem is greater than two,
the problem is referred to as a multidimensional assignment. A three-dimensional
example would be the problem of assigning jobs, workers, and machines. Multidi-
mensional assignment problems are often used to model data association problems.
An example would be the multitarget multisensor tracking problem, described by
Blackman [4], which finds an optimal assignment of sensor measurements to tar-
gets.

Surveys of multidimensional assignment problems are provided by Gilbert and
Hofstra [8], Burkard, and Çela [6], and most recently by Spieksma [15]. An excel-
lent collection of articles on multidimensional and nonlinear assignment problems
is provided by Pardalos and Pitsoulis [14]. Çela [7] provides a short introduction
to assignment problems and their applications; and Burkard and Çela [5] give an
annotated bibliography.

This paper is organized as follows. Section 19.2 describes the local search
heuristic that is used in searching the different local neighborhoods. Section 19.2.1
discusses the intrapermutation exchange neighborhoods. We also present heuris-
tics for searching the intrapermutation 2- and n-exchange neighborhoods. Sec-
tion 19.2.2 discusses the interpermutation exchange neighborhoods. The expanded
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neighborhoods for cases where the dimension sizes are nonhomogenous are also
presented. Extensions of the neighborhood definitions, including path-relinking,
variable depth, and variable neighborhood, are discussed in Sect. 19.3. Finally, the
concluding remarks are given in Sect. 19.4. This paper studies the different local
search heuristics that are easily applied to the multidimensional assignment prob-
lem as used to model the data association segment of the multitarget multisensor
tracking problem. It gives an analysis of the computational complexities and quality
of results from the different neighborhood definitions.

19.2 Neighborhoods

We define new local search neighborhoods using the permutation formulation of the
multidimensional assignment problem. Two types of neighborhoods are discussed,
the intrapermutation and the interpermutation k-exchange. If the exchanges are re-
stricted to elements within a single permutation vector, we classify the moves as
intrapermutation. Interpermutation exchanges move elements from one permutation
vector to another. Since combinatorial optimization heuristics tend to get trapped in
local minima, we also discuss variable neighborhood implementations based on the
new local search neighborhoods.

This section defines different types of k-exchange neighborhoods that may
be searched in an effort to try to improve a feasible solution. To define lo-
cal search neighborhoods, we look to the following MAP formulation, where
φ0, φ1, . . . , φM−1 are permutation vectors:

min
n0∑
i=1

cφ0(i),φ1(i),φ2(i),...,φM−1(i)

where φm(i) ∈ {1,2, . . . , nm} ∀m = 1,2, . . . ,M − 1

φm(i) �= φm(j) ∀i �= j

n0 ≤ min
m

nm ∀m = 1,2, . . . ,M − 1

(19.3)

The standard permutation formulation fixes the first permutation vector φ0 which
results in only M − 1 permutation vectors. We choose not to fix φ0 since doing
so would reduce some of the neighborhood sizes that we define in the following
subsections.

Figure 19.1 presents the general local search heuristic for any defined neighbor-
hood. The procedure stores the best solution and defines a new neighborhood each
a time a better solution is found. Every solution in the neighborhood is compared
to the current best solution. If no improvement is found within the last neighbor-
hood defined, the local search procedure returns the local minimum. A discussion
of various local search techniques for combinatorial optimization problems is given
by Ibaraki and Yagiura [16] and by Lourenço, Martin, and Stützle [13].
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Fig. 19.1 Local search PROCEDURE LocalSearch(S)

1 SBest ← S

2 NS ← Neighborhood(SBest)

3 WHILE NS �= ∅ �→
4 S ← SelectSolution(NS)

5 NS ← NS \ {S}
6 IF Obj(S) < Obj(SBest) �→
7 SBest ← S

8 NS ← Neighborhood(SBest)

9 END

10 END

11 RETURN(SBest)

END LocalSearch

We will now explore intrapermutation and interpermutation k-exchange neigh-
borhoods. From the permutation formulation of the multidimensional assignment
problem, we are able to perform unique types of k-exchanges that would be dif-
ficult to implement on any other combinatorial optimization problem. The permu-
tation formulation unique in how it can be easily reduced to a lower dimensional
assignment problem by simply fixing some of the permutation vectors. One of these
is the intrapermutation n-exchange, which would normally have a complexity of
O(n!). Every possible permutation of a vector with n elements would have to be
calculated. However, because of the permutation formulation, we are able to ex-
plore the n-exchange neighborhood with a complexity of only O(n3). We are also
able to perform interpermutation exchanges in which entire permutation vectors are
exchanged in one move. We explore and present experimental results for the dif-
ferent types of k-exchanges. Variable depth interchange, path relinking, and vari-
able neighborhoods, which are extensions of the k-exchange neighborhoods, are
discussed in Sect. 19.3.

19.2.1 Intrapermutation Exchanges

Here, we discuss the first case of intrapermutation exchanges where only the el-
ements that are already in the current solution are candidates for exchange. Al-
though n0 ≤ nm ∀m = 1,2, . . . ,M − 1, the neighborhoods defined here only allow
exchanges between elements that are currently in the solution. The maximum num-
ber of assignments in an MAP is equivalent to the size of the smallest dimension, n0.
There are nm −n0 elements in each dimension that are not in the solution and, there-
fore, do not affect the objective function.

