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PREFACE

High-speed ground transportation requires the development of vebicle systems with
better and better dynamical bebaviour. Such vebicle systems include the guideway, the
vehicle itself and the passenger or freight, respectively.

The present volume contains the courses and lectures presented at the International
Centre for Mechanical Sciences at Udine, in fall, 1981. All the main aspects of bigh-speed
vebicle engineering are summarized with respect to the dynamics of automobiles, railways
and magnetic levitated vebicles. Analytical, experimental and numerical methods are applied
using the deterministic and stochastic approach of dynamics.

The contributions to the vertical motion of vebicles (K. Popp, W.0. Schieblen and P.C.
Miller) are followed by more specific papers on the borizontal motion. Automobiles (P.
Lugner, A. Zomotor and W.O. Schieblen), railways (P. Meinke, A.D. de Pater and P. Meinke)
and maglev vebicles (G. Bobn, W. Cramer and K. Popp) are treated in detail.

I bope the contributions presented will be of interest to engineers and research workers
in companies and univerties who want first-hand information on the present trends and
problems in this important field of technology.

Finally, I would like to thank the autbors for their efforts in presenting the lectures
and preparing the manuscripts for publication. My thanks are also due to Professor G.
Bianchi, Secretary General of CISM and to Professor H.B. Pacefka, Secretary General of
IAVSD, for advice and belp during the preparation of the course. I am also grateful to my
secretary, U. Wachendorff, for ber engaged service with respect to the editorial work.

W. Werner O. Schieblen
Stuttgart, June 1982
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INTRODUCTION TO VEHICLE DYNAMICS

Werner 0. Schiehlen

Institut B fiir Mechanik
Universitdt Stuttgart

Pfaffenwaldring 9, Stuttgart 80, F.R.G.

KINDS AND MOTIONS OF VEHICLES

Today's and tomorrow's vehicles are based on various principles and
travel with very different speeds. For a first classification of all
kinds of vehicles the support and propulsion principles are used. The
support mechanism has to balance the gravity acting on vehicles and the

propulsion generates the forward speed, Fig. 1.

Ground vehicles are supported by reaction forces generated by wheels,
air cushion or magnets. They are driven by friction, flow or magnetic
forces. Fluid vehicles are supported by static or dynamic lift forces
generated by water or air, and they are propelled generally by flow forces.
Inertia vehicles are supported by dynamic lift or inertia forces generated
by air, jet propulsion or orbital motion, and they are accelerated by
inertia forces only. Due to the applied support and propulsion principles
very different speeds are obtained. Ground vehicles come up to 450 km/h
traveling speed and 650 km/h maximum speed. Fluid vehicles reach 1000 km/h

traveling speed and 3300 km/h maximum speed while inertia vehicles may
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Traveling Maximum
Types of vehicles speed speed
km/h km/h
GROUND VEHICLES
Guided ground vehicles
Railway vehicles 250 380
Tracked air cushion vehicles - 400
Magnetically levitated vehicles - 450
Nonguided ground vehicles
Road vehicles 220 650
Wheeled off-road vehicles 60 -
Air cushion vehicles - 140
FLUID VEHICLES
Marine crafts
Ships 40 300
Hydrofoils 150 -
Aircrafts
Airships 80 140
Helicopters 300 -
Airplanes 1 000 3 300
INERTIA VEHICLES
Aircrafts
Airplanes - 7 300
Spacecrafts
Launch vehicles 30 000 -
Satellites 50 000 -

have

Table 1. Traveling and maximum speed of vehicles.

50 000 km/h traveling speed. More details are given in Table 1.
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Fig. |. Propulsion and support Fig. 2. Direction of motion
of an airplane

High-speed vehicles discussed in this course are ground vehicles
with traveling speeds of 200 to 400 km/h. There are included railway

vehicles, road vehicles and tracked magnetically levitated vehicles,

The motions of vehicles are generally rated by their directions and
velocities with respect to the speed. The directions of translational and
rotational displacements are defined with respect to the x, y, z—-axis
fixed in the vehicle's body, Fig. 2. The x-axis represents the longitudi-
nal displacement in forward direction, the y-axis describes the lateral
displacement to the right and the z=-axis is adjusted to the vertical dis-
placement in gravity direction. The rotations around the x, y, z-axis are
called roll, yaw and pitch displacements, respectively. The ratio of the
translational or the corresponding rotational velocities to the speed may
be one or less than one., Small ratios often result in essential simpli-
cations by linearization of the equations. The following symbols are

usually used for the motions:

x longitudinal ¢ roll
y lateral 6 pitch
z vertical Y yaw .

