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Chapter 1
Introduction

Multivariate adaptive regression splines (MARS) [46] is a form of non-parametric
regression analysis for building high-dimensional and nonlinear multivariate func-
tions and applied in many fields of science, engineering, technology, finance and
control design in recent years. It is a modern methodology of statistical learning,
data mining and mathematical estimation theory which is important in both regres-
sion and classification, and develops an multiplicative-additive model in a two-stage
process, namely, forward and backward, without specific assumptions about the
underlying functional relationship between the variables [58, 68]. Continuing on
the success of MARS in modeling real-life problems, as an alternative to MARS,
Conic MARS (CMARS) [127, 136] was developed for the backward part of the
MARS algorithm in a previous study. For this approach, a Penalized Residual
Sum of Squares (PRSS) is employed for MARS as a Tikhonov regularization
(TR) problem [5], and then, it is treated with a continuous optimization technique,
namely, Conic Quadratic Programming (CQP) [12].

For both the MARS and CMARS models, however, data are assumed to contain
fixed input variables whereas, in reality, the data involved in regression problems
contain noise. Therefore, these regression models are not capable of handling data
uncertainty. Indeed, in inverse problems of modeling and data mining, solutions can
represent a remarkable sensitivity with respect to perturbations in the parameters
which base on the data, and a computed solution can be highly infeasible,
suboptimal, or both. Since, with increased volatility and further uncertainties,
economical, environmental and financial crises translated a high “noise” within data
into the related models, the events of recent years in the world have led to radically
untrustworthy representations of the future, and robustification has started to attract
more attention in many areas. Hence, we include the existence of uncertainty
considering future scenarios into MARS and CMARS, and robustify them through
Robust Optimization (RO) [14, 15], proposed to cope with data uncertainty. We

© Springer International Publishing Switzerland 2016
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2 1 Introduction

represent the new Robust (C)MARS (R(C)MARS) [96–98, 101] in theory and
method, and apply R(C)MARS on some different kinds of datasets.

1.1 Purpose of the Study

The presence of noise and data uncertainty rises critical problems to be coped with
on the theoretical and the computational side. In order to overcome that difficulty,
new models have to be developed where optimization results are combined within
real-life applications. For immunizing against parametric uncertainties, RO, devel-
oped by Ben-Tal and Nemirovski [9, 10, 14], and El-Ghaoui et al. [36, 37], has
gained in great importance as a modeling framework from both a theoretical and a
practical point of view. RO aims to find an optimal or near optimal solution that is
feasible for each possible realization of the uncertain scenarios.

In order to make MARS and CMARS models more generalized and prepared
to deal not only with fixed but also random type of input data, we introduce the
new methods called RMARS and RCMARS by further enhancing the MARS and
CMARS methods to handle data uncertainty [96, 105]. Because of the computa-
tional effort which our robustification of (C)MARS easily needs, we also describe
our new concept of a weak robustification that is called as WR(C)MARS. In our
book, we focus on the polyhedral type of uncertainty which brings us back to CQP
naturally. By using robustification in (C)MARS, we aim to reduce the estimation
variance. Furthermore, we analyze Generalized Partial Linear Models (GPLMs),
and we introduce a newly developed Robust (Conic) Generalized Partial Linear
Model (R(C)GPLM) [99, 100, 102] using the contribution of a continuous regression
model R(C)MARS and a parametric/discrete regression model Logistic/Linear
Regression. A R(C)GPLM leads to reduce the complexity of (C)MARS consisting
in the number of variables used in R(C)MARS algorithm.

In this book, the robust optimization technique of solving and optimizing the
models having nonlinearity and uncertainty by using R(C)MARS is also discussed
with an implementation on two-model regulatory systems (Target-Environment
(TE) systems) that appear in the financial sector and in banking, in environmental
protection, system biology, medicine and so on. Since practitioners in these
fields need to be aware that evaluation of probabilities based on history may be
fundamentally inaccurate, uncertainty has importance for players in these sectors.
The practice of using models of risks in a world of uncertainty is one of the reasons
for the recent environmental and financial crisis [38, 39]. We have presented a
regression model by using splines for the entries of regulatory network and achieved
a relaxation by means of robust and continuous optimization, especially, Robust
Conic Quadratic Programing (RCQP). That model of a TE regulatory system allows
us to determine the unknown system parameters from uncertain measurement data
by applying interior point methods [114, 115]. In case of uncertain data, polyhedral
sets are used to encompass errors, what refers us to particular robust counterpart
programs.
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We are interested in the multicriteria tradeoff (antagonism) between accuracy
and robustness. In the line of our research [96–98, 101], robustness has become,
in some sense, an extension of stability or regularity. Stability also means a
small complexity of the model, or: a small variance of the estimation. Through
R(C)MARS, we have included uncertainty into our regression and classification
modeling not only in the output variable but especially in the input variables also.
This type of uncertainty is typical for real-life applications. So, in RCMARS,
there exists a double way of robustification: (i) The robustification is performed
with respect to the input variables and output variable, all of them with their own
uncertainty sets. (ii) The regularization in integral form that expresses itself by
the involvement of the (squared) first- and second-order partial derivatives of the
multivariate basis functions; after discretization of the integrals, we reach a TR
problem with first- and second-order complexity terms. Then, this TR problem is
turned into a CQP problem. In our RMARS, we only have the robustification step
(i), whereas the fine-tuning option (ii) dropped. We underline the core importance
of the target of numerical accuracy (precision) as a central goal in of our tradeoff
that it establishes together with regularity and robustness, respectively. Within
the RCMARS concept and its RCQP optimization program, through the “control
parameter” which is represented by the upper bound of the complexity term, one
can regulate and “tune” the importance that one assigns for the stability (lack of
complexity) goal and, by this, for the antagonistic precision target. Moreover, we
got the promise of gaining from the “power” of RO to our R(C)MARS [96, 101].
We demonstrate the well performance of our models with numerical experiences,
simulation studies and real-world applications.

1.2 The Significance of Uncertainty

Since the global economic crisis has caused the necessity for an essential restruc-
turing of the approach to risk and regulation, core elements of a new global
regulatory-framework have become needed to establish in order to make the
financial system more robust and suitable for serving the requirements of the real
economy. For this reason, many scientists try to find ways to measure the probability
of financial calamities, natural disasters and other catastrophes [39]. They draw
attention to the difference between known risks and uncertainty. The problem to
be thought about is that most economists and other risk modelers do not separate
uncertainty from risk. Economic models suppose that the financial world contains
known risks that can be evaluated depending on prior behavior of stock markets and
other elements of the monetary system. Nevertheless, there is genuine uncertainty,
which is the impossibility of knowing exactly what the future keeps even in a
probabilistic sense, as well as the risk that is the range of probabilities of outcomes
pointed out by past events, which may serve as an unreliable guide for the future
in an uncertain environment [22, 38, 48]. In other words, there are some sources of
uncertainty: the data of the problem are not exactly known or may not be exactly



4 1 Introduction

measured, or the exact solution of the problem may not be implemented because of
inherent inaccuracy of the devices [21], and data uncertainty results in uncertain
constraints and in the objective function. This means that the known statistical
models may not give trustworthy results.

Uncertainty is often presented in the sectors of energy, economics, finance,
insurance, but also in high-tech and the environmental studies. It is one of the char-
acteristic properties in these sectors since the given data, in both input and output
variables, are affected with “noise” of various kinds, and the scenarios which repre-
sent the developments in time, are not deterministic either. Traditional approaches to
optimization under uncertainty such as stochastic programming [64, 111], chance-
constrained programming [26] or stochastic dynamic programming [17] generally
have most serious numerical difficulties as the models in these areas are large and
complex, already in their deterministic formulation. Therefore, as an alternative to
traditional methods, RO is introduced to handle the complexity issue in adopting a
non-probabilistic formulation of the uncertainty. RO does not have recourse to the
calculus of probability that makes it immune against the curse of dimensionality and
computational intractability [42].

In this book, the existence of uncertainty has a strong impact on the way of
modeling which, then, becomes the basis of regression and classification and,
eventually, of decision making. In this way, the uncertainty phenomenon enters
all parts of the model and its mathematical treatment, and one of the prominent
techniques to address this situation is RO. In fact, it refers to worst-case scenarios.
In our study, we have at hand control parameters in order to regulate the amount
of skepticism and optimism or, in other words, risk-aversion and risk-friendliness
in the modeling process. Here, risk expresses itself in terms of variance, namely,
the estimation variance, as we shall explain. We wish to underline that by all
these considerations and measurements, with our robustification we are going much
beyond of the concept of regularization which just relates to the output data and the
complexity of the modeling functions.

1.3 Robust Optimization

Optimization has been a leading methodology in many fields such as engineering,
finance and control design, and most applications suppose complete knowledge
of the data which are underlying the optimization problem. In other words, it is
assumed that to develop a model, the input data are known exactly (fixed). Never-
theless, solutions to optimization problems can represent a significant sensitivity to
perturbations in the parameters of the problem. Optimization affected by parameter
uncertainty is a focus of the mathematical programming community and a necessity
to tackle uncertain data arises to develop models where optimization results are
combined within real-world applications [18, 20].

RO is a method to address data uncertainty in optimization problems. The
RO approach aims to make the optimization model robust, considering constraint
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violations by solving robust counterparts (RCs) of these problems in prespecified
uncertainty sets for the uncertain parameters. These counterparts are solved for the
worst-case realization of the uncertain parameters based on uncertainty sets for the
random parameters [40].

RO has gained a lot of attention from both a theoretical and a practical point of
view as a modeling framework for “immunizing” against parametric uncertainties
in mathematical optimization. It is a methodology to model, evaluate and solve
optimization problems in which the data are uncertain and only known to belong
to some uncertainty set. RO purposes to receive an optimal or near optimal solution
that is feasible for each possible realization of the uncertain scenarios [14, 146].

In this study, we work on R(C)MARS with the help of an RO approach which
makes (C)MARS robust in view of constraint violations by solving RCs of these
problems within uncertainty sets. Although these counterparts are solved for the
worst-case realization of those uncertain parameters based on suitably defined
uncertainty sets, we shall weaken the concept of “worst case” for reasons of
computational complexity. Moreover, we have at hand control parameters which
help to assess risk-friendliness- vs. -aversity. We study on robustification in
terms of polyhedral uncertainty which enables us to return back to standart CQP
naturally [96, 98, 101].

1.4 Complex Multi-Modal Regulatory Networks

The identification of the underlying network topology permits us to gain insights
into the regulating effects and the hidden relationships between the variables. Many
theoretical contributions from various disciplines concentrate on the analysis of
such systems. Nevertheless, the identification of regulatory networks from real-
world data is still a challenge in mathematics. This shows even more promise as
the technical developments of the last decades have obtained a large number of data
that are still waiting for a deeper analysis [27, 47, 56, 59, 61, 69, 109, 117, 132].
TE regulatory systems arise in many application areas in which they are more
and more referred to as gene-environment or eco-finance networks. TE regulatory
networks can be analyzed as gene-environment networks, for instance, to define the
complex interactions between genes and other components of cells and tissues in
modeling and prediction of gene-expression patterns from microarray experiments,
regarding in a wider frame. The target variables are the expression values of the
genes, whereas radiation, toxins, transcription factors, etc., additionally become
environmental items [70, 71, 73, 78, 133, 135, 139, 143, 144]. Today, it is obviously
understood that environmental factors comprise an essential group of regulating
components and the performance of the models may be significantly improved by
including these additional variables. The benefit of such a refinement has been
shown, for example, in [141], where prediction and classification performances
of supervised learning methods of the most complex-genome-wide human disease
classification can be made better by taking into account environmental aspects.
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TE regulatory networks may be extended with eco-finance networks (eco abbre-
viating ‘ecology’) by the important example in the area of CO2-emissions-control;
another example consists of operational planning and portfolio optimization for
natural gas transportation systems. The interdisciplinary implications in economics,
technology and Operational Research can be successfully explained by these kinds
of network models [72, 78, 139, 144]. Furthermore, TE regulatory networks may be
applied to an extension of the Technology-Emissions-Means (TEM) Model [110]
that was prepared with the occasion of the Kyoto protocol [75]. The TEM model
leads to a simulation of the cooperative economic behavior of countries or enter-
prises with the purpose decreasing the greenhouse gas emissions. Here, the target
variables are the emissions which some countries have to diminish, and the financial
expenditures act as additional environmental items [66, 109, 110]. There exist
many other examples from biology and life sciences, which refer to TE-regulatory
systems, with environmental effects being strongly included. Among them are,
e.g., metabolic networks [23, 108, 140], immunological networks [56], social- and
ecological networks [49]. Modeling and prediction of such regulatory systems and
the problem of identifying the regulating effects and interactions between the targets
and other components of the network have a significant importance in the mentioned
areas.

The comparison of measurements and predictions of the TE regulatory networks
lead to a regression models for parameter estimation. In most of the applications
from these fields, it is assumed that the input data are not random but known
(fixed) in developing models. Additionally, the data can undergo small changes
by variations in the optimal experimental design. Therefore, all of these condi-
tions cause uncertainty in the objective function and in possible constraints, and
they introduce some kinds of weaknesses to the methods, because real-life data
involve uncertainty in the form of noise. Here, since the regression models of
target-environment networks can be affected by noise and errors, presented by
intervals, the uncertain multivariate states are in total represented by polyhedra, and
accordingly, our newly developed robust modeling techniques R(C)MARS, which
can handle random inputs is used. This employs the concept of robustness through
RO problems.

1.5 Scope of the Book

This book is comprised of seven main chapters and four appendices. Briefly
summarizing, the contents are organized as follows:

Chapter 1: Introduction of the book. The objectives and outlines of the study is
given in this chapter.
Chapter 2: The background information about Multi-Model Regulatory Net-
works, Optimization and Regression is provided.
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Chapter 3: Theory and approaches of R(C)MARS and R(C)GPLM method under
Polyhedral Uncertainty are demonstrated here.
Chapter 4: Spline Regression Models for Multi-Model Regulatory Networks are
introduced in theory and methods. (C)MARS results based on different datasets
for the simulation are represented.
Chapter 5: Robust Optimization in Spline Regression Models for Multi-Model
Regulatory Networks is introduced in theory and methodology. R(C)MARS
results with different uncertainty scenarios for the numerical example are studied
here.
Chapter 6: Real-world applications from different sectors are presented in this
chapter.
Chapter 7: A conclusion and an outlook to further studies are stated in the last
chapter.



Chapter 2
Mathematical Methods Used

In this chapter, we introduce some preliminaries related with our studies.

2.1 Optimization

2.1.1 Robust Optimization

Robust optimization (RO) has gained a lot of attention both from a theoretical and
practical point of view as a modeling framework for immunizing against parametric
uncertainties in mathematical optimization. It is a modeling methodology to process
optimization problems in which the data are uncertain and is only known to belong
to some uncertainty set. Robust optimization purposes to receive an optimal or
near optimal solution that is feasible for every possible realization of the uncertain
data [14, 146].

In the early 1970s, Soyster [121] was one of the first researchers to investigate
explicit approaches to RO. This short note focused on robust linear optimization
in the case where the column vectors of the constraint matrix were constrained to
belong to ellipsoidal uncertainty sets. He suggested a linear optimization model
to create a solution that was feasible for all input data such that each uncertain
input data point could take any value from an interval but, this approach tended
to find solutions that were over-conservative. Even though Falk [41] followed this
a few years later with more work on inexact linear programs, the optimization
community was relatively quiet on the issue of robustness until the work of
Ben-Tal and Nemirovski [9–11] and El Ghaoui et al. [36, 37] in the late 1990s.

The RO approach makes the optimization model robust regarding constraint
violations by solving robust counterparts of these problems within prespecified
uncertainty sets for the uncertain parameters. These counterparts are solved for
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the worst-case realization of those uncertain parameters based on appropriately
determined uncertainty sets for the random parameters [40]. The general uncertain
optimization problem is defined as follows:

minimize
x2Rn

cTx

subject to fi.x;'/ � 0 .i D 1; 2; : : : ;m/;
(2.1)

where fi.x;'/ are given constraint functions, ' 2 R
K is a vector of uncertain

parameters and c 2 R
n as well. Ben-Tal and Nemirovski [9–11] and, independently,

El Ghaoui et al. [36, 37] have taken a significant step forward on developing theory
for robust optimization. Indeed, the uncertain optimization problem is a family of
problems—one for each realization of '. In the RO framework the information
related to c and ' are modeled as geometric uncertainty sets U1 � R

q and U2 � R
K .

Therefore, the family of problems of Eq. (2.1) is rewritten by its robust counterpart
in the following form:

minimize
x

max
c2U1

cTx

subject to fi.x;'/ � 0; 8 ' 2 U2 .i D 1; 2; : : : ;m/;
(2.2)

where U1 and U2 are given uncertainty sets. Let any minimal value be called z�. The
motivation is to find a solution of the stated problem in Eq. (2.2) that ‘immunizes’
the problem Eq. (2.1) against parameter uncertainty. Here, the objective function is
guaranteed to be no worse than z� and a solution of Eq. (2.2) is feasible to Eq. (2.1)
for any realization of ' 2 U2. Anyone of the two uncertainty sets U typically is a
polytope or an ellipsoid or an intersection of such sets. In the robust optimization
literature, a general form of uncertainty set, U, e.g., U, is given as follows:

U D
(

' D ' C
qX

�D1
��'

� 2 R
K
ˇ̌

� 2 Z

)
; (2.3)

where ' is the nominal value of the uncertain vector ', the vectors 'K are possible
scenarios of it, and � D .�1; �2; : : : ; �q/

T is a perturbation vector. The set Z
determines what type of uncertainty set we have. These sets may be

box uncertainty set W Z D ˚
� 2 R

q
ˇ̌

� � 0; eT� � 1
�
;

convex combination of scenarios W Z D ˚
� 2 R

q
ˇ̌ � 1 � �i � 1 .i D 1; 2; : : : ; q/

�
;

ellipsoid uncertainty set W Z D ˚
� 2 R

q
ˇ̌

�T� � 1
�
:

(2.4)

where e D .1; 1; : : : ; 1/T 2 R
q.
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Fig. 2.1 Approximating a robust solution [35]

These sets yield useful models of uncertainty, which lead to tractable optimiza-
tion problems [15]. For a visualization see Fig. 2.1.

2.1.2 Conic Optimization

A general primal conic (CP) optimization problem is a problem in the conic form

minimize cTx

subject to Ax D b; x 2 K;
(2.5)

where K is a closed, pointed (which means that K contains no line), non-empty,
convex cone, x is the design vector and c is a given vector of coefficients of the
objective function. In fact we assume that K is some product of the following
cones [12]:

(i) The nonnegative orthant RnC. The non-negative orthant consists of all vectors
inRnC whose elements are all non-negative:RnCD ˚

x
ˇ̌
xk � 0 8k D 1; 2; : : : ; n

�
.

(ii) The Lorentz (or second order, or ice-cream) cone:

Ln WD
�

x D .x1; x2; : : : ; xn/
T 2 R

n
ˇ̌

xn �
q

x21 C x22 C : : :C x2n�1

�
.n 2 N n f1g/:
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(iii) The positive semidefinite cone:

LnC WD ˚
A 2 R

n�n
ˇ̌

A D AT ; xTAx � 0 8x 2 R
n
�
: (2.6)

A general dual conic (CD) optimization problem is a problem in the conic form

minimize bTy

subject to c � ATy 2 K:
(2.7)

Here, (CD) is just called the dual problem of (CP), the constraint is called
a linear matrix inequality. For a conic problem, there exist the following
properties of the duality [12]:

1. The value of the dual objective at every dual feasible solution is the value
of the primal objective at every primal feasible solution (weak duality).

2. The following two properties are equivalent to each other:

(a) The primal problem is strictly feasible and below bounded,
(b) The dual problem is solvable.

3. The following two properties are equivalent to each other:

(c) The dual problem is strictly feasible and bounded from below,
(d) The primal problem is solvable.

Strong Duality property: Whenever .a/., .b// or .c/., .d// is the
case, the optimal values in the primal and the dual problems are equal to
each other (strong duality):

Opt.CP/ D Opt.CD/:

4. The duality is symmetric: the problem dual to the dual is equivalent to
the primal. There are different conic optimization problems considered
and coped with such as Linear Programming (LP), Second-Order Cone
Programming (SOCP), Semidefinite Programming (SDP). In all these cases,
these conic optimization problems can be solved efficiently by an interior
Point Method (IPM) [114, 115]. For our study, we will mainly focus
on SOCP, also called as Conic Quadratic Programming (CQP) [12, 19].
Here, to find a solution for conic optimization problem, MOSEK [87],
SeDuMi [125], SDPT3 [131] can be used as a solver.
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2.1.2.1 Conic Quadratic Programming

CQP is the problem of minimizing a linear objective function subject to the
intersection of an affine set and the direct product of quadratic cones of the form

Ln D
8<
:x 2 R

n
ˇ̌

x2n �
n�1X
jD1

x2j ; xn�1 � 0

9=
; :

We recall that the quadratic cone is also known as the second-order (Lorentz or
ice-cream) cone. Many optimization problems can be constructed in this form.
Some examples are linear, convex quadratic and convex quadratically constrained
quadratic optimization. Various applications of conic quadratic optimization are
presented in [12, 79]. A conic optimization problem can be represented in the
following form:

minimize cTx

subject to Ax D b; x 2 K;

associated with a cone K, represented as K D Ln1 � Ln2 : : : � Lnr � E. Canonically
turning to inequalities rather than equalities, in general, a CQP is an optimization
problem with linear objective function and finitely many ‘ice-cream constraints’
bi � Aix �

Lni
0, defined by bi � Aix 2 Ln .i D 1; 2; : : : ; r/. Therefore, a CQP problem

can be written as [12]

minimize
x

cTx

subject to bi � Aix �
Lni

0 .i D 1; 2; : : : ; r/:

If we subdivide the data matrix, ŒAi; bi�, as follows:

ŒAi; bi� D
�

Di di

pT
i qi

�
;

where Di is of the size (.mi � 1/ � dim x), the problem can be written as follows:

minimize
x

cTx

subject to kDix � dik2 � pT
i x � qi .i D 1; 2; : : : ; r/:
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That is the most explicit form which is used. In that form, Di are matrices with the
row dimensions being the dimension of x, di are vectors of the same dimensions as
the column dimensions of the matrices Di, pi are vectors of the same dimensions as
x, and qi are real numbers.

2.1.2.2 Interior Point Methods

Convex optimization problems like semidefinite programming, geometric program-
ming and, in particular, CQP problems are very essential in data mining and
classical polynomial-time algorithms may be employed to solve these kinds of
problems. Nevertheless, these algorithms have some disadvantages since they use
local information on the objective function and the constraints. Therefore, Interior
Point Methods (IPMs) [92], firstly introduced by Karmarkar [62], are employed
to solve ‘well-structured’ convex problems, like CQP problems. There has been
done comprehensive research on interior-point methods for linear optimization.
One result of this research is the development of a primal-dual interior-point
algorithm [65, 88] that is highly efficient both in theory and in practice [3, 81].
Consequently, some authors have studied to drive this algorithm for other problems.
An important work in this direction is the paper of Nesterov and Todd [93] which
represents that the primal-dual algorithm keeps its theoretical efficiency when the
nonnegativity constraints are replaced by a convex cone as long as the cone is
homogeneous and self-dual, or in the terminology of Nesterov and Todd, a self-
scaled cone [4]. It has subsequently been implied by Güler [52] that the only
interesting cones having this property are direct products of the quadratic cone and
the cone of positive semi-definite matrices. For our study, we mainly focus on conic
quadratic optimization and on an algorithm for this class of problems.

For CQP, many authors have already worked algorithms. In particular, Monteiro
and Tuschiya [89, 129] have analyzed the complexity of different variants of the
primal-dual algorithm. Schmieta and Alizadeh [118] have represented that many
of the polynomial algorithms developed for semidefinite optimization [124] may
immediately be translated to polynomial algorithms for conic quadratic optimiza-
tion [4]. Sturm [125] has reported that his code SeDuMi may solve conic quadratic
and semidefinite optimization problems. We take into consideration an optimization
problem given by [4, 12]

minimize
x2} cTx;

where } � R
n. Here, IPMs base on the interior point of the feasible set }. We

suppose that this feasible set is closed and convex. An interior penalty function
(barrier) F.x/ is selected, well defined, smooth and strongly convex, in the interior
of } and blowing up as a sequence from the interior int } approaches a boundary
point of }:

xr 2 int } .n 2 N0/; lim
r!1 xr 2 @} ) F.xr/ ! 1 .r ! 1/:
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Now, we take into account one parametric family of functions generated by our
objective and interior penalty function

Fp.x/ WD pcT C F.x/jint } ! R:

The penalty parameter p is supposed to be nonnegative. Under mild regularity
assumptions [4],

(i) every function Fp.�/ attains its minimum over the interior of }, the minimizers
x�.p/ being unique;

(ii) the central path x�.�/ is a smooth curve, and all of the variables p, its limiting
points (as p ! 1), belong to the set of optimal solution of above optimization
problem.

These algorithms have the advantage of employing the structure of the problem,
of allowing better complexity bounds and exhibiting a much better practical
performance. In the so-called primal-dual IPMs, both the primal and the dual
problems and their variables are regarded, the joint optimality conditions perturbed,
parametrically solved and followed towards a solution along a central path.

2.1.3 Robust Conic Optimization

For all (or most) possible realizations of the data, the solution should satisfy the
real constraints despite of the data uncertainty. Such a solution is called a robust
feasible solution. The problem of receiving an optimal robust solution is called the
robust counterpart of the original problem. Indeed, it is the problem of minimizing
the objective function over the set of robust feasible solutions. In this study, we deal
with an uncertain conic problem which has the following form [19]:

minimize
x

cTx;

subject to Akx � bk 2 Kk .k D 1; 2; : : : ;N/;

where Kk .k D 1; 2; : : : ;N/ are closed, pointed, non-empty, convex cones, and
A; b; c are subject to data uncertainty. It is necessary that the robust counterpart is
computationally tractable, that is, solvable in polynomial time with respect to the
problem size for RO, which is an applicable methodology for real-life large-scale
problems [36, 120]. We note that tractability of the robust counterpart depends on
the original optimization problem and the uncertainty set considered.

The robust optimization problem can be solved efficiently when the uncertainty
set has a special shape. These special shapes for uncertainty sets can be either ellip-
soidal or polyhedral. If ellipsoidal uncertainty sets are applied, the robustification
is more successful than the employing of polyhedral uncertainty sets. However, the
complexity of optimization problems increases when an ellipsoidal, rather than a
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polyhedral uncertainty set is applied. Indeed, our robust CQP (RCQP) problem
becomes a problem of Semidefinite Programming (SDP) [8, 13, 37] under ellipsoidal
uncertainty.

To not increase the complexity of optimization problems involved, in this study,
we only focus on polyhedral uncertainty with different uncertain scenarios. We
study our RCQP problem (robust second-order optimization problem (RSCOP)) and
we shall find out that it remains CQP. Consequently, we will guarantee polyhedral
uncertainty sets by an interval concept for input and output data in our model; our
RCQP problem will be traced back directly as CQP programs.

2.1.4 Multi-Objective Optimization

In general optimization problems, there is a single objective function and the aim
is to find a solution which optimizes the objective function value subject to some
constraints by using single-objective optimization method. Nevertheless, most real-
world problems have several objectives, and decisions must be made by regarding
these objective functions at the same time [123]. When an optimization problem
includes more than one objective function, this problem is called as Multi-Objective
Optimization (MOO) problem that has the task of finding one or more optimum
solutions [32]. If optimization problems contain multiple objectives, we cannot use
single-objective optimization methods. In fact, different objectives are commonly
conflicting with each other. Therefore, a solution which performs well in one
objective cannot do as good as in the other objectives [32]. There exist several
solutions that do not perform suitably in all objectives. It is not clear which of these
solutions are better until the decision maker computes them. An MOO problem can
be written as following form [123]:

minimize
x

. f1.x/; f2.x/; : : : ; fq.x//Tsuch that x 2 X;

where x 2 R
n is a feasible solution and X � R

n is the set of all feasible solutions. In
this problem, there are q objective functions to be minimized. Sometimes the MOO
problem is symbolically written with a .q � n/-matrix A, where the ith row of A
corresponds to the ith objective function, fi.x/.

The point y D .y1; y2; : : : ; yq/
T 2 R

q such that y D Ax is the outcome of the solu-
tion x 2 X. The set X is called decision space, and Y D ˚

y 2 R
q
ˇ̌

y D Ax; x 2 X
�

is
called the objective (criterion) space. A point x is called to dominate point x0 if and
only if the corresponding yq � y0

q for all q and yq < y0
q for at least one q. If there is

no x0 2 X such that x0 dominates x, then x is called non-dominated or efficient. The
complete set of non-dominated solutions is also known as the Pareto-optimal set.
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2.1.5 Optimization Softwares

It is important to make distinction between optimization solvers (optimizer) and
optimization modeling languages [40]. An optimization solver is a software that
carries out numerical routines to obtain the optimal solution of an optimization
problem. Optimization modeling languages appeared as user-friendly platforms that
permit the user to specify optimization problems. AMPL and GAMS, communicat-
ing with a diversified amount of solvers, are two popular modeling languages. Also,
there are lots of languages which give modeling interfaces for particular types of
optimization problems or solvers [40]. For example, YALMIP [80] let Matlab users
to preprocess SDPs and CQPs. Then, these are passed to semidefinite solvers like
SDPT3 and SeDuMi.

SDPT3 [131] and SeDuMi [125] can handle linear constraints, quasi-convex
quadratic constraints and positive semidefinite constraints. Two of them use a
primal-dual interior points method implied as the centering-predictors-correctors
method, and may exploit sparse matrix structure, making them very efficient [124].
For these semidefinite programming solvers, creating the inputs may be very
time consuming, and can need substantial background in optimization modeling.
YALMIP and PROF which are obtained as layers on top of these solvers in Matlab
permit for intuitive formulation of SDPs and SOCPs, and help the user retrieve the
results from the solvers very easily [40].