Let φ be a permutation vector of n0 elements. If we define ψ as another permu-
tation of the same elements from φ, then the set of all differences between these two
distinct permutation vectors is given as

δn0(φ,ψ) = {
i : φ(i) �= ψ(i), ∀ i = 1,2, . . . , n0

}
(19.4)
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Define the distance between φ and ψ as

dn0(φ,ψ) = ∣∣δn0(φ,ψ)
∣∣ (19.5)

We can now define a k-exchange neighborhood for any one of the M permutation
vectors, φm, of n0 elements that constitute a feasible solution to the MAP. This
neighborhood includes all n0-permutations, Nk,n0(φm), such that the distance be-
tween φm and any ψm ∈ Nk,n0(φm) is no greater than the value of k,

Nk,n0(φm) = {
ψm : dn0(φm,ψm) ≤ k; 0 ≤ k ≤ n0

}
(19.6)

Continuing this approach to a set of permutations, we naturally define the
k-exchange neighborhood for Φ = {φ0, φ1, . . . , φM−1} as

N I
k,n0

(Φ) = {
Ψ : dn0(φm,ψm) ≤ k; φm ∈ Φ, ψm ∈ Ψ

}
(19.7)

where Ψ is a set of M permutation vectors corresponding to the original set Φ . Note
that the size of the k-exchange neighborhood for an M-dimensional assignment
problem with M − 1 permutation vectors is given by

∣∣N I
k,n0

(Φ)
∣∣ =

M−1∏
m=0

∣∣Nk,n0(φm)
∣∣ (19.8)

Although we normally fix the first permutation φ0 in the MAP formulation, the
product above is applied for m ≥ 0. Performing exchanges on φ0 produces addi-
tional feasible solutions since the exchanges are limited to k < n0. The neighbor-
hood size for the MAP using this definition of a neighborhood grows exponentially
with the number of dimensions.

If we define the set of all differences between two sets of permutation vectors Φ

and Ψ as

�M(Φ,Ψ ) = {
m : dn0(φm,ψm) > 0, ∀m = 1,2, . . . ,M; φm ∈ Φ, ψm ∈ Ψ

}
(19.9)

then the distance between Φ and Ψ is given by

DM(Φ,Ψ ) = ∣∣�M(Φ,Ψ )
∣∣ (19.10)

We can now define another k-exchange neighborhood for a set of permutation vec-
tors as

N II
k,n0

(Φ) = {
Ψ : dn0(φm,ψm) ≤ k, DM(Φ,Ψ ) ≤ 1; φm ∈ Φ, ψm ∈ Ψ

}
(19.11)

This neighborhood is much smaller than N II
k,r (Φ) because it limits the number of

k-exchanges to one permutation vector at a time. The previous neighborhood def-
inition allows k-exchanges in multiple permutation vectors. Note that the size of
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the neighborhood for an M-dimensional assignment problem in which only a single
k-exchange is allowed at a time is given by

∣∣N II
k,n0

(Φ)
∣∣ =

M−1∑
m=0

∣∣Nk,n0(φm)
∣∣ (19.12)

The neighborhood size for the MAP using the second definition of a neighborhood
only grows linearly with the number of dimensions.

The following relationships hold between the two k-exchange neighborhood def-
initions:

N II
k,n0

(Φ) ⊆ N I
k,n0

(Φ) −→ ∣∣N II
k,n0

(Φ)
∣∣ ≤ ∣∣N I

k,n0
(Φ)

∣∣
All single vector exchange neighborhoods are also included in the multiple vector
k-exchange neighborhoods.

19.2.1.1 2-Exchange

Although a large k-exchange neighborhood may produce better solutions, it also
incurs added complexity. The extra computation time may or may not be justified
depending on the time necessary to obtain a new initial feasible solution. If it takes a
considerable amount of time to produce a good initial solution, then spending more
time searching a larger neighborhood would be the preferred approach. However, if
a new initial solution may be found in a relatively short amount of time, it would
be better to limit the neighborhood to a small size. Because of the computational
difficulty in implementing exchanges for k > 2 elements, we focus this section on
2-exchange neighborhoods.

The 2-exchange neighborhood for a permutation vector φm is defined as

N I
2,n0

(Φ) = {
Ψ : dn0(φm,ψm) ≤ 2; φm ∈ Φ, ψm ∈ Ψ

}
(19.13)

Note that the size of the 2-exchange neighborhood for a single permutation vector
is given by

∣∣N2,n0(φm)
∣∣ =

(
n0

2

)
(19.14)

which is simply the number of ways to choose unordered pairs from a set of n0
elements. The size of a 2-exchange neighborhood for an M-dimensional assignment
problem with M − 1 permutation vectors is given by

∣∣N I
2,n0

(Φ)
∣∣ =

(
n0

2

)M

(19.15)

for a neighborhood that allows a 2-exchange in more than one permutation vector
and

∣∣N II
2,n0

(Φ)
∣∣ = M ×

(
n0

2

)
(19.16)
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PROCEDURE 2-Exchange(S,C)

1 SBest ⇐ S

2 FOR m = 0 : M − 1 �→
4 FOR i1 = 1 : n0 − 1 �→
5 FOR i2 = i1 + 1 : n0 �→
6 old ⇐ cφ1(i1),φ2(i1),...,φM−1(i1) + cφ1(i2),φ2(i2),...,φM−1(i2)

7 φm(i1) ⇔ φm(i2)

8 new ⇐ cφ1(i1),φ2(i1),...,φM−1(i1) + cφ1(i2),φ2(i2),...,φM−1(i2)

9 IF new < old �→
10 SBest ⇐ {φ0, φ1, . . . , φM−1}
11 RETURN(SBest)

12 φm(i1) ⇔ φm(i2)

13 END

14 END

15 END

16 RETURN(SBest)

END LocalSearch

Fig. 19.2 Intrapermutation 2-exchange local search

for a neighborhood that is limited to a single 2-exchange at a time.
Figure 19.2 presents the implementation of the intrapermutation 2-exchange

neighborhood. The heuristic permutes two elements at a time for each dimension
until all possible exchanges have been explored. If an improvement is found, this
solution is then stored as the current solution and a new neighborhood is defined
and searched. When no better solution can be found, the search is terminated and
the local minimum is returned.

