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Preface to Volume II

The comments about Volume II in the Preface to Volume I were overoptimistic.
In order to obtain the statistical designs and analyses, it was necessary to perform
an inordinate amount of research to prepare new and more complex treatment and
experiment designs and associated statistical analyses. A considerable amount
of algebraic manipulation was required. Owing to the algebraic complexity, it
was useful to employ computer software such as GAUSS, MATHEMATICA, and
MAPLE. Specific cases were obtained using these packages, which enabled a
generalization. Some of the programs are included to aid the reader in developing
computer programs for other situations. As intercropping research is a complex
and broad field, many new situations, which were not contemplated when Volume
II was written, will arise. Use of the above packages resulted in saving a consider-
able amount of time in arriving at solutions. Estimation of other effects and their
variances will be needed and other goals will arise in meeting the needs of future
intercropping research.

The scope of Volume II is given in the first chapter. The simplest case of inter-
cropping with three or more crops is one main crop with k supplementary crops
as discussed in Chapter 12. The statistical analyses are much more complicated
than when there is only one supplementary crop. The complexity of the statistical
design and analysis continues for all other situations. From a study of the literature
citations in the bibliography described in Chapter 20, intercropping research has
been concerned almost entirely with rather simple intercropping goals, designs,
and analysis. With the designs and analyses presented herein, it will be possible
for the researchers to study more complex, meaningful, and practical situations.
The past studies, for a large part, deal with only one component of the agricultural
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cropping system. Analyses given herein allow for a consideration of the entire
system as well as its component parts.

A comparison of systems or programs arises in many fields besides agriculture.
Even in agriculture there are many systems involving mixtures of items which
are not ordinarily thought of as intercropping, but in reality are. Some examples
are pasture, orchard, lumber plantations, tea and coffee plantations, weed control,
rotation, and double cropping studies as described in Chapter 19. In medicine, pa-
tients use many types of drug mixtures, sometimes taking ten or more prescription
drugs. Drug “cocktails” are being prescribed. Many of the designs and analyses
presented here may be used in studying the various effects of drug mixtures. In
education and recreation, many programs are used and the procedures given will
be useful in assessing the various programs. Mixtures of items appear in engineer-
ing, transportation, nutrition, ecology, etc. studies. Procedures for intercropping
studies have direct application in all these areas.

Walter T. Federer, 1998



Preface to Volume I

Two volumes are being published on the topic of the title. Volume I, the present
one, deals with the statistical design and analysis of intercropping experiments
in which there are mixtures (intercrops) of two crops and/or sole crops. Volume
II will deal with the statistical design and analysis of three or more crops in the
mixture (intercrop), together with sole crops and possible mixtures of two crops.
It is necessary to fully comprehend the concepts and analyses for mixtures of
two crops prior to considering three or more crops in the mixture. The utility,
concepts, comprehensions, and application of techniques for two crops are an
order of magnitude more difficult than for sole crops only. The degree of difficulty
in these aspects for three or more crops in the mixture is an order of magnitude
greater than when considering only two crops. Hence, the reader is cautioned
to fully comprehend Volume I before proceeding to Volume II. Most published
literature deals with two crops in a mixture. In practice, the number of crops in an
intercropping system may be quite large. Mixtures of three or more crops are quite
common in practice, e.g., pastures. The last chapter of Volume I considers design
concepts and experiment designs that may be of use for intercropping experiments.
The last two chapters of Volume II will contain a bibliography of publications on
intercropping, which are not cited at the end of each chapter in Volumes I and II,
and a discussion of applications of the material for intercropping experiments to
other areas. Some of the areas are survey sampling, chemistry, hay crop mixtures,
repeated block designs, dietary studies, and recreational and educational programs.

In presenting the statistical design and analysis for intercropping experiments,
involving mixtures of two crops with or without sole crops, we have attempted to
present the topics in order of increasing difficulty. First, the situation involving one
main crop and one supplementary crop is considered in Chapter 2. Here, we add
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little over that appearing in standard statistical methods books. Then, in Chapter
3, we consider both crops to be main crops and analyze the individual crop re-
sponses. Again, little is added on statistical methodology that is not standard. In
Chapter 4, both crops are considered to be main crops and a combined response
for the yields of both crops is required. This involves creating variables as in a
multivariate analysis. The forms used will not ordinarily be those from standard
multivariate analyses. Ratios of yields, prices, or other variables are used. This
is an innovation over other procedures appearing in the literature. We show that
several analyses are desirable, as opposed to one when only sole crops are in the
experiment. Density of crops is held constant up to here. In Chapter 5, density is
a variable for the two main crops and yield is modeled as a function of density.
In Chapter 6, we model responses in much the same way as they are for diallel
crossing systems in breeding investigations, except that the yields from both crops
are available. In Chapter 7, we do the same type of modeling for the case when
the individual crop yields are not available. This is closer to the ordinary diallel
crossing situation. In Chapter 8, spatial arrangements of two crops are discussed,
with many arrangements being considered. In the ninth chapter of Volume I, anal-
yses of replacement series experiments and a linear programming approach for
considering two responses simultaneously in a replacement series are discussed.
The last chapter contains a discussion of design concepts and experiment designs
that are considered to be of use in intercropping experiments.

As of this date, most of the theoretical work for Volume II, Chapters 11 to 20,
has been completed. Chapters 12 and 13 have already been written and are in the
process of being put in final form. A search for appropriate examples is being
made. A bibliography on intercropping experiments, Chapter 20, has been made
but will require updating.

Walter T. Federer, 1993
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Table 12.2 24
Table 12.4. Barley Seed Weight (g) by Individual Lines and Pairs of

Lines in Combinations of Three Lines Plus Barley. 27
Table 12.5. Partitioning of Treatment Sum of Squares as Outlined in

Table 12.1 28
Table 12.6. Solutions and Variances for Parameters in Response to

Model Equations (12.1), (12.2), (12.4), and (12.5). 29
Table 12.7. Analysis of Variance for Lines or Cultivars of Main Crops

as Whole Plots Arranged in an RCBD. 30
Table 12.8. Analysis of Variance for a Supplementary Crop or Mixture

of Supplementary Crops as the Whole Plots and with Lines
of Cultivars of the Lines as the Split Plots. 31

Table 12.9. 32
Table 13.1. Analysis of Variance for Crop One Responses as a Sole

Crop and in a Mixture of Three Cultivars for Response
Model Equations (13.1) and (13.4) for v � 3. 42

Table 13.2. Biomass in Grams for Single Cultivar and Mixtures of
Three Cultivars, ijg. 44

Table 13.3. Plant Dry Weights by Cultivar 48



xviii List of Tables

Table 13.4. Estimated Effects from Cultivar Yields in Table 13.3.
Four-Plant Basis. 50

Table 13.5. Analyses of Variance for Data from Table 13.3, Four-Plant
Basis. 51

Table 13.6. F -Ratios and Coefficients of Variation for Data of
Table 13.3, Using Original Responses and Logarithm of
Responses. Log(yield + 1) was used in place of log(yield). 52

Table 13.7. Variances and Comparisonwise Confidence Intervals for
Effects in Table 13.4. 53

Table 13.8. Experiment on Mixtures Conducted at the Barbalha
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chapter 11

Introduction to Volume II

11.1 Experiments Involving Comparisons of
Agricultural Systems

Experiments involving the comparison of systems, such as agricultural systems,
medical treatments systems, educational systems, etc., require a multi-faceted ap-
proach for setting up the goals of the investigation, in designing the experiment,
and in performing the necessary statistical analyses. (See, e.g., Kass, 1978, Mead
and Riley, 1981, Balaam, 1986, Federer, 1987, 1989, 1993a, 1993b, hereafter
referred to as Volume I, and references therein.) When performing experiments
comparing agricultural systems, the researcher needs to consider goals involv-
ing efficiency of land use, nutritional values, economic values, sustainablity of
yields in the system, insect and disease control, soil structure and erosion, spa-
tial arrangements of the system, density and intimacy considerations, competition,
mixing abilities of components of the system, and/or perhaps other character-
istics. In most cases, it is not be possible to generalize from monocultures to
polycultures, from pairs of cultivars to mixtures of more than two, and so forth.
Four rules to keep in mind when conducting intercropping experiments are as
follows:

Rule 1. Understand the concepts, design, and analyses for mixtures of two
crops before proceeding to mixtures of three or more cultivars.
Rule 2. Do not attempt to generalize from monocultures to pairs of cultivars,
from pairs to triplets of cultivars, from triplets to quartets of cultivars, from
one set of cultivars to another, and so on, as this may lead to gross errors.
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Experiments need to be conducted for the specific mixture size and the specific
cultivars under study.
Rule 3. Be prepared for the increasing difficulty of design, analysis, and
interpretation involved, as the degree of difficulty increases by an order of
magnitude in going from monocrops to mixtures of two, by another order of
magnitude in going from pairs to triplets, etc.
Rule 4. Be prepared for and look for surprises, as many intercropping exper-
iments produce quite unexpected results, as was exhibited in the examples in
Volume I and in the examples presented herein.

Intercropping is an age-old practice going back at least to early Biblical times
(The Holy Bible, 1952). It is a farming system that is popular in many areas of
planet Earth, especially in tropical agriculture but is present in some form all over
the world. Even in temperate zone agriculture, intercropping is common in hay
crops, in orchard cover crops, in crop rotations, and in cover crops for such crops as
alfalfa. Many gardeners use crop mixtures and sequences for a variety of reasons,
one being insect and disease control. In making comparisons among agricultural
systems, a variety of statistical designs and analyses will be required and will be
demonstrated in the following chapters. But first let us consider some of the goals,
uses, and other considertions of intercropping systems investigations.

11.2 Land Use and Agronomic Goals

As Earth’s populations tend to increase and with agricultural land area being de-
pleted by urbanization and salinization, it is necessary to make more and more
efficient use of the available agricultural land area. A measure for efficiency of
land use is the relative yield (de Wit and van den Bergh, 1965) or land equivalent
ratio (Willey and Osiru, 1972). A land equivalent ratio (LER) is an agronomic
characteristic of an intercropping experiment. It is the sum of ratios of yields of a
crop, say i, in a mixture, say Ymi , to its yield as a sole crop, say Ysi . Then, for n

crops, an LER is

LER �
n∑

i�1

Ymi/Ysi �
n∑

i�1

LERi . (11.1)

Instead of using the yield of the sole as the denominator, another form of an LER
could be obtained by using the yield of crop i in a standard mixture. A variety of
other values could be used for Ysi in (11.1) such as

• individual plot yields of the sole crop,
• mean yields from r replicates for the sole crop,
• a theoretical “optimum value” for the sole crop,
• farmer’s yields averaged over y years or for a single year for the sole crop, or
• some other value.
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As is obvious, there are many possible LERs. Therefore, it is imperative that the
experimenter understands the properties of and consequences of using the LER
selected for the determination of land use efficiency of a cropping system.

When only the numerators in an LER are random variables and the denomina-
tors are fixed constants, then standard statistical procedures are available for use
as explained in Volume I. When both numerators and denominators in the LER
are random variables, little is known about the statistical distribution of the LERs.
If the numerators and denominators are random normal deviates from a multi-
variate normal distribution, then the statistic in (11.1) has a Cauchy distribution
(Federer and Schwager, 1982) which has infinite variance. If the numerators and
denominators come from log-normal distributions, Morales (1993) has obtained
the statistical distribution for two crops in the mixture. Presently, work is being
done considering the distributions of sums of ratios of gamma-distributed random
variables, but at this writing, this research is not at the stage of practical usefulness.
A normal distribution ranges from plus to minus infinity. Hence, crop responses
not having this range as a possibility cannot be normally distributed. Gamma ran-
dom variables range from zero to plus infinity, which has a realistic starting point,
zero, for yield, counts, etc.

As described in Volume I, one way out of this dilemma is when one sole crop
can be used as a base sole crop, say Ys1. Then, use ratios of yields of sole crops to
the base sole crop, say crop 1, as follows to obtain a relative land equivalent ratio
(RLER):

RLER �
n∑

i�1

Ys1Ymi/Ysi �
n∑

i�1

RiYmi �
n∑

i�1

RLERi . (11.2)

A RLER is useful in comparing cropping systems and statistical analyses but needs
to be converted to an LER for actual land-use considerations. Ratios of yields and
prices, e.g., are much more stable than are actual yields and prices (Ezumah and
Federer, 1991). Since this is true, the ratios Ri may be regarded as fixed constants
rather than as random variables, and the problem of the distribution of sums of
ratios of random variables is bypassed to one which is simply a linear combination
of random variables.

11.3 Crop Value and Economic Goals

Various values may be assigned to the yield of each crop in a mixture. For many
people, value means monetary value. For others, value could be related to how
well dietary goals of a family are satisfied with regard to taste and variety of foods
in a diet. Crop value for others could be related to frequency of produce for sale
or barter throughout the year. Whatever value system is used, consider the value,
monetary or otherwise, of crop i to be Pi per crop unit, such as a kilogram or
individual fruit. The value of a crop will then be PiYmi , where Ymi is the total yield
or number of fruit per experimental unit (e.u.). Then, the value of the crops in a
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mixture of n crops is

Crop value � V �
n∑

i�1

PiYmi. (11.3)

Although prices or other crop values may fluctuate considerably from year to
year, ratios of prices or values may not (Ezumah and Federer, 1991). Hence, for
comparative purposes, relative crop values may be used and the difficulties of
random fluctuations in prices avoided. As for RLER, a base crop price is selected,
say P1, and ratios of crop values are used to obtain a relative crop value, RV, for a
mixture of n crops as

RV �
n∑

i�1

(Pi/P1)Ymi. (11.4)

The goal would be to select that mixture maximizing V or, equivalently, RV. In
making comparisons of the v mixtures in an experiment, it is recommended that
RLER and RV be utilized in order to circumvent statistical distribution problems.
Their use will also ease presentation problems of the several analyses required to
summarize the information from intercropping experiments.

11.4 Nutritional Goals

In subsistence farming areas of the world, the number of calories provided by the
crops grown on the farm is of vital importance. Insufficient calories in the diet
leads to dietary difficulties and to starvation in extreme cases. Protein content is
also important for a proper diet. Palatability of the foods produced is of concern, as
it will not matter how many calories are produced if the produce is unpalatable and
cannot be used for sale or barter. In intercropping experiments, it is necessary to
assess the caloric and protein content of mixtures and sole crops and the palatability
of the foods produced.

For comparative purposes, calorie conversion factors for the various crops in a
mixture are available. These conversion factors may vary widely between crops
and less so among cultivars within crops. After selection of appropriate conversion
factors for each of the crop cultivars in the mixture of n cultivars, the total calories,
protein, or other measure is

C �
n∑

i�1

CiYmi, (11.5)

where Ci is the conversion factor for cultivar i and for the characteristic under
consideration. A relative total calorie, total protein, total fiber, total vitamin, etc.,
for crop 1 as the base crop is

RC �
n∑

i�1

CiYmi/C1 �
n∑

i�1

RiYmi. (11.6)
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An RV or RC may not appear appropriate at first glance, but using only relative
measures RLER, RV, and RC affords ease of presentation of the several analyses
used, e.g., putting results on the same graph.

Note that the Ci in (11.5) and (11.6) could be of a complex form if it were de-
cided to combine nutritional measures. Suppose the relative importance of protein
conversion factor Cpi to the carbohydrate conversion factor Cci is Rp/ci , of the
fiber conversion Cf i to carbohydrate is Rf/ci , of the vitamin conversion factor Cvi

to carbohydrate is Rv/ci , etc., then the conversion factor for all components could
be of the form

CiYmi/Cci � (1 + Rp/ci + Rf/ci + Rv/ci + · · ·) Ymi, (11.7)

where Ci in (11.5) and (11.7) is equal to

Ci � Cci + Cpi + Cf i + Cvi + · · · . (11.8)

This form of Ci could be used in (11.5) and (11.6). Also, different weights could
be added to take into account the relative importance of carbohydrates, protein,
fiber, vitamins, and other dietary components as a measure of the nutritional value
of a mixture.

11.5 Sustainability of a System

The term sustainability has many and diverse meanings in published literature.
Therefore, it behooves the author to state which definition is being used. For
example, does sustainability mean

• constant crop yields year after year,
• fluctuations in yearly yields but no downward or upward trends in yield,
• the above two situations but crop value replacing yield,
• a system that has survived through time, or
• yield to meet population nutritional requirements over time?

Or does it follow the definition

A sustainable agriculture is one that, over the long term, enhances environ-
mental quality and the resource base on which agriculture depends; provides
for basic human food and fiber needs; is economically viable; and enhances
the quality of life for farmers and society as a whole. (Anon., 1989)

Does it follow the definition in the 1990 Farm Bill which mandated the USDA to
support research and extension in sustainable agriculture defined as

An integrated system of plant and animal production practices having a
site-specific application that will over the long term: (i) satisfy human and
fiber needs; (ii) enhance environmental quality and the natural resources
base upon which the agricultural economy depends; (iii) make the most
efficient use of nonrenewable resources and on-farm resources, and integrate,
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where appropriate, the natural biological cycles and controls; (iv) sustain the
economic viability of farm operations; and (v) enhance the quality of life
for farmers and society as a whole.

Weil (1990) prefers the following definition

An agricultural program, policy, or practice contributes to agricultural
sustainability if it:

1. Enhances, or maintains, the number, quality, and long-term economic
viability of farming and other agricultural business opportunities in a
community or region.

2. Enhances, rather than diminishes, the integrity, diversity, and long-
term productivity of both the managed agricultural ecosystem and the
surrounding ecosystems.

3. Enhances, rather than threatens, the health, safety, and aesthetic
satisfaction of agricultural producers and consumers alike.

In each of the last three definitions, there are several words or phrases which could
be interpreted in several ways. There are several undefined terms. This leads to the
conclusion that a clear, precise, unambiguous, and meaningful definition of the
term sustainablity still needs to be discovered.

Despite the multiplicity of interpretations possible for the term sustainability,
an agricultural system is a sustainable one if it has endured the ravages of time.
Intercropping, in its broadest sense as defined in Volume I, is one practice that
has endured since early times. Rotational cropping, one form of intercropping,
has been used for centuries to control erosion, enhance crop yields, control disease
and insects, and provide a variety of crops. Whether sequentially or simultaneously
growing mixtures of several crops, this farming system has endured and, hence,
was sustainable. Aina et al. (1977), Lal (1989), Ezumah and Hullugalle (1989),
and Hullugalle and Ezumah (1989) have demonstrated experimentally that inter-
cropping results in better soil structure and less erosion than sole cropping. As
pointed out by Federer (1989), the use of chemicals in the developed countries has
created a “chemical agriculture” to replace the tried and true long-term agricultural
system of intercropping. It has yet to be determined if chemical agriculture will
pollute our water supplies, destroy wildlife, and cause human sickness over the
long term. Evidence is mounting that chemical fertilizers and pesticides should
be used sparingly, if at all. The disastrous effect of using DDT is well known and
documented. Agricultural systems are available for which no chemical fertilizer is
required, e.g., an intercropping system involving Leucaena leucocephalia, maize,
and beans, a rotational system involving legumes and grass species, and compost-
ing and gardening. Chemical agriculture is not necessary; it is simply convenient
and economically viable for the present. It may not be economically viable when
the cost of cleaning up the environment and/or paying medical bills is added to
the cost of production. Also, it is likely that the cost of chemicals will increase as
energy supplies decrease or become more costly and make chemical agriculture
economically nonviable (Pimentel et al., 1994). A return to centuries-old agricul-
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tural systems, or some modification of them, may be in the future for agricultural
production.

11.6 Biological Goals and Considerations

In addition to agronomic, economic, and nutritional considerations in analyzing
data from an intercropping experiments, it is often important to determine the na-
ture of biological phenomena involved in intercropping systems. The determination
and measurement of how well cultivars mix or compete, how mixtures respond
to density changes and spatial arrangements and why, synergistic relationships
and mechanisms, and possibly new biological concepts are some of the biolog-
ical considerations required when interpreting the results from an intercropping
experiment. Yield–density relationships need to be modeled. Measures of mixing
ability need to be developed. Competition models for various situations need to
be available. Knowledge of the biological processes governing the responses of
why some systems or mixtures perform as they do is necessary in order to develop
methods for producing the desirable systems or mixtures in an efficient manner.
Knowing the theory behind a system is helpful to the researcher in producing a
more desirable system. This situation has precedence in plant breeding where dial-
lel crossing, top-crossing, single-crossing, double-crossing, and multiple-crossing
theory and procedures were developed and applied to develop the desired culti-
vars. The concepts and results of Chapters 5, 6, and 7 in Volume I are extended to
mixtures of more than two cultivars in the following chapters.

11.7 Statistical Considerations

The topic of experiment design, the arrangement of treatments in an experiment,
has been covered in Chapter 10 of Volume I. The experiment design is for v

treatments for whatever treatment design is used. The control of experimental
heterogeneity by blocking or covariance is a topic independent of the treatments
included in an experiment. Treatment design, the selection of treatments to be used
in an experiment, in intercropping studies is vital in reaching desired goals. Since
there are many goals and situations, there will be a variety of treatment designs.
Since the number of treatments v in an intercropping experimment can become
large quickly, it is necessary to select minimal treatment designs (TDs). Minimal
TDs which contain as many treatments as there are independent parameters to
estimate are called saturated designs. If all independent parameters are estimable,
the TD is said to be connected. Thus, saturated designs which are minimal and
connected are desired. TDs are needed for the situation where a response for
each member of a mixture of n crops is available and when only one response is
available for the mixture. As will be demonstrated in the following chapters, many
and diverse TDs are required in intercropping investigations. Experiment design
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theory involving balanced incomplete block, partially balanced incomplete block,
Youden, and supplemented block designs is utilized to construct the various and
diverse TDs. Methods other than trial and error are needed for construction of
some of the saturated TDs.

In general, any mixture of n crops of interest qualifies for inclusion in an in-
tercropping investigation. For certain goals and analyses, it may be necessary to
include sole crops and all possible mixtures of size n of m cultivars. The particular
treatment design selected needs to be done considering the precisely defined goals
of the experiment. If, e.g., the goal is to compare v mixtures with a standard sole
crop or mixture, this is only possible when the standard or appropriate sole crop is
included. Appropriate standards as points of reference should be included in the
TD. In selecting a TD, the experimenter should consider the following rules:

1. Precisely define the goals of the investigation.
2. Select treatments allowing accomplishment of stated goals.
3. Consider the TD in light of the anticipated statistical analyses.
4. Decide in light of steps 1, 2, and 3 if the required comparisons are possible.
5. Revise steps 1, 2, and 3, if step 4 is not answered in the affirmative.

In place of conducting several small experiments, it may be possible to com-
bine them into a single experiment creating many times the information obtained
from the single experiments. By combining experiments, additional information
may be available on the interaction of the treatments in the two experiments as
well as comparing the treatments over a wider range of conditions. This situa-
tion arises frequently when consulting with researchers about their investigations.
Combining several small experiments often leads to conservation of space, ma-
terial, and labor, resulting in more efficient use of resources. Investigators from
different fields often can use the same experimental material for their studies. For
example, an entomologist, pathologist, and plant breeder can often use the same
varietal experiment for their studies rather than conducting three separate varietal
trials. Factorial treatment designs are more informative and efficient than exper-
iments on the separate factors and can be used to combine the treatments from
separate experiments.

Modeling yield–density relations for sole crops is much simpler than modeling
yield–density relations for the n cultivars in the mixture. It is necessary to determine
which, if any, of the cultivars in a mixture are to have density varied. Varying
densities for all n crops in mixture will necessarily require many experimental units
(e.u.s). Hence, the experimenter should only include enough densities to model
the yield–density relationships. In addition to density considerations, spatial and
intimacy (the nearness of cultivars in a mixture) of the n cultivars in the mixture
need to be taken into account. Are the cultivars to be in separate rows, mixed
together in the same row, some combination of the previous two, or to be in a
broadcast arrangement? Are cultivars included in a mixture at different times?
Is every cultivar bordered by every other cultivar and on one side, or all sides?
These are items of importance in intercropping studies and require the attention
of the intercrop researcher. Plot technic regarding shape and size of an e.u. is also
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important. From an experiment design standpoint, long narrow e.u.s over all types
of gradients are more efficient than square e.u.s. For intercropping studies, long
narrow e.u.s may be ineffective because of the intimacy, competition, and mixing
ability characteristics required to evaluate a mixture to be used in practice.

The linear combination of responses for the n cultivars in a mixture discussed
in Sections 11.2, 11.3, and 11.4 are reminicent of canonical variates in multi-
variate analyses. The statistician unfamilar with intercropping might think that
multivariate statistical techniques would satisfy the needs of statistical analysis.
However, as Federer and Murty (1987) have pointed out, multivariate techniques
have very limited usefulness in this area. One use for mixtures of size two has
been demonstrated by Pearce and Gilliver (1978, 1979). The multivariate analysis
mathematical criterion used to a canonical variate is to select a linear combination
of the responses for the n items, say,

first canonical variate �
n∑

i�1

aiYmi, (11.9)

in such a way that no other selection of the ai has a larger ratio of the treatment
sum of squares to the treatment sum of squares plus error sum of squares. Then,
to the residuals from the first canonical variate, a second canonical variate, say, is
constucted as

second canonical variate �
n∑

i�1

biYmi, (11.10)

where the bi are selected in the same manner as the ai , and so forth, until n canonical
variates are obtained. As pointed out by Federer and Murty (1987), the ai and
bi have no practical interpretation and, hence, are of no use to the experimenter.
These authors also describe other difficulties in trying to apply standard mutivariate
techniques to the results from intercropping experiments.

11.8 Scope of Volume II

In Volume I, the following chapters were included:

Chapter 1. Introduction and Definitions
Chapter 2. One Main Crop Grown with a Supplementary Crop
Chapter 3. Two Main Crops—Density Constant—Analyses for Each Crop

Separately
Chapter 4. Both Main Crops—Density Constant—Combined Crop Responses
Chapter 5. Both Crops of Major Interest with Varying Densities
Chapter 6. Monocultures and Their Pairwise Combinations When Responses Are

Available for Each Member of the Combinations
Chapter 7. Monocultures and Their Pairwise Combinations When Separate Crop

Responses Are Not Available
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Chapter 8. Spatial and Density Arrangements
Chapter 9. Some Analytical Variations for Intercropping Studies
Chapter 10. Experiment Designs for Intercropping Experiments

In Volume II, the chapters are numbered consecutively following those in Vol-
ume I and these chapters, with their relationships to the chapters in Volume I,
are as follows:

Chapter 11. Introduction to Volume II

• This chapter is a continuation of the material in Chapter 1 in Volume I to
cover considerations, goals, and experimental objectives involved when more
than two crops make up a mixture.

Chapter 12. One Main Crop Grown with More Than One Supplementary Crop

• The results in Chapter 2 are extended in this chapter to cover mixtures
involving three or more crops in the mixture. As noted, extension of the ideas and
procedures in Chapter 2 is not straightforward but require more sophisticated
procedures.

Chapter 13. Three or More Main Crops—Density Constant

• The results of Chapters 3 and 4 of Volume I are extended in this chapter to
cover mixtures involving three or more crops in the mixture. As noted, extension
of the ideas and procedures in Chapters 3 and 4 are not straightforward but
require more complicated procedures such as land equivalent ratios, relative
land equivalent ratios, etc. for three or more crops in a mixture.

Chapter 14. Varying Densities for Some or All Crops in a Mixture

• Results in Chapter 5 of Volume I are extended to mixtures of three or
more crops.

Chapter 15. Mixing Ability Effects When Individual Cultivar Responses are
Available

• In Chapter 6 of Volume I, mixing ability effects were described and
illustrated for two crops in the mixture. For three or more crops in a mixture, TDs
and analyses are more complex and involved and require care in interpretation.

Chapter 16 . Intercrop Mixtures When Individual Crop Responses Are Not
Available

• This chapter is an extension of the material given in Chapter 7 of Volume
I. The TDs and analyses for three or more crops in a mixture are described and
illustrated.

Chapter 17. Spatial and Density Arrangements

• In this chapter, we expand the material presented in Chapter 8 of Volume
I. Density, spatial, and intimacy relations for three or more cultivars in a mixture
become more complex than for two cultivars, as does the analysis.

Chapter 18. Some Analytical Variations for Intercropping Studies

• The extension of the material in Chapter 9 of Volume I requires extension
of various indices from two cultivars to more than two. There is considerable
literature on these methods for two crops, but the extension to three or more
crops in a mixture has received little or no attention.
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Chapter 19. Application of Intercropping Procedures to Other Fields

• The statistical designs and analyses developed herein are applicable in
a wide variety of fields. In agriculture, rotation and sequential cropping studies
can use the procedures developed in this book. In medicine involving mixtures
of drugs (e.g., Waldholz, 1996), this is even discussed in the news media;
many of the procedures can be applied directly and others only need minor
modifications. Several other areas where the procedures described herein could
be used are indicated.

Chapter 20. An Intercropping Bibliography
• Although this bibliography is extensive, like all bibliographies it is never

complete. Many of the references listed could be obtained over the Internet,
but it was deemed desirable to have a hard copy of the references available.
The procedure for obtaining a copy of more than 3000 references is given in
Chapter 20.
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chapter 12

One Main Crop Grown with More Than
One Supplementary Crop

12.1 Introduction

In Chapter 2 of Volume I, we discussed the situation for which there was one
main crop grown with one supplementary crop. In this chapter, we consider the
situation where 1, 2, . . . , v cultivars of a secondary crop or crops are grown with
one main crop. For example, consider one line or variety of sugarcane which
does not “close in,” that is, form a canopy of shade, for 4 months after planting;
when the sugarcane plants are small, within the first 4 months after planting, the
plants do not fully utilize all the available space, water, and nutrients. In order
to utilize this material more fully, short-season annuals are planted between the
rows of sugarcane. Such crops as onions, cowpeas, beans, radishes, potatoes, and
melons, alone or in combinations, have been used successfully with sugarcane. The
supplementary crops must be such that the yield of the main crop is either relatively
unaffected or is enhanced. Short-season crops may be grown simultaneously or in
sequence during the first months of the sugarcane crop.

Another example where short-season annuals may be grown with a main crop
is cassava (manioc, yucca). Since cassava plants start off slowly and the plants
are relatively far apart, the land is not fully utilized during the first few months
after the cassava has been planted. Greens, melons, cowpeas, beans, potatoes, etc.,
alone or in mixtures, have been used successfully as supplementary intercrops
with the main crop cassava. Another example is using a grain crop, e.g., oats, in
a grass–legume mixture. The grain crop has been called a “nurse crop,” while the
grass is included with the main crop legume to have a grass–legume hay. When
paddy rice is the main crop, the edges around the paddy have been used to grow
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a variety of crops, including mixtures of crops. When rubber trees were the main
crop, beans, cotton, and maize, alone and in mixtures, have been grown during the
first year or two while the rubber trees in the plantation were being established.
Legume–grass mixtures are grown as secondary crops in various types of fruit
orchards.

In many situations, the correct choice and density of the supplementary crops
will leave the main crop yield relatively unaffected. The benefit then would be
the value of the supplementary crops, as no extra land is utilized. It is possible
and not infrequent that the main crop yields may be increased by the presence of
the supplementary crops. For example, in Nigeria, when cassava is intercropped
with melons, its yield is actually increased. The reason is that the melons prevent
erosion over and above that found in the sole crop cassava. The erosion-control
aspects of melons more than offset any competition between melons and cassava
for space, water, and nutrients. Thus, intercropping cassava with melons not only
produces a partial crop of melons but it actually increases the yield of the main
crop cassava. With long-season crops like sugarcane and cassava, legumes with
nitrogen-fixation qualities forming nodules on the roots should be successful in
enhancing the yields of cassava and sugarcane. These main crops would be able
to utilize the nitrogen nodules left in the soil as they decomposed. The fertil-
izer replacement qualities of the legume may be quite beneficial for crops of this
nature.

For several of the above situations, two or more supplementary crops may be
grown in sequence rather than simultaneously. For example, one might have a
sequence of melons–cowpeas, cowpeas–melons, maize–beans, etc. with cassava.
With sugarcane, peas might be planted, and shortly after the pea plants are ready
to flower, onions could be planted in between the rows of peas. Alternatively,
the peas might be planted and harvested and then the onions would be planted.
Many such schemes can be, and are, utilized depending on the crops, varieties,
and environmental conditions.

When two or more supplementary crops are grown with a main crop, the number
of possible combinations becomes large and much faster than the number of sec-
ondary crops. Response model equations also become much more complex, and
the number of parameters increases over that when there is only one supplemen-
tary crop. Statistical design aspects for this situation are discussed in the following
section. Some simple response model equations, estimators for parameters, and
variance of estimates are discussed in Section 12.3 for 2, 3, . . ., v supplementary
crops grown with one main crop. It is shown how to add additional parameters to
the response model equations; these may be of interest in certain situations. To
illustrate the analyses of Section 12.3, we consider a barley experiment where the
main crop, barley, is intercropped with one, with three, and with all six cultivars,
as well as being grown as a sole crop. This is discussed in Section 12.4. In Section
12.5, we consider the case of c lines or varieties of one main crop, where each
line of the main crop is intercropped with two or more supplementary crops. Two
different experiment designs are described. Some comments on the example are
given in Section 12.6 and some problems are given in Section 12.7.



12.2 Some Statistical Design Considerations 15

12.2 Some Statistical Design Considerations

One possible treatment design for one main crop cultivar and v supplementary
crops follows:

main crop grown as a sole crop,
main crop grown with each one of the v supplementary crops,
main crop grown with each of the v(v − 1)/2 pairs of supplementary crops,
main crop grown with each of the v(v − 1)(v − 2)/6 triples of supplementary
crops,
...
main crop grown with each set of v − 1 of the supplementary crops, and
main crop grown with all v supplementary crops.

The total number of treatments would be
∑v

k�0

(
v

k

) � 2v � N . The experi-
menter would usually eliminate certain values of k and/or other combinations to
reduce N considerably and would often know that certain combinations were un-
desirable or would not be used in practice. These usually would not be included in
the experiment. There are many possible subsets of N and the experimenter should
determine which subset to use to meet the goals of the experiment. For example,
the treatment design could be a sole main crop, the main crop with each of the v

supplementary crops, and the main crop with all possible pairs of the v supple-
mentary crops for a total of 1 + v + v(v − 1)/2 treatments. Results from fractional
replication may be of use here (see, e.g., Cochran and Cox, 1957, Federer, 1967,
Raktoe et al., 1981). As an example, interest could center on only mixtures of
size four and only main effects and two-factor interactions. Then, only v(v − 1)/2
mixtures of the total number of combinations of v(v − 1)(v − 2)(v − 3)/24 would
be used. For v � 8, the fraction would be 28 out of 70 possible mixtures. Examples
of fractional replicates appear in Chapters 15 and 16.

Also, it is possible that it would be desirable to replicate the sole crop treatment
more frequently than the others. If all comparisons are to be made with the sole crop,
then for r replications of each of the other treatments, the number of replications
for the sole crop could be

√
N to the nearest integer in each of r blocks in order

to optimize variance considerations. If the experiment design were an incomplete
block, the

√
N sole crop experimental units would be scattered over the incomplete

blocks, such that sole crop (experimental units) would appear m or m + 1 times in
an incomplete block, m � 0, 1, 2, . . . . Such an arrangement would decrease the
variance between sole crop and other combinations.

The relatively large number N of treatments possible should make the ex-
perimenter consider each treatment carefully for inclusion or exclusion in the
experiment. Combinations that could reduce main crop yields below an accept-
able level should be excluded from the experiment. Combinations which would not
be used in practice should usually be excluded. Response model equations (12.1)
to (12.5) do not depend on having all possible combinations for various values of
k � 0, 1, 2, . . . , v or even for a particular value of k. If one uses equations (12.21)
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and (12.22) to add more parameters in (12.1) to (12.5), then all combinations for
a particular value of k would be required.

Selection of treatments, densities of supplementary crops, and spatial arrange-
ments require considerable thought. For example, suppose that maize and beans
are the supplemental crops, and that paddy rice is the main crop. Further, sup-
pose that the paddies are in a rectangular arrangement. On the paddy edges, we
could consider some such arrangement as given in Figure 12.1. In this figure,
m � maize alone, b � beans alone, and mb � maize and beans intercropped.
What is the best way to fill in the unmarked edges to consider such treatments as
3b : m, 2b : 2m, b : 3m, 3b : mb, 2b : 2mb, b : 3mb? If interest centered only on
m and b grown alone (i.e., not mb) from the paddy edges, use may be made of the
Veevers and Zaraf (1982) approach or of other approaches described in Chapter 8
of Volume I. A balanced arrangement of m and b would be used such that the rice
paddy had m on 0, 1, 2, 3, and 4 edges of the paddy and b on the remaining edges.
In addition to whatever combinations were used above, sole plots of paddy rice,
that is, nothing planted on the paddy edges, may be included.

If it were desired to vary the density of supplementary crops, as a preliminary
step, the density of the supplementary crop along the edge of the paddy from
zero to dense could be varied. Then, the rice yields of the row(s) adjacent to the

m

m

m

b

m

b

mb

mb

b

mb

mb

b

b

mb

mb

b

m mb b

m b mb mb

m b m m

b b b mb

rice rice rice rice

rice rice rice rice

rice rice rice rice

FIGURE 12.1. A possible arrangement of paddy rice with m (maize) and b (beans) planted
on the paddy edges.
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paddy edge could be collected. A plot of the yield of the rice against density of
the supplemental crop along the paddy edge would indicate the highest density
which did not affect rice yield. Such a scheme, using the parsimonious designs
in Chapter 10 of Volume I, would require a minimum of experimental material,
say r rice paddy edges. Then, a more detailed experiment could be conducted to
determine the highest supplemental crop density not affecting main crop yields for
a selected set of densities.

Some aspects of experiment design are discussed in Section 12.5. Each experi-
ment should be considered on its own merit and should not be copied from another
experiment. The axiom in Chapter 10 of Volume I, that the design should be tai-
lored for the experiment rather than making the experiment fit a known or tabled
design, applies here as well as in other intercropping experiments.

12.3 Response Model Equations

Consider an experiment involving a single cultivar, e.g., a given barley variety,
for which the experiment design is a randomized complete blocks design (RCBD)
with r blocks; the treatment design consists of the sole crop of the cultivar and
mixtures of k of v additional lines, cultivars, or crop species with k � 1, 2, . . . , v.
The simplest possible response equations for the main crop, e.g., barley, would
appear to be of the following form h � 1, · · · , r:

Sole crop cultivar

Yh0 � µ + τ + ρh + εh (12.1)

Cultivar plus one additional line (i)

Yhi1 � µ + τ + ρh + δi + εhi (12.2)

Cultivar plus two additional lines (i and j )

Yhij2 � µ + τ + ρh + 1

2
(δi + δj ) + γij + εhij (12.3)

Cultivar plus three additional lines (i, j , and g)

Yhijg3 � µ + τ + ρh + 1

3
(δi + δj + δg) + λijg + εhijg (12.4)

Cultivar with all v additional lines

Yhij ···v � µ + τ + ρh + δ· + π12···v + εhij ···. (12.5)

µ+ τ is the mean of the barley cultivar (main crop) when grown as a sole crop; ρh

is the hth replicate effect for the RCBD; δi is the effect on the barley cultivar when
grown in a mixture with supplementary crop line i; γij is the bi-specific mixing
effect of lines i and j on the response for the barley cultivar; γijg is the tri-specific
mixing effect of lines i, j , and g on the response for the barley cultivar; δ· is the
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average of the δi ; γ·· is the average of the γij ; λ... is the average of the λijg; and so
forth on down to π12···v , which is the v-specific mixing effect on the response for the
barley cultivar; and the εh, εhi, εhij , εhijg, . . . , εhij ··· are random error deviations
which are independently distributed normal variates with mean zero and variance
σ 2

ε . Note that, in this form, only one additional effect is added as a line is added
to the mixture and this effect is a mixture of several effects. For example, in the
response equation for a mixture of three lines, the γijg is composed of interactions
between i and j , i and g, j and g, and among i, j , and g in mixtures of size three,
as well as any difference in the δi from mixtures of one to mixtures of three. Also
note that γ··, γ···, etc. are included in π12···v but need not be if all combinations are
present. Note the coefficients of 1

2 and 1
3 in (12.3) and (12.4), respectively. These

coefficients are necessary to make the δi from experimental units with two and
three supplementary cultivars comparable to the δi from experimental units with
one supplementary cultivar. The same rationale holds for response equations when
four, five, etc. supplementary crops appear in an experimental unit. The above holds
when cultivars are allocated equal space in an experimental unit. The coefficients
would need to be adjusted if unequal space were allocated to supplementary crops
and would be proportional to the space occupied. Least squares solutions for the
parameters in the response model equations are

µ + τ � ȳ·0 � mean of sole crop yields, (12.6)

δ̂i � ȳ·i1 − ȳ·0, (12.7)

δ̂· �
v∑

i�1

δ̂i/v � ȳ··1 − ȳ·0, (12.8)

γ̂ij � ȳ·ij2 − (ȳ·i1 + ȳ·j1)/2, (12.9)

γ̂·· � 2
∑∑

i<j

γ̂ij /v(v − 1)

� ȳ···2 − ȳ··1, (12.10)

λ̂ijg � ȳ·ijg3 − (ȳ·i1 + ȳ·j1 + ȳ·g1)/3, (12.11)

λ̂··· � 6

v(v − 1)(v − 2)

∑∑∑
i<j<g

λ̂ijg,

� ȳ····3 − ȳ··1, (12.12)

...

π̂12···v � ȳ·12···v − ȳ··1. (12.13)

The standard dot notation is used to denote which subscript has been summed
over, e.g., ȳ·i1 and Y·i1 are the mean and total, respectively, for the yield of the
main crop when grown with crop i. The variances for the above solutions, under
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the assumption of homoscedasticity, are

V (δ̂i) � 2σ 2
ε

r
, (12.14)

V (δ̂·) � σ 2
ε

{
1

rv
+ 1

r

}
� σ 2

ε (v + 1)

rv
, (12.15)

V (γ̂ij ) � 3σ 2
ε /2r, (12.16)

V (γ̂··) � σ 2
ε

{
2

rv(v − 1)
+ 1

rv

}
� σ 2

ε (v + 1)

rv(v − 1)
, (12.17)

V (λ̂ijg) � 4σ 2
ε /3r, (12.18)

V (λ̂···) � σ 2
ε

{
6

rv(v − 1)(v − 2)
+ 1

rv

}
, (12.19)

...

V (π̂12···v) � σ 2
ε (v + 1)

rv
. (12.20)

Putting the solutions in terms of arithmetic means simplifies the determination of
the variances for the various quantities in equations (12.6) to (12.13).

As stated previously, this appears to be about the simplest possible set of response
equations when interactions are present. Additional parameters may be added
easily to the response model equations. If all possible v(v − 1)/2 pairs are present,
the γij parameters could be rewritten to obtain

γij � δ∗
2i + δ∗

2j + γ ∗
2ij , (12.21)

where δ∗
2i is a general mixing effect of line i when pairs of lines are added to the

main crop, and γ ∗
2ij is a bi-specific mixing effect for pair ij . Likewise, the λijg

parameters may be changed to

λijg � δ∗
3i + δ∗

3j + δ∗
3g + γ ∗

3ij + γ ∗
3ig + γ ∗

3jg + λ∗
3ijg, (12.22)

where δ∗
3i is the general mixing effect of line i in mixtures of three lines, γ ∗

3ij is a bi-
specific mixing effect of lines i and j in the mixture ijg, γ ∗

3ig and γ ∗
3jg are defined

in a manner similar to γ ∗
3ij , and λ∗

3ijg is a tri-specific mixing effect in the mixture of
lines i, j , and g. Solutions for each of the parameters in (12.21) and (12.22) may be
obtained when all possible combinations are present and when v > 3 for (12.21)
and v > 5 for (12.22). However, these should be of little interest in this chapter
since we are only concerned with one main crop and how different mixtures affect
the yield of that crop. They are of interest for the analyses in Chapters 15 and 16.
It should be emphasized that (12.1) to (12.5) may be used when only a subset of
all possible combinations are present.

For a given experiment in an RCBD with r blocks, wherein there is one sole
crop, the main crop, and v supplementary crops, the treatment design could con-
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TABLE 12.1. Analysis of Variance Table for RCBD with Response Model Equations (12.1)
to (12.5). (The Treatment Degrees of Freedom Will Change If Other Than All Possible
Combinations Are Present.)

Source of variation df Sum of squares
Total rt —
Correction for mean 1 Usual manner for a RCBD
Blocks r − 1 —
Treatments t − 1 —

Sole vs. rest 1
Y 2

·0
r

+ (Y··1 + · · · + Y····v)2

r(t − 1)

− (Y·0 + Y··1 + · · · + Y····v)2

rt

Among sole + singles v − 1
v∑

i�1

Y 2
·i1
r

− Y 2
··1

rv

Sole + Singles vs. rem 1
Y 2

··1
rv

+ (Y···2 + · · · + Y····v)2

r(t − v) − r

− (Y··1 + · · · + Y····v)2

r(t − 1)

Among sole + pairs
v(v − 1)

2
− 1

∑∑
i<j

Y 2
ij2

r
− 2Y 2

···2
rv(v − 1)

Sole + pairs vs. remaining 1
2Y 2

···2
rv(v − 1)

+ 2(Y····3 + · · · + Y····v)2

r(2t − v2 − v − 2)

− (Y···2 + · · · + Y···v)2

r(t − v) − r

Among sole + triples
v(v − 1)(v − 2)

6

∑∑∑
i<j

Y·ijg3

r
− 6Y 2

····3
rv(v − 1)(v − 2)

...

Among sole + v − 1 v − 1
∑ Y 2

·if ···(v−1)

r
− (Y····(v−1))2

rv

Sole + (v − 1) lines vs. all
lines

1
Y 2

···(v−1)

rv
+ Y 2

····v
r

− (Y····(v−1) + Y····)2

r(v + 1)
Block × treatments (r − 1)(t − 1) By subtraction

sist of the one described in the first part of the previous section. An analysis
of variance table for the above treatment design in an RCBD is given in Table
12.1. Response model equations (12.1) to (12.5) were assumed for this analysis of
variance table. The block × treatment sums of squares may be partitioned into com-
ponents of block × treatment contrasts to check for variance heterogeneity. Since
the experimental units are of the same size, heterogeneity would not, in general,
be suspected. However, it is always advisable to check for variance heterogene-
ity. The equations are directly extendible to incomplete block and row–column
designs.
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Instead of partitioning the treatment degrees of freedom as above and making
F -tests, a multiple comparisons procedure could have been used for either signifi-
cance testing or setting simultaneous confidence intervals as described in Chapters
2 and 3 of Volume I.

12.4 Example

S. Kaffka, Cornell University, conducted an experiment in large containers in
a greenhouse at the University of Hohenheim, Stuttgart, West Germany, during
March to July of 1980. A uniform stockpiled Filder clay–loam soil mixed with
small amounts of peat moss and sand was used to fill the containers (boxes). All
boxes were sown with sufficient barley seeds and seeds of the other six secondary
species to establish a stand of 20 uniformly spaced barley plants and undersown
plants according to the following pattern in one block of a randomized complete
block design with r � 3 blocks (see Figure 12.2):

(i) 1 box with 20 barley plants and no secondary species,
(ii) 6 boxes in which 1 box contained 20 barley plants and 12 plants of 1 of the

6 species,
(iii) 20 boxes with 20 barley plants and 12 other plants which consisted of 4 plants

(randomly allotted) from each of 3 of the 6 species and which was 1 of the
20 possible combinations of 6 species taken 3 at a time, and

(iv) 1 box which contained 20 barley plants and 2 plants of each of the 6 species.

All seeds were sown on one planting date, thinned to a single plant per position,
and watered as necessary throughout the growing season. At the end of the growing
season, 6 barley plants from the center of each box and all 12 plants of the secondary
species were harvested and dry weights taken. A yield–density trial for barley and
a replacement series of barley and lentils were also included in the experiment as
a partial check on the model employed. The data for seed weight of the six barley

0 0 0 0 0

0 0 0 0

X X X X

X X X X

X X X X

0

0 0 0 0 0

0 0 0 0 0

FIGURE 12.2. Experimental unit arrangement of 20 barley plants, denoted by 0, and 12
plants of 0, 1, or more of 6 cultivars denoted by X.
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TABLE 12.2. Barley Grain Weight in Grams for Kaffka Experiment.

Block (seed weight, g)
Treatment 1 2 3 Total Mean
Barley 22.7 16.8 18.9 58.4 19.47
Barley +M1 19.1 12.9 18.5 50.5 18.83
Barley +M2 19.2 15.3 18.2 52.7 17.57
Barley +M3 17.4 16.9 20.4 54.7 18.23
Barley +M4 12.8 23.1 26.2 62.1 20.70
Barley +M5 15.6 25.7 15.2 56.5 18.83
Barley +M6 18.6 16.7 18.6 53.9 17.97
Barley +M1 + M2 + M3 15.1 22.1 23.7 60.9 20.30
Barley +M1 + M2 + M4 16.6 22.0 18.8 57.4 19.13
Barley +M1 + M2 + M5 19.8 22.8 23.6 66.2 22.07
Barley +M1 + M2 + M6 19.6 19.2 19.2 58.0 19.33
Barley +M1 + M3 + M4 17.0 23.0 25.2 65.2 21.73
Barley +M1 + M3 + M5 17.2 15.1 21.5 53.8 17.93
Barley +M1 + M3 + M6 18.3 21.1 19.5 58.9 19.63
Barley +M1 + M4 + M5 16.0 20.9 20.8 57.7 19.23
Barley +M1 + M4 + M6 21.3 24.6 22.3 68.2 22.73
Barley +M1 + M5 + M6 14.2 17.5 20.1 51.8 17.27
Barley +M2 + M3 + M4 24.0 23.2 18.6 65.8 21.93
Barley +M2 + M3 + M5 15.7 15.4 19.3 50.4 16.80
Barley +M2 + M3 + M6 16.2 20.2 26.2 62.6 20.87
Barley +M2 + M4 + M5 19.3 17.7 22.7 59.7 19.90
Barley +M2 + M4 + M6 21.3 29.4 24.6 73.3 25.10
Barley +M2 + M5 + M6 22.8 16.9 22.0 61.7 20.57
Barley +M3 + M4 + M5 16.9 26.0 16.1 57.0 19.67
Barley +M3 + M4 + M6 21.6 15.0 21.3 57.9 19.30
Barley +M3 + M5 + M6 23.9 19.2 21.1 64.2 21.40
Barley +M4 + M5 + M6 18.9 24.0 18.2 61.1 20.37
Barley +M1 + M2 + M3

+M4 + M5 + M6 17.1 19.4 20.3 56.8 18.93
Total 518.2 562.1 581.1 1661.4
Mean 18.51 20.08 20.75 19.78

plants are given in Table 12.2, but treatments described in the preceding sentence
were omitted from the table. The 3 responses recorded were seed weight of 6 barley
plants, plant dry weight of 6 barley plants, and total dry weight of 12 additional
plants. In addition, mustard was sown soon after harvest in the same containers. It
was grown as a check for any residual effects in soil nitrogen as a consequence of
species mixtures. The mustard was harvested at flower stage, dried, and weighed.

The six secondary species were

1. Avena fatua (wild oat)
2. Coriander sativa (coriander)
3. Lens esculentum (lentils)
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4. Lotus corniculatus (birdsfoot trefoil)
5. Medicago sativa (alfalfa)
6. Matricaria chamomille (chamomile)

The seed weight in grams of six barley plants is presented in Table 12.2. The
treatment and block totals and means are also given. From these, one may compute
residuals for a two-way array as

Yij − ȳi· − ȳ·j + ȳ·· � êij

or

(rvYij − rYi· − vY·j + Y··)/rv � êij .

The first formula is subject to rounding errors, whereas the second form is not. The
residuals times rv sum to zero exactly in any row or any column of the table using
the second form. The frequency distribution of the 84 êij ’s is given in Figure 12.3.
A rather symmetrical distribution, 43 negatives and 41 positives, was obtained with
no unusual outliers, although the 3 residuals greater than 6 accounted for 21% of the
total residual sum of squares. One could check on the relation between treatment
means, ȳi·, and sums of squares,

∑r
j�1 ê2

ij , using Spearman’s rank correlation.
(D.S. Robson, Cornell University, and C.L. Wood, University of Kentucky, have
shown that this follows Spearman’s rank correlation.) First rank the means from
1 to 28; compute the 28

∑3
j�1 ê2

ij in Table 12.3, and then rank them. Take the
difference di in ranks. Then, Spearman’s rank correlation is computed as

rS � 1 − 6
∑n

i�1 d2
i

n(n2 − 1)
� 1 − 6

∑28
i�1 d2

i

28(282 − 1)
� 1 − 6(3004)

28(783)
� 0.18;

rS � 0.18 is considerably smaller than r.05(26 d.f.) � 0.374. Hence, the treat-
ment means and variances are considered to be uncorrelated. In light of the above
evidence, no transformation of seed weight was considered necessary to stabilize
variances, which is required for F -tests.

The treatment means are presented in Table 12.2. The means of all mixtures
involving a line, denoted as Mi··, are presented in Table 12.4. All of these means
are larger than the barley sole crop mean, 19.47. A graphical presentation depicting
this is given in Figure 12.4. The chances of obtaining six out of six above the sole
crop mean, given that the null hypothesis is true, is rather small. Since the expected
number for the null hypothesis would be three, χ2(1 d.f. ) � (6 − 3)2/3 + (0 −
3)2/3 � 6 �̇ χ2

.015(1 d.f.). Correcting this χ2 for continuity gives χ2(1 d.f. ) �
(2.52 + 2.52)/3 � 4.17 �̇ χ2

.04(1 d.f. ). The means for barley with a single line
are also plotted on the graph in Figure 12.4. Here, we note that five out of the
six are lower in yield than the barley sole crop. This gives χ2(1 d.f. ) � 8/3,
which, when corrected for continuity by reducing the deviation by 1/2, becomes
1.4 �̇ χ2

.20(1 d.f. ). Also, in Table 12.4, means of pairs of cultivars are presented.
Here, we note that 13 of the 15 pair means exceed the value 19.47 for the barley
sole crop seed weight. Based on a null hypothesis of no effect, 7.5 would be the
expected value. χ2(1 d.f. ) � [(13 − 7.5)2 + (2 − 7.5)2]/7.5 � 8.1, which is a
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TABLE 12.3. Residuals (84Yhi − 28Y·i − 3Yh· + Y··)/84 � êij for Data of Table 12.2

Block
Treatment 1 2 3
Barley 4.505 −2.963 −1.542
Barley +M1 3.538 −4.230 0.692
Barley +M2 2.905 −2.563 −0.342
Barley +M3 0.438 −1.630 1.192
Barley +M4 −6.629 2.104 4.525
Barley +M5 −1.962 6.570 −4.608
Barley +M6 1.905 −1.563 −0.342
Barley +M1 + M2 + M3 −3.929 1.504 2.425
Barley +M1 + M2 + M4 −1.262 2.570 −1.308
Barley +M1 + M2 + M5 −0.995 0.437 0.558
Barley +M1 + M2 + M6 1.538 −0.430 −1.108
Barley +M1 + M3 + M4 −3.462 0.970 2.492
Barley +M1 + M3 + M5 0.538 −3.130 2.592
Barley +M1 + M3 + M6 −0.062 1.170 −1.108
Barley +M1 + M4 + M5 −1.962 1.370 0.592
Barley +M1 + M4 + M6 −0.162 1.570 −1.408
Barley +M1 + M5 + M6 −1.795 −0.063 1.858
Barley +M2 + M3 + M4 3.338 0.970 −4.308
Barley +M2 + M3 + M5 0.171 −1.696 1.525
Barley +M2 + M3 + M6 −3.395 −0.963 4.358
Barley +M2 + M4 + M5 0.671 −2.496 1.825
Barley +M2 + M4 + M6 −2.529 4.004 −1.475
Barley +M2 + M5 + M6 3.505 −3.963 0.458
Barley +M3 + M4 + M5 −1.495 6.037 −4.542
Barley +M3 + M4 + M6 3.571 −4.596 1.025
Barley +M3 + M5 + M6 3.771 −2.496 −1.275
Barley +M4 + M5 + M6 −0.195 3.337 −3.142
Barley +M1 + M2 + M3 + M4 + M5 + M6 −0.562 0.170 0.392

relatively large value for χ2. This is evidence that mixtures of barley with three
of the six species produced higher yields of barley grain than did barley alone or
with barley plus one of the six species.

To use the t (lsd) or range (hsd) statistics, one may compute an (where lsd =
least significant difference (5%) and hsd is honestly significant difference (5%))

lsd � ȳ·i − ȳ·i ′ ± tα(54 d.f.)
√

10.8804(1/3 + 1/3), α � .05

� ȳ·i − ȳ·i ′ ± 2(2.693) � ȳ·i − ȳ·i ′ ± 5.39,

and an

hsd � ȳ·i − ȳ·i ′ ± qα,28,54sȳ·i , α � .05

� ȳ·i − ȳ·i ′ ± 5.52
√

10.8804/3



12.4 Example 25

0

–1

–2

–3

–7

–6

–5

–4

1

2

3

4

5

6

7

Stems

eijˆ
/ / / / / / / / / / / / /

/ / / / / / / / / / 

/ / / / / / / / / / / / / / /

/ / / / / 

/ / / / / / 

/ / / / / / 

/

/ / / / / / / / / / 
/ / / / / / 

/ / / / / / 

/ / / /

/ / 

FIGURE 12.3. Frequency distribution of êij .

� ȳ·i − ȳ·i ′ ± 10.51.

The means of barley + one line versus the mean of barley + three lines may be
compared using a t-statistic as follows:

t � (20.26 − 18.36)/
√

10.8804(1/18 + 1/60)

� 1.90/0.8865 � 2.14 > t.05(54 d.f.) � 2.00.

Sums of squares and F -statistics for a number of comparisons of the form described
in Table 12.1 are given in Table 12.5. The only significant contrast was in the mean
of mixtures of three lines with barley versus the mean of single lines with barley as
given by the above t-statistic. Note that

√
F � √

4.63 � 2.14 � t within rounding
errors.

The coefficient of variation
√

10.8804/19.78 � 16.7% was rather high. It may
be that some of the effects would be distinguishable on another scale. Taking
logarithms, the coefficient of variation was 5.7%, but it was not ascertained if
effects were more distinguishable, since the treatment sum of squares was not
partitioned. This is left as an exercise for the reader. The ratio of the treatment
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FIGURE 12.4. Comparison of sole crop barley with barley plus one other line and with
means by line of barley planted with three of the six lines.

mean square to the block × treatment mean square was a little larger than unity,
whereas it was a little smaller than one for the untransformed data.

To check for additivity, one may use Tukey’s one-degree-of-freedom for the
nonadditivity approach. Instead of the sum of products described in Chapter 10 of
Volume I, we use another form which is simpler computationally, since we already
have the residuals êij in Table 12.3. The form used for a one-degree-of-freedom
sum of squares was[∑

i

∑
j

êij Yi·Y·j

]2/
rv

(
�Y 2

i·
r

− Y 2
··

rv

) (
�Y 2

·j
r

− Y 2
··

rv

)

�
[∑

i

∑
j

êij (ȳi· − ȳ··)(ȳ·j − ȳ··)

]2/∑
i

(ȳi· − ȳ··)2
∑

j

(ȳi· − ȳ··)2,

which, for the data in Tables 12.2 and 12.3, is equal to

3681.572/84(292.10)(74.34) � 7.43.

This mean square is less than the blocks × treatment mean square, 10.8804, in-
dicating no evidence of departure from additivity. Since there appears to be no
variance heterogeneity and no nonadditivity, it would appear that the responses
Yij should not undergo any transformation for purposes of statistical analyses.
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TABLE 12.4. Barley Seed Weight (g) by Individual Lines and Pairs of Lines in Combinations
of Three Lines Plus Barley.

Total and mean of line over all combinations
involving line i

Line Total Mean, Mi··
1 598.1 19.94
2 618.0 20.60
3 598.7 19.96
4 627.3 20.91
5 585.6 19.52
6 619.7 20.66
Total 3647.4 20.26

Totals and means of line pairs withh all others
Pair Total Mean Pair Total Mean
12 242.5 20.21 26 257.6 21.47
13 238.8 19.90 34 247.9 20.66
14 248.5 20.71 35 227.4 18.95
15 229.5 19.12 36 243.6 20.30
16 236.9 19.74 45 237.5 19.79
23 239.7 19.98 46 262.5 21.88
24 258.2 21.52 56 238.8 19.90
25 238.0 19.83 Total 3647.4

Analysis of variance for data of Table 12.2
Degrees of Sum of Mean

Source of variation freedom squares square
Total 84 33,814.10
Correction for mean 1 32,860.12
Blocks 2 74.34 37.17
Treatments 27 292.10 10.82
Block × treatment 54 587.54 10.8804
Barley vs. barley + a line 1 3.17 3.17
Barley vs. barley + a triple 1 1.81 1.81

This agrees with using Spearman’s rank order correlation above to check for a
relationship between rank of means and rank of residual sums of squares.

Solutions for values of the parameters given by equations (12.6) to (12.13) for the
data of Table 12.2 are given in Table 12.6, along with variances. The computations
for obtaining solutions are relatively simple, as they utilize only simple arithmetic
means. The main crop cultivar effect is computed from (12.6) as

ȳ·0 � µ̂ + τ̂ � 58.4/3 � 19.47.
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TABLE 12.5. Partitioning of Treatment Sum of Squares as Outlined in Table 12.1

Degrees of Sum of Mean
Source of variation freedom squares square F

Treatments 27 292.10 10.82 0.99
Among single crops with

barley � singles 5 26.49 5.30 0.49
Among triplets with

barley � triplets 19 212.63 11.19 1.03
Barley sole vs. rest 1 0.30 0.30 0.03
Singles vs. rest including

barley and all six 1 47.63 47.63 4.38
Triplets vs. all six 1 5.05 5.05 0.46
Triplets vs. singles 1 50.39 50.39 4.63
Sole crop vs. singles 1 3.17 3.17 0.29
Block × treatments 54 10.8804

F.10(1, 54) � 2.80 F.25(5, 54) � 1.38 F.25(19, 54) � 1.26
F.05(1, 54) � 4.02 F.05(5, 54) � 2.38 F.05(19, 54) � 1.76
F.01(1, 54) � 7.12 F.01(5, 54) � 3.37 F.01(19, 54) � 2.24

The estimated general mixing effect for an intercrop is obtained from (12.7). For
cultivar 1, the computations are

δ̂1 � ȳ·11 − ȳ·0 � 16.83 − 19.47 � −2.64.

The remaining cultivar general mixing effects are given in Table 12.6. From
equation (12.11), we obtain solutions for the λ̂ijg’s; for example,

λ̂123 � 20.30 − (16.83 + 17.57 + 18.23)/3 � 2.76.

The remaining λ̂ijg values are given in Table 12.6. Note that 17 of 20 of these values
are positive, the 3 negative values being near zero. Since such was the case and
since all possible combinations of six cultivars taken three at a time were present,
one should use equation (12.22) and obtain solutions for the δ∗

3i , the γ ∗
3ij , and

the λ∗
3ijg parameters. Such an occurrence most likely indicates that the δi and δ∗

3i

parameters are different, whereas this fact was not taken into account in equations
(12.1) to (12.13). This additional reparameterization will be done in Chapters 15
and 16.

12.5 Several Cultivars of Primary Interest

Suppose that c lines or cultivars are of primary interest and thatv lines or cultivars of
secondary interest are being considered. For example, suppose that c lines of barley,
which will be grown with k of v supplementary cultivars, k � 0, 1, 2, , . . . , v, are
of interest. A split plot experiment design could be used in which

(i) the c lines or cultivars of primary interest form the whole plot or
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TABLE 12.6. Solutions and Variances for Parameters in Response to Model Equations
(12.1), (12.2), (12.4), and (12.5).

Equation Solution Equation Variance
√

Var
(12.6) ȳ.0 � 19.47
(12.7) δ̄1 � −2.64

δ̄2 � −1.90
δ̄3 � −1.24 (12.14) 2(10.8804)/3 � 7.254 2.69
δ̄4 � 1.23
δ̄5 � −0.64
δ̄6 � −1.50

(12.8) δ̂. � −1.115 (12.15) 7(10.8804)/18 � 4.231 2.06
(12.11) δ̂123 � 2.76

δ̂124 � 0.77
δ̂125 � 4.32
δ̂126 � 1.88
δ̂134 � 3.14
δ̂135 � −0.03
δ̂136 � 1.96
δ̂145 � 0.44
δ̂146 � 4.23
δ̂156 � −0.61 (12.18) 4(10.8804)/9 � 4.836 2.20
δ̂234 � 3.10
δ̂235 � −1.41
δ̂236 � 2.94
δ̂245 � 0.87
δ̂246 � 6.36
δ̂256 � 2.44
δ̂345 � 0.41
δ̂346 � 0.33
δ̂356 � 3.06
δ̂456 � 1.20

(12.12) δ̂... � 1.908 (12.19) 13(10.8804)/180 � 0.786 0.89
(12.13) π̂123456 � 0.58 (12.20) 7(10.8804)/18 � 4.231 2.06

(ii) the v supplementary crops form the whole plots.

The choice would depend on contrasts of primary interest. If a mixture combination
for each cultivar of primary interest was desired, then use (i). If, on the other hand,
it was desired to have more information on the c cultivars of primary interest,
then use (ii). If all contrasts were of equal interest, then a complete block or an
incomplete block design would be indicated.

Analyses of variance for situations (i) and (ii) above are given in Tables 12.7
and 12.8. It is recommended that analyses of variance of the form of Table 12.1
be performed for each line of the main crop prior to combining results as in Table
12.7. For (ii), analyses of variance should be obtained for each whole plot treatment
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TABLE 12.7. Analysis of Variance for Lines or Cultivars of Main Crops as Whole Plots
Arranged in an RCBD.

Source of variation Degrees of freedom Description
Total rct

Correction for mean 1
Blocks � R r − 1
Whole plot treatments, cultivars

of secondary interest � W c − 1
Blocks × whole plots (r − 1)(c − 1) Error line for

whole plots
Treatments � T (primary interest) t − 1

T1 Sole vs. rest 1
T2 Among sole + singles � S v − 1
T3 S vs. remaining treatments 1
T4 Among sole + pairs � P [v(v − 1) − 2]/2
T5 P vs. remaining treatments 1
T6 Among sole + triplets [v(v − 1)(v − 2) − 6]/6

...
...

Tn−1 Among sole +v − 1 of
v crops v − 1

Tn(v − 1) crops + sole vs.
v crops + sole 1

T × W (c − 1)(t − 1)
W × T1 (c − 1)
W × T2 (c − 1)(v − 1)
W × T3 c − 1
W × T4 (c − 1)(v2 − v − 2)/2

...
...

W × Tn c − 1
T × R : W c(r − 1)(t − 1) Error line for

split plots

before combining the results for all whole plots. Standard statistical software for
obtaining analyses for split plot designs may be used for these analyses. To obtain
some of the sums of squares, a contrast statement is needed.

12.6 Some Comments

In the previous chapter, it was stated that one should not generalize from mixtures
of two to mixtures of four, that one could expect surprises when analyzing data
from a mixture experiment, and that one should not generalize from cultivar to
cultivar. The example discussed in this chapter bears out these comments. When
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TABLE 12.8. Analysis of Variance for a Supplementary Crop or Mixture of Supplementary
Crops as the Whole Plots and with Lines of Cultivars of the Lines as the Split Plots.

