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Preface 

Indoor air pollution is becoming a serious problem. This is especially 
pertinent in situations where sick building syndrome, under design air 
flow, and contaminant dispersion occur. Recent interest in homeland 
security and the aftermath of terrorist activities have created a desire 
among many governmental agencies to more fully understand interior 
pollutant dispersion and risk assessment. It is the intention of this book to 
acquaint the reader with enough information to begin using various 
modeling tools for assessing indoor air pollution. There are many levels 
of models, ranging in sophistication from simple analytical expressions 
to elegant, 3-D schemes for solving the Navier–Stokes equations for 
fluid flow and species transport. The level of modeling effort resides 
ultimately with the user, and the desired level of accuracy. While 3-D 
numerical schemes based on finite difference, finite volume, or finite 
element techniques provide elegant solutions, they also require a great 
deal of understanding, patience, and computational resources. Analytical 
solutions, while fast and simple, may be orders of magnitude off in 
comparison to actual values. This book presents these most common of 
numerical and analytical tools that can be used for modeling indoor air 
pollution and the types of problems where a particular model is best 
suited. 

Chapter 1 presents an overview of indoor air pollution, types of 
ventilation systems, exposure, and general modeling techniques. Chapter 
2 discusses the governing mathematical equations that serve as the basis 
for modeling air pollutant and flow patterns. In Chapter 3 a general 
discussion of contaminant sources routinely associated with indoor air 
quality assessment studies is given, with a presentation on particulates 
and evaporation of droplets. Assessment criteria are described in Chapter 
4, including what to consider in exposure levels as well as economical 
issues associated with design. Chapter 5 introduces the fundamental 
analytical tools, along with advection and the classic box model 
approach, for performing simple model simulation, including their 
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limitations. The dynamics of particle motion, including particle drag and 
flow in inlets and flanges, are given in Chapter 6. Chapter 7 describes the 
fundamental numerical approaches commonly used in CFD-type 
simulations, which are based on finite difference, finite volume, and 
finite element techniques. Additional discussions are given in Chapter 8 
on more advanced methods that include boundary element, particle-in-
cell, and meshless methods, which is relatively new. Several modeling 
examples are included. In Chapter 9, an extensive description of 
turbulence modeling is presented with consideration to both finite 
volume and finite element techniques. A time-dependent, two-equation 
closure model is presented in detail using the finite element method with 
adaptive meshing; results are shown for example problems. Issues 
regarding homeland security and the potential threats attributed to 
terrorist activities are discussed in Chapter 10, including an example 
scenario. 

The examples and computer techniques discussed in the book are 
available on the web. The website is: www.iaqcodes.com. We have 
elected to write the majority of the codes in MATLAB. The website lists 
locations where you can also find FORTRAN and C/C++ versions of 
some of the example codes. We have found that most engineering 
graduates today as well as science and engineering students are familiar 
with MATLAB, and prefer using it as their primary coding environment. 
We have also used COMSOL to run the example problems. COMSOL, 
with headquarters in Sweden, is a very versatile multiphysics finite 
element package used throughout the world; the package permits easy 
interface and flexibility in setting up problems, along with MATLAB 
scripting. Many universities and companies are now using COMSOL. In 
addition, an adaptive finite-element based model that can be used for 
indoor air pollution is also available from the authors. This model utilizes 
h-adaptation (mesh refinement) to accurately simulate the dispersion of 
contaminant within any shaped interior.    

Darrell W. Pepper 
David B. Carrington 

2008 
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Chapter 1 

Introduction 

The study of indoor air pollution has evolved into a unique discipline 
requiring knowledge in several areas. One must be adept at 
understanding fundamental principles of fluid mechanics, species 
transport, heat transfer, and systems engineering. Today, buildings have 
become complex entities with considerable electronic control features 
embedded within the structures. Of particular concern are issues 
involving contaminants that routinely enter or lie dormant within 
building interiors, and their effects upon human health. Articles can be 
commonly found in newspapers printed throughout the world describing 
groups of people becoming sick while staying in a hotel, cruising on a 
ship, or traveling in planes or buses. 

Today, efforts to define and describe pollutant transport within 
buildings and interiors has become complex. Modeling pollutant 
transport within indoor environments now requires knowledge of 
computational tools and techniques that were utilized only in research 
laboratories a few years ago. Knowledge of fundamental principles of 
ventilation and building systems, including HVAC, must now be coupled 
with computational fluid dynamics techniques in order to accurately 
assess human health and predict contaminant exposure. We begin with a 
brief background in understanding exactly what is meant by indoor air 
pollution. 
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1.1. What is Indoor Air Pollution 

The study of indoor air pollution (IAP) involves dealing with the 
emission, accumulation, and assessment of pollutants generally attributed 
to poor ventilation and air exchange. Of particular concern are issues 
involving air quality and human comfort within buildings. Toxic fumes 
and airborne diseases are known to produce undesirable odors, eye and 
nose irritations, sickness, and occasionally death. Other products such as 
tobacco smoke and carbon monoxide can also have serious health effects 
on people exposed to a poorly ventilated environment; studies indicate 
that indirect or passive smoking can also lead to lung cancer. 
Recommendations for outdoor airflow rates to dilute indoor polluted air 
vary considerably.  

1.2. Ventilation Systems 

Ventilation systems are designed to either prevent contaminants from 
entering a room or remove contaminants from interior sources within the 
room. Since ventilation systems are integral to the study of indoor air 
pollution, it is prudent to at least identify them.  

 
Fig. 1.1 Schematic of a typical ventilation system. 
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 A ventilation system consists of several key components: (1) the 
contaminant source, (2) an exhaust hood, (3) an air mover, (4) ducts and 
fittings, (5) makeup air, (6) exhaust air, (7) a pollutant removal device, 
(8) a discharge stack, and (9) air recirculation. Variations of these 
components are typically found in most ventilation systems designed to 
deal with indoor air quality and pollutant removal. Figure 1.1 shows a 
schematic overview of a general ventilation system.  

In particular, the contaminant source typically consists of particulates, 
gases, and vapors generated by various activities. An exhaust hood is 
used to contain contaminants emitted from a source, e.g., hoods are used 
to cover grills in kitchens, an air mover, or fan, is used to draw air into a 
hood ducts and fittings make up the piping network connecting the hood 
to the fan, makeup air is air that is brought into the room from the outside 
– this air is usually temperature and humidity controlled, exhaust air is 
the air discharged from the room, a pollutant removal device is a specific 
piece of equipment used to remove excess contaminant from the room 
(when environmental standards are exceeded), a discharge stack is a 
stack that exhausts air into the atmosphere, and air recirculation is air that 
is returned into the room (clean air).  

These components are fairly common in rooms containing ventilation 
systems, especially industrial settings that deal with dirty environments. 
More detail describing these components and their proper selection can 
be found in the ASHRAE Handbook (1981) and the textbook by 
Heinshohn (1991).  

1.3. Exposure Risks 

The assessment of risk attributed to exposure from hazardous materials is 
a formal field of study. A great deal of effort was spent in developing 
risk limits during the early years of the nuclear industry, i.e., in the 
design and operation of nuclear reactors. A significant amount of 
mathematical development and theory exists on the subject (see Brain 
and Beck, 1985). 

Assessing risk requires information dealing with the types and 
amounts of hazardous material and the percent discharged to the 
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environment. It is essential that one have a good grasp of the materials 
and processes being undertaken before an accurate assessment of risk can 
be made. For example, there are over 56,000 manufactured or imported 
substances used in industrial operations (defined by the EPA in response 
to the Toxic Substances Control Act). The National Institute for 
Occupational Safety and Health (NIOSH) also lists a registry of toxic 
effects of chemical substances (RTECS). Likewise, the Occupational 
Safety and Health Administration (OSHA) maintains a list of toxic and 
hazardous materials. These registries are updated every few years and 
can be obtained from respective agency websites.  

Risk is generally depicted in terms of events per year (usually a small 
number) and uncertainty (%). Exposure limits are usually depicted in 
parts per million or billion, denoted as PPM or PPB, or can be expressed 
in terms of milligrams per cubic meter (mg/m3). For example, the risk of 
getting cancer due to smoking cigarettes (1 pack/day) is 3.6 x 10-3 
(annual risk) or a factor of 3 (order of magnitude) in percent. The 
permissible exposure limit for acetone, for example, is 750 PPM; 
respirable dust from working with marble is around 5 mg/m3. Table 1.1 
shows a list of some common materials and activities and their 
permissible exposure limits.  

Table 1.1  Permissible Exposure Limits of Several Materials and Activities  

Material or Activity Annual Event % PPM mg/m3 
smoking 3.6 x 10-3 10-3   
chloroform in  drinking water 6 x 10-7 10-7   
acetone   750  
chlorine   0.5  
fluorine   0.1  
ozone   0.1  
mercury vapor    0.05 
marble dust (respirable)    5 
grain dust (oat, wheat, barley)    10 
wood dust     5 

 
While one can envision various techniques used to establish risk, 

there is a simple technique to obtain a human exposure dose (Ames et al., 
1987). This Human Exposure Dose index is related to the Rodent 
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Potency Dose, or HERP, and relates the carcinogenicity of certain 
chemical agents to animal cancer tests. While one cannot use animal 
cancer tests to exactly predict human risk, the index does provide a good 
guide for establishing priorities and potential carcinogenic hazards. The 
HERP is defined as 
    50HERP daily lifetime human dose (mg / kg) X rodent TD (mg / kg)= , (1.1) 

where TD50 are values taken from a data base for 975 chemicals (Ames 
et al., 1987). Table 1.2 lists several HERP values commonly encountered 
by humans. 

Table 1.2  Risk Based on HERP Index (from Ames et al., 1987) 

Daily Human Exposure Dose (μg/70-kg person) HERP (%) 
Chlorinated tap water Chloroform 0.001 
Swimming pool Chloroform 0.008 
Conventional home Formaldehyde 0.6 
Mobile home air Formaldehyde 2.1 
Beer (12 oz) Ethyl alcohol 2.8 
High exposure farm worker Ethylene dibromide 140.0 

1.4 Numerical Modeling of Indoor Air Flow  

In recent years there has been extensive activity in the development and 
use of Computational Fluid Dynamics (CFD) software and special 
programs for room air movement and contaminant transport applications. 
These investigations range from the prediction of air jet diffusion, air 
velocity and temperature distribution in rooms, spread of contamination 
in enclosures, to fire and smoke spread inside buildings. In most cases 
the predicted results have been promising when compared to available 
experimental data. However, numerical modeling of ventilation and 
associated interior contaminant transport is still at an early stage of 
development and confidence level. A considerable amount of research 
and development work is still needed, particularly in the areas of more 
efficient computational schemes, irregular and adaptive grids, turbulence 
modeling and wall functions. 
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One of the earliest attempts to numerically simulate airflow in rooms 
was conducted by Nielsen (1974) using the stream function-vorticity 
approach for the dependent variables, along with a two-equation (k-ε) 
model for turbulence based on the numerical procedure developed by 
Gosman et al. (1969). The computations produced realistic room flows, 
but was limited to 2-D. Numerous papers have appeared over the years 
utilizing the stream function-vorticity approach for simulating 2-D flows 
within enclosures; however, the approach is practically limited to 2-D 
flows, and does not permit one to easily incorporate turbulence and 3-D 
effects inherent in actual ventilated enclosures. Efforts were later 
undertaken by Hjertager and Magnussen (1977) using the finite volume 
approach and the SIMPLE algorithm developed by Patankar and 
Spalding (1972) to solve the 3-D primitive equations of motion with the 
k-ε two-equation model for turbulence. They modeled the flow from an 
air jet exhausting into a rectangular room with two ceiling exits. While 
the point of jet separation from the ceiling was well predicted, the 
predicted velocity of the jet near the lower region of the room was higher 
than the measured value.  

Gosman et al. (1980) extended their two-dimensional finite volume 
model to solve isothermal flows within 3-D enclosures with small 
ventilation openings. They achieved good correlations of velocity 
profiles and jet velocity decay with measurements. Sakamoto and 
Matsuo (1980) similarly predicted 3-D isothermal flow in a room using 
the marker and cell (MAC) technique (Harlow and Welch, 1965) and two 
turbulence models: the k-ε approach and the large eddy simulation (LES) 
technique (Deardorff, 1970). Results compared favorably with measured 
velocity profiles; they recommended that the k-ε approach for turbulence 
be used for room flow predictions over the LES model because it is 
simpler to use and requires less computing time for comparable accuracy. 
A computer program called CAFE, developed by Moult and Dean 
(1980), was used to solve the 3-D velocity components, temperature, 
concentration, and k-ε turbulence parameters for flow in industrial 
enclosures and clean rooms. Results were in good agreement with 
measurements in regions where velocities were large. 
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Murakami et al. (1987) investigated the three-dimensional airflow 
and contamination dispersion in six (rectangular) types of ceiling supply 
clean rooms both numerically and experimentally for isothermal flow. 
They used the MAC method coupled with a central difference approach 
for the velocity components, and a second-order upwind scheme for k, ε, 
and concentration, to solve the transient transport equations. Results 
showed good agreement between prediction and measurement, as well as 
some interesting flow phenomena regarding the spread of a jet exhaust as 
it reached the floor. Awbi (1989) numerically solved 2-D air flow and 
temperature distributions within rooms with diffusers and various vent 
locations in an effort to simulate 3-D effects; the 2-D non-isothermal 
predictions compared well to measured vertical velocity and temperature 
profiles in the room. An early historical discussion and descriptions of 
numerical methods for solving 2-D and 3-D ventilation and contaminant 
transport is given by Awbi (1991). A collection of chapters dealing with 
various issues regarding the modeling of indoor air quality and exposure 
was published by the ASTM (edited by Nagda, 1993). An overview of 
indoor climate and air quality issues is discussed by Hoppe and Martinac 
(1998). A detailed discussion of fire dynamics within enclosures, 
including modeling, is given by Karlsson and Quintiere (2000). More 
recent descriptions of modeling efforts can be found in such journals at 
Numerical Heat Transfer, the ASHRAE Transactions, Indoor Air, and 
other related technical journals. Today, one can simply log onto Google 
and do a search on indoor air quality to find numerous articles dealing 
with the many facets of IAQ. 

1.5 Comments 

The study of indoor air pollution and ways in which to assess and 
evaluate contaminant transport and exposure can quickly become 
overwhelming. There are numerous techniques and schemes now being 
used to examine IAQ issues, and new developments underway in many 
research facilities and universities.  
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While a solid background in engineering or science with familiarity in 
basic numerical methods is a plus, it is not critical that one be well 
trained or experienced in the intricacies or details of such fields. Much of 
the information and numerical schemes addressed in this text can be 
quickly digested and tried. Experience and confidence in dealing with 
indoor contaminant problems comes from repeated use and application of 
some of the tools addressed in this text.  
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Chapter 2 

Fluid Flow Fundamentals 

The underlying physics associated with indoor air pollution and 
ventilation resides in the governing equations for fluid motion, heat 
transfer, and species transport. These equations stem from the time 
dependent form of the general partial differential transport equation. 
While the equations have been known for over 150 years, they are 
nonlinear in their most complex (i.e., full physics) forms. Reducing the 
equations to permit analytical or empirical solutions has been a challenge 
for many decades. Only since the advent of the digital computer have the 
full set of equations become tractable, even if coarsely approximated. We 
begin with the full form of the set of governing equations, then examine 
simplifications that can be made which often can be used to provide 
quick, reasonable estimates – in lieu of employing more advanced 
numerical schemes to yield approximations.     

2.1 Conservation Equations 

The partial differential equations that describe the flow of fluid, heat, and 
concentration are all based on the conservation of mass, momentum, 
thermal energy, and species concentration. The dependent variables are 
the velocity components, temperature, concentration, and some 
turbulence variables to account for turbulent flow. These governing 
equations are generally written in the following form:  
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Conservation of Mass 

  
u v w

 0,
t x y z

∂ρ ∂ρ ∂ρ ∂ρ
+ + + =

∂ ∂ ∂ ∂
  (2.1) 

 Conservation of Momentum 
x-direction 

 xyxx xz
x

u u u u p
( u v w )  f

t x y z x x y z
,∂ ∂ ∂ ∂ ∂ ∂σ∂σ ∂σ+ + + = − + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
ρ  (2.2) 

y-direction  

 yx yy yz
y

v v v v p
( u v w )  f

t x y z y x y z
,∂ ∂ ∂ ∂ ∂ ∂σ ∂σ ∂σρ + + + = − + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (2.3) 

z-direction 

  zyzx zx
z

w w w w p
( u v w )  f

t x y z z x y z
,∂ ∂ ∂ ∂ ∂ ∂σ∂σ ∂σρ + + + = − + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 (2.4) 

Conservation of Energy 

 yx z
p

qT T T T q q
( u v w )  Q,c

t x y z x y z

∂∂ ∂∂ ∂ ∂ ∂
ρ + + + = + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (2.5) 

Species Concentration  

 

xx yy zz

C C C C
u v w   

t x y z
C C C

( ) ( ) ( ) SD D D
x x y y z z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂ ∂ ∂

, (2.6) 

where ρ is density, u, v, and w are horizontal, lateral and vertical 
velocities, respectively, p is pressure, T is temperature, fx,y,z are velocity 
body force terms, Q and S are source/sink terms, and Dxx, Dyy, and Dzz 
are the species concentration diffusion coefficients. The normal and 
tangential viscous stress terms are defined as 
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xx yy

zz xy yx

xz zx yz zy

2 u v w 2 v u w
 (2 )   (2 )

3 x y z 3 y x z
2 w u v u v

 (2 )     ( ) ,
3 z x y y x

u w v w
    ( )     ( )

z x z y

μ ∂ ∂ ∂ μ ∂ ∂ ∂
= + + = + +σ σ

∂ ∂ ∂ ∂ ∂ ∂

μ ∂ ∂ ∂ ∂ ∂
= + + = = μ +σ σ σ

∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
= = μ + = = μ +σ σ σ σ

∂ ∂ ∂ ∂

 (2.7) 

with 

 x y z

T T T
  ( )      ( )      ( ),q q q

x y z
∂ ∂ ∂

= κ = κ = κ
∂ ∂ ∂

 (2.8) 

where μ is dynamic viscosity and κ is thermal conductivity.  

2.2 Ideal Fluids 

As one can readily see from the complexity of the PDEs described in 
Eqs. 2.1–2.8 for general viscous fluid motion, obtaining solutions to 
these formidable equations are difficult, generally requiring a numerical 
approach – computational fluid dynamics (CFD). There are instances 
when one can make simple assumptions regarding overall fluid motion, 
and the solutions are fairly accurate. These assumptions are based on the 
premise of the flow being ideal, or that the flow is (1) incompressible, 
(2) inviscid, and (3) irrotational. If the flow under question can be 
considered to be ideal, analytical solutions may be used to obtain values 
for the components of flow, pressure, temperature, and even 
concentrations. - 

If the flow is incompressible, the density is constant. This helps in 
eliminating the effects of compressibility and density variation. An 
inviscid flow is one in which the viscosity is zero – hence there are no 
effects attributed to molecular or turbulent diffusion, i.e., no mixing. If 
these two criteria are valid, then the governing equations reduce to the 
simpler, steady state conditions, 
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Conservation of Mass 

 
u v w

0,
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (2.9) 

Conservation of Momentum 
 
x-direction 

 
u u u 1 p

u v w   ,
x y z x

∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ρ ∂
  (2.10) 

y-direction 

 
v v v 1 p

u v w   ,
x y z y

∂ ∂ ∂ ∂
+ + = −

∂ ∂ ∂ ρ ∂
 (2.11) 

z-direction     

 
w w w 1 p

u v w   g,
x y z z

∂ ∂ ∂ ∂
+ + = − +

∂ ∂ ∂ ρ ∂
 (2.12) 

Conservation of Energy 

 yx z
p

qT T T q q
(u v w )  Q,c

x y z x y z

∂∂ ∂∂ ∂ ∂
ρ + + = + + +

∂ ∂ ∂ ∂ ∂ ∂
 (2.13) 

Species Concentration 

 

xx yy zz

C C C
u v w   

x y z
C C C

( ) ( ) ( ) S.D D D
x x y y z z

∂ ∂ ∂
+ + =

∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂ ∂ ∂

 (2.14) 

A further simplification can be made if the flow is irrotational. 
Irrotational flow is one in which there is no recirculation or rotation, i.e., 
the absence of vorticity. This implies a predominance of flow direction 
with no lateral components. Hence, the velocity components can be 
grouped into a single value, U, and the momentum equations reduce to 
Bernoulli's equation 
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x-direction 

 
2p u

gz 0,
x 2
∂

+ + =
∂ ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (2.15a) 

y-direction 

 
2p v

gz 0,
y 2
∂

+ + =
∂ ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (2.15b) 

z-direction 

 
2p w

gz 0.
y 2
∂

+ + =
∂ ρ

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (2.15c) 

Equation (2.15a–c) is typically written in vector form, 
2p V

gz 0,
2

+ + =
ρ

⎛ ⎞
∇⎜ ⎟

⎝ ⎠
 

where ∇ is the gradient operator and V is vector velocity. The quantity 
(p/ρ+V2/2+gz) is constant everywhere, and the flow is irrrotational, 
steady, incompressible, and frictionless, i.e., the flow is ideal. 

There are numerous solutions to cases involving ideal flow. This is 
usually achieved by introducing the scalar potential functions,  

 u ; v ; w ,
x y z

∂φ ∂φ ∂φ
= = =

∂ ∂ ∂
  (2.16) 

where φ is the scalar potential function. Substituting these expressions 
into the continuity equation, one obtains the Laplacian  

  
2 2 2

2 2 2
0.

x y z
∂ φ ∂ φ ∂ φ

+ + =
∂ ∂ ∂

  (2.17) 

Similarly, a scalar value for the stream function can be introduced for 
two-dimensional flow where 

 u ; v ,
y x

∂ψ ∂ψ
= − =

∂ ∂
  (2.18) 

and a Laplacian equation written as 
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2 2

2 2
0.

x y
∂ ψ ∂ ψ

+ =
∂ ∂

 (2.19) 

Table 2.1 lists velocities and derivatives of the potential functions for 
two-dimensional planar, axisymmetric cylindrical, and spherical 
coordinates. 

Table 2.1  Velocities as a Function of φ or ψ 

 
Utilizing these two variables, potential flow solutions can be obtained for 
many different geometries, including inlets and flanges.  

Analytical solutions to Laplace's equation are harmonic functions, 
i.e., since the equation is linear and homogeneous, the combination of 
several solutions to subsets of the problem is also the solution to the 
overall problem. Hence, a flow field produced by two independent flow 
fields, each of which can be treated as ideal, can be combined 
(superposition principle) to yield the overall solution. This is a well- 
known mathematical maneuver used extensively by aerodynamicists 
when designing flows over wings and bodies. For example, if φ1 and φ2 
are two independent solutions, then the horizontal velocity, u, can be 
obtained for the entire problem using the relation 

 1 2 1 2
1 2

( )
u u u .

x x x x
∂ φ + φ ∂φ ∂φ∂φ

= = = + = +
∂ ∂ ∂ ∂

  (2.20) 

Coordinate System φ ψ 

2-D Planar 
u ; v

x y
∂φ ∂φ

= =
∂ ∂

 u ; v
y x

∂ψ ∂ψ
= − =

∂ ∂
 

Axisymmetric 1
u ; v

r r
∂φ ∂φ

= =
∂ ∂θ

 

1
u ; v

r r
∂ψ ∂ψ

= − =
∂θ ∂

 

3-D Spherical  
1

u ; v
r r

∂φ ∂φ
= =

∂ ∂θ
 

2

1
u

r sin
1

v
r sin r

∂ψ
= −

θ ∂θ
∂ψ

=
θ ∂
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Table 2.2 lists several potential functions and general cases of flow 
geometries where analytical solutions can be used to obtain overall 
values for φ and ψ. Several excellent texts that describe the use of 
potential functions for more complicated flow regimes include Pozrikidis 
(1999), Woo and Hwang (2000), and the ageless classic by Carslaw and 
Jaeger (1947).  

Table 2.2  Potential Functions for Various Geometries (from Industrial Ventilation, R. J. 
Heinsohn, J. Wiley & Sons, New York, 1991, pg. 374) 
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2.2.1 Conformal mapping 

If a flow is conservative, that is, if it can be defined by a potential 
(harmonic) function, then the method of conformal mapping can be 
employed to solve for ideal flow. Conformal mapping has roots in 
complex analysis; the mathematics of complex calculus. 

 Conformal mapping allows for the use a known solution for a given 
domain to determine a solution in a geometrical domain of interest. The 
method of conformal mapping provides a quick and general idea of the 
ideal flow in the domain of interest. Many solutions exist in simple 
domains that can be mapped to domains of interest. In fact, the 
previously presented potential functions are of this variety. In this section 
we investigate how this mapping process works, from the geometric 
domain, represented by a complex coordinate 
 z x iy= +  ,  (2.21) 

to some analytic function of z given by 
 w iφ ψ= + . (2.22) 

Depending on how the construction of w = f(z) is performed, certain 
geometric similarities exist between the z plane and the w plane.  Those 
transformation, which preserve angles of intersection are conformal. The 
functionsφ and ψ are precisely the potentials and streamlines we seek in 
the geometric domain z; these define the ideal flow in the geometric 
domain z. 

If ( , )x y cψ = , where c is some constant, and if 

 
2 2

2 2 0
x y
ψ ψ∂ ∂

+ =
∂ ∂

, (2.23) 

then ( , )x yψ represents streamlines under the assumptions of ideal flow.  
It is the imaginary part of ( , )w f x y= . By selecting appropriate 
mappings, w to z, various geometries and flow situations with sources 
and sinks can be developed.  
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Example 2.2.1.1  Flow near an inside corner: Solving for flow in a 
corner demonstrates the usefulness and basic procedures of conformal 
mapping for finding solutions to ideal flow.  Represented in the z plane 
are all positive x and y points, as shown in Fig. 2.1. This is the corner 
flow domain and will be the range of the conformal map from the w 
plane.  Picking the function 

 2 2 2 2w z x y i xy= = − + ,  (2.24) 

maps this corner z plane onto the upper half of the w=f( ,φ ψ ) plane.   

 
Fig. 2.1 Constant flow in the w plane. 

 
Flow in upper half of the w plane moving right to left is given by the 

complex potential function  
 ( ) ( )f w Cw C iφ ψ= = + ,  (2.25) 

where C is some positive real value and now  
 w x iy= + .  (2.26) 

Then the potential equation for flow is given by 
 ( , )x y Cxφ = ,  (2.27) 

and the stream function is 
 ( , )x y Cyψ = . (2.28) 

Under the described mapping the potential function in the z plane  

 2 2 2( ) 2f Cz C x y i xy= = − + ,  (2.29) 
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with the stream function in the z plane being 
 2Cxyψ = ,  (2.30) 

as plotted in Fig. 2.2. 
 

Fig. 2.2  Flow in a corner in the z plane under the mapping. 

There are numerous catalogs of various transformations available in 
the literature. This includes from the simple to more complex doubly 
connected domains. 

   
Example 2.2.1.2 Flow around an outside corner: Flow around corner 
can be solved in the w plane with the mapping 

 2/3w z= ,  (2.31) 
which yields the potential function 

 2/3 2 /3( ) ( ) ( )f w C i Cz C x iyφ ψ= + = = + .  (2.32) 

The stream function is given by the imaginary part of w, 

 ( )2 23Im ( 2 )C x y i xyψ = − + .  (2.33) 

By reversing the map, that is, making 

 /az w π= ,  (2.34) 
the flow around the corner is more easily ascertained.  By evaluating this 
function further via its complex polar values and noting that  
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 (cos sin ) iz x iy r i re θθ θ= + = + = ,  (2.35) 

then  

 / /a i aw r eπ θ π= .  (2.36) 
Here the upper half of the z plane 0 θ π< <  is mapped onto the 

section 0 aθ< < in the w plane.  For the function ( )w f z z= =  having 
some component  y C=  as constant flow lines parallel to the x axis of 
the z plane, has under the mapping stream lines satisfying the imaginary 
part of / aw Cπ = in the w plane. This is stated mathematically as  

 /Im( )aw Cπ = ,  (2.37) 

which describes stream lines around an outside corner as shown in Fig. 
2.3 (for a/π = 3/2) . 

    

 
Fig. 2.3  Mapping potential function and streamlines for flow around a corner. 

2.2.2 Schwarz–Christoffel transform 

One of the primary methods for handling polygonal domains is the 
Schwarz–Christoffel mapping. This mapping relates a polygon’s vertices 
in the w plane to the real axis in the z plane. The polygon’s interior 
region is mapped to the upper half plane in z. 
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Fig. 2.4  Schwarz–Christoffel transformation – mapping polygon to the real axis. 

 
Given vertices of the polygon in the w plane, wi with corresponding 
interior angles αi as shown in Fig. 2.4, then 

 
1 2

1 1 1
1 2( ) ( ) ....( )

n

n
dw A z x z x z x B
dz

αα α
π π π− − −= − − − + ,  (2.38) 

for any complex constants A and B. So, after integrating the mapping is 
found to be 

 1 2
1 1 1

1 2( ) ( ) ....( )
n

nw A z x z x z x dz B
αα α

π π π− − −= − − − +∫ .  (2.39) 

Illustrating the Schwarz–Christoffel mapping method for solving ideal 
flow from a duct is the next example.  
 
Example 2.2.2.1  Flow into a duct: By mapping a cut in the w plane 
(this is a half line extending to -∞) which is some distance away  from 
the real axis, parallel to the real axis, as shown in Fig. 2.5, to the real axis 
of the z plane via the Schwarz–Christoffel method results in 

 
( 1) 11dw z

dz z z
γ γ+ ⎛ ⎞= = +⎜ ⎟

⎝ ⎠
.  (2.40) 
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Fig. 2.5 Plane w with a cut (AB) and point ABCD being mapped onto the real axis in the 

z plane using the Schwarz–Christoffel transform. 

Here the domain is bounded below by the polygonal line ABCD as 
shown, also described in Levinson and Redheffer (1970). The points A, 
C, D are considered to be at ∞. The angle between B and C is 2π  when C 
is at -∞ and the angle between C and D is zero. The mapping given by 
Eq. (2.40) places A, B, C, and D in the w plane onto, -∞, -1. 0, and ∞ 
(respectively) on the z plane real axis for some 0γ >  also shown in Fig. 
2.4. Integrating the differential Eq. (2.40), results in at least one solution 
 ( ln( )) ( )w z z iγ γ φ ψ= + = + .  (2.41) 

Only the lines given by Im (ln(z)) = C are associated with the 
streamlines, ψ (x,y) for flow. These constant lines in z are mapped onto 
w by  

 
( )ln ln( )

ln( ) ln( ) ln( )

i i

i i i

w z z re re

re r e re r i

θ θ

θ θ θ θ

= + = + =

+ + = + +
,  (2.42) 

and are shown in Fig. 2.6.   
 

 
Fig. 2.6 Streamlines for flow from duct in upper half of w plane. 
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By reflecting this solution about the real axis, flow in a duct can be 
established, where the flow originates at the origin along the ordinate 
axis of the w plane. This is accomplished by taking a slit in the lower 
half-plane of w and using the transformation as described. That is, the 
upper half of w can be reflected about the x axis, so the same flow is 
formed in the lower half of the w under a similar mapping, as shown in 
Fig. 2.7.  

 

Fig 2.7 Streamlines for flow from 2-D duct in w plane. 

Also, simply noting that by Schwarz’s reflection principle,  

 
______

2 1( ) ( )F z F z= ,  (2.43) 

where z x iy= − , the complex conjugate of z, 
  1 1 1( ) ( , ) ( , )F z u x y iv x y= + ,  (2.44) 

and the conjugate of 
 1 1 1( ) ( , ) ( , )F z u x y iv x y= − + − .  (2.45) 

Therefore, 

 
______

1 1 1 2( ) ( , ) ( , ) ( )F z u x y iv x y F z= − − − = .  (2.46) 
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As mentioned, solutions may be additive as shown by the above 
reflection for the duct flow example, but this is not always true. Analysis 
of the flow should be made before applying the principle of reflection. 

2.2.3 Numerical mapping 

Many methods exist to create mappings, and there are many numerical 
methods to evaluate mappings.  For even more complex transformations, 
numerical conformal mapping can be applied on local elements of the w 
plane. Some recent texts describe the evaluation process in more detail; 
many either have software with them or describe software which is 
available as open source or add-ons to existing packages. These software 
include Mathematica®, Maple®, SC Toolbox for Matlab® described by 
Driscoll (1996), and also Conform developed by Ivanov and Trubetskov 
(1994). 

Investigating the subject of complex analysis and conformal mapping 
has rich reward for help in analyzing ideal flow. Because the Schwarz–
Christoffel mapping lends itself to numerical evaluation, it is widely 
employed in the software mention in this section. The numerical 
evaluation of the mappings has greatly extended the usefulness of the 
conformal mapping technique for evaluating ideal flow. We give a few 
of the results of conformal mappings here, the potential functions and 
their associated real and imaginary parts for flow in ducts and around 
corners. Later, in Chapter 6, we use the results of mappings to discuss 
particle trajectories near ducts, and the associated flow near sinks and 
sources.  In any regard, precise representation of fluid flow is not part of 
ideal flow assumptions. In Chapter 7 and 8 we describe in more detail 
numerical solutions to the complete Reynolds averaged Navier–Stokes 
equations. 
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2.2.4 Superposition for stream functions 

There are four basic two-dimensional flows associated with irrotational 
fluid mechanics: (1) uniform flow, (2) line source (or sink), (3) line 
vortex, and (4) the doublet. The stream function relations are shown 
below with their corresponding patterns in Fig. 2.8 (Chow, 1983). 
 
Uniform flow 
 U(y cos x sin ),ψ = α − α   (2.47a) 

Line source 

 1 0

0

y yQ Q
tan ',

2 x x 2
− −

ψ = = θ
π − π

  (2.47b) 

Line vortex 

 ( ) ( )
1/ 22 2

0 0ln x x y y ln r ',
2 2
Γ Γ

ψ = − + − =
π π

⎡ ⎤⎣ ⎦   (2.47c) 

Doublet 

 
( ) ( )

0
2 2

0 0

y yk k sin '
,

2 2 r 'x x y y

− θ
ψ = − = −

π π− + −
  (2.47d) 

where U denotes a uniform flow speed, Γ is circulation, and k is the 
strength of the doublet.  
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Fig. 2.8 Basic two-dimensional ideal flows (from Chow, 1983).   

Example 2.2.4.1 Flow over a semi-infinite body: Assume a polar 
coordinate system with a source, Q, located at the origin. The resulting 
flow pattern if this flow is superimposed on a uniform stream with 
velocity Uοο moving from left to right is shown in Fig. 2.9.  

The resulting streamline shapes obtained by adding the solutions to 
the uniform stream and source, shown at the right of Fig. 2.9, create a 
potential flow stream that splits at the stagnation point, denoted by point 
B. For further details, see Anderson (2001).  
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Q Q

U r sin U r sin
2 2∞ ∞ψ = θ ψ = θ ψ = θ + θ

π π
 

 
Fig. 2.9  Flow over a semi-infinite body. 

2.3 Turbulence 

A CFD code must be capable of modeling both laminar and turbulent 
fluid motion. Current approaches to modeling turbulence are based on 
either “first” or “second-order” closure models in which the governing 
equations are closed by equations for various turbulence correlation 
terms (kinetic energy, shear stress, etc.). Examples of such closure 
schemes are discussed in detail by Wilcox (2006). Results show that 
advanced turbulence closure schemes, incorporating more physics and 
less empiricism, provide the generality for modeling wider classes of 
problems and more accurately account for the irregular nature of 
turbulent flow. 

An effective viscosity is usually employed to simplify solution of the 
turbulent equations. This concept allows the turbulent stress terms to be 
conveniently combined with the molecular viscosity (laminar flow) into 
an overall viscosity term for numerical solution. Two of the earliest and 
most frequently used approaches to model the effective viscosity (and 
effective diffusion coefficients) are the Prandtl mixing length model (0th 
order) and the k-ε two-equation model (1st order). 
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Although the mixing length hypothesis has been successfully applied 
to solving numerous turbulent flow problems, it has little application in 
complex flows due to the difficulty in specifying an appropriate length. 
The method is essentially unsuitable for situations in which recirculation 
occurs. 

In an attempt to more accurately model turbulence within complex 
regions, especially when recirculation is present, a two-equation 
turbulence model was first proposed by Jones and Launder (1972). The 
most common two-equation model is one based on solution of the 
turbulent kinetic energy, k, and its dissipation rate, ε. This model is 
known as the k-ε scheme, and is popular because of its applicability to a 
wide range of flow problems (as well as low computational demand over 
more complex models). The k-ε model has been applied to numerous 
flow problems with good predictive accuracy, and is still the preferred 
choice for simulating flows where there is the potential for recirculation 
and/or swirl.  However, recent advances in the use of k-w and algebraic 
closure schemes appear promising, and more users are now including 
simulations using these approaches (see Wilcox, 2006). 

In the k-ε model, the equation for k (which is derived from the 
general Navier–Stokes equations) is written as  

 

k k k

2 2 2

2 2 2
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− ρ + β

∂σ

, (2.48) 

where μk = μe/μk with μk~1, μt is the turbulent Prandtl number (0.5 to 
0.9) and Cμ is a constant ~ 0.09. The last term represents the effect of 
buoyancy. 
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The transport equation for ε is as follows: 
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2 2 2
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t2 1
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∂

.   (2.49) 

Here, Γt = μe/μτ where μτ is a constant equal to 1.22, C1 = 1.44, and C2 = 
1.92. The equation for concentration species can likewise be written in 
similar fashion, i.e., 

 xx yy zz

C uC vC wC
 

t x y z
C C C

 (D ) (D ) (D )
x x y y z z

( u c ) ( v c ) ( w c ) S,
x y z

∂ρ ∂ρ ∂ρ ∂ρ
+ + + =

∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂
+ +

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂′ ′ ′ ′ ′ ′+ −ρ + −ρ + −ρ +
∂ ∂ ∂

,  (2.50) 

where c' is the deviation from the mean. The terms -ρu'c', -ρv'c', and -
ρw'c' are the turbulent diffusion fluxes. 

Attempts to simplify the Reynolds stress transport equations are 
usually made by approximating the advection and diffusion terms into 
algebraic expressions; such models are referred to as algebraic stress 
models (ASM). This technique reduces the computational time required 
to obtain a solution of the transport equations. However, these models 
have not found wide-scale application in fluid flow problems due to their 
complexity, and the fact that they still require a large amount of 
computing time and do not always produce better predictions than the k-
ε model.  
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In large eddy simulation (LES) models, large-scale turbulence 
fluctuations are solved directly by appropriate transport equations and 
only the small-scale fluctuations contribute to ε. The nonlinear 
interaction between the large-scale and small-scale turbulence motion is 
approximated through a subgrid-scale turbulent viscosity model. Success 
of this type of turbulence modeling lies with the computational grid 
being fine enough to lie within the inertial subrange (Kolmogorov scale) 
where energy cascade takes place and the dissipation rate, ε, has a 
constant value. The LES method has the ability to freeze the flow at any 
moment in time; if mean flow quantities are required, the calculations 
must be conducted over a very long time scale. The application of LES 
has been relatively limited to isothermal flows in channels and over a 
cube. However, considerably more work is needed before the method can 
be applied to a wider range of flow problems. 

The accuracy of the solution of the discretized turbulence equations 
depends on the accuracy of specifying the physical quantities at the 
boundaries of the flow domain, and on the methods of linking these 
relations to the bulk flow. Close to a solid boundary, the local Reynolds 
number is extremely small and turbulent fluctuations are damped out by 
the proximity of the surface – laminar shear becomes a locally dominant 
force as a result of the steep velocity gradient. Because of the damping 
effect of the wall, the transport equations for the turbulence quantities do 
not apply close to the wall. One way of dealing with this problem is to 
add extra source terms to the transport equations for k and ε, and use an 
extremely fine grid close to the surface so that the first few points are 
within the laminar sublayer. This technique is effective, but requires a 
vast number of grid points (especially in three-dimensions). 

An alternative, and more popular, approach is to use Couette flow 
analysis and apply algebraic relations (logarithmic laws or wall 
functions) close to the surface. This approach does not require an ultra-
fine grid near the surface. At a point close to the wall, the momentum 
equation is reduced to a one-dimensional form with gradients in the 
direction normal to the surface. 
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Boundary conditions at vent inlets are usually set to fully developed 
profiles, unless specified directly by the user from experimental data. 
Likewise, at exits, the transverse velocity components are normally set to 
zero and the longitudinal exit velocity calculated from mass balance. Exit 
values for k and ε are usually not required because the Reynolds number 
at the exit is typically large; likewise, the gradients normal to the flow 
direction of the dependent variables may also be set to zero at the exit 
plane. A particularly nice feature when using finite element methods is 
the ability to set the traction terms (i.e., the RHS of the governing 
equations) equal to zero at the exit. This is the true mathematical 
formulation for proper specification of the outflow boundary conditions, 
and does not require a priori judgment by the user (Gresho et al., 1984) 
when using finite volume or finite difference schemes. 

2.4 Species Transport 

It is well known than contamination produced in a ventilated room can 
quickly spread over the whole zone, especially in a mixing ventilation 
system with a large rate of entrainment and a circulatory motion created 
by jets. Normally, the transport equation for concentration is solved 
either in time-average form or time-dependent form after a converged 
solution has been achieved for the other transport equations (velocity, 
temperature, and k-ε turbulence parameters).  

When low concentration levels exist in a room environment (~100 
ppm), the difference in density between the contaminant and air is 
usually ignored. This practice is fairly common in both research and 
industrial applications with regards to either gas or small particulate 
transport. Nielsen (1981) used this approach to model 2-D concentration 
distributions within enclosures to investigate the importance of room 
aspect ratios on concentration distribution; a decrease in height of the 
room air supply slot produced a decrease in concentration in the 
enclosure. Higher room concentrations were found to exist when the 
contamination source was placed in a relatively stagnant region in the 
room. Murakami et al. (1983) obtained similar conclusions from their 
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three-dimensional simulations, and were later confirmed by Davidson 
(1989) using a 3-D, k-ε turbulence model. 

The spread of smoke within an L-shaped (rectangular) shopping mall 
was investigated by Markatos and Cox (1984) using the PHOENICS 
finite volume code. Both steady-state and transient spread of smoke from 
a fire was modeled, and results compared with experimental 
measurements.  Agreement between measurement and prediction was 
generally satisfactory with small differences in the velocity profiles near 
the top of the doorway openings, and in the temperature profiles at the 
center of the doorways (where cold air entering from the lower region 
meets the hot smoke leaving the upper region).  

Several commercially available CFD codes are being used for room 
ventilation and contaminant dispersal. The code CFX, developed by 
AERE Harwell, is a variant of the SIMPLE technique (Patankar, 1980), 
and resembles the PHOENICS and FLUENT codes. This code 
incorporates finite volumes and unstructured meshes to account for 
irregular surfaces, and was used to simulate the fire that occurred in 
Kings Cross Station in London several years ago. Likewise, the 
FLOVENT code, which is similar to FLUENT and CFX, allows one to 
perform 2-D and small-scale 3-D problems on high performance PCs. 
Unfortunately, the code does not allow one to handle irregular 
geometries – curved surfaces must be approximated by orthogonal grids 
(this effect leads to the stair-step appearance for irregular boundaries and 
can degrade the ability of a code to accurately resolve boundary layer 
effects and turbulence near surfaces).  

We use both FLUENT and COMSOL 3.4 as our choices for 
commercial packages to model indoor air contaminant dispersion. 
FLUENT is relatively easy to use, and has a wide following of CFD 
users throughout the world. COMSOL is a very user friendly and fairly 
inexpensive package that permits one to model a wide range of 
multiphysics problems, including chemically based problems, using a 
moderately powered PC.  
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2.5 Comments 

The set of nonlinear, partial differential equations that fully describe the 
flow and transport of air and contaminants is formidable. These 
equations are among the most difficult to solve. Simple assumptions 
allow one to reduce the set of equations to forms that can quickly give 
solutions describing the general dispersive effects of the spread of 
contaminants. Such simple solutions are ideal for designers and 
responders where a quick assessment is needed. However, to fully 
capture all the physics and intricate recirculatory nature of fluid motion 
and contaminant dispersion found in real world situations, the complete 
equations must be solved. These equations can only be solved using 
numerical techniques – no analytical solutions exist. While numerous 
empirical expressions can be found in the literature for various classes of 
flows, especially when dealing with turbulence, great care must be 
exercised when using such expressions beyond their ranges of 
applicability. 
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Chapter 3 

Contaminant Sources 

Contaminants consist of gases, solids, or liquids (or combinations) and 
come in many types and forms. Some of the more common contaminants 
typically attributed to indoor air quality include smoke and odors 
attributed to perfumes, tobacco, and the cooking of food. The variety of 
contaminants are as plentiful as their source locations and origins. We 
begin with a brief description of the types of contaminants, followed by a 
discussion of the concentration equation and its various terms and units.     

3.1 Types of Contaminants 

Contaminant in buildings generally consists of either particles or gases. 
Particles can either be in the form of solids or liquids. Gases are 
generally gaseous or exist as a vapor, both of which obey the perfect gas 
law. Indoor contamination is generally due to humans and animals, 
including contaminant releases from furnishings and processes within 
interior spaces, and by intrusion of contaminants from outside air. 
Another form of contaminants is mold (fungal material). Humans and 
animals (mammals) exhale CO2; this can become very troublesome in 
confined spaces (such as submarines) or heavily occupied interiors since 
it serves as an indicator of poor ventilation. The other major culprit to 
human health is carbon monoxide (CO), which is highly toxic. CO 
results from incomplete combustion of hydrocarbon fuels and tobacco 
smoking.  
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The Glossary from Fundamentals of Industrial Hygiene (Plog, 1988) 
gives the following definitions for specific airborne contaminants: 
 
Dusts: Solid particles typically created from crushing, handling, 

detonation, and impact of organic or inorganic materials; particles do 
not diffuse in air but settle under the influence of gravity. 

 
Gas: Material state of matter with very low density and viscosity that 

respond to changes in temperature and pressure; diffuses and 
uniformly distributes itself throughout any enclosure. 

 
Vapors: Gaseous form of substances normally in solid or liquid state at 

room temperature and pressure; vapors diffuse and mix with the 
environment – evaporation is the changing of a liquid into a vapor 
state. 

 
Aerosols: Liquid droplets or solid particles that are dispersed in air with 

diameters generally in the range of 0.01–100 μm; aerosols generally 
remain suspended in air for some time.  

 
Fume: Particulate created from the evaporation of solid materials and 

dispersed into the air; fumes are usually less than 1 μm in diameter.  
 
Mists: Suspended liquid droplets generated from condensation as a gas 

transforms to a liquid state or by a liquid dispersing into the air due 
to foaming, splashing, or atomizing; mist forms when a finely 
divided liquid becomes suspended in air. 

 
Smoke: Particles (suspension of aerosols in air) created from combustion 

or sublimation and consists of droplets as well as dry particles, e.g., 
tobacco produces a wet smoke composed of tarry droplets; carbon or 
soot particles are generally less than 0.1 μ in size and result from 
incomplete combustion of carbon-based materials. 

 
The sources of building contamination and the multitude of 

contaminants are numerous. Many of the indoor pollution problems stem 
from construction activities of operations within a facility. Such 
contaminants include volatile organic compounds (VOCs), pesticides, 
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biological contaminants promoted by moisture, asbestos, radon, lead, and 
PCBs. A variety of units are used for concentration, which is discussed 
next in section 3.2.   

3.2 Units 

It is important to know the common forms of units used to describe 
concentration. A concentration is essentially a quantity of material per 
unit volume, unit mass, or unit moles. However, one must be careful 
when referring to a concentration within the air, within water, or soil 
(which is a multiphase media). Chemists typically refer to the number of 
moles per unit volume to define a concentration. A mole is defined as 1 
mole = 6.023 x 1023 molecules (from Avogadro’s Number). Chemical 
engineers commonly use moles per volume of water, mass per mass of 
solid, or moles per mole of gas, depending on the medium. For example, 
assume there is 2 g/m3 of CO2 dissolved in water, where concentration in 
water is usually given in terms of mass per unit volume of moles per unit 
volume. The molecular weight of CO2 is 44 g/mole. The concentration in 
moles/m3 would be  

 
3

322g / m CO
0.0455 moles/m

44g / mole
= . 

Concentration in air is usually given in units of partial pressure at one 
atmosphere of total pressure. Since the pressure of a gas is proportional 
to the number of molecules in a given volume,  

 
partial pressure molecules of compound moles of compound
total pressure total molecules total moles

= = . 

The most common abbreviations found in the literature are units based in 
parts per million, billion, or trillion: 
 
In water: 
 ppm parts per million by weight mg/L or g/m3 
 ppb              parts per billion by weight μg/L or mg/m3 
 ppt              parts per trillion by weight ng/L or μg/m3 
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In air: 
 ppm parts per million by volume mL/m3 or 10-6 atm/atm 
 ppb  parts per billion by volume μg/m3 or 10-9 atm/atm 
 ppt              parts per trillion by volume ng/m3 or 10-12 atm/atm 
 

The Environmental Protection Agency (EPA) recommends a 
maximum level of 1.8 g/m3 (or 1000 ppm) for continuous CO2 exposure. 
On the other hand, CO levels near 15 ppm are harmful to humans, with 
cumulative effects.  

