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PREFACE

High-speed ground transportation requires the development of vebicle systems with
better and better dynamical bebaviour. Such vebicle systems include the guideway, the
vehicle itself and the passenger or freight, respectively.

The present volume contains the courses and lectures presented at the International
Centre for Mechanical Sciences at Udine, in fall, 1981. All the main aspects of bigh-speed
vebicle engineering are summarized with respect to the dynamics of automobiles, railways
and magnetic levitated vebicles. Analytical, experimental and numerical methods are applied
using the deterministic and stochastic approach of dynamics.

The contributions to the vertical motion of vebicles (K. Popp, W.0. Schieblen and P.C.
Miller) are followed by more specific papers on the borizontal motion. Automobiles (P.
Lugner, A. Zomotor and W.O. Schieblen), railways (P. Meinke, A.D. de Pater and P. Meinke)
and maglev vebicles (G. Bobn, W. Cramer and K. Popp) are treated in detail.

I bope the contributions presented will be of interest to engineers and research workers
in companies and univerties who want first-hand information on the present trends and
problems in this important field of technology.

Finally, I would like to thank the autbors for their efforts in presenting the lectures
and preparing the manuscripts for publication. My thanks are also due to Professor G.
Bianchi, Secretary General of CISM and to Professor H.B. Pacefka, Secretary General of
IAVSD, for advice and belp during the preparation of the course. I am also grateful to my
secretary, U. Wachendorff, for ber engaged service with respect to the editorial work.

W. Werner O. Schieblen
Stuttgart, June 1982
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INTRODUCTION TO VEHICLE DYNAMICS

Werner 0. Schiehlen

Institut B fiir Mechanik
Universitdt Stuttgart

Pfaffenwaldring 9, Stuttgart 80, F.R.G.

KINDS AND MOTIONS OF VEHICLES

Today's and tomorrow's vehicles are based on various principles and
travel with very different speeds. For a first classification of all
kinds of vehicles the support and propulsion principles are used. The
support mechanism has to balance the gravity acting on vehicles and the

propulsion generates the forward speed, Fig. 1.

Ground vehicles are supported by reaction forces generated by wheels,
air cushion or magnets. They are driven by friction, flow or magnetic
forces. Fluid vehicles are supported by static or dynamic lift forces
generated by water or air, and they are propelled generally by flow forces.
Inertia vehicles are supported by dynamic lift or inertia forces generated
by air, jet propulsion or orbital motion, and they are accelerated by
inertia forces only. Due to the applied support and propulsion principles
very different speeds are obtained. Ground vehicles come up to 450 km/h
traveling speed and 650 km/h maximum speed. Fluid vehicles reach 1000 km/h

traveling speed and 3300 km/h maximum speed while inertia vehicles may
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Traveling Maximum
Types of vehicles speed speed
km/h km/h
GROUND VEHICLES
Guided ground vehicles
Railway vehicles 250 380
Tracked air cushion vehicles - 400
Magnetically levitated vehicles - 450
Nonguided ground vehicles
Road vehicles 220 650
Wheeled off-road vehicles 60 -
Air cushion vehicles - 140
FLUID VEHICLES
Marine crafts
Ships 40 300
Hydrofoils 150 -
Aircrafts
Airships 80 140
Helicopters 300 -
Airplanes 1 000 3 300
INERTIA VEHICLES
Aircrafts
Airplanes - 7 300
Spacecrafts
Launch vehicles 30 000 -
Satellites 50 000 -

have

Table 1. Traveling and maximum speed of vehicles.

50 000 km/h traveling speed. More details are given in Table 1.
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Fig. |. Propulsion and support Fig. 2. Direction of motion
of an airplane

High-speed vehicles discussed in this course are ground vehicles
with traveling speeds of 200 to 400 km/h. There are included railway

vehicles, road vehicles and tracked magnetically levitated vehicles,

The motions of vehicles are generally rated by their directions and
velocities with respect to the speed. The directions of translational and
rotational displacements are defined with respect to the x, y, z—-axis
fixed in the vehicle's body, Fig. 2. The x-axis represents the longitudi-
nal displacement in forward direction, the y-axis describes the lateral
displacement to the right and the z=-axis is adjusted to the vertical dis-
placement in gravity direction. The rotations around the x, y, z-axis are
called roll, yaw and pitch displacements, respectively. The ratio of the
translational or the corresponding rotational velocities to the speed may
be one or less than one., Small ratios often result in essential simpli-
cations by linearization of the equations. The following symbols are

usually used for the motions:

x longitudinal ¢ roll
y lateral 6 pitch
z vertical Y yaw .

The motions are related to the characteristic features of vehicles.
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Performance characteristics of vehicles are concerned with the accel~
eration, the deceleration and the negotiation of grades in straight-line
longitudinal motion or x~translation, respectively. The tractive or
braking effort and the resisting forces determine the performance poten-—
tial of a vehicle. The longitudinal velocity is by definition equal to
the vehicle's speed. Handling characteristics of vehicles include the
control to a given path by steering and the stabilization of the lateral
motion represented by y-translation, Y-rotation and ¢-rotation. The
steering commands generated by the driver or the track, respectively,
determine the vehicle's path. The lateral motion with respect to the path
is affected by inputs from the environment and the support.

Ride characteristics are related to the vehicle's vibrations in vertical
direction excited by support irregularities, engine forces and the en-
vironment. Vertical vibrations are due to z-translation, 6-rotation and
¢-rotation, they affect passengers and goods. Therefore, the understand-

ing of human response is also very essential for the ride characteristics.

The dynamics of high-speed vehicles treated in this course cover the
longitudinal motion, the lateral or horizontal motion, respectively, and
the vertical motion. In particular, there are considered handling and

ride characteristics.

t t
s

Fig. 3. Step excitation

R
Y N S T A W A}
i) T

t t

Fig. 4. Stochastic excitation Fig. 5. Periodic excitation
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MATHEMATICAL MODELING FOR HANDLING AND RIDE INVESTIGATIONS

For the dynamical analysis of the handling and ride characteristics
of ground vehicles mathematical models of the excitations, the vehicle
itself and the rating of the resulting motions are required. The excita-
tions follow from aerodynamics, engine, wheels and guideway irregulari-
ties. The vehicle has to follow the path and is modeled by appropriate
mechanical systems including the driver. The motions are expected to be

stable, men and goods require low acceleration.

Aerodynamic forces and torques due to cross winds affect particu-
larly the lateral motion. The time history of the wind may be gusty or
random, resulting in different mathematical descriptions. Fig. 3 shows a
typical excitation by a gust. The step excitation is then characterized

by a polynominal
= k
F (t) = 2, F {t-t )} (1)
s k=0 k s

where Fk are constants, {t-ts}k the Heaviside functions,

k k k .
{t ts} = (t ts) for t>ts and {t ts} =0 for t<ts, and t, is

the step time. A steady-state random excitation is presented in Fig. 4.
The random wind can be characterized by a stationary, Gaussian, ergodic

stochastic process

Fo(t) ~ (mg, Np(s)) )

where ne is the mean value, NR the correlation function and s the
correlation time. The aerodynamic forces act usually in the y-axis, the

torques in the z-axis.

The rotary.motion of the engine and the wheels, respectively,
results at constant speed in a periodic force and torque excitation,

Fig. 5. The periodic excitation is represented by Fourier expansion as
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[ -3
= = ' " :
Fg(t) = Fp(t+T) = F_ + El (Fp, cos kQt + Fi sin kQt) (3)
1 1" . . .
where FEo . FEk and FEk are Fourier coefficients and
27
Q= T 4)

the excitation frequency. Thus, only the superposition of harmonic func-
tions remain. Engine and wheel forces and torques may affect the lateral

and vertical motion.

The surface irregularities of the guideway affect the vertical
motion, and in the case of guided vehicles also the lateral motion. The
guideway may have a rigid or a flexible surface. Rigid surfaces result
in excitation functions of the vehicles while flexible surfaces have to
be modeled as mechanical systems. The different types of guideways are

summarized in Table 2 and Table 3.

The path is given for guided vehicles, in contrary to nonguided
vehicles where the driver controls the path, In addition to the path
usually also the tangential plane is given representing the supereleva-
tion of the road or track. Typical paths are straight lines, plane cir-

cles, plane and spatial curves.

The choice of the mathematical model for the vekiicle depends on the
technical problem under consideration. There are three mechanical systems
available for different geometry and stiffness properties, Table 4. The
final decision for one or more of these systems can be made with respect
to the technical problem, Table 5. The equations of motion read for non-

linear ordinary multibody systems as

M(y,t) ¥ + k(y,¥,t) = q(y,y,t) , (5)

for linear finite element systems as
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MYy+Dy+Ky=h(t) (6)
and for linear continuous systems in modal representation
Y + 2 diag (85) y + diag (wzj) y = £(t) )

where y(t) 1is the corresponding position vector and q(t), h(t) and
f(t) are excitation vectors. The equations are completed by the coeffi-

cient matrices M, D, K representing inertia, damping and stiffness.

The driver controls the path of nonguided vehicles by adequate
steering inputs. The steering inputs are collected from the visual obser-
vation of the path and the physical sensation of the vehicle's absolute
and relative motion. Therefore, the steering problem of a nonguided
vehicle can be characterized by a closed-loop control system, Fig. 6.

The dynamical behavior of the driver has to be found by measurements in

simulator or onboard experiments.

The lateral motion has to be directional stable with respect to the
path. This means that particularly the differential equations for the
y-translation, y-rotation and ¢-rotation have to be asymptotically stable.
Usually the stability boundary depends on the vehicle speed and, in the
nonlinear case, on the characteristic amplitude, Fig. 7. A complete ana-

lysis requires linear and nonlinear stability theory.

In vehicles men and goods are subject to vertical mechanical vibra-
tions. The human response to vibrations or the human sensation, respec~
tively, has been investigated in medical and technical sciences for many
years. It was found that there exists an open control loop, Fig. 8. The
human sensation is correlated to the mechanical vibrations by a frequency
response. Due to the guideway irregularities the vertical vehicle motion
is random and the sensation has to be characterized by its standard

deviation.
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Surface Figure Excitation

Plane Vanishing

Obstacle %77, Step
/.

Wave % Harmonic
DA

Rough W Stochastic
%z

Table 2. Excitation functions by rigid surfaces

Surface Figure Mechanical System
. /

Flexible Multibody

Support 4 v System (MBS)

Flexible Finite Element

Beams /ﬂ\/ﬂ\ System (FES)

Elastic > Continuous
Half - Space <2 System (COS)

Table 3. Mechanical systems for flexible surfaces
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Mechanical .
System Geometry Stiffness
Multibody Comp]

System (MBS) omplex Inhomogen
Finite Element Compl

System (FES) ompiex Homogen
Continuous Simpl

System (COS) imple Homogen

Table 4. Mathematical models for vehicles

Technical Problem

Figure

System

Maglev vehicle
with secondary
suspension,
vertical motion

o

oo

MBS

Maglev vehicle
with primary
suspension,
vertical motion

PPPPYYYPIHOD

C0s

Vehicle body,
bending motion

[
|

Lyl
IEERNEEEERRRE

FES

Table 5. Mechanical systems and technical problems
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Path

Visual+ inputs

Driver le—
Steering { angle Absolute
and
Steering System relative
Absolute motion
motion Forces; torques
Vehicle —
Fig. 6. Steering problem
T>LATERAL MOTION
| <
E >
. )%
T~ i
PATH
-~ -~ N
ASYMPTOT. BOUNDARY IN-
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Fig. 7. Lateral stability of a wheelset
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GUIDEWAY
VEHICLE
MEN
/ \
COMFORT E;g;& HEALTH
K =5 K =15 K = 30

STANDARD DEVIATION

Fig. 8. Human sensation of vibration

METHODS OF INVESTIGATION

The dynamical research of high~speed vehicles requires a broad spec-
trum of theoretical and experimental methods. From dynamics the multibody
systems, the finite element systems and the continuous systems are
applied. Control theory contributes with closed-loop and open-loop systems
including human response. Vibration analysis includes stability theory of
free vibrations as well as forced vibrations excited by step, harmonic
and stochastic forces. Nuwmerical methods like algorithms for linear equa-
tions, eigenvalue procedures and integration methods of differential
equations have always to be used in connection with the digital computer.
Sophisticated measurements and experienced design have to be conducted
during the development of each kind of vehicle. Thus, vehicle dynamics

are a very challenging field for an engaged engineer.



W.O. Schichlen

12

BIBLIOGRAPHY

1 Bahke, E., Transportsysteme Heute und Morgen, Krausskopf-Verlag,
Mainz, 1973.

2  Bosch, Kraftfahrtechnisches Taschenbuch, 18. Auflage, VDI-Verlag,
Diisseldorf, 1976.

3  Hedrick, J.K and Paynter, H.M., Eds., Nonlinear system analysis and
synthestis, Vol. 1 - Fundamental Principles, ASME, New York, 1978.

4  Magnus, K. Ed., Dynamics of multibody systems, Springer-Verlag,
Berlin-Heidelberg-New York, 1978.

5 Mitschke, M., Dynamik der Kraftfahrzeuge, Springer-Verlag, Berlin-
Heidelberg-New York, 1972.

6 Miiller, P.C. and Schiehlen, W.0., Forced linear vibrations, OISM
Courses and Lectures No. 172, Springer-Verlag, Wien-New York, 1977.

7 Pacejka, H.B., Ed., The dynamics of vehicles on roads and railway
tracks, Swets & Zeitlinger, Amsterdam, 1976.

8 Slibar, A. and Springer, H., Eds., The dynamics of vehicles on roads
and tracks, Swets & Zeitlinger, Amsterdam, 1978.

9 Stoer, J., Einfihrung in die numerische Mathematik I, II, Springer-
Verlag, Berlin-Heidelberg-New York, 1976, 1978.

10 Willumeit, H.-P., Ed., The dynamics of vehicles on roads and on rail

tracks, Swets & Zeitlinger, Lisse, 1980.



STOCHASTIC AND ELASTIC GUIDEWAY MODELS

K. Popp

Universitét Hannover, FRG

1. Introduction

The theoretical investigations in vehicle system dynamics are based
upon a suitable mathematical system deseription, called mathematical model.
The mathematical model can be gained either by application of the funda-
mental laws of physics to a physical model of the real technical system or
by evaluation of measurements performed on the real technical system it-
self or on parts or experimental models of it. Which way is taken depends
on the problem, purpose of investigation, knowledge of the system, desired
accuray, and last not least on equipment, time and money available.

The quality of the theoretical results is only as good as the under-
lying mathematical model. Thus, the mathematical model must be as complete
and accurate as necessary. On the other hand, from the computational point
of view the mathematical model must be as simple and easy to handle as
possible. It is obvious that the modelling process is a tough engineering
problem.

The aim of the contributions in this Chapter is to show the different
steps in the »rocess of mathematical modelling which are common for
different types of vehicles like automobiles, magnetically levitated vehic-
les (Maglev vehicles) and railway vehicles. The general vehicle setup is
shown in Fig. 1 by means of the block diagram. Subsequent blocks are in

dynamical interaction with each other. In the following the mathematical
models of the subsystems are developed. From this the mathematical model

of the entire vehicle-guideway system can be composed.

We start with the mathematical description of the disturbances and
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PASSENGER
CARGO

—— DISTUREANCES

3
y

4
N

GUIDIZWAY

VEHICLE SUSPENSION

~—=—— MOTION

——= FORCES SCiL

Fig. 1: Vehicle-guideway-interaction.

the guideway dynamics. We restrict ourselves to the two most importiant
cases in applications:

i) stochastic excitation models for rigid guideways and

ii) deterministic models for elastic guideways.
Since the mathematical description turns out to be linear in either case,

both models can be superposed, if necessary.

2. Stochastic excitation models for rigid guideways

Research in the field of guideway roughness models is going or for a
long time. Numerous measurements of road roughness profiles have been
performed, cf. the classical book by Mitschke1, or publications by Braunz,

3

Lo . .
Wendeborn~ , Voy . With respect to railway tracks four roughness profiles

have to be distinguished; lateral alignment, vertical profile, cross-
level and gauge, respectively. Here, measurements are summarized in ORES.
For elevated guideways as used for Maglev vehicles the vertical irregu-
larities comprise the vertical offset and random walk of the piers, camber
of the spans and surface roughness of the tracks as pointed out by

I3
Sayder IIT and Wormley . The evaluation of measurements as well as theo -



Stochastic and Elastic Guideway Models 15

retical investigations concerning the superposition of random irregular-
ities have shown the common fact that the different roughness profiles can
be modelled as

e stationary ergodic Gaussian random processes.
Bevor the guideway roughness models are described in detail, some general
remarks on random processes may be in order, cf. also Newland7, Crandall,

Mark8.

2.1 Mathematical description of random processes

Suppose an infinite ensemble of roughness profile measurements
;(r)(x) for a special guideway typ, let say for highways in Europe, is
given, see Fig. 2. Here, the independent variable x describes the
distance from an arbitrary starting point. Each profile sample differs
from all others, r)( ) % c (x) for r # s . The family of profiles
forms a random process (x) . The Profile values Cj = c(xj) at
discrete distances Xj are random variables. The probability distribu-
tion of the random variable cj is characterized by the probability
density function p(cj) , see Fig. 2, which yields the probability

Pr that the profile value Cj lies between certain limits a and

b,
b @
Pr (a <z. <b) =/ .)daz. I .)dg. =1 . 1
( <z s )=/ p(cJ) ; (L p(cJ) ;5 ) (1)
The random variable Cj s, 3= 1,2, i, can be characterized by
ensemble averages. The most important ones are the mean mc(x1) (first

order moment) and the mean square value mCZ(XW) (second order moment),

m (x,) = B{z(x)} = T ¢ ple)) ag, (2)

ma(x) = E{g?(x,)} = 7 C? p(c_)dg ) (3)

where the operator E{ } 1is called mathematical expectation of { } .
The square root of {3) is called the root mean square value of or

rms value. An important statistical parameter ist the variance o
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C; Cix) 'RANDOM VARIABLE
Lo L) y=Ciy)
b SAMPLE OR RE AL-
IZATION OF THE
q RANDOM PROCESS
;74'\./-' tlkx)
= ~ - U2)x)
(3},
G )]
p() A . x
x2 X1

Fig. 2: Guideway roughness as random process.

0, 2(x,) = E{(z_ - E{z D2} =T (¢ - Bl }2p(z ag
c 1 1 b 1 1 1 1
(1)
= B{g 2} - (E{g 1?2,
1 1

If the mean is zero then the variance is identical with the mean scuare.
The square root of (4) is called the standard deviation OC(X1) . The
correlation between any two random variables, let say ¢ and g ,
gives insight into the random process. The joint ensemblelaveragé is
called (auto)correlation function RC(X1’ x2),

R(x,,x,)=E{c ,c}t=%c¢ ¢ plg,c)dg ac (s)
g 1 e 12 B0 Tem By By PRE B 0GR GRS

vhere p(cl, cz) denotes the joint probability density function.

Analogous to (4) the covariance PC(XT’ x.,) can be defined as

2

P (x1, bl

) =E {(z -©E{c (g -B{z WY =E{g ,c } -E{z }IE{c } . (6)
4 1 1 2 2 1 72 1 2

2

If ¢, and have zero means, then the covariance PC(X1’ x2)

&
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is identical with the (auto)correlation function RC(XT’ x2)
When X, = X, the covariance (6) becomes identical with the variance
(L). Now we can describe mathematically the properties: stationarity,
gaussian or normal distribution and ergodicity.

Stationary means that the probability distributions are invariant
under a shift of the x-axis , i.e. p(zl) = p(gz) =p(g) and

1
all random variables and thus the entire random process have one and the

p(cl, gz) depends only on the distance £ =x X, . As a consequence

same mean, mean square and variance, respectively. The random process can

always be centered resulting in a zero mean. Thus

mc(x) =0, (1)
RC(X1’ x,) = RC(X1 -x, =€) = PC(XT’ x,) (8)
ccz(x) = mcz(x) = RC(O) = const. (9)

Gaussianor normal distribution means that the probability density

functions read
1
pl(z ) = exp [ - (Cl - m1)2 /2 01?2] , (10)

2

1 - g1 022 (Cl-ml)z
plc ,z ) = exp { [ -
12 erl/o,? 0,2 - P122 2(0120,2 - P122) 012

(11)

2P ,(z1- m ) (za-mp) (z2-mpf

+
0'12 0'22 0.22 ]} s

where the abbreviations m, = mc(xi), i=n1,2, P, = PC(X1’X2) , have
been used. These parameters are sufficient for the complete mathematical
description. Eqs. (10)and (11) can be simplified for stationary random
processes regarding (7), (8) and (9). From (10) can be seen, that the

maximum value of the function p(c1) is proporticnal to 1/0y
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Ancther way to signify o) is given by considering confidence intervals.

Solving (1) e.g. for

a = m1 - 01, b = m,

Prom -0, <2, <m + 01) = 0.6827 , (12)

+ o0, yields

which means that 68,27 % of all values of the random variable Z, lie
In the 201—band centered at the mean m .
1
Within the subclass of stationary random processes there exists a

further subclass known as ergodic processes, for which the ensemble

averases are equal to the sample averages of a single sample c(r)(x)

of infinite length,

p X (r)
mC = )l(:l: X {X 4 (x) dx , (13)
R(6) = tin et ¢ ¢ Tx - €) ax (14)
C Yom 2X y ¢ .

A sufficient condition for ergodicity reads, cf. Drenickg,

2 IR (®)ag < = . (15)

In technical applications stationary random process are very often
represented by power spectral density (PSD) functions SC(Q) depending
on the (spacial) circular frequency . The connection with the

correlation function RC(E) is simply given by the Fourier transform,

=1 -iQg
5 (@) =57 [ R (£) e e, (16)
R(£) = Fs(a) e (17)
4 —®
2 - /

=R (0) = T s (Q)dn 18

o, c( ) =/ c( ) {18)
“ince the PSD SC(Q) is an even function o 0, SC(Q) = Sr(~Q\ .