MOSEK is a useful optimizer for linear, quadratic and convex quadratically con-
strained optimization problems, well-known for speed and numerical stability [40].
It enables solvers for the optimization problems which have the types of the linear,
conic quadratic (CQ), convex quadratic, general convex and mixed integer. MOSEK
optimization tool consists of interfaces to make it easy to employ the functionality
of MOSEK from programming languages such as C, C++, MATLAB Toolbox,
Java, NET, and Python [87]. MOSEK technique has some technical benefits and
an optimization tool to solve large-scale mathematical optimization problems, but
the problem size is only limited by the available memory. MOSEK is of an
interior-point optimizer with basis identification and it is well known owing to its
excellent speed and stability [87]. The software uses problem sparsity and structure
automatically to receive the best possible efficiency. It also has both primal and dual
simplex optimizers for Linear Programming (LP) and corrects sensitivity analysis
for linear problems. It has an efficient presolver to decline problem size before
optimization. It can tackle primal and dual infeasible problems in a systematic
way [87]. Furthermore, MOSEK contains tools for infeasibility diagnosis and repair
and, it may read and write industry standard formats such as MPS, LP and XML.
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2.2 Dynamical System of Complex Multi-Modal Regulatory
Networks

Dynamic systems abound in the real-life practical environment as biological,
mechanical, electrical, civil, aerospace, medicine, environmental sciences, finance
and economy and a variety of other systems. Understanding the dynamic behavior of
these systems is of primary interest to scientists as well as engineers. The availability
of large data sets now allows to gain deeper insights in the dynamic behavior of
complex systems and opens promising avenues for further scientific progress. These
systems often involve two different kinds of data sets in form of certain key or target
variables and additional environmental variables. For a deeper analysis one has to
describe and investigate the interactions and regulating effects between data items of
interest and the environmental items, encoded in the regulation-network. Modeling
and anticipation of such systems and the problem of identifying regulating effects
and interactions between the targets and the other components of the network have a
remarkable significance in the mentioned areas [14, 68]. As these models are based
on real-world data, errors and uncertainty have to be considered.

Examples

(a) The models under consideration is developed in the context of modeling and
prediction of gene-expression patterns [133, 135, 138, 139, 142, 145]. In these
gene-environment networks, the target variables represent the expression levels
of the n genes, whereas the m environmental factors denote external items (e.g.,
radiation or toxins).

(b) TE regulatory-networks may be extended with eco-finance networks (‘eco’
abbreviating ‘ecology’) with an important example in the area of CO2-
emissions-control; another example of operational planning and portfolio
optimization for natural gas transportation systems. In [66, 109, 110, 139], the
Technology-Emissions-Means Model (in short: TEM-model) is investigated,
which lets a simulation of the cooperative economic behaviour of
countries/enterprises with the purpose of a reduction of CO2-emissions. Here,
the target variables are the emissions that the actors wish to decrease and the
required financial means act as additional environmental items.

2.2.1 Time-Continuous Regulatory Networks

With regard to different stages of modeling we can categorized two situations:

(i) Networks with n targets (by disregarding the environmental factors),
(ii) Networks with n targets as well as m environmental factors.

For this, we divide the vector E of concentration levels into two parts and
construct E D .E1;E2; : : : ;En;EnC1;EnC2; : : : ;EnCm/

T , where E1;E2; : : : ;En
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refer to the n targets and EnC1, EnC2, . . . , EnCm to the m environmental factors,
respectively. If we deal with models of type (i), Ei indicates the expression level of
target i and E denotes the first n coordinates of the d D n C m-vector E [145].

A dynamical system of n targets (without any environmental factors) can be
stated by the continuous differential equation

PE D A.E/E; (2.8)

where the matrix A can depend on E (cf. [133, 138]).
To involve environmental factors into continuous model under the presence of

noise and uncertainty we extended in [133, 138] the model from [47] and provided
the continuous equation, equipped with an initial vector:

PE.kC1/ D A
.k/
E
.k/; E.t0/ D E

.0/: (2.9)

The associated system matrix A.X/ is a (d � d)-matrix described by a family of
functions which have unknown parameters. Now, intervals present uncertainty in the
states, partially caused by uncertainty in the interactions. We refer to the interactions
between the targets, to the effects between the environment and the targets, or
between environmental factors. The initial value E

.0/ D .E
.0/
1 ;E

.0/
2 ; : : : ;E

.0/
d /T

contains the interval-valued levels obtained by the first measurement, NE.t0/ D NE.0/.
Since this can result in a large and highly interconnected network, we need to
restrict on an approximate model and network. Here, polynomial, trigonometric,
exponential but otherwise logarithmic, hyperbolic, spline, etc., entries present any
kind of a prior information, observation or assumption, in terms of growth, cyclicity,
piecewise behavior, etc. In this book, we analyze regulatory systems with spline
entries as an advanced case.

2.2.2 Time-Discrete Regulatory Networks

The time-discrete TE regulatory systems under consideration consist of n targets
and m environmental factors. The expression values of the target variables are given
by the vector X D .X1;X2; : : : ;Xn/

T and the vector E D .E1;E2; : : : ;Em/
T denotes

the states of the environmental variables. The intricate interactions and synergistic
connections between variables—targets as well environmental factors—of the
regulatory system depend on four types of regulating effects, respectively [70, 73]:

(TT) target variable ! target variable,
(ET) environmental factor ! target variable,
(TE) target variable ! environmental factor, and
(EE) environmental factor ! environment variable.
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Predictions of the time-dependent states of targets Xj and environmental factors
Ei can be calculated through the following parametrized time-discrete model:

X.kC1/
j D ˛T

j0 C �
X.k/

�T
˛TT

j C �
E.k/

�T
˛ET

j ;

E.kC1/
i D ˛E

i0 C �
X.k/

�T
˛TE

i C �
E.k/

�T
˛EE

i ;
(2.10)

with k 2 N0. Here, ˛TT
j ; ˛ET

j 2 R
n and ˛TE

i ; ˛EE
i 2 R

m stand for the vectors of

parameters and ˛T
j0; ˛

E
i0 2 R are intercepts, respectively. The initial vectors X.0/ and

E.0/ can be given by the first measurements of targets and environmental factors:

X.0/ WD QX.0/
and E.0/ WD QE.0/.

The regulatory model (RM) in Eq. (2.10) depends on .nCm/.nCmC1/ unknown
parameters. These parameters have to be assessed on the basis of noisy measure-
ments. The fundamental idea of our regression analysis is to compare the predictions

of (RM) with the (uncertain) states of targets QX.k/ D . QX.k/1 ; QX.k/2 ; : : : ; QX.k/n /T 2 R
n and

environmental observations QE.k/ D . QE.k/1 ; QE.k/2 ; : : : ; QE.k/m /
T 2 R

m .k D 0; 1; : : : ; N/
obtained from measurements at sampling times t0 < t1 < : : : < tN . By inserting
these measurements into model (RM) we obtain the following predictions:

bX.kC1/
j D ˛T

j0 C � QX.k/�T
˛TT

j C � QE.k/�T
˛ET

j ;

bE.kC1/
i D ˛E

i0 C � QX.k/�T
˛TE

i C � QE.k/�T
˛EE

i ;

(2.11)

where k D 0; 1; : : : ;N � 1. We refer to initial values X.0/
j WD QX.0/

j and

E.0/i WD QE.0/i , as we define the vectors QX.k/ D � QX.k/1 ; QX.k/2 ; : : : ; QX.k/n
�T

and QE.k/ D� QE.k/1 ; QE.k/2 ; : : : ; QE.k/m
�T

, where k D 0; 1; : : : ;NI i D 1; 2; : : : ;mI j D 1; 2; : : : ; n.
If now the entries of the matrices encoding regulatory network are specified

by spline functions for being more flexible in approximating the data, and if we
encounter interaction between the input variables, then this leads us to employ
models that will be based on (R)MARS and (R)CMARS. Here, splines, as function
of the input variable, are piecewise polynomials. If we only used polynomials, then
they would generally converge to plus or minus infinity while the absolute values of
the input variables grow large.

Since real-world processes usually stay in bounded margins even though these
bounds are very large, polynomials would require being of a high degree to turn
around or oscillate enough to stay in that margin. However, it is not easy to work
with high-degree polynomials as the real-world problems are multivariate and this
may imply multiplication effects. Instead of this, using splines lets us keep the
degree of the polynomial pieces very low in each dimension. Indeed, splines are
quite flexible, such to say, elastic. We frequently call them smoothing splines even,
since they smoothly approximate the discrete data. Therefore, in this book, we
analyze time-discrete TE regulatory systems with spline entries and introduce new
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regression and classification models that allow us to define the unknown system
parameters by applying the (R)MARS and (R)CMARS techniques.

2.3 Inverse Problems and Parameter Estimation

An Inverse Problem involve to use the actual result of some measurements to
figure out the values of the parameters that characterize the system. In an inverse
problem, one has necessity to make explicit any available a priori information on
the model parameters. One also needs to be careful in the representation of the data
uncertainties [3, 126].

Parameter estimation is one of the main tasks of the scientist or engineer.
Mathematical modeling via parameter estimation is one of the approaches that
provides a deeper understanding of the characteristics of a regarded system.
These parameters usually defined the stability and control behavior of the system.
Therefore, prediction of these parameters from input-output data of the system is
an essential step in the analysis of the dynamic system. Indeed, analysis refers
to the process of constructing the system response to a specific input, given the
knowledge of the model representing the system. Hence, in this process, knowledge
of the mathematical model and its parameters is of primer significance. Our problem
of parameter estimation belongs to the class of “inverse problems” in which the
knowledge of the dynamical system is derived from the input data and the associated
derivative of the system [16].

Most attention is drawn to the detailed definition of methods for parameter
estimation, involving ordinary and weighted least-squares (LS) and maximum
likelihood with and without prior information. Least-squares estimation (LSE) is
widely preferred to use for solving inverse problems because they enable to the
easiest computations [16]. The only drawback of these methods is their lack of
robustness, i.e., their strong sensitivity to a small number of large errors (outliers) in
a data set. To employ the LS method, the model should be written on the regression
model of the next chapter in Eq. (2.12).

2.3.1 Least-Squares Estimation

In this section, we consider multiple linear regression model to apply LS method.
We start with describing the multiple regression model and then, we give the LS
method to estimate the parameters of the multiple linear regression model.

In general, the response variable Y may be related to p regressor variables. With
the observations presented by the data (xk; yk) (k D 1; 2; : : : ;N), the form of the
models is follows:

Yk D ˛0 C ˛1xk;1 C ˛k;2x2 C : : :C ˛pxk;p C "k; (2.12)
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are called a multiple linear regression models with p regression variables. The
parameter ˛0 means the intercept and the other parameters ˛j . j D 1; 2; : : : ; p)
are the regression coefficients. To select the best-fitting line for a set of data, the
unknown parameters of the multiple linear regression model, ˛0, ˛1, . . . , ˛p should
be estimated.

LS method is widely applied to predict the parameters in regression models and
describe the statistical properties of estimates. Assume that N � p observations
on the response variable are given as y1; y2; : : : ; yN . For each observed response
yk, we have an observation on each dependent variable and let xk;j indicate the pth
observation of variable xj . j D 1; 2; : : : ; pI k D 1; 2; : : : ;N/. Here, we firstly
suppose that true relationship between the dependent variable and independent
variables are linear. We also suppose that the noise term "k in the model has E."k/ D
0 and V."k/ D �2 and that the "k are uncorrelated random variables [85, 86]. We
may write the model of Eq. (2.12) based on observations included as

yk D ˛0 C ˛1xk;1 C ˛2xk;2 C : : :C ˛pxk;p C rk;

D ˛0 C
pX

jD1
˛jxk;j C rk .k D 1; 2; : : : ;N/:

(2.13)

The estimation method of least-squares selects the coefficients ˛j in Eq. (2.13)
provided that the sum of the squares of the errors, called residuals, rk is minimized.
The least-squares function is

L D
NX

kD1
r2k D

NX
kD1
.yk � ˛0 �

pX
jD1

˛jxk;j/
2: (2.14)

Turning this into the matrix notation, the least-squares estimators should satisfy

@L

@˛
. Ǫ / D �2XTy C 2XTX Ǫ D 0; (2.15)

which simplifies to

XTX Ǫ D XTy: (2.16)

Equation (2.16) is the matrix form of the least-squares normal equations. To solve
the normal equations, multiply both sides of Eq. (2.16) by the inverse of XTX, which
exists if N � . pC1/ and the design matrix X has full rank. In this form it is obvious
that XTX is a symmetric .. pC1/�. pC1//-matrix and XTy is a column .. pC1/�1/-
vector. The diagonal elements of XTX are the sums of squares of the elements in the
columns of X, and the off-diagonal elements are the sums of cross products of the
elements in the columns of X and the observations yk [86]. The fitted regression
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model is

bY D X Ǫ : (2.17)

In scalar notation, the fitted model is

Oyk D Ǫ0 C
pX

jD1
Ǫ jxk;j .k D 1; 2; : : : ;N/:

The difference between the real observation yi and the corresponding predicted
value Oyi is the residual (estimation errors), rk D yk � Oyk. The .N � 1/-vector of
residuals is implied by

r D y � Oy: (2.18)

To develop an estimator of the parameter, �2, take into account the sum of squares
of the residuals [86]:

SSE D
NX

kD1
.yk � Oyk/

2 D
NX

kD1
r2k D rTr: (2.19)

Because of XTX Ǫ D XTy, this last equation can be rewritten

SSE D yTy � Ǫ TXTy: (2.20)

Equation (2.20) is called the error or residual sum of squares (RSS).

2.3.2 Regression and Classification

Regression analysis is a mathematical and statistical technique which is very
useful for many types of problems in engineering, science and also finance
analyzing the relationship between dependent variable and one or more independent
variables. Regression analysis is widely used for prediction and estimation and
most commonly estimates the conditional expectation of the dependent variable
given the independent variables [85]. There exist many regression methods such
as Linear Regression (LR), Logit Regression, Nonlinear Regression, Generalized
Linear Models, Ridge Regression and Nonparametric Regression. We explained the
linear regression model in Sect. 2.3.1. In that part, we gave the least-squares method
to estimate the parameters of multiple linear regression model. The present part
starts with Logit Regression.
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2.3.2.1 Logit Regression Models

Multivariate linear regression cannot be used to approximate categorical dependent
variables, while it can be adequately used to investigate the relationship between
a continuous (interval-scale) dependent variable, such as income or examination
score. For that reason, instead of LR, Logit Regression is useful, especially, to model
socio-economic variables [128]. It is commonly employed, especially, in GPLM, to
predict sovereign debt and defaults when the dependent variable is binary, such as
‘default’ or ‘nondefault’. Since binary values (proportions) are bounded by 0 and 1,
in logit regression, dependent variables do not show normal distribution properties.
However, it can be assumed as Binomial distribution and, because of a variance
of � � .1 � �/=n and a mean of �, it is assumed as a special case of Binomial
distribution: Bernoulli distribution, where � is the mean and also the probability
of an event occurring [128]. In this method, the maximum-likelihood estimation is
used after logit transformation to the dependent variable, using the formula:

E.Yjx/ D P.Y D 1jx/ D H.xT˛/ D 1

1C exp.�xT˛/
D �; (2.21)

where x 2 R
n. Here, H is inverse link function (the cumulative distribution

function), ˛ is the unknown parameter vector of the model, � is the probability
of the dependent variable to take value ‘1’ [58]. To estimate the unknown parameter
vector ˛, a likelihood function is needed using the Bernoulli assumption:

L.˛/ D
NY

kD1
�.xkI ˛/yk .1� �.xkI ˛//1�yk ; (2.22)

where �.xkI ˛/ is the probability of each observation taking the value ‘1’ as depen-
dent variable with independent variable vector xj. To facilitate the maximization of
the likelihood function, the natural algorithm is applied [58]:

l.˛/ D
NX

kD1
.yk ln.�k.xkI ˛//C .1� yk/ ln.1 � �k.xkI ˛///: (2.23)

The unknown parameter vector Ǫ is obtained by solving the following equation:

rL. Ǫ /
	

WD @lnL

@˛
. Ǫ /



D 0: (2.24)

To optimize the solution, iterative optimization methods, such as Newton-Raphson
type method, can be used.
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2.3.2.2 Nonlinear Regression Models

If there is at least one nonlinearly involved parameter in a model, this model is
called as a Nonlinear Model. This means that in a nonlinear model at least one
derivative with respect to a parameter must include that parameter. Some examples
for nonlinear regression models are given as follows [119]:

Y D eaxCbx2 C ";

Y D ax C e�bx C ":
(2.25)

Some examples for nonlinear functions are: exponential functions, logarithmic func-
tions, trigonometric functions, power functions, Gaussian function and Lorentzian
curves. Some functions, such as the exponential or logarithmic functions are
assumed to be linear because they can be transformed. Here, when transformed,
standard linear regression may be performed but should be employed with cau-
tion [119]. Those models which define the growth behavior over time are used in
many areas. In the field of population biology, growth occurs in organisms, plants,
animals, etc. [113]. The type of model which is needed in a specific situation relies
on the type of growth that occurs.

In the nonlinear case, parameter estimates can also be constructed by the method
of LS like in linear regression. Minimization of the RSS yields normal equations
which can be nonlinear in the parameters. It is not always possible to solve nonlinear
equations exactly. For this reason, the next alternative is to obtain approximate
analytic solutions by using iterative procedures. For this approximate solution, three
main methods are [112]:

(a) Linearization method,
(b) Steepest-Descent method, and
(c) Levenberg-Marquardt’s method.

The linearization method applies the results of least-squares estimation theory
in a succession of stages, but neither this method nor the steepest descent method
is ideal. The linearization method converges very rapidly provided the vicinity of
the true parameter values are reached. However, if initial trial values are too far
removed, convergence may not occur at all, whereas the steepest-descent method
is able to converge on true parameter values even though initial trial values are far
from the true parameter values [112]. However, this convergence tends to the rather
slow at the later stages of the iterative process.

The most widely applied technique of computing nonlinear LS estimators is
Levenberg-Marquardt’s method. This method presents a compromise between the
other two methods and combines successfully the best features of both and avoids
their serious disadvantages. It is good in the sense that it almost always converges
and does not “slow down” at the latter part of the iterative process. The system is
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given by [112]1

Yk D f .Xk;˛/C "k .k D 1; 2; : : : ;N/: (2.26)

Here, Yk is the kth observation of the dependent variable, Xk is the input part of
the kth observation: Xk D .Xk;1;Xk;2; : : : ;Xk;p/

T regarded as a random vector, ˛ D
.˛1; ˛2; : : : ; ˛p/

T consists of the parameters, and "k is the noise variable. Let the
noise terms be independent and follow an N.˛; �2/ distribution. Inserting the data
.xk; yk/ .k D 1; 2; : : : ;N/, the residual sum of squares is given by [112]:

S.˛/ D
NX

kD1
.yk � f .xk;˛//

2; (2.27)

where ˛0 D .˛0;1; ˛0;2; : : : ; ˛0;p/
T is the vector of initial parameter values. The

algorithm for constructing successive estimates is represented as follows:

.H C �I/.˛0 � ˛1/ D g; (2.28)

where

g D rS.˛0/; H D r2S.˛0/: (2.29)

Here, I is the identity matrix and � is a suitable multiplier.

2.3.2.3 Generalized Partial Linear Models

A particular semiparametric model class of interest are the Generalized Partial
Linear Models (GPLMs); they extend the Generalized Linear Models (GLMs) [85]
in that the usual parametric terms are enlarged by a nonparametric component.
GPLMs do not force data into any unnatural scale and so, they allow to construct
a bipartite model with linear and nonlinear parts. If the normality and constant
variance assumptions are not satisfied, then this approach can be applied [57].

By using a link function, GPLM makes it possible to search linear and nonlinear
relationships between the mean of the response variable and the linear combination
of the explanatory variables [57]. The mean value of a dependent variable rely on a
linear predictor through a nonlinear link function and allows the response variable
Y. For, the ease of exposition, we consider Y to follow general model that does
not depend on some observation number k. In fact, the probability distribution is

1As we use many mathematical symbols in this book, we have a slight abuse of double use of
the symbol X, namely, as a vector of random input variables and as a design matrix, respectively,
which should not lead to any confusion.
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assumed to be any member of an exponential family of distributions Generally, a
GPLM has the following form [90]:

E.YjX;T/ D G.XT˛ C 	.T//: (2.30)

When we use a link function G D H.�1/, which links the mean of the dependent
variable to the predictor variables, GPLM, including both parametric and nonpara-
metric models, can be considered as an additive semiparametric model:

H.�/ D 
.X;T/ D XT˛ C 	.T/ D
pX

jD1
Xj˛j C 	.T/: (2.31)

Here, the vectors X and T represent our decomposition of variables. While X
denotes an m-variate vector of linear variables, T denotes a q-variate vector of
nonlinear variables within a nonparametric model to be estimated. Furthermore,
˛ D .˛1; ˛2; : : : ; ˛p/

T is the coefficient vector of X estimated by a linear (logit
in our study) regression model and 	.�/ is a smooth function estimated by the
nonparametric model [90].

2.3.2.4 Nonparametric Regression

Nonparametric regression analysis traces the dependence of a response variable,
Yk, on one or several predictors, xk;j . j D 1; 2; : : : ; pI k D 1; 2; : : : ;N/, without
specifying in advance the function which relates the predictors to the response [45]:

E.Yk/ D f .xk;1; xk;2; : : : ; xk;p/ .D f .xk//: (2.32)

For the sake of a compact notation, here, we write E.Yk/ for the conditional
expectation E.Ykjxk;1; xk;2; : : : ; xk;p/. It is supposed that the conditional variance of
Yk, Var.Ykjxk;1; xk;2; : : : ; xk;p/ is a constant, and that the conditional distribution of
Yk is normal.

Nonparametric regression is differentiated from linear regression, in which the
function relating the mean of Yk to the xkj is linear in the parameters [45]:

E.Yk/ D ˛0 C ˛1xk;1 C ˛2xk;2 C : : :C ˛pxk;p; (2.33)

and from traditional nonlinear regression, in which the function relating the mean
of Y to the xi, though nonlinear in its parameters, is specified clearly,

E.Yk/ D f .xk;1; xk;2; : : : ; xk;pI˛1; ˛2; : : : ; ˛p/ .D f .xk;˛//: (2.34)

The easiest use of nonparametric regression consists in smoothing scatterplots.
Three splines widely applied methods of nonparametric regression are kernel
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estimation, local-polynomial regression that is a generalization of kernel estimation,
and smoothing [45]. The generalization of nonparametric regression to many
predictors is mathematically straightforward. However, it is often problematic in
practice.

(i) Multivariate data are affected by the so-called curse of dimensionality: Multi-
dimensional spaces grow exponentially sparser with the number of dimensions,
requiring very large samples to estimate nonparametric regression models with
several predictors [45].

(ii) It is difficult to visualize a regression surface in more than three dimensions
(i.e., for more than two predictors) though slicing the surface may be of
some help. Additive regression models are an alternative to unconstrained
nonparametric regression with many predictors. This regression model has the
following form [45]:

E.Yk/ D 	 C f1.xk;1/C f2.xk;2/C : : :C fp.xk;p/ (2.35)

(k D 1; 2; : : : ;N). Here, fj are smooth partial-regression functions, estimated
with smoothing splines or by local regression. An Additive Model (AM) can be
extended in two directions:

1. To include interactions among specific predictors; for instance,

E.Yk/ D 	 C f1.xk;1/C f23.xk;2; xk;3/; (2.36)

which is not as general as the unseparated model E.Yk/ D 	 C
f .xk;1; xk;2; xk;3/.

2. To include linear terms, as in the model

E.Yk/ D 	 C ˛1xk;1 C f2.xk;2/; (2.37)

semiparametric models are useful for containing dummy regressors or other
contrasts derived from categorical predictors. There exist some other models
such as projection-pursuit regression, Classification and Regression Trees
(CART) and Multivariate Adaptive Regression Spline MARS. In MARS,
functions are of a multiplicative nature and nonsmooth. A main issue in
nonparametric regression is the selection of smoothing parameters such as
the span in kernel and local polynomial regression, the roughness penalty
in smoothing-spline regression or equivalent degrees of freedom for any of
those [45]. The statistical balance is between variance and bias, and some
methods such as Cross-Validation (CV) aim to choose smoothing parameters
to minimize estimated mean-square error, e.g., the sum of squared bias and
variance.
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2.3.3 Multivariate Adaptive Regression Splines

MARS introduced by Friedman in 1991 [46] may be presented as an extension
of linear models that “automatically” models nonlinearities and interactions. It
generates a multivariate-additive (multiplicative) model in a two-stage process
which consists of forward and backward stage. In the forward stage, MARS finds
basis functions (BFs) that are added to the model by a fast searching algorithm
and constructs a possibly large model that overfits the dataset. The process stops
when the model reaches the maximum number of BFs. However, this model at the
same time contains BFs which contribute most and least to the overall performance.
Thus, this forward model is quite complex and includes many incorrect terms. In
the backward stage, the overfit model is pruned to decrease the complexity while
supporting the overall performance with respect to the fit to the data. In that stage,
the BFs which contribute smallest to the increase in the residual sum of squares
are removed from the model at each stage and, eventually, an optimally estimated
model is generated [46, 58]. MARS uses expansions of piecewise linear BFs created
by dataset. The BFs, Œx � '/�C and Œx � '��, have the following form [58]:

Œx � '�C D
(

x � '; if x > '

0; otherwise
; Œx � '�� D

(
' � x; if x < '

0; otherwise
;

(2.38)

where ' is a univariate knot obtained from the dataset. These two functions are
called truncated linear functions. Each function is piecewise linear, with a knot
at the value ', and both function together are called a reflected pair. The aim is
to construct reflected pairs for each input xj . j D 1; 2; : : : ; q/ with q-dimensional
knots 'k D .'k;1; 'k;2; : : : ; 'k;q/

T at each observed value xk;j .k D 1; 2; : : : ;N/.
Thus, the collection of BFs is written by a set of S, defined as

S WD
n�

xj � '�C; �xj � '�� j ' 2 fx1;j; x2;j; : : : ; xN;jg; j D 1; 2; : : : ; q
o
; (2.39)

where N is the number of observations and q is the dimension of the input space.
There are 2Np BFs if all of the input values are distinct. In the forward stage of
MARS, the model that fits the data is built by using BFs from the set S and their
products.

Note. From now on we confine ourselves to a generic response Y and a generic
noise ", which do not depend on the particular observation number k.

So, the model has the form

Y D ˛0 C
MX

mD1
˛m#m.xm/C "; (2.40)
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with an underlying vector x D .x1; x2; : : : ; xq/
T . Here, " is uncorrelated random

error term that is supposed to have a normal distribution with zero mean and finite
variance, M is the number of BFs in the current model. Moreover, #m.xm/ are BFs
from the set S in Eq. (2.39) or multivariate products of two or more such functions,
xm is a subvector of x that contributes to the the function#m, and ˛m are the unknown
coefficients for the constant 1 .m D 0/ or for the mth BF. Given the observations
represented by the data .xk; yk/ .k D 1; 2; : : : ;N/, the form of the mth BF is as
follows [58]:

#m.xm/ WD
KmY
jD1
Œsjm � .xv. j;m/ � 'v. j;m//�C: (2.41)

Here, Km is the number of truncated linear functions multiplied in the mth BF, xv.j;m/
is the input variable corresponding to the jth truncated linear function in the mth BF,
'v.j;m/ is the knot value corresponding to the variable xv.j;m/ and sjm D ˙1.

To generate the model, the MARS forward stepwise algorithm starts with the
constant function T0.x0/ D 1 to estimate ˛0, and all functions in the set S are
candidate functions. Possible forms of the BFs #m.xm/ are 1, xn, Œxn � 'i�C, xnxl,
Œxn � 'i�Cxl and Œxn � 'i�CŒxl � 'j�C [68, 122]. For each BF, input variables cannot
be the same in the MARS algorithm. Therefore, the BFs above use different input
variables, xn and xl, and their knots, 'i and 'j. At each stage, all products of a
function #m.xm/ in the model set are regarded as a new BF and this term is added
to the model set. That term which produces the largest decrease in the training error
contains the following form [58]:

˛MC1#m.xm/ � Œxj � '�C C ˛MC2#m.xm/ � Œ' � xj�C:

Here, ˛MC1 and ˛MC2 are coefficients and they are determined by least-squares
estimation, along with all other M+1 coefficients in the model. Then, the “winning”
products are added to the model and the process stops as soon as the model
set reaches some present maximum number of terms. At the end of this forward
stepwise process, a large model of the form is obtained. This model does typically
overfit the data, and so a backward deletion procedure is applied.

The backward stepwise algorithm removes the terms that contribute the smallest
increase in the residual squared error from the model at each stage, and this iterative
procedure continues until an optimal number of effective terms are present in
the final model [46]. So, an estimated best model Ofˇ of each number of terms ˇ
is produced at the end of this process. In the MARS model, generalized cross-
validation (GCV) is used to find the optimal number of terms ˇ. It also shows
the lack of fit when using MARS. The GCV criterion defined by Friedman [46]
is defined as follows:

LOF. Ofˇ/ D GCV.˛/ WD
PN

kD1.yk � Ofˇ.xk//
2

.1 � M.ˇ/=N/2
: (2.42)
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Here, M.ˇ/ is the effective number of parameters in the model, and N is the number
of sample observations, i.e., of the data [58].

2.3.4 Tikhonov Regularization

A problem is defined as ill-posed problem if a solution is not existing or not
unique or if it is not stable under perturbation on data—that is, if an arbitrarily
small perturbation of the data can cause an arbitrarily large perturbation of the
solution [53]. Tikhonov Regularization (TR) is the most common and well-known
form to make these problems regular and stable. For statistics, it is also known as
ridge regression.