Degrees of
Source of variation freedom Description
Total rct

Correction for mean 1
Blocks � M r − 1
Whole plot treatments,

supplementary
of secondary interest � T (t − 1)

T × R (r − 1)(v − 1) Error line for
whole plots

Cultivars of primary interest � W c − 1
W × T (v − 1)(c − 1)
M × T : T t(r − 1)(c − 1) Error line for

split plots

Note that the partition of the degrees of freedom for T in Table 12.7 could be used for T in the above table. Likewise,
the T × W interaction could also be partitioned as described in Table 12.7.

this particular barley variety was grown with one of the particular six cultivars,
the yield was decreased for five of the six, relative to sole crop yield. The reverse
was true for the barley variety grown with 3 of the 6 cultivars where 13 of the
20 mixtures of 4 outyielded the sole crop. Also, when averages of all mixtures
of four in which one of the six cultivars was obtained, all six were above the
sole crop average, 19.47 (see Table 12.4 and Figure 12.4). If a prediction had
been made from mixtures of two for mixtures of four, it would have been pre-
dicted that mixtures of four would decrease yields. An error would have been
made.

Such a result as discussed above for mixtures of two versus mixtures of
four crops came as a surprise. Another surprise was that when the mixture
contained barley plus all six cultivars, the barley yields were below the sole
crop mean, i.e., 18.93 vs. 19.47. If these results are repeatable, they are in-
teresting biological phenomena concerning species competition and ecology.
Another surprise was that the 12 extra plants did not always decrease the yield
of barley as this author would have presumed. The 12 extra plants should
have exerted considerable stress on the barley plants, but this did not always
materialize.

Even if these results are repeatable when the experiment is repeated, it would
not be correct to generalize to other barley varieties and to other cultivars. The
results are specific for this particular barley variety and the particular collection of
the six supplementary crops used in the experiment. It is possible that the results
are more general than indicated, but experiments should be conducted to confirm
this.
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TABLE 12.9.

Block (plant weight in grams)
Treatment 1 2 3
Barley 43.90 33.09 40.98
Barley +M1 38.16 27.48 38.28
Barley +M2 38.35 35.66 36.23
Barley +M3 33.59 33.78 40.10
Barley +M4 30.46 49.47 53.49
Barley +M5 31.39 55.69 31.38
Barley +M6 41.19 37.07 36.69
Barley +M1 + M2 + M3 33.99 46.22 46.03
Barley +M1 + M2 + M4 36.04 46.61 37.60
Barley +M1 + M2 + M5 37.97 51.60 49.28
Barley +M1 + M2 + M6 42.61 41.73 40.59
Barley +M1 + M3 + M4 34.12 42.43 56.54
Barley +M1 + M3 + M5 34.40 32.23 40.33
Barley +M1 + M3 + M6 38.32 39.69 38.27
Barley +M1 + M4 + M5 32.77 46.08 47.89
Barley +M1 + M4 + M6 42.50 47.24 48.98
Barley +M1 + M5 + M6 33.31 39.68 43.37
Barley +M2 + M3 + M4 47.67 48.18 36.69
Barley +M2 + M3 + M5 31.78 34.39 37.72
Barley +M2 + M3 + M6 34.19 45.61 55.18
Barley +M2 + M4 + M5 41.88 41.21 49.18
Barley +M2 + M4 + M6 40.69 60.72 46.91
Barley +M2 + M5 + M6 43.17 36.70 44.69
Barley +M3 + M4 + M5 34.39 54.95 34.61
Barley +M3 + M4 + M6 43.84 34.55 48.75
Barley +M3 + M5 + M6 46.68 43.37 42.23
Barley +M4 + M5 + M6 39.36 48.37 36.23
Barley +M1 + M2 + M3 + M4 + M5 + M6 34.73 40.03 39.78

12.7 Problems

12.1 Use the data of Table 12.2 for barley as a sole crop and with barley plus each
of the six cultivars to obtain 3 × 7 � 21 observations. Conduct the analyses
given in this chapter and interpret the results of your analyses. Prepare the
necessary figures to aid with your interpretation.

12.2 Apply a logarithmic transformation to the data in Table 12.2 and conduct all
the analyses described in this chapter. From these analyses, are the reasons
for conducting analyses on untransformed data substantial? Why or why
not?

12.3 Conduct the analyses described in this chapter on the following data. Use
appropriate graphs and figures to aid in your interpretation of the data. How



12.8 Literature Cited 33

well do the results of these analyses agree with those on seed weight in
Table 12.2?
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chapter 13

Three or More Main Crops—
Density Constant

13.1 Introduction

In many situations involving intercropping, three or more of the crops in a mixture
may be considered to be the main crops. The grower is interested in a farming
system and not necessarily in how each crop in the mixture performs. A desirable
system would be one yielding the highest return in calories, in protein, in land
use, in crop value (monetary or otherwise), and/or in some other evaluation of the
system. From this point of view, all crops in a mixture would be considered to be
main crops. Considering crops to be main crops need not imply that they are equal
in value but that the grower will use these crops in a farming system.

There are many types of systems, as is partially demonstrated by the five ex-
amples given in the following sections. Great variation in systems exists. The
experimenter should always ascertain which set of response model equations and
which statistical analyses are appropriate to meet the type and goals of the particular
experiment involved.

In Section 13.2, some comments on treatment design are given and illustrated
with four examples. Treatment designs are different for the four examples and
even more so for Example 13.5. Response model equations for each crop are given
in Section 13.3. Estimators for the various parameters are presented along with
an analysis of variance. The results are applied to a set of data from a mixture
experiment. These analyses are for the yields of the individual crops in the spirit
of the previous chapter.

Since a grower would be interested in a system, methods of combining the
crop responses are given in Section 13.4. These results are applied to the data
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from Examples 13.3 and 13.5 and for a set of data for all possible combi-
nations of three crops. Land equivalent ratios are generalized from two to v

crops. Also, other created variables such as total calories, total protein, and to-
tal value are given for v crops. This is a generalization of the results presented
in Chapter 4 of Volume I. Rather than use actual conversion factors, a ratio
of coefficients is used which largely eliminates year-to-year variation in vari-
ables such as price. This requires selecting one of the crops as a base crop
and the created variables will then be relative land equivalent ratios, relative
values, etc. For comparative purposes, these relative variables are appropriate,
and the ratios of yields, prices, etc. are considerably less variable than are actual
values.

Some comments on the results from the experiments are given in Section 13.5.
Some results are expected and others not. The last section is a derivation of some of
the results in Section 13.3 and was relegated to an appendix rather than including
it in the text.

13.2 Treatment Design

The treatment design given in Chapter 12, or subsets of it, may be used in this
chapter as well. However, there are many variations that are used in intercropping
experiments. Four other examples are described below. These have been reported
by Aidar (1978) in his thesis and were made available through the courtesy of J.
G. de Silva, EMBRAPA, in 1980.

Example 13.1. The treatment design consisted of the following eight treatments:

A cotton grown in sole crop
B cotton + 2 rows of maize
C cotton + 2 rows of beans
D cotton + 1 row of maize + 1 row of beans
E cotton + 2 rows of maize + 2 rows of beans
F cotton + 1 row of maize
G cotton + 1 row of beans
H cotton + 1 row of maize + 1 row of beans

Treatment H was different from D in that the bean plants were planted in with the
maize plants, whereas, in D, there was one row of maize and one row of beans.
This example could have been used in Chapter 12 if cotton was the main crop, say,
and maize and beans, say, were the supplementary crops.

Example 13.2. The following treatment design and yields were obtained from
an intercropping experiment involving castrol beans, maize, and beans. The data
come from an experiment grown in Ibititá, Bahia, Brazil, in 1972.
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Yield (kg/ha)
Castrol

Treatment bean Maize Bean
A Castrol bean + maize, 1:1 ratio 1,080 2,170 —
B Castrol bean + maize, 1:2 ratio 728 2,290 —
C Castrol bean + maize, 1:3 ratio 847 1,936 —
D Castrol bean + bean, 1:2 ratio 1,148 — 1,005
E Castrol bean + bean, 1:3 ratio 888 — 1,150
F Castrol bean + bean, 1:4 ratio 746 — 858
G Castrol bean + maize + bean, 1:2:1 ratio 561 1,991 92
H Castrol bean + maize + bean, 1:1:2 ratio 1,242 1,449 540
I Castrol bean + maize + bean, 1:2:2 ratio 697 1,657 340
J Castrol bean alone 1,871 — —
K Maize alone — 2,167 —
L Bean alone — — 1,007

The cultivar used for castrol beans was Amarela, for maize the cultivar was Maia
4, and for beans it was Vagem roxa. Treatments A, D, and H resulted in a reduction
of yields of about one-third of the castrol bean sole crop. Treatments A, B, C, and
G resulted in about the same maize yields as obtained for the sole crop maize. Bean
treatments D, E, and F had yields equal to the sole crop beans, whereas treatment
G reduced bean yield to less than 10% of the sole crop. The higher proportions
of maize and beans in mixtures with castrol beans reduced castrol bean yields
considerably.

Note that the proportions of the various crops change in the example. It
is important to understand that the densities per hectare for one experimental
unit do not change, but only the proportion of the crops in a mixture changes.
Thus, this example is in the spirit of this chapter, viz. the density per hectare is
constant.

Example 13.3. The following experiment involved intercropping four crops,
sorghum (S), cowpeas (C), maize (M), and beans (B), but only in pairs
and as sole crops. It was carried out in 1974 at two locations, Caruaru and
Serra Talhadá, Pernambuco, Brazil. The treatment design and yields in kg/ha
are

Yield (kg/ha)
Caruaru Serra Talhadá

S B C M S B C M
S�sorghum (sole) 2,210 — — — 2,919 — — —
C�cowpeas (sole) — — 1,220 — — — 944 —
B�beans (sole) — 69 — — — 984 — —
M�maize (sole) — — — 2,451 — — — 2,828
S + C 2,577 — 621 — 2,766 — 524 —
S + B 2,194 33 — — 2,602 488 — —
M + C — — 419 2,388 — — 249 2,530
M + B — 30 — 2,599 — 257 — 2,759
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The yield of sorghum was relatively unaffected by adding cowpeas and was
only slightly decreased by adding beans. Hence, any additional yield obtained
from beans and cowpeas was a bonus. The yields of cowpeas and beans were
affected more by maize than by sorghum, possibly due to the later maturity of
sorghum and greater demands on water and nutrients after beans and cowpeas had
matured more. The maize yields, whether in mixture or sole, were relatively the
same. This is what was observed for cultivar X in Example 2.1 of Volume I. Hence,
any additional bean and cowpea yields represent a bonus from intercropping with
maize.

Example 13.4. This experiment involved five crops, a cotton cultivar�C, a maize
cultivar�M, a bean cultivar�B, a sorghum cultivar�S, and two cultivars of palm,
Capim Buffel�PB, and Capim Colonião�PC in four treatment combinations both
with and without fertilizer. Ten blocks of a randomized complete block design
were used. The experimental unit size was 2.1 m by 1 m (area harvested). The four
treatments were

a: cotton (C) as a sole crop for 4 years;
b: C + M + B for 4 years;
c: C + M + B in year 1, Capim Buffel planted in year 2 and harvested in years 3

and 4;
d: C + S + B in year 1, Capim Colonião planted in year 2 and harvested in years

3 and 4.

The yields obtained were

Yield (kg/ha), 1969-72 period
C M B S PB PC

Treatment without fertilizer
a 2,461 — — — — —
b 2,163 1,415 280 — — —
c 2,277 1,415 248 — 245 —
d 1,784 — 185 2,232 — 18t.∗

C M B S PB PC
with fertilizer

a 2,564 — — — — —
b 2,630 1,390 290 — — —
c 2,488 1,387 268 — 267 —
d 2,459 — 142 2,458 — 20t.∗

∗ tons per hectare.

If the value of cotton is 7.00, the value of maize is 1.50, the value of beans
is 5.00, the value of sorghum is 1.30, the value of PC is 0.025 cruzerios per
kilogram, and the value of PB is 25.00/ton, we may compute the values for the
various treatments.
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No fertilizer Fertilizer
Treatment value (%) of a value (%) of a

a– cotton 17,227 100 17,948 100
b– cotton 15,141 18,410

maize 2,112 2,085
bean 1,400 1,450
Total 18,653 108 21,945 122

c– cotton 15,939 17,416
maize 2,122 2,080
bean 1,240 1,340
PB 6 7
Total 19,307 112 20,843 116

d– cotton 12,488 17,213
sorghum 2,902 3,195
bean 925 710
PC 450 500
Total 16,765 97 21,618 120

Thus, the crop value was −3% to 22% higher for mixtures than for cotton grown
alone. Treatment d was somewhat lower than the others on the nonfertilized plots.
For the fertilized plots, cotton yields in mixtures were approximately equal to
the sole crop yields. On the nonfertilized plots, the cotton yields were somewhat
lower in the mixtures. Treatment d gave lower bean yields than treatments b and
c whether fertilized or not.

As can be seen from the above examples, treatment designs can be many and
varied. It is a good rule to include sole crops for all crops unless the crop is
infrequently or never grown as a sole crop. Even if this were the case, it still might
be wise to include all sole crops for biological modeling purposes and to have a
point of reference. In the above examples, the ratio of the sole crop maize yield
to bean yield was 2:1 in Example 13.2 and was 350:1 and 3:1 in the two locations
of Example 13.3. The 350:1 ratio appears to be an abnormality, as bean yield
was unduly low. The 2:1 and 3:1 ratios are somewhat smaller than the ratio in
Examples 2.1 and 3.1 of Volume I. This again demonstrates the need to obtain
yields for crops outside the experiment; land equivalent ratios using experimental
values are highly suspect, as demonstrated in Example 13.3 where ratios of 350:1
and 3:1 were obtained at the two locations.

The treatments to be included in an experiment require thoughtful consideration.
The goals for each intercropping experiment should be carefully pondered. Then,
the treatment design can be formulated to meet the needs of the experiment.

13.3 Response Model Equations and Analyses

For the following discussion, we shall consider the situation where the treatments
are in a randomized complete block design and are included only once in each
block. The results are easily generalizable to other experiment designs; the fol-
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lowing equations may be considered to be appropriate for the v � 3 sole crop
yields:

Crop one Y1hi � µ1 + ρ1h + τ1i + ε1hi, (13.1)

Crop two Y2hi � µ2 + ρ2h + τ2i + ε2hi, (13.2)

Crop three Y3hi � µ3 + ρ3h + τ3i + ε3hi, (13.3)

where Yf hi is the response for the f th crop, f � 1, 2, 3 � v, in the hth block,
h � 1, 2, . . . , r , for the ith line of crop f , i � 1, 2, . . . , cf , µf is an overall mean
effect for crop f , ρf h is the hth block effect for crop f , τf i is the ith line effect
for crop f , and εf hi is a normal independent random variable with mean zero and
variance σ 2

f ε . A straightforward extension results in v equations for the v sole crop
responses.

The following response model equations may be appropriate for mixtures of
lines of three main crops. Generalization to v main crops is straightforward. The
crops are assumed to be in a 1:1:1 ratio, i.e., one-third of the area for a sole crop
would be devoted to each crop. Certain crops might have an equal number of
plants/ha as well as equal areas. The response model equations for mixtures of
three crops are

Y1hi(jg) � (µ1 + ρ1h + τ1i + δ1i)/3 + 2(γi(j ) + γi(g))/3

+ πi(jg) + ε1hi(jg), (13.4)

Y2h(i)j (g) � (µ2 + ρ2h + τ2j + δ2j )/3 + 2(γ(i)j + γj (g))/3

+ π(i)j (g) + ε2h(i)j (g), (13.5)

and
Y3h(ij )g � (µ3 + ρ3h + τ3g + δ3g)/3 + 2(γ(i)g + γ(j )g)/3

+ π(ij )g + ε3h(ij )g, (13.6)

where Y1hi(jg) is the response for the ith line of main crop one in the hth block and
in the mixture ijg, Y2h(i)j (g) and Y3h(ij )g are similarly defined; µf , ρf h, and τf i are
defined above; δf i is the general mixing effect for the ith line of the f th main crop;
γi(j ) is a bi-specific mixing effect for the ith line of crop one with the j th line of
crop two with γ(i)j being that part of the interaction for line j of crop two; γi(g),
γj (g), and γ(j )g are similarly defined; πi(jg) is the tri-specific mixing effect peculiar
to line i of crop one in the mixture ijg; π(i)j (g) and π(ij )g are similarly defined; and
ε1hi(jg), ε2h(i)j (g), and ε3h(ij )g are normal random variables with means of zero and
variances σ 2

1ε3 , σ 2
2ε3, and σ 2

3ε3, respectively.
If the three main crops are in the proportions p1 : p2 : p3 on an area basis, where

p1 + p2 + p3 � 1, then equations (13.4) to (13.6) may be rewritten as follows
when p1 ≥ p2 ≥ p3:

Y1hi(jg) � p1(µ1 + ρ1h + τ1i + δ1i) + 2p2γi(j ) + 2p3γi(g)

+ 3p3πi(jg) + ε1hi(jg), (13.7)
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Y2h(i)j (g) � p2(µ2 + ρ2h + τ2j + δ2j ) + 2p2γ(i)j + 2p3γj (g)

+ 3p3π(i)j (g) + ε2h(i)j (g), (13.8)

and
Y3h(ij )g � p3(µ3 + ρ3h + τ3g + δ3g) + 2p3γ(i)g + 2p3γ(j )g

+ 3p3π(ij )g + ε3h(ij )g. (13.9)

Interaction effects like γi(j ), γ(i)j , etc. are defined where each line i and j have
equal amounts of material to interact. Since the proportion of line i of crop one
and line j of crop two only have p1 + p2 of the space in the experimental unit
(e.u.) and since p1 ≥ p2, there is only 2p2 of the e.u. available for interaction
of equal amounts of material. For the three-factor interaction which is defined for
a 1:1:1 ratio, there is only 3p3 of the e.u. usable for the three-factor interaction
effect for p1 ≥ p2 ≥ p3. This method of defining an interaction is consistent
and unchanging for any set of relative proportions p1: p2: p3 and for a changing
number of crops in the mixture. A desirable feature of this definition of interaction
is to free it of confounding with the variable density per hectare. Equations (13.4)
to (13.6) and (13.7) to (13.9) may be extended in a straightforward manner for
more than three crops in a mixture.

For equations (13.1) to (13.3), cf , the number of lines of the f th crop, must be
at least two. Alternatively, if cf � 1, then the line must appear at least twice in at
least some of the blocks in order to obtain an estimate of σ 2

f ε . Given that cf ≥ 2
and that each treatment occurs once in each block, the solutions for restraints
�hρ̂f h � �iτ̂f i � 0 are

µ̂f �
r∑

h�1

cf∑
i�1

Yf hi/rcf � ȳf ··, (13.10)

ρ̂f h � ȳf h· − ȳf ··, (13.11)

τ̂f i � ȳf ·i − ȳf ··, (13.12)

and

σ̂ 2
f ε �
[

r∑
h�1

cf∑
i�1

Y 2
f hi −

r∑
h�1

Y 2
f h·
cf

−
cf∑
i�1

Y 2
f ·i
r

+ Y 2
f ··

rcf

]/
(r − 1)(cf − 1).

(13.13)
Solutions for the ith line of crop one, the j th line of crop two, and the gth line
of crop three for the response model equations (13.4) to (13.6) and subject to the
additional restrictions that �

c2
j�1γ̂i(j ) � �

c1
i�1γ̂(i)j � �

c3
g�1γ̂i(g) � �

c3
g�1γ̂j (g) �

�
c1
i�1γ̂(i)g � �

c2
j�1γ̂(j )g � �j�gπ̂i(jg) � �i�j π̂(ij )g � �i�j π̂(ij )g � 0 for each

f and for the ijg combination of lines of the three crops are given as follows for
mixtures of three crops, f � 1, 2, 3:

δ̂1i � 3ȳ1·i(··) − ȳ1·i , (13.14)

δ̂2j � 3ȳ2·(·)j (·) − ȳ2·j , (13.15)
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δ̂3g � 3ȳ3·(··)g − ȳ3·g, (13.16)

γ̂i(j ) � 3(v − 2)[ȳ1·i(j ·) − ȳ1·i(··)]/2(v − 3), (13.17)

γ̂i(g) � 3(v − 2)[ȳ1·i(·g) − ȳ1·i(··)]/2(v − 3), (13.18)

γ̂(i)j � 3(v − 2)[ȳ2·(i)j (·) − ȳ2·(·)j (·)]/2(v − 3), (13.19)

γ̂j (g) � 3(v − 2)[ȳ2·(·)j (g) − ȳ2·(·)j (·)]/2(v − 3), (13.20)

γ̂(i)g � 3(v − 2)[ȳ3·(i·)g − ȳ3·(··)g]/2(v − 3), (13.21)

γ̂(j )g � 3(v − 2)[ȳ3·(·j )g − ȳ3·(··)g]/2(v − 3), (13.22)

π̂i(jg) � ȳ1·i(jg) −
(

v − 2

v − 3

) (
ȳ1·i(j ·) + ȳ1·i(·g)

)+ (v − 1

v − 3

)
ȳ1·i(··), (13.23)

π̂(i)j (g) � ȳ2·(i)j (g) −
(

v − 2

v − 3

) (
ȳ2·(i)j (·) + ȳ2·(·)j (g)

)
+
(

v − 1

v − 3

)
ȳ2·(·)j (·), (13.24)

π̂(ij )g � ȳ3·(ij )g −
(

v − 2

v − 3

) (
ȳ3·(i·)g + ȳ3·(·j )g

)+ (v − 1

v − 3

)
ȳ3·(··)g, (13.25)

σ̂ 2
1ε3 �
[∑

h

∑
i

∑
j

∑
g

Y 2
1hi(jg) −

∑
h

Y 2
1h(··)

c1c2c3
(13.26)

−
∑

i

∑
j

∑
g

Y 2
1·i(jg)

r
+ Y 2

1··(··)
rc1c2c3

]/
(r − 1)(c1c2c3 − 1),

σ̂ 2
2ε3 �
[∑

h

∑
i

∑
j

∑
g

Y 2
2h(i)j (g) −

∑
h

Y 2
2h(·)·(·)

c1c2c3
(13.27)

−
∑

i

∑
j

∑
g

Y 2
2·(i)j (g)

r
+ Y 2

2·(·)·(·)
rc1c2c3

]/
(r − 1)(c1c2c3 − 1),

σ̂ 2
3ε3 �
[∑

h

∑
i

∑
j

∑
g

Y 2
3h(ij )g −

∑
h

Y 2
3h(··)·

c1c2c3
(13.28)

−
∑

i

∑
j

∑
g

Y 2
3·(ij )g

r
+ Y 2

3·(··)·
rc1c2c3

]/
(r − 1)(c1c2c3 − 1),

where c1, c2, c3 > 1 for the last three equations and where the 3 in σ̂ 2
f ε3 refers to

mixtures of three. Note that for v crops in mixtures of three the factor c1c2c3 is
replaced by c1c2c3(v−1)(v−2)/2 in equations (13.26)–(13.28), to account for the
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TABLE 13.1. Analysis of Variance for Crop One Responses as a Sole Crop and in a Mixture
of Three Cultivars for Response Model Equations (13.1) and (13.4) for v � 3.

Source Degrees of Freedom Sum of squares

Total rc1c2c3

r∑
h�1

c1∑
i�1

c2∑
j�1

c3∑
g�1

Y 2
1hi(jg)

+
∑

h

∑
i

Y 2
1hi

Correction for mean 1 (Y1··(··) + Y1··)2/

(rc1c2c3 + rc1) � C

Blocks r − 1
∑

h

Y 2
1h·(··)/(c1c2c3 + c1)

−C

Treatments c1c2c3 + c1 − 1
∑

i

∑
j

∑
g

Y 2
1·i(jg)/r

+
∑

i

Y 2
1··/rc1 − C

Sole crop one lines c1 − 1
∑

i

Y 2
1·i/r − Y 2

1··/rc1

Sole crop vs. mix. Of 3 1 (Y 2
1··/rc1)
+(Y 2

1··(··)/rc1c2c3) − C

General mixing effects c1 − 1 rc2c3
∑

i δ̂1i/3δ̂2
1i

Two-factor interaction c1(c2 − 1) 2rc3

∑
i

∑
j

γ̂ 2
i(j )/3

of crops one and two
Two-factor interaction c1(c3 − 1) 2rc2

∑
i

∑
g

γ̂ 2
i(g)/3

of crops one and three
Three-factor interaction c1(c2 − 1)(c3 − 1) r

∑
i

∑
j

∑
g

π̂ 2
i(jg)

Blocks × treatments (r − 1)(c1c2c3 + c1 − 1) By subtraction
Blocks × sole crops (r − 1)(c1 − 1) Formula (13.13)
Blocks × mixtures (r − 1)(c1c2c3 − 1) Formula (13.26)
Blocks × soles r − 1 By subtraction

vs. mixtures

total number of mixtures involving crop f and its cf cultivars. Similar solutions
are obtainable for equations (13.7), (13.8), and (13.9). The solutions involve the
proportions p1, p2, and p3 with the above means. Note that ρ̂f h from both sole
crops and mixtures for crop f is obtained as

ρ̂f h �
(

v∑
i�1

Yf hi +
∑

i

∑
j

∑
g

Yf hi(jg)

)/
(cf + c1c2c3)

−
(∑

h

∑
i

Yf hi +
∑

h

∑
i

∑
j

∑
g

Yf hi(jg)

)/
r(cf + c1c2c3).(13.29)
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An analysis of variance table for the responses for one crop is given in Table
13.1. The computations for the various sums of squares are straightforward and
involve only totals and solutions for effects. Similar analysis of variance tables
may be set up for other crops. The variance of a difference between two sole crop
one-line effects, say τ̂1i − τ̂1i ′ � ȳ1·i − ȳ1·i ′ , is obtained from formula (13.13) as
2σ̂ 2

1ε/r � V̂ (τ̂i − τ̂i ′ ), i �� i ′. The estimated variance of a difference between two
mixture means, ŷ1·i(jg) − ȳ1·i ′(jg), is V̂ (ȳ1·i(jg) − ȳ1·i ′(jg)) � 2σ̂ 2

1ε3/r , and for the
two means ȳ1·i(j ·) − ȳ1·i ′(j ·) it is 2σ̂ 2

1ε3/rc1. It should be noted that the variances of
Yf hi(jg) may not all be estimates of the same single parameter σ 2

1ε3. The discussion
here is based on the assumption of homoscedastic variances. The sole crop one
mean may be compared with the mean of three crop mixture responses for crop
one as follows:

t � (ȳ1·· − ȳ1··(··)
)/√ σ̂ 2

1ε

rc1
+ σ̂ 2

1ε3

rc1c2c3

and compared with a computed t value equal to

t ′α �
(

tα,f1

σ̂ 2
1ε

rc1
+ tα,f13

σ̂ 2
1ε3

rc1c2c3

)/(
σ̂ 2

1ε

rc1
+ σ̂ 2

1ε3

rc1c2c3

)
,

where f1 � (r − 1)(c1 − 1) and f13 � (r − 1)(c1c2c3 − 1) are the degrees of
freedom associated with σ̂ 2

ε1 and σ̂ 2
1ε3, respectively. This is the Cochran formula

for approximating a tabulated t-statistic at the α percent level for the Behrens–
Fisher situation. (See, e.g., Grimes and Federer, 1984.) Also, in the above it was
assumed that there were c1 lines of crop one, c2 lines of crop two, and c3 lines of
crop three in all possible combinations. This means that there were rc1c2c3 yields
entering into the mean ȳ1··(··).

Example 13.5. For the experiment described in Section 12.4, the individual plant
dry weights of the six secondary crops,

A wild oat D birdsfoot trefoil
B coriander E alfalfa
C lentils F chamomile

were available and are given in Table 13.2. We shall use these data to demonstrate
an analysis for six main crops as sole crops, in mixtures of three, and in a mixture
of six, all overseeded with barley. Here, cf i � 1 for f �A, . . . ,F, and there are
(v − 1)(v − 2)/2 � 10 combinations where crop i occurs. There were 12 plants
entering the total yield for sole crops, 4 plants of each crop for mixtures of 3,
and 2 plants for mixtures of all 6 cultivars. The words crop and cultivar are used
interchangeably in this chapter. The number of plants in an experimental unit for
these responses was a constant number, 12 of 1 or more of these 6 cultivars and
20 barley plants.

For the combination ABE in block one, there were two missing plants for A.
To bring the total biomass to a four-plant total, the yield of the two plants was
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TABLE 13.2. Biomass in Grams for Single Cultivar and Mixtures of Three Cultivars, ijg.
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multiplied by 2 to obtain 3.96; that is, the mean of the remaining plants is used
as the missing plant value. In block three, combination ACD had one missing
value for A. Therefore, the total of three plants, 4.14, was multiplied by 4/3 to
obtain 5.52. In block three, ABCDEF had one missing plant for C, and the one
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plant value was doubled to obtain 2(7.04) � 14.08. With such adjustments, all
mixture yields are on either a two-plant or four-plant basis, depending on the
combination. After performing the analyses, it was not noticed that there was also
one missing plant for D in ADF of block three. The appropriate value should be
(0.22)(4/3) � 0.27 rather than 0.22 as given in Table 13.3 for crop D. Since this
value differs little from the appropriate value, the analyses were not redone but
are left as an exercise for the reader. The procedure used would be a least squares
solution for minimizing the among plants within cultivar and experimental unit
mean square. Alternatively, an unequal numbers analysis could have been used.
This would give a least squares solution minimizing the treatment by block sum of
squares. Both procedures should give approximately the same results in this case.

Let us consider the following response model equations for the data from cultivar
i, i �A,B,C,D,E,F, in this experiment. These are different but in the spirit of those
given in (13.1) to (13.6). For sole crop i �A and effects on a four-plant basis [see
Appendix 13A, equations (13.58) to (13.70)], the response equations are

YhA � µ + τA + ρhA + εhA, h � 1, 2, . . . , r, (13.30)

YhA(jg) � µ + τA + ρhA + 1

2

(
δA(j ) + δA(g)

)+ πA(jg)

+ εhA(jg), j, g � B,C,D,E,F (13.31)

and

YhA(BCDEF ) � µ + τA + ρhA + 2δ̄A(·) + 2βA(BCDEF ) + εhA(BCDEF ). (13.32)

The above form for the parameters was used since all mixtures of three yields were
on a four-plant basis. The sole crop yields for 12 plants were divided by 3 to put
them on a four-plant basis and the yields from mixtures of 6 were multiplied by
2. These are the responses given in Table 13.3. The error variances should now be
comparable and approximately equal.

The resulting normal equations under variance equality and model constraints
�r

h�1ρhi � 0, �v
g�1, ��jπi(jg) � 0, and �v

j�1δi(j ) � (v − 1)δ̂i(·) for i �� j , g �
1, 2, . . . , v (on a four-plant basis) are given by equations (13.61) to (13.65). The
solutions [see (13.66)–(13.70)] are

µ̂ + τ̂i � ȳ·i , (13.33)

δ̂i(·) � ȳ·i(··) − ȳ·i , (13.34)

δ̂i(j ) � 2

3r
Y·i(j ·) − 5

3
ȳ·i(··) − ȳ·i , (13.35)

π̂i(jg) � ȳ·i(jg) − 1

3r

(
Y·i(j ·) + Y·i(g·)

)+ 5

3
ȳ·i(··), (13.36)

2β̂i(all but i) � ȳi(all but i) − 2ȳ·i(··) + ȳ·i . (13.37)
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For a random set of blocks, the variances for crop i [equations (13.76)–(13.80)]
are

V (µ̂ + τ̂i) � (σ 2
εi + σ 2

ρi

)
/r, (13.38)

V (δ̂i(·)) � 11σ 2
εi/10r, (13.39)

V (δ̂i(j )) � 13σ 2
εi/6r, (13.40)

V (π̂i(jg)) � σ 2
εi/2r, (13.41)

and

V (β̂i(all but i)) � 12σ 2
εi/5r, (13.42)

where σ 2
ρi is the variance component among ρhi and σ 2

εi is a common variance for
all error components in the design for cultivar i.

The data in Table 13.2 have been rearranged, put on a four-plot basis, and are
given in Table 13.3 by cultivar. The application of the above formulas to the data
of Table 13.3 is illustrated below for cultivar or crop A (results correct to rounding
errors).

µ̂ + τ̂A � 22.58

3
� 7.527 � ȳ·i ,

δ̂A(·) � 206.56

3(10)
− 22.58

3
� 6.885 − 7.527 � −0.641,

δ̂A(B) � 2

3(3)
(13.88 + 27.75 + 20.50 + 18.47)

− 5

3
(6.885) − 7.527 � −1.091,

δ̂A(C) � 2

9
(73.97) − 19.002 � −2.564,

δ̂A(D) � 2

9
(85.40) − 19.002 � −0.024,

δ̂A(E) � 2

9
(87.51) − 19.002 � 0.445,

δ̂A(F ) � 2

9
(85.64) − 19.002 � 0.029,

π̂A(BC) � 13.88

3
− (80.60 + 73.97)

3(3)
+ 5

3
(6.8853) � −1.072,

π̂A(BD) � 27.75

3
− 166.00

9
+ 11.476 � 2.281,
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π̂A(BE) � 20.50

3
− 168.11

9
+ 11.476 � −0.370,

π̂A(BF ) � 18.47

3
− 166.24

9
+ 11.476 � −0.838,

π̂A(CD) � 15.81

3
− 159.37

9
+ 11.476 � −0.962,

π̂A(CE) � 21.82

3
− 161.48

9
+ 11.476 � 0.807,

π̂A(CF ) � 22.46

3
− 159.61

9
+ 11.476 � 1.228,

π̂A(DE) � 21.16

3
− 172.91

9
+ 11.476 � −0.683,

π̂A(DF ) � 20.68

3
− 171.04

9
+ 11.476 � −0.635,

π̂A(EF ) � 24.03

3
− 173.15

9
+ 11.476 � 0.247,

β̂A(BCDEF ) � 1

2

(
15.88

3
− 206.56

15
+ 22.58

3

)
� −0.475.

The remaining values are computed in a similar manner and are presented in Table
13.4.

Analyses of variance for each of the six cultivar yields are presented in Table
13.5. Standard computational procedures are used for all but the last two lines of an
analysis of variance table. These are the variations among general mixing effects,
the δ̂i(j ) values, and the variation among the π̂i(jg) interaction or specific mixing
effect values. A few of the computations are left as an exercise for the reader. For
cultivar A, the sum of squares is computed as

3r

4

{∑
j

δ̂2
A(j ) −
(∑

δ̂A(j )

)2/
(v − 1)

}

� 3(3)

4

{
(−1.091)2 + (−2.564)2 + (−0.024)2 + 0.4452 + 0.0292

−1

5
(−1.091 + · · · + 0.029)2

}
� 9

4
{7.964 − 2.054}

� 13.298 with v − 2 � 4 degrees of freedom.
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TABLE 13.3. Plant Dry Weights by Cultivar
Cultivar A yields Cultivar B yields

(g; 4-plant dry weight) (g; 4-plant dry weight)
Treatment Block Treatment Block
ijg 1 2 3 Total ijg 1 2 3 Total
A/3 8.01 5.29 9.28 22.58 B/3 0.74 0.53 0.37 1.64
ABC 6.54 7.05 0.29 13.88 ABC 0.95 0.74 0.39 2.08
ABD 6.13 9.78 11.84 27.75 ABD 0.61 0.49 0.71 1.81
ABE 3.96 10.40 6.14 20.50 ABE 1.70 0.41 0.93 3.04
ABF 5.12 5.88 7.47 18.47 ABF 0.63 0.40 0.64 1.67
ACD 6.79 3.50 5.52 15.81 BCD 1.35 0.55 0.68 2.58
ACE 8.94 5.65 7.23 21.82 BCE 1.72 1.09 1.19 4.00
ACF 9.03 5.78 7.65 22.46 BCF 1.26 0.67 1.04 2.97
ADE 7.19 6.08 7.89 21.16 BDE 0.85 1.20 0.68 2.73
ADF 9.45 2.16 9.07 20.68 BDF 0.68 0.46 0.48 1.62
AEF 3.93 7.77 12.33 24.03 BEF 0.52 0.51 1.20 2.23
2(ABCDEF) 5.28 1.60 9.00 15.88 2(ABCDEF) 0.80 0.20 1.46 2.46
Total 3 67.08 64.05 75.43 206.56 Total 3 10.27 6.52 7.94 24.73
Total 80.37 70.94 93.71 245.02 Total 11.81 7.25 9.77 28.83

Cultivar C yields Cultivar D yields
(g; 4-plant dry weight) (g; 4-plant dry weight)

Treatment Block Treatment Block
ijg 1 2 3 Total ijg 1 2 3 Total
C/3 15.99 13.92 9.63 39.54 D/3 1.34 0.36 1.01 2.71
ABC 28.53 14.55 9.46 52.54 ABD 1.63 0.31 0.47 2.41
ACD 13.97 13.72 16.58 44.27 ACD 1.51 0.34 0.83 2.68
ACE 9.03 25.07 12.06 46.16 ADE 0.72 0.40 0.55 1.67
ACF 23.07 11.89 18.06 53.02 ADF 1.08 0.77 0.22 2.07
BCD 12.27 10.89 10.16 33.32 BCD 0.89 0.25 0.42 1.56
BCE 22.28 23.26 15.21 60.75 BDE 0.69 1.08 0.28 2.05
BCF 20.64 15.23 18.16 54.03 BDF 0.18 0.03 0.26 0.47
CDE 19.53 14.52 15.79 49.84 CDE 0.54 0.28 1.03 1.85
CDF 13.45 35.10 19.26 67.81 CDF 1.23 0.67 0.43 2.33
CEF 19.15 13.67 20.93 53.75 DEF 1.43 0.24 0.20 1.87
2(ABCDEF) 27.22 21.46 28.16 76.84 2(ABCDEF) 0.70 1.42 1.20 3.32
Total 3 181.92 177.90 155.67 515.49 Total 3 9.90 4.37 4.69 18.96
Total 225.13 213.28 193.46 631.87 Total 11.94 6.15 6.90 24.99

(continued)
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TABLE 13.3. (continued)

Cultivar E yields Cultivar F yields
(g; 4-plant dry weight) (g; 4-plant dry weight)

Treatment Block Treatment Block
ijg 1 2 3 Total ijg 1 2 3 Total
E/3 4.57 1.60 2.79 8.96 F/3 1.11 0.16 0.32 1.59
ABE 4.17 2.26 3.08 9.51 ABF 0.45 0.03 0.28 0.76
ACE 0.93 2.21 1.42 4.56 ACF 1.37 0.18 1.03 2.58
ADE 3.37 1.84 1.99 7.20 ADF 1.11 0.32 0.23 1.66
AEF 7.58 4.58 4.28 16.44 AEF 1.26 0.06 0.47 1.79
BCE 2.78 4.57 1.84 9.19 BCF 1.15 0.44 0.49 2.08
BDE 2.65 7.21 1.15 11.01 BDF 0.30 0.06 0.08 0.44
BEF 1.57 5.22 1.82 8.61 BEF 0.28 0.32 0.48 1.08
CDE 2.62 1.12 6.89 10.63 CDF 1.21 0.21 0.33 1.75
CEF 3.01 1.50 2.35 6.86 CEF 1.24 0.00 1.32 2.56
DEF 3.89 1.77 2.67 8.33 DEF 1.06 0.16 0.26 1.48
2(ABCDEF) 1.86 3.52 3.64 9.02 2(ABCDEF) 0.64 0.14 1.08 1.86
Total 3 32.57 32.28 27.49 92.34 Total 3 9.43 1.78 4.97 16.18
Total 39.00 37.40 33.92 110.32 Total 11.18 2.08 6.37 19.63

Note: Sole crop weights divided by 3 and mixtures yields from mixture ABCDEF were multiplied by 2 to bring all
yields to a 4-plant basis.

Note that 9
(∑

δ̂i(j )

)2
/4(5) is not the sum of squares for mixtures of three crops

versus a sole crop. However, this sum of squares multiplied by the factor 4v/r(n1+
n2) � 24/99 � 8/33 yields the sum of squares for mixtures of three versus a sole
crop. n1 is the number of experimental units for the sole crop, i.e., three, n2 is
the number of experimental units occupied by mixtures of three cultivars, i.e., 30,
r � 3, and v � 6. Thus,(

9

4

)(
8

33

)
(
∑

δ̂i(j ))2

5

�
(

9

4

)(
8

33

)
(2.054) �

(
6

11

)
(2.054) � 1.120.

The sum of squares for the interaction of specific mixing effects, πi(jg), is computed
as follows for intercrop A:

r
∑∑

j<g

π̂2
A(jg) � 3{(−1.072)2 + 2.2812 + · · · + 0.2472} � 33.620

with (v − 1)(v − 4)/2 � 5 degrees of freedom. These two sums of squares should
add to the sum of squares among mixtures of three; i.e., 13.298 + 33.620 � 46.918,
which is equal to 46.924 within rounding errors.

If significance testing is done, it may be noted that there are only two mean
squares significant at the 5% level. Those are the mean squares for among the
estimated mixing effects δ̂i(j ) for i � B and F. The corresponding F -statistics are
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TABLE 13.4. Estimated Effects from Cultivar Yields in Table 13.3. Four-Plant Basis.

Cultivar i (g)
Effect A B C D E F
µ̂ + τ̂i 7.527 0.547 13.180 0.903 2.987 0.530
δ̂i(·) −0.641 0.278 4.003 −0.271 0.091 0.009
δ̂i(A) −0.010 1.735 0.006 0.263 0.080
δ̂i(B) −1.091 2.768 −0.514 0.399 −0.460
δ̂i(C) −2.564 0.664 −0.086 −1.174 0.564
δ̂i(D) −0.024 0.021 1.568 0.143 −0.244
δ̂i(E) 0.445 0.746 4.959 −0.303 0.107
δ̂i(F ) 0.029 −0.034 8.984 −0.459 0.826
π̂i(AB) 2.082 0.154 −0.148 −0.087
π̂i(AC) −0.181 0.030 −1.011 0.008
π̂i(AD) 0.051 −0.075 −0.790 0.106
π̂i(AE) 0.098 −1.141 −0.198 −0.027
π̂i(AF ) 0.032 −0.866 0.013 1.949
π̂i(BC) −1.072 −0.083 0.464 0.111
π̂i(BD) 2.281 −4.242 0.412 −0.031
π̂i(BE) −0.370 3.206 0.189 0.007
π̂i(BF ) −0.839 −1.046 −0.260 −0.729
π̂i(CD) −0.962 −0.029 1.072 −0.107
π̂i(CE) 0.807 0.082 −0.092 −0.012
π̂i(CF ) 1.228 0.128 0.146 −0.526
π̂i(DE) −0.683 −0.021 0.169 0.032
π̂i(DF ) −0.636 −0.001 4.147 −0.694
π̂i(EF ) −0.247 −0.159 −2.235 0.101
β̂i(all but i) −0.475 −0.141 3.880 0.373 −0.081 0.036

0.345/0.105 � 3.29 and 0.342/0.096 � 3.56. The tabulated F -values at the 5%
and 2.5% levels are F.05(4, 22) � 2.82 and F.025(4, 22) � 3.44.

It should be noted that there appear to be outliers in these data. A study of
the residuals should be made before performing significance tests or computing
confidence intervals. An example of a possible outlier is the value of 0.29 in Table
13.3 for cultivar A, block three, for the mixture ABC. For cultivar C, the values
25.07 for ACE in block two and 35.10 for CDF in block two appear to be the
cause of large residuals resulting in a rather large blocks by treatment mean square
and a large coefficient of variation (see Table 13.6). A study of the residuals as
done in Chapter 12 is left as an exercise for the reader. Likewise, the data were
not studied to determine whether or not a transformation was desirable. However,
an analysis of variance was performed on the logarithms of the responses in Table
13.3. The F -ratios were computed and are given in Table 13.6 for the block and
treatment mean squares. The F -ratios are roughly the same for yields and for
logarithms of yields. The coefficients of variation must be considered as quite
large. This reinforces the comment that a study of residuals should be done for
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TABLE 13.5. Analyses of Variance for Data from Table 13.3, Four-Plant Basis.

Source of Degrees of Sum of squares Mean squares
Variation freedom A B C A B C
Total 36 1915.211 28.153 12,411.31
CFM 1 1667.633 23.088 11,090.55
Blocks � R 2 21.815 0.870 42.67 10.908 0.435 21.34
Treatment � T 11 55.536 1.879 516.54 5.049 0.171 46.96

Mixture of 3 9 46.924 1.668 260.16 5214 0.185 28.91
Sole vs. 3 1 1.122 0.210 43.70
Rest vs. 6 1 7.490 0.001 212.68

R × T 22 170.226 2.316 761.55 7.738 0.105 34.62
Mixture 3 × R 18 149.404 1.605 716.88 8.3000 0.089 39.83
Remainder 4 20.822 0.711 44.67 5.206 0.178 11.17

General 4 13.298 1.381 86.23 3.324 0.345 31.56
Interaction 5 33.620 0.287 173.94 6.727 0.057 34.79

Source of Degrees of Sum of squares Mean squares
Variation freedom D E F D E F
Total 36 24.312 438.702 17.789
CFM 1 17.347 338.070 10.704
Blocks � R 2 1.652 1.124 3.454 0.826 0.562 1.727
Treatment � T 11 1.865 30.011 1.521 0.170 2.728 0.138

Mixture of 3 9 1.107 29.978 1.502 0.123 3.499 0.167
Sole vs. 3 1 0.201 0.023 0.000
Rest vs. 6 1 0.557 0.011 0.018

R × T 22 3.447 69.496 2.110 0.157 3.159 0.096
Mixture 3 × R 18 2.403 62.978 1.651 0.133 3.331 0.092
Remainder 4 1.044 6.518 0.459 0.261 1.630 0.115

General 4 0.464 5.102 1.365 0.116 1.276 0.342
Interaction 5 0.643 24.282 0.137 0.129 4.856 0.027

these data. The investigator should be consulted to ascertain why there was so
much variation. Better experiment design, appropriate statistical analyses, better
experimental technique, and/or larger experimental units may be needed. If these
do not solve the problem of excessive variation, then the only recourse is to increase
the number of replicates.

Various variances may be computed using equations (13.38) to (13.42). Then,
comparisonwise confidence intervals may be computed. These are given in Table
13.7. The estimated variances for the estimated effects for cultivar A are

V (µ + τ̂A) � [7.738 + (10.908 − 7.738)/12]/r � 2.6674,

V (δ̂A(·)) � 11(7.738)/10r � 2.8373,

V (δ̂A(j )) � 13(7.738)/6r � 5.5886,
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TABLE 13.6. F -Ratios and Coefficients of Variation for Data of Table 13.3, Using Original
Responses and Logarithm of Responses. Log(yield + 1) was used in place of log(yield).

Cultivar

(F -ratio)
A B C D E F

Yields Block 1.41 4.13 0.62 5.27 0.18 18.01
Treatment 0.65 1.62 1.36 1.08 0.86 1.44

Log (yield) Block 0.29 . 0.68 5.50 0.16 19.98
Treatment 0.71 . 1.47 1.29 0.84 1.45

Coefficient of variation (%)
A B C D E F

Yield 41 41 34 57 58 57
Log (yield) 40 · 11 45 57 47

V (π̂A(jg)) � 7.738/2r � 1.2897,

and
V (β̂A(BCDEF )) � 12(7.738)/5r � 6.1904.

The variances for the remaining cultivars are computed in a similar manner and
are presented in Table 13.7.

The 95% comparisonwise half-confidence intervals are computed by multiply-
ing the square root of the estimated variance by the tabulated value for the t-statistic
for α � .05, and degrees of freedom equal to 22, i.e., t.05,22 � 2.074. Thus,

δ̂A(·) ± t.05,22

√
V
(
δ̂A(·)
)

� −0.641 ± 2.074
√

2.8373

� −0.64 ± 3.49 to two decimals

is the 95% confidence interval for δA(·).
Until the problem of outliers is resolved, the following statements are to be

considered tentative in interpreting the data and using significance tests. All of
the δi(·) confidence intervals contain the value zero and hence are not signifi-
cantly different from zero. Two of the confidence intervals for δB(j ), i.e., δB(C)

and δB(E), do not contain the value zero; they are significantly different from
zero at the 5% level. For cultivar F, one value, δ̂F (C), is significantly different
from zero. For the π̂i(jg), π̂A(BD) is nearly significant and π̂E(AF ) is significant.
Since there are 50 π̂i(jg) values and if they were independent, which they are not,
one would expect .05(50) � 2.5 to be significant based on random sampling.
Since two of the π̂i(jg) were significant, this is what would be expected based on
random sampling. Again, the reader should be cautioned about possible outliers
in these data. If there are outliers which should be removed, the block × treat-
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TABLE 13.7. Variances and Comparisonwise Confidence Intervals for Effects in Table 13.4.

Variances and Cultivar
Confidence Intervals A B C D E F

V̂ (δ̂i(·)) 2.8373 0.0385 12.694 0.0576 1.1583 0.0352

t.05,22

√
V̂ (δ̂i(·)) 3.49 0.407 7.39 0.498 2.23 0.389

V̂ (δ̂i(j )) 5.5886 0.0758 25.003 0.1134 2.2815 0.0693

t.05,22

√
V̂ (δ̂i(j )) 4.90 0.571 10.4 0.698 3.13 0.546

V̂ (π̂i(jg)) 1.2897 0.0175 5.7700 0.0262 0.5265 0.0160

t.05,22

√
V̂ (π̂i(jg)) 2.36 0.274 4.98 0.335 1.50 0.262

V̂ (β̂i(all but i)) 6.1904 0.0840 27.696 0.1256 2.5272 0.0768

t.05,22

√
V̂ (β̂i(all but i)) 5.16 0.601 10.91 0.735 3.30 0.575

ment mean squares would be decreased and more significant results would be
obtained.

13.4 Combined Responses for Three or More Crops

As stated in Chapter 4 of Volume I, the grower of crops in a farming system would
be interested in some linear combination of crop responses. In most cases, the
responses will be weights of fruit, grain, fodder, biomass, or some other character-
istic. In some cases, the response could involve numbers rather than weight, e.g.,
oranges, ears of sweet corn, etc. Whatever the response of interest, it will appear
in the weighted total response for the system. For v crops in mixtures of size k,
k � 1, . . . , v, and responses Yhij , the linear combination would be

v∑
h�1

ahYhij � Zij , (13.43)

where ah is a weighting factor for crop h in block j in the ith mixture of size k;
all crops not appearing in the mixture will have ah � 0. Thus, for a sole crop, all
ah � 0 except one, for a mixture of two crops, only two of the ah will be nonzero.
Equation (13.43) is a generalization of the results in Chapter 4 of Volume I (also,
see Federer, 1987, Riley, 1984).

From an economic point of view, ah is the value of crop h. From a nutritional
point of view, ah would represent a calorie or a protein conversion factor. From a
land use point of view,ah would be the reciprocal of the sole crop yield andYh would
be the yield of crop h in the mixture. From a statistical viewpoint, (13.43) could be
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the linear combination maximizing the variance of the linear combination or which
maximized the treatment sum of squares divided by the treatment plus error sums
of squares. The statistical view does not lend itself to practical interpretation and,
hence, would not ordinarily be of use in an experiment on intercropping. Since
ratios of prices and ratios of sole crop yields are much more stable than are prices
or yields themselves, it is recommended that one crop be selected as a base crop
and that the coefficients for all crops be divided by this coefficient. Thus, if h � 1
is the base crop, then (13.43) becomes

v∑
h�1

ahYh

a1
�

v∑
h�1

bhYh, (13.44)

where bh � ah/a1. When ah is the reciprocal of the sole crop yields, say Ysh, then
(13.44) becomes

LER∗ �
v∑

h�1

Ys1Yh/Ysh � Ys1

v∑
h�1

Lh, (13.45)

where Lh � Yh/Ysh, Ysh is the sole crop yield for crop h, Ys1 is the yield for the
base sole crop, and Yh is the yield of crop h in the mixture. Equations (13.44)
and (13.45) would be called relative linear combinations, e.g., relative economic
values, relative land use or land equivalent ratios, relative calories or protein, etc.
For comparative purposes of cropping systems, such relative values are useful and,
as shown in Chapter 4 of Volume I and Chapter 11, they can be discussed together
simply by changing the values for ah or bh.

The values for Ysh should be fixed values and not random variables. If Yh and Ysh

have a bivariate normal distribution, then the variance of Y1/Ys1+Y2/Ys2 is infinite
(Federer and Schwager, 1982). Of course, the assumption of normality for Ysh or Yh

is invalid since yields cannot be negative. Perhaps some bivariate distribution, with
non-negative values for Yh and Ysh, e.g., gamma, chi square, etc., would yield a
distribution for (13.45) with a finite variance. This problem requires investigation.
However, if Ysh or Ysh/Ys1 are constants, the problem of infinite variance does not
arise. It is recommended that Ysh be the average yield from growers’ fields over
a period of years in the region for which the proposed cropping systems are to
be used. Mead and Willey (1980) and Mead and Riley (1981) have recommended
use of “optimal” yield. Since some estimate of average growers’ yields would be
available for most regions and since the concept of optimal yield would usually be
hard to define and may vary with individuals, it is recommended that the average
ratio of growers’ yields be used. Then, bh can be regarded as a constant, and the
problem of infinite variances does not arise. It would appear that such a procedure
would be more in line with what a grower would do.

Regardless of the linear combination used to combine values across all crops, the
statistical analysis procedures are for a standard univariate analysis. The standard
randomized complete blocks analysis of variance, F -tests, multiple comparisons
procedures, etc. may be used. There should be no trouble with variance heterogene-
ity, or perhaps even the assumption of normality. All analyses will be conditional
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upon the ratios used. As in Chapter 4 of Volume I, it is recommended that a range
of ratios be used; for example, a low, medium, and high value. For v crops, this
would require 3v−1 ratio combinations. For 3 crops, one could construct 9 graphs
like Figure 4.1 of Volume I; for four crops, 27 such graphs would be required; etc.
For such quantities as total calories, starch, or protein, many fewer ratio combi-
nations would probably be required. The experimenter should give considerable
thought to this prior to doing the computations.

The c1c2c3 mixtures could be treated as a three-factor factorial with c1 levels of
factor (crop) one, c2 levels of factor (crop) two, and c3 levels of factor (crop) three.
The lines form the levels of crops and are unordered. For mixtures of v crops,
one could consider a v-factor factorial with c1c2 · · · cv combinations. Any of the
functions of the v responses for a mixture of lines of v crops could be treated in
this fashion.

The previous discussion deals with linear combinations of data according to
some specific plan. One could let the data determine which linear combination(s)
would most effectively discriminate among the treatments (lines of the crops) by
using a multivariate analysis approach. The v crops would be considered to be v

varieties in the MANOVA (multivariate analysis of variance). A table similar to
Table 4.5 of Volume I could be used, where the matrix would be v × v instead of
2 × 2. If mixtures of k of v crops were used, the article by Srivastava (1968) may
be helpful in using a multivariate analysis.

Given that Zij values are available from an experiment laid out as a randomized
complete block design, e.g., where Zij is the yield of the ith system (treatment)
from the j th block, standard analyses of variance, multiple comparisons proce-
dures, significance tests, interval estimation, etc. may be conducted. Of course,
as usual, variance homoscedasticity, additivity, and independence among the Zij

must hold for most procedures. To illustrate the use of created variables such as
those in (13.43) to (13.45), the data from Examples 13.3 and 13.5 plus a third
example are utilized.

Example 13.6. An experiment involving three cultivars (cotton, maize, and beans)
in all combinations of one, two, and three crops was conducted in 1975 and 1976
at the Barbalha Experiment Station in Ceará, Brasil. The yields of the three sole
crops, three mixtures of two cultivars, and one mixture of all three crops are given
in Table 13.8. If the monetary worth of cotton is five times that of maize and
the monetary value of beans is four times that of maize, then forming the linear
combinations Zij � 5Cij +Mij +4Bij , where Cij is the yield of cotton, Mij is the
yield of maize, and Bij is the yield of beans for mixture i in year j , i � 1, 2, . . . , 7
treatments and j � 1975, 1976. For example, the created relative monetary value
for i � 6 or treatment M + B in 1975 is 4610 � 5(0)+2406+4(551). An analysis
of variance on this created variable is given at the bottom of Table 13.8, along
with an F -statistic for treatments. It should be noted (i) a multiple comparisons
procedure or (ii) a 23-factorial analysis for a fractional replicate could have been
used. (Note: The no C, no M, and no B combination produces zero yield, but
this combination, while completing the 23 factorial, should not be included in the
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TABLE 13.8. Experiment on Mixtures Conducted at the Barbalha Experiment Station,
Ceará, Brazil. Production of Cotton, Maize, and Beans in kg/ha, 1975 and 1976.

1975 1976
Treatments C M B C M B
Cotton � C 408 — — 240 — —
Maize � M — 3102 — — 3443 —
Beans � B — — 1007 — — 1316
C + M 140 294 — 76 3269 —
C + B 366 — 826 308 — 1139
M + B — 2406 551 — 2771 555
C + M + B 174 2135 515 161 2368 531

Monetary Cij + (c̄/m̄)Mij + (c̄/b̄)Bij

5Cij + Mij + 4Bij � LER*
Treatments 1975 1976 Total Mean 1975 1976 Total Mean
Cotton � C 2040 1200 3240 1620.0 408 240 648 324.0
Maize � M 3102 3443 6545 3272.5 310 344 654 327.0
Beans � B 4028 5264 9292 4636.0 282 368 650 325.0
C + M 3641 3649 7290 3645.0 434 403 837 418.5
C + B 5134 6096 11,230 5615.0 597 627 1224 612.0
M + B 4610 4991 9601 4800.5 395 432 827 413.5
C + M + B 5065 5297 10,362 5181.0 532 546 1078 539.0
Total 27,620 29,940 57,560 4111.4 2958 2960 5918 422.7

Monetary Production � LER∗/c̄

Source of Sum of Mean Sum of Mean
variation d.f. squares square F squares square F

Total 14 260,978,602 2,677,540
CFM 1 236,653,829 2,501,623
Year 1 384,457 0
Treatment 6 22,587,738 3,764,623 16.7 155,816 25,969 7.8
Year ×
treatment 6 1,352,578 225,430 20,101 3,350

analysis.) It is suggested that (i) is the appropriate procedure to use, as one wants
the best combination, and it is left as an exercise for the reader.

The investigator might wish to consider land use or relative land use rather than
relative monetary values. For this, let cotton rather than maize be the standard crop.
Then, the coefficient of Cij is unity, of Mij it is (408 + 240)/(3102 + 3443) �
0.10 � c̄/m̄, and of Bij it is c̄/b̄ � (408 + 240)/(1007 + 1316) � 0.28. The
variable called production in Table 13.8 is obtained by taking the value for the
preceding variable, denoted as LER∗, and divide it by c̄ to obtain a LER (land
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equivalent ratio). An analysis of variance on relative LERs is given at the bottom
of Table 13.8, together with an F -statistic. The analysis is valid given that c̄/m̄

and c̄/b̄ are constants and not random variables. Here, again, it is suggested that
a multiple comparisons procedure would be more appropriate than an F -statistic,
as the experimenter usually will want the mixture giving the largest value.

The results for the seven treatments are depicted in Figure 13.1. The production
(LER) and the relative land equivalent ratio, LER∗, must give the same pattern in
the graph, as they differ only by a multiple of c̄. The axes could be adjusted so that
both plots would be the same. The monetary pattern is different from the LER and
LER∗ because the coefficients are different. The investigator will need to insert
appropriate values of the bh in (13.44) for each particular situation. If protein,
carbohydrate, or oil values were of interest, the bh would be different from each
other and from the above. The patterns would also differ from those in Figure 13.1
because different linear combinations of the yields are being obtained.

Example 13.7. The data of Example 13.3 are used here. Maize is considered to
be the base crop and the following created variables were obtained:

Sij + 3Cij + 3Bij + Mij � Z1ij ,

Sij + 5Cij + 5Bij + Mij � Z2ij ,

C C+M M+B C+B
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FIGURE 13.1. Monetary data from Table 13.8. “LER*” is LER* minus 224 multiplied by
16. “LER” is LER minus 2/3 multiplied by 4800. (These transformations were made in
order to put all three indices on the same graph.)
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and

0.9Sij + 8Cij + 7Bij + Mij � Z3ij ,

where Cij , Bij , and Mij are as in Example 13.6 and Sij is the yield of sorghum
in mixture i and location j � I, II. The values of Z1ij , Z2ij , and Z3ij are given
in Table 13.9. Analyses of variance on these created variables are presented at the
bottom of Table 13.9. Here, again, a multiple comparisons procedure would be the
preferred analysis for most investigators.

An investigator may wish to consider land use by using (13.45) or relative land
equivalent ratios. If so and if the relative yields of crops in the region of inference
is a reflection of those in the experiment, then the created variable totals

Z4i· � Mi· + m̄

c̄
Ci· + m̄

s̄
Si· + m̄

b̄
Bi·

� Mi· + 2.5Ci· + Si· + 5Bi·

are 5265, 5129, 5279, 6793, 7601, 5410, 6580, and 8205, respectively, for treat-
ments B, S, M, M+B, S+B, C, M+C, and S+C. These values are identical to those
for Z2i· for the first five treatments but differ for the last three. Depending on
which variable is of interest to the grower or the investigator, the cropping system
or treatment which is optimal varies with the variable. C is best for Z3; S+C is best
for Z1, Z2, and Z4.

A study of the original data or of the created variables Zf ij , f � 1, 2, 3, 4,
indicate that heterogeneity of error variance is present. The erratic responses of
beans alone or in mixtures is the cause of this heterogeneity. The error variance
denoted as R×T (elim. B), which is the year by treatment without beans, is con-
siderably lower than those involving treatments with beans present. For Z1, the
ratios of variance are 1:2.5:17; for Z2, the ratios are 1:3.9:26; and for Z3, the ratios
are 1:4:28. Since heterogeneity of error variances is present, it is suggested that
the Behrens or generalized Behrens procedure be used (see Grimes and Federer,
1984).

In Figure 13.2, the total values Z1i·, Z2i·, Z3i·, and Z4i· are plotted against
treatments ordered by variable Z1. If the variable Z4 is the one of interest to an
experimenter, then treatments S+C and S+B are the best. If variable Z3 were the
one of interest, then the sole crop cotton and the mixture S+C were the two highest.
When the variable of interest is selected, the results may be graphed as in Figure
13.2. In this manner, the investigator may compare different cropping systems as
well as having an idea of variation expected for the particular cropping system.

Example 13.8. For the data from Example 13.5, we may create variables, as has
been done for the previous two examples. Here, however, we use a negative weight
for one of the cultivars in one of the created variables. This is for A wild oat and
variable Z1 . Since wild oat would not normally have any monetary value nor food
value for humans, it may be costly to remove this crop from a mixture. It could
also have a beneficial value for yields of other crops in a mixture, but could have
zero monetary or food value. If it were beneficial in a mixture, wild oat may be
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TABLE 13.9. Created Variables for Various Coefficients of Crop Yields for Data of Example
13.3. (SS = Sum of Squares, MS = Mean Squares.)
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included in the mixture, but it would have a weight of zero in a created variable
for this situation. For Example 13.5, A is wild oat, B is coriander, C is lentils, D is
birdsfoot trefoil, E is alfalfa, and F is chamomile. Suppose the following variable
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FIGURE 13.2. Total responses for created variables Z1 to Z4 plotted against cropping
system ordered on Z1.

is created for treatment i in block j :

Z1ij � −0.5Aij + 10Bij + 5Cij + Dij + Eij + 10Fij .

Here, alfalfa, Eij , is set as the base crop with birdsfoot trefoil, Dij , having equal
value or use. Lentils might be considered as 5 times as valuable as alfalfa, and
coriander and chamomile could have a value of 10 times alfalfa on a weight ba-
sis. Wild oat is given a negative weight which would be appropriate if it was to
be removed from a mixture, i.e., it would be considered as a weed with only a
detrimental effect if it is not removed. Also, note that a cultivar could be costly
to include, but it may have a beneficial effect on other crops in a mixture. In this
case, a negative coefficient may or may not be used.

Another created variable might be land equivalent ratios or relative land equiv-
alent ratios. In absence of other information, let us use the ratio of yields in this
experiment as representative of the region where these mixtures would be grown.
Taking C, lentil, as the base crop, then the variable Z2, relative land equivalent
ratio from (13.45), is created as

Z2ij � 2Aij + 24Bij + Cij + 15Dij + 4Eij + 25Fij ;

where 118.63/67.75
.� 2, 118.63/4.91

.� 24, 118.63/8.15
.� 15, 118.63/26.90

.�
4, and 118.63/4.78

.� 25 (see Table 13.2). Also, let

Z3ij � Aij + Bij + Cij + Dij + Eij + Fij

be the total biomass. Note that if a crop is not present, its yield is zero.
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TABLE 13.10. Created Variables from Data in Table 13.2 for Variables Z1, Z2, and Z3.

Treatment Variable Treatment Variable
i Z1i· Z1i· Z1i· i Z1i· Z1i· Z1i·
A −34 136 68 ADF 8 114 24
B 49 118 5 AEF 22 159 42
C 593 119 119 BCD 194 119 37
D 8 122 8 BCE 353 194 74
E 27 108 27 BCF 321 177 59
F 48 120 5 BDE 40 140 16
ABC 277 130 68 BDF 21 57 3
ABD 7 135 32 BEF 42 115 12
ABE 30 152 33 CDE 262 120 62
ABF 10 116 31 CDF 359 147 72
ACD 216 116 63 CEF 301 145 63
ACE 224 108 73 DEF 25 98 12
ACF 280 162 78 ABCDEF 216 150 55
ADE −2 96 30 — — — —

Variables are

Z1i· � −0.5Ai· + 10Bi· + 5Ci· + Di· + Ei· + 10Fi·,

Z2i· � 2Ai· + 24Bi· + Ci· + 15Di· + 4Ei· + 25Fi·,

Z3i· � Ai· + Bi· + Ci· + Di· + Ei· + Fi·,

Using the totals from Table 13.2, the various totals Z1i·, Z2i·, and Z3i· may be
computed and are presented in Table 13.10. These results are depicted graphically
in Figure 13.3. For the variable Z1, the relatively high yield of C together with a
coefficient of 5 separate the 27 treatments into two groups, those with C and those
without C. For variable Z2, there is no separation, but there is again for variable
Z3 even if not so drastic. The two mixtures BCE and BCF have the highest land
use values, whereas C and ACF have the highest biomass yield.

For crops such as these, it would appear that the calculation of land use val-
ues, land equivalent ratios, would not be what an investigator would desire. There
are cases in intercropping where land equivalent ratios are inappropriate and this
experiment would be one of them. This means that investigators who use land
equivalent ratios for all intercropping investigations could be doing inappropriate
analyses for some of their experiments. Here, again, we demonstrate that the sta-
tistical analysis of an intercropping investigation must be for the goals, nature,
and limitations of the particular experiment being analyzed. It is inappropriate to
use only one analysis for all investigations.