The motions are related to the characteristic features of vehicles.
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Performance characteristics of vehicles are concerned with the accel~
eration, the deceleration and the negotiation of grades in straight-line
longitudinal motion or x~translation, respectively. The tractive or
braking effort and the resisting forces determine the performance poten-—
tial of a vehicle. The longitudinal velocity is by definition equal to
the vehicle's speed. Handling characteristics of vehicles include the
control to a given path by steering and the stabilization of the lateral
motion represented by y-translation, Y-rotation and ¢-rotation. The
steering commands generated by the driver or the track, respectively,
determine the vehicle's path. The lateral motion with respect to the path
is affected by inputs from the environment and the support.

Ride characteristics are related to the vehicle's vibrations in vertical
direction excited by support irregularities, engine forces and the en-
vironment. Vertical vibrations are due to z-translation, 6-rotation and
¢-rotation, they affect passengers and goods. Therefore, the understand-

ing of human response is also very essential for the ride characteristics.

The dynamics of high-speed vehicles treated in this course cover the
longitudinal motion, the lateral or horizontal motion, respectively, and
the vertical motion. In particular, there are considered handling and

ride characteristics.

t t
s

Fig. 3. Step excitation

R
Y N S T A W A}
i) T

t t

Fig. 4. Stochastic excitation Fig. 5. Periodic excitation
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MATHEMATICAL MODELING FOR HANDLING AND RIDE INVESTIGATIONS

For the dynamical analysis of the handling and ride characteristics
of ground vehicles mathematical models of the excitations, the vehicle
itself and the rating of the resulting motions are required. The excita-
tions follow from aerodynamics, engine, wheels and guideway irregulari-
ties. The vehicle has to follow the path and is modeled by appropriate
mechanical systems including the driver. The motions are expected to be

stable, men and goods require low acceleration.

Aerodynamic forces and torques due to cross winds affect particu-
larly the lateral motion. The time history of the wind may be gusty or
random, resulting in different mathematical descriptions. Fig. 3 shows a
typical excitation by a gust. The step excitation is then characterized

by a polynominal
= k
F (t) = 2, F {t-t )} (1)
s k=0 k s

where Fk are constants, {t-ts}k the Heaviside functions,

k k k .
{t ts} = (t ts) for t>ts and {t ts} =0 for t<ts, and t, is

the step time. A steady-state random excitation is presented in Fig. 4.
The random wind can be characterized by a stationary, Gaussian, ergodic

stochastic process

Fo(t) ~ (mg, Np(s)) )

where ne is the mean value, NR the correlation function and s the
correlation time. The aerodynamic forces act usually in the y-axis, the

torques in the z-axis.

The rotary.motion of the engine and the wheels, respectively,
results at constant speed in a periodic force and torque excitation,

Fig. 5. The periodic excitation is represented by Fourier expansion as
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[ -3
= = ' " :
Fg(t) = Fp(t+T) = F_ + El (Fp, cos kQt + Fi sin kQt) (3)
1 1" . . .
where FEo . FEk and FEk are Fourier coefficients and
27
Q= T 4)

the excitation frequency. Thus, only the superposition of harmonic func-
tions remain. Engine and wheel forces and torques may affect the lateral

and vertical motion.

The surface irregularities of the guideway affect the vertical
motion, and in the case of guided vehicles also the lateral motion. The
guideway may have a rigid or a flexible surface. Rigid surfaces result
in excitation functions of the vehicles while flexible surfaces have to
be modeled as mechanical systems. The different types of guideways are

summarized in Table 2 and Table 3.