TR method searches the regularized solution as a minimizer of a weighted
combination of the residual norm and a side constraint. The regularization parameter
controls the weight given to the minimization of the side constraint. Therefore, the
quality of the regularized solution is controlled by the regularization parameter.
An optimal regularization parameter should fairly balance between the size of the
residual error and the stabilizing of the approximate solution [67]. A suitable value
of the regularization parameter is considered and computed when the norm of the
error in the data or the norm of the solution of the error-free problem are available.

The regularization parameter brings the optimal rate of convergence for the
approximations, which are generated by the application of TR to ill-posed equa-
tions [91]. However, when we derive rates of convergence, we must make assump-
tions about the nature of the stabilization (i.e., the choice of the semi norm in the
TR) and the regularity imposed on the solution. In fact, there is a trade-off between
stabilization and regularity in terms of the rate of convergence.

The L-curve criterion is a practical method for choosing regularization parameter
when data are noisy. The method is based on the plot of the norm of the regularized
solution versus the norm of the corresponding residual [54]. The idea of the L-curve
criterion is to select a regularization parameter related to the characteristic L-shaped
corner of the graph. The corner shows where the curve is closest to the origin and
where the curvature is maximal. However, when it is plotted in a linear scale, it is
difficult to inspect the features of the L-curve because of the large range of values
for the two norms. The features become easier to inspect when the curve is plotted
in the double logarithmic scale [54]. Therefore, in many cases it is better to analyze
the L-curve in the log-log scale.

For TR, the L-curve is important in the analysis of discrete ill-posed problems.
The L-curve shows how the regularized solution changes as the regularization
parameter changes. The corner of the L-curve corresponds to a good balance
between the minimization of the sizes, and the corresponding regularization param-
eter is a good one, because a distinct L-shaped corner of the L-curve is located
exactly where the solution changes, from being dominated by the regularization
errors to being dominated by right-hand side errors [67].
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Tikhonov solution can be expressed easily in terms of the Singular Value
Decomposition (SVD) of the coefficient matrix A of regarded linear systems of
equations

Ax D b; (2.43)

where A is an ill-conditioned .N � n/-matrix. The standard approach to approx-
imately solve this system of equations is known as (linear) LS estimation. It
seeks to minimize the residual kb � Axk22. There can be infinitely many solutions
for a general linear LS problem. If it is considered that the data contain noise,
in that situation, the data points cannot be fitted exactly because of noise. It
becomes evident that there can be many solutions, which can adequately fit the
data in the sense that the Euclidean distance kb � Axk2 is smallest. The discrepancy
principle [5] can be used to regularize the solution of a discrete ill-posed problem
based on the assumption that a reasonable level for c D kb � Axk2 is known.

Different kinds of TR are represented as minimization problems. Under the
discrepancy principle, all solutions with kb � Axk2 � c are considered, and we
select the one that minimizes the norm of x:

minimize
x

kxk2 ;

subject to kb � Axk2 � c;
(2.44)

or we minimize the norm of residual vector under some tolerance with respect to
the norm of x:

minimize
x

kb � Axk2 ;

subject to kxk2 � d:
(2.45)

In the first optimization problem in Eq. (2.44), any important nonzero feature that
appears in the regularized solution increases kxk2. However, these features exist
in the solution because they are necessary to fit the data. Therefore, the minimum
of kxk2 guarantee that unimportant features should be removed in the regularized
solution. As c increases, the set of feasible models expands, and the minimum value
of kxk2 decreases.

In the second optimization problem in Eq. (2.45), it is wanted to choose the
minimum norm solution among those parameter vectors, which adequately fit the
data, because any important nonzero feature that appears in the regularized solution
must not be ignored to fit the data, and unimportant data must be removed by the
regularization. As d decreases, the set of all feasible solutions becomes smaller, and
the minimum value of increases.

There is also a third option which is considered a dampened LS problem:

minimize
x

kb � Axk22 C �2 kxk22 ; (2.46)
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arising when the method of Lagrange multipliers is applied to problem in Eq. (2.45).
Here, � is the tradeoff parameter between the first and the second part. The problems
in Eqs. (2.44)–(2.46) have the same solution for some appropriate choice of the
values ˛; ˇ and � [5].

To solve different kinds of TR problem discussed above, we use Singular Value
Decomposition (SVD) to have a solution that minimizes the objective function
including kxk2. However, in many cases, it is preferred to achieve a solution that
minimizes some other measure of x, such as the norm of first- or second-order
derivatives. These derivatives are, in an approximative sense, given by first- or
second-order difference quotients of x which is considered as a function that is
evaluated at the discrete points k and k C 1. These difference quotients approximate
first- and second-order derivates; altogether, they are comprised by products Lx of
x with matrices L. These matrices represent the discrete differential operators of
first- and second-order, respectively [5]. Hereby, the optimization problem is of the
following form:

minimize
x

kb � Axk22 C �2 kLxk22 : (2.47)

The optimization problem of Eq. (2.47) turns into the optimization problem of
Eq. (2.46) when L D I. Then, it is called zeroth order TR, which is a special case
of Eq. (2.47). Generally, Eq. (2.47) consists of high order TR problems. Although
zeroth-order TR is solved based on SVD, to one concerned with higher-order
TR, generalized SVD is used. In many situations, to obtain a solution which
minimizes some other measure x, the norm of the first- or second-order derivatives
is preferred [55].



Chapter 3
New Robust Analytic Tools

In the previous chapter, we mentioned about some mathematical methods that are
used in this book. In present chapter, we introduce our robust tools, R(C)MARS and
R(C)GPLM, in theory and method.

3.1 Robust (Conic) Multivariate Adaptive Regression Splines

3.1.1 Introduction

(C)MARS models depend on parameters, and small perturbations in the data
may result in different parameter estimates, and hence, may bring about unstable
solutions. Indeed, measurement error that affects the independent variables in
regression models is a common problem in many scientific areas. It is well known
that the implications of ignoring measurement errors in inferential procedures may
be substantial, often resulting in unreliable results [7, 28]. In order to reduce the
estimation variance while keeping the efficiency as high as possible, we robustified
the (C)MARS method by using approaches such as scenario optimization and robust
counterpart. We are interested in the multicriteria tradeoff (antagonism) between
accuracy and robustness. In the line of our research [96–99, 101, 102], robustness
has become, in some sense, an extension of stability or regularity. Stability also
means a small complexity of the model, or: a small variance of the estimation.

Through RCMARS we are also permitted to involve uncertainty in the input
variables into regression and classification modeling; that uncertainty is typical for
real-world challenges, too. In fact, in RCMARS, we have implied uncertainty in
both input and output variables. This means that in RCMARS, there is a double
way of robustification: (a) The regularization (stabilization) in integral form that
expresses itself in the involvement of the (squared) first- and second-order partial
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derivatives of the multivariate basis functions; after discretization of the integrals,
we arrive at a TR problem [5] with first- and second-order complexity terms. This
TR problem is turned into a CQP problem [127, 136]. (b) The robustification is
performed with respect to the input variables and output or response variable, all of
them with their own uncertainty sets.

In (a), via those first- and second-order terms, we aim at a flat model and a one
where high energy in the model (curvature) is penalized so that we could speak of a
‘dampened’ or ‘tamed’ model, respectively. This also means that in RCMARS, we
have, in addition to the robustification, an additional support of the robustification
agenda, an increase of robustness, whereby that support is of a fine-tuned kind
of character which is parametric through the bounds of complexity in the CQP
program. For our RCMARS, we conduct a penalization in the form of TR and
study it as a RCQP problem in order to achieve a reduction in the complexity of
the regression method MARS that especially means sensitivity with respect to noise
in the data.

In contrast, in our RMARS, we only have the robustification step (b), whereas
the aforementioned fine-tuning option (a) dropped. At the first glance, this seems to
be a qualitative loss. However, RCMARS is leading to a very large computational
effort, and parametric studies which are enabled by part (a) do even increase those
computational costs. It belonged to the main ideas of MARS and CMARS to have (I)
a ‘doable’ methods, even with an effect in (II) a variance reduction for the estimated
model. Here, we pay tribute to these important aims (I) and (II), in the form of our
simplified and ‘handy’ alternative of RCMARS, called RMARS.

Briefly, (C)MARS are robustified through the robust optimization approach,
which is some rigorous kind of regularization in the input and output domain. We
have some generalization effect now in the part of



y � #.b/˛


2
2
, when we conduct

our R(C)MARS for both input and output variables by including uncertainty, via
RO [9, 10, 13, 14]. However, in RCMARS, we need not to make any change
in the additional integration term on the complexity, or “energy”. By introducing
R(C)MARS, we aim to decrease the estimation variance.

3.1.2 The Procedure

The MARS [58] method supposes the following general model

Y D f .X/C "; (3.1)

where Y is the response variable; X D .X1;X2; : : : ;Xq/
T is a vector of predictor

variables; " is an additive stochastic component with zero mean and finite variance.
It aims to build reflected pairs for each input Xj . j D 1; 2; : : : ; q/with q-dimensional
knots ' D .'1; '2; : : : ; 'q/

T at or just nearby each of the input data vectors xk D
.xk;1; xk;2; : : : ; xk;q/

T .k D 1; 2; : : : ;N/, where q and N represent the number of
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predictors and observations, respectively. For this purpose, first, the set of BFs is
formed by an intensive but a fast search procedure as follows:

S WD
n�

Xj � '�C; �Xj � '�� j ' 2 fx1;j; x2;j; : : : ; xN;jg; j D 1; 2; : : : ; q
o
: (3.2)

Each function in S, a reflected pair, is piecewise linear with a knot value, '. Then,
Y becomes

Y D ˛0 C
MX

mD1
˛m#m.xm/C ": (3.3)

Here, #m .m D 1; 2; : : : ;M/ is a basis function (BF) from S or products of two
or more such functions: ˛m is the unknown coefficient associated with the mth BF
.m D 1; 2; : : : ;M/, where m equals zero for the constant one and M is the number
of BFs. When the data is represented by .xk; yk/ .k D 1; 2; : : : ;N/, the mth BF takes
the following form

#m.xm/ WD
KmY
jD1
Œsjm � .xv. j;m/ � 'v. j;m/�C: (3.4)

In the CMARS method, to estimate Y in Eq. (3.1), instead of the backward stepwise
algorithm of MARS, an alternative method [127] is utilized, in which penalty terms
are used in addition to the least-squares estimation (LSE) to control the lack-of-fit
with regard to the complexity and stability. Consequently, the Penalized Residual
Sum of Square (PRSS) with Mmax BFs is formed as

PRSS WD
NX

kD1
.yk � ˛T#.bk//

2 C
MmaxX
mD1

�m

2X
j� jD1

�T
D.
1;
2/

X
r<s

r;s2V.m/

Z
Qm

˛2mŒD
�
r;s#m.tm/�2dtm;

(3.5)

where #.bk/ WD .1; #1.x1k/; : : : ; #m.x
Mmax
k //; V.m/ WD fv.k;m/ j j D 1; 2; : : : ;Kmg

is the variable set associated with the mth BF called #m; tm D .tm1 ; : : : ; tmKm
/T

represents the vector of variables that contribute to the mth BF, #m; ˛ is an
..Mmax C1/�1/- parameter vector to be estimated using the data points; �m � 0 are
the penalty parameters .m D 1; 2; : : : ;Mmax/. Moreover, Qm is some appropriately
large Km-dimensional parallelpipe where the integration occurs. Furthermore,

D�
r;s#m.tm/ D .@j� j#m/=.@


1 tm
r @


2 tm
s /t

m

expresses the first- or second-order derivatives, where � D .
1; 
2/
T ; j� j WD


1 C 
2 and 
1; 
2 2 f0; 1g. Since it is not easy to evaluate the multi-
dimensional integrals in Eq. (3.5), a discretization is applied to approximate the
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integral
R

Qm ˛
2
mŒD

�
r;s#m.tm/�2dtm (cf. [96, 127] for more details). Therefore, the

approximation of PRSS in Eq. (3.5) can be rearranged as

PRSS 	 

y � #.b/˛


2
2
C�

L˛



2
2
; (3.6)

where L is an ..Mmax C 1/ � .Mmax C 1//-diagonal matrix. Afterwards, the PRSS
problem turns into a classical Tikhonov Regularization (TR) [5] problem if we
employ only one penalty factor � > 0, � D �2 for some � 2 R instead of using
different penalty parameters. So, the PRSS form in Eq. (3.6) may be formulated as
a CQP [12, 35] and, using an appropriate bound K � 0, the following optimization
problem can be stated [136]:

minimize
w;˛

w

subject to


y � #.b/˛




2
� w;

L˛




2
� p

K:

(3.7)

Here, the choice of the parameter K has to be the outcome of a careful learning
process, with the help of model-free or model-based methods [5].

Remark 1 In future studies, we go on facing the complexity of our model and trying
to turn all model-free, e.g., trial-and-error, sides of our treatment, into a model-based
form. In particular, we plan to reinterpret a parametric bound such a K as another
state variable (unknown), including it into the objective function also. Herewith,
we would still remain in our ‘conic’ setting of CQP. This could lead to another
support and strengthening of the model-basedness of our approach and would make
it even more rigorous mathematically. Modern continuous and global optimization
will certainly be a key-technology for this. We can also diversify our optimization
by differentiating between different values of the penalty parameters. This would
lead to further control variables.

In R(C)MARS, we assume that the input and output variables of our model are
random variables all. They lead us to uncertainty sets; those are assumed to contain
confidence intervals (CIs) (we refer to [98, 101] for more details). For CMARS,
the large model that has the maximum number of BFs, Mmax, is created by Salford
MARS R
 [83]. The following general model represents the relation between both
the random input variables and the response, itself being affected with noise:

Y D f . X„ƒ‚…
noisy variable

/C "; (3.8)

where X D .X1;X2; : : : ;Xq/
T is a vector of random predictor variables. The random

variables Xj are assumed to be normally distributed. Here, the following general
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model is considered for each input Xj [97, 98]:

Xj D Nxj C �j: (3.9)

When considering that we have q-dimensional input data and incorporate a
“perturbation” (uncertainty) into the input data, each input data vector xk D
.xk;1; xk;2; : : : ; xk;q/

T is represented as
^xk D .

^xk;1;
^xk;2; : : : ;

^xk;q/
T , including the

perturbation �k D .�k;1; �k;2; : : : ; �k;q/
T .k D 1; 2; : : : ;N/. Since, in each

coordinate, some values xk;j can be outlier, but the perturbation of an outlier is
not meaningful, for our problem, we, instead, refer to Nxj D .1=N/ � PN

kD1 xkj, the
mean (average) of the input vector xj, as the reference value wherever we use xj.
Here, �k is a generic element of U1, which is the uncertainty set for our input data.
Herewith, our new values of piecewise linear BFs are shown in the following:

xk;j ! ^xk;jI ^xk;j D Nxj C�k;j; j�k;jj � �k;j .k D 1; 2; : : : ;NI j D 1; 2; : : : ; q/;
(3.10)

where xk;j is an noisy input value; ^xk;j is an input value that has uncertainty; �k;j

is a perturbation of xk;j; �k;j is the semilength of the CI for input data, and the
amount of perturbation in each dimension is restricted by �k;j. Similarly, when we
incorporate a “perturbation” (uncertainty) into output data, our output data vector
y D .y1; y2; : : : ; yN/

T is stated as
^y D .

^y1;
^y2; : : : ;

^yN/
T including the perturbation

� D .�1; �2; : : : ; �N/
T . As, again, some values y can be outlier and the perturbation

of an outlier is not meaningful, for our problem, we refer to Ny D .1=N/ � PN
kD1 yk,

the average of the output vector y, as the reference value wherever we refer to y.
Here, we restrict the vector � to be elements of U2, being the uncertainty set for our
output data. So, our new output values can be represented by [101]:

yk ! ^
ykI ^

yk D Ny C �k; j�kj � 
k .k D 1; 2; : : : ;N/: (3.11)

Here, the amount of perturbation is limited by 
k which is the semilength of the
CI for the output data. In order to robustify (C)MARS, we employ some robust
optimization on the BFs provided by the MARS model. MARS method constructs
expansions of piecewise linear BFs; by this, it will be based on the new dataset that
includes uncertainty. Aiming at the variable ^x we prefer the following notation for
the piecewise linear BFs [58]:

cC.^x; '/ D Œ
^x � '�C; c�.^x; '/ D Œ

^x � '��: (3.12)

Incorporating the uncertainty sets U1 � R
N�Mmax and U2 � R

N , determined below
in Sect. 3.1.3, into the data .

^xk;
^
yk/, the multiplicative form of the mth BF can be

stated as

#m.
^xm

k / D
KmY
jD1
Œ
^
xk;v. j;m/ � 'v. j;m/�˙ .k D 1; 2; : : : ;N/: (3.13)
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When estimating the BFs Œ^xk;v. j;m/ � 'v. j;m/�˙ in Eq. (3.13), we can evaluate them
by the following special terms of estimation [98]:

Œ
^
xk;v. j;m/ � 'v. j;m/�˙ � Œxk;v. j;m/ � 'v. j;m/�˙ C Œ�k;v. j;m/ C .˙Ak;v. j;m//�˙: (3.14)

Here, Ak;v. j;m/ is interpreted and employed as control parameters. If we consider the
risk friendly case, we select the value of Ak;v. j;m/ between 0 and the absolute value

of Ak;v. j;m/, i.e.,
^

Ak;v. j;m/ 2 Œ0; jAk;v. j;m/j�. Now, to simplify the notation, we still
preserve the notion Ak;v. j;m/ for

^

Ak;v. j;m/. To estimate the values #.xk/ and #.
^xk/,

we can employ Eq. (3.13) in the subsequent form, where all the “+” and “-” signs
belong to each other, respectively:

KmY
jD1
Œ
^xk;v. j;m/ � 'v. j;m/�˙

„ ƒ‚ …
DW#m.

^
xk/

�
KmY
jD1
Œxk;v. j;m/ � 'v. j;m/�˙

„ ƒ‚ …
DW#m.xk/

C

X
A�

¤

f1;:::;Kg

Y
a2A

Œxka � �a�˙
Y

b2f1;:::;Kg=A

Œ.˙Akb/C�kb�˙ .k D 1; 2; : : : ;N/:

(3.15)

Then, for each BF, the uncertainty value jukmj can be estimated in the subsequent
way:

jukmj �
X

A�
¤

f1;:::;Kg

Y
a2A

jxka � �aj„ ƒ‚ …
� Dka�ka

Y
b2f1;:::;Kg=A

.j ˙ Ak;v. j;m/ C�k;v. j;m/j/„ ƒ‚ …
�	kbC�kb

�
X

A�
¤

f1;:::;Kg

Y
a2A

Bka�ka

Y
b2f1;:::;Kg=A

.	kb C �kb/

�
X

A�
¤

f1;:::;Kg

Y
a2A

Bka„ƒ‚…
�Bk

Y
a2A

�ka

Y
b2f1;:::;Kg=A

.	kb C �kb/

�
X

A�
¤

f1;:::;Kg
BjAj�1

k

Y
a2A

�ka

Y
b2f1;:::;Kg=A

.	kb C �kb/;

(3.16)

where the amount of the value of Ak;v. j;m/ is restricted by 	 , the cardinality of the set
A has been denoted through jAj, and Bk is also considered to be applied as a control
parameter. The value of Bk is equal to 2 in cases without outliers, but for outliers,
it will be greater than 2. For such a case, we will have to select a different value
for Bk.
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Now, for RCMARS, PRSS in Eq. (3.6) will have the following approximate
representation:

PRSS 	 

^y � #.
^

b/˛


2
2
C�

L˛



2
2
: (3.17)

Herewith, the PRSS minimization problem again looks like a classical TR prob-
lem [5] with � > 0, i.e., � D �2 for some � 2 R, and then, it can be coped with
through CQP [12, 35]. The second (complexity) part of the PRSS approximation
remains the same as it is in CMARS after we incorporate a “perturbation” into the
real input data xk, in each dimension, and into the output data yk, since we do not
make any changes for the function in the multi-dimensional integrals.

3.1.3 Polyhedral Uncertainty and Robust Counterparts

As it is known, robustification is more successful when ellipsoidal uncertainty
sets are employed, rather than polyhedral uncertainty sets. Nevertheless, using
ellipsoidal uncertainty sets can increase the complexity of our optimization mod-
els [146]. We study robust CQP (RCQP)(or robust second-order optimization
problem, RSCOP) under polyhedral uncertainty and we shall find out that it
equivalently means a standard CQP. To analyze the robustness problem, we assume
that the given model uncertainty is represented by a family of matrices #.

^
x/ D

#.x/C U and vectors
^
y D y C v, where U1, containing U, and U2, containing v, are

bounded sets which need to be specified first. Here, the uncertainty matrix U 2 U1

and uncertainty vector v 2 U2 are of the formats

U D

2
6664

u1;1 u1;2 : : : u1;Mmax

u2;1 u2;2 : : : u2;Mmax

:::
:::
: : :

:::

uN;1 uN;2 : : : uN;Mmax

3
7775 and v D

2
6664
v1
v2
:::

vN

3
7775 : (3.18)

As we do not want to increase the overall complexity of our optimization problems,
we select the uncertainty sets U1 and U2 of type polyhedral for both input and output
data in our model, to study our robustness problem. Based on these sets, the robust
counterpart of CMARS is defined as

minimize
˛

max
W2U1;

z2U2;



z � W˛


2
2
C�

L˛



2
2
; (3.19)

with some � � 0. Now, we can receive the robust counterpart of MARS if we
drop the second part (complexity part) of Eq. (3.19). Here, the uncertainty set U1 is
a polytope with 2N�Mmax vertices W1;W2; : : : ;W2N�Mmax

. In fact, although it is not a



42 3 New Robust Analytic Tools

known singleton, it allows a representation:

U1 D
(
2N�MmaxX
�D1

��W� j �� � 0 .� 2 f1; 2; : : : ; 2N�Mmaxg/;
2N�MmaxX
�D1

�� D 1

)
;

(3.20)

i.e., U1 D convfW1;W2; : : : ;W2N�Mmax g is the convex hull. Furthermore, U2 is a
polytope with 2N vertices z1; z2; : : : ; z2

N
having the form

U2 D
(

2NX
�D1

 �z�j � � 0 .� 2 f1; 2; : : : ; 2Ng/;
2NX
�D1

 � D 1

)
; (3.21)

where U2 D convfz1; : : : ; z2
N g is the convex hull. Here, any uncertainty sets

U1 and U2 can be represented as a convex combination of vertices W� .� 2
f1; : : : ; 2N�Mmaxg/ and z� .� 2 f1; : : : ; 2Ng/ of the polytope, respectively. The entries
are found to have become intervals. Therefore, our matrix W and vector z with
uncertainty are lying in the Cartesian product of intervals that are parallelpipes
(see [96, 98] for more details). To give an easy illustration, the Cartesian product of
intervals in general and, especially, for three entries can be represented by Fig. 3.1.

Here, we represented the matrix W as a vector with uncertainty which generates
a parallelpipe. We have a .N � Mmax/-matrix W D .wkj/ kD1;2;:::;N

jD1;2;:::;Mmax

and we can write

it as a vector t D .tl/lD1;2;:::;N�Mmax , where tl WD ukj with l D k C . j � 1/N. So, our
matrix W can be canonically represented as a vector t D .t1; t2; : : : ; tN�Mmax/

T by
putting the columns of W behind each other.

vertices

vertex

Fig. 3.1 Cartesian product of intervals for three entries [96]
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Remark 2 Whenever we use polyhedral uncertainty sets, we have a drawback in
practice since there may be too many vertices to handle them computationally or we
might not know them exactly. That drawback comes from a very high complexity
and consists in the resulting storage and and computing problems at common
workstations. In fact, with polyhedral uncertainty, our matrix W represented as a
vector t has a very big dimension in our applications and our computer capacity is
not enough to solve our optimization problem with W. Because of this, we need to
discuss weak robustification case in our applications (cf. Sects. 3.1.5, 5.2.1, 6.1.7).
That weak robustification encounters a data-wise robustification which refers to
all the other data according to the interval midpoints (“ceteris paribus”), and it
eventually addresses the worst case with respect to all the data-wise robustifications.

3.1.4 Robust Conic Quadratic Programming with Polyhedral
Uncertainty

For RCMARS model, the optimization problem is written as follows:

minimize
w;˛

w

subject to


^

y � #.
^

b/˛



2
� w;

L˛




2
� p

K;

(3.22)

with some parameter K � 0. Via the height variable w (by an epigraph argument),
recalling that U1 and U2 are polytopes, described by their vertices in Eqs. (3.20)–
(3.21), the RCQP for our optimization problem is equivalently represented as a
standard CQP in the following form:

minimize
w;˛

w

subject to


W˛ � z




2
� w 8 W„ƒ‚…

DP2N�Mmax
�D1 ��W�

2 U1; z„ƒ‚…
DP2N

�D1  �z�

2 U2;



L˛



2
� p

K:
(3.23)

Here, U1 and U2 are polytopes which are described by their vertices as

U1 D convfW1;W2; : : : ;W2N�Mmax g; U2 D convfz1; z2; : : : ; z2
N g: (3.24)
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Therefore, our RCQP can be equivalently stated by a standard CQP as follows:

minimize
w;˛

w

subject to


z� � W�˛




2
� w .k D 1; 2; : : : ; 2N I � D 1; 2; : : : ; 2N�Mmax/;

L˛




2
� p

K:
(3.25)

For our RMARS model, we ignore the second constraint of RCQP in
Eqs. (3.22), (3.23) and (3.25). Afterwards, we can solve our RCQP by using
MOSEKTM [87] software program. Here, we recall that the values

p
K are

determined by a model-free method (cf. Remark 1). When we employ the K
values in our RCMARS code and solve by using MOSEK, we apply the K value
that has the minimum value of PRSS in Eq. (3.17).

3.1.5 Numerical Experience with RMARS in the Financial
Economics

As a numerical experiment that may serve to illustrate the implementation of
RMARS algorithm developed, in the study [101], we use a small dataset as a sample
from the real-world financial market data. It is chosen for our empirical part as time-
series data from the website of Central Bank of the Republic of Turkey [25]. The
data contain four economic indicators (independent variables) which are the most
commonly used ones for the interpretation of an economic situation. These are:

x1 W ISE Trading Volume; x2 W Capacity Usage Ratio;

x3 W Credit Volum; x4 W Federal Funds Interest Rate:

Here, ISE Trading Volume stands for the number of shares or contracts of a
security traded within of a predefined time-window for a month; Capacity Usage
Ratio means the ratio of the production capacity of the regarded economy to the
maximum capacity of that economy. ISE 100 stock index is the dependent (output
or response) variable Y that we try to assess based on our dataset. It consists of 100
stocks that have been chosen among the stocks of companies which are listed on the
National Market, and the stocks of real estate investment trusts and venture capital
investment trusts, which are listed on the Corporate Products Market. It covers ISE
30 and ISE 50 stocks. As it is a statistical measure of change in an economy or
a securities market, we will use that index. For financial markets, an index is an
imaginary portfolio of securities, representing some market or a portion of it. It
possesses its own traditional methods of calculation and, in general, it is represented
by a deviation from a base value. Thus, the relative change (in percentage terms)
is more important than the absolute value (in actual numerical terms). This dataset
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Fig. 3.3 Graph for the characteristic of variables x3 and x4

includes 24 observations and the characteristics of our independent variables in time
can be seen in Figs. 3.2, 3.3 for a visualization of the dataset.

With this data the largest model is constructed by the forward stepwise stage of
Salford MARS Version 3 [83]. After backward stepwise elimination of MARS, the
final model is represented as follows:

Oy D ˛0 C
MX

mD1
˛m#m.xm/ D ˛0 C ˛1 maxf0; x3 � 0:1672g

C ˛2 maxf0; 0:1672� x3g C ˛3 maxf0; x4 C 0:4200g
C ˛4 maxf0; x1 C 0:6803g:

To apply the RO technique on MARS model, firstly uncertainties are evaluated for
all input values using Eq. (3.16) and all output values. Here these input and output
values presented by CIs. Next, we include perturbations (uncertainties) into the real
input data xk in each dimension and into the output data yk .k D 1; 2; : : : ; 24/.
For this aim, using Eqs. (3.20)–(3.21), the uncertainty matrices and vectors based
on polyhedral uncertainty sets are built. Consequently, we construct different
uncertainty matrices, U and W, for the input data and different uncertainty vectors,
z and v, for the output data by using six different uncertainty scenarios which are
given by the CIs ˙3, ˙3=2, ˙3=4, ˙3=6, ˙3=8 and as a special case, the mid-point
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(zero) value of our interval. For instance, according to CI ˙3, the matrices of input
data, U, Wup, Wlow, which will be addressed in Sect. 3.2, are of the following forms:

U D

2
6666664

u1;1 : : : u1;4
u2;1 : : : u2;4
:::

:::
:::

u23;1 : : : u23;4
u24;1 : : : u24;4

3
7777775

2

2
6666664

0 Œ�2:46; 2:46� 0 0

0 Œ�2:48; 2:48� 0 0
:::

:::
:::

:::

Œ�2:30; 2:30� 0 Œ�2:45; 2:45� Œ�3:05; 3:05�
Œ�2:17; 2:17� 0 Œ�2:60; 2:60� Œ�2:55; 2:55�

3
7777775
;

Wup D #.x/C Uup D

2
666664

1 0 3:89 0 0

1 0 3:89 0 0
:::

:::
:::

:::
:::

1 3:85 0 4:12 4:42

1 3:85 0 4:12 4:42

3
777775 ;

Wlow D #.x/C Ulow D

2
666664

1 0 �1:03 0 0

1 0 �1:07 0 0
:::

:::
:::

:::
:::

1 �0:75 0 �0:77 �1:68
1 �0:50 0 �1:07 �2:68

3
777775 :

Likewise, based on CI ˙3, the uncertainty vectors of output data, z, vup, vlow, are
represented as follows:

z D

2
666664

z1
z2
:::

z23
z24

3
777775 2

2
666664

Œ�3; 3�
Œ�3; 3�
:::

Œ�3; 3�
Œ�3; 3�

3
777775 ; vup D yCzup D

2
666664

1:61

1:76
:::

3:52

2:88

3
777775 ; vlow D yCzlow D

2
666664

�4:39
�4:27
:::

�2:49
�3:12

3
777775 :

As the uncertainty matrix for input data has a very big dimension; and our
computer capacity is not enough to solve our problem for this uncertainty matrix
(cf. Sect. 3.1.3), we formulate RMARS for each observation using a certain
combinatorial approach which is called as weak robustification. Therefore, we
obtain different weak RMARS (WRMARS) models to handle that difficulty of
complexity. Actually, we have a tradeoff between tractability and robustification.
As a result, we obtain 24 different WRMARS models and solve them with MOSEK
program [87]. Then, we estimate the parameters’ values ˛0; ˛1; ˛2; ˛3 and ˛4
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Table 3.1 Parameter values and estimation errors of MARS and RMARS

U; v ˙3 ˙3=2 ˙3=4 ˙3=6 ˙3=8 Zero MARS

˛0 �0:6197 �0:7644 �0:6660 �0:5111 �0:4418 �0:3470 �0:3470
˛1 0:3348 0:2501 �0:3292 �0:5921 �0:7074 �0:8843 �0:8843
˛2 0:0000 0:0000 �0:1852 �0:3686 �0:4494 �0:5722 �0:5722
˛3 0:0000 0:0000 0:4600 0:6262 0:6986 0:8120 0:8120

˛4 0:6529 0:8691 0:7403 0:6508 0:6121 0:5498 0:5498

AAE 0:4048 0:3215 0:1937 0:1385 0:1254 0:1123 0:1123

RMSE 0:4880 0:4204 0:2496 0:1781 0:1559 0:1414 0:1414

Table 3.2 Estimation variance of MARS and RMARS

U; v ˙3 ˙3=2 ˙3=4 ˙3=6 ˙3=8 Zero MARS

EV 0:447 0:706 0:811 0:88 0:918 0:979 0:979

using a selected WRMARS model which has the highest w value in Eq. (3.25) by
applying the worst-case approach. Finally, we evaluate the regression coefficients
and estimation errors based on Average Absolute Error (AAE) and Root Mean
Squared Error (RMSE) for different uncertainty scenarios. All of the parameter
values and estimation errors for MARS and RMARS are represented in Table 3.1.