19.2.1.2 n-Exchange

Extending the intrapermutation k-exchange neighborhood to its limit, we present
the following neighborhood definition:

Nn0(φm) = {
ψm : dn0(φm,ψm) ≤ n0; 0 ≤ n0 ≤ nm ∀m > 1

}
(19.17)

Note that the size of the n0-exchange neighborhood for a single permutation vector
is given by

∣∣Nn0,n0(φm)
∣∣ = n0! (19.18)

which is simply the number of ways to order n0 elements.
The first n0-exchange neighborhood for a set of permutation vectors, Φ , is given

by

N I
n0

(Φ) = {
Ψ : dn0(φm,ψm) ≤ n0; φm ∈ Φ, ψm ∈ Ψ

}
(19.19)

where Ψ is a set of M permutations vectors corresponding to the original set Φ . The
size of this n0-exchange neighborhood for an M-dimensional assignment problem
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with M − 1 permutation vectors is given by

∣∣N I
n0,n0

(Φ)
∣∣ =

M−1∏
m=1

∣∣Nn0(φm)
∣∣ = [n0!]M−1 (19.20)

The product above is applied for m > 1 since we may fix the first permutation φ0,
without decreasing the neighborhood size. This is different from the k-exchange,
where k < n0. If k = n0, all the feasible solutions may be found without manipulat-
ing the φ0.

The second neighborhood definition for a set of permutation vectors is given by

N II
n0

(Φ) = {
Ψ : dn0(φm,ψm) ≤ n0, dM(Φ,Ψ ) ≤ 1; φm ∈ Φ, ψm ∈ Ψ

}
(19.21)

This n0-exchange neighborhood has a size of

∣∣N II
n0

(Φ)
∣∣ =

M−1∑
m=0

∣∣Nn0(φm)
∣∣ = M × [n0!] (19.22)

The summation here is applied for m ≥ 0, which is different from the previous
definition of an n-exchange neighborhood. The difference is that we are only able
to manipulate one permutation at a time. In the previous definition, we were allowed
to manipulate multiple permutations simultaneously. Because of this difference, we
may not fix the first permutation φ0 without reducing the neighborhood size.

Figure 19.3 describes the local search procedure to improve the current solu-
tion by searching within its predefined neighborhood. The heuristic performs an
n0-exchange by fixing M − 1 permutation vectors and solving for the single deci-
sion vector with a two-dimensional assignment problem solver. A 2AP is solved for

PROCEDURE n-Exchange(S,C)

1 SBest ⇐ S

2 FOR m = 0 : M − 1 �→
3 S ⇐ S \ φm

4 FOR i1 = 1 : n0 �→
5 FOR i2 = 1 : n0 �→
6 Ai1,i2 ⇐ cφ1(i1),...,φm−1(i1), i2,φm+1(i1),...,φM−1(i1)

7 END

8 END

9 φm ← Solve2AP(A)

10 S ⇐ S ∪ φm

11 IF Cost(S) < Cost(SBest) �→
12 SBest ⇐ S

13 RETURN(SBest)

14 END

15 RETURN(SBest)

END LocalSearch

Fig. 19.3 Intrapermutation n-exchange local search
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Φ = {φ0, φ1, φ2, φ3}

Permute φ0

x∗
ij

← min

{∑
ij

ci,φ1(j),φ2(j),φ3(j) · xij :
∑
j

xij =
∑
i

xij = 1

}

φ0(j) ⇐ i for x∗
ij

= 1 ∀i, j

Permute φ1

x∗
ij

← min

{∑
ij

cφ0(j),i,φ2(j),φ3(j) · xij :
∑
j

xij =
∑
i

xij = 1

}

φ1(j) ⇐ i for x∗
ij

= 1 ∀i, j

Permute φ2

Permute φ3

Fig. 19.4 Intrapermutation n-exchange example, C ∈ �3×4×4×5

each dimension of the MAP until either a better solution is found or all the dimen-
sions are explored. If an improvement is found, this solution is then stored as the
current solution and a new neighborhood is defined and searched. When no better
solution is available, the search is terminated and the local minimum is returned.

An example of how the n-exchange neighborhood for C ∈ �3×4×4×5 is given in
Fig. 19.4. The coefficients of the 2AP are found by fixing M − 1 = 3 permutation
vectors or dimensions at a time. Therefore, a 2AP solver must be implemented for
each dimension.

19.2.2 Interpermutation Exchanges

This section discusses exchanges that are performed between the permutation vec-
tors of the MAP permutation formulation. By defining a limited number of ex-
changes that may be made between the elements of a permutation vector, we can
define a local search neighborhood.