Another aspect of a statistical analysis is to compare a variable Zf , f � 1, 2, 3,
with the yields of the sole crops for the same mixture. Consider variable Z3. For the
mixture ABC, the average of the sole crop yields on a four-plant basis, one-third
of a plot, is (67.55 + 4.91 + 118.63)/3 � 64 � Z5ABC , which is the standard
variable with which to compare Z3ABC . The first Z3i· value is computed as follows
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using the yields from Table 13.2:

Z3ABC � 13.88 + 2.08 + 52.54 � 68.

The remaining Z3i· and Z4i· values are computed in a similar manner and are given
in Table 13.11 and depicted graphically in Figure 13.4. From the graph, it may
be noted that as the biomass increases, the deviations Z3i· − Z4i· increase, and
that the crop C is involved. The question arises as to whether or not the mean of
the deviations Z3i· − Z4i· differs significantly from zero. The null hypothesis is
that the mean of Z3i· − Z4i· is zero. To test this, the mean of the deviations is
[4 + 5 + 0 + · · · + (−1) + 17]/21 � 131/21 � 6.24, the variance of this mean is
[42 +52 +02 +· · ·+ (−1)2 +172 −1312/21]/20(21) � 4.3376, and the t-statistic
is t � 6.24/

√
4.3376 � 3.00. The tabulated t.02,20 � 2.52 and t.01,20 � 2.84.

Alternatively, a chi-square test could have been performed using the number of
plus deviations and the number of negative deviations. More significant figures
could have been used to eliminate the zero deviations. Otherwise, the number
of zeros could be equally divided between the pluses and minuses. Thus, χ2(1
d.f.) � [(14 − (21/2))2 + (7 − (21/2))2]/21/2 � 2.33. This test does not take into
account the size of the differences as does the t-statistic. The negative differences
are small, whereas the positive ones are relatively large.

The idea used to compare Z3i· and Z4i· responses may be carried further. We
may look at the yields of cultivars in mixtures and compare these with sole crop
yields after making the totals comparable. For example, consider a single crop A.
The yield of A in all the mixtures of three where it appeared is 3(13.88 + 27.75 +
20.50+28.47+15.81+21.82+22.46+21.16+20.68+24.03)/10 � 65, where
the coefficient of 3 is used to put yields on the same basis as the sole crop yields
(A in the mixture occupied only one-third of an experimental unit) and 10 is the
number of mixtures of three where A occurred. This value of 65 may be compared
with the sole crop yield 67.75

.� 68. The remaining values are computed in a
similar manner and are given in Table 13.12. The striking item here is the large
deviation, 36, for lentils, C. The sum of the remaining deviations is near zero. If
lentils, C, were the crop of interest, then mixtures would make better use of the
land.

An investigator may wish to observe what happens with pairs of crops in a
mixture of three. For example, the yield for crops A and B in the four mixtures in
which they appear (see Table 13.2) is 3(13.88 + 2.08 + 27.75 + 1.81 + 20.50 +
3.04 + 28.47 + 1.67)/4 � 74, where 3 is needed to put these yields on the
same basis as the sole crop. The sum of the yields of sole crops A and B is
67.75 + 4.91 � 73. The remaining yields of pairs and sole crops are computed in
the same manner and are given in Table 13.12. The deviations are also computed.
Any pair where crop C occurs produces a large positive deviation indicating how
well C does in mixtures. Here, again, we may compute the mean and standard error
of these deviations (the sum of the 15 deviations is 167) and compute a t-statistic
as t � (167/15)/

√
4659.73/14(15) � 11.13/4.71 � 2.36, t.05,14 � 2.15, and

t.02,14 � 2.62. A significant difference from zero is indicated at the 5% level.
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TABLE 13.11. Variable Z3 Compared with Mean Yields from Sole Crops. (Z4i· � Mean
of Sole Crop Yields for Crops in Treatment i.)

Treatment Variable
i Z3i· Z4i· Z3i· − Z4i·

ABC 68 64 4
ABD 32 27 5
ABE 33 33 0
ABF 31 26 5
ACD 63 65 −2
ACE 73 71 2
ACF 78 64 14
ADE 30 34 −4
ADF 24 27 −3
AEF 42 33 9
BCD 37 44 −7
BCE 74 50 24
BCF 59 43 16
BDE 16 13 3
BDF 3 6 −3
BEF 12 12 0
CDE 62 51 11
CDF 72 44 28
CEF 63 50 13
DEF 12 13 −1
ABCDEF 55 38 17

If it is desired to compare each of the differences Z3i· − Z4i· with zero, a range
or t-test could be used for either a significance test or for computing confidence
intervals. For example, consider treatment ABC. The variance of the difference
Z3ABC − Z4ABC is approximated by

V
[(

Y·A(BC) − Y·A/3
)+ (Y·B(AC) − Y·B/3

)+ (Y·C(AB) − Y·C/3
)]

,

which is approximated by 2r
(
σ̂ 2

εA + σ̂ 2
εB + σ̂ 2

εC

) � 2(3)(7.738+0.105+34.62) �
254.8 (see Table 13.5). The assumption made here is that the variance of Y·A(BC)

and Y·A/3 are approximately the same for reasons described earlier in this chapter.
The other variances may be computed in a similar manner. A (1 − α)% � 95%
confidence interval for Z3ABC· − Z4ABC· � 68 − 64 would be constructed as
(68−64)±t.05,22

√
254.8 � 4±33 � 37 to −29. Before constructing the remaining

confidence intervals and interpreting the results, it is again suggested that a study
be made of the residuals with the idea that outlying observations may be present
in this experiment.

Analyses of variance may be computed using the created variables as was done
for Example 13.7 in Table 13.9. To illustrate, an analysis of variance for the variable
Z1 is
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TABLE 13.12. Yields by Pairs of Crops and by Individual Crops in a Mixture of Three and
Comparable Sole Crops Responses. (Mixture Yields are Multiplied by Three to Put Pixture
Total on a 12-Plant Basis.)

Yields Yields
Pairs Mixture Sole Diff. Crop Mixture Sole Diff.
AB· 74 73 1 A·· 65 68 −3
AC· 202 186 16 B·· 7 5 2
AD· 71 76 −5 C·· 155 119 36
AE· 94 95 −1 D·· 6 8 −2
AF· 77 73 4 E·· 28 27 1
BC· 159 124 35 F·· 5 5 0
BD· 11 13 −2
BE· 38 32 6
BF· 10 10 0
CD· 153 127 26
CE· 181 146 35
CF· 178 123 55
DE· 33 35 −2
DF· 9 13 −4
EF· 35 32 3

Source of variation d.f. SS MS
Total—CFM 80 244,664 —
Block 2 2,172 1,086
Treatment 26 217,823 8,378
Block×treatment 52 24,669 474

All 6 single crops, 20 three-crop mixtures, and 1 six-crop mixture make up the
27 treatments. The ratio of the treatment mean square to block × treatment mean
square is 17.7, whereas F.05(26, 52) � 1.71. As may be observed from Figure
13.3, there are large differences among the 27 treatment totals. A large part of
the treatment mean square is attributable to the single degree of freedom contrast
of treatments with C present versus treatments with C absent. There are, how-
ever, large differences among the treatments containing C, but relatively small
differences among those treatments where C was absent. The partitioning of the
treatment sum of squares is left as an exercise for the reader. If desired, simi-
lar analyses of variance and F -statistics may be computed for other variables or
even for differences of the form Z3ij − Z4ij . For the latter, the sole crops would
need to be deleted and an analysis of variance computed for the remaining 21
treatment differences from the three blocks. Partitioning of treatment degrees of
freedom or multiple comparisons procedures may elicit the information desired
by the investigator.
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13.5 Some Comments

The examples presented demonstrate the diversity in types of intercropping experi-
ments and in types of statistical analyses that are useful in eliciting the information
contained in the experiments. Sole cropping ideas and goals need to be extended
considerably in order to provide appropriate analyses and interpretations for inter-
cropping experiments. From Chapter 11, we reiterate that the investigator should
“expect the unexpected” from an intercropping experiment. Several results which
were unusual and unexpected to the writer occurred in the examples here, just as
they did in the preceding chapter. The large difference in bean yields at the two
locations in Example 13.3 is striking. Such differences appear to be extraordinar-
ily large. The investigator should provide an explanation as to why the differences
were so large. Also, bean and cowpea yields were reduced more when grown with
maize than with sorghum. Is this a varietal or species phenomenon? Why?

In Example 13.4, cotton yields were relatively unaffected when fertilized. This
would mean that any additional yield from the intercrops is obtained as an addi-
tional bonus. Why would cotton yields be unaffected when intercropped in this
manner? What is the nature and physiology of cotton which allows this to happen?
Why would maize yields be lower (or the same) on fertilized than on unfertilized
plots?

Example 13.5 had considerable variation among the experimental units treated
alike. The large coefficients of variation indicate that experimental technique needs
to be reconsidered. The size of the experimental unit (see Figure 13.1) immediately
comes to mind.

Many of the computations described in this chapter are programmable using such
software packages as SAS or GENSTAT. It is suggested that the computations be
done on a pocket or desk calculator until the analyst becomes familiar with the
statistical models and analyses. Then, the packages may be used for calculations.

13.6 Problems

13.1 For crop D, recompute the analysis using 0.27 rather than 0.22 (Table 13.2)
for combination ADF in block three.

13.2 Obtain the analyses described in this chapter after making the transformation
log(yield+1) for the data in Table 13.2. Note that 1 is added to the yield of
cultivars D and F since some of the values are near zero. Do this for all
cultivars.

13.3 For the data of Table 13.2 corrected as in Problem 1, compute the residuals
and determine if there are possible outliers. If so, one would need to question
the experimenter as to possible reasons for this.

13.4 Select a multiple comparisons procedure and make the appropriate
comparisons and interpretations for the data of Example 13.6.
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13.5 Partition the treatment sum of squares with 26 degrees of freedom as sug-
gested in the text following Table 13.12. Do likewise with the error sum of
squares. Make the appropriate interpretations.

13.6 For the data following equation (13.48), verify that equations (13.49)
through (13.57) are correct by performing the calculations.

13.7 Verify that equations (13.61) to (13.70) hold for the parameter values in
the text following equations (13.58) – (13.60). Verify the totals following
equation (13.70).

13.8 Given a canonical variate Y1 +bY2 +cY3, show how to extend the computer
program in Chapter 4 of Volume I to obtain values of b and c which maximize
(treatment sums of squares)/(treatment + error sum of squares). How would
you extend this to include four variables?

13.9 What effect does removing the value of 207 for treatment B for Z1ij have
on the analysis of variance and on F -tests? Are there more outliers for these
data?
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Appendix 13.1

Response Equations for a 12-Plant Basis

For the experiment and data of Example 13.5, let us consider the response equations
to be (for cultivar A)

Sole crop for A (yield from 12 plants):

YhA � µ + τA + ρh + εhA. (13.46)

Mixture of three crops, A with j and g �� A (yields from four plants):

YhA(jg) � 1

3
(µ + τA + ρhA) + 2

3

(
δA(j ) + δA(g)

)
+ πA(jg) + εhA(jg). (13.47)

Mixture of six crops, A with five others (yields from two plants):

YhA(BCDEF ) � 1

6
(µ + τA + ρhA) + 1

3

F∑
j�B

δA(j )

+ βA(BCDEF ) + εhA(BCDEF ). (13.48)

The coefficient of 1/3 in (13.47) is to put µ + τA + ρhA on the same basis as in
(13.46). The coefficient of 2/3 in (13.47) is used because δA(j ) should have been
derived from 8 instead of 12 plants in order to be on the same basis as µ + τA. A
similar explanation holds for the coefficients in (13.48).

For the above response equations, a set of normal equations after applying the
parameter constraints

0 �
r∑

h�1

ρh �
v∑

j�1
��A,g

πA(jg) �
v∑

g�1
��A,j

πA(jg),

v∑
j�1
��A

δA(j ·) � (v − 1)δ̄A(·),

and v � 6 is ∑
h

YhA � Y·A � r(µ + τA), (13.49)

∑
h

∑
g ��j,A

YhA(jg) � Y·A(j ·) � r(v − 2)

3
(µ + τA)

+ 2r(v − 3)

3
δA(j ) + 2r(v − 1)

3
δ̄A(·), (13.50)∑

h

∑
j

∑
g

YhA(jg) � Y·A(··)

� r(v − 1)(v − 2)

2(3)

(
µ + τA + 4δ̄A(·)

)
, (13.51)
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r∑
h�1

YhA(BCDEF ) � Y·A(BCDEF )

� r

6
(µ + τA) + r(v − 1)

3
δ̄A + rβA(BCDEF ). (13.52)

In the above,
∑

j ��A δA(j ) � (v − 1)δ̄A(·) and v � 6. v instead of 6 was used in the
above equations to illustrate how extensions could be made for other values of v.
The term δA(j ′) is equal to δA + γA(j ) in equations (13.4)–(13.6) where γA(j ) is an
interaction effect. Note that the error terms in (13.46) to (13.48), i.e., εhA, εhA(jg),
and εhA(BCDEF ) all have the same expected value zero but different variances. Since
there was only one observation per block for the sole crop and for a mixture of all
six crops, estimates of corresponding variances are not obtainable from a blocked
experiment. The moment solutions for the parameters from equations (13.49) to
(13.52) are

µ̂ + τ̂A � Y·A/r � ȳ·A, (13.53)

δ̂A(·) �
∑
j ��A

δ̂A(j )/(v − 1)

� 3

2r(v − 1)(v − 2)
Y·A(··) − ȳ·A/4, (13.54)

δ̂A(j ) � Y·A(j ·)

(
3

2r(v − 3)

)
− Y·A(··)

(
3

2r(v − 2)(v − 3)

)
− ȳ·A

4
, (13.55)

π̂A(jg) � 1

r
Y·A(jg) − 1

r(v − 3)

(
Y·A(·j ) + Y·A(g·)

)
+ 2

r(v − 2)(v − 3)
Y·A(··), (13.56)

β̂A(BCDEF ) � 1

r
Y·A(BCDEF ) − 1

2r(v − 2)
Y·A(··) + (v − 3)

12
ȳ·A. (13.57)

As a small numerical example to illustrate the above equations, consider the follow-
ing set of parameters used to construct the observations and totals from equations
(13.46) to (13.52): r � 1, v � 6, ρ1A � 0, µ + τA � 12, δA(B) � 1, δA(C) � 2,
δA(D) � 3, δA(E) � 4, δA(F ) � 0, πA(BC) � −1, πA(BD) � 1, πA(BE) � 0,
πA(BF ) � 0, πA(CD) � 1, πA(CE) � 0, πA(CF ) � 0, πA(DE) � −1, πA(DF ) � −1,
πA(EF ) � 1, and βA(BCDEF ) � 2. The responses and totals are

Y·A � 12 Y·A(BE) � 22/3 Y·A(CE) � 24/3 Y·A(DF ) � 15/3

Y·A(BC) � 15/3 Y·A(BF ) � 14/3 Y·A(CF ) � 16/3 Y·A(EF ) � 23/3

Y·A(BD) � 23/3 Y·A(CD) � 25/3 Y·A(DE) � 23/3 Y·A(BCDEF ) � 22/3
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Y·A(B·) � 74/3 Y·A(D·) � 86/3 Y·A(F ·) � 68/3

Y·A(C·) � 80/3 Y·A(E·) � 92/3 Y·A(··) � 200/3

It may be verified that the above totals obtained from the observations agree with
those obtained using the parameters to construct those from equations (13.49) to
(13.52). Likewise, using the results from the example and solving for the param-
eters from (13.53) to (13.57), the original values of the parameters are obtained.
Using a small example with known values is valuable for checking one’s alge-
bra and solutions, and for realistic response equations. The MAPLE program
in Appendix 13.3 is useful in obtaining formulae for the effects in equations
(13.54)–(13.57).

Response Equations on a Four-Plant Basis

If it is desired to analyze the data from the three types of mixtures jointly in one
analysis, the yields would need to be put all on the same number of plants basis
as was done in Example 13.5, that is, e.g., Y ′

hA/3, Y ′
hA(jg), and 2Y ′

hA(BCDEF ) would
all be on a four-plant basis. YhA is the yield from 12 plants and YhA(BCDEF ) is the
yield from 2 plants. On this four-plant basis, one could reparameterize the response
equations as follows:

Sole crop A

Y ′
hA/3 � YhA � µ + τA + ρhA + εhA. (13.58)

Mixture of three crops, A with j and g

Y ′
hA(jg) � YhA(jg) � µ+τA+ρhA+1

2

(
δA(j ) + δA(g)

)+πA(jg)+εhA(jg). (13.59)

Mixture of all six crops, yield for crop A

2Y ′
hA(BCDEF ) � YhA(BCDEF ) � µ + τA + ρhA

+ 2

(v − 1)

∑
δA(j ) + 2βA(BCDEF ) + εhA(BCDEF )

� µ + τA + ρhA + 2δ̄A(·) + 2βA(BCDEF )

+ εhA(BCDEF ). (13.60)

Using the parameterization for the response equations can be rationalized as fol-
lows. If there were no effects from the mixture, the expected value of YhA, YhA(jg),
and YhA(BCDEF ) should be µ + τA + ρhA, since all responses are for four plants.
Likewise, one would say, with less credibility, that εhA, εhA(jg), and εhA(BCDEF ),
as defined directly above, all have mean zero and common variance σ̂ 2

εA . The
last statement can only be approximately correct since εhA/3 from the 12-plant
response equation is equal to the εhA from the 4-plant response equations above.
Thus, one would suspect that εhA as defined above would have a smaller variance
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than the εhA(jg) and that εhA(BCDEF ) would have a larger variance. If the compo-
nent of variance due to variation among plants within an experimental unit is small
relative to the component of variance among experimental units treated alike, then
the inequality of variances will be small and, hence, can be ignored. This is what
was assumed for the analyses given in Example 13.5. Thus, we shall use equations
(13.59) to (13.60) for analyses of the data.

The coefficient of 1/2 in (13.59) was used because half of the four-plant area
went to estimating δA(j ) and the other half to estimating δA(g). Using the 1/2 puts
the δA(j ) and δA(g) on the same basis as the µ, τA, and ρhA, as well as the other
parameters. In the six-crop combination, only 1/5 of the responses for crop A are
used to estimate δA(j ) and all δA(j ) are present. Therefore, the coefficient of �δA(j )

is 1/(v − 1) � 1/5 for a two-plant and 2/5 for a four-plant total, resulting in the
term 2δ̄A(·).

The resulting normal equations using the model constraints

0 �
v∑

h�1

ρhi � 0 �
v∑

j�1
��i,g

πi(jg) �
v∑

g�1
��i,j

πi(jg) and
v∑

j�1
��i

δi(j ) � δ̄i(·)(v − 1)

are

Y·i � r(µ + τi), (13.61)

Y·i(··) � r(v − 1)(v − 2)

2

(
µ + τi + δ̄i(·)

)
, (13.62)

Y·i(j ·) � r(v − 2)(µ + τi) + r(v − 1)

2
δ̄i(·)

+ r(v − 3)

2
δi(j ), (13.63)

Y·i(jg) � r

[
µ + τi + 1

2

(
δi(j ) + δi(g)

)+ πi(jg)

]
, (13.64)

Y·i(all but i) � r
(
µ + τi + 2δi(·) + 2βi(all but i)

)
. (13.65)

Solutions for effects in the above normal equations are for crop i �� j, g and v � 6:

µ̂ + τ̂i � Y·i·
r

� ȳ·i·, (13.66)

δ̂i(·) � 2Y·i(··)
r(v − 1)(v − 2)

− ȳ·i � ȳ·i(··) − ȳ·i , (13.67)

δ̂i(j ) � 2

r(v − 3)

[
Y·i(j ·) − r(v − 2)ȳ·i − r

2
(v − 1)δ̂i(·)

]
� 2

3r
Y·i(j ·) − 5

3
ȳ·i(··) − ȳ·i , (13.68)
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π̂i(jg) � 1

r

[
Y·i(jg) − rȳi· − r

2

(
δ̂i(j ) + δ̂i(g)

)]
� ȳ·i(jg) − 1

3r

[
Y·i(j ·) + Y·i(·g)

]+ 5

3
ȳ·i(··), (13.69)

2β̂i(all but i) � ȳ·i(all the rest) − 2ȳ·i(··) + ȳ·i . (13.70)

A numerical example for equations (13.58) to (13.70) is given below. Let the
parameter values in (13.58) to (13.60) be those for the example following equation
(13.57). Then, the one-replicate totals are

Y·A � 12 Y·A(BE) � 14.5 Y·A(CE) � 15 Y·A(DF ) � 12.5

Y·A(BC) � 12.5 Y·A(BF ) � 12.5 Y·A(CF ) � 13 Y·A(EF ) � 15

Y·A(BD) � 15 Y·A(CD) � 15.5 Y·A(DE) � 14.5 Y·A(BCDEF ) � 20

Y·A(B·) � 54.5 Y·A(D·) � 57.5 Y·A(F ·) � 53

Y·A(C·) � 56 Y·A(E·) � 59 Y·A(··) � 140

Again, the above totals agree with those in (13.61) to (13.65) where values of the
parameters are used to obtain the totals instead of the above responses. Also, using
(13.66) to (13.70) with the above totals results in solutions which are equal to the
original parameters.



Appendix 13.2 73

Appendix 13.2

Variances for Estimation of Effects Given by Equations
(13.53)–(13.57)

The variances for the estimated effects given in equations (13.53) to (13.57) and
Example 13.5 are

V
(
µ̂ + τ̂i � ȳ·i) � σ 2

εi

r
, (13.71)

V
(
δ̂i(·) � 3

4
ȳ·i(··) − 1

4
ȳ·i

)
� 9 σ 2

εi3

8(v − 1)(v − 2)
+ σ 2

εi

16r
, (13.72)

V
(
δ̂i(j ) � 3(v − 2)

2(v − 3)
ȳ·i(j ·) − 3

4

(
v − 1

v − 3

)
ȳ·i(··) − ȳ·i/4

)

� 9

8

(
2v − 5

(v − 2)(v − 3)

)
σ 2

εi3 + σ 2
εi

16r
, (13.73)

V
(
π̂i(jg) � ȳ·i(jg) −

(
v − 2

v − 3

) (
ȳ·i(j ·) + ȳ·i(·g)

)
+
(

v − 1

v − 3

)
ȳ·i(··)

)
� (v − 4)

r(v − 2)
σ 2

εi3, (13.74)

V
(
β̂i(all but i) � ȳ·i(all but i) − (v − 1)

4
ȳ·i(··) + (v − 3)

12
ȳ·i

)

� σ 2
εi6

r
+ (v − 1)

8r(v − 2)
σ 2

εi3 +
(

v − 3

12

)2
σ 2

εi

r
, (13.75)

where σ 2
εi is the error variance for sole crop i, σ 2

εi3 is the error variance for mixtures
of three for sole crop i, and σ 2

εi6 is the error variance for mixtures of size six for
crop i.

Variances for Estimated Effects for Equations (13.66)–(13.70)

Assuming random block effects, the variance for µ̂ + τ̂i is known to be

V (µ̂ + τ̂i) � (σ 2
εi + σ 2

ρi/r), (13.76)

where σ 2
ρi is the variance component for blocks. The other variances for estimated

effects given by equations (13.67) to (13.69) are

V
(
δ̂i(·) � ȳ·i(··) − ȳ·i

)
� σ 2

εi

(
2

r(v − 1)(v − 2)
+ 1

r

)
� 11σ 2

εi

10r
; (13.77)
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for v � 6 and for ȳ·i(··) and ȳ·i independent,

V
(
δ̂i(j ) � 2

3r
Y·i(j ·) − 5

3
ȳ·i(··) − ȳ·i � Y·i(j ·)

[
2

3r
− 1

6r
� 1

2r

]
− 1

6r

[
6 other Y·i(jg)

not in Y·i(jg)

]
− ȳ·i

)

� σ 2
εi

(
1

r
+ 1

6r
+ 1

r

)
� 13σ 2

εi

6r
; (13.78)

V
(
π̂i(jg) � 1

r
Y·i(jg) − 1

3r

(
Y·i(j ·) + Y·i(g·)

)+ 1

6r
Y·i(··)

)
� Y·i(jg)

(
1

r
− 2

3r
+ 1

6r
� 1

2r

)
− (6 terms Y·i(j ′g′)for j ′ �� j, g′ �� g

) (− 1

3r
+ 1

6r
� − 1

6r

)
+ (3 terms Y·i(j+g+) not considered before )

(
1

6r

)

� σ 2
εi

(
1

4r
+ 1

6r
+ 1

12r
� 1

2r

)
� σ 2

εi

2r
; (13.79)

V
(
β̂i(all but i) � 1

2

[
Y·i(all but i)

r
− 2

(
Y·i(··)
10r

)
+ Y·i

r

])

� σ 2
εi

(
1

r
+ 4

10r
+ 1

r
� 12

5r

)
� 12σ 2

εi

5r
. (13.80)

As an aid in developing the above formulas, a MATHEMATICA program is
given in Appendix 13.3.
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Appendix 13.3

MAPLE Program as an Aid in Obtaining the Solutions Given in
Equations (13.53)–(13.57)

The MAPLE program used was

eqs1 :� {y1 � a/3, y12 � a/3 + 2∗(v − 2)∗j/(3∗(v − 3))
y13 � a/3 + 2∗(v − 2)∗g/(3∗(v − 3)),
y123 � a/3 + 2∗(j + g)/3 + p};
a1 :� solve(eqs1, {a, j, g, p});
h1 :� collect(a1, {y1, y12, y13, y123}, factor);

MATHEMATICA Program as an Aid in Obtaining the Variances in
Equations (13.78) and (13.79)

The following program using values for v � 5, 6, 7, and 8 was run to verify the
variance formulas given by equations (13.78) and (13.79). Note that 7Er/6 + 1 �
13Er/6 which is the variance given in (13.78) for v � 6. Output is also given
following the program. Using a semicolon at the end of a statement gives no output,
but omitting the semicolon results in output (the reverse is true for MAPLE).

In[123]:=
v � 6;
s1 � Sum[e[1, j, g], {j, 2, v − 1}, {g, j + 1, v}];
s12 � Sum[e[1, 2, g], {g, 3, v}];
s13 � e[1, 2, 3] + Sum[e[1, 3, g], {g, 4, v}];
res � {e[i, j, g] e[i, j, g]− > Er, e[i, j, g] e[i, j, h]− > 0,

e[i, j, g] e[i, f, h]− > 0, e[i, j, g] e[d, f, h]− > 0,

e[i, j, g] e[i, f, g]− > 0};
X1 � Simplify[2∗s12/3 − 2∗s1/(3∗(v − 2))]
Expand[X1∧2]/.res
X2 � Simplify[2∗s13/3 − 2∗s1/(3∗(v − 2))];
Expand[X2∧2]/.res
X3 � Simplify[e[1, 2, 3] − s12/3 − s13/3 + 2∗s1/(3∗(v − 2))]
Expand[X3∧2]/.res

Out[128] �
(3e[1, 2, 3] + 3e[1, 2, 4] + 3e[1, 2, 5] + 3e[1, 2, 6] − e[1, 3, 4] − e[1, 3, 5]

−e[1, 3, 6] − e[1, 4, 5] − e[1, 4, 6] − e[1, 5, 6])/6
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Out[129] �
7Er

6

Out[131] �
7Er

6

Out[132] �
(3e[1, 2, 3] − e[1, 2, 4] − e[1, 2, 5] − e[1, 2, 6] − e[1, 3, 4] − e[1, 3, 5]

−e[1, 3, 6] + e[1, 4, 5] + e[1, 4, 6] + e[1, 5, 6])/6

Out[133] �
Er
2



chapter 14

Varying Densities for Some or All
Crops in a Mixture

14.1 Introduction

The simplest form of intercropping with three or more crops in the mixture and
with one major crop and two or more minor crops was considered in Chapter
12. The complexity of the statistical analyses over that in Chapter 2 (two crops)
of Volume I is increased. The methods of Chapters 3 and 4 of Volume I were
extended to mixtures of three or more crops in Chapter 13. Analyses for individual
crop responses for each crop as well as analyses for combined responses for all
crops in the mixture are presented. The density for a given crop in the mixture was
held constant from mixture to mixture. In the present chapter, cropping systems
which allow varying densities for some or all crops are considered. The methods
presented herein are a generalization of those presented in Chapter 5 of Volume I.

Many patterns for varying and/or constant densities in a mixture are possible.
The particular densities selected for study will depend on the makeup of the crop
mixture as well as the goals of the experiment. With one major crop and two or
more minor crops:

(i) The density of the major crop could be varied and the densities of the minor
crops kept constant.

(ii) The density of the major crop could be held constant and some or all of
the densities of the minor crops varied.

(iii) The densities of all crops in the mixture could be varied.

With three or more major crops and with some or no minor crops in a mixture, the
following situations are possible:



78 14. Varying Densities for Some or All Crops in a Mixture

(i) The densities of all major crops in the mixture could be varied.
(ii) The densities of two or more major crops could be constant and the densities

of the remaining crops could be varied.
(iii) The densities of any minor crops included in (i) or (ii) could be varied or

held constant.

As discussed in Chapter 5 of Volume I, serious attention needs to be given
to selecting the various density levels for each crop. The experimenter needs to
decide whether to make the levels selected for one crop dependent or indepen-
dent of the levels selected for the remaining crops in a mixture. It may make
sense to approach a maximum density for all crops in the mixture as the total
number of plants, regardless of crop, is the total population level beyond which
there will be no increased yields. The amount of moisture, plant nutrients, sun-
light, etc. may dictate the maximum population level that can be supported on
a plot of ground. It is well known that overpopulation can result in reduced or
even zero yields. In order to pinpoint density levels producing maximum or near-
maximum responses, it is advisable to select levels somewhat beyond the level
giving maximum response. For example, the maximum yield of maize may be
attained with 60,000 plants per hectare. A level of 70,000, or even 80,000, plants
per hectare should result in decreased yields and should be included for study
in an experiment. In determining response curves, experimenters often make the
mistake of including only levels which “would be used in practice.” The inclu-
sion of levels beyond those normally used in practice results in a more accurate
response curve showing the relationship between response and density level. If a
response curve does not show a decrease at the highest density, it is not clear that
the maximum has been attained and that higher density levels should have been
included.

14.2 Treatment Design

Several treatment designs may be used for studying responses over varying density
levels of the crops in the mixture. We shall list some of the possible designs for
studying yield–density relationships.

14.2.1 Design 1

Consider a mixture of three crops at densities 0 < di1 < di2 < · · · < dini
for

crop i at ni density levels. Then, for n1 � 3, n2 � 2, and n3 � 4, the following
combinations (marked X) are obtained where, for example, crop one is cassava,
crop two is beans, and crop three is maize:
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Crop one (cassava)

d11 d12 d13

Crop two Crop two Crop two
(beans) (beans) (beans)

Crop three (maize) d21 d22 d21 d22 d21 d22

d31 X X X X X X
d32 X X X X X X
d33 X X X X X X
d34 X X X X X X

In addition to the above 24 combinations, the 3 crops as sole crops could be included
to obtain (3×2×4)+(3+2+4) � 33 entries. Here the lowest densitiesdi1, i � 1, 2,

and 3, are greater than zero. As the number of density levels for a crop and the
number of crops increase, the total number of entries for an experiment increases
rapidly. For example, including a fourth crop at three density levels, say, to the
above set would result in (3×2×4×3)+ (3+2+4+3) � 84 entries. Therefore,
the experimenter needs to exercise considerable care in selecting the precise levels
and their number in order that the number of entries does not go beyond what can
be done experimentally. This treatment design contains all possible combinations
of density levels plus the levels for each of the sole crops.

14.2.2 Design 2

A procedure for reducing the number of entries and the space requirements would
be to utilize the ideas of Federer and Scully (1993) in the manner shown in Figure
14.1, using the previous example for three crops. There are n1 experimental units
in each replicate; the density for crop two varies from the lowest to the highest
density horizontally either continuously increasing or increasing by increments;
and the crop three densities vary in the same way but vertically, with highest com-
bined densities being in the lower right-hand corner of an experimental unit. The
experimenter would divide each experimental unit into n2n3 equal-sized rectangles
and obtain the response for each of these rectangles. The density level for each
rectangle would be the average density in that rectangle. The n1 experimental units
are randomly allocated in each replicate in the experiment and the crop two and

Crop two
Crop three

d31

d21

d11

d3n3

d2n2
d21

d12

d2n2

d31

d3n3

Crop one

d21

d1n1
d2n2

d31

d3n3

FIGURE 14.1. Schematic plan for Design 2 for one replicate.
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crop three densities are systematically increasing within the experimental unit.
Thus, the crop one density levels are somewhat akin to a “whole plot” and the
density levels of crops two and three are somewhat like “split plots.” A response
function, e.g., a second-degree polynomial, would be fitted, the maximum value
on the response surface, and/or the area under the response function could be used
as the response for the experimental unit (see Federer and Scully, 1993). The se-
lection of which crop to use as crop one is important, but probably one crop would
be an obvious candidate. For the first example above, cassava would be crop one
because a large experimental unit relative to the one needed for maize or beans
would be required. In other situations, one of the crops may utilize well-defined
discrete levels and, hence, would be a candidate to be crop one. There should be
no gradients within each of the experimental units in order that a gradient effect
does not become confounded with the effect of density level on the response.

14.2.3 Design 3

If the densities of four crops in a mixture are to be varied, one suggested procedure
is to use all n1n2 levels for crops one and two. Then, for each combination, use the
experimental unit described above for three crops. This would result in the plan
given in Figure 14.2. The n1n2 experimental units would be randomized in the
experiment and each experimental unit would be divided up into n3n4 equal-sized
rectangles with a response and density level being obtained for each rectangle.
The predicted values from the fitted response surface for each experimental unit
or some other statistic would be used in an analysis of the data.

14.2.4 Design 4

Still another parsimonious treatment design for studying density-yield relation-
ships for c crops at varying density levels is to use 2c combinations, where 0

Crop two   Crop three

Crop one

d21
d41

d31

d11

d2n2

d4n4

d3n3
d31

d1n1
d3n3

d41

d4n4

d41

d4n4

d41

d4n4

FIGURE 14.2. Schematic plan for Design 3 in one replicate.
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means density constant for crop i, i � 1, . . . , c, and 1 means increasing densities
for the designated crop. The 000 · · · combination is the lowest density level for
all crops and crop one, for example, is at this lowest level when crop two, say,
is increasing within the experimental unit. There will be 2c experimental units in
each replicate of this type of experiment.

14.2.5 Design 5

Another procedure for reducing the number of combinations and space require-
ments is to utilize the ideas from fractional replication of complete factorials (see
Raktoe et al., 1981). The above procedure for Design 1 includes all possible com-
binations from the factorial. Saturated main effects fractions or Resolution V,
fractions which allow for the estimation of all two-factor interactions, may satisfy
the requirements of an experimenter. Certainly in the preliminary stages of study-
ing yield–density relationships, one of these fractions usually will be satisfactory.
A Resolution IV fraction allows the estimation of main effects and of sums of
two-factor interactions. A Resolution VI fraction allows the estimation of all main
effects, of all two-factor interactions, and sums of three-factor interactions, and
a Resolution VII fraction allows estimation of all main effects, all two-factor in-
teractions, and all three-factor interactions. Higher-ordered interaction terms are
assumed to be zero. A saturated fractional replicate contains as many observations
as there are effects. The construction of fractional factorial treatment designs for
the general factorial is an unsolved problem. Usually, a computer search will be
made to obtain a relatively good fraction which can be evaluated against the best
possible one (see Anderson and Federer, 1995). Given that there will be three lev-
els of each of c crops, the number of observations needed for designs of various
resolutions are listed in Figure 14.3. As can be seen from the figure, the number of
combinations increases rapidly as the resolution and the number of crops increase.
In the general case of c crops with ni levels for crop i, a saturated Resolution III
fractional replicate requires 1+∑c

i�1(ni −1) observations, a saturated Resolution
V fractional replicate requires

1 +
c∑

i�1

(ni − 1) +
∑∑

i<j

(ni − 1)(nj − 1)

Crops III IV V VI VII Full
3 7 14 19 38 27 27
4 9 18 33 66 65 81
5 11 22 51 102 131 243
6 13 26 73 146 233 729
7 15 30 99 198 379 2187

FIGURE 14.3. Number of combinations.
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observations, and a saturated Resolution VII fractional replicate requires

1 +
c∑

i�1

(ni − 1) +
∑∑

i<j

(ni − 1)(nj − 1)

+
∑∑

i<j<k

∑
(ni − 1)(nj − 1)(nk − 1)

observations. Many other fractions are possible such as fractions for estimating
the linear, quadratic, and only linear-by-linear interactions.

Any saturated fraction can easily be obtained using the one-at-a-time procedure
studied by Anderson and Federer (1975, 1995). This is the worst possible design
variancewise for main effects, Resolution III plans but gets better as the Resolution
increases. To illustrate this method, consider c � 3 crops each at n � 3 levels
for a saturated Resolution V fractional replicate, where each row represents a
combination of the three crop densities and the corresponding X∗ matrix (see
Anderson and Federer, 1995) are given in Figure 14.4.

The determinant of this matrix is 19, 683 � 39, whereas from the Anderson-
Federer (1995) article we note that the determinant of X∗ lies between 1 and
NN/2/sn/2, where N is the size of the fraction, here 19, s is the number of levels of
a factor, here 3, and n is the number of factors, here taken to be (19−1)/(s −1) �
9. This upper limit is not reachable because the conditions of Theorem 3.3 of
Anderson and Federer (1995) cannot be satisfied for this fraction. The value of the

Combination Resulting X∗ matrix
000 1000000 0000 0000 0000
100 1100000 1010 1010 0000
200 1010000 0101 0101 0000
010 1001000 1001 0000 1010
020 1000100 0110 0000 0101
001 1000010 0000 1001 1001
002 1000001 0000 0110 0110
110 1101000 0100 1010 1010
120 1100100 0001 1010 0101
210 1011000 0010 0101 1010
220 1010100 1000 0101 0101
101 1100010 1010 0100 1001
102 1100001 1010 0001 0110
201 1010010 0101 0010 1001
202 1010001 0101 1000 0110
011 1001010 1001 1001 0100
012 1001001 1001 0110 0001
021 1000110 0110 1001 0010
022 1000101 0110 0110 1000

FIGURE 14.4. Combinations and X∗ matrix for a Resolution V fraction for three crops at
three density levels each.
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determinant here is considerably above the lower limit of 1. Three-factor interaction
terms are confounded (aliased) with the main effects and the two-factor interaction
effects. If the three-factor interaction effects are negligible or nonexistent, then the
estimates of the remaining effects are unbiased.

Any number of levels of densities for the different crops may be used with the
above construction procedure. Note that for two-factor interactions, all possible
combinations for any two crops are included. If certain kinds of two-factor inter-
actions can be considered to be unimportant, then the size of the fraction may be
reduced by eliminating the required combinations.

14.3 Statistical Analyses for Sole Crop Response

For crop h in a mixture of c crops in Design 1 and for the v entries arranged
in a randomized complete block experiment design of r complete blocks, let the
response equation, for crop h � 1 say, be of the usual form:

Ygd1i (d2i d3i ···) � µ + ρg + τd1i (d2i d3i ···) + εgd1i (d2i d3i ), (14.1)

where µ is a general mean effect, ρg is the gth complete block effect, τd1i (d2i d3i ···)
is the effect of the d1i(d2id3i · · ·)th combination from the n1 × n2 × n3 × · · · com-
binations of the density levels d1i , d2i , d3i , . . . , i � 1, 2, . . . , nh, h � 1, 2, . . . , c,
the number of crops in a mixture, and the εgd1i (d2i d3i ···) are random error terms dis-
tributed with zero mean and variance σ 2

εh. An analysis of variance (ANOVA) for
this situation is given in Table 14.1 for the case when the lowest density level is
not zero. The sums of squares are computed in the usual manner for a factorial
treatment design in a randomized complete block experiment design.

If desired, each of the treatment sums of squares could be partitioned into single
degree of freedom contrasts such as linear, quadratic, etc., or some other set of

TABLE 14.1. ANOVA for Responses Using Response Model (14.1)

Source of variation d.f SS MS
Total rn1n2n3 · · · � rv

Correction for mean 1
Complete blocks � R r − 1
Levels of crop one � C1 n1 − 1
Levels of crop two � C2 n2 − 1
Levels of crop three � C3 n3 − 1
C1 × C2 (n1 − 1)(n2 − 1)
C1 × C3 (n1 − 1)(n3 − 1)
C2 × C3 (n2 − 1)(n3 − 1)
C1 × C2 × C3 (n1 − 1)(n2 − 1)(n3 − 1)
Residual error (r − 1)(n1n2n3 · · · − 1)

� (r − 1)(v − 1)



84 14. Varying Densities for Some or All Crops in a Mixture

contrasts dependent on the particular response function used for the relationship
between a response such as yield and density level.

A response function of the following nature might be suitable for the n2n3

responses obtained on a single experimental unit gd1h from Design 2:

Yij � α + β1d2i + β2d
2
2i + β3d3j + β4d

2
3j + β5d2id3j (14.2)

+ β6d2id
2
3j + β7d

2
2id3j + εij ,

where i � 1, . . . , n2, j � 1, . . . , n3, h � 1, . . . , n1, the β’s are polynomial re-
gression coefficients, and the d2i and d3j are the various density levels for crops
two and three. Of course, other response functions may be more appropriate than
the above one. However, this particular model does allow for linear and curvilin-
ear responses for each crop as well as for some rather well-behaved interaction
terms. The responses used would be the predicted values from the above regres-
sion equation. This response model equation may also be used for each of the n1n2

experimental units from Design 3. The main object of this analysis is to show the
effect of changing levels of the densities of crops two and three at each level of
crop one. An alternate analysis would be a MANOVA (multivariate analysis of
variance) or discriminant function analysis, using the seven regression coefficients
as the seven variates and determining their effects over all levels of crop one. Still
another analysis would be to obtain the estimated maximum responses from the
regression function in equation (14.2) in each of the rn1 experimental units and
perform an analysis on these values.

The analysis for Design 3 follows that given in Table 14.2 except that there are
n1n2 experimental units and levels in each replicate instead of n1. In addition, the
seven regression coefficients may be computed for levels of crop 1 summed over
levels of crop 2, for levels of crop 2 summed over levels of crop 1, and for the
crop 1 by crop 2 interaction with n1n2 − n1 − n2 + 1 degrees of freedom (by
subtraction).

The analysis for Design 4 in an RCBD (randomized complete block design)
follows that for a standard 2c factorial treatment design, and an ANOVA is pre-
sented in Table 14.3 for c � 3 crops. The effect measured here is whether or not
density is increasing in an experimental unit. Note that there are experimental units
with constant density for all crops of the mixture, experimental units with one of
the c crops having increasing density and the other crops at a constant density,
experimental units with two crops having increasing densities and the rest at a
constant density, etc. When using the total yield from an experimental unit, the
effect being observed is that of increasing density for one or more crops. When the
experimental unit is subdivided and responses obtained, other statistics that may
hold interest for the experimenter are as follows:

(i) the maximum response,
(ii) the area under a response curve,

(iii) the linear regression coefficient, and/or
(iv) the linear and quadratic regression coefficients.
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TABLE 14.2. ANOVA for r Replicates of Design 2 in an RCBD for Equation (14.2).

Source of variation d.f. SS MS
Crop one levels

Replicates � R r − 1
Crop one levels � C1 n1 − 1
C1 ×R (n1 − 1)(r − 1)

Crops two and three
Regression coefficients 7rn1

Regression coefficients at level d11 7
Crop two linear, β1 1
Crop two quadratic, β1 1
Crop three linear, β3 1
Crop three quadratic, β4 1
Linear by linear, β5 1
Linear by quadratic, β6 1
Quadratic by linear, β7 1

Regression coefficients at level d12 7
Crop two linear, β1 1
Crop two quadratic, β2 1
Crop three linear, β3 1
Crop three quadratic, β4 1
Linear by linear, β5 1
Linear by quadratic, β6 1
Quadratic by linear, β7 1

· · ·
Regression coefficients at level d1n1 7

Crop two linear, β1 1
Crop two quadratic, β2 1
Crop three linear, β3 1
Crop three quadratic, β4 1
Linear by linear, β5 1
Linear by quadratic, β6 1
Quadratic by linear, β7 1

Regression coefficients for all 1
levels of d1i× replicates 7n1(r − 1)

These responses would then be used in an ANOVA or other statistical analysis.
For Design 5, it is recommended that a fractional replicate not be replicated.

Instead, the fraction should be completed to a full factorial before any replication is
performed. The reason for this is that the resulting orthogonality and information
on additional effects will make this a much more efficient procedure. Information
on the size of the effects assumed to be zero in the fractional replicate can be
obtained from the complete factorial. In preliminary yield–density studies, repli-
cation is often not needed and the fractional replicate will be sufficient to provide
the preliminary results for finding the range in which to perform a more compre-
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TABLE 14.3. ANOVA for Treatment Design 4 in an RCBD.

Source of variation d.f. SS MS
Total r2c

Correction for mean 1
Replicate R (r − 1)
Treatment T (2c − 1)

Crop one 1
Crop two 1
Crop one × Crop two 1
Crop three 1
Crop one × Crop three 1
Crop two × Crop three 1
Crop one × Crop two × Crop three 1

etc.
R × T (r − 1)(2c − 1)

hensive and properly replicated experiment over time and space. For unreplicated
fractional or complete factorials, use may be made of Daniel’s (1959) half-normal
plot procedure to perform an analysis and obtain confidence intervals. He considers
only two levels, but the procedure works for any number of levels (see Birnbaum,
1959, Krane, 1963). Simply compute the sums of squares for all the single degree
of freedom contrasts and use the square roots of these sums of squares in the man-
ner described by Daniel (1959). An ANOVA for the fraction given in Figure 14.4
is presented in Table 14.4. Here, we have considered there to be a single replicate
of the N � 19 combinations for this Resolution V treatment design. Usually, the
experimenter would want to compute, and should, the sums of squares for single
degree of freedom contrasts. Then, using the square roots of the sums of squares
for the 18 single degree of freedom contrasts, the half-normal probability plot
method of Daniel (1959) may be used to construct confidence intervals on the
effects even though there was no replication of the treatment combinations. This
method assumes that some of the individual degree of freedom contrasts represent
error contrasts.

14.4 Statistical Analyses for Combined Responses
from All Crops

Instead of considering individual crop responses such as was done in the previous
section, the responses from the k crops could be combined into a created variable
such as

(i) total monetary value of the k crop responses,
(ii) total calories of the k crop responses,

(iii) total protein of the k crop responses,
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TABLE 14.4. ANOVA for a Fractional Replicate with N � 19 Combinations.

Source of variation d.f. SS MS
Total 19
Correction for mean 1

Crop one � A 2
Crop two � B 2
Crop one � C 2

A × B 4
A × C 4
B × C 4

(iv) land use efficiency as measured by a land equivalent ratio, and/or
(v) some other function of the k responses.

Using these created variables, ANOVAs like those given above can be obtained.
Such analyses as these are more useful than those in the previous section, as they
deal with the system of intercropping rather than concentrating on the components,
individual crops, of the system.

Other analyses such as AMMI (additive main effects and multiplicative interac-
tion; see Gauch, 1988, Gauch and Zobel, 1988, Ezumah et al., 1991, and related
references) and MANOVA (multivariate analysis of variance, see Chapter 4 of
Volume I, e.g.) may be useful in certain cases. For these analyses, the responses
for the individual crops form the variates for the multivariate analyses, and func-
tionals combining response from all crops would be obtained. The interpretation
of the resulting principle components and canonical variates may be a problem.
These statistics may differ if a logarithmic or some other transformation of the
responses had been made before using AMMI or MANOVA. Hence, selective and
careful use of these procedures are necessary in order for them to be of practi-
cal and interpretive usefulness for a researcher. In some cases, little, if anything
new, is added by these more complex procedures (see, e.g., Ezumah et al., 1991).
For many situations using analyses involving the created variables in (i), (ii), (iii),
and (iv) above will suffice. In some cases, other functionals such as AMMI and
MANOVA may be useful.

14.5 Modeling Responses in Sole Crop Yields

Many yield–density or response–density relationships can be formulated [see Sec-
tion 3 of Morales (1993) and references therein]. In order not to make the modeling
process too complicated, we shall consider simple relationships. A simple model
is a linear relation between yield and density. For a randomized complete block
design with three sole crops, say cassava � c, maize � m, and beans � b, the
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response models are

Ygch � µ·c + ρgc + β1c(dch − d̄c·) + εgch � β0gc + β1cdch + εgch, (14.3)

Ygmi � β0gm + β1mdmi + εgmi, (14.4)

Ygbj � β0gb + β1bdbj + εgbj . (14.5)

where g � 1, 2, . . . , r , h � dc1, dc2, . . . , dcnc
for cassava, i � dm1, dm2, . . . , dmnm

for maize, j � db1, db2, . . . , dbnb
for beans, µc � common mean for cassava, ρgc �

gth complete block effect, d̄c· � average density; the β0g· � µc + ρgc − β1cd̄c·
are the intercepts for a crop (·) for the gth complete block, the β1·’s are the linear
regression coefficients for each crop (·), εgch is a random error effect for cassava
distributed with mean zero and variance σ 2

εc, εgmi is a random error effect for maize
distributed with mean zero and variance σ 2

εm, and εgbj is a random error effect for
beans distributed with mean zero and variance σ 2

εb.
As explained in Chapter 5 of Volume I, other simple or more complex yield–

density models may be used in place of models (14.3)–(14.5). We shall use the
above models since they are simple and illustrate the procedure. For this situation,
the least squares solutions for the various parameters for three-crop mixtures of
c=cassava, m=maize, and b=beans are

β̂0gc � ȳgc· − d̄c·β̂1gc, (14.6)

β̂0gm � ȳgm· − d̄m·β̂1gm, (14.7)

β̂0gb � ȳgb· − d̄b·β̂1gb, (14.8)

β̂1gc �
nc∑

h�1

(dch − d̄c·)(Ygch − ȳgc·)

/
nc∑

h�1

(dch − d̄c·)2, (14.9)

β̂1gm �
nm∑
i�1

(dmi − d̄m·)(Ygmi − ȳgm·)

/
nm∑
i�1

(dmi − d̄m·)2, (14.10)

β̂1gb �
nb∑

j�1

(dbj − d̄b·)(Ygbj − ȳgb·)

/
nb∑

j�1

(dbj − d̄b·)2, (14.11)

β̂0c � ȳ·c· − d̄c·β̂1c, (14.12)

β̂0m � ȳ·m· − d̄m·β̂1m, (14.13)

β̂0b � ȳ·b· − d̄b·β̂1b, (14.14)

β̂1c �
nc∑

h�1

(dch − d̄c·)(ȳ·ch − ȳ·c·)

/
nc∑

h�1

(dch − d̄c·)2, (14.15)

β̂1m �
nm∑
i�1

(dmi − d̄m·)(ȳ·mi − ȳ·m·)

/
nm∑
i�1

(dmi − d̄m·)2, (14.16)
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β̂1b �
nb∑

j�1

(dbj − d̄b·)(ȳ·bj − ȳ·b·)

/
nb∑

j�1

(dbj − d̄b·)2, (14.17)

where the ȳ and d̄ are mean values for the corresponding values of responses
and densities, respectively, and β0c, β0m, and β0b are the intercepts averaged over
replicates. Extension of the above to c more than 3 crops is straightforward. The
above assumes that density levels are the same from replicate to replicate. If this
is not the true situation, e.g., missing plots occur, the above formulas will need to
be adjusted to account for the change in density levels.

In the event that monocrop responses are not available, it is possible to model
yield–density relationships using the lowest density levels for all other crops but
the one under consideration. For example, this relationship for crop one, say, is
obtained from the responses at levels d21d31 · · · for crops two, three, etc. Using the
above cassava–maize–bean example, the yield–density models would be

Ygdch(dm1db1 ) � βg0c + β1cdch + εgdch(dm1db1), (14.18)

Ygdmi (dc1db1 ) � βg0m + β1mdmi + εgdmi (dc1db1), (14.19)

Ygdbj (dc1dm1 ) � βg0b + β1bdbj + εgdbj (dc1dm1), (14.20)

where gdch(dm1db1) is for level dch at levels dm1 and db1 in replicate g and where the
regression coefficients are defined in a manner similar to that for equations (14.3)–
(14.5). The least squares solutions for the parameters of (14.18)–(14.20) are much
the same as given in equations (14.6)–(14.17). Because of the direct application
of the above solution with the necessary changes to account for computing the
regressions on the lowest-density levels of all crops but the one in question, the
least squares solutions are not given, as they are straightforward.

14.6 Modeling Responses for Mixtures Based on Sole
Crop Model

In modeling responses for yield–density relations for mixtures of k crops, we shall
follow the format of Chapter 5 of Volume I in that the model for sole crops will be
extended to include a term for the effect of the mixture at the particular densities of
the mixture. For the three-crop mixture example used for equations (14.3), (14.4),
and (14.5), the three model equations are

Ygc(m,b)dchdmidbj
� β0gc + β1cdch

+ γc(m,b)(dchdmidbj ) + εgc(m,b)dchdmidbj
, (14.21)

Ygm(c,b)dchdmidbj
� β0gm + β1mdmi

+ γm(c,b)(dchdmidbj ) + εgm(c,b)dchdmidbj
, (14.22)

Ygb(c,m)dchdmidbj
� β0gb + β1bdbj
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+ γb(c,m)(dchdmidbj ) + εgb(c,m)dchdmidbj
(14.23)

Let γc(m,b)(dchdmidbj ) � γc(m,b)(hij ) for simplicity, and similarly for the
γm(c,b)(hij ) and γb(c,m)(hij ) terms. The other symbols are defined above.

Solutions for the γc(mb)(hij ), γm(cb)(hij ), and γb(cm)(hij ) parameters are

γ̂c(mb)(hij ) � ȳ·c(mb)(hij ) − (dch − d̄c·)β̂1c − ȳ·c·, (14.24)

γ̂m(cb)(hij ) � ȳ·m(cb)(hij ) − (dmi − d̄m·)β̂1m − ȳ·m·, (14.25)

γ̂b(cm)(hij ) � ȳ·b(cm)(hij ) − (dbj − d̄b·)β̂1b − ȳ·b·, (14.26)

where ȳ·c(mb)(hij ) is the mean value over replicates of responses for cassava at
density level h � dch in the presence of maize at density level i � dmi and beans
at density level j � dbj . The other symbols are as described previously.

In order for the solutions in (14.6) to (14.17) to be least squares solutions, it
is necessary for the error variance of the εgch values, say, to be identically and
independently distributed for each density level h � dch and for each value of g. If
the error variance varies with density level, then a weighted least squares procedure
should be used. Likewise, in computing the variances for the γ̂ values, the variance
for a crop in monoculture and that for the same crop in an intercrop mixture will
be assumed to be the same. If this assumption is not tenable, then the γ̂c(mb)(hij ) in
(14.24) will have one variance for ȳ·c(mb)(hij ) and a different variance for β̂1c and
ȳ·c·, which brings in the Behrens–Fisher situation of unequal variances. However,
if the degrees of freedom for the error variances are relatively large, Grimes and
Federer (1984) have demonstrated that the equal-variance situation may be used
without losing much power. If σ 2

εc is the error variance for cassava in monoculture
and σ 2

εc(mb) is the error variance for cassava in polyculture, the intercrop mixture,
then the error variance for γ̂c(ma)(hij ) is

V
[
γ̂c(mb)(hij )

] � σ 2
εc(mb)

r
+ σ 2

εc

r

[
1

nc

+ (dch − d̄c·)2∑nc

h�1(dch − d̄c·)2

]

� σ 2
εc

r

(
1 + 1

nc

+ (dch − d̄c·)2∑nc

h�1(dch − d̄c·)2

)
(14.27)

when σ 2
εc � σ 2

εc(mb). Similarly, the error variances for γ̂m(cb)(hij ) and γ̂b(cm)(hij )
values are

V
[
γ̂m(cb)(hij )

] � σ 2
εm

r

[
1 + 1

nm

+ (dmi − d̄m·)2∑nm

i�1(dmi − d̄m·)2

]
(14.28)

and

V
[
γ̂b(cm)(hij )

] � σ 2
εb

r

[
1 + 1

nb

+ (dbj − d̄b·)2∑nb

j�1(dbj − d̄b·)2

]
. (14.29)

If error variances for monoculture and polyculture differ, then (14.28) and (14.29)
should be put in the form of the middle term of (14.27). When equations (14.18)–
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(14.20) are used, it is more unlikely that heterogeneous error variances will be
encountered.

The above error variances may be used to test the hypothesis that γc(mb)(hij ),
γm(ch)(hij ), or γ̂b(cm)(hij ) is equal to zero. Also, linear contrasts among the es-
timates of the above parameters may be tested. The γ̂c(mb)(hij ) values may be
partitioned in the manner of a three-factor factorial if desired. Patterns among
these estimates may also be of interest to the researcher.

An analysis of variance to utilize in testing the null hypotheses about the pa-
rameter value in the various models may be performed as shown in Table 5.3 of
Volume I. The application is straightforward and is not repeated here. The “Error
from regression” and “Biblends” (here “Multiblends”) sums of squares may be
partitioned into sums of squares for more complex models and for various patterns
among the γ values. In addition, the results from the Appendix to Chapter 5 of
Volume I may be used to perform additional tests for significance for intercropped
mixtures of three or more crops. Most procedures are straightforward and, hence,
are not repeated here.

The above discussion has concentrated on treatment design 1 from Section 14.3.
The application to Designs 2, 4, and 5 is straightforward, but note that a weighted
regression approach will need to be used for Designs 2 and 3. The regressions for
crops two and three in the three-crop mixture have a smaller variance, i.e.; there are
n1r replicates for the regression coefficients for densities of crops two and three
and crop one has r replicates of these coefficients. Similarly for Design 3, the
regression coefficients from crops three and four have rn1n2 estimates, whereas
crops one and two have rn2 or rn1 estimates, respectively.

The following example is presented to expand and clarify the ideas presented
here.

14.7 An Example

Data for maize and bean yields at the zero density of melon were obtained from
Aidar (1978). In order to obtain an example for mixtures of three crops with varying
densities of all three crops (an example was not found in the literature; see Chapter
20), it was necessary to construct one. The data in the last six columns of Table
14.5 are artificial. The data for this example have all combinations of the following
population densities:

bean — 0, 40,000, 80,000, 120,000, and 160,000 plants per hectare

maize — 20,000, 40,000, and 60,000 plants per hectare

melon — 0, 1000, and 2000 plants per hectare.
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TABLE 14.5. Intercrop Yields (kg Grain/ha for Bean and Maize and kg Fruit/ha for Melon)
for Three Population Densities (Times 1000) for Maize and Melon and Five for Beans.

Melon (Plants/ha)
Plants/ha 0 1 2

Maize Bean Bean Maize Bean Maize Melon Bean Maize Melon
20 0 — 4934 — 5000 275 — 4500 425

40 468 3494 550 3494 250 450 3500 400
80 718 3698 650 3632 225 550 2900 350

120 775 3632 750 3698 250 700 3500 375
160 768 4228 740 4228 200 725 4800 325

40 0 — 6446 — 6000 250 — 6200 400
40 381 5736 400 6000 150 500 6100 280
80 413 6599 475 5500 175 450 5700 350

120 663 4660 616 5750 180 600 6500 400
160 616 6150 500 6100 175 575 6200 375

60 0 — 6485 — 6200 225 — 6000 350
40 245 7056 250 6870 175 225 6900 400
80 328 6870 300 7056 150 300 6800 375

120 323 9124 350 8000 125 250 7500 325
160 581 5296 450 5000 150 225 4500 300

A mixture of these three crops would appear practical if the beans were planted
between the maize rows and the melons (a bush type, e.g.) were planted in the
maize rows.

The maize and bean data obtained from Aidar (1978), the third and fourth
columns of Table 14.5, are means of three replicate yields from an experiment
designed as a randomized complete block. ANOVA tables for bean yields and
for maize yields were also presented. From these tables, an error variance for
these means (Aidar’s error mean square divided by 3, the number of repli-
cates) was obtained. There was 1 missing plot and, hence, the maize error mean
square has 27 instead of 28 degrees of freedom. The bean error mean square
is associated with 21 degrees of freedom. ANOVAs for the bean, maize, and
melon yields in Table 14.5 are given in Table 14.6. The error degrees of free-
dom for melon, 25, are what would have been had melon been included in the
experiment.

For bean yields, significant differences at less than the 5% level were found for
bean and maize densities. The bean-by-maize interaction is significant at the 5%
level. As shown in Figure 14.5, this interaction is largely due to the low yield for
the 60 maize and 120 bean combination. If this combination bean yield had been
around 550, there would have been no indication of interaction.

For maize yields, large differences are indicated for maize densities and for
the bean-by-maize interaction. The nature of the bean density-by-maize density
interaction is depicted in Figure 14.6. The differential yields for the 2 mixtures,
40 maize and 120 beans and 60 maize and 120 beans, account for a large share of
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TABLE 14.6. Degrees of Freedom and Mean Squares for Data in Table 14.5.

Crop in mixture
Source of Bean Maize Melon
Variation d.f. MS d.f. MS d.f. MS
Bean � B 3 70,298 4 632,878 4 3,678
Maize � M 2 339,644 2 29,537,314 2 6,520
Melon � L 2 11,449 2 136,449 1 204,118
B × M 6 8,270 8 2,491,944 8 1,903
B × L 6 4,166 8 63,275 4 367
M × L 4 5,895 4 251,812 2 1,750
B × M × L 12 3,551 16 215,380 8 711
Error 21 4,000 27 409,667 25 1,000

F.05(2, 21) � 3.47 F.05(2, 27) � 3.35 F.05(1, 25) � 4.24
F.05(3, 21) � 3.07 F.05(4, 27) � 2.73 F.05(2, 25) � 3.38
F.05(4, 21) � 2.84 F.05(8, 27) � 2.30 F.05(4.25) � 2.76
F.05(6, 21) � 2.57 F.05(16, 27) � 2.03 F.05(8, 25) � 2.34
F.05(12, 21) � 2.25

40 80 120 160
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100
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FIGURE 14.5. Population density (plants/ha times 1000) and yields (kg/ha) for bean-by-
maize interaction for bean yields.
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FIGURE 14.6. Population density (plants/ha times 1000) and yields (kg/ha) for bean-by-
maize interaction for maize yields.

the interaction sum of squares. Also, the two-mixture yields for 40 maize and 160
beans and 60 maize and 160 beans respond differently than what would be expected
on the basis of zero interaction. The trends are different for the maize levels at the
three densities. For the 20,000- and 40,000-plant density, the slopes are slightly
negative, while the slope is positive for the 60,000 density. An interpretation of
these results by the experimenter would need to entail what happened to these
particular mixtures in the experiment, as well as to biological theory of why such
results are plausible.

For melon yields, the variation in yields between the two melon densities, among
the bean densities, and among the maize densities appear real. All the interaction
mean squares are nonsignificant.

In addition to the above analyses, the experimenter may wish to model responses
as described in the previous section. For an experiment of the sort described here,
the following response model would appear appropriate for the sole crop yields. It
should be noted that the yield–density curve must go through the point (0, 0), the
origin, as zero plants result in zero yields.

ȳ·mi � µ + β1mdmi + β2md2
mi + εgdmi (dbhdlj ). (14.30)

This equation differs from (14.19) in that the regression function goes through
the origin rather than the intercept. Solutions for β1m and β2n are obtained from a
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solution of the following two equations:

β1m� d2
mi + β2m� d3

mi � � dmiȳ·mi, (14.31)

β1m� d3
mi + β2m� d4

mi � � d2
miȳ·mi. (14.32)

For this example,

0 + 2 + 4 + 6 � � dmi,

02 + 22 + 42 + 62 � 56 � � d2
mi,

03 + 23 + 43 + 63 � 288 � � d3
mi,

04 + 24 + 44 + 64 � 1568 � � d4
mi,

2(4934) + 4(6446) + 6(6485) � 74, 562 � � dmiȳ·mi,

4(4934) + 16(6446) + 36(6485) � 356, 332 � � d2
miȳ·mi.

With these results, equations (14.31) and (14.32) become

56βm1 + 288βm2 � 74, 562,

288βm1 + 1568βm2 � 356, 332.

Solution of the above results in βm1 � 2938 and βm2 � −312.35. The predicted
yields on the basis of this regression function is

Ŷmi � 2938dmi − 312.35d2
mi,

which for dmi � 2 (20,000 density) is

Ŷm2 � 2(2938) − 4(312.35) � 4627.

The yields ȳ·mi and the predicted yields Ŷmi are plotted in Figure 14.7. From the
curve, for Ŷmi , the number of plants per hectare for optimum yield is computed as
−β̂1/2β̂2 � 47, 028 plants per hectare.

Using equations (14.24) and (14.30), the γ̂m(bl)(hij ) effects are computed as
follows. Let h � 20, i � 40, and j � 0; then (see Table 14.7)

γ̂m(bl)(20, 40, 0) � 3494 − 2(2938) + 4(312.35) � −1133.

Also,
γ̂m(bl)(20, 80, 0) � 3698 − 4627 � −929,

...
γ̂m(bl)(60, 160, 0) � 5296 − 6383 � −1088,

γ̂m(bl)(20, 40, 1) � 3494 − 4627 � −1133,

...
γ̂m(bl)(60, 160, 2) � 4500 − 6383 � −1883.
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FIGURE 14.7. Sole crop maize yields (kg/ha) for different maize densities per hectare.

TABLE 14.7. Mixture Density Effects for Maize Yields, γ̂m(bl)(hij ), from Equation (14.24)
for Densities h � 20, 40, 60, i � 0, 40, 80, 120, 160, and j � 0, 1, 2 (times 1000).

h, i, 0 γ̂m(bl)(hi0) h, i, 1 γ̂m(bl)(hi1) h, i, 2 γ̂m(bl)(hi2)
20, 40, 0 −1133 20, 40, 1 −1133 20, 40, 2 −1127
20, 80, 0 −929 20, 80, 1 −995 20, 80, 2 −1727
20, 120, 0 −995 20, 120, 1 −929 20, 120, 2 −1127
20, 160, 0 −399 20, 160, 1 −399 20, 160, 2 173

40, 40, 0 −1018 40, 40, 1 −754 40, 40, 2 −654
40, 80, 0 −155 40, 80, 1 −1254 40, 80, 2 −1054
40, 120, 0 −2094 40, 120, 1 −1004 40, 120, 2 −254
40, 160, 0 −604 40, 160, 1 −654 40, 160, 2 −554

60, 40, 0 673 60, 40, 1 487 60, 40, 2 517
60, 80, 0 487 60, 80, 1 673 60, 80, 2 417
60, 120, 0 2741 60, 120, 1 1617 60, 120, 2 1117
60, 160, 0 −1087 60, 160, 1 −1383 60, 160, 2 −1883

The three largest mixture–density effects are for the mixtures (40, 120, 0), (60,
120, 0), and (60, 160, 2). Other large effects are for mixtures (60,120,1) and (20,
80, 2). A variance for a mixture–density effect is computed as for density di∗ :

V(γ̂m(bl)(hij ) � σ 2
ε /r + Var

(
β1mdi∗ + β2md2

i∗
)
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� σ 2
ε

r

[
1 + {(� di

(
di ′∗� d4

i − d2
i∗� d3

i

)
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i

(
d2

i∗� d2
i − di∗� d3

i

))/
(
� d2

i � d4
i − (� d3

i

)2)}2]
,

which for the above example for di∗ � 2 is

409, 667(1 + 12[2(1568) − 22(288)] + 56[22(56) − 2(288)])

� 409, 667(1 + 0.70914) � 700, 178.