The path is given for guided vehicles, in contrary to nonguided
vehicles where the driver controls the path, In addition to the path
usually also the tangential plane is given representing the supereleva-
tion of the road or track. Typical paths are straight lines, plane cir-

cles, plane and spatial curves.

The choice of the mathematical model for the vekiicle depends on the
technical problem under consideration. There are three mechanical systems
available for different geometry and stiffness properties, Table 4. The
final decision for one or more of these systems can be made with respect
to the technical problem, Table 5. The equations of motion read for non-

linear ordinary multibody systems as

M(y,t) ¥ + k(y,¥,t) = q(y,y,t) , (5)

for linear finite element systems as
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MYy+Dy+Ky=h(t) (6)
and for linear continuous systems in modal representation
Y + 2 diag (85) y + diag (wzj) y = £(t) )

where y(t) 1is the corresponding position vector and q(t), h(t) and
f(t) are excitation vectors. The equations are completed by the coeffi-

cient matrices M, D, K representing inertia, damping and stiffness.

The driver controls the path of nonguided vehicles by adequate
steering inputs. The steering inputs are collected from the visual obser-
vation of the path and the physical sensation of the vehicle's absolute
and relative motion. Therefore, the steering problem of a nonguided
vehicle can be characterized by a closed-loop control system, Fig. 6.

The dynamical behavior of the driver has to be found by measurements in

simulator or onboard experiments.

The lateral motion has to be directional stable with respect to the
path. This means that particularly the differential equations for the
y-translation, y-rotation and ¢-rotation have to be asymptotically stable.
Usually the stability boundary depends on the vehicle speed and, in the
nonlinear case, on the characteristic amplitude, Fig. 7. A complete ana-

lysis requires linear and nonlinear stability theory.

In vehicles men and goods are subject to vertical mechanical vibra-
tions. The human response to vibrations or the human sensation, respec~
tively, has been investigated in medical and technical sciences for many
years. It was found that there exists an open control loop, Fig. 8. The
human sensation is correlated to the mechanical vibrations by a frequency
response. Due to the guideway irregularities the vertical vehicle motion
is random and the sensation has to be characterized by its standard

deviation.
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Surface Figure Excitation

Plane Vanishing

Obstacle %77, Step
/.

Wave % Harmonic
DA

Rough W Stochastic
%z

Table 2. Excitation functions by rigid surfaces

Surface Figure Mechanical System
. /

Flexible Multibody

Support 4 v System (MBS)

Flexible Finite Element

Beams /ﬂ\/ﬂ\ System (FES)

Elastic > Continuous
Half - Space <2 System (COS)

Table 3. Mechanical systems for flexible surfaces
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Mechanical .
System Geometry Stiffness
Multibody Comp]

System (MBS) omplex Inhomogen
Finite Element Compl

System (FES) ompiex Homogen
Continuous Simpl

System (COS) imple Homogen

Table 4. Mathematical models for vehicles

Technical Problem

Figure

System

Maglev vehicle
with secondary
suspension,
vertical motion

o

oo

MBS

Maglev vehicle
with primary
suspension,
vertical motion

PPPPYYYPIHOD

C0s

Vehicle body,
bending motion

[
|

Lyl
IEERNEEEERRRE

FES

Table 5. Mechanical systems and technical problems
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Path

Visual+ inputs

Driver le—
Steering { angle Absolute
and
Steering System relative
Absolute motion
motion Forces; torques
Vehicle —
Fig. 6. Steering problem
T>LATERAL MOTION
| <
E >
. )%
T~ i
PATH
-~ -~ N
ASYMPTOT. BOUNDARY IN-
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Fig. 7. Lateral stability of a wheelset
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GUIDEWAY
VEHICLE
MEN
/ \
COMFORT E;g;& HEALTH
K =5 K =15 K = 30