So far we have only investigated k-exchanges within a given permutation vec-
tor φm. We now explore the possibility of finding better solutions by interchanging
the indices themselves. This section discusses the first case of interpermutation ex-
changes; all the dimensions in the MAP have exactly the same size. Again we use
the permutation formulation of the MAP with M permutation vectors.
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If we define the set of all differences between two sets of permutation vectors Φ

and Ψ as

�M(Φ,Ψ ) = {
m : dn0(φm,ψm) > 0, ∀m = 1,2, . . . ,M; φm ∈ Φ, ψm ∈ Ψ

}
(19.23)

where dn0(φm,ψm) is the distance between permutation vectors φm and ψm, then
the distance between Φ and Ψ is given by

DM(Φ,Ψ ) = ∣∣�M(Φ,Ψ )
∣∣ (19.24)

We can now define an interpermutation k-exchange neighborhood for Φ as the set of
all permutation vector sets such that the distance between Φ and any Ψ ∈ Nk,M(Φ)

is no greater than the value of k,

Nk,M(Φ) = {
Ψ : dM(Φ,Ψm) ≤ k; 0 < k < M

}
(19.25)

Note that the size of the 2-exchange neighborhood is given by

∣∣N2,M(Φ)
∣∣ =

(
M

2

)
(19.26)

which is simply the number of ways to choose unordered pairs from a set of M

permutation vectors.
The pseudo-code for performing an interpermutation standard 2-exchange is

shown in Fig. 19.5. The procedure explores every possible 2-exchange between per-
mutations until a better solution is found. Lines 6–9 perform the exchanges between
two permutation vectors, while lines 10–13 check if the exchange produced a bet-
ter solution. If no improvement is found, then we find another pair of vectors to
exchange.

The standard interpermutation 2-exchange is implemented in a straightforward
manner when all of the dimensions in the MAP have the same size. However, it is
often the case when the dimension sizes are not homogeneous. For this situation, we
need a method for deciding which elements of the larger permutation vectors will
be included into and removed from the current solution.

Performing 2-exchanges between two dimensions of the same size is straightfor-
ward since every element in the first dimension is feasible in the second dimension
considered. The difficulty arises when the dimensions have different sizes. When
n0 < nm for some dimension m, then exchanging one permutation for another may
produce infeasible results. As an example, suppose that we have a four-dimensional
assignment problem with cost array C ∈ �3×4×4×5. A current feasible solution may
be given as the following:

φ0 φ1 φ2 φ3⎡
⎢⎣

1

2

3

⎤
⎥⎦

⎡
⎢⎣

1

4

2

⎤
⎥⎦

⎡
⎢⎣

2

4

1

⎤
⎥⎦

⎡
⎢⎣

1

3

5

⎤
⎥⎦

f = c1121 + c2443 + c3215
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PROCEDURE 2-Exchange(S,C)

1 SBest ⇐ S

2 FOR m1 = 0 : M − 2 �→
3 S ⇐ S \ φm1

4 FOR m2 = m1 + 1 : M − 1 �→
5 S ⇐ S \ φm2

6 FOR i = 1 : n0 �→
7 ψm1 (i) ⇐ φm2 (i)

8 ψm2 (i) ⇐ φm1 (i)

9 END

10 IF Cost(S ∪ ψm1 ∪ ψm2 ) < Cost(SBest) �→
11 SBest ⇐ S ∪ ψm1 ∪ ψm2

12 RETURN(SBest)

13 END

14 S ⇐ S ∪ φm2

15 END

16 S ⇐ S ∪ φm1

17 END

18 RETURN(SBest)

END LocalSearch

Fig. 19.5 Interpermutation standard 2-exchange local search

If we perform an exchange between permutation vectors φ1 and φ2, where n1 = n2,
then we have a standard interpermutation 2-exchange with a resulting change in the
objective function.

φ0 φ2 φ1 φ3⎡
⎢⎣

1

2

3

⎤
⎥⎦

⎡
⎢⎣

2

4

1

⎤
⎥⎦

⎡
⎢⎣

1

4

2

⎤
⎥⎦

⎡
⎢⎣

1

3

5

⎤
⎥⎦

f = c1211 + c2443 + c3125

The cost coefficients c1121 and c3215 have been removed from the solution set and
replaced with c1211 and c3125.

The interpermutation 2-exchange is smaller than its intrapermutation counter-
part for most MAP instances with the exception occurring when the sizes are much
smaller than the number of dimensions. However, because of the added complexity
in implementing the intrapermutation 2-exchange, the interpermutation 2-exchange
is a more efficient neighborhood to search since only two cost elements are analyzed
every time an exchange is made. The number of reassignments is also smaller for
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the intrapermutation version. For the interpermutation 2-exchange, all n0 feasible
cost elements are analyzed for each exchange.

19.3 Extensions

The main types of local neighborhood search applied to multidimensional assign-
ment problems are k-exchanges. Extensions of these neighborhoods include variable
neighborhood, variable depth interchange, and path relinking. We outline the MAP
implementation procedures for all three extensions in this section.

19.3.1 Variable Depth Interchange

Balas and Saltzman [3] used a variable depth interchange neighborhood in their
branch-and-bound algorithm for the three-index assignment problem. It is based on
the heuristic applied by Lin and Kernighan [12] on the traveling salesman problem
and described by Ahuja, Ergun, Orlin, and Punnen [1] in their survey of neighbor-
hood search algorithms. Figure 19.6 presents a pseudo-code of variable depth inter-
change for multidimensional assignment problems. The heuristic can escape local
minima by allowing moves to nonimproving solutions until a threshold is reached.
There is, however, no guarantee of escaping any local minima for this problem.