For Densities 4 and 6, the variances are

409, 667(1 + 1.3407) � 958, 908

and
409, 667(1 + 0.89751) � 777, 347.

The standard errors for di∗ � 2, 4, and 6 are 837, 979, and 882, respectively. A 5%
significant difference is t.05(27) � 2.052 times the standard error for each di∗ � 2,
4, and 6; these are 1717, 2009, and 1810, respectively. The mixture–density effects
which exceed these significant differences are for mixtures (40, 120, 0), (60, 120,
0), (20, 80, 2), and (60, 160, 2).

14.8 Analysis for ci Lines for Crop i

In place of using a single line for each of the crops in the intercrop mixture, an ex-
perimenter may wish to use several lines of one or more of the crops. Also, several
lines for one, for two, . . . , or for all crops may be included in an experiment. For
li lines of crops i, there will be a total of l1 × l2 × . . . × lc � L line combinations.
As is obvious, L can quickly become large. If one of the five designs is included
for each of the L combinations, a large number of experimental units and combi-
nations result. Hence, methods should be considered which reduce the size of an
experiment to a manageable size. This means that the lines to be included should
be carefully selected in order to make L as small as possible.

For Designs 1 and 5 in Section 14.2, it may be possible to have the experimental
unit for combination dchdmidbj , say, large enough to accommodate the L line
combinations. For example, if L � 8, the experimental unit for level combination
dchdmidbj could be divided intoL � 8 split plot experimental units to accommodate
the L � 8 line combinations. Using the usual randomization procedure for the
experiment design, an ANOVA for this type of design is given in Table 14.8. By
partitioning the degrees of freedom into single degree of freedom contrasts, several
of the degree of freedom contrasts should be estimates of the error variance for
such an experiment. If so, the Daniel (1959) and Krane (1963) procedures may be
used to estimate error variances and construct confidence intervals.
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TABLE 14.8. ANOVA Partitioning of Degrees of Freedom for L � 8 Line Combinations
as Split Plots of the Fractional Replicate of Figure 14.4.

Source of variation d.f. SS MS
Total 19L � 19(8) � 152
Correction for mean 1
Treatment combinations (v − 1) � 18

Crop one � A 2
Crop two � B 2
Crop three � C 2
A × B 4
A × C 4
B × C 4

Split Plot 19(8 − 1) � 133
Line combination � LC 7

LC × A 14
LC × B 14
LC × C 14
LC × A × B 28
LC × A × C 28
LC × B × C 28

As an alternative to the above, the line combinations may be used as whole
plots for the density level combinations as the split plots. Then simply interchange
the roles of the line and density combinations as shown in Table 14.9 to obtain
this partitioning of degrees of freedom. Again, the appropriate single degree of
freedom contrasts should be made in order to have a complete analysis for the
experiment.

For Designs 2 and 3, it would appear that the line combinations should be the
whole plot treatments. Following the ideas in Tables 14.8 and 14.9, the partition-
ing of the degrees of freedom and sums of squares is straightforward. Fractional
replicates of all possible line combinations and of all possible density level combi-
nations may be used if desired. ANOVAs similar to the above may be used. Also,
analyses for each crop as well as for the combination of crop yields may be used.

14.9 Summary and Discussion

Five treatment designs are presented for studying yield–density relationships for
mixtures of three or more crops. There are many more that could be considered,
but the ones given should enable the reader to develop others appropriate for
the situation in question. Likewise, response model equations are presented for
monocrops and mixtures. Models using the lowest density levels of all crops but
the one under consideration are also presented. As pointed out, other and/or more
complex models for yield–density relationships may be used where appropriate.
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TABLE 14.9. ANOVA Partitioning of Degrees of Freedom for L � 8 Whole Plots and with
the 19 Density Combinations of Figure 14.4 as Split Plots.

Source of variation d.f. SS MS
Total 8(19) � 152
Correction for mean 1
Line combination � LC 7
Split Plots 144

Crop one � A 2
Crop two � B 2
Crop three � C 2
A × B 4
A × C 4
B × C 4
A × LC 14
B × LC 14
C × LC 14
A × B × LC 28
A × C × LC 28
B × C × LC 28

Three of the proposed designs (2, 3, and 4) are parsimonious in that a wide range
of density levels may be studied using a small amount of experimental space and
material. These parsimonius designs allow studies on wide ranges of densities and
numbers of crops within a doable framework.

Designs involving replacement of one crop by another (replacement series) have
not been discussed in this chapter. This discussion has been relegated to Chapter
17 in the same manner as it was done in Volume I. There, this topic is discussed in
Chapter 8. Several parsimonious designs for studying response–density relations
are presented in Chapter 17.

Since many analyses are often required to extract the information from the data
obtained in an experiment, it is recommended that statistical analyses like those in
this chapter be done; that is, analyses are made for each crop in a mixture as well
as for each of the created variables (e.g., relative land equivalent ratio, relative
system value, etc.). Single statistical analyses, which are most frequently used
with monocultures, are usually insufficient for extracting the information in an
intercropping experiment.

14.10 Problems

14.1 Assume that the sole crop bean yields are 400, 500, 600, 800, and 700 kg/ha
for densities 0, 40,000, 80,000, 120,000, and 160,000 plants/ha. Obtain
solutions for the linear and quadratic coefficients and prepare a table similar
to Table 14.7 for mixture–density effects for bean yields.
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14.2 Run an analysis of variance on the γ̂b(ml)(hij ) values computed in Problem
14.1. Do likewise for the data in Table 14.7 for the γ̂m(bl) effects. Interpret
the results.

14.3 Propose alternate models for mixture–density effects and determine under
what circumstances your models would be appropriate.

14.4 Compare the linear regression coefficients for the γ̂m(bl) effects for each of
the three maize densities.

14.5 Compute variances for the γ̂b(ml)(hij ) effects in Problem 14.1 and determine
which, if any, of the effects exceed t.05(21) times the standard error of an
effect.
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chapter 15

Mixing Ability Effects When Individual
Cultivar Responses Are Available

15.1 Introduction

In Volume I, Chapter 6, biological models for cultivars in mixtures were presented
for m cultivars in mixtures of n � 2 cultivars. In this chapter, we generalize the
concepts and statistical methods to m cultivars in mixtures of size n cultivars fol-
lowing the approach of Federer and Raghavarao (1987). These authors considered
minimal designs to estimate all types of mixing abilities for m cultivars in mixtures
of size n. They built upon the ideas in Hall (1976), Federer (1979), and Federer et
al. (1976) to obtain the theoretical results for this chapter.

Knowing and understanding the type and nature of biological interactions of
cultivars in mixtures can be of considerable practical usefulness in obtaining mix-
tures for general usage by farmers. In other types of mixtures such as drugs, such
information as may be obtained from the statistical procedures of this chapter can
be extremely valuable, and perhaps vital, for prescribing mixtures of drugs for
patients.

Types and nature of various effects for a mixture are discussed in Section 15.2.
Minimal treatment designs and response model equations for various types of ef-
fects are presented in Section 15.3. Designs and response models are presented
first for general mixing ability effects, GMA. This is followed by a presentation of
designs and models for GMA and bi-specific mixing effects, BSMA. Then, designs
and models are discussed for the situation where GMA, BSMA, and tri-specific
mixing effects, TSMA, are desired. Also, designs and models for GMA, BSMA,
TSMA, and quat-specific mixing effects, QSMA, are discussed. The case for the
kth specific mixing effect estimation ends Section 15.3. In Section 15.4, solutions
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and variances are given for estimated effects for each of the situations in Section
15.3. As the number of cultivars, n, in a mixtures increases, the complexity of the
algebraic expressions also increases. Owing to this, the algebraic developments
were relegated to Appendix 15.1. Also, owing to the algebraic complexity, use was
made of computer software programs such as MAPLE and MATHEMATICA, to
obtain solutions, as described in Appendix 15.2. The increase in algebraic com-
plexity for larger n can be compensated for to some extent by using this software.
Mixtures n � 2, 3, and 4 are detailed herein. By extending the computer programs
in Appendix 15.2, solutions and variances of differences of effects may be obtained
for n � 5, 6, . . . for specific values of m.

Four numerical examples are presented to demonstrate the application of the
formulas presented and to demonstrate another analysis for the examples of Chap-
ters 12 and 13. Again, it is emphasized that several statistical analyses may be
required to glean the information from an intercropping experiment. Problems
are presented for the reader to apply the results of this chapter and to extend the
concepts.

15.2 Type and Nature of Effects

The various biological types of effects considered in this chapter are those related to
a cultivar’s ability to mix either specifically or generally with n−1 other cultivars.
A cultivar may perform well in intercrop mixtures of size n with all other m − 1
cultivars under consideration. A cultivar may do especially well or poorly with
a particular mixture of n cultivars. The former type is known as general mixing
ability and the latter as specific mixing ability. These concepts have been discussed
in Hall (1976), Federer (1979), Federer et al. (1976), and Volume I, Chapters 6
and 7.

15.2.1 General Mixing Ability

A general mixing ability (GMA) effect is a measure of how well or how poorly a
particular cultivar performs in mixtures of size n of m cultivars. The measure is in
reference to this particular set of m cultivars under consideration in an experiment
involving mixtures of n cultivars. If a cultivar performs well with the other m − 1
cultivars in mixtures of size n, then it is said to have a high GMA. Such a cultivar
is desirable. If a cultivar performs poorly in all mixtures of size n in which it is a
member, the cultivar is undesirable for intercropping purposes.

A cultivar effect is the sum of its relative performance as a sole crop, say τi , plus
its performance in a mixture, say δi . Thus, a cultivar effect is denoted as τi +δi , and
if only mixtures of size n are included, the individual solutions for the terms τi and
δi cannot be obtained. The δi refers to the GMA effect, but it should be made clear
that a cultivar effect of τi + δi is all that may be obtained. This should be clearly
understood when interpreting cultivar and GMA effects as they are different.
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15.2.2 Bi-specific Mixing Ability

A bi-specific mixing ability (BSMA) effect refers to a first-order or two-factor
interaction effect of a pair of cultivars in mixtures of size n. Two cultivars may
perform beneficially or detrimentally when they appear together in a mixture. A
positive value for a BSMA effect is desirable, as it complements the GMA effects
for the pair of cultivars since the overall effect of a cultivar is the sum of its
individual effects. BSMA effects can vary with the size of a mixture (see Hall,
1976). If an experimenter is interested only in GMA and BSMA effects, then n

may be taken as 2. If BSMA effects vary with n, then it will be necessary to vary
n in the experiment to assess BSMA effects for various n.

As opposed to ordinary interaction terms, a BSMA effect is obtained for each i

and each j in the pair ij . A specific combining ability effect in genetic experiments
is obtained only for the pair ij and not for i alone and j alone. We denote these
two interaction terms as λi(j ) and λj (i), where the symbol in parentheses means “in
the presence of.” λi(j ) is the contribution of cultivar i to the interaction of cultivar
i with j , i.e., λi(j ) + λ(i)j � λij . These effects have solutions when responses are
obtained for each member of the pair ij .

15.2.3 Tri-specific Mixing Ability

A tri-specific mixing ability (TSMA) effect is a second-order or three-factor, in-
teraction effect of three cultivars in a mixture of size n cultivars. This effect may
vary with the number n of intercrops in a mixture. If so, then n, the number of
cultivars in a mixture, may need to be varied in an experiment. A trio of cultivars
may mix well or poorly in a mixture. A TSMA effect may be independent of GMA
and BSMA effects. A positive-valued TSMA effect is desirable, which indicates
that the specific trio performs well in a mixture.

In an ordinary interaction effect, only one value is obtained, but when individual
responses from each member of a trio are available, a TSMA effect is obtainable
for each member of a trio. If an ordinary interaction effect is denoted as πijk ,
say, then the three corresponding TSMA effects are denoted as πi(j,k), πj (i,k), and
πk(i,j ), where the symbols in parentheses mean “in the presence of.” Knowing
the individual interaction components provides additional information over the
ordinary interaction term πijk which is the sum of the components, i.e., πi(jk) +
πj (ik) + πk(ij ) � πijk .

15.2.4 k-specific Mixing Effect

A (k − 1)th-order or k-factor interaction effect of a n-tuplet of cultivars is denoted
as a kth specific mixing ability (KSMA) effect. A four-cultivar mixing effect is
denoted as quat-specific mixing ability (QSMA) effect. A five-cultivar specific
mixing ability effect is denoted as quint-specific mixing ability (QuSMA) effect.
In general, a k-cultivar specific mixing ability effect is denoted as a k-specific mix-
ing ability (KSMA) effect. When responses for individual cultivars are available,
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a KSMA effect will be obtained for each member of the k-tuple, in the mixture
of n cultivars, k ≤ n. As k increases, it would be expected that the size of the
specific mixing ability effects would decrease. However, as pointed out in Chapter
11, surprising results from intercropping experiments are ever-present. Although
the likelihood may be small, four-, five-, six-, and even higher-factor interaction
effects are possible. The complexity of intercropping systems will be related to
the existence of these higher-order interactions. In an intercropping experiment,
Ezumah et al. (1991) found significant two-, three-, and four-factor interactions in
a four-factor experiment which were meaningful and interpretable. If more factors
had been included, it is possible that higher-order interactions would have been
present. Significant and meaningful five-factor interactions have been encountered
by the author. The rareness of such interaction should not be interpreted as nonexis-
tence. Their presence increases as the complexity of a biological system increases.
Intercropping systems often involve complex biological relationships.

15.3 Minimal Designs and Response Models

Hall (1976), Federer et al. (1976), and Federer and Raghavarao (1987) have dis-
cussed minimal designs for estimating various types of effects in intercropping
experiments. We have been and will continue to use the notation in the last refer-
ence above. Minimal designs will vary depending upon whether only GMA, GMA
plus BSMA, GMA plus BSMA plus TSMA, etc. effects are desired. The treatment
design used must be such that solutions for the parameters involved are possible.
First, we consider minimal designs for obtaining solutions for only GMA effect
parameters. Then minimal designs for obtaining solutions for GMA and BSMA
effect parameters will be discussed. This is followed by a discussion of treatment
designs for GMA + BSMA + TSMA effects, and for GMA + BSMA + TSMA +
QSMA effects.

The last section is a discussion of treatment designs for GMA + BSMA + · · ·
+ KSMA effects. Also, the designs discussed are equal-sizes mixtures n for all
mixtures denoted as Sα , α � 1, · · · , v the number of mixtures. Comments on
designs for variable sizes for n are presented.

15.3.1 Minimal Designs for Cultivar and GMA Effects

A minimal treatment design for obtaining estimates of GMA effects only is to
include each of the m cultivars as sole crops and all m cultivars in a single mixture of
n � m. For various reasons such as variance differences and precision, it would be
wise to include the mixture of m cultivars more than once in each complete block.
This allows the estimation of variances for each GMA effect. For the example
presented below, the m � 6 cultivar mixture was included once. Denoting the sole
crop mean as µh + τh, the crop mean in mixtures is denoted as (µh + τh + δh)/n,
where δh is the GMA effect for crop h. Here, δh is the GMA effect and τh + δh
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is the cultivar h effect. It is assumed that interaction effects are nonexistent. The
factor 1/n is needed to put these effects on the same basis as sole crop yields.

Response model equations for mixtures of size n � 3 cultivars h, i, and j ,
say, when the treatments are in a randomized complete block design (RCBD) with
mixtures S1, S2, . . . , Sv as the experimental units and the v treatments with each
complete block are

Ygh(i,j ) � (µh + ρgh + (τh + δh)
)/

3 + εgh(i,j ), (15.1)

Ygi(h,j ) � (µi + ρgi + (τi + δi)
)/

3 + εgi(h,j ), (15.2)

Ygj (h,i) � (µj + ρgj + (τj + δj )
)/

3 + εgj (h,i), (15.3)

where µh + (τh + δh) is the mean of cultivar h summed over all combinations of
cultivars i and j for h �� i, h �� j , i �� j , τh is the cultivar effect as a sole crop, δh

is the GMA effect parameter, and εgh(i,j ) is a random error effect distributed with
mean zero and variance σ 2

εh. Ygh(i,j ) is the response for cultivar h in the mixture hij

in the gth complete block. The symbols in (15.2) and (15.3) are defined similarly
for cultivar i and j responses. In certain situations, µh � µi � µj � µ. This is a
form of the linear model discussed by Federer and Raghavarao (1987). Whether or
not this situation is tenable will be determined by the nature of the m cultivars in
the experiment and the goals of the experimenter. It should be noted that solutions
are possible for µx + τx + δx , x � i, j, k, but not for the individual terms. If
µx � µ, the solutions are possible for µ and τx + δx when a restriction such as∑m

x�1(τx + δx) � 0 is imposed. In order to obtain solutions for δx , solutions for
µ and τx or µx + τx , will need to be obtained from sole crop responses under the
restriction

∑m
x�1 τx � 0. The restriction that

∑m
x�1 δx � 0 is not tenable as all δx

could be negative, all could be positive, or there could be a mixture of positive and
negative values for GMA effects. When interpreting whatever solution is obtained,
careful thought of the meaning of any solution is required in order to make correct
interpretations and inferences.

15.3.2 Minimal Designs for Cultivar Plus BSMA Effects

In order to obtain solutions for cultivar effects, it was necessary to have at least m

mixtures of size n � 2 for the m cultivars. To obtain solutions for both cultivar and
BSMA effects for m cultivars, at least rm(m − 1) responses from the v mixtures
must be available for response model equations of the following form for an RCBD-
designed experiment:

Ygh(i) � (µh + ρgh + (τh + δh)
)/

2 + βh(i) + εgh(i), (15.4)

Yg(h)i � (µi + ρgi + (τi + δi)
)/

2 + β(h)i + εg(h)i , (15.5)

where Ygh(i) is the response for cultivar h in the pair hi (in the presence of cultivar
i) in the gth replicate, g � 1, . . . , r , h � 1, . . . , m, i � 1, . . . , m, i �� j ,
µh + τh + δh is the mean effect of cultivar h in the mixture and similarly for
cultivar i as described in the previous section, βh(i) is the BSMA effect for cultivar
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h when paired with cultivar i, β(h)i is the BSMA effect for cultivar i when paired
with cultivar h, and εgh(i) and εg(h)i are random error effects distributed with mean
zero and variances σ 2

εh and σ 2
εi , respectively. The remarks in the previous subsection

about µh, τh, τi, δh, and δi apply here as well.
A minimal treatment design for obtaining solutions for the parameters of re-

sponse equations (15.4) and (15.5) for n � 2 is the irreducible balanced incomplete
block design for all possible combinations of m cultivars taken two at a time, or
m!/2!(m−2)! � m(m−1)/2 combinations. For m � 4 and n � 2, the m(m−1)/2
mixtures or blocks of the BIBD (balanced incomplete block design) are S1 � (1, 2),
S2 � (1, 3), S3 � (1, 4), S4 � (2, 3), S5 � (2, 4), and S6 � (3, 4). This is a BIBD
with v � 4, k � 2, b � 6, r � 3, and λ � 1 � number of times cultivar h is
paired with cultivar i in the b blocks (mixtures). The number of cultivars, m, must
be greater than two in order for BSMA effect to have meaning.

Since there must be at least m(m − 1) responses in order to obtain solutions
for (µh + τh + ρh), βh(i), and β(h)i parameters, it is possible to do this by using
m mixtures of size n � m − 1 (i.e., a BIBD with v � b � m, k � r � m − 1,
λ � m − 2) in a BIBD arrangement. Using this treatment design would require
that n, the size of the mixture, would not affect the BSMA effect; that is, this effect
would be the same regardless of whether mixtures of two cultivars or mixtures
of m − 1 cultivars were used. For many studies, it would appear that mixtures of
n � 2 would be preferable, although the parsimony achieved with mixtures of
m − 1 cultivars is appealing even though their precision is less.

15.3.3 Minimal Designs for Cultivar Plus BSMA Plus TSMA
Effects

Treatment designs for obtaining solutions for cultivar effects, BSMA effects, and
TSMA effects must have mixtures of n ≥ 3 cultivars in a mixture. For n � 3,
response model equations for cultivars h, i, and j in the mixture are

Ygh(i,j ) � 1

3

(
µh + ρgh + (τh + δh)

)+ 2

3
(βh(i) + βh(j )),

+ πh(i,j ) + εgh(i,j ), (15.6)

Ygi(h,j ) � 1

3

(
µi + ρgi + (τi + δi)

)+ 2

3
(βi(h) + βi(j ))

+ πi(h,j ) + εgi(h,j ), (15.7)

Ygj (h,i) � 1

3

(
µj + ρgj + (τj + δj )

)+ 2

3
(βj (h) + βj (i))

+ πj (h,i) + εgj (h,i), (15.8)

where Ygh(i,j ) is the response for cultivar h, h � 1, . . . , m, in mixture hij in the
gth replicate, πh(i,j ) is the TSMA effect for cultivar h for the trio hij (or in the
presence of cultivars i and j ), and similarly for Ygi(h,j ), Ygj (h,i), and other terms
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for cultivars i and j . The remaining parameters are as described in the previous
two subsections. The same equations would be used for the triplet of cultivars h,
i, and j from treatment designs where n > 3. The number of responses used for
an effect is determined by the number of factors in the interaction term.

A minimal design for obtaining solutions for the parameters in equations (15.6)
to (15.8) is the irreducible BIBD for m ≥ 2t (t=order of interaction) for m even
and m ≥ 2t + 1 for m odd in blocks of size n � 3. This design has all possible
combinations of m items taken three at a time. Thus, the number of blocks of the
BIBD, or mixtures, is m!/3!(m − 3)! � m(m − 1)(m − 2)/6 � b � v. There will
be λ � m − 2 occurrences of pairs of cultivars in the b blocks. Any particular
cultivar will occur r � (m − 1)(m − 2)/2 times in the b mixtures. Each triplet
of cultivars will occur once in the b blocks. To illustrate, the design for m � 6,
v � 20, and n � 3 is S1 � (1, 2, 3), S2 � (1, 2, 4), S3 � (1, 2, 5), S4 � (1, 2, 6),
S5 � (1, 3, 4), S6 � (1, 3, 5), S7 � (1, 3, 6), S8 � (1, 4, 5), S − 9 � (1, 4, 6),
S10 � (1, 5, 6), S11 � (2, 3, 4), S12 � (2, 3, 5), S13 � (2, 3, 6), S14 � (2, 4, 5),
S15 � (2, 4, 6), S16 � (2, 5, 6), S17 � (3, 4, 5), S18 � (3, 4, 6), S19 � (3, 5, 6),
and S20 � (4, 5, 6). Here again, as with the two previous cases, in order to obtain
solutions for the GMA effects, or δh parameters, sole crops need to be included in
the experiment. Also, if µh � µi � µj � µ, then solutions for τh + δh, τi + δi ,
and τj + δj are possible under the restriction

∑m
x�1(τx + δx) � 0. Also, use may

be made of BIBDs balanced for occurrence of triplets (not just pairs) of cultivars
with n > 3 cultivars in a mixture. Whether or not an experimenter would want to
do this would depend on n, the size of the mixture, to be used in practice.

15.3.4 Minimal Designs for Cultivar Plus BSMA Plus TSMA Plus
QSMA Effects

Response model equations for n � 4 cultivars in a mixture when cultivar effects,
bi-specific mixing effects (BSMA), tri-specific mixing effects (TSMA), and quat-
specific mixing effects (QSMA) are present are

Ygh(i,j,k) � 1

4

(
µh + ρgh + (τh + δh)

)+ 2

4
(βh(i) + βh(j ) + βh(k))

+ 3

4
(πh(i,j ) + πh(i,k) + πh(j,k)) + γh(i,j,k) + εgh(i,j,k), (15.9)

Ygi(h,j,k) � 1

4

(
µi + ρgi + (τi + δi)

)+ 2

4
(βi(h) + βi(j ) + βi(k))

+ 3

4
(πi(h,j ) + πi(h,k) + πi(j,k)) + γi(h,j,k) + εgi(h,j,k), (15.10)

Ygj (h,i,k) � 1

4

(
µj + ρgj + (τj + δj )

)+ 2

4
(βj (h) + βj (i) + βj (k))

+ 3

4
(πj (h,i) + πj (h,k) + πj (i,k)) + γj (h,i,k) + εgj (h,i,k), (15.11)
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Ygk(h,i,j ) � 1

4

(
µk + ρgk + (τk + δk)

)+ 2

4
(βk(h) + βk(i) + βk(j ))

+ 3

4
(πk(h,i) + πk(h,j ) + πk(i,j )) + γk(h,i,j ) + εgk(h,i,j ), (15.12)

where Ygh(i,j,k) is the response for cultivar h from the mixture hijk in the gth
replicate, µh is a general mean effect for cultivar h, ρgh is the gth block effect
for response for cultivar h, (τh + δh) is the cultivar effect for h, βh(i), βh(j ), and
βh(k) are BSMA effects for h in the presence of cultivars i, j , and k, respectively,
the factor 2

4 is needed as only one-half of the experimental unit is occupied by
this pair of cultivars, πh(i,j ), πh(i,k), and πh(j,k) are TSMA effects for h in the
presence of cultivars i and j , i and k, and j and h, respectively, the factor 3

4 is
used as only three-fourths of the experimental unit is occupied by these culti-
vars, γh(i,j,k) is the QSMA for h in the presence of i, j , and k, and εgh(i,j,k) is a
random error effect for cultivar h responses distributed with mean zero and vari-
ance σ 2

εh. The symbols in (15.10), (15.11), and (15.12) are defined similarly. The
QMSA are four-factor interaction effects for each cultivar rather than the usual
four-factor interaction effect which is the sum of individual cultivar interaction
effects.

In order to obtain solutions for all parameters in the response models (15.9)
to (15.12), it is necessary that n ≥ 4 cultivars and m ≥ 8 cultivars in a mixture
(see Tables 15.1 and 15.2); that is for a t th-order, or (t + 1)st-factor interaction,
m ≥ 2t and n ≥ t + 1 (see Federer and Raghavarao, 1987). A minimal design for
solution for the effects in equations (15.9) to (15.12) for m cultivars in mixtures
of size n � 4 is all possible combinations of m items taken n � 4 at a time, or
m!/4!(m − 4)! � m(m − 1)(m − 2)(m − 3)/24 combinations. For m � 8 and
n � 4, the combinations are S1 � (1, 2, 3, 4), S2 � (1, 2, 3, 5), S3 � (1, 2, 3, 6),
S4 � (1, 2, 3, 7), S5 � (1, 2, 3, 8), S6 � (1, 2, 4, 5), S7 � (1, 2, 4, 6), . . ., S15 �
(1, 2, 7, 8), . . ., S68 � (4, 5, 7, 8), S69 � (4, 6, 7, 8), and S70 � (5, 6, 7, 8). In
the 70 sets of n � 4 cultivars, each set of 4 cultivars occurs once in the design,
each triplet of cultivars occurs m − 3 � 5 times, each pair of cultivars occurs
(m−2)(m−3)/2 � 15 times, and each cultivar occurs (m−1)(m−2)(m−3)/6 �
35 times. There are m!/3!(m−4)! � m(m−1)(m−2)(m−3)/6 � 280 responses
� 4(70) responses available for this design. The total 280 degrees of freedom may
be partitioned as shown in Table 15.2.

15.3.5 Minimal Designs for All Effects up to KSMA Effects

In order to obtain solutions for all effects up to KSMA, n ≥ k and m must be large
enough so that there are sufficient observations for the total number of degrees
of freedom necessary for all effects in the treatment design. General formulas
for m and n are given in Tables 15.1 and 15.2. The minimal treatment design
for estimating all effects up to KSMA is all possible combinations of m cul-
tivars taken n � k at a time, or m!/k!(m − k)! mixtures of k cultivars. Note
that smaller numbers of mixtures may be possible for some m when n > k.
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TABLE 15.1. Number of Effects, Restrictions, and Terms of kth Effects
Number of

Effect Restrictions Terms No. Restrictions
GMA

∑
i

(τi + δi) � 0 m 1

BSMA
∑
j ��i

βi(j ) � 0 m(m − 1) m

TSMA
∑
h ��ij

πi(j,h) � 0
m(m−1)(m−2)

2 m(m − 1)

QSMA
∑
l ��ijk

γi(j,k,l) � 0
m(m−1)(m−2)(m−3)

6
m(m−1)(m−2)

2

QuSMA
∑

p ��ijkl

αi(j,k,l,p) � 0
m(m−1)(m−2)(m−3)(m−4)

24
m(m−1)(m−2)(m−3)

6

KSMA
∑
z ��rest

Xi(jh···z)
m!

(k−1)!(m−k)!
m!

(k−1)!(m−k+1)!

For example, we showed that m cultivars in mixtures of n � m − 1 cultivars
were minimal designs for GMA and BSMA effects. BIBDs balanced for pairs
and for triplets may be used for GMA, BSMA, and TSMA effects. BIBDs bal-
anced for pairs, triplets, and quartets may be used when obtaining information
on GMA, BSMA, TSMA, and QSMA effects. The literature on such BIBDs is
scant.

It is not necessary to use BIBDs balanced for all effects for the treatment design.
Use of BIBDs ensures equal precision for all effects of a given order (GMA,
e.g.). Minimal designs result in the smallest number of treatments (mixtures) for
obtaining solutions for the desired mixing effects. Since the number of mixtures
may be large, using nonbalanced designs may make the number of mixtures even
larger and, hence, would be an inefficient design.

15.4 Solutions for Parameters

Federer and Raghavarao (1987) present solutions for the case µh � µ and for n � 3
mixtures of m cultivars. The models of the previous section differ in specificity
and content. Solutions for parameters and variances are presented below for the
various cases considered.

15.4.1 Cultivar Effects for Equations (15.1)–(15.3)

Cultivar effect treatment designs given in Table 15.1 are given below. In this case,
we consider µh � µ. Let λhh′ be the number of times a pair of cultivars h and h′

appear together in a mixture, let s be the number of mixtures in which cultivar h

appears, and let v be the number of mixtures. In order to effect solutions for these
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TABLE 15.2. Partitioning m!/k!(m−k)! Degrees of Freedom into Degrees of Freedom for
GMA, BSMA, TSMA, QSMA, and QuSMA Effects.
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models, the constraint
∑m

h�1(τ̂h + δ̂h) � 0 �∑r
g�1 ρ̂g is used. Then,

µ̂/n �
r∑

g�1

m∑
h�1

∑
h∈Sα

Ygh( ��h,Sα )/rsm � ȳ··(·,·), (15.13)

where Sα , α � 1, 2, . . . , m, is the mixture of n of m cultivars and the summation
over α is the sum over the s mixtures in which h occurs. If µh � µ, then̂µh + τh + δh

n
�
∑

g

∑
α

Ygh( ��h,Sα)/rs � ȳ·h(·,·), (15.14)

̂τh + δh � n
(
ȳ·h(·,·) − ȳ··(·,·)

)
. (15.15)

The variance of a difference of two cultivar means is

Var
[ ̂τh + δh − ( ̂τh′ + δh′ )

] � 2σ 2
ε /r(s − λhh′), (15.16)

where σ 2
εh � σ 2

εh′ � σ 2
ε . If this condition is not appropriate, individual error

variances and covariances will need to be obtained.

Example 15.1. The data from Table 13.2 are used to illustrate an analysis and
minimum treatment design for obtaining solutions for sole crop treatment effects
and for general mixing ability (GMA) effects. The data are given in Table 15.3
and an analysis of variance is presented in Table 15.4. Note that the biomass dry
weight response for the sole crops all intercropped with barley are from 12 plants.
In order to obtain estimates of GMA effects, the responses for m � n � 6 cultivars
represented in the single mixture are required. Thus, the m sole crop treatment plus
the treatment with all m crops in the mixture is a minimal treatment design for
estimating sole crop effects and GMA effects. Since the responses for the cultivars

TABLE 15.3. Data for Sole Crop Response (Biomass) for m � 6 Cultivars and for a Mixture
of All n � 6 Cultivars from Table 13.2, Data on a 12-Plant Basis.

Block
Treatment 1 2 3 Total Mean
A � Avena fatua 24.04 15.87 27.84 67.75 22.583
B � Coriander sativa 2.21 1.58 1.12 4.91 1.637
C � Lens esculentum 47.98 41.76 28.89 118.63 39.543
D � Lotus corniculatus 4.02 1.09 3.04 8.15 2.717
E � Medicago sativa 13.72 4.81 8.37 26.90 8.967
F � Matricatia 3.34 0.49 0.95 4.78 1.593
A(BCDEF) 15.84 4.80 27.00 47.64 15.880
B(ACDEF) 2.40 0.60 4.38 7.38 2.460
C(ABDEF) 81.66 64.38 84.48 230.52 76.840
D(ABCEF) 2.10 4.26 3.60 9.96 3.320
E(ABCDF) 5.58 10.56 10.92 26.06 9.020
F(ABCDE) 1.92 0.42 3.24 5.58 1.860
Totals 204.81 150.62 203.83 559.26 15.535
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in the mixture are from two plants, the responses in Table 13.2 are multiplied by
6 to bring the responses to a 12-plant measurement basis.

Since each sole crop mean is µ̂+ τ̂i , i � A, B, C, D, E, F, we take the
∑

i τi � 0
and then µ̂ � ȳ·· � mean of m sole crops and τ̂i � ȳ·i − ȳ··. For example,
ȳ·· � (67.75 + 4.91 + 118.63 + 8.15 + 26.90 + 4.78 � 231.12)/18 � 12.840,
τ̂A � 22.583 − 12.840 � 9.743, τ̂B � −11.203, τ̂C � 26.703, τ̂D � −10.123,
τ̂E � −3.873, and τ̂F � −11.247. From Table 15.4, a standard error for
τ̂i � √

30.3997(1/3 + 1/18) � 7(30.3997)/18 � 3.438. A standard error of a
difference between two τ̂i’s is

√
2(30.3997)/(r � 3) � 4.502. Since the response

for the cultivar in the mixture are from 2 plants and those from sole crops are from
12 plants, it might be suspected that the errors would be different, but they are
within sampling variation of each other, i.e., 17.2217 and 31.7839. The blocks by
sole crop versus mixture response mean square, 89.3686, is larger than the other
but is associated with only two degrees of freedom. These are the reasons for us-
ing the pooled mean square, 30.3997 with 22 degrees of freedom instead of the
individual variances.

Solutions for the δ̂i , GMA effect for cultivar i, are obtained as the differ-
ence between the means of a cultivar in a mixture and as a sole crop, i.e.,
ȳ·i(not i) − ȳ·i . The solutions are δ̂A � 15.880 − 22.583 � −6.703, δ̂B � 0.823,
δ̂C � 37.297, δ̂D � 0.603, δ̂E � 0.053, and δ̂F � 0.267. A standard error for
δ̂i is

√
2(30.3997)/(r � 3) � 4.502, since δ̂i is simply the difference between

two means. The mean of the δ̂i is the mean of the cultivars in the mixture and
their mean as sole crops, or 18.23 − 12.84 � 5.39, with a standard error of√

30.3997(1/18 + 1/18) � 1.838. Lentils, Lens esculentum, had a large sole crop
effect plus a large GMA effect relative to the other cultivars.

15.4.2 Cultivar and BSMA Effects for Equations (15.4) and
(15.5), n � 2

For µh �� µh′ �� µ and for
∑m

i�1
i ��h

β̂h(i) � 0, solutions for the various cultivar

effects, µ + τh + δh, and BSMA, βh(i), effects are

1

2

( ̂µh + τh + δh

) � r∑
g�1

m∑
i�1
i ��h

Ygh(i)/r(m − 1) � ȳ·h(·), (15.17)

Var

[ ̂µh + τh + δh

2
−
( ̂µh′ + τh′ + δh′

2

)]
� σ 2

εh + σ 2
εh′

r(m − 1)

under the assumption that E[εgh(h′)εgh′(h)] � 0 for i �� h. This covariance term,
if present, would generally be expected to be small and, hence, can be ignored.
Solutions for βh(i) effects and their variances are

β̂h(i) �
r∑

g�1

Ygh(i)/r − ȳ·h(·) � ȳ·h(i) − ȳ·h(·), (15.18)
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TABLE 15.4. Analysis of Variance for Data of Table 15.3.

Source of variation d.f. SS MS
Total 36 26,104.4436
CFM 1 8,688.1041
Blocks � R 2 160.2450 80.1255
Treatment � T 11 16,587.3007 1,507.9364

Among sole � S 5 3,532.4620 706.4924
Among mixtures � M 5 12,793.3698 2,558.6740
Sole vs. mixtures 1 261.4689 261.4689

R × T 22 668.7938 30.3997
R × S 10 172.2174 17.2217
R × M 10 317.8392 31.7839
R × S vs. M 2 178.7372 89.3686

Var
(
β̂h(i)

)
� σ 2

εh(m − 2)/r(m − 1), (15.19)

Var
(
β̂h(i) − β̂h(i ′)

)
� 2σ 2

εh/r. (15.20)

Example 15.2. Biomass data (dry weight) for barley as a sole crop, S, and as an
intercrop with m − 1 � 6 other cultivars are used for this example. From these
data, solutions for bi-specific mixing effects, BSMA, for barley may be obtained.
The data are given in Table 15.5 and an analysis of variance is presented in Table
15.6. The solutions for the BSMA effects on a 12-plant basis are obtained as the
mean of cultivar i with barley minus the mean over all mixtures, 38.631, ȳ·i − ȳ··,
i �A,B,C,D,E,F. Thus, β̂S(A) � ȳ·A − ȳ·S � 34.640 − 38.631 � −3.991, β̂S(B) �
−1.884, β̂S(C) � −2.808, β̂S(D) � 6.009, β̂S(E) � 0.856, and β̂S(F ) � 1.819. The
sum of the βS(i) adds to zero within rounding error. The standard of a difference
between two β̂S(i) is

√
2(70.0601)/3 � 6.834.

TABLE 15.5. Data for Mixtures of n � 2 of m � 7 Cultivars for Barley Biomass (Dry
Weight) from Table 13.2. (Data on a Six-Plant Basis.)

Block
System 1 2 3 Total Mean
Barley sole crop � S 43.90 33.09 40.98 117.97 39.323
Barley + wild oat (A) 38.16 27.48 38.28 103.92 34.640
Barley + corlander (B) 38.35 35.66 36.23 110.24 36.747
Barley + lentils (C) 33.59 33.78 40.10 107.47 35.823
Barley + trefoil (D) 30.46 49.97 53.49 133.92 44.640
Barley + alfalfa (E) 31.39 55.69 31.38 118.46 39.487
Barley + chamomile (F) 41.19 37.07 43.09 121.35 40.450
Total 257.04 272.74 283.55 813.33 38.730
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TABLE 15.6. Analysis of Variance for Data of Table 15.5.

Source of variation d.f SS MS
Total 21 32,595.5247
CFM 1 31,500.2709
Blocks � R 2 50.7679 25.3840
Treatment � T 6 203.7645 33.9608

Sole vs. rest 1 1.2321 1.2321
BSMA 5 202.5359 40.5072

R × T 12 840.7214 70.0601

The difference between the mean of the six barley mixtures, 38.361, and the
barley sole crop mean, 39.323, is an estimate of the GMA effect for barley, i.e.,
38.361 − 39.323 � −0.692. This value is within sampling error. The mixture
mean of a cultivar minus the barley sole crop mean is an estimate of the sum of the
GMA and BSMA effects. For example, for cultivar A, ȳ·S(A) − ȳ·S � δ̂S(·) +β̂S(A) �
34.640 −39.323 � (38.631−39.323)+ (34.640 −38.631) � −0.692 −3.991 �
−4.683.

There is considerable variation in treatment responses from block to block. The
following is a table of residuals times 21 for the data of Table 15.5:

Block
Treatment 1 2 3
S 138.32 −135.79 −2.53
S+A 116.13 −155.25 39.12
S+B 75.88 −27.71 −48.17
S+C −4.69 −47.80 52.49
S+D −255.57 107.04 148.53
S+E −127.82 335.38 −207.56
S+F 57.75 −75.87 18.12

The two largest residuals are 335.38 and −255.57. These two values contribute
(335.38/21)2 + (−255.57/21)2 � 403.1650, which is almost half of the R × T
sum of squares, 840.7214. Since all mean squares are smaller than the R × T mean
square, it would appear that there are outliers in this data set. Also, the mean square
of 70.0601 is much larger than the R × T mean square of 30.3997 obtained for
Example 15.1.

The sum of squares for BSMA in Table 15.6 is computed as r
∑m−1

i�1 β̂2
S(i) �

202.5359 for i �A,B,C,D,E,F, and m − 1 � 6. The remaining sums of squares
are computed in the usual manner; e.g., sole vs. rest sum of squares is (813.33 −
7(117.97))2/3(6+62) � (813.33−117.97)2/6(3)+117.972/3−813.332/3(7) �
1.2321.
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15.4.3 Cultivar and BSMA Effects for Equations (15.4) and (15.5)
for n � m − 1

If the BIBD for v � b � m, k � r � m − 1, and λ � m − 2 is used to obtain the
m mixtures of n � m − 1 cultivars, it is possible to obtain solutions for cultivar
means and BSMA, βh(i), effects. The βh(i) solutions are obtained from a mixture of
m − 1 cultivars and not from n � 2 as given above. The BSMA effect in mixtures
of n � 2 may differ substantially from the same BSMA effect in mixtures of
n � m − 1. However, these designs may be useful in preliminary investigations
and are parsimonious since only m mixtures rather than m(m − 1)/2 mixtures are
used in the experiment. There are m − 1 responses for cultivar h in each complete
block of an RCBD. The m(m − 1) total degrees of freedom per complete block of
an RCBD are partitioned into one for the mean, m− 1 for cultivars, and m(m− 2)
for the BSMA effects. The solutions for the parameters of the following response
equation are

Ygh( ��h,Sα ) � 1

m − 1

(
µh + τh + δh + ρg + 2

(
βh(1) + · · · + βh(m)

i �� h

))
+ εgh( ��h),Sα

, (15.21)

where h ∈ Sα , α � 1, 2, . . . , m mixtures, i �� h refers to any of the other m − 2
cultivars in a mixture. The multiplier 2/(m − 1) for the βh(i) effects is included to
account for the fact that an interaction was defined in Volume I, Chapter 6, for equal
amounts of material for the two entities interacting. In a mixture of n � m − 1
cultivars, only 2/n of the experimental unit is occupied by the two cultivars. The
other m− 3 cultivars occupy the rest of a mixture. Of course, the interaction could
be redefined, but the present procedures put GMA and BSMA effects on the same
basis as for n � 2 and for sole crops. The same constraints as used previously
apply here as well. The cultivar h mean iŝµh + τh + δh

(m − 1)
�
∑

g

∑
α

Ygh( ��h),Sα
/r(m − 1)

� Y·h(·,·)
r(m − 1)

� ȳ·h(·,·), (15.22)

where h is in mixture Sα , α � 1, . . . , m. The variance of a difference of two
cultivar means is, h �� h′,

1

(m − 1)2
Var
[ ̂µh + τh + δh − ( ̂µh′ + τh′ + δh′

)]
� σ 2

εh + σ 2
εh′

r(m − 1)
. (15.23)

The BSMA effect is obtained as

2β̂h(i)

(m − 1)
� 1

r(m − 2)

∑
g

∑
α

Ygh(i,Sα ) − ȳ·h(·,·)
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� ȳ·h(i,·) − ȳ·h(·,·), (15.24)

where hi is a member of mixture Sα . Note that cultivars h and i occur together in
λ � m − 2 mixtures in each complete block of the RCBD. The variance for β̂h(i)

is

Var(β̂h(i)) � σ 2
εh

(
m − 2

8r

(
2 + (m − 3)(m − 2)2

))
. (15.25)

The variance of a difference between two BSMA effects is

Var
(
β̂h(i) − β̂h(i ′)

)
� (m − 1)2σ 2

εh/2r. (15.26)

15.4.4 Cultivar, BSMA, and TSMA Effects for Equations
(15.6) –(15.8), n � 3

Solutions for parameters of equations (15.6) to (15.8) for v � m(m− 1)(m− 2)/6
mixtures, Sα , α � 1, 2, . . . , v, of size n � 3 of m cultivars are presented below. In
addition to the previous constraints, the constraints

∑m
i�1 π̂h(i,j ) �∑m

j�1 π̂h(i,j ) �
0 for h �� i �� j �� h are used. The cultivar means arêµh + τh + δh

3
� 2

r∑
g�1

∑
α

Ygh(i,j,Sα )

r(m − 1)(m − 2)

� ȳ·h(·,·,·). (15.27)

The variance of a difference between two cultivar means is
1

9
Var
[ ̂µh + τh + δh − ( ̂µh′ + τh′ + δh′

)]
(15.28)

� 2(m − 3)
(
σ 2

εh + σ 2
εh′
)

r(m − 1)2(m − 2)
,

where error term effects are uncorrelated.

2

3
β̂h(i) � (m − 2)

[∑
g

∑
α

Ygh(i,j,Sα)

r(m − 2)
− ȳ·h(·,·)

]
/(m − 3)

� (m − 2)
(
ȳ·h(i,·) − ȳ·h(·,·)

)
m − 3

, (15.29)

where hi ∈ Sα (the pair hi is a member of Sα). The variance of differences between
two BSMA effects is

4

9
V
[
β̂h(i) − β̂h(i ′), i �� i ′, � (m − 2)

(
ȳ·h(i,·) − ȳ·h(i ′,·)

)
m − 3

]

� 2σ 2
εh

r(m − 3)
. (15.30)
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The solution for a TMSA effect under the above constraints is

π̂h(i,j ) � ȳ·h(i,j ) − ȳ·h(··) − 2

3

(
β̂h(i) + β̂h(j )

)
� ȳ·h(i,j ) − (m − 2)

(
ȳ·h(i,·) + ȳ·h(j,·)

)
m − 3

+ (m − 1)ȳ·h(·,·)
m − 3

. (15.31)

Variances of differences between two TSMAs are

V
[
π̂h(i,j ) − π̂h(i,j ′) � ȳ·h(i,j ) − ȳ·h(i,j ′)

+ (m − 2)
(
ȳ·h(j ′ ·) − ȳ·h(j,·)

)
m − 3

, j �� j ′
]

� 2(m − 4)σ 2
εh

r(m − 3)
(15.32)

and

V
[
π̂h(i,j ) − π̂h(i ′,j ′) � ȳ·h(i,j ) − ȳ·h(i ′,j ′) − (m − 2)

× (ȳ·h(i,·) + ȳ·h(j,·) − ȳ·h(i ′,·) + ȳ·h(j ′,·)
)

/ (m − 3), i �� i ′, j �� j ′]
� 2(m − 5)σ 2

εh

r(m − 3)
. (15.33)

Example 15.3. BSMA and TSMA effects are obtained from the treatment design
of all combinations of m � 6 cultivars taken n � 3 at a time. For cultivar E, alfalfa,
there are (m − 1)(m − 2)/2 � 5(4)/2 � 10 combinations of m − 1 cultivars taken
2 at a time. The data in Table 15.7 are obtained from Table 13.3 for cultivar E.
Tables similar to Table 15.7 may be obtained for cultivars A, B, C, D, and F if
desired. Cultivar E was selected to represent the estimation of βE(i), and πE(i,j )

effects for i, j �A,B,C,D,F.
From the data in Table 13.3, Y·E(·,·) � 9.51 + 4.56 + · · · + 8.33 � 92.34,

ȳ·E(·,·) � 2Y·E(·,·)/r(m − 1)(m − 2) � 3.078, Y·E(A,·) � 9.51 + 4.56 + 7.20 +
16.44 � 37.71, and ȳ·E(A,·) � Y·E(A,·)/r(m − 2) � 37.71/3(4) � 3.142. The
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TABLE 15.7. Totals, Means, Effects, and Variances for the Data of Table 13.3 for Cultivar
E. (Y·E(i,j ) Totals Are Given in Table 13.3.)

Totals Means Effects
Y·E(·,·) � 92.34 ȳ·E(·,·) � 3.078 ȳ·E(·,·) � µ̂ + τ̂E + δ̂E

Y·E(A,·) � 37.71 ȳ·E(A,·) � 3.142 β̂E(A) � 0.128
Y·E(B,·) � 38.32 ȳ·E(B,·) � 3.193 β̂E(B) � 0.230
Y·E(C,·) � 31.24 ȳ·E(C,·) � 2.603 β̂E(C) � −0.950
Y·E(D,·) � 37.17 ȳ·E(D,·) � 3.098 β̂E(D) � 0.040
Y·E(F,·) � 40.24 ȳ·E(F,·) � 3.353 β̂E(F ) � 0.550

TSMA Effects
π̂E(A,B) � −0.147 π̂E(A,C) � −1.010 π̂E(A,D) � −0.790 π̂E(A,F ) � 1.950

π̂E(B,C) � 0.465 π̂E(B,D) � 0.412 π̂E(B,F ) � −0.728
π̂E(C,D) � 1.072 π̂E(C,F ) � −0.525

π̂E(D,F ) � −0.695

Var(β̂E(i) − β̂E(j ), i �� j ) � 1.7500
Var(π̂E(i,j ) − π̂E(i,k), j �� k) � 1.5556
Var(π̂E(i,j ) − π̂E(k,l), i, j �� k, l) � 0.7778
Standard Error of a difference between two β̂E(i) � 1.32
Standard error of a difference between π̂E(i,j ) and π̂E(i,j ′) � 1.247

remaining means are computed in a similar manner. ȳ·E(·,·) � 3.078 is an estimate
of µ̂ + τ̂E + δ̂E . If

∑m
k�1 τ̂i � 0, i �A,B,C,D,E,F, then

∑6
h�1 ȳ·h(·,·)/6 � µ̂ + δ̄,

where δ̄ �∑m
h�1 δ̂h/m and h �A,B,C,D,E,F.

From equation (15.29), β̂E(i) � 3
2

(
m−2
m−3

) (
ȳ·E(i,·) − ȳ·E(·,·)

)
; β̂E(A) � 3

2

(
6−2
6−3

) ·
(3.142 − 3.078) � 0.128. The remaining β̂E(i) are obtained in a similar manner
and are given in Table 15.7. The sum of the β̂E(i) is zero within rounding errors.
From equation (15.32), solutions for πE(i,j ) are obtained; for example, π̂E(i,j ) �
ȳ·E(i,j ) + m−1

m−3 ȳ·E(·,·) − m−2
m−3

(
ȳ·E(i,·) + ȳ·E(j,·)

)
and π̂E(A,B) � 9.51+5(3.078)/3−

4(3.142 + 3.193)/3 � −0.147. The remaining π̂E(i,j ) are computed in a similar
manner and are given in Table 15.7. The sum of the π̂E(i,j ) summed over j �� E

or i is zero. This serves as a computational check.
An analysis of variance for the data used to obtain Table 15.7 is given in

Table 15.8. The R, T , and R × T sums of squares are the usual ones for a ran-
domized complete block design. The sum of squares for BSMA is computed as
r22(m− 3)

∑m−1
i�1 β̂2

E(i)/32 � 4(0.1282 + · · ·+ 0.5502) � 5.1035 with m− 2 � 4
degrees of freedom. The TSMA sum of squares is computed as r

∑∑
i<j

π̂2
E(i,j ) �

3[(−0.147)2 + (−1.010)2 + · · · + (−0.695)2] � 3(8.292096) � 24.8763 with
(m − 1)(m − 4)/2 � 5 degrees of freedom. The sum of the BSMA and TSMA
sums of squares adds to the sum of squares for the (m−1)(m−2)/2 � 10 mixtures,
sum of squares.
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TABLE 15.8. Analysis of Variance for Cultivar Data from Table 13.5 with Monocrop and
Six-Cultivar Mixture Responses Included.

Source of variation d.f. SS MS
Total 36 438.702
CFM 1 338.070
Blocks � R 2 1.124 0.562
Treatment � T 11 30.011 2.728

Mixtures of three 9 29.978 3.331
BSMA 4 5.104 1.276
TSMA 5 24.876 4.975

Sole vs. three 1 0.023 0.023
Rest vs. six 1 0.011 0.011

R × T 22 69.496 3.159
R× mixtures of three 18 62.978 3.500
Remainder 4 6.518 1.630

Since the analysis of variance in Table 15.8 is the same as the one in Table
13.5, the sole crop E and the mixture of all m � 6 cultivars were included with
the 10 mixtures of 3, making 12 treatments as given in Table 12.3. The sums of
squares for sole versus and for rest versus the mixture of six mixtures of three,
are computed as indicated in Chapter 13. All other sums of squares are computed
using standard procedures.

The variance of a difference between two β̂E(i)’s is obtained from equation
(15.30) as 2(3/2)2σ 2

εE/r(m − 3) � 2(9/4)(3.500)/3(6 − 3) � 1.7500 and a
standard error of

√
1.7500 � 1.32. The variance of a difference between π̂E(i,j ) −

π̂E(i,j ′), j � j ′, is obtained from equation (15.32) as 2(m − 4)σ 2
εE/r(m − 3) �

2(6−4)(3.500)/3(6−3) � 1.5556 with a standard error of
√

1.5556 � 1.247. The
variance of a difference between two π̂E(i,j ) − π̂E(k,l), i, j �� k, l, is obtained from
equation (15.33) as 2(m − 5)σ 2

εE/r(m − 3) � 2(6 − 5)(3.500)/3(6 − 3) � 0.7778
and a standard error of 0.882. π̂E(A,F ) differs from all other except π̂E(A,C), π̂E(B,C),
π̂E(B,D), and π̂E(C,D) by more than two standard errors. π̂E(C,D) differs from π̂E(B,F )

by more than two standard errors.

15.4.5 Cultivar, BSMA, TSMA, and QSMA Effects for Equations
(15.9)–(15.12), n � 4

Solutions for the parameters of equations (15.9) to (15.12) for m(m − 1)(m −
2)(m − 3)/24 mixtures, Sα , α � 1, 2, . . . , v, of size n � 4 are given here. In
addition to the constraints used above, the following ones are added:

m∑
i�1

γh(i,j,k) �
m∑

j�1

γh(i,j,k) �
m∑

k�1

γh(i,j,k) � 0 (15.34)

for h �� i �� j �� k.
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The cultivar means are given in Appendix 15.1 and solutions for effects are

µ̂ + τ̂h + δ̂h � 6
r∑

g�1

∑
α

Ygh(i,j,k)/r(m − 1)(m − 2)(m − 3)

� ȳ·h(·,·,·), (15.35)

1

2
β̂h(i) �

(
m − 2

m − 4

) (
ȳ·h(i,·,·) − ȳ·h(·,·,·)

)
, (15.36)

3

4
π̂h(i,j ) �

(
m − 3

m − 5

)
ȳ·h(i,j,·) +

(
m − 1

m − 5

)
× ȳ·h(·,·,·) −

(
(m − 2)

(m − 5)

) (
ȳ·h(i,·,·) + ȳ·h(j,·,·)

)
, (15.37)

and

γ̂h(i,j,k) � ȳ·h(i,j,k) − (m − 1)(m − 2)

(m − 4)(m − 5)
ȳ·h(·,·,·)

+
(

(m − 2)(m − 3)

(m − 4)(m − 5)

) (
ȳ·h(i,·,·) + ȳ·h(j,·,·) + ȳ·h(k,·,·)

)
−
(

m − 3

m − 5

) (
ȳ·h(i,j,·) + ȳ·h(i,k,·) + ȳ·h(j,k,·)

)
. (15.38)

Variances for differences of estimated effects are obtained in Appendices 15.1
and 15.2 and are not repeated here. Use may be made of a computer program
in Appendix 15.2 to obtain numerical coefficients of σ 2

εh for specific values of m.
Extending the programs, expressions for mixtures of n � 5, 6, . . . may be obtained
as described for n � 4.

Example 15.4. Biomass data for barley from the experiment described in Chapter
12 are presented in Table 15.9, along with the totals and means for the (m−1)(m−
2)(m − 3)/6 � 20 combinations of mixtures of n � 4 for m � 7 cultivars. The
means for cultivar S = barley with cultivar A averaged over all other cultivars is

ȳ·S(A··) � (126.24 + 120.25 + 138.85 + 124.93 + 133.09

+ 106.96 + 116.28 + 126.74 + 138.72 + 116.36)/3(10)

� 41.6140,

where r � 3 replicates and (m − 2)(m − 3)/2 � 10 combinations of m − 2
cultivars, where S and A are both in the mixture of n � 4 cultivars. The means
ȳ·S(B··), ȳ·S(C··), ȳ·S(D··), ȳ·S(E··), and ȳ·S(F ··) are obtained in a similar manner. Of
course, ȳ·S(···) � 2, 539.01/60 � 42.3168 is the mean over all 20 combinations.
The mean ȳ·S(AB·) � (126.24 + 120.25 + 138.85 + 124.93)/3(7 − 3) � 42.5225.
The remaining means ȳ·S(ij ·) are obtained similarly.

An analysis of variance for the barley biomass is presented in Table 15.10.
The standard randomized complete block analysis is used to obtain the block,
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TABLE 15.9. Data for Barley (Dry Weight) Responses in a Mixture of n � 4 of m � 7
Cultivars for Totals, Means, BSMA, TSMA, and QSMA Effects.

Block Total Mean
Mixture 1 2 3 Y·S(ijk) ȳ·S(ijk)

S + A + B + C 33.99 46.22 46.03 126.24 42.080
S + A + B + D 36.04 46.61 37.60 120.25 40.083
S + A + B + E 37.97 51.60 49.28 138.85 46.283
S + A + B + F 42.61 41.73 40.59 124.93 41.643
S + A + C + D 34.12 42.43 56.54 133.09 44.363
S + A + C + E 34.40 32.23 40.33 106.96 35.653
S + A + C + F 38.32 39.69 38.27 116.28 38.760
S + A + D + E 32.77 46.08 47.89 126.74 42.247
S + A + D + F 42.50 47.24 48.98 138.72 46.240
S + A + E + F 33.31 39.68 43.37 116.36 38.787
S + B + C + D 47.67 48.18 36.69 132.54 44.180
S + B + C + E 31.78 34.39 37.72 103.89 34.630
S + B + C + F 34.19 45.61 55.18 134.98 44.933
S + B + D + E 41.88 41.21 49.18 132.27 44.090
S + B + D + F 40.69 60.72 46.91 148.32 49.440
S + B + E + F 43.17 36.70 44.69 124.56 41.520
S + C + D + E 34.39 54.95 34.61 123.95 41.317
S + C + D + F 43.84 34.55 48.75 127.14 42.380
S + C + E + F 46.68 43.37 42.23 132.28 44.093
S + D + E + F 39.36 48.37 42.93 130.66 43.553
Totals 769.68 881.56 887.77 2539.01 42.317

ȳ·S(AB·) � 42.5225 ȳ·S(···) � 42.3168 ȳ·S(A··) � 41.6140 ȳ·S(B··) � 42.8943 ȳ·S(C··) � 41.2450
ȳ·S(AC·) � 40.2142 ȳ·S(BC·) � 41.4708 ȳ·S(D··) � 43.7893 ȳ·S(E··) � 41.2173
ȳ·S(AD·) � 43.2333 ȳ·S(BD·) � 44.4483 ȳ·S(CD·) � 43.0600 ȳ·S(F ··) � 43.1410
ȳ·S(AE·) � 40.7425 ȳ·S(BE·) � 41.6308 ȳ·S(CE·) � 38.9233 ȳ·S(DE·) � 42.8017
ȳ·S(AF ·) � 41.3575 ȳ·S(BF ·) � 44.3992 ȳ·S(CF ·) � 42.5567 ȳ·S(DF ·) � 45.4033 ȳ·S(EF ·) � 41.9883

TSMA effects BSMA effects
π̂S(AB) � 0.9662 β̂S(A) � −2.3437 β̂S(B) � 1.9250 β̂S(C) � −3.5727
π̂S(AC) � 0.3084 π̂S(BC) � −0.6083 β̂S(D) � 4.9083 β̂S(E) � −3.6650
π̂S(AD) � −0.1217 π̂S(BD) � −1.1493 π̂S(CD) � 0.6462 β̂S(F ) � 2.7473
π̂S(AE) � 1.8095 π̂S(BE) � −0.0893 π̂S(CE) � −1.8117 π̂S(DE) � 0.0497
π̂S(AF ) � −2.9628 π̂S(BF ) � 0.8807 π̂S(CF ) � 1.4651 π̂S(DF ) � 0.5750 π̂S(EF ) � 0.0417

GSMA effects
γ̂S(ABC) � 1.2587 γ̂S(ACE) � −2.1030 γ̂S(BCD) � 1.0665 γ̂S(BEF ) � −1.9253
γ̂S(ABD) � −4.2502 γ̂S(ACF ) � −1.0808 γ̂S(BCE) � −3.1485 γ̂S(CDE) � 1.0014
γ̂S(ABE) � 3.9930 γ̂S(ADE) � −0.8236 γ̂S(BCF ) � 0.8236 γ̂S(CDF ) � −3.9930
γ̂S(ABF ) � −1.0014 γ̂S(ADF ) � 3.1488 γ̂S(BDE) � 1.0807 γ̂S(CEF ) � 4.2504
γ̂S(ACD) � 1.9253 γ̂S(AEF ) � −1.0662 γ̂S(BDF ) � 2.1031 γ̂S(DEF ) � −1.2586

treatment, and R × T sums of squares. For this experiment, we use the R × T

mean square as the error mean square of 36.2350 to obtain the various variances
and standard errors of differences for the BSMA, TSMA, and QSMA effects.
The partitioning of the treatment sum of squares into sums of squares for BSMA,
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TABLE 15.10. Analysis of Variance for Data of Table 15.9

Source of variation d.f. SS MS
Total 60 109,982.2607
CFM 1 107,442.8630
Blocks � R 2 441.6824 220.8412
Treatments � T 19 720.7838 37.9360

BSMA 5 301.6325 60.3265
TSMA 9 73.4120 8.1569
QSMA 5 345.7366 69.1473

R × T 38 1,376.9315 36.2350

TSMA, and QSMA effects is described later. The degrees of freedom of these
sums of squares are obtained from Table 15.2. For this example, the BSMA sum
of squares has m − 2 � 5 degrees of freedom for the barley biomass yields. There
are m � 7 cultivars resulting in the m(m − 2) degrees of freedom from Table
15.2. Since we are using the barley cultivar only, there are m − 2 � 5 degrees of
freedom for the BSMA sum of squares. The TSMA sum of squares is associated
with (m − 1)(m − 4)/2 � 9 degrees of freedom. The QSMA sum of squares is
associated with (m − 1)(m − 2)(m − 6)/6 � 5 degrees of freedom.

The BSMA effects, β̂S(i), i �A,B,C,D,E,F, are computed as β̂S(i) � 2(m −
2)
(
ȳ·S(i··) − ȳ·S(···)

)
/(m − 4), equation (15.35), which for i � A is β̂S(A) � 2(7 −

2)(41.6140 − 42.3168)/(7 − 4) � −2.3427. The remaining β̂S(i) are computed
likewise, and their sum is zero within rounding errors. The variance of a difference
between two β̂S(i), equation (15.87), is 16(error mean square)/r(m − 3)(m − 4) �
16(36.2350)/36 � 16.1044, and a standard error of a difference of 4.01. We note
that β̂S(D) � 4.9083 is approximately two standard errors larger than β̂S(C) and
β̂S(E); the former has a positive effect and the latter two a negative effect on the
biomass of barley. Cultivar D is trefoil, cultivar C is lentils, and cultivar E is alfalfa.
The cultivar F, chamomile, BSMA effect is about 1.5 standard errors larger than
the BSMA effects for alfalfa, E, and lentils, C. Since the biomass of chamomile
is relatively small, this could account for its positive effect. The ordering of the
BSMA effects here is different from Example 15.3, again pointing up the fact that
generalizations for effects over all mixture sizes is not an appropriate method for
interpreting intercropping data.

The TSMA effects are computed from equation (15.36) as

4

3

[
(m − 3)

(m − 5)
ȳ·(ij ·) + (m − 1)

(m − 5)
ȳ·S(···) − (m − 2)

(m − 5)

(
ȳ·S(i··) + ȳ·S(j ··)

)]
.

For example, π̂S(AB) � 2
3 [4(42.5225) + 6(42.3168) − 5(41.6140 + 42.8943)] �

0.9662. The remaining π̂S(ij ) are computed in a similar manner. As a computational
check,

∑m
j�1
��S,A

π̂S(ij ) � 0 for each i. The variance of a difference between π̂S(ij )

and π̂S(ij ′), j �� j ′ [equation (15.88)] is 32(error mean square)/9r(m − 3)(m −
5) � 32(36.2350)/9(3)(4)(2) � 5.3681 and a standard error of a difference of
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√
5.3681 � 2.32. The largest differences are found for π̂S(AF ) � −2.9628 and

π̂S(AE) � 1.8095 and π̂S(DF ) � 1.4651. These differences are approximately two
standard errors of a difference apart. The variance of a difference between π̂S(ij ) and
π̂S(i ′j ′), i, j �� i ′, j ′, is 32 (error mean square)/9r(m−3) � 32(36.2350)/9(3)(4) �
10.7363 and a standard error of a difference of 3.28. π̂S(AF ) is a little more than one
standard error of a difference lower than π̂S(CD). None of the contrasts approach
significance at the 10% level.

From equation (15.37), we compute the QSMA effects as

λ̂S(ijk) � ȳ·S(ijk) − (m − 3)

(m − 5)

(
ȳ·S(ij ·) + ȳ·S(ik·) + ȳ·S(jk·)

)
+ (m − 2)(m − 3)

(m − 4)(m − 5)

(
ȳ·S(i··) + ȳ·S(j ··) + ȳ·S(k··)

)
− (m − 1)(m − 2)

(m − 4)(m − 5)
ȳ·S(···),

which, for λ̂S(ABC), is equal to 42.0800 − 2(42.5225 + 40.2142 + 41.4708) +
(10/3)(41.6140 + 42.8943 + 41.2450) − 5(42.3168) � 1.2587. Using the above
equation, the remaining λ̂S(ijk) were obtained. Note that the

∑m
k�1

��S,i, or j

λ̂S(ijk) � 0

for each ij . This serves as a computational check. The variance of a differ-
ence between two λ̂S(ijk) and λ̂S(ijk′ , k �� k′, from equation (15.90), is 2(m −
6)(EMS)/r(m − 4) � 2(36.2350)/3(3) � 8.0522 and standard error of a differ-
ence of (8.0522)1/2 � 2.84. Several differences are larger than two standard errors,
e.g., λ̂S(ABD) and λ̂S(ABE), and λ̂S(ABD) and λ̂S(ADF ). The variance of a difference
between λ̂S(ijk) and λ̂S(ij ′k′), j, k �� j ′k′, is 2(m − 6)2(EMS)/r(m − 4)(m − 5),
which is 2(36.2350)/3(3)(2) � 4.0261 and a standard error of a difference of 2.01.
Several differences, e.g., λ̂S(ABE) and λ̂S(ADF ) exceed two standard errors of a dif-
ference. The variance of a difference between λ̂S(ijk) and λ̂S(i ′j ′k′), i, j, k �� i ′, j ′, k′,
is [2(m − 6)2 + 4]EMS/r(m − 4)(m − 5) � 6(36.2350)/3(3)(2) � 12.0783 and
a standard error of (12.0783)1/2 � 3.48. Again, several differences, e.g., λ̂S(ABD)

and λ̂S(CEF ) and λ̂S(CDF ) and λ̂S(ABE), exceed two standard errors of a difference.
In this experiment, significant (5% level) differences existed for the β̂S(i) and

λ̂S(ijk) but not for the π̂S(ij ). An experimenter would desire large positive β̂S(i),
π̂S(ij ), and λ̂S(ijk). For example, the effects of barley biomass of BSMA, TSMA,
and QSMA effects in the four-cultivar combination of SBDF is

1

2

(
β̂S(B) + β̂S(D) + β̂S(F )

)
+ 3

4

(
π̂S(BD) + π̂S(BF ) + π̂S(DF )

)+ λ̂S(BDF )

� 1

2
(1.93 + 4.91 + 2.75) + 3

4
(−1.15 + 0.88 + 0.58) + 2.10

� 4.80 + 0.23 + 2.10 � 7.13.