1early always single siided PSDs ¢ Q) are nzed, o () =2 3 )
y T r I

3
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0 <Q <o , with non-negative (special) circular frequencies Q .
Usually, in technical applications neither an infinite ensemble nor
a single sample infinite in length is available. Thus, only approximations

of Rc(g) or SC(Q) can be given,

2.2. Guideway roughness models

In recent publications there is a trend towards standardization of

guideway roughness models. A simple but useful road roughness model reads,

ef. Mitschke1, Voyh,

Q
- O W
¢, () =0 ()" (19)
where Qo[rad/m] s b, = ¢C(Q°)[m2/(rad/m)] and w are constants

describing the reference (spacial) circular frequency, unevennes and
waviness, respectively. Usually, the waviness ranges between 1,75 < w
< 2,25 . The roughness model (19) is often plotted in a @, ¢-diagramm
with logarithmic scales as a sloping straight line. A similar but more
sophisticated model is suitable for roads and for tracks, see Dodds,

Robson1o, Hedrick, Anis11,

Q

0w Q< Q ,
o, () -0
¢C(Q) = for (20)
Q
_O\W Q>0 .
¢o(9 )2 °
where different exponents v, and w, are introduced. In case of

track irregularities (20) is used to describe vertical profile, lateral
alignment, gauge and cross-level as well, However, no crosscorrelation
between these four profiles are knwon. The standardized models (19) and
(20) are approximations to measured PSDs in a distinct frequency range
0<Q <R <Q . In either case, the limit Q30 results in
¢§(Q > 0)> » and thus an infinite variance would follow which is not
realistic. To avoid these difficulties two other roughness models are

. .1 PUPRN 1
used, cf. Dincd, Theodosiu 2, Fabian 3, Sussman
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2002 !
o) = T o (212)
_ 2002 Q2+a2+82 , (22a)

¢C(9) = (a2 V %4 hal?

wvhere a, B and 02 are constant. Since eqs. (21a), (22a) are valid
in the entire frequency range, the corresponding (auto)correlation function

RC(E) can be calculated utilizing (17) which reads for single sided PSDs,
R(E) =T o (2) cosngan . (17a)
Eq.(17) applied to (21a) and (22a) yields
R (£) = o2 @8l (21b)
2 e—alil cos B £ . (22v)

R(g) =0

Here, o2 = RC(O) characterizes the (finite) variance of the random

roughness process r(x)

2.3. Vehicle excitation models

From the guideway roughness models  z{x) given in the space domain
the corresponding vehicle excitation models ¢(t) in time domain can

be obtained using

x=vt , £ =vt, w=vQ, (23)
where v = const [m/s] is the vehicle speed, T denotes the correlation
time and w [rad/s] the (time) circular frequency. Since the roughness
profil  z(x) and the vehicle excitation z(t) have the same variance

Rz{0) , from eq. (17a) it follows

®C(w)dw = ¢C(Q)d9 . (ah)
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Thus, using (23) the single sided PSD ¢C(w) reads,

b =g (2= (25)

Considering model (19) vor example, where the waviness w =2 is

chosen and 60 is used to denote the corresponding unevenness, ohne

gets
PN A Y S LY
¢ () = T o (o) = ve ()2 . (26)

For w32  eq.(25) has to be applied. However, as a frist approximation
the simple model (26) can still be used if the unevenness ;o is chosen
properly. Equating the variance of model (19) (w # 2) and the
variance of the approximation with w =2 1in the frequency range

QliQiQZ ’

2 Q
¢ f QW _~ 2_02
TR RS (21)

yields the equivalent unevennes ¢o ,

6 Q w=2 1 - (9)/9)w1

¢° =T E —1_—(9—1—92—) (w#1) . (28)

Often in applications 1/, << 1 is given which simplifies (28).

Up to now only the excitation profile ¢(t) has been considered.
But also the time derivatives <z(t) and < (t) are of interest. Due
to the classical theory, cf. NewlandT, the PSDs of the derivated random

process can easily be calculated,
. = 2 . = 4
62 (W) = w ¢C(w) > by (@) = w ¢C(w) . (29)

Eq. (29) applied to (26) yields a white noise process, i.e. a constant

PDS for the random excitation velocity process,

~ Q5 .
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corresponding to the (auto)correlation function

. = 0 = 2
Rc(r) a; §(r) , qr=mnve Q s (31)

¢
where a; is the noise intensity and §&(+) denotes the Dirac
distribution. The white noise process results clearly in an infinite
variance which is by no means realistic. On the other hand, this simple
model reduces considerably the computation work and can serve as a first
approximation, cf. Karnopp15, Miller et al.16.

Better vehicle excitation models z(t) are given by stationary
Gaussian colored nolse processes which can be obtained from a white noise
process w(t) by means of a shape filter. The shape filter is an
asymptotically stable linear dynamical system, see Fig. 3, which - roughly
speaking - changes the shape of the correlation function but does not
influence the stationarity, normal distribution and ergodicity. The

mathematical shape filter description reads

z(t) = n® v(t) (32)

v(t) = F v(t) + g wlt) , Re A(F)<0 , w(t) ~ N(0,q,)

where the state vector v(t) and the quantities F, g , and h
determine uniquely the shape filter. The input process w(t) is
assumed to be Gaussian white noise with zero mean and intensity a,
For colored noise characterized by (21a), (21b) or (22a), (22b) the

corresponding shape filter quantities read

F=-0ov , g=g , h=1 |, (21¢)
i 2.a2
o 0] v |/a2eg
E= ! » B=6| |,h= . (22¢)
~(a2+82)v2-2qv 1J 1

In either case g and q, can be chosen arbitrarily regarding
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SHAPE -FILTER

INPUT . OUTPUT
WHITE NOISE ¥(t) =Fyv(t) egwit) COLORED NOISE

t t
Wit —e|  Re\(F)<0,w(t~N(0g,,) ty

L) =hTy(t)

Fig. 3: Shape filter.

gzqw = 20va? . In applications one is interested in computing the shape
filter quantities directly from measured data rather than from analytical
approximations. This can be done by parameter identification procedures
as described e.g. in Miller et.al.17.

A1l vehicle excitation model up to now are models where only single
contact is taken into account. However, real multi-axle vehicles have
multiple contact with the guideway. Thus, the time delays between suc-—

cessive contact points have to be regarded, see Fig. 4. For r contact

points in a line the time delays read

Ly

=V [ —

TEI . . —f C3 L2 0

Fig. 4: Multiple vehicle random excitation.
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ti=2./v ,i=1,...., ¢ (33)
where li is the distance between the front axle and the axle i .
Given the excitation g(t) of the front contact point, the excitation
of the contact point 1 reads

ci(t)-= ;(t—ti) , 0=t <t <....<t . (34)

3. Deterministic models for elastic guideways

The guideways of the vehicles investigated here are quite different.
Usually roads are considered to be rigid but randomly disturbed as
shown in section 2, while the elevated guideways for Maglev vehicles and
the railway tracks are assumed to be elastic. In the latter case the
mathematical model of the overall system dynamics has to take into account
the elastic guideway deflections. Since the guideways stretch over long
distances, only parts of them can be included in the corresponding system
models. If we separate the vehicles from their guideways and introduce

the forces of interaction, then we receive the models shown in Fig. 5.

I) I VE.HI'CLE. T lsvystem

I)

\L_E_tqcte ) ' T SYSTEM
I v
i i

g/7//77?7?777?3

Fig. 5: Vehicle-guideway models for 1I) Maglev vehicles,
II)railway vehicles,
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The guideways for Maglev vehicles, Fig. 5 I), are elevated periodic
structures, modelled as a sequence of identical prefabricated structural
elements on rigid supports. The system model has to comprise at least as
much guideway elements as coupled by the moving vehicle. To the contrary,
railway tracks are modelled as continuous beams on elastic foundation,
Fig. 5 II). Here, the system model has to include a guideway section of
sufficient length, so that the boundaries are free of deflections as in
reality. In either case the system bounds have to follow the moving
vehicle.

The mathematical description of the elastic guideway deflections is
generally achieved in three steps:

i) Analysis of a single guideway element.

ii) Setup of the guideway model within the system bounds.

iii) Calculation of the wvehicle-guideway interaction regarding the
shift of the system bounds due to the moving vehicle.

In the following sections,step i) will be considered in more detail
for elevated guideways, where the elastic deformations are essential
(steps ii) and iii), then, are carried cut in Chapter 3). While details
on the deformation of railway tracks may be found in the literature, cf.

e.g. Timoshenko18, D6rr19, Korb20, Popp21.

3.1. Mathematical description of guideway deflections under moving forces

Suppose an elevated guideway for Maglev vehicles is given with guide-
way elements as shown in Fig. 6. Each guideway element of lenght L
consists of s uniform beam segments of length Li , With constant

bending stiffness  (EI) , and constant mass per unit lenght (QA)i .

i=1,..., 8 . Due to éhe moving forces Fu(t) . p=l,..,m
where the travelling speed is v , guideway deflections wi(ii,t) s
0 < Ei <L , occur in each segment. These deflections can be calculated
using Bernoulli-Euler-beam theory which implies small deformations,
Bernoulli's hypothesis of linear stress distribution along the cross
section, ilooke's law of linear stress-strain relation and neglects shear
effects and rotational inertia effects. The wellknown beam equation reads

for segment 1 s



26 K. Popp

El pA

(E1), + (E1), « EI
(p/A)‘ s (pA)z‘ pA
\

A =~

(ED)ys (El)y¢ EI
(pA) = (pA) ,= pA
Wi \

lf (EI),,(pA_T,LS'

Fig. 6: Elevated guideway with different elements A) single span,
B) double span, C) double span frame.

(ED); w,""(g;,0) + (pA); wi(g;,t) = ﬁ F#(t) 8(e; - &5)

i=1,..., 8,

where ( )' and () denote spacial and time derivatives, respec-
tively, &( ) is the Dirac distribution, and Eiu characterizes the
distance where the force Fu(t) is acting on segment 1 . The

solution of (35) can be obtained regarding initial and boundary conditions

using modal expansion,

wi(gi,t) = jﬁ]LPij(Ei) zj(t) , i=1,...,8 . (36)
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Here, q:ij(ii) are normal modes and zj(t) generalized coordinates.

The normal modes show the following properties:
I) They are solution of the eigenvalue problem
P, ") =AMy (e) =00, N 4= wP(A/ET), (37)

where the eigenvalue A; has been introduced. Eq. (37)
yields the eigenfrequencies w; and the corresponding eigenmodes
Lpij(ii)
II) They fulfill the boundary conditions.
III) They are orthogonal with respect to the entire guideway element,

i 0 jik
(A); (&) ¢, (£.) d g = for (38)

i) i s
=10 M.= ¢ Mi. Jj=k
Jd iz Y

Utilizing these properties, from (35) follows the equation governing
the generalized coordinates zj(t) s

Z(t) + w2 2 (t) = g}fjﬁ oy (Bg,) FL8) (39)
which is subject to the initial conditions. In technical applications the
procedure is modified in the following way:
1)} A finite number f of modes is regarded only, Jj = 1,...,.,°f
2) Modal damping 2;j w; éj(t) is added to the right hand side of (39),
vhere Cj denotes the modal damping coefficient. Usually, from
measurement only z1 is known,thus, assumptions have to be made for

Cj s J F 2500e,f . Often ;j =, wj/wl is assumed for convenience.

3) Vector notation is used instead of (36), (39):

IS
—
ct
+
|
|N e
—
ot
—
+
|0
|
—
t
1}
=
™
e,
'l
—
)
ot
—
-
—
&=
-
~
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©=[Q...op, 1t z=1lz;,000, 2, 17 ,

(42)

M = diag (Mj), A = diag (2;J. wj) , 0 = diag (wjz), J= 1,0, f
As can be seen, the entire analysis boils down to the calculation of the
eigenfrequencies wj and the corresponding normal modes mij(gi)
Once these quantities are available, the setup of the guideway model
within the system bounds (step ii) can easily be performed composing
eqs. (40), (41) for those guideway elements which are coupled by the
vehicle. The remaining step iii) requires knowledge about the interactive

forces Fu(t) , cf. Chapter 3.

3.2. Modal analysis of beam structures

Prior to more general considerations the eigenfrequencies ws and
corresponding normal modes qﬁ of the single span element, see Fig. 6A),
shall be calculated. Here, the index 1 can be dropped.

The solution of the eigenvalue problem (37) reads

(13)

@(g) = C] cosh Ag/L + C. sinh AE/L + C, cos X £/L + C), sin A/ L,

2 3

or in equivalent vector notation,

p(e) =a’0e/m) e, (4k)
a(+) = [C(+) , 8(+), c(9), s(1" (u5)

T
(cs Cps Con T, (46)

cosh (+), S (+) = sinh (<), c(+)=cos(+), s(+)=sin(+),(LT)

[¢]
1}

c(+)

where some abbreviations have been introduced for convenience. The boun-

dary conditions are (0)=0 , "(0)=0 , (L) =0, ¢"(L) =0 |,
which yields C, =C, =C, = 0 and provides the frequency eguation
Ch sin A =0 . (48)

The nontrivial solution reads
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jnyb EI 5= 1,2,0... (49)

>
n
(]
=
-
€
N
1
—
E
|
e

introducing Ch =1 gives finally

Ot

;= sinjm , M A %2(5) dg = AL /2. (50)
The modal analysis of more complicated beam structures cannot be
performed analytically any more. One has to rely on the computer and thus

appropriate methods are required. From the various methods, see e.g.
Knothe22, only three shall be mentioned:

o) Transfer-matrix method (TMM), cf. e.g. Pestel, Leckie23,

8) Deformation method (DEM), cf. Kolou§ek2h, which is also known

as dynamic-stiffness method, cf. Clough, Penzienes,

y)  Finete-element method (FEM), cf. e.g. Gallagher26.
Here, the deformation method shall briefly be described, which leads to
the same results as the finite-element method after a linearization process.
The modal analysis can be carried out in five steps, which are the same
as in the finite-element approach.
Step 1: The guideway element is subdivided into s uniform beam
segments which are connected in nodes; global and local coordinates are
defined.
Step 2: A single beam segment is considered. On the left end (index 1) and
right end (index r) forces Q and moments M resulting from end
displacements w and end rotations ¢ are introduced, see Fig. 7. Nodal

loads and nodal deformations are arranged in vectors,
£= Mo 17 vel[g v, o w (51)
T Mo MoQ A 11" 'r )

Since the beam segment is assumed to be uniform and subjected to no loading
within the span, the associated mode shapes can be described by ({37)
resulting in the solution (4k4). Thus, the vectors f and v can be
expressed by p(g) = g?(AE/L)g and its derivatives, where the left end

(1) corresponds to & =0 and the right end (r) is reached for
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W wix,t) EI =const, oA =const

Fig. T: Boundary forces and deformations for a uniform beam segment.
£E=1L

£=E[-@'(0) , @"(0),¢" (L), ~p" W] =dDN) e , (52)

[}
«Q
|
-
—_
>
—
—
W
w
-

ve [0 , o), ¢w, wl’

Obviously both vectors f and v  can be expressed by the vector ¢

(46) and approriate matrices D(A) , g_l()\) . Eliminating ¢
yields
£=D(A) C(A) v=F() v (5k)
where
[ r o -r 1% FL R IR
S PR
-Fh/L F6/L F3/L FS/L
F(A) =B I , (55)
P/L O FJL° FL R /L
2 3 3 2 2 3
_—F3/L FS/L FL&/L F6/L_J
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Fo=-x (s -s) /v

F, == (Cx) s(x) =s(x) er)) /v,

F3=-A2( c(a) —e(d)) /N .,

Fiy = 22(s(0) s)) /N (56)
Fg = A(s(a) +s(a)) /N,

Fe = - A3 c(n) s(x) #s(a) c(r)) /N,

N = c(x) e(x) -1 .,

The matrix F (X) is called dynamic stiffness matrix of the beam
segment, because it expresses nodal loads in terms of nodal deformationms.
It depends on the frequency functions Fv = Fv(x) s V=1,00.,6
introduced by Kolougekzh.

Step 3: The entire guideway element comprises s segments and k
nods. Each segment is characterized by the following quantities,

A
A = 2w =L sz(QA/EU]( s

T
p; S (6) =8 e

G =5 v (57)
f. =F. v .

=1 -1

a; =& (A gi/Li) » Co=cOy), B =E() , is=1,.,s

The boundary conditions may allow n nodal deformations, called the
nodal degrees of freedom. They are described by n generalized
coordinates q, s vV = T40esy 1 . The following global quantities

(index g) are introduced

a=la,eiisa
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£g=dia.g(§‘i) , 1=1,...,8

The connection between v, , Yo & 4 is given by incidence

matrices Ii and lg , respectively, where the boundary and tran-

sition conditions are regarded,

qa s v.=I14a . (59)

V. 1.
-1 g B

Applying the principle of virtual work, § Vg =0 , yields

s
§v. =1 § V.T f. =1 § v.T F. v. =6v T F v =
g R T | . -i =1 1 £ g 8
1=1 1=1
(60)
T_ T
=8 I F 1 =0
L 5 gxi ’

vhere (57) - (59) has been used. Since §g is arbitrary, we receive

T -
I F (w) I =F =0 . 61
__g_g()_g_q F(w) g=0 (61)
Here, Eﬁw) denotes the dynamical stiffness matrix of the structure.

Eq. (61) represents an implicit eigenvalue problem.

The influence of additional springs and masses located in node p ,
see Fig. 8, can be characterized by the virtual work, W , of the
applied forces. If kp ’ cp denote the lateral and torsional
spring constant, and m s Jp the mass and moment of inertia,

respectively, then the total virtual work GWg is given by

k
W =-31 [6z_ (c_-w?2yJ + 8w (k. - om)w =
2 p=1[ Ty (ep - p) % ; ( o T m) 5 )
(62)
=-6q (K-uw)g

where the stiffness matrix ﬁz and inertia matrix M? of the appendages

have been introduced. Equating 6Vg = ng yields finally

[Flw) + K* - w2 M°] q = E (w)g=0 . (63)
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NODE
COORDINATE wp

p

Fig. 8: Characterization of additional springs and masses.

Here, the overall dynamic stiffness matrix F(w) has been introduced.
Step 4: The numerical solution of the implicit eigenvalue problem (63)

give the eigenfrequencies mj and the eigenvectors q_j, J = 1,...,f

Step 5: Backward computation according to the following scheme provide
the eigenfunctions (pij(i) ,

)‘ij = )\i(mj) =L, 1h/wj2 (QA/EI)i s

;i Tihiay o (64)
c..=C.. v.. , =C, (
=iy A NI S B ,
=T = o7 =
Pij T 25 %y T2 G Yy 0 Ry T (Aij g /L)

which completes the modal analysis by the deformation method.
The finite-element approach requires the same steps as the deformation
method. The FEM relations follow easily if the frequency functions Fv(k)

are expanded into a power series. The first two terms read,
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22

- 3 .y - - _ee vy

F1(” =2+ hzo" ’ Fhm 6+h20)‘ :
= By P L Y

F2()\) =h - oo M o FS(A) =- 12 -5, (65)
= 13_ - _ 156 1y

F3()\) =6 + 155 M o F6(l) 12 - 1552,

Substituting F in (55) by (65) results in the approximate dynamic

stiffness matrix F , which can be splitted into two parts,

F=kK-uM , (66)
v 12 6L 212 -61L by 12 21 -31° 131
6L 12 6 L =12 22 L 156 -13 L 54
_EI 2 2 _eAL| .2 2
£=3 2L° 6L 1% -6L|, Ms52l-3 L7 130 b LT -2 L.
-6 L -12 -6 L 12 13 L Sk -22 L 156

The stiffness matrix K and the inertia matrix M are identical with the
corresponding matrices in the FEM. Utilizing (66) instead of (55) in the

modal analysis results in

[E+K -2(H+¥) 1g=0 ,

(67)
= T .. - T .. .
K=1 dlag(g_i) ;g s M:;g dlag(Mi) ;g,l=1,...,s ,

which represents an explicit eigenvalue problem.

A comparison of DEM and FEM 1is given in Table 1

DEM FEM
Result exact approximate
Eigenvalue problem implicit explicit
Node number minimum large for high
accuracy

Table 1: Comparison of the deformation method DEM with
the finite-element method FEM
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In the DEM only the minimum node number is required, this allows it
to enter in competition with the FEM in applications.
As an example the results of the modal analysis for the double span

frame, cf. Fig. 6 C), are shown in Table 2.

SYMMETRIC £ = 12,13 Hz
we= 76,22 s
A= 3,926

£ = 39,33 Hz

\/\r"’_\/ w= 247,1 &'
A= 7,068

ANTIMETRIC, T-NODE FIXED £ = 9,46 Hz

/\ w= 59,42 ¢
P\\\\\-~____——”,/’ xl. 3,467

A 1,086

f = 33,12 Hz

ws= 208,1 s

A, =~ 6,487

X’- 2,031
ANTIMETRIC, T-NODE FREE fe 6,14 Hz

w = 38,55 §
A= 2,792
A,= 0,874

£ = 10,54 Hz
w= 66,25 8"
A = 3,660
A= 1,146

f = 33,18 Hz
w= 208,5 s
~\\____,/"'_—Q\\IN\\___—,/”’___‘~\ &a 2082
~ 2,034

L=20o (pa), = 2,310'5%; (D), = 0,910 N2}

L= 5,66 m  (pA) = 1,72510'58; (1), « 0,45 10%’

Table 2: Modal analysis of a double span frame.
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MODELING BY MULTIBODY SYSTEMS

Werner 0. Schiehlen

Institut B fiir Mechanik
Universitdt Stuttgart

Pfaffenwaldring 9, Stuttgart 80, F.R.G.

INTRODUCTION

For the investigation of vehicle handling and ride, due to frequencies
less than 50 Hz, the method of multibody systems is well qualified. The
derivation of equations of motion is discussed in general without any
specific application in mind. A complex automobile model is treated by

this method later on.