19.3.2 Path Relinking

Path relinking is a strategy proposed by Laguna and Marti [11] to connect multiple
high-quality solutions in an effort to find an even better solution. Aiex, Pardalos,
Resende, and Toraldo [2] implemented a Greedy Randomized Adaptive Search Pro-
cedure (GRASP) with path relinking to the three-dimensional assignment problem.
Their path relinking approach uses two types of moves in which either one or two
pairs of indices are interchanged between two cost coefficients from different fea-
sible solution sets. Because the moves are performed within a single permutation
vector of the MAP permutation formulation, we will refer to their approach as an
intrapermutation path relinking. We also propose a type of interpermutation path
relinking where permutations between two good solutions are exchanged. This ap-
proach is not as exhaustive as the intrapermutation approach, but it is also signif-
icantly less complex while still managing to combine qualities from one or more
high-quality solutions.
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PROCEDURE VariableDepthInterchange(S)

1 SBest ← S

2 G ← 0

3 i∗ ← RandomSelect{1,2, . . . , n0}
4 WHILE G > 0 �→
5 FORALL m = 0,1, . . . ,M − 1 �→
6 gm = min

j
{cφ0(i

∗),...,φm−1(i
∗), φm(j), φm+1(i

∗),...,φM−1(i
∗)}

7 cφ0(i
∗),...,φm−1(i

∗), φm(j∗), φm+1(i
∗),...,φM−1(i

∗) ← g∗ = min
m

gm

8 G ← G − g∗ + cφ0(i
∗),...,φm−1(i∗), φm(j∗), φm+1(i∗),...,φM−1(i∗)

9 S ← S \ {cφ0(i
∗),φ1(i

∗),...,...,φM−1(i
∗)}

10 S ← S ∪ {cφ0(i
∗),...,φm−1(i

∗), φm(j∗), φm+1(i
∗),...,φM−1(i∗)}

11 S ← S \ {cφ0(j
∗),φ1(j

∗),...,...,φM−1(j
∗)}

12 S ← S ∪ {cφ0(j
∗),...,φm−1(j

∗), φm(i∗), φm+1(j∗),...,φM−1(j∗)}
13 i∗ ← j∗
14 IF Obj(S) < Obj(SBest) �→ SBest ← S

15 END

16 RETURN(SBest)

END VariableDepthInterchange

Fig. 19.6 Variable depth interchange

19.3.2.1 Intrapermutation Relinking

The intrapermutation path-relinking approach described by Aiex, Pardalos, Re-
sende, and Toraldo [2] for the three-dimensional assignment problem is generalized
for the multidimensional assignment problem in Fig. 19.7. This heuristic systemat-
ically transforms an initial solution ΦI into a guiding solution ΦG by performing
exchanges within the permutation vectors of the initial solution. Each solution is a
set of M permutation vectors. The transformation happens one vector at a time start-
ing from m = 0. Lines 6 through 13 are performed as long as the m-th vector of the
initial solution is different from the corresponding vector of the guiding solution.
Index u is the location of an element in ΦI that is different from ΦG. Index v is the
location of the element that needs to moved to index location u.

The objective function value of ΦI is evaluated after every exchange. We keep the
solution that provides the lowest objective value z. A constraint to the new solution
is that it not be the same as the guiding solution. This forces a new solution to be kept
even if the guiding solution has a better value. Finally, a local search is performed
on the best of the new solutions.
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Fig. 19.7 Intrapermutation
path relinking

PROCEDURE IntraPermPR(ΦI ,ΦG)

1 LocalSearch(ΦI )

2 ΦBest ← MinObj(ΦI ,ΦG)

3 z ← ∞
4 Φ ← ∅
5 DO m = 0, . . . ,M − 1 �→
6 WHILE φI,m �= φG,m �→
7 u ← φI,m(u) �= φG,m(u)

8 v ← φI,m(v) = φG,m(u)

9 φI,m(u) ↔ φI,m(v)

10 IF z > Obj(ΦI ) AND ΦI �= ΦG �→
11 Φ = ΦI

12 z = Obj(Φ)

13 END

14 END

15 END

16 LocalSearch(Φ)

17 IF Obj(ΦBest) > Obj(Φ) �→
18 ΦBest = Φ

19 RETURN(ΦBest)

END PathRelinking

19.3.2.2 Interpermutation Relinking

A variation to the intrapermutation path-relinking is the interpermutation approach
described in Fig. 19.8. It also makes use of an initial and a guiding solution. In-
stead of matching the elements of an initial solution permutation vector to the cor-
responding guiding solution vector one element at a time, the interpermutation path
relinking matches the permutation vector in one move. Lines 5–14 exchange per-
mutation vectors between the initial and guiding solutions. The exchanges are only
done for M − 1 vectors since an extra exchange would result in the re-evaluations
of the two original solutions. The interpermutation approach also differs from the
former approach in that it does not matter which original solution is labeled as a
guiding solution. This approach will transform the guiding into the initial solution
as well as transform the initial into the guiding solution. After each permutation
exchange, we evaluate the current function value of the altered initial and guiding
solutions. At the end of the procedure, we perform a local search for the best of the
new solutions.