All effects except π̂S(BD) have positive contributions. An experimenter would
desire large positive contributions from these effects as well as a large contribution
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from
(
δ̂i + δ̂j + δ̂k

)
/4, for n � 4, as this combination would produce large yields

compared to the sole crop, e.g., barley.

15.5 Combined ANOVA for m Cultivars

For a combined analysis of variance of the 84+6(36)=300 biomass responses for
the 7 cultivars, the responses should be for a constant number of plants or areas. If
desired, the responses adjusted for a constant number of plants or areas may be used
to obtain ANOVAs for each of the cultivars as was done in Chapter 13 for cultivars
A, B, C, D, E, and F and in Examples 15.2 and 15.4 for barley biomass. Biomass
responses for barley for the v � 7 cultivar mixtures are available and are considered
to be included in the ANOVA for barley in Table 15.11. There are 21 barley
responses from Example 15.2, 60 from Example 15.4, and 3 from the 7-cultivar
mixture. (These 3 responses are 34.73, 40.03, and 39.78 for blocks one, two, and
three, respectively), to make 84 responses. In order for a combined ANOVA to
have meaning, all responses should be for the same characteristic biomass here.
Grain yield (Table 12.2) and number of tillers (Table 15.12) responses relate to
barley only and not to responses for the other cultivars.

The sums of squares for treatments for each cultivar may be partitioned into
component parts as was done in the ANOVAs presented in Chapters 13 and 15.
The combined ANOVA given in Table 15.11 is easily expanded to include the
partitioning of the treatment sums of squares for each of the cultivars. The ANOVA
in Table 15.13 is useful to summarize the data from an intercropping experiment
such as the one described in Chapter 12.

From the four examples and the problems presented in the next section, it is
demonstrated that some creativity will be involved to obtain a complete and com-
prehensive analysis for an intercropping experiment. Each experiment will present
different aspects so that “one size fits all” cannot apply to analyses for this type of
experiment. Sometimes, different analyses will be needed for the different char-
acters measured from the same mixture experiment. Thus, in considering such
experiments, the experimenter needs to clarify completely the goals and to be
aware of anything unplanned that occurs in the experiment.

TABLE 15.11. ANOVA Degrees of Freedom for Each of the m � 7 Cultivars in mixtures
of n � 4 cultivars for biomass of the mixture.

Source of Degrees of freedom for cultivar
Variation Barley A B C D E F Sum
Total 84 36 36 36 36 36 36 300
CFM 1 1 1 1 1 1 1 7
Block � R 2 2 2 2 2 2 2 15
Treatment � T 27 11 11 11 11 11 11 93
R × T 54 22 22 22 22 22 22 186
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TABLE 15.12. Number of Tillers for Barley.

Block
Treatment 1 2 3
Sole 20 15 17
Barley + A 17 14 19
Barley + B 17 15 18
Barley + C 15 17 18
Barley + D 15 19 21
Barley + E 17 20 15
Barley + F 17 18 18
Barley + A + B + C 15 18 18
Barley + A + B + D 16 18 15
Barley + A + B + E 17 17 18
Barley + A + B + F 17 17 18
Barley + A + C + D 18 19 18
Barley + A + C + E 18 15 18
Barley + A + C + F 17 17 16
Barley + A + D + E 14 19 22
Barley + A + D + F 18 20 17
Barley + A + E + F 16 18 17
Barley + B + C + D 22 25 18
Barley + B + C + E 18 16 18
Barley + B + C + F 19 17 20
Barley + B + D + E 17 19 20
Barley + B + D + F 18 22 19
Barley + B + E + F 22 19 19
Barley + C + D + E 18 20 15
Barley + C + D + F 18 15 16
Barley + C + E + F 20 20 17
Barley + D + E + F 17 20 20
Barley + A + B + C + D + E + F 17 21 18
Totals

15.6 Problems

15.1 For barley grain weights from Table 12.2 for barley (S) sole, S + A, S + B,
S + C, S + D, S + E, S + F, obtain estimates of BSMA, βS(i), effects as was
done in Example 15.2.

15.2 For cultivars A, B, C, D, and F, compute the analyses described in Example
15.3.

15.3 For barley grain weights from Table 12.2, obtain the analysis described in
Example 15.4.

15.4 Suppose than an experimenter used only the following v � 13 treatments:
barley (S) sole, S + A, S + B, S + C, S + D, S + E, S + F, S + A + B + D, S
+ A + C + F, S+A+D+E, S+B+C+E, S+B+E+F, and S+C+D+F. For barley
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TABLE 15.13. Combined ANOVA Degrees of Freedom for the ANOVAs in Table 15.11.

Source of variations d.f.
Total 300
CFM within cultivar 7

CFM for ANOVA 1
Among cultivars � C 6

R within cultivar 14
Blocks � R 2
C × R 12

Treatment within cultivar 93
Treatment - barley 27
Treatment - A 11
Treatment - B 11
Treatment - C 11
Treatment - D 11
Treatment - E 11
Treatment - F 11

R × T within cultivar 186
R × T - barley 54
R × T - A 22
R × T - B 22
R × T - C 22
R × T - D 22
R × T - E 22
R × T - F 22

grain weights from Table 12.2, obtain solutions for µ + τS , GMA effect
δS , BSMA effects βS(i), and a residual “lack of fit” for treatments sum of
squares with five degrees of freedom.

15.5 From Table 12.2 for barley grain weight, use barley sole crop (S), and
the following six mixtures of n � 4 cultivars: S+A+B+D, S+A+C+F,
S+A+D+E, S+B+C+E, S+B+E+F, and S+C+D+F, to obtain solutions for
µ + τS , GMA effect δS , and BSMA effects βS(A), βS(B), βS(C), βS(D), βS(E),
and βS(F ).

15.6 Suppose that cultivar A, B, C, D, E, and F biomass was available only
for the following 10 mixtures: ABC, ACD, ADE, AEF, ABF, BCE, BDE,
BDF, CDF, and CEF. Obtain solutions for µh + τh + δh and BSMA ef-
fects βh(i) for h, i= A, B, C, D, E, F. (Note: The combinations were
selected so that each cultivar appears twice in a mixture with every other
cultivar.)

15.7 Write a MAPLE program to obtain solutions for m cultivars in mix-
tures of n � 3 cultivars. Then, write a MATHEMATICA program to
obtain variances for differences of effects as was done in Appendix
15.2.
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15.8 Instead of n � 3, write programs for mixtures of n � 5 cultivars as was
done for Problem 15.7.

15.9 For the data in Table 15.12 on number of barley tillers, perform the
analyses described in Chapter 12, in Example 15.2, and in Example
15.4.

15.10 Using the results in Subsection 15.4.3 and the observations Ygs(ABC),
Ygs(ABD), Ygs(ACD), and Ygs(BCD), the barley data from Table 12.2 obtain
solutions for µs + τs + δs and βs(i) effects. Do likewise for the observations
Ygs(ACD), Ygs(ACE), Ygs(ADE), and Ygs(CDE).
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Appendix 15.1

Subsection 15.4.2

The response totals for equation (15.4) are

Y·h(i) � r
(
µh + τh + δh + βh(i)

)/
2 +

r∑
g�1

(
ρgh + εgh(i)

)
(15.39)

and

Y·h(·) � r(m − 1) (µ + τh + δh) /2 + r

m∑
i�1
��h

βh(i)

+ (m − 1)
r∑

g�1

ρgh +
r∑

g�1

m∑
i�1
��h

εgh(i). (15.40)

When
r∑

g�1

ρgh �
m∑

i�1
��h

βh(i) � E
[
εgh(i)
] � 0, (15.41)

solutions for parameters in the above equations are

1

2

(
µ̂h + τ̂h + δ̂h

)
�

r∑
g�1

m∑
i�1
��h

Ygh(i)/r(m − 1) � ȳ·h(·) (15.42)

and

β̂h(i) � Y·h(i)
/

r − ȳ·h(·) � ȳ·h(i) − ȳ·h(·). (15.43)

When

E
[
ε2
gh(i)

] � σ 2
εh, (15.44)

variances for the above estimated effects and differences of effects are

V
(
µ̂h + τ̂h + δ̂h � ȳ·h(·)

)
� 4σ 2

εh

/
r(m − 1), (15.45)

V
(
β̂h(i) � ȳ·h(i) − ȳ·h(·)

)
� (m − 2)σ 2

εh

/
r(m − 1), (15.46)

and

V
(
βh(i) − βh(i ′) � ȳ·h(i) − ȳ·h(i ′), i �� i ′

) � 2σ 2
εh

/
r. (15.47)

When the ρgh are independently distributed with mean zero and variance σ 2
ρh,

(15.45) becomes

V
(
µ̂h + τ̂h + δ̂h

)
� 4
(
σ 2

εh + σ 2
ρh

)/
r(m − 1). (15.48)
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Subsection 15.4.4

For response equation (15.6) and for crop h, the totals are

Y·h(i,j ) � r

[
µh + τh + δh

3
+ 2

3

(
βh(i) + βh(j )

)+ π.f .h(i,j )

]

+
r∑

g�1

(ρgh + εgh(i,j )), (15.49)

Y·h(i,·) � r(m − 2)

3

(
µh + τh + δh + 2βh(i)

)+ (m − 2)
r∑

g�1

ρgh

+ r

m∑
j�1

j ��i or h

(
2

3
βh(j ) + π.f .h(i,j )

)
+

r∑
g�1

m∑
j�1

j ��i or h

εgh(i,j ), (15.50)

Y·h(·,j ) � r(m − 2)

3

(
µh + τh + δh + 2βh(j )

)+ (m − 2)
r∑

g�1

ρgh

+ r

m∑
i�1

i ��j or h

(
2

3
βh(i) + π.f .h(i,j )

)
+

r∑
g�1

m∑
i�1

i ��h or j

εgh(i,j ), (15.51)

and

Y·h(·,·) � r(m − 1)(m − 2)

2(3)
(µh + τh + δh) + (m − 1)(m − 2)

2

r∑
g�1

ρgh

+ 2r

3
(m − 2)

⎛⎜⎜⎝ m∑
i�1

i ��h or j

βh(i) +
m∑

j�1
j ��h or i

βh(j )

⎞⎟⎟⎠+ r

m∑∑
i<j�2

h ��i or j

π.f .h(i,j )

+
r∑

g�1

m∑∑
i<j�2

h ��i or j

εgh(i,j ). (15.52)

When
r∑

g�1

ρgh �
m∑

i�1
i ��h

βh(i) �
m∑

j�1
j ��h

βh(j ) �
m∑

i�1
i ��h or j

π.f .h(i,j ) �
m∑

j�1
j ��h or i

π.f .h(i,j ) � 0,

solutions for the various quantities above are

µ̂h + τ̂h + δ̂h � 2Y·h(·,·)
/

r(m − 1)(m − 2) � ȳ·h(·,·), (15.53)

β̂h(i) � 3

2

(
m − 2

m − 3

) (
ȳ·h(i,·) − ȳ·h(·,·)

)
, (15.54)
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β̂h(j ) � 3

2

(
m − 2

m − 3

) (
ȳ·h(·,j ) − ȳ·h(·,·)

)
, (15.55)

and

ˆπ.f .h(i,j ) � ȳ·h(i,j ) +
(

m − 1

m − 3

)
ȳ·h(·,·) −

(
m − 2

m − 3

) (
ȳ·h(i,·) + ȳ·h(·,j )

)
. (15.56)

Variances for the above quantities are:

1

9
V
(
µ̂h + τ̂h + δ̂h � ȳ·h(·,·)

) � 2σ 2
εh

r(m − 1)(m − 2)
, (15.57)

V

[
2

3
βh(i) �

(
m − 2

m − 3

) (
ȳ·h(i,·) − ȳ·h(·,·)

)]

� E

⎡⎢⎢⎣(m − 2

m − 3

) r∑
g�1

m∑
j�1

j ��h,i

εgh(i,j )

(
1

r(m − 2)

)

− 2

r(m − 1)(m − 2)

r∑
g�1

∑∑
i<j

h ��i,j

εgh(i,j )

⎤⎥⎥⎦
2

� (m − 2)σ 2
εh

r(m − 1)(m − 3)
, (15.58)

V

[
2

3
βh(i) − 2

3
βh(i ′) �

(
m − 2

m − 3

) (
ȳ·h(i,·) − ȳ·h(i ′,·)

)
, i �� i ′
]

� E

⎡⎢⎢⎣(m − 2

m − 3

)⎛⎜⎜⎝ r∑
g�1

m∑
j�1

j ��h,i

εgh(i,j ) −
r∑

g�1

m∑
j�1

j ��h,i ′

εgh(i ′,j )

⎞⎟⎟⎠ 1

r(m − 2)

⎤⎥⎥⎦
2

� 2σ 2
εh

r(m − 3)
, (15.59)

V
[ ˆπ.f .h(i,j ) � ȳ·h(i,j ) +

(
m − 1

m − 3

)
ȳ·h(·,·) −

(
m − 2

m − 3

)
× (ȳ·h(i,·) + ȳ·h(·,j )

)]

� E

⎡⎢⎢⎣
(

r∑
g�1

εgh(i,j )

/
r + 2

(
m − 1

m − 3

) r∑
g�1

∑∑
i<j

h ��i,j

εgh(i,j )

⎞⎟⎟⎠
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r(m − 1)(m − 2)

−
(

m − 2

m − 3

)⎛⎜⎜⎝ r∑
g�1

m∑
i�1

i ��h,j

εgh(i,j ) +
r∑

g�1

m∑
j�1

j ��i,h

εgh(i,j )

⎞⎟⎟⎠
/

r(m − 2)

⎤⎥⎥⎦
2

� (m − 4)σ 2
εh

r(m − 3)
, (15.60)

V
( ˆπ.f .h(i,j ) − ˆπ.f .h(i,j ′)

)
� V

[
ȳ·h(i,j ) − ȳ·h(i,j ′) +

(
m − 2

m − 3

) (
ȳ·h(·,j ) − ȳ·h(·,j ′)

)]

� E

[
r∑

g�1

(
εgh(i,j ) − εgh(i,j ′)

)/
r +
(

m − 2

m − 3

)

×

⎛⎜⎝ r∑
g�1

m∑
i�1

i ��h,j

εgh(i,j ) −
r∑

g�1

m∑
i�1

i ��h,j ′

εgh(i,j ′)

⎞⎟⎠/ r(m − 2)

⎤⎥⎦
2

� 2(m − 4)σ 2
εh

r(m − 3)
, (15.61)

and

V
[ ˆπ.f .h(i,j ) − ˆπ.f .h(i ′,j ′ , i �� i ′, j �� j ′

)
� V
(
ȳ·h(i,j ) − ȳ·h(i ′,j ′)

−
(

m − 2

m − 3

) (
ȳ·h(i,·) + ȳ·h(·,j ) − ȳ·h(i ′,·) − ȳh(·,j ′)

)]

� E

[∑
g

(
εgh(i,j ) − εgh(i ′,j ′)

)/
r −
(

m − 2

m − 3

)

×

⎛⎜⎜⎝ r∑
g�1

m∑
j�1

j ��h,i

εgh(i,j ) +
r∑

g�1

m∑
i�1

i ��h,j

εgh(i,j ) −
r∑

g�1

m∑
j ′�1

j ′ ��h,i ′

εgh(i ′,j ′)

−
r∑

g�1

m∑
i ′�1

i ′ ��h,j ′

εgh(i ′,j ′)

⎞⎟⎟⎠
/

r(m − 2)

⎤⎥⎥⎦
2

� 2(m − 5)σ 2
εh

r(m − 3)
. (15.62)
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Subsection 15.4.5

The response totals for crop h, h � 1, 2, . . . , m, using equation (15.9) for h ��
i, j, or k, are [let (µh + τh + δh)/4 be replaced by µh + τh + δh for ease of
presentation]

Y·h(i,j,k) � r

[
µh + τh + δh + 1

2

(
βh(i) + βh(j ) + βh(k)

)]+ r∑
g�1

ρg

+ 3r

4

(
π.f .h(i,j ) + π.f .h(i,k) + π.f .h(j,k)

)+ r γh(i,j,k) +
r∑

g�1

εgh(i,j,k),(15.63)

Y·h(i,j,·) � r(m − 3)

[
µh + τh + δh + 1

2

(
βh(i) + βh(j )

)+ 3

4
π.f .h(i,j )

]

+ (m − 3)
r∑

g�1

ρg

+ r

m∑
k�1

k ��h,k,or j

[
1

2
βh(k) + 3

4

(
π.f .h(i,k) + π.f .h(j,k)

)+ γh(i,j,k)

]

+
r∑

g�1

m∑
k�1

k ��h,i,or j

εgh(i,j,k) (15.64)

Y·h(i,·,k) � r(m − 3)

[
µh + τh + δh + 1

2

(
βh(i) + βh(k)

)+ 3

4
π.f .h(i,k)

]

+ (m − 3)
r∑

g�1

ρg

+ r

m∑
j�1

j ��h,i, or k

[
1

2
βh(j ) + 3

4

(
π.f .h(i,j ) + π.f .h(j,k)

)+ γh(i,j,k)

]

+
r∑

g�1

m∑
j�1

j ��h,i,or k

εgh(i,j,k), (15.65)

Y·h(·,j,k) � r(m − 3)

[
µh + τh + δh + 1

2

(
βh(j ) + βh(k)

)+ 3

4
π.f .h(j,k)

]

+ (m − 3)
r∑

g�1

ρg
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+ r

m∑
i�1

i ��h,j,or k

[
1

2
βh(i) + 3

4

(
π.f .h(i,j ) + π.f .h(i,k)

)+ γh(i,j,k)

]

+
r∑

g�1

m∑
i�1

i ��h,i, or k

εgh(i,j,k), (15.66)

Y·h(i,·,·) � r(m − 2)(m − 3)

2

(
µh + τh + δh + 1

2
βh(i)

)
+ (m − 2)(m − 3)

2

×
r∑

g�1

ρg + r(m − 2)

2

m∑
j�1

j ��hor i

βh(j ) + r(m − 2)

2

m∑
k�1

k ��hor i

βh(k)

+ 3r(m − 3)

4

⎛⎜⎜⎝ m∑
j�1

j ��h or i

π.f .h(i,j ) +
m∑

k�1
k ��h or i

π.f .h(i,k)

⎞⎟⎟⎠
+ r

m∑∑
j<k

j,k ��hor i

(
3

4
π.f .h(j,k) + γh(i,j,k)

)
+

r∑
g�1

∑∑
j<k

j,k ��hor i

εgh(i,j,k), (15.67)

Y·h(·,j,·) � r(m − 2)(m − 3)

2

(
µh + τh + δh + 1

2
βh(j )

)

+ (m − 2)(m − 3)

2

r∑
g�1

ρg + r(m − 2)

2

m∑
i�1

i ��hor j

βh(i)

+ r(m − 2)

2

m∑
k�1

k ��hor j

βh(k) + 3r(m − 3)

4

m∑
i�1

i ��hor j

π.f .h(i,j )

+ 3r(m − 3)

4

m∑
k�1

k ��hor j

π.f .h(j,k) + r
∑∑

i<k
i,k ��hor j

(
3

4
π.f .h(i,k) + γh(i,j,k)

)

+
m∑

g�1

∑∑
i<k

i,k ��hor j

εgh(i,j,k), (15.68)

Y·h(·,·,k) � r(m − 2)(m − 3)

2

(
µh + τh + δh + 1

2
βh(k)

)
+ (m − 2)(m − 3)

2
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×
r∑

g�1

ρg + r(m − 2)

2

m∑
i�1
i ��h

βh(i) + r(m − 2)

2

m∑
j�1
j ��h

βh(j )

+ 3r(m − 3)

4

m∑
i�1

i ��hor k

π.f .h(i,k) + 3r(m − 3)

4

m∑
j�1

j ��hor k

π.f .h(j,k)

+ r
∑∑

i<j

(
3

4
π.f .h(i,j ) + γh(i,j,k)

)
+

r∑
g�1

∑∑
i<j

i,j ��hor k

εgh(i,j,k,), (15.69)

and

Y·h(·,·,·) � r(m − 1)(m − 2)(m − 3)

6
(µh + τh + δh)

+ (m − 1)(m − 2)(m − 3)

6

r∑
g�1

ρg

+ r(m − 2)(m − 3)

4

⎡⎢⎢⎣ m∑
i�1
i ��h

βh(i) +
m∑

j�1
j ��h

βh(j ) +
m∑

k�1
k ��h

βh(k)

⎤⎥⎥⎦

+ 3r

4

⎡⎢⎢⎣∑∑
i<j

i,j ��h

π.f .h(i,j ) +
∑∑

i<k
i,k ��h

π.f .h(i,k) +
∑∑

j<k
j,k ��h

π.f .h(j,k)

⎤⎥⎥⎦
+ r
∑ ∑

i<j<k

∑
γh(i,j,k) +

r∑
g�1

∑ ∑
i<j<k

∑
εgh(i,j,k). (15.70)

Using restrictions on the parameters from above in addition to the∑
i,j,or k γh(i,j,k) � 0 for h �� i �� j �� k and obtaining means results in the

following:

ȳ·h(i,j,k) � µh + τh + δh + 1

2

(
βh(i) + βh(j ) + βh(k)

)
+ 3

4

(
π.f .h(i,j ) + π.f .h(i,k) + π.f .h(j,k)

)+ γh(i,j,k), (15.71)

ȳ·h(i,j,·) � µh + τh + δh + 1

2

(
βh(i) + βh(j )

) (m − 4

m − 3

)
+ 3

4
π.f .h(i,j )

(
m − 5

m − 3

)
, (15.72)
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ȳ·h(i,·,k) � µh + τh + δh + 1

2

(
βh(i) + βh(k)

) (m − 4

m − 3

)
+ 3

4
π.f .h(i,k)

(
m − 5

m − 3

)
, (15.73)

ȳ·h(·,j,k) � µh + τh + δh + 1

2

(
βh(j ) + βh(k)

) (m − 4

m − 3

)
+ 3

4
π.f .h(j,k)

(
m − 5

m − 3

)
, (15.74)

ȳ·h(i,·,·) � µh + τh + δh + βh(i)

(
m − 4

m − 2

)
, (15.75)

ȳ·h(·,j,·) � µh + τh + δh + βh(j )

(
m − 4

m − 2

)
, (15.76)

ȳ·h(·,·,k) � µh + τh + δh + βh(k)

(
m − 4

m − 2

)
, (15.77)

and

ȳ·h(·,·,·) � µh + τh + δh. (15.78)

Solving these equations (see Appendix 15.2), we obtain

µ̂ + τ̂h + δ̂h � ȳ·,·,·), (15.79)

1

2
β̂h(i) �

(
m − 2

m − 4

) (
ȳ·h(i,·,·) + ȳ·h(·,·,·)

)
, (15.80)

1

2
β̂h(j ) �

(
m − 2

m − 4

) (
ȳ·h(·,j,·)
)
, (15.81)

1

2
β̂h(k) �

(
m − 2

m − 4

) (
ȳ·h(·,·,·)
)
, (15.82)

3

4
ˆπ.f .h(i,j ) �

(
m − 3

m − 5

)
ȳ·h(i,j,·) +

(
m − 1

m − 5

)
ȳ·h(·,·,·)

− (m − 2)

(m − 5)

(
ȳ·h(i,·,·) + ȳ·h(·,j,·)

)
, (15.83)

3

4
ˆπ.f .h(i,k) �

(
m − 3

m − 5

)
ȳ·h(i,·,k) +

(
m − 1

m − 5

)
ȳ·h(·,·,·)

− (m − 2)

(m − 5)

(
ȳ·h(i,·,·) + ȳ·h(·,·,k)

)
, (15.84)

3

4
ˆπ.f .h(j,k) �

(
m − 3

m − 5

)
ȳ·h(·,j,k)

(
m − 1

m − 5

)
ȳ·h(·,·,·)
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− (m − 2)

(m − 5)

(
ȳ·h(·,j,· + ȳ·h(·,j,·) + ȳ·h(·,·,k)

)
, (15.85)

and

γ̂h(i,j,k) � ȳ·h(i,j,k) −
(

(m − 1)(m − 2)

(m − 4)(m − 5)

)
ȳ·h(·,·,·)

+
(

(m − 2)(m − 3)

(m − 4)(m − 5)

) (
ȳ·h(i,·,·) + ȳ·h(·,j,·) + ȳ·h(·,·,k)

)
−
(

m − 3

m − 5

) (
ȳ·h(i,j,·) + ȳ·h(i,·,k) + ȳ·h(·,j,k)
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The various variances are obtained as
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The algebra involved in obtaining the solutions for effects and their variances
is rather tedious and error-prone. Computer programs such as MATHEMATICA
and MAPLE are available to aid in performing the algebra. MAPLE and MATHE-
MATICA programs used to obtain the solutions in equations (15.79)–(15.86) and
variances of differences of effects [equations (15.82) – (15.92)] are presented in
Appendix 15.2. As n, the number of crops in a mixture, increases, the complexity
of the algebra will increase. For specific values of m and n, expanded versions of
the programs in Appendix 15.2 will be quite useful.
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Appendix 15.2

Computer software can be of considerable help in solving for parameters of a
set of equations. Such packages as MAPLE and MATHEMATICA have features
which aid in the solution for parameters of a set of simultaneous equations such
as equations (15.71) to (15.78). For simplicity of typing programs, let

u � µh + τh + δh, a � βh(i)/2, b � βh(j )/2,

c � βh(k)/2, d � 3π.f .h(i,j )/4, e � 3π.f .h(i,k)/4,

f � 3π.f .h(j,k)/4, g � γh(i,j,k)

ȳ·h(i,j,k) � y1, ȳ·h(i,j,·) � y2, ȳ·h(i,·,k) � y3,

ȳ·h(·,j,k) � y4, ȳ·h(i,·,·) � y5, ȳ·h(·,j,·) � y6.

ȳ·h(·,·,k) � y7, ȳ·h(·,·,·) � y8,

Then, a MAPLE program for obtaining solutions for u, a, b, c, d , e, f , and g

is given in Figure 15.1. (Note: The command is in bold and output is in regular
type.) To obtain output, a semicolon is put at the end of a command. If no output
for a command is desired, the semicolon is omitted. This is the opposite of what
MATHEMATICA uses. In the h1:statement, a1 contains the parameters for which
solutions are required, the y1 to y8 indicate the equations, and the word “factor”
indicates that coefficients of parameters are to be factored.

In writing the MATHEMATICA program, r and h were both taken to be 1. This
simplifed the summations of error terms in S2, S3, · · · , S45, and S.

If the output of a command or statement is followed by a semicolon, the result
will not be printed. Since Expand[X1∧2]/.res, to Expand[X6∧2]/.res outputs were
desired, no semicolons were used at the end of these commands. “∧2” is used to
indicate the power 2 and “/.res” is used to apply the condition “res” which sets
ε2
gh(i,j,k) � Er and all cross-products of error terms with different subscripts equal

to zero.
These packages may be used as an aid in obtaining variances for effects and

differences between effects. The coefficients of each of the individual εgh(i,j,k) need
to be obtained. Then, these coefficients are squared and summed. To demonstrate,
consider the variances in equation (15.87) for n � 4 crops in a mixture of β̂h(i) −
β̃h(j ), i �� j , which involves the expected value of

[
m−2
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(
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)]2
,
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/
r(m − 3)(m − 4) from (15.87).
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> eqs1 :={=u + a + b + c + d + e + f + g = y1,
> u + (m - 4)*(a + b)/(m - 3) + (m - 5)*(m - 3) = y2,
> u + (m - 4)*(a + c)/(m - 3) + (m - 5)*e/(m - 3) = y3,
> u + (m - 4)*(b + c)/(m - 3) + (m - 5)*f/(m - 3) = y4,
> u + (m - 4)*a/(m - 2) = y5, u + (m - 4)*b/(m - 2) = y6,
> u + (m - 4)*c/(m - 2) = y7, u = y8}
> a1 :=solve(eqs1, u,a,b,c,d,e,f,g)
> h1 :=collect(a1,y1,y2,y3,y4,y5,y6,y7,y8,factor);

hl :�
{
c � − (m − 2)y8

m − 4
+ (m − 2)y7

m − 4
,

d � − (m − 2)y6

m − 5
− (m − 2)y5

m − 5
+ (m − 1)y8

m − 5
− (m − 3)y2

m − 5
,

f � (m − 3)y4

m − 5
− (m − 2)y6

m − 5
+ (m − 1)y8

m − 5
, u � y8

a � (m − 2)y5

m − 4
− (m − 2)y8

m − 4
, b � (m − 2)y6

m − 4
− (m − 2)y8

m − 4
,

e � − (m − 2)y5

m − 5
+ (m − 3)y3

m − 5
+ (m − 1)y8

m − 5
− (m − 2)y7

m − 5
, g � − (m − 3)y4

m − 5

+ (m − 2)(m − 3)y6

(m − 4)(m − 5)
+ (m − 2)(m − 3)y5

(m − 4)(m − 5)
− (m − 3)y3

m − 5
+ yl − (m − 1)(m − 2)y8

(m − 4)(m − 5)

+ (m − 2)(m − 3)y7

(m − 4)(m − 5)
− (m − 3)y2

m − 5

}
FIGURE 15.1. MAPLE program for obtaining solution to equations (15.71)–(15.77).

The variance in (15.87) is for (β̂h(i) − β̂h(i ′)/2 but the program as written is for
β̂h(i) − β̂h(i ′) which is four times (15.87). In the MATHEMATICA program in
Figure 15.2, we may find the variance for specific m for n � 4. The values of m

used were 7, 8, 9, and 10, and from the output, the above variance was obtained
for general m. For the above variance, the statement

X1=Simplify[(2*(S2-S3))/(m-3)*(m-4)]

was used to determine the coefficients for each εgh(i,j,k), where S2 and S3 are sums
of εgh(i,j,k). Then, using the statement Expand[X∧2]/.res, the numerical coefficient
of σ 2

εh

/
r is obtained. For m � 7, h � 1, and n � 4, this was

4(4)Er

(7 − 3)(7 − 4)
� 4Er

3
� 4σ 2

εh

3r
.



142 15. Mixing Ability Effects When Individual Cultivar Responses Are Available

m = 9;
s2=(2*Sum[e[2,j,k],{j,3,m-1},{k,j+1,m}])/((m-2)*(m-3));
s3=(2*Sum[e[2,3,k],{k,4,m}]+Sum[e[3,j,k],{j,4,m-1},
{k,j+1,m}[))/((m-2)*(m-3));
s4=(2*(e[2,3,4] + Sum[e[2,4,k],{k,5,m}]+Sum[e[3,4,k],
{k,5,m}]+Sum[e[4,j,k],{j,5,m-1},{k,j+1,m}]))/((m-2)*(m-3));
s5=(2*(e[2,3,5]+e[2,4,5]+Sum[e[4,5,k],{k,6,m}]+[3,4,5]+
Sum[e[3,5,k],{k,6,m}]+Sum[e[4,5,k],{k,6,m}]+
Sum[e[5,j,k],{j,6,m-1},{k,j+1,m}]))/((m-2)*(m-3));
s6=(2*(Sum[e[i,j,6],{i,2,4},{j,i+1,5}]+Sum[e[i,6,k],
{i,2,5},{k,7,m}]+Sum[e[6,j,k],{j,7,m-1},{k,j+1,m}]))/
((m-2)*(m-3));
s23=Sum[e[2,3,k],{k,4,m}]/(m-3);
s24=(e[2,3,4]+Sum[e[2,4,k],{k,5,m}])/(m-3);
s25=(e[2,3,5]+e[2.4.5]+Sum[e[2,5,k],{k,6,m}])/(m-3);
s26=(Sum[e[2,j,6],{j,3,5}]+Sum[e[2,6,k],{k,7,m}])/(m-3);
s34=(e[2,3,4]+Sum[e[3,4,k],{k,5,m}])/(m-3);
s35=(e[2,3,5]+e[3,4,5]+Sum[e[3,5,k],{k,6,m}])/(m-3);
s45=(e[2,4,5]+e[3,4,5]+Sum[e[4,5,k],{k,6,m}])/(m-3);
s56=(Sum[e[i,5,6],{i,2,4}]+Sum[e[5,6,k],{k,7,m}])/(m-3);
s57=(Sum[e[i,5,7],{i,2,4}]+e[5,6,7]+Sum[e[5,7,k],
{k,8,m}])/(m-3);
s67=(Sum[e[i,6,7],{i,2,5}]+Sum[e[6,7,k],{k,8,m}])/(m-3);
x1=Simplify[((m-2)*(s2-s3))/(m-4)];
x2=Simplify[((m-3)*(s23-s24))/(m-5)+((m-2)*
(s4-s3))/(m-5)];
x3=Simplify[((m-3)*(s23-s24))/(m-5)+
((m-2)*(s4+s5-s3-s2))/(m-5)];
x4=Simplify[e[2,3,4]-e[2,3,5]-((m-3)*(s24+s34-s25-
s35))/(m-5)+((m-2)*(m-3)(s4-s5))/((m-4)*(m-5))];
x5=Simplify[e[2,3,4]-e[2,5,6]-((m-3)*(s23+s24+s34-
s25-s26-s56))/(m-5)+((m-2)*(m-3)*(s2+s3+s4-s5-s6-
s7))/((m-4)*(m-5))];
res={e[i ,j ,k ] e[i ,j ,k ]->Er,
e[i ,j ,k ] e[i ,j ,h ]->0,
e[i ,j ,k ] e[i ,f ,k ]->0,
e[i ,j ,k ] e[f ,g ,h ]->0},
Expand[x1^2]/.res
Expand[x2^2]/.res
Expand[x3^2]/.res
Expand[x4^2]/.res
Expand[x6^2]/.res

[281] � 2 Er
15 [282] � 5 Er

12 [283] � Er
3 [284] � 6 Er

5

[285] � 9 Er
10 [286] � 11 Er

10

FIGURE 15.2. MATHEMATICA program for obtaining variances for estimated differences
of parameters.



chapter 16

Intercrop Mixtures When Individual
Crop Responses Are Not Available

16.1 Introduction

In the previous chapter, statistical designs and analyses were presented for mixtures
of n of m cultivars when the individual crop responses were available. In this
chapter, statistical procedures are given for mixtures of n of m cultivars when
there is a single response for the mixture. The methods presented here represent a
generalization of those in Chapter 7 of Volume I. The general topic of this chapter
has been considered by Federer and Raghavarao (1987), where they develop some
of the required theoretical results. Their minimal designs are for m items taken
t + 1 at a time, where t is the order of specific mixing effect being considered; a
t th-order effect involves t +1 of the m items. The number of cultivars must exceed
2t + 1. They present solutions for general mixing ability effects, for bi-specific
mixing ability effects, and for t � 2 or tri-specific mixing ability effects. Their
definition of general combining ability (GMA) is denoted as cultivar effect in the
following. The definition of GMA used herein removes the sole crop effect from
the cultivar effect. As in the previous chapter, their notation will be followed in
most cases.

Many situations dictate or are facilitated by measuring a single response for
the n items in a mixture. Mixtures of wheat and other cereal cultivars, mixtures of
maize varieties, mixtures of green manure crops, soil fertility measurements on the
experimental unit (e.u.) where a mixture is grown, simultaneous or sequential mix-
ing of cultivars, productivity of cropping systems, forage crop mixtures (Federer
et al., 1976), mixtures of drugs, cough medicines, mixtures of hospital treatments,
educational systems, training systems, aerobic systems, diets, preference studies
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(Raghavarao and Wiley, 1986), surveys (Federer, 1991, Chapter 5; Raghavarao
and Federer, 1979; Smith et al., 1975), etc. represent some of the areas wherein a
single response for the mixture is available. As indicated by Balaam (1986), this
situation is widespread in agriculture.

In Section 16.2, minimal treatment designs are given for estimating cultivar,
general mixing ability, GMA, effects, for estimating GMA and bi-specific mix-
ing, BSMA, effects, for estimating GMA, BSMA, and tri-specific mixing ability,
TSMA, effects, for estimating GMA, BSMA, TSMA, and quat-specific mixing
ability QSMA effects, and some comments are presented for the general specific
mixing ability case. These effects differ from those in the previous chapter in that
they are sums of the individual effects described there. In Sections 16.3–16.6,
response model equations, solutions for parameters of the response models, and
variances of differences of effects are developed for the four situations described
in Section 16.2. Illustrative examples are also presented. In Section 16.7, the four
competition models in Chapter 7 of Volume I are generalized to mixtures of n

of m items. Section 16.9 contains problems for the reader’s use. The algebraic
developments of the statistical analyses are given, but not in the detail of Chapter
15, in Appendix 16.1. Computer programs to facilitate numerical and algebraic
solutions are given with the examples and in Appendix 16.2.

16.2 Treatment Designs for Estimating up to kth
Specific Mixing Ability Effects

The GMA, BSMA, TSMA, QSMA, etc. effects considered here are different from
those in Chapter 15. There, the contribution of each cultivar in a mixture to the
interaction was estimable, whereas here, as in many factorial and diallel crossing
experiments, only the entire interaction is available. As in diallel crossing, the
contribution of each parent to the specific combining ability interaction is not
estimable. In diallel crossing experiments, general and specific combining abilities
solutions are available for m equal to or greater than three. Little has been done to
generalize combining ability concepts for experiments involving multiple crossing;
e.g., a double-cross would be a mixture of four parents. The results given herein
may be useful for this purpose. Note also that GMA may not be obtainable whereas
a cultivar effect is, where this effect is equal to GMA plus the effect of the cultivar
as a sole crop.

Several concepts from experiment design (ED) are useful in constructing treat-
ment designs (TDs). Minimal numbers of mixtures required to obtain the desired
solutions for various treatment designs are given in Table 16.1. Also, minimal
values of m for each of the TDs are indicated. For example, if cultivar + BSMA
effects are desired, m must be greater than three. If cultivar + BSMA + TSMA
effects are desired, n must be greater than two and m greater than six. A par-
titioning of the degrees of freedom for various effects for the general case and
for m � 3 to 11 is given in the bottom part of Table 16.1. Note the cases (—)
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TABLE 16.1. Numbers of Combinations of Size m Cultivars and Degrees of Freedom for
Effects.

Effect Size of mixture Minimal number of mixtures
Cultivar 2 m(m odd)

3 m

...
...

m − 1 m

Cultivar + BSMA n > 1, m > 3 m(m − 1)/2
Cultivar + BSMA + TSMA n > 2, m > 5 m(m − 1)(m − 2)/6
Cultivar + BSMA n > 3, m > 7 m(m − 1)(m − 2)(m − 3)/24

+ TSMA + QSMA

Degrees of freedom
Effect General 3 4 5 6 7 8 9 10 11
Cultivar m-1 2 3 4 5 6 7 8 9 10
BSMA m(m-3)/2 — 2 5 9 14 20 27 35 44
TSMA m(m-1)(m-5)/6 — — — 5 14 28 48 75 110
QSMA m(m-1)(m-2)(m-7)/24 — — — — — 14 42 90 165

where solutions for effects are not available. TDs for obtaining solutions for
cultivar and GMA effects (Tables 16.2 and 16.3), for cultivar + BSMA effects
(Table 16.4), for cultivar + BSMA + TSMA effects, for cultivar, BSMA, TSMA,
and QSMA effects, and for additional higher-ordered mixing ability effects are
discussed below.

First, minimal TDs for obtaining solutions for cultivar effects only are considered
in Table 16.2. An experimenter may be interested in assessing cultivar effects for
m cultivars in mixtures of size n. A situation where this could be the case would be
in the early stages of a program where m is large and it is decided to study cultivar
effects prior to considering interactions. If m is large, the experimenter will more
than likely use n � 2 since v, the number of mixtures, would be equal to m, the
number of cultivars. This would be similar to the top-crossing situation in plant
breeding. Mixtures of sizes greater than two may also be used when v � m. For
m cultivars, a minimal design consists of m mixtures of size n < m. For n � 2,
minimal saturated designs of m mixtures are available only for odd numbers. For
the TD design matrix X, which is m by m, the matrix X′X is a circulant matrix
and is singular for m even (Searle, 1979). TDs for m � 5, 7, and 9 are presented
in Table 16.2. For n � 3, minimal TDs are available for all m. The construction of
these designs consists of finding a balanced incomplete block design (BIBD) or a
partially balanced incomplete block design (PBIBD) which is as nearly pairwise
balanced (Hedayat and Federer, 1974) as possible. Pairwise balance means that all
possible ordered pairs occur an equal number, λ, of times. A cyclic latin square
design is constructed and rows 1 and 2 make up the TD for n � 2. For n � 3, rows
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TABLE 16.2. Minimal Cultivar Effect Treatment Designs for n � 2, 3, 4 and m �
4, 5, 6, 7, 8, 9. Columns Represent the Mixture.

n � 2 (designs not connected for m even):
m � 5 m � 7 m � 9
1 2 3 4 5 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9
2 3 4 5 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 1

n � 3:
m � 4 (bib) m � 5 m � 6 m � 7 (bib)
1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7
2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1
4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3
m � 8 m � 9
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1
4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3

n � 4:
m � 4 m � 5 (bib) m � 6 m � 7 (bib)
1 2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7
2 3 4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1
4 1 2 3 4 5 1 2 3 4 5 6 1 2 3 4 5 6 7 1 2 3
3 4 1 2 5 1 2 3 4 3 4 5 6 1 2 7 1 2 3 4 5 6
m � 8 m � 9
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 9 1
4 5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3
5 6 7 8 1 2 3 4 5 6 7 8 9 1 2 3 4

1, 2, and 4 of the latin square are selected for the TD. For n � 4, an additional
row of the latin square is selected in such a manner as to maintain as near pairwise
balance as possible, i.e., to obtain either a BIBD or a two-associate class PBIBD.
If mixtures of size n > 4 are desired, one may proceed in the above manner and it
is always possible to obtain a two-associate class PBIBD or a BIBD by selecting
appropriate rows of the cyclic latin square. For n � m − 1, a BIBD (Youden
design) always occurs. The situations where BIBDs or Youden designs occur are
indicated in Table 16.2.

Such designs as the above have been used in forage crop experiments and
in survey designs to obtain answers to incriminating or embarrassing ques-
tions. Federer et al. (1976) and Raghavarao and Federer (1979) showed that
a BIBD for m entries in incomplete blocks of size k � n could be used to
obtain solutions for effects such as cultivar effects. The latter reference also
used supplemented block designs (SBDs) for surveys. Federer (1991), Chapter
5, demonstrated that solutions for cultivar effect parameters were possible us-
ing a PBIBD where the number of incomplete blocks, mixtures, is greater than
or equal to m for n < m. The subject matter context in which the designs are
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used is irrelevant, as it is only the types of effects, cultivar here, that require
solutions.

Treatment designs may be required wherein one or more standard cultivars are
to be included in every mixture of size n with m other cultivars. The class of
supplemented block designs, SBDs, may be used to obtain TDs for this situation
(Raghavarao and Federer, 1979). A SBD takes a PBIBD or a BIBD and supplements
the incomplete blocks with the standard cultivar (cultivars) and one or more blocks
with all m cultivars plus the standard cultivar. Suppose cultivar A is to be included
in every mixture and that m � 3 (cultivars 1, 2, and 3). A BIBD for v � 3 and
k � 2 has the incomplete blocks (1, 2), (1, 3), and (2, 3). A SBD would contain
the four mixtures (A, 1, 2), (A, 1, 3), (A, 2, 3), and (A, 1, 2, 3). SBDs for m � 4,
5, 6, and 7 are given for n � 2, 3, and 4 in Table 16.3. Raghavarao and Federer
(1979) discuss SBDs in the context of survey design where one question is asked
of everyone, but the remaining m questions are not. The variance for the standard
cultivar cultivar effect which is included in every mixture will have a different
variance than the other m cultivars. The more times a cultivar is included in a
mixture, the larger will be its variance, owing to the manner of defining an effect
in mixtures of size n. The opposite is true for treatments in incomplete block
designs.

If it is desired to obtain solutions for cultivar and BSMA effects and ignore
all other interactions as might be the case in screening cultivars to include in a
mixture, the designs in Table 16.4 are, in general, minimal and optimal. They
are optimal in the sense that equal pairwise balance for the cultivars is achieved
in most cases. The TD for m � 8 is not minimal. The TD for m � 8 has 32
mixtures, but only 28 are required in order to obtain solutions for cultivar and
BSMA effects. An unsolved problem in TD construction is to obtain optimal
minimal designs allowing estimation of cultivar and BSMA effects for all m.
For estimating both cultivar and BSMA effects, we note from Table 16.1 that
m must be greater than three and that n must be at least two. Mixtures of v �
m(m − 1)/2 are required and all possible combinations of m items taken two
at a time result in a BIBD with parameters v � m, k � 2, b � m(m − 1)/2,
r � m − 1, and λ � r(k − 1)/(v − 1), where λ is the number of times each
ordered pair of cultivars occurs in the BIBD. Use of sets of orthogonal squares
is made to construct TDs for m a prime number or power of a prime number.
To obtain the designs, (m − 1)/2 orthogonal squares are required to obtain the
m(m − 1)/2 mixtures needed. Then, the first n rows of these squares provide
the mixture combinations. For prime numbers, orthogonal squares are formed by
writing down a cyclic latin square and then taking main right diagonals of a square
to form the next orthogonal square. This method of diagonalization is the one used
by Khare and Federer (1981) and Federer (1995) to construct optimal incomplete
block designs for v � sk, i.e., s incomplete blocks of size k in each complete
block. Sets of orthogonal latin squares may be found in Fisher and Yates (1938)
and methods of construction have been described by Hedayat and Federer (1970,
1984), Raghavarao (1971), Raghavarao et al. (1986), and Denes and Keedwell
(1974). To illustrate for m � 5 and n � 3, the first three rows of two orthogonal



148 16. Mixtures When Responses Not Available

TABLE 16.3. Supplemented Block Designs for m � 3, 4, 5, 6 and 7 (Columns Represent
the Mixture. Common Cultivar is a.)

n � 2
m � 3 m � 5 m � 7 m � 9
a a a a a a a a a a a a a a a a a a a a a a a a a a a a
1 2 3 1 1 2 3 4 5 1 1 2 3 4 5 6 7 1 1 2 3 4 5 6 7 8 9 1
2 3 1 2 2 3 4 5 1 2 2 3 4 5 6 7 1 2 2 3 4 5 6 7 8 9 1 2

3 3 3 3
4 4 4
5 5 5

6 6
7 7

8
9

n � 3
m � 4 m � 5 m � 6 m � 7
a a a a a a a a a a a a a a a a a a a a a a a a a a
1 1 1 2 1 1 1 1 2 2 1 1 2 3 4 5 6 1 1 2 3 4 5 6 7 1
2 2 3 3 2 2 3 3 3 4 2 2 3 4 5 6 1 2 2 3 4 5 6 7 1 2
3 4 4 4 3 4 4 5 5 5 3 4 5 6 1 2 3 3 4 5 6 7 1 2 3 3

4 4 4 4
5 5 5

6 6
7

n � 4
m � 5 m � 6 m � 7
a a a a a a a a a a a a a a a a a a a a a
1 2 3 4 5 1 1 2 3 4 5 6 1 1 2 3 4 5 6 7 1
2 3 4 5 1 2 2 3 4 5 6 1 2 2 3 4 5 6 7 1 2
3 4 5 1 2 3 3 4 5 6 1 2 3 4 5 6 7 1 2 3 3
4 5 1 2 3 4 4 5 6 1 2 3 4 7 1 2 3 4 5 6 4

5 5 5
6 6

7

latin squares are

1 2 3 4 5

2 3 4 5 1

3 4 5 1 2

1 2 3 4 5

3 4 5 1 2

5 1 2 3 4

This TD is a BIBD with parameters v � 5, k � 3, b � 10, r � 6, and
λ � 3. Since 5(5 − 1)/2 � 10, the above TD has the minimum number re-
quired and is connected for cultivar + BSMA effects and is included in Table
16.4.

The TDs for m � 5 were obtained as the first three rows of two orthogonal
latin squares for n � 3 and the first four rows for n � 4. The TD for m � 6 and
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TABLE 16.4. Minimal Treatment Designs for Cultivar and BSMA Effects for n � 2, 3, 4
and m � 5, 6, 7, 8, 9.

n � 2 [all possible combinations of m taken two at a time, or m(m − 1)/2 mixtures]:
m � 5 (BIBD λ � 1) m � 6 (BIBD λ � 1)
1 1 1 1 2 2 2 3 3 4 1 1 1 1 1 2 2 2 2 3 3 3 4 4 5
2 3 4 5 3 4 5 4 5 5 2 3 4 5 6 3 4 5 6 4 5 6 5 6 6
m � 7 (BIBD λ � 1)
1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 4 4 4 5 5 6
2 3 4 5 6 7 3 4 5 6 7 4 5 6 7 5 6 7 6 7 7
m � 8 (BIBD λ � 1)
1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 4 4 4 4 5 5 5 6 6 7
2 3 4 5 6 7 8 3 4 5 6 7 8 4 5 6 7 8 5 6 7 8 6 7 8 7 8 8
m � 9 (BIBD λ � 1)
1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 5 5 5 5 6 6 6 7 7 8
2 3 4 5 6 7 8 9 3 4 5 6 7 8 9 4 5 6 7 8 9 5 6 7 8 9 6 7 8 9 7 8 9 8 9 9
n � 3
m � 5 (BIBD λ � 3) m � 6
1 2 3 4 5 1 2 3 4 5 1 1 1 1 1 1 1 2 2 2 2 2 3 3 4
2 3 4 5 1 3 4 5 1 2 2 2 3 3 3 4 5 3 3 4 4 5 4 4 5
3 4 5 1 2 5 1 2 3 4 4 5 4 5 6 6 6 5 6 5 6 6 5 6 6
m � 7 (BIBD λ � 3)
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
2 3 4 5 6 7 1 3 4 5 6 7 1 2 4 5 6 7 1 2 3
3 4 5 6 7 1 2 5 6 7 1 2 3 4 7 1 2 3 4 5 6
m � 8
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2
4 5 6 7 8 1 2 3 5 6 7 8 1 2 3 4 8 1 2 3 4 5 6 7 7 8 1 2 3 4 5 6
m � 9 (BIBD λ � 3)
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 1 7 8 9 1 2 3 4 5 6 9 7 8 3 1 2 6 4 5 8 9 7 2 3 1 5 6 4
3 4 5 6 7 8 9 1 2 4 5 6 7 8 9 1 2 3 5 6 7 8 9 1 2 3 4 6 4 5 9 7 8 3 1 2
n � 4
m � 5 (BIBD λ � 6) m � 6 (BIBD λ � 6)
1 2 3 4 5 1 2 3 4 5 1 1 1 1 1 1 1 1 1 1 2 2 2 2 3
2 3 4 5 1 3 4 5 1 2 2 2 2 2 2 2 3 3 3 4 3 3 3 4 4
3 4 5 1 2 5 1 2 3 4 3 3 3 4 4 5 4 4 5 5 4 4 5 5 5
4 5 1 2 3 2 3 4 5 1 4 5 6 5 6 6 5 6 6 6 5 6 6 6 6
m � 7 (BIBD λ � 6)
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
2 3 4 5 6 7 1 3 4 5 6 7 1 2 4 5 6 7 1 2 3
3 4 5 6 7 1 2 5 6 7 1 2 3 4 7 1 2 3 4 5 6
4 5 6 7 1 2 3 7 1 2 3 4 5 6 3 4 5 6 7 1 2
m � 8 (not minimal)
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2
3 4 5 6 7 8 1 2 6 7 8 1 2 3 4 5 5 6 7 8 1 2 3 4 7 8 1 2 3 4 5 6
4 5 6 7 8 1 2 3 7 8 1 2 3 4 5 6 6 7 8 1 2 3 4 5 8 1 2 3 4 5 6 7
m � 9
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
2 3 4 5 6 7 8 9 1 7 8 9 1 2 3 4 5 6 9 7 8 3 1 2 6 4 5 8 9 7 2 3 1 5 6 4
3 1 2 6 4 5 9 7 8 4 5 6 7 8 9 1 2 3 5 6 4 8 9 7 2 3 1 6 4 5 9 7 8 3 1 2
4 5 6 7 8 9 1 2 3 2 3 1 5 6 4 8 9 7 6 4 5 9 7 8 3 1 2 9 7 8 3 1 2 6 4 5
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n � 3 is all possible combinations of 6 items taken 3 at a time, resulting in 20
mixtures, whereas only 15 are required, leaving 5 degrees of freedom for lack of
fit (higher-order effects). By deleting the five combinations 123, 126, 145, 234,
and 356, a saturated minimal TD is obtained as given in Table 16.4. This TD is the
one illustrated in Example 16.3. For m � 6 and n � 4, all possible combinations
of 6 items taken 4 at a time results in 15 mixtures, the required number to estimate
cultivar and BSMA effects. For m � 7 and n � 3 and 4, the first three and four
rows of three orthogonal latin squares, respectively, were used to obtain the v � 21
mixtures necessary to estimate cultivar and BSMA effects. For m � 8 and n � 3,
the four sets of rows, (1, 2, 4), (1, 2, 5), (1, 3, 8), and (1, 3, 7) from a cyclic 8-by-8
latin square were used. For m � 8 and n � 4, the four sets of rows, (1, 2, 3, 4),
(1, 2, 6, 7), (1, 3, 5, 6), and (1, 3, 7, 8), of a cyclic 8-by-8 latin square were used.
The preceding two designs are not minimal. A trial and error method of deleting
four combinations to obtain a connected design could be attempted. The designs
were obtained by trial and error, attempting to obtain as near pairwise balance as
possible. It may be possible to obtain a more balanced TD for n � 4. For m � 9
and n � 3 and 4, four sets of orthogonal latin squares were obtained and the first
three rows were used for n � 3 and the first four rows for n � 4. For n > 4, a TD
may be formed by taking the first n rows of (m − 1)/2 orthogonal latin squares
for prime numbers and powers of odd prime numbers. This method may be used
to obtain another design for m � 8 in Table 16.4.

To obtain TDs for cultivar + BSMA + TSMA effects, m(m − 1)(m − 2)/6
combinations are required (Table 16.1) and m must be greater than five. For n � 3,
a BIBD with parameters v � m, k � 3, r � (m−1)(m−2)/2, b � m(m−1)(m−
2)/6, and λ � m − 2 may be used. This BIBD is all possible combinations of m

items taken three at a time. For cultivar + BSMA + TSMA + QSMA effects,
m(m − 1)(m − 2)(m − 3)/24 combinations are required, n � 4, and m must be
greater than seven. This TD is all possible combinations of m items taken four at a
time. Minimal TDs for higher-order effects may be obtained in a similar manner.
For larger values of n, TDs cannot be constructed as described for Table 16.4, as
(m− 1)(m− 2)/6 orthogonal latin squares would be required for cultivar, BSMA,
and TSMA effects and this exceeds the number possible. Some other method of
construction is needed to construct minimal designs.

16.3 Response Model Equations, Solutions, and
Analyses for Cultivar Effects

Response model equations and solutions for effects are treated below. In this
section, TDs for cultivar effects only are treated. Second, TDs for cultivar and
BSMA effects are considered in the next section. Third, TDs for cultivar, BSMA,
and TSMA effects are presented in Section 16.5. In Section 16.6, TDs for cul-
tivar, BSMA, TSMA, and QSMA effects are discussed. The notation used and
results obtained by Hall (1976) and Federer and Raghavarao (1987) are used here
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where applicable. A RCBD is assumed throughout as the extension to other EDs is
straightforward. Let the n cultivar mixture be denoted by Sα � hij . . . , α �
1, 2, . . . , v mixtures, where hij··· denotes which cultivars are in the mixture;
let

the replicate mean be ȳg· �
v∑

α�1

YgSa
/v,

the overall mean be ȳ·· �
r∑

g�1

v∑
α�1

YgSa
/rv,

the mean of the mixture Sα be ȳ·Sa
�

v∑
α�1

YgSa
/r,

the mean of cultivar h be ȳ·h �
r∑

g�1

v∑
α�1,hεSa

YgSa
/rs,

h occurs in s mixtures,

the mean of the mixtures where h and i both occur be

ȳ·hi· �
r∑

g�1

∑
h,iεSa

Yghij /rp,

where p is the number of times the pair hi occurs in the v mixtures Sα . This
notation extends directly for the triplet hij and the quartet hijk.

For the treatment designs in Table 16.2 from an experiment designed as a RCBD,
the following response model equations for n � 2, n � 3, and n � 4 are used:

Yghi � µ + ρg + (γh + γi)/2 + εghi, (16.1)

Yghij � µ + ρg + (γh + γi + γj )/3 + εghij , (16.2)

Yghijk � µ + ρg + (γh + γi + γj + γk)/4 + εghijk, (16.3)

where µ is the overall mean effect, ρg is the gth replicate effect, γh, γi , γj , and
γk are cultivar effects for cultivars h, i, j , and k, respectively, and the ε’s are
random error effects distributed with mean zero and variance σ 2

ε . The coefficients
of the γ ’s, 1/n, are used to put the cultivar effects on the same basis as the sole
effect experimental unit. The cultivar effect γh � τh + δh � sole crop effect plus
GMA effect. The individual components of the cultivar effect cannot be obtained
unless the sole crops are added to the TD. Extension to mixtures of size n > 4 is
straightforward. Using the restrictions that the sum of the replicate effects and the
sum of the cultivar effects are equal to zero, a solution for the replicate effect is
the replicate mean minus the overall mean, or

ρg � ȳg· − ȳ··. (16.4)
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If the TD is a (m, n, λ) BIBD, a solution for the γh has a simple form; i.e., for
mixtures of size n,

γh � n

r∑
g�1

∑
hεSα

Yghif /r(n − λ) − n ȳ····
(n − λ)

(16.5)

� n(ȳ·h·· − ȳ····)/(n − λ),

where the v � m mixtures are numbered from S1 to Sv , hεSα means all α for which
h appears in the mixture; i.e., h is a member of Sα . The variance of a difference
between two estimated cultivar means or two effects is(

n

n − λ

)2

var(ȳ·h·· − ȳ·h′ ··) � 2

r(n − λ)
σ 2

ε .

If the TD is a two-associate class PBIBD for the associations λ1 < λ2, a solution
for the cultivar effect may be obtained using any of a number of software packages,
e.g., GAUSS, MAPLE, MATHEMATICA, etc. The first package gives numeric
results, and algebraic results may be obtained with the other two. Since numeric
results are desired, the computations are demonstrated in the following example
using GAUSS. Variances of differences between two cultivar means or effects are
demonstrated in Examples 16.1, 16.2, and 16.3.

16.3.1 Example 16.1. Saturated Main Effect Treatment Design for
Estimating Cultivar Effects

To illustrate the calculations for an experiment using a saturated main effect treat-
ment (cultivar) design with m � v, data for biomass weight for mixtures of n � 3
cultivars are used. The data in Table 16.5 are from the experiment described in
Chapter 12. The treatment design is from Table 16.2. In addition to the responses
for the m � 6 mixtures, biomass weights for each of the mixtures alone with
barley and the mixture with all seven cultivars are also presented. Hereafter in this
example, the cultivar with barley will be referred to as “sole” crop. The treatment
design for m � 6 cultivars in mixtures of n � 3 is a partially balanced incomplete
block design (PBIBD) with two associate classes; i.e., a pair of cultivars either
occur together λ1 � 1 or λ2 � 2 times in a mixture. From these data, it is possible
to estimate a cultivar mean, µ+τh +δh, and cultivar effect, γh � τh +δh, a general
mean effect, µ, and GMA effect, δh, for these m � 6 cultivars. δ· is the average of
the δh.

First, consider an analysis for the m � 6 cultivars in v � 6 mixtures of n � 3.
The treatment design is ABD, ACF, ADE, BCE, BEF, and CDF. A appears twice
with D and once with each of the other cultivars. This association scheme holds
for all cultivars. The letters refer to cultivars as follows:

A � wild oat

B � coriander

C � lentils

D � birdsfoot trefoil

E � alfalfa

F � chamomile
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TABLE 16.5. Plant Biomass Responses for m � 6 Cultivars as “Sole” and in Mixtures of
n � 3.

Mixture Rep 1 Rep 2 Rep 3 Total Mean
A 24.04 15.87 27.84 67.25 22.5833
B 2.21 1.58 1.12 4.91 1.6367
C 47.98 41.76 28.89 118.63 39.5433
D 4.02 1.09 3.04 8.15 2.7167
E 13.72 4.81 8.32 26.85 8.9500
F 3.34 0.49 0.95 4.78 1.5933
ABD 8.37 10.58 13.02 31.97 10.6567
ACF 33.47 17.85 26.74 78.06 26.0200
ADE 11.28 8.32 10.43 30.03 10.0100
BCE 26.78 28.92 25.24 80.94 26.9800
BEF 2.37 6.05 3.50 11.92 3.9733
CDF 15.89 35.98 20.02 71.89 23.9633
All six 18.25 14.17 22.27 54.69 18.2300
Total 211.72 187.47 191.38 590.57 15.1428
Total “sole” 95.31 65.60 70.16 231.07 12.8372
Total n � 3 98.16 107.70 98.95 304.81 16.9339
ȳ·A·· 15.56 ȳ·B·· 13.87 ȳ·C·· 25.65 ȳ·D·· 14.88 ȳ·E·· 13.65 ȳ·F ·· 17.99

ANOVA Mixtures of n � 3
Source of variation d.f. SS MS
Total 18 7,003.5651
Correction for mean 1 5,161.6187
Replicate � R 2 9.3443 4.6722
Mixture � M 5 1,464.6438 292.9288
R × M 10 367.9583 36.7958

TABLE 16.6. ANOVA for the Data in Table 16.5 for “Soles” and Mixtures of n � 3.

Source of variation d.f. SS MS
Total 36 13,817.1394
Correction for mean 1 7,976.8715
Replicate � R 2 28.2721 14.1360
Treatment � T 11 5,148.5379 468.0489

Among “sole” � S 5 3,532.8500 706.5700
Among mixture � M 5 1,464.6438 292.9288
S versus M � C 1 151.0441 151.0441

R × T 22 663.4579 30.1572
R × S 10 229.0941 22.9094
R × M 10 367.9583 36.7958
R × C 2 66.4056 33.2028
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The replicate and mixture totals are given in Table 16.5. From the responses and
totals, an analysis of variance (ANOVA) table is obtained and given in the Table
16.6. From the mixture means, a mean of the mixtures where cultivar A occurred
is obtained as

ȳ·A·· � (31.97 + 78.06 + 30.03)/(nr � 9) � 15.5622.

A solution for a cultivar mean, µ+ τh + δh, and cultivar effects, τh + δh − δ·, using

the restriction that the sum of the solutions is zero, i.e.,
6∑

h�1

(τ̂h + δ̂h − δ̂·) � 0,

is (the means are calculated to four decimals for all examples in order to limit
rounding errors):

µ̂ + τ̂A + δ̂A � 6ȳ·A·· − 3ȳ·D·· − 2ȳ····

� 6(15.5622) − 3(14.8767) − 3(16.9339) � 14.8753,

µ̂ + τ̂B + δ̂B � 6ȳ·B·· − 3ȳ·E·· − 2ȳ···· � 8.3890,

µ̂ + τ̂C + δ̂C � 6ȳ·C·· − 3ȳ·F ·· − 2ȳ···· � 66.1018,

µ̂ + τ̂D + δ̂D � 6ȳ·D·· − 3ȳ·A·· − 2ȳ···· � 8.7059,

µ̂ + τ̂E + δ̂E � 6ȳ·E·· − 3ȳ·B·· − 2ȳ···· � 6.4486,

µ̂ + τ̂F + δ̂F � 6ȳ·F ·· − 3ȳ·C·· − 2ȳ···· � −2.9174.

The mean of the above six means is µ̂ + δ̂· � 16.9339, which is also the mean of
all 18 responses owing to orthogonality. The above means minus 16.9339 result
in the cultivar effects:

τ̂A + δ̂A − δ̂· � 14.8753 − 16.9339 � −2.0586,

τ̂B + δ̂B − δ̂· � −8.5449,

τ̂C + δ̂C − δ̂· � +49.1679,

τ̂D + δ̂D − δ̂· � −8.2281,

τ̂E + δ̂E − δ̂· � −10.4853,

τ̂F + δ̂F − δ̂· � −19.8513.

These effects sum to zero. It appears that there are large differences among the
cultivar effects, which is substantiated by the relatively large F -value for mixtures
in the ANOVA, i.e., 292.9288/36.7958 = 7.96. To obtain a variance–covariance
matrix for the cultivar means, we may utilize a software package like GAUSS. A
GAUSS program for performing these calculations is

Let X[6,6] = 1 1 0 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 0
1 1 0 1;
Let Y[6,1] = 31.97 78.06 30.03 80.94 11.92 71.89;
b = inv(X′ ∗ X)∗X′Y; b;
var = inv(X′ ∗ X); var;
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X is a six-by-six zero–one matrix where a one indicates in which mixture a
cultivar appears for the order of cultivars A, B, C, D, E, and F. Y is a column
vector of n times a mixture total/r . n/r for this example is 3/3 = 1, resulting in
the mixture totals in Y. The solutions for the cultivar means is given by b and the
output from this program is the set of cultivar means given above. The variance
of the entries in Y is n2 σ 2

ε /r � 32(36.7958)/3 � 110.3874. This value times var
from the GAUSS program results in the following variance–covariance matrix for
the cultivar means or effects:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+.6296 −.0370 −.0370 −.3704 −.0370 −.0370

−.0370 +.6296 −.0370 −.0370 −.3704 −.0370

−.0370 −.0370 +.6296 −.0370 −.0370 −.3704

−.3704 −.0370 −.0370 +.6296 −.0370 −.0370

−.0370 −.3704 −.0370 −.0370 +.6296 −.0370

−.0370 −.0370 −.3704 −.0370 −.0370 +.6296

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
× 110.3874.

The variance of a difference of two cultivar means which appear together
in a mixture once is 110.3874 [0.6296 + 0.6296 − (−0.0370 − 0.0370)] �
147.1685, or a standard error of a difference of 12.13. The variance of a dif-
ference between two cultivar means which occur together twice in a mixture
is 110.3874 [0.6296 + 0.6296 − (−0.3704 − 0.3704)] � 220.7748, or a stan-
dard error of a difference of 14.86. A 95% least significant difference is a t

value for 10 degrees of freedom times the standard error of a difference, i.e.,
2.23(12.13) � 27.05 or 2.23(14.86) � 33.14; a 95% studentized range is com-
puted as 4.91

√
147.1685/2 � 42.12, or as 4.91

√
220.7748/2 � 51.59 (see

Federer, 1967, Snedecor and Cochran, 1980, e.g.). Thus, it is seen that cultivar C is
different from the rest, and the rest do not differ significantly among themselves.