ELEMENTS OF MULTIBODY SYSTEMS

Multibody systems are characterized by rigid bodies with inertia, and
springs, dashpots, servomotors without inertia, Fig. 1. The bodies are
interconnected by rigid bearings and subject to additional applied for-

ces and torques by supports]’z.
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RIGID BODY

SPRING
DASHPOT

r'_'“ )

BEARING

T 777777777

Fig. 1. Multibody system
The position of a system of p bodies is given relative to an iner-

tial frame Xp» Ypo 2 by the 3xl-translation vector

I
r,=[r.r.r .]T i=1()p D)
i xi yi zid ° i
of the center of mass Ci and the 3x3-rotation tensor.
Si = Si(ﬂiysiin) ’ i= ](’)P > (2)

written down for each body, Fig. 2. The translation vector r. and the
rotation tensor Si characterize each body Ki by a corresponding body-
fixed frame xi, yi, z; . The rotation tensor Si depends on the three
generalized coordinates @, Bi’ Y5 and follows from the direction
cosine matrix relating the inertial frame to each body-fixed frame. The
rigid body rotations are comprehensively presented in gyro dynamics,

3
see e.g. Magnus

Fig. 2. Position of body I(i
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In vehicle dynamics some additional frames are very convenient for
the mathematical description of the path, the reference position and
local bearing or support axes, Fig. 3. They are summarized in Table 1.
Typical transformations between the frames will be now presented. From the
path given in the inertial frame it follows the translation vector
I"IR = R(u) (3)

where the 3x1-path trajectory vector R 1is a function of the path length

u. Then, the remaining vehicle translation

R'Ri ["i Y zi]T (4)

depends on the displacement Xis Vg0 25 The rotation tensor of the path

frame follows also from the path trajectory,

Sip = [t n b] , (5)

where the 3xl-tangential vector

d

d
t= % R(u) , |E; Rw)| =1 , (6)
the 3xl-normal vector
1 d d
no== o t(w) , ’EE t(w)] = « 7N

and the 3xl-binormal vector
b=txn (8)

are used. The rotation tensor of the reference frame introduces the

superelevation o of the tangential plane with respect to the path frame,
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Path

Fig. 3. Additional frames in vehicle dynamics

Frame

Initial point

Direction of axes

Inertial frame

1= {OI;xI,yI,zI}

o

fixed in space

Xps Vg horizontal plane

z; in gravity direction

Path frame

P = {OP;XP,YP,ZP}

0P moving on

path with given

X, 1in velocity direction

Yp normal, to the right

i= {Oi;xi’yi’zi}

center of mass

velocity z, binormal to path
Reference frame Xp = %p
R = {OR;XR’yR’ZR} 0R = OP yg 1In tangential plane
Zp normal to tang. plane
Body-fixed frame 0, =¢C; X Yoo 2 principal axes

if possible

Local frame

i = {0.3;%x.,y.,2.
i J,J,yJ,J}

0j fixed in
bearing or

support

X, yj, zj according to

]
bearing or support axes

Table 1. Frames for modeling of vehicle systems
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1 0 0

SPR = | 0 cosa =-sina| . (9)

0 sina cosa

Then, the remaining small vehicle rotations are characterized by the

displacement ¢i, 6.

i wi’ resulting in the rotation tensor

1 -wi 91
sRi = wi 1 -¢i . (10)
-61 ¢i 1

. . . . . 4
Such transformations of frames are also widely used in aircraft dynamics .

KINEMATICS OF MULTIBODY SYSTEMS

Vehicles are holonomic multibody systems, i.e. their internal motions
are constrained by bearings. Further, most of the supports result also in
holonomic constraints, e.g. a wheelset of railway vehicles on a rigid

track. Therefore, only holonomic systems are treated.

A holonomic system of p bodies and q holonomic, rheonomic con-

straints by rigid bearings holds only f degrees of freedom:
f = 6p-q. (in)

Then, the position of the system can be uniquely described by f general-
ized coordinates summarized in a fxl-position vector y(t). Position,

velocity and acceleration of the system read now

r. = r.(y,t) , 8, = S;(bn,0)  , i o= 1()p , (©12)
vi = Iy rVyos o ey = gy ey, (13)
- _ (Y . . Y _ .o L3 s

Vi o= gy 2Ry vV w0 = Ty Ky ey (14)
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where the 3xf-Jacobian matrices

ari Bsi
JTi(y:t) za_y' ’ JRi(Y.t) =a—y (15)

with the infinitesimal 3xl-rotation vector S;» the 3xf-acceleration

matrices
3. ¥ v,
° Tl 1
Kpi (99,8) = —3o—+ 2 5=
. (16)
v50) = a(JRiy) . aJRi . awi
Ki9¥s 3y 3y 3y
and the 3xl-vectors
Bri asi
Vi(}",t) = _aT ’ wi(}’,t) = ’W ’ (17)
. azri N aZsi
Vi(Y:t) = 3!‘,2 ’ w(y,t) = Btz (18)

are introduced. For scleronomic constraints the vectors (17) and (18)

vanish.

For special motions, e.g. a circular path, it may be more convenient
to use the reference frame instead of the inertial frame. This means that
the absolute velocities and accelerations are divided into reference and

relative velocities and accelerations, respectively.

KINETICS OF MULTIBODY SYSTEMS

According to the free body diagram Newton's and Euler's equations

have to vbe applied to each body of the system:

mv. = €.+ 6%, i = 1(p (19)

1.0. + &.l.w. = 1°. +1 . (20)
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The inertia is represented by the mass m, and the inertia tensor Ii
relative to the inertial frame with respect to the center of mass Ci.
From the time—invariant inertia tensor iIi in the body-fixed frame

it follows

I, = §, .I.S. . (21)

The external forces and torques in (19) and (20) are composed by
applied forces fi_ and torques li. due to springs, dashpots, servo-
motors and weight and by constraint forces f?i and torques lri due to
bearings and supports. The applied forces and torques, repectively, may

have proportional, differential and/or integral behavior.

The Proportional forces (P-forces) are characterized by the

system's position:

e _ e
fi = fi (ri, Si’ t) . (22)

E.g., conservative spring and weight forces as well as purely time-

varying servomotor forces are P-forces. The Proportional-Differential

forces (PD-forces) depend on the position and the velocity:

e _ e
fi = fi (ri, Si, Vis Wy t) . 23)
E.g., parallel spring-dashpot configurations result in PD-forces. The

Proportional-Integral forces (PI-forces) are a function of the position,

the velocity and integrals of position:

£.€
1

e
fi (ri’ Si’ Vi’ wi’ w, t) ,

(24)

( )
w w r. S. V. w. w t
1’ 1’ 1’ 1’ >

Whete the pxl vector w desc]:ibes tlle pOSl’tl‘OIl l‘IltegIals. E.g., Serl'al

spring-dashpot configurations and many servomotors yield PI-forces.
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Constraint forces and torques can be characterized by the qxl-vector

g of the generalized constraint forces:

r

£, =F,(r;, S t)g , 1, = Li(ri, S;» t)g (25)

e 1

where the 3xq-matrices Fi’ Li describe the distribution of the general-

ized constraint forces to each body.

Newton's equation (19) 1is valid only in the inertial frame. Euler's
equation (20) yields in the inertial frame as well as in the correspon-
ding body-fixed frame. However, in the reference frame both equations have

. 5
to be extended by the reference motion .

EQUATIONS OF MOTION

Multibody systems may be ordinary or general depending on the con-
straints and the applied forces. Since in kinematics only holonomic con-

straints have been discussed, the applied forces remain as criterium.

A holonomic system with PD-forces results in an ordinary multibody
system. From (12), (13), (14), (19), (20), (23), (25) the Newton-Euler-

equations are summarized:

M(y, £)¥(t) + k(y,¥,t) =q°(y,¥,t) + Qly,t)g(t) , (26)
[ ) [ e ] r
o Jry £ Fl1
m e
T f F
p 1p P P
— __e —
M= q = Q = . (27)
e
g 1 L
e
1J 1 L
|l P Rp| P | | P
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Here M 1is a 6pxf-inertia matrix, k 1is a 6pxl-vector of gyro and
centrifugal forces, ae is a 6pxl-vector of the applied forces and

Q 1is a 6pxq-distribution matrix of the constraint forces. The equation
of motion follows from (26) according to d'Alembert's principle by pre-

multiplication with the global Jacobian matrix of the system:
7= [JT...JT JT...JT]T. (28)
P
The result is a fxl-vector differential equation of second order,

M(y,0)¥(t) + k(y,¥,t) = q(y,¥,t) (29)
where the constraint forces are completely eliminated.
The fxf-inertia matrix

~Tr .. —_
M(y,t) = J [dlag m ... mp I] ees Ip] J (30)

1
is symmetric and usually positive definit, the fxl-vector k describes
the generalized gyro and centrifugal forces and the fxl-vector q 1is the
vector of the generalized applied forces wellknown from Lagrange's

equations.

All nonordinary systems are general multibody systems, particularly

systems with PI-forces. Extending (26) by (24) the following equations

are obtained:
M(y,t)¥ + k(y,¥,t) = q(y,¥,w,t) (31)
w o= wy,y,w,t) . (32)

For many vehicle applications the equations of motion can be linearized.
Then, it follows from (31), (32) for general multibody systems with

time-invariant coefficient matrices:

My + Py + Qy + Rw = h(t) , (33)
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WHWe+Yy+ YYo= k(t) . (34)

There are obtained the fxf-matrices M, P, Q, the fxp-matrix R, the
pxp-matrix W, the pxf-matrices Y, ?, the fxl-vector h(t) and the
pxl-vector k(t). Equations (33), (34) are often written in state space

representation,
X =Ax + b(t) (35)

where the (2f+p)xl-state vector
T T T4 T
X = [y y w ] (36)

is introduced and the system matrix A and the excitation vector b(t)

have the corresponding dimensions.

COMPUTERIZED DERIVATION OF EQUATIONS OF MOTION
The presented method uses the following input variables:

¥, T (y,t), S.(y,t), m;, I., f., 1. 37
These variables have to be prepared by the engineer dealing with a
specific application. Then, during the derivation of the equations of

motion the following operations have to be performed:

Summation of vectors and matrices,
multiplication of vectors and matrices,
differentiation of vectors and matrices,
simplification of trigonometrical expressions,

linearization of expressions.

All these operations are often done by the engineer but they can
also be done by the computer. However, a symbolical execution of these
operations is very desirable to obtain symbolical equations saving com-

putation time. Using the index coding tor symbolic manipulations a
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program called NEWEUL is available, see Kreuzet6.

For the memorization and execution of a symbolical expression given by
summed terms an array of integers is used. The positive integers are de-
fined as the indices of the array of variables while the negative inte-
gers represent the indices of the array of functions. The sign of a term
is given by the sign of its numerical factor and all elements of a term
(numerical factor, variables and functions) are automatically multiplied.
Vectors and matrices can be formed using symbolical expressions as matrix
elements. The programming of vector and matrix operations yields to the
complete routine for the equations of motion of a multibody system where
simplifications due to trigonometric and nonlinear expressions are auto-
matically executed. The result may be obtained as a printed listing or

as package of punch cards for the numerical solution of the equations.

A realistic example for the computerized derivation of equations of

motion is presented in the author's lecture "Complex Nonlinear Vehicles".
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MATHEMATICAL METHODS IN VEHICLE DYNAMICS

Peter C. Miller
Department of Safety Control Engineering
University of Wuppertal

POB 100127, D-5600 Wuppertal 1, FRG

1 INTRODUCTION

The dynamic analysis of deterministic and random vehicle vibrations
and the consequences especially to passenger comfort requires an integra-
ted study of three subproblems:

(i) modeling and characterization of guideway roughness,
(ii) prediction of vehicle motion for traversal of a given
guideway,
(iii) prediction or characterization of passenger response to
vibration exposure.
Here we assume the common causality of the three subproblems: guideway
roughness causes vehicle motion and vehicle motion causes passenger res-
ponse. Therefore, the complete analysis consists of a stepwise characteri-
zation of each subproblem by a suitable mathematical model where the input
to problems (ii) and (iii) are given by the results of problems (i) and
(ii), respectively, and a subsequent manipulation of these mathematical

methods to obtain information about dynamical behaviour of vehicles and
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about ride quality.

The modeling of problems (i) and (ii) is presented in other parts of
this book by Popp and Schiehlen, Therefore we assume, that the vehicle
dynamics are described by a n~dimensional first-order vector differential

equation
Xx(t) = A x(t) + £(x(t)) + B E(t) (1.1)

where x denotes a vector of vehicle state variables, the n x n - matrix A
characterizes the linear dynamical behaviour while the vector f(x) has
regard to nonlinearities in the system; the n x r - input-matrix B des-
cribes how the guideway excitations £(t) influence the dynamical behavi-
our of the vehicle. The excitation process £(t) of a multi-axle vehicle
consists of a composition of multiple scalar excitation processes ci(t)
representing the guideway roughness at a single contact between vehicle
and guideway. Denoting the distance between the front axle and the axle i
by li and the vehicle's velocity by v than the processes ci(t) are usually

generated by one time function g{(t) with different time delays

1.
£t = —=, i=1, .., r, (1.2)
1 v
Ci(t) = g(t - ti), 0= t1 < t2 < 4ee < tr, (1.3)
r
B E£(t) = Lb. g, (t). (1.4)
- j=r1i 71

In earlier times this excitation function {(t) was assumed sinusoidally,
g(t) = e sin wt, (1.5)

while recently {(t) is modeled by a stochastic process, e.g. by a statio-
nary Gaussian coloured noise process which can be obtained from a Gaussian

white noise process w(t) by means of a shape filter

te) = h' v,
vit) = F v(t) + g w(t), (1.6)
ReA (F) < 0, w(t) ~ N(o,q,).

For details compare the article of Popp in this book.

Equations (1,1 - 1.6) represent an abstract description of the prob-



Mathematical Methods in Vehicle Dynamics 53

lems (i) and (ii). Additionally we also need a mathematical model charac-
terizing the passenger response to vehicle motions. This problem will be
discussed in more detail in section 5 where it is shown that the passen-
ger response may be characterized by a perception variable ;k(t) which is

connected to a vehicle vibration variable

w, (t) =

T
; x(t) +df E(t) (1.7)

T
Sk
(usually wk(t) means the lateral or vertical acceleration measured on the
vehicle floorboard or on the passenger/seat interface) by a perception

shape filter
- T

Wk(t) = aEkY-k '
o (1.8)
v (t) = E v (£) +gw (t) , ReA(F) <0

The complete set of equations (1.1 - 1.8) describes mathematically
the problems (i), (ii) and (iii) in the time domain. By these equations
the analysis of vehicle vibrations and of ride quality can be performed
in the time domain by suitable mathematical methods which will be discus-
sed later on. Another type of mathematical description of the problems
stems from classical measurement techniques and uses frequency domain
quantities such as frequency response or power spectral densities (PSD).
For example, the stochastic excitation process (t) may be characterised

by a measured PSD
Sc(w) ’ (1.9)

or the passenger frequency response Wk(w) is related to the vehicle res-

ponse wk(w) by a frequency relation

Wk(w) = q fk(w) wk(w) (1.10)

in the case of sinusoidal excitation, and by a PSD-relation

S | (w) (1.11)

S (w) = a“ |t (w uk

wk
in the case of Gaussian stochastic excitation. By this ‘requency domain
characterization of the problems (i) and (iii) we globally have a mixed

problem formulation because problem (ii) 1s still described by (1.1) in
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the time domain. Therefore, we have to decide if the global problem is
solved in the time domain introducing shape filters (1.6, 1.8) from (1.9,
1.11) or if the global problem is manipulated in frequency domain intro-
ducing a frequency response description of (1.1). Also this frequency
domain approach will be discussed in the following sections.

After formulating the basic equations characterizing vehicle vibra-
tions and passenger response we can nrow look for the mathematical methods
to handle these equations for obtaining results such as vibration ampli-
tudes of the vehicle, accelerations of the passenger seat or of the vehi-
cle body, dynamic wheel loads etc.This will Le done in the next sections.
In section 2 simulation techniques are shortly mentioned, section 3 deals
with the calculation of sinuscidal and stochastic responsesin the linear
case (i.e. f(x) in (1.1) is assumed to be neglected); time domain as well
as frequency domain techniques are presented. In section 4 the nonlinear
problem is solved by harmonical and statistical linearization methods. At
least in section 5 the evaluation of human exposure to whole-body vibra-
tions is discussed on the basic of the standards ISO 2631 and VDI 2057
leading to the specification of passenger response by (1.7 - 1.,8)., A col-

lection of references for further study closes the text.

2 SIMULATION

The gouverning equations of vehicle dynamics are ordinary differen-
tial equations. Therefore, simulations of vehicle dynamics means the inte-
gration of the equations (1.1) where the input £(t) of the guideway rough-
ness has to be given by suitable measurement data. The output of the simu-
lation process may be any variable interesting for vehicle vibration such
as (1.7) or a perception variable for passenger comfort like (1.8). In
this later case simultaneously with (1.1) the equations (1.8) have to be
integrated. The interesting quantities of the simulation are deterministic
or stochastic time functions dependent on the character of {(t). But usu-
ally not only the time history is of interest but also some special data
such as frequency spectrum, amplitudes, mean values, variances etc. There-

fore, besides of inteqration techniques some signal processing techniques
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are required to obtain suitable results by simulation.

The integration techniques depend on the kind of computer. By the
aid of analogue computer the integration is performed by hardware while
using a digital computer the integration routines follow from numerical
mathematics as a software package. Hybrid simulation techniques and digi-
tal simulation by parallel- and multi-processor systems try to combine
the advantages of analogue and of digital computer systems: the fast inte-
gration time of analogue computer and the flexibility and accuracy of the
digital computer. We would not like to discuss all those simulation tech-
niques in more detail; therefore, it is refered to the literature. By
Schmidt L an introduction is given to this field; by Korn et al.2'3 ana-
logue/hybrid and digital continuous-system simulations are considered.
Numerical integration methods for digital simulations are described by
Lapidus and Seinfeld4 or by Grigorieffs. A comparison of different inte-
gration routines applied to vehicle dynamics is presented by FederlG.

Also the wide field of signal processing techniques including the
preparation of measurements for digital signal analysis, the discrete
Fourier transform (DFT) and the fast Fourier transform (FFT) for calcula-
tion of frequencies, Fourier amplitudes and power spectral densities, the
procedures determining mean values and variances etc. are not dealt with

in this text. Related textbooks are references 7-12.

3 LINEAR SYSTEM ANALYSIS

In many applications of vehicle dynamics the effects of nonlineari-
ties are neglected. For example, designing an automobile suspension sys-
tem often a linear dynamic model is used neglecting the effects of pro-
gressive springs or nonlinear damping; only in a more detailed study non-
linearities are considered. Also the problem of designing a control sys-
tem for a magnetically levitated vehicle is usually solved by a linear
approach. Therefore, in a first essential step mathematical methods are
discussed for linear models of vehicle dynamics. Instead of (1.1) a linear

description
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. r
= T t-t, 3.1
x(t) = A x(t) +i=11—)-i o 1) (3.1)
is assumed and the excitation is modeled with respect to (1.2 - 1.4).

3.1 Stability

It is well known13 how the stability behaviour of (3.1) can be exa-
mined. If the inputs C(t-ti) are bounded then the system response will be
also bounded if and only if the matrix A is asymptotically stable, i.e.
all eigenvalues Xi, i=1,..., n, of A have negative real parts. This
stability test can be performed without explicit calculation of the eigen-
values by criteria of Hurwitz or Routh. But if the number n is larger than
5 or 6, then it is more convenient to calculate numerically the eigenval-

ues on a digital computer by a stable eigenvalue subroutine14'15.

3.2 Sinusoidal Excitation (Frequency Response Analysis)

Although today the excitation process [ (t) is usually assumed to be
stochastically according to (1.6) we have a short look to the determinis-

tic case of a sinusoidal excitation (1.5). The the inhomogeneous part of

(3.1) is rewritten 13,16 as
r r
Lb, g(t-t,) = I b, e sinw(t-t,) = b coswt + b_ sinwt (3.2)
L, i . i i — —s
i=1 i=1
=b elwt + E e-lwt (3.3)
where
r r
b =-e I b, sinwt, , b =-e 5y b, coswt, ,
—C j=171 —s jop 3 i

(3.4)
(b -1ib).
- -
The real trigonometric description (3.2) is represented in (3.3) in a
complex notation for a convenient computation later on. In an asymptoti-
cally stable system (3.1) the steady-state solution of (3.1) is charac-

terised in a similar manner by

x(t) = gccoswt + gssinwt =ge + § e , (3.5)

9. -~ tg), (3.6)

lte]
N
N =
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where the complex freguency response vector g = g{w) is derived from

(3.7)

el
€
"
m
€
o

1

F(w) = (iwl - &) (3.8)

is the n X n - frequency response matrix of the system. Each state vari-
able xi(t), i=1, ..., n, of the harmonic response (3.5) shows an ampli-

tude a; and a phase angle wi:

xi(t) =a; cos{wt - wi), (3.9)
g .
a, = g2, + gz_ ’ tan ¢, = =1 .
i ci si i 9ei

Obviously, the frequency response is completely characterized by the com-
plex vector g(w) (3.7).
The steady-state response of a vehicle vibration variable (1.7) or of

a perception variable (1.8) is determined in the same way:

wk(t) = wccoswt + wss1nwt = awkcos(wt - wwk)'
- (3.10)
wk(t) = wccoswt + wSSant = awﬁcos(wt - wWE)'
where
=t } & . sinwt =g +e I a 3.11
Yo TG 9 T e Ly dysinety s w o =g g e Iodgcoset, (3.11)
_ ey T . -1 .
(wC i ws) =a Ek (iwI Ek) 9 (wc 1.ws) (3.12)

. . T _ =k . .
(dki is defined by gk £(t) = i£1 dkic(t ti)). Comparing (3.12) with
(1,10) the complex frequency response function relating an objective va-

riable to a subjective perception variable is given by

£ () = ho (iwl - F, )" (3.13)

1
k N =X %o
The main numerical problem of this classical vibration analysis is
the computation of the frequency response vector (3.7) If the system matrix
A depend itself by the excitation frequency w (that may arise in railway
problems considering lateral motions) then g(w) is determined by solving

the algebraic complex linear equation
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(iwI - A) glw) =D (3.14)

for every frequency w of interest, Suitable computer programs are avail-
17

able” . If however the matrix A is independent on w (that is the usual

case) a more efficient algorithm is applicable:

@ = F —t— x. (y b (3.15)

g j=1 iw-)\j =5 4y = '
Here, Xj denotes the eigenvalues of A ( we assume that the eigenvalues are
different) and Ej’ Xj represent the corresponding right and left eigenvec-
tors. Although in a first step the complete eigenvalue/eigenvector-problem

14,15 : . .
ol , the total computation time is reduced to about 10%

has to be solved
of the time algorithm (3.14) if the frequency response is required in a

large frequency region.

3.3 Stochastic Excitation (PSD Analysis, Covariance Analysis)

A more realistic excitation of vehicles is represented by a Gaussian
stochastic process than by a harmonic time function. In a part of this
book by Popp stochastic models for the guideway roughness are discussed.
In the following we assume that the excitation gZ(t) at a single contact of
the vehicle with its environment (guideway, but also stochastic influences
of cross-wind or other stochastic effects) is characterized either by a
(measured) power spectral density (PSD) Sc(w) (1.9) or by a shape filter
(1.6).