The intrapermutation approach makes a maximum of
∏M−1

m=0 (nm − 1) − 1 new
solutions while the interpermutation approach has a maximum of 2 · (M − 1). Path
relinking the initial and guiding solutions essentially defines a new neighborhood
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Fig. 19.8 Interpermutation
path relinking

PROCEDURE InterPermPR(ΦI ,ΦG)

1 LocalSearch(ΦI )

2 ΦBest ← MinObj(ΦI ,ΦG)

3 z ← ∞
4 Φ ← ∅
5 DO m = 0, . . . ,M − 2 �→
6 φI,m ↔ φG,m

7 IF z > Obj(ΦI ) �→
8 Φ = ΦI

9 z = Obj(Φ)

10 END

11 IF z > Obj(ΦG) �→
12 Φ = ΦG

13 z = Obj(Φ)

14 END

15 END

16 LocalSearch(Φ)

17 IF Obj(ΦBest) > Obj(Φ) �→
18 ΦBest = Φ

19 RETURN(ΦBest)

END PathRelinking

Fig. 19.9 Interpermutation
path relinking example,
C ∈ �3×4×4×5

Φ ← Initial Solution

Θ ← Guiding Solution

Ψ = min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{θ0, φ1, φ2, φ3}, {φ0, θ1, θ2, θ3}
{θ0, θ1, φ2, φ3}, {φ0, φ1, θ2, θ3}
{θ0, θ1, θ2, φ3}, {φ0, φ1, φ2, θ3}

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

Ψ ∗ ⇐ LOCALSEARCH(Ψ )

Z∗ ⇐ min{Φ,Θ,Ψ ∗}

to be searched. The benefits and drawbacks in selecting path-relinking paths are
the same as in selecting a k-exchange neighborhood. Larger neighborhoods may
provide a better overall solution, but they do so with increased computational com-
plexity. Intrapermutation path relinking has more solutions in its path and, there-
fore, has a larger neighborhood to be searched than interpermutation path relink-
ing.
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An example of how the interpermutation path relinking for C ∈ �3×4×4×5 is
given in Fig. 19.9. This type of path relinking allows the initial solution to also
serve as a guide to the guiding solution. The permutation vectors from one solution
are incrementally replaced by vectors from the other solution. The new feasible
solution with the smallest objective value is chosen. After performing a local search,
we compare the two starting solutions and the new locally optimal solution and keep
the best one.

19.3.3 Variable Neighborhood

Algorithms that make use of local search procedures are typically multistart heuris-
tics. In this type of approach, one of the decisions that needs to be made is how much
of the overall computation time should be allocated to the generation of an initial
solution and to the exploration of neighborhoods. By selecting faster heuristics for
both stages, we can obtain a larger number of local minima. The solutions from this
approach tend to also have larger variations. We would be performing searches in
regions that are nowhere near a good solution. Good feasible solutions tend to clus-
ter together within a local neighborhood. We would therefore like to have an initial
solution that is already good and a local search neighborhood that is large enough
to find better solutions.

Because an optimal solution in one neighborhood definition is not usually opti-
mal in other neighborhoods, we propose a variable neighborhood approach in im-
plementing the intra and interpermutation exchange neighborhoods. The variable
neighborhood metaheuristic and its applications to different combinatorial optimiza-
tion problems is described by Hansen and Mladenović [9, 10]. Variable neighbor-
hood works by exploring multiple neighborhoods one at a time. Starting from an
initial solution, we define and search the first neighborhood to find a local min-
imum. From that local minimum, we define and search a different neighborhood
to find an even better solution. The metaheuristic continues until all neighborhood
definitions have been explored.

Let N2, Nn, and Np represent the intrapermutation 2- and n-exchange and inter-
permutation 2-exchange neighborhoods, respectively. The initial local search would
be bounded by the smallest neighborhood, N2. If no better solution is found, then
the search expands to Nn and then Np . If the local search finds a better solution
within any neighborhood, the new solution is kept as the best one and the neighbor-
hood is reset to N2. If no improvements are found in Np , then the local search is
ended. Only time constraints limit the number of neighborhoods that may be used
in a variable neighborhood heuristics.

We present the sizes of the different exchange neighborhoods previously defined.
The primed neighborhoods are extended versions, which allow outside elements to
permute into the solution.
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|N2| = M ×
(

n0

2

)

|N ′
2| = M ×

(
n0

2

)
+ M × (nm − n0) ·

[
n0 + n0!

(n0 − 2)!
]

+ M × (nm − n0) · (nm − n0 − 1) ·
(

n0

2

)

|Nn| = M × n0!
|N ′

n| = M × nm!
(nm − n0)!

|Np| =
(

M

2

)

The neighborhoods in the variable neighborhood approach are typically applied
in order of nondecreasing size. This makes sense since we are looking for a solution
that is optimal for multiple neighborhoods. If we are exploring the intersection of
different neighborhoods, we could save computation time by searching the smallest
neighborhoods first. The local minima of the larger neighborhoods are less likely to
be located within the intersection. A variation would be to search the most efficient
neighborhoods first. Exploring an efficient neighborhood provides a large improve-
ment from the initial solution within a small amount of time. Small neighborhoods
are not necessarily efficient if they are computationally difficult to implement. This
variation gives priority to neighborhoods that are easiest to explore.

19.4 Discussion

The paper defines local search neighborhoods that may be implemented in solv-
ing the multidimensional assignment. It also provides techniques for extending the
neighborhoods to provide algorithms with capabilities of escaping local minima.
These techniques may be implemented to improve heuristic solutions or to obtain
tighter bounds for implicit enumeration algorithms.