STANDARD DEVIATION

Fig. 8. Human sensation of vibration

METHODS OF INVESTIGATION

The dynamical research of high~speed vehicles requires a broad spec-
trum of theoretical and experimental methods. From dynamics the multibody
systems, the finite element systems and the continuous systems are
applied. Control theory contributes with closed-loop and open-loop systems
including human response. Vibration analysis includes stability theory of
free vibrations as well as forced vibrations excited by step, harmonic
and stochastic forces. Nuwmerical methods like algorithms for linear equa-
tions, eigenvalue procedures and integration methods of differential
equations have always to be used in connection with the digital computer.
Sophisticated measurements and experienced design have to be conducted
during the development of each kind of vehicle. Thus, vehicle dynamics

are a very challenging field for an engaged engineer.
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STOCHASTIC AND ELASTIC GUIDEWAY MODELS

K. Popp

Universitét Hannover, FRG

1. Introduction

The theoretical investigations in vehicle system dynamics are based
upon a suitable mathematical system deseription, called mathematical model.
The mathematical model can be gained either by application of the funda-
mental laws of physics to a physical model of the real technical system or
by evaluation of measurements performed on the real technical system it-
self or on parts or experimental models of it. Which way is taken depends
on the problem, purpose of investigation, knowledge of the system, desired
accuray, and last not least on equipment, time and money available.

The quality of the theoretical results is only as good as the under-
lying mathematical model. Thus, the mathematical model must be as complete
and accurate as necessary. On the other hand, from the computational point
of view the mathematical model must be as simple and easy to handle as
possible. It is obvious that the modelling process is a tough engineering
problem.

The aim of the contributions in this Chapter is to show the different
steps in the »rocess of mathematical modelling which are common for
different types of vehicles like automobiles, magnetically levitated vehic-
les (Maglev vehicles) and railway vehicles. The general vehicle setup is
shown in Fig. 1 by means of the block diagram. Subsequent blocks are in

dynamical interaction with each other. In the following the mathematical
models of the subsystems are developed. From this the mathematical model

of the entire vehicle-guideway system can be composed.

We start with the mathematical description of the disturbances and
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PASSENGER
CARGO

—— DISTUREANCES

3
y

4
N

GUIDIZWAY

VEHICLE SUSPENSION

~—=—— MOTION

——= FORCES SCiL

Fig. 1: Vehicle-guideway-interaction.

the guideway dynamics. We restrict ourselves to the two most importiant
cases in applications:

i) stochastic excitation models for rigid guideways and

ii) deterministic models for elastic guideways.
Since the mathematical description turns out to be linear in either case,

both models can be superposed, if necessary.

2. Stochastic excitation models for rigid guideways

Research in the field of guideway roughness models is going or for a
long time. Numerous measurements of road roughness profiles have been
performed, cf. the classical book by Mitschke1, or publications by Braunz,

3

Lo . .
Wendeborn~ , Voy . With respect to railway tracks four roughness profiles

have to be distinguished; lateral alignment, vertical profile, cross-
level and gauge, respectively. Here, measurements are summarized in ORES.
For elevated guideways as used for Maglev vehicles the vertical irregu-
larities comprise the vertical offset and random walk of the piers, camber
of the spans and surface roughness of the tracks as pointed out by

I3
Sayder IIT and Wormley . The evaluation of measurements as well as theo -
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retical investigations concerning the superposition of random irregular-
ities have shown the common fact that the different roughness profiles can
be modelled as

e stationary ergodic Gaussian random processes.
Bevor the guideway roughness models are described in detail, some general
remarks on random processes may be in order, cf. also Newland7, Crandall,

Mark8.

2.1 Mathematical description of random processes

Suppose an infinite ensemble of roughness profile measurements
;(r)(x) for a special guideway typ, let say for highways in Europe, is
given, see Fig. 2. Here, the independent variable x describes the
distance from an arbitrary starting point. Each profile sample differs
from all others, r)( ) % c (x) for r # s . The family of profiles
forms a random process (x) . The Profile values Cj = c(xj) at
discrete distances Xj are random variables. The probability distribu-
tion of the random variable cj is characterized by the probability
density function p(cj) , see Fig. 2, which yields the probability