As we can see in Table 3.1, RMARS produces less accurate results than MARS
in terms of AAE and RMSE when the CIs on the variable are very wide. However, as
the CIs are narrower, the performance results approach to that of MARS. According
to our main purpose, we also calculate estimation variances (EVs) for different
uncertainty scenarios. EV is the variance of the estimated response values and
smaller value of EV provide us the better result. It is evaluated using the following
formula:

EV WD
P N

kD1.Oyk � NOy/
N � 1

;

where N is number of observations, Oyk being the kth estimated response value, and NOy
being the mean of the estimated response values. Based on six different uncertainty
scenarios, the values of EV evaluated for our numerical experiment are presented in
Table 3.2.

As we may deduce from the results in Table 3.2, RMARS has a much smaller
variance than MARS if the CIs on the variable are very wide. As the CIs are
narrower, EV increases but, RMARS still has a smaller variance than MARS.
Therefore, we can say that RMARS has a considerably smaller EV than MARS
for different uncertainty scenarios, as we expect.

While developing RMARS models, a sensitivity study is conducted to define the
most suitable confidence limits on both input and output data. For this purpose,
different uncertainty matrices for the input data,

^x, and different uncertainty vectors
for the output data,

^y, are obtained by using six different intervals. Above results
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in Tables 3.1 and 3.2 indicate that solutions obtained are sensitive to the limits of
CIs. When we use the mid-point of our interval values for both input and output
data, which is the certain data case (zero interval), we receive the same parameter
estimates, and thus, the same model performances and EV values as the ones by
MARS. This can disclose that MARS is a special case of RMARS.

We have a smaller EV when the lengths of the CIs are wide whereas we receive
better performance results when the lengths of the CIs are narrow. According to
these result, we can observe the tradeoff between accuracy (expressed by AAE
and RMSE) and robustness (given by EV). Also, to analyze this tradeoff clearly,
we evaluated the values of Residual Sum of Squares (RSS) and EV based on
various different uncertainty scenarios, and we represented the results graphically
in Fig. 3.4.

This figure demonstrates the tradeoff between accuracy (given as RSS) and
robustness (represented by EV). In economics and finance, this is the so-called
efficiency frontier.

3.1.6 Simulation Study for RMARS

In the study [101], we compare MARS and RMARS methods using different
datasets created by Monte-Carlo simulation based on variation of the parameter
estimates. Furthermore, in order to see the variation of model performance with
parameter estimates, the estimation errors of simulation models are evaluated
based on AAE and RMSE. Monte-Carlo simulation permits to model situations
which present uncertainty and to conduct them many times on a computer. It
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also includes a risk study through a preparation of models of possible results by
substituting a range of values—we may say: a probability distribution—for any
factor which implies uncertainty. Monte-Carlo simulation generates distributions
of possible outcomes. Through the use of probability distributions, variables may
have different probabilities of the outcomes that occur. Probability distributions
mean a much more realistic kind of representing uncertainty in variables of a risk
analysis that belongs to each decision which we are making. Continuously, we
are confronted with uncertainty, with ambiguity and variability. It is impossible to
precisely estimate the future, even if nowadays we can access an unprecedented
amount of information. Monte-Carlo simulation permits us a survey of nearly all
the outcomes of our possible decisions and an impact assessment of risk; this allows
for a more qualified decision making in the presence of uncertainty [116]. We select
normal distribution as a probability distribution to obtain random input variables.
For the simulation study of MARS, firstly, we develop a mathematical model. This
model is the process model and represented as follows:

Y D �3050C 0:02x1 C 50x2 � 0:0009x3 C 8400x4 C 30x2x4 C ": (3.26)

Afterward, using Minitab package program [84] generated random input variables
chosen from suitable distribution function which are expected to determine the
variables. Here we simulate values of a normal random variable. Then, using
Eq. (3.26), we monitor preferred output variables which become distributions whose
properties are described by the model and the distributions of the random variables.
So, we generate 30 different simulated datasets to employ simulation for MARS
and 30 different MARS models are constructed using Salford Systems MARS [83].
In fact, the parameter values of MARS models are estimated according to these
simulated datasets. Some selected MARS models obtained are of the following
form:

Oy D ˛0 C ˛1 maxf0; x1 � 2:25g C ˛2 maxf0; x3 C 1:86g C ˛3 maxf0; x4 C 2:18g;
Oy D ˛0 C ˛1 maxf0; x1 � 1:47g C ˛2 maxf0; x3 C 2:84g C ˛3 maxf0; x4 C 2:45g;
Oy D ˛0 C ˛1 maxf0; x1 � 3:07g C ˛2 maxf0; x3 C 1:78g C ˛3 maxf0; x4 C 2:63g;
Oy D ˛0 C ˛1 maxf0; x1 � 2:39g C ˛2 maxf0; x3 C 1:62g C ˛3 maxf0; x4 C 1:51g;
Oy D ˛0 C ˛1 maxf0; x1 � 2:21g C ˛2 maxf0; x3 C 1:98g C ˛3 maxf0; x4 C 3:27g;
Oy D ˛0 C ˛1 maxf0; x1 � 1:98g C ˛2 maxf0; x3 C 2:07g C ˛3 maxf0; x4 C 1:49g;
Oy D ˛0 C ˛1 maxf0; x1 � 2:74g C ˛2 maxf0; x3 C 2:20g C ˛3 maxf0; x4 C 1:70g:

For simulation study of RMARS, firstly, 30 different interval values are determined
and, hence, under polyhedral uncertainty sets, thirty different uncertainty scenarios
are obtained by using these values. The values of the CIs are ˙3=2, ˙3=2:1,
˙3=2:2,. . . , ˙3=4:6, ˙3=4:8, ˙3=5. Then the RMARS model frames are con-
structed by running a MATLAB code written by us and MOSEK software [87] is
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used to solve the CQP problems for RMARS models. Hereby, parameter values of
RMARS models are also predicted based on 30 different uncertainty scenarios.

In RMARS, our aim is to decrease the estimation variance by implying full
robustification in MARS even though the estimation errors of RMARS can be
slightly higher than those of MARS when we incorporate perturbation (uncertainty)
using Eq. (3.16) into the input and output data based on polyhedral uncertainty sets,
defined in Eqs. (3.20)–(3.21). For this simulation study, the results for the variance
of parameter estimates can be understood by Fig. 3.5.

As we observe in Fig. 3.5, the variability of the model parameter estimates of the
RMARS is much less than that of MARS. For this simulation study, the variance of
model performance can be learned from Fig. 3.6 for our two methods.

As we can deduce from Fig. 3.6, similar to the variability of the model parameter
estimates, the variability of model performance in terms of estimation errors of the
RMARS is less than that of MARS.

Remark 3 In Figs. 3.5, 3.6, we just give a graphical representation based on MARS
and RMARS with considering that we receive similar results for CMARS and
RCMARS.
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3.2 Robust (Conic) Generalized Partial Linear Models

3.2.1 Introduction

In previous sections, we upgraded the (C)MARS model to be able to model the
datasets including uncertainty for future scenarios and constructed R(C)MARS
method with the help of robust optimization. Although, in the real life, variables
are generally nonlinearly implied and, in this case, we need nonlinear models that
can minimize the error term, knot selection is an extra important point in terms
of complexity to solve the problem in (C)MARS and R(C)MARS and it is not
necessary for their linear part. Since a dataset can contain linear and nonlinear
variables and linear regression is very successful in determining a linear relationship
between the variables, in this section, a new model, R(C)GPLM is presented with
essential contributions of R(C)MARS and Linear (or Logistic) Regression as a
developed version of GPLM to partially reduce the complexity of R(C)MARS.

GPLM [90] is a combination of two different regression models each of which is
used to apply on different parts of the data set. Generalized Linear Models (GLMs)
have been advanced to constitute GPLMs enlarging the linear terms through a
nonlinear component, ‘P’ meaning partial. Such semiparametric models are needed
to develop, because of the inflexibility of simple linear and nonlinear models to show
the trends, relations and anomalies buried in real-life datasets. GPLM is adequate to
high dimensional, non-normal and nonlinear data sets having the flexibility to reflect
all anomalies effectively. In the study [137], Conic GPLM (CGPLM) was introduced
using CMARS and Logistic Regression. According to a comparison with CMARS,
CGPLM gave better results. In the studies [99, 100], we include the existence of
uncertainty in the future scenarios into (C)MARS and the linear/logit regression
parts in (C)GPLM and we robustify entire terms with robust optimization which is
dealt with data uncertainty.

3.2.2 General Description of (C)GPLM

GPLMs apply a bipartite model separately on linear and nonlinear parts, and they
have a general form [90]:

E .YjX;T/ D G
�
XTˇ C & .T/

�
; (3.27)

where the vectors X and T represent a decomposition of variables whose parameters
and further unknowns would be assessed by linear and nonlinear models, respec-
tively. Furthermore, &.�/ is a smooth function estimated for the nonlinear model.
Finally, a link function G D H.�1/ makes the connection between the mean of the
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dependent variable � D E.YjX;T/ and the predictor variables:

H.�/ D 
 .X;T/ D XTˇ C & .T/ D
mX

jD1
Xjˇj C & .T/ : (3.28)

In (C)GPLM, the LR model constitutes the linear part of the estimation:

Y D ˇ0 C
pX

jD1
Xjˇj C "; (3.29)

where ˇ0 is the intercept term, ˇj are the coefficients of Xj . j D 1; 2; : : : ; p/, " is the
noise term, Y is the dependent variable and Xj are the independent variables.

In the nonlinear part of the (C)GPLM [30, 31, 63, 137], a new variable Ypreproc

is defined by the help of ˇ0; ˇj and the variables Xj . j D 1; 2; : : : ; p/, which would
determine the knots of MARS on the residuals, with q nonlinearly involved variables
Tj that are not used in the linear part:

Ypreproc D Xˇpreproc C " D ˇ0 C
pX

jD1
Xjˇj C ": (3.30)

After the evaluation of linear part and getting the regression coefficients’ vector
ˇpreproc, which is an optimal vector found as a result of the linear least-squares
model, the residual Oy is defined by the subtraction of Xˇpreproc from y:

y � Xˇpreproc DW �: (3.31)

In Eq. (3.31), y is the given response data vector, � is the resulting vector of residuals
which is constructed to develop the knot selection by MARS and apply the backward
process with CMARS. Furthermore, in Eq. (3.31), X stands for the design matrix of
input data due to the linear model.

The smooth function &.�/ of GPLM is estimated by (C)MARS during the forward
process. This function, which is a linear combination of basis functions #m and the
intercept˛0, can be represented by MARS and also the alternative model of CMARS
that is considered as a substitute of the backward process of MARS:

� D H.�/ D
MX

mD1
˛m#m.tm/: (3.32)

We note that the “bias” term ˛0 is not needed in Eq. (3.32) since it already entered as
a part, namely, ˇ0, of the linear model. Next, for the alternative model of CMARS
as a component of the nonlinear part of CGPLM, the Penalized Residual Sum of
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Square (PRSS) in Eq. (3.6) will be constructed by the equation:

PRSS WD
NX

kD1
.	k � ˛T#.bk//

2 C
MmaxX
mD1

�m

2X
j�jD1

�T
D.
1;
2/

X
r<s

r;s2V.m/

Z
Qm

˛2mŒD
�
r;s#m.tm/�2dtm:

(3.33)

The multi-dimensional integrals of PRSS are approximated by using the discretiza-
tion to represent it as follows, where � � 0:

PRSS 	 

� � #.b/˛


2
2
C�

L˛



2
2
: (3.34)

3.2.3 Robustification of (C)GPLM

Here, we include the existence of uncertainty in the future scenarios into (C)GPLM,
which can be represented in the following form [99, 100]:

E .YjX;T/ D G. XT„ƒ‚…
noisy variable

ˇ C &. T„ƒ‚…
noisy variable

//; (3.35)

where X D .X1;X2; : : : ;Xp/
T and T D .T1;T2; : : : ;Tq/

T are a decomposition of
variables, when X denotes an p-variate vector showing the variables with a linear
pattern, T denotes a q-variate vector showing the variables with a nonlinear pattern,
to be estimated with a nonlinear model. In Eq. (3.35), ˇ D .ˇ1; ˇ2; : : : ; ˇp/

T

consists of the coefficient vector of X, estimated by a linear (or logit) regression
model, and &.�/ is a smooth function estimated by a nonlinear model. In this study,
we focus on special types of estimation &.�/ by R(C)MARS.

The variables Xj . j D 1; 2; : : : ; p/ and Tj . j D 1; 2; : : : ; q/ are supposed
to be normally distributed random variables. For each input variable Xj and Tj, a
transformation is made through uncertainties:

^

Xj D Nxj C �j . j D 1; 2; : : : ; p/;
^

Tj D Ntj C �j . j D 1; 2; : : : ; q/:
(3.36)

To robustify (C)GPLM, with similar idea of R(C)MARS, we apply robust optimiza-
tion on linear and nonlinear parts in the (C)GPLM, and, in Eq. (3.36), we assume
that the input and output variables of our (C)GPLM are represented by random
variables. They lead us to uncertainty sets, which are assumed to contain confidence
intervals (CIs) [101]. We incorporate a ‘perturbation’ (uncertainty) into the real
input data .xk; tk/ in each dimension, and into the output data yk. Therefore, our
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new values of R(C)GPLM are shown in the following:

xk;j ! ^
xk;jI ^

xk;j D Nxj C ık;j; jıkjj � �kj .k D 1; 2; : : : ;NI j D 1; 2; : : : ; p/;

tk;j !^
tk;jI ^

tk;j D Nxj C�k;j; j�kjj � �kj .k D 1; 2; : : : ;NI j D 1; 2; : : : ; q/;

yk ! ^ykI ^yk D Nyk C �k; j�kj � 
k .k D 1; 2; : : : ;N/:

With the uncertainty sets U1
1 � R

N�p;U2
1 � R

N�Mmax and U1
2 ;U

2
2 � R

N� applied
on the data .

^xk;
^
yk/ and .

^

tk;
^
yk/ .k D 1; 2; : : : ;N/, our model of Eq. (3.28) implies

uncertainty, can be represented as an additive semiparametric model:

H.
^
�/ D 


�
^

X;
^

T
�

D ^

XTˇ C &
�
^

T
�

D
pX

jD1

^

Xjˇj C &
�
^

T
�
: (3.37)

The observation value and vectors, ^
yk;

^
xk;

^

tk .k D 1; 2; : : : ;N/ with uncertainty,
respectively,

^
� D G.

^
�k/ and

^
	k D H.

^
�k/ D ^

xT
k ˇ C &.tk/ with a smooth function

&.�/ are considered in the form of a RCGPLM.

3.2.4 Linear (Logit) Regression Model for the Linear Part

In the linear part of the estimation, a new variable Ypreproc is constructed by the help
of the coefficients ˇ0, ˇj and

^

Xj . j D 1; 2; : : : ; p/. This variable would be later used
in MARS with reminded nonlinear variables

^

Tj . j D 1; 2; : : : ; q/ on residuals to
determine the knot values [99, 102]:

Ypreproc D ^

XTˇpreproc C " D ˇ0 C
pX

jD1

^

Xjˇj C ": (3.38)

With an appropriate bound of K, LR model may be solved with a continuous
optimization technique, CQP and have the following form:

minimize
w1;ˇ

w1

subject to


y � ^

Xˇ



2
� w1;

L1˛




2
�
p

K1:

(3.39)

For our RGPLM model, we ignore the second constraint of RCQP in Eq. (3.39).
To obtain the response variable

^
� for the nonlinear part, the same procedure with

Sect. 3.2.2 can be applied.
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3.2.5 R(C)MARS Method for the Nonlinear Part

The smooth function &.�/ to be estimated by R(C)MARS in the Eq. (3.28), is
represented as a linear combination of basis functions #m to transform the model
of Eq. (3.31) into the form:

� D H.�/ D
MX

mD1
˛m#m.tm/: (3.40)

Then, for RCGPLM, PRSS in Eq. (3.34) with uncertainty can be converted into the
following form:

PRSS 	 

^� � #.
^

t/˛


2
2
C�

L˛



2
2
: (3.41)

With an appropriate bound of K1, PRSS can be easily solved with our continuous
optimization technique, CQP, in terms of TR, and have the subsequent form [99]:

minimize
w2;˛

w2

subject to


y � #.b/˛




2
� w2;

L˛




2
�
p

K2:

(3.42)

We underline that we receive robust CQP for RGPLM model, we do not consider
the second constraint in Eq. (3.42).

3.2.6 R(C)GPLM with Polyhedral Uncertainty

In this subsection, the form of polyhedral as uncertainty sets is employed to be able
to continue our study with standard CQP.

3.2.6.1 Robust Counterpart for Linear Part

In this part, uncertainty is constructed by a family of matrices
^

W D W C U1 and
vectors

^z D z C v1, where U1 2 U1
1 and v1 2 U1

2 are unknown and lying in
bounded uncertainty sets represented in Sect. 3.1.3, with the semilengths �; 
1 of
confidence sets, respectively. As we use polyhedral uncertainty for the linear part
of RCGPLM, with the uncertainty sets U1

1 and U1
2 , the robust counterpart can be
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expressed by [102]

minimize
ˇ

max
W2U1

1

z2U12

;



ˇ � Wz


2
2
C�

L1ˇ



2
2
; (3.43)

with the polytopes U1
1 and U1

2 described by their vertices:

U1
1 D convfW1

1;W
2
1; : : : ;W

2N�p

1 g; U1
2 D convfz11; z

2
1; : : : ; z

2N

1 g: (3.44)

The linear part of RCGPLM can be represented as a standard CQP problem [12,
102]:

minimize
w1;ˇ

w1

subject to


z�

1
� W�

1 ˇ



2
� w1 .� D 1; 2; : : : ; 2N I � D 1; 2; : : : ; 2N�p/;

L1˛




2
�
p

K1;

(3.45)

where K1 � 0 is an appropriate bound value. We recall that, along of the parameter
K1, we obtain an efficiency frontier of solutions of Eq. (3.45), where a special
selection can be chosen via statistical and, further performance and comparison
criteria.

For linear part in the RGPLM model, we just have to drop the second part in
Eqs. (3.43) and (3.45).

3.2.6.2 Robust Counterpart for Nonlinear Part

Here, uncertainty is constructed by a family of matrices #.
^

t/ D #.t/ C U2 and
vectors

^
� D � C v2, where U2 2 U2

1 and v2 2 U2
2 within bounded uncertainty

sets, identified in Sect. 3.1.3, with the semilengths �; 
2 of our confidence sets,
respectively.

When we use polyhedral uncertainty for the nonlinear part of CGPLM, with the
uncertainty sets U2

1 and U2
2 , the robust counterpart can be represented as

minimize
˛

max
W2U2

1

z2U22

;



z2 � W2˛


2
2
C�

L2˛



2
2
; (3.46)

with the polytopes

U1
1 D convfW1

2;W
2
2; : : : ;W

2N�Mmax

2 g;U1
2 D convfz12; z

2
2; : : : ; z

2N

2 g: (3.47)
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We can express our robust problem of Eq. (3.46) as a standard CQP problem:

minimize
w2;˛

w2

subject to


z�

1
� W�

1 ˛



2
� w2 .� D 1; 2; : : : ; 2N I � D 1; 2; : : : ; 2N�Mmax/;

L2˛




2
�
p

K2;
(3.48)

where K2 � 0 is an appropriate bound value. We recall that, for the nonlinear
part of our RGPLM model, we have not taken into consideration the second part
in Eqs. (3.46) and (3.48).



Chapter 4
Spline Regression Models for Complex
Multi-Model Regulatory Networks

In the previous chapter, we gave some details on theory and methods of regression
and classification, (C)MARS, and their robust counterpart, R(C)MARS. and we
represented and applied our methods to real-world data from different sectors. In this
chapter, we apply the data mining tool of regression and classification, (C)MARS,
on a dynamics. By this, the amount of condition grows, since each time point (a
discrete time, in our case) can be regarded as an extra ‘condition’; in this way, there
would be unknown parameters needed in order to balance the number of constraints,
i.e., to close the gap of ‘degree of freedom’. In this respect, the number of unknown
parameters would need to be relatively high, necessarily. However, in our research,
we try to gain from the dataset topologically and geometrically best, to ‘get into’ the
dynamics smartly, benefiting from structural features of the dataset. In this respect,
the algorithm of MARS and CMARS seems to be an excellent choice as, e.g., in
each dimension of the input variables, we get a piecewise linear ‘zig-zag’ function,
where the linear parts present and approximate the data over whole intervals. This
process is done adaptively, which also means: smartly.

We note that the use of CMARS instead of MARS allows for an integrated
representation of the entire parameter identification task as an optimization program
in the sense of a model-based problem rather than a model-free one. By this CMARS
permits to employ the rigor of optimization theory and it also gives a chance for
future generalizations of this research which might benefit from further areas of
optimization theory, such as Stochastic Programming and, especially, RO. In fact,
our newly developed RCMARS aims at a rigorous regularization not only with
respect to the output variables but also in the input variables, we might say: in the
design of the program, with the help of Robust Optimization. For any case of such
further extensions which is represented in following chapter, we need not newly
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return from any model freeness to an optimization theoretical model, since we are
here in a model-based setting already.

Since we regularize the model of CMARS, including first- and second-order
derivatives, we go for ‘easy’ models, by penalization; we turn this regularization
into the mathematical language of CQP. One expression of that easiness is the—
to some sense enforced (entire complexity bounded)—‘flatness’ of the model. In
tendency, we can say: we force the components of the vector of unknown parameters
to be as much as possible nearby to vanish. But this also means: we try to have as
small as possible a number of ‘significant’ parameters in our model. MARS does
this with the help of an “index” called GCV (cf. Sect. 2.3.3) we, with CMARS,
do this by a more integrated optimization theory framework. We remark that these
reflections hold true for the two classes of variables, respectively, namely, the
target variables and the environmental variables. Furthermore, the introduction of
the environment and its items themselves into the model, in addition to the target
variables, already means some kind of regularization, i.e., a reduction of complexity.
In fact, the environmental variables take away from the target variables some of the
huge modeling load to explain ‘alone’ the data accurately by the model.

Another class of parameters in this chapter are the penalty parameters or, in
terms representation, equivalently, upper bounds of the complexity. We already
reduced these parameters just by single values, per class of variables, and not per
basis functions individually. This means a strong reduction of the entire numbers
of parameters. However, we do still have the option of employing these parameters
further in a more refined, individual manner, depending on the entire model and its
complexity. In this respect, we can ‘tune’. In fact, we would like to mention that
this work on the number of parameters can also be called as a model selection,
including the suitable choice of dimensions. Regarding the choice of the upper
bound parameters, we have an experience in the use of statistical ‘performance’
or ‘comparison’ measures through a number of research works on CMARS and its
robust counterpart RCMARS.

Finally, the knot points are another large group of further parameters. In MARS,
these knots are selected automatically in a forward stepwise manner when fitting
a MARS model. We may also approach them from the perspective of a ‘splitting’
between the classes in each input dimension which reveals a large variation between
the classes, as we know it from the famous classification method CART [24]. In
CMARS, we propose to choose the knot points projectively, in each dimension,
nearby to the data points or, to be more precise, to the grid points canonically
generated by the data points.

We underline that all these intentions and efforts to improve aim at an accurate
and, at the same time, ‘double’, not too complex but for future applications well-
prepared methodology of CMARS and of its emerging and forthcoming varieties.
In this chapter, we represent and investigate a ‘dynamical counterpart’ of this
research agenda. We analyze time-discrete target-environment regulatory systems
(TE systems) with spline entries, and we present and solve new regression problems
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by using MARS and CMARS. We apply these methods on small artificial datasets
which have 4 variables (2 targets and 2 environmental factors) and 25 samples, as
our numerical experience prepared. We also obtain a simulation study based on 5
different datasets and compare the performances of MARS and CMARS.

4.1 Regression Problem for Regulatory Network with Spline
Entries

4.1.1 Introduction

Here, the use of spline function possesses great and, in fact, invaluable advantages,
in general, and, especially, in the context or our modeling of a dynamics [103].
Indeed,

(i) Splines, from the viewpoint of a single dimension (input variable), are
piecewise polynomials. If we just used polynomials, then they would usually
converge to plus or minus infinity when the absolute values of the (input)
variables grow large. As many real-world processes generally stay in bounded
margins even if these bounds and the time horizons are very large, polynomials
would need to be of a high degree to ‘turn around’ or oscillate enough in order
to stay in that margin. But with high-degree polynomials it is not that easy
to work, especially, since the real-world problems are multivariate, which can
imply multiplication effects and, hence, a fast increase of the degree of the
occurring multidimensional splines. Instead, using our elementary (C)MARS
splines allows us, in each dimension, to keep the degree of the polynomial
‘pieces’ very low. The splines are quite ‘flexible’ indeed, such to say, ‘elastic’.
Often, we call splines ‘smoothing splines’ as they ‘smoothly’ approximate the
discrete data.

(ii) Splines of CMARS are even more ‘smooth’ as their oscillatory behavior is
kept under control through a penalization of their complexity (integral of
squared first- and, in particular, second-order derivatives); then we discretize
the integral, receive a problem of Tikhonov regularization which we finally
represent as a problem of CQP.

(iii) The multivariate splines of (C)MARS are products of ‘zig-zagging’, i.e.,
piecewise linear functions, which are piecewise of degree 1 (or 0), and we
can carefully decide on how many dimensions we include into the process
of multiplications of these 1-dimensional splines. In fact, both the low 1-
dimensional degrees and the controlled multiplication amounts to an additional
care about that the complexity of our model will not be too high. We recall that
a reduction of complexity may also be named an increase of stability.

(iv) That we perform those multiplications is an expression of the fact that the input
variables are dependent and together, in groups, contribute to an explanation
of the response variable by those explanatory input variables.
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(v) Finally, differently from the use of a ‘stiff’ model formula (which are motivated
by the tradition of physical sciences), our approach by CMARS is very
adaptive and is getting “into” the dataset with its particular subsets and
characteristics of shape.

Therefore, in the study [103], we introduce a regulatory system with (C)MARS
spline entries. Our research on regulatory systems started with the assessment of
the dynamics of genetic networks, gene-environment networks and eco-finance
networks. Those dynamical models were introduced in the time-continuous version
first, and then treated time-discretely; careful discussions on the time-continuous
vs. -discrete nature of the dynamical model were made. By that we move from
MARS to the more ‘continuous’ (in terms of the model and of the continuous
optimization methods used) alternative CMARS, we are staying closer to the
originally continuous nature of the subject of our study.