It should be mentioned that the introduction of a shape filter is
only easily done in relatively simple cases if the dimension of the filter
can be chosen very low. In general, e.g. if a power spectral density mat-
rix S(w) of a multi-dimensional coloured noise process is given by mea-
surements, then the determination of an appropriate shape filter may be
difficult. In this case a first agorithm for a spectral factorization of
S(w) = H(w) g?(—w) and a second algorithm of realizing the frequency res-
ponse matrix H(w) by a shape-filter-matrix-triple are required. Systematic

18,1
$19 and more recently by

solutions of these problems are described in
20 .
Gofmann~ . Therefore, even for more complicated stochastic processes both

representations, PSD as well as shape filter, are assumed to be available.
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In the following we shall describe two methods to analyse the sto-
chastic response of vehicle systems to stochastic excitations. These two
methods are the power spectral density analysis and the covariance analy-
sis. The first method is performed in the frequency domain while the se-
cond method is a time domain approach. The objective of both methods con-
sists in the determination of the mean values and the variances of inter-
esting vibration and perception variables.

Usually the mathematical model of the vehicle dynamics is represented
such that x(t) = O is an equilibrium position of the system without exci-
tation. As the stochastic excitation is assumed to have vanishing mean

value,

E{Egmw} =0, (3.16)
it follows immediately

E {x({t)} =0. (3.17)

Therefore, in the following we are essentially interested in calculating
the variances
2 2

2 2
ox = E {wk(t)} r O = E {wk(t)} (3.18)

of the vibration and the perception variables (1.7) and (1.8).

3.3.1 Power Spectral Density Analysis

The .basis of the PSD analysis are the fundamental relations

S, = E@ B S, BE () (3.19)
and

T [+
P = E {x(t) x (v)} -_]ng(w) dw (3.20)

The PSD matrix §x(w) of the stationary vibration response x(t) is obtained
from the PSD matrix §£(w) of the stationary stochastic excitation g(t) by
multiplying this matrix from left by the frequeney response matrix and
from right by the conjugate transposed frequency response matrix. While

the PSD gives information about the density of the frequency spectrum in
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the stationary stochastic signal, in technical applications the variances,
or more general the covariance matrix Ex' is essential. The variances
allow statements about the probability of the vibration amplitudes to re-
main under certain bounds. For example, from the theory of Gaussian sto-

chastic processes well known confidence intervals are

Pr[‘wk(t)[ < owk] = 0,6827 £ 68,27 %,

Pr[|wk(t)| < 20,1 =0,9545 2 95,455 , (3.21)

Pr[lwk(t)| <30,1=0,9973 299,73 % .

The relation (3.20) is a special case of the inverse Fourier transform of
the PSD to obtain correlation functions (for details compare chapter 9 in
Mﬁller-Schiehlenlz).

Applying (3.19) and (3.20) to the analysis of vehicle dynamics the
variances (3.18) have to be determined. The PSD matrix §£ of the excitat-

ion process follows from (1.9) by

- - )
Sgw) = [sij(w)] ;o Syyw) =e 3T s W (3.22)

because of the time-~delayed inputs. From (3,19) and (1.7) the PSD of wk(t)

-iw(ti -t

is represented by

T T T _T
S = [g Fw B+ dls (B F(-wg +4] (3.23)
implying
2
Ok = faswk(w) dw . (3.24)

Corresponding to (1,11) and (3.13) it is also obtained

1

2. T . - ~
Sy (W) =« 1gk(1m£ - F) Wl s W =l |° s (w) , (3.25)

[+ 4]

2
Ok -_f Sk (W) dw . (3.26)

The evaluation of (3.24) and (3.26) reaquires therefore the integrat-
ion of the PSD over a theoretically infinite interval. Because of the de-
creasing of the PSD with increasing freguency and because of the property
of an even function we evaluate the approximations

2 2?1 2 2?1' ) od 3.27
gwk =1 A ka(w) dw , GWR w2 A SWR(M dw (3.27)
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where wl will be a suitable upper bound. Nevertheless, the integration
(e.g. by Simpson's rule) needs many points of support, and that implies
the determination of the PSD's (3,23) and (3.25) for many points wi.
Here we can apply again the numerical methods (3.14) or (3.15). However,
the numerical evaluation of the power spectral density analysis is labo-

rious.

3.3.2 Covariance Analysis

In contrast to the PSD analysis the time domain covariance analysis
is more suitable to determine the variances, This method is a result of
the good experience and the good numerical know-how of the Kalman-Bucy
filter theory in stochastic dynamical systems. The main advantage con-
sists in the direct computation of the covariance matrix Ex by the alge-
braic Liapunov matrix equation without calculating PSD's. E.g. for a prob-
lem with one contact point, B §(t) = glc(t), the procedure of covariance
analysis is performed using the shape filter (1.6) of the vehicle excitat-
ion, the linear equation (3.1) of vehicle dynamics, apd the shape filter

(1.8) of human perception resulting in a Liapunov matrix equation

T
F o o F o o
b h" A o re+p| B R A o=+
T T T T
% % D % & K G Y b s K
T
9,99 90
+ o oo |=0. (3.28)
o oo

The matrix P includes all covariances of the shape filters as well as of

the system response:

T T
B o EBv B
T

p=|®B, B B |- (3.29)

3
g
7[_’!1
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Hence, the variances (3.18) of the vibration variable wk(t) and of the
perception variable Wk(t) follows as

2 T

T

=]

2
Ok TS RSt g & ByR t dy R B h (3.30)
2 2. T
Ogg =% b Bphy . (3.31)

; . . , 13,16,21,22
The covariance analysis was suggested in a series of papers .

The key of this method is the Liapunov matrix equation (3.28) and its nu-
merical solution. That is effectively implemented by algorithms of Smith23,
Bartels-Stewart24 or otherszs. The algorithms are much faster than the
computation by the PSD analysiszo.

The covariance analysis was generalized to vehicle problems with suc-
sessive contact point526. Equation (3.28) has to be modified by some addi-
tional terms. E.g. for a problem with two contact points, gg(t) = ch(t) +
+ ggg(t-tz), the covariance matrix P of the global system response is ob-

tained by the following Liapunov matrix equation

— 7] F T T T
F o ° o Py Bt Bt B
T T
S F o ° Boa1 E-v —P-xv2 Ekv2
T T T *
b,h bh 2 0 B B B By
T T T
9942 g9h g F Bevi w2 Bix L2
_ - -
T T T T
Bv —21 P-xvl —P-kvl E ° 2 e
T T
Boor B B B2 e £ 2 2
+
T T T
ngl Exv2 4 ka -—1£ P-Zb- A e
T T T
P P
Bt Bz Bae B[ &TaR %% & K
g T =
5g e— 297 0 )
T Flt, T TT
‘aq, e 99 998 © =0 (3.32)
o s o o
(o] (o] (o] 0
B = = = =




Mathematical Methods in Vehicle Dynamics 63

where S results from

AS-SFE=e¢"2ph’ - phle? . (3.33)
The interesting variances satisfy the relations

Tk = Sk By G g Bh b 2oel R b e nTl@g vas) B+

+2d4 .4 P Ih, (3.34)

Ot = a2 g: B, Ek (3.35)
While (3.35) is formally identical with (3.31) the computation of oik

additionally includes the effects of the second contact point.

Although the writing of above equations seems to be extensive, the
solution is evaluated by the above-metioned algorithms quite fast. Since
the variances are the essential results, the PSD method goes a detour
while the covariance analysis directly determines the desired values by
well-established, numerically subroutines of linear algebra.

The time-domain. analysis of vehicle systems with successive contact
points was firstly discussed27 in the case of white noise excitation. A
coloured noise example was published considering a four-degree-of-free-
dom-model of the carbody and axles vibrations of an automobileze. There it
was shown that the computation including the time-delay between front and
rear excitation is necessary to get correct results; neglecting the time-
delay leads to erreneous results especially near the seat position of the
car.

It should be mentioned that an essential advantage of the covariance
analysis, compared with PSD analysis, consists in its generalization to

instationary processes. But this field will not be presented here.

4 NONLINEAR SYSTEM ANALYSIS

Exact solutions of nonlinear differential equations are quite rare.
In general, there does not exist systematic methods to analyse exactly the
behaviocur of nonlinear dynamical systems. Therefore, approximation tech-

niques are usually applied to obtain approximate solutions describing the
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unknown exact solution more or less correct, Most effective approximation
methods are certain linearization techniques. Taylor series expansion is
appiicable if the nonlinearities are small; then usually instead of the
nonlinear system a linearized system is discussed using the methods of
sectiocn 3. More interesting are the techniques of quasilinearization:
harmonic linearization in the case of periodic solutions, and statistical
linearization in the case of stochastic excitations. These two methods
will be discussed because of their importance in vehicle dynamics., E.g.
rail vehicle hunting was investigatedzg—33 by the method of harmonic line-
arization. The method of statistical linearization was successfully
applied to rail vehicle analysis34 and to the analysis of automobiles35.

Therefore, for the analysis of nonlinear vehicle dynamics both quasiline-

arization techniques have to be introduced.

4,1 Harmonic Linearization

With respect to (1.1), (1.4), (1.5) and (3.2) we assume that the ve-

hicle dynamics are described by the nonlinear vector differential equation
%(t) = A x(t) + £(x(t)) + b coswt + b_sinwt . (4.1)
= - = == - =s

If the harmonic excitation drives the system we will look for a periodic
solution x(t) = x(t+T) with the same period T = %E— as the excitation
period. In the case of a vanishing excitation (gc =0, Es = 0) we will
also look for a periodic solution x(t) = x(t+T) ("limit cycle") where now
the period T = %} is unknown and has to be determined. Both problems
arise in vehicle dynamics: the first one is typical for an automobile
excitation by a harmonically waved road while the second one characterizes
rail vehicle hunting.

The unknown periodic solution x(t) is approximated by a harmonic

vector function with a shift term:
|
x = = + + i . .
x(t) x_(t) 75 X x _coswt + x _sinwt (4.2)

The constant vectors ¥ , ¥ and x_, and the frequency w if necessary, are
-0’ =c s
unknown and have to be determined. It is remarked that for odd nonlineari-

ties,
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f(x) = -£(-x), (4.3)

the shift term vanishes, X, = O. The approximation technique consists in
approximating the nonlinearity by a linear vector function with respect to

(4.2),

fx(t)) mEx(t) : e(t) = £ix_(8)) - Ex (t), (4.4
such that the mean squared approximation error e(t) is minimized:

jrg?(t) e(t)dt - minimum. (4.5)

° 5,

From (4.5) the gain matrix Eh is determined dependent on the unknown vec-

tors x , x , x_ and the frequency w:
o' —<' =s

T ‘fT T
E‘hfic_a(t) x_(t) = J £(x_(£)) x_(t)dt. (4.6)
Usually the solution Eh of (4.6) is non-unique; that allows to choose a

proper solution (i.e. a solution which allows easy computation):

o= Eh(zo, X o Xi w) . (4.7)

By (4.4) we obtain an equivalent linear system
x(t) = [A+ Eh] x(t) + b _coswt + b_sinut (4.8)

instead of (4.1). This is the key for the approximation. In the next step

it is required that the approximation (4.2) satisfies (4.8):

-wx sinwt + wx coswt = (4.9)
—C ~s

1 . ;
= + —= + + + + .
[A F ]( Q-x X coswt X sinwt) b coswt b sin wt

Comparing the coefficients of the constant term, the sine- and cosine-

functions nonlinear equations for the unknowns 50, §c’ x are derived:
]

[§+§h(§o, X v X i ‘”)]50 =0, (4.10a)
w‘)SS - [_+ Eh(EOI i(-cl ')‘(S; w)]?‘(‘C = EC’ (4-10b)
—ux - A+ E (x ), xox g w]x = (4.10c)

b
—s =s
The equations (4.10) determine the approximate solution §a(t). But the

evaluation of this vector function requires the numerical solution of
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(4,10}, That can be done by a Newton-Raphson- or by a Fletcher-Powell-

, 36,37 . . .
algorithm™ '~ ', Two different cases have to be considered as mentioned
above, If (4.1) represents an inhomogeneous system, i.e. the vehicle dy-
namics are driven by a harmonic excitation, then(4.10) is inhomogeneous,
too, and the frequency w is known. Here, (4.10a-c) consists of three non-
linear vector equations for the three unknown vectors x , x , x . In the

o' =’ =s
second case of a limit cycle, i.e. there exists a periodic solution with-

out a harmonic excitation, the equations (4.10a-c) are homogeneous. To ob-

tain a nontrivial solution the frequency has to be determined such that

Fo(x 0 X 0 X_i w))] = o. (4.11)

det[iwI - (A +

It should be mentioned that from a theoretical point of view the accu-
racy of the approximation generally cannot be estimated. In very rare cases
the method may fail38. Nevertheless, in practice the harmonic linearization

technique is successfully applied.

4,2 Statistical Linearization

The method of statistical linearization is applied to the nonlinear

system
X(t) = A x(t) + £(x(t)) + B £(¢) (4.12)

where £(t) is a stationary Gaussian stochastic process. The method is de-
veloped in a similar manner as the method of harmonic linearization. That
means that the nonlinearity is approximated by a linear vector function

with respect to an approximate solution

x(t) ~ §a(t) =X + §st(t) (4.13)

where 50 is a constant vector (mean value of xa) and xst(t) denotes a
stationary Gaussian stochastic process with vanishing mean value and co-

variance matrix

P =E {x_(t) x' ()} : (4.14)
—X —st -st
Xy mE +F x i e (8] =f(x +x (8))-f - gstgst_(t).(4.15)

The mean vector fo and the equivalent gain matrix Est are determined such
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that the expectation of the squared error is minimized:

minimum
£ F
o' -st

T
E {_e_st(t) gst(t)) -> . (4.16)

That leads to the following results:

£,=E (%, B) = E{f(x +x_ (tN}, (4.17)
T -1
Foo = Fo B =E{f(x +x (8) x (6)}P " . (4.18)

It has to be mentioned that the expectation values has to be evaluated

with respect to the process §St(t), i,e.

E{l 1} =/cc. [ [« lpx axy ... Ax (4.19)
-1
plx) = V(2n)n1det p oxP(- %iT LA T (4.20)
—X

where Bx denotes the unknown covariance matrix (4.14) of the solution pro-
cess., Furthermore, the analogy to the harmonic linearization method will

be more clear rewriting (4.18) as

T T
Fo Bz (0) x ()} = E{£(x +x_ (£) x_ (6)} (4.21)

and comparing with (4.6). The averaging is performed in (4.6) by an inte-
gral over one period while in (4.21) the expectation operator is used. In
both cases it is required that the correlation between nonlinearity and
solution process is equal to the correlation between the equivalent linear
description and solution process. At last we mentionthat for an odd nonli-
near function (4.3) and for a vanishing mean value of the excitation the

constant vectors vanish, t0O:

x =0, f =0if f(x) = -f(-x) and E {E(t)} = 0 . (4,22)
-0 - o - - = - = = -

A detailed discussion of the evaluation of the equivalent gain matrix
(4.18) was represented by Mﬁller—Popp—Schiehlen35.

The equivalent linearized system is obtained by two equations: the
one is a relation between mean values (shift vectors), the other is a lin-
ear differential equation for §st(t):

ax +f +BE{gt)} =0, (4.23)

X
-0 o)
x (0 =la+r 1x (o +BlE) - e lgm)l]. (4.24)
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The calculation of .38 and Ex will be performed by the power spectral den-

sity analysis or by the covariance analysis as shown below.

4.3. Stability

The investigation of the stability behaviour of a nonlinear system is
much more difficult than in the linear case. A general theory was developed
by Liapunov, but its application is very cumbersome or unsatisfying. There-
fore, the stability analysis is performed by above approximation techniques.
Although the investigation of stability by approximate methods may fail in
certain cases38, reasonable results are usually obtained.

The equilibrium position x(t) = O of the system (4.1) without excita-
tion (£(0) = 0) will be asymptotically stable, if the eigenvalues of the

matrix A + have negative real parts also in the case §0+ o, §c+ o,

F
...h
554'9' The solution of the system (4.1) with excitation will be bounded if
the eigenvalues of A + Eh have negative real parts in the case of solutions

50, Ec’ §s of (4.10).

More complicated is the stability test for a limit cycle. Here we
again discuss the eigenvalues of A + Eh' but we have to remember that the

limit cycle solutions x , x , x_leads to two eigenvalues A, . = *iw of
-0 —< -s 1,2

A+F Therefore we consider the eigenvalues of A + Eh in a small neigh-

Fo-
bourhood of the limit cycle solution: u§o, ugc, u§S with u in a small re-
gion about p = 1:1-e < u < 14e, € > O, Then the limit cycle is called or-

bitally asymptotically stable if

for uy =1 : A = *iw , Re A, <O, i=3, ..., n,
1,2 i
for 1-¢ <y <1 : Re Al 5> O, Re Ai <0, i=3, ..., n, (4.25)
’
for 1 < yw < 1+e : Re A <0, Re A, <O, 1=3, ..., n.
1,2 i

The real parts of the critical eigenvalues have to decrease if uy in-
crease while the remaining eigenvalues always have negative real parts.

In the stochastic case stability behaviour is checked by the eigen-
values of the matrix A + Est' The system (4.24) shows a bounded covariance

matrix if all eigenvalues of A + Es have negative real parts.

t
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4.4 Sinusoidal Excitation

The problem of sinusoidal excitation of a nonlinear system (4.1) was
completely solved by the harmonic linearization technique of section 4.1.
To get a better agreement with the notion of the linear problem in sec-
tion 3.2 we consider in more detail the case (4.3) of an odd nonlinearity.
Then the constant shift vector X, vanishes. The remaining equations
{4.10b-c) can be combined by multiplying equation (4.10c) by the negative

imaginary unit (-i) and adding equation (4.10¢):

linI -~ A+ F (x. x; w)lx -ix) =b_ - ib_ . (4.26)

This equation is a generalization of (3.14), i.e.

1 . b
b=73 kb, -1ib) , g=75 (x -ix) (4.27a)
and
. -1
Ew = [ieI - A+ F (x, x5 0))] . (4.27b)

The frequency response matrix (4.27b) depends in the linear case on the
complex vector g(w) while in the linear case it does not. In control theo-
ry this behaviour is well-known by the describing function which corres-

pond to (4.27b).

4.5 Stochastic Excitation

Based on the statistical linearization technique we apply the PSD
analysis or the covariance analysis to the equivalent linear system (4.23),
(4.24). To show the analogy to the linear problem, the simplified problem
of an odd nonlinearity (4.3) and a vanishing mean value of the excitation,
E {£(t)} = 0, will be considered. Then the mean vector L3 vanishes, X, =9

and only equation (4.24) gouverns the problem:

x (0 = [a+F ()] x  (t)+BEL), (4.28)

t
Comparing with the linear prcblem, the same algorithms can be applied if
the system matrix A of (3.1) is replaced by the system matrix A+ Est of
(4.28) . But the one difference is that the results depend on the unknown
covariance matrix Ex' That has to be calculated by either PSD or covari-

ance analysis.
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4,5,1 DPower Spectral Density Analysis
The frequency respcnse matrix of (4.28) is written as
. -1
F =Fw 2) =livI - a+F (NI . (4.29)
Therefore, the PSD matrix (3.19) is now obtained by
(w)BTFT(-w; P, (4.30)
- = —x

(w) =S (w; P ) = F(w; BS
- -x - —

£

i.e. S (w; P ) depends on P, too. Using (3.20) a nonlinear equation de-
- ' ~-x

S P )
=X -

termines the covariance matrix:
(o]

P =/ S (w; P)dw . (4.31)
X  Zeo=X -

As the quantities are numerically evaluated, equaticn (4.31) has to be sol-

ved numerically, too. E.g. a simple algorithm is given by

D s s i e au
= (4.32)
lim P(l) P .
= -
100

Realizing this procedure the computation time will increase very much.

Therefore, the PSD analysis is not well suited in the nonlinear case. Only

in the special case, that the PSD matrix only depends on one variance, say
2

Owk’ the amount of computer time can be reduced solving
ojk(“” = [ s, (w; oi}il)) dw ,
- (4.33)
. 2(1) 2
}lm %k T %k
> 2
where §M<is defined such as (3.23) with F(w) = F(w; ka). In multidimensi-

onal problems with many degrees of freedom this simplification is very
rare,
If Bx( or Oik) are known by (4.32) (or (4.33)) then the other inter-

esting variances (3.18) are computed by (3.27) like in the linear case.

4,5,2 Covariance Analysis

The covariance analysis of section 3.3.2 can be directly applied re-

placing again A by A + Egt(gx). For example, the Liapunov matrix equation
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(3.28) reads now

B T T
E 2 2 2R Ry
T T
~1— é-+Est(P ) e L% Ekx * (4.34)
T T
gkdkl}-}- Sk LI Bev Bx B
T
rP PT PT F 0 0 T C 0
-V  —=xv kv - - - 429 - -
T T
+ + =
o B B || B MEL@®) 9|+l o 9 of-o.
T
P P d .h
1—D-kv —%kx % =k k1 RSN Ek e 2 -

Because of the nonlinearity the relation (4.34) is a nonlinear matrix
equation which has to be iteratively solved. In contrast to the PSD algo-
rithm (4.32) this iteration algorithm is directly related to the unknown
covariance matrix. The convergence of a suitable iteration procedure was
proven39. Applications35 have alsc shown that the iteration cycles can be
interrupted very soon. Therefore, in problems of nonlinear vehicle dynamics
the covariance analysis is superior to the power spectral density method.
This text is performed without examples and applications. For these
it is refered to other parts of this book and to above mentioned litera-

ture.

5 PASSENGER RESPONSE TO VEHICLE MOTIONS

An extensive amount of research dealing with human sensitivity to
vibration has been reported in the literature over the past view decades.
The subjective response of an individual to an imposed vibration depends
not only on the physiological and biomechanrical response of his body but
also on a number of psychological and environmmental factors. It has re-
vealed that human reaction to vibration is not only a function of the
amplitudes, accelerations, and frequencies to the body but also of the direc-
tion and character of motion. Also the time during which the human body
is exposed to vibration is important.