Assume there is 2 ppm of methane in 1 atm of air. What is the partial 
pressure of methane? Using the ideal gas law to convert ppm to 
atmospheres of methane/atmosphere of total pressure,   

 

meth meth

air air

6meth meth

air air

P V n RT
P V n RT

P n
2x10

P n
−

=

= =
, 

where the concentration by volume is equal to the concentration by 
moles. Thus, the methane partial pressure is 2 x 10-6 atm.  

3.3 Materials 

A major portion of indoor air contaminants come from building materials 
and equipment. VOCs resulting from the manufacturing and installation 
processes typically migrate into the air. The majority of VOCs can be 
classified into the following categories (from Hays et al., 1995): 
 
Adhesives, sealants, and architectural coatings: these types of coatings 

are installed wet and dry or cure on the premises; the solvents used in 
the formulation of these materials directly relate to the VOCs 
emitted. The resins used in the base of adhesives are either natural or 
synthetic and range from low to high emission rates; sealants consist 
of putties, caulking compounds, rubber, acrylic latexes, and silicones 
while architectural coatings include paints, stains, sealers, and 
varnishes. 
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Particleboard and plywood: particleboard is a composite produce made 
from wood chips or residues that are bonded together with adhesives 
and typically come from milling or woodworking waste. Plywood 
consists of several thin layers or plies of wood that are bonded by 
adhesive and are generally classified as either softwood or 
hardwood; the IAQ effects of softwood and hardwood vary with the 
adhesive (PF and UF resins). 

  
Carpet, resilient flooring, and wall covering: these types of materials 

bring VOC-emitting composition into the building interior along 
with the use of adhesives to attach the material to various surfaces. 
Carpets typically consist of fibers of either wool or synthetics. 
Resilient flooring is generally either tile or sheet (vinyl or rubber). 
Wall coverings are made from paper, fabric, and vinyl.  

 
Insulation, acoustical ceiling tile, and furnishings: these types of 

materials include a variety of paints, adhesives, backing, fabrics, and 
fibrous materials all of which combine to contribute VOCs. 
Insulation is commonly thermal oriented, but acoustical and 
fireproofing also are used; these usually exist in the form of batt and 
rigid foam consisting of fiberglass or mineral wool. Furnishings 
include such items as prefabricated movable partitions, workstations, 
desks, chairs, couches, photocopiers, computers, etc. 

 
Table 3.1 is a partial list of materials and some of the chemicals 

emitted from their surfaces, along with emission rates when known. 
When building materials have a high-surface-area-to-room-volume ratio, 
it is important to quantify the emissions and their rates to avoid harmful 
effects to occupants. 
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Table 3.1  Partial List of Building Materials and their Emissions (from Hays et al., 1995) 

Material Chemical emitted Emission rate 
Adhesives Alcohols  
 Amines  
 Benzene  
 Toluene  
Sealants Alcohols  
 Amines  
 Benzene  
 Xylenes  
Architectural coatings paints – C4–benzene  
 paints – Toluene  
 stains/varnishes – Amines  
 stains/varnishes – Benzene  
Particleboard Amines  
 Formaldehyde 0.2-2 mg/m2/h 
 n-Hexane 15-26 μg/m2/h 
Carpeting 4-Phenylcyclohexene 0.1 mg/m2/h(latex 

backed) 
 Styrene  
Resilient Flooring Amines  
 Alkanes  
 Linoleum – Trichloroethylene 3.6 μg/m2/h 
Wall Coverings Amines  
 Xylenes  
Insulation foam – Acetone ND-0.02 mg/m2/h 
 Chloroform ND-0.002 mg/m2/h 
Furnishings Upholstery – Formaldehyde  

 

3.4 Typical Operations 

The most common carriers of pollutants are ventilation systems and the 
human body (general work activity and socialization). The ventilation 
system serves as an ideal transport mechanism for dispersing particulates 
and gaseous compounds throughout a building. Similarly, the human 
body acts as a repository from transporting all forms of pollutants within 
a room as well as to other humans.  
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Operations commonly found in many industrial and office 
environments include such processes as maintenance and housekeeping, 
which permit dust or particulate buildup that leads to indoor air 
contamination. Likewise, office equipment, including such devices as 
wet and dry copying machines, computers, laser printers, and color inkjet 
printers, emit VOCs during operation. Pest control, construction 
activities in occupied buildings, moisture leaks, and many industrial 
activities including chemical spills, grinding, pouring, and sprays lead to 
indoor contamination. Operations involving food preparation and 
consumption are particularly sensitive to emissions and unsanitary 
conditions that lead to indoor air quality problems. Even the natural 
process of evaporation and diffusion of volatile liquids stored in rooms 
are common contributors to overall air quality.  

3.5 The Diffusion Equation 

The concentration equation mathematically describes the transport and 
diffusion of a chemical species. This equation, first introduced in Eq. 
(2.6), is typically written in the differential form as  

 

xx yy zz

C C C Cu v w
t x y z

C C CD D D S
x x y y z z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ + +⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

,  (3.1) 

where the advective transport is described by the gradient flux terms on 
the left-hand side of the equation and the diffusion terms by the second 
derivatives on the right-hand side of the equation. S is the source or sink 
term (also known as a body force term in solid and fluid mechanics). The 
derivative of concentration with respect to time denotes the transient 
nature of the transport. The units attributed to this equation are  
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/ s

. (3.2) 

 
There are many books that delve into the derivation of this equation 

and conservation of mass principles. Fick’s law is used to establish the 
diffusive flux rate and stems from the analogy to heat transfer. Notice 
that the diffusion depends on the diffusion coefficients, Dxx, Dyy, and Dzz, 
and the gradient of concentration with distance. The diffusion 
coefficients generally vary from around 10-5m2/s (or 0.1 cm2/s) in gases 
to 10-9 m2/s (or 10-5 cm2/s) in liquids. There are also various relations 
attributed to the form of S, depending on the type of chemical reaction. 
These can be simple zeroth order (S = constant, g/m3-s), first order (S = 
k1C, k1 = S-1), second order (S = k2C2, k2 = m3/g-s), or other forms. 
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3.6 Diffusion in Air 

Contamination enters the air by either intermittent (i.e., puff) or 
continuous source emission. A puff is an instantaneous release, or burst, 
of material of short duration. A continuous emission occurs when a 
source of pollutant is emitted over a long time, leading to a discernable 
plume emanating from the source location. The transport physics 
attributed to both occurrences obey the conservation of mass, as 
previously described by Eq. 2.1. Much has been written on the 
atmospheric dispersion of puffs and plumes of contaminants (see 
Pasquill and Smith, 1985), especially if one can reduce the PDE form of 
Eq. 3.1 to a more manageable form that can be solved analytically. These 
analytical solutions are based on the use of Gaussian assumptions, i.e., 
statistical representations of the probability of concentration being found 
at specific locations. However, use of such reduced equation sets requires 
information from the user that may not be known. This is discussed in 
more detail in the chapter on Gaussian and analytical solutions. For 
convenience, we introduce the relations here:  
 
Puff:  
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Plume: 
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, (3.4) 

where Q is the source term, U is the principal velocity (or speed) of the 
air, x,y,z are spatial distances (from either the puff center or the plume 
source), H is the height of the release, and σx, σy, and σz are the 
standard deviations, or diffusion coefficients (which are found using 
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empirical relations developed by Pasquill and Gifford – the Pasquill–
Gifford curves (see Pasquill and Smith, 1985). Solutions for C from Eqs. 
3.3–3.4 produce Gaussian probability values which yield circular 
distributions that can be plotted for specific deviations from the center of 
the puff or plume – these are usually calculated out to ± 3σ standard 
deviations. 

The diffusion coefficient of particles of diameter Dp can be estimated 
from the relation (see Fuchs, 1964) 

 p

TCD
3 D

2Dt

κ
=

πμ

σ =

,  (3.5) 

where κ is the Boltzmann constant, μ is the molecular viscosity of the 
carrier gas, C is a constant, Dp is the droplet diameter, t is time, and σ is 
the standard deviation, or diffusion coefficient. Table 3.2 shows particle 
size versus diffusion coefficient in air at STP. 

Table 3.2  Particle Diffusion Coefficients in Air (STP) (from Industrial Ventilation, R. J. 
Heinsohn, J. Wiley & Sons, New York, 1991, pg. 180) 

Dp (μm) D (cm2/s) 
0.01 1.35 x 10-4 
0.05 6.82 x 10-6 
0.10 2.21 x 10-6 
0.50 2.74 x 10-7 
1.00 1.27 x 10-7 
5.00 2.38 x 10-8 
10.00 1.38 x 10-8 

 
The Chapman–Enskog equation (see Chapman and Cowling, 1970; 

Gulliver, 2007; Cussler, 1997) is commonly used to establish diffusion 
coefficients for compounds; Wilke–Lee (1955) made an adjustment to 
the original relation to account for diffusivities of lower molecular 
weight compounds. There are numerous source books that give the 
molecular diffusion coefficients for a variety of gases. One of the most 
commonly used sources is the CRC Handbook of Physics and Chemistry, 
which can be found in nearly every library. An equation developed by 
Chen and Othmer (see Vargaftik, 1975) can also be used to obtain the 
binary gas diffusion coefficient (D12 in cm2/s) 
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,  (3.6) 

where vc and T are the critical volume (cm3/g-mol) and temperature (oK), 
M1 and M2 are the molecular weights, and pressure P is in atmospheres. 
To obtain the diffusion coefficient at temperatures and pressures other 
than STP,  

 
1.811 T

D(P,T) D(STP)
P 298

= ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

.                           (3.7) 

Table 3.3 lists some common diffusion coefficients in air for several 
chemical compounds. Appendix 1 lists many gas pairs and their diffusion 
coefficients.  

Table 3.3  Diffusion Coefficients for Several Contaminants in Air 

Substance M D (10-5 m2/s) 

Acetone 56 0.83 

Ammonia 17 2.2 

Benzene 78 0.77 

Chloroform 119 0.87 

Hexane 86 0.8 

Methane 16 2.2 

Sulfur dioxide 64 1.3 

Toluene 92 0.71 

3.7 Evaporation of Droplets 

Drops of liquids are formed from a myriad of industrial and everyday 
operations. Droplets are basically formed as a result of spraying, 
aerating, or atomizing. In addition, gas rising through a liquid may 
ultimately collapse at the liquid's surface and produce liquid droplets. 
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Every drop has a liquid–air interface; it is this interface through which 
the liquid of the drop, or the liquid contaminant within the drop, 
evaporates. The physics associated with droplet formation and 
evaporation are well known, and can be found in detail in various 
textbooks dealing with cloud physics – a well-known reference is the 
work by Pruppacher and Klett (1978). 

 
Fig. 3.1 Schematic of an evaporating drop. 

 
The physical processes associated with droplet evaporation can best 

be illustrated using the Fig. 3.1. Vapor escapes from the surface of the 
drop due to the vapor pressure of the saturated liquid being greater than 
the partial pressure of the vapor in the far field. The drop diameter, Dp, 
decreases as the liquid evaporates which in turn affects the rate of 
evaporation. The evaporating liquid removes energy from the drop and 
lowers the drop temperature below the ambient air temperature; this 
process lowers the drop pressure at the drop–air interface. Since 
evaporation lowers the drop temperature below the air temperature, 
energy is transferred to the drop by convection from the surrounding air. 
The mass and heat transfer are strongly coupled and thus control the rate 
of drop evaporation.  

The set of differential equations that describe the evaporation rate, 
temperature, and diameter of a drop are fairly well established. These 
three simultaneous differential equations are typically written in the form 
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where Sc is the Schmidt number, Re is the Reynolds number, Ru is the 
universal gas constant, hL is the average heat transfer coefficient, cv is the 
specific heat at constant volume, and hfg is the enthalpy of vaporization. 
The equation set in Eq. 3.6 is best solved numerically. If the drop 
temperature at the liquid–air interface is known, the diameter of the drop 
can be calculated as a function of time by equating the first two relations. 
To compute the drop temperature, a simple energy balance as shown in 
Fig. 3.1 gives the expression for q,  

  
3

v p p
f g

mc dT Ddm
q u mh (T) where m

dt mt 6

ρπ
= + + =  ,  (3.9) 

where uf is the internal energy of the saturated liquid and hg is the 
enthalpy of the saturated vapor. For droplets with diameters less than 100 
μm, the heat transfer within the drop is so rapid that the temperature 
within the drop can be considered to be uniform. For drops larger than 
100 μm, the equation set (3.6) must be solved. The evaporation rate can 
be calculated from the first relation in Eq. (3.6). Table 3.4 lists several 
drop sizes, mass, the mass flow rate (or evaporation rate), and 
temperature difference between ambient and drop temperatures.  

Table 3.4  Particle diameter, mass, m, and temperature difference (from Industrial 
Ventilation, R. J. Heinsohn, J. Wiley & Sons, New York, 1991, pg. 216) 

Dp (μm) m (kg)  m (kg/s) To-Tp (oC) 
5 6.54 x 10-14 1.08 x 10-10 0.45 
10 5.23 x 10-13 2.16 x 10-10 0.63 
50 6.54 x 10-11 1.18 x 10-9 6.58 
100 5.23 x 10-10 2.74 x 10-9 14.48 
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For particle sizes less than 10 μm, the particle temperature is 
essentially the same as the ambient temperature. 

3.8 Resuspension of Particulate  

Resuspension refers to the entrainment of a particulate into the air 
stream. The amount that is entrained into the air stream can be estimated 
using resuspension factors, resuspension rates, and fractional releases. 
Factional releases provide an initial amount of contaminant injected into 
the fluid media.  

Resuspension factors are defined as  

 
3

2

C (m )
C(m )

=χ , (3.10) 

where the quotient χ , is airborne concentration per cubic meter of air 
divided by the surface concentration per square meter. Resuspension 
factors are not very useful for estimating quantities of particulate being 
entrained over time (changing or depleting surface concentration). They 
do however, supply an effective method to evaluate the amount injected 
into the airflow by an activity at any one time, provided the surface 
concentration is known. Resuspension rates or mass fractions rates are 
defined as the fraction of contaminant released over time. 

For low flow rates, resuspension coefficients must be specified. 
Approximations to resuspension rates or factors (mass flux into the 
domain) are based on the activity occurring and are listed below in this 
section. For disturbances from turbulent mixing, analytical calculation as 
developed by Martin et al. (1983) may be sufficient. An injection rate 
based on empirical evidence is desired.   

Particulate entrainment is accomplished when attached particles 
move. A stream velocity large enough to accomplish this is defined as 
the threshold speed or threshold friction velocity ‘u+threshold’. Once 
particles are moving the adhesive forces are much weaker, and the 
particles are available for entrainment. The forces responsible for 
breaking the attachment are a function of shear stresses acting on the 
particle, particulate impingement from already suspended material, and 
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adhesive forces between the surface and the particulate. Martin et al. 
(1983) determine resuspension analytically, giving the resuspension rate 
as a function of friction velocity, 

 wall
*

fluid

u =
τ
ρ

 ,  (3.11) 

where wallτ is the shear stress at the wall.   
Threshold friction speed is determined from a semi-empirical relation 

as 

   2 2 1/ 2
fluid partA (0.108 0.0323 / B 0.00173 / B ) (1 0.055 / g d )= + − + ρ , (3.12a) 

where 
1/ 2

*thershold part fluid p partA u / ( )gd /ρ ρ ρ⎡ ⎤= −⎣ ⎦ and 

*thershold part fluid fluidB u d /ρ μ= . 

The equation is used for the range of 0.22 B 10≤ ≤ .  For B 0.22≤  

 2 1/ 2 1/ 2
fluid partA 0.266 (1 0.055 / g d ) (1. 2.123 / B)−= + +ρ ,  (3.12b) 

is used. Since ‘u+threshold’ appears in both terms of the equality, iteration is 
required to obtain a solution.   

Suspension occurs for particles having physical diameters smaller 
than 52 μm when the threshold velocity is reached. Particle suspension is 
assumed to occur when the terminal settling velocity ‘vs’ is equal to the 
friction velocity and the friction velocity is greater than the threshold 
velocity.   

The amount of material suspended is given by 
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and 
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10 6

vert hortc 2x10 and c 1x10− −= = . 

There are limitations on the use of this equation since the empirical 
constants were found by using light soil particles laying in flat thick beds 
without obstructions to disturb air flow. However, the equation form is 
proper, only needing experimental results for determining constants.  

Threshold velocities for dense substances such as lead are calculated 
by Martin et al. (1983) to have a minimum value at about 0.3 m/sec for a 
49 μm diameter particle. Smaller particles have much greater threshold 
friction velocities. Determination of the friction velocities on the walls in 
the laminar sublayer will allow for the incorporation of this resuspension 
equation provided the species is lying in a thick bed. Application of the 
above equation to other circumstances will require empirical data. 

3.9 Coagulation of Particulate  

Another source (and sink for particles) is by coagulation of smaller 
particles into larger particles as they collide. The time rate of change of 
concentration from agglomeration for particles with different sizes is 
given by (Reist, 1993) 

 2oKdC
C

dt 2
−

= ,  (3.14) 

where  
 

1 2o 12 part part 1 2K K 2 (d d )(D D )= = + +π . 

Over a relative short period of time small particles will coagulate by 
diffusion into larger particles. For a monodispersed particulate (l = 2) of 
initial concentration of 1000 / cm3, the time for half the particles to 
coagulate is 55 hours. The time for the particle size to double for this 
case is 16 days. For an initial concentration of 100,000 / cm3 the 
coagulation half-life is 33 minutes and the size doubling time is 4 hours 
(Hinds, 1982). The time dependent relationship does not include source 
and sink terms that would also be affecting equations of concentration.    

A deposition velocity by diffusion for particles with a micron 
aerodynamic diameter is insufficient to remove many of the small 
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particles. However, time for coagulation is of the order of the air 
exchange rate. Therefore, any small particles would have a propensity to 
agglomerate to a size large enough for settling velocities to possibly be 
an effective scavenger. Typically, there will be some concentration of 
particles in the ambient air referred to as Total Suspended Particulate or 
TSP.  

3.10 Comments  

There are many sources of contaminants, most found in everyday 
environments. The emission of carbon dioxide comes principally from 
humans and mammals. Measurement of CO2 can be used to assess the 
effectiveness of ventilation and air exchange. Carbon monoxide, 
attributed to incomplete combustion common to vehicle exhausts, can 
become deadly in confined spaces.  

Contaminants are typically in the forms of gases (vapors) or 
particulates (particles). The unit most commonly associated with 
contaminant concentration is g/m3. The diffusion coefficients associated 
with the concentration transport equation are usually expressed in m2/s 
(or cm2/s). The diffusion coefficient determines the rate of the spread of 
the compound as it diffuses into a medium (typically air).  
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Chapter 4 

Assessment Criteria 

There are various criteria that can be used for assessment studies 
associated with a contaminant dispersing within a room or building. Such 
factors are typically predefined by the assessor. One of the most 
important factors is exposure to a contaminant, i.e., how long someone is 
exposed to the source and the resulting health effects. A low-level 
exposure of a carcinogen over a long period of time can be just as deadly 
as a high-level exposure within a short time – the end result is the same. 
This is certainly the case when dealing with radioactive material, as 
discovered from the Chernobyl catastrophe in 1986. Another factor to 
consider is economics, especially when considering the cost of 
remediation versus total rebuild.        

4.1 Exposure  

Prevention or remediation of indoor air pollution requires expertise in 
optimizing geometrical configurations, knowledge of HVAC systems, 
perceived or expected contaminants and source locations, and 
economics. Much of the design concept involves ways in which to 
optimize benefits or balancing the advantages and disadvantages of 
various configurations and equipment. The fact that a room or building 
will conceivably become contaminated is generally an accepted fact – to 
what extent indoor air pollution will become critical is not really known 
until it happens. 

Most companies have a somewhat formal process when developing 
assessment criteria and procedures – much of this relies on company 
administrative policies and the experience of the person conducting the 
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assessment. In addition, consultants with specific areas of expertise can 
play a major role in orchestrating the overall evaluation and assessment 
of equipment, materials, and potential exposures. In general, one must 
take into account the activities and processes being undertaken in a room 
or building, the movement of people, and the anticipated costs associated 
with using the best versus barely acceptable.     

There are numerous agencies and organizations that have attempted 
to establish exposure limits to various chemicals and materials. These 
standards are typically referred to as threshold limit values (TLV), 
permissible exposure limits (PEL), and maximum acceptable 
concentrations (MAC). The American Conference of Governmental and 
Industrial Hygienists use TLV; the Occupational Safety and Health 
Administration (OSHA) publishes PEL values; the American National 
Standards Institute use MAC. While all three are generally compatible, 
PEL values are backed by law – it is usually prudent for the engineer or 
scientist to always check with OSHA for the PEL values. Table 4.1 
shows a partial list of substances and the OSHA established PEL. 

Table 4.1  Partial List of OSHA Permissible Exposure Limits 

Substance PEL* (ppm) 
Acetic acid 10 
Benzene 10 
Chloroform 2 
Formaldehyde 3 
Ozone 0.1 
Turpentine 100 

    *TWA values 
There are several limits that are commonly used in evaluating 

exposure. The first of these is the time-weighted average of 
concentration. This is the amount of concentration that is exposed to 
workers during a normal, 8-hr day, 5 days per week with causing adverse 
effects. The time-weighted values are calculated from the expressions 
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Short-term exposure limit is the maximum concentration to which 
workers can be exposed continuously up to 15 minutes without suffering 
from side effects. This relation is normally written as 
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Exposure hazards for a mixture of gaseous contaminants are defined 
by OSHA using an exposure parameter  

 
i i

c
En

L
= ⎛ ⎞

⎜ ⎟
⎝ ⎠

∑ ,  (4.3) 

where ci is the measured concentration and Li is the PEL in comparable 
units of concentration. If En > 1, exposure is considered to be beyond 
acceptable limits.  

An interesting contaminant that gets greatly overlooked is noise. 
Longitudinal pressure waves ranging from 20–20,000 Hz are known as 
sound waves. Hearing can be impaired when individuals are exposed to 
sound or noise above certain amplitudes and lengths of time. Sound 
power (W) is related to sound intensity by the relation 

 ( )
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2 P
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= π
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,  (4.4) 

where a is the speed of sound, ρ is density, r is distance from the source, 
and P is pressure. Sound intensity (I) is usually used for the expression 
(P2/ρa). A sound-intensity level (LI) can be defined as 
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,  (4.5) 
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where Io = 10-12W/m2 and corresponds to the intensity at reference 
pressure (Po = 2 x 10-5 N/m2). Sound pressure (Lp) can be calculated at 
locations from a piece of equipment or process generating noise using 
the simple formula 
 p W 10 10L L 20 log r(m) 10 log Q 11= − + − ,  (4.6) 

where Lw is the sound power and Q is the directivity factor defined as the 
ratio of the sound power of a small omnidirectional hypothetical source 
to the sound power of an actual source at the same sound pressure level. 
Units used to express sound pressure level, sound intensity level, and 
sound power are decibels (dB).  

4.2 Economics 

Economics are certainly a factor that must be considered when dealing 
with issues involving design and remediation of indoor air pollution. The 
two major costs are Total Capital Cost (TCC) and Total Revenue 
Requirements (TRR). TCC is essentially the initial costs consisting of 
money spent to design, build, and install various systems and equipment. 
TRR are monies spent that must be factored in to the TCC and the 
revenue needed to provide annual operating costs. Total Indirect Costs 
(TIC) are monies needed to pay for overhead, i.e., construction expenses, 
contractors fees, loan interest, building rental, etc. Total Direct Costs 
(TDC) consists of the TCC plus TIC.  The TIC is usually a fraction of the 
TDC. The equation is simply 
 TCC TDC TIC TDC(1 ICF)= + = + ,  (4.7) 

where ICF is the Indirect Cost Factor. The TRR is composed of total 
variable costs (TVC) plus total fixed costs (TFC), or 
 TRR TVC TFC= + .  (4.8) 

Capital recovery cost (CRC) and the fixed cost factor (FCF) are 
calculated as follows: 
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where i is the annual interest rate and t is the capital recovery period 
(years). Table 4.2 outlines the various costs and economic factors that 
should be considered. 

Table 4.2 Cost factors for designing and building ventilation systems (from Industrial 
Ventilation, R. J. Heinsohn, J. Wiley & Sons, New York, 1991, pg. 154). 

1. TCC  
TDC TIC in % of TDC 
Equipment Construction expense (10–15%) 
Labor Contingencies (5–30%) 
Materials Contractors fees (4–6%) 
Structures Engineering (4–6%) 
Consulting fees Interest during construction (10–25%) 
 Start-up costs (10–15%) 
 Working capital (2–4%) 

 Total ICF (45–100%) 
2. TRR  
TVC TFC in % of TCC 
Administration Capital recovery cost (11–23%) 
Electric, gas, water Taxes (3–7%) 
Maintenance labor Insurance (1–3%) 
Maintenance material Interim replacement (1–7%) 
Operating labor Tax credits (0–5%) 
Supervision  
Raw materials Total FCF (16–40%) 
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4.3 Comments 

The assessment of indoor air quality is a fairly broad topic. Defining 
assessment criteria generally depends upon those factors deemed 
important to the person conducting the evaluation and the requirement 
guidelines. Clearly exposure to a contaminant is crucial to any 
assessment study. This is especially evident when dealing with 
radioactive contaminants (commonly referred to as radioactive “shine,” 
e.g., a plume passing overhead will “shine” gamma, beta, and alpha 
radiation to a person on the ground).  

It is also important to factor in economics. This is important when 
considering a remediation approach or cleanup activity. Current 
problems dealing with asbestos in buildings is an example where the 
economics can be the leading factor in whether to retrofit a building or 
raze it to the ground.  

You can perform your own simple contaminant assessment study in a 
room. Pop a bag of popcorn (best in a microwave), then leave the bag 
sealed and take it into a room full of people. Open the bag and ask the 
participants to raise their hands when they smell the popcorn. You will 
find that the smell of popcorn rapidly permeates throughout the room. 
Only a few parts per million are needed to initially smell the popcorn. 
Over time, the smell becomes strong to nearly everyone in the room. 
Someone with an overabundance of aftershave or perfume is also 
effective in demonstrating the rapid dispersion of an odor (and exposure) 
in a room.  
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Chapter 5 

Simple Modeling Techniques 

Simple models typically consist of either first order approximations 
which may crudely define the problem domain or elegant, sophisticated 
analytical solutions for ideal conditions. Rarely do such models exist 
which can provide intricate details at minute levels within an interior. 
However, the use of simple modeling tools can quickly provide great 
insight and an overall grasp of the problem. Such models are useful in 
establishing at least an order of magnitude assessment, and in some 
instances may be sufficient for determining IAQ values.  

There are a variety of analytical tools and simple model 
configurations that can be useful to a designer in predetermining 
contaminant levels within an interior. We will start with a description of 
the simplest of these models assuming rather ideal conditions.  

5.1 Analytical Tools 

There are generally two concepts used when developing simple models 
for indoor air quality calculations: (1) well-mixed and (2) partially mixed 
ventilation models. In a well-mixed model, the concentration is spatially 
uniform within the enclosure; in a partially mixed model, the 
concentration is nonuniform generally due to poor mixing. In some 
situations, it is convenient and relatively safe to assume well-mixed 
conditions – this type of assumption leads to the use of simple analytical 
models.  

Unfortunately, most real world situations involve dealing with 
partially mixed hypothesis. Analytical procedures are available for these 
situations as well, but are somewhat limited; a mixing factor (m) is 
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generally employed to modify the equations for a well-mixed model to 
account for the nonuniform distribution of concentration. It is usually 
preferable for these types of problems to employ CFD techniques and 
numerical models for dispersive transport.   

Assume an enclosed space exists in which the concentration is 
considered to be spatially uniform, as shown in Fig. 5.1.  

 

 
Fig. 5.1  Conservation of mass within an enclosure. 

 
The mass concentration at t = 0 is Co. A source begins to generate 

contaminants at a constant rate (S). Outside air with contaminant Cair is 
added to the enclosure at a constant volumetric flow rate Q – 
contaminated air is removed from the space at the same rate. Applying 
the equation for conservation of mass, the governing equations for the 
contaminant concentration entering and leaving the enclosure can be 
written as 

 
cv cs

CdV CVdA S 0
t

∂
+ + =

∂ ∫ ∫ ,  (5.1) 

where C is the concentration, ρ is density, V is velocity, V is volume, cv 
denotes the control volume, and cs is the control surface. Letting Q ≡ AV 
(flow rate), Eq. (5.1) can be written as 
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 out in
dCV AVC AVC S
dt

+ − =∑ ∑ ,  (5.2) 

which can be simplified to the relation                                            

    air
dCV QC QC S
dt

= − + .                       (5.3) 

Since the flow of air into and out of the enclosure is in equilibrium, it is 
easy to obtain an expression for C. If we now integrate over time, 

                   
[ ]

o

c ( t ) t

airc o

dC 1 dt
QC S QC V

=
+ −∫ ∫ .  (5.4) 

solution of Eq. 5.4 becomes 

 
( )
( )

s

s o

C C(t) Qtexp
C C V

− ⎛ ⎞= −⎜ ⎟− ⎝ ⎠
,    (5.5) 

where Cs is the steady-state concentration (letting Cs = Cair + S/Q) 
obtained by setting the LHS of Eq. 5.3 equal to zero. Assuming both 
initial and ambient concentrations are zero, one obtains the reduced form 
of Eq. 5.5 

 ( )
s

C(t) 1 exp Nt
C

= − − ,  (5.6) 

where N = Q/V and is known as the number of room air changes per 
minute. To illustrate, Eq. (5.6) would predict a concentration that would 
be 64% of its steady-state value after 15 minutes for a ventilation room 
rate of 4 changes per hour (N = 4/hr). 
 
Example 5.1.1 Assume a contaminant (1000 mg/m3) enters an office that 
is 64 m3 in volume. The contaminant fills the room. An exhaust fan is 
used to remove air at 25 m3/min from the room and outside air enters the 
room at the same rate. Also assume the outside air is contaminated at 1 
mg/m3.  

What is the length of time before you can enter the office if 5 mg/m3 
is the minimum threshold exposure limit?  
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Solution:   
 
We set Cs = Cair = 1 mg/m3, Co = 1000 mg/m3, C(t) = 5 mg/m3, Q = 25 
m3/min, and V = 64 m3; S = 0. Thus, 

 
( )

( )
5 1 25texp

1000 1 64
− ⎛ ⎞= −⎜ ⎟− ⎝ ⎠

,  t = 14.13 min. 

For a time-varying source or ventilation flow rate, Eq. 5.3 can be 
rewritten as     

 
( )airS QCdC QC

dt V V
+

= − + .  (5.7) 

Equation 5.7 must be solved numerically. Using a simple difference 
scheme and averaging C between unknown and known values – (Cn+1 + 
Cn)/2 – on the right hand side, Eq. 5.7 can be rewritten as 

 
n 1 n n 1 n

airS QCC C Q C C
t V 2 V

+ +⎛ ⎞ +− +
= − +⎜ ⎟Δ ⎝ ⎠

,  (5.8) 

or 

 

n air

n 1

S QC1 Q C t
t 2 V VC 1 Q

t 2 V

+

+⎛ ⎞⎛ ⎞− + Δ⎜ ⎟ ⎜ ⎟Δ⎝ ⎠ ⎝ ⎠=
+

Δ

 ,  (5.9) 

where n is the iteration and Δt is the time step. The solution begins with t 
= 0 and n = 0 with Co as the initial concentration. 

To account for wall losses, i.e., removal of contaminant by solid 
surfaces, Eq. 5.7 can be modified to include the adsorption rate (kad) of 
contaminant on walls 

 air surface ad
dCV QC S C(Q A k )
dt

= + − + .  (5.10) 

The surface area of the room (A) must now be considered to account 
for the contaminant sticking to the walls (for gases or vapors, this is 
called adsorption; for particles, this is referred to as deposition). This is 
very evident when one cleans a room after someone has been smoking in 
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the room – various surfaces absorb tobacco smoke and then desorption 
occurs when the smoking ceases. Equation 5.8 can be integrated to give                   

               
( )
( )

s surface ad

s o

C C(t) (Q A k )texp
C C V

− +⎛ ⎞= −⎜ ⎟− ⎝ ⎠
 ,  (5.11) 

assuming constant values for Q, S, and kad. For the case when Q = S = 0 
(starting with a contaminated room), Eq. 5.11 can be modified to  

 ad

max

AtkC(t) exp
C V

⎛ ⎞= −⎜ ⎟
⎝ ⎠

,  (5.12) 

where Cmax represents the maximum concentration at the beginning of 
the integration. Figure 5.2 shows the importance of adsorption of tobacco 
smoke (see Repace and Lowery, 1980; Heinsohn, 1991) and the effects 
of mixing in a room. In this instance, a single cigarette was burned and 
then extinguished in a 22 m3 room and the total mass of suspended 
particle matter measured during the entire period. 

Well-mixed conditions were produced by fans; the natural mixing 
occurred as a result of natural air currents. Notice that the concentration 
in the well-mixed experiment fell rapidly, as expected. The slope of the 
curve allows one to estimate the removal of contaminants by adsorption 
on solid surfaces. The rate of adsorption was found to be equivalent to an 
exhaust ventilation rate of 1.4 m3/min (50 CFM). In this case, desorption 
acts as a source term in Eq. 5.10. 

If only a fraction (f) of the return flow into an enclosed space is fresh 
air, Eq. 5.10 can be modified to the following form 

 [ ] air
dCV CQ 1 (1 f )(1 ) S QfC (1 )
dt

= − − − − η + + − η , (5.13) 

where f is the makeup air fraction (makeup of fresh air/input air – Qm/Q) 
and η is the efficiency of the air cleaning device. Integrating Eq. 5.13, 
 

 
( )
( ) { }s

s o

C C(t) Qtexp 1 (1 )(1 f )
C C V

− ⎡ ⎤⎛ ⎞= − − − η −⎜ ⎟⎢ ⎥− ⎝ ⎠⎣ ⎦
 . (5.14) 

For variable source or volumetric flow rates, Eq. 5.14 must also be 
solved numerically. 
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Fig. 5.2   Smoke concentration within a room with and without internal mixing  

(from J. L. Repace and A. H. Lowrey, Science, Vol. 208, May 2, 1980, pg. 467). 
  

For partially mixed conditions, the concentration varies both spatially 
and temporally. This condition is normally found in most industrial 
applications. The technique employed here is to introduce a mixing 
factor (mf) to account for the spatial variations in concentration. Equation 
5.11 now becomes 

 f air f f r
dCV S (m QC ) (m QC) (m C Q )
dt

= + − − η , (5.15) 
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where Qr is the volumetric flow rate of recirculated air. Integration of Eq. 
5.15 gives 

 
( )
( )

s f r

s o

C C(t) m t(Q Q )exp
C C V

− + η⎡ ⎤= −⎢ ⎥− ⎣ ⎦
.  (5.16) 

For this particular type of situation, setting mf = 1 indicates a well-
mixed model while mf < 1 implies nonuniform mixing and spatial 
variations in concentration, i.e., mf = 0.5 is used for a perforated ceiling, 
mf = 0.166 is for natural draft and ceiling exhaust fans, mf = 0.10 is used 
for infiltration and natural drafts. 

The source emission rate, or source strength (S), is usually not known 
and must be determined from experiment. A source can be released in a 
clean room and measurements made of the rise in concentration. The 
governing equation is 

 s surface ad
dCV S C(Q A k )
dt

= − + ,  (5.17) 

where Qs represents the volumetric flow rate through the sampling 
device. Immediately after the source is activated and while the 
concentration is small, Eq. 5.17 reduces to the simple form 

 
dCV S
dt

= ,  (5.18) 

and the source strength can be found from the slope of concentration 
versus time. A more accurate means of determining S is to measure two 
concentrations, C1 and C2, at two times t1 and t2, and obtain S from the 
integration of Eq. 5.17, i.e.,  

 

surface ad s

1 ad s 2 1
1 2

surface ad s 2 1

S (A k Q )

(K k Q )(t t )C exp C / G
V

(A k Q )(t t )G 1 exp ,
V

= − +

⎡ − + − ⎤⎛ ⎞ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
− + −⎡ ⎤= − ⎢ ⎥⎣ ⎦

  (5.19) 
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Example 5.1.2 Exhaust hood simulation: An exhaust hood is installed 
within a few feet of a makeup air inlet in a room. Ethyl alcohol is 
evaporated in the hood. What is the steady-state concentration of ethyl 
alcohol in the room and the amount of time before one begins to smell 
alcohol? Assume the threshold odor limit for ethyl alcohol is 40 mg/m3 
and the following criteria apply: 
 
V = volume of operating room (50 m3) 
Asurface = total area of adsorbing surfaces in operating room (85 m2) 
kad = adsorption rate constant (0.001 m/s) 
S = rate at which ethyl alcohol is vaporized inside operating room (1 

g/min) 
Co = initial alcohol concentration inside operating room (10 mg/m3) 
Cair = concentration of ethyl alcohol entering makeup air duct (100 

mg/m3) 
Qe, Qr, Qa, Qs = volumetric flow rate of exhausted air, recirculated air,     

makeup air, and supply air (Qs = 20 m3/min) 
f = Qa/Qs = make up air fraction (0.9) 
η1,η2 = efficiencies of activated charcoal filter (0.5) 
 
Solution: 
 
The governing equation to be solved is of the form 

 s s e surface ad
dCV S Q C CQ CA k
dt

= + − − . (5.20) 

A mass balance for the air results in the expression 

 s a r

e s

Q Q Q
Q Q .

= +
=

  (5.21) 

At the fan inlet, the mass balance for alcohol is 
 air a 2 r 1 s sC Q (1 ) CQ (1 ) C Q− η + − η = .  (5.22) 

Using the definition of f, 
                   s air 2 r 1C C f (1 ) C (1 )(1 f )= − η + − η − .  (5.23) 

The differential equation to be solved is of the form 
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 1 2
dC K C K
dt

= + ,  (5.24) 

where K1 and K2 are evaluated as 

 

{ }

[ ]

s s ad s 1
1

3
1

3

3s air 2
2

Q A k Q (1 f )(1 )
K

V
25m / min

0.5min
50m

S fQ C (1 )
K 0.0218g / m min.

V

−

− − + − − η
= =

− = −

+ − η
= =

  (5.25) 

Setting dC/dt = 0 gives the steady-state concentration, 

 32
s

1

KC 45.6mg / m
K

= − = . (5.26) 

Since K1 and K2 are known constants, the time can be calculated from 
the integral expression 

 
40 t

10 o1 2

dC dt; t 4.47 min
[K C K ]

= =
+∫ ∫ .  (5.27) 

5.2 Advection Model 

Many times a source exists that is moving within a confined space. 
Examples of such situations are automobiles or trains that are traveling 
through tunnels, or a smoker walking from one room to another. In this 
instance, a simple control volume approach can be used to establish the 
governing equation for concentration. In many instances, makeup air 
consisting of fresh air is used to provide local ventilation, e.g., for 
tunnels less than 600 m in length. 

A nice example of contaminant from an automobile traveling within a 
tunnel is discussed in Heinsohn (1991). In similar fashion, a schematic of 
air and contaminant transport from a train traveling within a tunnel is 
shown in Fig. 5.3. An elemental volume denoted by Adx exists within a 
tunnel with uniform makeup air and exhausts. The conservation of mass 
for air within the volume gives the following expression  
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 m e
dU q q
dx

= − ,  (5.28) 

where qm = Qm/LA and qe = Qe/LA. If qm and qe are constant, the air 
velocity in the tunnel at any location x is 

 m e

o o

U(x) x(q q )1
U U

−
= + ,  (5.29) 

where Uo denotes air entering the tunnel. If qm > qe, then U(x) increases 
linearly with x; if qe > qm, U(x) decreases. The conservation of mass for 
contaminant transport can be written as 
 

                                  m m e
dUC s q C Cq kC,
dx

= + − −   (5.30a) 

or 

 m m e
dU dCC U s q C Cq kC,
dx dx

+ = + − −   (5.30) 

 
 

 
Fig. 5.3  Air and concentration within a tunnel. 

 
where s = S/LA (μg/m3-min) and k = 4kd/D (min-1), D is the tunnel 
diameter, Cm is the contaminant, S is the source (mg/hr), and kd (m/s) is 
the rate at which contaminant is deposited on the tunnel walls. 
Combining Eqs. 5.28–5.30, the equation for contaminant within the 
tunnel is 
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 m m m
dCU s q C C(k q )
dx

= + − + , (5.31) 

which can be rewritten using Eq. 5.30 as 

 
m m m o m e

dC dx
(q C s) (k q )C U (q q )x

=
+ − + + −

.  (5.32) 

If qm and qe are constant (unequal and nonzero), Eq. 5.32 can be 
integrated to 

 
b

m m m m
o

m m o

s q C s q C U(x)C(x) c
k q k q U

−⎡ ⎤ ⎡ ⎤⎛ ⎞+ +
= + −⎢ ⎥⎜ ⎟ ⎢ ⎥+ +⎝ ⎠ ⎣ ⎦⎣ ⎦

,  (5.33) 

where b = (k + qm)/(qm – qe) and U(x)/Uo can be replaced using Eq. 5.29. 
If qe and qm vary with x, Eq. 5.33  must be solved using a numerical 
approach. If qe and qm are zero, Eq. 5.33 cannot be used and Eq. 5.32 
must be integrated directly. When qe and qm are equal, the system is 
balanced. The usual case is for qm > qe.     

5.3. Box Model 

When the concentration within an enclosure is nonuniformly distributed, 
it is inaccurate to assume the enclosure can be treated as a well-mixed 
region. Although one could utilize partially mixed conditions and use 
mixing factors, the uncertainty in selecting values for mf and the 
tendency of the partially mixed model to still predict spatially uniform 
concentrations would likely result in large inaccuracies. An alternative 
approach to the analytical tools utilized in the previous section is the box 
model, also sometimes referred to as the multi-cell well-mixed model.  

There are basically four types of mixing that can occur within an 
enclosure. These are (1) displacement, (2) cavity, (3) mixing, and (4) 
piston, as shown in Fig. 5.4. In displacement, incoming air displaces the 
existing air within the enclosure. In a cavity, air flows into and out of the 
enclosure, much like flow over a cavity (which in turn creates a 
recirculation). In mixing, flow enters at the top and exits at the bottom, 
creating a mixed region within the enclosure. The last model works much 
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like a piston where air is pumped into a container and then exits out the 
sides – like the piston and cylinder effect in an automobile.  

 
Fig. 5.4  Types of mixing within an enclosure. 

 
Figure 5.5 shows a schematic of a partially mixed enclosure with two 

sources, two makeup air vents, and two exhaust vents, common to type 3 
mixing.  

 

 
 

Fig. 5.5  Partially mixed enclosure:  Two each of sources, makeup air and exhaust vents. 
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Utilizing a box model approach, the domain is divided into two cells 
with contaminant that transfers between each cell. This is shown in Fig. 
5.6 for the two-cell model; the user can implement as many cells as 
desired – in this case, the problem domain is ideal for establishing a two-
cell approach. 

 

 
 

Fig. 5.6  Two-cell box model. 
 

We begin by introducing the volumetric flow rates (Q) and fractions 
of those rates entering (x) and leaving (y) the cell boundaries.  
 
Entering the enclosure: 

 

1,i 1

2,i 2

1,i 2,i 1 2

1 2

Q x Q
Q x Q
Q Q Q Q(x x )
x x 1.

=

=

= + = +

+ =

  (5.34) 

Leaving the enclosure: 

                                      
1,o 1

2,o 2

1 2

Q y Q
Q y Q
y y 1.

=

=

+ =

  (5.35) 
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The fractions are obtained from knowing the amounts of makeup air, 
recirculation, exhaust, and infiltration. The fraction of contaminant in 
each cell is designated as s1 and s2, i.e., 

  1 2

1 2

S S(s s )
s s 1,

= +
+ =

 (5.36) 

and the volume of cells 1 and 2 expressed as fractions, v1 and v2, of the 
total volume, V, as  

 1 2

1 2

V V (v v )
v v 1.

= +
+ =

  (5.37) 

Fractional values for x, y, s, and v are input by the user. 
The amount of volumetric flow rate transferred across the internal 

boundary between cells 1 and 2 is denoted through the use of exchange 
coefficients, k1 and k2, which can vary from less to greater than 1. 
Performing a conservation of mass balance yields the following 
expressions for cell 1 and 2,  

  

1 2 1 1

1 1 2 1

2 1 2 2

2 2 1 2

Cell1: x Q k Q y Q k Q 0
x y k k 0

Cell 2 : x Q k Q y Q k Q 0
x y k k 0.

+ − − =
− + − =

+ − − =
− + − =

  (5.38) 

The governing equations for the conservation of mass become 

 

1
1 1 1 air 2 2 1 1 1 1

2
2 2 2 air 1 1 2 2 2 2

dCv V s S x QC k QC k QC y QC
dt
dCv V s S x QC k QC k QC y QC ,
dt

= + + − −

= + + − −
  (5.39) 

where ca is the concentration in the air entering cells 1 and 2. The two 
sets of relations described by Eq. 5.39 can be rewritten to the simpler 
pair of simultaneous, first-order differential equations by assuming v = 
v1, s = s1, and k = k1 (and thus k2 = k + y – x) 
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1
1 2

2
2 1

dC A BC DC
dt

dC E FC GC ,
dt

= + +

= + +
 (5.40) 

where the coefficients are defined as 

 

[ ]

[ ]

[ ]

1 a

1

2 2

2 a

2

N sSA x c
v Q

NB k y
v

ND x y k
v

N SE x c (1 s)
(1 v) Q

NF x k
(1 v)

NkG
(1 v)
QN .
V

⎡ ⎤⎛ ⎞⎛ ⎞= +⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

⎡ ⎤⎛ ⎞ ⎧ ⎫
= + −⎨ ⎬⎢ ⎥⎜ ⎟− ⎩ ⎭⎝ ⎠ ⎣ ⎦

⎛ ⎞
= − +⎜ ⎟−⎝ ⎠

=
−

=

  (5.41) 

The general solution to the pair of relations defined by Eqs. 5.40–5.41 
is 
  

 1 1 1 2 2 1,ss

2 1 1 2 2 2,ss

C (t) K exp(Ntw ) K exp(NTw ) C
C (t) MK exp(Ntw ) LK exp(NTw ) C ,

= + +

= + +
 (5.42) 

 
where C1,ss and C2,ss are the final (steady-state) cell concentrations given 
as 
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 1,ss 2,ss
AF ED EB AGC ; C
DG BF DG BF

− −
= =

− −
,  (5.43) 

with 

   

( ) ( )

( ) ( )

( )

( )

2
1

2
2

1

2

1 1 1,ss

2 2 2,ss

2 1
1

1

2 1
2

1

1w B F B F 4DG
2N
1w B F B F 4DG

2N
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D
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D
I C (0) C
I C (0) C

I IK L
I L M

I IK M ,
I L M

⎛ ⎞ ⎡ ⎤= + + − +⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠
⎛ ⎞ ⎡ ⎤= + − − +⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

−
=

−
=

= −

= −

⎡ ⎤⎡ ⎤⎛ ⎞
= − ⎢ ⎥⎢ ⎥⎜ ⎟ −⎝ ⎠⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤⎛ ⎞
= − ⎢ ⎥⎢ ⎥⎜ ⎟ −⎝ ⎠⎣ ⎦ ⎣ ⎦

 (5.44) 

where C1(0) and C2(0) are the initial cell concentrations. It is a simple 
matter to solve for the equation pair established by Eq. 5.42. The only 
difficulty is in selecting an appropriate value for the exchange 
coefficient, k, which is difficult to establish. The best way is to use trial 
and error or some empirical judgment to determine a range of values for 
k. Note that as the value of k increases, the exchange between cells 
increases. When k reaches a value of around 15, the concentration in 
both cells approaches the equivalent of a single well-mixed cell, i.e., 
well-mixed conditions can be assumed throughout the entire enclosure. 

Although using two cells is crude, it is much better than assuming 
well-mixed conditions for the problem domain. Of course, one can 
always add more cells in an effort to refine the problem details and 
obtain a more accurate solution; however, the complexity of analyzing 
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multiple cells increases proportionally to the square of the number of 
cells. If one winds up using many cells, it may be best to ultimately go to 
the use of numerical methods, i.e., CFD. The accuracy of the box model 
is limited by the inability to establish enough detail to describe the 
exchange of air among cells, especially if transient solutions are sought.  
 
Example 5.3.1 Box model: Objects are to be cleaned in HCl solutions in 
one room before final assembly in an adjacent room. The liquid surface 
area is 75 ft2 and HCl vapor is emitted at a rate of 0.02 gm/s-m2. The 
room with the HCl is 30 ft x 30 ft x 15 ft and has a doorway 10 ft x 15 ft 
into the adjacent room that is 50 ft x 30 ft x 15 ft. No HCl is generated in 
the adjacent room.  