The mean of the mixture with six cultivars is µ̂ + δ̂· � 18.2300, which is
close to the estimate from the 18 responses mean of 16.9339. From the responses
for the “sole” crops, an estimate of the mean effect µ is 12.8372. An estimate
of δ· is 16.9339 − 12.8372 � 4.0967. An ANOVA for the 36 responses for
“sole” and mixtures of 3 is given in Table 16.6. Here, we see that the mixture
of three means is significantly different from the mean of the “sole” crops, i.e.,
151.0441/30.1572=5.01 and F.05(1, 30) � 4.17. There are large differences among
the “sole” and among the mixtures of three as indicated by the large F -values
obtained from Table 16.6.

Inclusion of “sole” crops allows estimation of “sole” crops effects τh and GMA
effect δh. The “sole” crop effects from the means in Table 16.5 are

τ̂A � 22.5833 − 12.8372 � 9.7461,

τ̂B � 1.6367 − 12.8372 � −11.2005,

τ̂C � 39.5433 − 12.8372 � 26.7061,

τ̂D � 2.7167 − 12.8372 � −10.1205,
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τ̂E � 8.9500 − 12.8372 � − 3.8872,

τ̂F � 1.5933 − 12.8372 � −11.2439.

The GMA effects δh are

δ̂A � (τ̂A + δ̂A − δ̂·) + δ̂· − τ̂A � −2.0583 + 4.0967 − 9.7461 � −7.7077,

δ̂B � (τ̂B + δ̂B − δ̂·) + δ̂· − τ̂B � −8.5450 + 4.0967 + 11.2005 � 6.7522,

δ̂C � (τ̂C + δ̂C − δ̂·) + δ̂· − τ̂C � 49.1683 + 4.0967 − 26.7061 � 26.5589,

δ̂D � (τ̂D + δ̂D − δ̂·) + δ̂· − τ̂D � −8.2283 + 4.0967 + 10.1205 � 5.9889,

δ̂E � (τ̂E + δ̂E − δ̂·) + δ̂· − τ̂E � −10.4850 + 4.0967 + 3.8872 � −2.5011,

δ̂F � (τ̂F + δ̂F − δ̂·) + δ̂· − τ̂F � −19.8517 + 4.0967 + 11.2439 � −4.5111

A variance of the difference between two “sole” crop τh effects is 2(22.9094)/
(r � 3) � 15.2729. This variance added to either of the two differences be-
tween cultivar effects is the variance of a difference between two δh. The square
root of the resulting sum is the standard error of a difference between two GMA
effects.

16.3.2 Example 16.2. Supplemented Block Design for Estimating
Cultivar Effects

The computations for obtaining an ANOVA, cultivar means, and cultivar effects
is illustrated using the data in Table 16.7 for m � 7 cultivars in mixtures of n � 3
and n � 7 for a supplemented block treatment design. The design is obtained from
Table 16.3 for the mixture size n � 3. The data represent total biomass for the
mixture. An ANOVA for these data is the standard one for RCBD and is presented
at the bottom of Table 16.7. Here, we note that there are relatively large differ-
ences among the mixture means, F � 181.6249/27.2871 � 6.66 as compared to
F.01(6, 12) � 4.82. A 95% lsd (least significant difference) is computed as t.05(12
d.f.)(standard error of a difference) = 2.18

√
2(27.2871)/3 � 9.31, and a studen-

tized range (hsd) is computed as q.05(12, 7)
√

27.2871/3 � 4.95(3.016) � 14.95.
(See, e.g., Federer, 1967, Snedecor and Cochran, 1980.) Differences among the
three highest mixture means for ACFG, BCEG, and CDFG do not exceed the lsd.
Mixture CDFG has the highest mean and it is more than one lsd above all seven,
BEFG, ADEG, and ABDG means. The mixture mean for ACFG is more than one
lsd higher than the means of BEFG, ADEG, and ABDG. BCEG mean is more than
one lsd above the means of ABDG and BEFG. The seven-mixture mean is more
than one lsd above the BEFG mean. Comparisons with an hsd may also be made,
but either procedure indicates differences.

Instead of concentrating on the mixture means as above, a study of cultivar
means, µ + τh + δh, and cultivar effects, τh + δh, may be desired. Cultivar ef-
fects on biomass production of a mixture are often enlightening. Solutions for
cultivar means are obtained by a procedure similar to that used for Example
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TABLE 16.7. Supplemented Block Treatment Design for m � 7 Cultivars for Biomass.
Replicate Replicate Replicate

Mixture 1 2 3 Total Mean
ABDG 44.41 57.19 50.62 152.22 50.7400
ACFG 71.79 57.54 65.01 194.34 64.7800
ADEG 44.05 54.40 58.32 156.77 52.2567
BCEG 58.56 63.31 62.96 184.83 61.6100
BEFG 45.54 42.75 48.19 136.48 45.4933
CDFG 59.73 70.53 68.77 199.03 66.3433
All 7 52.98 54.20 62.05 169.23 56.4100
Total 377.06 399.92 415.92 1,192.90 56.8048

ANOVA
Source of variation d.f. SS MS
Total 21 69,288.5504
Correction for mean 1 67,762.4005
Replicate � R 2 108.9847 54.4924
Mixture � M 6 1,089.7495 181.6249
R × M 12 327.4457 27.2871

16.1. A MAPLE program for obtaining algebraic solutions to the cultivar means
is:

eqs1: {(a+b+d+g)/4 � y.abdg, (a+c+f +g)/4 � y.acfg, (a+d+e+g)/4 �
y.adeg, (b+c+e+g)/4 � y.bceg, (b+e+f +g)/4 � y.befg, (c+d +f +g)/4 �
y.cdfg, (a + b + c + d + e + f + g)/7 � y.abcdefg;
a1:solve(eqs1, {a, b, c, d, e, f, g})

In the above h � a, · · · , g for the cultivar mean µ+ τh + δh � h. The solutions
obtained arranged in matrix form are⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

b

c

d

e

f

g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
� 1

9

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 16 4 −8 −8 −20 21

16 −8 −20 4 4 −8 21

−8 4 −8 16 −20 4 21

4 −20 4 −8 −8 16 21

−20 −8 16 4 4 −9 21

−8 4 −8 −20 16 4 21

12 12 12 12 12 12 −63

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y.abdg

y.acfg

y.adeg

y.bceg

y.befg

y.cdfg

y.abcdefg

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
An easy algebraic check is to obtain the solution for cultivar G mean, g, and this
coincides with the above solution.

To obtain the variance covariance matrix for the above solutions, a GAUSS
program as follows was used:
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format 2,4;
let X[7,7] = .25 .25 0 .25 0 0 .25 .25 0 .25 0 0 .25 .25 .25 0 0 .25 .25 0 .25 0
.25 .25 0 .25 0 .25 0 .25 0 0 .25 .25 .25 0 0 .25 .25 0 .25 .25 .142857 .142857
.142857 .142857 .142857 .142857 .142857;
let Y[7,1] = 50.7400 64.7800 52.2567 61.6100 45.4933 66.3433 56.4100;
b = inv(X′∗X)∗X′∗ (Y); b′;
var = inv(X′∗X); var;

In the above, .25 � 1
4 and .142857 � 1

7 , format 2,4 requests four decimals in the
output, and b gives the cultivar means. The cultivar means for A to G, respectively,
are given by b as 49.9316, 36.7494, 106.7805, 56.1849, 42.8161, 42.3138, and
60.0940. For this treatment design, it is necessary to use the actual coefficients of
the mixture means rather than zeros and ones as was done in Example 16.1. In this
form, the mixture means will all have the same variance, whereas if the first six
equations were multiplied by 4 and the last equation by 7, the resulting entities in
the Y vector would have unequal variances. The resulting output for b gives the
above cultivar means, and var equals variance, which is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

15.5185 4.8519 4.8519 −0.4815 4.8519 4.8519 −18.1111

4.8519 15.5185 4.8519 4.8519 −0.4815 4.8519 −18.1111

4.8519 4.8519 15.5185 4.8519 4.8519 −0.4815 −18.1111

−0.4815 4.8519 4.8519 15.5185 4.8519 4.8519 −18.1111

4.8519 −0.4815 4.8519 4.8519 15.5185 4.8519 −18.1111

4.8519 4.8519 −0.4815 4.8519 4.8519 15.5185 −18.1111

−18.1111 −18.1111 −18.1111 −18.1111 −18.1111 −18.1111 59.6668

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The variance of an element in the Y vector is the error mean square divided by
number of replicates = 27.2871/3 � 9.0957. A variance of a difference be-
tween A and B means, say, is 9.0957 (15.5185 + 15.5185 - 4.8519 - 4.8519) =
194.0404; the standard error of the difference is

√
194.0404 � 13.93. The vari-

ance of a difference between means A and D, say, is 9.0957(15.5185 + 15.5185
+ 0.4815 + 0.4815) = 291.0624, with a standard error of a difference of 17.06.
The variance of a difference of G and any other cultivar is 9.0957(15.5185 +
59.6668 + 18.1111 + 18.1111) = 1013.3292 and a standard error of a difference
of 31.83.

The mean of the cultivar means, 56.4100, provides an estimate of µ + δ·,
using the previous restriction on the solutions for the cultivar effects. The
cultivar means minus 56.4100 results in solutions for the cultivar effects as
follows:

τ̂A + δ̂A − δ̂· � 49.9316 − 56.4100 � − 6.4784,

τ̂B + δ̂B − δ̂· � 36.7494 − 56.4100 � −19.6606,
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τ̂C + δ̂C − δ̂· � 106.7805 − 56.4100 � 50.3705,

τ̂D + δ̂D − δ̂· � 56.1849 − 56.4100 � − 0.2251,

τ̂E + δ̂E − δ̂· � 42.8161 − 56.4100 � −13.5939,

τ̂F + δ̂F − δ̂· � 42.3138 − 56.4100 � −14.0962,

τ̂G + δ̂G − δ̂· � 60.0940 − 56.4100 � 3.6840.

These solutions add to zero within rounding error.

16.4 Response Model Equations, Solutions, and
Analyses, Cultivar + BSMA Effects

Response model equations for estimating both cultivar and BSMA effects for
n � 2, 3, and 4 are

Yghi � µ + ρg + (γh + γi)/2 + πhi + εghi, (16.6)

Yghij � µ + ρg + (γh + γi + γj )/3 (16.7)

+ 2(πhi + πhj + πij )/3 + εghij , (16.8)

Yghijk � µ + ρg + (γh + γi + γj + λk)/4

+ (πhi + πhj + πhk + πij + πik + πjk)/2 + εghijk,

where the π ’s are the BSMA effects and the other terms are as defined above.
Since any pair, say hi, of cultivars for n � 4 only occupies one-half of the e.u. as
compared to n � 2, the coefficient of one-half is used. Likewise for n � 3, a pair
hi only occupies two-thirds of the e.u. and the coefficient 2/3 brings the BSMA
effects to the same basis as for n � 2. In general, this coefficient is 2/n. Extension
to mixtures of size n > 4 is straightforward. The additional restrictions over those
in Section 16.3 are that the sum of the BSMA effects for any cultivar, say h, is
zero. The solution for the replicate effect is the same as in (16.1). If the TD is a
BIBD, the solution for the hth cultivar effect is the last part of (16.5). If the TD is
a BIBD for n � 2, with v � m(m − 1)/2, the solution for the cultivar effect is

γ̂h � 2(m − 1)

m − 2
(ȳ·h· − ȳ···)

and the solution for a BSMA effect is

π̂hi � ȳ·hi + m

m − 2
ȳ··· − m − 1

m − 2
(ȳ·h· + ȳ··i) .

The variances of a difference are

Var
(
γ̂h − γ̂h′

) � 4(m − 1)2

(m − 2)2
Var
(
ȳ·h· − ȳ·h′·

) � 8σ 2
ε

r(m − 2)
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and

Var
(
π̂hi − π̂hi ′

) � Var

(
ȳ·hi − ȳ·hi ′ − m − 1

m − 2
(ȳ··i − ȳ··i ′)

)
� 2σ 2

ε

r

(m − 3)

(m − 2)
.

For n > 2, the design is usually not balanced for both cultivar and BSMA effects.
For this situation, the procedure described in the following example may be used
to obtain variances of differences.

16.4.1 Example 16.3. Minimal Treatment Design for Cultivar and
BSMA Effects

The treatment design for the data in Table 16.8 was obtained by deleting the
combinations ABC, ABF, ADF, BCD, and CEF from the 20 mixtures obtained
by taking all combinations of m � 6 cultivars taken n � 3 at a time. This set
of 15 results in unequal occurrences of the 6 cultivars which may be considered
undesirable but is a minimal saturated treatment design.

The 3(15) � 45 responses given in Table 16.8 are used to illustrate the com-
putations involved in obtaining an ANOVA, cultivar effects, and BSMA effects.
An ANOVA for a standard RCBD is first obtained and given in the bottom part
of Table 16.8. It would appear that there are some relatively large residuals which
would alert the need to search for outliers in the data. This will not be done, as the
calculational procedure is the goal here. A study of residuals is left as an exercise
for the reader. From the results in the ANOVA, it appears that there are no signif-
icant differences among the 15 mixtures with the F -value for treatments being a
little larger than 1.

Since this is a nonorthogonal design, use may be made of such software packages
as MAPLE, GAUSS, MATHEMATICA, etc. to obtain an analysis. GAUSS is used
here. A program used for the order of treatments in Table 16.8 is

let X[15,21] =
1 1 0 1 0 0 2 0 2 0 0 0 2 0 0 0 0 0 0 0 0
1 1 0 0 1 0 2 0 0 2 0 0 0 2 0 0 0 0 0 0 0
1 0 1 1 0 0 0 2 2 0 0 0 0 0 0 2 0 0 0 0 0
1 0 1 0 1 0 0 2 0 2 0 0 0 0 0 0 2 0 0 0 0
1 0 1 0 0 1 0 2 0 0 2 0 0 0 0 0 0 2 0 0 0
1 0 0 1 0 1 0 0 2 0 2 0 0 0 0 0 0 0 0 2 0
1 0 0 0 1 1 0 0 0 2 2 0 0 0 0 0 0 0 0 0 2
0 1 1 0 1 0 0 0 0 0 0 2 0 2 0 0 2 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 2 0 0 2 0 0 2 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 2 2 0 0 0 0 2 0 0
0 1 0 1 0 1 0 0 0 0 0 0 2 0 2 0 0 0 0 2 0
0 1 0 0 1 1 0 0 0 0 0 0 0 2 2 0 0 0 0 0 2
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 2 2 0 2 0 0
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2;
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TABLE 16.8. Barley Plant Weights and Minimal TD for Estimating Cultivar and BSMA
Effects.

Replicate Replicate Replicate Mixture Mixture
Mixture 1 2 3 total mean
ABD 36.04 46.61 37.60 120.25 40.0833
ABE 37.97 51.60 49.28 138.85 46.2833
ACD 34.12 42.43 56.54 133.09 44.3633
ACE 43.17 32.23 40.33 115.73 38.5767
ACF 38.32 39.69 38.27 116.28 38.7600
ADF 42.50 47.24 48.98 138.72 46.2400
AEF 33.31 39.68 43.37 116.36 38.7867
BCE 31.78 34.39 37.72 103.89 34.6300
BCF 34.19 45.61 55.18 134.98 44.9933
BDE 41.88 41.21 49.18 132.27 44.0900
BDF 40.69 60.72 46.91 148.32 40.4400
BEF 43.17 36.70 44.69 124.56 41.5200
CDE 34.39 54.95 34.61 123.95 41.3167
CDF 43.84 34.55 48.75 127.14 42.3800
DEF 39.36 48.37 42.93 130.66 43.5533
Total 574.33 655.98 674.34 1,905.05 42.3344

ANOVA
Source of variation d.f. SS MS
Total 45 82,773.6861
Correction for mean 1 80,649.2334
Replicate � R 2 374.6845 187.3423
Treatment � T 14 608.1038 43.4360
R × T 28 1,141.6644 40.7737

Cultivar 5 138.7791 27.7558
BSMA 9 469.3263 52.1474

let Y[15,1] = 120.25 138.85 133.09 115.73 116.28 138.72 116.36 103.89 134.98
132.27 148.32 124.56 123.95 127.14 130.66;
S = ones(1,15); S∗Y; let J2[6,15] =
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1;
J1 = zeros(21,6); J3 = zeros(15,15); J = J1∼(J2:J3);n � 3; r � 3;
var = inv(X′ ∗X − J); var; b = var∗X′ ∗Y/n; b′; X′ ∗Y/n; Y′ ∗Y/r; b′ ∗ (X′ ∗Y/n);

The zeros and ones in the X matrix correspond to the numerators of the fractions
in equation (16.7) for the particular effect. The effects are listed in alphabetical
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order. The entries in Y are n/r times the mixture totals. S∗Y for n � r gives the
totals for the experiment and is a check on the entries in Y. The J matrix is used to
add the restrictions that the sum of the interaction effects for each cultivar is zero. b
gives the solutions for the cultivar means and BSMA effects. b′∗X′∗Y/n � Y ′∗Y/r

for this example since n is constant for every mixture. n2/r times the error mean
square is the constant multiplier for var to obtain the variance–covariance matrix for
the cultivar means and BSMA effects. The resulting 21-by-21 variance–covariance
matrix is not reproduced here owing to its size but may be obtained from the above
GAUSS program.

The cultivar means are

µ̂ + τ̂A + δ̂A � 50.6860,

µ̂ + τ̂B + δ̂B � 49.5660,

µ̂ + τ̂C + δ̂C � 27.4160,

µ̂ + τ̂D + δ̂D � 52.8260,

µ̂ + τ̂E + δ̂E � 32.2660,

µ̂ + τ̂F + δ̂F � 40.5660.

The BSMA effects from the above GAUSS program are

π̂AB � −2.5130, π̂BF � +9.0995,

π̂AC � +2.5345, π̂CD � +3.1945,

π̂AD � −4.6480, π̂CE � −5.3455,

π̂AE � +5.4920, π̂CF � −2.8630,

π̂AF � −0.8655, π̂DE � +7.8720,

π̂BC � +2.4795, π̂DF � +2.8345,

π̂BD � −9.2530, π̂EF � −8.2055.

π̂BE � +0.1870,

Note that the sum of the BSMA effects for a cultivar equals zero. The mean of
the cultivar means is 42.2210, which differs from the mean of the 45 reponses,
42.3344, since there are unequal ocurrences of the cultivars in the mixures, but
owing to the small cultivar effects, these means differ little. The cultivar effects
are obtained by subtracting 42.2210 from each of the cultivar means. An estimate
of µ + δ· is 42.2210. A variance of a difference between two cultivar means is[
(32(40.7737/3)

]
(0.9000 + 0.9000 − (−0.1000 − 0.1000)) � 244.6422, and a

standard error of a difference of 15.64. Variances of differences and standard errors
of a difference between BSMA effects vary with the effects and may be obtained
from the program output for var.
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16.5 Response Model Equations, Solutions, and
Analyses, Cultivar + BSMA + TSMA Effects

Response models for estimating cultivar, BSMA, and TSMA effects for n � 3 and
4 are

Yghij � µ + ρg + (γh + γi + γj )/3 + 2(πhi + πhj + πij )/3

+ ηhij + εghij , (16.9)

Yghijk � µ + ρg + (γh + γi + γj + λk)/4

+ (πhi + πhj + πhk + πij + πik + πjk)/2

+ 3(ηhij + ηhik + ηhik + ηijk)/4 + εghijk, (16.10)

where ηhij is the TSMA effect for cultivars h, i, and j and the other symbols are
as defined above. The coefficient 3/4 is used to place the TSMA effect on the same
basis as other effects since only 3/4 of the e.u. is available for any one of these
effects.

16.5.1 Example 16.4. Estimating Cultivar, BSMA, and TSMA
Effects

The data for illustrating the computations for obtaining solutions for cultivar
means and effects, BSMA effects, and TSMA effects are given in Table 16.9.
The responses are for biomass of cultivars in the mixture. The TD is all possible
combinations of the m � 6 cultivars in mixtures of n � 3, i.e., v � 20 mixtures.
A standard RCBD ANOVA for the r � 3 replicates and v � 20 mixtures is given
in the bottom part of Table 16.9. Using response equation (16.10) and a GAUSS
program (see Appendix 16.2), similar to the one in Example 16.3 with appropriate
changes in the X and Y matrices, the various means and solutions for effects are
obtained. The means ȳ·h·· are obtained as follows:

ȳ·A·· � (68.50 + 31.97 + 33.05 + 20.90 + 62.76 + 72.54 + 78.06

+ 30.03 + 24.46 + 42.26)/30 � 15.4843,

ȳ·B·· � 12.0713,

ȳ·C·· � 21.8907,

ȳ·D·· � 11.6963,

ȳ·E·· � 14.1233,

ȳ·F ·· � 12.8650.

The means ȳ·h··, ȳ·hi·, and ŷ·hij may be obtained by setting up a diagonal matrix of
the reciprocals of the number of mixtures in each of the means times the coefficient
in the X matrix; i.e., 0.1, 0.125, and 0.33333 are the elements of the diagonal matrix.
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TABLE 16.9. Biomass for v � 20 Mixtures of n � 3 Cultivars of m � 6 Cultivars to
Obtain Cultivar Means and Effects, BSMA Effects, and TSMA Effects with an ANOVA.

Replicate Replicate Replicate Mixture Mixture
Mixture 1 2 3 total mean
ABC 36.02 22.34 10.14 68.50 22.8333
ABD 8.37 10.58 13.02 31.97 10.6567
ABE 9.83 13.07 10.15 33.05 11.0167
ABF 6.20 6.31 8.39 20.90 6.9667
ACD 22.27 17.56 22.93 62.76 20.9200
ACE 18.90 32.93 20.71 72.54 24.1800
ACF 33.47 17.85 26.74 78.06 26.0200
ADE 11.28 8.32 10.43 30.03 10.0100
ADF 11.64 3.25 9.57 24.46 8.1533
AEF 12.77 12.41 17.08 42.26 14.0867
BCD 14.51 11.69 11.26 37.46 12.4867
BCE 26.78 28.92 25.24 80.94 26.9800
BDE 23.05 16.24 19.69 59.08 19.6933
BDF 4.19 9.49 2.11 15.79 5.2633
BDF 1.16 0.55 0.82 2.53 0.8433
BEF 2.37 6.05 3.50 11.92 3.9733
CDE 22.69 15.92 23.71 62.32 20.7733
CDF 15.89 35.98 20.02 71.89 23.9633
CEF 23.40 15.17 24.60 63.17 21.0567
DEF 6.38 2.17 3.13 11.68 3.8933
Total 311.17 286.90 283.24 881.31 14.6885

ANOVA
Source of variation d.f. SS MS
Total 60 18,011.9325
Correction for mean 1 12,945.1219
Replicate � R 2 23.0419
Mixture � M 19 4,003.3098 210.7005
R × M 38 1,040.4589 27.3805

Cultivar 5 3,597.5998 719.5200
BSMA 9 195.5267 21.7252
TSMA 5 210.1958 42.0392

Denote this matrix as DR. Then (X′Y/r)∗ DR produces these means where ȳ·hij

are the means in the last column of Table 16.9. The ȳ·hi· means are obtained as

ȳ·AB· � 12.8683, ȳ·BC· � 20.4983, ȳ·CE· � 23.2475,

ȳ·AC· � 23.4833, ȳ·BD· � 7.3125, ȳ·CF · � 22.6833,

ȳ·AD· � 12.4350, ȳ·BE· � 11.8083, ȳ·DE· � 9.9850,

ȳ·AE· � 14.8233, ȳ·BF · � 7.8692, ȳ·DF · � 9.2133,

ȳ·AF · � 13.8067, ȳ·CD· � 19.5358, ȳ·EF · � 10.7525.



16.5 More Equations, Solutions, and Analyses 165

The cultivar means obtained from the above program are

µ̂ + τ̂A + δ̂A � 18.6667,

µ̂ + τ̂B + δ̂B � 1.6027,

µ̂ + τ̂C + δ̂C � 50.6993,

µ̂ + τ̂D + δ̂D � −0.2723,

µ̂ + τ̂E + δ̂E � 11.8627,

µ̂ + τ̂F + δ̂F � 5.5710.

The solution for µ + δ· is the mean of the above 6 means, or 14.6885, or the mean
of the 60 responses in Table 16.9. These means are equal since this is a BIBD.
Following the procedure given by Federer and Raghavarao (1987), the cultivar
effects, for 3(m − 1)/(m − 3) � 5, are

τ̂A + δ̂A − δ̂· � 5(ȳ·A·· − ȳ···) � 5(15.4843 − 14.6885) � 3.9790,

τ̂B + δ̂B − δ̂· � 5(ȳ·B·· − ȳ···) � 5(12.0713 − 14.6885) � −13.0860,

τ̂C + δ̂C − δ̂· � 5(ȳ·C·· − ȳ···) � 5(21.8907 − 14.6885) � 36.0110,

τ̂D + δ̂D − δ̂· � 5(ȳ·D·· − ȳ···) � 5(11.6963 − 14.6885) � −14.9610,

τ̂E + δ̂E − δ̂· � 5(ȳ·E·· − ȳ···) � 5(14.1233 − 14.6885) � − 2.8260,

τ̂F + δ̂F − δ̂· � 5(ȳ·F ·· − ȳ···) � 5(12.8650 − 14.6885) � − 9.1175.

The solutions obtained by subtracting the mean of the cultivar means for A, B, C,
D, E, and F, respectively, are 18.6677 − 14.6885 � 3.9792, −13.0858, 36.0108,
−14.9608, −2.8258, and −9.1175. These values agree with the above solutions
within rounding errors. The solutions obtained from the GAUSS program for
BSMA effects are

π̂AB � +1.3695, π̂BC � +0.2358, π̂CE � +0.7882,

π̂AC � −3.5930, π̂BD � −1.0930, π̂CF � +3.8145,

π̂AD � +1.4758, π̂BE � +3.2932, π̂DE � −0.7705,

π̂AE � −0.4605, π̂BF � −3.8055, π̂DF � +1.6332,

π̂AF � +1.2083, π̂CD � −1.2455, π̂EF � −2.8505.



166 16. Mixtures When Responses Not Available

The solutions obtained for TSMA effects are (lowercase letters for subscripts
are used for clarity)

η̂abc � +0.5019, η̂ade � −0.2392, η̂bdf � +0.7197,

η̂abd � +2.8225, η̂adf � −2.7136, η̂bef � −0.1303,

η̂abe � −2.4958, η̂aef � +3.4547, η̂cde � +0.8286,

η̂abf � −0.8286, η̂bcd � −3.4547, η̂cdf � +2.4958,

η̂acd � +0.1303, η̂bce � +2.7136, η̂cef � −2.8225,

η̂ace � −0.7197, η̂bcf � +0.2392, η̂def � −0.5019,

η̂acf � +0.0875, η̂bde � −0.0875,

The sum of squares for mixtures is obtained from the GAUSS program as Y ′Y/r

minus the correction for mean. Let b equal the solution for the set of effects and X
be the design matrix. Then b′X′Y/r is equal to Y ′Y/r as this is standard regression
theory in that the regression coefficient times the sum of the cross products is the
sum of squares due to regression. The mixture sum of squares may be partitioned
as follows for this design. The sum of squares due to cultivar effects is the sum
of the products of cultivar effects and the sum of the mixture means in which the
cultivar occurred. It is equal to

3.9792(154.8433) − 13.0858(120.7133) + 36.0108(218.9067)

− 14.9608(116.9633) − 2.8258(141.2333) − 9.1175(128.6500) � 3, 597.5998.

The sum of squares for BSMA effects is obtained as the sum of the products of
2 times the sum of the mixture means in which the pair of cultivars hi occurred
times the BSMA effect. This sum of squares is

102.9467(1.3695) + 187.9067(−3.5930) + 99.4800(1.4758)

+ 118.5867(−0.4605) + 110.4533(1.2083) + 163.9867(0.2358)

+ 58.5000(−1.0930) + 94.4667(3.2932) + 62.9533(−3.8055)

+ 156.2867(−1.2455) + 185.9800(0.7882) + 181.4667(3.8145)

+ 79.8800(−0.7705) + 73.7067(1.6332) + 86.0200(−2.8505) � 195.5267.

The sum of squares for TSMA effects is computed as the sum of the products of
n times the mixture mean times the TSMA effect and is

68.5000(0.5019) + 31.9700(2.8225) + 33.0500(−2.4958)

+ 20.9000(−0.8286) + 62.7600(0.1303) + 72.5400(−0.7197)

+ 78.0600(0.0875) + 30.0300(−0.2392) + 24.4600(−2.7136)

+ 42.2600(3.4547) + 37.4600(−3.4547) + 80.9400(2.7136)
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+ 59.0800(0.2392) + 15.7900(−0.0875) + 2.5300(0.7197)

+ 11.9200(−0.1303) + 62.3200(0.8286) + 71.8900(2.4958)

+ 63.1700(−2.8225) + 11.6800(−0.5019) � 210.1958.

From the partitioning of the mixture sum of squares, it is seen that the major
part is attributable to the cultivar effects, BSMA effects appear to be nonexistent,
and there is small indication of TSMA effects as F � 1.54 (approximately at
the 0.2 level). The variance–covariance matrix may be obtained from the GAUSS
output denoted as var. Since the variance of the elements of the Y vector is n2σ̂ 2

ε /r ,
9(27.3805)/3 times var results in the variance–covariance matrix for the 6 + 15 +
20 = 41 effects.

Variances of differences between effects may be obtained from the GAUSS
output. The variance of a difference between two cultivar effects is

3(27.3805)(0.9000 + 0.9000 − (−0.1000 − 0.1000)) � 164.2830,

and a standard error of a difference of 12.82. The variance of a difference between
two BSMA effects, e.g., AB and AC, is

3(27.3805)(0.4500 + 0.4500 − (−0.1125 − 0.1125)) � 92.4092,

and a standard error of a difference of 9.61. The variance of a difference between
two TSMA effects, e.g., ABC and ABD, is

3(27.3805)(0.5278 + 0.5278 − (0.0463 + 0.0463)) � 79.1023,

and standard error of 8.89.

16.6 Response Model Equations, Solutions, and
Analyses, Cultivar+BSMA+ TSMA+QSMA
Effects

Response model equations for estimating cultivar, BSMA, TSMA, and QSMA
effects for n � 4 and 5 are

Yghijk � µ + ρg + (γh + γi + γj + γk)/4

+ (πhi + πhj + πhk + πij + πik + πjk)/2

+ 3(ηhij + ηhik + ηhjk + ηijk)/4 + ψhijk + εghijk, (16.11)

Yghijkl � µ + ρg + (γh + γi + γj + γk + γl)/5

+ 2(πhi + πhj + πhk + πhl + πij + πik + πil + πjk

+ πjl + πkl)/5 + 3(ηhij + ηhik + ηhil + ηhjk + ηhjl

+ ηhkl + ηijk + ηijl + ηikl + ηjkl)/5 + 4(ψhijk + ψhijl
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+ ψhikl + ψhjkl + ψijkl)/5 + φhijkl + εghijkl, (16.12)

where ψhijk is the QSMA effect for cultivars h, i, j, and k, φhijkl is a specific
mixing effect among the five cultivars h, i, j , k, and l, and the other symbols are as
defined previously. The coefficients 1/4, 1/2, and 3/4 and the coefficients 1/5, 2/5,
3/5, and 4/5 put the effects on the same basis as described previously for n � 4 and
n � 5 cultivars in a mixture, respectively. Extensions of the above response model
equations to n > 5 cultivars in a mixture is straightforward. When the number
of combinations is v � m!/n!(m − n)!, where ! denotes factorial, the results of
Federer and Raghavarao (1987) may be used to obtain solutions for the various
effects. The computer programs described previously may also be used for the
numerical analysis of data from these mixture experiments.

16.7 Response Models for Crop Competition

Competition studies among plant species and cultivars are commonplace in the
literature. Absence of competition between experimental units is important in
agronomic and plant breeding experiments in order to obtain unbiased estimates
of responses. Various statistical procedures have been advanced to summarize
results from competition experiments; for example, two co-authored papers on
such procedures are Jensen and Federer (1965) and Federer and Basford (1991).
In addition, four competition models for pairs of crops were proposed in Volume
I, Section 7.4. These models are generalized in the present section to include
additional cultivars. Treatment designs balanced for competition effects are given
in Section 8.2 of Volume I. Other TDs are possible. For example, consider the
following set of experimental units for m � 4 cultivars, where the center two
letters represent cultivar h � a, and a, b, c, and d are the bordering cultivars:

aaaa baab caac daad baac baad caad

aaaa baab caac daad baac baad caad

· · · · · · · · · · · · · · · · · · · · ·
aaaa baab caac daad baac baad caad

Cultivar a is bordered by itself, by b, by c, by d , by b and c, by b and d , and
by c and d. The center two columns are used to obtain the responses for cultivar
a. A treatment design would be to use an additional seven e.u.s for each of the
cultivars b, c, and d, or the above seven might suffice if interest centers solely on
cultivar a. Instead of placing a cultivar on each side of cultivar a, a mixture of
two (or more) cultivars could be used on each side of the specified cultivar. For
border cultivars b, c, d , and e, each side of cultivar a could be bordered by the
mixture bcde, by mixture bc on one side and mixture de on the other, or by b as
one border and mixture cde as the other. As is obvious, many TD arrangements
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are possible, which means that the experimenter needs to select the correct TD
meeting the goals of the experiment.

16.7.1 Model 1 for Crop Competition

The TD described above is a generalization of the design used by Jensen and
Federer (1965). Response models for sole crop h (cultivar bordered by itself) and
for h bordered by another cultivar is presented in Section 7.4 of Volume I. Given
that the experiment design is a randomized complete block (RCBD), response
models for a sole crop and crop h with a border of two cultivars are

Ygh � µ + ρg + τh + εgh,

Ygh(ij ) � µ + ρg + τh + δh + (γh(i) + γh(j ))/2 + πh(ij ) + εgh(ij ),

where the first equation represents the mean effect, the block effect, cultivar h sole
crop effect, and a random error; in the second equation, δh is the effect on cultivar
h by all the bordering mixtures, γh(i) is the border effect on cultivar h response by
cultivar i, πh(ij ) is the interaction border effect of the combination or mixture of
cultivars i and j on cultivar h response, and the epsilon terms represent random
error terms with variance σ 2

ε . Consider the case where a cultivar h is bordered
by two different cultivars i and j . Using the restriction that the sum of the block
effects, the sum of the border effects summed over h �� i � 1, 2, . . . , m is zero,
and the sum of the interaction border effects summed over h, i �� j � 1, 2, . . . , m

is zero, solutions for the various effects are

µ � ȳ·· �
r∑

g�1

m∑
h�1

Ygh

rm
,

τ̂h � ȳ·h − ȳ··,

δ̂h � ȳ·h(··) − ȳ·h,

γ̂h(i)/2 � m − 2

m − 3

(
ȳ·h(i·) − ȳ·h(··)

)
,

γ̂h(j )/2 � m − 2

m − 3

(
ȳ·h(·j ) − ȳgh(··)

)
,

π̂h(ij ) � ȳ·h(ij ) − m − 2

m − 3

(
ȳ·h(i·) + ȳ·h(·j )

)+ m − 1

m − 3
ȳ·h(··).

Variances for differences of the various effects are

Var(τ̂h − τ̂h′ ) � Var(ȳ·h − ȳ·h′ ) � 2σ 2
ε

r
, h �� h′,

Var(δ̂h − δ̂h′ ) � Var
(
ȳ·h(··) − ȳ·h′(··)

)
� 4σ 2

ε

r(m − 1)(m − 2)
, h �� h′,
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Var
(
γ̂h(i) − γ̂h(i ′)

) � 4

(
m − 2

m − 3

)2

Var
(
ȳ·h(i·) − ȳ·h(i ′ ·

)
� 2σ 2

ε

r(m − 3)
, i �� i ′,

Var
(
π̂h(ij ) − π̂h(ij ′)

) � Var
(
ȳ·h(ij ) − ȳ·h(ij ′),

− m − 2

m − 3

(
ȳ·h(·j ) − ȳ·h(·j ′)

)) � 2(m − 4)σ 2
ε

m − 3
,

j �� j ′.

The extension to more than two cultivars used as borders for cultivar h is straight-
forward. Since the algebraic expressions increase in complexity with the number
of cultivars used simultaneously as borders, packages like MAPLE or MATHE-
MATICA will be useful in obtaining algebraic expressions for effects and their
variances. The program given in Appendix 16.3 was used to obtain the above
results.

16.7.2 Model 2 for Crop Competition

Model 2 for competition in Volume I was for the competition treatment design

aaa bab cac dad

aba bbb cbc dbd

aca bcb ccc dcd

ada bdb cdc ddd

For this TD, a standard two-factor factorial response model was presented. Even
if the treament combinations

aab aac aad

abb cbb dbb

acc bcc dcc

add bdd cdd

were added to the previous set, the TD would not be a factorial arrangement for
three factors. Instead, these 28 combinations would be all possible combinations
of zero (cultivar bordered by itself), one, and two cultivars as borders. For square
experimental units, there could be zero, one, two, three, or four cultivars used as
borders. Hence, it appears that Model 2 usually is not extendable to TDs, which
could be considered as three-factor, four-factor, etc. factorial models for crops
and borders of crops. However, if number of borders was a factor, then number
of borders, crop as a border, and crop bordered by another crop with this crop
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responses as the variable of interest, then this would be a three-factor type of
experiment and could be treated as a factorial model. Another type of study would
be to repeat the above designs over time, say, years, using a latin cube arrangement
(see, e.g., Federer, 1967) to examine the effect of various borders in a rotation type
of experiment. One possibility for a competition study with more than two factors
is to consider three species with lines from each species in all combinations of
crops and borders of crops.

An example of a three-factor intercropping experiment could be for cultivars of
differing heights with rows oriented in an east-west direction. It could be that a
shading border causes (a border on the north side) a different border effect than
a border on the unshaded side (the south side). Or, it could be that rows oriented
in a north-south direction would exhibit a morning sun effect (east side) and an
afternoon sun effect (west side) as the border effect is exhibited. For such cultivars
and effects, a three-factor factorial response model from a RCBD is

Yghij � µ + ρg + αh + βi + γj + αβhi + αγhj

+ βγij + αβγhij + εghij ,

where µ is a common mean effect, ρg is the gth complete block effect, αh is the
effect of the hth cultivar being bordered, βi is the border effect of cultivar i as a
north border on crop h, γj is the border effect of cultivar j as a south border on
cultivar h response, αβhi is an interaction effect of cultivar h and border i, αγhj is an
interaction effect of cultivar h and border j , βγhi is an interaction effect of cultivars
i and j as borders of cultivar k, αβγhij is a three-factor interaction of cultivar k

bordered by cultivars i and j , and εghij is a random error term distributed with
mean zero and variance σ 2

ε . The treatment design for the above response model
for m cultivars would be a 3m factorial.

Another situation wherein the above factorial model would be appropriate is in
the study of cultivars grown in sequences, i.e., first, second, and third in a sequence.
There would be 3m possible combinations for m cultivars.

16.7.3 Model 3 for Crop Competition

Model 3 in Volume I made use of the ideas of Martin (1980) to partition the
factorial interaction terms into three component parts. Since factorial set-ups for
competition studies for more than crops and borders do not appear to be practical,
Model 3 is not generalized. A generalization for three factors, say, could be to
partition each of the three two-factor interactions in the manner described for
two factors and then determine if the three factor interaction can similarly be
partitioned.

If a 3m factorial design of the nature described for Model 2 is used, then extending
the ideas of Martin (1980), we note that each two-factor interaction may be written
as described for Model 3 in Volume I. This (from Volume I) is

αβhi � ηhi· + ωhi· + κhi·,
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αγhj � ηh·j + ωh·j + κh·j ,

βγij � η·ij + ω·ij + κ·ij ,

where ηhi· is ηαβ for h � i and −ηαβ/(m − 1) for h �� i,

ωhi· � ωih· and
∑
hor i

ωhi· � 0,

κhi· � −κih· and
∑
hor i

κhi· � 0,

and
∑

h αβhi � ∑i αβhi � 0. The other two-factor interactions are defined
similarly.

The three-factor interaction term may be partitioned for each h as

αβγhij � ηhij + ωhij + κhij ,

where the ηhij , ωhij , and κhij have the definitions given for two-factor interactions,
but for each level of h, the cultivar whose response is measured in the center row.

16.7.4 Model 4 for Crop Competition

For the three-factor factorial described for Models 2 and 3, Model 4 of Volume
I is easily extended to three factors by setting αβhh, αγii , and βγjj � 0 and
having the sum of the remaining interaction effects sum to zero. Then, within these
limitations, ω′ and κ ′ effects are defined for each of the two-factor interactions and
the three-factor interaction.

Model 4 for crop competition studies is similar to Model 3 and omits the com-
binations of crops bordered by themselves to compute the interaction terms, as
this can radically change the size of the interaction terms. For any generalizations
obtained for Model 3, these are easily extendable to Model 4.

16.8 Problems

16.1 A numerical example is constructed with known parameters with the TD
described for Example 16.1. The purpose of this example is to demonstrate
that the solutions for the parameters are the same as those used to construct
the example. This device is useful in checking algebraic results. A check on
sums of squares may also be made with such an example. For the example
with m � 6 cultivars in mixtures of size n � 3, let the parameter values be

µ � 10, γb � −3, ε2acf � −1,

ρ1 � −5, γc � 0, ε1abd � −1,

ρ2 � 5, γd � 0, ε1acf � 1,

γa � −3, γe � 3, ε2abd � 1,

γf � 3, all other εghij � 0.
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For this set of parameters, note that the cultivar effects, γh � τh+δh−δ·, sum
to zero and that the replicate by mixture sum of squares is 4 as there are 4±1s
to square and sum. The replicate sum of squares is (m � 6)((−5)2 + 52) �
300, and the mixture sum of squares is (r � 2)((−3)2 + (−3)2 +32 +32) �
72. Using the above parameter values, the responses Yghij for replicate one
are constructed as

Y1abd � 10 − 5 + (−3 − 3 + 0)/3 − 1 � 2,

Y1acf � 10 − 5 + (−3 + 0 + 3)/3 + 1 � 6,

Y1ade � 10 − 5 + (−3 + 0 + 3)/3 + 0 � 5,

Y1bce � 10 − 5 + (−3 + 0 + 3)/3 + 0 � 5,

Y1bef � 10 − 5 + (−3 + 3 + 3)/3 + 0 � 6,

Y1cdf � 10 − 5 + (0 + 0 + 3)/3 + 0 � 6.

Construction of the values for replicate 2 is left as an exercise for the
reader. Carry out the calculations for cultivar effects as described in Ex-
ample 16.1 and ascertain that the solutions are those used to construct the
example.

16.2 Given the following data sets for plant biomass:

Replicate Replicate Replicate
Mixture 1 2 3

ABE 36.02 22.34 10.14
ACD 6.20 6.31 8.39
ADF 12.27 12.41 17.08
BCD 14.51 17.56 11.26
CDE 22.69 15.92 23.71
DEF 6.38 2.17 3.13

and

Replicate Replicate Replicate
Mixture 1 2 3

ABE 9.83 13.07 10.15
ACD 22.27 17.56 22.93
ADF 11.64 3.25 9.57
BCF 23.05 16.34 19.69
BDE 4.19 9.49 2.11
CEF 23.40 15.17 24.60

Obtain solutions for values for each of the two data sets and compare their
values with those obtained from Example 16.1. Note that these are three
TDs constructed from the single data set discussed in this chapter. Do the
solutions agree within sampling errors? If they do not agree, what could
explain the differences?
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16.3 For the three TDs for m � 6,

ABD ABC ABE

ACF ABF ACD

ADE AEF ADF

BCE BCD BCF

BEF CDE BDE

CDF DEF CEF

conduct the analysis described in Example 16.1 using the barley grain
weight given in Table 12.2 and barley plant weight data given in Table
15.9.

16.4 In Example 16.2, biomass data for the seven cultivars were used. Use only
the biomass data for the six cultivars given in Table 16.5 and perform the
calculations described for Example 16.2.

16.5 Suppose that the treatment design of Example 16.2 was used and that the
mixture means were

y·abdg � 8, y·acfg � 8, y·adeg � 9, y·bceg � 8, y·befg � 9,

y·cdfg � 9, y·abcdefg � 52/7.

Obtain the solutions for cultivar means and forµ+δ· as described in Example
16.2.

16.6 For the barley weight data in Table 16.8, use the PBIBD treatment
designs in Problem 16.2 and add the barley weight for the mixture
with six cultivars and obtain the calculations decribed for Example
16.2.

16.7 Using the TD described in Example 16.3 and the barley grain weight from
Table 12.2, conduct the calculations described in Example 16.3. Do likewise
for biomass of the six cultivars and for all seven.

16.8 Barley plant weight was used in Example 16.4. Use the barley grain weight
data from Table 12.2 and perform the calculations described for Example
16.4.

16.9 Add the following data to that of Table 16.7 and perform the analysis
described for Example 16.4:

Replicate Replicate Replicate
Mixture 1 2 3

ABC 52.98 68.56 56.17
ABF 48.81 48.01 48.98
ADE 44.05 54.40 58.32
BCD 62.18 59.87 47.95
CEF 70.08 58.54 66.83
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Federer and Raghavarao (1987) considered the class of BIBDs which was con-
structed by taking all possible combinations of m items taken n at a time, or the
number of combinations was v � m!/n!(m−n)!. For each n, they considered that
main effects and all interactions up to an n-factor, or (n − 1)th-order, interaction
were to be estimated. They did not consider the class of minimal TDs for esti-
mating cultivar (main) effects and all interactions up to a k-factor interaction or
mixing effect for k < n. The type of balance required in order to obtain relatively
simple analytic results in terms of means or n > k is that pairwise balance, λ2,
is required for cultivar effects; λ2 plus triplet balance, λ3, is required for cultivar
plus BSMA effects; λ2 plus λ3 plus quartet balance, λ4, is required for cultivar
plus BSMA plus TSMA effects; etc. For n � k, one higher balance requirement
may be omitted. Experiment design theory for t designs (Bush et al., 1984) may
be used to construct minimal balanced designs up to the order of balance required.
The results given below are for the above type of balanced TDs. The restrictions
on the solutions used are that the sum of the cultivar effects is zero, the sum of
BSMA effects for cultivar h is zero, the sum of the TSMA effects for any pair hi

is zero, etc. A computational procedure for using these restrictions for BSMA and
TSMA effects is given in Appendix 16.2.

When the TD is not of the balance described above, analytic solutions are more
complicated. The numerical results may be obtained using software packages such
as GAUSS. This was demonstrated in Examples 16.3 and 16.4. If analytic solutions
are desired, it is suggested that use be made of such packages as MAPLE and
MATHEMATICA, as was done in Chapter 15. The tedious algebraic manipulations
are thus alleviated.

n � 2: TD � BIBD with v � m(m − 1)/2 and λ � 1, Cultivar +
BSMA Effects

The solution for cultivar and BSMA effects when the TD is a balanced incomplete
block design with m cultivars in all combinations of two results in v � m(m−1)/2
mixtures. For this TD, λ � 1 and each cultivar occurs in s � m − 1 mixtures.
Using the usual restrictions that the sum of the effects is zero and response equation
(16.6), the equations for the mean are

ȳ·hi � µ + (γh + γi)/2 + πhi +
r∑

g�1

εghi/r,

ȳ·h· � µ + (m − 2) γh/2(m − 1) +
r∑

g�1

m∑
α,hεSα

εghi/r(m − 1),

ȳ··i � µ + (m − 2) γi/2(m − 1) +
r∑

g�1

m∑
α,iεSα

εghi/r(m − 1),
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ȳ··· � µ + 2
r∑

g�1

m∑
α,h,iεSα

εghi/rm(m − 1).

Note that µ above is equal to µ + δ in the preceding text and that the cultivar
effect γh is equal to τh + δh − δ· in the preceding text. Also, we use the effect over
n, the mixture size, whereas Federer and Raghavarao (1987) do not. The solutions
obtained from the above are

γ̂h � 2(m − 1)(ȳ·h· − ȳ···)
(m − 2)

and

π̂hi � ȳ·hi + m

m − 2
ȳ··· − m − 1

m − 2
(ȳ·h· + ȳ·i·).

The variance of a difference between two cultivar means or effects h and h′ is

Var(γ̂h − γ̂h′ ) � Var

(
2(m − 1)

m − 2
(ȳ·h· − ȳ·i·

)

� 4(m − 1)2

(m − 2)2
σ 2

ε

2(m − 2)

r2(m − 1)2
� 8

r(m − 2)
σ 2

ε .

The variance of a difference between two BSMA effects hi and hi ′ is

Var(π̂hi − π̂hi ′) � Var

(
ȳ·hi − ȳhi ′ − m − 1

m − 2
(ȳ·i· − ȳ·i ′ ·)

)
� 2(m − 3)σ 2

ε

r(m − 2)
.

n � 3: TD = BIBD with v � m(m − 1)/2 Mixtures, Cultivar +
BSMA Effects

For mixtures of size n � 3 and a BIBD TD, the number of mixtures v is equal
to m(m − 1)/2 mixtures, s � 3(m − 1)/2 (m odd) occurrences of a cultivar in
mixtures, and λ � 3 occurrences of pairs of cultivars in mixtures. The various
means in terms of the parameters in response equation (16.7) are

ȳ·hij � µ + (γh + γi + γj )

3
+ 2(πhi + πhi + πhi)

3
+

r∑
g�1

εghij

r
,

ȳ·hi· � µ + m − 3

3(m − 2)
(γh + γi) + 2(m − 4)

3(m − 2)
πhi +

r∑
g�1

∑
α,hiεSα

εghij

(m − 2)
,

ȳ·h·j � µ + m − 3

3(m − 2)
(γh + γj ) + 2(m − 4)

3(m − 2)
πhj +

r∑
g�1

∑
α,hjεSα

εghij

(m − 2)
,

ȳ··ij � µ + m − 3

3(m − 2)
(γi + γj ) + 2(m − 4)

3(m − 2)
πij +

r∑
g�1

∑
α,ijεSα

εghij

(m − 2)
,
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ȳ·h·· � µ + m − 3

3(m − 1)
γh + 2

r∑
g�1

∑
α,hεSα

εghij

(m − 1)(m − 2)
,

ȳ··i· � µ + m − 3

3(m − 1)
γi + 2

r∑
g�1

∑
α,iεSα

εghij

(m − 1)(m − 2)
,

ȳ···j � µ + m − 3

3(m − 1)
γj + 2

r∑
g�1,jεSα

εghij

(m − 1)(m − 2)
,

ȳ···· � µ + 6
r∑

g�1

∑ ∑
h<i<j

∑ εghij

m(m − 1)(m − 2)
.

Solutions for γ̂h and π̂hi are

γ̂h � 3(m − 1)

(m − 3)
(ȳ·h·· − ȳ····)

and

π̂hi � 3(m − 2)

2(m − 4)
ȳ·hi· − 3(m − 1)

2(m − 4
(ȳ·h·· + ȳ··i·) + 3m

2(m − 4)
ȳ····.

n � 3: TD = BIBD, GMA + BSMA + TSMA,
v � m(m − 1)(m − 2)/6

Using response equations (16.9) and the above restrictions, the equations for the
various means are

ȳ·hij � µ + (γh + γi + γj )

3
+ 2(πhi + πhj + πij )

3
+ ηhij +

r∑
g�1

εghij

r
,

ȳ·hi· � µ + (m − 3)(γh + γi)

3(m − 2)
+ 2(m − 4) πhi

3(m − 2)
+

r∑
g�1

m∑
α;h,iεSα

εghi

r(m − 2)
,

ȳ·h·j � µ + (m − 3)(γh + γi)

3(m − 2)
+ 2(m − 4) πhj

3(m − 2)
+

r∑
g�1

m∑
α;h,jεSα

εghi

r(m − 2)
,

ȳ··ij � µ + (m − 3)(γh + γi)

3(m − 2)
+ 2(m − 4) πij

3(m − 2)
+

r∑
g�1

m∑
α;i,jεSα

εghi

r(m − 2)
,

ȳ·h·· � µ + (m − 3)γh

3(m − 1)
+ 2

r∑
g�1

m∑
α;hεSα

εghij

r(m − 1)(m − 2)
,

ȳ··i· � µ + (m − 3)γi

3(m − 1)
+ 2

r∑
g�1

m∑
α;iεSα

epsilonghi

r(m − 1)(m − 2)
,
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ȳ···j � µ + (m − 3)γh

3(m − 1)
+ 2

r∑
g�1

m∑
α;jεSα

εghi

r(m − 1)(m − 2)
,

ȳ···· � µ + 6
r∑

g�1

m∑
α;h,i,jεSα

εghi

rm(m − 1)(m − 2)
.

Solutions for the cultivar, BSMA, and TSMA effects are those given by Federer
and Raghavarao (1987) with the definition of effects as described in the preceding
text. A solution for a cultivar effect is

γ̂h � 3(m − 1)(ȳ·h·· − ȳ····/(m − 3).

A solution for a BSMA effect is

π̂hi � 3(m − 2)

2(m − 4)

{
ȳ·hi· − (m − 1)

(m − 2)
(ȳ·h·· + ȳ··i·) + m

(m − 2)
ȳ····

}
.
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A GAUSS program for obtaining results for Example 16.4 is presented below.
Comments or annotations to the program appear in parentheses. Note that what
is written inside the parenthesis will appear on the output. This makes it easy to
discern the output entries. “This is a program for Example 16.4”; “Y is a vector
of n times the mixture mean. For this case, these are the mixture totals.”; Let
Y[20,1] = 68.50 31.97 33.05 20.90 62.76 72.54 78.06 30.03 24.46 42.26 37.46
89.94 59.08 15.79 2.53 11.92 62.32 71.89 63.17 11.68; “The design matrix X will
be X1 concatenated with X2 as this is easier.”;
Let X1[20,21] =
1 1 1 0 0 0 2 2 0 0 0 2 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 2 0 2 0 0 0 2 0 0 0 0 0 0 0 0
1 1 0 0 1 0 2 0 0 2 0 0 0 2 0 0 0 0 0 0 0
1 1 0 0 0 1 2 0 0 0 2 0 0 0 2 0 0 0 0 0 0
1 0 1 1 0 0 0 2 2 0 0 0 0 0 0 2 0 0 0 0 0
1 0 1 0 1 0 0 2 0 2 0 0 0 0 0 0 2 0 0 0 0
1 0 1 0 0 1 0 2 0 0 2 0 0 0 0 0 0 2 0 0 0
1 0 0 1 1 0 0 0 2 2 0 0 0 0 0 0 0 0 2 0 0
1 0 0 1 0 1 0 0 2 0 2 0 0 0 0 0 0 0 0 2 0
1 0 0 0 1 1 0 0 0 2 2 0 0 0 0 0 0 0 0 0 2
0 1 1 1 0 0 0 0 0 0 0 2 2 0 0 2 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0 2 0 2 0 0 2 0 0 0 0
0 1 1 0 0 1 0 0 0 0 0 2 0 0 2 0 0 2 0 0 0
0 1 0 1 1 0 0 0 0 0 0 0 2 2 0 0 0 0 2 0 0
0 1 0 1 0 1 0 0 0 0 0 0 2 0 2 0 0 0 0 2 0
0 1 0 0 1 1 0 0 0 0 0 0 0 2 2 0 0 0 0 0 2
0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 2 2 0 2 0 0
0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0
0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 2 2 0 0 2
0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2; X2=eye(20); X=X1∼(3*X2);
let R[41,1]=.1.1.1.1.1.1 .125.125.125.125.125.125.125.125.125.125.125.125
.125.125.125 .33333.33333.33333.33333.33333.33333.33333.33333.33333
.33333.33333.33333.33333.33333.33333.33333.33333.33333.33333.33333;
Z=zeros(41,41);format 2,6;
“The various means are:”;X’*(Y/3)’*DIAGRV(Z,R);
“J1 is the restriction on the BSMA effects to sum to zero.”; Let J1[16,15]=
1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 1 1 1 0 0 0
0 0 1 0 0 0 1 0 0 1 0 0 1 1 0
0 0 0 1 0 0 0 1 0 0 1 0 1 0 1
0 0 0 0 1 0 0 0 1 0 0 1 0 1 1;
“J2 in the restriction on the TSMA effects to sum to zero.”; Let J2[15,20]=
1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1;
J=zeros(41,6)∼(J1∼zeros(6,20))||(zeros(35,15)∼(J2:zeros(20,20)));
var=inv(X’*X - J);
“b is the vector of solutions for cultivar means, BSMA effects, and TSMA
effects.”;
b=var*X’*Y/r; b’;
“Sum of means”;X’*Y/r;
S=ones(1,20);
“Since Y is a vector of mixture totals, the grand total is”;
S*Y;
“Mixture sum of squares is”;
trss=Y’*Y/r – (S*Y)*S*Y/60; trss;
b’*X’*Y/r;
Y’*Y/r;
“Cultivar sum of squares for C1 a vector of sums of means and C2 of cultivar
effects”;
Let C1[6,1]=154.8433 120.7133 218.9067 116.9633 141.2333 128.6500;
Let C2[6,1]=3.9792 - 13.0858 - 13.0858 36.0108 - 14.9608 - 2.8258 - 9.1175;
C1’*C2;
“BSMA sum of squares”;
Let B1[15,1] = 102.9467 187.9067 99.4800 118.5867 110.4533 163.9867 58.5000
94.4667 62.9533 156.2867 185.9800 181.4667 79.8800 73.7067 86.0200;
Let B2[15,1] = 1.3695 -3.5930 1.4758 -0.4605 1.2083 -1.0930 3.2932
-3.8055 -1.2455 0.7882 3.8145 -0.7705 1.6332 -2.8505;
B1’*B2;
“TSMA sum of squares”;
Let T1[20,1] = 0.5019 2.8225 -2.4958 -0.8286 0.1303 -0.7197 0.0875 -0.2392
-2.7136 3.4547 -3.4547 2.7136 0.2392 -0.0875 0.7197 -0.1303 0.8286 2.4958 -
2.8225 -0.5019;
Y’*T1;
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The following is a MAPLE program to aid in the solution of the effects in Section
16.7.1:

eqs1:={u=y1,u+(m-3)*g12/(2*(m-2))=y12,u+
(m-3)*g13/(2*(m-2))=y13,u+(g12+g13)
/2+p=y123};a1:=solve(eqs1,{u,g12,g13,p});h1:=
collect(a1,{y1,y12,y13,y123},factor );

The following is a MATHEMATICA program used for obtaining the variances
for the effects given in Section 16.7.1, where m was set equal to 5, 6, and 7:

m=5;
s1=2*(Sum[e[1,i,j],{i,2,m-1},{j,i+1,m}])/((m-1)*(m-2))
s2=2*(Sum[e[1,2,j],{j,3,m}]+Sum[e[2,i,j],
{i,3,m-1},{j,i+1,m}])/((m-1)*(m-2))
s3=2*(e[1,2,3]+Sum[e[1,3,j],{j,4,m}]+Sum[e[2,3,j],{j,4,m}]+
Sum[e[3,i,j],{i,4,m-1},{j,i+1,m}])/((m-1)*(m-2)
s12=Sum[e[1,2,j],{j,3,m}]/(m-2))
s13=(e[1,2,3]+Sum[e[1,3,j],{j,4,m}])/(m-2)
s14=(Sum[e[1,i,4],{i,2,3}]+Sum[e[1,4,j],{j,5,m}])/(m-2)
res={e[h ,i ,j ] e[h ,i ,j ]->ER,e[h ,i ,j ] e[d ,f ,g ]->0};
x1=Simplify[s1-s2]
Expand[x1∧2]/.res
x2=Simplify[((m-2)*(s12-s12))/(m-3)]
Expand[x2∧2]/.res
x3=Simplify[e[1,2,3]-e[1,2,4]-(m-2)*(s13-s14)/(m-3)]
Expand[x3∧2]/.res

To suppress output for a given statement, add a semicolon for MATHEMATICA
and delete the semicolon for MAPLE.



chapter 17

Spatial and Density Arrangements

17.1 Introduction

Spatial arrangement, density level, intimacy, and orientation of two crops in a
mixture were discussed in Volume I. These aspects of forming an experimental unit
(e.u.) to study the effects of these four factors is the subject of this chapter when the
polyculture consists of n cultivars. The type and nature of the e.u. has many more
ramifications than if only two cultivars make up the intercrop combination. The
concepts and ideas used for mixtures of two cultivars are utilized and expanded for
mixtures of n cultivars. The number of variations and complexity of arrangements
increases with the number of cultivars in the mixture. In the next section, density
per hectare is held constant while spatial arrangement and intimacy is varied. For
n � 3, cultivars in a mixture 18 arrangements, 1 to 18, out of many are discussed.
For n � 4, cultivars in a mixture, 6 arrangements, 19 to 24, are presented.

In Section 17.3, variation in density levels of each cultivar in the mixture is
included along with spatial arrangement, intimacy, and orientation. First, a fac-
torial arrangement for di density levels for each of the n cultivars is considered.
Then, fractional replicates of the factorial are discussed. For n and/or di large, the
number of combinations becomes large and unrealistic from a practical standpoint
for many situations. A class of plans which are parsimonious with respect to ex-
perimental area, number of e.u.s, and material are discussed. These parsimonious
arrangements or plans for an e.u. cover a wide range of spatial arrangements, den-
sities, and intimacies of the cultivars in the mixture. Plans are also included which
allow measurements of orientation effects as well. Statistical analyses for the vari-
ous designs are presented in Section 17.4. These are a straightforward extension of
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those in Volume I. Some comments and discussion are presented in Section 17.5.
A set of problems for the reader’s understanding of the ideas and concepts of this
chapter is presented in Section 17.6.

The emphasis on modeling yield–density relationships as discussed in Chapter
14 is not the focus of this chapter. Rather the emphasis is on constructing plans,
arrangements, or designs to use in experimentation which then may be used to con-
struct models for yield–density and other relationsips. However, the arrangements
described can be of considerable value in determining the nature and form of den-
sity, spatial arrangement, intimacy, and orientation relationships with a response
such as yield, crop value, total dry matter, caloric content, etc.

Several considerations are involved in the selection of density levels and row
spacings for each of the n cultivars in a mixture. The number of levels and the
range of levels of a factor for a cultivar are important. The range of density levels,
say, should include levels lower and higher than would be useful in practice. This is
because the endpoints of a regression function have considerable influence on the
form and accuracy of a yield–density relation. A yield–density relation necessarily
goes through the origin and, hence, if it is known that the relationship is linear, then
an optimal design is to take all observations at the highest density possible. Since
yield–density relations are expected to be unknown and nonlinear, it is necessary
to have several levels of density. The points of inflexion for the nonlinear relation
are unknown and, hence, the best procedure is to take several equally spaced
values of density. Mead and Riley (1981) suggest using four points but that should
depend on how much knowledge the experimenter has on yield–density relations
in polyculture. Usually, there is no knowledge and therefore it is suggested that at
least double their number be used as linear segments and plateaus as well as points
of inflexion are useful and necessary information about the relationship. Using
the plans suggested, it is easy to obtain many levels of a factor and still remain
experimentally practical.

Haizel (1974) states that there are three methods for combining plant populations
of the n cultivars in a mixture. The additive method involves using the sole crop
populations for each of the n cultivars. In the substitutive method, the total plant
population of an area planted to the mixture is the same as the same area planted
to sole crops. The third method, replacement series (see Chapter 18), requires that
a certain number of plants of one cultivar is equivalent to replacing one plant by
another one. Criticisms (Kass, 1978) have been raised about all three methods, in
that none of them will arrive at the optimum population levels for a mixture of
n cultivars. Levels obtained by each of the three methods most likely should be
included in the levels selected for a study of yield–density relationships for the n

cultivars in the mixture.
With respect to spatial arrangement, an experimenter oftens selects the arrange-

ment which is experimentally easiest to handle. This may be a mistake, in that the
experimental conditions may not apply to what is done in practice. For example,
the experimenter may grow the n cultivars in adjacent rows, whereas the agricul-
turist grows them all mixed together. The experimenter may grow beans and maize
in separate rows, whereas the farmer grows them in the same row. Not only the
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mixtures used but their spatial arrangements as used by the farmer must be taken
into consideration in setting up polyculture experiments (Kass, 1978).

17.2 Spatial Arrangements—Density per Hectare
Constant

Spatial and density arrangements for n cultivars in a mixture can take on many
and varied forms. Several types of arrangements for mixtures of two cultivars are
described in Volume I. With three or more cultivars in a mixture, many different
and varied forms of arrangements are possible. For mixtures of three cultivars and
with density per hectare kept constant, a number of possible spatial arrangements
are described below. Note that the density within a row may vary, but the density per
unit area is kept constant for the following 24 arrangements. Suppose, for example,
that the three crops are cassava, C, maize, M, and bean, B. Let the cassava rows
be 1 m apart for the following spatial arrangements:

Arrangement 1

C B M B C B M B C B M

The maize and cassava rows are 1 m apart and there is a 0.5-m distance between
each crop row.

Arrangement 2

C M B M C M B M C M B

The maize rows are 0.5 m apart and the cassava and bean rows are 1 m apart.

Arrangement 3

B M M B C B M M B C B M M

The distance between the bean and cassava rows is 0.125 m, the distance between
the bean row and a maize row is 0.25 m, and the distance between the pair of maize
rows between two cassava rows is 0.25 m.

Arrangement 4

CB M CB M CB M

CB means that cassava and bean are planted together in the same row. The distance
between CB rows is 1 m, as is the distance between maize rows. The M and CB
rows are 0.5 m apart.

Arrangement 5

C MB C MB C MB

MB means that maize and bean are planted together in the same row. The distance
between MB rows is 1 m, as is the distance between cassava rows. The C and MB
rows are 0.5 m apart.
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Arrangement 6

CB MB CB MB CB MB

The distance between the CB rows is 1 m and the distance between MB rows is 1
m. The CB and MB rows are 0.5 m apart.

In the following arrangements 7–18, the cassava rows are 2 m apart, but the
density in a row is twice that for arrangements 1–6.

Arrangement 7

C B M B M B C B M B M B C

The distance between maize rows is 1 m. The distance between C and B rows is
0.5 m. The distance from B to M and from M to B is 0.25 m, while, for B located
in the middle of the two maize rows, the distance is 0.5 m from each maize row.

Arrangement 8

C B M B B B M B C B M

The rows are all 0.25 m apart.

Arrangement 9

C B B M M B B C B B

Except for the two maize rows which are 0.5 m apart, the remaining rows are 0.25
m apart.

Arrangement 10

C B M B M B M B C B M

Here, the rows are all 0.25 m apart with a distance of 0.5 m between M rows and
between B rows.

Arrangement 11

C B B M B B C B B M

The distance from C to B and B to B is 0.25 m. The distance from B to M is 0.5
m and the distance between two maize and two cassava rows is 2 m.

Arrangement 12

C MB C MB C MB

All rows are 1 m apart.

Arrangement 13

CB M CB M CB M

All rows are 1 m apart.
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Arrangement 14

CB MB CB MB CB MB

All rows are 1 m apart.

Arrangement 15

CB MB MB CB MB MB C

Here, the distance between CB and MB is 0.75 m and between the two MBs is 0.5
m.

Arrangement 16

C B C B M B M B C B C

All rows are 0.5 m apart, leaving the pair of C rows and the pair of M rows each
1 m apart, but with 2 m between pairs.

Arrangement 17

CB CB MB MB CB CB

All rows are 1 m apart with the pairs of rows 2 m apart.