Pr that the profile value Cj lies between certain limits a and

b,
b @
Pr (a <z. <b) =/ .)daz. I .)dg. =1 . 1
( <z s )=/ p(cJ) ; (L p(cJ) ;5 ) (1)
The random variable Cj s, 3= 1,2, i, can be characterized by
ensemble averages. The most important ones are the mean mc(x1) (first

order moment) and the mean square value mCZ(XW) (second order moment),

m (x,) = B{z(x)} = T ¢ ple)) ag, (2)

ma(x) = E{g?(x,)} = 7 C? p(c_)dg ) (3)

where the operator E{ } 1is called mathematical expectation of { } .
The square root of {3) is called the root mean square value of or

rms value. An important statistical parameter ist the variance o
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C; Cix) 'RANDOM VARIABLE
Lo L) y=Ciy)
b SAMPLE OR RE AL-
IZATION OF THE
q RANDOM PROCESS
;74'\./-' tlkx)
= ~ - U2)x)
(3},
G )]
p() A . x
x2 X1

Fig. 2: Guideway roughness as random process.

0, 2(x,) = E{(z_ - E{z D2} =T (¢ - Bl }2p(z ag
c 1 1 b 1 1 1 1
(1)
= B{g 2} - (E{g 1?2,
1 1

If the mean is zero then the variance is identical with the mean scuare.
The square root of (4) is called the standard deviation OC(X1) . The
correlation between any two random variables, let say ¢ and g ,
gives insight into the random process. The joint ensemblelaveragé is
called (auto)correlation function RC(X1’ x2),

R(x,,x,)=E{c ,c}t=%c¢ ¢ plg,c)dg ac (s)
g 1 e 12 B0 Tem By By PRE B 0GR GRS

vhere p(cl, cz) denotes the joint probability density function.

Analogous to (4) the covariance PC(XT’ x.,) can be defined as

2

P (x1, bl

) =E {(z -©E{c (g -B{z WY =E{g ,c } -E{z }IE{c } . (6)
4 1 1 2 2 1 72 1 2

2

If ¢, and have zero means, then the covariance PC(X1’ x2)

&
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is identical with the (auto)correlation function RC(XT’ x2)
When X, = X, the covariance (6) becomes identical with the variance
(L). Now we can describe mathematically the properties: stationarity,
gaussian or normal distribution and ergodicity.

Stationary means that the probability distributions are invariant
under a shift of the x-axis , i.e. p(zl) = p(gz) =p(g) and

1
all random variables and thus the entire random process have one and the

p(cl, gz) depends only on the distance £ =x X, . As a consequence

same mean, mean square and variance, respectively. The random process can

always be centered resulting in a zero mean. Thus

mc(x) =0, (1)
RC(X1’ x,) = RC(X1 -x, =€) = PC(XT’ x,) (8)
ccz(x) = mcz(x) = RC(O) = const. (9)

Gaussianor normal distribution means that the probability density

functions read
1
pl(z ) = exp [ - (Cl - m1)2 /2 01?2] , (10)

2

1 - g1 022 (Cl-ml)z
plc ,z ) = exp { [ -
12 erl/o,? 0,2 - P122 2(0120,2 - P122) 012

(11)

2P ,(z1- m ) (za-mp) (z2-mpf

+
0'12 0'22 0.22 ]} s

where the abbreviations m, = mc(xi), i=n1,2, P, = PC(X1’X2) , have
been used. These parameters are sufficient for the complete mathematical
description. Eqs. (10)and (11) can be simplified for stationary random
processes regarding (7), (8) and (9). From (10) can be seen, that the

maximum value of the function p(c1) is proporticnal to 1/0y
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Ancther way to signify o) is given by considering confidence intervals.

Solving (1) e.g. for

a = m1 - 01, b = m,

Prom -0, <2, <m + 01) = 0.6827 , (12)

+ o0, yields

which means that 68,27 % of all values of the random variable Z, lie
In the 201—band centered at the mean m .
1
Within the subclass of stationary random processes there exists a

further subclass known as ergodic processes, for which the ensemble

averases are equal to the sample averages of a single sample c(r)(x)

of infinite length,

p X (r)
mC = )l(:l: X {X 4 (x) dx , (13)
R(6) = tin et ¢ ¢ Tx - €) ax (14)
C Yom 2X y ¢ .