For the local neighborhoods, two types of k-exchange are defined based on the
permutation formulation of the MAP. Intrapermutation exchanges are performed
between elements of the same vector, while interpermutation exchanges moves ele-
ments from one vector to another. The intrapermutation exchanges are more efficient
than the interpermutation 2-exchanges, while the interpermutation n-exchange is
the least efficient. The n-exchange search, where n is the dimension size, is solvable
in O(n3) time through the use of a two-dimensional assignment problem solver.
Expanded k-exchanges for MAP instances with nonhomogenous dimension sizes
are introduced in the paper as a method for expanding the standard neighborhoods.
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The standard exchanges are only between elements that are already in the solution,
while expanded exchanges allow outside elements to come into the solution. The
expanded versions can find better solutions due to its larger neighborhood but with
more computation effort.

Escape from local minima is possible through the use of local neighborhood
extensions such as variable depth interchange, path relinking, and variable neigh-
borhood search. Path relinking may be implemented with either interpermutation
and intrapermutation linking. Variable neighborhood search is done using differ-
ent combinations of the intrapermutation 2- and n-exchanges and interpermutation
2-exchange neighborhoods.

The neighborhoods and their extensions may be implemented to find better so-
lutions of heuristics or to tighten lower bounds in exact algorithms. Careful consid-
eration must be given to the selection of local neighborhood definitions and to the
techniques for escaping local minima. The choice of local search has the potential
to be more important than the selection of heuristic or exact algorithm to solve the
multidimensional assignment problem.
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10. Hansen, P., Mladenović, N.: Variable neighborhood search. In: Pardalos, P.M., Resende,

M.G.C. (eds.) Handbook of Applied Optimization, pp. 221–234. Oxford University Press,
New York (2002). Chap. 3.6.9

11. Laguna, M., Martí, R.: GRASP and path relinking for 2-layer straight line crossing minimiza-
tion. INFORMS J. Comput. 11, 44–52 (1999)

12. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling salesman problem.
Oper. Res. 21, 498–516 (1973)

13. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated local search. In: Glover, F., Kochen-
berger, G. (eds.) Handbook of Metaheuristics. International Series in Operations Research
and Management Science, vol. 57, pp. 321–353. Kluwer Academic, Dordrecht (2002)



19 Local Neighborhoods for the Multidimensional Assignment Problem 371

14. Pardalos, P.M., Pitsoulis, L.S. (eds.): Nonlinear Assignment Problems: Algorithms and Appli-
cations. Combinatorial Optimization, vol. 7. Kluwer Academic, Dordrecht (2000)

15. Spieksma, F.C.R.: Multi index assignment problems: Complexity, approximation, applica-
tions. In: Pardalos, P.M., Pitsoulis, L.S. (eds.) Nonlinear Assignment Problems: Algorithms
and Applications. Combinatorial Optimization, vol. 7, pp. 1–12. Kluwer Academic, Dordrecht
(2000). Chap. 1

16. Yagiura, M., Ibaraki, T.: Local search. In: Pardalos, P.M., Resende, M.G.C. (eds.) Handbook
of Applied Optimization, pp. 104–123. Oxford University Press, New York (2002). Chap. 3.5


	Cover
	Springer Optimization and Its Applications Volume 40
	Dynamics of information systems: Theory and Applications
	1441956883
	Preface
	Contents
	The Role of Dynamics in Extracting Information Sparsely Encoded in High Dimensional Data Streams
	Introduction
	Key Subproblems Arising in the Context of Dynamic Information Extraction
	A: Nonlinear Embedding of Dynamic Data
	B: Uncovering Structures Embedded in Data
	C: Dynamic Data Segmentation
	D: Dynamic Interpolation
	E: Hypothesis Testing and Distributed Information Sharing

	Nonlinear Embedding of Dynamic Data
	Structure Extraction from High Dimensional Data Streams
	Robust Dynamic Data Segmentation
	Example 1: Video Segmentation
	Example 2: Segmentation of Dynamic Textures

	Constrained Interpolation of High Dimensional Signals
	Hypothesis Testing and Data Sharing
	Conclusions
	References

	Information Trajectory of Optimal Learning
	Introduction
	Topology and Geometry of Learning Systems
	Problem Statement and Basic Concepts
	Asymmetric Topologies and Gauge Functions
	Trajectories Continuous in Information

	Optimal Evolution and Bounds
	Empirical Evaluation on Learning Agents
	Conclusion
	References

	Performance-Information Analysis and Distributed Feedback Stabilization in Large-Scale Interconnected Systems
	Introduction
	Problem Formulation
	Performance-Information Analysis
	Problem Statements
	Distributed Risk-Averse Feedback Stabilization
	Conclusions
	References

	A General Approach for Modules Identification in Evolving Networks
	Introduction
	Preliminaries and Problem Definition
	Preliminaries
	Problem Definition

	Compact Representation of a Network
	Structure Preservation
	Size of the Compact Representation
	Worst Case Analysis
	Social Networks


	Partition Based on Evolution History
	Algorithm
	Complexity

	Experimental Evaluation 
	Conclusions
	References

	Topology Information Control in Feedback Based Reconfiguration Processes
	Introduction and Motivation
	Group Communication Networking
	Reconfiguration Process Optimization
	Topology Information Model
	Information Control Problem

	Topology Information Control
	Lagrangian Solution
	Distributed Implementation
	Summary of Computational Results

	Concluding Remarks
	References

	Effect of Network Geometry and Interference on Consensus in Wireless Networks
	Introduction
	Problem Formulation
	Average Consensus Algorithm
	Communication Protocols
	Problem Formulation