The plant manager has reservations that placing an air curtain in the 
doorway will prevent HCl vapor from entering the adjacent room. Each 
room has its own HVAC system. Each room is well mixed and 
infiltration and exfiltration are equal to one change per hour.  

The ventilation system delivers 600 CFM of outside air to the 
adjacent room and 600 CFM of contaminated air is removed from the 
room containing HCl. What are the steady-state concentrations in each 
room, how fast do the concentrations increase in time, and is the PEL (5 
ppm ~ 7 mg/m3) exceeded in each room? Assume that no adsorption 
occurs and that HCl is initially zero. 

Utilizing Eqs. 5.42–5.44, the following values for the various 
constants, assuming a two-cell model, are calculated as shown in Table 
5.1. Using Eq. 5.42, a steady-state concentration value of 175 ppm is 
obtained with a time constant of 0.5 hr, using a value of k = 15 (which is 
very conservative but allows one to place an upper bound on the 
exchange). Using this upper limit, the PEL would be exceeded during the 
working day.  

Figure 5.7 shows concentration values versus time within the two 
cells using k = 0.2 and k = 1.8. If k = 0, cell 1 is well mixed and cell 2 
receives no HCl. Notice that as k increases, the mixing increases. Steady-
state concentrations in both rooms approach values that would be 
predicted assuming well-mixed conditions throughout the rooms. The 
time it takes for the concentration to become well mixed throughout the 
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rooms is around 2 hours, as indicated in the flattening of the curves for 
the two cases.  

Table 5.1 Values for Various Parameters Used in Box Model Example 

Parameter Value 
x1 0.1875 
x2 0.8125 
y1 0.6875 
y2 0.3125 
s 1.0 
v 0.375 
Q 72,000 CFM 
S 502 gm/hr 
N 2 hr-1 
A 0.0372 gm/hr-m3 
B -5.33 (k+0.6875) hr-1 
D 5.33 (k+0.5) hr-1 
E 0 
F -3.2 (k+0.8125) hr-1 
G 3.2 (k) hr-1 

 
Fig. 5.7  Box model example for mixing of HCL between two rooms (from Industrial 

Ventilation, R. J. Heinsohn, J. Wiley & Sons, New York, 1991, pg. 270). 
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5.4 Comments 

The establishment of a simple model to describe mixing within an 
enclosure is beneficial for two reasons: (1) the modeling demands that 
the investigator set up proper boundary conditions for the problem, and 
(2) the model may permit a simple solution to be obtained for an initially 
preconceived difficult problem. One should always attempt to obtain a 
simple solution first – many times one only needs to establish an order of 
magnitude or “ball park” estimate to determine if a problem needs to be 
addressed in more detail.  

The example problems illustrated in this chapter can be easily solved 
using one of the many popular mathematical engineering packages 
commercially available. For example, MAPLE, MATHEMATICA and 
MATLAB are popular commercial codes that allow the user to input the 
mathematical expressions and ultimately obtain solutions. An interface 
between MAPLE and MATLAB (known as the MAPLE Toolbox for 
MATLAB), allows the user to input the relations and then subsequently 
produce a MATLAB model, if desired. It is recommended that the reader 
work through these examples to become familiar with setting up the 
governing equations and solving differential equations.  
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Chapter 6 

Dynamics of Particles, Gases and Vapors 

Contaminants typically appear in the form of either particles or gases and 
vapors. Particulates range in size from near atomistic levels to those 
which we can easily see in the air, such as pollen, smoke, or dust. At the 
smallest scales, we must treat particles as individual entities, requiring 
the use of molecular hypothesis. As we get to larger sizes and volumes, 
we can begin to treat the array of particles as a continuum, allowing the 
use of the more familiar equations of motion commonly used for fluid 
flow and species transport.  

It is important in our study of indoor air pollution that we first 
understand the fundamental principles associated with particulate 
motion. We can then proceed to gases and vapors.      

6.1  Drag, Shape, and Size of Particles 

Analyzing the force on a particle in a flow field reveals the fluid to be 
exerting a force proportional to the particle’s projected area, the square 
of the relative velocity of the particle to the fluid. This proportionality is 
known as Newton’s resistance equation. In general form Newton’s 
resistance equation is  

  d d f
2
pF C d

8
V V=

π
ρ ,  (6.1)  

where V is the relative velocity of the particle with diameter dp having a 
drag coefficient Cd in a fluid with density ρf. The relative velocity is 
defined as 
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( )

( )

x x y y z z

0.52 2 2
x x y y z z

V u U (v V ) (w W )

V u U (v V ) (w W ) ,

≡ − + − + −

⎡ ⎤≡ − + − + −⎣ ⎦

i j ki i i
 

with i, j, k being the unit vectors denoting x, y, and x directions, Ux 
denoting the fluid velocity in the x-direction, ux being the particle 
velocity in the x-direction, etc. This equation is valid for particle motion 
at subsonic speeds. Particles which have Reynolds number (Re) less than 
one, where Re = dpVρf/μ ≤ 1, is known as the Stokes regime. The drag 
force is   
 d pF 3 d V.= π μ  (6.2) 

when substituted into Eq. 6.1, the coefficient of drag is Cd = 24/Re. 
If particle size is of the order of the molecular mean free path (usually 

denoted as λ), the particle does not experience the fluid as a continuum, 
but as an individual molecule. Particles of this size invalidate the 
assumption of a no-slip boundary condition for the fluid on the particle’s 
surface used in the Stokes flow analysis. The particle is able to slip 
through the fluid, reducing the drag experienced by the particle as 
predicted from a continuum analysis in Stokes’ flow regimes. A slip 
factor (Cunningham slip correction factor) for particle drag corrects the 
Stokes drag coefficient  

 3 pA d /
c p 1 2C 1 (2 / d ) (A A e ).−= + + λλ    (6.3) 

The molecular mean free path, λ , is given by (Cooper and Alley, 1994) 

 
f0.499P 8 MW / R T

=
μ

λ
π

,  (6.4) 

where μ is the absolute viscosity of the fluid, fMW is the molecular 
weight of the fluid, R is the universal gas constant, P is the pressure, and 
T is the absolute temperature. Any consistent set of units will provide the 
length of the mean free path. The factors A A A1 2 3, , are dimensionless 
empirical constants for small particle drag (Martin et al., 1983).   

The slip factor is used to augment the coefficient of drag in the force 
equation and the force of drag becomes 
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 p
d

c

3 V d
F

C
=

π μ
.  (6.5) 

Particles of various shapes and sizes are found in indoor 
environments. Depending on the molecular structure of the mineral or 
molecules forming the particle, it is possible to predetermine the shapes 
expected from some compounds, e.g., salt has a cubical shape and fibers 
are cylindrical in shape. 

The Newton’s resistance equation and Stokes flow analysis can be 
adjusted to account for non-spherical particles. By using an equivalent 
volume for the particle, that is, creating a sphere of equivalent volume 
that an irregular shaped particle would have if it were spherical Stokes 
law becomes  
 d peF 3 V d= π μ ,  (6.6) 

where dpe is the equivalent diameter of the particle. 
An aerodynamic diameter is an equivalent diameter and is defined as 

the diameter a spherical water droplet (a spherical particle with unit 
density) which has the same settling velocity, vs, as the particle. The 
mathematical relation for aerodynamic diameter is 

 s
a

c water

18 v
d

C g
=

μ
ρ

.  (6.7) 

Any equivalent set of units can be used to determine the aerodynamic 
diameter. The settling velocity, a terminal velocity of a particle in calm 
air, is determined by solving a particle’s steady-state rectilinear motion 
in a gravitational field, i.e., by solving 

 p
g d p

dv
F F m

dt
− = ,  (6.8) 

where Fg is the gravitational force exerted on the particle having mass 
mp. Then solving this differential equation for the particle’s velocity, vp 
at steady state yields a terminal settling velocity  

 
2

p p c
s

d C
v g

18
=

ρ

μ
.                                       (6.9) 
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6.2 Particle Motion 

When the number of particles in the air is low, it is fair to assume that the 
particles do not influence the velocity field of the air. In other words, the 
average distance between any two particles is at least 10X the particle 
diameter. For water droplets, this would correspond to less than 4.2 
kg/m3 in air. Table 6.1 shows upper limits for particle concentration 
influence on the flow field based on particle diameter and number 
density. 

Table 6.1 Particle Diameter Versus Density for Influencing Flow Field. 

Diameter (μm) particles/m3 
1.0 8 x 1015 
10.0 8 x 1012 
100.0 8 x 109 

If knowledge of the velocity field of the air (or carrier gas) is known, 
then particle trajectories can be calculated. For situations when the 
density of a particle is 1000X greater than the density of air, buoyancy on 
a particle can be neglected. The motion of a single spherical particle can 
be expressed using the relation  

 
3 2 3
p p pd

p p

D D DCd
6 dt 2C 4 6

π π πρ
ρ = − − ρ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

v
gV V ,  (6.10) 

where v is the velocity of the particle, V is the relative velocity (particle–
fluid velocity), C is a slip factor (~1 for Dp ≥ 10μm), and g is 
acceleration of gravity. Equation 6.10 is useful when calculating freely 
falling particles due to gravimetric settling, horizontal motion in 
quiescent air, and particles traveling through a moving stream.  

For a particle settling in quiescent air (U = 0) due to gravitation, 
motion is only downward. Hence, the vector velocity becomes v ≡ - v 
(where v denotes vertical motion). Likewise, the drag coefficient 
becomes Cd = 24μ/ρDpv. Equation 6.11 can be simplified to the 
following form,  
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dv vg
dt C

= −
τ

,  (6.11) 

where τ = ρpDp
2/18μ which is known as the relaxation time. If the 

particle starts from rest, the downward velocity is 

 
tv(t) Cg 1 exp
C

⎡ ⎤⎛ ⎞= τ − −⎜ ⎟⎢ ⎥τ⎝ ⎠⎣ ⎦
.  (6.12) 

If t >> τ, then the settling, or terminal velocity (vt) of the particle can be 
calculated using the simple relation 
 tv gC= τ ,  (6.13) 

assuming that the Reynolds number ( Re = ρUDp/μ) is low. Figure 6.1 
shows particle diameter versus settling velocity for three specific 
gravities (SG). Note that the settling velocity varies as the square of the 
particle diameter when Re ≤ 1. 

 

 
Fig 6.1 Settling velocity of spherical particles for spherical particles and three densities 

(from Mechanics of Aerosols, N. A. Fuchs,  1964, pg. 33). 
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When the particle is very large and Re > 1000, Cd ~ 0.4 and the 
settling velocity can be found from the relation 

 p p
t

D g4v
3 0.4

ρ⎛ ⎞⎛ ⎞= ⎜ ⎟⎜ ⎟ ρ⎝ ⎠⎝ ⎠
.  (6.14) 

For a particle moving horizontally in quiescent air, we will assume 
that the horizontal velocity (u) of a sphere occurs when Re ≤ 1.0. The 
differential equation for the horizontal motion is 

 
du u
dt C

= −
τ

,  (6.15) 

which can be integrated to yield 

 
tu(t) u(0)exp
C

⎡ ⎤= −⎢ ⎥τ⎣ ⎦
,  (6.16) 

and the horizontal displacement (also known as stopping or penetration 
distance) calculated as 

 
x(t ) t

o o

tdx udt Cu(0) 1 exp
C

⎡ ⎤⎛ ⎞= = τ − −⎜ ⎟⎢ ⎥τ⎝ ⎠⎣ ⎦
∫ ∫ .  (6.17) 

The maximum stopping distance is easily found by allowing τ >> t. 
For particles traveling in a 2-D moving air stream, Eq. 6.11 must be 

modified to the form 

 d

p p

3Cd
dt 4C D

⎛ ⎞ρ⎛ ⎞= − −⎜ ⎟⎜ ⎟⎜ ⎟ρ⎝ ⎠⎝ ⎠

v V V g ,  (6.18) 

which can be reduced to the following pair of coupled differential 
equations, 

 

2 2 1/2d
r r r

p p

2 2 1/2d
r r r

p p

3Cdu u (u v )
dt 4C D

3Cdv v (u v ) g,
dt 4C D

⎛ ⎞ρ⎛ ⎞= − +⎜ ⎟⎜ ⎟⎜ ⎟ρ⎝ ⎠⎝ ⎠
⎛ ⎞ρ⎛ ⎞= − + −⎜ ⎟⎜ ⎟⎜ ⎟ρ⎝ ⎠⎝ ⎠

   (6.19) 



Dynamics of Particles, Gases and Vapors 
 

 
 

83 

where ur and vr are relative velocity components in the x and y 
directions, respectively, and  

 

d 1/2

1/22 2
r r

p

24 6C 0.4
Re (1 Re )

u v
Re D .

= + +
+

⎡ ⎤+⎣ ⎦= ρ
μ

   (6.20) 

For the case when the particle's motion is in a flow regime where Re 
≤ 1.0, the pair of equations reduce to the much simpler form 

 

x x x

y y y

du u U
dt C

dv v V
g,

dt C

−⎛ ⎞= −⎜ ⎟τ⎝ ⎠
−⎛ ⎞

= − −⎜ ⎟τ⎝ ⎠

  (6.21) 

which can be integrated, assuming u(0) = v(0) = 0, to 

 
x x x

y y

t tu (t) u (0)exp U (0) 1 exp
C C

t tv (t) v (0)exp (g C) 1 exp ,
C C

⎡ ⎤⎡ ⎤ ⎛ ⎞= − + − −⎜ ⎟⎢ ⎥⎢ ⎥τ τ⎣ ⎦ ⎝ ⎠⎣ ⎦
⎡ ⎤⎡ ⎤ ⎛ ⎞= − − τ − −⎜ ⎟⎢ ⎥⎢ ⎥τ τ⎣ ⎦ ⎝ ⎠⎣ ⎦

  (6.22) 

where Ux and Uy denote components of the air velocity in the horizontal 
and vertical directions, respectively. If Re values are unknown and the 
flow regime is well beyond low flow levels, numerical methods (CFD) 
are required to compute the particle velocities and trajectories.  

Particle motion is described by the time dependent convection–
diffusion equation. For inviscid analysis or in laminar flow the transport 
equation can be easily adjusted to account for settling by incorporating a 
settling velocity into the advection–diffusion equation. Particle 
trajectories can be conveniently calculated using the Lagrangian form of 
the transport equation, i.e., 

 n 1 nd / dt , or t,+= = + Δx V x x V  

which we will return to later. 
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6.2.1 Deposition of particulate with aerodynamic diameters > 1μ by 
settling 

The deposition of large particles by diffusion is extremely small as is 
evidenced by examining the equation for the velocity of deposition 
through a boundary layer of thickness δ part j

from diffusion alone. In the 
absence of thermophoretic velocities and turbulent dispersion, deposition 
velocity is a function of gravitational settling. The equation for species 
transport with settling becomes 

 
j

j j j j
s

2 2 2
j j j j

c2 2 2

C C C C
u (v v ) w

t x y z

D C C C
Q

x y zρ

∂ ∂ ∂ ∂
+ + − + =

∂ ∂ ∂ ∂

⎡ ⎤∂ ∂ ∂
+ + +⎢ ⎥

∂ ∂ ∂⎢ ⎥⎣ ⎦

.  (6.23) 

This equation has an advective velocity term in the y coordinate to 
account for the direction of gravitational influence (assuming the y-
direction). The advective term v-vs in Eq. 6.23 represents some 
relaxation of the particulate velocity versus the free stream velocity.  

The deposition rate is given by 

 s pJ v ρ= . (6.24) 

For particles larger than 10 μm and Reynolds number between 2 and 500, 
the settling velocity is defined as (Cooper and Alley, 1994) 

 
1.14 0.71 0.71
p p

s 0.29

0.153d g
v

ρ
μ ρ

= .  (6.25) 

Inertial deposition from laminar flow occurs for larger particles which 
may be carried from the streamline flow onto an obstruction. The 
distance the particle would be carried from the streamline is dependent 
on the particle’s momentum and size. The trajectory of the particle is 
initially a function of the fluid’s trajectory.  

Consider a distance a particle will travel from its inertia. Let that 
distance be just to a surface – a stopping distance of ‘ sd ’. The velocity 
‘vs’ of the particle normal to the surface multiplied by the time ‘t’, the 
relaxation time, is the stopping distance ds=vs t.  
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The rate of deposition from this stopping distance is determined by 
the concentration of particles with this relaxation time. As the particle 
size decreases, the distance traveled from inertia decreases, that is, the 
relaxation time is decreased. Relaxation time is defined as  

 
2

c p pC d
t

18
ρ

μ
= .   (6.26) 

The particulate flux from the stopping distance, ‘ds ’, is  
 

ss s j dJ v C |= .  (6.27) 

The value of ‘Cj’, is the value of the concentration at the stopping 
distance for that particular particulate density and size.   

Inertial forces on large particles in turbulent flow are important 
mechanisms for deposition by impingement. Larger particles are carried 
into the boundary layer by inertia. The distance particles are carried into 
the transitional and laminar sublayers depends on the stopping distance 
which is dependent on the following factors: 1) particle size, 2) particle 
mass, and 3) degree of turbulence or how energetic the flow. 

If molecular diffusion is neglected, the velocity of deposition for 
particles is given by 

 turb d
d

fluid *

dc VV
dy u

μ
ν

+
+

+

= = .  (6.28) 

This equation is true for one-dimensional flow towards a flat plate. This 
equation provides a good approximation to flow within a cylinder where 
the radius of a surface is large compared to the scale of the turbulent 
boundary layer (Davies, 1966). 

Consider, a particle travel distance just to a surface as the stopping 
distance of ds+ with a turbulent velocity vs+ normal to the surface, then  
                                               s sd v t+ + += ,  (6.29) 

where 2
*t t u /+ = ν  is the nondimensional relaxation time. 

The rate of deposition from this distance is determined by the 
concentration of particles with this relaxation time. As the particle size 
decreases, the distance traveled from inertial forces decreases, that is, the 
relaxation time is decreased. Relaxation time is defined as  
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2

c p pC d
t

18
ρ

μ
= .  (6.30) 

The nondimensional particulate flux from the stopping distance ds+ is 
Js+=vs+ c+|ds+. The value of c+ is the value of the concentration at the 
stopping distance for that particular particulate density and size.       

6.2.2 Particle motion in electrostatic field 

Electrostatic forces can have very significant influence on the motion of 
aerosols. Most airborne particles are electrically charged, and when in 
presence of electric potential the resulting forces on the particles cause 
significant motion. So much so, that this force is utilized by electrostatic 
precipitators for air cleaning and by aerosol measurement instruments.   

Coulomb’s law describes the electrostatic force as 

 1 2
e 2

o 12

1 q qF
4 rπ ε

= ,  (6.31) 

where ‘q1’ is the particles charge, ‘q2’ a surfaces charge (or other point 
source), ‘εo’ the permeability of a vacuum, and ‘r12’ the distance between 
the charges. 

A field strength E is the electrostatic force produced per unit charge 
of the particle. This field is then 

 e

p

FE
q

= ,  (6.32) 

where pq n e= , ‘n’ being the number or units of electron charge, ‘e’, 1.6 
x 10-19 Coulombs. 

The work required to move a particle distance ‘x’ in an electric field 
per unit charge is 

 e
p

p

F xW
q
Δ

= ,  (6.33) 

This work is the potential difference in the electric field and is measured 
in volts, e.g., the voltage between parallel plates in an electrostatic 
precipitator.   
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The difference between the drag force and the electrostatic force 
determines particle acceleration in an electric field 

 p
e d p

dv
F F m

dt
− = .  (6.34) 

6.2.3 Particle motion induced by temperature gradients  

A temperature gradient will result in particles moving from the warmer 
region to the cooler region or surface. This phenomenon is the result of 
thermophoretic forces on the particles. 

6.2.4 Thermophoretic motion for gases and particles with diameter less 
than the molecular mean free path 

When the Knudsen number, Kn = λ/dp, is greater than 1.0, the 
thermophoretic velocity is given by 

 ThermoV 0.55 T,
T

= − ∇
μ

ρ
  (6.35) 

where 

  hot coldT T
T ,

ds
−

∇ =  

and T is the ambient or bulk temperature of the fluid (Hinds, 1982). 

 6.2.5 Thermophoretic transport for particles with diameter greater 
than the molecular mean free path 

When Kn < 1.0, the particle is influencing inertial and thermodynamic 
states of nearby gas molecules. The thermophoretic velocity is found by 
equating resistive forces to the thermal force (Hinds, 1982) and is given 
by  

 Thermo c

3
V H T C

2 T
,= − ∇

μ
ρ

  (6.36) 



Modeling Indoor Air Pollution 
 

 

 88 

where T is the ambient or bulk temperature of the fluid, cC  is the 
Cunningham slip correction factor, and  

 

f
p

p

fp
p

p

k
4.4 / d

k1
H

k1 6 / d 1 2 8.8 / d
k

+

=
+ + +

⎡ ⎤
⎢ ⎥⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦

λ

λ λ
,  (6.37) 

where kf and kp are the thermal conduction of the fluid and particle, 
respectively.  

Thermophoretic forces have an insignificant influence on the rate of 
deposition for particles of one micron physical diameter or larger. For 
very small particles this velocity would add as a vector function to the 
settling velocity and the velocity of the air stream.  

6.3 Particle Flow in Inlets and Flanges 

Contaminants and air are withdrawn by inlets of various shapes and 
sizes. The effectiveness of an inlet is basically how well it serves to 
capture contaminant. The locations of dividing streamlines and bounding 
trajectories of particles can be determined as a first guess using much of 
the analytical tools previously discussed. The quantitative measure of 
inlet effectiveness is generally referred to as reach. 

The reach defines the boundaries of the region from which the inlet 
reaches out and captures contaminants. In more definable terms, the 
reach can be defined as the ratio of the cross-sectional area of the stream 
tube of contaminants entering the inlet to the cross-sectional area of the 
stream tube of air entering the inlet. The reach for particles is not always 
equal to one since some of the particles may not enter the inlet, even 
though all the air is pulled into the inlet. This is due to particle inertia and 
deflection. For gases and vapors, the reach is unity. 

Figure 6.2 (a–b) shows a set of dividing streamlines and bounding 
trajectories for a flanged inlet in a uniform flow above the duct.  The 
ideal flow was solved via numerical conformal mapping using the 
CONFORM software (Ivanov and Trubetskov, 1994). 
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(a) 

 
(b) 

Fig. 6.2  Dividing streamlines, particle velocity and bounding particle trajectories for 
suction flow into a flanged duct with uniform flow field above. 

 

 
Fig. 6.3  Streamlines, particle velocity and bounding particle trajectories for suction flow 

into a flanged duct with quiescent flow field at distance. 
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Fig 6.4  Reach of an unflanged inlet for several particle sizes (from Industrial Ventilation, 
R. J. Heinsohn, J. Wiley & Sons, New York, 1991, pg. 537). 

 
To find particle velocity, displacement, and its new location (x, y), 

Eq. 6.22 must first be solved. Once the velocities are determined, the 
location of the particle at the end of an interval of time can be found 
using the simple Lagrangian relations 

 
j i i i

j i i i

x x tu(x , y )

y y tv(x , y ),

= + Δ

= + Δ
  (6.38) 

where ‘I’ denotes initial (previous) position and ‘j’ is the new position. 
Repeating solution of this pair of equations produces a table of x and y 
values that can be used to create a trajectory for the particle position. 
More details on this simple technique is given later in chapter 8 dealing 
with Lagrangian Particle Transport.  
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6.4 Comments 

The movement of particles and gaseous contaminants are directed 
principally by the ventilation patterns within a room or building. In the 
absence of any indoor air movement, the principle mechanism for 
particle dispersion is diffusion – much like the pattern of waves created 
when a pebble is thrown into a calm pond. Even a hint of air entering a 
room has an affect on dictating the movement and direction of 
contaminant. 
A simple experiment one can conduct is to pop popcorn in a microwave 
and then open the bag – notice how quickly the smell of popcorn spreads 
within a room, especially if there is discernable air movement within the 
room.  

In this chapter, we have attempted to list some of the more important 
analytical equations that can be used to determine particle motion in an 
air stream. These relations can be used to quickly predict general 
trajectories of particulate contaminant, i.e., an order of magnitude 
assessment – which may be sufficient in many cases. Greenspan (2005) 
discusses modeling at the molecular and particle level, and provides 
simple source codes for predicting motion at the molecular and nanoscale 
levels. While permitting only a microcosm of activity to be simulated, 
the modeling presents interesting results that can be combined to produce 
larger scale (continuum) motion.  
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Chapter 7 

 

Numerical Modeling – Conventional 
Techniques 

Indoor air quality can have a larger effect on human health than outdoor 
air quality. The common practice of relating measurements of outdoor 
pollutants to human exposure can be fundamentally wrong, especially 
with regards to hazardous material. Direct measurements of indoor air 
quality are the best way to evaluate the existence and the gravity of 
contaminants. In some instances, statistical data can be used to estimate 
flow rates. While such analyses lead to order of magnitude projections, 
they do not provide sufficient data for ventilation feedback and 
remediation. In order to obtain accurate assessments and forecasts of the 
effects on ventilation/air quality, modeling based on solution of the 
nonlinear equations of fluid motion (Computational Fluid Dynamics, or 
CFD) must be undertaken. 

In order to accurately model the dispersion of contaminants within an 
indoor environment, it is important to incorporate as much physics as 
possible. One must be able to model both laminar as well as turbulent 
fluid motion common to real world situations. As we have seen in 
Chapter 2, the governing equations are transient, nonlinear PDEs that 
have no tractable analytical solutions except for the simplest of cases. In 
order to solve these difficult equations, the equations must be discretized 
and then numerically solved. There are various numerical techniques that 
can be used to solve these equations. We will address the more popular 
and conventional methods now being used, including a brief mention of 
several of the more widely used commercial CFD codes now in use.   
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There are three fundamental numerical methods that are commonly 
used to model flow and species transport within enclosures. The two 
most popular and prevalent numerical techniques are the finite difference 
method (FDM) and the finite volume method (FVM). The rapidly rising 
third technique is the finite element method (FEM), which has a great 
deal of versatility and applicability. We begin with the simplest of these 
three methods, the FDM.  

7.1  Finite Difference Method 

The finite difference method is based on approximating derivatives using 
truncated Taylor series expansions. Nodal values are found using a mesh 
to discretize the problem domain. A recursion relation is formed from the 
approximation that is then solved repeatedly as the solution sweeps over 
the array of nodes. Higher order terms are truncated in the Taylor series, 
thus creating an approximation to that derivative that may be accurate to 
the first order, the second order, or higher, depending on how many 
terms one wishs to include before truncating the series. In nearly all 
cases, either first or second-order approximations are typically employed, 
with the mesh being fine enough to ensure a converged (or decent) 
solution. 

Utilizing discrete distances and increments of time in the Taylor 
series expansion, a finite difference approximation is made of the 
original differential equation. For example, looking at the 1-D equation 
for time dependent isotropic advection–diffusion of a variable, φ,  

 
2

2

d u k
dt x x

∂ ∂
+ =

∂ ∂
ϕ ϕ ϕ

, (7.1) 

we seek the derivatives of each term, found by Taylor series expansion. 
Representing the derivative of ‘φ’ with respect to ‘x’, we can expand the 
value using either a backward or a forward approximation, i.e., 
  

 
2

2
x 1 x 2

1x x ...
x 2! x−

∂ ∂
= − Δ + Δ −

∂ ∂
ϕ ϕϕ ϕ , (7.2a) 
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2

2
x 1 x 2

1x x ...
x 2! x+

∂ ∂
= + Δ + Δ +

∂ ∂
ϕ ϕϕ ϕ .  (7.2b) 

Rearranging and dropping higher order terms the first order derivative 
can be represented in a discrete sense using the backward expansion as  

 x x 1

x x
−−∂

=
∂ Δ

ϕ ϕϕ
, (7.3a) 

with Δx being the discrete difference between x and x-1. Using a forward 
expansion, the derivative can be expressed as  

 x 1 x

x x
+ −∂

=
∂ Δ

ϕ ϕϕ
.  (7.3b) 

In this case, Δx is now the discrete difference between x + 1 and x. A 
truncation analysis (retaining the highest order term) will show that these 
two relations (Eq. 7.3 a,b) are first order accurate in space.  

If we now subtract the backward from the forward Taylor series 
expression, a second-order accurate discrete derivative can be obtained 

 x 1 x 1

x 2 x
+ −−∂

=
∂ Δ

ϕ ϕϕ
.  (7.4) 

In a similar fashion, if we add the forward and backward expansions 
together, we can obtain the second derivative term which produces a 
second-order accurate approximation, 

 
2

x 1 x x 1
2 2

2
x x

+ −− +∂
=

∂ Δ
ϕ ϕ ϕϕ

.  (7.5) 

Notice that Eq. 7.4 requires knowing values at x – 1 and x + 1 to define 
the derivative; Eq. 7.5 requires an additional value at x. However, these 
approximations produce values that are an order of magnitude more 
accurate than the one-sided, first order values.  

At this point, we need to introduce the concept of a mesh to establish 
the nodal locations of the unknown values for φ. Instead of x, let’s use i 
as an indicial marker to denote the x locations and we will use circles to 
indicate nodes. This can be seen in Fig. 7.1 below. The nodes are now 
indicated as intervals of i, and represent the generic set of three adjacent 
nodes commonly found within a computational domain.  
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Fig. 7.1 Three node discretization in the x-direction. 

 
Before continuing on, we will address the time-dependent term as a 

forward in time discretization, and use superscript n+1 to denote the 
unknown value of φ at the new time, n+1, and superscript n to represent 
known values at the previous time, n. This procedure is common practice 
in CFD modeling, and allows us to need to keep track of only previously 
calculated values at n and unknown values at n+1. A central difference 
approximation of the time-derivative term would require three levels of 
values to be kept, which could become excessive in storage – and it turns 
out we don’t need to do this anyway as a Taylor series truncation 
analysis shows that the discretization produces second order accuracy in 
time if one uses an implicit time-marching technique. We will discuss 
this shortly. The time-derivative term becomes 

 
n 1 n
i i

t t

+ −∂
=

∂ Δ
ϕ ϕϕ

,  (7.6) 

where Δt is the time step.  
Substituting Eqs. 7.4, 7.5, and 7.6 into the transient advection–

diffusion equation, the discrete representation of the governing equation 
becomes 

 
n 1 n k k k k k
i i i 1 i 1 i 1 i i 1

i 2

2u k
t 2 x x

+
+ − + −− − − +

+ =
Δ Δ Δ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ
. (7.7) 

This equation is first order accurate in time and second order accurate in 
space. We now need to briefly address the issue of superscript k and 
decide on whether to solve the equation explicitly or implicitly.  

There are numerous techniques that have been developed over the 
past 50 years or more dealing with solutions to Eq. 7.7. A great many 
textbooks exist in the literature that describe the pros and cons of various 
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time-dependent approximations. We shall keep the time-stepping simple 
and introduce the two basic schemes: explicit and implicit.  

7.1.1 Explicit 

If we set k = n in Eq. 7.7, the discretized equation is solved using an 
explicit marching technique, i.e., there is only one unknown to be solved 
with everything else being known at time level n. Equation 7.7 becomes 

 
n 1 n n n n n n
i i i 1 i 1 i 1 i i 1

i 2

2u k
t 2 x x

+
+ − + −− − − +

= − +
Δ Δ Δ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ
,  (7.8a) 

or 

 
n n n n n

n 1 n i 1 i 1 i 1 i i 1
i i i 2

2t u k
2 x x

+ + − + −⎡ ⎤− − +
= + Δ − +⎢ ⎥Δ Δ⎣ ⎦

ϕ ϕ ϕ ϕ ϕϕ ϕ ,  (7.8b) 

which can be simply solved as a repetitive statement in a computer 
program as one sweeps over the entire set of nodes. In this instance, the 
solution is first order accurate in time and second order accurate in space. 
Since this method is explicit, there is a time-step limitation, i.e., Δt 
cannot exceed a specific limit or the solution will diverge, i.e., become 
unstable. This time-step limit is based on the larger of the two limiters: 

 

2

u t 1
x

k t 1.
2 x

Δ
≤

Δ
Δ

≤
Δ

 

Usually the dominate limiter is the first term since u/Δx is typically much 
larger than the k/2Δx2 term. We will come back to this shortly.  

7.1.2 Implicit 

If we now set k = n+1 in Eq. 7.7, the discretized equation is solved using 
an implicit marching technique, i.e., there are three unknowns at i-1, i, 
and i+1 that must be solved. This now requires the solution of a matrix – 
in this case, a tridiagonal banded matrix. 
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Fortunately, the well-known Thomas algorithm is the most efficient 
solver for tridiagonal matrices and is easy to set up. Again there are 
numerous textbooks and references that describe this solver. Hence, Eq. 
7.7 now becomes  

 
n 1 n n 1 n 1 n 1 n 1 n 1
i i i 1 i 1 i 1 i i 1

i 2

2u k
t 2 x x

+ + + + + +
+ − + −− − − +

= − +
Δ Δ Δ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ
,  (7.9a) 

or, in vector form (row times column),                    

 { }

n 1

i 1
ni i

i i2 2 2

i 1

u t k t 2k t u t k t
, 1 ,

2 x x x 2 x x

+

−

+

ϕ
Δ Δ Δ Δ Δ

− − + − ϕ = ϕ
Δ Δ Δ Δ Δ

ϕ

⎧ ⎫
⎪ ⎪⎢ ⎥
⎨ ⎬⎢ ⎥⎣ ⎦ ⎪ ⎪⎩ ⎭

, (7.9b) 

which now must be solved as a set of three unknowns. A tridiagonal 
matrix is created as one sweeps over the nodes going from i =1 to i = N 
(total number of nodes). Fortunately, this method does not have a 
limitation on the time step, i.e., the method is unconditionally stable. 

Higher order discretization can be achieved with the use of various 
components of the Taylor series expansions. Also, notice this equation 
was developed based on an equal spacing of the discretization and could 
be modified for nonuniform grid spacing. 

7.1.3 Upwinding 

Upwinding of the advective term, i.e., using a backward differencing, is 
sometimes employed since it is a stable discretization even for explicit 
time stepping. Equation 7.7 now becomes 

 

n 1 n n n n n n
i i i i i i 1 i 1 i i 1

i2

n 1 n n n n n n
i i i i 1 i i i 1 i i 1

i2

u u 2
k for u 0

t x x
u u 2

k for u 0.
t x x

+
− + −

+
+ + −

− − − +
= − + >

Δ Δ Δ

− − − +
= − + <

Δ Δ Δ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ
  (7.10) 

The stability constraint is the Courant–Friedrichs–Lewy (CFL) condition, 
which we saw in the explicit time-marching scheme, 
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t

C u 1
x

Δ
= ≤

Δ
.  (7.11) 

The condition states that a fluid molecule can travel no more than a 
spatial distance, Δx, in time, Δt. The upwinded term is first order 
accurate and can produce rather severe numerical diffusion, thus creating 
a damping of the second order central difference scheme. When C = 1, 
there is no artificial diffusion; however, this is rarely the case since 
velocities vary throughout the problem domain.  

Another popular technique, called the donor cell method, is somewhat 
second order accurate as a result of central differencing. In this method, 

 
n 1 n n n n n n
i i R R L L i 1 i i 1

2

u u 2
k

t x x

+
+ −− − − +

= − +
Δ Δ Δ

ϕ ϕ ϕ ϕ ϕ ϕ ϕ
,  (7.12) 

where 

 

i 1 i i i 1
R L

R i R R i 1 R

L i 1 L L i L

u u u u
u and u

2 2
for u 0 , for u 0

for u 0 , for u 0.

+ −

+

−

+ +
= =

= > = <

= > = <

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

   (7.13) 

These two upwinding procedures produce stabilizing effects when 
dealing with step gradients common to the advective term (Roache, 
1972; Fletcher, 1991). However, the artificial diffusion imposed by these 
schemes may not reflect the true characteristic viscosity of the fluid, e.g., 
the flow of molasses versus the flow of air. Use them carefully. 

One must remember that any explicit formulation’s time increment is 
constrained by the CFL) condition and also by diffusion, known as the 
Fourier number,     

 
2

t 1
k

x 2
Δ

≤
Δ

,  (7.14) 

as noted previously.  
If φ now becomes a function of (x,y), the transport equation is two-

dimensional and additional terms must be included to account for the 
extra dimension, i.e.,  
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2 2

2 2u v k .
t x y x y

⎛ ⎞∂ ∂ ∂ ∂ ∂
+ + = +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

ϕ ϕ ϕ ϕ ϕ
  (7.15) 

The discretization must now impose an orthogonality in the x and y 
directions. This decomposition of the domain into grid points that can be 
connected by orthogonal lines is referred to as a structured mesh, or grid. 
For complex domains the representation may suffer if there are curved 
surfaces or sides oblique to the discretization. A simple 2-D mesh is 
shown in Fig. 7.2, now with a 2-D molecule denoting three nodes in the 
x (i values) and y (j values).  

The discretized equation produces a double indexed set of variables, 

 

n 1 n k k k k
i, j i, j i 1, j i 1, j i, j 1 i, j 1

i, j i, j

k k k k k k
i 1, j i, j i 1, j i, j 1 i, j i, j 1

2 2

u v
t 2 x 2 y

2 2
k .

x y

+
+ − + −

+ − + −

− − −
+ + =

Δ Δ Δ

⎛ ⎞− + − +
+⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ
  (7.16) 

 

 
 

Fig. 7.2 A 2-D structured mesh. 
 

The same procedure is followed in time marching the solution 
whether explicit or implicit. Since the equation is now 2-D, an implicit 
solution would require solving a 5-diagonal banded matrix.  
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There are two popular techniques to do this: the alternating direction 
implicit (ADI) scheme and the strongly implicit procedure (SIP). The 
ADI scheme is particularly useful in separating multidimensional 
systems into time advancement for each dimension and is 
unconditionally stable. One needs only to solve a tridiagonal matrix 
using the Thomas algorithm by sweeping in each direction (this works 
equally well in 3-D). The ADI method can be found in nearly all 
numerical methods textbooks or on the web. 

The SIP solves the 5-banded (or 7-banded in 3-D) matrix, but is more 
complicated. However, the method can be significantly faster than the 
ADI). The interested reader is referred to Pepper and Harris (1977) for 
the SIP technique. 

Using a scheme which averages in space the current and future time 
step is known as a semi-implicit scheme. The most popular method is 
Crank–Nicolson averaging, and is unconditionally stable. Numerous 
other time-marching schemes can be found in the set of numerical 
recipes textbooks published by Cambridge University Press.  

 Transformations can be constructed for complex domains that fit the 
boundaries and coordinates to an orthogonal discretization. This 
Boundary Fitted Coordinate (BFC) transformation (Thompson et al., 
1985) can be complicated but allows for the use of FDM to solve 
problems on complex domains. An orthogonal mesh is created in 
computational space, allowing simple difference approximations to be 
utilized. The transformation of an airfoil from physical space to 
computational space is shown in Fig. 7.3.       

The FDM requires orthogonality when establishing a mesh and 
determining derivatives, i.e., the rows and columns of lines created by 
the mesh must be perpendicular at the cross points, or nodes. This can 
occur in either physical space (the problem domain) or computational 
space (i.e., transformed space). Even the finite element method 
transforms each individual element from physical space to a unit square 
in computational space. The difference between the FEM and the FDM is 
that the FDM (or FVM) requires a global transformation of the physical 
space and governing equations. The reader is referred to the textbooks by 
Fletcher (1991), Warsi (1999), Chung (2002), and Anderson (2001).  
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Fig. 7.3 Boundary fitted coordinate) transformation. 

 
Example 7.1.4 FDM simulation of flow in an office complex An office 
complex is shown in Fig. 7.4 (a–d) below. Determine the flow pattern 
within the offices using FDM if the flow from the hallway enters the 
outer office at u = 1 f/s. We will use this office complex as we discuss 
the other methods.  
 

 
 (a)                                                                           (b) 

 
(c)                                                                             (d) 

 Fig. 7.4  Two-room office complex with open door and window. 
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In this example problem, the two-dimensional vorticity–
streamfunction formulation is used to solve for the interior velocities. 
The equations for the vorticity–streamfunction formulation stem from the 
Navier–Stokes (or primitive equations) for fluid motion. The use of the 
vorticity equation eliminates the pressure term in the equations of 
motion, thereby reducing the set of equations to two equations with two 
unknown, i.e., ω and ψ, where u and v velocity components are just the 
derivatives of ψ. The two equation set is 

 

2 2

2 2

2 2

2 2

1
t y x x y Re x y

,
x y

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − = +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂
= − +⎜ ⎟∂ ∂⎝ ⎠

ω ψ ω ψ ω ω ω

ψ ψω
  (7.17) 

where vorticity and velocities are defined as  

 

v u
x y

u , v .
y x

∂ ∂
ω = −

∂ ∂
∂ψ ∂ψ

= − =
∂ ∂

 

The discretized forms of Eq. 7.17 are 

 

n 1 n k k k k
i, j i, j i 1, j i 1, j i, j 1 i, j 1

i, j i, j

k k k k k k
i 1, j i, j i 1, j i, j 1 i, j i, j 1

2 2

u v
t 2 x 2 y

2 21 ,
Re x y

+
+ − + −

+ − + −

− − −
+ + =

Δ Δ Δ

⎛ ⎞− + − +
+⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠

ω ω ω ω ω ω

ω ω ω ω ω ω
  (7.18) 

and 

 
k k k k k k
i 1, j i, j i 1, j i, j 1 i, j i, j 1

i, j 2 2

2 2
x y

+ − + −⎛ ⎞− + − +
− = +⎜ ⎟⎜ ⎟Δ Δ⎝ ⎠

ψ ψ ψ ψ ψ ψ
ω ,  (7.19) 

where 

 i, j 1 i, j 1 i 1, j i 1, j
i, j i, ju , v

2 y 2 x
+ − + −ψ − ψ ψ − ψ

= − =
Δ Δ

.  (7.20) 
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Equation 7.18 can be solved using a Crank–Nicolson implicit ADI) 
approach. Equation 7.19, which is a steady-state Poisson equation, is best 
solved using a Successive Over Relaxation (SOR) technique. The SOR is 
an iterative scheme based on the Gauss–Seidel method. 

7.2 Finite Volume Method 

The majority of fluid flow simulations are conducted using the finite 
volume approach (Patankar and Spalding 1972; Patankar, 1980; 
Anderson et al., 1997; Fletcher, 1991). This is principally because of its 
ease of use and simplicity in establishing meshes for orthogonal regions 
(i.e., rectangles). The application of the BFC) technique to model 
irregular geometries helped in overcoming this handicap (Thompson et 
al., 1985). However, the computational accuracy of these simple 
difference schemes is limited to first order (spatially); in addition, such 
methods require an extensive meshing effort and massive numbers of 
nodes (especially in three dimensions), and can become quite formidable 
for non-orthogonal problem domains. Modeling complex 3-D problems 
using finite volume (or finite difference) methods today may typically 
require over 106 nodes, overwhelming the resources of most current PCs. 
Such massive problems must be run on large supercomputers, usually 
configured in a parallel cluster arrangement of many PCs. 

The finite volume method (FVM) is really a subset of the Method of 
Weighted Residuals (MWR) and in this sense is a cousin to the finite 
element method (FEM) (see Baker and Pepper, 1980). It is an inner 
product projecting the residual to zero. Since the problem domain is a 
discrete system, the method seeks to minimize the error or residual, R, 
over the domain. Let the residual equation or relationship be determined 
by 
 R L (x) 0≡ =ϕ ,  (7.21) 

where Lφ(x) is the approximation to some differential equation. The 
approximation of the function φ(x) is given by 

 
n

i i i
i 1

(x ) N
=

= ∑ϕ ϕ ,  (7.22) 
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which is a polynomial expansion. The term Ni is the test (or shape 
function), and φi is the trial value. For the FVM, this weight is just one or 
zero depending on if the elemental domain is being evaluated or not, and 
n is equal to 1. 

The method seeks to minimize this residual over a domain. Requiring 
the residual to be zero on average is accomplished by multiplying the 
residual equation by an appropriate weighting function, W, and 
integrating over the entire domain, 

 iWL (x ) d 0
Ω

Ω =∫ ϕ ,  (7.23) 

where Ω denotes the problem domain (xi = x, y, z).  
When applied over a domain, which is discretized into finite volumes, 

the resulting set of algebraic equations can be solved for the unknowns, 
that is, the values of  φ, i.e.,   

 (R , W )d 0
Ω

Ω =∫ ,  (7.24) 

where the residual R  is the approximate solution and W is some 
appropriate weight or approximation. The residual is by definition 
approximate since only an approximation of the solution on the domain 
is possible with any discrete representation. It is possible, however, to 
have an exact solution at the nodal points, known as superconvergence.   

The difference between the FEM and FVM is in the order of the 
interpolation polynomial where FEM has at least first order weighting 
functions and the variables can be represented as functions of higher 
order polynomials. The finite volume method uses zero order 
polynomials as both test and weight functions. Setting Ni = W produces 
the Galerkin method, which is the most popular procedure used in the 
FEM. The finite volume method is referred to as a subdomain method. 

To see how this works, we look at the equation for conservation of 
mass in integral form   
 L( ) 0=∇ =Viϕ ρ ,  (7.25) 

where V is the velocity vector. Then 

 L( )d d
Ω Ω

Ω = ∇ Ω∫ ∫ Viϕ ρ . (7.26) 
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Applying Green’s Theorem (this is integration by parts in 1-D), we 
obtain 

 ( )ˆd n d
Ω Γ

∇ Ω ≡ Γ∫ ∫V Vi iρ ρ , (7.27) 

where Γ denotes the boundary and n̂  is the normal vector. This integral 
equation evaluated over the domain Ω , shown in Fig. 7.5, produces an 
expression for the conservation of mass given by 
 
 r r r l l l t t t b b bV A V A V A V A 0− + − =ρ ρ ρ ρ ,  (7.28) 

 

n̂ n̂

n̂

n̂

td AΩ =

rd AΩ=

ld AΩ=

bd AΩ=

Ω

 
Fig. 7.5  A finite volume.  

where subscripts r, l, t, and b denote right, left, top, and bottom faces. 
The flux of a variable into the volume is evaluated as it crosses one of 
the boundaries; the flux leaving the volume is calculated at the opposite 
face. This ensures mass conservation – one of the big advantages of the 
FVM. If we assume the values of ρ are placed at the center of the cell 
and the values of velocity (V = u(x), v(y)) at the faces of each cell, an 
offset grid (or staggered cell) can be created which avoids the difficulties 
associated with 2Δx instabilities (Hansen, 1996). This discretization is 
shown in Fig. 7.6.   
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Fig. 7.6  Discretization of a finite volume. 
 
where w, e, s, and n denote west, east, south, and north faces. An 
upwinding scheme is typically used for the advection terms. Only the 
center density belongs to the cell and is considered constant throughout 
the cell. Therefore w e s, ,ρ ρ ρ and nρ belong to the adjacent cells and 
are evaluated at the center of those cells. The velocities however, do 
belong to the points depicted on the faces of the cell. Upwinding in this 
instance is accomplished as  
 ( ) c ee

u Max , 0) Max , 0).c e(u (-u= −ρ ρ ρ   (7.29) 

Noticing from Fig. 7.4 that 
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A A y
A A x,

= = Δ
= = Δ

  (7.30) 

the discretized equation for mass conservation becomes  

 
( )

( ) ( ) ( ) ( )e w n s

ˆˆd n V d

u u y v v x.
Ω Γ

∇ Ω ≡ Γ≅

⎡ ⎤ ⎡ ⎤− Δ + − Δ⎣ ⎦ ⎣ ⎦

∫ ∫Vi iρ ρ

ρ ρ ρ ρ
 (7.31) 

The momentum equations are developed similarly. If the elements are 
trapezoidal (2-D) or hexahedral (3-D) the surface areas and normal dot 
products must be calculated in order to evaluate the correct flux, thereby 
rendering this system capable of handling a non-orthogonal grid 
discretization. Such unstructured grids are now commonly found in most 
of the current commercial CFD packages that use the FVM approach, 
e.g., ANSYS (FLUENT), STAR–CD, CFX, ANSWER, etc. 

The discretization error attributed to both the FDM and the FVM are 
the same, i.e., they are O(Δx)2 in space if one performs a truncation error 
analysis using Taylor series. This can be seen in the following example. 
 
Example 7.2.1 ODE discretization using FVM: Assume that we wish 
to discretize the following simple ODE equation using both the FDM and 
the FVM 

 
2

2

d d 0
dx dx
ϕ ϕ

+ + ϕ = ,  (7.32) 

We will use central differencing to discretize the derivatives for the FDM 
and will employ integration over control volumes for the FVM. The 
mesh is shown in Fig. 7.7. 
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Fig. 7.7 FDM versus FVM mesh in 1-D. 

 
The dark dots denote the node points and the squares surrounding 

each node are the control volumes with the faces labeled along the 
bottom interfaces.  

7.2.1 FDM 

 
n n n n n
i 1 i 1 i 1 i i 1

i2

2 0
2 x x

+ − + −− − +
+ + =

Δ Δ
ϕ ϕ ϕ ϕ ϕ ϕ .  (7.33) 

Equation 7.33 employs simple central differencing for the first and 
second derivatives. Notice that the single term, φ, is evaluated at node i. 
This is the usual practice when using FDM. 