4.1.2 The Dynamical Procedure

Selecting the entries of the matrix that encode our regulatory network as splines,
MARS, or alternatively, CMARS can be used to find the unknown parameters
in TE networks. By inserting splines in Eq. (2.11), we obtain the following
predictions [103]:

bX.kC1/
j D ˛T

j0 C #˛TT
j

��

X.k/
�C #˛ET

j

��

E.k/
�
;

bE.kC1/
i D ˛E

i0 C #˛TE
i

��

X.k/
�C #˛EE

i

��

E.k/
�
:

(4.1)

When we compare measurements and predictions and use the (Euclidean) k�k2-
norm, we can identify our model by solving the following least-squares (or in some
probabilistic setting, maximum-likelihood) estimation problem:

minimize
NX

kD0

	

bX.k/ � �

X.k/


2
2
C

bE.k/ � �

E.k/


2
2



:

After using the form of BFs in Eq. (3.4) and adding penalty terms in the regression
model of TE networks to control the lack of fit from the viewpoint of the complexity
and stability, the discretized form of PRSS in Eq. (3.6) can be approximately
represented as follows:

PRSS 	 

bX � �

X


2
2
C

bE � �

E


2
2
C�T kLT˛Tk22 C �E kLE˛Ek22 : (4.2)

By this representation, the PRSS minimization problem looks like a classical TR
problem and it can be coped with CQP [96, 136]. Using suitable bounds KT and KE,
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we may rewrite our optimization problem in the subsequent form:

minimize
wT;wE;˛

wT C wE

subject to


bX � �

X



2
� wT .cf. Eqn. (4.1)/;

bE � �

E



2
� wE .cf. Eqn. (4.1)/;

kLT˛Tk2 �
p

KT;

kLE˛Ek2 �
p

KE:

(4.3)

However, to simplify our model in Eq. (4.2) by a single penalty parameter �, PRSS
can be approximately given as follows:

PRSS 	
DAccuracy‚ …„ ƒ

bX � �

X


2
2

C
�Complexity‚ …„ ƒ
� kL˛k22 ; (4.4)

where ˛ D .˛T
T;˛

T
E/

T is an ..MmaxC1/�1/-parameter vector, to be estimated through

the given data points. Here,
�

X D .
�

XT ;
�

ET/T , bX D .bXT ;bET/Tand L D .LT;LE/.
Therefore, for target-environment networks, we may present our optimization
problem as given below:

minimize
w;˛

w

subject to


bX � �

X



2
� w .cf. Eqn. (4.1)/;

kL˛k2 � p
K:

(4.5)

In CMARS approach, via the ‘control parameter’ given by some upper bound of
the complexity term in our CQP optimization problem in Eq. (4.5), we can tune and
define the importance which we grant for the goal of lack of complexity and, by
this, for the antagonistic goal of accuracy.

4.2 Numerical Experience on a Complex Multi-Model
Regulatory Networks

4.2.1 Data Description

To exemplify the implementation of MARS and CMARS algorithms, we use an
artificial dataset which has two targets and two environmental variables and we have
four predictor variables .�x1;

�

x2;
�

e1;
�

e2/ with 25 measurement values for all target
and environmental variables. For MARS and CMARS algorithm, first, the MARS
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models are constructed for each targets and environmental variable by using the
Salford MARS [83] and, then, the maximum number of BFs (Mmax) and the highest
degree of interactions are defined.

For the first target, Ox1, Mmax is assigned to be 11, and the highest degree of
interaction is assigned to be 1 which is the main model. Therefore, and provided the
knot values (through MARS software), the largest model involves the subsequent
BFs (for simplicity, we suppress the arguments of the model functions):

#1 D maxf0;�

e2 C 2:045g; #2 D maxf0;�

e1 C 2:056g;
#3 D maxf0;�x1 C 2:280g; #4 D maxf0;�x2 � 0:029g;
#5 D maxf0; 0:029� �x2g; #6 D maxf0;�x1 C 0:293g;
#7 D maxf0;�0:293� �x1g; #8 D maxf0;�e2 C 0:093g;
#9 D maxf0;�0:093� �

e2g; #10 D maxf0;�

e1 C 0:186g;
#11 D maxf0;�0:186� �

e1g:

For the second target, Ox2;Mmax is assigned to be 10, and the highest degree of
interaction is assigned to be 1. So, the largest model includes the following BFs:

#1 D maxf0;�

e1 C 2:056g; #2 D maxf0;�

e2 � 0:386g;
#3 D maxf0; 0:386� �

e2g; #4 D maxf0;�

x1 C 1:791g;
#5 D maxf0;�

x1 C 0:293g; #6 D maxf0;�0:293� �

x1g;
#7 D maxf0;�x2 � 0:029g; #8 D maxf0; 0:029� �x2g;
#9 D maxf0;�x2 C 0:332g; #10 D maxf0;�0:332� �x2g:

For the first environmental factor, Oe1;Mmax and the highest degree of interaction is
assigned to be 7 and 2, respectively. Consequently, the BFs of the largest model are
represented as

#1 D maxf0;�x1 C 2:280g; #2 D maxf0;�e1 C 2:056g;
#3 D maxf0;�

x2 C 1:791g; #4 D maxf0;�

e2 C 0:017g � #2;
#5 D maxf0;�0:017� �

e2g � #2; #6 D maxf0;�

x1 C 0:293g � #3;
#7 D maxf0;�0:293� �x1g � #3:
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For the second environmental factor, Oe2, Mmax, is assigned to be 11, and the highest
degree of interaction is assigned to be 1. Therefore, the largest model involves the
following BFs:

#1 D maxf0;�e2 C 2:045g; #2 D maxf0;�e1 � 0:443g;
#3 D maxf0; 0:443� �e1g; #4 D maxf0;�x1 C 0:293g;
#5 D maxf0;�0:293� �x1g; #6 D maxf0;�x2 � 0:029g;
#7 D maxf0; 0:029� �

x2g; #8 D maxf0;�

e1 C 0:186g;
#9 D maxf0;�0:186� �

e1g; #10 D maxf0;�

x2 C 0:332g;
#11 D maxf0;�0:332� �x2g:

For all target and environmental variables, using these BFs above, the largest models
with Mmax BFs and the final (optimally estimated) models with the reduced number
of BFs are constructed after the forward and the backward step of MARS by its
software. At the end, the final models used for MARS algorithm and the largest
models used for CMARS algorithm are found and represented in Sects. 4.2.2
and 4.2.3, respectively.

4.2.2 MARS Models

After the backward stepwise elimination of MARS, for both targets and environ-
mental factors, the numbers of BFs are reduced to 5, 5, 5 and 6, respectively.
Consequently, for this study, the final models of MARS are obtained in the
subsequent form of estimations:

Ox1 D ˛0 C ˛1 maxf0;�e2 C 2:045g C ˛2 maxf0;�e1 C 2:056g
C ˛3 maxf0;�x1 C 2:280g C ˛4 maxf0;�x2 C 0:029g
C ˛5 maxf0;�0:029� �

x2g;

Ox2 D ˛0 C ˛1 maxf0;�

e1 C 2:056g C ˛2 maxf0;�

e2 � 0:386g
C ˛3 maxf0; 0:386� �e2g C ˛4 maxf0;�0:293� �x1g
C ˛5 maxf0;�x2 C 0:029g;
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Table 4.1 For targets and environmental factors, parameter values of MARS algorithm

˛0 ˛1 ˛2 ˛3 ˛4 ˛5 ˛6 ˛7
�x1 �0:452 0:298 �0:959 0:788 �0:152 0:184
�

x2 1:135 �0:626 �0:859 0:548 0:181 �0:206
�

e1 �3:939 0:749 0:764 0:360 �0:096 0:155
�e2 �2:134 0:672 �0:448 1:087 0:634 �0:252 �0:369

Oe1 D ˛0 C ˛1 maxf0;�x1 C 2:280g C ˛2 maxf0;�e1 C 2:056g
C ˛3 maxf0;�x2 C 1:791g C ˛4 maxf0;�0:017� �e2g � maxf0;�e1 C 2:056g
C ˛5 maxf0;�0:293� �x1g � maxf0;�x2 C 1:791g;

Oe2 D ˛0 C ˛1 maxf0;�

e2 C 2:045g C ˛2 maxf0;�

e1 � 0:443g
C ˛3 maxf0; 0:443� �

e1g C ˛4 maxf0;�

x1 C 0:293g
C ˛5 maxf0;�0:293� �x1g C ˛6 maxf0;�x2 � 0:029g:

For each target and environmental factor, the unknown parameters are determined
and represented in Table 4.1.

4.2.3 CMARS Models

For CMARS algorithm, to prevent from nondifferentiability in our optimization
problem, we choose the knot values different from data points, but very much nearby
to the corresponding input data. For the first part of our optimization problem in
Eq. (4.4), using Mmax BFs represented in Sect. 4.2.1, the largest models become

Ox1 D ˛0 C ˛1 maxf0;�e2 C 2:046g C ˛2 maxf0;�e1 C 2:057g
C ˛3 maxf0;�x1 C 2:281g C ˛4 maxf0;�x2 C 0:030g
C ˛5 maxf0;�0:030� �

x2g C ˛6 maxf0;�

x1 C 0:294g
C ˛7 maxf0; 0:030� �

x2g C ˛8 maxf0;�

e1 C 0:186g
C ˛9 maxf0;�0:186� �e1g C ˛10 maxf0;�x2 C 0:333g
C ˛11 maxf0;�0:186� �e1g;
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Ox2 D ˛0 C ˛1 maxf0;�

e1 C 2:057g C ˛2 maxf0;�

e2 � 0:387g
C ˛3 maxf0; 0:387� �

e2g C ˛4 maxf0;�

x1 C 1:792g
C ˛5 maxf0;�

x1 C 0:294g C ˛6 maxf0;�0:294� �

x1gC
C ˛7 maxf0;�x2 C 0:030g C ˛8 maxf0; 0:030� �x2g
C ˛9 maxf0;�x2 C 0:333g C ˛10 maxf0;�0:333� �x2g;

Oe1 D ˛0 C ˛1 maxf0;�

x1 C 2:281g C ˛2 maxf0;�

e1 C 2:057g
C ˛3 maxf0;�

x2 C 1:792g C ˛4 maxf0;�

e2 C 0:018g � maxf0;�

e1 C 2:057g
C ˛5 maxf0;�0:018� �e2g � maxf0;�e1 C 2:057g
C ˛6 maxf0;�x1 C 0:294g � maxf0;�x2 C 1:792g
C ˛7 maxf0;�0:294� �x1g � maxf0;�x2 C 1:792g;

Oe2 D ˛0 C ˛1 maxf0;�

e2 C 2:046g C ˛2 maxf0;�

e1 � 0:444g
C ˛3 maxf0; 0:444� �e1g C ˛4 maxf0;�x1 C 0:294g
C ˛5 maxf0;�0:294� �x1g C ˛6 maxf0;�x2 � 0:030g
C ˛7 maxf0; 0:030� �x2g C ˛8 maxf0;�e1 C 0:187g
C ˛9 maxf0;�0:187� �

e1g C ˛10 maxf0;�

x2 C 0:333g
C ˛10 maxf0;�0:333� �

x2g:

After the discretized form of multi-dimensional integrals in Eq. (3.5) is denoted by
L, for the second part of our optimization model in Eq. (4.4), the L matrices of each
target and each environmental factor become diagonal .12�12/-, .11�11/-, .8�8/-
and .12�12/-matrices, and the first column elements of L are all zero. For instance,
the L matrix of first environmental item can be presented as follows:

L D

2
6664
0 0 : : : 0

0 1:9671 : : : 0
:::

:::
: : :

:::

0 0 : : : 1:3287

3
7775 ;
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and kL˛k22 is given as

kL˛k22 D.1:967 � ˛1/2 C .1:972 � ˛2/2 C .1:911 � ˛3/2

C .1:401 � ˛4/2 C .1:381 � ˛5/2 C .1:502 � ˛6/2

C .1:329 � ˛7/2:

After we obtain largest models for the accuracy part and evaluate the L matrices
for complexity part of PRSS in Eq. (4.4) for the first environmental factor, we
reformulate PRSS as a problem of CQP by using Eq. (4.5) as follows:

minimize
w;˛

w;

subject to

1:4624� ˛0 � 3:788˛1 � 3:461˛2 � 1:165˛3 � 5:114˛5 � 2:099˛6 D ˇ1;

0:3915� ˛0 � 1:737˛1 � 3:384˛2 � 1:821˛3 � 3:309˛5 � 0:455˛7 D ˇ2;

:::

� 0:637� ˛0 � 1:778˛1 � 1:877˛2 � 1:548˛3 � 0:883˛5 � 0:332˛7 D ˇ25;

.ˇ21 C ˇ22 C : : :C ˇ225/
1=2 � w;

.ˇ226 C ˇ227 C ˇ228 C ˇ229 C ˇ230 C ˇ231 C ˇ232/
1=2 � .K/1=2:

Here, we recall that the values K are determined by a model-free (train and error)
method (cf. Remark 1). After solving this problem for all target and environmental
factors, we receive unknown parameters which are presented as given in Table 4.2.
For all computations, the code written in MATLAB is run MOSEK software [87] is
used for CQP.

Table 4.2 For targets and environmental factors, parameter values of CMARS algorithm

˛0 ˛1 ˛2 ˛3 ˛4 ˛5
�

x1 �0:373 0:127 �0:108 0:119 0:193 �0:059
�

x2 0:268 �0:230 �0:389 0:229 0:112 �0:241
�e1 �0:506 0:084 0:068 �0:027 0:168 0:019
�

e2 �0:801 0:273 �0:090 0:099 0:247 �0:153
˛6 ˛7 ˛8 ˛9 ˛10 ˛11

�x1 0:129 �0:104 0:122 �0:125 �0:134 0:079
�

x2 0:122 0:145 �0:086 0:109 �0:110
�e1 0:117 �0:153
�

e2 0:203 �0:052 �0:120 �0:075 0:153 �0:047
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4.2.4 Results and Comparison

The prediction results for targets and environmental factors can be seen in Figs. 4.1,
4.2, 4.3, 4.4, where ‘blue line’ present real values, ‘red line’ indicates the estimated
values by MARS model and ‘green line’ represents the predicted values by CMARS
model.

As we may deduce from Figs. 4.1–4.4, with the real expression values of
targets and environmental factors, the predicted values of CMARS model match
much better than that of MARS model. In fact, this indicates that CMARS can
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Fig. 4.1 True and predicted expression values of the first target
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Fig. 4.2 True and predicted expression values of the second target



70 4 Spline Regression Models for Complex Multi-Model Regulatory Networks

-2,00

-1,50

-1,00

-0,50

0,00

0,50

1,00

1,50

2,00

1 3 5 7 9 11 13 15 17 19 21 23 25

Real

MARS

CMARS

Fig. 4.3 True and predicted expression values of the first environmental factor
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Fig. 4.4 True and predicted expression values of the second environmental factor

really predict the trend of the target-environment interaction successfully based
on the expression values of all targets and environmental factors, especially, when
compared with MARS.
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4.3 Simulation Study

In previous sections, we represented and investigated scientifically MARS, CMARS
and two-model regulatory systems with spline entries. In previous subsections,
using an artificial data set, we introduced MARS and CMARS models for 2 target
and 2 environmental factors as a numerical example and presented the results
obtaining figures for each target and each environmental item. Now, in order to show
the performance of MARS and CMARS for regulatory system based on replicated
datasets, we constructed different MARS and CMARS models through 5 different
simulated datasets for each of the target and environmental items, as we described
in previous Sects. 4.2.1–4.2.3. Therefore, unknown parameters are determined and
presented in Tables A.1 and A.2. Afterwards, these models are evaluated with
respect to the criteria by using the formulas as given in Table D.1. To compare the
results concerning the accuracy of MARS and CMARS, the models are calculated
based on the adjusted multiple coefficients of determination (R2adj), average absolute
error (AAE), root mean squared error (RMSE), and the correlation coefficient (r).
The explanations, interpretations and formulas of these measures are represented in
Table D.1, and the results are displayed in Table A.3.

According to these accuracy criteria, we understand that CMARS can perform
better than MARS for all target and environmental items with respect to all measures
validated through simulated datasets.

In spite of the recorded successes, the statistical methods like MARS and
CMARS, which assume the input data are usually known precisely in developing
models, may not give trustworthy results since, in reality, the data involved in
regression problems can contain noise. Therefore, it has been realized that core
elements of a new global regulatory framework have to be created to make these
systems more robust and suitable for serving the requirements of the real world. In
order to reveal this expectation, in the following chapter, a new robust optimization
technique for solving and optimizing models implying nonlinearity and uncertainty
by using R(C)MARS is presented with an implementation on two-factor regulatory
systems. This will allow us to involve into our modeling uncertainty in the input
variables, which is typical for so many real-life problems.



Chapter 5
Robust Optimization in Spline Regression
Models for Regulatory Networks Under
Polyhedral Uncertainty

In the previous chapter, we introduced and investigated new dynamical regression
problems by using splines for the entries of regulatory network, and we demon-
strated the effectiveness of these approaches by a numerical experiment. For that
study [103], CMARS provides better results than MARS and gives us better predic-
tions than MARS of the trend of the TE interaction based on the expression values
of all targets and all environmental factors. These systems appear in the financial
sector, in banking, environmental protection, system biology, medicine, etc. As
practitioners in these fields need to be aware that the evaluation of probabilities
based on history could be fundamentally inaccurate, uncertainties have a great
importance for actors in these sectors. Therefore, in this chapter, our new robust
optimization technique for solving and optimizing models having nonlinearity and
uncertainty by using R(C)MARS is discussed with an implementation on two-factor
TE systems [106].

5.1 Robustification of Regression for Regulatory Networks

Identification of a regulatory network from given real-world data is a mathematical
problem that has to be solved both theoretically and computationally, especially, if
there exists noise in the data. Given this motivation we discuss and newly present a
robustification of regression problems for time-discrete TE regulatory systems under
polyhedral uncertainty by using RCMARS. In our considered case of uncertainty
existing in all kinds of the expression data, where the uncertainty sets are defined in
Eqs. (5.17)–(5.18), RCMARS is applied to guarantee a robustification of our target-
environment networks.

For RCMARS, the large model that has the maximum number of BFs, Mmax, is
created by Salford MARS [83]. In that process, the input and output variables of our

© Springer International Publishing Switzerland 2016
A. Özmen, Robust Optimization of Spline Models and Complex
Regulatory Networks, Contributions to Management Science,
DOI 10.1007/978-3-319-30800-5_5
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model are all assumed as random variables for target-environment networks. They
lead us to uncertainty sets; those are assumed to contain CIs. Furthermore,

�

Xj;
�

Ei

and, in vector form: bX and bE, are considered to be normally distributed. So, the
following general model is considered for input data values,

�

Xj and
�

Ei:

�

Xj D �Nxj C �T
j . j D 1; 2; : : : ; n/;

�

Ei D �Nei C �E
i .i D 1; 2; : : : ;m/:

(5.1)

Here,
�Nxj and

�Nei denote the sample mean (average) of the input vectors
�

Xj and
�

Ei,
respectively. When considering that we have d .D n C m/-dimensional input data,
each input vector

�xk D .
�xk;1;

�xk;2; : : : ;
�xk;n/

T for target and each input vector
�ek D

.
�

ek;1;
�

ek;2; : : : ;
�

ek;m/
T for environment are represented as

�

^xk D .
�

^
xk;1;

�

^
xk;2; : : : ;

�

^
xk;n/

T

and
�

^ek D .
�

^ek;1;
�

^ek;2; : : : ;
�

^ek;m/
T including the perturbations �T

k D .�T
k;1; : : : ; �

T
k;n/

T

and �E
k D .�E

k;1; : : : ; �
E
k;m/

T , respectively .k D 0; 1; : : : ;N/. Here, �T
k and �E

k are
generic elements of UT

1 and UE
1 , which are the polyhedral uncertainty sets that will

later on be described for our input data (cf. Eq. (5.17)). So, for TE networks, the
new values of piecewise linear BFs are represented as follows:

�xk;j ! �

^xk;jI
�

^xk;j D �Nxj C�T
k;j; j�T

k;jj � �T
k;j . j D 1; 2; : : : ; nI k D 0; 1; : : : ;N/;

ek;i ! �

^ek;iI
�

^ek;i D �Nei C�E
k;i; j�E

k;ij � �E
k;i .i D 1; 2; : : : ;mI k D 0; 1; : : : ;N/;

Similarly, after we incorporate a perturbation into output variables, the output
vectors Ox D .Ox1; Ox2; : : : ; Oxn/

T for target and Oe D .Oe1; Oe2; : : : ; Oem/
T for environment

are represented as Ôx D . Ôx1; Ôx2; : : : ; Ôxn/
T and Ôe D . Ôek; Ôek; : : : ; Ôek/

T including the
perturbations �T D .�T

1 ; �
T
2 ; : : : ; �

T
n /

T and �E D .�E
1 ; �

E
2 ; : : : ; �

E
m/

T , respectively.
Here, we restrict the vectors �T and �E to be elements of UT

1 and UE
1 , which are

the polyhedral uncertainty sets that will later on be defined for our output data (cf.
Eq. (5.18)). So, our new output values can be expressed as follows:

Oxj ! ÔxjI Ôxj D ONxj C �T
j ; j�T

j j � 
T
j . j D 1; 2; : : : ; nI k D 0; 1; : : : ;N/;

Oei ! ÔeiI Ôei D ONei C �E
i ; j�E

i j � 
E
i .i D 1; 2; : : : ;mI k D 0; 1; : : : ;N/;

where ONxj and ONei express the sample mean (average) of the output vectors OX and OE,
respectively. When we estimate the BFs in Eq. (3.13) with uncertainty for TE, we
can evaluate them through the subsequent estimations:

h
�

^
xk;v. j;n/ � �T

v. j;n/

i
˙ �

h
�

xk;v. j;n/ � �T
v. j;n/

i
˙ C

h
�T

k;v. j;n/ C .˙AT
k;v. j;n//

i
˙ ;h

�

^ek;v.i;m/ � �E
v.i;m/

i
˙ �

h
�ek;v.i;m/ � �E

v.i;m/

i
˙ C

h
�E

k;v.i;m/ C .˙AE
k;v.i;m//

i
˙ I

(5.2)
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here, AT
k;v. j;n/ and AE

k;v.i;m/ are interpreted and employed as control variables.1 Since
the values of these control variable directly influence the size of our uncertainty
set U1, and our uncertainty sets are unknown but bounded, AT

k;v. j;n/ and AE
k;v.i;m/

are restricted by values 	T
k;v. j;n/ and 	E

k;v.i;m/, respectively. If we encounter the
very conservative (risk-averse) position, the so-called worst case for the values
of AT

k;v. j;n/ and AE
k;v.i;m/, they will be equal to 	T

k;v. j;n/ and 	E
k;v.i;m/, respectively.

But if the absolute value of our uncertainty is very high, we might not find any
meaningful solution for our problems. For this reason, we may allow for a more
risk-friendly case by selecting the values of AT

k;v. j;n/ and AE
k;v.i;m/ between 0 and the

absolute value of AT
k;v. j;n/ and AE

k;v.i;m/. This means:
^

A
T

k;v. j;n/ 2 Œ0;
ˇ̌̌
AT

k;v. j;n/

ˇ̌̌
� and

^

A
E

k;v.i;m/ 2 Œ0;
ˇ̌̌
AE

k;v.i;m/

ˇ̌̌
�, respectively. To make our notation a bit easier, we still

keep the names AT
k;v. j;n/ and AE

k;v.i;m/ for
^

A
T

k;v. j;n/ and
^

A
E

k;v.i;m/. Now, to evaluate the

values and differences of #n.
�xn

k/ and #n.
�

^xn
k/ for the targets, #m.

�em
k / and #m.

�

^em
k / for

the environmental items in Eq. (3.13), we can apply Eq. (5.2) in the following way,
where all the ‘+’ and ‘�’ signs correspond to each other, respectively: the values of
these control variable directly influence the size of our uncertainty set UT

1 and UE
1 ,

AT
k;v. j;n/ and AE

k;v.i;m/ are restricted by values 	T
k;v. j;n/ and 	E

k;v.i;m/, respectively:

KnY
jD1
Œ
�

^
xk;v. j;n/ � 'v. j;n/�˙

„ ƒ‚ …
DW#n.

�

^
xn

k /

�
KnY

jD1
Œ
�

xk;v. j;n/ � 'v. j;n/�˙
„ ƒ‚ …

DW#n.
�

xn
k /

C

X
A�

¤

f1;:::;Kng

Y
a2A

Œ
�

^xk;a � 'T
a �˙

Y
b2f1;:::;Kng=A

Œ.˙AT
k;b/C�T

k;b�˙;

(5.3)

KmY
iD1
Œ
�

^ek;v.i;m/ � 'v.i;m/�˙
„ ƒ‚ …

DW#m.
�

^
em

k /

�
KmY
iD1
Œ
�ek;v.i;m/ � 'v.i;m/�˙

„ ƒ‚ …
DW#m.

�

em
k /

C

X
A�

¤

f1;:::;Kmg

Y
a2A

Œ
�

^ek;a � 'E
a �˙

Y
b2f1;:::;Kmg=A

Œ.˙AE
k;b/C�E

k;b�˙:

(5.4)

1There should be no confusion by double use of the letters n and m for both number of variables
and dimension of subvectors in R(C)MARS model.
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Here, we may achieve a bounding given below via symmetry, namely:

#n.
�

^xn
k/� #n.

�xn
k/ � OuT

k;n;

#n.
�xn

k/� #n.
�

^xn
k/ � OOuT

k;n

)
)
ˇ̌̌
#n.

�

^xn
k/ � #n.

�xn
k/
ˇ̌̌

� max
n

OuT
k;n;

OOuT
k;n

o
; (5.5)

#m.
�

^em
k / � #m.

�em
k / � OuE

k;m

#m.
�em

k / � #m.
�

^em
k / � OOuE

k;m

)
)
ˇ̌̌
#m.

�

^em
k /� #m.

�em
k /
ˇ̌̌

� max
n

OuE
k;m;

OOuE
k;m

o
: (5.6)

Therefore, our uncertainty values
ˇ̌
uT

kn

ˇ̌
for target and

ˇ̌
uE

km

ˇ̌
for environment can be

estimated in the subsequent manner for every BF:

ˇ̌
uT

k;n

ˇ̌ �
X

A�
¤

f1;:::;Kng
BjAj�1

kT

Y
a2A

�T
k;a �

Y
b2f1;:::;Kng=A

.	T
k;b C �T

k;b/;

ˇ̌
uE

k;m

ˇ̌ �
X

A�
¤

f1;:::;Kmg
BjAj�1

kE

Y
a2A

�E
k;a �

Y
b2f1;:::;Kmg=A

.	E
k;b C �E

k;b/:
(5.7)

Here, by jAj we imply the cardinality (size) of the set A. The values of BkT and
BkE are regarded and applied again as control variables. The values of BkT and BkE

are equal to 2 in cases without outliers, while, given outliers, they will be greater
than 2. In those situations, we shall choose different values for BkT and BkE . If we
allow for a very conservative case, we do not wish to exclude any outliers. However,
the values of BkT and BkE could be rather large for some variables in the input
data, and the absolute values of our uncertainty sets might be quite high because
of the values of these control variables. If the absolute value of any uncertainty set
is very high, it can take too much time to catch a solution or we could not find a
meaningful solution for our problem at all. For those reasons, rather than choosing
a very conservative position, we may take into account a more risk-friendly position
by choosing the values of BkT and BkE with a possible exclusion of the outliers. In
our novel study, we would like to visualize the concept of robustification for the
targets and environmental items by Figs. 5.1, 5.2, respectively.

After implying uncertainty into Eq. (4.1) of Sect. 4.1.2, we may state the
following prediction equations:

b̂X.kC1/
j D ˛T

j0 C #aj
TT.

�

^

X.k//C #aj
ET.

�

^

E.k//;

b̂E.kC1/
i D ˛E

i0 C #ai
TE.

�

^

X.k//C #aj
EE.

�

^

E.k//:

(5.8)

Hence, we can compare data and model predictions under uncertainty and obtain
the following regression problem:

minimize
NX

kD0

	



b̂X.k/ �
�

^

X.k/





2

2

C




b̂E.k/ �

�

^

E.k/





2

2



: (5.9)
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Inserting splines and, then, including uncertainty expressed by polyhedral uncer-
tainty sets and constructing the PRSS form of TE networks, the discretized form of
PRSS of Eq. (3.5) attains the following expression:

PRSS 	
NX

kD0

	 nX
jD1
.

�

^

X.k/j �
�

^

X.k/j /2 C
mX

iD1
.
b̂E.k/i � b̂E.k/i /

2




C
MT

maxX
nD1

�n

.NC1/KT
nX

jD1
L2j;n˛

2
n C

ME
maxX

mD1
�m

.NC1/KE
mX

iD1
L2i;m˛

2
m;

(5.10)
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where

Lkn WD
�	 2X

j�jD1
�D.
1;
2/

T

X
r<s

r;s2V.n/

ŒD

r;s#n.Oxn

k/�
2



�Oxn

k

�1=2
and

Lkm WD
�	 2X

j�jD1
�D.
1;
2/

T

X
r<s

r;s2V.m/

ŒD

r;s#m.Oem

k /�
2



�Oem

k

�1=2
:

Here, we have ˛T WD .˛T
0 ; : : : ; ˛

T
MT

max
/T related with the “point” (consisting

of vectors of different dimensions)
�

^xT
k WD .

�

^x1k ; : : : ;
�

^xMT
max

k /T , and ˛E WD
.˛E
0 ; ˛

E
1 ; : : : ; ˛

E
ME

max
/T related with the “point”

�

^eT
k WD .