	Analysis of a Ring and a 2D Torus
	The 1-D Case: Nodes on a Ring
	Nodes on a Two-Dimensional Torus
	Bounding the Rate of Convergence
	Tori in Arbitrary Dimensions


	Hierarchical Networks
	Conclusions
	References

	Analyzing the Theoretical Performance of Information Sharing
	Introduction
	Information Sharing
	Token Algorithms

	Experimental Results
	Optimality of the Lookahead Policy
	Optimality of the Random Policies
	Effects of Noisy Estimation
	Properties Affecting Optimality
	Scaling Network Size

	Related Work
	Conclusions and Future Work
	References

	Self-Organized Criticality of Belief Propagation in Large Heterogeneous Teams
	Introduction
	Self-Organized Criticality
	Belief Sharing Model
	System Operation Regimes
	Simulation Results
	Related Work
	Conclusions and Future Work
	References

	Effect of Humans on Belief Propagation in Large Heterogeneous Teams
	Introduction
	Self-Organized Critical Systems
	The Enabler-Impeder Effect
	Model of Information Dissemination in a Network
	Simulation Results
	Related Work
	Conclusions and Future Work
	References

	Integration of Signals in Complex Biophysical Systems
	Introduction
	Methods for Analysis of Phase Synchronization
	Instantaneous Phase
	Phase Synchronization
	Generalized Phase Synchronization

	Analysis of the Data Collected During Sensory-Motor Experiments
	Sensory-Motor Experiments and Neural Data Acquisition
	Computational Analysis of the LFP Data

	Conclusion
	References

	An Info-Centric Trajectory Planner for Unmanned Ground Vehicles
	Introduction
	Problem Formulation and Background
	Obstacle Motion Studies
	The Sliding Door
	The Cyclic Sliding Door
	Obstacle Crossing (No Intercept)
	Obstacle Intercept
	Obstacle Intercept Window

	Target Motion Studies
	Target Rendezvous: Vehicle Faster than Target
	Target Rendezvous: Vehicle Slower than Target
	Target Rendezvous: Variable Target Motion

	Conclusion
	References

	Orbital Evasive Target Tracking and Sensor Management
	Introduction
	Fundamentals of Space Target Orbits
	Time and Coordinate Systems
	Orbital Equation and Orbital Parameter Estimation

	Modeling Maneuvering Target Motion in Space Target Tracking
	Sensor Measurement Model
	Game Theoretic Formulation for Target Maneuvering Onset Time
	Nonlinear Filter Design for Space Target Tracking
	Posterior Cramer-Rao Lower Bound of the State Estimation Error

	Sensor Management for Situation Awareness
	Information Theoretic Measure for Sensor Assignment
	Covariance Control for Sensor Scheduling
	Game Theoretic Covariance Prediction for Sensor Management

	Simulation Study
	Scenario Description
	Performance Comparison

	Summary and Conclusions
	Conversion of the Coordinate Systems
	Keplerian Elements
	Algorithm for Orbital State Propagation
	Pursuit Evasion Game in a 2D Plane
	References

	Decentralized Cooperative Control of Autonomous Surface Vehicles
	Introduction
	Motivation
	Decentralized Hierarchical Supervisor
	Persistent ISR Task
	Transit
	Transit Mode Task Allocation
	Follower Trajectory Generating Algorithm


	Simulation Results
	Conclusion and Future Work
	References

	A Connectivity Reduction Strategy for Multi-agent Systems
	Introduction
	Background
	Model
	Edge Robustness

	A Distributed Scheme of Graph Reduction
	Redundant Edges and Triangle Closures
	Local Triangle Topologies
	Distributed Algorithm

	Discussion and Simulation
	Conclusion
	References

	The Navigation Potential of Ground Feature Tracking
	Introduction
	Modeling
	Special Cases
	Nondimensional Variables
	Observability
	Only the Elevation zp of the Tracked Ground Object is Known
	Partial Observability
	Conclusion
	References

	Minimal Switching Time of Agent Formations with Collision Avoidance
	Introduction
	Problem Definition
	Dynamic Programming Formulation
	Derivation of the Dynamic Programming Recursion
	Collision Avoidance

	Computational Implementation
	Computational Experiments
	Conclusion
	References

	A Moving Horizon Estimator Performance Bound
	Introduction
	Linear State Estimation
	Kalman Filter as an IIR Filter
	Moving Average Implementation

	MHE Performance Bound
	Situation When ||A-KHA||>=1
	Alternative Derivation

	Simulation and Analysis
	Simulation of Moving Horizon Estimator and Error Bound
	Monte Carlo Analysis of Error Bound

	Future Work
	References

	A p-norm Discrimination Model for Two Linearly Inseparable Sets
	Introduction
	The p-norm Linear Separation Model
	Implementation of p-order Conic Programming Problems via Polyhedral Approximations
	Polyhedral Approximations of p-order Cones
	"Tower-of-Variables" (Ben-Tal and Nemirovski 18.BenTal-Nemirovski-2001b)
	Polyhedral Approximations of 3-dimensional p-order Cones

	Case Study
	Wisconsin Breast Cancer Data Set
	Other Data Sets

	Conclusions
	References

	Local Neighborhoods for the Multidimensional Assignment Problem
	Introduction
	Neighborhoods
	Intrapermutation Exchanges
	2-Exchange
	n-Exchange

	Interpermutation Exchanges

	Extensions
	Variable Depth Interchange
	Path Relinking
	Intrapermutation Relinking
	Interpermutation Relinking

	Variable Neighborhood

	Discussion
	References