Therefore, the evaluation of vehicle ride quality is extremely com-

plex. The problems and results in this field were recently summarized by
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a survey paper of Smith40 as follows (there are also a lot of further re-~
ferences): "Human are relatively insensitive to small changes in vibration
level, passenger perception is thus difficult to quantify. This does not
reduce the need to know and understand the relationships between passenger
perception and vibration levels, however, because vehicle design, construc-
tion and manufacturing costs are often influenced by allowable vibration
levels. If permissible vibration levels were too high, ride quality would
be unacceptable to many passengers. Human sensitivity to vibration is pro-
bably nonlinear: below certain levels, sensitivity is low, but at higher
levels small changes will be noticeable and annoying. Much of the early
work associated with ride quality focused in the definition of a percCep-
tion, or discomfort, boundary. Single axis, sinusoidal tests required test
subjects to indicate perception level as a function of excitation frequency.
The significant variation in many of these studies is presumably attribu-
table to the difficulty of controlling the many possible variables that
affect perception, e.g. posture, psychological mood, expectation. After
careful review of harmonic motion data available prior to 1975 an inter-
national standard for vibration exposure, including vehicle comfort, was
adopted by the International Standards Organization41.

The application of sinusoidal sensitivity boundaries to the determi-
nation of ride quality as represented by a broadband vibration spectrum
has frequently utilized. Comparison of broadband and sinusoidal data on
the basis of rms levels is possible only if the bandwidth of the filter
used to process the broadband data is specified. The ISO standard thus
specifies a one-third octave bandwidth, stating that the rms acceleration
level within that bandwidth must be below the prescribed boundary speci-
fied for the center frequency of the band. This method relates broadband
random and sinusoidal data, but the extent to which this relationship is
valid for predicting passenger perception has not been established.

It is desirable for the vehicle designer that any ride quality crite-
ria be defined such that a single number ride index is available to serve
as an objective function in design tradeoffs. Such criteria have been pro-

posed. E.g. the power absorbed by the passenger from the vehicle is used
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as a measure of the ride. In application of this technique, the square of
the magnitude of the contact impedance effectiviely becomes a frequency
weighting function for the calculation of a weighted mean square measure
of the vibration. Additionally, the ISO standard suggests that an alter-
nate method to independent consideration of individual frequency bands be
the use of a frequency weighted index using ISO boundaries as weighting
curves,

Various investigators have taken field data relating some proposed
ride quality measures to subjective passenger response. These studies in-
dicate agreement as well as some discrepancy with the ISO standard. Thus,
although many criteria have been proposed for relating passenger accep-
tance and vibration characteristics, no general equation has been defined,
if indeed such an equation can be defined. Criteria that now exist should
therefore be used with care and judgment, especially when they are extro-
polated to conditions significantly different from those for which they
were derived."

The difficulties defining single-valued measures of ride comfort are
also expressed by the recent planning stage of a VDI-standard42. Only
further experiments relating field data and quality measures will give
more insight in the problem of rating passenger response. E.q. Scheibe43
suggests to have much more regard to the effects of interruptions of
vibration exposure and of impulses within random vibrations; also it is
proposed to extend the most sensitive frequency region from 4-8 Hz, ISO
and VDI standard, to 4-12 Hz.

What is actually the recommendation of ISO or VDI? Shortly it is
summarized that ISO defines and gives numerical values for limits of ex-
posure to vibrations transmitted from solid surfaces to the human body
in the frequency range 1 to 80 Hz. These limits cover human sensitivity
to vertical, lateral, fore and aft vibrations of a periodic, nonperiodic
or random nature, The exposure times are ranging from ! minute to 24
hours. Periodic excitation is evaluated by the rms acceleration amplitude,
while broadband excitation by the rms acceleration levels measured through

one third octave band filter. In the ISO guide, the human passengers are
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more sensitive to vibration frequencies in the 4-8 Hz range for vertical
motion and 1-2 Hz range for fore and aft motion, and the human tolerance
of vibration decreases in a characteristic way with increasing exposure
time.

In the following a procedure is presented how a measure of human
response can be computed which corresponds to the ISO and VDI standards“'42
and which is within the scope of the mathematical methods described above.
The explanation follows reference28.

The objective measurable mechanical vibrations acting from the vehi-
cle on the human body can be evaluated by scalar vibration variables (1.7).
These mechanical vibrations are subjectively perceptible by man characteri-
zing passenger response. As above mentioned numerous physiological inves-
tigations have shown that the human perception of vehicle vibration is
approximately proportional to the acceleration and depends on the dynamics
of human organs which may bemodeled by low order systems. Furthermore, it

41,42 that the passenger response can be characterized by scalar

is assumed
perception variables Wk(t) depending on the position of passenger and on
the objective vibration variables wk(t). Therefore, each scalar perception
variable can be represented by a shape filter (1.8) where a mechanical
variable (1.7) is the input. The shape filter may be given in the time
domain using differential equations such as (1.8) or in the frequency do-
main using rational functions such as (3.13). The general form of the fre-

quency response of a single-input/ single-output shape filter is represen-

ted by

]

T,. -1
f (@ =h (eI - F) g, (5.1)
b N T

[e] v
a

+a, (iw) +a (iw? + ... +a_ _(1w5 1 +a (iw)s
fo) 1 2 s-1 s

; . .o r-
+ b, (iw) +b,(iw)° + ... +b _, (iw)

, r<s,

Determining the shape filter, differential equations (1.8) or frequency
response (5.1), we have to fix the position of the passenger. Here, the
ride quality of the vehicle with respect td the longitudinal position of
passenger is considered.Then the interesting objective mechanical vibra-

tion variable is given by the vertical accelerations a(t) at the seat
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(w, (t) = a(t)). The corresponding perception variable is denoted by a(t)
{w, (t) = a(t)). According to standards‘“'42 the frequency response of the
shape filter is shown in Fig.l. However, this given frequency response can
only be realized by a high order shape filter. For law order shape filters

permissible deviations are also given in the standards as shown in Fig. 1.
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Fig., 1 Frequency response of a shape filter for

passenger response to longitudinal vibrations.

For a second order shape filter the coefficients in (5.1) read as

- - -2 -
b = 500 s 2, b, = 50 s ], a =1200s , a, = 50 s ! (5.2)
o 1 [e] 1

and the normalizing constant in (1.10) is given by

o = 20 szm-l. (5.3)

Fig. 1 shows that the second order shape filter fits very well. In the
time domain the corresponding shape filter (1.8) is represented by

© ! © Po (5.4)
F = = , h = . .
=% e -a |t X 1 % b
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42
By VDI standard the standard deviation of the perseption variable is

used to describe the perception

K = Oz (5.5)

4
where 03 = oﬁi is evaluated by (3.26) or (3.35). Then 1, the tolerable

expcsure time can be found from Fig. 2 for the three main human criteria:

preservation of comfort, working efficiency and health, respectively.
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Fig. 2 Human perception and tolerable expcsure time
to vibration with respect to preservation of
comfort, working efficiency and health.
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Although the prediction or characterization of passenger response to
a given vehicle vibration is controversial in literature because physical,
psychological and physiological factors are involved, the present state of
engineering allows a classification of ride quality as shown above. Per-—
ception shape filter or frequency response are introduced into the integra-
ted investigation of guideway roughness, vehicle dynamics and passenger
response. The uniform mathematical methods allow an effective analysis of

the dynamics of high-speed vehicles and their ride qualities to passengers.
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HORIZONTAL MOTION OF AUTOMOBILES

Theoretical and Practical Investigations

Dr. Peter Lugner
Daimler-Benz AG
Postfach 202
Stuttgart 60, FRG

1 INTRODUCTION

When driving an automobile today the reliable function of the
total system under various environmental conditions has become a matter
of course. Experimentation and theoretical studies since 1886 have led
to the automobile of today. The '"functioning" of the dynamic system
motor vehicle, - whether it is comfortable, easy to handle, racy, etc.,
can be explained by the interaction of the sub-systems. For example the
engine and the drive train provide the energy for forward motion while
the suspension systems are responsible for comfort and wheel guidance.
The goal of this paper is to explain the dynamics of a vehicle as a
connection of subsystems based on theoretical and experimental studies.
The emphasis is placed on the motion of a passenger car on an cven,

dry roadway within the normal driving range.
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1.1 The motor vehicle as a kinetic system and its driving range

Considered as an individual means of transportation the car
offers the driver the possibility to influence the driving speed and
the driving direction within the area of a specially prepared roadway,
but not limited to a track. Ignoring the aerodynamic forces, the forces
for changing the direction and speed are transferred solely by the

adhesion of the contact surfaces of the tires.

The average driver can handle today's cars without any parti-
cular problems on dry roads - naturally he must be able to concentrate
his attention primarily on the traffic The lateral accelerations
encountered in a curve are in the range of approx. 0.3 g and therefore
considerably below the permissible maximum values for dry roadways.

The driver only becomes aware of vehicle dynamics limits in regard to

the top speed and in the acceleration and climbing ability of the car.

However, the vehicle should also remain controllable for the
driver even in extreme situations. Here the maximum possible adhesion
between the tires and the roadway is of decisive importance for the
physical limits. On a dry roadway decelerations of up to approximately
1 g can be achieved and in steady state turning lateral accelerations
of approximately 0,8 g are possible. However, if the vehicle is braked
in a curve, it is only possible to control a resulting acceleration
of less than 0,8 g. A further limitation of the driving range results
from the interaction of the motion resistance and the drive or may be

also from the stability characteristics of the vehicle.

Figure 1.1 shows schematically such a driving range for a
passenger car. The limits are not only affected by the driving condi-
tions but also by vehicle parameters such as brake balance, the load,

center of gravity above the roadway, type of drive.
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Fig. 1.1 Driving range schema of a passenger car, horizontal

dry roadway

Expansion of this driving range can be achieved through
special vehicle designs. E. g. more powerful engines, reduction of the
motion resistance through lower weight, lower aerodynamic resistance
as well as greater acceleration values through the use of special tires
lead to sportscars. But simultaneously we have the problem to improve

the vehicle handling and operation.

Calculations based on theoretical models of the vehicle or of
substructures offer the possibility to show the basic relationships for
this task and also to come to quantitative estimates. The vehicle and
substructure models to be used depend upon the assignment and the
requirements for the results. A universal vehicle model can neither

be represented nor is it necessary.
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The calculations must be verified by experiments, whose
purpose is also to obtain objective evaluation and to work out compa-

rative test methods.

2 VEHICLE SUBSYSTEMS

2.1 Transfer of forces between tires and roadway

A model of the system for the wheel and the contact forces

is shown in figure 2.1.

It is not the intention at
this point to investigate the
difficult problem of this contact
between two structures so diffe-
rent as an elastic tire with its
complex geometry and material

characteristics and the solid

roadway, but only to illustrate

the most important relatiomship

for the vehicle dynamics. Tran-—
sient phenomena, the reaction of
the tire to rapid changes in
kinetic values, will only be

taken into consideration in a

7
x : — M| simplified way in respect to the
LU Mg %?~*__' - lateral tire forceand also only
1S when an essential effect can be
‘ expected.
Y

Fig. 2.1 Model of the vehicle wheel
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2.1.1 Longitudinal force

For the longitudinal force U the longitudinal slip, deter-

mined by the relative speed between the wheel and the roadway, is

decisive.
- Vy ..
Sir T TR for driving, rQ >vM
(2.1
vy T rd .
Sip " ——:gz——» for braking, Yy > )

In a slip curve typical for a passenger car tire - figure

2.2 - the longitudinal force coefficient

b (s) = (2.2)

2] [

achieves its maximum at approximately 15 7 longitudinal slip

and decreases at increasing slip to the sliding coefficient o g
-

AL M, mox

1,2
a

ﬂl,-ax— 7 | \

Pog

0.6 0 2 w0 WS

MAXIMUt TRACTION COLFFICIENT

VELOCITY

0.4

Fig. 2.2 Longitudinal friction

0,27

coefficient U/P, dry surface

LONGITUDINAL FORCE COEFFICIENT U/P

The form of this slip curve, which increases very fast to
the maximum Moo and shows a decrease afterwards, remains
, .

qualitatively unchanged for other road surfaces, tire parameters

and driving speeds.
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An essential reduction of pp can result from great side -

slip angles of the tire - see fig. 2.u.

In normal driving the slip values remain small, e. g. less
than 3 Z on dry roadways. At extreme acceleration or braking torques
the entire slip curve is run through up to full spinning or lock up of
the wheels, usually connected with loss of steering ability or instabil-
ity of the vehicle motion. The maximum traction coefficient is one of

the limitations to the driving range.

A possible analytical approximation in the range up to

ML max using the equation (2.3) is within the line magnitude of the
, .

curve in figure 2.2.

6 s, - s i
L P o T 1. Sp R
P L, max i=0 1 L,max
< A > > > 2.
v <0 vy i, U 0 rf Vi (2.3)

2.1.2 Rolling resistance

The deformation of the tire and the associated flexing pro-
duces a rolling resistance which must be overcome even if the tire is
only rolling - corresponding to the definition (2.1) at SLT = SiB C 0.
In figure 2.1 this is represented by the normal force P displaced in

front of the contact point by the distance e.

The coefficient of rolling resistance of a single tire

£ =2 (2.4)
Tr

can be considered as independent from the normal force. Depending upon
the type of tire it remains nearly constant or shows only a small
increase with speed up to a speed of approximately 150 km/h and then

increases progressively - see part II, chapter 3.1.
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2.1.3 Lateral force, aligning torque

Lateral forces must be exerted by the tires and wheels to
change the vehicle direction of motion. This lateral guidance function
is accomplished mainly by the wheel rumning at a slip angle, see
figure 2.1. The lateral sliding velocity vy-tan @ leads to a force
system which can be represented by the lateral force S and the aligning

torque M, at the tire contact point.

S

With the introduction of the pneumatic trail or tire offset ng

the aligning torque can also be described using the lateral force.

M, =n_.5S (2.5)

For longitudinal force U = O the representation of the

lateral force using the slip angle - figure 2.3 - represents an

P
1,2 et E =14
N
1)2
10 e 3 —  VATH, APPROXIMATION
1,0
| EXPERIVENTAL
0,8 DATH ¢
/ B s 2,2 BAR, Py=5000 N
QD 4o s N-
| o 2/ 2,0 BAR, Py=l700N
0,6 ; /[ Q 4 " N—q
e ________@__.__. 016
F
J 3 o4
ééi W 0,4
E, = /
|
%l g
%z § 012 / 0'2
0 /

g 2° 4e 6° 8° 0° 12°
SLIP ANGLE

Fig. 2.3 Lateral force as a function of slip angle
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analogy to the longitudinal force slip curve, figure 2.2. Also here

the maximum coefficient of lateral force p =S /P is reached
S, max. max.

at a relatively small slip angle. Above all the type of roadway surface

and its condition, the type of tire and the tread depth again affect

the magnitude of the lateral force, while the basic form of the curves

max.
only slightly on dry pavement, less than 8 7 from 40 km/h to 150 km/h.

remains unchanged. At increasing speed the value Mg decreases
b

An inclination of the wheel plane in relation to the plane
of contact, as illustrated in the sketch below, also leads to a lateral
force.The following can be used as a good approximation for the lateral

force at the generally small camber angly YP at a slip angle of a = O:

S =k .Y..P (2.6)

2.1.4 Tire characteristics

Similar to Coulomb's friction circle for dry friction, the
resulting forces transferable to the contact surface of the tire cannot
exceed certain limits., If the associated contact force coefficient
is defined by

Vuz + s2

o= (2.7)

this means that u cannot be greater than the maximum contact coefficient
u (e. g. for the lateral force S = 0 Hoax is then equal to u ).

max L, max
For locked wheels or skidding the resultant vector of the contact forces
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is in the opposite direction to the relative speed. The value of the
resultant determined by the sliding coefficient pg is therefore smaller
than their value at ook Figure 2.4 represents such characteristics of
a radial tire for a constant normal force. Possible limit curves for
Hoax? ”g where entered in the graph. These tire characteristics show
primarily the force relationships to be expected in the regular driving
range disregarding the curve branches which run inward beginning at
their maximum U/P. In this situation the wheel cannot transfer any
higher longitudinal force and will quickly lock up or spin at higher

braking or driving torques.

BT S/P

JEFFICIE

L LU

o

LATERAL

! | ] 1 T . 7
R 08 06 -on 02 O 22 o4 06 08 1

LONGITUDINAL FORCE COEFFICIENT U/P

Fig. 2.4 Tire forces at constant vertical load

A possible mathematical approximation of such a tire

characteristic is
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P, U)

6 .
Po (b (x| - DY) signx) £ (o, P, V)
i= u

U - Uo 1
k +LA - K
£, = ! IP'”L, max'(1 - k3]XD 1 -k U - Uo)
k, +1
1 2 P“L, max
o =k (1+k, &) %9 (2.8)
om s d PN :
%om * kY
R 3 ) RS-
I b, (-7
1
i=1
a
x = -t la.|< o x = sign(a,) J|o | > a
o f om °* f f om

As far as known the influence of the camber on the tire

offset is small so the later can be approximated using the formula

P

= 2r (kni'fg + kn2'(§g) ).(kn3 kn4a)’xl 20 (2.9)

IIS g

Adaption of the constants kn3’ kn4 for two ranges of 0 has

proven to be practical.

Extension of the driving range by increasing Moax leads to
adaptation of the tires to specific applications: snow tires,

tires with spikes, racing tires.

2.2  Aerodynamic forces

The aerodynamic problems have increased considerably in
importance due to the higher travelling speeds as well as the increase

in fuel price.
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The air flowing around the vehicle produces forces and
moments which can be illustrated as shown in figure 2.5. At driving
speed v and wind velocity w,, the resultant air velocity veetor and

W
aerodynamic angle can be calculated as follows.

> _ > ->
Vres =Tvd ww

3 T _Z (2.10.)
T = arctan(—w)

-+ T >

v e

res

19 S22

= 0.8 /
0.6 /

e,
0,4 ° /

0,2 n/

0,1

10° 2° 30°

0.6

X W
& MWy bj2
= I~

<l
s
5 U
B3
AERODYNAMIC COEFFICEINTS
o
)
X
N
Ll
b
ol
——

0,2 P

o 10° i 3T
AEORODYHAMIC SIDESLIP ANGLE

° EXPERIMITAL DATA
— MATH. APPROXIMATION

Fig. 2.5 Aerodynamic forces and Fig. 2.6 Aerodynamic coefficients
moments for a sedan

On the average, only relatively small angles will occur at
the aerodynamically interesting range of higher driving speeds. The

following description of the forces and moments with the aid of the
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frontal area F of the vehicle is applicable up to approx. T = 20° -

see example figure 2.6.

s . = = = oF = F T
Aerodynamic drag: WL WX Cy F q, wa Cap P,
= . = F
wy CyF 9t Mwy CMy 9y 2.11)
W =( , +c TZ)F-q MW =c¢c, Fq T
z z1 z2 W z Mz w
4 . = 2
dynamic pressure: q, = PV res/2

Higher speeds require car body shapes with lowest possible
¢ F values which, however, can lead to disadvantages in terms of the
W

vehicle dynamics.

2.3 Motor vehicle drive

Because today internal combustion engines are used nearly
exclusively for propulsion of motor vehicles, the considerations are
limited to their behavior and again to the aspects important for the

vehicle dynamics.

Figures 2.7 shows the most important relationships for a

gasoline engine. The power curve Nd and full load torque M, are

measured at fully opened throttle. When the engine operate: against
compression with closed throttle it provides the braking or drag
torque Mb' Depending upon the throttle position and the engine speed
the engine supplies a certain torque within these limit curves. The
interaction of the gas pedal characteristic and the throttle position
is generally tuned so that an approximately linear graduation between
full load and operation against compression results depending upon the
pedal travel u,. In this manner the engine torque MM and the engine

G
output can be approximated analytically as follows
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u M u
MM - uG d + (1 - uG
G,max G,max

)

Ny = My (wM, uG) . Wy

=
1

4 :
1
4 = Ma0 *. 2 By Uy

1=1

M

b = Mo T Kys ¢ Uy

(2.12)

(2.13)

(2.14)

The approximation of the full load and the drag torque and

the equation (2.12) are applicable from just above the idle speed

W, to the maximum Wy max and full throttle position u =
, .

G uG, max.

FULL LOAD
ENGIME TORQUE

ENGIME SPEED

DRAG TORSUE

MO
160 + 24
wl 20 -
kW N s~ N
20l 0 ,4
] / \
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80 1 160 //
= //
043 120 7
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= //
i 30
) 7
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F—
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Fig. 2.7 Performance of a 2800 ccm gasoline injection engine
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3 LONGITUDINAL DYNAMICS

3.1 Basic equations

The behavior of a vehicle when driving straight ahead or at
very small lateral acceleration values is defined as the longitudinal
dynamics. The calculation and valuation of acceleration, braking,
climbing ability and top speed can be accomplished with a plane model.
All factors which also cause considerable unsymmetry when driving
straight ahead (side wind, ex-vemely one sided load) belong to the

lateral dynamics.

Fig. 3.1 Vehicle model for longitudinal dynamics

For driving straight ahead it is therefore possible to use a

model as illustrated in figure 3.1. Ignoring the bounce and pitch, the

Euler equations and Newton's law yield three equations.

ma = 2U, + 20 - W - G.sin®d (3.1)
‘ s
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0= ZPR + ZPF + wZ - G.coso?s (3.2)
2OFQF + ZORQR = 2PR.(1R - eR) - ZPF.(lF - eF)
- (zuF + ZUR).h + Mwys (3.3)

Fig. 3.2 Forces and moments

at a single wheel

Three additional equations can be derived for each indivi-

dual wheel. By figure 3.2 and using (2.4) you get:

ma =X+1U- Gw.sini; (3.4)
0=2+P-0G,_.cos? (3.5)

W s
a0 = MA - M- r.(U + fR.P) (3.6)

The wheels upon which a driving torque MA actually is
applied depends upon the type of drive. The braking moment MB can be

applied independently of MA.

The normal forces on the wheels can be determined using equa-

tions (3.2) + (3.3) and the forces X,Z in the wheel bearing determined
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using (3.4) =+ (3.5) once the motion of the vehicle is known.
From equations (3.1), (3.6) with equal rolling resistance coefficients
for all wheels an equation for the longitudinal motion of the vehicle

can be derived.