�

^e1k ; : : : ;
�

^eME
max

k /T. Then, our
approximation of PRSS may be written as:

PRSS 	




b̂X �

�

^

X






2

2

C




b̂E �

�

^

E






2

2

C �T kLT˛Tk22 C �E kLE˛Ek22 ; (5.11)

where LT and LE are diagonal .MT
max C1/�.MT

max C1/- and .ME
maxC1/�.ME

max C1/-
matrices, and ˛T and ˛E are ..MT

max C 1/ � 1/- and ..ME
max C 1/ � 1/-vectors of

parameters, respectively. However, to simply our model in Eq. (5.11), PRSS can be
approximated subsequently by using a single multiplier of penalization:

PRSS 	




b^X �

�

^

X






2

2

C � kL˛k22 ; (5.12)

where
�

^

X D .
�

^

XT ;
�

^

ET/T , b̂X D .
b̂XT ;

b̂ET/T and L D .LT;LE/. Here, Mmax D MT
max C

ME
max, and ˛ D .˛T

T;˛
T
E/

T is an ..MmaxC1/�1/-vector of parameters to be estimated
with the help of the data points. Consequently, for target-environment networks, we
may represent our optimization problem in the following form (with reference to
Eq. (5.8)):

minimize
w;˛

w;

subject to





b̂X �
�

^

X






2

� w;

kL˛k2 � p
K;

(5.13)

with some chosen parameter K � 0.
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5.1.1 Polyhedral Uncertainty and Robust Counterpart
for Regulatory Networks

To evaluate and solve the robustness problem, for target-environment networks, we

suppose that the model uncertainty is represented by a family of matrices
�

^

X D
�

XCUT,
�

^

E D �

ECUE and vectors b̂X D bXCvT, b̂E D bECvE, where U D .UT;UE/ 2
U1 WD .UT

1 � UE
1 / and v D .vT; vE/ 2 U2 WD .UT

2 � UE
2 / are unknown matrices

and vectors but they are situated in bounded sets, respectively. These uncertainty
matrices U 2 U1 and uncertainty vectors v 2 U2 are by

U D

2
6664

uT
0;1 uT

0;2 : : : uT
0;Mmax

uE
0;1 uE

0;2 : : : uE
0;Mmax

uT
1;1 uT

1;2 : : : uT
1;Mmax

uE
1;1 uE

1;2 : : : uE
1;Mmax

:::
:::
: : :

:::
:::

:::
: : :

:::

uT
N;1 uT

N;2 : : : uT
N;Mmax

uE
N;1 uE

N;2 : : : uE
N;Mmax

3
7775 ; (5.14)

v D
	
.vT
0 v

T
1 : : : v

T
N/

T ; .vE
0 v

E
1 : : : v

E
N/

T



: (5.15)

Based on those underlying sets U1 and U2, the robust counterpart is determined as
follows:

minimize
˛T ;˛E

max
.

�

WT;
�

WE/2U1;
.OzT ;OzE/2U2




OzT � �

WT˛T




2
2
C



OzE � �

WE˛E




2
2
C�T kLT˛Tk22C�E kLE˛Ek22 :

(5.16)

Namely, U1 is a polytope with 2.NC1/Mmax vertices
�

W1;
�

W2; : : : ;
�

W2.NC1/Mmax
and

represented as

U1 D
8<
:
2.NC1/MmaxX

�D1
ı�

�

W� j ı� � 0 .� 2 ˚1; 2; : : : ; 2.NC1/Mmax
�
/;

2.NC1/MmaxX
�D1

ı� D 1

9=
; ;

(5.17)

where U1 D conv
n

�

W;
�

W2; : : : ;
�

W2.NC1/Mmax
o
. Furthermore, U2 is a polytope with

2NC1 vertices Oz1; Oz2; : : : ; Oz2.NC1/
and it can be expressed as

U2 D
8<
:
2.NC1/X
�D1

'�Oz� j '� � 0 .� 2 ˚1; 2; : : : ; 2.NC1/�/; 2
.NC1/X
�D1

'� D 1

9=
; ; (5.18)

i.e., U2 D conv
n
Oz1; Oz2; : : : ; Oz2.NC1/

o
. The uncertainty sets U1 and U2 have the form

of polytopes and they can be presented as a convex combination of vertices
�

W� .� D
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1; 2; : : : ; 2.NC1/Mmax/ and
�z� .� D 1; 2; : : : ; 2.NC1//, respectively. Now, the entries of

�

W and Oz may be thought to have become intervals, in fact, our CIs. Then, the matrix
�

W and vector Oz with uncertainty are lying in the Cartesian products of intervals;
those are parallelpipes (for visualization, cf. Sect. 3.1.3 ).

5.1.2 Robust Conic Quadratic Programming with Polyhedral
Uncertainty

When polyhedral uncertainty is employed by uncertainty sets U1 and U2, for our
RCMARS model on target-environment networks, the robust CQP program is
represented in the following manner:

minimize
wT;wE;˛T;˛E

wT C wE;

subject to



OzT � �

WT˛T





2

� wT;


OzE � �

WE˛E





2

� wE; 8 .
�

WT;
�

WE/„ ƒ‚ …
DP2.NC1/Mmax

�D1 ı�
�

W�

2 U1; .OzT; OzE/„ ƒ‚ …
DP2NC1

�D1 '�Oz�

2 U2;

kL˛Tk2 �
p

KT;

kL˛Ek2 �
p

KE:
(5.19)

Since U1 and U2 are polytopes, described by their vertices as

U1 D conv
n

�

W1;
�

W2; : : : ;
�

W2.NC1/Mmax
o
; U2 D conv

n
Oz1; Oz2; : : : ; Oz2NC1

o
;

then our robust CQP can be equivalently expressed as a standard CQP [35] with the
subsequent form:

minimize
wT;wE;˛T;˛E

wT C wE

subject to



Oz�T � �

W�1
T ˛T





2

� wT .� D 1; 2; : : : ; 2NC1I �1 D 1; 2; : : : ; 2.NC1/MT
max/;


Oz�E � �

W�2
E ˛E





2

� wE .� D 1; 2; : : : ; 2NC1I �2 D 1; 2; : : : ; 2.NC1/ME
max/;

kL˛Tk2 �
p

KT;

kL˛Ek2 �
p

KE:
(5.20)
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Then, to facilitate our representation in Eq. (5.20), this problem can be rewritten as

minimize
w;˛

w;

subject to



Oz� � �

W�˛





2

� w;

kL˛k2 � p
K;

(5.21)

where � D 1; : : : ; 2NC1I � D .�1; �2/ 2 QE
cDT

˚
1; : : : ; 2.NC1/Mc

max
�
. Hence,

�

W� D 
�

W�1
T 0

0
�

W�2
E

!
; Oz� D .Oz�T T ; Oz�E T/T , ˛ D .˛T

T ;˛E
T/T and L D .LT;LE/. Here,

0, which can have different formats, is used a dummy variable of 0- matrices to
simplify notation.

5.2 Numerical Experience

5.2.1 Developing RCMARS Models for Regulatory Networks

For an implementation example of the RCMARS algorithm within our dynamical
model application, we refer to an artificial dataset that has 2 targets and 2
environmental variables. So, we have 4 predictor variables .�x1;

�

x2;
�

e1;
�

e2/ with 25
measurement values for each of them. Based on that, the maximum number of
BFs, Mmax, and the highest degree of interaction are determined for each targets
and environmental items, and the largest models are constructed in the forward
MARS algorithm by its software, Salford MARS [83] (cf. Sect. 2.3.3). To prevent
from nondifferentiability in our optimization program, we choose the knot values
different from the data points, but these values to be very much nearby to the
corresponding input data. Hence, for both targets and environmental factors, the
numbers MT of BFs are 11, 10, 8, and 11, respectively, and the largest models of
RCMARS become

Ox1 D ˛0 C ˛1 maxf0;�

e2 C 2:113g C ˛2 maxf0;�

e1 C 2:106g C ˛3 maxf0;�

x1 � 2:337g
C ˛4 maxf0;�x2 � 0:058g C ˛5 maxf0; 0:058 � �x2g C ˛6 maxf0;�x1 C 0:295g
C ˛7 maxf0;�0:295 � �x1g C ˛8 maxf0;�e2 C 0:079g C ˛9 maxf0;�0:079 � �e1g
C ˛10 maxf0;�

e1 C 0:195g C ˛11 maxf0;�0:195 � �

e1g;

Ox2 D ˛0 � ˛1 maxf0;�

e1 C 2:106g C ˛2 maxf0;�

e2 � 0:392g C ˛3 maxf0; 0:392 � �

e2g
C ˛4 maxf0;�x2 C 1:838g C ˛5 maxf0;�x1 C 0:295g C ˛6 maxf0;�0:295 � �x1g
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C ˛7 maxf0;�

x2 � 0:058g C ˛8 maxf0; 0:058 � �

x2g C ˛9 maxf0;�

x2 C 0:347g
C ˛10 maxf0;�0:347 � �

x2g;

Oe1 D ˛0 C ˛1 maxf0;�x1 C 2:337g C ˛2 maxf0;�e1 C 2:195g C ˛3 maxf0;�0:195 � �e1g
C ˛4 maxf0;�

x2 C 1:838g C ˛5 maxf0;�

e2 C 0:010g � maxf0;�

x1 C 2:337g
C ˛6 maxf0;�0:010 � �

e2g � maxf0;�

x1 C 2:337g
C ˛7 maxf0;�

x1 C 0:295g � maxf0;�

x2 C 1:838g
C ˛8 maxf0;�0:295 � �

x1g � maxf0;�

x2 C 1:838g;

Oe2 D ˛0 C ˛1 maxf0;�e2 C 2:113g C ˛2 maxf0;�e1 � 0:450g C ˛3 maxf0; 0:450 � �e1g
C ˛4 maxf0;�

x1 C 0:295g C ˛5 maxf0;�0:295 � �

x1g C ˛6 maxf0;�

x2 � 0:058g
C ˛7 maxf0; 0:058 � �

x2g C ˛8 maxf0;�

e1 C 0:195g C ˛9 maxf0;�0:195 � �

e1g
C ˛10 maxf0;�

x2 C 0:347g C ˛11 maxf0;�0:347 � �

x2g:

As our next step, for the second part of our optimization model in Eq. (5.12)
the matrices L are obtained, related to all targets and environmental factors,
respectively. To introduce the robust optimization approach into the RCMARS
model, by applying Eq. (5.7), uncertainties are calculated for all input and output
values which are represented by CIs, and these uncertainty values evaluated are
inserted into the real input data

�xk and
�ek in each dimension, and into the output

data Oxk and Oek .k D 0; 1; : : : ; 24/. Therefore, for both targets and environmental
items, the uncertainty matrices and vectors based on polyhedral uncertainty sets are
constructed by using Eqs. (5.17)–(5.18). Indeed, we have a tradeoff here between
tractability and robustification, because , the uncertainty matrices of the input data
have huge dimensions, and we do not possess enough computer capacity to solve
our problem with respect to these uncertainty matrices. To cope with this difficulty,
for all targets and environmental items, we formulate the minimization of PRSS
as a CQP problem in Eq. (5.21) for all data values by following a combinatorial
approach that we call weak robustification (cf. Remark 2).

As a result, we obtain 25 different weak RCMARS (WRCMARS) models for
both targets and environmental items. These 100 .D 25 � 4/ sub-models are solved
independently by running the program code of RCMARS algorithm written in
MATLAB and using MOSEK software [87] for CQP problem, and we receive the
w value for each of our auxiliary problems. Eventually, as an expression of our
worst-case approach, we chose the solution that has the maximum w value, in terms
of all targets and environmental factors. For our RCMARS involvement, Table 5.1
displays the optimal parameters of targets and environmental factors found.
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Table 5.1 For targets and environmental factors, predicted parameter values by RCMARS
algorithm

˛0 ˛1 ˛2 ˛3 ˛4 ˛5
�x1 �0:247 0:111 �0:326 0:269 0:191 �0:050
�

x2 0:711 �0:448 �0:924 0:366 0:130 �0:097
�

e1 �2:258 0:782 0:549 �0:392 0:147 0:000
�e2 �1:708 0:616 �0:077 0:434 0:522 �0:230

˛6 ˛7 ˛8 ˛9 ˛10 ˛11
�x1 0:382 �0:314 0:201 �0:217 �0:444 0:215
�

x2 0:000 0:104 0:030 0:033 �0:112
�

e1 �0:056 0:000 0:066
�e2 �0:080 �0:085 �0:292 0:384 0:013 �0:015
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Fig. 5.3 True and predicted expression values of the first target

5.2.2 Results

The prediction results for targets and environmental factors can be seen in Figs. 5.3,
5.4, 5.5, 5.6; here, the “red line” presents exact values, and the “blue line” indicates
the predicted values by RCMARS model.

From Figs. 5.3–5.6, with the exact expression data of targets and environmental
factors, we may deduce that the predicted values of RCMARS model match very
well. This implies that with RCMARS our new robust regression model for
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Fig. 5.4 True and predicted expression values of the second target
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Fig. 5.5 True and predicted expression values of the first environmental item
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Fig. 5.6 True and predicted expression values of the second environmental item

regulatory systems can predict the trend of the target-environment interaction very
successfully.

5.2.3 Simulation Study and Comparison

In previous subsections, we presented and scientifically analyzed R(C)MARS and
two-model regulatory systems under polyhedral uncertainty. What is more, using an
artificial data set, we introduced RCMARS models for 2 targets and 2 environmental
factors as a numerical experience and represented the results obtaining figures for
each target and each environmental items. In this subsection, to demonstrate the
performance of RCMARS for a regulatory system based on replicated datasets and
compare this method with other related methods. We construct different LR, MARS
and RCMARS models through 5 different simulated datasets for each target and
each environmental item as we defined in Sect. 5.2. In the study [106], our basic
performance measure to calculate the precision of the models is estimation variance
(EV). According to our main aim, we evaluate EVs for LR, MARS and RCMARS
models. Also, to compare the results concerning the accuracy of LR, MARS, and
RCMARS, these models are evaluated based on some accuracy measures such
as R2adj, AAE, RMSE, and r. The explanations, interpretations and formulas of
these measures are presented in Table D.1. When developing RCMARS models,
a sensitivity study is conducted to determine the most appropriate confidence limits
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Table 5.2 Performance measures of LR, MARS, RMARS and RCMARS models for the first
target variable

x1
LR MARS RMARS RCMARS

EV 0.736 0.938 0.635 0.789 0.816 0.887 0.562 0.666 0.817 0.852

R2adj 0.684 0.925 0.740 0.820 0.875 0.920 0.761 0.840 0.926 0.940

AAE 0.333 0.175 0.281 0.275 0.231 0.187 0.317 0.257 0.169 0.151

RMSE 0.503 0.244 0.456 0.380 0.317 0.254 0.379 0.310 0.211 0.190

r 0.858 0.968 0.890 0.922 0.947 0.966 0.942 0.959 0.979 0.983

Table 5.3 Performance measures of LR, MARS, RMARS and RCMARS models for the second
target variable

x2
LR MARS RMARS RCMARS

EV 0.871 0.917 0.813 0.835 0.844 0.878 0.697 0.748 0.819 0.866

R2adj 0.859 0.901 0.824 0.865 0.880 0.896 0.824 0.860 0.902 0.925

AAE 0.231 0.189 0.288 0.226 0.212 0.195 0.220 0.195 0.173 0.161

RMSE 0.336 0.282 0.376 0.328 0.310 0.288 0.335 0.299 0.251 0.219

r 0.939 0.958 0.924 0.943 0.949 0.856 0.946 0.957 0.969 0.976

Table 5.4 Performance measures of LR, MARS, RMARS and RCMARS models for the first
environmental variable

e1
LR MARS RMARS RCMARS

EV 0.839 0.912 0.665 0.682 0.775 0.888 0.590 0.664 0.888 0.907

R2adj 0.809 0.894 0.810 0.842 0.877 0.893 0.780 0.810 0.895 0.901

AAE 0.268 0.243 0.328 0.308 0.265 0.247 0.268 0.241 0.201 0.196

RMSE 0.391 0.291 0.390 0.356 0.314 0.292 0.375 0.349 0.260 0.252

r 0.917 0.955 0.925 0.940 0.951 0.955 0.939 0.943 0.965 0.966

on both the input and output data. For this aim, different uncertainty matrices,
U, for the input data and different uncertainty vectors, v, for the output data in
Eqs. (5.14)–(5.15) are obtained by using different intervals and R(C)MARS results
are represented based on four different uncertainty scenarios.

According to all the aforementioned computations and comparisons, our
R(C)MARS method proves to be very competitive with the other methods. We
are able to achieve a variance reduction which is very important in practice, and an
additional advantage, especially, when comparing with our predecessor method of
MARS. On the other hand, as it is deduced in Tables 5.2, 5.3, 5.4, 5.5 and those
performance criteria, in general, RCMARS produced more accurate models with
smaller variances than LR and MARS and RMARS with respect to precision and
accuracy. Consequently, R(C)MARS can provide us very good predictions for the
dynamics of the target-environment interaction based on the expression values of
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Table 5.5 Performance measures of LR, MARS, RMARS and RCMARS models for the second
environmental variable

e2
LR MARS RMARS RCMARS

EV 0.848 0.860 0.665 0.727 0.748 0.814 0.620 0.667 0.704 0.834

R2adj 0.818 0.840 0.784 0.818 0.825 0.838 0.785 0.819 0.842 0.910

AAE 0.275 0.285 0.339 0.310 0.302 0.287 0.241 0.221 0.211 0.166

RMSE 0.382 0.367 0.426 0.391 0.383 0.369 0.382 0.351 0.328 0.248

r 0.921 0.927 0.905 0.919 0.922 0.927 0.932 0.942 0.949 0.969

both all targets and all environmental factors. Therefore, we indicate that RCMARS
can perform better than LR, MARS for all target and environmental items with
respect to any of our measures, as validated through simulated datasets.

Here, the performance of RMARS and RCMARS are compared by using only
one simulated dataset and the results of RMARS and RCMARS models with LR
and MARS are demonstrated in Tables 5.2–5.5 based on four different uncertainty
scenarios. Indeed, these results and the results which we demonstrated in our
previous chapter deduce that CMARS performs better than MARS, and thus
RCMARS performs better than RMARS for all target and environmental items
with respect to all measures validated through simulated datasets. Therefore, we
continue comparing the performance of RCMARS with LR and MARS through the
remaining 4 different simulated datasets and represent the results of LR, MARS and
RCMARS models in Tables B.1 and B.2.



Chapter 6
Real-World Application with Our Robust Tools

6.1 A Real-World Application of RCMARS in the Financial
Sector

6.1.1 Introduction

One of the fundamental concepts in finance theory is optimization, and the financial
decision making for a rational agent is essentially a question of achieving an optimal
trade-off between risk and return. In this way, robustification is starting to draw
more attention in finance; in particular, some studies report promising results using
robust statistical techniques in financial markets. In the study [101], we used data
from Istanbul Stock Exchange like ISE 100 index, ISE transaction number and so
on, from Turkish economy like TUFE and TEFE indexes, and also data of the Fed
Funds Interest Rate and VIX Index which have been obtained from the US market,
because of their strong effect on the economy of Turkey. ISE 100 index has been
taken as the dependent variable, and others as the independent variables. We put a
correlation threshold in order to limit the unnecessary and meaningless calculations
and eliminated several variables which do not satisfy this requirement. Afterwards,
we applied RCMARS to the remaining independent variables.

6.1.2 Data Description

We selected our time-series data for the empirical part from the website of Central
Bank of the Republic of Turkey [25]. The data contain the economic indicators
which are the most commonly used ones for the interpretation of an economic
situation. Monthly data have been preferred in order to have more definite and
stationary results, relative to daily or weekly data. If we could not find the monthly
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data, we used daily data and converted them to monthly data by taking averages, or
for some of them the last data of the month were taken as the data of the month, like
Net Foreign Exchange Reserves and International Gold Reserves. ISE 100 stock
index is the dependent variable in our dataset. We used this index, because it is a
statistical measure of change in an economy or a securities market. For financial
markets, an index is an imaginary portfolio of securities representing a particular
market or a portion of it. It has its own calculation methodology and is usually
expressed in terms of a change from a base value. Thus, the percentage change is
more important than the actual numerical value.

The independent variables are ISE Transaction Number (the number of trans-
action during a defined time period, in our case during the month), ISE Trading
Volume (the number of shares or contracts of a security traded during a defined
time period, again for a month), Capacity Usage Ratio (the ratio of the production
capacity of the economy to the maximum capacity of economy), Euro and Dollar
Exchange Rate, Net Foreign Exchange Reserves and International Gold Reserves,
Gold Price, Credit Volume, Price Indexes like Wholesale Price Index (WPI) and
Consumer Price Index (CPI) (in Turkey: TEFE and TUFE, respectively). WPI is the
price of a representative basket of wholesale goods, while a CPI measures changes
in the price level of consumer goods and services purchased by households. Two
indicators from the USA are taken to our analysis: Fed Funds Interest Rate and VIX
Index (a measure of the market’s expectation of stock market volatility over the next
30 day period), because of the strong effect of the USA on the economy of Turkey
and the world. We use ISE 100 Stock Market index as a dependent variable. This
is the successor of the Composite Index, which was introduced in 1986 including
the stocks of 40 companies and was in time limited to the stocks of 100 companies.
It consists of 100 stocks, which have been selected among the stocks of companies
listed on the National Market, and the stocks of real estate investment trusts and
venture capital investment trusts, listed on the Corporate Products Market, and it
covers ISE 30 and ISE 50 stocks.

The data cover the time horizon between January 1999 and December 2009.
Some of the series do not contain the data of December 2009; therefore, the absent
values are calculated in Excel using interpolation. We also checked the correlation
among these series, in order to prevent from unnecessary and meaningless calcu-
lations. We assumed a correlation threshold of 0.90 to decide about the strength of
correlation. The most correlated factors are ISE Trading Volume, International Gold
Reserves, Net Foreign Exchange Reserves and WPI (TEFE). For example, there is a
correlation of 0.94 between ISE Transaction Number and ISE Trading Volume. So,
ISE Transaction Number is taken out from the list. Eventually, our dataset consists
of ISE Trading Volume, Capacity Usage Ratio, Euro and Dollar Exchange Rates,
Credit Volume, Gold Price, WPI (TEFE), Fed Funds Interest Rate and VIX Index.
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6.1.3 Obtaining Large Model from MARS Program

For the implementation of our RCMARS algorithm developed, we used a dataset
from the financial market and, eliminating some of the predictor variables which
have the correlation. At the end we have 8 predictor input variables:

X1 W ISE Trading Volume; X2 W Capacity Usage Ratio;

X3 W Euro Exchange Rate; X4 W Credit Volume;

X5 W Dollar Exchange Rate; X6 W Price Index (TEFE);

X7 W Federal Funds Interest Rate; X8 W VIX Index;

with 76 observations. However, we do not have enough computer capacity to
solve our problem in Eq. (3.19) that is given as a tradeoff between tractability and
robustification. Therefore we divide our dataset into two subsets, each of which
has 38 observations. Firstly, we validate our assumption that the input variables
and the output variable are distributed normally, using bootstrapping method [34]
from statistics. In order to implement RCMARS algorithm, first, the MARS models
are constructed for each subset by using the Salford MARS version 3 [83] and,
then, the maximum number of BFs (Mmax) and the highest degree of interactions are
determined by trial and error. In first part of our dataset, Mmax is assigned to be 12,
and the highest degree of interaction is assigned to be 3. Then, the largest models
for the first part and the second part of the dataset are constructed in the forward
MARS algorithm by its software.

To prevent from nondifferentiability in our optimization problem, we choose the
knot values different from data points. However, these values are very much nearby
to the corresponding input data. Then, the BFs for the first part of the dataset can be
introduced into the largest model subsequent way1:

Oy D ˛0 C
MX

mD1
˛m#m.x/

D ˛0 C ˛1#1.x/C ˛2#2.x/C ˛3#3.x/C ˛4#4.x/C ˛5#5.x/C ˛6#6.x/

C ˛7#7.x/C ˛8#8.x/C ˛9#9.x/C ˛10#10.x/C ˛11#11.x/C ˛12#12.x/

D ˛0 C ˛1 maxf0; x8 � 0:365g C ˛2 maxf0; 0:365� x8g
C ˛3 maxf0; x1 C 0:567g C ˛4 maxf0;�0:567� x1g
C ˛5 maxf0; x2 C 0:542g C ˛6 maxf0;�0:542� x2g

1For the ease of representation, here and subsequently, we suppress the index m of the subvectors
xm and just write x.
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C ˛7 maxf0; x4 C 2:187g � maxf0;�0:542� x2g
C ˛8 maxf0; x4 C 0:098g � maxf0; 0:365� x8g
C ˛9 maxf0;�0:098� x4g � maxf0; 0:365� x8g
C ˛10 maxf0; x7 C 2:216g � maxf0; x1 C 0:567g
C ˛11 maxf0; x6 � 0:542g � maxf0; x7 C 2:216g � maxf0; x1 C 0:567g
C ˛12 maxf0; 0:542� x8g � maxf0; x7 C 2:216g � maxf0; x1 C 0:567g:

Likewise, the BFs for the second part of the dataset become inserted in the largest
model in the following manner:

Oy D ˛0 C
MX

mD1
˛m#m.x/

D ˛0 C ˛1#1.x/C ˛2#2.x/C ˛3#3.x/C ˛4#4.x/C ˛5#5.x/C ˛6#6.x/

C ˛7#7.x/C ˛8#8.x/C ˛9#9.x/C ˛10#10.x/C ˛11#11.x/C ˛12#12.x/

D ˛0 C ˛1 maxf0; x4 � 0:575g C ˛2 maxf0; 0:575� x3g
C ˛5 maxf0; x1 � 0:019g � maxf0; 0:275� x3g
C ˛6 maxf0; 0:019� x1g � maxf0; 0:275� x3g
C ˛7 maxf0; x1 C 2:172g � maxf0; x4 � 0:575g
C ˛8 maxf0; x7 C 0:583g � maxf0; 0:575� x4g
C ˛9 maxf0; x5 C 0:309g � maxf0; x7 C 2:583g � maxf0; 0:575� x4g
C ˛10 maxf0;�0:309� x5g � maxf0; x7 C 2:583g � maxf0; 0:575� x4g
C ˛11 maxf0; x2 C 0:499g � maxf0; 0:575� x4g
C ˛12 maxf0;�0:499� x2g � maxf0; 0:575� x4g:

6.1.4 Bootstraping

In general, bootstrapping is used for statistical inference on the basic idea of building
a sampling distribution for a statistic by resampling from the data at hand. It is also
used to anticipate important characteristics of the population. Frequently mentioned
comment about bootstrap is the following: ‘The population is to the sample as
the sample is to the bootstrap samples’. The bootstrap provides correct statistical
inference and is useful in driving accurate standard errors, confidence intervals
and hypothesis tests for most statistics. It has also applicability in stratification,
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clustering by resampling from the sample data in the same wise as the original
sample is selected from the population [34, 44].

6.1.5 Evaluating Accuracy and Complexity of PRSS Form

For this numeric example, we approximate the PRSS formula as follows:

PRSS 	
DAccuracy‚ …„ ƒ

y � #.b/˛

�
�
2

2
C

DComplexity‚ …„ ƒ
�


L˛



2
2
: (6.1)

Herein, the first part of the TR term, which is the right-hand side, and that of
the PRSS function, are equal to each other, whereas, their second parts are equal
approximately. Subsequently, all those parts are stated:

Accuracy:



y � #.b/˛
�
�
2

2
D . y � ˛T#.b//T.y � ˛T#.b// D

NX
kD1
.yk � ˛T#.bk//

2 DW .�/;
(6.2)

Complexity:

�


L˛



2
2
	

12X
mD1

�m

2X
j� jD1

�T
D.
1;
2/

X
r<s

r;s2V.m/

Z
Qm
˛2mŒD

�
rs#m.tm/�2dtm DW .��/; (6.3)

where, indeed, PRSS WD .�/ C .��/ and � D �m .m D 1; 2; : : : ; 12/. Having
discretized all the multi-dimensional integrals in the complexity part, they jointly
turn into the form of Eq. (3.17) and, finally, the discretized form is indicated by L.
As a result, the matrix L becomes a diagonal matrix and the first column elements
of L are all zero. The diagonal elements of this matrix, Lm .m D 1; 2; : : : ; 12/,
are given below for the first part of our dataset:

L D

2
6664
0 0 : : : 0

0 1:30 : : : 0
:::

:::
: : :

:::

0 0 : : : 0:29

3
7775 :
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For the second part of our dataset, the diagonal elements of L;Lm .m D
1; 2; : : : ; 12/ are comprised as follows:

L D

2
6664
0 0 : : : 0

0 1:18 : : : 0
:::

:::
: : :

:::

0 0 : : : 2:34

3
7775 :

6.1.6 Calculating Uncertainty Values for Input and Output
Data under Polyhedral Uncertainty

We incorporate a perturbation (uncertainty) into the real input data in each dimen-
sion and into the output data, after we obtain accuracy and complexity terms, to
employ our robust optimization technique on the CMARS model. For this purpose,
the right-hand side on an uncertainty bound from Eq. (3.16) is evaluated for all
input and output values which are represented by CIs, and the uncertainty matrices
and vectors based on polyhedral uncertainty sets are obtained by using Eqs. (3.20)
and (3.21).

Furthermore, to perform the given calculations, we need normally distributed
data and, since in our dataset some variables are not normally distributed, we
use the bootstrapping method of statistics [34], which is the general approach to
statistical inference based on building a sampling distribution for a statistic by
resampling from the data at hand. With our worst case approach, for the each
observation, we use the Eq. (3.16) to receive the uncertainty vectors with their
entries ukm .k D 1; 2; : : : ; 38I m D 1; 2; : : : ; 12/:

juk;mj D j#m.
^xk/�#m.

^xk/j D
X

A�
¤

f1;:::;Kg
BjAj�1

k

Y
a2A

�ka�
Y

b2f1;:::;Kg=A

.	kbC�kb/: (6.4)

Now, we can write our uncertainty matrix for the input data as follows:

U D

2
6664

u1;1 u1;2 : : : u1;12
u2;1 u2;2 : : : u2;12
:::

:::
: : :

:::

u38;1 u38;2 : : : u38;12

3
7775 2

2
6664
Œ3:5;�3:5� 0 : : : 0

Œ3:8;�3:8� 0 : : : 0
:::

:::
: : :

:::

0 Œ3:2;�3:2� : : : Œ46:4;�46:4�

3
7775 :

After we have incorporated uncertainty for each input value, matrices of our BFs
can be expressed in the following forms, just by concentrating on the lower and
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upper interval boundaries, respectively:

Wup D #.
^

b/C Uup D

2
6664
1 3:82 : : : 0

1 3:82 : : : 0
:::

:::
: : :

:::

1 0 : : : 47:36

3
7775 ;

Wlow D #.
^

b/C Ulow D

2
6664
1 �3:23 : : : 0

1 �3:79 : : : 0
:::

:::
: : :

:::

1 0 : : : �45:47

3
7775 :

The output data, the uncertainty vector and the vectors with uncertainty are
represented below, respectively:

v D

2
6664
v1

v2
:::

v38

3
7775 2

2
6664
Œ3;�3�
Œ3;�3�
:::

Œ3;�3�

3
7775 ; zup D^

yCvup D

2
6664

�4:49
�3:56
:::

�1:87

3
7775 ; zlow D ^yCvlow D

2
6664
1:51

2:44
:::

4:13

3
7775 :

The calculation done above is applicable for both parts of our training dataset.