A sufficient condition for ergodicity reads, cf. Drenickg,

2 IR (®)ag < = . (15)

In technical applications stationary random process are very often
represented by power spectral density (PSD) functions SC(Q) depending
on the (spacial) circular frequency . The connection with the

correlation function RC(E) is simply given by the Fourier transform,

=1 -iQg
5 (@) =57 [ R (£) e e, (16)
R(£) = Fs(a) e (17)
4 —®
2 - /

=R (0) = T s (Q)dn 18

o, c( ) =/ c( ) {18)
“ince the PSD SC(Q) is an even function o 0, SC(Q) = Sr(~Q\ .

1early always single siided PSDs ¢ Q) are nzed, o () =2 3 )
y T r I

3
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0 <Q <o , with non-negative (special) circular frequencies Q .
Usually, in technical applications neither an infinite ensemble nor
a single sample infinite in length is available. Thus, only approximations

of Rc(g) or SC(Q) can be given,

2.2. Guideway roughness models

In recent publications there is a trend towards standardization of

guideway roughness models. A simple but useful road roughness model reads,

ef. Mitschke1, Voyh,

Q
- O W
¢, () =0 ()" (19)
where Qo[rad/m] s b, = ¢C(Q°)[m2/(rad/m)] and w are constants

describing the reference (spacial) circular frequency, unevennes and
waviness, respectively. Usually, the waviness ranges between 1,75 < w
< 2,25 . The roughness model (19) is often plotted in a @, ¢-diagramm
with logarithmic scales as a sloping straight line. A similar but more
sophisticated model is suitable for roads and for tracks, see Dodds,

Robson1o, Hedrick, Anis11,

Q

0w Q< Q ,
o, () -0
¢C(Q) = for (20)
Q
_O\W Q>0 .
¢o(9 )2 °
where different exponents v, and w, are introduced. In case of

track irregularities (20) is used to describe vertical profile, lateral
alignment, gauge and cross-level as well, However, no crosscorrelation
between these four profiles are knwon. The standardized models (19) and
(20) are approximations to measured PSDs in a distinct frequency range
0<Q <R <Q . In either case, the limit Q30 results in
¢§(Q > 0)> » and thus an infinite variance would follow which is not
realistic. To avoid these difficulties two other roughness models are

. .1 PUPRN 1
used, cf. Dincd, Theodosiu 2, Fabian 3, Sussman
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2002 !
o) = T o (212)
_ 2002 Q2+a2+82 , (22a)

¢C(9) = (a2 V %4 hal?

wvhere a, B and 02 are constant. Since eqs. (21a), (22a) are valid
in the entire frequency range, the corresponding (auto)correlation function

RC(E) can be calculated utilizing (17) which reads for single sided PSDs,
R(E) =T o (2) cosngan . (17a)
Eq.(17) applied to (21a) and (22a) yields
R (£) = o2 @8l (21b)
2 e—alil cos B £ . (22v)

R(g) =0

Here, o2 = RC(O) characterizes the (finite) variance of the random

roughness process r(x)

2.3. Vehicle excitation models

From the guideway roughness models  z{x) given in the space domain
the corresponding vehicle excitation models ¢(t) in time domain can

be obtained using

x=vt , £ =vt, w=vQ, (23)
where v = const [m/s] is the vehicle speed, T denotes the correlation
time and w [rad/s] the (time) circular frequency. Since the roughness
profil  z(x) and the vehicle excitation z(t) have the same variance

Rz{0) , from eq. (17a) it follows

®C(w)dw = ¢C(Q)d9 . (ah)
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Thus, using (23) the single sided PSD ¢C(w) reads,

b =g (2= (25)

Considering model (19) vor example, where the waviness w =2 is

chosen and 60 is used to denote the corresponding unevenness, ohne

gets
PN A Y S LY
¢ () = T o (o) = ve ()2 . (26)

For w32  eq.(25) has to be applied. However, as a frist approximation
the simple model (26) can still be used if the unevenness ;o is chosen
properly. Equating the variance of model (19) (w # 2) and the
variance of the approximation with w =2 1in the frequency range

QliQiQZ ’

2 Q
¢ f QW _~ 2_02
TR RS (21)

yields the equivalent unevennes ¢o ,

6 Q w=2 1 - (9)/9)w1

¢° =T E —1_—(9—1—92—) (w#1) . (28)

Often in applications 1/, << 1 is given which simplifies (28).