7.2.2 FVM 

We now must integrate over the control volume containing node i. The 
limits of integration will be from i - 1/2 to i + 1/2. Thus, 

 
2i 1/2 i 1/2 i 1/2

2i 1/2 i 1/2 i 1/2

d ddx dx dx 0
dx dx

+ + +

− − −

ϕ ϕ
+ + ϕ =∫ ∫ ∫ ,  (7.34) 

which leads to 

 
i 1/2

i 1/2 i 1/2 i 1/2 i 1/2 i 1/2

d d| | | | dx 0
dx dx

+

+ − + − −

ϕ ϕ
ϕ −ϕ + − + ϕ =∫ .  (7.35) 

Using simple averaging, Eq. 7.35 can be rewritten as 
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i 1/2

i 1 i i i 1 i 1 i i i 1
i 1/2

dx 0
2 2 x x

+
+ − + −

−

ϕ + ϕ ϕ + ϕ ϕ − ϕ ϕ − ϕ
− + − + ϕ =

Δ Δ ∫ . (7.36) 

Now the question is what to do about the remaining integral term for φ. 
Clearly, if we assume φ is constant at node ‘i’, we would then have φiΔx, 
and the equation reduces exactly to the FDM expression. On the other 
hand, if we use an integral expression such as Simpson’s 1/3 rule, Eq. 
7.36 becomes 

 ( )i 1 i 1 i 1 i i 1
i 1 i i 12

2 1 0
2 x x 3

+ − + −
− +

ϕ − ϕ ϕ − ϕ + ϕ
+ + ϕ + ϕ + ϕ =

Δ Δ
,  (7.37) 

which produces the same discretization in space as the FDM (and order 
of accuracy). Here we use an integral form for the last term, which 
retains the same accuracy as the discretization, instead of a constant 
value at node i.  

The big difference between the two methods is the conservation of 
mass inherent in the FVM, but with the additional hassle of formulating 
the boundary conditions in the FVM to ensure proper fluxes at the 
boundaries.  
 
Example 7.2.2 FVM simulation of flow in an office complex 
(FLUENT): We wish to solve for the flow within the office complex 
shown in Example 7.1 using the FVM. In this instance, we use the 
commercial package, ANSYS (FLUENT), which is a popular CFD code 
widely used in academia and industry. The code is based on the finite 
volume formulation to solve the primitive form of the equations for fluid 
flow, heat transfer, and species transport. The code uses the SIMPLE 
technique developed by Patankar (1980) to resolve the pressure term in 
the governing equations. FLUENT is relatively easy to set up and can be 
run on PCs. Figures 7.8 to 7.10 show the mesh, velocity vectors, and 
pressure contours. The mesh is created using a simple mesh generator to 
produce a set of orthogonal rows and columns defining the individual 
volumes. Figure 7.8 shows the interior of the office complex discretized 
using bilinear volumes.  
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       Fig. 7.8 Mesh for FVM discretization of an office complex.  

 

 
Fig. 7.9 Velocity vectors from FVM solution for the office complex.  

 

 
Fig. 7.10 Isobars from FVM solution for the office complex. 

 
There are many popular methods that can be used to discretize a 

problem domain and solve the resulting equations for fluid flow using 
the FVM. Some of the early formulation and code listings of the FVM 
using staggered grids can be found in the literature by Harlow and Welch 
(1965) and Anderson et al. (1997).  
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7.3 The Finite Element Method 

A numerical method that is capable of handling the wide variety of 
complex problems inherent in today's technology is the finite element 
method (Zienkiewicz, 1977). The reasons for its popularity include the 
ability to handle inhomogeneous or variable properties, irregular 
boundaries, and use of general-purpose algorithms that give high order 
accuracy. However, traditional finite element methods are not without 
their faults. The computational effort and storage requirements 
associated with traditional finite element methods rapidly become 
excessive when solving fluid flow problems.  

The bandwidth generated from the computational mesh and assembly 
procedure is critical when globally formulating the coefficient matrices. 
Problems involving a large number of nodes become difficult to solve on 
even the largest and fastest computers. Pepper (1987) and Pepper and 
Singer (1990) discuss accurate finite element algorithms that are 
computationally efficient, and are particularly advantageous in modeling 
large problems on small computers. 

The two most often used ways to formulate the FEM are the 
Rayleigh–Ritz variational method and the Galerkin Method of Weighted 
Residuals (MWR), similar to the method used in the FVM. Both 
approaches use a combination of appropriate functions to approximate 
the solution. The unknown coefficients are determined using integral 
statements in such a way as to approximately satisfy the original 
differential equations. However, there is a major difference between the 
Rayleigh–Ritz method and the Galerkin method.  

The Rayleigh–Ritz method finds the unknown coefficients through an 
energy minimization process; this process requires a minimum principle. 
The Galerkin method is based on making the projection of the error in 
the approximating functions vanish in the finite dimensional space 
spanned by the functions. This approach allows the Galerkin method to 
be used in situations when minimum principles do not exist. Such cases 
occur when convection is the dominant transport mechanism in a fluid 
system. The Galerkin method is the preferred method of choice for FEM.  

In general, the following steps are needed in any finite element 
approximation to the solution of a differential equation: 1) the equation 
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(or system of equations) and its boundary and initial conditions must be 
defined to ensure that a well-posed problem is formulated, 2) an element 
type must be chosen to define the approximation functions to be used in 
the solution, 3) a mesh must be created that adequately refines regions 
where large changes in the solution are expected, and that allows the 
boundary conditions to be properly imposed, 4) the finite element 
algorithm must be formulated and used to solve the system of algebraic 
equations, and 5) the error in the approximation must be calculated to 
determine if the solution is converged or if a more refined solution is 
needed. 

To illustrate finite element methodology, assume a linear operator (L) 
exists in two dimensions such that 

 
2 2

2 2L
x y
∂ ∂

= +
∂ ∂

,  (7.41) 

One must now reformulate the basic problem in a way appropriate for the 
application of the FEM. Let an equation exist of the form 

 ( ) ( )L f 0ϕ − =x x , 

where φ and f are functions of (x). Now define the residual function as 

 ( ) ( ) ( )R , x L x f xϕ ≡ ϕ − .  (7.42) 

It then follows that if φ* is the solution to the differential equation, then 
R(φ*,x) ≡ 0. However, if φ is only an approximation to the solution, the 
residual provides a measure of the error in the satisfaction of the 
equation. 

If we now multiply Eq. 7.41 by a weighting function, W, defined over 
domain (space) Ω, integrate over Ω, and set the integral equal to zero, we 
obtain the weighted residual form 

 ( ) ( ) ( )W x R , x d W L f d 0
Ω Ω

ϕ Ω ≡ ϕ − Ω =∫ ∫ .  (7.43) 

Hence,  

 
w k k w f d 0.

x x y yΩ

⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ϕ ∂ ∂ ϕ
− + + Ω =⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦
∫

  (7.44) 
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We now apply Green's theorem to the second integral terms. This 
operation creates a weakened form of the second derivative terms, i.e., 
the second derivatives are reduced to first derivatives plus terms 
evaluated at the limits of integration. Although the equation is weakened, 
it is still valid and applies to the governing equation we wish to solve. 
Thus, Eq. 7.42 now becomes    

 

kW kW d
x x y y

kW d y kW d x .
x y

Ω

Γ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ϕ ∂ ∂ϕ
+ Ω =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞∂ϕ ∂ϕ
−⎜ ⎟∂ ∂⎝ ⎠

∫

∫
  (7.45) 

Using the fact that the components of the unit outward normal to Γ are nx 
= dy/dΓ and ny = - dx/dΓ, the line integrals in Eq. 7.38 become 
 

 x ykW n kW n d kW d
x y nΓ Γ

⎛ ⎞∂ϕ ∂ϕ ∂ϕ
+ Γ = Γ⎜ ⎟∂ ∂ ∂⎝ ⎠

∫ ∫ ,  (7.46) 

where n denotes the normal to the surface. Hence, Eq. 7.39 can be 
rewritten as 

 

W Wk k Wf d
x x y y

W k d 0.
n

Ω

Γ

⎡ ⎤∂ ∂ϕ ∂ ∂ϕ
+ − Ω +⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

∂ϕ⎛ ⎞− Γ =⎜ ⎟∂⎝ ⎠

∫

∫
  (7.47) 

Weak formulations for any second order linear differential operator 
can be obtained in the manner described above. Nonlinear problems must 
be treated on a case by case basis, but we can always generate a weak 
form. 
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7.3.1 One-dimensional elements 

7.3.1.1 Linear element 

Consider a piecewise polynomial approximation of the domain 0 < x < 1. 
Divide the domain into two equal intervals, and seek a solution that is 
linear over each of the subintervals. A linear function φ between two 
nodal points xi and xi+1 can be written as 

 
( ) 1

1
1 1

i i
i i

i i i i

x x x xx
x x x x

+
+

+ +

⎡ ⎤ ⎡ ⎤− −
ϕ = ϕ + ϕ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ .  (7.48) 

Thus, 

 i i 1 1 2 2 3 3(x) N (x) N N Nϕ = ϕ = ϕ + ϕ + ϕ∑ ,  (7.49) 

where 

 N x
x     x

1
1 2 0

1
2

0
( ) =

− ≤ ≤R
S|
T|             otherwise

,  (7.50a) 

 

 N x

x         x

x    x2

2 0
1
2

2 2
1
2

1

0

( ) =

≤ ≤

− ≤ ≤

R

S
|||

T
|||

 

            otherwise

,  (7.50b) 

 N x
x x

3
2 1

1
2

1

0
( ) =

− ≤ ≤R
S|
T|

     

            otherwise
.  (7.60c) 

The functions Ni(x), i = 1, 2, 3, are shown in Fig. 7.11 and are called 
shape functions, trial functions, or basis functions. 
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Fig. 7.11 Linear 1-D shape functions for a two-element approximation. 

 
The functions have local support, i.e., they vanish outside a maximum of 
two elements. The implementation of Dirichlet conditions is trivial, e.g., 
to impose φ(0) = 0, simply set φ1 = φ1(x1) = φ(0) = 0. In a Galerkin 
formulation, one sets Wi(x) = Ni, and the linear shape functions take the 
generic form over each element shown in Fig. 7.12. 

 
       (a)                                                                      (b) 

Fig. 7.12  Linear element interpolation and element shape functions. 

7.3.1.2 Quadratic and higher order elements 

To obtain higher order elements, we must introduce more nodes in the 
elements. For example, if we desire to use quadratic polynomials over an 
element, a function φ(x) will be approximated as 
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 2(x) a b x c x 0 x hϕ ≅ + + ≤ ≤ ,  (7.51) 

which contains three unknown parameters; h is commonly used in FEM 
to denote element length (i.e., Δx). To determine the shape functions we 
place three nodes within the element, one at each end of the interval and 
one at the midpoint. Note that it is not required that the middle node be 
placed precisely between the two end point nodes – this allows the user 
to skew values towards one end of the element or the other. In this case, 
we set the nodes at x1 = 0, x2 = h/2, and x3 = h, which produces the 
following shape function relations 

 

( )

( )

( )

2

1 2

2

3

3x 2x
N x 1

h h
4x x

N x 1
h h

x 2x
N x 1

h h
,

− +

−

=

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞= −⎜ ⎟
⎝ ⎠

  (7.52) 

when 0 ≤x ≤ h and zero otherwise. 
Figure 7.13 shows the local quadratic shape functions. A finite 

element approximation based on quadratic elements is more accurate 
than one based on linear elements.  

 
Fig. 7.13  One-dimensional quadratic element and shape functions. 
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A cubic element consists of two interior nodes located at a distance of 
h/3 to each end. 

There are two ways in which a finite element approximation to any 
problem can be improved. The first consists in increasing the number of 
elements used in the mesh, therefore decreasing the size of h and, 
consequently, the error. This is called the h-method and relies on 
decreasing the size of the mesh to achieve better accuracy, utilizing 
always the same element. The second possibility is to keep the number of 
elements fixed and to increase the degree of the interpolation 
polynomials in the elements. In this way the number of nodes is 
increased and so is the order of the element. This is called the p-method. 
A combination of both can also be used, and this is referred to as the h-p 
method. 

There is a very significant improvement going from linear to 
quadratic elements. However, the gains going from quadratic to cubic 
elements are marginal. On the other hand, the calculation cost increases 
considerably as we increase the order of the elements. To obtain the 
element stiffness matrices requires significantly more operations for the 
higher order elements. However, more important is the fact that the 
bandwidth of the coefficient matrix becomes larger with higher order 
elements. In many cases a few quadratic elements will yield solutions of 
much better accuracy than a much larger number of linear elements, and 
their use is therefore desirable. 

Before moving on to two-dimensional elements, let us review the 
formulation of the 1-D ODE previously used to describe the difference 
between the FDM and the FVM.  
 
Example 7.3.1 ODE discretization using FEM:  The ODE is 

  
2

2 0+ + =
ϕ ϕ ϕd d

dx dx
. (7.53) 

We will define two adjacent elements with nodes, i – 1 to i and i to i +1, 
as shown in Fig. 7.14 (just like Fig. 7.1), and denote them as Δx- and 
Δx+. 
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Fig. 7.14  Two linear elements.  

 
Applying the Method of Weighted Residuals, Eq. 7.53 becomes 

 
2

2 0
Ω Ω Ω

+ + =∫ ∫ ∫
ϕ ϕ ϕd dWdx Wdx dx

dx dx
,  (7.54a) 

or 

 0
ΓΩ Ω Ω

− + + + =∫ ∫ ∫
ϕ ϕ ϕ ϕd dW d ddx W Wdx Wdx

dx dx dx dx
,  (7.54b) 

where 

 1
1 1 1  with , −

− − −

− −
= + = =

Δ Δ
ϕ ϕ ϕ i i

i i i i i i
x x x xN N N N

x x
. 

Now set W = N and assemble (perform) the operation over element Δx-, 
resulting in the expression  

 
11

1 11
1 0.

ii i
i

i

i ii
i i i

i i

dN dN ddx N
dx dx dx

dN N dx N N dx
dx

−−

ΓΩ

− −−
−

Ω Ω

⎧ ⎫
− + +⎨ ⎬

⎩ ⎭
⎧ ⎫ ⎧ ⎫

+ =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

∫

∫ ∫

ϕ φ
ϕ

ϕ ϕ
ϕ ϕ

  (7.55) 

We can use a simple exact integration scheme (which works nicely for a 
simple element) 

 
( )1 2

! ! exact integration
1 !

= Δ →
+ +∫ a b a bN N dx x

a b
. 

Notice how the integral terms are evaluated, e.g.,  
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[ ]

1

1

2!0! 1!1!
2 1(1 2 0)! (1 1 1)!

1!1! 0!2! 1 26
(1 1 1)! (1 2 0)!

1 1 11 11 1 .
1 1 1

i i

i i

xN N dx x

dN dN dx
dx dx x x

−
Ω

−

Ω

⎡ ⎤
⎢ ⎥+ + + + ⎡ ⎤Δ⎢ ⎥= Δ = ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥+ + + +⎣ ⎦

− −⎧ ⎫ ⎡ ⎤
= − =⎨ ⎬ ⎢ ⎥−Δ Δ⎩ ⎭ ⎣ ⎦

∫

∫

 

 
Application of the above integral scheme allows the user to establish a 
matrix equivalent equation for the element that spans Δx-. A similar 
procedure is also used to establish the matrix equation for the other 
elements. The relation for Δx- consists of a series of 2 x 2 matrices, 
evaluated from the expression  

 

1 11
2

1

11
1

1

11 1- 1 1 1 1
1x x

0.

i ii

i i

ii
i i

i

N
dx dx

N

N
N N dx

N

− −−

− −

−−
−

− ⎧ ⎫ ⎧ ⎫⎧ ⎫⎧ ⎫
− + − +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬Δ Δ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎩ ⎭

⎧ ⎫⎧ ⎫
=⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

∫ ∫

∫

ϕ ϕ
ϕ ϕ

ϕ
ϕ

  (7.56) 

Continuing to perform the matrix multiplications within the integral 
terms, we obtain the modified form of Eq. 7.47 

 

1 1 1 1
2

2
1 1 1

2
1

1 11 1
1 1x x

0.

i i i i

i i i i

i i i i

ii i i

N N
dx dx

N N

N N N
dx

N N N

− − − −

− −

− − −

−

−− ⎧ ⎫ ⎡ ⎤ ⎧ ⎫⎡ ⎤
− + +⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥− −Δ Δ⎣ ⎦ ⎩ ⎭ ⎣ ⎦ ⎩ ⎭

⎡ ⎤ ⎧ ⎫
=⎢ ⎥ ⎨ ⎬

⎢ ⎥ ⎩ ⎭⎣ ⎦

∫ ∫

∫

ϕ ϕ
ϕ ϕ

ϕ
ϕ

 (7.57) 

Evaluating the integral terms, we obtain the standard, generic matrix 
expression for a linear element (even though acting over element Δx-, we 
will get the same result for element Δx+),  

 1 1 11 1 1 1 2 11 1 0
1 1 1 1 1 2x 2 6

− − −−

−

− −⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤Δ
− + + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −Δ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎩ ⎭

ϕ ϕ ϕ
ϕ ϕ ϕ

i i i

i i i

x . (7.58) 

If we perform the same procedure over element Δx+, we obtain the 
following relation 
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1 1 1

1 1 1 1 2 11 1 0
1 1 1 1 1 2x 2 6

+

+ + + +

− −⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎡ ⎤Δ
− + + =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −Δ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭ ⎩ ⎭

ϕ ϕ ϕ
ϕ ϕ ϕ

i i i

i i i

x . (7.59) 

We now must assemble the results of these two integral expressions into 
the overall mesh, i.e., we are now the computer doing the summation of 
results for the two elements  

 1

1

  and   −

+

⎧ ⎫ ⎧ ⎫
⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎩ ⎭

ϕ ϕ
ϕ ϕ

i i

i i

. 

Performing this operation, we obtain the following 3 x 3 matrix 
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1

1
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x x x x

1 10
x x

1 1 0
1 1 0 1
2

0 1 1
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−
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⎡ ⎤−⎢ ⎥Δ Δ ⎧ ⎫⎢ ⎥
⎪ ⎪⎢ ⎥− − + − +⎨ ⎬⎢ ⎥Δ Δ Δ Δ ⎪ ⎪⎢ ⎥ ⎩ ⎭

⎢ ⎥−
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⎪ ⎪⎢ ⎥− +⎨ ⎬⎢ ⎥
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ϕ
ϕ
ϕ

ϕ
ϕ
ϕ

ϕ
ϕ
ϕ

  (7.60) 

Notice that we can assume any element length for Δx- and Δx+, i.e., the 
method produces a scheme which automatically handles unstructured 
grids. Setting Δx- = Δx+ = Δx, produces a structured mesh, and we 
recover the same discretized expression for the FDM (assuming only φi 
at node i) or the FVM, and with the same discretization error. Extracting 
only the central terms (those involving the middle node),  

 

[ ] [ ]1 1 1 1

1 1

1 1
( )

6 2
1 1
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i i i i i

i i
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x x x x
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− − − + + + − +
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ϕ

 (7.61) 
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If Δx- = Δx+,  

 [ ] 1 1 1 1
1 1

x 2
2 0

6 2
ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ + − + −
− +

Δ − − +
+ + + + =

Δ
i i i i i

i i i x
.  (7.62) 

The advantages come when the FEM is used to solve the transient 
equations, subsequently producing a tridiagonal system that is fourth 
order accurate in space and second order accurate in time, if using a 
Crank–Nicolson time-marching scheme (Pepper and Baker, 1980).   

7.3.2 Two-dimensional elements 

7.3.2.1 Triangular elements 

The simplest two-dimensional figure that defines an area is the triangle. 
The triangular element is obtained defining a linear interpolation field of 
the form 
 ( )x, y a bx cyϕ + +≅ ,  (7.63) 

and placing the nodes at the corners of the triangle. The shape functions 
can be written in terms of the nodal coordinates as 

 

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]

( ) ( ) ( )[ ]

1 2 3 3 2 2 3 3 2

2

2 3 1 1 3 3 1 1 3

3 1 2 1 1 2 2 1

1
N x, y x y x y y y x x x

2A
1

N x, y x y x y y y x x x
2A
1

N x, y x y x y y y x x x
2A

y

y

y

− + − + −

− + − + −

− + − + −

=

=

=

 ,  (7.64) 

where the area A is given by 

 ( ) ( ) ( )2 3 3 2 3 1 1 3 1 2 2 12A x y x y x y x y x y x y= − + − + − ,  (7.65) 
and the nodes are numbered counterclockwise as in Fig. 7.15. These 
elements are discussed by Pepper and Heinrich (1992). 
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                                                           (a)                                                           (b) 
Fig. 7.15  Linear triangular element (a) and area natural coordinate system (b). 

 
The shape functions can be more easily obtained if we use area 

coordinates. Joining any point P in the triangle to the vertices of the 
triangle, the three areas, A1, A2, and A3, can be defined as shown in Fig. 
7.15. 

A coordinate system that uniquely represents every point in the 
triangle is given by 

                 i = 1,2,3.i
i

A
L

A
=  (7.66) 

If the nodes are uniformly distributed along the element sides, the shape 
functions are easily constructed in this coordinate system, also called the 
natural coordinate system for the triangle. 

The shape functions in natural coordinates are independent of the 
shape of the triangle. This is particularly appealing when we are dealing 
with highly irregular geometries that may require a large variety of very 
differently shaped triangles. The ability of the triangle to discretize any 
kind of geometric figure with relative ease is the main reason for the 
wide use of triangular elements. From this point of view, triangular 
elements are always better than quadrilateral elements. Very powerful 
mesh generators have been developed based on the triangular geometry 
that can automatically discretize extremely complex regions. Although in 
the last years much progress has been made in this area using 
quadrilateral elements, these mesh generators still lack the versatility and 
degree of automation of those based on triangles.  
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7.3.2.2 Quadrilateral elements 

A quadrilateral element is defined by four corner points and therefore is 
no longer linear, which makes it more complex than a triangular element. 
However, there is a greater variety of quadrilateral elements, and in 
general, they can offer many advantages over the use of triangles.  

The simplest way to obtain rectangular elements consists in taking the 
product (also referred to as the tensor product) of one-dimensional 
elements. In this fashion we generate the family of Lagrangian elements 
that are bilinear, biquadratic, etc., and contain 22, 32, 42, … nodes as 
shown in Fig. 7.16. To obtain the shape functions we only need to know 
the form of the shape functions, in one dimension, and the two-
dimensional function at a node is obtained as the product of the one-
dimensional functions that would correspond to that node in the x and y 
directions, respectively. 

              (a)                                           (b)                                                      (c)  
Fig. 7.16  2-D quadrilateral elements, (a) bilinear, (b) biquadratic, and (c) bicubic. 

 

Another important family of rectangular elements is known as the 
serendipity elements. These elements differ from the Lagrangian family 
in that they do not contain any interior nodes. Examples of the eight-
noded quadratic and the 12-noded cubic elements are shown in Fig. 7.17. 
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                          (a)                                                                    (b) 
Fig. 7.17  Serendipity elements for (a) quadratic and (b) cubic. 

7.3.2.3 Isoparametric elements 

Rectangular elements offer advantages over triangular elements. 
However, rectangular geometry is very restrictive and general 
quadrilateral elements must be used to deal with more general geometry. 
To resolve this difficulty, the concept of isoparametric transformations 
was introduced by Irons (1968) to general rectangular elements. 

The idea is based on performing a local (element by element) 
transformation between a general quadrilateral element in the global 
coordinate system and a “parent” rectangular element defined in a ξ − η 
coordinate system in the square −1≤ ξ,η ≤ 1 as depicted in Fig. 7.18 for a 
four-noded element. 

     (a)                                                                   (b) 
Fig 7.18 Bilinear isoparametric elements, (a) actual element and (b) parent element. 
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Transformation of integrals must now be done, i.e.,  
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1 1
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  (7.67)  

where J is the Jacobian of the transformation. 
The isoparametric transformation itself is easily obtained using the 

relation 

 ( )
N

i
i
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xx
N ,

yy =

⎧ ⎫⎧ ⎫
= ξ η⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
∑ ,  (7.68) 

where N is the number of nodes in the element and Ni(ξ,η) are the shape 
functions for the corresponding parent element, e.g., −1 ≤ ξ,η ≤ 1. 
Actually, this transformation is the inverse of what is really needed, since 
it maps the parent element, not the actual element. It is clearly defined 
once the coordinates of the nodes (xi, yi) in the global system and the 
shape functions Ni(ξ,η) in the square parent system of coordinates are 
known. Similarly, cubic isoparametric elements can be defined; however, 
in transport applications, quadratic isoparametric elements are used much 
less than bilinear elements and cubics are hardly ever considered.  

For triangular elements the concepts described above are applied 
using the right triangle shown in Fig. 7.19 as the parent element; in this 
case, 0 ≤ ξ ≤ 1and 0 ≤ η ≤ 1. The shape functions for the linear and 
quadratic parent elements are not difficult to find. For the linear element 
these are 
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Fig. 7.19  Triangular isoparametric elements for (a) parent element, (b) linear element, 
and (c) curved quadratic triangle. 

 
For higher order elements these conditions are more difficult to 

determine and are very sensitive to the location of midside and interior 
nodes. Serendipity elements do not contain interior nodes, and for this 
reason the quadratic serendipity element, in particular, has been a very 
popular element to deal with curved boundaries.  

A subparametric transformation uses lower order interpolation 
functions for the geometric transformations than for interpolation. For 
example, a biquadratic element can be associated with a bilinear 
transformation if the sides of the elements are always straight lines. In 
the same note, superparametric elements use geometric transformations 
that are higher order than the interpolation. 

When curved boundaries are fitted, curved isoparametric elements 
can produce enormous improvements in some classes of problems 
(Zlamal, 1973). However, for problems such as convective flows and 
heat and mass transfer, such techniques must be applied carefully. 
Remember that the use of isoparametric elements requires numerical 
integration because the determinant of the Jacobian transforms the 
integral into a rational function, even though the shape functions are 
polynomials.  
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7.3.3 Three-dimensional elements 

The transition to three-dimensional problems does not involve any new 
concepts. Area and line integrals are replaced with volume and surface 
integrals. The natural extension of the one-dimensional linear and two-
dimensional bilinear elements is the eight-noded trilinear or brick 
element shown in Fig. 7.20. This is also a Lagrangian element and the 
shape functions are easily obtained as products of one-dimensional linear 
functions. 

This can be seen in the following set of relations. One need only 
multiply the linear, one-dimensional shape functions for node 1 in each 
coordinate direction to obtain N1, i.e.,    
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 .  (7.69) 

The other shape functions for the remaining nodes follow similarily. The 
resulting hexahedral, or brick, element is created, as seen in Fig. 7.20. 
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Fig. 7.20  Trilinear “brick” hexahedral element. 
 

Three-dimensional tetrahedral elements are the natural extension of 
two-dimensional triangles. The simplest of these elements are the linear 
and quadratic tetrahedrons depicted in Fig. 7.21. A natural coordinate 
system is defined for tetrahedral elements by means of the four internal 
volumes determined when any interior point is connected with the four 
vertices of the tetrahedron − in a manner similar to that used in two 
dimensions to define the area coordinates. In this case, they are referred 
to as volume coordinates. These are discussed by Pepper and Heinrich 
(2002). 

 

Fig. 7.21  Linear and quadratic tetrahedral elements. 
 

Isoparametric transformations are readily defined for the three-
dimensional elements using the following relations 
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The Jacobian matrix is 
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and the derivatives of the shape functions are obtained from 
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7.3.4 Quadrature 

In finite element approximations using isoparametric elements, the 
integrals are always performed over an element in the parent coordinate 
system −1 ≤ ξ ≤ 1; hence 

 ( ) ( )
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1
( ) ( )
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Approximations of the form 
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are called numerical quadrature or numerical integration formulae. The 
points xi are called quadrature points, and the coefficients wi are called 
quadrature weights. 

A quadrature formula with degree of precision m integrates 
polynomials of degree ≤ m exactly. The maximum degree of precision 
that can be achieved with a quadrature rule that uses n integration points 
is m = 2n − 1, and the quadrature formulae that achieve this accuracy are 
known as Gaussian quadratures. The integration formulae are referred to 
as Gauss–Legendre quadratures.  

In two and three dimensions, one must evaluate double and triple 
integrals over areas and volumes, respectively. The easiest way is to 
evaluate the variables one by one in succession, e.g., fix the independent 
variable η and define 
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Hence, 
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where m and n are not necessarily equal. A quadrature formula with 
degree of precision 3 is obtained if one uses a Gauss quadrature with n = 
2 in each direction, that is, 

 ( ) ( )
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, ,i j i j
i j
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≅ = ∑∑∫ ∫ , (7.78) 

where ξi,ηj are sampling points and wi are the weights (which can be 
found in nearly every FEM textbook).  This simple formula allows ones 
to accurately approximate the integral relations that are produced from 
the Method of Weighted Residuals technique and resulting weak 
statement.  
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7.3.5 Time dependence 

The most commonly used time integration algorithm in the FEM is the θ 
method, which consists in approximating the time derivative by the 
backward difference 

 ( )1n n1
t

+ϕ ≅ ϕ − ϕ
Δ

, (7.79) 

where φn ≡ φ(x,φn) denotes the value of a variable at time t = tn, Δt is the 
time-step increment, and tn+1 = tn + Δt. The variable φ is then defined by 

 ( )1n n1+ϕ = θϕ + − θ ϕ , (7.80) 

where the relaxation parameter θ is normally specified to be a value 
between 0 and 1 and is used to control the accuracy and stability of the 
algorithm. This method falls in the general category of one-step methods, 
in which the solution at each step is advanced to time tn+1 from known 
values at time step tn. A quick review of the FDM and FVM schemes 
show that a similar procedure can be used to obtain the transient 
discetizations. In fact, the FEM borrows this concept from the FDM 
approach for marching solutions in time. 

Substituting Eqs. 7.79 and 7.80, the one-dimensional transient 
diffusion equation becomes 
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where Q has been assumed to be a function of time and approximated 
over the interval tn ≤ t ≤ tn+1 using Eq. 7.80, and the mass matrix, C, and 
stiffness matrix, K, are evaluated from the integral relations 
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If 1-D, linear elements are used in the space discretization and Q is 
independent of x, the resulting element equations are 

 ( )

( )

1
1

1
2

1

2

1

n
v

n

n
v

n

nn

2 1 1 1c h k
1 2 1 16 t h

2 1 1 11 kc h
1 2 1 16 t h

1 11 hQhQ
1 12 2

+

+

+

⎧ − ⎫⎧ ⎫ϕ⎡ ⎤ ⎡ ⎤ρ θ
+ =⎨ ⎬⎨ ⎬⎢ ⎥ ⎢ ⎥−Δ ϕ⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎩ ⎭

⎧ − ⎫⎧ ⎫−θ ϕ⎡ ⎤ ⎡ ⎤ρ
−⎨ ⎬⎨ ⎬⎢ ⎥ ⎢ ⎥−Δ ϕ⎣ ⎦ ⎣ ⎦ ⎩ ⎭⎩ ⎭

−θ⎧ ⎫ ⎧ ⎫θ
+ +⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭

, (7.84) 

where h denotes the element size. The values θ = 0, 0.5, and 1.0 are most 
commonly used and, except for the presence of the mass matrix, 
correspond to the Euler, Crank–Nicolson, and backward implicit 
methods, respectively. However, the appearance of the mass matrix 
modifies the algorithms. Therefore they are referred to as Euler–Galerkin 
when θ = 0, Crank–Nicolson–Galerkin when θ = 0.5, and backward 
implicit Galerkin when θ = 1.0. 

A truncation error analysis shows that the methods converge as first-
order methods O(Δt) when θ = 0.0 and 1.0; the Crank–Nicolson–
Galerkin method is second order O(Δt2) in time, and for other values of θ 
between 0 and 1, convergence takes place at intermediate rates between 
first and second order. 

7.3.6 Petrov–Galerkin method 

In order to improve accuracy in time, one can construct weighting 
functions that are parabolic in time, e.g., the time variation φ(t) is  
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Δ Δ
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 (7.85) 
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The weighting functions become Ni(x)φ(t). 
In the one-dimensional case, the truncation error can be interpreted in 

a difference equation as an added diffusion, and obtain improved 
algorithms by introducing a balancing diffusion dependent on a 
parameter α. In this case, a balancing dispersion term of the form 
βd(∂3φ/∂x2∂t) can be added, where the coefficient d must be proportional 
to uhΔt for dimensional consistency. Looking at the modified advection–
diffusion equation, one obtains  
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Now apply the Galerkin method and operate on the weak form. The 
Petrov–Galerkin weights are 
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The functions Mi(x,t) in 0 ≤ x ≤ h, 0 ≤ t ≤ Δt are 
 

 
After some algebra (see Heinrich and Pepper, 1999), α and β are  
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If β = 0, the algorithm reduces to applying the Petrov–Galerkin weights 
for a steady-state equation with a second-order time-stepping scheme, 
and in this case it is only second order accurate in space. In the limiting 
case when γ →0, the expression for β is undefined. Physically u must go 
to zero. In this case the algorithm reduces to the Crank–Nicolson–
Galerkin scheme because γ →0 if u→0. 

The application of Petrov–Galerkin weighting has been found to be 
very attractive, and is commonly used in many FEM methods where 
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advection terms are dominant. The method is especially attractive when 
combined with adaptive mesh techniques for solving compressible flows. 

7.3.7 Mesh generation 

There are basically two types of meshes: structured and unstructured. A 
structured mesh consists of horizontal and vertical lines that cross 
orthogonally at intersections called nodes. This constraint is best 
achieved by discretizing a physical domain that is defined by square or 
rectangular boundaries – the physical domain becomes the computational 
domain as well. Many of the early numerical simulations were conducted 
on problems that were first reduced to rectangular physical systems of 
interest. Curved boundaries are simplistically represented by staircase–
like steps in the mesh. An example of a structured mesh is shown in Fig. 
7.22. 

 
Fig. 7.22 Office complex discretized using FDM. 

 
The computational domain is divided into small domains called grid 

or mesh cells, or elements, over which the governing equations are 
discretised. The mesh represents the geometrical shape of the domain, 
and must be fine enough to permit adequate resolution of the flow. 
Creating a suitable mesh depends upon the expected behavior of the flow 
and transport. Unless some form of adaptation (usually refinement) is 
employed, the process is typically trial and error.  

Creating an acceptable mesh may require a number of attempts with 
further improvements as the calculations proceed in time. It is important 
to create a mesh-independent solution, i.e., a solution which does not 
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significantly vary as the mesh is refined. This usually requires several 
solutions using finer meshes until the solution is essentially invariant.   

Grids typically fall within three types: 
 
(1) Structured Cartesian grids, where the grid lines are continuous across 

the domain and the grid cells are quadrilaterals or hexahedrals; 
 
(2) Structured Curvilinear or Body-Fitted grids, where the grid lines 

follow the computational domain boundary. This can be seen in Fig. 
7.3; 

 
(3) Unstructured mesh, usually constructed from tetrahedral or more 

complex-shaped cells; there are no clearly defined grid lines which 
are discontinuous across the domain.  

 
An example of an unstructured mesh is shown in Fig. 7.23. 

 
Fig. 7.23  Example of an unstructured two-dimensional grid. 

 
In unstructured meshes, a 2-D physical domain is discretized by a set 

of seemingly randomly placed nodes that are connected to other nodes 
via triangular or quadrilaterally shaped subdomains, or elements. The 
most common types of elements are linear three-noded triangles or linear 
four-noded quadrilaterals, as discussed earlier. Other popular types of 
elements include quadratic and cubic triangles and quadrilaterals. In 
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three dimensions these become tetrahedrals and hexahedrals, 
respectively. The generation of unstructured meshes requires more 
thought and effort than structured meshes. In general, one puts more 
nodes (or elements) near surfaces and in regions where activity (or steep 
gradients) is likely to occur. Many times, the user must guess as to where 
the most nodes should be placed, ultimately necessitating the generation 
of a second mesh (and comparing solutions for accuracy). It is up to the 
user to specify the mesh density (number of nodes and elements), which 
is best achieved through experience.   

Unstructured meshes (especially triangles) are better suited for 
complex geometries as they can be adapted to any shape. However, 
unstructured meshes also have several disadvantages. The associated 
discretised equations are more complicated than is the case with 
structured grids, when dealing with FDM and FVM methods. As a result, 
the system of equations can be more difficult to solve and the solution 
obtained less accurate. Creating a geometry and a grid for a complex 
space is the most time-consuming task for the CFD practitioner.  

There is no reason one should end up using severely distorted 
elements to discretize a domain. In fact, the interior of most domains can 
be meshed using non-distorted elements; as one approaches the 
boundaries, several slightly distorted elements can be constructed. 
Curved sides should only be employed on curved boundaries, and the 
curvature should be rather mild (≤ 30o arc). When this is not possible, 
more elements should be utilized.  

If the physical domain has all boundary sides straight, with no 
internal curved surface (e.g., hole), any type of element will match the 
boundary exactly. Likewise, boundaries defined by higher degree 
polynomials can also be matched exactly with corresponding higher 
order elements. However, non-polynomial curvature cannot be matched 
exactly by polynomial elements; hence the domain boundary becomes 
altered to the outer edge of the defining element. Suppose one wishes to 
use linear elements to prescribe a boundary. In order to reduce the error 
associated with the area omissions, more linear elements are required. 
This leads to the decision by the user whether to increase the number of 
lower order elements or use a higher order element. The quadratic yields 
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about 1% geometric error while the linear element produces about 29% 
error for a 90o arc (Burnett, 1987). In practice, preprocessing typically 
requires several refinements of the mesh, including boundary matching, 
before a suitable solution is achieved. 

Hybrid meshes are a compromise, combining structured and 
unstructured cells. Figure 7.24 shows structured cells used near a wall 
boundary, coupled with unstructured grids. This allows one to more 
accurately capture the transfer of heat, mass, or momentum at the walls. 

 
Fig. 7.24 An example of a hybrid two-dimensional mesh. 

 
An alternative is to inflate unstructured cells, i.e. to create thin cells 

with surfaces parallel to a geometry. This is seen in Fig. 7.25. 
 

CEILING 

FLOOR 
Fig. 7.25 Example of a compressed center and inflated wall boundaries. 
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Many variations are possible, but the above approaches are the most 
commonly used and are the ones embodied in most commercial CFD 
codes. 

The size of the cells is important and needs to be chosen with care 
since it can significantly influence the solution. A cell should ideally be 
smaller than the length scale of the key flow feature. However, in a 
complex geometry, a wide range of length scales exist at different 
locations. Choosing a grid of the size of the smallest length scale, then 
applying this uniformly over the overall geometry leads to a large 
number of grid cells and results in excessive computing times or storage 
limitations.  

To overcome this problem, one can cluster cells at specific locations 
as determined by the user. Figure 7.26 shows a grid that is compressed 
where the flow changes rapidly, i.e., where large gradients occur. Figure 
7.25 showed compression of an unstructured mesh where a source was 
located.  

When creating a mesh, the CFD practitioner should have an intuitive 
idea of the flow behavior prior to the simulation. Obviously, this can 
prove to be difficult in many situations, requiring several trial and error 
estimates before a decent mesh is acquired.  

The grid size also has to be consistent with the modeling approach 
chosen. For example, predefined functions are often employed in 
combination with a k-ε turbulence model to calculate the velocity 
profiles near walls. These functions model the very small scale 
mechanisms of heat and momentum transfers occurring in a very thin 
region close to solid boundaries. They make it possible, and even 
necessary, to set the size of the cells next to walls larger than this region.  
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Fig. 7.26 Comparison of uniform (top) and  
compressed (bottom) structured two-dimensional grids. 

7.3.8 Bandwidth 

In 2-D and 3-D meshes, the node number pattern dictates the bandwidth 
of the assembled global matrix. Unless the user is employing an explicit 
marching scheme, the naturally implicit nature of the finite element 
method creates a banded, sparse matrix that may or may not be 
symmetric. Hence it behooves the user to minimize the bandwidth of the 
matrix to reduce storage and computer time. Finding the optimal 
minimum pattern can be difficult; however, any effort to achieve a near-
optimal pattern is worth trying. 

There are many algorithms available that automatically renumber a 
mesh to minimize its bandwidth; for frontal solvers, the wave front is 
minimized by renumbering the elements; the procedures are similar for 
nodal or elemental renumbering. The user must create the starting nodes, 
i.e., an initial mesh, which then gets reordered. These minimization 
routines are commonly used in many commercial finite element codes. 

Renumbering the nodes (or elements) of a mesh allows one to 
minimize the storage size required by the matrix solver and reduce the 
number of operations required by the final system, which ultimately 



Numerical Modeling – Conventional Techniques 
 

 
 

141 

reduces the CPU time. There are many methods that perform this 
renumbering operation, most of them automatic. A detailed discussion on 
the advantages and disadvantages of the various methods is given by 
Marro (1980) and George (1991). A more recent update on the 
application of renumbering schemes is given by Carey (1997).  
 
7.3.9 Adaptation 
 
Mesh adaptation is becoming widely used and has begun to appear in 
many commercial finite element codes (although primarily in structural 
codes). Several of the commercial fluid flow codes now support 
adaptation − ANSYS, STAR–CD, COMSOL, ANSWER, and 
GWADAPT, which is a code for porous media flow (Pepper and 
Stephenson, 1995). The application of adaptation is employed in the 
office complex example using COMSOL that is discussed in Appendix 
B. Such codes automatically refine the mesh in regions where increased 
accuracy is required.  

It has been amply demonstrated that adaptation leads to computations 
of better solutions, producing optimal meshes in forms of size (number 
of nodes), nodal positions, and element properties (e.g., shape, 
orthogonality). Refer to the texts by Babuska et al. (1983) and 
Zienkiewicz and Taylor (1989) for detailed discussions on the 
mathematical aspects of adaptation. 

There are basically three types of adaptive techniques in use today: r-
refinement, h-refinement, and p-refinement. In r-refinement a fixed mesh 
is first established; the elements within the mesh are then moved, shrunk, 
or expanded to accommodate regions where the solution is rapidly 
changing (or relatively stagnant). This technique has been shown to be 
effective in some cases; however, the elements can become severely 
distorted and eventually lead to divergent or less accurate solutions. By 
far the most popular methods are h- and p-refinement. In h-refinement, 
elements are subdivided into smaller elements; this technique creates 
additional nodes and elements, which must be carefully monitored 
through some form of bookkeeping. In p-refinement the degree of the 
polynomial is increased to improve the accuracy of the solution, i.e., an 
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element that may have been originally linear is ultimately refined to a 
cubic, quartic, quintic, or higher order element. A smaller h and a higher 
p generally yield greater accuracy but slower convergence if too fine a 
refinement is established. Methods that adapt both h and p together are 
called h-p refinements. Papers by Pepper and Wang (2006), Shapiro and 
Murman (1988), Ramakrishnam et al. (1990), Oden et al. (1986), 
Pelletier and Hetu (1992), Zienkiewicz et al. (1981), and Pepper and 
Stephenson (1995) are recommended. Other forms of adaptation in the 
literature include local disenrichment (a form of h-adaptation), which 
removes one of several points, nested meshes, and multigrid techniques 
(see Hackbusch and Trottenberg, 1982).  

When using h-adaptation, there are basically two choices to be made, 
mesh regeneration or element subdivision. Mesh regeneration, or 
remeshing, requires completely regenerating the entire mesh, either in 
regions where there is high error or over the complete domain, as shown 
in Fig. 7.27. The principal advantage of remeshing is that areas can be 
coarsened where the error is below an allowable amount, thus creating an 
optimal mesh in which every element has essentially the same level of 
error. However, the main disadvantage of remeshing is that a high degree 
of spatial flexibility is necessary when using error estimation procedures. 
When using element subdivision, every element that exceeds the 
allowable error threshold is subdivided into smaller elements. This 
method is particularly effective for four-node quadrilaterals and eight-
node hexahedrals. However, the method produces virtual nodes (i.e., 
constrained midside nodes) that must be handled with care; likewise, 
only one level of adaptation can be performed at a time. 
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Fig. 7.27 Mesh refinement 
 
Local mesh (h-) refinement and convergence history are shown in 

Fig. 7.28 (a,b). When using quadrilateral elements, virtual nodes are 
created which require special treatment to ensure compatibility. The error 
is asymptotic.  
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(a) Refinement 
 

(b) Convergence 
 

Fig. 7.28 Local h-adaptation (a) refinement) and (b) convergence. 
 

An example of remeshing for three-node triangles and four-node 
quadrilaterals is shown in Fig. 7.29 (a–d) for a simple heat transfer 
problem with convective boundary conditions. This benchmark problem  
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is illustrated in more detail in the text by Huang and Usmani (1994), 
which also includes a set of computer programs for generating adaptive 
meshes based on the remeshing principle. Figure 7.29 (a) shows the 
problem domain with three different boundary conditions. For a uniform 
mesh of 30 triangular elements (Fig. 7.29 b), a temperature error of 
−24.6% was obtained. When the adaptive procedure is applied, a first 
level of adaptation (Fig. 7.29 c) produced a norm error of 14.3% 
(average temperature error of 2% overall) in the triangular mesh; a 
second level of adaption produced an error norm of 9.8%. In the 
quadrilateral case, the initial mesh consisting of eight elements (Fig. 7.29 
b) produced a norm error of 21.6%; two mesh refinements, shown in Fig. 
7.29 (d), yielded 16% and 10%, respectively. If one uses quadratic 
elements, the error reduces considerably but at a higher computational 
cost. 

7.3.9.1 Element subdivision 

The starting point for element subdivision is a mesh coarse enough to 
allow rapid convergence, yet fine enough to allow the flow details to 
appear. An initial solution is then computed on the crude mesh; it is not 
necessary to allow this solution to converge completely. The initial 
solution should not evolve too far before adaptation, or expensive 
computational time will be used needlessly since the flow features will 
shift location during the adaptation procedure. 

Refinement indicators are computed based on the solution on the 
initial mesh, and elements that need to be refined are identified. All 
elements in the mesh that have indicators above a preset refinement 
threshold value are enriched, whereas those elements that have values 
below the unrefinement threshold value are coarsened. Refinement 
proceeds from the coarsest level to the finest level. 

After all the mesh changes have been made, the grid geometry is 
recalculated, the solution is interpolated onto the new grid, and the 
calculation procedure begun again. For steady-state problems, the entire 
procedure is repeated until a “converged” mesh is obtained. A converged 
mesh is a mesh which no longer changes as the solution progresses. 
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Fig. 7.29 Remeshing example (from Huang and Usmani, 1994). 
 

The calculation procedure continues on the converged mesh until 
each of the dependent variables converge to a criterion of 10-4. In 
transient problems, the mesh is adapted as needed to properly capture 
high gradient features as they evolve in time. 

In order to decide which elements to refine or unrefine, an adaptation 
parameter (Ae) must be defined. There is a great deal of literature 
indicating possible choices for an adaptation parameter. The two most 
popular refinement criteria are refinement to minimize error and 
refinement based on gradients. Both criteria are based upon a key 
variable which is representative of the solution behavior. Refinement 
criteria based upon the minimization of maximum errors are generally 
more complex, and are only as accurate as the method of estimating the 
error.  
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The adaptive refinement procedure automatically refines all elements 
that satisfy a criterion Ae > R and unrefines all elements that satisfy Ae < 
U, where R and U are the refine and unrefine threshold values, 
respectively. The values of R and U are determined experimentally, 
based on problem conditions as described by Carrington (2000) and 
Carrington and Pepper (2002).  

The use of quadrilaterals in two dimensions results in midside nodes 
at the interfaces between the coarse and fine regions of the mesh. In 
three-dimensions, a face-centered node appears which creates four 
quadrilateral elements on the face – resulting in eight new hexahedral 
elements from the original coarse element. These midside nodes are 
called virtual nodes and require special treatment to obtain a stable, 
conservative scheme. Figure 7.30 shows a typical interface between a 
locally fine region and a coarser region. The special treatment used is to 
set the fluxes and the variable value at node 2 equal to the average of the 
fluxes and value at nodes 1 and 3 after each iteration.   

At the present time, there are many companies selling FEM and CFD 
related software. Most of the better models include the capability to 
handle mesh refinement and automatic adaptation. The number of 
companies will decrease as the smaller companies become absorbed by 
the larger, more successful firms. The choices are numerous, and 
sometimes confusing for the buyer interested in obtaining a CFD code.  

Fig. 7.23  Two-dimensional interface (virtual) node. 
 
We have found the COMSOL code to be quite effective as a general 

FEM model, reasonably priced, and easy to use. Many of the examples 
illustrated in this text include COMSOL models that can be accessed on 
the website.  
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Example 7.3.9.1. FEM simulation of flow in an office complex: We 
return once more to the office complex problem, as previously described 
in Example 7.1.1. This time we will use two FEM models to calculate the 
flow velocities. In the first model, we will use COMSOL, which is a 
well-known FEM model that runs on PCs. This is a particularly easy 
program to use that has a great deal of versatility (Pepper and Wang, 
2006), and utilizes h-adaptation, if desired. The second FEM model 
employs h-p adaptation, and yields exponential convergence (Pepper and 
Wang, 2007).  