6.1.7 Receiving Weak RCMARS Models Using Combinatorial
Approach

As we mentioned in the previous section, PRSS is approximated by a TR problem,
and we can easily formulate it as a CQP problem. Moreover, we incorporate a
perturbation (uncertainty) into the real input data, xk .k D 1; 2; : : : ; 38/, in each
dimension and into the output data, y, by using our robust optimization approach
for a robustification of CMARS. For this aim, by applying Eqs. (3.13) and (3.17) we
obtain the uncertainty matrices and vectors based on polyhedral uncertainty. Then,
using relation in Eq. (6.4) we evaluate uncertainty for all input and output values
which are represented by CIs.

For our example, the uncertainty matrix of input data presented as a vector
has a huge dimension (2456.D38�12/) with polyhedral uncertainty, and we do not
have enough computer capacity to solve our problem for this matrix. In fact,
we have a tradeoff between tractability and robustification (cf. Sect. 3.1.3). To
overcome that obstacle, in this example, we robustify our CQP problem for each
sample value (observation) using the combinatorial approach, which we call weak
robustification. That weak robustification encounters a data-wise robustification that
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refers to all the other data according to the interval midpoints (“ceteris paribus”), and
it finally addresses the worst case with respect to all the data-wise robustifications.
Consequently, we obtain 38 different weak RCMARS (WRCMARS) models, for
each part of our dataset, and solve them with MOSEK [87]. Based on polyhedral
uncertainty sets, to solve our problem, we use their vertices. In order to find them, we
need especially to apply the Cartesian product of all the intervals of input data in the
observations. Hence, our WRCMARS models have different structures depending
on the number of entries (BFs), which are used to explain the observations. For
instance, we can represent the last observation’s WRCMARS model, which has 3
entries, in the following form:

minimize
w;˛

w;

subject to 1:51069� ˛0 � 0:29234˛1 � 0:35539˛4 D ˇ1;

2:43887� ˛0 � 0:01516˛1 � 0:10152˛3 D ˇ2;

:::

� 1:87353� ˛0 C 2:677˛2 C 3:090˛3 C 45:474˛5 D ˇ608;

.ˇ21 C ˇ22 C : : :C ˇ238/
1=2 � w;

.ˇ239 C ˇ222 C : : :C ˇ276/
1=2 � w;

:::

.ˇ2571 C ˇ2572 C : : :C ˇ2608/
1=2 � w;

.ˇ2609 C ˇ2610 C � � � C ˇ2620/
1=2 � K1=2;

refering the some K � 0. In order to solve this problem, we transform it into the
MOSEK format above. For this transformation, we attribute new unknown variables
in the linear terms which are lying in these 17 cones. By this, in fact, we simplify
the notations in the cones and write them as equality and inequality constraints.
Therefore, for our last sample, our problem includes 620 linear constraints and 17
quadratic cones.

We write this formulation for each value of our sample (N D 38) and solve
them separately by using MOSEK program [87]. MOSEK apply an interior-point
optimizer, which is an implementation of a homogeneous and self-dual algorithm.
We obtain MOSEK results and find the w values for all auxiliary problems; then,
using the worst-case approach, we select the solution which has the maximum w
value. Then, we continue with our calculations using the parameter values ˛j . j D
1; 2; : : : ; 12/ that we find from the auxiliary problem which has the highest w value.
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6.1.8 Sensitivity to the Changes in the Confidence Interval
Limits of RCMARS

In order to represent sensitivity to the changes in the CI limits of the input data and
output data and to find suitable interval limits for us, we obtain different uncertainty
matrices, U, for the input data and different uncertainty vectors, v, for the output
data as the form of Eq. (3.18) by using 7 different intervals. These ones are given
by the pairs ˙3;˙3=2;˙3=4;˙3=6;˙3=8;˙3=10 and, as a special case, the mid-
point value of our interval (i.e., zero lengths interval). In the latter case, it reduces
to the CMARS model. This shows that CMARS is a special case of RCMARS.
Therefore, we calculate our parameters with 7 different uncertainty scenarios using
these values under polyhedral uncertainty sets for our training data set.

In Sect. 6.1.9, all of the parameter estimates as well as model accuracies for
different uncertainty scenarios are shown. When we apply the K values in our
RCMARS code and solve it by MOSEK, we use that K value which has the
minimum value of PRSS approximately in Eq. (3.22). In order to compare the results
concerning accuracy for RCMARS and CMARS, we employ Average Absolute
Error (AAE) and Root Mean Squared Error (RMSE). Also, we represent variances
(�2) of CMARS and RCMARS in Sect. 6.1.9.

6.1.9 Results and Discussion

In this study, we construct uncertainty matrices, U, for the input data and uncertainty
vectors, v, for the output data and, we recieve 7 different uncertainty scenarios by
using the interval values, ˙3;˙3=2;˙3=4;˙3=6;˙3=8;˙3=10 and zero.

From Tables 6.1 and 6.2 it seems that the solutions obtained are sensitive to
the limits of CIs. When the lengths of the CIs are narrow, we evaluate better
performance results. Moreover, as in our previous study [98], when we use the mid-
point (zero value) of our interval values for both input and output data, which is
the certain data case; we receive the same parameter estimates as we obtained for
CMARS. This is our particular special case. When we assess the #m.x/ values in
our RCMARS code and employ MOSEK, RCMARS provides us several solutions,
each of them based on 12 BFs.

For the training data, models for RCMARS have a smaller variance, but a lower
accuracy than CMARS, which is consistent with our expectation. However, we have
unexpected results for the testing data.

For the test data and for some suitable uncertainty values, RCMARS produced
more accurate model with a smaller variance than CMARS, which can be seen
in Table 6.2. This is mainly due to the randomness involved in the input-output
variables. According to the above results, we can say that RCMARS can be a more
accurate model with a smaller variance than CMARS.
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Table 6.1 Parameter estimates and the model performances for the training data

U; v ˙3 ˙3=2 ˙3=4 ˙3=6 ˙3=8 ˙3=10 Zero

RCMARS CMARS

˛0 �0:053 0:013 0:135 0:139 0:151 0:139 0:110

˛1 0:078 0:050 �0:040 �0:051 �0:065 �0:063 �0:061
˛2 0:008 0:016 0:009 0:010 0:006 �0:006 �0:024
˛3 �0:045 �0:059 �0:091 �0:103 �0:119 �0:138 �0:139
˛4 �0.021 �0:101 �0:175 �0:166 �0:164 �0:163 �0:155
˛5 0:000 �0:058 �0:113 �0:117 �0:122 �0:124 �0:118
˛6 0:031 0:052 0:066 0:063 0:063 0:072 0:085

˛7 0:054 0:016 �0:018 �0:011 �0:013 �0:007 0:008

˛8 0:216 0:451 0:497 0:470 0:473 0:474 0:453

˛9 �0:003 �0:008 �0:013 �0:007 �0:021 �0:001 0:082

˛10 0:001 0:001 0:002 0:002 0:002 0:004 �0:024
˛11 �0:002 �0:018 �0:031 �0:022 �0:013 �0:007 �0:066
˛12 �0:005 �0:005 �0:004 �0:004 0:006 0:012 0:038

�2 0:028 0:057 0:085 0:085 0:092 0:101 0:165

AAE 0:735 0:707 0:678 0:673 0:662 0:656 0:627

RMSE 1:175 1:121 1:078 1:070 1:052 1:037 0:999

Table 6.2 Parameter estimates and the model performances for the testing data

U; v ˙3 ˙3=2 ˙3=4 ˙3=6 ˙3=8 ˙3=10 Zero

RCMARS CMARS

�2 0:005 0:006 0:005 0:005 0:005 0:006 0:012

AAE 0.830 0.831 0.818 0.818 0.812 0.814 0.825

RMSE 1.156 1.163 1.146 1.145 1.138 1.145 0.168

6.2 A Real-World Application of RCMARS in the Energy
Sector

Electricity price forecasting models have recently been constructed in Turkey since
the electricity market evolved into a competitive form. New market structure is
based on a day-ahead price forecasting. Electricity price modeling enables decision
makers to see projections for the future. Since the fluctuations in electricity demand
affect electricity prices, the prices can change in short-term periods even in a day.
Fluctuations in the electricity consumption show that there are three periods; day,
peak, and night, according to the demand. Therefore, the aim of the study [147]
is to make short-term projections for competitive Turkish electricity market where
only day-ahead prices are forecasted, and to propose a customized approach for
electricity price modeling of Turkey.

Several models are studied in the literature for competitive electricity markets.
The categorization of models is based on three main approaches: game theory
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models, time series models, and production cost models [50]. Commonly, next-
day’s electricity prices are predicted by using time series models, specifically
dynamic regression model [94]. The approach proposed here is based on robust
and continuous optimization techniques via our new robust tool, RCMARS. One
traditional and one new approaches are proposed and then analyzed considering
three different types of period in a day. The results show that with small variance
RCMARS performs better than the dynamic regression (DR). Although dynamic
regression is not appropriate for small-sized data sets, it is used in order to compare
the traditional approach and the customized approaches.

6.2.1 Dynamic Regression Approach

One of the effective methods for price modeling is using a dynamic procedure, since
the behavior of the variables over time changes the structure of the price models.
The model in Eq. (6.5) is a dynamic regression model that consists of electricity
price ptC1 at time t C 1 explained by past prices at times t; t � 1; : : : ; t � k and the
values of demand at the time t; t � 1; : : : ; t � k:

PtC1 D ˇ0dt Cˇ1dt�1 C : : :Cˇndt�k C ı0pt C ı1pt�1 C : : :C ıkpt�k C "t; (6.5)

where ˇi; ıi represent the coefficients and "t stands for the noise terms. This method
is used in order to overcome the serial correlation in error [51, 94]. Here, the DR
approach is used for the prediction of electricity price in Turkey as a traditional
approach. Since the efficiency of the method depends on the selection of explanatory
variables, the appropriate model for Turkish electricity market is defined by using
the real data set of March 2011. The resulting model is

PtC1 D ˇ0dt C ˇ1dt�7 C ı0pt C "t: (6.6)

Here, the model relates next day’s price to current day’s demand and price as well
as the demand of the same day of the previous week.

6.2.2 CMARS

In order to implement the second step of the algorithm, the MARS models are
obtained for each subset by using the Salford MARS System, then the maximum
number of BFs Mmax and the highest degree of interactions are determined. The
largest model for the first period, i.e., day, is found to be In order to implement the
second step of the algorithm, the MARS models are obtained for each subset by
using the Salford MARS System, then the maximum number of BFs Mmax and the
highest degree of interactions are determined. The largest model for the first period,
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i.e. a day, is found to be

Oyd D˛0 C ˛1 maxf0; x3 � 0:63g C ˛2 maxf0; 0:63� x3gC
˛3 maxf0; x2 C 2:04g maxf0; 0:63� x3gC
˛4 maxf0; x1 C 2:7g maxf0; x3 � 0:63g C ˛5 maxf0; x1 C 2:7gC
˛6 maxf0; x1 � 0:51g C ˛7 maxf0; 0:51� x1g C ˛8 maxf0; x1 C 0:28gC
˛9 maxf0;�0:28� x1g:

CMARS algorithm is performed for various values of the bound K to find the
minimum PRSS in Eq. (3.6). The model is solved in MATLAB environment for
three explanatory variables and the results are given in the Sect. 6.2.4, below.

6.2.3 RCMARS

Electricity price models include uncertain parameters. For instance, small pertur-
bations in electricity price and demand may cause different day-ahead electricity
price models. In order to avoid unstable solutions, all input and output variables are
assumed as random variables, opposite to DR and CMARS, where only the output
variable (dependent variable) is regarded as random through noise; now, our RO
approach is applied to refering to BFs obtained from MARS. By using Eq. (3.18),
uncertainty matrices and vectors for the input and output parameters are constructed
based on polyhedral uncertainty sets that are represented by standard confidence
intervals. RCMARS model takes its general form with the vector of explanatory
variables under uncertainty [12, 96]. To solve the problem, PRSS in Eq. (3.17) is
reformulated as a RCQP in Eq. (3.23).

6.2.4 Results and Comparison

Proposed models, CMARS-RCMARS, and the traditional model, DR, are applied
to predict day-ahead electricity prices of Turkey. One month is chosen and daily
periodic data are used to forecast the electricity prices. Numerical results are
represented in Table 6.3 for one period. Here, we consider to present results for
only one period (e.g., peak) since the models give similar results for the other two
periods (e.g., day and night).

Five different performance measures, namely, EV which is our main performance
measure, MAE, RMSE, R2adj and r, are used to assess the prediction performance
of the methods. These measures, their abbreviations, explanations, interpretations
and formulas are represented in Table D.1. Moreover, in RCMARS, parameters
are evaluated for four uncertainty scenarios using the values under polyhedral
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Table 6.3 Comparison of electricity price models based on AAE, RMSE, R2adj, EV and r

DR RCMARS1 RCMARS2 RCMARS3 RCMARS4

EV 0.33 0.34 0.007 0.25 0.32

AAE 0.75 0.53 0.82 0.57 0.54

RMSE 0.99 0.86 1.19 0.88 0.86

R2adj 0.13 0.26 0.42 0.23 0.26

r 0.33 0.73 0.35 0.74 0.73

uncertainty sets. The results are represented in the Table 6.3 with RCMARS1
(CMARS), RCMARS2, RCMARS3 and RCMARS4.

According the results, when RCMARS is applied in Turkish electricity market,
better predictions can be received with smaller variance. Also, it can be deduced
that RCMARS performs better when the length of confidence intervals is reduced
for our performance measures, except EV; it is better when the length of confidence
intervals is increased.

6.3 A Real-World Application of RCMARS
in the Environmental Sector

6.3.1 Introduction

Climate change has been happening for decades, but it has only recently begun to
spark more serious concern due to the severity of the disasters to which it has been
attributed. Climate change causes a change in the mean (i.e., the center of location)
as well as an increase in the variability (i.e., the spread) of meteorological variables.
These changes to the climate might result in, for example, extreme amounts of
precipitation occur, which may lead to floods and droughts, which in turn, affect
the environment, agriculture and the economy. Thus, the ability to forecast water
levels and manage water resources has also gained in significance [104].

Precipitation is a very complicated physical process in nature, which makes it
difficult to forecast. Nevertheless, recent positive developments in predictive data
mining techniques, which are used in early warning systems [6], are improving
the accuracy of precipitation forecasts. This assists in the decision to implement
action plans in advance of any predicted potential disaster. The methods used
for constructing precipitation models include statistical models, like LR models,
splines, time-series models (e.g., ARIMA), computational models, such as Artificial
Neural Networks (ANNs) [77], MARS [29], wavelet-ANNs and soft computing
models, like neuro-fuzzy and wavelet-neuro-fuzzy models.

Comparison studies reveal that statistical models are not as successful as com-
putational models [74, 77, 95, 107, 134]. The neuro-fuzzy approach performs well,
but only when combined with wavelet transforms. Similarly, even though ANNs
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are used extensively in predicting precipitation, they do not perform well unless
they are used in conjunction with another method such as wavelet transformation.
MARS considered to be the best performing method compared to the other methods
mentioned above [1, 2]. Because of successful track record of the MARS method
in precipitation modeling, in the study [104], we attempted our technique based
on RCMARS, both in theory and application to be used for the aforementioned
purpose. For this goal, a dataset consisting of seven meteorological variables
recorded at 43 stations in the continentalCentral Anatolia (CCA) region of Turkey
over the period 1976–2010 was selected. Details of the dataset studied are presented
in the following Sect. 6.3.2.

6.3.2 Dataset and Its Preprocessing

The dataset studied involves seven meteorological variables, namely, the monthly
precipitation total (in millimeters), monthly mean temperature, monthly relative
humidity (in percent), cloudiness, vapor pressure, surface air temperature, mean
pressure and mixing ratio. Here, the mixing ratio is a derived variable obtained
as the ratio of (0.622 vapor pressure)/(pressure-vapor pressure) [130]. In addition,
time is also considered as another independent variable in the model development
due to time involvement in the data. The data consists of the values of the above
named variables recorded at the 43 stations of the CCA region of the Turkish
State Meteorological Service (TSMS) over the period 1976–2010. Note here that
the stations taken into account in the study were determined as a result of another
study [60, 148].

In RCMARS methodology, since there is a tradeoff between tractability and
robustification, we had difficulties regarding computer capacity to solve the opti-
mization problem using uncertainty matrices on a large amount of data, containing
seven variables with 420 rows (one for every month in 35 years), for each one of the
43 recording stations. To handle this problem, the size of data was reduced by taking
yearly averages of each meteorological variable over all stations. Hence, the dataset
was decreased to a size that was more suited to the available computer capacity.
Furthermore, the variables were normalized to construct CIs in the interval [�3, 3].

In this application, to compare the performances of prediction models obtained,
we also employed the hold-out method as the validation technique, where the dataset
is divided into two subsamples as training and test sets. As the dataset incorporates
a time series of meteorological variables, it was not subdivided randomly. Instead
of this, the first 30 years (from 1976–2005) of each variable regarded were assigned
to be the training dataset whereas the last 5 years of the series were assigned to be
the test dataset.
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6.3.3 Criteria and Measures Used in Performance Evaluations

Our basic performance measure to evaluate the precision of the models was the
variance and, in this study, it was measured in particular by the estimation variance
(EV). Additionally, to compare the results concerning the accuracies of RCMARS,
CMARS and MARS methods, the models developed were further evaluated based
on some accuracy measures like R2, AAE, RMSE and r. These measures, their
abbreviations, explanations, interpretations and formulas are presented in Table D.1.
Besides, the models were evaluated with respect to the stabilities of all the measures
considered. Here, the stability criterion of a measure compares the performance of
a method on both the training and test data. The stable methods are the ones that
perform equally well on both training and test datasets.

6.3.4 Developing Precipitation Models

First, using the training dataset described above, several MARS models were
developed using Salford System’s MARS software [83]. After picking the best one
among them, the CMARS model was constructed and robustified under polyhedral
uncertainty as described in Sect. 3.1. While developing RCMARS models, a
sensitivity study was conducted to define the most suitable confidence limits on both
the input and output data, xk; yk.k D 1; 2; : : : ; 30/. For this aim, different uncertainty
matrices, U, for the input data, xk, and different uncertainty vectors, v, for the output
data, yk, were constructed by using four different intervals. These are represented by
the pairs ˙3=5;˙3=10;˙3=20 and 0 (i.e., zero-length interval). Here, the zero-
length interval refers to a special case where the RCMARS model reduces to
the CMARS model. We estimated our parameters with four different uncertainty
scenarios using PRSS values of the Eq. (3.19) under polyhedral uncertainty sets for
our training data set (see Table C.1). Here, the values of bound K were determined
by a model-free method, and the one having the minimum value of approximate
PRSS given in Eq. (3.17) was used.

Owing to the tradeoff between tractability and robustification in RCMARS
methodology, difficulties arise that stem from having insufficient computer capacity
to solve the RCMARS model using uncertainty matrices and a huge amount of input
data (cf. Sect. 3.1.3). To overcome this problem, our combinatorial approach, called
weak robustification was employed on each sample value (observation) to convert
the RCMARS into a CQP problem under polyhedral uncertainty. In the study [104],
for each observation, we include perturbation (uncertainty) into the input data, xk,
for each dimension, and also in the output data, yk .k D 1; 2; : : : ; 30/, with the help
of uncertainty the matrices and vectors constructed according to Eq. (3.18). Thus,
30 different submodels, or weak RCMARS (WRCMARS) models, were built as a
result. In the WRCMARS algorithm, the MARS models were obtained by using
Salford System’s MARS software, and then, the maximum number of BFs (Mmax)
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and the highest degree of interactions were defined. For this data set, Mmax, and the
highest degree of interaction are assigned to be 12 and 1, respectively. We note that
a main effect model is developed as a result. Thus, the largest model obtained by the
forward MARS algorithm involves the following BF2

#1.x/ D maxf0; x2 C 2:0927g; #2.x/ D maxf0; x3 C 1:4227g;
#3.x/ D maxf0; x7 C 0:6001g; #4.x/ D maxf0;�0:6001� x7g;
#5.x/ D maxf0; x6 � 0:2563g; #6.x/ D maxf0; 0:2563� x6g;
#7.x/ D maxf0; x5 C 0:0875g; #8.x/ D maxf0;�0:0875� x5g;
#9.x/ D maxf0; x4 C 2:3288g; #10.x/ D maxf0; x1 C 2:4477g;
#11.x/ D maxf0;X4 C 0:1409g; #12.x/ D maxf0;�0:1409� x4g:

Here, x1, x2 and x3 are the normalized mean temperature, cloudiness, and vapor
pressure; x4 and x5 are the first-order lagged cloudiness and mean pressure; x6 and
x7 are the fifth-order lagged cloudiness and vapor pressure, respectively. Hence, the
RCMARS model obtained is a ‘distributed lag’ model due to the fact that it includes
lagged independent variables. To prevent nondifferentiability in the optimization
problem, the knot values selected are different from but very much close to the
corresponding input data. As a result, the largest model can be described as follows:

Oy D ˛0 C
MX

mD1
˛m#m.x/ D ˛0 C ˛1#1.x/C ˛2#2.x/C

˛3#3.x/C ˛4#4.x/C ˛5#5.x/C ˛6#6.x/C ˛7#7.x/C
˛8#8.x/C ˛9#9.x/C ˛10#10.x/C ˛11#11.x/C ˛12#12.x/

D ˛0 C ˛1 maxf0; x2 C 2:09278gC
˛2 maxf0; x3 C 1:4228g C ˛3 maxf0; x7 C 0:6002gC
˛4 maxf0;�0:6002� x7g C ˛5 maxf0; x6 � 0:2564gC
˛6 maxf0; 0:2564� x6g C ˛7 maxf0; x5 C 0:0876gC
˛8 maxf0;�0:0876� x5g C ˛9 maxf0; x4 C 2:3289gC
˛10 maxf0; x1 C 2:4478g C ˛11 maxf0; x4 C 2:76403gC
˛11 maxf0;�0:1410� x4g:

2For the ease of representation, here and subsequently, we suppress the index m of the subvectors
xm and just write x.
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Thirty different submodels were solved individually by using the MOSEK program
and, thus, the w values were determined for all auxiliary problems. Then, using the
worst-case approach, the solution chosen was the one with maximum w value, and
the parameters ˛j .j D 1; 2; : : : ; 12/ were estimated (see Table C.1).

6.3.5 Results and Discussion

The models developed as defined in the previous section, were evaluated with
respect to the criteria by using the formulas represented in Table D.1. The results are
given in Table C.2. According to them, the following findings can be indicated.

• For U D ˙3=5, the best measure values for training data were constructed for
v D ˙3=20 other than PV measure; it was best for v D ˙0.

• For U D ˙3=10 and ˙3=20, the same best values for training data were obtained
for v D ˙3=20.

• For U D ˙3=5, ˙3=10 and ˙3=20, the best values for test data were obtained
for v D ˙0.

• For U D ˙3=5, the best values for the stabilities of measures were evaluated
for v D ˙3=20, whereas for U D ˙3=10 and ˙3=20, the best values for the
stabilities of measures were calculated for v D ˙0.

• For U D ˙0, all measures were the same for the training, test and stabilities.
• The best values for the training data were received for U D ˙3=10 or ˙3=20

and v D ˙3=20.
• The best values for test data were constructed for U D ˙3=5 and v D ˙0, while

the best stabilities of measures were obtained for U D ˙3=10 or ˙3=20 with
v D ˙0.

Based on the above findings, the best RCMARS solution was determined for U D
˙3=5, ˙3=10 or ˙3=20 and v D ˙0. For the goal of comparison, we took U D
˙3=10 or ˙3=20 and v D ˙0. The performance measures of MARS, CMARS and
RCMARS are given in Table 6.4. Note: � indicates the best performance for train,
test and stability (st), with respect to the corresponding performance measure.

The results implied the following conclusion:

Table 6.4 Performance measures of the precipitation models

MARS CMARS RCMARS

Train Test St Train Test St Train Test St

R2 0.957 0.139 0.145 0.971* 0.225 0.231 0.876 0.789* 0.901*

AAE 0.165 0.701 0.235 0.131* 0.6463 0.203 0.273 0.311* 0.877*

RMSE 0.204 0.830 0.246 0.166* 0.788 0.211 0.346 0.411* 0.842*

r 0.978 0.652 0.666 0.986* 0.672 0.680 0.950 0.900* 0.947*

EV 0.957 1.324 0.723 0.953 1.241 0.768 0.628* 0.687* 0.914*
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• For the training data, CMARS performed better than the other two methods with
regard to all measures except EV; it was the best for RCMARS.

• For the test data and stabilities, RCMARS considerably outperformed the other
two methods with respect to all measures.

6.4 A Real-World Application with RCGPLM
in the Financial Sector

6.4.1 Introduction

In recent years, sovereign debt-servicing difficulties and outright defaults have been
observed more frequently than before even though the macroeconomic misalign-
ments causing debt crises are still not well understood. In order to forecast several
kinds of crises, the literature has focused on especially ‘twin’ currency and banking
crises, but, not on the prediction of sovereign debt crises. Sovereign debt crises
usually occur as the result of outright default on domestic and external debt to
rollover/liquidity crises, when investors of a country, which is solvent, but illiquid
and also on the verge of default on its debt, are unwilling to roll over short-term
debts coming to maturity. Since several countries have large debt burdens and
can be subject to debt-servicing problems in the foreseeable future, assessing and
forecasting debt sustainability has great empirical and policy importance [33, 82].
In addition to these, internationalism and integration of economies are also essential
factors of country risk.

Especially, decision makers and investors should expect the coming risks in the
international area to make decisions, take measures and make profitable investments
in the right places all over the world. Through the world, emerging markets draw
attention due to their high growth potential and high profit expectancies. On the
other hand, they are relatively higher risky markets because of volatility of economic
policies, weak banking sector, high dependence on external capital flows and
uncertain growth prospects. Therefore, they are more prone to the crises [76].
As a classification tool, Logistic Regression models and algorithms are often
applied to predict defaults/nondefaults or success/unsuccess, developed by using
maximum likelihood method. Although they do not have assumptions like normality
and linearity, they have some deficiencies, especially, in correlated variables and
incomplete datasets [33, 76].

In the previous study [137], unlike Logistic Regression, the datasets which
include both linear and nonlinear variables, are tried to be explained efficiently
using a semiparametric model: CGPLM (cf. Sect. 3.2.2). Here, it is constructed as a
combination of a discrete model of Logistic Regression and a continuous model of
CMARS. Comparing CMARS and CGPLM, it is clearly seen that CGPLM has an
advantage in terms of reducing the complexity and increasing the rate of accuracy
in the results.
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In the work [102], we represent a newly developed RCGPLM with a real-world
application in finance to predict the default probabilities in 45 emerging markets. In
RCGPLM, the linear part consists of a discrete regression model Logistic Regres-
sion and the nonlinear part consists of a continuous regression model, RCMARS.
The aim of RCGPLM is to decrease the complexity of RCMARS, reducing the
number of variables by transferring the linear ones to Logistic Regression. This
section employs RCGPLM with a variety of macroeconomic factors to assess
affection on the risk of sovereign default and on a debt crisis, for a large sample
of countries.

6.4.2 Data

In the application part of the model, we used the same data set as in our previous
study [30, 137], where we employed Conic Generalized Partial Linear Model, to
have a chance to compare the results of the two models. The data set used in this
study is quoted, originally, from Fioramanti’s paper [43], and it is comprised of
some important macroeconomic determiners of debt crises in 45 emerging markets
between the years 1980 and 2005. The time-series data contain 1019 observations
with a dependent variable that shows whether the country is in a debt crisis taking
the value ‘0’ (non-default) or the value ‘1’ (default) values, and with 13 independent
variables:

X1 W Bank liquid reserves to bank assets ratio;

X2 W Changes in net reserves/GDP (Gross Domestic Product);

X3 W Current account balance (% of GDP);

X4 W Exports of goods and services (% of GDP);

X5 W External debt total/Total Reserves;

X6 W Long-term debt/GDP;

X7 W GDP growth (annual %);

X8 W Liquid liabilities as % of GDP;

X9 W Total debt servic (% of exports of goods services and income);

X10 W Short-term debt (% of exports of goods services and income);

X11 W Trade (% of GDP);

X12 W Use of IMF credit/GDP;

X13 W Inflation consumer prices (annual %):
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Fig. 6.1 Graph for the character of X1

Fig. 6.2 Graph for the character of X5

In Figs. 6.1, 6.2, 6.3, 6.4, 6.5, we can see the character of some of our variables
belonging to a selected country among 45 countries, for a visualization of the dataset
described above.

Our training sample is beneficial to construct the model based on 757 obser-
vations which belong to the years 1980–1999, while a testing (validation) sample
is used to test the model including 262 observations which belong to the years
2000–2005. Here, to overcome the capacity problem in MATLAB, we need again
bootstrapping to reduce the number of observations to an applicable number and to
conserve all specific properties of the data.
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Fig. 6.3 Graph for the character of X8

Fig. 6.4 Graph for the character of X9

6.4.3 Application

Derivation of the model from the training sample:
To predict the default probabilities of emerging markets, we use a large sized

real-world financial data as an application of RCGPLM. In our methodology, we
use a tradeoff between tractability and robustification leading us to a difficulty about
computer capacity to solve the problem equipped with uncertainty matrices and a
huge size input data. Therefore, on each sample value (observation) in the linear
and nonlinear parts, our combinatorial approach, weak robustification is applied
to convert the RCGPLM into a CQP problem. In addition to that, to overcome
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Fig. 6.5 Graph for the character of X11

this problem, we divide the training data set into 2 subsets which have 378 and
379 observations. After applying bootstrapping, we obtain 2 normally distributed
samples and reduce the size of each subset to 60 observations.