0.0, 0.0 M M M - M
max+2(FF+RR)_2(AF—BF+AR BRy
(r2)  (r?) t r
- G.51nﬁé - WL - fR(ZPF + ZPR) 3.7)

The relationship between the engine torque MM and the drive
moments at the wheels are determined by the properties of the drive
train. The equations are derived for a four wheel drive - figure 3.3.
The kinematic relationships are as follows at longitudinal symmetry and
considering the differential ratio i_ as well as the subdivision factor

D

v of the distribution unit and the transmission ratio iG for the manual

transmission with clutch engaged:

e = O ip Or = g ip (3.8)
vQKR-+QKF

' iG' TV F (3.9)
A a.
‘EAR ‘Puf
i e en Mee_ S (o |  DIFFERENTIAL
{7 ¢ pEE {7
{2 {2,

GEARBOX WITH ENGINE
DISTRIBUTION UNIT

Fig. 3.3 Drive train of a vehicle with 4 wheel drive
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The same values for the wheel torque on the left and right
due to the symmetry and the axle differentials are entered in figure
3.3. The subdivision of the torque values resulting from the distri-

bution unit is
Mer = WMgr (3.10)

This unit offers the possibility of sudividing the torque
dependent upon the load on the axles and therefore to utilize the
adhesion between the wheels and the roadway as uniformly as possible.
However, an additional distribution unit makes the transmission efficiency
n of the drive train poorer. On the other hand a simple central
distribution unit (v = 1) - such as used for passenger cars - can
compensate the different angular velocities of the front and rear wheels
without any significant sacrifices to the transmission efficiency.
When the distribution unit is locked the subdivision of the torque
between front and rear is determined by the conditions of contact

forces between wheels and roadway.

The derivation of further relationships is restricted to
a four wheel drive without locked distribution unit and v = 1.

With equal drive moments MA at all wheels follows

e

N .2, F+ R
(OM(lch) + 041 ) —— 2

M
GD

A

iin
_ "le’p
A (3.11)

1

4
The transmission losses in the drive train up to and inclu-

ding the wheel bearings are included in the efficiency n. Only the

main parts of the rotating masses are taken into consideration.

Using (3.11) equation (3.7) can now be converted.
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.. 2 2. 2
ii.n 01" +01 "1
"' =ma_ + (R +Q)(lq ¢D MDG)
r F R 'r 2r
2 2M
BR BF .
+ - + - + G.51n05 + WL + fR(ZPF + ZPR) (3.12)

The transmission of the force will result in a slip between
the tire and the roadway - chapter 2.1.2. However, since the slip
remains small in the normal driving range on dry surface and since the
percentages of the rotating masses are small in comparison to tho total

mass of the vehicle, the second term on the right side can be simplified

by the rolling condition.

<
[+H)

Q=0 =zQ = ;5 , Q= ;5 (3.13)

Using (3.13) the individual terms from (3.12) can be associ-

ated with clear concepts which apply to all drive variants:

Drivine £ Myigip N
rl S ———
ving force v = R MM >0
‘ 2 2,202
Red d =
educed mass mog =m* (40 + OGID + OMlD i )/r
Climbing resistance W, o= G.sind (3.14)

Rolling resista W, = + 2P
8 nce fR(ZP 2P.)
Braking forc = BF 2

g force B (2™ + MBR)/r

=V - - - -
Ws WL W B

Mred x R

When driving with dragged engine the drive force in (3.14)

becomes a braking force. Since the friction losses in the drive train
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help when braking, this is expressed with

i1

_ Miclp
Ve = T My <O (3.15)
The engine power is calculated from (3.14) and (3.9) for

four wheel drive, v =1

Q.+ Q
V.r F R
B e— ——————— - 6
NM,A n 3 (3.16)

For rear wheel drive and front wheel drive (3.14) leads to

N =— , N =—. Q (3.17)

If the losses through the wheel slip are considered, the
actual angular velocities of the wheels must be inserted in (3.16)

+ (3.17).

The following approximation applies to all types of drive

in the normal driving range, neglecting the losses of the wheel slip:

Ny = va/n (3.18)

3.2 Driving condition diagram

In equation (3.14) MM represents the torque supplied by the
engine as explained in section 2.3. On dry pavement the slip at the
driving wheels is small so that the following equation is a good

approximation of the angular velocity of the engine (see also 3.13).

v
.. X
UJM = IGIDr— (3.19)

Using (3.19) the driving force V and VB can now be represented
in terms of the vehicle velocity. In figure 3.4 these curves for a car
with rear wheel drive - corresponding to figure 2.8 - are illustrated
for a four speed transmission. The area below v .~ must be bridged

13 . . 3 . ’
by engaging the clutch while the transmission 1s responsible for adapta-
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tion of the engine performance to the vehicle. The basic resistance 1is
formed by the aerodynamic drag and the rolling resistance always
present. The curves running parallel to this basic resistance curve

correspond to a slope of+107 or an acceleration of ax=10,1.g(m/mred).

TOTAL GEARING &g tp = 13,77
7.9
{ 5,02
3.6
10000 | 6
)
8000 -
6000

_o” DS

BASIC TRACTIVE

— .~ RESISTAMCE
Zoom L] Z
o ] :
w L
2 i | - - 10 % SLOPE
= 0 '4'_—‘ s 1 [ s 0? MAS
= -~ Vx
—_—
\<d>‘4
- 2000 =" 3

- 4000 |

Fig. 3.4: Driving condition diagramm of a full size sedan;
Maximum engine power 136 kW

If the vehicle is moving at a constant speed of 100 km/h, for
example, corresponding to point 1 this driving state can be achieved in
third or forth gear with the accelerator in the corresponding position
in each case. An additional slope of +10 Z (point 2) will require the
third gear under all circumstances, while a slope of =10 7 (point 3)
cannot be handled using the engine drag alone, but requires additional

braking. The maximum speed on a horizontal roadway is determined by
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point 4. The maximum climbing ability or the maximum acceleration re-
sults from the distance between the base resistance curve and the full

load torque curve in first gear (points 5 and 6).

An increase in the maximum speed can be achieved through lower
basic resistances and/or higher engine power, provided that the stabili-
ty for straight line driving is secured - see chapter 4.1.2. A greater
climbing ability can be achieved through the use of a different trans-

mission ratio i, (e.g. for commercial vehicles). The value for the

G
maximum transferable drive torque is also limited by the maximum

possible force coefficient between the drive wheels and the roadway,

see chapter 3.3.

Vi Y
5 ==
o /
40
km/h m/s
o —— SIMULATION
1 o P — — MEASUREMENT
4
U ) /
40
- 10 / pu—
J_. t

10 20 30 s
TIME

Fig. 3.5: Velocity history using maximum engine torque

The acceleration time up to 100 km/h, for example, which is
often given in tests can be explained with illustration 3.4 and calcu-
lated using equations (3.12) through (3.14). With certain simplified

assumptions regarding the actuation and function of the clutch
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figure 3.5 gives a speed curve according to figures 2.8 and 3.4

utilizing the maximum driving force.

For slippery pavement for high driving forces and therefore
higher slip values in figure 3.4 the full load performance curves will
shift to the left. More precise calculationswould have to be made taking
into consideration the slip curve for the actual tire road contact. The
illustration given in figure 3.4 can be considered to be a good

approximation.

3.3 Climbing ability, maximum starting acceleration

Assuming that the vehicle drive is able to deliver the driving
force required to overcome an ascending slope the climbing ability is
limited by the longitudinal force coefficient between the tires and the
roadway. Since this question is only of interest in the lowest gear and
at low speeds - at higher speeds and with dry pavement the climbing
ability is generally limited by the full load performance of the engine
- the aerodynamic forces and the aerodynamic moment can be disregarded
in equation (3.1) through (3.3). The normal forces calculated in this
manner are

1z~ e s e N
2P = Gcosi;.T:?E;:E—y - (20 ) + (max + Gs1nﬂg)T)

R
(3.20)

+
1 eF

_ F LI . h
2PR = GCOS‘I’S W + (ZO(QF +QR) + (max + Gsun?s)l)
The limitation of the climbing ability or the starting
acceleration is defined using the maximum traction coefficient for the

driving wheels.

2U
;; < ”L,max (3.21)

The longitudinal forces result from (3.1) and (3.6). As an

example the minimum required force coefficient Morf for transferring
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the longitudinal forces for a vehicle with rear wheel drive is
calculated with
20 ) (max + ZOQF/r) + Gs1n€L + ZPFfR

= (3.22)
2p 2p

=

=
[

erf
R

-]

whereby the expressions from (3.20) must be substitued for PF and PR.

Analog expressions result for front wheel drive and four wheel
drive, whereby for the latter it must be checked which of the two

driving axles will first reach the maximum traction coefficient.

In order to be able to rapidly illustrate the primary in-
fluences the small expressions are not taken into consideration in

equation (3.22) and the analog relationships. Using the slope q and the

"equivalent slope" g
ax
q = tant?s ’ qE = m + q (3-23)) (3-24)
S

the primary relationships can be expressed as follows:

q
. _ g
Rear wheel drive: More (IF/1)+qE(h/1) (3.25)
. 9
Front wheel drive: “erf = W—) (3.26)
Four wheel drive, v = 1:
q./2 1 1
Herg = > Pp < Ppor R QEE'<‘£;QEE (3.27 a)
(1_/1)-q_.(h/1) 1 11 1
R E
/2 Pp>P
= >
Morg F>1*R (3.27 b)

(IF/1)+qE(h/1)
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The ideal value results for a four wheel drive with blocked

distribution unit:

uerf B qE

0.8
0.7
0.6
0.5

0.4

0.3

0.2

0.1

REQUIRED TRACTION COEFFICIENT

(3.27 ¢)
'/ )
/
//
J/
7 RD
/
/
,/
///
Y/
W
4D: BLOCKED
,/ DISTRIBUTION UNIT
/,/
N7
0,1 0,2 9,3 0,4 C;E

EQUIVALENT SLOPE

FRONT WHEEL DRIVE FD: Le/L = 0.43, WAL =0.2
REAR WHEEL DRIVE RD: Le/L = 0.49, WL =0.2
FOUR WHEEL DRIVE 4D: Le/L = 0.43, HAL =10.2

Fig. 3.6: Climbing capacity and typ of drive

The advantage of four wheel drive is obvious in figure 3.6.

For the assumed data (vehicle loaded lightly) and on slippery pavement

<
(0.2 < uL,max

£ 0,4) it can handle approximately double the equivalent

slope as a single axle drive. A clear advantage for starting and

accelerating in winter. Rear wheel drive has advantages over front

wheel drive when the contact force of the drive axle is increased by
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loading. On dry pavement with the vehicle fully loaded rear wheel drive
can even achieve the values of four wheel drive, because for the latter
the front axle, which is also driven and unloaded additionally due to

the equivalent slope,reaches the maximum traction coefficient first.

3.4 Braking

A further limitation of the driving range is the maximum long-
itudinal deceleration determined by the longitudinal force coefficient
and/or the design of the vehicle brakes. In order to achieve the
optimum braking for a vehicle the braking coefficients of all wheels
would have to be the maximum value simultaneously.

20 2UR

2PF ZPR (3.28)

i

uL,max

If we confine the representation to the primary influential

values (3.28) in combination with (3.1) through (3.3) and (3.6) results

in
'R h, . by -
MopMyp  TeosYtrr t Q¥ Mg -y 2'ng (3.29)
1 1
-M F h F 1
MBR AR T—COSég T2 (%WL Mwys + -I—-Wz)mg
with the deceleration
a W WL
a=--2= (cosd ——z)p + — + sind (3.30)
[ L,max. s
g ng

These two equations determine the relationship of the braking
moments - a special value can be calculated for each load distribution,
driving speed, type of drive and road condition. An antiblock system
(ABS) with its electronic control comes closest to providing the
necessary MBF’ MBR and therefore the maximum achieveable deceleration.

However, most brake systems in passenger cars today are designed with
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a constant ratio MBF/MRR so that the maximum braking coefficient cannot
be fully utilized! Highly simplified expressions can be derived from
equations (3.1) to (3.3) and (3.6) for the basic design of such brake
systems. The following equations apply for a horizontal roadway disre-

garding the aerodynamic resistance and the engine.

h
B a = 2
F T Mpr
-_ = 1 , BF = (3.31)
G R +a h r
1 1
h
B a-—- ZMB
1 R
R — , By = (3.32)
¢ F_,h r
T 21
B, +B
a= L R (3.33)
G
NLOADED (e fl = O47 hit=020
Ba/0 o —— — PERTISSIBLE TOTAL HEIGHT
. e/l = 052 hlt=019
4]

REAR WHEEL LOCKUP
ki

-—_—

0.3 1
BRAKE FORCE. DISTRIBUTION
Be/Bg = 2,63

Fig. 3.7: Brake balance diagramm and wheel lockup limits
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In the brake balance diagram, figure 3.7, the ideal layout
BF/G(BR/G, “L,max.) is represented by a parabola, whose position is
determined by the vehicle center of gravity. The lines for the comstant
deceleration are calculated from (3.33). If only the front wheels lock

for example

F _ F _  _
- 1 M1, max. (3.34)

R h
F G(-l—' + aT)

a linear relationship again follows with (3.33) - see figure 3.7. The
line for the brake layout BF/BR is determined so that for all values
"L,max. the front wheels will lock before the rear wheels - the line
must be positioned below the parabola for all road conditioms, even for
dry pavement. Point 1 shows that it is therefore only possible to
-achieve a deceleration of ar= 0.65 in contrast to the ideal value of

a = 0.8 with a fully loaded vehicle.

4 LATERAL DYNAMICS

Models which allow the lateral forces and the yawing of the
vehicle to be described, must be used for theoretical studies on cor-
nering, transient steering manoeuvers as well as the directional
stability when driving straight ahead. Inclusion of the body motion
in interaction with the wheel suspension, the nonlinear behavior of
the tires, the effects of the drive and steering system lead to very
complex models with the help of which an attempt can be made to simulate
the vehicle handling over a period of time - see chapter 4.2. However,

a few of the basic considerations can be shown well using a linearized

model.
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4.1 Linearized vehicle model, constant driving speed

To some extent analytical expressions for describing the ve-
hicle handling on a horizontal roadway can be derived from a model
represented in figure 4.1, which is based primarily on the work of
Riekert and Schunk |5|. One of the basic simplifications is to neglect
changes in the wheel loads. The wheels on one axle are represented by
one wheel in the middle of the axle, the axle loads correspond to their
static values. All angles remain small and the lateral forces of the

tires on one axle are vepresented by linearized expressions

S. =k.o S. =k, 4.1

Fig. 4.1: 2 wheel - vehicle model
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The slip angles of the wheels can be calculated using the

yaw velocity of the vehicle.

1

_ _ _F
ocF—cSF B -

e

L. (4.2)
_ _ R Y
aR = B + -

The steering system is simplified so that only the elasti-
cities as well as the aligning torque resulting from the tire offset
and the castor offset or wheel offset n, are taken into consideration.

K

The equation for the steering subsystem with steering ratio iL and
steering stiffness L give a relationship between the steering wheel

angle 6H and the steer angle 6F of the wheel
6H
o (i_L -8 = (g +ng) S (4.3)

The lateral forces at the axle can be represented with

equations (4.2) and (4.3).

1 e
_ X x_,__FY
Sp = Kgp (GF 8 )
]_ .
_ _ R Y
SR = kSR (- B+ - ) (4.4)
n n
X _ (k*’s) X _ .
kKgp = kgp/ (1 + kep)s 8p = 8y/ip

The aerodynamic moment reduced to the vehicle center of
gravity at the further assumed calm wind condition - see chapter 2.2,

1= B, 1is:

MW =-W(s-1) +MJ = -k Bv2 (4.5)
y VA
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Newton's law and the Euler equations yield three equations
for the plane motion of the vehicle on a horizontal roadway at constant

speed when additional small terms are neglected.

mB(Y + RB)v = 20, + 20 - W= Spsp (4.6)
m (Y + B)v = SF + SR + wy + 2UF<SF .7
OZW = (sF + UFcSF)lF - SRlR + szs (4.8)

Equation (4.6) corresponds to the already known equation
(3.1). The coupling of the two equations for the lateral dynamics (4.7),

(4.8) to (4.6) exists only by terms containing small angles.

Equations (4.4), (4.5), (4.7) and (4.8) and further generally

justifiable simplifications lead to two linearized differential equations.

X X ,X
k 27 koo(lmv2-k_ 1.1) .x
o . __SF¢ SF''F SRR § (4.9)
B+2K18+K28 = —"F- 5 *F
x X
. 1 k k. k. 1
d : _ _FSFsx _ “SF SR’ .x
dt (W+2K1W+K2W) = Oz Aép + Ozmv 5F (4.10)
x x .2 2
- Oz(ksR+kSF)+m(kSF1F+kSR1R)
1 20 mv
z
2 X % 2 4
. - 1 kSRkSF + (kSRlR kSFIF)mv - mka
2 Ozmv2 (4.11)

With the use of this highly simplified vehicle model,
quantitive correspondence to measurements can only be expected in the

range of small lateral acceleration (up to approx. 0,4 g).



Horizontal Motion of Automobiles 113

4.,1.1 Steady state turning

For steady state turning all of the time derivatives in
equation (4.9) and (4.10) are equal to zero and the yaw velocity of the
vehicle around the vertical axis as well as the lateral acceleration

are calculated from the vehicle speed and the radius R.

. v 0 v2
= = 2 = = — 4.12
\ys R’ ays aq s v\ys R ( )

The required steer angle 6;8 and the associated side-slip

angle BS of the vehicle follows from (4.9) through (4.12) resulting

in
X X
S o S srlr Ksplr ) k 4
s - s T R g ™ TR ™ (41
HO 6FO SRSF SRSF
Ey - - T mv? , 65 = 1/R, B. = 1./R (4.14)
BO s kSRlRl FO 0 R

The change of the steer angle with the vehicle speed is

primarily dependent upon the difference k.1 k.,1., because kSR’

_LX
< SRR SRF
kSF are always positive. On a vehicle with understeering properties
a greater steering angle is required at increasing vehicle speed.

The last term in (4.13), which counteracts the tendency to understeer
due to the generally positive value of kM has little influence on an

average passenger car for smaller radii.

In figures 4.2, the values were selected for the under-
steering vehicle so that a comparison to the measured values and to
the curves calculated using a non-linear model, figure 4.8 is possible .
For an oversteering vehicle (GH/GHO)S becomes smaller at increasing
speed and lateral acceleration. For high oversteer and for large radii

negative steering angles may even be required for steady state turning.
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Fig. 4.2: Steer properties and side slip angle of a 2-wheel model
R = 42,5 m; steady state turning.

The side-slip angles decrease at increasing speed and become

negative. The front of the vehicle points out of the curve at low speeds

as illustrated in figures 4.1, while the vehicle turns into the curve

increasingly at increasing speed. This tendency is independent of the

steering behavior.

4,1.2 Stability characteristics

The stability of the vehicle handling, described with

equation (4.9) and (4.10), is characterized by the eigen values of the

homogenous differential equations.
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A = -k VK -k (4.15)

Since K1 is always positive according to (4.11), the behavi-

or of the system is determined by the value and the sign of KZ'

K2 > 0 stability

(4.16)

K, <0 instability

A relationship between the stability and the steering

properties can be derived using the results of the steady state turning

(4.13):

) X bl
Kz ) 1®kSRfSF (gg ) (4.17)
zmv FO S

Since the first factor is always positive, a required negative
steer angle for steady state turning simultaneously means instability.

The limit velocitiy results from K2 = 0.

Basic predictions regarding the effects of the design upon
the handling stability can best be shown using the terms in equation
(4.13). A high front axle load (1F < 1R) and a smaller cornering
stiffness of the front axle (k}s{F < kSR) is better for a positive value
of kply = kgplp:
the vehicle center of gravity is positioned near the front axle. However,

The value of kM - (4.5) - also becomes smaller when

since the center of gravity is primarily dependent upon the manner in
which the vehicle is loaded a smaller front concerning stiffness is
achieved through the axle lay-out (elasticities, roll steer, anti-roll
bars). Tractive forces on the front wheels also mean a decrease in
X
ka_.
SF

not sufficient enough to compensate the negative effects of the greater

The increase of kSR through greater loading on the rear wheels is

distance between the center of gravity and the front axle.
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In figure 4.3, the effects of the axle cornering stiffness
on the stability characteristics are illustrated based in each case
upon the greatest real part Re (A1) of the eigen values (4.15). Since
the axle stiffness can not be increased or decreased without restrictions
ng + kSR was held constant. Using an example with the center of gravity
in the middle 1F/1 = 0.5 and a vehicle speed v = 30 m/s we see that the
real part hardly changes up to a limit, here k:F/kSR = 0.98. In the
system behavior two conjugated complex eigen values cause a damped
vibration. The limit corresponds to the periodic critical case;
beginning at k:F/kSR = 1,32 it becomes unstable. For 1F/1 = 0,4 no
instability occurs in the entire range, while an extremely heavily loaded

. X
vehicle becomes unstable even at kSF/kSR< 1.

— v =30 WS (103 KWH)
- v =50 WS (180 KWH)

...[‘ p
\\
-3 — _‘ A\
XL,.—/L=06 \os Vou
-2 P S e .
\ \ \
] \\ \ \ STABLE
)

X
kse

0 - X \
o4 06 \ 08 \1 \ 12 & Ker
\ \ (NSTABLE

‘ Re(x)

Fig. 4.3: 1Influence of cornering stiffness ratio on the
stability behavior
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At higher speeds, the absolute values ]Re(k1)| are lower and
the limits for the aperiodicity have lower values. Disturbances die

x .
SF/kSR are required for stable

driving. Design values of ng/k SR < 0.6 must be realized to assure

stability at top speed and with an unfavorable loading state.

down more slowly and smaller values of k

Disregarding extreme driving conditions the driving stabili-
ty of today's passenger car achieved through the axle layout does not
result in any limitation of the driving range which generally is deter-

mined ly the engine power.