Figure 7.31 (a–c) shows the element mesh (using three-node linear 
triangles), a velocity magnitude contour, and the velocity vectors 
produced by COMSOL 3.4. The mesh consisted of 274 nodes and 456 
elements.   

 
         (a) mesh                               (b) velocity contours 

 

(c) velocity vectors 
 

Fig. 7.31 Application of FEM using COMSOL for flow within an office complex. 
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The second FEM model employs h- and p-adaptation. Together, this 
combined adaptive technique yields exceptionally accurate results. 
Although the programming and bookkeeping may be more troublesome, 
the results are quite good. Figure 7.32 (a–d) shows the initial mesh, 
which is the same as the original FDM mesh, the final adapted mesh, the 
velocity vectors, and the flow streamlines. The initial mesh consisted of 
213 nodes and 161 elements, and the final mesh contained 736 nodes and 
461 elements. The results are clearly comparable with those produced by 
COMSOL, as well as the FDM and FVM results. This is expected due to 
the simplicity of the problem geometry. Where the h-p method really 
shines is when the problem is very complex and there is some question 
as to where the mesh and calculations should be refined, but accuracy is 
particularly important.  

      (a) initial mesh                               (b) final adapted mesh 

 (c) velocity vectors                                                (d) streamlines 
                                                    

Fig. 7.32 FEM h-p adaptation simulation for office complex. 
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7.4 Further CFD Examples 

 
 

            (a) domain                                               (b) discretization 

 
 

 (c) plane view of velocity vectors                (d) 3-D view of velocity vectors 
 

Fig. 7.33  Airflow around heated obstacles. 
 

Example 7.4.1 Flow around a set of heated obstacles: For this 
problem, 3-D airflow is calculated around a set of heated obstacles. The 
physical domain and mesh are shown in Fig. 7.33 (a,b). The mesh 
consists of 2868 hexahedral elements; the Reynolds number is Re=103 
and Pr=1.0. This type of problem commonly occurs in HVAC where 
obstructions are encountered within the flow domain. 

Figure 7.33 (c,d) gives normal and perspective views of the 3-D 
velocity vectors within the channel. Recirculation of the flow occurs 
behind the blocks, and small secondary cells develop in the corners. 
Thermal plumes emanate from the heated blocks; plume impingement 
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from the left forward block occurs on the small mid-stream block. It is 
well known that when flow separates at the corners of blocks, 
horseshoe-like vortices are generated (Hunt et al., 1978).  
 
Example 7.4.2 Air flow over a heated oven within a commercial 
kitchen: Air enters the kitchen from two ceiling vents (and entrainment 
from the right open boundary), passes over the heated surface of the 
oven, and exits through the upper left corner of the exhaust hood (Fig. 
7.34 through Fig.7.36). The heated surface acts to enhance the air 
motion, eventually accelerating the room air out of the domain, and 
illustrates the ability to model mixed convection (where the flow 
transitions from motion due strictly to natural convection to strongly 
forced convection).   
 

 
 

Fig. 7.34 Velocity vectors in side view of kitchen. 

 
 

Fig. 7.35 Velocity vectors in 3-D view of kitchen. 
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Fig. 7.36  Isotherms over a heated oven in a commercial kitchen. 

 
Example 7.4.3 3-D flow over barriers: This example problem is 
modeled as a three-dimensional isothermal flow over a set of barriers. 
Three-dimensional hexahedrals are used to model the domain (Fig. 7.37 
and Fig. 7.38). The Petrov–Galerkin technique is used to eliminate 
numerical oscillations since there is a strong advection component to the 
problem. In this instance, the finite element method is used to establish 
the problem domain (Carrington and Pepper, 1998). A three-dimensional 
simulation of the airflow within the room is first calculated; mid-level 
velocity streak lines are shown in Fig. 7.38.  
 

 Fig. 7.37 An h-adapted finite element mesh for flow over obstructions. 
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Fig. 7.38 Velocity vectors in horizontal plane of 3-D flow over a set of barriers. 

7.5 Model Verification and Validation 

Verification and validation are important for any numerical model, 
especially for commercial CFD codes. According to Roache (1998), the 
definitions of these two terms are: 
 

Validation: Are the right equations being solved?  
Verification: Are the equations being solved correctly? 

 
There are numerous uncertainties that can be attributed to CFD 
simulations. Obviously, improper use of boundary conditions, using the 
wrong numerical scheme, or inputting wrong values for various 
parameters are potential sources of error. While these are fairly obvious 
and may be easy to find, sometimes more subtle problems occur which 
can be very difficult to find. There may be bugs in the code itself, or the 
mesh is just too coarse to yield accurate solutions. You must be sure that 
you are both solving the correct set of equations and that you have 
properly discretized the equations using a reliable solver technique. The 
former error is known as validation and the latter is code validation. 

A CFD code should be tested and verified. One must ensure there are 
no coding errors in discretizing the equations and that the code has been 
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demonstrated to be appropriate for your particular class of problems. In 
other words, the code is well behaved and produces a reliable solution 
when compared with experimental data.  

Commercial codes are typically verified by the developers within the 
company. The more widespread use of a commercial code, the better the 
chances of mistakes being identified and corrected. Needless to say, bugs 
still tend to exist, even in the oldest and most reliable of software. The 
process of verification helps to minimize these bugs and reduce their 
impact to unimportant processes. Examples of well-established 
commercial CFD codes include: ANSYS (FLUENT), CFX, PHOENICS, 
STAR–CD, COMSOL, and ANSWER. These codes have been subjected 
to extensive validation and verification tests over many different 
applications.  

When running a numerical model, the user should check that the 
results are reasonable. Ideally, it is best to compare predictions with good 
quality measurements. However, experimental data is generally sparse 
and may not be available, or even impractical to obtain. An alternative to 
comparing with experimental data is to check results against well-
established correlations for estimating velocities, temperatures, or 
concentrations. Remember that even a well-documented and validated 
computer code will likely not match with real world data – there is still a 
great deal we do not know regarding turbulence and related effects, no 
matter how good the theory or set of equations. There will always be 
errors. Many times a good statistical assessment (uncertainty analysis) of 
the results will help to put the simulations into proper perspective.  

Commercial CFD codes are very complex, and can easily exceed over 
100,000 lines of code. In fact, PATRAN, which is an old mesh 
generation package, contained over one million lines of code. 
Statistically, mistakes are bound to exist, difficult to find, and may be 
outside the control of the code user. It behooves the use to proceed with 
care and examine all results in an effort to help pinpoint potential 
problems. 

The most common mistakes are those made by the user, i.e., a wrong 
value is entered or a wrong key is pressed. Another common source of 
error, especially when using a commercial CFD code, is that the user 
does not understand the equations and parameters, or the choice of 
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appropriate submodels, e.g., selection of a turbulence closure scheme. 
Users do not generally have access to the source code or discretized 
equations – which would likely be overwhelming and difficult to follow 
anyway. Code manuals help to identify the equations being solved and 
the accompanying submodels. However, the user may be confused as to 
the proper parameters needed for the simulation, i.e., failure to set a 
parameter will likely result in a default value that may be inappropriate 
for the problem.  

In order to use CFD models reliably, the user should have a good 
understanding of fluid dynamics, HVAC principles and applications, as 
well as knowledge of CFD techniques relevant to the application. 
Experience in using such codes and applying them to air pollution 
simulation is valuable.  

A great deal of work has been done on verifying and validating 
results obtained with numerical models. Such efforts include comparing 
results between numerical and analytical models, sensitivity analyses, 
and seeing how well the numerical model predicts actual results obtained 
from experimental data. This latter comparison can be fairly tricky if 
some of the parameters, e.g., exchange coefficients, are not known in the 
actual experiment. A detailed discussion on model verification and 
validation can be found in the text by Roache (1998).  

Efforts involved in validating and verifying numerical results with 
experimental data are not trivial – evaluations and comparisons must be 
carefully considered. Model validation is generally achieved through 
either field measurements or wind tunnel experiments (e.g. Cermak, 
1976).  

Assessment techniques include measures of difference, Pearson, 
Spearman, and Kendall correlations, skewness and kurtosis, tests for 
normality, and scatter diagrams (Pepper, 1981). Such analyses help to 
provide insight into the physics of indoor air quality, and enable relations 
to be constructed to more reliably predict exposures. The incorporation 
of statistical processes into numerical simulation and assessment is 
known as stochastic modeling (see Halder and Mahadevan, 2000).   



156                                           Modeling Indoor Air Pollution 

 

7.6 Comments 

The three most popular numerical methods for solving PDEs are the 
finite difference method, the finite volume method, and the finite element 
method. There are many “dusty deck” FORTRAN codes still around 
today based on the FDM and FVM, along with some FEM codes. The 
development of higher level programming languages including such 
packages as MAPLE, MATLAB, MATHCAD, MATHEMATICA, C, 
C++, and JAVA have led to a resurgence as well as an upgrade in 
algorithms based on these older codes. An understanding of these three 
fundamental methods should provide a solid basis for development of 
more advanced numerical models to solve indoor air pollution transport. 

Up to several years ago, there were many commercial software 
companies selling CFD codes. Today, an effort is underway to absorb the 
smaller companies into the larger companies. For example, ANSYS (an 
FEM company) absorbed FLUENT (an FVM company), who had 
previously absorbed FIDAP (an FEM company). The reader need only to 
do a simple web search to find a plethora of information regarding CFD, 
and even free software.  

CFD is a powerful technique that can provide solutions to the time-
dependent, three-dimensional equations for fluid flow and species 
transport in complex geometries. Under such conditions, simpler 
analytical and empirical models are just not adequate. CFD has been 
used extensively to model flows and species transport, e.g., smoke 
attributed to fires, in modern complex buildings (Hiorns and Sinai, 1999; 
Mills, 2001; Sinclair, 2001) as well as to examine different generic 
ventilation configurations (Hadjisophocleous et al., 1999; Klote, 1999). 

It is important to remember that solutions obtained by CFD are not 
exact, i.e., they represent a trend or process occurring during an event. 
Many assumptions and approximations are usually made during the 
whole process and some of them can have a significant impact on the 
results (Gobeau and Zhou, 2003). If the decisions made by the numerical 
modeler are not based on sound judgment, the results can lead to 
overestimates of available time for evacuation. 

During an emergency evacuation, the reliability of results should not 
be based solely on the expertise and recommendations of a CFD 
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modeler. Even a CFD expert in fluid flow and species transport may 
have to make drastic assumptions due to budget and/or time constraints – 
such as reducing the number of equations to be solved or using a coarse 
grid. Modeling large complex spaces generally demands large computing 
resources. During the Kr-85 release from Three Mile Island, a simple 
analytical model was used to predict the trajectories from the leaking 
reactor over the first two days (Pepper, 1981). A 3-D CFD related code 
was eventually used for the following weeks, but required several days to 
prepare the mesh and set up boundary conditions (Koster and Dickerson, 
1990). The point here is that although assumptions might be based on 
sound judgment – for instance large grid cells away from the source and 
small cells near the source, they can potentially lead to non-conservative 
and unrealistic results. 
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Chapter 8 

Numerical Modeling – Advanced Techniques 

The most popular numerical methods are the FDM, FVM, and FEM, as 
we saw in Chapter 7. FDM methods predate the development of 
computers and the FVM has been around for over 50 years. The FEM, 
developed in the mid-1950s, became a major tool in the 1970s, and then 
surged in the late 1980s with the addition of adaptation. During these 
early years, several other methods began to appear in the literature, but 
remained fairly invisible since they could only be run on large 
supercomputers at the time.   

The use of Lagrangian particles for modeling dispersion was found to 
be effective, but computing storage limitations hindered their widespread 
application (Lange, 1973; Sklarew et al., 1971). Today, PCs are easily 
capable of running these type codes. During the early 1980s, the 
Boundary Element Method (BEM) began to appear and began to be 
noticed as the method reduces the dimension of the problem by one 
(Brebbia and Dominguez, 1989). Advances in the applications of BEM 
now make them very attractive, especially for structural analysis. Since 
the 1990s , the Meshless Method (MM) has been gaining attention and 
holds promise as the need for a mesh is essentially eliminated (Atluri and 
Shen, 2002; Pepper, 2005). More recently, efforts have been devoted to 
models that run at the molecular level, i.e., modeling enough molecules 
to eventually represent continuum processes (Greenspan, 2005). All of 
these methods can be used as standalone schemes, or used in conjunction 
with the three conventional methods as previously discussed.  

The methods we will address in this chapter are the Boundary 
Element Method (BEM), the Lagrangian Particle Transport technique 
(LPT), the Particle-in-Cell method (PIC), and the Meshless method 
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(MM). A brief discussion of modeling at the molecular level will be 
given at the end. There are advantages and disadvantages associated with 
any numerical scheme. The choice of which scheme to use is typically 
dictated by the type of problem, and the familiarity with the method by 
the user. While there are many more methods not discussed, these are 
currently among the most popular at the present time.     

8.1 Boundary Element Method 

The boundary element method is a unique numerical scheme which 
permits rapid and accurate solution of a specific class of equations 
(Brebbia and Dominguez, 1989). Employing Green's identity, the 
boundary element method requires only the discretization of the 
boundary domain – no internal mesh is required as in the finite element 
method. The BEM reduces the dimensionality of a problem by one, i.e., a 
two-dimensional problem reduces to a line integral; a three-dimensional 
problem reduces to a two-dimensional surface formulation. Hence, input 
data processing consists only of the problem boundary geometry and 
boundary conditions. Figure 8.1 shows an irregular domain discretized 
with triangular finite elements and using BEM, with three internal points 
(if the user wishes to also calculate values at several internal points). The 
BEM is used in many applications where Laplace or Poisson equations 
are solved; more recent advances now enable the method to be used for 
transport equations (Atluri and Shen, 2002). 
 
 
 
 
 
 
 
 

 (a)                                         (b) 
 

Fig. 8.1 Arbitrary 2-D domain discretized using a) FEM and b) BEM. 
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To illustrate the method, we begin with the simple operator, L, 
defined as 

 
2 2

2 2( , ),= = ≡
ϕφ ϕd dL f x L

dx dx
.                           (8.1) 

As we did in the FEM, we will now integrate Eq. 8.1 to create a weak 
statement. In fact, we will do this twice to create the adjoint of L, which 
we will denote as L*. The BEM utilizes the adjoint operating on the 
weight, W, as opposed to the basis function, N, which we saw in the 
FEM. Performing the integration, we obtain  
 
1st integration – weak statement 

 
ΩΓ

= − ∫
ϕ ϕd d dWI W dx

dx dx dx
.                        (8.2) 

2nd integration 

 
2

2ΩΓ Γ
= − + ∫

ϕ ϕ ϕd dW d WI W dx
dx dx dx

.                   (8.3) 

The adjoint is L* = L (in this case, it is self adjoint), i.e.,  

  
2

2* = =
dL L
dx

.  (8.4) 

Example 8.1.1 Determining the adjoint operator: Find the adjoint of 
the following operator, 

 
2

2

d dL u
dx dx

= − .  (8.5) 

1st integration – weak statement 

 
d d d dWI W | uW dx dx
dx dx dx dxΓ Ω Ω

ϕ ϕ ϕ
= − −∫ ∫ ,  (8.6) 

2nd integration

 
2

2ΩΓ Γ

⎛ ⎞⎡ ⎤⎛ ⎞= − + + +⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦ ⎝ ⎠
∫

ϕ ϕ ϕd dW d W dWI W uW u dx
dx dx dx dx

.  (8.7) 

The adjoint is 
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2

2* = +
d dL u
dx dx

,  (8.8) 

which is not self-adjoint. Notice that two boundary conditions 
automatically appear in Eq. 8.7, as denoted by the Γ subscript.  
 
Example 8.1.2 BEM solution of a second-order ODE Solve the 
equation below for the derivative of φ with respect to x at the end points 
of a domain defined between a ≤ x ≤ b. The equation is 

 
2

2 ( , ) 0− =
ϕ ϕd f x

dx
,                                  (8.9) 

with boundary conditions φ = 0 at x = 0, 1 where a = 0, b = 1. We wish 
to determine dφ/dx|a and φ|a and dφ/dx|b and φ|b. We integrate twice to 
obtain 

 [ ]( , ) 0
Ω

− =∫ ϕ ϕW L f x dx ,  (8.10) 

or 

 
2

2| | ( , )Γ− + =∫ ∫
ϕ ϕ ϕ ϕ

b bb b
a a a a

d dW d WW dx Wf x dx
dx dx dx

.  (8.11) 

We will now solve Eq. 8.11 by obtaining a homogenous solution and a 
particular, or fundamental, solution of the equation. 
 
Homogeneous solution: 
 
We now choose W so that L*W = 0. Integrating the second derivative 
term in Eq. 8.11,  

 | | ( , )Γ− = ∫
ϕ ϕ ϕ

bb b
a a a

d dWW Wf x dx
dx dx

,  (8.12) 

Fundamental solution:  
 
For the fundamental solution, we set L*W equal to a Kronecker delta 
function evaluated between the limits of x (defined as ξ), i.e., 

 
 * ( )= − −δ ξL W x ,  (8.13) 
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Homogeneous solution 
 
For homogeneous solution, we see that 

 
2

2 0=
d W
dx

,  (8.14) 

We now need two independent solutions. Let W11
 = x and W2 = 1. 

 
a. for W1 = x 
 

 | | ( , )Γ− = ∫
ϕ ϕ ϕ

bb b
a a a

d dWW Wf x dx
dx dx

,  (8.15) 

or 

 
b

b a b a a

d db | a | | | xf ( , x)dx
dx dx
ϕ ϕ

− −ϕ +ϕ = ϕ∫ .  (8.16) 

b. for W2= 1  

 
b

b a a

d d| | xf ( , x)dx
dx dx
ϕ ϕ

− = ϕ∫ .  (8.17) 

Imposing the boundary conditions, we wish to find 

 
a a

b b

d| 0, find  | ?
dx
d| 0, find  | ?.
dx

ϕ
ϕ = =

ϕ
ϕ = =

  (8.18) 

a.  for W
1
 = x  

 

b

b a b a a

b

b a a

d db | a | | | xf ( , x)dx
dx dx
d d(1) | (0) | 0 0 x xdx,
dx dx

ϕ ϕ
− −ϕ +ϕ = ϕ

ϕ ϕ
− − + =

∫

∫ i
  (8.19) 

 b
d 1| .
dx 3
ϕ

∴ =  

b.  for W2 = 1:  
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1| |
2

b

b a a

d d xdx
dx dx
ϕ ϕ

− = =∫ .  (8.20) 

 
1

|
6

.a

d
dx

∴ = −
ϕ

 

You have now solved the problem using a BEM approach.  
We can readily solve a two-dimensional problem using the same 

approach. For example, assume that we wish to find the adjoint for the 
simple Laplace equation for temperature, i.e.,  

 2 0∇ =T .  (8.21) 
We multiply Eq. 8.21 by a weight, W(x,y), and integrate,  

 
2 2

2 2( , )
Ω

⎡ ⎤∂ ∂
= +⎢ ⎥∂ ∂⎣ ⎦

∫
T TI W x y dxdy

x y
.  (8.22) 

Integrating twice, we obtain 

 

2

1

2

1

x 2ymax

2ymin
x

y 2x max

2x min
y

T W d WI W T dy T dx
x x dx

T W d WW T dx T dy.
y y dy

Ω

Ω

∂ ∂⎡ ⎤= − + +⎢ ⎥∂ ∂⎣ ⎦

⎡ ⎤∂ ∂
− +⎢ ⎥∂ ∂⎣ ⎦

∫ ∫

∫ ∫
  (8.23) 

Since dy = nxdΓ and dx = nydΓ ( n̂  is usually defined as the vector 
normal to a surface), Eq. 8.23 can be written as  

 
2 2

2 2

T W W WI W T d T d
ˆ ˆn n x yΓ Ω

⎡ ⎤∂ ∂ ∂ ∂⎡ ⎤= − Γ + + Ω⎢ ⎥⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦ ⎣ ⎦
∫ ∫ ,  (8.24) 

or 

 2 2T WW T d T W T T W d
ˆ ˆn nΓ Ω

∂ ∂⎡ ⎤ ⎡ ⎤− Γ = ∇ − ∇ Ω⎣ ⎦⎢ ⎥∂ ∂⎣ ⎦∫ ∫ .  (8.25) 

Let’s return for a moment to the fundamental equation for the 2-D 
Laplace equation, i.e., we wish to solve an equation of the form 
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2 2

1 22 2 ( ) ( )∂ ∂
+ = − − −

∂ ∂
ϕ ϕ δ ξ δ ξx y

x y
,  (8.26) 

which represents a concentration located at a point whose coordinates are 
ξ1 and ξ2. The concentration diffuses outwards radially and 
symmetrically in all directions, assuming a universally unit diffusion 
coefficient, as shown in Fig. 8.2. 
 

 
 

Fig. 8.2 Dispersion within a 2-D domain with source at ξ1, ξ2. 
 

It is convenient to work with polar coordinates. Equation 8.26 can be 
stated in polar coordinates as 

 
1 (r ) (r)
r r r

∂ ∂ϕ
= −δ

∂ ∂
,  (8.27) 

which is the axisymmetric form of the Laplacian operator. The solution 
to this equation is simply 

 1 2
1(x, y, , ) ln(r)

2
ϕ ξ ξ = −

π
,  (8.28) 

where r is just the distance from the observation point (x,y) in Fig. 8.2 to 
the source point (ξ1,ξ2), defined as  
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 ( ) ( )2 2
1 2r x y= − ξ + − ξ .   (8.29) 

If the differential equation is 3-D, the axisymmetric Laplacian in 
spherical coordinates becomes 

                                             2
2

1 (r ) (r)
r r r

∂ ∂ϕ
= −δ

∂ ∂
,  (8.30) 

and the fundamental solution is 

                                           1 2 3
1(x, y, z, , , )

4 r
ϕ ξ ξ ξ =

π
.  (8.31) 

The selection of elements along the boundary of the problem domain 
is left to the user. In 2-D domains, the choices are typically either 
constant elements or linear elements. In a constant element, the value of 
φ and ∂φ/∂n are assumed to be constants over each element and the 
values determined at the mid-points of each element, which are referred 
to as nodes. In a linear element, the variable and its gradient are assumed 
to be a linear function of the distance measured along the element. The 
nodes are now located at the end points of the element (e.g., two end 
points in a 1-D linear element). One can even use higher order elements 
if desired. The advantage of using constant elements is reduced storage 
requirements, but at the expense of reduced accuracy compared with 
linear elements. Also, the use of linear and higher order conventional 
elements can be troublesome when dealing with corners.  

The governing equation for the advection–diffusion of a scalar 
potential, φ, can be written as 

 L[ ] ( k ) (V ) S
t

∂ϕ
ϕ ≡ + ∇ ⋅ − ∇ϕ + ⋅∇ ϕ −

∂
,  (8.32) 

where V is the velocity vector, k is the diffusion tensor, t is time, and S 
denotes the source density. Assuming steady state, the steady governing 
operator L[φ] and its adjoint operator L*[ψ], in which we define ψ as the 
adjoint potential associated with φ to Green's second identity, can be 
written as 

 *
n(L[ ] [ ] )d k( )d d ,VL ˆ ˆn nΩ Γ Γ

∂ψ ∂ϕ
ϕ ψ − ψ ϕ Ω = ϕ − ψ Γ + φψ Γ

∂ ∂∫ ∫ ∫   (8.33) 
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where n̂ is the outward normal to φ, and Vn is the normal component of 
V to Γ. If one introduces the fundamental solution ψ* of L*[ψ] = 0 
instead of φ, Eq. 8.27 can be rewritten as 

 * * *
i i n nc (r ) d d Sq q

Γ Γ Ω
ϕ − ϕ Γ = − Γ +ψ ψ∫ ∫ ∫ ,  (8.34) 

where ci denotes a coefficient that depends on the position vector ri, qn* = 
n(-k∇ψ*-Vψ*), qn  = n(-k∇φ) and ψ* is 

  *
i(r; r ) exp{ (V r | V || r |)/(2K)}/(4 K | r |)′ ′ ′= − + πψ i ,  (8.35) 

in which r' = r-ri,  r is the observation point, and Ko[ ] is the modified 
Bessel function of the second kind of order zero. The matrix equivalent 
form of Eq. 8.35 is 
                                  [H]{ } [G]{q} {B}Φ = + ,  (8.36) 

where [H] and [G] are banded sparse matrices, Φ, q, and B are vectors 
composed of nodal potentials φ, centroidal qn and discretized domain 
integrals, respectively. 
 
Example 8.1.3 BEM calculation of dispersion from a continuous 
source: A continuous source is located on the floor within a rectangular 
domain that has a vent located in the ceiling. Flow enters from the left 
hand side of the room. When the door is opened, the plume bends 
towards the door. In this problem, a simple 2-D flow is calculated that 
shows a plume (depicted by particles) exiting through the ceiling vent. 
When the door is opened, the plume direction is altered as there is more 
of the room air exhausting through the larger opening on the right-hand 
side of the domain. A 2-D BEM was used to calculate this dispersion 
pattern, and was run on a PC (Carrington and Pepper, 1999).  
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Fig. 8.3 Dispersion within a 2-D room with door closed and opened, (a) typical nodal 

point distribution in a conventional approach including streamlines, (b) velocity vectors, 
(c) plume trajectory with door closed, and (d) plume trajectory with door open. 
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Example 8.1.4 Dispersion within a 2-D Room with Barriers: Flow 
and dispersion within a room with barriers is shown in Fig. 8.4 and Fig. 
8.5(a–c). Figure 8.4 shows the computational domain and grids – in this 
instance, we need to use only the nodes located along the boundary of the 
problem domain (denoted by the dark dots). The internal grid is included 
to show what the mesh would look like if using an FDM, FVM, or FEM 
model. If one were to employ one of the conventional numerical 
techniques, the solution matrix would consist of the total number of 
nodes used to discretize the problem domain.   

The velocity vectors are all interior node points (using the BEM to 
produce values for the internal nodes) is shown in Fig. 8.5(a). Assuming 
a source is located in the upper right-hand corner, a Lagrangian particle 
plot is shown in Fig. 8.5(b). Figure 8.5(c) shows contour lines for the 
dispersion pattern using the BEM model versus an analytical puff model, 
depicted by the dashed lines.  

Clearly there is a great deal of difference in the two solutions, 
showing the improved accuracy and prediction attributed to using a 
numerical model versus a simple analytical solution. Much of the 
improved accuracy is due to the ability of the numerical model to 
simulate more of the physics of the flow field, i.e., better skill at 
calculating velocities.  

Fig. 8.4 Computational Domain for flow and dispersion within a room with barriers. 
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(a) 

 
(b) 

 
(c) 

 
Fig. 8.5 Dispersion within a 2-D room with barriers. 
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More detailed discussions and implementation of the BEM can be found 
in many of the textbooks available in the literature, e.g., Ramachandran 
(1994); Pozrikidis (2002); Kane (1994); Beer and Watson (1992); Beer 
(2001); Wrobel (2002). A search on the web will list many such 
references and even computer codes that can be downloaded.     

8.2 Lagrangian Particle Technique 

Particle positions are calculated to simulate mass transport from both 
advection and diffusion. The transport equation can be written in the 
form 

 i

i

C CU+ 0
t x

∂ ∂
=

∂ ∂
,  (8.37) 

where the velocity vector Ui is expressed in terms of advection and 
“flux” diffusion as (Runchal, 1980) 
 

ii fiˆ +U UU= ,  (8.38) 

with Ui being the true advection velocity vector and the “flux” velocity 
defined as 

 
i

ij
jf

j

CK-U C x
∂

= ∑
∂

.  (8.39) 

By combining the advection and diffusion terms together, a total 
equivalent transport velocity can be obtained. The form of the transport 
equation becomes identical to the equation of continuity for a general 
compressible fluid. The original problem of turbulent diffusion is 
transformed into one describing the advective changes of fluid density in 
a compressible fluid moving in a velocity field of total equivalent 
transport velocities. Mass particles are synonymous with density and 
follow the fluid motion in the velocity field, i.e., they are Lagrangian 
particles in a non-solenoidal field of total equivalent transport velocity. 
Their number in any location (volume) determines the concentration of 
pollutant for the original diffusion problem. 

The probability distribution function for a three-dimensional space is 
(Runchal, 1980) 
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i

2
i i3

i i=1x 3 1- it4 21 2 3

1 ( - t)Ux( , t) exp{- }P x 4K(4 t () )K K Kπ
= ∑ ,  (8.40) 

where xi are the position vectors in the direction of the principal axes and 
K1K2K3 are the diagonal components of the second-order dispersion 
tensor in the direction of the principal axes. 

The transport equation for this distribution can be written as 
(P=P(xi,t)) 

 iji
i i j

P P+ ( P) ( )U Kt x x x
∂ ∂ ∂ ∂

=
∂ ∂ ∂ ∂

,  (8.41) 

where the tensor summation convention has been employed and Kij is a 
second-order dispersion tensor. The inclusion of particle decay, settling, 
and more complex dispersion processes involving specified turbulence 
correlations, can be included in Eq. 8.41. 

The problem of transport of particles by advection and dispersion 
commonly represented by a deterministic transport equation such as Eq. 
8.41 can also be represented simply as a series of random walks. Each of 
these random walks is composed of a deterministic advection component 
and a random component.  

For example, the increment in the position vector of a particle at any 
time t can be written as 

 
o o

t t
t o t t tt t- U( , t )d t + D( , t )dwx x x x′ ′ ′′ ′ ′= ∫ ∫ ,  (8.42) 

where D is a deterministic forcing function for the random component of 
motion. Equation 7.52 can be expressed simply as 
 U Dx(w, t) +x xδ δ δ= ,  (8.43) 

with 

 
o

t
D rt(w, t) 2Kd tx nδ ′= ∫ ,  (8.44) 

where D is assumed equivalent to K and nr is a normally distributed 
random number with a mean value of zero, and a standard deviation of 
unity. The integral Eq. 8.44 can be further simplified to 
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o

D r

t2
t

X n
2Kd t.

=

′= ∫

δ σ

σ
  (8.45) 

The variance obtained from Eq. 8.44 is the same as that from Eq. 
8.45. Thus, Eq. 8.42 can be written as 

 
o o

t t 1/2
t o t r tt t- U( , t )d t + { (2K( , t )d t}x x x n x′ ′′ ′ ′ ′= ∫ ∫ .  (8.46) 

For a rigorous application of the random walk method, the net 
particle displacement must be calculated by integration of Eq. 8.42. 
However, with U and K as arbitrary functions of space and time, it is not 
always possible to obtain a closed form solution. It is generally sufficient 
to assume that the mean velocity and random components can be 
separately calculated and linearly superimposed. 

For steady or quasi-steady flows, the time scale of particle motion is 
much smaller than the characteristic time scale of change in the mean 
velocity and the dispersion fields. In such a case, it is often more 
convenient to express U and K as functions of the position vector xi, 
rather than as Lagrangian functions of time. 

In the application of the random walk model, the particle 
displacement in each of the coordinate directions is independently 
calculated from the displacement algorithm, Eq. 8.46. Before this is 
performed, however, the mean velocity, U, and the dispersion due to 
turbulence or other stochastic mechanisms must be specified. The 
velocity of any particle is obtained from the application of the BEM, 
which can be used to obtain velocity components anywhere within the 
problem domain without the need for a nodal mesh or interpolation. A 
general probability distribution or correlation function for the random 
component of motion due to dispersion is utilized to account for the 
dispersivity tensor, K. 

The calculation to advance the particle configuration in time proceeds 
in steps, or cycles, each of which calculates the desired quantities for 
time t + Δ t in terms of those at time t. Hence, 
 i i ix (t t) x (t) U t+ Δ = + Δ .  (8.47) 

The velocity components are the fictitious total velocities determined 
for the beginning of the time interval and initial particle positions. Every 
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particle is advanced each cycle to a new position using Eq. 8.47. Thus, 
the particle traces out in time a trajectory for the pollutant mass. 
Boundary conditions are introduced by modifications of the fictitious 
total velocities. Solid boundaries are simulated by not allowing particles 
to be transported across the boundaries. In each cycle, the fictitious total 
velocity for each cell is calculated as the sum of the advection velocity 
and the random turbulent flux velocity. The particle positions are 
updated using an interpolated total velocity. The concentration per unit 
volume is calculated from the particle masses. 

 

 
 

Fig. 8.6  Lagrangian particle transport within a room. 
 

The next method we will examine utilizes the transport of particles 
within an Eulerian frame of reference, i.e., the mesh. One of the 
advantages of using particles is their inherent ability to visually display 
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the spread of pollutant, allowing one to quickly grasp the effect of 
dispersion. 

8.3 Particle-in-cell  

The Particle-in-Cell (PIC) method is based on the use of Lagrangian 
particles representing pollutant concentration in an Eulerian mesh. The 
advection–diffusion equation is solved using a pseudo-velocity 
technique. The velocities within the problem domain are calculated prior 
to employing the PIC procedure for concentration. There is also a PIC 
method (known as the Marker and Cell – MAC – method) for calculating 
velocities that stems from the work at Los Alamos National Laboratory 
(LANL) by Welsh et al. (1965), Amsden (1966), and Harlow and 
Amsden (1970). In the MAC method, particles are used as Lagrangian 
markers to delineate fluid boundaries or free surfaces. Much later, 
Fogelson (1992) employed a particle method for advection–diffusion 
equations. However, we will not go into this method for fluid flow but 
will assume that we can obtain velocities using any number of numerical 
schemes. The interested reader is referred to the work and numerous 
articles from LANL. 

The application of PIC for species transport comes from the early 
work by Sklarew et al. (1971), and then quickly applied by Lange to 
develop the ADPIC model (Atmospheric Diffusion Particle-in-Cell) 
developed for emergency response at Lawrence Livermore National 
Laboratory (1973). Application of the technique by NASA for pollutant 
transport was also reported by Spaulding (1976). 

The transient advection-diffusion equation for species transport is 
solved in its flux conservative form using a pseudo-velocity technique. 
Pollutant concentration is statistically represented by imbedding 
Lagrangian marker particles in an Eulerian grid. The transport equation 
can be written in vector form as 

 ( )C V C K C
t

∂
+ ∇ = ∇ ∇

∂
i i ,  (8.48) 
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where C is the concentration, K is the diffusion coefficient, and V is the 
velocity vector. Using the assumption of incompressibility, we can 
replace the advection term  
 V C∇i , 
with the expression 
 (VC).∇i  

Combining the advection and diffusion terms into their flux conservative 
form, Eq. 8.48 becomes 

 ( )P
C K CC V C CV 0
t C t

∂ ⎛ ⎞ ∂⎛ ⎞+ ∇ − ∇ = + ∇ =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠
i i ,  (8.49) 

where VP = V – KDC/C, which is the pseudo transport velocity. 
The mesh consists of an Eulerian grid similar to a FDM or FVM 

mesh. The concentrations are defined at the centers of the cells and the 
velocities V, VP, and -K ∇ C/C are defined at the cell corners. The 
particle locations are defined by their individual Lagrangian coordinates 
within the mesh structure. A two-step procedure is used to calculate the 
pollutant transport: 
 
1. Eulerian step: 
 
The concentration, C, is obtained (or defined initially) for each cell; a 
temporary velocity is calculated based on the gradient of the 
concentration, i.e.,  

D
KV C
C

= − ∇ , 

where VD denotes the diffusion velocity. This velocity is added to the 
advection velocity to yield VP, i.e.,    

P DV V V= + . 

2. Lagrangian step: 
 
Each marker particle is advanced one time step, Dt, with the velocity VP, 
which is computed from the values at the corners of the cell. A volume 
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weighting scheme is used to determine the particle coordinates, which 
are calculated using the expression 

 n 1 n
Px x V t+ = + Δ ,  (8.50) 

where n + 1 denotes the new value and n is the old value (or location). 
A new concentration distribution is then calculated from the new 

particle positions. The technique is elegantly simple, and eliminates the 
artificial diffusion inherent in a typical Eulerian scheme. However, the 
truncation errors are still the same as one would expect in the FDM or 
FVM. 

The basic algorithm on a non-staggered mesh requires three cells, or 
control volumes, as we saw in the FVM. Figure 8.7 shows transport in 
the horizontal direction (x) with velocity u (where V = ui + vj + wk). 

 
 

Fig. 8.7 Three-cell PIC mesh. 
 

The horizontal velocity at node, i, is defined as 

 i 1 i 1
i

i

C CKu
2 x C

+ −−
= −

Δ
.  (8.51) 

Figure 8.8 shows a two-dimensional mesh with the velocity and cell 
structure. The pseudo-velocities are defined at the cell corners. In this 
instance, Fig. 8.8 shows the u component of the pseudo-velocity vector.   
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 (a)                                                   (b) 
Fig. 8.8 Two-dimensional PIC mesh. 

 
The horizontal velocity uD is calculated as 

 ( )
( )

x
D

1 3 2 4x x
D D

1 2 3 4

K Cu
C x

C C C CK Ku 2 , 0 u | 2 |,
x C C C C x

Δ
= −

Δ
+ − −

= − ≤ ≤
Δ + + + Δ

  (8.52) 

where the concentration has been averaged over the cells surrounding 
node i. 

Since the particles represent the concentration, it is important to have 
as many particles as possible. This is principally dictated by the storage 
limit of the computer. Each particle contributes some fractional 
component to the mass within a region typically encompassing the eight 
neighboring cells, i.e., an overlap of its volume with the cell volumes of 
the neighboring cells. This approach tends to smooth the distribution of 
concentration. It has been shown that even one particle per cell can yield 
meaningful results (Lange, 1973).  

Concentrations in the PIC method can be obtained using either of two 
techniques. In the first technique, the cell concentration is just the sum of 
the masses of all the particles within a cell divided by the cell volume. 
The second method is equivalent to using an area (or volume) 
apportionment of a particle’s mass among cells utilizing an overlap. The 
particle mass is considered to be uniformaly spread over an area (or  
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volume) the size of the cell and centered on the particle position. The 
overlap with adjacent cells is then used to determine the amount of mass 
apportionment among the cells. The first technique is simple and faster; 
the second area-averaging technique has the effect of smoothing any 
artificial gradients caused by relegating the concentration mass into 
particles. The cell concentrations are associated with the cell centers in 
both techniques.  

A random number generator is used to generate the input particles, 
which can be input as a Gaussian distribution, constant value, or other 
choice left to the modeler. For a continuous source (plume), a few 
hundred particles per time step is generally sufficient.  

The basic boundary conditions imposed on the pseudo-velocity field 
are either a constant mass flux (CV = constant), which corresponds to 
inflow and outflow of particles, or zero mass flux (CV = 0), which 
accounts for the reflection of particles from a boundary. Deposition of 
particles on a surface can also be specified. If a particle leaves the 
computational domain, it is either eliminated or counted as a deposition 
or reflection, depending upon the type of boundary.  

An example of a Gaussian symmetrical puff using 3896 particles is 
shown in Fig. 8.9. The particle distribution is shown at t = 0; notice the 
four cells outlined in the center of the figure.   

  



Modeling Indoor Air Pollution 
 

 
 

180 

 
 

Fig. 8.9 Gaussian puff distribution for PIC  (from Lange, 1973). 

Assuming a grid spacing of Δx = Δy = Δz = 10 m with diffusion 
coefficients of Kxx = Kyy = 1 x 104 cm2/s and Kzz = 10 cm2/s, the particle 
distribution after 286,300 s is shown in Fig. 8.10. The grid was allowed 
to expand with the final cell size reaching Δx = Δy = 394 m and Δz = 
16.9 m. Simulation results were nearly identical with values obtained 
from the analytical solution for a Gaussian puff.    
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Fig. 8.10 Final particle distribution in the x-y plane at t = 286,300 sec. 

An example showing the advection and diffusion of a plume is shown 
in Figs 8.11 (a,b). The advection velocity is 10 m/s with Kxx = Kyy = Kzz 
= 107 cm2/s. The size of the source is 20 m with Δx = Δy = Δz = 1000 m. 
Figure 8.11b shows the dispersion of particles after 1832 s. Results are 
within ± 5% of the analytical solution. In this example, the advection 
term is clearly more dominant than the diffusion terms, and the plume 
stretches towards the right boundary. 

The velocities are the fictitious total velocities which are calculated at 
the beginning of a time interval and interpolated to initial particle 
positions. These values are held constant throughout a time step. One 
must be careful that a particle does not pass through many cells in a time 
step and out of the computational domain, resulting in large inaccuracies 
or even instability. An empirical rule used to avoid this problem has been 
to limit the time step so that a particle does not travel more than 0.4 of a 
cell in a time step (Sklarew et al., 1971).  
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  (a)                                                                    (b) 
Fig. 8.11 Advection and diffusion of a continuous source using PIC. 

8.4 Meshless Method 

For decades, the FDM/FVM/FEM have been the dominant numerical 
schemes employed in most scientific computation. These methods have 
been used to solve technical problems from aircraft and auto design to 
medical imaging. Even so, there are often substantial difficulties in 
applying these techniques, particularly for complicated domain and/or 
three-dimensional problems. 

Common difficulties in the FDM/FVM/FEM include considerable 
amounts of time and effort required to discretize and index domain 
elements. This is often the most time-consuming part of the solution 
process and is far from being fully automated, particularly in 3-D. One 
method for alleviating this difficulty is to use the boundary element 
method (BEM), as noted previously. The major advantage of the BEM is 
that only boundary discretization is required rather than domain. 
Efficiency is significantly improved over these more traditional methods. 
However, the BEM involves sophisticated mathematics beyond the FEM 
and FDM/FVM and some difficult numerical integration of singular 
functions. Furthermore, the discretization of surfaces in 3-D can still be a 
complex process even for simple shapes, such as spheres (Fig. 8.12). In 
addition, all these traditional methods are often slowly convergent,  
 
 

 (a) (b) 
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frequently requiring the solution of 10s–100s of thousands of equations 
in order to get acceptable accuracy. 
 
 
 
 
 
 
 
 
 

Fig. 8.12 Discretization of spherical shapes. 
 
In recent years, a novel numerical technique called “meshless 

methods” (or “mesh-free methods”) has been undergoing strong 
development and has attracted considerable attention from both scientific 
and engineering communities. Currently, meshless methods are now 
being developed in many research institutions all over the world. Various 
methods belonging to this family include: 

 
1. Diffuse Element Methods (Nayroles, et al., 1992) 
2. Smooth Particle Hydrodynamics Methods (Lucy, 1977) 
3. Element-Free Galerkin Methods (Belytschko, et al., 1994) 
4. Partition of Unity Methods (Melenk and Babuska, 1996) 
5. Hp-Cloud Methods (Duarte and Oden, 1996) 
6. Moving Least Squares Methods (Atluri and Zhu, 1999) 
7. Local Petrov–Galerkin Methods (Atluri and Zhu, 1999) 
8. Reproducing Kernel Particle Methods (Liu, et al., 1998) 
9. Radial Basis Functions (Kansa, 1990). 

 
A common feature of meshless methods is that neither domain nor 

surface meshing is required during the solution process. These methods 
are designed to handle problems with large deformation, moving 
boundaries, and complicated geometry. Recently, advances in the 
development and application of meshless techniques show they can be 
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strong competitors to the more classical finite difference/volume and 
finite element approaches (Lewis et al., 1996; Huang and Usmani, 1994). 
A quote from Alturi et al. (1999) alludes to the promise of meshless 
methods: “We show that the basic framework of the meshless local 
Petrov–Galerkin (MLPG) method is very versatile indeed, and holds a 
great promise to replace the finite element method, as a method of 
choice, someday in the not too distant future.” Indeed, research in 
meshless methods has continued to grow at a rapid pace over the past 
few years, and is now being considered by some researchers as the 
numerical method of the next generation. It is expected that meshless 
methods will become a dominant numerical method for solving science 
and engineering problems in the 21st century. 

Liu (2002) discusses mesh-free methods, implementation, algorithms, 
and coding issues for stress-strain problems, and includes Mfree2D, an 
adaptive stress analysis software package available for free from the 
web. Atluri and Shen (2002) also recently produced a research 
monograph that describes the meshless method in detail, including much 
in-depth mathematical basis.  

A flow chart of the procedures for numerically solving a problem 
using FVM/FEM versus the meshless approach is shown in Fig. 8.13. 
The first step in any numerical procedure is to define the problem, and 
establish the governing equations. Once this preliminary step has been 
done, the next task is to create the geometry. This is now routinely done 
using various CAD packages. After generating the geometry, a mesh 
must be created when using either a finite volume or finite element 
technique. This step can be the most time consuming, especially if one is 
using a combination of hybrid and unstructured elements (or volumes). 
On the other hand, the meshless method requires that one only place 
nodes throughout the physical geometry, i.e., the boundary is represented 
(and not discretized) by a set of nodes. However, some meshless 
methods may require a background mesh for integration of the system 
matrices (but any element or volume may be accepatable since it is only 
needed for sufficient accuracy in the integrations). Likewise, inputting 
material properties are generally defined for subdomains of a problems, 
whereby FVM/FEM methods permit individual definitions per volume or 
element. When dealing with FEM methods, inputting initial and 
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boundary conditions are not difficult. In meshless methods, special 
techniques are usually required to impose Dirichlet or Neumann 
conditions since the shape functions do not satisfy Kronecker delta 
conditions.  

 

 
Fig. 8.13  Flow chart for FVM/FEM methods versus meshless methods. 
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Similar to FEM techniques, meshless methods produce banded 
system matrices that can be handled in similar fashion. Either set of 
methods can utilize either direct methods based on Gauss elimination or 
matrix decomposition methods or iterative methods, e.g., Gauss–Seidel 
or SOR techniques. When dealing with nonlinear problems, additional 
iterative loops are needed. Meshless methods generally require more 
CPU time since the creation of shape functions are more time consuming 
and are performed during the computation. However, since less time is 
spent in setting up meshes, and that results using meshless methods are 
typically more accurate, the ratio of accuracy to CPU is still greater for 
meshless methods.  

In Galerkin-based meshless methods (Belytschko et al., 1994), the 
highest order derivatives are lowered using weak forms; however, proper 
evaluation of integrals (generally using a mesh) or a nodal integration 
scheme is required. Collocation-based methods are attributed to SPH, 
least-square, and RBF techniques, and are easier to program. 

Table 8.1 Differences Between FVM/FEM and Meshless Methods 

Items FVM/FEM Meshless 
Element mesh or grid Required  Not required 
Mesh creation Can be difficult Relatively easy 
Mesh automation/adaptation Difficult for 3-D Easy 
Create shape functions Element based Node based 
Shape function properties Satisfy Kronecker delta;  

valid for all elements 
May or may not satisfy 
Kronkecker delta 
conditions 

Discretized system stiffness 
matrix 

Sparse or symmetrical 
depending on problem (fluid 
flow is sparse) 

Dense; may or may not be 
symmetrical based on the 
method used 

Boundary conditions Easy to implement Special methods required 
Computational speed Generally fast Up to 50X slower 
Retrieval of results Special techniques needed;  

post processing  
Generally easier to extract; 
post processing standard 

Accuracy Generally 0(2nd); varies on 
shape function choice 

Can be more accurate  
than FEM 

Stage of development Mature; well established Beginning 
Commercial packages Many packages Essentially none 
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The similarities and differences between FVM/FEM and meshless 
methods are listed in Table 8.1 (after Liu et al., 2002). While there are 
advantages and disadvantages to any numerical method, the meshless 
approach holds promise for becoming a fast and convenient technique for 
the near future.  

8.4.1 Application of meshless methods 

As previously mentioned, there exists various types of meshless methods 
and each method has its advantages and disadvantages. Intensive 
research efforts conducted in many major research institutions all over 
the world are now underway to improve the performance of these 
approaches. 

Meshless methods hold some promising alternative approaches for 
problems involving fluid flow, heat transfer, and species transport 
analyses. The most attractive feature is the lack of a mesh that is required 
in the more conventional numerical approaches. This becomes 
particularly interesting in that one can begin to conduct adaptive analyses 
for CFD problems.  

There are essentially four meshless-related methods that are typically 
used for fluid flow and transport related problems: 

8.4.1.1 Smoothed particle hydrodynamics (SPH) techniques including 
finite integral methods (e.g., Kernel Particle Methods – RKPM – and 
general kernel reproduction methods – GKR) 

SPH methods use integral representations of a function. A function is 
approximated by a finite integral form and a kernel or weight (known as 
a smoothing function) is employed, as shown in the following relation 
(Liu et al., 2002) 

 u(x) u( ) (x )d
+∞

−∞
= ξ δ − ξ ξ∫ ,  (8.60) 

where δ(x) is the Dirac delta function. In SPH, u(x) is approximated in 
the following form: 

 hu (x) u( )W(x , h)d ,
Ω

= ξ − ξ ξ∫  (8.61) 
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where uh(x) is the approximation of the function u(x) and W(x-ξ,h) is the 
smoothing weight. The smoothing length, h, controls the size of the 
domain (known as a smoothing domain). Weight functions include such 
choices as cubic splines, quartic splines, or exponential functions. In an 
SPH simulation, the system state is represented as a collection of 
arbitrarily distributed particles with forces calculated through 
interparticle interactions in a smoothed manner. The particles are free to 
move in space and carry all necessary computational information – 
allowing them to be regarded as interpolation points or field nodes. There 
is no direct boundary condition in SPH simulations, i.e., for particles 
near a solid surface, only those particles adjacent to the boundary 
contribute to the particle interaction – which can lead to incorrect 
solutions. Hence, some specialized action must be performed, such as 
using virtual particles. While the SPH method has some limitations, it is 
very effective for problems that are difficult to simulate using the more 
conventional approaches, e.g., explosions and free surface flows.  