On each of these subsets, we insert perturbation (uncertainty) in the input data xk

for each dimension, and also in the output data yk .k D 1; 2; : : : ; 60/with the help of
the uncertainty matrices and vectors which are based on polyhedral uncertainty sets
constructed in Eqs. (3.20) and (3.21). In that way, the variables are converted into
standard normal distribution to obtain CIs in the interval [�3, 3]. Then, different
so-called WRCGPLMs [101] appear for both the linear and nonlinear parts.

After that, we can continue on the linear part of RCGPLM, which is defined
in Sect. 3.2.4. The linear variables are determined as: X8 (liquid liabilities as %
of GDP), X9 (total debt service: % of exports of goods services and income),
X12 (use of IMF credit/GDP) and X13 (inflation consumer prices) which have a
linear relationship with the dependent variable ‘Y’. Then 757 different models are
constructed to constitute our WRCGPLM. After the solution of these models in
MOSEK and finding the w1 values for all auxiliary problems, we obtain the solutions
which have the maximum w1 value with respect to the Eq. (3.45), herewith applying
the worst-case approach. The linear least-squares system Xˇpreproc, where ˇpreproc is
the optimal vector of the regression and X is the design matrix, is subtracted from
the response y to derive the vector � of the nonlinear model (for closer details see
the procedure in Sects. 3.2.2, 3.2.5 and 3.2.6.2). As a result, the final regression
model can be expressed as in Eq. (3.30).

To prevent from any damage to the binary structure of the dependent variables
� in Eq. (3.31), which employs a subtraction of the results from the original y
values, we separate the data set into Group I and Group II. Group I consists of
the observations giving a result of ‘0’ after the linear regression, while Group II
comprised of the observations giving a linear regression result of ‘1’. From now
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on, the nonlinear process will be separately applied on these 2 groups of each
bootstrapped subsets with the binary residual vector � . Then, we construct the
largest model for Group I and Group II by using the Salford MARS. For example,
the largest model includes the following BFs for Group I3:

#1.t/ D maxf0; t2 C 1:597g; #2.t/ D maxf0; t7 C 1:798g;
#3.t/ D maxf0; t3 C 1:395g; #4.t/ D maxf0; t6 C 1:529g;
#5.t/ D maxf0; t1 C 2:764g:

Thus, the large model is represented as follows:

Oy D ˛0 C
5X

mD1

˛m#m.t/C � D ˛0 C ˛1#1.t/C ˛2#2.t/C ˛3#3.t/C ˛4#4.t/C ˛5#5.t/

D ˛0 C ˛1 maxf0; t2 C 1:597g C ˛2 maxf0; t7 C 1:7978g C ˛3 maxf0; t3 C 1:395gC
˛4 maxf0; t6 C 1:529g C ˛5 maxf0; t1 C 2:764g:

On the nonlinear part of the model, our RO technique is employed inserting
perturbation (uncertainty) in the real input data tk, in each dimension, and into the
output data 	k .k D 1; 2; : : : ; 60/. To reach this goal, similarly to the linear part, CIs
are defined for all input and output values by the help of the uncertainty matrices
and vectors, which are based on polyhedral uncertainty sets, obtained by Eqs. (3.20)
and (3.21).

Subsequently, as we did in the linear part, we derive 60 different WRCGPLMs
for the nonlinear part. Among the solutions, which are the w2 values for all auxiliary
problems in Eq. (3.48), found in MOSEK program, we decide the optimum solution
which has the maximum w2 value in the Eq. (3.48) with the worst-case approach
(see Sect. 3.2.5 for more details). From now on, the calculations will be completed
with the parameter vector ˛ which is obtained from the auxiliary problem with the
highest w2 value.

6.4.4 Application of the Model on the Testing Sample

In this part, the methodology how to measure the effectiveness of the RCGPLM
model on the validation sample is discussed. From the training sample, 4 models
have been derived by 4 sets which are constructed according to the linear regression
results of 2 bootstrapped samples. Firstly, the testing sample is separated into 2
groups each of which exists of 131 observations. Then, to provide the integrity of

3For the ease of representation, here and subsequently, we suppress the index m of the subvectors
tm and just write t.
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Table 6.5 Results of RCGPLM

Training sample Validation sample

D ND D ND

Default 87.80 % 3.80 % 96.88 % 10.29 %

Non-Default 12.20 % 96.20 % 3.13 % 89.71 %

CCR 93.33 % 92.00 %

Table 6.6 Comparison of results of CGPLM and RCGPLM

Training sample Validation sample

D-D ND-ND CCR D-D ND-ND CCR

LR 69.97 % 87.20 % 79.39 % 82.35 % 89.10 % 87.79 %

CMARS 81.89 % 92.58 % 87.64 % 86.27 % 87.10 % 86.94 %

CGPLM 90.09 % 93.24 % 91.81 % 86.27 % 90.05 % 89.31 %

RCGPLM 87.80 % 96.20 % 93.33 % 96.88 % 89.71 % 92.00 %

application with the training sample, bootstrapping method is employed to reduce
the number of observations to 60.

For the linear part, on each of these 60-membered subsets, the linear regression
parameters are employed on the linear variables Tk .k D 1; 2; : : : ; 4/ to determine
‘0’ and ‘1’ results and to separate any subset into Group I and Group II. For
each counterpart of the training subsets, previously obtained RCMARS models and
parameters are implemented on the nonlinear variables Xj . j D 1; 2; : : : ; 9/. The
final output of the model is achieved by summing up the results of our linear and
nonlinear parts. However, RCMARS results are standardized to be able to provide
the correspondence with the linear regression results which are situated around ‘0’.
For further details, we refer to [102, 137]. The results of this application can be seen
from Tables 6.5 and 6.6. Note: CRR indicates Correct classification rate.

6.4.5 Results and Comparison

In Table 6.5, we present the obtained numerical results of RCGPLM for training
and validation sample. Table 6.6 explains the comparison of the results of Logit
Regression, CMARS, CGPLM and RCGPLM. Here, D-D and ND-ND show the
crisis and non-crisis situations, which our model predicts truly, respectively. As it
can be seen in Table 6.6, RCGPLM provides a 93.33 % accuracy rate, while Logit
Regression, CMARS and CGPLM give 79.39 %, 87.64 %, 91.81 %, respectively, for
our training data set. Similarly, for the validation data set, we have 92 % accuracy
rate for RCGPLM, whereas Logit Regression, CMARS and CGPLM result with
87.79 %, 86.941 %, 89.31 % accuracy, respectively.

In fact, RCGPLM provides better results for both training and validation samples
in terms of accuracy rates. In the training sample, RCGPLM expects 87.80 % of
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crises and 96.20 % of non-crisis situations in emerging markets, giving a total
93.33 % accuracy rate. For our validation sample, the model forecasts 96.88 % of
debt crises and 89.71 % of non-crisis situations emerging markets, giving a total
92 % accuracy rate. Here, our variance values are 0.0513 for training data and
0.0935 for testing data. With a smaller variance, models for RCGPLM have a higher
accuracy than models of Logit Regression and CMARS, and it is considerable
higher than models for CGPLM over both the training and validation data. Similarly,
regarding the validation sample, the accuracy rate increases. This means that
RCGPLM is a functional methodology in datasets of noisy variables with a possibly
higher accuracy rate and, in particular, a smaller variance.



Chapter 7
Conclusion and Outlook

The great national and international crisis which resulted after the earthquake and
tsunami in Japan in 2011 disclosed again the high interdependence of environ-
mental, technological and economical states, and it underlined the necessity for
an essential restructuring of the approach to risk and regulation in these areas to
cope with uncertain data. Consequently, core elements of a new global regulatory
framework have to be established in order to make these systems more robust and
suitable for serving the requirements of the real life. Thus, robust optimization has
a great importance as a modeling framework for immunizing against parametric
uncertainties, and the integration of uncertain data is of considerable importance for
the reliability of any model of a highly interconnected system.

In this book, R(C)MARS is worked on in theory and application by important
Robust Optimization, and a time-dependent counterparts of R(C)MARS has been
further extended and proved to be a general framework of multi-modal regulatory
systems under polyhedral uncertainty in this respect. Because of the computational
effort which R(C)MARS easily needs, we also describe our new concept of a weak
robustification that is called as WR(C)MARS. We study on R(C)MARS in terms of
polyhedral uncertainty. This brings us back to CQP naturally. Through R(C)MARS
we are also permitted to involve uncertainty in the input variables to regression and
classification within modeling; that uncertainty is typical for real-world challenges,
too. By conducting a robustification in (C)MARS, we aim to reduce the estimation
variance. In RMARS and RCMARS, however, we have an extra problem to solve
(by Software MARS, etc.), namely the knot selection (which is not needed for
the linear part). Therefore, we analyze GPLMs, and introduce a newly developed
CGPLM and R(C)GPLM, involving the contribution of (C)MARS and R(C)MARS.
As semiparametric models, CGPLM and RCGPLM lead to reduce the complexity
of (C)MARS and (R)CMARS, that is given by the number of variables used in
(C)MARS and R(C)MARS algorithm. In RCMARS, we imply the integral terms as
a ‘complexity’, too.

© Springer International Publishing Switzerland 2016
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We analyze the regression models of regulatory systems when the entries of the
regulatory network are splines as an advanced case, using (C)MARS on parameter
estimation for TE networks. We also apply our methods of R(C)MARS in the case
of the existence of noise in the expression data which translates into the model,
and thus employing robust optimization. In fact, here, the states of target and
environmental items depend on uncertain states of target and environmental factors.
The prediction of the TE regulatory networks and the following comparison with
the underlying data leads to an analysis of regression and classification models for
parameter estimation. As an advanced approach to obtain a more flexible model,
we consider regression problems for TE regulatory systems when the entries of the
regulatory network are splines, and we derive a corresponding robust counterpart
program under polyhedral uncertainty. We have introduced a new implementation
area of R(C)MARS by a dynamical modeling of regulatory networks, which also
include eco-finance networks and gene-environment networks. R(C)MARS method
is able to deal with uncertainty in data and, thus, it is a more realistic alternative to
modeling of real-life data.

In the book, we briefly review on theory and methods of R(C)MARS and
R(C)GPLM. We also conduct applications on data in further areas such as the
sectors of energy, finance, biotechnology and ecology. We run the corresponding
code for different kinds of data that include uncertainties and, then, evaluate the
results with respect to accuracy and stability. Next, the results of the accuracy and
sensitivity analysis on the parameter estimates and, thus, the model performances
are presented. We solve our optimal problem of R(C)MARS and R(C)GPLM
by using the continuous RO approach and a combinatorial variety of them, the
weakly robust case, to handle uncertainties that may exist in data and to make
our rich approach meaningful and sustainable. In this way, we aim to decrease the
estimation variance. Results indicate that for the training data, R(C)MARS models
have smaller variances but slightly lower accuracies than (C)MARS models; here,
this finding is consistent with our expectation. However, for the testing data and
for some suitable uncertainty values, R(C)MARS produced more accurate models
with smaller variances than (C)MARS. In the particular application of precipitation
forecasting, the RCMARS model developed is twice as much accurate as MARS
and CMARS models with respect to MAE and RMSE measures, and it is twice as
precise as MARS and CMARS models with respect to prediction variance measure.
Furthermore, it has a considerably high stability when compared to those of other
two models. To conclude, it can be said that both R(C)MARS produce the best
model for the data studied when compared to the MARS and CMARS with respect
to precision and stability.

According to all the aforementioned computations and comparisons, our
R(C)MARS methods prove to be very competitive with the other methods. We
are able to achieve a variance reduction, which is very important in practice
and an additional advantage, especially, when comparing with our predecessor
method of MARS. Given the existence of uncertainty and noise in real-world
data, R(C)MARS and R(C)GPLM model approaches gain importance to reduce
complexity and variance of estimation. In future studies, we will investigate on
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real-world applications of these approaches in some areas, such as regulatory
network systems, like gene-environment and eco-finance networks, quality
management, biotechnology and financial forecasting, to validate and to investigate
the performance of our R(C)MARS and R(C)GPLM.

In all these studies, although we have small datasets for our applications, the
uncertainty matrices for the input data have huge dimensions, and we have not had
enough computer capacity to solve our problems for those uncertainty matrices.
Indeed, we have a tradeoff between tractability and robustification. To overcome
this difficulty, we obtain different WR(C)MARS models for all sample values
(observations) applying a combinatorial approach, and solve them by running our
code and using MOSEK program. In our future studies, we will discuss about how
we can obtain a more robust model using different methods and about what further
research will consist of in this respect. We plan to also apply parallel computing to
solve our problem with the computer capacity.

In our investigated version of R(C)MARS, for convenience, the polyhedral
type of uncertainty and normally distributed data are assumed. Obviously, these
assumptions lead to some weaknesses on R(C)MARS modeling. In our future
studies, ellipsoidal uncertainty will be considered since it uses a more realistic
assumption, which leads to a more robust approximation, although it may cause an
increased model complexity. Distributional assumptions other than normal or robust
estimators may also be considered in the construction of confidence intervals.

In Chap. 2, some background information about multi-model regulatory net-
works, optimization and regression is given. Theory and approaches of R(C)MARS
and R(C)GPLM method under polyhedral uncertainty are presented in Chap. 3.
Then, in Chap. 4, spline regression models for complex multi-model regulatory
networks are introduced in theory and methods. (C)MARS results based on different
datasets for the simulation are also demonstrated in this chapter. In Chap. 5, RO
for spline regression models of multi-model regulatory networks are introduced in
theory and methodology. R(C)MARS results with different uncertainty scenarios for
our numerical example are also studied here. Real-world applications from different
sectors are represented in Chap. 6. Finally, the conclusion and outlook to further
studies are stated in Chap. 7.



Appendix A
Coefficients and Performance
of MARS-CMARS Models for TE Networks

See Tables A.1, A.2, and A.3.

Table A.1 For targets and environmental factors: parameter values of MARS algorithm through 5
different simulated datasets

˛0 ˛1 ˛2 ˛3 ˛4 ˛5 ˛6 ˛7 ˛8 ˛9

Qx1 �0:982 2:458 1:193 �1:593 1:191

Qx2 0:396 1:071 1:269 1:516

Qe1 �1:244 0:661 0:425 0:471

Qe2 1:763 �1:553 �0:729
Qx1 �1:020 0:992 0:484 1:687

Qx2 0:370 �0:910 1:193 �0:747 1:962

Qe1 �2:094 0:608 1:074 0:591 �0:880
Qe2 �0:454 1:190 �0:527 �0:688
Qx1 �1:915 0:588 0:512

Qx2 0:340 �2:115 2:409 �0:126 �0:838
Qe1 1:377 �2:596 �0:815 �0:753 1:094 1:077

Qe2 �0:085 �0:844 1:409 �0:460 �1:485 1:029

Qx1 �0:217 0:604 �1:022 0:600

Qx2 �0:355 �0:740 0:450 �0:281
Qe1 2:916 �1:433 �1:198 �0:802 �0:864 1:415

Qe2 �1:744 0:802 0:312 0:460

Qx1 1:087 �0:648 �1:010 0:886

Qx2 �0:337 �0:545 0:833

Qe1 �0:768 0:843 �0:481 �0:433
Qe2 �0:661 2:019 �0:592 0:680

© Springer International Publishing Switzerland 2016
A. Özmen, Robust Optimization of Spline Models and Complex
Regulatory Networks, Contributions to Management Science,
DOI 10.1007/978-3-319-30800-5
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Table A.3 Performance measures of MARS and CMARS models based on 5 different simulated
datasets

MARS CMARS

Qx1 Qx2 Qe1 Qe2 Qx1 Qx2 Qe1 Qe2
1 R2adj 0:8639 0:9004 0:8639 0:8167 0:8835 0:9005 0:9064 0:8897

AAE 0:2474 0:2398 0:2178 0:3437 0:1911 0:1870 0:1750 0:2573

RMSE 0:3124 0:2976 0:3159 0:4383 0:2419 0:2340 0:2061 0:2989

r 0:9416 0:9554 0:9386 0:9121 0:9654 0:9727 0:9743 0:9601

2 R2adj 0:9017 0:9481 0:9415 0:8946 0:9057 0:9607 0:9652 0:9523

AAE 0:2059 0:1773 0:1859 0:2366 0:1330 0:1203 0:1276 0:1587

RMSE 0:2662 0:2134 0:2140 0:3261 0:2052 0:1553 0:1476 0:1974

r 0:9560 0:9781 0:9753 0:9528 0:9741 0:9885 0:9883 0:9830

3 R2adj 0:8601 0:9422 0:8532 0:9574 0:9018 0:9426 0:9289 0:9654

AAE 0:1609 0:0911 0:1460 0:0924 0:1141 0:0803 0:0850 0:0883

RMSE 0:2147 0:1267 0:1921 0:1369 0:1627 0:1129 0:1265 0:1167

r 0:9337 0:9756 0:9401 0:9830 0:9625 0:9807 0:9745 0:9877

4 R2adj 0:8905 0:9559 0:8110 0:9345 0:9315 0:9837 0:8141 0:9525

AAE 0:1694 0:1413 0:1940 0:1687 0:1095 0:0891 0:1664 0:1273

RMSE 0:2088 0:2027 0:2328 0:2100 0:1299 0:1075 0:1982 0:1608

r 0:9509 0:9805 0:9222 0:9709 0:9813 0:9945 0:9442 0:9830

5 R2adj 0:9084 0:9162 0:9025 0:9125 0:935 0:9512 0:95 0:9605

AAE 0:1658 0:1700 0:1554 0:2007 0:1227 0:1133 0:095 0:0935

RMSE 0:2043 0:2314 0:1958 0:2508 0:1547 0:155 0:122 0:1274

r 0:9591 0:9608 0:9564 0:9609 0:9768 0:9825 0:983 0:9901



Appendix B
Performance of R(C)MARS Models for TE
Networks

See Tables B.1 and B.2.

Table B.1 Performance measures of LR, MARS and RCMARS models based on different
simulated data for each target

x1 x2
LR MARS RCMARS LR MARS RCMARS

EV 0:736 0:938 0:562 0:666 0:817 0:852 0:871 0:917 0:697 0:748 0:819 0:866

R2adj 0:684 0:925 0:761 0:840 0:926 0:940 0:859 0:901 0:824 0:860 0:902 0:925

AAE 0:333 0:175 0:317 0:257 0:169 0:151 0:231 0:189 0:220 0:195 0:173 0:161

RMSE 0:503 0:244 0:379 0:31 0:211 0:190 0:336 0:282 0:335 0:299 0:251 0:219

r 0:858 0:968 0:942 0:959 0:979 0:983 0:939 0:958 0:946 0:957 0:969 0:976

LR MARS RCMARS LR MARS RCMARS

EV 0:666 0:869 0:431 0:563 0:748 0:864 0:794 0:930 0:584 0:721 0:911 0:926

R2adj 0:598 0:843 0:65 0:75 0:845 0:896 0:753 0:916 0:754 0:831 0:917 0:920

AAE 0:376 0:268 0:375 0:305 0:244 0:181 0:314 0:187 0:255 0:212 0:166 0:163

RMSE 0:567 0:354 0:488 0:412 0:325 0:266 0:444 0:259 0:371 0:308 0:216 0:212

r 0:816 0:932 0:901 0:924 0:947 0:963 0:891 0:965 0:942 0:955 0:976 0:976

LR MARS RCMARS LR MARS RCMARS

EV 0:776 0:939 0:519 0:726 0:906 0:92 0:797 0:904 0:582 0:717 0:842 0:856

R2adj 0:733 0:926 0:734 0:822 0:927 0:938 0:757 0:891 0:758 0:818 0:892 0:902

AAE 0:303 0:193 0:341 0:259 0:153 0:143 0:305 0:211 0:270 0:223 0:181 0:179

RMSE 0:462 0:243 0:413 0:338 0:217 0:200 0:441 0:303 0:406 0:352 0:272 0:259

r 0:882 0:969 0:931 0:943 0:975 0:979 0:893 0:951 0:924 0:938 0:962 0:965

(continued)
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Table B.1 (continued)

x1 x2
LR MARS RCMARS LR MARS RCMARS

EV 0:860 0:870 0:598 0:748 0:779 0:850 0:862 0:927 0:599 0:740 0:885 0:905

R2adj 0:831 0:852 0:756 0:832 0:853 0:914 0:835 0:913 0:746 0:836 0:914 0:92

AAE 0:255 0:251 0:277 0:208 0:194 0:156 0:193 0:204 0:169 0:137 0:129 0:128

RMSE 0:367 0:353 0:396 0:328 0:307 0:235 0:363 0:264 0:363 0:292 0:212 0:205

r 0:927 0:933 0:928 0:946 0:952 0:972 0:929 0:963 0:944 0:960 0:977 0:978

LR MARS RCMARS LR MARS RCMARS

EV 0:935 0:965 0:587 0:719 0:835 0:953 0:847 0:938 0:490 0:569 0:841 0:882

R2adj 0:922 0:960 0:875 0:923 0:945 0:960 0:816 0:926 0:772 0:817 0:927 0:960

AAE 0:204 0:153 0:253 0:195 0:168 0:149 0:263 0:182 0:264 0:217 0:104 0:086

RMSE 0:250 0:182 0:30 0:236 0:200 0:171 0:383 0:244 0:394 0:353 0:224 0:166

r 0:967 0:983 0:974 0:979 0:981 0:985 0:920 0:969 0:949 0:954 0:976 0:987

Table B.2 Performance measures of LR, MARS and RCMARS models based on different
simulated data for each environmental item

e1 e2
LR MARS RCMARS LR MARS RCMARS

EV 0:839 0:912 0:590 0:664 0:888 0:907 0:848 0:860 0:620 0:667 0:704 0:834

R2adj 0:809 0:894 0:780 0:810 0:895 0:901 0:818 0:840 0:785 0:819 0:842 0:910

AAE 0:268 0:243 0:268 0:241 0:201 0:196 0:275 0:285 0:241 0:221 0:211 0:166

RMSE 0:391 0:291 0:375 0:349 0:260 0:252 0:382 0:367 0:382 0:351 0:328 0:248

r 0:917 0:955 0:939 0:943 0:965 0:966 0:921 0:927 0:932 0:942 0:949 0:969

LR MARS RCMARS LR MARS RCMARS

EV 0:805 0:853 0:551 0:634 0:694 0:835 0:564 0:863 0:380 0:558 0:749 0:825

R2adj 0:765 0:832 0:704 0:781 0:834 0:920 0:478 0:835 0:661 0:779 0:829 0:835

AAE 0:274 0:251 0:335 0:273 0:233 0:173 0:407 0:273 0:404 0:334 0:289 0:277

RMSE 0:434 0:376 0:449 0:386 0:336 0:234 0:646 0:363 0:521 0:421 0:370 0:364

r 0:897 0:924 0:903 0:929 0:946 0:973 0:751 0:929 0:890 0:919 0:928 0:929

LR MARS RCMARS LR MARS RCMARS

EV 0:691 0:917 0:483 0:662 0:883 0:897 0:846 0:839 0:585 0:755 0:790 0:817

R2adj 0:629 0:895 0:630 0:800 0:896 0:900 0:815 0:816 0:752 0:818 0:832 0:840

AAE 0:295 0:207 0:277 0:200 0:174 0:171 0:185 0:221 0:250 0:198 0:184 0:179

RMSE 0:545 0:282 0:487 0:358 0:259 0:254 0:385 0:393 0:423 0:362 0:348 0:340

r 0:831 0:958 0:889 0:939 0:965 0:966 0:920 0:916 0:914 0:931 0:936 0:939

LR MARS RCMARS LR MARS RCMARS

EV 0:702 0:908 0:431 0:586 0:790 0:884 0:874 0:860 0:640 0:772 0:781 0:856

R2adj 0:640 0:889 0:641 0:777 0:890 0:921 0:850 0:847 0:752 0:848 0:851 0:900

AAE 0:398 0:244 0:361 0:285 0:196 0:159 0:185 0:223 0:233 0:189 0:181 0:162

RMSE 0:536 0:297 0:480 0:378 0:266 0:226 0:347 0:367 0:359 0:282 0:279 0:229

r 0:837 0:953 0:907 0:939 0:966 0:974 0:935 0:927 0:941 0:961 0:962 0:974

(continued)
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Table B.2 (continued)

e1 e2
LR MARS RCMARS LR MARS RCMARS

EV 0:561 0:711 0:411 0:639 0:696 0:754 0:872 0:910 0:656 0:826 0:871 0:908

R2adj 0:474 0:685 0:530 0:686 0:709 0:720 0:846 0:892 0:750 0:847 0:893 0:910

AAE 0:520 0:446 0:476 0:370 0:354 0:345 0:284 0:241 0:305 0:229 0:189 0:176

RMSE 0:649 0:527 0:565 0:462 0:445 0:437 0:351 0:294 0:361 0:282 0:236 0:217

r 0:749 0:843 0:841 0:886 0:893 0:896 0:934 0:954 0:939 0:959 0:971 0:975



Appendix C
Sensitivity and Performance of MARS
for Forecasting of Precipitation

See Tables C.1 and C.2.
Note: �indicates the best performance of U for train data, test data and stability

(st) with respect to the related performance measure.

Table C.1 For sensitivity analysis: parameter values of RCMARS model based on different
uncertainty scenarios

U ˙3=5 ˙3=10

v ˙3=5 ˙3=10 ˙3=20 ˙0 ˙3=5 ˙3=10 ˙3=20 ˙0

˛0 �0:707 �0:729 �0:735 �0:788 �0:339 �0:329 �0:353 �0:590
˛1 0:410 0:411 0:408 0:366 0:412 0:403 0:395 0:379

˛2 0:371 0:440 0:480 0:422 0:546 0:581 0:613 0:516

˛3 �0:334 �0:376 �0:391 �0:322 �0:276 �0:271 �0:271 �0:298
˛4 0:390 0:551 0:651 0:571 1:274 1:425 1:545 1:030

˛5 0:132 0:105 0:086 0:086 0:030 0:007 �0:014 0:052

˛6 �0:289 �0:355 �0:386 �0:241 �0:540 �0:555 �0:564 �0:374
˛7 �0:291 �0:322 �0:335 �0:297 �0:350 �0:358 �0:365 �0:329
˛8 �0:163 �0:243 �0:286 �0:200 �0:393 �0:434 �0:471 �0:332
˛9 0:000 0:000 0:000 0:000 0:000 0:000 0:000 �0:001
˛10 0:000 0:000 �0:004 0:000 �0:187 �0:203 �0:211 �0:102
˛11 �0:240 �0:212 �0:192 �0:128 �0:396 �0:371 �0:336 �0:252
˛12 �0:124 �0:112 �0:096 �0:065 �0:100 �0:070 �0:039 �0:066

(continued)
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Table C.1 (continued)

U ˙3=20 ˙0

v ˙3=5 ˙3=10 ˙3=20 ˙0 ˙3=5 ˙3=10 ˙3=20 ˙0

˛0 �0:255 �0:256 �0:367 �0:367 �0:187 �0:187 �0:187 0:065

˛1 0:402 0:390 0:386 0:386 0:398 0:398 0:398 0:390

˛2 0:551 0:603 0:558 0:559 0:550 0:550 0:550 0:675

˛3 �0:245 �0:251 �0:268 �0:268 �0:233 �0:233 �0:233 �0:181
˛4 1:363 1:528 1:288 1:288 1:384 1:384 1:385 2:065

˛5 0:034 0:005 0:034 0:034 0:036 0:036 0:036 �0:062
˛6 �0:512 �0:531 �0:453 �0:453 �0:500 �0:500 �0:500 �0:665
˛7 �0:345 �0:360 �0:343 �0:343 �0:342 �0:342 �0:342 �0:377
˛8 �0:402 �0:454 �0:395 �0:395 �0:406 �0:406 �0:406 �0:562
˛9 �0:020 �0:027 �0:029 �0:029 �0:051 �0:051 �0:051 �0:080
˛10 �0:219 �0:233 �0:178 �0:178 �0:230 �0:230 �0:230 �0:351
˛11 �0:407 �0:359 �0:315 �0:315 �0:390 �0:390 �0:390 �0:386
˛12 �0:110 �0:086 0:094 �0:094 �0:134 �0:134 �0:134 �0:104
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Appendix D
Prediction Performance Criteria and Related
Measures

Notes:

N: number of observations;
p: number of terms in the model;
yk: kth observed response value;
Oyk: kth estimated (fitted) response value;
Ny: mean of the observed values;
Oy: estimated response variable;
NOy: mean of the estimated response variable;
s.y/2: standard deviation of the observed response variable;
s.Oy/2: standard deviation of the estimated response variable;
MTR and MTE: the measure values for training and test data, respectively.

See Table D.1.
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131. R. H. Tütüncü, K.C. Toh and M.J. Todd, Solving semidefinite-quadratic-linear programs using

SDPT3, Mathematical Programming Series B, 95, pp. 189–217, 2003.
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133. O. Uğur and G.-W. Weber, Optimization and dynamics of gene-environment networks with
intervals. Journal of Industrial Management and Optimization 3(2), pp. 357–379, 2007.

134. C. Venkatesan, S.D. Raskar, S.S. Tambe, B.D. Kulkarni and R.N. Keshavamurty, Prediction
of all summer monsoon rainfall using error- back-propagation Neural Network, Meterology
and Atmospheric Physics, 62, pp. 225–240, 1997.

135. G.-W. Weber, S. Z. Alparslan-Gök and B. Söyler, A new mathematical approach in envi-
ronmental and life sciences: gene-environment networks and their dynamics, Environmental
Modeling and Assesment, 14(2), pp. 267–288, 2007.

http://www.statsoft.com/textbook/stmars.html
http://www.statsoft.com/textbook/stmars.html


References 139
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