4.1.3 Frequency response

A further possibility of characterizing the behavior of the

linear system is the reaction of the vehicle to harmonic exitation
iet
8% = a_e (4.18)

The system response in the form of the complex amplification
function A can be calculated from (4.9) through (4.11) for the yaw
velocity @ and the lateral acceleration a, = v (@ + B) with (4.13)
and (4.14)

0 1 + T ic
vy z
A@ - (';)s' 2,02
§ 1 + 2Die/v -€" /v
F n n
a 1+ T,ie - Tze2
by = G ,
y 8 1 + 2Die/v ~e* /V?
F n n
2
v, =K, , D= K1M<_2 (4.19)
1 _nv 1
kSRl
T2 = Oz
k.. .1
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Figure 4.4 shows the DB values for the ratio of the amplifi-

cation function of the lateral acceleration to its value at an ex-

citation frequency of € = 0, the value for steady state turning.
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Fig. 4.4: Lateral acceleration frequency response of two vehicles with
different steer properties

On an understeering vehicle - vehicle 1 from figure 4.2 -
there are only slight changes of gain at phase angles below 40° up to

approx. € = 0.5 Hertz. For normal steering movements the vehicle
reacts with a short delay nearly inderendently of the steering speed

and the driving speed has only a small influence.
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The oversteering vehicle - vehicle 2 in figure 4.2 -
already shows great changes in the system behavior with relatively long
delay times at 30 m/s up to 0.5 Hertz - an unfavorable type of behavior
for the average driver. This vehicle becomes unstable after approx.
38 m/s. At steering frequencies of over 1.2 Hertz, both vehicles follow

the straight line with very small deviations.

Measured frequency response curves, also for the yaw velo-

city, are shown in part II, chapter 3.3.2.

4,2 Non-linear vehicle models

In order to be able to describe the vehicle handling up to
the limits of the driving range, the non-linear characteristics of the
springs, dampers, tires, etc., and the geometric non-linearities of
the steering or the wheel suspensions must be calculated and considered.
Numerical integration of the system equations results in predictions
about the vehicle handling within the time domain. Only in the case of
steady state turning it is possible to determine the steady state values
of the steer angle, side-slip angle, etc., through iteration without

time simulation.

4.2.1 Steady state turning

Since no relative motions of the vehicle components to one
another occur in this driving state (disregarding the rotation of the
drive train), a corresponding "static' model can be used to derive the
system equations. The model used is illustrated in figure 4.5. As a
simplification in comparison to the model used in chapter 4.2.2, the
body motion is described with the roll and pitch axis of the static
initial configuration (horizontal roadway, speed v = 0) using the three
variables 4, @, h. The numbering of the four wheels designates their
position on the vehicle and in the curve. The index "s'", steady state

turning, is used only in the comparative figures for chapter 4.1.1.
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Fig. 4.5: 4 wheel vehicle model for steady stateturning

In laying down the equations of motion the gyroscopic mo-
ments of the wheels were neglected. The center of gravity was assumed
at a fixed body point and the axes £, n, { are body fixed main axes

of 1inertia.

With small pitch and roll angles the equations of motion are

mvz 4
- -—— sinf = T - W
R in lAl L
IV SR = B + W
R~ cosf = é ; v (4.20)



Horizontal Motion of Automobiles 121

0 = Mx ~4My
0 =My + @Mz (4.21)
0 = Mz - @My + 9Mx
A, = U, cos$§, - s.sind., B. = U.sin6.+s.cosé.\
i i i i i’ 71 i i°i i
vy 4
Mx = (h0+h)§Bi+§siPi+(q’h‘P +s¢))1: Pi
> (4.22)
4 L 4
My = . .P. .
y (h0+h)§ A1 + §IIP1 +19h0§ P1
4 u 4
Mz = ¥ JA.-1.B, 5 - ’
z =1 (s1 i 1) +(¢hw+ bd§Ai ﬂhﬂlBi+szS
s1=s3=—s/2, 52=54=s/2, 11=12=1F’ ]3=14=‘1R (4.23)

The normal forces Pi’ can be calculated using the spring de-
flection v, and the non-linear spring characteristics - see figure 4.7
as an example. Any anti-roll bars are taken into consideration by the
roll angle. Influences of the longitudinal and lateral forces resulting
from the wheel suspension geometry are considered in a simplified manner
using constant coefficients:
k k

Bi’ Ai: P (w.)+2c_k
c=c . (w, )+ -]
i Yi cT iq) +kBiBiﬂ(AiAiﬂb(l Jili)mg/z

w. = - h - 110 - Siw (4.24)

1753 /R P P P

The effect of the masses of the wheel and the wheel sus-
pension components are neglected within the substructure of the wheel
suspension. The wheel is assumed to be laterally rigid,the vertical
stiffness is taken into consideration in an approximate manner in the

suspension spring characteristics.
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Fig. 4.6: Static toe-in angle Fig. 4.7: Suspension rate of
of the frontwheel the rear wheels, jounce
and rebound mode

In order to make it possible to calculate limits for the
driving range, it is necessary to use complex tire characteristics
such as (2.8), (2.9).

= .(a,,P.,U0.), .= .S,
Si f51(a1’P1’U1) MSl RS
(4.25)

n,. =

si nsi(ai, Pi) i=1, ..4

The slip angles a, can be calculated by analogy to (4.2) as

functions of the yaw velocity @, R and the steering angles Gi

a, = a. (8., ¥,B) i=1, ..4 (4.26)
1 1 1

Determining the wheel camber yp in respect to the vertical
direction of the road surface the body roll and the wheel camber y in

respect to the body na.. to be taken into account.
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Yp; = ypi(w,yi) i=1, ..4 4.27)

The longitudinal forces can be reduced to the driving force
V, see chapter 3.1. The following applies as the calculated example of

a vehicle with rear wheel drive.

.= - P. 1
U1 fR ; i

1,2
(4.28)

U, = ~f, P, +V/2 i=3,4

i R
The geometric steer angles GGi of the front wheels as func-
tions of the mean steer angle § can be used in the program either by
description of the steering linkage or via measured or given realtionships.
For the calculated example with relatively small angles a parallel steering

fits best.

6Gi =4 i 1,2

(4.29)

§.. =0 i

Gi 3,4

For the steer angle 6i of the wheel, the toe-in angle dKi
and its changes resulting from jounce and rebound of the suspension
are taken into consideration via measured wheel elevation curves -
figure 4.6 shows an example including polygonal approximation.

Also the influences of elasticities must be considered.

Mspi
§ . =6 .(w., S., U,, M .), 8§ . =8 . +  -—
Ki Ki 1 1 1 Si GE1 Gi cSLi
(4.30)
8 = Seei * ki
i=1, ..4
= (4.31)
ey T g (pe8y)

The steering moment M__, in respect to the steering axis is

SP
determined using the longitudinal force, lateral force and normal force
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w#with wheel and tire offset, and suspension geometry including king pin

inclination and caster.

= . .S, . ., M) 1=1,2 4.32
Mspi Mspi(al’ ngioSie Fiv U Sl) =12 ( )
The steering wheel torque and the steering angle GH are
determined taking into account the steering ration iL and the

elasticity of the steering column. For parallel steering, neglecting

friction, follows

M + M M
MH=LP!_$_EZ,5 -5+ 2 (4.33)
. H L c
1 LC

L
For iterative evaluation the equations can be separated into
two groups of three equations each, for which there is only a weak
mutual coupling. A quick convergence with a relatively low amount of
calculation time can be achieved through preiteration for the body

variables and an iteration including the state variables B, §, V.

A few results are illustrated in figures 4.8 through 4.10.
The vehicle data listed in the appendix for a large passenger vehicle
with rear wheel drive as well as the performance graphs or approximations

shown in figures 2.4, 4.6, and 4,7 serve as the basis.

In comparison the figure 4.8 shows the steering wheel angle
ratio (6H/6HO)S and side-slip angle ratio (B/Bo)S for a vehicle
equivalent to the mentioned understeering 2-wheel model. In a range of
up to approx. 4 m/s? lateral acceleration the measured values and both
calculations correspond relatively well. The high degree of understeer
of the vehicle and the limit values for the lateral acceleration caused
by the limitation of contact force transfer, however, can only be
calculated using the non-linear model. As a result of the highly diffe-
rent loads on the wheels and the additional tractive forces to be

transferred, the maximum contact force coefficient of Hoax = 0,85 can

not be fully utilized.
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Fig. 4.8: Steer properties and side slip angle, steady
turning; R = 42,5n
The steering wheel torque MH as well as the corresponding
measured values are illustrated in figures 4.9. Following an approximately
linear rise the torque decreases sharply mainly as a result of the rapid

decrease of the tire offset.
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Fig. 4.9: Steering wheel torque of a mechanical steering;

steady state turning, R = 42,5 m

The required driving force V consists of the basic resistance

and an increasing turning resistance resulting of the side slip of

the vehicle and the wheels - fig. 4.10. At the acceleration limit, in

this case at v = 16.7 m/s the vehicle requires approximately 58 kW,

while only 8.5 kW are required for straight driving at the same speed.

Therefore, for the motor vehicle on dry surface the maximum

possiblc lateral acceleration in sharp curves is caused by the maximum

contact torce coefficient. As a result of the motion resistance at higher

curve radii, a further limitation of the driving rang will result through

the available engine power.
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Fig. 4.10: Necessary driving force for steady state turning,
R=42,5m

4.2.2 Simulation of general vehicle motions

The requirements for describing the vehicle reactions even for
rapid steering movements and high accelerations lead to models such
as described in !7, 9, IOI. The model considered should, on the one
hand, allow studies using given driver reactions while also allowing real
time simulation in an advanced driving simulator, with the least

possible degree of adaptation.

The description of the motion of the vehicle and the vehicle

body with the coordinate system 2 fixed to the body in relation to a
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inertial frame 0 is formulated using transformation matrices - see

figure 4.11.

. T -1
= Ay (B, 9)%y, Agy = Agy = Ay (4.34)

-+

%0

The angles used correspond to the yaw angle, roll angle and

pitch angle when driving on a horizontal roadway.

Yo

Fig. 4.11: Position of the vehicle (static configuration)

Point G is the center of gravity of the vehicle on an even,
horizontal roadway at the actual loading state in the static configu=-

. 13 . - . .
ration. The position vector X, in the system 0 must be calculated using
the system equations.

The momentary position of a wheel - the wheel numbering and

therefore the subscripts be inserted correspond to those in chapter 4.2.1

- in relation to the body (figure 4.12) can be determined using its
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position M. in the design location. After deflection of the spring and

0
rotation around the steering axis of the wheel the position of the center
M_is:
g 18
- -+ > -
X4s6,2 = *MoG,2 * Zr,2 * A23(W) (17033 (8gpdn,, 5) (4.35)

> . I3 3 13
The vector zp and the position of the coordinate system 3 fixed

to the steering axis in relation to coordinate system 2 can be described
as a function of the spring deflection w and the elasticities of the sus-
pension from the measured wheel elevation curves or their calculation
(see 12| for example). In this manner for example figure 4.6 represents

a rotation angle of the transformation matrix A,_(w). In design location

the axes of coordinate systems 2 and 3 are paraiiel. In the rotation
matrix D33 the king pin inclination and the caster angle are taken into
consideration, while the point of intersection of the steering axis with
the plane Xq¥4 is defined by Ev' The steer angle GGE corresponds to that

from equation (4.30).

In respect to system 3 the wheel axis vector ;4 and system 4
have camber and toe-in angles, described with matrix 034. So for the
vector ;4 presented in system 2 follows
-> >
V4,2 = 2230330347, (4.36

M ¥

J
Fig. 4.12: Wheel geometry X3

ZMs | Y
ke
'xl'

STEERIMG AXIS
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The contact of the individual wheel with the road surface is
calculated using the tire as an approximately linear spring with radial
stiffness R and lateral stiffness rs* A given roadway contour
ZR,O(XO’yO) in system 0 will be replacid vertically under M¢ by its .
tangential plane. The position vector xE,O and a normal unit vector e
are used to define this plane. With the aid of figure 4.13 the position

>

3 . . -
of the point AM can now be explained. The unit vectors ey €4 are

determined from the vector products

> -+ > -+
- 4,0 E,O -
eU,O Y Z N ed,O ey&,O X eU,O (4.37)

Fig. 4.13: Wheel roadway contact

Two equations are responsible for determination of the distance

X and the contact force P,

> > > T
- = 4.
Cus,0 * 4,0 ™ *g,0) g0 = O (4.38)
‘R 2 ‘R
CR(XO -A) = Rcosyp(1 + EE; tan YP) - 351nyp(1 - ;;;)— PO (4.39)

In the design configuration the tire has the contact force P_.

0
Using the spring deflection w as a state variable and through simplifica~-

tion by assuming known deformations of the wheel suspension (e.g. from



Horizontal Motion of Automobiles 131

the last integration step in the time simulation) the equations can be
decoupled and equation (4.39) is the equation for determination of the

contact force.

For the position of the wheel contact point must be written

-> 7 s -
XaM5,0 " Aed,O + CSR(eE’O X eU,O) (4.40)

The force vectors and the aligning torque M_, described in

s’
system O follow using (4.37)

U = ve P =pP.oe
0o “u,0 * F0 T %0
(4.41)

3 ), M., =-M
0 » 5,0 7 TUs®E,0

S(+ >
(e X e

E,O U,0
Since steady state values for the lateral force can no longer
be expected for rapid steering manoeuvres the tire behavior is described
using a well known differential equation which takes the lateral defor-

mation velocity of the tire into consideration.

E aq

<Ir—-l
b= <]

e

+ S = fs(a,yp, u, P), 1 /c 1.>1

sk’ 'g?lg,min (4.42)

The function fS presents the steady state tire characteristics
corresponding to (2.8). The transition distance IE of the tire, the path
which the tire requires to adjust to the new conditions, is assumed as

function of the normal force, but independent of other variables.

Equations (2.5) and (2.9) still apply for the aligning torque
MS' The longitudinal force U can be calculated using the slip curve,
figure 2.2, whereby here the slip angle, that means the lateral slip
velocity is taken into consideration. That approximation is a qualitative
description of the general behaviour used only as an extension of the

tire characteristics given by figure 2.5.
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The slip angle and tire slip is determined using the velocity

of the wheel contact point and the rolling radius r which shows

v
A,0
little change with changing normal force P in a wide range.
v vl G FRp ) Xye ) (4.43)
Va0 =~ %c,0 * t®02™mo6,2 * ZF,2 * %s,2) * Xams,0 .
- T -+
Vv, ~.e
A,0°7s,0 - +
a = -arctan (3 T 3 ) zS,O 3E,0 X ey o i)
Va,0°%u,0 ’
-> -»> e d -> -»> T
s . (vy,0 = frey o)-ey o . (vy,0 " ey o)-ey o
LB "T ‘* * LT Q
A 0’ U 0

Since only the velocity components in the tangential plane
without time derivatives of the lateral deformation are required for the
> 3
slip angle and slip, the time derivative from ‘XAMGI can be considered

to be zero.

Individual obstacles (pot holes, surface waves) can be taken
into consideration using this description of the movement of the indivi-
dual wheel as long as their dimensions are sufficiently greater than the
tire contact length. The description of the lateral forces used presently
can, however, only practically consider camber angles Yp up to a maximum

of 10°.

For the total vehicle, six equations of motion have been

derived using Newton's law and the Euler equations in relation to the
reference point G.

Y . 4
mx + A .Im = Z(ﬁ .+ 3 .+ 3 L)+ [
1

N
G,0 027 TR1 i%z,2i 0i 0i 0i - mge (4.45)

0 z,0

. >

s N _
©,90,2 * “20,2%©, ”20 2t Z("Moc 2i*Mrgi¥iey 2)) *

-

4 . -»
g(oini'eyé,zi Wa x(O Ql vh, 2l)) =
> > >
Ay Z("Ac 0i¥@o; + Boy + Bop) * Mg op) + M, , (4.46)
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The angular velocity w (Y, #,9) describes the rotation of

20,2
the static configuration in relation to the fixed system 0, written down
in system 2. The meanings of the other variables are listed in the

nominations.

The equations of motion for the individual wheel are derived
using the d'Alembert principle as shown in |8|. For each wheel we obtain
two equations corresponding to steer and spring deflection which also
contain second derivatives of the body degrees of freedom. Here only the

principle relationships are presented in place of the long formulas

N 3 - .
b (8p;sXgr9p0 002 ~++Uyr Byr Sp» Mgys 86 = O
(4.47)
GGEi = GGi + 6Ei i=1, ...4
.35 .
gi(wi, Xgs Wogs +oo Ui’ Pi’ Si, MSi’ Fi) =0 i 1, «o. & (4.48)

Non-linear spring/damper forces and the effects of anti-roll
bars are symbolized by the function Fi(wi’ wj, Qi). The geometric steer
angles 6Gi (§) are determined by the reference value 6(t) at the output

of the steering gear box and the geometry of the steering linkage.

For the wheel spin velocity relationships similar to equation
(3.6) can be derived, which are written down only for a rear wheel drive

with the clutch engaged.

O i LDq : MMiGiDn
2

Qi(O* 5 -) - (U + P f )A MBl 3
OMLélgn
— =~ ((u. + P, . . - - .
o (( it JfR)AJ + “BJ (ui + PifR)Ai MBi) > (4.49)

MM >0;, 1=3,4; j=4,3

/

The longitudinal force Ui contains the state variable Q;via
the wheel slip. The engine torque MM is a function of (Q3 + QA)/Z due
to the differential analog to (3.9).
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Using the derived equations, the vehicle motion can now be
described via the six degrees of freedom of the body as well as per wheel
jounce and rebound, steering and spin. Through the use of the differential
equations (4.42) the system is expanded by four state variables, the
lateral forces of the individual wheels. The input variables are the

steering wheel motions, represented by the steer angle at the output of

degree

a@mqé

i
1
2
ms =, degree

T T T T T T T lt
q 0.8 1.0 1.5 2.0 2.5 L] .5 S w.n

Fig. 4.14: Vehicle reaction to step input of steering angle
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the steering gear box and the accelerator position, in the calculations
represented by the driving moments at the wheels. For the numerical
simulation integration increments of Ims were used due to the high eigen

dynamics of some parts of the system.

Figure 4.14 shows the vehicle response to a step input of the
steering angle corresponding to chapter 3.3.1 of part II. The vehicle
drives 0.5 s straight ahead until the driver forces the vehicle as fast
as possible into a steady state turning. The change of the steering
angle § at the output of the steering gear box is adequate to a steering
wheel speed of about 400°/s. The steady state value of § produces a
steady state turning with ay = 5 m/s?. The drive moments at the rear
wheels where chosen in such a way, that the velocity changes less than
1 7 in the shown time period. After 3,5 sec the steady state driving
conditions are already reached. Caused by the statement of the steering
angles 601 = 662 = § - the vehicle shows an immediate change of the
lateral acceleration. The yaw velocity ¥, but especially the roll angle
¢ and the side slip angle B increase with a distinct time lag. By the
time-history of ¥ and 6G1 the vehicle factor TB can be calculated:

TB = T@,max'ss = 2,86 degrees. The comparison of the vehicle factors
TB of different cars can be used to get valuations for the vehicle

handling - see part II.

To get objective informations in respect to the vehicle handling
another essential test demands the braking of the vehicle starting with
a steady state condition - see chapter 3.4, part II. With fixed steering
wheel angle the brakes are applied as fast as possible up to a constant

value of deceleration.

Because tne description of the tire characteristics at great
slip values SL and simultaneously greater slip angles 0 is a more
qualitative assumption, this test is only simulated for relatively small
decelerations. In figure 4.15 the vehicle has a steady state condition

of v T 80 km/h (22,2 m/s), ay = 5 m/s?. The slow down starts at 0,4 s
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Fig. 4.15: Braking in a curve

and after 0,2s a deceleration -a = 2,7 m/s? is reached. The yaw
velocity first decreases but afterwards increases to a maximum of
1,16 WS. In correspondence to the reaction time of the driver after 1 s

the yaw velocity is still ¥ = 1,08 @s in comparison to its value

1s
W]s Ref 0,87 WS provided the vehicle does not leave the circular path.
b
The corresponding values of the lateral acceleration are a = a__ and

yis ys
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ay1s Ref = 0,76 a X The absolute value of the vehicle side slip angle

?

B changes only slightly. The vehicle turns towards the center of the
curve and drives along with decreasing radius but without an uncontroll-

able break away.

LV}

avad e -4 ODsfacle

i
| w0

Fig. 4.16: Crossing of an obstacle, v = 100 km/h
Reaction of front wheels and car body



138 P. Lugner

Higher decelerations will show the limits of the driving range
due to the joint effects of lateral and longitudinal accelerations -

see measurements in part II.

Figure 4.16 shows the traversing of an unevenness with fix
steering wheel. Driving straight ahead with Ve T 100 km/h the vehicle
crosses an obstacle, a threshold of 0,04 m height with 1 m length, with
the left front and rear wheel. When the front wheel hits the obstacle

just after 0,1 s the deflection w, shows a compression of the suspension

2
spring of nearly 0,05 m, while the deflection v, of the right front wheel

is only influenced by the movement of the vehicle body and the anti-roll
bar. The normal force P2 more than doubles just after the first impact
but shows a lift off of the wheel afterwards. Caused by the small in-
fluence of the tire deflection on the rolling radius the longitudinal
force U2 changes simultaneously to Pz. About 0,15 s (that means 4 m)
after the obstacle both forces are only effected by the body motion.
Despite a time delay due to wheel base and vehicle speed the rear wheels

behave similar to the front wheels.

The body motion reflects the crossing of the obstacle showing
two hops for the roll angle p to the same side and two opposite hops
for the pitch angle ¥ sﬁaping something like a sine~wave. But 0.4 s
after the rear wheel had crossed the obstacle only a slight rolling
and pitching remains and the vehicle path shows only a minimal

deviation from the straight ahead direction.

5. Conclusions

The employment of theoretical investigations for the develop-
ment of an automobile includes the understanding of principle relations

as well as the mathematical pre-development of details to save money and

time.
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Already the most simple models make it possible to demonstrate
and understand the effects of larger differences in the conception of a
car. They also allow to interpret fundamentally the behavior of the ve-
hicle analyzed by experiments. Taking into consideration how fast, with-
out problems and using only few essential vehicle data the results can be
obtained, the use of a 2-wheel-model is not only an important completion
to the evaluations by more complex models but sometimes also the single

opportunity to get informations and estimations in time.

More detailed investigations in respect to the vehicle behavi-
our at the limits of the driving range require complex 4-wheel vehicle
models. Thereby not only the mathematical formulation of the vehicle
model but also of the tire forces have to correspond with the problem.
The introduced &4-wheel-model including the steering and bouncing of
each single wheel makes it possible to describe the properties of
different wheel suspensions and the motion of the vehicle in the time
domain. For steady state turning a slightly simplified model is used.
Hereby the iterative evaluation of the state variables saves expensive

computer time.

Road tests, the measured reality, are the criteria of the use-
fulness of all calculations. On the other hand the theoretical back-
ground is essential for the analysation of the test results. The
verification of effects of system modifications by tests gives a final

prove of their feasibility.