8.4.1.2 Meshless Petrov–Galerkin (MLPG) methods including finite 
series representations (e.g., moving least squares (MLS), point 
interpolation methods (PIM), and hp-clouds) 

The MLPG approach, originally proposed by Atluri and Zhu (1999), has 
been used to solve incompressible flow problems. The MLPG technique 
uses a local weak statement integrated over a local quadrature domain 
which can be of any simple geometry. The field variables within the 
problem domain are approximated using MLS. A quartic spline function 
is used to compute the MLS shape functions.  

Since the MLPG method creates nodal equations, interior nodes can 
be treated separately from the boundary nodes. Numerical integration is 
achieved using subdivision of quadrature domains, coupled with 
coordinate transformations and Gaussian quadrature. The procedure 
follows closely the conventional FEM approach using Galerkin’s method 
but with the weight function centered about each node. However, for 
arbitrary node distributions, large domains containing too many nodes 
have been found to be troublesome, leading to divergence. The MLPG 
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can become computationally expensive due to the lack of diagonal 
dominance in the linear system matrix.  

An approach first introduced by Pepper and Baker (1980) in the mid-
1970s was based on a point discretization of the PG-FEM weak 
statement, resulting in a tridiagonal system of equations in 1-D (also 
known as Chapeau functions). However, a conventional mesh with 
orthogonal nodal arrays was needed to establish the recursive form of the 
equations (due to the inherent implicit nature of the FEM method). 
Employing time-splitting, multidimensional equations could be solved 
quickly. Further elaboration of the method was made by Fletcher (1982) 
in the 1980s. 

8.4.1.3 Local radial point interpolation Methods (LRPIM) using finite 
difference representations 

LRPIM methods have been used successfully in solid mechanics 
problems. Application of the method for incompressible fluid flow has 
been used to much lesser extent. The PIM approach, proposed by Liu and 
Gu (2001), is used to replace the MLS approximation for creating shape 
functions. The PIM maintains superb accuracy in function fitting with 
the shape functions possessing the Kronecker delta property. This 
permits simple imposition of the boundary conditions as in the FEM 
approach. However, efforts are still underway to overcome problems 
dealing with singular moment matrices, and to make the algorithm 
numerically stable for arbitrarily distributed points. The LRPIM requires 
a large number of numerical integrations that generally consume a great 
deal of CPU time. When coupled with radial basis functions, the method 
can be made computationally efficient. Examples of the use of LRPIM in 
2-D natural convection studies is given in Wu and Liu (2003).  

8.4.1.4 Radial basis functions (RBFs) 

Radial basis functions (RBFs) are simple to implement, and easy to 
follow. We will discuss this method in more detail. Currently, there are 
two major approaches in this direction: (i) a domain-type meshless 
method that was developed by Kansa (1990); (ii) a boundary-type 
meshless method that has evolved from the BEM. Before we proceed to 
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introduce these meshless methods, it is important to understand exactly 
what we mean by RBFs. RBFs are the natural generalization of 
univariate polynomial splines to a multivariate setting. The main 
advantage of this type of approximation is that it works for arbitrary 
geometry with high dimensions and it does not require a mesh at all. A 
RBF is a function whose value depends only on the distance from some 
center point. Using distance functions, RBFs can be easily implemented 
to reconstruct a plane or surface using scattered data in 2-D, 3-D or 
higher dimensional spaces. Due to the uses of the distance functions, the 
RBFs can be easily implemented to reconstruct the surface using 
scattered data in 2D, 3D or higher dimensional spaces.  

To be more specific, let Ω ⊂ ℜ2 be a bounded, sufficiently smooth 
domain. Let S = {x1, x2, …, xN}⊂ Ω be a given finite set of distinct 
points (referred to as interpolation points). We are interested in the 
following problem:  

Let {y1, y2, …, yN} be given values. Find a function f : Ω → ℜ such 
that the interpolation equations f(xi) = yi, for i=1,2,…,N, are satisfied. 
From the theory of radial basis functions, the given function is 
approximated by a linear combination of radial functions centered in 
points scattered throughout the domain of interest; i.e., 

 ( )
1

( ) ( ) ,   ,
=

≈ = − ∈ Ω∑ φ
N

j j
j

f x s x c x x x   (8.62) 

where {c1, c2,…, cj} is the unknown coefficient to be determined, φ the 
trial function and |•| the Euclidean distance. For convenience, we denote 
r = |•|. Some popular choices of trial function φ include: 
 
1. linear (r), cubic (r3) 
2. multiquadrics (MQ) ((r2+c2)1/2) 
3. polyharmonic splines (r2n+1logr in 2-D, r2n+1 in 3-D) 
4. Gaussian (exp(-cr2)) 
 
The unknown coefficients can be computed by a collocation method, 
which means the s(x) reproduces the original given data set; i.e., 

 ( )
1

( ) ( ) ,   1, 2,... .
N

i i j i j
j

f x s x c x x i N
=

= = − =∑ φ   (8.63) 
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The above expression implies a linear system whose size is equal to the 
number of scattered data points. Once the unknown coefficients are 
obtained by solving the above linear system of equations, one can 
approximate f(x) by s(x) at any point x in . For further details, we refer 
readers to the theory of RBFs discussed in Powell (1992). 

In the early 1980s, Franke (1982) published a review paper testing 29 
interpolation methods in 2-D and ranked RBFs as the best (MQ followed 
by Thin Plate Splines (r2logr)) based on its accuracy, speed, storage 
requirements, and ease of implementation. The following surface f(x,y) is 
one of the  benchmark problems tested by Franke. In Fig. 8.14, 100 
scattered points is used in the domain of a unit square [0,1] X [0,1]. 
These sample points are randomly chosen and there is no connectivity 
among these points. Thin Plate Splines is selected as the trial function. 
Using the collocation method, we have reconstructed the surface f(x,y) as 
shown in Fig. 8.15. The reader is referred to the following website for 
some interesting applications of surface reconstruction using RBFs: 
http://www.aranz.com/research/modelling/theory/rbffaq.html. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.14 100 scattered data points of f(x,y). 
 
 

0.0
0.2

0.4
0.6

0.8
1.0

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.0
0.2

0.4
0.6

0.8
1.0

Y Axis

Z 
A

xi
s

X Axis



Modeling Indoor Air Pollution 
 

 
 

192 

 
 
 
 
 
 
 

 
 

Fig. 8.15  Reconstructed surface using RBF. 
 

 The analytical solution for the surface can be expressed as 

 

( ) ( )( )
( ) ( )

( ) ( )

( ) ( )( )

2 2

2 2

2 2

2 2

3 1( , ) exp 9 2 9 2
4 4

3 1 1exp 9 1 9 1
4 49 10
1 1 1exp 9 7 9 3
2 4 4
1 exp 9 4 9 7 .
5

f x y x y

x y

x y

x y

−⎛ ⎞= − + − +⎜ ⎟
⎝ ⎠

−⎛ ⎞+ − + +⎜ ⎟
⎝ ⎠

−⎛ ⎞− − − −⎜ ⎟
⎝ ⎠

− − − −

     (8.64) 

In 1990, Kansa (1990) extended the idea of interpolation scheme 
using RBFs to solving various types of engineering problems. The 
method is simple and direct and is becoming very popular in the 
engineering community. The boundary type meshless methods indicated 
in the last section is rather technical and we will only focus on a brief 
introduction of Kansa’s method in this section.  

To illustrate the application of the meshless method using Kansa’s 
method, we first consider elliptic problems. For simplicity, we consider 
the 2-D Poisson problem with Dirichlet boundary condition 

 
2T f (x, y), (x, y) ,

T g(x, y), (x, y) .
∇ = ∈Ω

= ∈Γ
  (8.65) 

Notice that the solution of Eq. (8.65) is in fact nothing but a surface. The 
technique in surface interpolation shown in the last section can be 
applied to solve Eq. (8.65). 
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To approximate T, Kansa (1990) proposed to assume the approximate 
solution can be approximated by a linear combination of RBFs 

 
N

j
j 1

jT̂(x, y) T (r )
=

= φ∑ ,  (8.66) 

where {T1,T2,…,TN} are the unknown coefficients to be determined, φ(rj) 
is some form of RBF (trial function), and  r is defined as 

 2 2
j j jr (x x ) (y y ) .= − + −   (8.67) 

Since MQ is an infinitely smooth function, it is often chosen as the trial 
function for φ, i.e.,  

 2 2 2 2 2
j j j j(r ) r c (x x ) (y y ) cφ = + = − + − + ,  (8.68) 

where c is a shape parameter provided by the user. The optimal value of 
c is still a subject of outstanding research. We will not further elaborate it 
here. Other trial functions such as polyharmonic splines can also be 
chosen as the trial function. 

By direct differentiation of Eq. (8.68), the first and second derivatives 
of  with respect to x and y can be expressed as 

 

j j

2 2 2 2
j j

2 2 2 22 2
j j

2 22 2 2 2
j j

x x y y
,

x yr c r c

(y y ) c (x x ) c
, .

x yr c r c

− −∂φ ∂φ
= =

∂ ∂+ +

− + − +∂ φ ∂ φ
= =

∂ ∂+ +

  (8.69) 

Substituting Eq. 8.69 into 8.63 and by collocation method, one obtains 

      ( )

2 2 2N
i j i j

j i i I3/22 2 2
j 1

i j i j

N
2 2 2

j i j i j i i I I
j 1

(x x ) (y y ) 2c
T f (x , y ), i 1, 2, , N

(x x ) (y y ) c

T (x x ) (y y ) c g(x , y ), i N 1, N 2, , N,

=

=

− + − +
= =

− + − +

− + − + = = + +

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑

 (8.70) 

where NI denotes the total number of interior points and NI+1, …, N are 
the boundary points. Figure 8.16 shows two sets of interpolation points: 
interior and boundary points. Equation 8.70 is a linear system of N X N 
equations and can be solved by direct Gaussian elimination. Once the 
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unknown coefficients {T1,T2,…,TN} are found, the solution of T in Eq. 
8.62 can be approximated by Eq. 8.63 at any point in the domain.  

For time-dependent problems, we consider the following heat 
equation as an example:  

 2 ( , , , , ).
T T T

T f x y T
t x y

∂ ∂ ∂
− ∇ =

∂ ∂ ∂
α   (8.71) 

An implicit time-marching scheme can be used and Eq. 8.71 becomes 

 
1 2 1 2 1

2 2
( , , , , ),

n n n n n n
nT T T T T T

f x y T
t x y x y

+ + +− ∂ ∂ ∂ ∂
− + =

Δ ∂ ∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

α   (8.72) 

where Δt denotes the time step and superscript n+1 is the unknown (or 
next time-step) value to be solved and superscript n is the current known 
value. The approximate solution can be expressed as 

 
N

j 1

n 1 n 1
j jT̂(x, y, t ) (x, y)T

=

+ += φ∑ . (8.73) 

Substituting Eq. 8.73 into Eq. 8.72, one obtains 

     

2 2N
jn 1 n

j i i i i2 2
j 1

n n n n
i i i i x i i y i i I

N
n 1 n 1
j i i i i I

j 1

f ( x , y , t ) i 1, 2, ..., N

1
T (x , y ) T (x , y )

t x y t

, T (x , y ), T (x , y ), T (x , y )

T (x , y ) g (x , y , t ) i N 1, ..., N ,

+

=

+ +

=

=

=

φ ∂ φ ∂ φ
− α + +

Δ ∂ ∂ Δ

φ = = +

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑

∑

 (8.74) 

Fig. 8.16  Interior points and boundary points using Kansa’s method. 
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which produces a N x N linear system of equations for the unknown 
1n

jT + . Note that the right hand side of the first equation in Eq. 8.74 can be 
updated before the next time step, i.e.,  

 1 1

1

( , ) ( , ),   ( , ) ( , )

( , ) ( , ).

N N
jn n n n

i i j j i i x i i j i i
j j

N
jn n

y i i j i i
j

T x y T x y T x y T x y
x

T x y T x y
y

= =

=

∂
= =

∂

∂
=

∂

∑ ∑

∑

φ
φ

φ
  (8.75) 

Figure 8.17 shows an arbitrary domain discretized using three-noded 
triangular elements, boundary elements, and a meshless method. An 
internal mesh is required in the FEM (Fig. 8.17, a) and linear elements 
are needed along the boundary in the BEM (Fig. 8.17, b), as noted by the 
dotted lines. Both methods require the use of efficient matrix solvers to 
obtain values at the prescribed nodes, which can become resource 
limiting and time consuming. The meshless method, with arbitrarily 
distributed interior and boundary points, requires no mesh as illustrated 
in Fig. 8.17 (c). 

               (a)                                             (b) 
 

(c) 
Fig. 8.17  Irregular domain discretized using (a) three-noded triangular finite elements,  
b) boundary element, and (c) arbitrary interior and boundary points meshless method. 
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8.4.2 Example cases – Heat transfer 

8.4.2.1 Heat transfer in a 2-D plate 

To illustrate the use of meshless methods, let us begin with a simple heat 
transfer problem. The governing equation for temperature transport can 
be written as 
 

 2T T T Q
t

∂ + ⋅∇ = α∇ +
∂

V   (8.76) 

 4 4q k T h(T T ) (T T ) 0∞ ∞+ ∇ − − −εσ − =   (8.77) 

 oT( ,0) T=x ,  (8.78) 

 
where V is the vector velocity, x is vector space, T(x,t) is temperature, 
T∞ is ambient temperature, To is initial temperature, α is thermal 
diffusivity (κ/ρcp), ε is emissivity, σ is the Stefan–Boltzmann constant, h 
is the convective film coefficient, q is heat flux, and Q is heat 
source/sink. Velocities are assumed to be known and typically obtained 
from solution of the equations of motion (a separate program is generally 
used for fluid flow (Pepper et al., 2000). 

In this first example problem, a two-dimensional plate is subjected to 
prescribed temperatures applied along each boundary (Pepper et al., 
2000), as shown in Fig. 8.18. The temperature at the mid-point (1,0.5) is 
used to compare the numerical solutions with the analytical solution. The 
analytical solution is given as 

 
n 1

1

n 12 1

T T 2 ( 1) 1 n x sinh(n y / L)(x, y) sin
T T n L sinh(n W / L)

+θ

=

− − + π π⎛ ⎞θ ≡ = ⎜ ⎟− π π⎝ ⎠
∑ ,  (8.79) 

which yields θ(1,0.5) = 0.445, or T(1,0.5) = 94.5oC. The analytical 
solution simply denotes the diffusion of heat within a rectangular domain 
with fixed (Dirichlet) temperatures along each face.  
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Fig. 8.18  Steady-state conduction in a two-dimensional plate (from Incropera and 
DeWitt, 2002). 

 
Table 8.2 lists the final temperatures at the mid-point using a finite 
element method, a boundary element method, and a meshless method.   

 Table 8.2 Comparison of Results for Poblem 1 from Exact, FEM, BEM, and Meshless 
Methods (from Pepper and Chen, 2002) 

Method mid-point (oC) Elements Nodes 
Exact 94.512 0 0 
FEM 94.605 256 289 
BEM 94.471 64 65 
Meshless 94.514 0 325 

8.4.2.2 Singular point in a 2-D domain 

As a second example problem, a two-dimensional domain is prescribed 
with Dirichlet and Neumann boundary conditions applied along the 
boundaries, as shown in Fig. 8.19. This problem, described in Huang and 
Usmani (1994), was used to assess an h-adaptive FEM technique.  

A fixed temperature of 100oC is set along side AB; a surface 
convection of 0oC acts along edge BC and DC with h = 750 W/moC and 
k = 52 W/moC. The temperature at point E is used for comparative 
purposes.  

0

W = 1

L = 2

T2 = 150oC

T1 = 50oC

T1 = 50oC

T1 = 50oC

y

x

(1,0.5)
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The severe discontinuity in boundary conditions at point B creates a 
steep temperature gradient between points B and E. Figures 8.20(a,b) 
show the initial and final FEM meshes after two adaptations using 
bilinear triangles. The analytical solution for the temperature at point B is 
T = 18.2535oC. Table 8.3 lists the results for the three methods compared 
with the exact solution. The initial 3-noded triangular mesh began with 
25 elements and 19 nodes.   

    Table 8.3 Comparison of Results for Problem 2 from Exact, FEM, BEM, and 
Meshless Methods (from Pepper and Chen, 2002). 

Method Point E (oC) Elements Nodes 
Exact 18.2535 0 0 
FEM 18.1141 256 155 
BEM 18.2335 32 32 
Meshless 18.2531 0 83 

             

 
 Fig. 8.19 2-D domain with prescribed Dirichlet and Neumann boundaries. 
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     (a)                                                          (b) 

 
Fig. 8.20 Problem for assessing an h-adaptive FEM technique, (a) initial FEM mesh and 

(b) final FEM adapted mesh (from Huang and Usmani, 1994). 

8.4.2.3 Heat transfer within an irregular domain 

A simple irregular domain is used for the third example problem and 
results compared from the three methods. Results from a fine mesh FEM 
technique (without adaptation) are used as a reference benchmark 
(Pepper et al., 2000). The discretized domain and accompanying 
boundary conditions set along each surface are shown in Fig. 8.21. The 
FEM results are displayed as contour intervals. Figure 8.22 (a,b) shows 
meshless results (using FEM fine mesh nodes for contouring) versus 
FEM solutions using adapted quadrilateral elements. Heat conduction 
occurs as a result of constant temperatures set on the top and bottom 
surfaces, adiabatic faces in the upper right cutout and lower cutout 
portions, and convective heating along the right and left vertical walls. 
Adaptive meshing occurs in the corners as a result of steep temperature 
gradients; this is not evident when using meshless methods. 
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Fig. 8.21  Problem specification for heat transfer in a user-defined domain. 

 

 
               (a)                               (b)   

Fig. 8.22  FEM solutions (a) meshless (on FEM fine mesh) and (b) adapted mesh. 
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The FEM, BEM, and meshless mid-point values at (0.5,0.5) are listed in 
Table 8.4. 

           Table 8.4. Comparison of Results for Problem 3 from FEM, BEM, and Meshless 
Methods (from Pepper and Chen, 2002). 

 
 
 
 
All three techniques provide accurate results for the three example 

cases. The meshless method was clearly the fastest, simplest, and least 
storage demanding method to employ. Advances being made in meshless 
methods will eventually enable the scheme to compete with the FEM and 
BEM on a much broader range of problems (Wu and Liu, 2003; Atluri 
and Shen, 2002; Sarler et al., 2002). Hon has also done much work in 
engineering modeling using Kansa’s method. We refer the readers to his 
website: http://www.cityu.edu.hk/ma/staff/ychon.html.  

8.4.2.4 Natural convection 

Natural convection within a 2-D rectangular enclosure is a well-known 
problem commonly used to test the ability of a numerical algorithm to 
solve for both fluid flow and heat transfer. The equations are strongly 
coupled through the buoyancy term in the momentum equations and the 
temperature. There are various forms of dimensionless equations, and 
numerous references can be found in the literature and on the web 
regarding these various forms. The solution to the problem generally 
splits between solving either the primitive equations for velocity or the 
vorticity equation, coupled with the transport equation for temperature. 

 The issue in this early development of the meshless approach was 
not to dwell on various schemes dealing with pressure (e.g., projection 
methods or the SIMPLE scheme both of which are well known). Hence, 
most researchers developing meshless approaches deferred to using the 
streamfunction–vorticity–temperature equations. These equations are the 
well-known set generally formulated as follows: 

Method mid-point (oC) Elements Nodes 
FEM 75.899 138 178 
BEM 75.885 36 37 
Meshless 75.893 0 96 
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2 2

2 2

Tu v Pr Pr Ra
t x y x y x

⎛ ⎞∂ω ∂ω ∂ω ∂ ω ∂ ω ∂
+ + = + − ⋅ ⋅⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

,  (8.80) 

 
2 2

2 2

T T T T Tu v
t x y x y

∂ ∂ ∂ ∂ ∂
+ + = +

∂ ∂ ∂ ∂ ∂
,  (8.81) 

 
2 2

2 2x y
∂ ψ ∂ ψ

+ = −ω
∂ ∂

,  (8.82) 

with the conventional definitions for velocity in terms of the 
streamfunction gradients. Figure 8.23 shows the physical and 
computational domain with accompanying boundary conditions. Two 
types of nodal configurations are shown in Fig. 8.24 (a,b) utilizing 256 
nodes. Results are in excellent agreement with well-known results in the 
literature for 103 ≤ Ra ≤ 105. Figure 8.25 (a,b) shows streamlines and 
isotherms for the differentially heated enclosure for Ra = 105. A 
convergence plot showing the difference in rates between a conventional 
FDM and applications of the MLPG and LRPIM techniques is shown in 
Fig. 8.26. Notice the more rapid rate of convergence of the two meshless 
methods versus the finite difference scheme. 

 
Fig. 8.23  Boundary conditions for natural convection within a rectangular enclosure. 
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(a)                                                                        (b) 

Fig. 8.24  Nodal configurations for a) uniform distribution and b) arbitrary distribution 
for 256 nodes. 

 

 
Fig. 8.25  Natural convection results showing a) streamlines and b) isotherms for Ra = 

105 using the MLPG method (from Wu and Liu, 2003). 
 

 
Fig. 8.26  Convergence rates for FDM, MLPG, and LRPIM meshless methods for natural 

convection within a 2-D enclosure (adapted from Wu and Liu, 2003). 



Modeling Indoor Air Pollution 
 

 
 

204 

A similar study of natural convection within a rectangular enclosure 
was conducted by Sarler et al. (2002) using the RBF approach of Kansa 
(1990). Solving the nonlinear Poisson reformulation of the general 
transport equation representing mass, energy, and momentum, the 
problem was solved by dividing the physical domain into two parts 
consisting of an internal array of nodes and a set of boundary nodes for 
the Dirichlet and Neumann conditions. The governing equation for the 
transport variable is of the form 

 ( )( ) ( )( ) ( )C VC D S
t

ρ φ ρ φ φ∂
+ ∇ ⋅ = −∇ ⋅ − ∇ +

∂
, (8.83) 

where ρ, φ, V, t, D, and S denote density, transport variable, velocity, 
time, diffusion matrix, and source. The transport variable C consisted of 
enthalpy C(h(φ = T)), velocity C(φ = u,v), and pressure C(φ = p), with a 
pressure correction Poisson equation used to resolve the pressure. The 
nonlinear equations solved with the meshless technique were of the form 

 2φ θ∇ = + ∇ ⋅Θ ,  (8.84) 

 ( )( ) /∂⎡ ⎤= −⎢ ⎥∂⎣ ⎦
C S D

t
θ ρ φ ,  (8.85) 

 

 ( ) ' /VC D Dρ φ φ⎡ ⎤Θ = − ∇⎣ ⎦ ,  (8.86) 

where and D′ denote density, transport variable, time, velocity, and D is 
the diffusion matrix with D′ being the nonlinear anisotropic part. The 
variable C denotes the relation between the transported and the diffused 
variable. The solution requires the use of an iterative technique. The final 
form of the transformed Poisson equation is  

 ( ) ( )2
, ,φ φφ θ θ φ φ φ φ∇ = + − + ∇ ⋅Θ + ∇ ⋅Θ − , (8.87) 

where the bar denotes values from the previous iteration. Time 
discretization utilizes the relation 

 
( ) ( ) /oC C

S D
t

ρ φ ρ φ
θ

−⎡ ⎤
≈ −⎢ ⎥Δ⎣ ⎦

,  (8.88)   
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with the unknown field φ approximated by the N global approximation 
functions ψn(p) and their coefficients ςn, i.e.,  
 ( ) ( ) ; 1, 2,n np p n Nφ ψ ς Γ≈ = .  (8.89) 

The global radial basis function approximation was based on 
multiquadrics with the free parameter ro:  

 ( )1/ 22 2
n n or rψ = + . (8.90) 

The coefficients were calculated from the N collocation equations of 
which NΓ were equally distributed over boundary Γ and NΩ over the 
domain Ω. Separate relations were established for the boundary 
condition indicators.  

The computational domain was discretized into 80 boundary nodes 
and 361 domain nodes. The multiquadrics constant ro was set to 0.2. 
Steady-state results were achieved after 34 iterations for Ra = 103, 187 
iterations for Ra = 104, and 293 iterations for Ra = 105. The calculated 
values for temperature and velocity were in excellent agreement with 
results obtained using a fine grid FDM. 

Kalla and Pepper (2008) demonstrated the application of a meshless 
approach to solve the primitive equations of motion and energy using 
radial basis functions. A projection scheme was employed to account for 
pressure, similar to the techniques used by Pepper and Carrington (1997) 
and later by Wang and Pepper (2007) to simulate fluid flow with heat 
transfer. Kalla and Pepper (2008) describe the technique in more detail in 
the paper from her thesis.  

Further application of the LRPIM is shown in Fig. 8.27 for natural 
convection within a concentric annulus. In this instance, the nodal 
distribution is 967 with the inner cylinder heated and the outer cylinder 
cooled. The early work of Kuehn and Goldstein (1976) utilized a second-
order FDM technique (which supplemented their earlier experimental 
work) to simulate the flow and heat transfer within the annulus. Their 
results have served as reference values for many years. Figure 8.28 (a,b) 
shows streamlines and isotherms for Ra = 104, and the results agree 
closely with those of Kuehn and Goldstein (1976) and others in the 
literature.  
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Fig. 8.27  Nodal distribution for natural convection within a concentric annulus with ri = 
0.625 and ro = 1.625. 

 
 

  (a)                                                  (b) 
Fig. 8.28  Natural convection within a concentric annulus a) streamlines and b) isotherms 

for Ra = 104. 

Application of the meshless approach to porous media flow is 
discussed in Li et al. (2003). Utilizing RBF collocation, the transient 
dispersion of contaminant and pressure head were calculated for various 
flow parameters. A regional groundwater system was simulated for a 
cross section of x = (0,200 m) by z = (0,100 m). Results were obtained 
using multiquadric functions. The governing equations consisted of head 
and concentration expressed in the forms 

 2 0h∇ = ,  (8.91)  
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 ( )∂
+ ⋅∇ = ∇ ⋅∇ −

∂
C V C D C C
t

λ ,  (8.92) 

where h denotes the pressure head, C is the contaminant concentration, V 
is the seepage velocity, and λ is the rate of decay. The top boundary is 
set with h = 0.05x + 100 with zero flux conditions on the two side 
boundaries and no-flow bottom boundary denoting impermeable 
bedrock. The coefficients were all set equal to 1. Following similar 
procedures employed when using Kansa’s method (1990), results were 
obtained quickly using a PC.  

For the first example case, a 41 x 21 mesh was used to calculate 2-D 
steady-state water head within the computational domain. Figure 8.29 
shows contours of the head and velocity vectors (obtained from the 
gradients of the head), and are in agreement with expected results.  

 
Fig. 8.29  Contour of water head and velocity vectors. 

 
The transport of a scalar quantity is illustrated in a second case as 

shown in Fig. 8.30 (a,b). In this example, an 11 x 11 x 11 mesh was used 
with uniformly distributed set of collocation points for Ω = [0,1]3, and 
follows from the 3-D heat transfer model analyzed by Zerroukat et al. 
(1998). The maximum number of time steps was set to 800 with Δt = 
0.01. Contours of the numerical solution and relative error are shown in 
Fig. 8.30 (a,b) after 200 time steps for the z = 0.5 plane. Both fully 
implicit marching scheme and Crank–Nicolson time-marching schemes 
were compared with the Crank–Nicolson scheme producing a slightly 
faster convergence.  
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  (a)                                                                        (b) 
Figure 8.30  Isopleths (a) and relative error (b) after 200 time steps at z = 0.5. 

8.5 Molecular Modeling 

The idea behind modeling at the molecular level lies with solving a non-
continuum problem using an N-body approach. The N-body problem 
refers to solving the forces on N particles as a function of the distances 
among the particles. In other words, given initial positions and velocities 
of all the particles, we seek to determine the motion of the system if each 
particle interacts with all the other particles in the system.  

The N-body problem was formulated around 1900, dealing with the 
solar system and forces due to gravitational attraction. In this instance, 
we are interested in the interactions of molecules and particles, with 
forces more complex than just gravitation.  

Feynman et al. (1963) discuss classical molecular forces. Basically, 
when two molecules that are close are pulled apart, they attract. When 
they are pushed together, they repel, with the force of repulsion being an 
order of magnitude greater than the force of attraction (an exception to 
this rule is liquid water). There are many classical molecular potentials 
for the interactions of molecules. The most popular model is the 
Lennard–Jones potential, which can be written as 
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12 6

i, j 12 6
i, j i , j

(r ) 4 erg,
r r
σ σ

φ = ε −
⎛ ⎞
⎜ ⎟
⎝ ⎠

  (8.93)  

where ri,j is measured in angstroms (Å). To obtain the force, Fi,j, that is 
exerted on molecule Pi by Pj, we can use the chain rule on Eq. 8.93, i.e.,  

   i, j i , j i , j
i , j

i , j

d (r ) d (r ) dr
F ,

dR dr dR

φ φ
= − = −   (8.94) 

where R is the distance between molecules with R cm = 108 R Å, or ri,j = 
108 R. In other words, if R > 1, F acts toward the origin, corresponding to 
attraction; if R < 1, F acts away from the origin and indicates repulsion.  
 
Example 8.5.1 Force acting on argon vapor: The Lennard–Jones 
potential for argon can be obtained using Eq. 8.93 using values for ε and 
σ found in most chemistry textbooks,  

 
12 6

14
i, j 12 6

i, j i , j

3.418 3.418
(r ) (6.848)10 erg,

r r
−φ = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

  (8.95) 

with ri,j measured in angstroms. The force, Fi,j, exerted on Pi by Pj is 

 
12 6

i, j6
i, j 13 7

i, j i , j i , j

r12(3.418) 6(3.418)
F (6.848)10 dynes,

r r r
−= −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (8.96) 

where the overbar on ri,j denotes the vector. Equation 8.96 can be 
simplified to the form 

i, j i , j 13 7
i, j i , j

209 0.06551
F F ,

r r
= = −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

which produces Fi,j(ri,j) = 0 and that ri,j = 3.837Å, which is the 
equilibrium distance.  

The equation of motion for a single argon vapor atom Pi that is acted 
upon by a single argon vapor atom Pj can be expressed as (remember 
from Newton’s second law, F = ma) 



Modeling Indoor Air Pollution 
 

 
 

210 

 i, j
i 13 7

i, j i , j i, j

R209 0.06551
ma .

r r R
= −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (8.97) 

The mass of an argon atom is 6.63 x10-23 gm. Since r = 108 R, then Eq. 
8.97 can be rewritten as 

 
23

i, j
i 13 7 2

i, j i , j i , j

r10 209 0.06551 cm
a .

6.63 r r r sec
= −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
 (8.98) 

If we now replace centimeters by angstroms and seconds by picoseconds, 
with ai = dv/dt = d2ri/dt2, Eq. 8.98 can be rewritten as 

 
2

i, ji
2 13 7 2

i, j i , j i , j

rd r 3190 1 A
98810 .

dt r r r ps
= −

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
  (8.99) 

Assuming a local interaction distance of D = 2.5σ = 2.5(3.418) = 8.545 
Å, which represents the distance for a local force on molecule Pi, the 
equations of motion for a system of N argon vapor atoms would be 

 
2

i, ji
i , j2 13 7

j i , j i , j i, j
j i

rd r 3190 1
98810 i 1, 2,3,..., N; r D

dt r r r
.

≠

= − = <
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑   (8.100) 

We can neglect the effect of gravitational settling since 980 cm/s2 = 
(980)10-16 Å/ps2.  

An example of molecular motion of argon vapor within a 2-D cavity 
is shown in Fig. 8.31 (a–c) (from Greenspan, 2005). The top wall, CD, 
moves in the X direction at a constant speed V = –50 Å/ps. The length of 
the cavity is 230.22 Å. The initial grid consists of 4235 molecules, as 
shown in Fig. 8.31 (b). We also define initial velocities of the atoms at v 
= 3.58 Å/ps, determined with random direction.  

Figure 8.31 (c) shows a primary vortex developed at t = 3.5 with Δt = 
0.00002 s. This is quite amazing as we are only solving Eq. 8.100 for the 
motion of the argon atoms, yet we see an effect analogous to the classical 
continuum flow in a cavity with a moving top wall (Burgraff, 1966). 
Although the distances are quite small, we can readily see the interaction 
of the molecules upon one another, and the resulting evolution of a larger 
motion.  
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        (a)                                                                    (b) 

 
(c) 

 
Fig. 8.31 Molecular flow in a cavity (from Greenspan, 2005). 
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From a practical point of view, one would have to model an 
enormous number of atoms to begin to represent a continuum fluid. 
However, we can see the effect of molecular forces at the atomic level on 
the fluid structure, which eventually escalates into motion on a 
macroscopic level. In the future, modeling at the microscopic level will 
become more prevalent as computational power and resources continue 
to expand. 

8.6 Boundary Conditions for Mass Transport Analysis 

Gas and particulate flux boundary conditions are of the form 

 ( )j j jp p j at boundary blukq h C C= −  , (8.101) 

 
where qp is the flux rate of the jth particle or substance, 

jblukC is a bulk 

concentration in the fluid stream and, a boundary concentration, 
j at boundaryC  is just at the boundary.  

Such an equation is basic, it is Newton’s law of cooling applied to 
mass. The statement is general and is true for any substance. It is merely 
stating that the rate of transfer per unit area is the difference in 
concentration between one place and another multiplied by some 
constant. Only the convective coefficient hp needs determining.  

The convective coefficient hp in the boundary condition above is 
determined by geometry, electrostatic forces, gravity, other forces 
affecting particulate inertia, diffusivities, partial pressures of vapors, 
chemical bonding, etc.   

Another way of formulating the flux term for a strictly diffusion 
related flux is  
 j j jJ D C .= ∇   (8.102) 

This is Fick’s first law of diffusion (Reist, 1993) where iJ  is mass flux 
and in one dimension. 

Both forms of boundary conditions have units of mass per unit time 
per unit area. Different formulations are required as the significance of 
the forces acting on the mass changes and the type of mass in 
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consideration. For an evaporating liquid, the first form is typically 
employed. For particulate depositing to a surface, or gases migrating 
without phase change at the boundary, the second form is more 
appropriate as it directly incorporates the diffusion coefficient. Particles 
with a one micron aerodynamic diameter or less do not experience 
gravitational settling or significant relaxation times. Therefore, a division 
at one-micron makes a natural delineation between the behavior of larger 
and smaller particles.  

Diffusion, thermophoretic forces, and particle agglomeration (with 
associated increase in settling velocity) are responsible for deposition. 
For small particles, a settling velocity is essentially nonexistent. In the 
absence of inertial, thermophoretic forces and other forces, molecular 
diffusion through a boundary layer is responsible for most deposition of 
particles smaller than one micron.     

If an analytic boundary layer solution were to be obtained a 
deposition velocity could be calculated. The deposition velocity is given 
by the following diffusion velocity 

 d
bluk wall

Rate of Deposition
V

C C +

=
−

,  (8.103) 

and for a concentration at the boundary or wall which is not affecting the 
rate of deposition (Davies, 1966) 

 
j

j
d

bulk

J
V

C
= .  (8.104) 

For purely diffusive deposition, substituting for  

j

j

boundary bulkj

p

C CdC

dx

−
=

δ
, 

where dx is a boundary thickness over which there is a change in 
concentration then, 

 
j

j
d

p

D
V =

δ
, (8.105) 
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where Vd is deposition velocity, δp is a boundary layer thickness for the 
jth particulate. This equation is for the case of sedimentation where the 
surface concentration is unimportant to the flow (Davies, 1966).  

Rate of deposition is not affected by the flow. The difficulty with this 
equation is the determination of the boundary layer thickness, δp. It is 
essentially defined as the distance at which the gradient of concentration 
is zero. The bulk concentration is a function of distance, changing in time 
as material is deposited from the flow.   

Deposition of particulate in the numerical model is treated as a flux 
boundary. The mass flux to the wall has a value of the deposition equal 
to the deposition velocity. The mechanism for deposition is Fickian 
diffusion in the absence of other influencing forces. Deposition of inert 
gases onto a surface is zero. Other gases deposit via some reaction 
mechanisms for which rates must be specified. For deposition other than 
by diffusion, rates are generally determined experimentally. 

Turbulence provides good mixing therefore, if a homogenous 
concentration everywhere beyond the diffusive boundary layer is 
assumed, the deposition velocity becomes 

 j
d

0 p

DRate of Deposition
V

C C∞

= =
− δ

. (8.106) 

The difficulty again lies with the determination of δp.    
The rate of transport in turbulent flow of a substance towards a 

surface in non-imensional form is (Davies, 1966) 

 j turb

* o fluid

D dcR
( )

u c dy
+

+

+ μ
=

ν
,  (8.107) 

where: 
oc c / c+ =  non-imensional concentration at any given time. 

* fluidy y u / v+ =  non-imensional distance normal to a surface.  

d oV R / c= deposition velocity.   

w
*

f

u τ
=

ρ
is the friction velocity. 



Numerical Modeling – Advanced Techniques 
 

 
 

215 

Substituting these terms, an expression for the non-dimensional V+ is 
found as  

 j turb

* f

DV dc
( )

u dy
+ +

+

+ μ
=

ν
.  (8.108) 

The diffusive term is a linear combination of the turbulent eddy 
diffusivity μturb, and Fickian diffusivity, jD . The deposition velocity is 
derived from the non-dimensional deposition velocity by V+ = Vd / u* 
where u* is the friction velocity.                                 

As mentioned previously, a numerical model for deposition of 
particulate is essentially treated as a flux boundary. The mechanism for 
deposition is Fickian diffusion only through the laminar sublayer. The 
mechanism for distribution into the turbulent sublayers is by turbulent 
diffusion. Unless a concentration is specified on the surface, the law of 
the wall is not necessary for calculation of the mass gradient. A listing of 
diffusion coefficients for various gas mixtures is given in Appendix A.  

8.7 Comments 

We have examined a set of interesting alternative numerical methods to 
the more conventional FDM, FVM, and FEM techniques. These schemes 
are now being used for a variety of problems, including dispersion as 
well as heat transfer and fluid flow. Applications of these advanced 
numerical techniques are showing up more frequently in the literature 
and will likely become even more widespread over time. The interested 
reader can easily scan the web using any of these schemes as the 
principal subject and access an extensive list of articles and discussions.     

Meshless methods are a unique and novel numerical technique now 
making inroads into various fields. Their advantages in solving problems 
associated with crack propagation and stress/strain including deformation 
over more conventional numerical schemes have been demonstrated 
repeatedly in the literature. The application of meshless methods for heat 
transfer is equally advantageous; such methods have become very 
competitive with both finite volume and finite element methods for 
problems involving irregular geometries. The requirements for creating 
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grids as well as the detailed input necessary for establishing volume or 
element properties is greatly reduced or eliminated. However, much has 
yet to be done before meshless methods can handle a wide range of fluid 
flow problems and produce results with confidence and surety. This is 
true of the other numerical schemes mentioned in this chapter as well. 
Only a small portion of incompressible flow problems have been 
addressed; advances are just now being made in the area of porous media 
flows.   

While BEM and meshless methods may be as accurate as 
FDM/FVM/FEM techniques, they can be much slower with regards to 
computational time to achieve convergence. This is due in part to some 
of the effort needed for numerical integration and subsequent use of a 
direct matrix solver. However, meshless methods do not need any 
preknowledge of their nodal arrangement, as in conventional numerical 
schemes. This makes the method particularly attractive for developing 
adaptive capabilities. Since much of a modeler’s efforts are generally 
spent on developing a good mesh that will lead to a converged solution, 
the overall time for obtaining problem solutions using meshless methods 
can be significantly less. 

Details regarding the development and use of meshless methods can 
be obtained by accessing website http://rbf-pde.uah.edu/. Additional 
information regarding FDM, FVM, and FEM algorithms and some of the 
meshless techniques can be obtained from the website developed by the 
authors. The site address is: http://www.ncacm.unlv.edu. 

 



 

 217

Chapter 9 

Turbulence Modeling 

Turbulent flow is a very difficult subject to master and much work is 
underway to fully understand the myriad intricacies and interactions. 
There is much that is yet to be discovered and formulated. In this 
chapter, we introduce the fundamental equations and relations associated 
with turbulence, including various forms of closure. The equations can 
be intimidating, but can be grasped with a little patience and 
perseverance. 

9.1 Brief History of Turbulence Formulation 

Understanding turbulent flow for problems has been of interest for over a 
century, dating back to Boussinesq (1877) when he introduced the idea 
of an eddy viscosity in addition to molecular viscosity, and to Reynolds 
(1895) who developed what is now called Reynolds time averaging. In 
1925, Prandtl introduced the idea of a mixing length for determining the 
eddy viscosity. Since then various ideas have been developed to achieve 
a closure to the momentum equations, that is, to determine ways to solve 
the Reynolds stress terms. In 1945 Prandtl theorized an eddy viscosity 
which is dependent on turbulent kinetic energy. In 1942 Kolmogorov 
developed the k-ω concept which provides the turbulent length scale, 
k1/2/ω where 1/ω is the turbulent time scale. This was a two-equation 
model, which is a complete model because it doesn’t require a priori 
knowledge of the turbulent flow to solve the equations. Wilcox (2006) 
presents a very good and concise history of the subject of turbulence. 

Development of supercomputing and advanced high-speed desktop 
workstations has greatly enhanced our ability to study the evolution of 
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the model equations for turbulence in whatever form they are theorized 
and prepared. There are numerous ways to model turbulence, from the 
simplest ideas of Prandtl mixing length models (algebraic equations), to 
one and two equation closure, two-equation with renormalization, and 
second-order closure for solving the Reynolds (time) averaged equations.  
With today’s even larger and faster computers, Direct Numerical 
Simulation (DNS) is possible, to a limited extent. A relative to DNS is 
Large eddy Simulation (LES).  

Some of the first work in second-order closure methods or stress 
transport methods was developed by Harlow in the late 60s (see Harlow 
and Hirt, 1969) and early 70s. Second-order methods introduce six 
additional equations, and new closure terms or models, often the 
dissipation rate or the specific dissipation rate, that add yet another 
equation to the mix. Because of these complexities, the models remain in 
little commercial use. 

Work using the DNS method by Rai and Moin (1991) used finite 
difference to solve duct flow. They were among the first researchers to 
compare finite difference based DNS to spectral methods. Hung et al. 
(1997) studied three-dimensional turbulent flow over a backward-facing 
step by DNS. Time advancing was performed using a semi-implicit 
method. The advancement scheme for the velocity components was a 
compact-storage third-order Runge–Kutta scheme. The convective terms 
were treated explicitly, whereas the viscous term was handled implicitly. 
The calculated span-wise averaged reattachment length showed quasi-
periodic behavior as observed in the experiments by Jovic and Driver 
(1994). 

Since the solution to the second-order closure equations are 
computationally very expensive, Large eddy Simulation (LES) is a better 
alternative. LES resolves the dynamics of the large-scale flow while 
modeling the effects of the small-scale fluctuations. The LES equations 
are developed by spatially averaging the governing equations where all 
but the smallest turbulent scales are solved. The small turbulent scales 
are modeled. Smagorinsky (1963) developed a Subgrid-Scale (SGS) 
model which was used in modeling general atmospheric circulation. The 
SGS model incorporates the familiar eddy viscosity formulation and in 
many formulations requires a tuned parameter for each flow. Others have 
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developed dynamic SGS models, where filtering techniques are used for 
the subgrid parameter as the flow develops (Wilcox, 2006). 

Koutmos and Mavridis (1997) formulated a hybrid time-dependent 
Navier–Stokes model that blended elements from both the LES 
methodology and the standard eddy-viscosity approach. They aimed at 
using this hybrid model to consistently analyze unsteady separated flows 
including periodic and quasi-periodic flows. A finite-volume scheme 
based on a staggered mesh was used. The pressure and velocity fields 
were coupled by the Semi-Implicit Method for Pressure-Linked 
Equations (SIMPLE) algorithm (Patankar, 1980). The model was tested 
by application to a range of unsteady separated flows such as flow over 
square cylinders and backward-facing steps. For the backward-facing 
step flows, this formulation improved on the results obtained by steady-
state standard k-ε closures. However, the two-equation k-ε closure 
scheme is known to perform poorly for flows with adverse pressure 
gradients and detached/reattachment of the flow. 

There are limitations associated with LES because of isotropic eddy- 
viscosity models. Turbulent flows of practical importance are inherently 
three-dimensional, unsteady, and often subjected to strong 
inhomogeneous effects that cannot be captured by isotropic models. 
Persson et al. (2002) have developed a homogenization-based LES 
model using a multiple-scales expansion technique and taking advantage 
of the scaling properties of the Navier–Stokes equations. From the 
homogenization-based LES model they obtained better agreement with 
DNS data than the ordinary LES model. However, their approach is 
mathematically intensive, and they have proposed further modifications 
to their model. 

Fureby (1999), Fuerby and Grinstein (1999), and Grinstein and 
Fuerby (2002) used an alternative approach to the large eddy simulation, 
called Monotone Integrated LES (MILES). In conventional large eddy 
simulation (LES) models, the filtered Navier–Stokes equations (NSE) are 
supplemented by subgrid-scale (SGS) models that emulate the energy 
transfer from large scales to the subgrid scales. In MILES, the NSE are 
solved by high-resolution monotone methods with embedded nonlinear 
filters providing implicit closure models. Governing equations were 
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solved by finite difference technique. Time differencing was done using 
the Crank–Nicholson scheme. When simulations were carried out 
corresponding to the experiments of Pitz and Daily (1981), the LES 
models were found reasonably accurate and well behaved. 

Kolmogorov’s k-ω wasn’t explored in great depth until the 
development of moderately quick and larger computers, that is, for 
computers at that time.  Some of the first work was performed by Wilcox 
and his collaborators starting around 1972 continuing through today 
(Wilcox, 2006). Work by Ilegbusi (1983) revised the model to correct the 
near-wall treatment of the flow.  Ilinca, Hetu, and Pelletier performed the 
development of natural logarithmic based k-ω method with a FEM 
formulation employing h-adaptive grid and grid remeshing (Ilinca et al., 
1998). They have made numerous comparisons to the k-ε closure system, 
using the same formulations. The benefits of the logarithmic based 
system are related to maintaining the positivity of the eddy dissipation 
without the need for cut-off or clipping limiters which can be 
problematic. 

We introduce the formulation of a two-equation closure method in 
this chapter as this type of closure is considered complete, i.e., no 
advance knowledge other than initial and boundary conditions are 
needed. We first discuss the k-ε approach, primarily because of its 
popularity and wide use in many commercial CFD packages. We then 
introduce the k-ω model and its implementation. There is much in the 
literature regarding mixing length (which also includes algebraic or zero-
equation) methods, along with one-equation models of turbulence. These 
are rather dated closure schemes, and are not popular today. Such 
schemes are considered to be incomplete, i.e., you must know something 
about the flow other than initial and boundary conditions. Extended 
closure schemes include stress-transport, or second-order closure, 
techniques, which represent the individual Reynolds stress terms, but 
these are more complicated and difficult to resolve.  

The solution method for the Reynolds averaged equations is 
performed by the fractional step method (Carrington and Pepper, 2002). 
The advantage of the fractional step scheme is found in the projection of 
the velocity field onto the solenoid space, rendering it a mass-consistent 
method without the need for iteration on the velocity-pressure coupling 
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that is found with the SIMPLE-type methods. Also, the method employs 
an upwinding scheme (Kelly et al., 1980). These schemes are easy to 
implement, as discussed in Chapter 7.   

In this chapter, we explain in detail a fractional-step method used to 
solve the equations of momentum, heat and mass transfer. The method is 
quite capable of providing engineers and environmental scientists, robust 
and reasonable solutions in the areas of combustion, solidification, heat 
exchanger design and environmental flow in the regimes of laminar, 
transitional, and turbulent. The k-ω method enhances the capabilities for 
modeling flow through the regimes of transition, low Reynolds number 
(Re) flows, to high-speed incompressible flows.  

The basic postulates about flow in an Eulerian reference frame are 
repeated from Chapter 2 with the addition of Reynolds or time-averaged 
relations to obtain the two-equation closure model. Since we are 
interested in coupled energy and momentum transport, we formulate the 
basic equations, and present the turbulent transport equation for energy.  
Following the development of the equations, we formulate the basics of a 
numerical approach in the context of the fractional step method. 

Among the best numerical models for simulating turbulence are 
FLUENT (FVM-based), STAR-CD (FVM-based), CFX (FVM-based), 
ANSWER (FVM-based), and COMSOL (FEM-based). These FVM 
codes are essentially CFD models; COMSOL is a very versatile FEM 
code that permits a great deal of flexibility in solving a wide range of 
problems.  