Arrangement 18

CB CB CB CB MB MB CB CB CB CB CB MB

Here, the ratio of CB rows to MB rows is 4:2 and the rows are 1 m apart.
An arrangement like 18 has been found useful for growing cowpea, C, in Nigeria.

Interspersing rows of cowpea with rows of soybean is effective in controlling insect
damage on cowpea. For a maize, soybean (S), and cowpea mixture, an arrangement
of the following nature is useful:

Arrangement 19

SM SM C C C C C C C SM SM C

where SM means soybean and maize planted in the same row with 0.5 (or 1) m
between the SM rows and the other rows are 0.5 m apart.

Similar arrangements may be constructed for four cultivars in the mixture. Sup-
pose the four crops are cassava (C), bean (B), maize (M), and melon (E). Some
arrangements are given below.

Arrangement 20

CE CE B M M B CE CE B

The distance between CE and CE is 1 m, as is the distance between M and M. B
is 0.5 m from CE and from M. C and E are planted in the same row. M and B may
involve two crops per year.

Arrangement 21

C E C E M B M E C E C E
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All rows are equally spaced at 0.5 m intervals.

Arrangement 22

C E C E MB B MB E C E C E

All rows are equally spaced at 0.5 m intervals. M and B are planted in the same
row.

Arrangement 23

C B B C E M E M E C B B C

The C rows are 1 m apart, the B rows are 0.25 m apart, M and E are 0.5 m apart,
and C and B are 0.375 m apart.

Arrangement 24

CE CE MB MB CE CE

All rows are 1 m apart, with C and E being planted in the same row and the same
for M and B.

Note that the mixture need not be planted in rows, but zero or more crops may be
in rows and the other crops broadcast over the area. Such is the case with orchards,
where the trees are in rows and the mixture of crops under the trees is drilled in
or broadcast over the area. Pasture mixtures are not planted in rows. Obtaining
individual cultivar yields in a broadcast hay crop is tedious and labor-intensive, as
hand separation of the cultivars is necessary. Planting in rows may make it easy
to obtain yields from each crop in the mixture. However, this may not be what is
done in practice.

Several competition designs of a balanced nature are discussed in Federer and
Basford (1991) and in Volume I. Cultivars may occur as individual plants or as
groups of plants such as hills of three or more maize plants in each hill. These
designs are constructed to equalize occurrences of cultivars adjacent to each other.
The designs may be constructed for any size of mixture and are useful in study-
ing various association, competition, and mixing ability properties of mixtures.
The reader is referred to Volume I for a discussion of the designs and their
analyses.

In constructing and using any design or arrangement, it is necessary to consider
the following:

(i) the spatial arrangement for each crop in the mixture,
(ii) the intimacy of pairs of crops in the mixture

(iii) density of each crop in the mixture, and perhaps
(iv) orientation with respect to the Sun.

These concepts are discussed by Mead and Riley (1981) and in Volume I for
mixtures of two cultivars. The ideas are directly extendable to mixtures of three
or more cultivars. Intimacy refers to closeness of crops in the experimental unit.
Crops that are planted in the same row are 100% intimate, and those planted in
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rows far enough apart to not affect each other have zero intimacy. In arrangement
24, for example, C and E and M and B have 100% intimacy and those planted in
rows far enough apart to not affect each other have zero intimacy. In arrangement
24, for example, C and E and M and B have 100% intimacy, whereas there is
less intimacy between C and M, C and B, and M and E. In arrangement 19,
S and M are 100% intimate, whereas the center rows of C have zero intimacy
with S and M. The spatial arrangement of a crop varies throughout the above 24
arrangements. The density within rows was varied to maintain a constant density
per hectare in the above 24 arrangements. With respect to orientation, which is
the placement of rows with respect to the Sun, light-sensitive crops in a mixture
may perform better if the rows are in a north-south direction. Such orientation
may allow more sunlight to the leaves, especially if tall crops are mixed with
short crops. Shade requiring crops may perform better for rows in an east-west
direction. Disease incidence may be affected by row orientation in that north-south
rows may have less humidity and more light, which may be detrimental to disease
buildup.

17.3 Spatial Arrangements—Density Variable

In this section, crop arrangements with variable densities per hectare are con-
sidered. Selection of the range of densities for each crop requires considerable
thought, as does the determination of which crop has varying densities. The den-
sity of one or more of the crops may be held constant while varying the densities
of the remaining crops in the mixture. A treatment design that usually would be
considered first is to determine density levels dij for j � 1, . . . , di , for each crop i,
and then use a factorial arrangement of N � �n

i�1di density–crop combinations.
For example, suppose that four density levels of cassava, three density levels of
bean, and five density levels of maize were under consideration. The number of
combinations is 4 × 3 × 5 � 60. As is obvious, the number of combinations in a
complete factorial becomes large quickly as n and di increase. Furthermore, yield–
density relationships are ill-determined with small numbers of density levels, and
increasing their number would greatly increase the number of combinations in the
treatment design.

In place of using a complete factorial, a fractional replicate of a complete facto-
rial could be considered. Saturated fractions are the most parsimonious and may
be obtained for any resolution required. They are, however, not always variance-
optimal, as a variance-optimal fraction usually needs to be constructed as plans
are available for only a few situations. A saturated fraction, as many effect degrees
of freedom as observations, is easily constructed using the one-at-a-time method
described by Anderson and Federer (1975). For the above example and for a Res-
olution V fraction (all main effects and all two-factor interactions are estimable
if all higher-order interactions do not exist), the treatment design for the order of
crops as cassava, bean, and maize is
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1 1 1 2 2 1 3 1 2 1 2 4
2 1 1 2 3 1 3 1 3 1 2 5
3 1 1 3 2 1 3 1 4 1 3 2
4 1 1 3 3 1 3 1 5 1 3 3
1 2 1 4 2 1 4 1 2 1 3 4
1 3 1 4 3 1 4 1 3 1 3 5
1 1 2 2 1 2 4 1 4
1 1 3 2 1 3 4 1 5
1 1 4 2 1 4 1 2 2
1 1 5 2 1 5 1 2 3

These 36 combinations of density levels of the 3 crops allow estimation of all
main effects and all two-factor interactions. The three-factor interaction is assumed
nonexistent. There are 3 + 2 + 4 = 9 degrees of freedom for main effects and 6 +
12 + 8 = 26 degrees of freedom for the 3 two-factor interactions. Thus, 9 + 26 =
35 plus one degree of freedom for the overall mean equals 36. As Anderson and
Federer (1975) demonstrate, a one-at-a-time plan is least optimal for main effect
plans or Resolution III plans. The variance optimality improves as the resolution of
the fraction increases. The above fraction would cut the number of combinations
from 60 to 36, i.e., approximately one-half but still relatively large.

If only main effects of say the four factors orientation, intimacy, spacing, and
density, e.g., were of interest and if three levels, 0, 1, and 2, of each factor were being
considered, the following nine factorial combinations forms an optimal saturated
main effect, Resolution III, plan:

0000 0111 0222 1021 1102 1210 2012 2120 2201

For 5 factors at 4 levels, 0, 1, 2, and 3, of each factor, the following 16 factorial
combinations form an optimal saturated main effect, Resolution III, design:

00000 01111 02222 03333 10132 11023 12310 13201
20213 21302 22031 23120 30321 31230 32103 33012

A much more parsimonious approach for studying density levels and spatial
arrangements as they affect yield is available. Expanding upon the ideas of Nelder
(1962), Federer and Scully (1992), and those in Volume I, many parsimonious plans
or arrangements may be constructed. Within a single e.u., it is possible to include
many density levels and various diverse spatial arrangements. Parsimony of exper-
imental area and plant material is achieved at the expense of additional labor per
e.u. Nelder’s (1962) fan designs were called systematic plans in that the variation
in density levels and/or spatial arrangements was systematic within an e.u. His de-
signs were constructed for sole crop studies. The parsimonious experiment designs
(PED) of Federer and Scully (1992) are of the same nature as Nelder’s. Their idea
was that PEDs would limit the number of sites for varietal trials by including as
many sources of site-to-site variation as possible at a single site. Identifying site-to-
site variation and including these in an experiment at a single site allows the exper-
imenter to identify specific interaction components in a variety by site (genotype
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by environment) interaction. They identified such site-to-site sources of variation
as biological time of planting, fertilizer level, density levels, disease levels, insect
levels, water levels, etc. as candidates for study at a single site. Some sources of
variation which usually cannot be included are temperature level, humidity level,
length of growing season, and elevation. For sources of variation which can be
studied at a single site, the performance of a cultivar with respect to the sources of
variation included may be assessed. Without defining what is meant by site-to-site
variation, a variety by site interaction is not interpretable and is meaningless for
prediction of a variety’s performance with respect to specific sources of variation.

A parsimonious plan for varying density levels and spatial arrangements for a
mixture of three cultivars C, cassava, M, maize, and bean, B, is given in Figure 17.1.
The distance between plants within a row of a cultivar is constant. The decrease
in density per hectare is accompanied by an increase in distance between rows
of the cultivars; i.e., their effects are completely confounded. By plotting plant
yields against distance between rows or density per hectare, an estimate of the
density–spacing combination resulting in highest yields may be obtained. Or, the
distance beween plants within a row may be changed in such a manner as to keep
the density per hectare a constant throughout the e.u. (see Section 8.3, Volume
I). Also, another row of C parallel to the middle row C could be added and the
plant distance be kept constant in the left part of the e.u. and varied in the right
half in such a manner as to keep density per hectare constant. This would allow
separation of density and spatial effects. Such arrangements allow yield–density
and yield–spatial relationships to be evaluated and to select the density and spatial
arrangement to maximize yield. The plan could be expanded to equalize the number
of rows of C and M to have 2C:2M:4B rows in both parts of the e.u. An e.u. of
the nature of the one in Figure 17.1 could be included in an experiment design,
say a RCBD, where the treatments could be different lines of a cultivar, different
fertilizer levels, different moisture levels, a subset of or all 24 arrangements of
cultivars described above, etc. The optimal density–spacing combination for each
treatment could be determined as the average over all replicates. The variation of
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FIGURE 17.1. Rectangular experimental unit for varying spatial arrangements and density
per hectare for three crops: cassava (C), bean (B), and maize (M). Distance between plants
in a row is constant.
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this response from e.u. to e.u. could also be obtained. It may be necessary to set
up experimnts at a number of sites in order to obtain the optimal density–spacing
combination recommendation for a region.

For certain situations where row distances are predetermined, only yield–density
and not yield–spatial relationships are required. Arrangements such as those in
Figure 17.2 may be used for this situation. This design was suggested by Federer
and Scully (1992) and is in the spirit of the Nelder (1962) designs. Using any of the
24 or other arrangements in Section 17.2, the distance between plants decreases
from lowest density to highest density down the row, but the distance between
rows, spatial arrangement, remains constant. As in the Figure 17.1 e.u.s, this allows
inclusion of all the densities to be studied in a single e.u., certainly a parsimonious
situation with regard to land area. Although the total labor is considerably reduced,
the labor per e.u. does increase as responses are required for each plant, or for
groups of plants within an e.u., rather than a single response for an e.u. as required
in factorial treatment designs. The planting and harvesting labor is less for the e.u.
on the right in Figure 17.2. The one on the left has continuously increasing density
down a row, whereas the one on the right has only l density levels increasing in
a systematic manner. Even though the density was continuouly increasing down
the row, the experimenter might harvest l segments of the row with the density
level being the average density within the segment. If the stand is uneven, perhaps
a covariate of distance between plants and/or number of plants per segment could
be used to adjust the plant yields within each e.u. The adjusted yields would then
be used for obtaining a yield–density or other relation.

Nelder (1962) introduced arrangements for an e.u. which are called fan designs
for studying spatial–density–yield relationships. These designs are parsimonious
relative to area and number of e.u.s in the manner of those discussed above. His
arrangements are for single cultivars but are easily adapted to accommodate any
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FIGURE 17.2. Two experimental units for increasing densities within rows of a cultivar for
three cultivars C, B, and M. Density increases from low to high for the e.u. on the left and
by l discrete levels for the e.u. on the right. Space between plants decreases continuously
down the row for design on the left and by increments for the design on the right.
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FIGURE 17.3. Fan design for increasing distance between plants within a row.

polyculture combination such as those described for arrangements 1–24. Some of
his fan designs are adapted here for mixtures of cultivars. The rays from the origin
in a quadrant form the rows of a cultivar in the mixture such as depicted in Figure
17.3. Here, a mixture of three cultivars with increasing distance between plants in
a row is used to illustrate the procedure. Also, the distance between the rows is
increasing. The rows form rays of a quadrant of a circle and the cultivars on any
point on a ray equidistant from the origin, an arc, form the sequence in the crop
arrangement. The distance from the origin forms the density. The highest density
per hectare are those closest to the origin. Those farthest from the origin have the
lowest densities per hectare. The intimacy of cultivars decreases as the distance
from the origin increases, i.e., the distance between cultivars increases. Increasing
space between rows and decreasing density per hectare are confounded for this fan
design. The optimum response is determined for each row (cultivar) of the design
in the e.u. The design may be varied by using equally spaced double rows for
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FIGURE 17.4. Fan design for plants of three cultivars equally spaced within each row.

some or all of the crops in the polyculture. With the additional plants per cultivar,
a yield–density–spacing relation is better determined.

Instead of having the distance between plants within a row increase with distance
from the origin, the distance may remain constant, as in Figure 17.4. The density per
hectare does decrease but not as fast as in Figure 17.3. From a planting standpoint,
the plan in Figure 17.4 is more desirable and less cumbersome than the one in
Figure 17.3. The row spacings in the two plans are comparable. Alternatively, the
distance between plants could decrease as distance from the origin increases in
such a manner as to keep density per hectare constant on all arcs of the quadrant.
Since density per hectare is constant, only spatial arrangement will vary. A method
for determining circles with constant areas is described in Section 8.3, Volume I.

Two particular forms of the Nelder fan design adapted for polycultures have
been presented. Another form has been given by Hiebsch et al. (1995) in a study
of plant density and soybean maturity. From these, it may be noted that any mixture
of n cultivars may be used in such a plan. One further note is that the area of the fan
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FIGURE 17.5. Okigbo circle design for three cultivars equally spaced within the row.

design is not rectangular, as might be required for field arrangements of e.u.s. It is
easy to make a rectangular e.u. simply by extending the rows to form a rectangle
in Figures 17.3 and 17.4. Alternatively, it may be necessary to eliminate the border
effect by using a border around the e.u. The material used for the border could be
used to form a rectangular area.

If the cultivars are all mixed together, i.e., 100% intimacy, the Nelder (1962)
designs may be used directly and treated as a single cultivar in forming the plan.

In order to consider row orientation with respect to direction, the Okigbo (1978)
circle designs discussed in Volume I may be extended to include mixtures of n

cultivars. Here, we consider that individual rows of the cultivars will be planted.
If all n cultivars are intermixed, then individual row arrangements need not be
considered. If the top of Figure 17.5 is considered to be north, the maize rows
would most likely be laid out as shown, as maize is somewhat light sensitive and
the biggest contrast then would be between the north-south and east-west maize
rows. The number of rows in a circle will depend on the various row spacings
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FIGURE 17.6. Okigbo circle design for three cultivars with decreasing distance between the
plants within a row but increasing distance between rows, keeping the density per hectare
constant.

under consideration. The radius of the inner circle where none of the mixture is
planted also needs to be considered. It has to be large enough to allow a reasonable
narrowest row spacing as a starting point and to allow planting and harvesting
operations to function. With this plan, it is possible to have one plan in one-half
of the circle and another plan in the other half. It would still be possible to study
orientation effects. In Figure 17.5, the distance between plants within a row (ray)
will be constant, whereas the distance between rows is increasing. The density per
hectare of each cultivar is decreasing. As described above, a rectangular e.u. may
be obtained by extending the rows to a rectangular border. The advantage of the cir-
cle over the fan design is that orientation effects in addition to row spacing–density
effects are obtained.

In Figure 17.6, the distance between plants is decreased to keep the density per
hectare constant, thus allowing only row spacing effects to be assessed. This plan
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FIGURE 17.7. Okigbo circle design with a pair of M, maize, rows equally spaced and with
increasing row spacing for C and B cultivars.

and the one in Figure 17.5 may both be included in the same e.u. by placing one
plan in the top half and the other in the bottom half. This would allow for obtaining
estimates of density and spacing effects in the same e.u. Alternatively, each plan
could form an e.u. for one of the treatments in an experiment. The experimenter
may change the above plans in any of a number of ways in order to study effects
of interest.

One such alteration of the above circle designs is given in Figure 17.7. Here M,
maize, has double rows equally spaced and with a pair of rows in a north-south
direction and one pair in an east-west direction. Also, pairs of M rows are at a
45◦ angle to the previous pairs. The other cultivar rows are interspersed between
these pairs of M rows. For this plan, the plants within a row are equally spaced,
but this may be modified as described above. The density per hectare for C and B
decreases as the distance away from the origin increases. This is also true for B
and M and for C, B, and M, but not for the M pair of rows.

In addition to the preceding parsimonious plans, the snail designs of Volume I
may be extended to include mixtures of n cultivars. For the three cultivars C, B,
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FIGURE 17.8. Snail design for three cultivars C, B, and M arranged in individual cultivar
rows with equal spacing between plants within a row.

and M, a snail design with a row for each of the cultivars is presented in Figure
17.8. The plants within a row of a cultivar are equally spaced but may be altered
to fit the objectives of the experimenter. The distance between the cultivar rows
increases as the distance from the center increases. In this design, the widest
spacing may be held to any desired distance. This is not possible for the fan or
circle designs. A square-like area may be approached with the snail design, or
parts of the design may be deleted to form a square e.u. These designs also allow
orientation effects to be assessed.

For the plan in Figure 17.9, there is a single row arranged in a snail-like fashion.
The cultivars appear in the row in the sequence of the arrangement. The plan used
is a plant of C, a plant or hill of B, a plant or hill of M, and a plant or hill of B. The
sequence is repeated throughout the row, winding in a snail-like fashion.

A snail design offers much more latitude in row spacings than does either the
fan or circle designs. This advantage may be offset by the additional expertise in
layout required over the fan or circle designs. For the latter, it is a simple matter
to mark circles from the origin at all points where plants are to be planted. In
Nigeria, Okigbo (1978) was able to use unskilled laborers to plant circle designs.
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FIGURE 17.9. Snail design for three cultivars with the repeating sequence C, B, M, and B
arranged in a single row. Distance between cultivars is a constant.

He assigned one person to each ray or row of the circle and all started planting
their crop at the same time. Each person had instructions on the manner of planting
the assigned crop. Each laborer planted only one crop in order not to burden them
with too many instructions. It may be that a procedure can be devised to make the
laying out of snail designs routine just as has been done for circle designs. The use
of border material can be used to make the area for each e.u. a rectangular one.

17.4 Statistical Analyses for the Plans of Sections 17.2
and 17.3

For each density level and each spatial arrangement, the plant or group of plant
yields are put on a yield per hectare basis. Then, these yields are plotted against
density per hectare. The yield–density relation may have only a linear and a cur-
vature component. A simple form of this is a quadratic regression equation of the
form

Yij � α + βidij + γ d2
ij . (17.1)
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An estimate d̂i of the maximum for this curve for cultivar i is d̂i � −β̂i/2γ̂i where
β̂i and γ̂i are least squares estimates of the parameters βi and γi , respectively.
These values are averaged over all e.u.s, yielding an estimate of the parameters.
For the arrangements in Section 17.2, the density per hectare does not change. The
yields per plant or group of plants need not be converted to yields per hectare, as
they are all comparable and may be plotted directly against change in any of the
factors. Analyses of variance may be performed on the intercepts, linear regres-
sion coefficients, quadratic regression coefficients, and/or the estimated maximum
for the individual e.u.s. Analysis of orientation effects proceeds as described in
Volume I. From the circle designs, the effects of north-south rows, east-west rows,
northeast-southwest rows, and northwest-southeast rows can be ascertained. The
effect of the various orientations on yield, insect level, disease level, and other
factors can be studied.

Since the number of levels in the parsimonious plans can cover a wide range, the
results will be useful in developing models for yield–density, yield–spatial, yield–
intimacy, and yield–orientation relationships as well as multiple factor relations.
Other factors such as rainfall, fertilizer, date of planting, cultivar, etc. may be used
in conjunction with a parsimonious e.u. to develop yield–density and other yield
relations in an efficient manner.

17.5 Discussion and Comments

The parsimonious designs discussed herein and the many variations possible offer
an efficient tool for the experimenter to study the effects of spatial arrangement,
density, intimacy, and orientation with a minimum expenditure of material, land
area, and resources. They are especially useful in the preliminary investigation
of the effects of these factors on responses for the cultivars in a mixture. Many
levels of each of the factors may be included. After the results from investigations
using the parsimonious plans, the experimenter may wish to switch to a factorial
arrangement of levels around the estimated optimum for a more definitive study
of the effects. The parsimonious plan may be viewed as a screening design to
determine a neighborhood wherein the optimum level of each of the factors lies.
Then, a more detailed investigation of this neighborhood may be investigated by
again using parsimonious plans or a factorial arrangement.

During the preliminary stages of investigating effects of the factors, the exper-
imenter may desire to use a single e.u. for a set of arrangements. These could
then be included in an augmented experiment design (see Volume I) as the aug-
mented treatments in an experiment with a set of standard replicated treatments.
This would allow the screening of a large number of arrangements in an efficient
manner. Each e.u. may require a border in order to eliminate border effects from
the surrounding area. In Figures 17.3 and 17.4, e.g., a row of B, beans, could be
used on the vertical and horizontal axes and the upper part could be filled out with
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B to make a rectangular area for the e.u. The amount and nature of border material
will depend on the experimental conditions present.

Figure 17.1 could be expanded to include spatial variation, density variation,
and intimacy variation within the same e.u. or an e.u. for each could be included.
From the preceding, it can be seen that there are many and diverse arrangements
for studying spatial, density, intimacy, and orientation effects for mixtures of n

cultivars. Row orientation in sugar beet production has been reported by Anda and
Stephens (1996). Creativity on the part of experimenters will develop more and
diverse arrangements in the spirit of parsimony. In screening genotypes as affected
by various factors, use may be made of augmented designs and parsimonious
arrangements to increase the efficiency of experimentation.

17.6 Problems

17.1 Construct arrangements of the form of those in Section 17.2 for n � 4
cultivars in the mixture.

17.2 Construct arrangements for n � 4 and 5 cultivars in a mixture similar to
those in Figures 17.1 and 17.2.

17.3 Show how to adapt the Nelder (1962) designs in Figure 8.3, Volume I, for
three and four treatments in a mixture.

17.4 Prepare figures comparable to Figures 17.3 and 17.4 for four cultivars in a
mixture.

17.5 Prepare a figure comparable to Figure 17.5 for a mixture of four cultivars.

17.6 Prepare a figure comparable to Figure 17.5 with density per hectare constant
and with four areas for three cultivars. (Note: Use the formula in Section
8.3, Volume I, to obtain areas of concentric circles such that areas between
circles are equal.)

17.7 Construct a plan similar to Figure 17.1 in such a manner that row spacing,
density, and intimacy effects are separately estimable within the same e.u.

17.8 Construct plans similar to Figure 5 of Mead and Riley (1981) for mixtures
of three and four cultivars.

17.9 Detail a computational procedure for determining an optimal row spacing
for your design in Problem 17.6.

17.10 Prepare a snail design for three cultivars in three separate rows and
demonstrate how to estimate orientation effects.
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chapter 18

Some Analytical Variations for
Intercropping Studies

18.1 Introduction

When systems, agricultural or otherwise, are the object of study in experiments,
many and varied goals and analyses arise. In this chapter, some additional experi-
mental variations and statistical analyses are described. The approaches in Volume
I are expanded and extended to include more than two crops in a mixture. In the
next section, a type of experimentation known as replacement series is discussed,
wherein the proportions of the n crops in the mixture are varied in such a manner
that the sum of the proportions is unity. The proportion is the population number
for a sole crop required to plant that proportion of a hectare, say, occupied by a
cultivar at the same rate as the sole crop. Graphical displays and numerical exam-
ples are included to illustrate various patterns of response and statistical analyses
for replacement series experiments.

In Section 18.3, some combined yield comparisons are discussed. These are the
mean method, half-hectare method, pure stand, production, land equivalent ratio,
and total effective area. Numerical illustrations are included. In Section 18.4, five
competition indices are described for n cultivars in the mixture. In the literature
observed on these indices, it appears that the discussion has been for n � 2 only.
Each of the indices are extended to include n cultivars. The indices are relative
crowding coefficient, relative reproductive rate, competition index, coefficient of
aggressivity, and competitive ratio. The linear programming techniques discussed
in Volume I for two crops are extended to include n crops. A discussion of some
of the aspects of this chapter is presented in Section 18.6. This is followed by a set
of problems designed to illustrate and elucidate various aspects of this chapter.
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18.2 Replacement Series

The larger the number n of cultivars in a mixture, the more complex is the con-
struction of the replacement series treatment design as defined by Haizel (1974),
in Volume I, and in the previous chapter. Likewise, the experiment becomes more
complicated and difficult to conduct. The number of plants in a mixture for a
cultivar is determined by its proportion in the mixture, pi , and the population
or number of plants used for the sole crop. The idea is to allot the proportions
of crops in terms of the area they would occupy in the mixture; i.e., if the area
for the mixture was subdivided so that the subdivisions were sole crops, the area
for a crop would be its proportion in the mixture. For example, in a cassava–
maize–bean mixture the sole crop densities might be 10,000, 40,000, and 120,000
plants per hectare, respectively. In a mixture with proportions 1:1:1, the mix-
ture would contain 10,000/3 plants of cassava, 40,000/3 plants of maize, and
120,000/3 plants of bean. For a mixture of 1:2:2, there would be 2000 cassava
plants, 8000 maize plants, and 120,000/5 = 24,000 bean plants in the mixture. A
replacement series experiment is useful for studying the competitive effect rela-
tionships among the n cultivars in the mixture. It should be noted that the optimum
proportion in a replacement series experiment may not be the population combina-
tions producing maximum yields. The additive method described in the previous
chapter may produce higher yields than any of the proportions in a replacement
series.

The three patterns of response described by Willey (1979) and in Volume I for
two cultivars may be used for polycultures of three or more cultivars. The mutual
cooperative pattern of competition effects implies that all cultivars in the mixture
perform better than expected on the basis of sole crop performance. In the mutual
inhibitive pattern of competition effects, all cultivars perform poorer than would be
expected on the basis of sole crop responses. In addition to mutually cooperative
and inhibitive patterns, a third category is desirable, i.e., neutral competition effects
wherein all cultivars in a mixture perform the same whether in a mixture or grown
as a sole crop. Their responses are unaffected whether grown in polyculture or
monoculture. For this case, the individual terms in a land equivalent ration (LER)
would be 1/n.

In the compensation pattern of responses, one or more of the cultivars have a
cooperative effect and the rest have an inhibitive or neutral pattern of response.
Considering the three patterns of responses described above, let + stand for coop-
erative pattern, – stand for inhibitive pattern, and 0 indicate a neutral pattern. Then,
for n � 3 cultivars in the mixture, the possible combinations of compensatory and
inhibitory patterns are

+ + + + – –
+ – + 0 – 0
– – 0 0 0 0,
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FIGURE 18.1. Mutual cooperation competition effects for three cultivars. Expected yield
is on the triangle formed by the points YA, YB , and YC (sole crop responses). Observed yield
is on the curved surface above the triangle YA YB YC .

for n � 4, the possible combinations are

+ + + + + + – – –
+ + – + + 0 – – 0
+ – – + 0 0 – 0 0
– – – 0 0 0 0 0 0,

and for n � 5, the possible combinations are

+ + + + + + + + – – – –
+ + + – + + + 0 – – – 0
+ + – – + + 0 0 – – 0 0
+ – – – + 0 0 0 – 0 0 0
– – – – 0 0 0 0 0 0 0 0.

In general, there are 3(n−1) such patterns of compensatory and inhibitory effects.
A graphical representation of mutual cooperative competition effects is given

in Figure 18.1. The equilateral triangle ABC formed by the points A, B, and C

represents all possible combinations of mixtures of three such that the proportions
add to one, i.e., pA + pB + pC � 1. The triangle YA YB YC formed by the points
YA, YB , and YC represents the predicted responses based on sole crop yields,
i.e., pA YA + pB YB + pC YC . The curved surface above this triangle intersecting
the dashed lines represents the observed responses for the mixture ABC. The
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FIGURE 18.2. Mutual cooperation competition effects for four cultivars A, B, C, and D.
Expected values are in the pyramid formed by the points YA, YB , YC , and YD . Observed
responses are on the curved surface surrounding the pyramid YA YB YC YD .

quadrilateral YA YC AC formed by the points YA, YC , A, and C is for the two-crop
mixture of A and C with pB � 0 and with proportions of A and C varying from zero
to 100%. Likewise, the quadrilaterals YA YB AB and YB YC BC are for mixtures
of A and B, and B and C, respectively. The line YAC represents the predicted sole
crop yield for A with proportions from 100% of A, sole crop for A, to zero percent
of A and 100% of C, sole crop for C. The dashed line above this line indicates
the observed responses. Similar explanations are made for lines YBA, YBC, YAB,
YCA, and YCB.

All possible combinations for n � 4 crops, A, B, C, and D, in a replacement
series are obtained from pA +pB +pC +pD � 1, where pi , i � A, B, C, D, varies
from zero to one. The totality of possible proportions is a pyramid with equilateral
triangles on its four faces. This is depicted by the pyramid formed by the four
points A, B, C, and D in Figure 18.2. The predicted or expected responses based
on sole crop responses YA, YB , YC , and YD are given in the pyramid YA YB YC YD

in the top part of Figure 18.2. When effects are mutually cooperative, the observed
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FIGURE 18.3. Mutual inhibition competition effects for three cultivars A, B, and C. Ex-
pected responses are on the triangle formed by the points YA, YB , and YC . Observed responses
are on the curved surface below the triangle YA YB YC .

responses are indicated by a curved surface around the pyramid and intersecting
the dashed lines. The additional details in Figure 18.1 may be included if desired.

To show mutually inhibitive competition effects, Figure 18.3 was prepared for
n � 3 crops in a mixture. The graph is similar to Figure 18.1, except that the
dashed lines are below rather than above their expected values. Neutral competition
values would be exemplified by the predicted values from sole crop responses. For
compensatory competition effects for n � 3 crops in the mixture, there are six
cases to consider involving all three patterns of response. Graphs similar to Figures
18.1 and 18.3 may be used to depict the results for each of the six cases. Numerical
examples showing the three types of response patterns are given in Examples 18.1
and 18.2.

There is a body of statistical literature on various kinds and properties of these
mixture treatment designs such as used in replacemment series studies. A book on
mixture designs by Cornell (1990) and one on optimal designs by Atkinson and
Donev (1992) are suggested reading on these topics. A recent paper by Atkinson
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TABLE 18.1. Yields � Y (g) and Predicted yields � P of All Possible Combinations of B,
C, D, E, and F with Cultivar A. (Data Are from Table 13.3.)

Culivar
Mixture A B C D E F Total

ABC Y 13.88 2.08 52.54 68.50
P 22.58 1.64 39.54 63.76

ABD Y 27.75 1.81 2.41 31.97
P 22.58 1.64 2.71 26.93

ABE Y 20.50 3.04 9.51 33.05
P 22.58 1.64 8.96 33.18

ABF Y 18.47 1.67 0.76 20.90
P 22.58 1.64 1.59 25.81

ACD Y 15.81 44.27 2.68 62.76
P 22.58 39.54 2.71 64.83

ACE Y 21.82 46.16 4.56 72.54
P 22.58 39.54 8.96 71.08

ACF Y 22.46 53.05 2.58 78.09
P 22.58 39.54 1.59 63.71

ADE Y 21.16 1.67 7.20 30.03
P 22.58 2.71 8.96 34.25

ADF Y 20.38 2.07 1.66 24.41
P 22.58 2.71 1.59 26.88

AEF Y 24.03 16.44 1.79 42.26
P 22.58 8.96 1.59 33.13

Mean 20.66 2.15 49.01 2.21 9.43 1.70

(1996) describes the usefulness of optimal designs. Reference to these citations
should be made when planning replacement series type experiments and selecting
the various pi for the crops. Use of optimal designs makes for efficient experimen-
tation. Assuming a quadratic relation for two crops A and B, a three-point optimal
design would consist of the two sole crops and the 1:1 mixture. For three crops and
a seven-point design, the ratios 1:0:0, 0:1:0, 0:0:1, 1:1:1, 1:1:0, 1:0:1, and 0:1:1
would suffice. The assumption of a quadratic surface may be erroneous, and the
nature of the relationship will depend on the population densities used for the sole
crops under investigation.

Example 18.1. The data from Table 13.3 may be analyzed in the mode of replace-
ment series analyses. This is another example of the multiple goals and analyses
that are associated with experiments on polyculture systems and sole crops. The
cooperative, inhibitive, and neutral effects of the cultivars in the mixture may be
examined. For this example, the 10 three-cultivar combinations involving cultivar
A are used. The individual cultivar and the mixture totals of 3 replicates for the 10
mixtures are presented in Table 18.1. The results in Table 13.3 are for a four-plant
total. Therefore, the yield of any cultivar in the mixture may be compared directly
with its sole crop yield, which is also on a four-plant basis. The three-crop mixture
total is on a 12-plant basis, 4 from each cultivar. The sum of the 3 corresponding
sole crop yields in a mixture is also on a 12-plant basis.
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FIGURE 18.4. Yields (m) and predicted yields (s) for mixtures arranged in increasing order
of predicted yields for a mixture. Data from Table 18.1.

Cultivar A exhibited a cooperative effect only for mixtures ABD and AEF. In
mixtures ABC, ABF, and ACD, A showed an inhibitive effect. The effect was
neutral or slightly inhibitory in the remaining five mixtures where A appeared.
Cultivar B showed a cooperative or neutral effect in the four mixtures where it
appeared. Cultivar C showed rather large cooperative effects in all four mixtures.
Cultivar D showed neutral to inhibitory effects. Cultivar E had two cooperative and
two inhibitive responses in the four mixtures. Cultivar F showed three cooperative
responses and one inhibitive response in the four mixtures containing F.

A graphical representation of results is given in Figure 18.4. The mixture des-
ignations on the abscissa are equally spaced and are arranged in increasing order
of sole crop predicted yields. If the mixture designations on the abscissa had been
spaced according to the mixture totals, the predicted totals would have been on a
line with a slope of 45◦. Graphical presentations such as Figure 18.4 may be more
informative than the last column of Table 18.1.

So far, nothing has been said about the statistical significance of the cooperative
or inhibitive competition effects of the cultivars in the 10 mixtures. Using a simple
nonparametric procedure like chi square, it may be noted that in the 10 cases for
cultivar A, 8 were less than the sole crop, giving a chi square value of 3.6 versus
the tabulated 5% value of 3.84. For cultivars B and C, all four yields are above the
sole crop value, giving a chi square value of four. From Table 13.5, the various
standard errors of a difference are computed in the following manner:

Cultivar A :
√

2(3)(7.738) � 6.81 for mixture total versus sole crop
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7.738(3/10 + 3) � 5.05 for mean of 10 mixtures versus

sole crop

Cultivar B :
√

2(3)(0.105) � 0.79 for mixture total versus sole crop√
0.105(3/4 + 3) � 0.63 for mean of four mixtures versus

sole crop

Cultivar C :
√

2(3)(34.62) � 14.41 for mixture total versus sole crop√
34.62(3/4 + 3) � 11.39 for mean of four versus sole crop

Cultivar D :
√

2(3)(0.157) � 0.97 for mixture total versus sole crop√
0.157(3/4 + 3) � 0.77 for mean of four versus sole crop

Cultivar E :
√

2(3)(3.159) � 4.35 for mixture total versus sole crop√
3.159(3/4 + 3) � 3.44 for mean of four versus sole crop

Cultivar F :
√

2(3)(0.096) � 0.76 for mixture total versus sole crop√
0.096(3/4 + 3) � 0.60 for mean of four versus sole crop.

Since the mixture values in Table 18.1 are totals of three replicates, this is the 3 that
appears in the standard error of differences between a mixture value and a sole crop
value. The 2 is because this is a difference being compared. Each cultivar has its
own variance. The difference between cultivar A total in mixture ABC and the sole
crop is 13.88 − 22.58 � −8.70 with a standard error of difference of 6.81. This
gives a t value of 1.28 and a probability of a larger t of about 0.20. The difference
between cultivar C total in mixture ABC and sole crop C is 52.54−39.54 � 13.00
with a standard error of a difference of 14.41. The difference between cultivar B
total in mixture ABE and sole crop B is 3.08 − 1.64 � 1.44 with a standard error
of a difference of 0.79. The corresponding t value is 1.82 with a probability of a
larger t value of about 0.07. The difference between Y and P for mixture ACF total
and sole crop totals is 78.09 − 63.71 � 14.38 with a standard error of a difference
of

√
3(2)(7.738 + 34.62 + 0.096) � 15.96.

Example 18.2. The data from Example 13.2 are used to exemplify the analysis of
a replacement series experiment. A genotype of castrol bean, one of maize, and one
of bean were used to form the mixtures and proportions of two and of three cultivars.
The sole crops were also included. The observed yields of individual cultivars and
of mixture totals are presented in Table 18.2 along with sole crop yields and sole
crop predicted replacement series yields for each mixture. A graphical presentation
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TABLE 18.2. Yields (kg/ha) of Castrol Bean (C), Maize (M), and Bean (B) and Replacement
Series Predicted (Pred.) Yields Based on Sole Crop Yields. (Data from Example 13.2. Means
are for Mixtures.)

Castrol bean � C Maize � M Bean � B Total
Mixture Yields Pred. Yield Pred. Yield Pred. Yield Pred.
1C:1M 1080 936 2170 1084 3250 2020
1C:2M 728 624 2290 1445 3018 2069
1C:3M 847 468 1936 1625 2783 2093
1C:2B 1148 624 1005 671 2153 1295
1C:3B 888 468 1150 755 2038 1223
1C:4B 746 374 858 806 1604 1180
1C:2M:1B 561 468 1991 1084 92 252 2644 1804
1C:1M:2B 1242 468 1449 542 540 504 3231 1514
1C:2M:2B 697 374 1657 867 340 403 2694 1644
C (sole) 1871 1871 1871 1871
M (sole) 2167 2167 2167 2167
B (sole) 1007 1007 1007 1007
Mean 882 534 1916 1108 664 565 2602 1649

of the results is given in Figure 18.5. The predicted yield for the mixture 1C:2M:1B,
for example, is 1871/4 + 2(2167)/4 + 1007/4 = 468 + 1084 + 252 = 1804, and the
others are similarly computed.

In every case except two, the yields exceed those predicted upon the basis
of sole crop yields. For these particular cultivars, population densities, intimacy
relations, and spatial arrangements, polyculture was very beneficial. Maize did
especially well in that monoculture yields were equaled or almost equaled in
the four mixtures 1C:1M, 1C:2M, 1C:3M, and 1C:2M:1B. Except for the two
mixtures 1C:2M:1B and 1C:2M:2B, beans did better than expected for mixtures
where it occurred. Castrol beans had approximately double the predicted replace-
ment series yields for the mixtures 1C:3M, 1C:2B, 1C:3B, 1C:4B, 1C:1M:2B,
and 1C:2M:2B. The castrol bean yields were higher than expected for 1C:1M,
1C:2M, and 1C:2M:1B, but the yields were not double the predicted, as in the
other mixtures.

A graphical presentation of the data in Table 18.2 may be made as in Figure
18.5. The equilateral triangle MBC formed by the points M , B, and C repre-
sents all possible replacement series proportions for these cultivars. The triangle
formed by the points YM , YB , and YC represent the predicted yields for these
proportions. The lines through the points l, m, and n are on the plane form-
ing the triangle YMYBYC , and they are the expected replacement series yields
based on the sole crop yields. The line ho including the points h and o is the ob-
served response for the mixture 1C:2M:2B. The line ik is the observed response
for the mixture 1C:2M:1B. The line qj is the observed response for the mix-
ture 1C:1M:2B. Note that the line ik ends before it reached the plane YMYBYC ;
i.e., the observed response is less than the expected calculated from sole crop
yields.
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FIGURE 18.5. Graphical representation of cooperative and inhibitive effects in a replace-
ment series for the data of Example 18.2.

Mixtures of two cultivars may be included in the three-dimensional graph
in Figure 18.5. In the quadrilateral formed by the points YM , YC , M , and C,
the predicted values of maize and castrol bean combinations in all propor-
tions are shown. The line YM YC is the predicted replacement series yields.
The line rx containing the points r and x is the observed response for the
mixture 1C:3M. The line sy represents the observed yield for the mixture
1C:2M, and the line tz displays the observed yield for the mixture 1C:1M.
The bottom part of the lines with x’s on the spike designates the observed
yield of maize and the top part represents the yield of castrol beans in the
mixture. The line YMC represents the predicted yields for all proportions of
maize ranging from 100% to zero. Note that the observed maize yields are
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considerably above this line, indicating the cooperative competition effect for
maize.

For the two-crop mixture of castrol beans and beans, the quadrilateral
YC YB BC formed by the points YC , YB , B, and C is used to present the
results. The line YB to C represents the expected bean values from 100%
bean to 0% bean in the two-crop mixture. The observed bean yields are de-
noted by putting dashes on the spikes going through the points u, v, and
w. Note that all exceed the predicted yields on the line YBC, indicating the
cooperative competition effect of bean in the two-crop mixtures with castrol
beans.

Since the mixture yield of castrol beans is placed on the top parts of the spikes
representing observed yields in Figure 18.5, the predicted yields for castrol beans
in two-crop mixtures were not included. These would be indicated by the two
lines YCM and YCB. They could be included in the graph with additional spikes
in addition to the corresponding maize and bean spikes already shown in Figure
18.5.

The dashed lines at the top of the graph represent the observed yields
from all possible proportions of maize and castrol bean, and bean and cas-
trol bean mixtures. The true picture is more likely a smooth surface rather
than the line-segment depiction. Similarly, dashed and curved lines could
be drawn from the observed three-crop mixture yields to the sole crop and
two-crop mixture observed yields. The resulting curved three-dimensional sur-
face would depict yields for all possible combinations of two and three
crops that would result from the patterns of responses found for these three
crops.

Individual error variances for each of the three crops were not available. When
such error variances are available, the procedure given in Example 18.1 may
be followed to assess statistical significance. Using a nonparametric procedure
like chi square, highly significant chi-square values were obtained for castrol
beans, nine out of nine cases in which predicted yields were exceeded, and for
maize, six out of six cases in which predicted yields were exceeded. For bean
mixtures, bean yield exceeded predicted yield in four out of the six cases, re-
sulting in a chi-square value of 0.67. All of the nine mixture totals exceeded
the predicted totals, resulting in a chi-square value of 9.00. Which mixture or
mixtures would be selected for use depends on the goals of the user. Mixture
1C:1M:2B produced more than double expected on the basis of sole crop yields.
Over all nine mixtures for castrol beans, the ratio of the mixture mean to the
mean of the predicted values is 882/534 = 1.65, which is 65% more than when
grown as a sole crop. Maize produced 73% more in polyculture than in mono-
culture, and beans produced 18% more. The mixture mean for the polyculture
was 51% larger than the monoculture. Thus, the cooperative competition ef-
fects of castrol beans and maize are sizable. The three-crop mixtures which
included 2M had a depressing effect on bean yields, especially in the mixture
1C:2M:1B.
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18.3 Combined Yield Comparisons

18.3.1 Mean Method

Perhaps the simplest method for comparing monoculture with polyculture re-
sponses is the method of comparing the mean yield of the mixture with the mean
of the mean yields of the cultivars in the mixture, or the mean method . This pro-
cedure was suggested by Donald (1963) as a method for evaluating polyculture
responses for hay crops and mixed cereal cultivars. To illustrate, from Example
13.3, the yield of the maize and bean monocultures at Caruara were 2451 and 69
kg/ha, respectively. The mean of the monocultures is 1260. The yields from the
maize–bean mixture were 2599 and 30, respectively, with mixture mean of 2599
+ 30 = 2629. As Kass (1978) and others point out, a mean yield of cultivar yields
from cultivars as different as these is a meaningless concept, although it could
be appropriate for hay, mixtures of cereals, and mixtures of cultivars of the same
species.

The method extends immediately to n cultivars in a mixture and for different
proportions of cultivars in the mixture. From Example 13.2, the polyculture yields
of castrol beans, maize, and beans in the ratio 1:2:1 were 561, 1991, and 92,
respectively. The monoculture yields of castrol beans, maize, and beans were 1871,
2167, and 1007, respectively. The weighted mean of the monocultures yields is
(1871 + 2(2167) + 1007)/4 = 1803. The mixture yield is 561 + 1991 + 92 = 2644.

18.3.2 Half-Hectare Method

The inadequacy of the preceding method was recognized by Pilz (1911) and Lip-
man (1912) much earlier. Their suggestion was to use the yield per unit area of
the two crops in the mixture. Their half-hectare method for the data of Example
13.3 above is 2451/2 = 1225.5 for maize and 69/2 = 34.5 for beans. For maize, the
comparison is 1225.5 for sole versus 2599 for the mixture. For beans, the com-
parison is 34.5 for sole versus 30 for the mixture of maize and beans. Morrish
(1934) and Willey and Osiru (1972) criticized the method for assuming only equal
proportions of areas for the two crops in the mixture.

For mixtures of size n, the half-hectare name could be changed to 1/nth hectare,
as it may be easily extended. Also, there appears to be no reason for assuming equal
proportions of the crops in the mixture except for the name half-hectare. For the
castrol bean, maize, and bean mixture from Example 13.2 in the ratio 1:2:1, maize
occupies one-half of the area and the other two crops one-fourth of the area. The
comparison for castrol bean sole crop one-fourth mean is 1871/4 = 467.75 versus
561 for the mixture yield. For maize, the half-hectare sole yield is 2167/2 = 1083.5
versus 1991 for the mixture. For beans, the one-fourth hectare sole yield is 1007/4
= 251.75 versus 92 for the bean yield in the mixture. Maize and castrol yields were
increased using this mixture, but bean yield was reduced.
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18.3.3 Pure Stand Production

Morrish (1934) suggested taking the yield of crop i in a mixture, Ymi , and dividing
it by the pure stand yield, Ysi , i.e., Ymi/Ysi � Li , and then summing the two
fractions obtained to obtain what is now known as a land equivalent ratio, LER,
or a relative yield total, RYT. We denote this method as a pure stand production,
PSP. The yield of the mixture is Ym1 + Ym2 and dividing the mixture yield by the
sum of the fractions, i.e., (Ym1 + Ym2)/(L1 + L2) � (Ym1 + Ym2)/LER. This gives
the percentage benefit of the polyculture over the monoculture. For the maize–
bean data from Example 13.3, the yield of the mixture is 2629 and the LER is
2599/2451 + 30/69 = 1.06 + 0.43 = 1.49. Thus, the Morrish measure of pure stand
estimated yield is 2629/1.49 = 1764, which is the yield from one hectare grown
in the relative proportions of 1.06/1.49 = 0.71 of maize and 0.43/1.49 = 0.29 of
beans. The efficiency of polyculture to monoculture for this mixture is 2629/1764
= 1.49, or an increase in efficiency of 49%. Note that this is the same efficiency
obtained from the LER. Hence, the step of dividing the mixture total by an LER
is unnecessary.

To obtain a PSP, Willey and Osiru (1972) suggest taking L1/LER hectare as
the area of sole crop one required to produce as much as was obtained from the
mixture and L2/LER hectare as the area of sole crop two required to produce as
much as was obtained from the mixture. For the above example, L1 � 1.06 and
L2 � 0.43. A hectare divided in the proportions indicated from the mixture yields
would result in 2451(1.06/1.49) � 1744 kg for maize and 69(0.43/1.49) � 20
kg for beans, or a total of 1764 kg/ha.

Extending the PSP to more than two crops is straightforward. Consider the
data from Example 13.2 described above. A LER � Lc + Lm + Lb �
561/1871 + 1991/2167 + 92/1007 � 0.300 + 0.919 + 0.091 � 1.310,
Lc/LER � 0.300/1.310 � 0.229, Lm/LER � 0.919/1.310 � 0.702, and
Lb/LER � 0.091/1.310 � 0.069. Thus, 70.2% of the hectares would need to
be planted to maize, 22.9% to castrol beans, and 6.9% to beans in order to obtain
the same proportion of yields of the three crops as obtained from the mixture. The
PSP � 0.229(1871) + 0.702(2167) + 0.069(1007) � 2019. The efficiency of this
mixture relative to sole cropping is 2644/2019 = 1.31, which is the LER.

18.3.4 Relative Yield Total or Land Equivalent Ratio

A relative yield total, RYT, was defined by de Wit and van den Bergh (1965)
and van den Bergh (1968) primarily in the context of replacement series and for
the proportions of crop yields in mixtures to sole crop yields. A land equivalent
ratio, LER, which is the same as RYT, was formally defined by Willey and Osiru
(1972) according to Mead and Riley (1981) and by IRRI (1974) according to Kass
(1978). The Spanish equivalent of LER is Uso Equivalente de Tierra, UET (see
Soria et al., 1975). Morrish (1934) and Niqueux (1959) had used this index much
earlier. An LER is now commonplace in literature on the analysis of intercropping
experiments. This measure is the one discussed in Chapter 13.
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18.3.5 Total Effective Area

This is a measure to determine the utility of mixed cropping and sole cropping
to achieve a desired goal. This measure was described in Volume I for two crops.
The measure may be extended to three crops, say, as follows. Let Ai , i � 1, 2, 3,
be the area for sole crops one, two, and three, respectively, and let Am be the area
devoted to the three-crop mixture, then the total effective area (TEA) is

TEA � A1 + A2 + A3 + LERAm

� A1 + A2 + A3 + (L1 + L2 + L3)AM. (18.1)

The Li are defined above. The extension to n crops is straightforward as long
as only the sole crop mixtures and the n cultivar mixture are used. If sole crops,
two-crop mixtures, and three-crop mixtures are to be used as was done in Example
18.2, then

TEA � A1 + A2 + A3 + LER12A12 + LER13A13

+ LER23A23 + LERAm, (18.2)

where LER12 is a land equivalent ratio for the two-crop mixture of cultivars 1 and
2, and A12 is the area devoted to growing this two-crop mixture. The other terms
are defined similarly. The extension to n crops with all sizes of mixtures from 2 to
n is straightforward even if tedious.

The above index may be altered to take into account the proportions of crops
desired. Let the proportions be λ1:λ2:λ3 such that λ1 + λ2 + λ3 � 1 and let qi

be the amount of seed sown per unit area for cultivar i, i � 1, 2, 3. The quantity
of seed sown for the three-crop mixture is qm � λ1q1 + λ2q2 + λ3q3 . Then, for
equation (18.1),

TEA � A1 + A2 + A3 + (q1L1/λ1 + q2L2/λ2)

+ (q3L3/λ3) Am/3qm. (18.3)

TEAs for additional sized mixtures in addition to the n mixture may be developed
as described above.

18.4 Competition Indices

18.4.1 Relative Crowding Coefficient

The relative crowding coefficient, RCC, was presented by de Wit (1960) and further
developed by Hall (1974a,b). A coefficient K1 is defined for crop one in a mixture
of crops one and two as

K1 � Ym1p2/p1(Ys1 − Ym1) � L1p2/p1(1 − L1), (18.4)

where p1 is the sown proportion of cultivar 1, p2 � 1 −p1, and the other symbols
are as defined above. Instead of the sown proportion, the proportion of numbers
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of plants emerged or even number of plants at harvest could be used as well. For
competition studies, the number of plants at a given stage would appear to be more
appropriate data than number of seeds sown, since different cultivars may have
different emergence rates. A value of Ki > 1 indicates that cultivar i has done
better than expected based on sole cultivar results, and a value of Ki < 1 indicates
that the cultivar has done poorer than expected. For a mixture of two cultivars,
RCC is defined to be

RCC � K1K2 � L1L2/(1 − L1)(1 − L2). (18.5)

For n greater than two cultivars in a mixture, Ki is defined to be

Ki � Ymi(1 − pi)/pi(Ysi − Ymi) � Li(1 − pi)/pi(1 − Li). (18.6)

RCC is defined to be

RCC � �n
i�1Ki � �n

i�1Li(1 − pi)/pi(1 − Li). (18.7)

The quantity 1 − pi is the space not occupied by cultivar i, which is p2 when n

equals 2. As stated above, the RCC could be calculated for one or more of the
following stages:

(i) number of seeds sown per cultivar,
(ii) number of plants emerged per cultivar, and/or

(iii) number of plants producing responses Ymi and Ysi at intervals during the
growing season.

The last one may be the appropriate one for agronomic investigations. In place
of actual number of plants, the sowing rate used for each sole crop may need to
to be considered. For example, maize may be planted at the rate of 40,000 plants
per hectare and beans at 120,000 plants per hectare. The proportion of the area
occupied by a cultivar must be considered in studies of this nature.

18.4.2 Relative Reproductive Rate

De Wit (1960) defined another quantity called relative reproductive rate, RRR, as
the ratio of the proportion of cultivar 1 in the harvested mixture to the proportion of
cultivar 1 in the sown (emergence) mixture to the ratio of the proportion of cultivar
2 in the harvested mixture to the proportion of cultivar 2 in the sown (emergence)
mixture. Symbolically, for crop one this is

RRR(1) � (Ym1/N1)

(Ym2/N2)
� RCC(1)

(
Ys1

Ys2

)
, (18.8)

where Ni is the number of plants of cultivar i. Note that Ni may be replaced by
Ni/(N1 + N2) or by the proportion of area occupied by cultivar i in the formula
for RRR.
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We extend RRR(1) in equation (18.8) to cover the case of cultivar i in a mixture
of n cultivars as follows:

RRR(i) � (Ymi/Ni)

(
n∑

j�1, ��i

Ymj/Nj

)−1

(n − 1)

� KiYsi/

n∑
j�1,��i

Ysj

(n − 1)
. (18.9)

The yield of a cultivar is proportional to the relative space it occupies. De Wit
(1960) stated that in certain cases with oat and barley mixtures, polyculture would
be beneficial for the following:

(i) The 1000 kernel weight of oats was greater when intercropped with barley
because the earlier maturing barley provides less competition to oats in the
later developmental stages.

(ii) Oats reduced lodging in barley.
(iii) In a field heterogeneous for pH, barley and oats would both be located in

low- and high-pH areas, where each was better adapted.
(iv) Elimination of one cultivar by disease or insects would allow a proportionately

larger area than expected on the basis of the number of seeds sown or plants
emerged.

In the last situation, de Wit (1960) stated the RCC of the resistant cultivar would
be increased. It is stated in Kass (1978) that de Wit’s model does not hold when
the space shared by the two cultivars in a mixture is not the same as that available
for monocultures—a reason frequently cited for the increased production often
obtained with polycultures. He further says that polyculture is advantageous if
RCC is greater than unity. De Wit (1961) extended his model for three cases
where it did not hold as follows:

(i) The RRR is 1 and the proportion of cultivars harvested is the same as that
seeded. In this case, the log of the ratio of cultivars in the harvested mixture
is plotted against that of the cultivars in the sown mixture, and a straight line
with unit slope and passing through the origin results.

(ii) RCC is not equal to unity because one cultivar has a competitive advantage
over the other when competing for the same space. Here, the plot of the ratios
of harvested yields against the seeded mixtures is a straight line not passing
through the origin. This situation occurs when the two cultivars growing
simultaneously have different growth curves.

(iii) RCC is not equal to 1 because the cultivars together exploit a larger or smaller
share of the environment than either cultivar grown as a sole crop. If one
cultivar benefits from the presence of the other so that the two cultivars are
not competing for the same space, the plots of the ratios of harvested and
sown mixtures will have a slope less than 1 and will not pass through the
origin. If one cultivar has a harmful effect on another, the slope of the ratios
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will have a slope greater than unity and will not pass through the origin. In
both cases, the curves tend to be S-shaped rather than straight lines.

18.4.3 Competition Index

Donald (1963) introduced an equivalence factor for cultivars in terms of the number
of plants required to produce a stated yield per unit area using Nsi sole crop i plants
and Nmi mixture plants. His competition index [developed by C. A. MacIntyre
according to Kass (1978)] is defined as

CI � (Ns1 − Nm1)(Ns2 − Nm2)/Nm1Nm2. (18.10)

Nsi is determined from a yield–density relationship as the number of sole crop i

plants needed to produce the specified yield obtained from the mixture with Nmi

plants. In order to obtain a yield–density relationship, several densities of sole crop
i are required. Kass (1978) and Mead and Riley (1981) and others have criticized
the method for requiring too many sole crop experimental units. It should be noted
that Nsi may be estimated as follows from one experimental unit. The yield per
plant for a sole crop is Ysi/Nsi for crop i and Ymi/Nmi for mixture crop i. Then,
Nsi is estimated as

N∗
si � NmiYsi/Ymi. (18.11)

When Nsi � 2Nmi , the competition index (CI) equals 1. When CI is less than unity,
a beneficial association is indicated. If CI is greater than 1, a harmful association
is indicated. For Ysi/Nsi � Ymi/Nmi and Nsi � 2Nmi , the LER � 1.0 + 1.0 � 2.
If any of the Nsi � Nmi , CI is equal to zero.

In light of the above, a competition index could be defined as

CI∗ � (Ys1/Ns1 − Ym1/Nm1)(Ys2/Ns2 − Ym2/Nm2). (18.12)

This form of the index compares the per plant yields of sole with mixture for
cultivar i. If the per plant yields are equal for either (or both) cultivar(s), the index
is zero. A positive value of the index for crop i would indicate a harmful effect and
a negative value a beneficial effect for the crop i mixture. CI∗ [eq. (18.12)] would
be negative when one of the two terms is negative and the other positive, indicating
a differential effect for the two cultivars in the mixture. Also, CI∗ would be zero
if one or the other of the terms is zero. Thus, valuable information is contained in
the individual terms of the competition index.

In discussing CI, Kass (1978) states that it was designed for use in pasture species
studies where the yield–density relationship is less complex than for other cultivars
but was used by several authors for mixtures of annual crops. These authors did
not appear to have constructed a yield–density relation for a crop over a range of
sole crop densities. Furthermore, they obtained CI values less than 1 where the
polyculture did not appear beneficial by other determinations, thus casting doubt
on their use and application of the method to annual crops. When using CI, it is
important to have comparable populations in sole and in mixed stands.
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A competition index for a mixture of n cultivars is

CI �
n∑

i�1

(Nsi − Nmi)/Nmi (18.13)

or

CI∗ � �n
i�1(Ysi/Nsi − Ymi/Nmi). (18.14)

Here, again, the individual terms of the index need to be examined to ascertain the
competitive nature of each cultivar in the mixture.

18.4.4 Coefficient of Agressivity

To study the dominance of one cultivar over another, a coefficient of aggressivity,
COA, was proposed by McGilchrist and Trenbath (1971) for replacement series
studies. The coefficient is defined in terms the relative yield increase of cultivar 1
to cultivar 2 and is

COA(1) � Ym1/Ys1p1 − Ym2/Ys2p2 � L1/p1 − L2/p2. (18.15)

Mead and Riley (1981) state that there is difficulty in interpreting COA in that
apparent dominance is related to the particular densities used for the sole crop
yields. Dominance patterns can be reversed by changing sole crop densities.

For n cultivars in a mixture, the dominance is defined in terms of the dominance
of cultivar i to the mean of the remaining cultivars in the mixture

COA(i) � Li/pi −
(

n∑
j�1, ��i

Lj/pj

)
/(n − 1). (18.16)

18.4.5 Competitive Ratio

As an alternative to COA, Willey and Rao (1980) proposed the following
competitive ratio, CR, for the dominance of cultivar 1 relative to cultivar 2

CR(1) � (Ym1/Ys1p1)

(Ym2/Ys2p2)
� (L1/L2)(p2/p1). (18.17)

For n cultivars in the mixture, the dominance is defined in terms of the dominance
of cultivar i to the mean of the remaining n − 1 cultivars in the mixture

CR(i) � (Li/pi)

(
n∑

j�1,��i

Lj/pj

)−1

(n − 1). (18.18)

Willey (1979) compared the RCC, LER, and COA using data from an experiment
involving all combinations of four pearl millet cultivars and four sorghum cultivars.
For each combination, all three indices picked out the same species as the dominant
one or agreed when there was no dominance. The RCC and LER showed the same
pattern of yield advantage or disadvantage, whereas the COA did not. The RCC
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was not effective in demonstrating the size of the yield advantage, whereas the
LER was. Willey (1979) argues that the LER is the most useful index and that it
is defined for any set of mixtures and not only replacement series investigations.

Mead and Riley (1981) say that these indices were introduced in the context of
a particular crop combination. In intercropping, different crop combinations may
need to be compared. An LER may be used for this, but the comparisons may not
always be straightforward. Various other indices have been proposed such as crop
value and other indices as described in Chapter 13. These are what Kass (1978)
calls common parameters.

Example 18.3. The data set of Example 18.1 is used to demonstrate the
computation procedure for some of the competition indices, viz.,

(i) the competition ratio CR(i), equation (18.18),
(ii) the coefficient of aggressivity COA(i), equation (18.16), and COA, and

(iii) the relative crowding coefficient Ki � RCC(i), equation (18.6), and RCC,
equation (18.7).

Since land equivalent ratios are used in the calculations, they are computed first
and are given in the top part of Table 18.3. To illustrate, consider the mixture ABC.
L(h) � L(A) � 13.88/3(22.58) � 0.205, L(i) � L(B) � 2.08/3(1.64) � 0.423,
L(j ) � L(C) � 52.54/3(39.54) � 0.443, and LER(ABC) � 0.205 + 0.423 +
0.443 � 1.07. The number 3 in the denominator is used to put the sole crop
yield on a 12-plant or sole crop population basis. The three mixtures ABE, ACF,
and AEF had the largest LERs. Using the above computed values, the compe-
tition ratio or CR(h) values are computed next. For n � 3 crops in a mixture
with each crop occupying equal area, one-third of the area (4 plants out of
12) is devoted to a cultivar. Therefore, ph � 1

3 , 1 − ph � 2
3 , and CR(h) �

L(h)/( 1
3 )/(L(i)/( 1

3 )+L(j )/( 1
3 ))/2 � 2L(h)/(L(i)+L(j )). For the mixture ABC,

CR(A) � 2L(A)/(L(B) + L(C)) � 2(0.205)/(0.423 + 0.443) � 0.47, CR(B) �
2(0.423)/(0.205 + 0.443) � 1.31, CR(C) � 2(0.443)/(0.205 + 0.423) � 1.41,
and CR � 0.47 + 1.31 + 1.41 � 3.19. In the absence of any competition or
cooperation, each L(h) should equal 1

3 , each CR(h) should equal 1, and CR should
equal n � 3. Mixture ABE had the largest CR value, i.e., 3.29. The four mixtures
ABC, ABF, ACE, and AEF all had approximately the same CR values, i.e., 3.2.

A cultivar coefficient of aggressivity from equation (18.16) for a polyculture of
n � 3 cultivars is obtained as COA(h) � L(h)/ph−(L(i)/pi +L(j )/pj )/(n−1 �
2) � 3{2L(h) − (L(i) + L(j ))/2} for equal amounts of space, 1

3 , for each of the
three cultivars. Omitting the muliplier 3, the COA(h) values are given in Table 18.3.
For the mixture ABC, these are obtained as COA(h) � COA(A) � {2(0.205) −
(0.423 + 0.443)}/2 � −0.23, COA(i) � COA(B) � {2(0.423) − (0.205 +
0.443)}/2 � 0.10, and COA(j ) � COA(C) � {2(0.443) − (0.205 + 0.423)}/2 �
0.13. Note that the sum of the COA values for a mixture is zero. The largest negative
value, −0.23, occurred in the mixture ABC for cultivar A, and the largest positive
COA value, 0.29, occurred in the mixture ABE for cultivar B. The largest range
of COA values occurred with mixtures ABC, ABE, and AEF.
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TABLE 18.3. Competition Indices for the Data in Table 18.1.
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Relative crowding coefficients for each cultivar, RCC(h), are computed from
equation (18.6). For n � 3 and equal space allocated to each cultivar, RCC(h) �
2L(h)/(1−L(h)). For the mixture ABC, RCC(A) = 2(0.205)/(1−0.205) � 0.52,
RCC(B) = 2(0.423)/(1−0.423) � 1.47, RCC(C) = 2(0.443)/(1−0.443) � 1.59,
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FIGURE 18.6. Values of RCC(A), L(A), CR(A), and COA(A) for the 10 mixtures arranged
in ascending order of L(A).

and RCC =0.52(1.47)(1.59) � 1.22. The three mixtures ABE, ACF, and AEF had
the highest RCC values and also the largest LER values.

Since cultivar A appeared in all 10 mixtures, a graphical representation of the
various statistics L(A), CR(A), COA(A), and RCC(A) from Table 18.3 is given
in Figure 18.6. The other cultivars only have four such values and therefore are
not included. The COA(A) values have been multiplied by 3 to put them on the
same basis as the other competition indices and as given in equation (18.18). The
patterns for L(A) and RCC(A) are the same but with larger differences between
adjacent mixtures for RCC(A); i.e., the pattern is steeper for RCC(A) than for
L(A). The patterns for COA(A) and CR(A) are the same. However, the two pairs
of patterns are quite different in the rankings of the mixtures, meaning that they
are measuring different characteristics.

Instead of using single cultivar responses in Figure 18.6, the mixture responses
for the 10 mixtures are plotted in Figure 18.7 for LER, RCC, and CR. The first
two gave the same ranking of the mixtures even though the difference between
ranks was much larger for RCC. CR did not rank the mixtures in the same order
as the other two measures. The usefulness of the CR measure is not apparent in
this example. The individual CR(h) values appear more useful.

In order to obtain an error variance for any of these indices, it is suggested that the
index be computed for each cultivar and each mixture in each replicate. Then, an
ANOVA may be computed on these values to obtain estimated error variances for
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FIGURE 18.7. Values of LER, CR, and RCC for the 10 mixtures in Table 18.1 with mixtures
arranged in ascending order of LER.

L(h), CR(h), COA(h), RCC(h), LER, CR, and RCC. The statistical distributions
for these quantities are unknown, but since ANOVA procedures are fairly robust as
the number of observations increases, this procedure should suffice as a reasonable
approximation. Significance tests may be made to determine if CR(h) differs from
1, if L(h) differs from 1/n, if RCC(h) differs from 1, and if COA(h) differs from
0. L(h) values will become outliers in the sense of becoming very large when the
denominators are near zero. The residual mean square becomes inflated and most
likely biased upward.L(h) values will be affected adversely when the denominators
are near zero.

18.5 Linear Programming

Linear programming had its beginnings in the 1940s (e.g., see Campbell, 1965,
Glicksman, 1963, and Manakata, 1979) and has found usefulness in many fields
of inquiry. The idea of minimizing cost or material or of maximizing profit or gain
from alternative settings has become popular. One use of these ideas (Sprague and
Federer, 1951) was to maximize genetic advance by optimally allocating the num-
ber of replicates, locations, years, and maize variety entries. An example of using
linear programming for intercropping studies is given by DeSilva and Liyange
(1978). Paraphrasing Manakata’s (1978) description and putting it in terms of
intercropping, a linear programming formulation generally has this form:
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(i) v decision variables x1, x2, ..., xv all x greater than or equal to zero, (hectares
of each of v cultivars) are being considered.