Up to now only the excitation profile ¢(t) has been considered.
But also the time derivatives <z(t) and < (t) are of interest. Due
to the classical theory, cf. NewlandT, the PSDs of the derivated random

process can easily be calculated,
. = 2 . = 4
62 (W) = w ¢C(w) > by (@) = w ¢C(w) . (29)

Eq. (29) applied to (26) yields a white noise process, i.e. a constant

PDS for the random excitation velocity process,

~ Q5 .
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corresponding to the (auto)correlation function

. = 0 = 2
Rc(r) a; §(r) , qr=mnve Q s (31)

¢
where a; is the noise intensity and §&(+) denotes the Dirac
distribution. The white noise process results clearly in an infinite
variance which is by no means realistic. On the other hand, this simple
model reduces considerably the computation work and can serve as a first
approximation, cf. Karnopp15, Miller et al.16.

Better vehicle excitation models z(t) are given by stationary
Gaussian colored nolse processes which can be obtained from a white noise
process w(t) by means of a shape filter. The shape filter is an
asymptotically stable linear dynamical system, see Fig. 3, which - roughly
speaking - changes the shape of the correlation function but does not
influence the stationarity, normal distribution and ergodicity. The

mathematical shape filter description reads

z(t) = n® v(t) (32)

v(t) = F v(t) + g wlt) , Re A(F)<0 , w(t) ~ N(0,q,)

where the state vector v(t) and the quantities F, g , and h
determine uniquely the shape filter. The input process w(t) is
assumed to be Gaussian white noise with zero mean and intensity a,
For colored noise characterized by (21a), (21b) or (22a), (22b) the

corresponding shape filter quantities read

F=-0ov , g=g , h=1 |, (21¢)
i 2.a2
o 0] v |/a2eg
E= ! » B=6| |,h= . (22¢)
~(a2+82)v2-2qv 1J 1

In either case g and q, can be chosen arbitrarily regarding
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SHAPE -FILTER

INPUT . OUTPUT
WHITE NOISE ¥(t) =Fyv(t) egwit) COLORED NOISE

t t
Wit —e|  Re\(F)<0,w(t~N(0g,,) ty

L) =hTy(t)

Fig. 3: Shape filter.

gzqw = 20va? . In applications one is interested in computing the shape
filter quantities directly from measured data rather than from analytical
approximations. This can be done by parameter identification procedures
as described e.g. in Miller et.al.17.

A1l vehicle excitation model up to now are models where only single
contact is taken into account. However, real multi-axle vehicles have
multiple contact with the guideway. Thus, the time delays between suc-—

cessive contact points have to be regarded, see Fig. 4. For r contact

points in a line the time delays read

Ly

=V [ —

TEI . . —f C3 L2 0

Fig. 4: Multiple vehicle random excitation.
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ti=2./v ,i=1,...., ¢ (33)
where li is the distance between the front axle and the axle i .
Given the excitation g(t) of the front contact point, the excitation
of the contact point 1 reads

ci(t)-= ;(t—ti) , 0=t <t <....<t . (34)

3. Deterministic models for elastic guideways

The guideways of the vehicles investigated here are quite different.
Usually roads are considered to be rigid but randomly disturbed as
shown in section 2, while the elevated guideways for Maglev vehicles and
the railway tracks are assumed to be elastic. In the latter case the
mathematical model of the overall system dynamics has to take into account
the elastic guideway deflections. Since the guideways stretch over long
distances, only parts of them can be included in the corresponding system
models. If we separate the vehicles from their guideways and introduce

the forces of interaction, then we receive the models shown in Fig. 5.

I) I VE.HI'CLE. T lsvystem

I)

\L_E_tqcte ) ' T SYSTEM
I v
i i

g/7//77?7?777?3
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