The continuously improving possibilities of sensors and data
processing equipments, statistical evaluation and the fast availability
of results lead to a refinement and enlarge the field of vehicle dynamic

tests.

Theorie and test together build the basement to improve the
vehicle behaviour until the limits of the driving range and also to

expand these limits.
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NOTATION

a m/s? centripedal acceleration

a m/s? longitudinal vehicle acceleration

ay m/s? lateral acceleration

B N braking force

c(w) N spring force

cr Nm steering system elasticity rate

cLe Nm steering column elasticity rate

R N/m tire spring rate

g N steering linkage elasticity rate

R N/m lateral tire spring rate

Cr Nm spring rate of the anti roll bar

€ 2CyrCr19C,0 - coefficients related to the aerodynamic

ch, cMy’ cMz - forces and moments

D - damping ratio

33 matrix descr%bing Fhe rotation in respect

to the steering axis of the wheel

g unity vector

fR - rolling resistance force coefficient

F m? frontal area of the vehicle

Fi N spring and damper forces of wheel suspension

G = mg N vehicle weight

Gw N wheel weight

h, h+ ho’h¢’ hy m position of CG above‘gFound,
components of CG position

iD - transmission ratio of differential

i - ratio of manual transmission

i - steering ratio

I unity matrix

kS N cornering stiffness

ng N abbreviation, see (4.4)

- kM abbreviations, see (4.5)
K., KX abbreviations, see (4.11)
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1, lF’ 1R m wheel base, front and rear di§tance of CG or
reference point from wheel axis

my Moy kg vehicle mass, reduced vehicle mass

m, mTR kg wheel mass, mass of wheel and part of wheel
suspension

MA' MB Nm drive moment and braking moment at the wheel

MM Nm engine torque

MS Nm aligning torque of the tire

MSP Nm steering moment in respect to steering axis

szs Nm aerodynamic moment in respect to CG, z=-axis

wa.uwy.nwz Nm aerodynamic moments

n, m position vector of steering axis

ny m wheel offset (castor offset)

Ny U/min engine speed

ng m tire offset (pneumatic trail)

NM W engine power

P, PN N normal tire force, nominal tire load

9. - slope, street inclination; see (3.24)

a, N/m? aerodynamic pressuyre

r m rolling radius of the wheel

R m radius at steady state turning

s m wheel track

SL' SLT' BLB - slip, driving slip, braking slip
- slip at p

sL.max L, max,
Sy m component of CG position
S, SY N lateral force, lateral force due to
wheel camber
Tz s numerator time constant
ugs uG,max. m accelerator position and its maximum value
U N longitudinal tire force
-+
vV, V m/s velocity of CG, value and vector
x m/s longitudinal velocity of the vehicle
V,VB N driving force and braking force of

drive train
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w m spring deflection

>

v, m/s air velocity vector

WL = -Wx N aerodynamic drag

W, W, W N aerodynamic forces

Xy Tz

X m position vectors

X, Z N forces at the wheel bearing

>

z m position vector of wheel center
due to spring deflection

ay O slip angle, fictive slip angle

B side slip angle of the vehicle

Y Yp wheel camber in respect to car body
and in respect to the vertical
direction of the road surface

$ steering angle assigned to the
steering gear exit

GE elastic steer angle in respect
to steering linkage

GF’ 6; = GH/lL front wheel steering angle,
2 wheel model

GG geometrical steer angle of the wheel

6H steering wheel angle

GK toe-in angle caused by suspension
geometry and elasticity

C] kgm? wheel moment of inertia in respect
to spin axis

© kgm? inertia tensor of the vehicle in
respect to-point G

G kgm? inertia of tramsmission

OM kgm? equivalent engine inertia

Oz kgm? moment of inertia of the vehicle in
respect to the vertical axis, CG

n - efficiency of drive train including
the wheel bearings

0 pitch angle

R angle of road slope

A m loaded wheel radius
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u

“erf

uL’ M

L max,“Lg
uS,max

\Y

\Y

n

£ e g A

D

Subscripts

capital letters

numbers, i

1/s

1/s
1/s
1/s

contact force coefficient
required traction coefficient

longitudinal force coefficient and
maximum value and sliding coefficient

maximum lateral force coefficient
subdivision factor of distribution unit
natural frequency without damping
aerodynamic angle

roll angle

yaw velocity

angular velocity of the engine

wheel spin velocity

specification of special points,
see diagrars, figures

number of coordinate system or
number of wheel

starting configuration or values
for v > 0

front
rear

steady state condition
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VEHICLE DATA

Chapter 4.1: Linearized 2-wheel-model

Chapter

1F = 1.44 m

1R = 1.36 m

m = 1900 kg

©, = 2900 kgm?

kM = 1,16Ns? /m

k = 2,9Ns? /of
y

4,

1F = 1,44
1R = 1,36
h = 0,58
o

s = 1,47
Sp = 0

h¢ = 0,48
hﬁ,= 0,30
Anti roll

Parallel steering :

m

m

m

m

=]

B

bars:

oversteer understeer
kSF = 90000N 60 000 N
kSR = 80000N 110 000 N

2.1: Steady state turning, 4-wheel-model

m = 1900 kg

ky, = 1,16 Ns? /m

ky = 2,9 Ns? /m?

fR = 0,015

Cor1 = Ss12 = 23 000 Nm
¢c 35 Nm

iL = 22,36
F > 7400 Nm, Cr " 1500 Nm

81 = %2 = 9

Position and inclination of the steering axis in design con-

figuration: camber angle 12,2°, caster angle 9°, steering

offset 0, wheel offset 0.027 m.

Wheel elevation curves, factors k,., k

(w.):

Bi’ ki

approximated experimental data, see e. g. f1g. 4.6.

Tire characteristics corresponding to fig. 2.3,

radial tire, Mg max
, .

=M
}L,max.

= 0,85.

Forces of suspension springs: approximated experimental data,

see e.g. fig. 4.7.

Rear wheel drive.
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Chapter 4.2.2: 4-wheel-model, only differences or additional datas to
chapter 4.2.1 are listed below.

=
oo

W O

SR

= 1,37 m
= 1,43 m
= 0,56 m
c = 166000 N/m
c = 120000 N/m

m = 1760 kg
Tori - 30 k8

0 = 0,9 kgm?
OM = 0,1 kgm?
© =

620 0 0
0 2650 0| kgm?
0 0 2820

Radius of the unloaded tire r, = 0,317 m

Aerodynamic forces and moments: approximated experimental data,
see e.g. fig. 2.8.

Damper characteristics, friction, suspension elasticities:
approximated experimental data.

Longitudinal force coefficient corresponding to fig. 2.2, as

a function of slip angle a,

“L,max. = 0,85.

Brake balance: MBF/MBR = 2.65
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INTRODUCTION

In addition to the subjective evaluation of vehicle
handling, measurements of vehicle dynamic are more and more
used as an aid in the development of vehicles. The general
desire to retain the feeling of skilled test engineers in the
shape of reproducible data for the purpose of obtaining the
means for comparative improvements resulted especially during
the past years in an increased application of measuring
techniques. Based on this development, a number of test
methods were established which cover important driving
situations for vehicle evaluation. The same assignment and
last but not least the cooperation between manufacturers of
vehicles and the manufacturers of measuring instruments, as
well as between institutes, resulted worldwide in a certain
standardization of measuring methods and measuring instruments.
The successful support of research and development by means
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of measurement requires that the measuring results of
different variations are available as quickly as possible.
Meeting such a demand assumes the use of computers for data
input and evaluation. The following is a description of the
measuring instruments now in general use for vehicle

measurements.

MEASURING INSTRUMENTS FOR VEHICLE MEASUREMENTS

To cover the variables relevant to vehicle dynamic the
manufacturers of measuring instruments, to a great extent in
cooperation with the manufacturers of vehicles, have been
developed special measuring data transducers and evaluation

instruments.

Longitudinal and Lateral Acceleration

In most cases accelerations and decelerations in a
horizontal level are measured with an accelerometer mounted on

a stable platform, Fig. 1. Stabilizing excludes any influence

Fig. 1:

Stable Platform
(Novotechnik)
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on measuring results by components of gravity due to both the
vehicle roll angle and pitch angle.

The measGring direction remains horizontal. However,
influences caused by a road surface inclination have to be
taken into consideration.

Accelerations can also be measured with transducers
mounted directly on the sprung mass of the vehicle. In this
case its output has to be corrected for the component of
gravity on the accelerometer axis due to both the vehicle
roll angle and pitch angle.

Forward and Lateral Velocity

Forward and lateral vehicle velocity are mainly measured
with non-contact speed sensors. The Leitz sensors Correvit L
and Q, Fig. 2 used for this purpose are working on account of
optical correlation method with spatial frequency filtering.
The surface structure of the road is reproduced on a grating

Fig. 2: Optical Speed Sensors on the Vehicle
Leitz Correvit L and Q
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and the passing light is collected by a photographical
recorder. The frequency of the received signal is proportional
to the velocity at which the picture field is moved normal to
the grid lines.

In another often used method the forward velocity is
determined by the spin velocity of the wheel. For this purpose,
an inductive impulse transducer is used in combination with a
toothed disk which rotates with the wheel. A brake disk, for
example, is suitably prepared for this purpose, Fig. 3. The
impulses are then processed by a frequency to voltage converter.

Fig. 3:

Impuls Transducer
and toothed brake
disk for measuring
forward velocity

vaw Angle, Yaw Velocity

For yaw angle measuring a directional gyro stabilized in
a vertical plane may be used, Fig. 4. The turning of the gyro
housing attached to the vehicle in relation to gyro is obtained
by a potentiometer. A built-in differentiator can also be

vsed to derive the yaw velocity.
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Fig. 4: Directional Gyro for obtaining yaw angle
and yaw velocity (Novotechnik)

Another possibility for direct measurement of the yaw
velocity is the spring restrained rate gyro, Fig. 5. The
control current for restraining the gyro is proportional to
the yaw velocity.

Fig. 5:

Spring Restrained
Rate Gyro (Novotechnik)
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Fig. 6: Rate Sensor (Novotechnik)

For direct measurement of the yaw velocity the so-called
rate sensor is often used, Fig. 6. The principle is based on
the fact that during the rotation of the housing a gas jet is
diverted by the Corriolis force. This diversion is proportional
to the angular velocity. The small dimensions and the robust-
ness of the instrument are of advantage. There are no
sensitive bearings in contrast to the gyro.

Steering Wheel Angle, Front Wheel Angle

Special measuring steering wheels are used for
measuring the steering wheel angle, Fig. 7. The angles are
transferred to a potentiometer by means of a gear wheel
transmission. A torsion measuring hub with a strain gages
bridge is integrated in the measuring steering wheel for
measuring the torque.

A number of devices has been developed for measuring the
front wheel angle in relation to the vehicle body. The device
for measuring the front wheel lock while driving consists of
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Fig. 7: Measuring Steering Wheel for obtaining
steering wheel angle and torque

a lever mechanism which presses a sensor against a face plate
on the wheel. The face plate is attached to tle hub stud and

is not rotating with the wheel. The steering angle of the
front wheel is transmitted to an
electric angle transducer. Changes
in track width and camber are
compensated by guiding on a
parallelogram. This can be
attached to the vehicle body by

means of a frame, Fig. 8.

Fig. 8: Device for measuring
front wheel lock angle




154 A. Zomotor

Fig. 9:

Inductive Trans-
ducers for
measuring wheel
toe changes on
the rear axle

While driving the vehicle, changes of the rear wheel toe
angle in relation to the body, can be obtained with the same
device. The face plate is rotatably mounted on the rear wheel
rim and held by means of an arm in relation to the vertical
axis, so that the face plate is not rotating with the wheel.
Since the angles on the rear axle are only small, simple

inductive transducers can here also be used, Fig. 9.

Sideslip Angle, Slip Angle

Sideslip and slip angles can be computed from the
measured forward and lateral velocity or can be directly
determined by a rotatably suspended trolley wheel. The
measuring instruments can be attached to the vehicle body for
measuring the Sideslip angle, see Fig. 2. For measuring the
slip angle, these measuring instruments are attached to the
wheel. For this purpose, the optical forward and lateral speed
sensor Fig. 10 may be used or a trolley wheel may be attached
to the hub stud, Fig. 11. The rotatably mounted trolley wheel
arm adjusts itself in direction of the movement. A potentio-

meter measures the angle in relation to the wheel plane, the
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Fig. 10:

Leitz Sensors on the wheel for
measuring slip angle

slip angle. A second potentiometer permits determining the
camber, that is the inclination of the wheel plane to the

road surface.

Fig. 11: Trolley Wheel for measuring slip angle
(Eng. School Offenburg)
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Roll Angle, Pitch Angle

The stable platform (refer to Fig. 1) is also suitable
for measuring the roll or pitch angle of the vehicle. The
swivel movement of the instrument housing firmly attached to
the vehicle as compare to the always horizontally stabilized
platform is obtained by a potentiometer. Another possibility
is the non-contact measuring of the ground distance at three
points of the vehicle by optical distance sensors, Fig. 12.
Roll and pitch angle can be computed from the ground distances
and the geometric dimensions of the locating points of the

three sensors on the vehicle body.

Brake Pressure

The oil pressure in the braking system is obtained by
means of a pressure transducer, which is installed at the

master cylinder output.

Fig. 12: Optical Distance Sensor for obtaining roll
and pitch angle (Novotechnik)
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RECORDING AND EVALUATION METHODS

In practical measuring techniques, a few methods and
instruments for recording and evaluation of pertinent data
have been extracted. Depending on assignment and equipment
the following methods can be applied in general:

Direct Recorder

The most simplified method is the use of a directly
writing oscillograph for recording if few measuring variables
and short measuring periods are involved, Fig. 13. The time
functions are immediately displayed while measuring.
Evaluations are made by measuring amplitudes manually. The
method is less suited for fast vibrations where very many
data are coming up. In such cases it will nevertheless be
useful to observe basic connections if the signals recorded

on magnetic tape are made visible on an oscillograph.

Fig. 13: Directly Recording Oscillographs
Visicorder (Honeywell)
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M Magnetic Tape

l'or long mecasuring pecriods and quick processes, the
recording with frequency modulation on a tape recorder has
proven its worth, Fig. 14. The frequency modulated analog
tapcs arc subsequently digitalized for evaluation by a
computecr. The conversion of the tapes requires additional
time and computer capacity, for this reason the method should
be uscd where results are not required immediately. The
number of channels is limited.

With an 1/2" tapec seven tracks and one voice track are
available. A dJisadvantage is that fluctuations of tape speed
will show up as measuring faults and therefore very accurate
synchronization is required. Only a few tape recorders are
available to withstand any acceleration suitable for use in
the vehicles,; they are in addition relatively large and are

conscquently rather hcavy.

Fig. 14: FM-Tape Recorder, Frequency Modulation,
(Honeywell)



Vehicle Handling 159

Fig. 15: PCM Measuring System, Pulse-Code-Modulation,
(Lennartz and Hewlett-Packard)

PCM Method

The recording of measuring signals with a PCM system
(pulse~code-modulation) permits the storage of large quantities
of data at low space requirements for the unit, Fig. 15. For
this method regular samples are taken from analog signals and
are shown as a binary digit on the magnetic tape. The time-
equivalent samples of different functions are recorded on a
tape by a multiplex system one after the other. This system
permits the recording of eight functions on one track. Upon
conversion these measuring variables can directly be evaluated
by a computer. A disadvantage is that the measuring signals
are not visible and that the evaluation cannot be made at the

test site.

Mobile, Computer-Aided Measuring and Evaluation Systenm

The high demands of today's practical research and the

need to quickly obtain large volumes of data for immediate
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evaluation at the test site lead to the development of a
mobile, computer-aided measuring and evaluation system. The
measuring data recording system comprises the respectively
required analog amplifiers, a process computer with operating
terminal and a digital cassette mechanism for intermediate
storage of the recorded data. The evaluation system includes
a desk computer (e.g. HP 9845 B) with an additional cassette
mechanism and a four-colour plotter of DIN A 3 size to issue
the final diagrams. For a combination of the two systems there
are bhasically two possibilities available, the "OFF LINE" and
the "ON LINE" data connection, Fig. 10,

In most cases, the "OFF LINE'" data transfer performed by
a digital cassctte is used in practice., For this purpose the
data collecting unit with signal processing, storage and
operating terminal is installed in the test car, Fig. 17 as
shown in Fig, 16 too. The evaluation equipment is housed in

a scparatc vehicle acting as a mobile computer center, Fig., 18,

Test Car Accompanying Vehicle Test Car Accompanying Vehicle
I A
= o)
Transducer
1 | PO [ ‘ W o E?SK
t o) e (3 feesee
rreogessmg ocessing Cassetle
P ] bin
L I }e]emeer Q__OH ngésier j"‘qgs;anai
EZﬁEE??r Plotter ransmifter
i W 98458
Plotter
Pesnanal® Q_0 ——-r—'—sk"‘—}-
} omputer
Q_Of ==—=—=--
Cassette Casselle
Off Line On Line

Fig. 16: Mobile Measuring and Evaluation Systems
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Fig. 17: Measuring LEquipment VCS 102 installed in
the test car

Following one or several measuring scrics the data cassctte

and the printout are taken from the test car and the cvaluation

Fig. 18: Lvaluation Equipment with desk cowmputer,
plotter and operating terminal installed
in the accompanying vehicle
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in the mobile computer center will start. Measuring will go
on in the test car with a second cassette, while the first
cassette is evaluated.

For the '"ON LINE" data transfer the data are transferred
from the test car by telemetry into the accompanying vehicle,
Fig. 16. If, on account of technical reasons only a few
instruments can be installed in the test car, this system is
preferred. The test car will then hold only the required
transducers with the respective data processing (analog
amplifier and telemetry transmitter).

However, experience has shown that this measuring method
can only be used if the accompanying vehicle can be positioned
close to the test track with visual contact to the test car,
if possible, since otherwise during telemetry transmission

disturbances may occur depending on the environment.

TEST METHODS AND MEASUREMENT PROCEDURES FOR VEHICLE DYNAMICS

Today, on the basis ot experience selected individual
disciplines are usually examined in open loop to obtain
technical measurements of the vehicle handling. Measurements
in closed loop, driver/vehicle/environment have shown that the
determination of an absolute measuring assessment is not
possible due to the large variation of the driver characteristics.
An attempt is therefore being made to find a corrrelation
between the measurement results in open loop and the subjective
evaluation of skilled test engineers in closed loop. Due to
the large number of possible driving manoeuvres and operating
conditions objective measurement of the entire vehicle handling
is not possible, only subsectors can be recorded and compared

for different vehicles.
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Measurement of the Tractive Resistances

The rolling resistance and aerodynamic drag are primary
factors for the fuel consumption of a passenger car. For this
reason many attempts have been made in the past to measure
these variables under realistic conditions using various
methods.

One possibility is the measurement of the drive torque
with the aid of highly sensitive torque measurement hubs. This
allows the total tractive resistance without the losses in the
drive train to be recorded. Due to the sensitivity of the
measurement hubs such tests can only be accomplished on a
blocked track while avoiding sharp starting, braking and
turning manoeuvers.

To determine the rolling resistance the vehicle to be
tested can be pulled by a second vehicle or with a cable winch,
whereby the tractive forces in the tow cable are measured. The
disadvantages of this method are that the measurements can only
be accomplished at very low speed to eliminate the aerodynamic
drag and that strong disturbances resulting from oscillation
of the cable are superimposed on the measurement values. An
improvement to the towing method is achieved bv protecting the
vehicle from the aerodynamic drag with a large trailer, Fig. 19.
The tractive force between the trailer and the protected vehicle
is measured with a special tow bar. The measured force
corresponds to the pure rolling resistance. The measurement can
also be accomplished at higher speeds. This method is, however,
a large-scale affair due to the required trailer.

The coast-down test which has already becen in use for some
time offers the possibility to measure the cntire tractive
resistance and subdivide it into aerodynamic drag and rolling
resistance. Experience has shown that, above all, to separate
the aerodynamic and rolling resistance an extremely high degree
of accuracy is required in measuring the values. The previous

measuring techniques did not assurc this degree of accuracy.



164 A. Zomotor

Fig. 19: Rolling Resistance Measurement by towing
behind a trailer to eliminate Aerodynamic Drag

Only in the recent past it has become possible to
accomplish such measurements with the required degree of
accuracy using modern sensor and calculation technology. Various
methods were also examined for the coast-down test. The method,
which led to the best results will be shown here.

Up to driving speeds of approximately 150 km/h the
following applies for the deceleration resulting from tractive
resistances on an even track without wind:

a_ = Av 2 + Bv., + C
X X X

The aerodynamic drag is proportional to the square of speed:

- . 2 - . . P
WL =qm A vy where A = Cy F z/m

or solved for the drag coefficient:

c =A - m
v F p/2
where the air density equals

P (Torr)
273 - T (°0)

P(kg/ms) = 0.4063
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The rolling resistance consists of one term which is proportional
to the speed and one constant term:

WR = (B Ve +C)m

where the speed-dependent coefficient of rolling resistance:
B, G

fR(V)=VX-§+§

= vehicle longitudinal acceleration
= vehicle speed

= vehicle mass

frontal area of the vehicle

= air pressure

= air temperature

= natural gravity

e -3 v m 8 < ®»
®x
n

The linear statement for the rolling resistance only
applies to approximately 150 km/h depending upon the make
of the tire.

At higher speeds terms of a higher order have also to
be taken into consideration.

In coast-down tests either the deceleration or the speed
can be measured. Very high requirements are placed upon the
accuracy of the measurement, because all methods react very
sensitively to measurement inaccuracies. In the tests the
speed was measured with optical Leitz sensors and the accele-
ration curve ascertained through numerical differentiation.

In measuring the speed, the road surface inclination
is also included (a gradient of 0.1 % results in a speed
deviation of 1 m/s for a measurement duration of 100 s;
coast-down time from 120 km/h to stand-still approximately
170 s).

Therefore measurement is only possible on a road with

a known gradient. Correction of the measured speed:

vo(t) = v (1) o/t b (t) dt
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where
b (t) = g - sin &S {(t) $ = angle of inclination

Starting at a fixed point each individual position, the
associated angle of inclination and therefore the interfering
acceleration can be determined from the road profile through
integration of the measured speed. The tractive resistances
are determined by direct regression. Other solution strategies
gave no usable results.

In a statement according to equation (1) a polynomial
regression of the second order can be accomplished for the
acceleration using the speed. The regre<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>