(ii) v equations or constraints relating the x1, x2, ..., xv to the desired amounts
r1, r2, ..., rp of the p products; p may be equal, less than, or greater than v.

(iii) An objective function is available to maximize or minimize.

For example, a farmer may wish to grow v � 3 crops, maize (M), beans (B),
and castrol beans (C) and he desires to produce 10,000 kg of starch, 4000 kg of
protein, and 2000 kg of oil. Suppose M has 60% starch, 4% oil, and 10% protein,
C has 50% oil, 5% protein, and 10% starch, and B has 50% protein, 10% oil, and
20% starch (see, e.g., Martin and Leonard, 1949). From previous year’s yield data
or from experiments such as the one in Example 18.1, the kilograms per hectare
of starch, protein, and oil can be determined for each of the three crops. Armed
with such information, the farmer is in a position to determine how to optimally
allocate his hectares to achieve the desired goals. This type of information is useful
for government officials desiring to have specified amounts of p products given
that v cultivars are to be grown in their region. A cost function, H , for growing
each of the v cultivars is 1 ha per cultivar. The problem may be set up as follows:

Cultivars
Product 1 2 3 · · · v Goal = R

1 a11 a12 a13 a1v r1

2 a21 a22 a23 a2v r3

3 a31 a32 a33 a3v r3

· · ·
p ap1 ap2 ap3 apv rp

Cost = H 1 1 1 1

A is a p-by-v matrix of coefficients aij , H is a row vector of ones, R is a column
vector of the ri , and X is a column vector of the unknowns xj . The linear program-
ming problem is to minimize HX, the objective function, subject to the restrictions
AX ≥ R and X, and AX ≥ R represents the set of equations. The simplex method
(e.g., Campbell, 1965, Glicksman, 1963, and Manakata, 1979) was devised to ob-
tain solutions for such linear programming problems and is described below. The
first step is to set up the problem, which for our case is the matrix(

A′ Ip H′

R′ 0 f

)
,

where A′ is the transpose of the matrix A, Ip is the identity matrix (ones on the
diagonal and zeros elsewhere), 0 is a row vector of zeros, and f is a scalar which
for our case turns out to be the unknown total area in hectares. To solve for the X
matrix, the following steps are used:

1. Choose any column of A′ whose last entry is positive.
2. Find a pivot entry by dividing each nonzero entry of the selected column into

the entry in H′ and selecting the entry which has the smallest non-negative
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value. The row which includes the pivot is the pivot row and its values remain.
The entries in the last column of H′ need to be non-negative.

3. Make all entries in the selected column other than the pivot equal to zero. This
is done by a matrix row operation on the nonpivot rows.

4. Repeat steps 1, 2, and 3 on all other columns involving A′ until all entries in
the last row are nonpositive, i.e., less than or equal zero.

The solutions for X will appear in the part formerly occupied by the 0 vector.
Setting the result formerly occupied by f equal to zero, a solution for f , the total
effective area (TEA), a sum of the entries of X, is obtained. When v � p, we may
obtain a solution for X as X = A−1 R. However, the simplex procedure is described
first using the following example.

Example 18.4. Suppose three sole crops castrol beans (C), maize (M), and beans
(B) are to be grown and it is desired to produce 10,000 kg of starch, 4000 kg
of protein, and 2000 kg of oil. Further suppose that the following amounts are
produced:

Product C M B Goal
Starch 180 1,300 200 10,000
Protein 90 200 500 4,000
Oil 900 80 100 1,000
Cost = hectares 1 1 1

Putting the above in matrix form, we have

A �

⎛⎜⎜⎝
180 1300 200

90 200 500

900 80 100

⎞⎟⎟⎠ , R �

⎛⎜⎜⎝
10,000

4, 000

2, 000

⎞⎟⎟⎠ , and H′ �

⎛⎜⎜⎝
1

1

1

⎞⎟⎟⎠ .

Following the general procedure outlined above, we have

Step 1

(
A′ Ip H′

R′ 0 f

)
�

⎛⎜⎜⎜⎜⎜⎝
180 90 900 1 0 0 1

1, 300∗ 200 80 0 1 0 1

200 500 100 0 0 1 1

10,000 4, 000 2, 000 0 0 0 f

⎞⎟⎟⎟⎟⎟⎠
Step 2 Select column one. Then 1/1300 is less than 1/180 and 1/200, making

1,300 the pivot and row two the pivot row. An asterisk is used to denote this.
Step 3 Make the entries of the selected column other than 1300 equal to zero by

subtracting the appropriate multiple of row 2 (R2) from each of the other
rows (Ri) as follows:

R1 − 180R2/1300 � R1 − 9R2/65,

R3 − 200R2/1300 � R3 − 2R2/13,
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R4 − 10,000R2/1300 � R4 − 100R2/13.

Using the above matrix row manipulations, we obtain,⎛⎜⎜⎜⎜⎜⎝
0 62.308 888.923 1 −0.1385 0 0.8615

1, 300 200 80 0 1 0 1

0 469.231∗ 87.692 0 0.1538 1 0.8462

0 2, 461.538 1, 384.615 0 −7.6923 0 f − 7.6923

⎞⎟⎟⎟⎟⎟⎠ .

Step 4 Select column two and find the pivot which is 469.231. Make all entries
in column zero except 469.231 by the following row operations:

R1 − 62.308R3/469.231,

R2 − 200R3/469.231, and

R4 − 2, 461.538R4/469.231.

From these row operations, the following results:⎛⎜⎜⎜⎜⎜⎝
0 0 877.279∗ 1 −0.1181 −0.1328 0.7491

1, 300 0 42.623 0 1.0656 −0.4262 0.6402

0 469.231 87.692 0 −0.1538 1 0.8462

0 0 924.592 0 −6.8855 −5.2459 f − 12.1314

⎞⎟⎟⎟⎟⎟⎠ .

Step 5 Select a pivot in column three which is 877.279. Perform the following
row operations

R2 − 42.623R1/877.279,

R3 − 87.692R1/877.279, and

R4 − 924.592R1/877.279.

to obtain⎛⎜⎜⎜⎜⎜⎝
0 0 877.279 1 −0.1181 −0.1328 0.7491

1, 300 0 0 −0.0486 1.0713 −0.4197 0.6038

0 469.230 0 −0.1000 −0.1420 1.0133 0.7713

0 0 0 −1.0539 −6.7610 −5.1039 f − 12.9209

⎞⎟⎟⎟⎟⎟⎠ .

The number of hectares of C is 1.0539, of M is 6.7610, and of B is 5.1039.
Their sum is 12.9209 or approximately 13 hectares. The TEA is 12.9209
hectares.

When the number of crops equals the number of products, i.e., v � p, the
solution for the following three equations results in the above solutions within
rounding error:

180x1 + 1300x2 + 200x3 � 10,000,
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FIGURE 18.8. Hectares of C, M, and B to obtain 10,000 kg of starch, 4000 kg of protein,
and 2000 kg of oil.

0x1 + 200x2 + 500x3 � 4000,

900x1 + 80x2 + 100x3 � 2000.

To obtain solutions for these three equations, the following GAUSS program was
used:

Let A[3,3] = 180 1,300 200 90 200 500 900 80 100;
Let R[3,1] = 10,000 4,000 2,000; X = inv(A)∗R; X′;

The solution obtained was X′ � [1.0539 6.7608 5.1060], which is equal to the
above solutions within rounding error. For the three crops B, M, and C, a TEA
may be obtained graphically. A graphical solution is the intersection of the three
planes as drawn in Figure 18.8.

Example 18.5. For the particular three crops in Example 18.1, the protein and
starch from castrol beans is not suitable for human or animal consumption (Martin
and Leonard, 1949). Also, the oil in maize and bean when used for human con-
sumption is not recoverable. Consider the cropping system wherein the mixture
C:M:2B and the two sole crops M and B are to be grown. The object is to reach
the desired goal of producing 10,000 kg of starch, 4000 kg of protein, and 2000 kg
of oil under the above restrictions. The problem is to determine the hectarage for
each crop such that a minimum number of hectares will be used and to determine if
this number is less than growing the three sole crops as in Example 18.4. Suppose
the data are as follows:
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Sole C:M:2B
Product M B M B C Total
Starch 1,300 200 800 100 0 900
Protein 200 500 150 250 0 400
Oil 0 0 0 0 600 600

The solution for number of hectares for each crop is obtained by solving the
following three equations:

1300x1 + 200x2 + 900x3 � 10,000,

200x1 + 500x2 + 400x3 � 4000,

600x3 � 2000.

The solution for x3 is 2000/600 = 10/3 = 3.3333 hectares of the mixture in order
to reach the desired goal of 2000 kg of oil. x1 � 4.8634 hectares of maize and
x2 � 3.3879 hectares of beans and 3.3333 hectares of the mixture are required to
reach the goal of 10,000 kg of starch and 4000 kg of protein. The total number of
hectares required is TEA = 4.8634 + 3.3879 + 3.3333 = 11.5847, or 11.6 hectares.
This is a savings of 1.3 hectares, or 10%, over the cropping system of sole crops
in Example 18.4.

The above comparison does not take into account the starch and protein produced
by C and the oil produced by M and B as was done to find the TEA in Example
18.4. A more appropriate comparison is to find the TEA for the following data set:

Sole C:M:2B
Product M B C M B Total
Starch 1300 200 120 800 100 1020
Protein 200 500 60 150 250 460
Oil 80 100 600 60 50 710

The three equations to be solved are

1300x1 + 20x2 + 1020x3 � 10,000,

200x1 + 500x2 + 460x3 � 4000,

80x1 + 100x2 + 710x3 � 2000.

The solutions are x1 � 5.8125 hectares of maize, x2 � 4.2347 hectares of beans,
and x3 � 1.5655 hectares of the mixture C:M:2B. The TEA � 5.8125+4.2347+
1.5655 � 11.6127, or 11.6 hectares which is a 10% savings over using only the
three sole crops. The result did not change over what was obtained above for this
particular example.

18.6 Discussion

The yield results of Example 18.2 are striking, indicating that these particular three
cultivars demonstrated large cooperative effects. The mixtures of two cultivars do
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not indicate the results for mixtures of three crops, again demonstrating that infer-
ences from polycultures of two cultivars may not be useful for making inferences
of results for polycultures of three or more cultivars. The beneficial effects from
intercropping with the appropriate polycultures can be considerable as indicated by
this example. When a treatment design contains some or all possible combinations
of the m cultivars under consideration, general mixing ability, bi-specific mixing,
etc. effects may be obtained. When few combinations such as those described in
Example 18.2 are available, the methods of this chapter will be useful.

Federer and Basford (1991) and the references cited therein consider competi-
tion effects in a different manner than in this chapter. This means that the subject
of competition has many aspects and more than considered there and herein ex-
ist. There are the problems of how competition enters and is exhibited and what
are the factors contributing to competition. The effects of intimacy and spatial
arrangements need to be considered in combination with competition effects. If
competition effects are inhibitive, spatial arrangements may be used to eliminate
them. If competition effects are cooperative, spatial arrangements and intimacy
may be used to enhance them.

The calculations involved in the simplex method may appear tedious, but with the
aid of computers and computer software, these calculations may become routine.
Linear programming, even at the farm level, can be very beneficial to subsistence
farmers who have limited hectarage and who need sufficient food for the family.
Optimum allocations of sole and mixture crops may be computed for a number
of scenarios and distributed to farmers for guidance in allocating their limited
resources.

18.7 Problems

18.1 Using the data for cultivar E in Table 13.3, obtain the same calculations
as were obtained for cultivar A in Example 18.1 and compare the results
obtained for the two cultivars A and E. Give a graphical presentation of
results.

18.2 Complete the calculations described in Example 18.2 for each of the three
replicates. Then, obtain an ANOVA for these computed values and construct
standard errors of differences. Which, if any, of the mixture yields are sig-
nificantly different from predicted at the 10% level and at the 5% level of
significance? Give a graphical presentation of the results.

18.3 For the data of Example 18.2, compare the 12 entries with regard to the
mean method, the generalized half-hectare method, and the pure stand pro-
duction method. How do they agree with the LER method? Give a graphical
presentation of the results.

18.4 Replace the goal of 10,000 kg of starch, 4000 kg of protein, and 2000 kg
of oil with 10,000 kg of starch, 2000 kg of protein, and 5000 kg of oil.
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Perform the calculations described in Example 18.4 for the new goals. Give
a graphical presentation of the results.

18.5 Using the revised goal described in Problem 18.4, do the calculations
described in Example 18.5. Give a graphical presentation of the results.

18.6 For the mixtures ABD and BDF, the following yields are available:

Cultivar Mixture Sole Cultivar Mixture Sole
A 27.75 22.58 B 1.62 1.64
B 1.81 1.64 D 0.47 2.71
D 2.41 2.71 F 0.44 1.59

The yields are on a four-plant basis. The sole yields need to be multiplied by
3 to obtain a 12-plant or sole crop basis. Prepare graphs similar to Figures
18.1 and 18.3 showing cooperation or inhibition.

18.7 Consider the following two mixture and sole crop yields:

Cultivar Mixture Sole Cultivar Mixture Sole
B 4.00 1.64 B 1.64 1.62
C 60.75 39.54 D 2.71 0.47
E 9.19 8.96 F 1.59 0.44

Total 73.94 50.14 5.94 2.53

Prepare a graph similar to Figure 18.5 depicting the mixture yields and
their predicted sole yields and discuss any possible cooperative, inhibitive,
neutral, or compensatory effects.
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chapter 19

Application of Intercropping Procedures
to Other Fields

19.1 Introduction

The statistical designs and methods utilized in Volume I and in the preceding chap-
ters may be used in many other subject matter fields either directly or with slight
modifications. These techniques deal with agricultural systems but are general and
may be applied to many other systems. Dealing with the single components of a
system one at a time may be inefficient data analysis and may not yield the neces-
sary information. As has been demonstrated in the examples presented, one needs
to consider the entire system as a unit in addition to considering individual com-
ponents of the system. Considering only the individual components of a system is
useful but does not ferret out all the necessary information contained in the systems
and mixtures under consideration. For example, consider three prescribed drugs,
each of which may have no side effects or mixtures of two which may have no side
effect, but when all three are combined, the combination becomes carcinogenic.
The study of combining abilities (interaction) is essential in some experiments.

Some of the areas using mixtures and systems of treatments are discussed in the
following sections. Specifically, the areas discussed are as follows:

(i) agriculture,
(ii) ecology,

(iii) golf courses,
(iv) medicine and pharmacology,
(v) education,

(vi) exercise and aerobics,
(vii) engineering,
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(viii) marketing,
(ix) nutrition and diet,
(x) others.

19.2 Agriculture

There are many agricultural systems which involve multiple cropping in one form
or another. Some of these are as follows:

(i) rotation cropping,
(ii) relay or sequential cropping,

(iii) intercropping of crops with different lengths of growing seasons,
(iv) pasture studies of grass and grass–legume mixtures,
(v) intercropping in tree (orchard, paper, lumber) plantations,

(vi) double cropping,
(vii) cover crops with main crop or intercrop,
(viii) weeds and crops,
(ix) other areas.

As seen from the above list, agriculture is rife with examples involving systems of
multiple cropping situations.

Rotation cropping systems are of many and diverse types; see, e.g., Cochran
(1939), Crowther and Cochran (1942), Yates (1949), Patterson (1953, 1959, 1964).
To illustrate a type of rotation experiment, consider that three cultivars are to be
used and that these are M = maize, S = soybean, and W = wheat. Some possible
three-sequence experiment designs are

Design 1 Design 2 Design 3 Design 4 Design 5
Yr/Seq. 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 M W S M W S M W S M W S M W S
2 W S M S M W W S M W S M M W S
3 S M W W S M S M W S M W W S M
4 M W S M W S M W S S M W W S M
5 W S M S M W S M W W S M S M W
6 S M W W S M W S M M W S S M W
7 M W S M W S M W S M W S M W S
8 W S M S M W W S M W S M M W S
9 S M W W S M S M W S M W W S M
10 M W S M W S M W S M W S M W S
etc.

Design 1 has M following the legume S for the situation where M is the crop of
interest. Design 2 has W following the legume S in the cropping sequence but may
not be practical if the wheat variety is susceptible to lodging under higher nitrogen
levels. These two designs are the most commonly used ones in crop rotation studies.
Sometimes, three additional plots will be added to study the effect of continuous
cropping (sole cropping) of the three crops. Such continuous cropping plots could
be added to any or all of the above five designs. Design 3 was described by Federer
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and Atkinson (1964) as a tied-double-changeover design. It is of the Cochran et al.
(1941) and Williams (1949) type of double-changeover design which would use six
sequences and place the treatment sequences from years 4, 5, and 6 in sequences 4,
5, and 6. Direct effects and carryover effects of each of the three crops are obtainable
with the double-changeover designs. Designs 3, 4, and 5 allow the estimation of
carryover effects. Federer and Kershner (1998) show that direct-by-residual and
cumulative treatment-by-period interactions are obtainable when using Designs 4
or 5. More sequences of crops as described for the designs of Federer and Kershner
(1998) may be used to measure direct, residual, and cumulative effects in a shorter
time period of years. Note that the effects and interactions pertain to the particular
genotypes included in the treatment design for the rotation. Also, note that several
rotational systems may be included in the experiment by adding more sequences
of crops, with comparisons between systems being the ones of interest. A base or
standard rotation may be used for comparison of rotational systems in place of the
continuous cropping system.

A land equivalent ratio (LER) is useful in summarizing the results from rotation
experiments when continuous cropping sequences are included in the experiment
design. Let Yir be the yield of crop i, i � M, S, W, in the rotation and let Yic be the
yield of crop i when grown continuously on the same land area. If rotation cropping
is successful, the ratio Ri � Yir/Yic for crop i should be greater than 1. Since there
will be ratios Rhi for each year h, the ratios Rhi may be plotted graphically against
year h and a regression of the ratios Rhi on year obtained. A form of asymptotic
regression would be more appropriate than polynomial regression. The interest is
in the intercept, slope, curvature, and limiting value (asymptote) of the ratios Rhi

over time. To evaluate the cropping system, a sum of the ratios Rhi over crops
would be used for each year’s LER and a regression of the yearly LERs on years
could be obtained. The estimated direct, residual, and cumulative effects of the
crops could also be used in the LER analyses described above. For Design i, the
carryover or residual effects from S to M would be expected to be positive, as there
is a yield benefit of growing a legume preceding the growing of a grass species.
The carryover effect from M to W would likely be negative, as would the carryover
effect from W to S. If several rotational systems are included in the experiment,
comparisons among the intercepts, slopes, curvatures, and limiting values of each
of the systems may be made.

In addition to yields, the experimenter may be interested in the economic or value
returns of the system. Let phi be the value (or relative value to a base crop) of crop
i in year h. Then, for crop i in year h, the economic gain is Vhi � phi(Yhir −Yhic).
It may be desirable to standardize values by using ratios of prices as was explained
in Chapter 13 and in Chapter 4 of Volume I. The sum of the Vhi over i gives the
yearly values, Vh·, of the system. Regressions of the Vh· or the Vhi on years may
be used to further summarize the results. The ordinary t-statistic may be used to
compare crop i yields or values in a rotation and in continuous cropping or between
the yields or values of a crop in two different rotations.

Benefits other than increased yields and values are associated with crop rotations.
Better soil structure, lower soil erosion, and weed control are three possible bene-
fits. The increase in nutritional value of a grass following a legume over continuous
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cropping is another possibility. The trait soil structure may be hard to quantify, but
perhaps some measure such as the organic matter content of the soil could be used
as a measure of soil structure. The value of weed control, soil structure, and soil
erosion may also be quantified through crop yield. In addition to crop rotational
systems of intercropping, several other agricultural practices involve the sequential
growing of the same or different cultivars in the same or different years. One such
system is double cropping, which involves the growing of two crops sequentially
in the same year. Examples are wheat–wheat, soybean–soybean, soybean–wheat,
etc. A possible experiment design to study double cropping for two crops such as
W = wheat and S = soybean is as follows:

Sequence
Year 1 2 3 4 5 6 7 8 9 10
1 W W S S S W S W W S

W — S — W S — — W S

2 W W S S S W W S S W
W — S — W S — — S W

3 W W S S S W S W W S
W — S — W S — — W S

4 W W S S S W W S S W
W — S — W S — — S W

5 W W S S S W S W W S
W — S — W S — — W S

etc.

For the design in sequences 1 and 3, sequences 2 and 4 could be considered as
check treatments for continuous cropping by standard methods, and sequences 7
and 8 could be check treatments for a two-crop rotational system for the standard
method. Sequences 5 and 6 represent half-year rotational systems The other se-
quences involve double cropping procedures. Sequences 9 and 10 involve double
cropping the same crop within a year in a rotational system over years. Note that
the growing season for sequences 2, 4, 6, and 8 may overlap those in the other se-
quences, as the optimal growing season for the one crop per year would be selected
from the entire year and not limited to either the first half or the second half of the
year. Various combinations of the above sequences may be used for the treatment
design, depending on the goals of the experimenter. The above ideas are directly
extendible to three, four, or more cultivars in an agricultural system.

Ideas of summarizing the results from previous chapters may be used here as
well. Let Yhij equal the response (yield) for crop h in year i and sequence j . Land
use evaluations using an LER for year i would be of the form YWi1/YWi2 and
YSi3/YSi4 for continuous cropping, where YWi1 is the sum of the two wheat crops
in year i, YSi3 is the sum of the two soybean crops in year i, YWi2 is the yield of
W from one crop in year i, and YSi4 is the yield of S from one crop in year i. For
double cropping to be beneficial, each of the ratios should be greater than unity and
by a large enough margin to more than recover the additional costs of production
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of double cropping over single cropping. For the rotational cropping system, the
ratio of the W yields in sequences 5 and 6 (or 9 and 10) to those in sequences 7 and
8 form the LER. The same form is also used for the S yields. LERs of rotational
cropping to continuous cropping may be obtained using sequences 2 and 4 yields
for the denominator of the LER. For sequences 5 to 10, an LER for the system
may be formed from the sum of the ratios for the two crops S and W.

Economic, nutritional, or other evaluations of double cropping relative to single
cropping may be made as well. Wheat grown in a continuous double cropping
system may be lower in protein content than when grown in a single cropping
system or in a rotational system. The cost of producing a double crop is higher
than for one crop. Let phij be the profit from crop h in year i and sequence j .
Then, phijYhij is the profit derived from h in year i and sequence j . Ratios and
differences of the phijYhij values from the appropriate sequences may be used
to summarize the results from an experiment. Values other than profit may be
evaluated in a similar manner. In addition to the above analyses, regressions of the
above statistics on year may be used as described previously to obtain the intercept,
slope, curvature, and limiting values of responses.

Sequential cropping sytems using a cover crop is another topic receiving con-
siderable attention in the literature (see Chapter 20). Cover crops are grown in the
off-season for the crop of interest. They are used to control soil erosion, to improve
the soil structure, and to provide nutrients for the following crop. For example, a
legume may be planted in the fall after a maize crop is harvested, it may be used
for pasture or not, and the residue used as a green manure crop for the following
crop of maize or oat, e.g., which is spring planted. Also, instead of plowing the
cover crop under, a form of no-till or minimum tillage may be used in connection
with the cover crop. Some cover or green manure cropping systems that may be
useful for selecting a treatment design for three cultivars M = maize, W = wheat,
and S = soybean are as follows:

Sequence
Year 1 2 3 4 5 6 7 8 9 10 11 12
1 C C C — — — C C C — — —

M S W M S W M S W M S W

2 C C C — — — C C C — — —
M S W M S W W M S W M S

3 C C C — — — C C C — — —
M S W M S W S W M S W M

4 C C C — — — C C C — — —
M S W M S W M S W M S W

5 C C C — — — C C C — — —
M S W M S W W M S W M S

etc.

where C is the cover crop. Sequences 1–6 involve continuous cropping of M, S,
and W. Sequences 7–12 are three crop rotations with sequences 7–9 including
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a cover crop and sequences 10–12 without a cover crop. Sequences 1–3 and 7–
9 may be duplicated and no-till versus conventional tillage, fertilizer versus no
fertilizer, weed control versus minimum weed control, etc. treatments included in
the experiment.

For land use, protein content, calorie content, soil structure, soil erosion, etc., the
methods described above are directly applicable. If the economic value of a cover
crop system is used to summarize the result, the cost of growing a cover crop, the
value of the cover crop, and any other cost or value from the cover crop need to be
taken into account. Let phij be the profit from crop h in year i from sequence j as
before. Then, differences phijYhij − phij ′Yhij ′ , j �� j ′, or ratios phijYhij /phij ′Yhij ′

may be used to summarize the results for h � M from sequences 1 and 4, for
h � S from sequences 2 and 5, and for h � W from sequences 3 and 6. The
M, S, and W responses from sequences 7–9 may be compared with those from
sequences 10–12 to obtain the value of using cover or green manure crops in a
crop rotation system. In addition, to individual crop comparisons, the total profit
from all crops may be used in comparisons for sequences 7–12. The latest year’s
results or limiting value estimates for each crop as well as for all crops are useful
summary statistics for a cropping system.

Weeds (plants out of place) form a naturally occurring intercropping system.
Many studies are conducted on various forms of weed control or weed elim-
ination. The less that is spent on weed control, the greater the return from a
crop. This has led to studies on minimum weed control to determine the level
and density of weeds which do not detract from cultivar response. Just as in
other intercropping systems, certain levels and types of weeds may enhance
crop responses. If the presence of certain types of weeds is related to disease
or insect infestation and/or to erosion control, this is beneficial for the crop of
interest. The economics and effects of minimum weed control systems need to be
evaluated.

Another area of intercropping which receives considerable attention in the liter-
ature is pasture studies (see Chapter 20). Mixtures of several grasses and/or several
legumes in various combinations may form the treatment design of a pasture exper-
iment. In addition to mixture content, management, fertilizer, and other variables
may be investigated. Some of the treatment designs from Chapters 15 and 16 may
be useful for pasture studies. The concepts of general and specific mixing abilities
are useful here, just as they were for the experiments described in previous chap-
ters. The specific goals of a study determine the appropriate treatment design for
the investigation.

There are several ways in which a particular pasture treatment response may be
measured. Some of these are as follows:

(i) weight of harvested forage for the pasture mixture,
(ii) weights of the individual grasses or legumes in the mixture,

(iii) carrying capacity (number of animals) of the pasture mixture,
(iv) pounds of beef, mutton, etc. produced for the pasture mixture,
(v) nutritional content of the pasture mixture,
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(vi) economic return from a pasture mixture,
(vii) erosion control for a pasture mixture,
(viii) other.

Except for item (ii), only the total for a mixture is available, as it was for the
designs and analyses of Chapter 16. If sole crop responses for the cultivars in
a mixture are available, the mean method of comparing the mixture with sole
crop yields is a candidate for summarizing the results. For mixtures of two and
three crops, a mean value statistic (Chapter 18) is obtained as 2Y12/(Y1S +Y2S) and
3Y123/(Y1S+Y2S+Y3S), respectively, where Y12 and Y123 are responses for mixtures
of two and three, respectively, and YhS , for h � 1, 2, 3, is the sole crop h response.
Alternatively, the differences (2Y12 − Y1S − Y2S) and (3Y123 − Y1S − Y2S − Y3S)
may be used to make comparisons. If the response is weight of produce, taking
the mean weight of the sole crops may not be meaningful (Kass, 1978). If the
cultivars have similar weights, then taking an average of sole crop yields may be
meaningful. Since this is true for some pasture mixtures, the mean method may
provide a useful tool for summmarizing the results. Even for item (ii) above, hand
separation of the components of a hay mixture can be tedious, time-consuming,
and costly, and the experimenter may elect to use the total rather than individual
component weights for the mixture. In such cases, as well as for the other responses
listed above, the above ratios and differences should suffice for summarization of
results. These sums and differences may be computed each year and regressions
performed as described above.

Another important intercropping system is the interplanting of cultivars in
orchards for fruit, forests for lumber, trees for paper, tea plantations, coffee plan-
tations, grape vineyards, etc. (see Chapter 20). The intercropped cultivars may or
may not be harvested, pastured, or used in other ways. Instead, the intercrops may
be used to control erosion, for insect control, for disease control, as a shade or
supporting mechanism, or for other purposes.

Relay cropping (the interplanting of a second or even third crop into the area
where the first crop is growing) is another method of intercropping. For example,
in a maize–bean intercrop, where the beans are harvested before maize and with
1.75 meters, say, between pairs of maize rows, a third crop like oats may be planted
before the maize is harvested but after beans are harvested. In garden plantings,
relay cropping of a number of cultivars may be practiced with the idea of having
a continuous production of vegetables.

Some intercropping systems involve cultivars with different growing seasons.
For example, sugarcane may have a 1-year or a 2-year season. Cassava has a 1-
year season. These crops may be intercropped with crops which require a 3-month,
a 4-month, or even a 6-month growing season. Since a crop like sugarcane can
take 4–5 months to “close in” (develop a canopy), there is ample time to include
one or two short-season crops. Garden peas followed by onions may be used in
sugarcane plantings. Potatoes, dry beans, soybeans, maize for roasting ears, etc.
are crops that may be intercropped with sugarcane, cassava, and on rice paddies.
When one crop’s growing season is twice as long as a second crop and when two
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crops of the second crop is grown, land use, economic value, nutritional, and other
values are still useful for summarizing the results. For example, suppose two crops
of beans (melon, or maize) are intercropped with cassava. A land use statistic
would be

LER � Lc + Lb � Ycm/Ycs + (Yb1m + Yb2m)/(Yb1s + Yb2s),

where Ycm and Ycs are cassava yields in the mixture and as a sole crop, respectively;
Yb1m and Yb2m are yields for beans in the mixture for crops one and two and
Yb1s and Yb2s are the corresponding yields for the bean sole crops. For economic
values, one may use the ratio or difference of [pcYcm + pb(Yb1m + Yb2m)] and
[pcYcs + pb(Yb1s + Yb2s)] to compare mixture yields with sole crop yields. pc and
pb represent the value or profit per unit of yield for cassava and beans, respectively.
Melon may be used as a cover crop to control erosion during the first part of the
cassava growing season.

19.3 Ecological Studies

Many of the procedures described in Chapters 15–18 are directly useful for eco-
logical investigations. These studies involve plant associations and competition.
General mixing ability and specfic mixing ability concepts are useful in studying
plant associations. The ideas related to competition and measures of competi-
tion are intimately related to ecological investigations. Plant communities are
composed of many and varied species, and their population numbers are in-
fluenced by the type and number of plants and animals present. The makeup
of a plant community is greatly influenced by the temperature, the amount of
moisture, topology types, soil types, and other weather and topological related
characteristics. Many and varied relationships exist in the establishment and main-
tenance of a plant community. Ecological sytems are dynamic and evolving over
time.

19.4 Golf Courses

Golf course establishment and maintenance involves plant populations for the tees,
for the fairways, for the rough, and for the greens. This will continue to be true until,
if ever, artificial turf golf courses are constructed. The type of grass and legume
mixtures varies for each of the four components. The particular mixtures selected
for a course will depend on many things such as cost, moisture, temperature, soil
type, fertilizer usage, and traffic on the various parts of the course. In addition,
each of the 18 or so holes may require something different in order to meet the
standards set for the course. Par-three hole tees will have many more divots than
will par-four and par-five holes and thus may require different grass mixtures.
A response that is desired is “condition” of tee, fairway, rough, and green for



19.5 Medicine and Pharmacology 243

each hole as determined by the course manager. Mixtures requiring minimum
care will be less expensive to maintain and, hence, will make the course more
profitable.

19.5 Medicine and Pharmacology

An LER is a measure of land use. This measure may also be used as a measure of
material use in the pharmaceutical production of drugs. One method for doing this
is to include sequences using drugs A, B, and C, say, on a continuous basis (con-
tinuous cropping in agricultural terms). Rather than using the term land equivalent
ratio, we denote this as a material equivalent ratio (MER). For example, suppose
drugs A, B, C, and D are useful in treating a particular condition, and it is desired
to know if mixtures of two, three, and four drugs will enhance drug effectiveness
over using the single drugs (sole crops). If it does, then the quantity of drugs in a
dosage can be reduced, thereby saving or making more efficient use of the mate-
rial available. An MER greater than unity is required if there is to be a savings in
materials. If a 50–50 mixture of two drugs is more effective than either drug alone,
then the MER is greater than 1 and less material for the mixture will be required
to attain the same potency.

The concepts of general mixing ability, bi-specific mixing ability, tri-specific
mixing ability, etc. are pertinent to clinical trials on animals or people. For exam-
ple, drugs A, B, and C and the two-drug mixtures AB, AC, and BC may all be
noncarcinogenic, but the three-drug mixture ABC could be carcinogenic. Here,
the tri-specific mixing effect is important. In order to protect the participants in a
clinical trial, a participant may be given the individual drugs A, B, and C in periods
1, 2, and 3 in random order. Then, if there are no adverse reactions, the two-drug
mixtures AB, AC, and BC are given in periods 4, 5, and 6 in random order. The
three-drug mixture is not given until period 7. In experiments of this type, it is
necessary to determine that this method of presenting the treatments to the par-
ticipants does not affect the results by introducing biases. Some participants with
low drug tolerance levels may not be able to complete the seven-period sequence
of treatments. Previous trials on animals may not have these requirements and this
may allow the experimenter to predict whether or not adverse reactions may occur
in the trial on humans.

The statistical designs and analyses presented in Chapters 15 and 16 are directly
usable in pharmaceutical studies involving mixtures of drugs, vitamins, supple-
ments, etc. Almost all individuals using these items use more than one drug and
thus are using a mixture. Some individuals are using 10–20 different drugs and
vitamins. Their adverse effects on the human body are usually unknown if the ef-
fects are minor. Only major adverse and short-term effects are readily detectable.
Long-term effects on the kidneys, for example, may go undetected. Here, again,
experiments on animals may throw light on whether or not adverse effects exist. In
animal experiments, there may be no sequencing of treatments as described in the
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preceding paragraph. Instead of using a repeated measures design, the individual
drugs and mixtures may be applied in random order and perhaps to different sets
of animals, but long-term effects in this type of experiment go undetected. Even
though this design is used, it is recommended that the design to be used on humans
be tried on animals first. There can be cooperative, inhibitive, or neutral effects of
drugs on each other in mixtures. Assuming no interaction among drugs can prove
disasterous to the user.

A recent drug treatment involves giving “drug cocktails,” which are mixtures
of drugs. One such example is the drug cocktail used in the treatment of HIV-
infected individuals. The mixture of drugs slows the progress of the disease much
better than any of the components of the cocktail, indicating positive combining
ability (interaction) of some or all of the drugs. The drugs in the mixture may enter
in the amount used for individual (sole) drugs, they may enter the cocktail in a
replacement series style, or they may enter in some other amounts.

The different types of competitive effects described in Chapter 17 are discussed
in medical literature but under different names. The terminology used here is
neutral, inhibitive, and cooperative effects and the ideas used in medical literature
are identical to those used herein. This is another example of using the same idea or
procedure in two different subject matter areas and using entirely different names
for them.

Example 19.1. Federer (1991) presents a discussion of an experiment conducted
by Jellinek (1946) which involved a replacement series design of the following
nature:

Treatment A—the commercial drug as formulated with compounds
a + b + c

Treatment B—compound a and c with b omitted
Treatment C—compounds a and b with c omitted
Treatment D—a pharmacologically inactive placebo with all three

compounds omitted

Drug A was used in the treatment of headaches. Compounds b and c were in
short supply and it was desired to determine if a two-compound mixture was as
effective as a three-compound mixture. If B and C were as effective in treating
headaches as A, a smaller quantity of compounds b and c would be required.
Treatment D was included to distinguish between psychological and physiological
headaches. Many drugs may have several active compounds and it may be desirable
to determine the effect of eliminating some compounds as done in the above
experiment.

Example 19.2. Federer et al. (1977) discuss an experiment involving the treatment
of patients with induced asthama attacks. Two drugs, A and B, alone and a mixture
of the two drugs, A + B, were used. A placebo P was included to make four
treatments in the experiment. The mixture A + B was not given to a patient until
after A and B drug reactions on a patient were noted.
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19.6 Education

In obtaining an education, a student has several types of instruction in a variety of
subjects, all the way from kindergarten to postgraduate work at a university. The
size of the mixture of courses and subjects is often in the four to six range. The
sequence of courses as well as the mix has an effect on the progress of the student
in digesting the material presented. The type of presentation such as self-paced,
intructor paced, auditory, visual, computer aided, and correspondence (distance
learning) is another form of mixtures found in education. One or more of the
presentation types may be used in each course. Thus, there are two types of mix-
tures present. The type of presentation mixtures represent a replacement series
as discussed in Chapter 17. The subject matter courses have a variety of contents,
combinations, and sequences. The sequence of courses may have a profound effect
on the rate at which a student absorbs the material. For example, where should
a gym class, an aerobics class, or a dance class be placed in order to motivate
the student to perform better in the following class? Do students learn faster in
an English (or Mathematics) class that meets prior to or after a physically ac-
tive class? Do students learn faster if an English class is taken as a morning or
as an afternoon class? There is also a mixture of topics within a course, e.g.,
Statistics. Should the first course in Statistics contain only point and interval es-
timation, with hypothesis testing being relegated to the end of a second course?
Should all first courses contain the elements of statistical design, including sur-
vey, model, treatment, and experiment design? If hypothesis testing were not in
the first course in statistical methods, would it be possible to complete statistical
methods up through multivariate analyses (other than multiple regression) in one
term?

From the preceding, it is obvious that educational systems are made up of mix-
tures. Owing to the nature of educational instruction, the class of repeated measures
designs (see, e.g., Federer and Kershner, 1998) is important for research on educa-
tional systems. With minimal planning, many of the questions could be resolved
by conducting the research with ongoing classes. For example, in a high school,
there may be multiple classes of four, say, major subjects. A treatment design could
consist of different sequences of the four courses. By conducting the experiment
over groups of students in the same year or different years, data would be available
to determine the sequence of courses resulting in the highest level of achievement.
It may also be possible that students could classified into groups which would
perform best with different sequences of courses. For three courses, there would
be 6 sequences and for 4 courses, say E = English, H = History, M = Mathematics,
and S = Social Studies, there would be 24 sequences as follows:

p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
1 E E E E E E H H H H H H M M M M M M S S S S S S
2 H H M M S S E E M M S S E E H H S S E E H H M M
3 M S H S H M M S E S E M H S E S E H H M E M E H
4 S M S H M H S M S E M E S H S E H E M H M E H E
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This is a repeated measures design with s � 24 sequences of v � 4 treatments
(subjects) and p � 4 periods. It is a 4-row (period) by 24-column (sequence)
design. In such a design, the direct effect and residual effects are estimable. The
sequence totals as well as the four treatment means for each period are also of
interest.

Another area where questions arise is in the teaching of a second language.
Would the student become more proficient in a language if all courses in a
given year were taught in that language rather than taking a language course
over several years? Would teaching all courses in a year in the second lan-
guage be deterimental to the learning of the material in the non-second-language
courses? What mixture is best educationally and for what objective? Short courses
need to have the appropriate mixture of topics in order to be successful. Train-
ing courses will need the right mixtures in order to be optimally effective in
accomplishing a desired goal. In writing textbooks, the order and makeup of
topics is important and contributes significantly to the usefulness for reader
comprehension.

As indicated above, replacement series and sequential presentation of courses
are important concepts in educational research, just as they are in agriculture.
The concepts of general mixing ability and specific mixing ability of combi-
nations and sequences of a combination of courses are integral to educational
research. The ideas and procedures of Chapter 15–18 may be applied in this
area. The ideas of cooperative, neutral, and inhibitive competition effects of var-
ious components of the mixture are useful in interpreting the results of research
projects.

19.7 Exercise and Aerobics

Exercise and aerobics programs are a mixture of several procedures. Each in-
structor selects a mixture thought best for the class. In addition to these mixtures,
mixtures of foods and/or supplements are included when exercise is a part of a
dieting program. Stretching and other exercises are used before sports practices
or events and before dance classes. The particular mixture used is determined for
each activity. Frequency and duration of activities need to be considered. An ap-
propriate mixture of calisthenics and pre-practice exercises and practice times for
such sports as football may decrease the number of injuries players suffer. In order
to keep interest at a high level, aerobics and gym classes need a diverse mixture
of routines. Special exercise routines are developed for arthritic, heart, and other
patients. A mixture of exercise and nutrition is well known to be beneficial for
good health and well-being of both mind and body. Methods of measuring effects
of an aerobic or exercise program are often subjective and inferential rather than
being based on objective procedures. Sometimes, the effects are small and cu-
mulative, and need to be observed over long periods of time. For example, does
a program increase expected life span? How much does a program decrease (in-
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crease) cost and frequency of medical treatment in a 25-year period? How long
should the treatment period be in order to compare the effects of two competing
programs?

19.8 Engineering

Engineering and industrial activities of many and diverse types involve mixtures
of products or procedures. In building construction. e.g., the proportion and type
of metal reinforcement, sand, water, ash, and cement required to achieve a par-
ticular outcome needs to be determined for each construction or building project.
Floors, walls, and supports require different mixtures. Bridges, buildings, and
highways may have different requirements for a mixture. In the manufacture of
automobiles, camshafts, axles, engine blocks, spark plugs, etc. require various
alloys made up of mixtures of materials. Too much carbon with iron may make
the product too brittle and easy to break. Correct proportions of materials is es-
sential to obtain the desired quality of a product. The entire product, such as
an automobile, is a mixture of many products involving many alloys, plastics,
cloth, leather, etc. and this mixture must be ascertained in order to obtain the
desired product. The roadbeds of highways usually consist of a gravel base over-
laid with concrete formed from a mixture of cement, sand, ash, and water. A
replacement series experiment may be used to determine the proportion of each
of the above four components in the mixture required to obtain concrete of the
desired characteristics such as maximum longevity, minimum porosity to mois-
ture, ability to hold up under various types of vehicular traffic, etc. Recently, it
was reported that New York highway engineers rediscovered what the Romans
knew centuries ago when they built the Colosseum. If ash (about 24%) were added
to the cement, sand, and water mixture, the hardness was increased, the poros-
ity to water was reduced, and the longevity of the product was greatly increased.
Macadam is a pavement of layers of small stones, gravel, or sand bound together
with tar or asphalt. It was discovered by John L. McAdam (1756–1838), a Scot-
tish engineer. This mixture in various forms is a popular form of pavement for
highways worldwide. In some areas, the mixture contains ground-up discarded
automobile tires. There are experiments being conducted on many types of mix-
tures for highway construction. The following examples indicate some types of
mixtures.

Example 19.3. Box et al. (1978) present the following illustration as an example
of a replacement series experiment: “To reduce the amount of a certain pollutant,
a waste stream of a small plastic molding factory has to be treated before it is
discharged. State laws require that the daily average of this pollutant cannot exceed
10 pounds. The following 11 experiments were performed to determine the best
way to treat this waste stream”:
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Order of Chemical Temperature Pollutant
experiment brand (deg. F) Stirring (lb./day)

5 A 72 None 5
6 B 72 None 30
1 A 100 None 6
9 B 100 None 33

11 A 72 Fast 4
4 B 72 Fast 3
2 A 100 Fast 5
7 B 100 Fast 4
3 AB 86 Intermediate 7
8 AB 86 Intermediate 4

10 AB 86 Intermediate 3

The AB was a 50–50 combination of chemical brands A and B as would be used
in a replacement series treatment design. The 86◦F temperature is intermediate
between 72 and 100. It would have been informative if the experimenter had
added the four combinations of treatment AB at (72◦F, none), (72◦F, fast), (100◦F,
none), and (100◦F, fast). It is possible that AB at 72◦F with no stirring would have
been satisfactory. This would save energy in temperature and in stirring, and if
brand B were cheaper, this combination would be selected. If AB was effective
as a mixture, a replacement series experiment needs to be conducted to determine
the optimum proportion of the two ingredients.

Example 19.4. Anderson and McLean (1974) present the following example
measuring stress–rupture life of four alloys (mixtures) used to make turbine
blades in fanjet engines. Three blade temperatures during take-off of aircraft were
used:

Temperature Temperature Temperature
Alloy 1 2 3 Total Mean
a 185 182 182 549 183.0
b 175 183 184 542 180.7
c 171 184 189 544 181.3
d 165 191 189 543 181.0
Total 696 740 744 — —
Mean 174 185 186 — 181.7

The four alloys gave essentially the same means when averaged over the
three temperatures as did temperatures 2 and 3 when averaged over alloys.
One linear contrast accounting for a good share of the variation is the con-
trast of temperature 1 with the average of temperatures 2 and 3. A second
linear contrast which accounts for a large share of the remaining variation
is the contrast of the linear regression coefficient of stress–rupture on alloy
for temperature 1 with that from temperatures 2 and 3. These two single
degree of freedom contrasts account for most of the variation in this ex-
ample. The reader may wish to verify this by performing the necessary
computations.
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Example 19.5. Anderson and McLean (1974) discuss a situation wherein the time
in seconds of disintegration of 4 magnesium trisilicates for each of 10 tablets is
obtained. The four mixtures are

A = magnesium stearate (material going through 16 mesh)
B = talc powder (material going through 16 mesh)
C = liquid petrolatum (material going through 16 mesh)
D = magnesium stearate (material going through 20 mesh)

The results were

A B C D
20 42 8 12 50 124 151 178
28 25 10 24 67 72 125 151
36 24 12 10 90 78 180 152
16 31 16 19 103 70 140 161
25 33 9 10 90 76 175 118

Mean 28 13 82 154
Variance 60 26 431 436

Note the inequality of variances. Each of A, B, C, and D is a mixture of components
which needs to be determined in order to have a product that disintegrates in the
required time period.

Example 19.6. As explained in Chapter 17, linear programming involves de-
termination of a mixture to optimize cost, material, labor, etc. To illustrate,
suppose that two refineries make different amounts of three grades of gasoline,
A, B, and C, during a single run so that their amounts are in a fixed propor-
tion. Since the particular proportions made do not correspond with the needs
of a consumer, it has to be decided how many runs to obtain from each re-
finery in order to meet the requirements. The data might be of the following
nature:

Gasoline grade Refinery 1 Refinery 2 Needs of consumer
A 1 1 100
B 3 4 340
C 1 5 150
Cost/run $300 $500

How many runs should be obtained from each refinery in order to meet the
requirements and minimize cost?

Example 19.7. To control a certain crop disease, it is necessary to use 6 units of
chemical A, 10 units of chemical B, and 8 units of chemical C, i.e., in the ratio
6:10:8. Each of two different brands is sold in barrels containing the following
proportions:
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Chemical Barrel 1 Barrel 2 Required proportions
A 3 1 6
B 3 3 10
C 3 4 8

What mixture of barrels 1 and 2 should be used to obtain a 6:10:8 = 3:5:4 mixture
of the three chemicals?

Example 19.8. Two factories produce low, medium, and high grades of a product
in a daily run. An order specifying the number of tons of the three grades is received.
The question is to determine how many days to run each factory to fill the order.
The number of tons of each grade produced each day and the cost of a day’s run
are as follows:

Grade of product Factory 1 Factory 2 Tons ordered
Low 8 2 16
Medium 1 1 5
High 2 7 20
Cost/day $1000 $2000

The most economical plan is to run factory 1 for 3 days and factory 2 for 2 days.
This mixture of runs for the two factories produces the necessary amount with a
12-ton surplus of the low grade, but it is the most economical when using an entire
day’s output.

Example 19.9. An office manager has two groups performing three differ-
ent tasks in differing amounts. An order requiring different numbers of the
three tasks is received. The manager needs to decide to put group 1 on the
job for x1 days and group 2 on the job for x2 days. The situation is as
follows:

Task Group 1 Group 2 Number of tasks
A 8 2 16
B 1 1 5
C 2 7 20

Minutes required 1000 2000

Since the numbers are the same as the previous example, x1 � 3 days for group
1 and x2 � 2 days for group 2 will minimize the number of full days required to
handle the number of tasks.

Example 19.10. In the manufacture of marker flares, ingredients like magnesium,
sodium nitrate, strontium nitrate, and binder material are mixed together in varying
proportions to obtain the desired characteristic of the marker flare. A replacement
series experiment is conducted to obtain the desired product for visibility, for
brightness, for length of burning time, etc.

Example 19.11. In the production of stainless steel, a mixture of iron, carbon,
chromium, and other material is used. A replacement series experiment is con-
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ducted to determine the desired property of the product such as resistance to
staining, flexibility, brightness, and other characteristics.

19.9 Marketing and Transporation

Grocery, shoe, clothing, hardware, drug, electrical, houseware, lawn, furniture, etc.
stores sell a variety of products and often several brands of the same product. Shelf
and floor space are usually at a premium, and the store manager is faced with the
problem of how much shelf or floor space to devote to a product. The problem of
where to locate the product as well as which other products to display with it must
be determined for each mixture of products. In order to effectively promote one
product, it is necessary to determine where and how to display the product. The
appropriate mixture of adjacent products is required in order to maximize sales.
Experiments in grocery or drug stores will usually be using four to six shelves
for an experimental display. Optimal experiment designs to measure horizontal,
vertical, and diagonal competing effects of other brands on a product are yet to
be developed. Professor D. Raghavarao, Temple University, and the author have
constructed a particular design for this situation, but no general class has been
constructed.

In the transportation of automobiles from the manufacturer to the dealer,
automobile-carrying trucks are built to carry a certain mixture of types of cars
and trucks. To minimize transportation costs and to meet the orders from deal-
ers in an area, a mixture of types of trucks will often be required. Moving vans
face similar situations in that they are often carrying a variety of goods and have
several destination points. All types of transportation have a mixture of activities
and goods, and in order to be profitable and stay in business, costs need to be
minimized.

Example 19.12. Raghavarao and Wiley (1986) discuss an experiment design for
an experiment on soft drink preferences when the customer has a choice of one
of four soft drinks. Combinations of four of eight soft drinks were used in the
experiment. The eight soft drinks were

A = regular Coke B = diet Coke C = regular Pepsi D = diet Pepsi

E = regular 7-Up F = diet 7-Up G = regular Sprite H = diet Sprite

The scores and basic 3-design with parameters v � 8, b � 14, k � 4, r � 7,
λ � 3, and δ � 2 are as follows:
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Set A B C D E F G H
1 10 1 — 7 — — — 6
2 — 2 10 — 11 — — 1
3 — — 16 4 — 1 — 3
4 — — — 4 9 — 6 5
5 8 — — — 6 4 — 6
6 — 5 — — — 7 10 2
7 6 — 9 — — — 3 6
8 — — 10 — 4 5 5 —
9 8 — — 3 — 5 8 —
10 10 6 — — 6 — 2 —
11 7 6 8 — — 3 — —
12 — 6 5 7 — — 6 —
13 7 — 6 3 8 — — —
14 — 9 — 7 5 3 — —
Totals 56 35 64 35 49 28 40 29

They present various types of analyses and demonstrate what happens when some
of the soft drinks are removed from the shelves.

Example 19.13. A television station has two types of programs with each type
attracting different numbers of viewers. An advertiser puts certain requirements
on the proportion of time given to music and to advertisements as follows:

Item Program type A Program type B Requirement
Music 20 min 10 min 80 min

Commercial 1 min 1 min 6 min
Number of viewers 30,000 10,000

How many times should program type A and how many times should program B
be run in order to meet the requirements and maximize the number of viewers? A
and B are mixtures as are the mixtures of the two program types.

Example 19.14. A trucker has a mixture of 900 boxes of oranges, 700 boxes of
grapefruit, and 400 boxes of tangerines. Each possible market city has a different
mixture of prices for the fruits. Given the following prices per box, a city is selected
as the destination:

City Orange Grapefruit Tangerine
New York 4 2 3
Cleveland 5 1 2
St. Louis 4 3 2
Oklahoma City 3 2 5

The answer is St. Louis when the distance to market is the same.

Example 19.15. A trucking organization has three trucks which can carry three
types of machines but in different numbers. The minimum number of trips for
each truck in order to deliver a request for machines of the three types needs to be
determined. In tabular form, the problem is as follows:
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Machine Truck 1 Truck 2 Truck 3 Request
A 1 1 1 12
B 0 1 3 10
C 2 1 1 16
Machines/load 3 3 4

19.10 Nutrition and Diet

A variety of foods, breakfast cereals, breads, meats, vegetables, etc., are used in
diets with very few if any diets consisting of a single food. Mixtures of foods in diets
vary with activity, age, sex, health, race, and other attributes. The content of a food
is made up of many components such as fats (saturated and unsaturated), minerals,
carbohydrates, vitamins, and protein. An appropriate mixture of these components
is needed to determine the amount of food recommended for consumption in a diet.
In many cases, the amount of many of the components are listed on the package
cover. Different brands of food, say breakfast cereal, vary widely in amount of the
various components. A consumer may decide that in order to obtain the desired
amounts of each of the components, a mixture of breakfast cereals, say, is required.
Diets for certain medical situations may need to be determined, as, for example, in
the coagulation time for blood, for diabetics, for intestinal disorders, and for other
maladies.

Example 19.16. Four common breakfast cereals and their listed ingredients are

Frosted Shredded Wheat Raisin Bran Rice Krispies Corn Flakes
Whole wheat Whole grain wheat Rice Milled corn
Sugar Raisins Sugar Sugar
Brown sugar Wheat bran Salt Salt
Gelatin Sugar Corn syrup Malt flavor

Salt Malt flavor Corn syrup
Wheat flour
Malted barley
Honey
Corn syrup

Four to nine ingredients enter into the mixture called a breakfast cereal. Some
nutritional facts listed for these four breakfast cereals are as follows:

Cereal Fat Protein Carbohydrate Fiber Calories Sodium
Frosted Shredded Wheat 2% 4 g 15% 20% 190 0%
Raisin Bran 2% 4 g 16% 31% 190 13%
Rice Krispies 0% 2 g 10% 0% 160 15%
Corn Flakes 0% 2 g 8% 4% 100 13%

The percentages are of daily requirements from one serving (cup) of cereal. Pro-
tein is given by number of grams. For calories, the first two have almost twice
as much as Corn Flakes. One of the boxes for the cereals advertised that 13 “es-
sential” minerals and vitamins, and another said 10, were obtained from each
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serving. Many combinations of ingredients needed to be tried before arriving at
the present mixture. Designs and analyses like those in previous chapters are use-
ful in arriving at the final product. Likewise, many combinations needed to be
investigated to obtain the desired nutritional amounts, e.g., 0% sodium or 0%
fat.

19.11 Comments

As illustrated for many areas, the use of mixtures is a widespread phenomenon.
The determination of which mixture to use involves many and diverse methods
and many and diverse characteristics. The methods and procedures discussed in
this book can be used profitably in many areas. New procedures and methods
may, and probably will, need to be developed for many situations involving the
use and choice of mixrures. A mixture is a system and users must consider what
happens to the entire system and not just to each component individually. Con-
sideration of a part of the system and ignoring other parts of the system can
lead to failure of the system. The interactions of the components of the sys-
tem must be considered, as some are beneficial and others are detrimental to the
system.

A factorial treatment design is one form of mixture experiment which involves
n factors, with each factor having ki levels for factor i. This type of mixture
has been well discussed in the literature. The type of mixtures discussed in this
book involves n factors in the mixture with one prescribed level. A replacement
series is a particular kind of mixture wherein the addition of an amount of a
factor means other factor amounts must be decreased. Some of the intercropping
procedures involve a replacement series, but others do not. The factorial ideas
do not apply to the type of mixtures discussed herein. Replacement series ideas
as discussed by Cornell (1990), e.g., do not cover all the situations encountered
in intercropping experiments. The many kinds of mixtures found in the universe
of mixture systems may even need ideas beyond any of those discussed herein.
However, if any procedure for any type of mixture is usable, it should be used.
From the bibliography discussed in Chapter 20, it is obvious that several of the
procedures discussed in this book could be used beneficially to summarize results
from experiments.

19.12 Problem

19.1 List other examples and other areas where mixtures and/or systems of
treatments are used.
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chapter 20

An Intercropping Bibliography

Literature citations on intercropping studies date back many centuries. Early ref-
erences are given in The Holy Bible, Leviticus 19:19 and Deuteronomy 22:9–11.
Since intercropping in one form or another dates back to antiquity, there are no
doubt many references to intercropping over the ages. A bibliography for twentieth
century literature was prepared. More than 3000 literature citations appear in the
bibliography. Owing to the large amount of text space this would require, it was
decided not to include it in the present volume. Instead, copies of the bibliography
are available as follows:

(i) Hard copy of 124 pages.
(ii) Disk copy in Microsoft Word.

(iii) Biometrics Unit, Cornell University web site.

Copies of (i) and (ii) are available from the Biometrics Unit, 434 Warren Hall,
Cornell University, Ithaca, New York 14853, at a cost of $7.50 for (i) and $5.00
for (ii). These costs are to recover the cost of reproduction and mailing. The web
site for the Biometrics Unit is http://biom.cornell.edu and the e-mail address is
biometrics@cornell.edu.

As may be noted from the bibliography, there has been considerable research
activity on the many and diverse aspects of intercropping (see Chapter 19). It would
appear that many of these studies could have profitably used some of the statistical
design and analyses given in this volume in order to extract additional information
from their experimental data. This would have allowed for a more efficient use of
research resources. For example, the procedures given in Chapter 18 would have
been useful in extracting information for many of the studies.

The procedure followed to obtain the bibliography was as follows:
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(i) A computer search of the literature was made in 1983.
(ii) A computer search of the literature was made in July 1997 using the Cornell

University Gateway Library Resource Agricola.
(iii) A number of doctoral dissertations were obtained and literature citations

obtained from them.
(iv) Many reprints, technical reports, and papers on intercropping were obtained

and these were used to supplement references obtained from other sources.

The overlap of references in (i) and (ii) was minimal. The references from (ii) rep-
resented about one-half of the total references, indicating that computer searches
to date will not fully recover all citations. Also, despite the extensive search made
here, there are always some references that were missed, as is the case with any
bibliography. In compiling the bibliography, it was noted that there were errors
in citations given by the various authors. Efforts were made to obtain correct ci-
tations, but it is possible that errors still exist. In compiling bibliographies, it has
been noted that authors of scientific articles frequently make mistakes in their lit-
erature citations, probably because this is considered the least important part of
their papers. Some references were omitted when the citation was incomplete and
could not be verified.
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Aerobics 246
Amarela 36
AMMI 87
Augmented design 202
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Balanced incomplete block design
(BIBD) 145–148, 152, 159, 165,
177, 178

Behrens 58
Behrens–Fisher 43, 90
Biblends 91
Bi-specific mixing ability (BSMA) 102

et seq., 143 et seq., 163 et seq.,
243

Bi-specific mixing effect 17, 19, 39
Border effect 169

Canonical variable 9
Carryover effect 237
Chemical agriculture 6
Circle design 196-201
Coefficient of aggressivity (COA) 204,

221-225
Cochran 43
Coefficient of variation 25, 50

Combined analysis 125
Combined yield 215
Combining ability 235
Compensation 205, 206
Competition 168-172, 219, 231, 242

Model 1 169
Model 2 170
Model 3 171
Model 4 172

Competition index (CI) 204, 220
Competition model 169
Competitive ratio (CR) 204, 221-5
Competition design 170, 189
Competition effect 168
Computer programs 144
Confidence interval 51, 52, 64
Continuous cropping 238, 239
Cooperative effect 210, 213, 244, 246
Coriander sativa 22
Course sequence 245, 246
Cover crop 236, 239
Created variable 55, 57–60, 65, 86,

87
Crop value (V) 3, 4, 38
Cultivar effect 106 et seq., 144 et seq.,

163 et seq.
Cumulative effect 237
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Daily requirement 253
Density 16, 77-80, 84, 91, 96, 97, 99,

185, 186, 189, 192, 198, 204
Density level, 184, 190
Density-spacing 192, 193, 197
Diallel crossing design 144
Diet 253
Direct effect 237
Distribution

Bivariate normal 54
Cauchy 3
Gamma 3, 54
Log-normal 3

Dominance 221
Double changeover design 237
Double cropping 236, 238, 239
Drug Cocktail 244

Ecological system 242
Economic value 237, 239, 240, 242
Education 245
Engineering 247
Ex. 12.4 barley grain weight 21-28
Ex. 13.1 cotton-bean-maize 35
Ex. 13.2 castrol bean-maize-bean 35-6
Ex. 13.3 sorghum-cowpeas-maize-bean

36-7
Ex. 13.4 cotton-maize-bean-Capim

Coloniao-Capim Buffel 37-38
Ex. 13.5 biomass of six supplementary

crops 43-53
Ex. 13.6 cotton-maize-bean 55-57
Ex. 13.7 cotton-maize-bean created

variables 57-58
Ex. 13.8 biomass six supplementary

crops created variables 58-65
Ex. 14.1 maize-bean-melon densities

91-97
Ex. 15.1 biomass of supplementary

crops 112-113
Ex. 15.2 barley biomass 114-115
Ex. 15.3 biomass alfalfa (E) 118-120
Ex. 15.4 biomass for barley 121-125
Ex. 16.1 biomass of supplementary

crops 152-156
Ex. 16.2 biomass of seven crops

156-159
Ex. 16.3 biomass of supplementary

crops 160-163

Ex. 16.4 biomass of supplementary
crops 163-167

Ex. 18.1 replacement series 209-211
Ex. 18.2 Ex 13.2 as a replacement series

211-214
Ex. 18.3 competition indices for Ex.

18.1 222-225
Exercise 246
Experiment design (ED) 7, 144

Factorial arrangement 184, 190, 201
Factorial design 170, 173, 254
Fan design 193-195, 197, 199
Fractional replicate 15, 55, 81, 184,

190

GAUSS 152, 162, 163, 177
GAUSS program 154, 155, 157, 160,

162, 165, 167, 181
General combining ability 143, 144
General mixing ability (GMA) 102, et

seq., 143 et seq., 240, 243
General mixing effect 19, 28, 39, 47,

156
Genetic advance 225
GENSTAT 66
Golf course 242
Green manure crop 240

Half-hectare method 204, 215, 231
Half-normal probability plot 86

Industrial 247
Inhibitive effect 210, 213, 244, 246
Interaction 18, 40, 92, 171, 172, 191,

192, 235
Intercropping

Goals 2
Rules 1

Intimacy 184, 185, 189, 194, 196, 212

Kaffka 21, 22
k-factor interaction 104

Land equivalent ratio (LER) 2, 35, 38,
54, 56, 60, 61, 204, 205, 216,
217, 221-225, 231, 237, 239,
242, 243

Land use 240, 242, 243
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Latin cube 171
Latin square 146

Cyclic 145–147
Orthogonal 147, 148, 150,

Lens esculentum 22, 113
LER* 55, 57
Leucaena leucocephalia 6
Limiting value 237
Linear combination 9, 53, 54, 55
Linear programming 204, 225 et seq.
Literature search 256
Lotus corniculatus 23

MacIntyre 220
Maia 36
MANOVA 55, 84, 87
MAPLE 70, 75, 103, 139, 152, 160,

170, 177
MAPLE program 140, 141, 157, 183
Marketing 251
Material equivalent ratio (MER) 243
MATHEMATICA 74, 75, 103, 139,

152, 160, 170, 177
MATHEMATICA program 140, 141,

142, 183
Matricaria chamomille 23
McAdam 247
Mean method 204, 215, 231
Mean value 241
Medicago sativa 23
Minimal balanced designs 177
Minimal treatment design 7, 102, 105,

106, 107, 111, 160
Missing observations 43, 44,
Mixture treatment design 208
Monetary value 55
Multiblends 91
Multivariate analysis 9, 55
Mutual cooperation 205, 206, 207, 209,

213, 214
Mutual inhibition 205, 206, 208, 210,

213

Neutral competition 205, 208
Neutral effect 210, 244, 246
Nonadditivity 26
Normal equation 68, 71
Nutrition 253
Nutritional value 239, 242

Okigbo 196–198
One-nth hectare method 215
Optimal design 208, 209, 251
Optimal incomplete block design 147
Optimal yield 54
Optimum allocation 225, 231
Optimum level 185
Orientation 184, 185, 189, 196, 197,

199, 201, 202
Outlier 52

Pairwise balance 145
Parsimonious arrangement 184, 191,

192, 193, 198, 201, 202
Parsimonious treatment design 80
Partially balanced incomplete block

design (PBIBD) 145–147, 152
Pasture 236, 240
Pivot entry 226
Pivot row 227
Plant association 242
Polynomial regression 84
Predicted sole crop yield 207, 208, 210,

211, 214
Production method 204
Pure stand method 204, 216, 231

Quat-specific mixing ablility (QSMA)
102 et seq., 123, et seq., 167 et
seq.

Quint-specific mixing ability (QuSMA)
104

Rank correlation 23, 27
Relative calories 54
Relative crop value (RV) 4
Relative crowding coefficient (RCC)

204, 217, 218, 219, 221-225
Relative economic value 54
Relative land equivalent ratio (RLER)

3, 54, 99
Relative reproductive rate (RRR) 204,

218, 219
Relative system value 99
Relative total calories (RC) 4
Relative yield 2
Relative yield total (RYT) 216
Relay cropping 236, 241
Repeated measures design 244-246
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Replacement series 99, 185 , 204 et
seq., 246, 247, 254

Residual effect 237
Residuals 23, 64
Resolution III 81, 191
Resolution IV 81
Resolution V 81, 82, 86, 190
Resolution VI 81
Resolution VII 81, 82
Response equation 17, 68, 70, 83, 130,

179
Response function 80, 84
Response model 15, 39, 94, 102,

106-108, 150, 151, 159, 167,
169, 171

Response-density 87
Robson 23
Rotation cropping 236 et seq.

SAS 66
Saturated design 7
Saturated fraction 82, 190, 191
Sequential cropping 236, 239
Simplex method 226, 227
Snail design 198, 199, 200, 202
Sole crop density model 83 et seq.
Spatial arrangement 184-186, 189–191,

193, 212
Spearman 23, 27
Specific combining ability 143, 144
Specific mixing ability 103, 240
Stress-rupture 248
Studentized range 155
Substitutive method 185
Supplementary crop 13, 14, 16, 18, 29, 31
Supplemented block design (SBD) 146,

147, 148, 156
Sustainability 5, 6
Sustainable agriculture 5, 6

TD minimal 145, 150, 177

TD saturated 150, 152, 160
Tied-double-changeover design 237
Top-crossing 145
Total calories (C) 4
Total effective area (TEA) 204, 217
Transportation 251
Treatment design (TD) 7, 8, 15, 35,

38, 110, 144, 147 et seq., 168,
177

Treatment design minimal 110, 144
Treatment response 240
Tree cropping 236
Tree plantation 241
Tri-specific mixing ability (TSMA)

102 et seq., 143 et seq., 164 et
seq. 243

Tri-specific mixing effect 17, 19, 39
Tukey 26

Uso Equivalente de Tierra 216

Vagem roxa 36
Variance 73, 117, 118, 129, 131, 137,

140, 141
Variance component 46,
Variance equality 45,
Variance heterogeneity 58
Variance homoscedastic 43
Variance unequal 90
Variance-optimal fraction 190, 191
v-specific mixing effect 18

Weeds 236, 240
Wood 23

Yield-density 8, 78, 87, 89, 98, 185,
192, 193, 200, 201, 220

Yield-intimacy 201
Yield-orientation 201
Yield-spatial 192, 201
Youden design 146
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