9.2  Physical Model  

Fluids are governed by mass conservation (continuity) and the 
instantaneous conservation of momentum and energy equations.  By 
averaging these equations in time (Reynolds time averaging) the 
instantaneous equations result in additional terms, the Reynolds stresses 
or turbulent stresses.   

Invoking mass conservation for incompressible flows,  

 0,u v
x y

∂ ∂
∂ ∂

+ =  (9.1) 
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the final form (in vector notation) for the conservation of instantaneous 
momentum is 

 ( ) ,∂
+ ∇ = − ∇ + ∇ ⋅ ∇

∂
iV V V F p V

t
ρ ρ ρ μ  (9.2) 

where ( ) /∇ = ∂ ∂i j i jV V V V x . Using the material derivative notation, the 

conservation of instantaneous momentum in an incompressible fluid is 

 .= − ∇ + ∇ ⋅ ∇
DV F p V
Dt

ρ ρ μ  (9.3) 

9.2.1  Turbulent flow 

Turbulent flows are characterized by eddies with a wide range of length 
and time scales. The largest eddies are typically comparable in size to the 
characteristic length of the mean flow. The smallest scales are 
responsible for the dissipation of turbulence kinetic energy. Creating 
time average Navier–Stokes equations by Reynolds averaging (Tennekes 
and Lumley, 1972) one obtains 

 
( ) 0i

i

u
t x

ρρ ∂∂
+ =

∂ ∂
, (9.4) 

 
( ) ( )i j ij iji

j j j j j

u u su p
t x x x x x

ρ τρ
μ

∂ ⎛ ⎞∂ ∂∂ ∂ ∂
+ = − −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

. (9.5) 

In familiar incompressible form the momentum equation is 

 ( )' 'i i
j ij i j

j i j

u u Pu s u u
t x x x

ρ ρ μ ρ∂ ∂ ∂ ∂
+ = − + −

∂ ∂ ∂ ∂
, (9.6) 

where ijs  is the strain rate tensor due to molecular viscosity defined as 

 ji
ij

j i

uus
x x

⎛ ⎞∂∂
≡ +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

, (9.7) 

and ijτ  is the Reynolds stress tensor given by 
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_____

ij i ju uτ ρ≡ . (9.8) 

The momentum equation has six new unknowns related to the 
Reynolds stress tensor, for a total of ten unknowns in three-dimensional 
flows. Transport equations for the Reynolds stress tensor are derived 
from a moment of the momentum equation for fluctuations. Modeling 
the equations directly is Reynolds stress modeling. The derivation is 
lengthy, and is well presented in many texts (Wilcox, 2006). These six 
unknowns in the Reynolds stress tensor create a closure problem which 
can be modeled with higher moments, e.g., a two-equation model with 
closure coefficients. The system is not fully closed without some form of 
analysis to determine the closure coefficients. 

Simplifying the equation, that is, creating a model that is less 
complicated and gives an estimate to the Reynolds stress can be 
performed using the average velocity terms. For time averaging, the 
Reynolds stress tensor can be modeled with higher moments, e.g., a two-
equation model and closure coefficients. The burden in computational 
effort is reduced by considering turbulent kinetic energy, the trace of the 
Reynolds stress equation, / 2= ij ijk τ δ , i.e., ' ' / 2= i ik u u . The Reynolds 
stresses can be written in the form 

 
2 ,
3

⎛ ⎞∂∂
= + −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

ji
ij t ij

j i

uu k
x x

τ μ δ  (9.9) 

by introducing a turbulent viscosity, 2 /t uc kμ ρ ε=  where ε is the 
turbulent dissipation rate. The equation is meticulously derived by time 
averaging the velocity moment of the Navier–Stokes equations and 
subtracting out the kinetic energy of the mean flow, leaving only the 
kinetic energy of the turbulent flow. 

Turbulent kinetic energy is transported having generation and 
dissipation terms. Turbulent kinetic energy, when using the Boussinesq 
assumption  

 2 2 ,3= −ij ij ijK Sτ δ μ  (9.10) 

(see Hoffman and Chiang, 2000, Wilcox, 2006) is given by  
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 2
2( ) ,∂

+ ⋅∇ = ∇ + − ∇ −
∂ t k k
k u k c k P D
t

ρ ρ μ ε  (9.11) 

where we now assume all velocities are averaged, except where noted, 
and where 2c is a closure coefficient. Turbulent production, kP , is given 
by, 

 
2 2 ,
3 3

ji i k i
k ij t ij ij

j j i k j

uu u u uP k
x x x x x

⎡ ⎤⎛ ⎞∂∂ ∂ ∂ ∂
= = + − −⎢ ⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠⎣ ⎦

τ μ δ δ ρ  (9.12) 

where the turbulent diffusion, kD , is 

 ,t
k

k j

kD
x

ρμ
σ

∂
= −

∂
 (9.13) 

and turbulent dissipation rate, ε, (noting the averaged fluctuating 
components) is 

 

_________

' '

.i i

j j

u u
x x

ε μ ∂ ∂
=

∂ ∂
 (9.14) 

The unit for turbulent kinetic energy is length2/time2, and ε has units of 
length2/time3. 

9.2.2 Two-equation turbulence closure models 

The two most popular methods that employ two-equation closure are the 
k-ε and k-ω techniques. These two models fall under the general class of 
closure schemes known as Reynolds Averaged Navier–Stokes, or RANS, 
models. Launder and Spalding (1972) did the most extensive work on 
formulating the k-ε approach, and until the late 1990s this method was 
the most widely used two-equation model.  

The k-ω model, independently formulated by Saffman (1970), but 
originally developed by Kolmogorov (1942) and then essentially 
forgotten until the recent computer age, enjoys advantages over the k-ε 
model in predicting effects of adverse pressure gradients. 
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Two-equation models provide for computation of k as well as the 
turbulence length scale, i.e., they are complete since no prior knowledge 
of the turbulence structure is needed. An extensive discussion of 
turbulence and the application of various closure schemes, with 
particular emphasis on k-ω, is given by Wilcox (2006). This is a 
variation on the two-equation models.     

9.2.2.1 Two-equation k-ε  

The basic k-ε model most commonly used today was created by Launder 
and Sharma (1974) as an outgrowth of the earlier work by Jones and 
Launder (1972). The basic idea is to develop an exact equation for ε 
including suitable approximations for the embedded coefficients, and to 
solve the equation along with a similar equation for k. The equations are 
typically expressed as follows: 

 ( ) ( ) ( ) ,i j ji i
t

j i j i j

u u uu u p
t x x x x x

⎛ ⎞∂ ⎛ ⎞∂∂ ∂∂ ∂
+ = + + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

ρρ
μ μ  (9.15) 

where  

 2 / .=t C kμμ ε  (9.16) 

Turbulent kinetic energy and dissipation rate are written as 
 

          ( )/ ,j t k k
j j j

k k ku P
t x x x

⎡ ⎤∂ ∂ ∂ ∂
+ = + + −⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
ρ ρ μ μ σ ε           (9.17) 

( )
2

1 2/ ,j T k
j j j

u C P C
t x x x k k

⎡ ⎤∂ ∂ ∂ ∂
+ = + + −⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
ε ε ε

ε ε ε ε ερ ρ μ μ σ   (9.18) 

where the closure coefficients and added relations are defined as 
 1 21.44, 1.92, 0.09, 1.0, 1.3.kC C Cε ε μ ε= = = σ = σ =  

More recent versions of the k-ε model involve the use of 
renormalization group theory, or RNG. The eddy viscosity, k and ε are 
still used as defined above, but the other coefficients are modified (see 
Yakhot et al., 1992).  
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The k-ε model has been applied to many types of flow problems. Its 
main drawback is its inability to respond to adverse pressure gradients 
when dealing with separated flows. The method also requires corrections 
to reproduce the law of the wall for incompressible flows over flat 
surfaces. Fine-tuning is generally required for an application. This 
scheme is closely coupled with the need to employ law-of-the-wall and 
wall blending functions.     

9.2.2.2 Two-equation k-w  

The two-equation mode is incorporated into an effective viscosity 
formulation for the Navier–Stokes equation, stated as 
 

 ( ) ( ) ( ) ,i j ji i
t

j i j i j

u u uu u p
t x x x x x

⎛ ⎞∂ ⎛ ⎞∂∂ ∂∂ ∂
+ = + + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

ρρ
μ μ  (9.19) 

where  
 / .=t kμ ρ ω  (9.20) 

Specific dissipation rates are related by 

 * ,= kε β ω  (9.21) 

and the mixing length is 

 1/2 / .=l k ϖ  (9.22) 
Turbulent kinetic energy (as above with the addition of the closure 
coefficient for k), and dissipation rate, ω, are, respectively, 

 ( )* * ,j t k
j j j

k k ku P k
t x x x

⎡ ⎤∂ ∂ ∂ ∂
+ = + + −⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
ρ ρ μ σ μ β ρ ω  (9.23) 

 ( ) 2 ,j k
j j j

ku P
t x x x k

⎡ ⎤∂ ∂ ∂ ∂
+ = + + −⎢ ⎥

∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
τ

ω ω ωρ ρ μ σ μ α β ρ ω  (9.24) 

where the closure coefficients are defined as 
* *5 / 9, 3 / 40, 0.09, 0.5, 0.5 and / .tC k= = = = = = =μα β β σ σ μ ρ ω  
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The specific dissipation rate is a measure of the root mean square of 
the fluctuating vorticity with units of inverse time, 1/time. This is a 
measure of the enstrophy (or RMS fluctuating vorticity) in the system. 
The advantages of this formulation become more apparent in wall-
bounded flows because the equation can be integrated to the wall when 
sufficient discretization of the boundary layer is employed (Carrington 
and Pepper, 2002). 

The k-ω model is more accurate than the k-ε approach in dealing with 
two-dimensional boundary layers with adverse and favorable pressure 
gradients. The method is also effective when dealing with free shear 
flows and separated flows. However, both two-equation models can be 
inaccurate when predicting turbulent flows over curved surfaces and may 
not predict secondary motions in non-circular duct flows.  

9.2.3 Large eddy Simulation (LES) 

Large eddy Simulation, or LES, involves the computation of large eddies 
with the smallest, or subgrid-scale eddies (SGS) modeled. The largest 
eddies, which include the Reynolds stress terms, are affected by the 
boundary conditions and must be calculated. The less significant small-
scale turbulence is more suitable for modeling. A major difficulty for 
LES is when the flow is near a solid surface (since the eddies are small), 
typically requiring a much finer grid and smaller time steps than the two-
equation models.  

An important part of LES modeling is the use of filters. A filter 
function is generally employed to eliminate scales smaller than the mesh 
size. There are various forms of this filter function, e.g., volume-average 
box filter, Fourier cutoff filter, and Gaussian filters have been popular 
(see Ferziger, 1977). The filter essentially introduces a scale (usually 
denoted as Δ where Δ = (ΔxΔyΔz)1/3) that represents the smallest 
turbulence scale that is permitted by the filter. The filter serves to 
separate the resolvable scales from the subgrid scales.  

For incompressible flow, the equation for fluid motion can be 
expressed as 
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( ) ( ) 1 ,i ji i

ij
j i j j

u uu uP
t x x x x

∂ ⎛ ⎞∂ ∂∂ ∂
+ = − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

ν τ
ρ

 (9.25) 

where  

 

1
3

1
3

,

ij ij kk ij

kk ij

ij ij ij

Q Q

P p Q

Q R C

⎛ ⎞τ = − − δ⎜ ⎟
⎝ ⎠

= + ρ δ

= +

 (9.26) 

with Rij and Cij being the SGS Reynolds stress and cross-term stress 
terms, respectively (see Wilcox, 2006). The problem is apparent in that 
one must create a model for the SGS stresses as denoted by the tensor 
Qij. Ferziger (1977) states that the subgrid scales account for a significant 
amount of the energy spectrum. 

Models have been formulated that vary from a simple gradient–
diffusion scheme (see Smagorinsky, 1963) to a second-order closure 
model (Deardorff, 1973). More recent efforts are based on a dynamic 
SGS model (Carati and Eijnden, 1997). Our efforts in modeling 
turbulence using LES have centered more on the Smagorinsky (1963) 
approach where 

 
2

12 ,
2

( ) ,

ji
ij T ij ij

j i

T S ij ij

uuS S
x x

C S S

⎛ ⎞∂∂
τ = ν = +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

ν = Δ

 (9.27) 

with Cs being the Smagorinsky coefficient (0.10 < Cs < 0.24).  
As one can see, it becomes apparent that the SGS model needs to 

incorporate more and more of the Reynolds stresses as the flow 
approaches a wall. Research efforts continue to improve and modify the 
LES approach to modeling turbulence.  
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9.2.4 Direct Numerical Simulation (DNS) 

Since turbulent flows are transient, three-dimensional processes, one can 
essentially solve the full 3-D Navier–Stokes equations to simulate all 
aspects of flow. In other words, the N–S equations are complete and 
permit one to exactly calculate laminar or turbulent flows. Solving these 
governing equations is referred to as Direct Numerical Simulation, or 
DNS. However, implementing a DNS approach is exceedingly time 
consuming and essentially impractical for applied problems, especially 
when dealing with indoor pollutant dispersion. A massive number of 
node points must be employed to accurately capture the detailed 
microstructure and eddy cascade inherent in turbulence. On the other 
hand, DNS solutions can provide insight and understanding of turbulence 
structure when viewed as a means to investigate fundamental physical 
processes.  

The principal issue involving DNS modeling is determining the 
number of node points and time steps needed to conduct a valid 
simulation. The grid must be fine enough to resolve eddies at the 
Kolmogorov length scale. Likewise, the time step must be of the same 
order as the Kolmogorov time scale, t = (ν/ε)1/2. For example, assume 
that you wish to solve for flow in a device with a length scale of 1 m. If 
the flow is in a fully developed turbulent condition with Reτ = 500, then a 
rule of thumb is that the largest eddies are about 1/10 the characteristic 
scale length, or 0.1 m. The characteristic length scale to model the 
smallest dissipating eddies is about 1 mm. Hence, grid spacings of 
around 1 mm should be used, i.e., O(109) grid points/m3. The total 
computational effort is proportional to Reτ5. It is easy to see that a 
magnitude change in the order of Reτ would require an increase of five 
orders of magnitude in the computational process. A simple formula 
(Wilcox, 2006) is 

9/4
DNS

u LN (3Re ) , Re τ
τ τ= =

ν
, 



Modeling Indoor Air Pollution 
 

 
 

230 

where uτ is the shear velocity adjacent to a surface. Such requirements 
can easily exhaust even the largest of present-day supercomputers. While 
the development of massively parallel computers over the past few years 
has greatly improved execution times, the problem of storage is still 
troublesome.  

Typically high order numerical schemes are employed to achieve 
desired accuracy, e.g., spectral methods (Fourier series in each spatial 
direction), in order to limit numerical dispersion. The more conventional 
techniques using FDM, FVM, or FEM are not appropriate since they are 
typically low order schemes. One must ensure that grid convergence is 
also achieved. In addition, one must be careful to avoid rolloff (where the 
energy spectrum rapidly decays near the Kolmogorov length scale) and 
aliasing, which occurs as a result of nonlinear interactions among the 
resolved wavenumbers producing spurious waves. While spectral 
methods are accurate when computing derivatives at the smallest scales, 
they do not work well with unstructured or nonuniform grids.   

9.2.5 Turbulent transport of energy or enthalpy  

Generally, it is of interest to solve energy transport and its influence on 
the momentum equation, since often a tight coupling between fluid 
momentum and energy exist via changes in density and effects on 
pressure. The first law of thermodynamics as applied to a small volume 
allows for a straight forward development of a governing equation. By 
balancing the energy generated in the volume with the sum of energy 
fluxes entering and leaving the volume must equal the increase 
(decrease) of energy in the volume. Once the time rate of change of 
energy in the system is determined, it can be averaged in time to provide 
both mean and fluctuating components, just as was done for the 
momentum equation, yielding the turbulent enthalpy transport equation.  
This energy balance, or conservation of energy of a system, is often 
written as                                                      

 c d idW dE dE dE ,+ + =  (9.28) 
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where dW is the rate of work done on the system, rate cdE is energy 
which is advected through the boundaries of the fluid control volume, 

ddE is the rate that energy is diffused into the volume either my 
conduction of molecular diffusion, and idE is the time rate of increase 
(decrease) of the change of energy in the volume. 

9.2.6 Derivation of enthalpy transport 

Using the small control volume shown in Fig. 9.1 we can easily develop 
a transport equation for energy and subsequently the equation for 
enthalpy transport. Figure 9.1 shows only the contributions to rate of 
change in energy for the control volume in the x direction by internal and 
kinetic energy, body, pressure, heat flux, advection, and stress forces.  
We have neglected heat sources, such as chemical energy or radiation 
heat fluxes, or radiation energy density. 
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Fig. 9.1 Conservation of energy – x-component in 2-D Cartesian coordinate system. 

Again, the rate of change of total energy in time is equal to the sum of 
the rate of kinetic and internal energy entering and leaving the control 
volume (change in energy flux), the rate of work done to the volume, the 
amount of heat transported by diffusion (conduction), and the amount of 
heat generation in an incremental volume of fluid. From Fig. 9.1, the net 
rate of internal energy flowing into the volume is 

 
e eu v

x y
ρ ρ⎛ ⎞∂ ∂

+⎜ ⎟∂ ∂⎝ ⎠
, (9.29) 

with kinetic energy (u2 + v2)/2 ≡ V2/2, the total change in energy flux in 
the volume is 
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 (9.30) 

Rate of work done on the fluid volume includes action by pressure, 
body and stress forces. Rate of work done by pressure forces acting on a 
small volume is given as 

 ( ) ( ) p p u vpu pv u v p p
x y x y x y

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
− + = − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (9.31) 

Rate of stress work acting normal to the volume’s surface is 

 ( )u u vi ij ij xx yyx x y
σ δ σ σ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− = − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

, (9.32) 

and that acting tangentially is 

 .∂ ∂⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
u vxy yxy x
σ σ  (9.33) 

The rate of work by stress is incorporated into the dissipation term 

 ,
∂ ∂ ∂ ∂ ∂

= = + + +
∂ ∂ ∂ ∂ ∂

u u u v vi
ij xx xy yx yyx x y x yj

φ σ σ σ σ σ   (9.34) 

which becomes, for a Newtonian fluid, 
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 (9.35) 
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The rate of heat flux per unit area by diffusion into the incremental 
volume is 

 .yx qq
x y

∂⎛ ⎞∂
− +⎜ ⎟∂ ∂⎝ ⎠

 (9.36) 

Rate of work done by gravitational body force is 
                                 .= +i x yf Vdxdy ug vgρ ρ ρ                             (9.37) 

Neglecting radiation energy density, and the divergence of radiation flux, 
and adding the above terms, the transport of total energy is 

 

2 2

2 2

,

t

x y

V Vu vd E e eu v
dt x y x y

T T u vp
x x y y x y

p pu v ug vg
x y

∂ ∂⎛ ⎞∂ ∂
= − + − −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + − +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞∂ ∂

− + + + +⎜ ⎟∂ ∂⎝ ⎠

ρ ρρ ρ ρ

κ κ

φ ρ ρ

 (9.38) 

where we have invoked Fourier’s Law for heat flux, /= ∂ ∂xq T xκ  and 
κ the conductance. 

After performing the chain rule on the second term of the right-hand 
side of Eq. 9.38 and using mass conservation the total energy equation 
becomes 
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 (9.39) 

With enthalpy defined as 

 ,= +
ph e
ρ

 (9.40) 

we see that 
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From mass consistency,  

i

i

vD
Dt x

ρ ρ ∂
= −

∂
. 

The enthalpy equation is then 
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Dh T T pk k ug vg
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From Maxwell’s relations (Callen, 1985), we have 
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⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞∂ ∂

+ + +⎜ ⎟∂ ∂⎝ ⎠

β
ρ

ρ

φ
ρ ρ

 (9.44) 

where β  is the coefficient of thermal expansion. Enthalpy transport is 
further simplified using dyadic notation 

(1 ) .p p j j
j j j i

T T P P Tc c u T u
t x t x x x

⎡ ⎤ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ + − + =⎢ ⎥ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎝ ⎠⎣ ⎦

ρ ρ β κ (9.45) 

Assuming an ideal gas law ( ph c Tρ= ) and incompressible flow, the 
conservation of energy becomes under the first law 

 .p p j
j j i

T T Tc c u
t x x x

ρ ρ κ
⎛ ⎞∂ ∂ ∂ ∂

+ = ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.46) 
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9.2.7 Turbulent energy transport 

Equation (9.46) is the instantaneous change in thermal energy for an 
incompressible fluid.  After separating the instantaneous into its mean 
and fluctuating components, just as was done to derive the momentum 
equation and averaging, thermal transport is given as, 

 
' '

.p p j
j j i i

T T T T uc c u
t x x x x

ρ ρ κ
⎛ ⎞∂ ∂ ∂ ∂ ∂

+ = −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.47) 

Representing the turbulent heat flux we introduce in the same fashion as 
with turbulent inertia term, 

 
' '

Pr
j t

H
j j t j

T u T T
x x x

με
∂ ∂ ∂

= =
∂ ∂ ∂

, (9.48) 

where Hε  is the turbulent eddy viscosity for enthalpy transport, and is 
shown as a scale of the fluid’s eddy viscosity, i.e., a turbulent Prandtl 
number, Prt (Bejan, 1984). Now the turbulent heat transport becomes 

 
Pr

t
p p j

j j t i

T T Tc c u
t x x x

μρ ρ κ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂

+ = +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
, (9.49) 

where we have discarded the average notation bar, that is, assumed 
average values for temperature and velocity. The eddy viscosity scaling 
for general engineering solutions is equal to one for fluids with moderate 
to high Prandtl numbers, Pr, and therefore, H tε μ= . Actually, Prt  varies 
as a function of the distance away from a wall in the boundary layer but 
averages out to one, explaining why the value of Pr 1t ≈  produces 
reasonably accurate engineering results. For liquid metals however, 
fluids having Pr 1<< ; correlations have been developed for various 
liquid metals (Thomas, 1999). In terms of internal energy alone the 
energy equation becomes 
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1 1 .

t t

t t

de e eu v
dt x y

T T
x x y y

p pu v
x y

⎛ ⎞∂ ∂
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− + +⎜ ⎟∂ ∂⎝ ⎠

μ μκ κ
ρ

φ
ρ ρ

 (9.50) 

9.2.8 Turbulent transport species 

If the concentration of a species is not influencing the momentum 
equations, it is possible to advect the species with the mean fluid flow. 
Under these situations, typically found in pollution transport, a scalar 
equation is appropriate and has the same form as the thermal energy 
transport Eq. 9.49, given by 

 s s s
j s

j j t i

C C Cu
t x x Sc x

τμρ ρ κ
⎛ ⎞⎛ ⎞∂ ∂ ∂∂

+ = +⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
. (9.51) 

9.2.9 Coupled fluid-thermal flow 

Most fluids experience expansion when absorbing heat. This expansion 
changes the fluid's density. The difference in density between the warmer 
and cooler fluid, a fluid that is differentially heated, produces a buoyant 
body force within the fluid. This is a body force represented 
by ( ) /−

io xgρ ρ ρ , where oρ is the reference density of the fluid (the 
reservoir’s hydrostatic density). In this case the momentum is given by 

 

( ) ( )

( ) ( ) .
i

i ji

j

ji
t o x

i j i i

u uu
t x

uu p g
x x x x

∂∂
+ =

∂ ∂

⎛ ⎞⎛ ⎞∂∂∂ ∂
+ + − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

ρρ

μ μ ρ ρ

 (9.52) 
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Determining the density is by equation of state (EOS), which for an ideal 
gas is 
                                              / ,= HP RTρ                                   (9.53) 

where HP is the hydrostatic pressure and /− =
io x H ig dP dxρ  is the 

gradient in hydrostatic pressure at some point. Then ( )
io xgρ ρ− is the 

total difference in the pressure gradient for the ix component caused by 
thermal expansion in the direction of gravitational force. The mechanical 
pressure gradient / 0∂ ∂ =ip x for natural convection can be quite large 
for forced convective flow and is therefore still present in Eq. 9.52. 

Since we are assuming incompressible flow, we can make use of the 
thermal expansion coefficient for the fluid, 

 
1 1

P P

V
V T T

ρβ
ρ

∂ ∂
= = −

∂ ∂
. (9.54) 

Solving for density in terms of temperature, we get (by the mean value 
theorem of calculus) 

 ( )
___

o o

T

o o
T

d dT T T
ρ

ρ

ρ ρ ρ ρβ ρβ= − = − = − −∫ ∫ , (9.55) 

where 
___

ρβ ρβ≈  for moderate differences in temperature. Using this 
result, Eq. 9.52 becomes 

 

( ) ( )

( ) ( ).
i

i ji

j

ji
t x o

i j i i

u uu
t x

uu p g T T
x x x x

∂∂
+ =

∂ ∂

⎛ ⎞⎛ ⎞∂∂∂ ∂
+ + − + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

ρρ

μ μ β

 (9.56) 
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9.3 Numerical Modeling  

Numerous methods exist for the solution of these nonlinear equations.  
The most popular numerical approach is the FVM, as seen in the number 
of commercial CFD codes now available. However, the FEM is 
becoming more popular, especially with regards to modeling turbulence. 
The absorption of unstructured meshing capabilities into the FVM 
commercial codes comes from the FEM. The merging of these two 
methods is evolving – over time, the blending may become rather 
transparent. The elegance and enhanced accuracy of the FEM make it the 
preferred choice of numerical schemes for the authors.  

A method for velocity, pressure and vorticity formulation employing 
Newton’s method to linearize the momentum equation (Bochev and 
Gunzburger, 1998), and using the least squares finite element method 
with a conjugate gradient technique, was demonstrated to work well 
(Jiang and Lin, 1993). However, without some form of projection in the 
finite element formulation, mixed methods are required, i.e., different 
approximations or finite dimensional spaces are necessary for the 
velocity (Lebesgue or L2) and pressure (Sobolev or H) to satisfy the Div-
Stability condition (Gunzburger, 1989) also known as the LBB 
conditions. With the use of a projection method, where the pressure is 
being estimated from the flow as in well-known SIMPLE, semi-implicit 
or self-adjoint projections (Chorin, 1968, Lohner, 1990), the LBB 
conditions are satisfied. 

A self-adjoint projection scheme as developed by various researchers 
including Gresho and Chan (1990), Lohner (1990), and Ramaswamy et 
al. (1992), also provides a solution for nonlinear problems. This semi-
implicit scheme ideally has an advantage over iterative methods that may 
not have good convergence rates, that is, when the method is not 
supplied with a reasonable first guess. 

The projection method for the solution of the Navier–Stokes 
equations is a self-adjoint system created by decomposing the 
momentum into gradient-driven or curl-free portions and divergence-free 
portions. A divergence-free velocity field is maintained by the projection 
of the predicted velocity onto the divergence-free space. An Euler–
Lagrangian variational seeks to minimize the functional (Gresho, 1985) 
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  [ ][ ]{ }( )2*1( , )
2

E C d
dt

λ λ
Ω

⎡ ⎤= − + Ω⎣ ⎦∫V V V V . (9.57) 

In the incompressible case, pressure is recovered from the divergence 
of the momentum equation using some initial or recently calculated 
velocity. The velocities are then updated from the pressure, which 
enforces continuity. This splitting method is discussed below as an 
Euler–Lagrange Variational projection into divergence-free space.                   

 
Fig. 9.2  Decomposition of vector. 

9.3.1 Projection algorithm 

The projection-step algorithm incorporated in this computer model is 
based on the method initially developed by Chorin (Fletcher, 1984).  
Using the Helmholtz–Hodge decomposition theorem which states that 
any vector field in domain, Ω, can be uniquely decomposed as 
 P,= + ∇V U                                (9.58) 

where U is the divergence-free velocity vector, i.e., 0∇ =Ui  in Ω, and 
0=U ni on the boundary Γ, i.e., parallel to the boundary. This portion of 

the decomposition is a projection onto a divergence-free field (Chorin 
and Manderson, 1993, Marchioro and Pulvirenti, 1994).   

The projection is shown is Fig. 9.2 for the velocity field,V. Notice the 
gradient portion has zero curl under the decomposition since the vector 
identity x 0P∇ ∇ = . The curl of a vector field that is a function of the 
gradient of a scalar is irrotational or curl free. 
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Under the projection we seek the proper P such that 
                                          ,∇ = +V UP                                     (9.59) 

taking the divergence of each side yields 

 
( )

( ) ( ) ( )

2P P∇ ∇ = ∇ =∇ + =

∇ + ∇ = ∇

V U

V U V

i i

i i i
. (9.60) 

The linear orthogonal projection operator L, applied to the 
incompressible Navier–Stokes vector field yields 

 ( )2( ) ,L P L
t

⎛ ⎞∂
+ ∇ = − ∇ + ∇⎜ ⎟∂⎝ ⎠

U U U Ui ρ μ  (9.61) 

and since L is a linear operator and ( ) 0L P∇ = as shown previously, 
pressure is removed from the equation set. The projection under L is 
given as 

 2( ) ,
t

∂
= − ∇ + ∇

∂
U U U Ui ρ μ  (9.62) 

where U is divergence-free, the averaged time velocity. During the time 
advancement of the averaged velocity field a projection onto the 
divergence-free space is performed, maintaining a divergence-free 
velocity field. This is accomplished with the proper choice of P, and 
splitting velocity into the divergence-free field, and the perturbed field or 
predictor.   

The fractional split is explained as follows: splitting the velocity into 
two averaged components, V* and V, the momentum equations under the 
linear orthogonal projection operator L described above become 

 
*

21 ,n n
n n nd t

ρ ρ μ+ −
+ •∇ = ∇

V V V V V  (9.63) 

where the velocity components of V  are either from the initial guess or 
from the previously calculated time step which is the divergence-free 
velocity attained through the proper choice of grad (P).    

Given the approximate velocity just advanced from the previous 
explicit marching, the goal is to find some velocity V  that satisfies 
continuity. We seek the projection of *V , a perturbed velocity, onto the 
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divergence-free space to complete the calculation of the velocities 
subject to incompressibility. Under the decomposition of the vector 
field *( )L V , we make the projection, 

 * where 0.dt P= + ∇ ∇ =V V Vi  (9.64) 

Taking the gradients of both sides, a Poisson equation for P  is obtained 
in the form 

  2 * / .P dt∇ = −∇ Vi  (9.65) 

In discretized finite element representation we have 

 *( ) / 0,− +∇ =V VM dt P  (9.66) 

where M is the mass matrix. Eqs. (9.65) and (9.66) are essentially the 
Euler–Lagrange equation  

 ( )* 0,− + =V VM C P
dt

 (9.67) 

where C is the gradient operator. The equation is subject to the constraint 
of continuity 

 0.TC =V  (9.68) 

The system is solved sequentially by creating a diagonal form of the 
mass matrix (a lumped matrix), multiplying by its inverse, and by taking 
the gradients of both sides and also enforcing continuity, that is, 
 

 1 *,− = VT TC M CP C  (9.69) 

 * 1 .−= −V V dt M C P  (9.70) 
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9.3.2 Finite volume approach 

By far the most popular approach in discretizing the governing equations 
of fluid motion, including turbulence, is the FVM. Most commercial 
CFD codes utilize the FVM approach. There are many books and 
references with regards to formalizing the computational method, along 
with free codes that can be downloaded from the web (this is evident 
when conducting a Google search on CFD and Finite Volume Method). 
We shall give a basic overview of the method here as it would apply to 
modeling turbulence. 

We begin with the general form of the transport equation 
(representing momentum, temperature, or species transport) 

 
( ) ( ) ( ) S ,

t φ
∂ ρφ

+ ∇ ρ φ = ∇ Γ∇φ +
∂

Vi i  (9.71) 

where φ = [u, v, w, T, C, k, ε], Г is the diffusion coefficient (or viscous 
term), and S is the source or sink term. This equation is integrated over 
the control volume (CV) and time, i.e., 

 
( )

( )

t t t t

CV t t CS

t t t t

t CS t CV

( ) ˆdV n ( )dA dt
t

n̂ ( )dA dt S dVdt,

+Δ +Δ

+Δ +Δ

φ

∂ ρφ⎛ ⎞ + ρ φ⎜ ⎟∂⎝ ⎠

= Γ∇φ +

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

Vi

i
 (9.72) 

where φ denotes the variables for velocity, temperature, species 
transport, turbulent kinetic energy, and turbulent energy dissipation (if 
using k-ε closure) and CS denotes the control surface (area). A staggered 
grid configuration is the most common meshing technique for the FVM. 
A fully implicit discretization of Eq. 9.72 using a finite volume approach 
produces the following relation (Versteeg and Malalasekera, 1995), 
where a hybrid differencing scheme is employed to implement upstream 
weighting (to insure stability and minimize dispersion errors associated 
with advection)  

 P P W W E E S S N N
0 0

B B T T P P u

a a a a a

a a a S ,

φ = φ + φ + φ + φ +

φ + φ + φ +
 (9.73) 

where  
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 0
P W E S N B T P Pa a a a a a a a F S= + + + + + + + Δ − , 

with 

 
0

0 P
P u P P

Va , S V S S
t

ρ Δ
= Δ = + φ

Δ
, 

where S is the average source term obtained from linear approximation 
(another popular method is to integrate this term using Simpson’s rule). 
The coefficients are defined as 

 

w e
W w w E e e
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b t
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e w n s t b
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The expressions for F and D are given as 
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The control volume is illustrated in Fig. 9.3 below. 
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Fig. 9.3 Three-dimensional control volume. 

 
The nodes are labeled N, S, E, W, T, B and stand for north, south, east, 
west, top and bottom; the faces of the control volume are identified by 
the lower-case letters.  

Further modifications to the technique include modifying the 
advection terms using a quadratic upwinding, known as QUICK 
(Leonard, 1979), and Total Variation Diminishing, or TVD (Osher, 
1984), schemes to reduce numerical oscillations. The general procedure 
is to solve the primitive equations of fluid motion using the SIMPLE 
algorithm (Patankar and Spalding, 1972), which stands for Semi-Implicit 
Method for Pressure-Linked Equations (essentially a guess and correct 
technique for calculating pressure), and then solve the remaining set of 
equations sequentially. Other variations of the SIMPLE procedure 
include SIMPLER (Patankar, 1980) and SIMPLEC (Van Doormal et al., 
1986). Another popular procedure employs a splitting operator technique 
known as PISO (Issa, 1986).  

9.3.3 Finite element approach 

The weak statement for the projection, or Euler-Lagrange variational, is 

  { } [ ] { } { }*

1

/ ,
n

j ji
k l i i

lj i j

N NNN N P d d dt
x x x=Ω Ω

⎡ ⎤ ⎡ ⎤⎧ ⎫
Ω = Ω⎢ ⎥ ⎢ ⎥⎨ ⎬

⎢ ⎥ ⎢ ⎥⎩ ⎭⎣ ⎦ ⎣ ⎦
∑∫ ∫ V

∂ ∂∂
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 (9.74) 
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where N denotes the shape (or basis) functions in the FEM and the 
subscripts refer to coordinate directions (or rows and columns when 
performing FEM assembly); the summation creates the diagonalized 
mass matrix. Solving for averaged V from the weighted residual 
statement 

{ } { } { } [ ] { }
1

*

1

,
e

n
i

i i k l j i
l

Ndt N N d N P d
x

−

= Ω

⎡ ⎤⎧ ⎫∂⎡ ⎤ ⎡ ⎤= − Ω Ω⎢ ⎥⎨ ⎬⎢ ⎥ ⎣ ⎦∂⎣ ⎦ ⎩ ⎭⎢ ⎥⎣ ⎦
∑ ∫V V (9.75) 

produces the divergence-free velocity. 
A time-explicit advancement of velocity is made using the weakened 

momentum equations and an assumed initial pressure at time n = 0. The 
projection onto a divergent free field is made to ensure mass continuity.  
Pressure can be determined if desired. The whole process is repeated, 
i.e., marched forward in time. Once the inverse matrix is established for 
the solution of the pressure, the most time-consuming part of the process 
is the solution of the Euler–Lagrange equation enforcing mass 
consistency.   

9.3.3.1 Weak forms of the governing equations 

To apply the finite element method to the solution of the governing 
equations, the weak statements of the equations must be established and 
then coded. The energy and mass transport equations are included below 
in the development. These will be needed to solve convective and species 
transport problems.  

The Method of Weighted Residuals is applied to the weak statements 
resulting in the following representation of the governing equations. The 
dependent variables are replaced with their trial functions, that is, 

 { }
1

( ) ( ) ,
=

⎡ ⎤= = ⎣ ⎦∑
N

n
i n i j i

i
Z x z t N Zφ  (9.76) 

where iZ  are the dependent variables, jN⎡ ⎤⎣ ⎦ is the basis (shape) function 

notation for the element [ ] is a row vector (row matrix), the transpose 

of a column vector { } . Other terms in the following weak statements 
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include the integral over the domain or element d
Ω

Ω∫  and over the 

boundary surface d
Γ

Γ∫ .  

The specifics of evaluating the boundary term is presented after 
combining the following into matrix equations, where the boundary 
terms become the load vector in the matrix statement.  Substituting the 
dependent variable trail functions into governing equations, or model 
equations, and second order terms as described above, produces the 
following set of integrated ordinary differential equations. 
 
Weighted residual statement of velocity under decomposition 
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 (9.77) 

 
where f(xi) is the body force per unit mass, typically supplied by gravity. 
As mentioned previously, for slightly compressible fluids, i.e., those 
subject to the Boussinesq approximation for density change as a function 
of temperature, this body force is the difference in gravity forces and 
buoyant forces, (ρo - ρ)gx. 
 
Weighted residual statement of thermal energy 
The thermal energy equation can be written in the form  
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 (9.78) 

 
Weighted residual statement of turbulent kinetic energy 
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Turbulence Modeling 
 

 
 

249 

 { }
{ }

{ } { }

{ }

{ }

2
3

2
3

i

j i
i i

i j
j t

kk k ij
k

ij j i

N Nu u
x x

N
NP du
x

N k

∂ ∂
∂ ∂

μ
∂ δ
∂

δ ρ

Ω

⎡ ⎤⎛ ⎞⎡ ⎤⎡ ⎤
+⎢ ⎥⎜ ⎟⎢ ⎥⎢ ⎥

⎢ ⎢ ⎥ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎡ ⎤⎣ ⎦⎢ ⎥⎜ ⎟
= Ω⎢ ⎥⎜ ⎟−⎜ ⎟⎢ ⎥⎝ ⎠

⎢ ⎥
⎢ ⎥⎡ ⎤− ⎣ ⎦⎢ ⎥⎣ ⎦

∫ . (9.80) 

 
Weighted residual statement of specific dissipation rate 
The specific dissipation rate equation can be expressed as  
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9.3.3.2  Matrix equations 

By integrating over each element and combining the contributions from 
each element to nodes in common to those elements, a matrix equation is 
formed that will be solved for these nodal values. It is important to note 
that when integrating over each element and summing, the contributions 
of the surface flux,

d

d
Γ

Γ∫  cancels everywhere except at the boundaries.   

This is an important distinction between the finite volume methods 
(FVM) and the classical finite element method. It also leads some to the 
idea that the FEM statements are not locally conservative. The fact is,   
an FEM is precisely conservative, where as FVM is not because of 
truncation error associated with evaluating the surface fluxes everywhere 
within the domain.   

The matrix equations for the explicit time advancement of 
momentum, heat and mass transport can be written as 

  [ ]{ } [ ]{ } { } [ ]{ } { }( ) v v

•

+ − + =M V A V V C P K V F , (9.83) 

 [ ]{ } [ ]{ } [ ]{ } { }( )T T TT T T
•

+ + =M A V K F , (9.84) 

 [ ]{ } [ ]{ } [ ]{ } { } { } { }*( ) k k kk k k β
•

+ + = + +M A V K P k w F , (9.85) 

 [ ]{ } [ ]{ } [ ]{ } { }{ } { }{ }2( ) kϖ ϖϖ ϖ ω α β
•

+ + = +kM A V K P w Fω . (9.86) 

The individual matrices for these equations are defined as 
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N N dρ
=Ω

= Ω∑∫M , (9.87) 

 { } [ ]
1

n

T p k l
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c N N dρ
=Ω

= Ω∑∫M , (9.88) 
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i k k
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NN N d
x
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9.3.3.3 Time advancement of the explicit/implicit matrix equations  

The initial guess of velocity is marched in time explicitly by 

 { } { } { } [ ]{ }
[ ]{ } [ ]{ }

1 1

( )
i

n
v v in n

i i n
i

t
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+ −
⎡ ⎤− −
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n
i

F K V
V V M

A V C P
. (9.98) 

This explicit marching also applies equally to the scalar quantities of 
temperature, turbulent kinetic energy, specific dissipation rate, and 
species transport.  Before marching these quantities forward in time, then 
the velocities need to be projected onto the divergence-free field. The 
velocities are updated from the components of P 

 1 * 1n dt P+ −= +V V M C . (9.99) 

The pressure is calculated from either the discretized Poisson 
equation or is extracted directly from the projection algorithm by 
dividing λ  with dt. This pressure is associated with the projection, the 
time-advanced divergent velocity. To calculate the pressure experienced 
in the momentum equations, the gradient is taken of the divergent free 
Navier–Stokes equations, resulting in the Poisson equation. For a better 
estimate of the pseudo-velocity this “dynamic” pressure can be supplied 
into the time advancement as a gradient.  

Scalar transport for enthalpy (or internal energy) and species are 
performed as per the scalar transport equation 

 { } { } { } [ ]{ } [ ]{ }⎡ ⎤⎡ ⎤⎣ ⎦ ⎣ ⎦i

n+1 n -1 n n
i i v T i iT = T +Δt M F - K T - A(V) T . (9.100) 
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Time-step size should be a consideration on this explicit statement. 
The time scale for most engineering and environmental problems 
governed by the faster time scales of turbulence and momentum 
transport. 

Scalar transport for turbulent kinetic energy and species is performed 
as per equation the scalar transport equation 

 { } { }
{ } { } { }

[ ]{ } [ ]{ }

*
k k

k

K K
K K
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i i n n
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i

kF P wωM ω +Δt M
K A V

. (9.102) 

The explicit and implicit equations for velocity and pressure are 
always solved to the boundaries, based on the latest update to the 
boundary conditions, i.e., those boundaries which are changing with the 
flow. These are the turbulent closure model boundary conditions k, ω  
and tμ , which are discussed next along with boundaries for velocity, 
energy and pressure. When using the law of the wall, the k ϖ−  
equations are only solved to the point next to the solid boundary because 
the boundary for these points is determined by the wall function.  
Otherwise the model can be solved to all boundaries provided the grid 
resolution is sufficient enough to provide for accurate solution in the 
boundary layer. 

9.3.3.4 Mass lumping  

Mass lumping is the combining of the time-dependent terms in the mass 
matrix, row by row, into a diagonal matrix. This is done by simply 
adding the terms of each row.  Lumping creates a matrix that has as its 
inverse  

 1
L

L

1− ≡M
M

, (9.103) 

where 
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n

L i j
j 1

N N d
=Ω

= Ω∑∫M . (9.104)  

Mass lumping makes the time dependent equation an explicit 
equation (Pepper, 1987, Carrington and Pepper, 2002). Mass lumping 
speeds the transient solution significantly; multiplication by the inverted 
mass matrix is not required at each time step. The size of the time 
increment for explicit advancement is governed by stability requirements 
based on the Courant and Reynolds cell numbers.    

9.3.3.5 General numerical solution  

A Petrov–Galerkin (P–G) scheme is used to weight the advection terms, 
i.e., 

 i( N ),
V

= ⋅∇Ve
i i

h+W N 2
α

 (9.105) 

where he is the element size, α = coth β/2 - 2/β with β = he|V|/2Ke, and 
Ke is an effective diffusion in the direction of the local velocity vector 
(Kelly, et al., 1980, Heinrich and Yu, 1988, Brooks and Hughes, 1982, 
Hughes, 1987). This weighting introduces selective artificial diffusion 
into the numerical scheme that acts along the local streamline. This 
method is effective at removing numerical dispersion, leaving perhaps 
about 1 to 2% dispersive noise in the solution in very steep gradient 
areas. The dispersive error associated with modeling advection is 
precisely measured prior to the time advancement and is removed during 
integration. It is important to note, that this P–G method is also a good 
shock capturing scheme, even in the absence of molecular viscosity, i.e., 
in the absence of a Peclet number (Brueckner and Heinrich, 1991). 

For non-hydrostatic calculations, the pressure is obtained from 
solution of a Poisson equation based on the discrete momentum 
equations, i.e., 

 [ ( ) ].1T
V v[K]{p}  [M { }  [K ] [A( )] { }]C F

−= − + V V  (9.106) 

Sparse Cholesky and Krylov solvers can be used to solve the Poisson 
pressure equation. A time-dependent form of the continuity equation is 
used to correct the velocities. A forward-in-time Euler scheme is 
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employed to advance the discretized equations in time (Carrington and 
Pepper, 2002). 

9.4 Stability and Time-Dependent Solution 

The explicit Euler time-integration scheme has time-advancement 
restrictions that are met by the requirements on the Courant and 
Reynolds (Peclet) cell numbers. The determining equations for a 
forward-in-time, centered-in-space finite difference scheme (FTCS) can 
be found using a Von Neumann stability analysis (Fletcher, 1991). In 
fact, only the stability of linear equations can be analyzed with this type 
of analysis. Linearizing a nonlinear equation can be performed and the 
stability analyzed although it is applicable locally only (Hoffman and 
Chiang, 1993). The stability analysis produces guidelines to constrain the 
time increments.    

A von Neumann stability analysis is based on Fourier mode analysis.  
For example, velocity can be expressed in its Fourier modes as 

 ,Δ=n n i x j
ju U e κ  (9.107) 

where the amplitude at time n,κ is wave number in the x direction, 
xκΔ is the phase angle, i = 1− , and j are the discretized coordinate 

indices. These components are substituted into the discretization and 
reduced.  An amplification factor ‘G’ is introduced such that 

 1 .+ =n nU GU  (9.108) 

Stability requires the absolute value of ‘G’ be bounded for all values, or 
κ Δx , i.e., bounded for all phase angles. 

If it is assumed that the fluid motion is wave-like in nature and a 
discretization is made to represent the motion over a length, xΔ , the 
highest frequency in the interval that can be approximated is 2 xΔ . That 
is, it requires at least three points to approximately determine a sine wave 
between 0 and 2π .  

Hindmarsh et al. (1984) determined necessary and sufficient 
conditions for stability of the advection–diffusion equation. This analysis 
as applied to the explicit Euler forward scheme produces the time- 
increment limits 
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and 
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K=

Δ ≤

∑
, (9.110) 

The terms jK , refer to the jth directional component of the diffusion 
matrix. Since the Galerkin method utilizing linear interpolating 
polynomials has a centered-in-space type architecture, these stability 
constraints certainly give some idea as to what time increments might be 
allowed. 

Numerical experimentation with various types of problems has shown 
the following stability conditions are usually satisfactory  

 2

2 1
Re || ||

t
U

Δ ≤ , (9.111) 

 
2 2 2

Re/ 2 .
1/ 1/ 1/

Δ ≤
Δ + Δ + Δ

t
x y z

 (9.112) 

Construction of ‘Δx’ or ‘h’ in three dimensions is performed by finding 
the average value for the coordinates of each face and then taking the 
difference between opposing faces. The entire grid is searched for the 
constraining values in order to optimize the time step. 

9.5 Boundary Conditions 

Evaluating the boundary integral for the second-order bilinear equation, 
given as 

 
ˆ

iW k d∂
∂Γ

⎛ ⎞
− Γ⎜ ⎟

⎝ ⎠
∫

T
n

, (9.113) 

over the surface Γ  requires simply noticing that  
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. (9.114) 

  

 
Fig. 9.4  Normal to surface and direction cosines. 

 
Determining the value of the direction cosines, xn  and yn are 

obtained from noticing that   

 cos and sinx y
dy dxn n
d d

θ θ= = = = −
Γ Γ

, (9.115) 

as defined in Fig. 9.4. Therefore the equation for the surface integral in 
two-dimensions (actually a line integral) becomes 
 

  
ˆ ˆ

i x yk W n n d
x yΓ

⎛ ⎞∂ ∂
− + Γ⎜ ⎟

∂ ∂⎝ ⎠
∫

T T . (9.116) 

9.5.1 Boundary conditions for velocity under decomposition 

Dirichlet boundary conditions for average velocity are straightforward, 
either a no-slip condition for solid objects or fixed velocity at inlets is 
specified. Outlet boundary conditions can be made with the assumption 
of a zero gradient for velocity, a Neumann condition. The zero gradient 
assumption on velocity at outflow requires the computational domain or 
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grid to be constructed to match this imposed boundary condition. This 
statement can be relaxed with the use of the viscous boundary condition 
(Gresho, 1985), described as follows. 

9.5.1.1 Viscous boundary condition for velocity 

Another boundary condition exists when a weak statement is created.  
Weakening the second derivative viscous term results in 

 { }{ } { }j
i t i i

i

N
N d

xΓ

∂
μ + μ Γ

∂

⎡ ⎤
⎢ ⎥
⎣ ⎦

∫ V n . (9.117) 

This equation is zero for walls where no-slip conditions apply and is zero 
where an inlet or outlet velocity is normal to the boundary. Otherwise 
these components of the boundary integral are evaluated and used to 
relax the requirement of zero gradient of velocity at an outflow, when 
combined with the calculated pressure at the outflow.  

9.5.2 Boundary conditions for pressure and velocity correction 

Because the equation for pressure is elliptic, boundary conditions must 
be imposed at all surfaces of the computational domain. The Neumann 
boundary condition for pressure is simply 

 
Pn P .
n t

∂ ∂
∇ = = −

∂ ∂
Vni i  (9.118) 

This boundary condition, when combined with a Dirichlet condition at 
some reference point to eliminate the singularity in the equation set, is 
sufficient to determine the pressure up to an arbitrary constant (Gresho 
and Sani, 1987).   

The second-half step is the step related to inviscid flow, the portion of 
the decomposition without curl since it relies on the determination of the 
proper scalar gradient to make the decomposition true. Therefore, the 
proper boundary condition would be related to the normal component of 
penetration through the boundary, that is,  

 n 1 n 1| f ,+ +
Γ =n V ni i  (9.119) 



Turbulence Modeling 
 

 
 

259 

where n 1f + could be the prescribed boundary conditions or be evaluated 
from viscous terms at the boundary given by 

 { } { }j
i i i

i

N
N d

xΓ

∂⎡ ⎤
μ Γ⎢ ⎥∂⎣ ⎦

∫ V n . 

If a Lagrangian multiplier is substituted for pressure, the boundary 
conditions for the projection equation (the Euler–Lagrange variational 
statement) are found in the same manner as the pressure Poisson 
equation. The boundary condition for this multiplier is derived from 

 
*

P ,
dt
−

∇ =
V V

 (9.120) 

and combined with the boundary conditions for pressure given by Eq. 
9.118.  The resulting traction equation is 

    *n n
n

∂ λ ⎡ ⎤∇λ = = −⎣ ⎦∂
V Vi i . (9.121) 

Clearly, continuity applies to n Vi  by definition of V, so the boundary 
condition for λ  is (Ramaswamy, 1990) 

  * on
n

∂ λ
= Γ

∂
n Vi . (9.122) 

9.5.3 Boundary conditions for turbulent kinetic energy and specific 
dissipation rate 

Boundary layer flow in the presence of turbulence is thought to consist of 
a defect and inner region. The defect region can made to include a buffer 
zone between the defect layer and the viscous sublayer that is next to the 
wall. Where these meet is a buffer zone if considering a three equation 
inner region, otherwise the viscous sublayer and defect region are 
blended by a single logarithmic equation and only the sublayer and the 
defect layer exist. The various regions are shown in Fig. 9.5. 

A log layer melds the defect layer with the buffer zone with the outer 
region or it melds the defect layer with the outer region, depending on 
whether the model is a two or three equation wall region.  The outer 
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portion of the defect region is a fully turbulent region, hence the idea of 
requiring a thrid buffer region to distinguish the fully turbulent portion of 
the defect layer. 

Traditionally turbulence is modeled only to some point near the wall 
and not through the inner layer. Using non-dimensional terms, u+ and y+ 
we can define equations to represent the regions shown in Fig. 9.5. With  

* /+ =y y uρ μ  and */+ =u u u where *u is the friction velocity given by  

 * / ,= wu τ ρ  (9.123) 

and /=w du dyτ μ  is the wall shear stress, the viscous sublayer (Wilcox, 
2006) is 
 / /wu y yρ τ ρ μ+ += = .  (9.124) 

This sublayer equation is valid for 2 8y+ ≤ ≈ . Above this range for 
incompressible flow over a smooth surface in the absence of a pressure 
gradient, the buffer zone will be in the range  8 50y+< ≤  and the wall 
law equation Hoffman and Chiang (2000), is 

 5ln( ) 3.05.+ += −u y  (9.125) 

At larger distances, up to 50 200 400y+< ≤ ≈ , u+ is 

 2.5ln( ) 5.0.+ += +u y  (9.126) 

 
Fig. 9.5  Turbulent boundary layer – the inner layer. 
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The above equations form the definition of the boundary conditions at 
points within the inner layer, depending on the location of that point.  
Again, these conditions hold for smooth walls when the flow has a 
positive pressure gradient. The solution to the wall condition progresses 
by iteration since it is transcendental relation. Wilcox (2006) 
demonstrates the appropriate equation to solve at some point a distance 
‘yp’ from the wall in the presence of an adverse pressure gradient is 
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*
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k dxu

ρ
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where up is the tangential velocity at that grid point, B is a surface 
roughness factor, and 0.41kvk =  is the von Karman constant. The 
equations for turbulent kinetic energy, k andϖ in the inner layer are 
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Surface roughness can be understood in terms of sand grain size, as 
found experimentally by Nikuradse (see Schlichting, 1979), 

 * / ,+ =s sk u kρ μ  (9.130) 

where ks is the average grain height. A surface roughness parameter, 
R sS =f(k )  is incorporated into the roughness factor B, 
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Wilcox (2006) suggests using the following correlations between SR and 
sk +  

 
( )2
50 / , 25

100 / , 25
s s

R

s s

k k
S

k k

+ +

+ +

⎧ ⎫<⎪ ⎪= ⎨ ⎬
≥⎪ ⎪⎩ ⎭

. (9.132) 



Modeling Indoor Air Pollution 
 

 
 

262 

A wall boundary condition for the specific dissipation rate can be stated 
as a function of average sand grain height (Wilcox, 2006), i.e., ϖ is a 
function of surface roughness,  

 
2

2500 /
,

sk
=

μ ρ
ϖ  (9.133) 

to be applied at the wall. Integration to the wall can proceed by using Eq. 
9.133 and specifying turbulent kinetic energy equal to zero at the wall 
and requiring that the gradient of the specific dissipation rate be zero. At 
solid wall boundaries, we set the turbulent eddy viscosity equal to zero 
because there is now flow at that point and not turbulent kinetic energy.   
                                                             
9.5.4 Boundary conditions for thermal and species transport 
 
Thermal and species transport equations have either specified flux 
(Neumann), or fixed (Dirichlet) conditions. As noted earlier, with the 
FEM method, a zero flux is automatically applied if no other boundary 
condition exists. For solid walls, species concentration is fixed at zero. 
When a molecule of any species attaches itself to the wall, i.e., is 
deposited to a wall, it is no longer part of the transported material. In 
order to count the amount of species deposited to a wall, the flux can be 
calculated from the gradient and the diffusivity in the boundary layer. 
This is performed in FEM similarly to that of heat flux and is presented 
later where we discuss finding a local Nusselt number with specified 
wall temperature. 

The integral of thermal flux is calculated for the energy transport 
equation by 

 { } { } ,i j iN N q d
Γ

⎡ ⎤ Γ⎣ ⎦∫  (9.134) 

remembering that the shape functions are now for 1-D line elements or 2-
D surfaces elements depending on whether the problem is 2-D or 3-D, 
respectively. By integrating momentum and energy to the boundaries 
with values determined for the turbulent viscosity / Prt t+κ μ  in the wall 
function (or by integration of the closure model to the boundaries), Eq. 
9.134 is applied in the transport equations.  
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No special treatment for temperature at a point within the Log Layer, i.e., 
the regime determined by the law of the wall, is required. Species flux 
from a surface, that is, mass injection would also be calculated in an 
identical fashion. 

9.5.5 Thermal and species flux calculation in the presence of Dirichlet 
boundaries 

Often it is necessary to calculate a flux at a boundary given the solution 
to the flow field in the presence of Dirichlet boundary temperatures. For 
example, determining the rate of mass and heat flux is of engineering 
interest. This quantity is not known from the model equations when 
Dirichlet boundaries are applied. At any point in time the governing 
equation can be solved for the flux given the current state of the 
dependent variables using the thermal energy equation 
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 (9.135) 

It is a simple matter at this point to calculate local Nusselt numbers 
from a known local conductance Lκ , and calculated local heat flux, qL, 
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where hL is the local convectivity coefficient, yΔ  is the normal distance 
from where the wall temperature, Tw , is determined to the point in the 
domain where TL , the local fluid temperatures, is calculated. These local 
quantities are averaged over the cell’s area since the flux is the cell’s 
surface flux. Nusselt values and mass transfer coefficients, flux, for 
species from a surface (mass injection), would also be calculated in an 
identical fashion, with Prt replaced with the turbulent Schmidt number 
Sct. 

9.6  Validation of Turbulence Models 

Algorithms and computer codes are verified and then validated with 
experimental data. When numerical solutions of benchmark problems 
have already been established these solutions also can be used to validate 
new algorithms and software. Verification involves the process of 
understanding the model equations and their implementation. 
Verification answers the question of, “Are the model equations 
represented correctly.” Validating a particular implementation is the 
process of determining whether the model equations and their numerical 
representation are capable of solving the modeled phenomena correctly.   

Here we present two problems that will gage the accuracy of the 
model’s implementation, (1) flow in a duct, (2) flow over the a 2-D 
backward-facing step. Figure 9.6 shows the geometric configuration for 
flow in a 2-D duct.   

 
Fig. 9.6 Schematic of the two-dimensional duct. 

 
Flow and heat transfer over a backward facing step (Fig. 9.7) is more 

challenging. This problem is of interest to researchers in the areas of 
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combustion, solidification, environmental flow and compact heat 
exchanger design, etc. Study of flow and heat transfer over a backward-
facing step has been a good benchmark problem due to its simplistic 
geometry, richness of flow physics, and availability of experimental data. 
Some of these include Schram, et al. (2004) and Kostas, et al. (2002) 
backward-facing step flow investigating with particle velocimetry.  
Armaly, et al. (1983) provided both experimental and theoretical 
investigation to the backward-facing step flow. Gartling (1990) proposed 
using the backward-facing step geometry as a test problem for outflow 
boundary conditions.  

 Flow over a backward-facing step includes interesting physical 
phenomena such as unsteady behavior, separation, recirculation, 
reattachment, and three-dimensionality. In combustion applications 
chemical reaction and radiation play a dominant role. Depending on the 
Reynolds number, various recirculation zones set up at the center plane 
as shown in Fig. 9.7. 

 
Fig. 9.7 Schematic of the two-dimensional backward-facing step showing recirculation 

areas for unsteady flow. 
 

At low Reynolds numbers (Re) flow is laminar and steady. When Re 
increases, a recirculation zone downstream of the back step forms and 
flow becomes unsteady. The loci of reattachment points (reattachment 
line) are known to oscillate back and forth. In transition regime in 
addition to the primary recirculation pocket downstream of the back step 
two additional recirculation pockets are formed. One is on the top of the 
duct and one is downstream of the primary recirculation pocket as shown 
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in Fig. 9.7. As Re increases further these two additional recirculation 
pockets disappear and flow becomes turbulent.   

Investigating flow over the 2-D backward-facing step using a k-ω 
two-equation turbulent closure modeled by FEM and using an h-adaptive 
grid demonstrates that the model appears to be well suited for the 
transition to turbulent regimes. The solution method incorporates 
uncoupled enthalpy transport. Eventually chemical reactions and 
radiation phenomena will be added to the model. 

The physics of flow over backward-facing step in the laminar, 
transitional and low Reynolds number turbulent regimes was studied 
experimentally by Armaly et al. (1983).  

The 2-D backward-facing step is merely a tool for benchmarking. 
Assuming flow in a very wide duct achieves two-dimensionality or is 
somehow symmetric along the center plane is not precisely accurate.  So, 
investigators have been developing solutions to flow over a 3-D 
backward-facing step, where the symmetry assumptions may not be 
applicable in the unsteady and higher flow regimes.  

Williams and Baker (1997) performed numerical investigations of 
laminar flow over a three-dimensional backward-facing step. Williams 
and Baker employ the continuity constraint method (CCM) in 
conjunction with the Galerkin finite element technique to solve the 
unsteady three-dimensional Navier–Stokes equations. An implicit 
scheme was used to march in time. They found agreement of their results 
with the experimental data of Armaly et al. (1983).  

Pepper and Carrington (1997) introduced forced convective heat 
transfer using a finite element method and the pressure projection 
method for this problem. They have reported good agreement of their 
results with the experimental data in the low transition regime at Re = 
800 (Carrington and Pepper, 2002).   

Chiang and Sheu (1999) also simulated the three-dimensional laminar 
flow over a backward-facing step. Euler implicit scheme was used for the 
time derivatives. Good agreement with the experimental data was found. 
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Example 9.6.1 Solution for flow in a 2-D duct: Solutions for flow in a 
2-D duct are presented in Figs. 9.8 through 9.15. The flow is at a Re = 
13,750 as determined by a density of 1.1774 kg/m, an inlet velocity of 
4.312m/s, a dynamic viscosity μ = 1.846x10-5 (N sec/m2), and an inlet 
diameter (hydraulic diameter) of 0.1 meters. The turbulent Ret number = 
440.0 as determined by 

 
*

.05 440.
/ 1.135 042 /

= = = =
−wall

HRe
u eτ

δ
ν ν ρ τ

 (9.137) 

The inlet turbulent kinetic energy is k = 0.025 and specific dissipation 
rate at the inlet is ϖ  = 68.0 for an inlet turbulent viscosity of 3.7x10-4 
and a initial value of 1.0x10-5. The grid consists of 12,544 elements, and 
13,021 nodes.  

The state of the flow as shown in the figures is at steady state, that is, 
when the sup ||residual|| norm of the dependent variables is to be less 
than 1e-05. The thermal properties are a conductance of κ =0.02624 
(W/m-Ko), specific heat at constant pressure cp = 1.057 x103 (J/kg-Ko) 
and having a turbulent Prandlt number Prt = 1.0. At two levels of 
adaptation the final grid density was 66,429 nodes and 63,070 elements. 
 

 
 

Fig. 9.8  Adapted grid for flow in 2-D duct – two levels of adaptation used at Re=13,750. 
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Fig. 9.9 Two-dimensional duct turbulent flow – speed contours. 

 
 

 
Fig. 9.10  Turbulent eddy viscosity. 
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Fig. 9.11  Isopleths of specific dissipation rate. 

 
 

 
Fig. 9.12 Turbulent kinetic energy in contour. 
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Fig. 9.13 Species concentration. 

The velocity profile matches well with direct numerical simulation as 
shown in Fig. 9.14. The boundary layer, wall layer, as a function of y+ is 
compared to that of Wilcox’s model in Fig. 9.15, with a very good 
resemblance using two levels of adaptation. The first grid point is shown 
in the figure. 

 
Fig. 9.14 Boundary Layer Profile at 22 hydraulic diameters from inlet. Dashed line FEM 

k-w using strain rate limiting, solid line from Kim, et al. (2000).   
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Fig. 9.15 U+ vs. Y+ for developed flow. Solid line from Wilcox’s Pipe Flow Program 

(2006) k-w solution for duct flow vs. FEM predictions, Re = 13,750. 
 
Example 9.6.2 Flow over 2-D backward-facing step: Solutions for 
flow over a 2-D backward-facing step are presented in Figs. 9.16 through 
9.20. The flow Re=42,000, scaled by the step height.  The Re is 
determined by a density of 1.1774 kg/m, an inlet velocity of 13.2 m/sec., 
a dynamic viscosity μ = 1.846x10-5 (N sec/m2), and a step height of 1/3th 
the overall height, or a hydraulic diameter of 0.05 meters. The outlet is 
0.15 meters high, and inlet of 0.1 meters. The inlet turbulent kinetic 
energy is k = 0.28 and specific dissipation rate at the inlet isϖ  = 770, 
resulting in an inlet turbulent viscosity of 3.7 x10-3. The grid consists of 
11,128 elements, and 11,385 nodes. The inlet turbulent Ret number is 
determined by 

 
1.1774 0.28 24.

770 1.846e-05
×

= = =
×

kReτ
ρ
ϖν

 (9.138) 

The upper and lower walls have a heat flux, qwall applied equal to 0.04 
(W/m2). The heat flux is into the domain from both the lower and upper 
walls. The final grid consists of 35,128 elements, and 35,595 nodes at 
one-level adaptation. The state of the flow is shown in the figures at 
steady state as determined by the L-infinity norm of the dependent  
variables to be less than 1e-06. The thermal properties are conductance 
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of κ =0.02624 (W/m-Ko), specific heat at constant pressure cp = 1.057 
x103 (J/kg-Ko) and turbulent Prandlt number Prt=1.0.  

Figure 9.16 shows the velocity vectors, at every 9th node point (and 
one level of adaptation). The results shown in Figs. 9.16 through 9.18 
compare favorably to other’s (Nallasamy, 1987). In particular, the 
recirculation length, or region matches experimental results, at 7.1 h, 
where h is the step height. This length is the standard gauge of the 
benchmark.  Fig. 9.20 shows the predicted species concentration given 
an constant inlet of 1.0 g/cm2. 

Fig. 9.16 Vectors on refined grid for flow over a 2-D backward-facing step at Re = 
42,000. 

 
 

Fig. 9.17 Re = 42,000: Speeds contour, and streamlines showing the recirculation zone 
out to 7.1 step heights (7.1 h). 
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Fig. 9.18 Re = 42,000: Effective viscosity distribution behind step. 
 

Fig. 9.19 Re = 42,000: Turbulent kinetic energy distribution behind step. 
 

Fig. 9.20 Re = 42,000: Two-dimensional turbulent flow over a backward-facing step. 
Species concentration at steady state. 
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Table 9.1 shows results of the recirculation zone length from various 
researchers. In general the predicted reattachment point has a wide 
spread, as does the experimental results (Nallasamy, 1987).  

Table 9.1 Recirculation Lengths as a Function of Re Number from Various Investigators. 

   Re = 47,625   6.51 h – k-w FEM Steady State 
 Ilinca et al.,  1998) 

  Experimental  Values 
  7.0±0.5 
  Nallasamy, 1987) 

   47,625   6.9 h – Algebraic Stress Model 
  (Launder et al., 1981) 

 

   47,625   7.2 h – k-w Finite Volume Steady State
  Ilegbusi and Spalding, 1983) 

 

   42,000   7.1 h – 1st-order-in-time k-w FEM 
   Carrington, 2007) 

 

   3,025   4.5 h – k- ε Steady State 
  Taylor et al. 1981) 

  6.0 
  (Denham et al., 1975) 

9.7 Comments 

The effective viscosity formulation, as demonstrated with the two-
equation closure models in this chapter, is reasonably accurate for many 
engineering type flows, including modeling of indoor air pollution. For 
incompressible flow, the fractional step, or projection method, works 
effectively in conjunction with a locally adaptive grid scheme. 

Examples using an h-adaptive stabilized (Petrov–Galerkin) finite 
element framework show the ability to handle complex geometries while 
minimizing the number of elements required in the model. Element 
enrichment also works well, while automatically selecting cells for 
adaptation. An enhancement in the adaptation procedure can be achieved 
by including p-refinement along with the h, i.e., an h-p adaptation. This 
procedure leads to exponential convergence – which is sought when 
attempting to reach a specific error level in the solutions.  
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The ability to pick regions/cells is useful, although certainly not the 
most efficient of methods. The mesh adaptation process works better 
using an a posterior error method. This can be driven by solution from 
course and finer grids using either a remeshing technique (Pelletier and 
Llinca, 1994) or using an enrichment process (Wang and Pepper, 2007).   

The boundary layer has great agreement with existing k-w models and 
with a DNS formulation for flow in a 2-D duct. The model precisely 
predicts recirculation for the backward-facing step benchmark. This is a 
detachment-reattachment problem with adverse pressure gradient. 
However, the recirculation zone and reattachment lengths are known to 
be somewhat a function of the arbitrary inlet conditions set for turbulent 
kinetic energy and dissipation rate and this parameter needs to be set 
with consideration. Most models do fall short of matching experimental 
data, and the ranges are widely varying as reported by Nallasamy (1987).   

The second moment methods or algebraic stress models are better 
than the two-equation model presented here, particularly for flow where 
the Boussinesq approximation is no longer valid. Wilcox (2006) provides 
an excellent chapter on methods for use in this regime. Turbulence 
modeling with LES methods is thought to be a direction of the future, but 
in the near term, perhaps some combination of k-ω and LES is more 
practical from the point of view of computational requirements. 
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Chapter 10 

Homeland Security Issues 

The threat of chemical and biological agents being dispersed within a 
building has become a reality, and is an important cornerstone of the 
homeland security initiative and formal Department of Homeland 
Security recently instigated by the US government. This issue became 
evident when a letter contaminated with anthrax was sent to former 
Senator Tom Daschle’s office in October 2001. Senator Daschle’s office 
resided in the Hart Senate Office Building, which is a nine-story complex 
located near the Capital Building in Washington, DC. Fumigation and 
cleanup of the building took approximately three months and cost about 
$14M. Traces of anthrax were found in other rooms; however, it is 
unknown exactly how the aerosolized spores dispersed from the 
envelope to other parts of the building. In 2004, ricin was discovered in 
the Dickson Senate Office Building, and another letter containing 
anthrax was intercepted. 

In this closing chapter, we briefly discuss some of the issues 
regarding dispersion of hazardous pollutants into an indoor environment, 
and describe the use of several models for simulating the spread of such 
agents.  

10.1 Introduction 

One gram of anthrax contains about 100 billion spores. Only about 
10,000 spores are needed to generate a lethal dose attributed to 
inhalation. Anthrax ranges in size from 2–4 microns – a fairly large 
aerosol – which makes the spores susceptible to gravitational settling.  
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This means that anthrax can quickly settle onto carpets, tabletops, 
desktops, keyboards, etc. Generally smaller aerosols tend to adhere to 
ceilings and walls. Assuming someone inadvertently opens an envelope 
containing one gram of anthrax, some of the anthrax will remain in the 
envelope, some will settle onto the floor, some will become dispersed 
into the air, and some may likely be deposited onto and into the person 
opening the letter.  Since people move from room to room, the anthrax 
will likely be tracked, resuspended, and redeposited within the facility.  
In addition, the air circulation and HVAC will aid in the redistribution of 
the spores through the vents and ducts. Interestingly, most airflow 
models do not account for the movement of people. Efforts to develop a 
more sophisticated model that would include many of these factors are 
under development at the Lawrence Berkeley Laboratory’s Indoor 
Environment Department (Dan Krotz, dakrotz@lbl.gov).  

10.2 Potential Hazards 

Delivery methods vary for introducing chemical and biological agents, 
e.g., non-exploding means such as open gas cylinders, open containers of 
liquid agents left to evaporate, aerosol generators, spray tanks, and dry 
powder. Explosive means vary from gigantic eruptions to small 
explosive charges. 

Chemical agents tend to degrade or disperse in a few hours to a few 
weeks when exposed to the elements. Biological agents are either in viral 
or bacterial forms. Viruses range from 0.01–0.30 microns while bacteria 
range from 0.3–35 microns in diameter. Typical examples of biological 
agents are anthrax, botulism, plague, smallpox, tularemia, and 
hemorrhagic fever (for which there are over 12 types of viruses). 

While biological agents typically will not cause immediate 
symptoms, chemical agents almost always cause instant symptoms. An 
example of the immediate effects of chemical weapons was evident 
during World War I when mustard gas was released and dispersed into 
the trenches, affecting thousands of soldiers. Similar effects were felt by 
US troops during the Vietnam War in the 1960s when agent orange was 
dropped as a defoliating agent. More recently, Saddam Hussain used 
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chemical agents in Iraq following the Gulf War of 1991 in a genocide 
that killed thousands of Kurds. The invasion of Iraq in 2003 by the US 
was based on the premise that Iraq was stockpiling weapons of mass 
destruction including biological and chemical agents.  

In 2002, approximately 50 Chechen terrorists entered and 
overpowered a Moscow theatre containing nearly 700 people. The siege 
continued for a number of days and eventually Russian commandos 
released a fantanyl-based gas to overpower the terrorists. While most of 
the terrorists died, unfortunately about 100 of the innocent hostages also 
died. Total fatalities were on the order of 17% of the occupants of the 
hall. While the intent was noble, the deleterious effects upon the hostages 
and the high loss ratio of innocent life are clearly unacceptable. Had the 
commandos been able to utilize proper modeling and risk assessment 
techniques, the loss of life could certainly have been reduced. For 
example, the fantanyl could have been introduced in a more controlled 
manner, preferentially at strategic locations to expose just the terrorists to 
higher doses, and lower or none discharged to the hostages.  

Terrorist seek to promote fear and confusion by selecting targets of 
opportunity where people generally feel safe, e.g., shopping malls, 
sporting events, churches, and major performances. The September 11, 
2001 World Trade Center disaster clearly illustrated the risks and 
consequences of terrorist attacks on buildings that can hold over 50,000 
people. Dealing with terrorist attacks require new and innovative ways to 
counter such events as well as preventive measures to deter their thrusts. 
Terrorists incidents have numbered in the thousands in some countries. 
In fact, the bulk of terrorist events worldwide have generally been very 
specific and isolated over the past century, and have not focused on 
social issues or money. However, recent incidents indicate a dramatic 
shift of terrorist ideology towards mass destruction and global visibility. 

A large toxic release dispersed outdoors tends to affect people 
severely when they become exposed to the substance. For example, birds 
will fall from trees, people will collapse, and animals will lie down.  For 
example, a large container of H2S (~100 tons) began to leak at a major 
nuclear facility located in the southern US many years ago. This leak 
went unnoticed until some of the workers began to collapse. Since 
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around 10 ppm is all that is required to cause someone to pass out, many 
people began falling to the ground. When the accident was finally 
recognized, efforts were immediately undertaken to evacuate the area 
and transfer the H2S to another container. However, when H2S becomes 
exposed to air, the result can be an explosion which produces H2SO4, 
whereby only 8 ppm is needed to kill people. Transfer of the toxic 
material required over 36 hours utilizing intensive and delicate processes. 
Needless to say, the event was quite stressful on the workers and 
administration during the incident.  

An external release will usually affect a wide range of people within a 
building since the ventilation constantly receives outdoor makeup air. An 
indoor release tends to be more isolated, affecting some areas of a 
building more quickly and severely than other parts of the building. If 
there are no visible signs of an external release, and if some areas of a 
building appear to be more severely affected than others, an indoor 
release should be assumed.  

A list of dangerous agents is shown in Table 10.1 through 10.6. These 
agents are the most common set of hazardous materials that have either 
been used or considered as terrorist weapons. Some of the biological and 
chemical substances were employed in World War I and World War II, 
and later stockpiled during the Cold War.  

Table 10.1 List of Radiological Agents 

RADIOACTIVE AGENTS Form 
Americum-241 powder 
Californium-252 powder 
Cesium-137 powder 
Iridium-192 powder 
Plutonium-239 powder 
Strontium-90 powder 
Uranium-235 powder 
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Table 10.2 List of Biological Agents 

BIOLOGICAL AGENTS FORM 
Category A  
Anthrax spore 
Botulism spore 
Plague spore 
Smallpox spore 
Viral hemorrhagic fevers spore 
Category B  
Brucellosis virus 
Epsilon toxin of Clostridium perfringens virus 
Food safety threats various 
Glanders virus 
Melioidosis virus 
Psittacosis virus 
Q fever virus 
Ricin toxin spore 
Staphylococcal enterotoxin B virus 
Typhus fever bacillus 
Viral encephalitis virus 
Water safety threats liquid 
Category C  
Emerging infectious diseases (Nipah virus; hantavirus) virus 

Table 10.3 List of Biotoxic Chemical Agents 

AGENT Form 
Abrin bacillus 
Ricin bacillus 
Strychnine bacillus 
Blister Agents/Vesicants  
Mustards  
Distilled mustard (HD) particulate 
Mustard gas (H) (sulfur mustard) gas 
Mustard/lewisite (HL) particulate 
Mustard/T particulate 
Nitrogen mustard gas 
Sesqui mustard gas 
Sulfur mustard gas 
Lewisites/chloroarsine agents  
Lewisite particulate 
Mustard/lewisite (HL) particulate 
Phosgene oxime particulate 
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Table 10.4 List of Blood Type Chemical Agents 

AGENT Form 
Cyanide  
Cyanogen chloride (CK) gas 
Hydrogen cyanide (AC) gas 
Potassium cyanide (KCN) gas 
Sodium cyanide (NaCN) gas 
Caustics (Acids)  
Hydrofluoric acid (hydrogen fluoride) liquid 
Hydrogen fluoride (hydrofluoric acid) liquid 
Choking/Lung/Pulmonary Agents  
Ammonia gas 
Chlorine (CL) gas 
Hydrogen chloride gas 
Phosgene  
Diphosgene (DP) gas 
Phosgene (CG) gas 
Phosphine gas 
Phosphorus, elemental, white or yellow particulate 

Table 10.5 List of Incapacitating Chemical Agents 

AGENT Form 
Fentanyls and other opioids liquid 
Long-Acting Anticoagulants  
Super warfarin liquid 
Metals  
Arsenic powder 
Mercury liquid 
Thallium powder 
Nerve Agents  
G agents  
Sarin (GB) gas 
Soman (GD) gas 
Tabun (GA) gas 
V agents  
VX gas 
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Table 10.6 List of Organic Solvent Agents 

AGENT Form 
Riot Control Agents/Tear Gas  
Various agents and combinations   
Bromobenzylcyanide (CA) gas 
Chloroacetophenone (CN) gas 
Chlorobenzylidenemalononitrile (CS) gas 
Chloropicrin (PS) gas 
Dibenzoxazepine (CR) gas 
Toxic Alcohols  
Ethylene glycol liquid 
Vomiting Agents  
Adamsite (DM) powder 

10.2.1 Prevention and protection 

The following guidelines should be considered in the event of a toxic 
release (from Miller, The Military Engineer, June 2003): 
 
External Release: 

1. Shut off supply fans that are not equipped with proper filtration 
systems 

2. Keep supply fans running equipped with high-performance 
filtration 

3. Shut off all exhaust fans 
4. Close fresh air intakes and building openings 
5. Recall all elevators to the lobby 
6. Lock all doors, including dock and garage 
7. Have all occupants remain indoors near the core of the building 
 

Indoor Release: 
1. Execute prearranged tenant communications 
2. Close duct dampers to isolate zones of release 
3. Activate stairwell pressurization system (100% outside air) 
4. Evacuate occupants to a predestinated location 
5. Segregate people during a biological release to avoid 

contamination 
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When dealing with chemical releases, the concentration exposure to 
people must be minimized. Areas surrounding the floor and release sites 
should be flooded with 100% outdoor air. One should provide 100% 
exhaust only to the floor or area of release. If this is not possible, then the 
entire area should be filled with 100% outdoor air and 100% exhaust 
mode.  If this scenario is not possible, then all supply and return fans 
should be shut down until the type of hazard and dispersion pattern can 
be determined. Once this information is obtained, the HVAC system can 
be considered for reactivation. The normal operation of most HVAC 
systems in buildings provides some outdoor air and exhausts some 
indoor air, which helps to dilute some of the hazardous material.  

When encountering biological releases, the number of people exposed 
must be minimized. All supply, return, and exhaust fans should be shut 
down. Such systems should not be restarted until sufficient information 
has been obtained, and competent authority authorizes startup of the 
HVAC network. 

A building environment should maintain integrity, i.e., protect the 
interior from contaminated outdoor air. Air tightness is a term used to 
quantify how well the exterior of the building serves as a barrier. As a 
general rule of thumb, exterior air intakes should be positioned atop the 
building or at least four storeys above grade. As an alternative, solid 
walls can be used to surround each intake with sloped screen tops. Non-
public building areas should be air balanced in order to provide a positive 
pressure to prevent infiltration from the outside. Quick-closing dampers 
should be utilized in supply and return ducts, along with dedicated 
exhaust systems in each public area. 

HEPA filters should be installed in ductwork to provide emergency 
ventilation in stairways with intakes at low levels. Generally high-grade 
infiltration is suggested due to the critical nature of stairs and 
concentration of people in the event of an emergency evacuation. 
Dealing with stairways can be difficult, and can require weeks to 
adequately clean during a shutdown.  

ASHRAE Standard 52.2–1999 is the current standard for determining 
performance of particulate filters. The efficiency to capture particulates 
is ranked by a Minimum Efficiency Reporting Value (MERV) that varies 
from 1 to 20. The higher the MERV rating, the better the capture 
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efficiency (especially when trying to capture small micron size 
particulates). Air pressure, fan-motor horsepower, and energy costs 
decrease as filtration efficiency increases.  

The most commonly used filter is an upgraded 2-inch panel filter with 
a MERV rating of 5 to 8. However, for chemical and biological agents, 
higher MERVs will be required. Such filters include High Efficiency 
Particulate Arrestanc (HEPA) filters, 90–95 percent high efficiency 
filters (MERV 14), 95 percent (MERV 15), 95 percent DOP (MERV 16), 
and activated carbon filters. Table 10.7 lists the MERV rating and level 
of filtering. 

Table 10.7 Particulate Filter Levels (from Miller, The Military Engineer, June, 2003) 

 
 
 
 
 

MERV 
LEVEL 

Dust Spot Particulate Filter Type % 
0.3–1μm

% 
1–3 μm

% 
3–10 μm 

1 NA 
2 NA 
3 NA 
4 NA 

Low efficiency fiberglass and 
Synthetic media disposable 
Panels, cleanable filters, and 
Electrostatic charged panels 

Too low efficiency to be 
applicable to ASHRAE 52.2  

5 NA   20–35 
6 NA   36–50 
7 25–30%   50–70 
8 30–35% 

Pleated filters, cartridge/cube 
Filters, and disposable multi- 
Density synthetic link panels 
   >70 

9 40–45%  >50 >85 
10 50–55%  50–65 >85 
11 60–65%  65–80 >85 
12 70–75% 

Enhanced media pleated filters, 
bag filters of either fiberglass or 
synthetic media, rigid box filters
using lofted or paper media  >80 >90 

13 80–85% >75 >90 >90 
14 90–95% 75–85 >90 >90 
15 >95% 85–95 >90 >90 
16 98% 

Bag filters, rigid box filters, 
minipleat cartridge filters 

>95 >95 >95 
17 NA 99.97% IEST Type A 
18 NA 99.99% IEST Type C 
19 NA 99.999% IEST Type D 
20 NA 

HEPA/ULPA filters using IEST 
MoT. Types A through D yield 
Efficiencies @ 0.3 μm and Type
F@0.1 μm >99.999% IEST Type F 
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Over the past few years, Penn State University has been developing a 
terrorist-resistant air conditioning concept that is cheaper to operate, 
costs less to install, and is more energy efficient that conventional 
industrial standards. If a biological or chemical contaminant is released 
within an office, standard forced-air cooling can transport the agent to 
other locations within the building.  

The Penn State system de-couples the process of supplying fresh air 
to the occupants within the building from the heating and cooling 
functions of the HVAC system. The system, called Dedicated Outdoor 
Air System (DOAS), couples an independent fresh air supply with 
radiant cooling panels. The radiant panels, which utilize cool circulating 
water and can be integrated into the building’s fire sprinkler system, have 
been employed in Europe for over 15 years.  

The DOAS/radiant approach does not use recirculated air. Hazardous 
agents released in the interior of the building are not transported to other 
parts of the building by the HVAC system but are diluted and exhausted 
from each particular space. Since the fresh air supply is independent 
from the HVAC function, less air is required and can be treated and de-
humidified at less cost, including running the exiting air through an 
energy recovery system.  

10.3 A Simple Model 

Classrooms, auditoriums, and public buildings tend to have transient or 
variable occupancy. Ventilation rates in these enclosures are typically 
varied to maintain acceptable contaminant concentrations at all times. A 
pollutant can be indoors before the start of occupancy, produced by 
people, processes or materials placed within the building, or supplied 
from the outside through exterior ventilation. 

To determine the variation of a concentration level over time, the 
mass balance equation of the pollutant over the entire enclosure must be 
solved. Assuming a time step, dt, we can denote the change in the 
concentration of indoor air as dc. This change represents the quantity of 
pollutant generated within the interior plus the quantity dispersed by the 
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ventilation into the enclosure minus the quantity leaving the enclosure, 
i.e., returning to Eq. 5.3, 

 ( )airVdC S QC QC dt,= + −   (10.1) 

or 

 air
dCV S Q(C C),
dt

= + −   (10.2) 

where 
 
V  = effective volume of the enclosure (m3) 

Q = exterior air supply rate (m3/s) 
Cair = ambient concentration of pollutant (gm) 
C = concentration of pollutant at time t (gm) 
S = pollutant source (gm-m3/s) 
 

For simplicity, if we assume perfect mixing and no density changes 
within the enclosure, integrating Eq. 10.2 gives the indoor concentration 
at time t: 

 
Qt Qt

air V V
o

QC SC 1 e C e .
Q

− −⎛ ⎞+
= − +⎜ ⎟

⎝ ⎠
  (10.3) 

where Co is the indoor concentration at time t = 0. We can simplify the 
form of this general equation further based on various practical 
conditions. 
1. If we assume that the initial concentration within the room is zero 

(Co = 0), then Eq. 10.3 can be simplified to the following form: 

 
Qt

air VQC SC 1 e .
Q

−⎛ ⎞+
= −⎜ ⎟

⎝ ⎠
  (10.4)  

2.  If the pollutant in outdoor air is zero (Cair = 0) and the initial 
concentration is zero (Co = 0), the concentration equation can be 
rearranged and simplified to: 

 
Qt
VSC 1 e .

Q

−⎛ ⎞
= −⎜ ⎟

⎝ ⎠
  (10.5) 
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Solutions to Eq. 10.5 can be graphically displayed as a family of 
curves representing the ratio Q/S. Assuming values for Q, V , S, and 
time t are known, the concentration indoors can be obtained directly from 
Fig. 10.1.   
 

 
Fig. 10.1 Indoor pollutant concentration as a function of time for Co = Cair = 0. 

 
If the pollutant in the outdoor air is zero (Ce = 0) and there is no 

indoor contaminant generation (S = 0), Eq. 10.2 simplifies to the form: 

 Nt
oC C e ,−=   (10.6) 

where N is the air change rate per second if t is in seconds or hours if t is 
in hours. This equation denotes simple decay commonly used in 
measuring ventilation rates within a building using tracer gases. 

Assuming steady-state conditions (t→∞), equilibrium indoor 
concentration levels are reached as t →∞, giving the final concentration 
as: 

  airQC SC ,
Q∞

+
=   (10.7) 

where one can see that the final concentration c∞ is independent of the 
interior volume, V. Note that the value of V affects the rate at which C 
→C∞. Likewise, the initial concentration, Co, has no influence on the 
final concentration.  
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It is assumed that perfect mixing of the room air and the supply air 
occurs within the enclosure, resulting in perfect dilution of the indoor 
contaminant. This rarely happens, if ever. In actuality, the supply air 
does not mix perfectly with the indoor air in the occupied zone, with the 
end result of the outdoor air being exhausted before it has a chance to 
adequately absorb some of the indoor contaminant. Thus, different 
concentration rates will exist in the occupied zone. This leads to the need 
for larger air supply rates in order to achieve the threshold limit. 

Ventilation efficiency or ventilation effectiveness is used to describe 
the degree of mixing of supply air with room air. There are two main 
categories used to define ventilation efficiencies for steady-state 
conditions (see Sandberg, 1981). 

Relative ventilation efficiency: this describes the variability of a 
system’s ventilation abilities among different parts of a room. It is 
expressed as either an average or overall relative efficiency for the entire 
occupied zone or as a local relative efficiency. The local value is 
expressed as 

 x air
r

air

C CE ,
C C

−
=

−
 (10.8) 

and the average relative ventilation efficiency is written as 

 x air
r

air

C CE ,
C C

−
=

−
  (10.9) 

where   
  
C = contaminant concentration at a point, ppm 
C  = mean concentration in the occupied zone, ppm 
Cair = contaminant concentration in the outdoor air supply, ppm 
Cx = contaminant concentration in the exhaust air, ppm 

 
The absolute ventilation efficiency: this term relates the ability of the 

ventilation system to reduce the pollution concentration relative to a 
theoretical maximum. The relation is normally expressed as: 
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                                    o
a

o air

C CE ,
C C

−
=

−
                                          (10.10) 

where   
Co = initial concentration at a point, ppm 
C = concentration at the same point after time t, ppm 

 
The relative ventilation efficiency is a measure of pollutant dispersion 

and doesn’t take either the absolute concentration levels or changes in 
concentration from initial values into account. The value of E is always 
positive and can either be less than, equal to, or greater than 1, depending 
on the location in the room and air distribution method. The absolute 
ventilation efficiency represents the change in concentration as a result of 
change in the ventilation rate and is always less than 1.  

In order to overcome the effects of imperfect dilution of indoor 
contaminant by the outdoor air, air supply rates greater than that 
provided in the above equations is necessary. This is expressed 
quantitatively by replacing V in these equations with ErV. The value of 
Er is dependent on the type of air distribution system used to supply and 
extract air to the room. The types of ventilation systems include local 
exhaust ventilation, piston ventilation, displacement ventilation, and 
mixing ventilation. These various ventilation schemes are described in 
more detail in the ASHRAE guidelines and ventilation textbooks. 
 
10.3.1 Example – analytical model of anthrax dispersion: To illustrate 
the application of the above set of simple relations, assume that a room 
contains a package (e.g., a letter, box, etc.) that has just been opened 
containing anthrax. We assume the anthrax is dispersing at S = 0.001 
gm-m3/s. The room is 4 m x 4 m x 3 m, giving a volume of 48 m3. The 
office complex is shown in Fig. 10.2. This is the same problem as shown 
in Example 5.1.1. What is the concentration within the office after 10 
minutes? 

There are two rooms in the office complex; one is for the secretary 
and the other is for the manager. Several tables are laid out in the office 
complex. The terrorist puts the anthrax in the secretary’s room. Due to 
the door being opened and ventilation flowing into the office at U = 1.0 
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m/s, the powder disperses within the room. The boundary conditions and 
problem definition are shown in Fig. 10.3. 

   

 
 

Fig. 10.2 Office complex layout. 
 

Fig. 10.3 Boundary condition setting. 
 

We assume the door has an opening of 3 m x 1 m; thus Q = AU = 3 
m3/s. We use the following input values:  
 
 V  = 48 m3 
 Q = 3 m3/s  
 Cair = 0 gm 
 C = 0 gm 
 S = 0.001 gm-m3/s 
 t = 600 s   
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We use Eq. 10.4 to solve for the dispersion within the room since the 
initial concentration is zero. After 10 minutes, the concentration within 
the room would be 

 
Qt

air VQC SC 1 e ,
Q

−⎛ ⎞+
= −⎜ ⎟

⎝ ⎠
 

 
3 600

37.5483 0 0.001C 1 e 0.000333(1 e ),
3

−
−⎛ ⎞+

= − = −⎜ ⎟
⎝ ⎠

ii
 

 C = 0.000333 gm 
The value only tells us the ensemble concentration within the room. 

The solution of Eq. 10.4 doesn’t tell us about the spread of the anthrax 
within the office, or the possible dispersion pathway.  
 
10.3.2 Example – numerical model of anthrax dispersion: We repeat 
the example anthrax dispersion problem of 10.3.1, but this time we use 
COMSOL, which is an FEM commercial code that permits mesh 
adaptation. Here we can refine the location of the source and assume 
there could be three different point locations. The added detail inherent 
within a numerical model permits us to be more specific with regards to 
the location of the source, with interesting outcomes based on the source 
location. The specific steps and procedures involved in setting up the 
problem to be solved by COMSOL can be found on the website: 
www.iaqcodes.edu (see Pepper and Wang, 2006).  

The initial computational mesh has 161 quadrilateral elements and 
213 nodes, which is shown in Fig. 10.4.  

 
Fig. 10.4  Initial coarse mesh. 
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Simulated air distribution patterns and pathways of anthrax dispersing 
within the office complex are shown in the following series of pictures. 
Both the door and the windows are open, and the contaminant powder 
spreads into the inner office. The sequence of pictures shows a plan view 
of the flow of air and velocity vectors in Fig. 10.5, velocity contour in 
Fig. 10.6, and a 2-D plan view of the streamlines in Fig. 10.7. 
Differences in trajectories are observed when the pollutant source is 
placed at different locations inside the secretary’s room. In one case the 
pollutant source is placed on the top right corner of table 2, while in the 
other case it is placed between table 1 and table 2 in the outer secretarial 
room.  
  

 
Fig. 10.5 Flow of air within office complex. 

 

 
Fig. 10.6 Velocity contours. 
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Fig. 10.7 Streamlines. 

 
Particle dispersion pattern (with large dot denoting contaminant 

source) is shown in Figs. 10.8, 10.9, and 10.10. The contaminant source 
has been placed on table 1, center of the room and table 2, respectively. 

 

 
Fig. 10.8 Particle dispersion pattern case 1. 

 

 
Fig. 10.9 Particle dispersion pattern case 2. 
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Fig. 10.10 Particle dispersion pattern case 3. 

                                       
As can be seen in the particle dispersion patterns, the pollutant is 

transported and diffused by the ventilation pattern that affects the office 
complex. It is easy to see that the anthrax essentially remains trapped 
within the large recirculation zone (Fig. 10.7) near the upper wall in the 
outer room, as seen in Fig. 10.8. If the terrorist decides to place the 
source in different locations, the anthrax dispersion pattern becomes 
quite different, as we see in Figs. 10.9 and 10.10. In this instance, we see 
the added value of performing a more detailed simulation using a CFD 
model – the added physics allows us to more accurately plot the 
trajectories, especially as they progress into the inner office. 

When first responders arrive at an incident location, it is important 
that they be aware of the trajectory of the spreading contaminant. It is 
also critically important that inhabitants be aware of the contaminant 
pathway, and take evasive action. For example, the manager in the inner 
office could move to the upper left corner of his room until reached by a 
rescue team, as seen in Fig. 10.10. Likewise, the secretary would be 
better off waiting at her desk instead of walking into the plume of 
particles, based on the pattern shown in Fig. 10.8. 
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10.4 Other Indoor Air Quality Models 

There are several nice computer codes that can be downloaded for free 
from the web. These codes have been developed at government 
laboratories and are available for use by researchers and academic 
institutions in the US Although not quite as robust as some of the 
commercial CFD codes, they are still effective and you can’t beat the 
price. There are several commercial CFD codes that are particularly well 
suited for indoor air pollution simulation; while they can be very 
expensive, they are very convenient and can be learned fairly quickly. 
FLUENT, STAR-CD, ANSWER, and CFX are general CFD codes that 
can be configured for practically any flow-related problem; COMSOL 
allows one to input multiphysics, including equations and MATLAB 
script, in the overall program procedure. FLOVENT is a FVM model, 
similar to FLUENT, that is aimed primarily at the HVAC and IAQ 
industry. This code permits one to readily input boundary conditions and 
source locations associated with IAQ problems using a simple CAD 
interface.     

10.4.1 CONTAM 2.4 (NIST) 

CONTAM 2.4 is an indoor dispersion model that was initially developed 
at the National Institute of Standards and Technology (NIST) in 
Gaithersburg, MD, some years ago and has been revised and updated 
(see Walton and Dols, 2006). The model is rather sophisticated, with lots 
of input required from the user.  

The most current version, CONTAM 2.4, can be accessed from the 
web: http://www.bfrl.nist.gov/IAQanalysis/CONTAM/overview/3.htm. 
The model allows the user to output numerous data, and even includes a 
sketchpad capability for configuring floor plans and building 
configurations, along with weather input for outdoor conditions. Figure 
10.11 shows an example of a building that is first converted into a series 
of blocks that ultimately are refined into floor plans that can then be 
modeled.  
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Fig. 10.11 CONTAM 2.4  program. 
 

CONTAM 2.4 has the ability to calculate building airflows and 
relative pressures among zones within a building – which can be 
valuable in determining ventilation rates. The model has been used to 
help in the design and analysis of smoke management, and in the design 
decisions related to ventilation systems and material selections. 
Deposition sink models, a 1-D advection/diffusion contaminant model 
for ducts and diffuers, and contaminant filter models are also included. A 
nice feature of the model is the prediction of exposure of building 
occupants to airborne contaminants for risk assessment.  
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10.4.2 I-BEAM (EPA) 

I-Beam is a computer model developed by the EPA. This program 
permits one to implement an energy audit of a building or series of 
rooms, as well as conduct an IAQ assessment (I-BEAM, 2002). This 
code can be downloaded from the web: 
http://www.epa.gov/iaq/largebldgs/i-beam/index.html. I-BEAM stands 
for IAQ Building Education and Assessment Model. The model is quite 
comprehensive, and permits the user to vary numerous parameters 
regarding boundary conditions and initial values. The user’s manual is 
extensive, and provides a very good background on IAQ fundamentals 
and related energy issues.  Figure 10.12 shows a screen image of the 
code that comes up on a PC when the code is accessed by the user.  

Fig. 10.12  I-BEAM program. 
 
A particularly nice feature of the model is the ability to access active 

modules from the I-BEAM website, i.e., a series of downloads that 
enable the user to activate and animate various processes. Clicking on 
one of the modules in the screen image above immediately sends the user 
to another set of modules related to the parent topic. The model is well 
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designed, but does take some time to become acquainted with the loading 
of boundary conditions and the display of results.   

10.4.3 COMIS-MIAQ (APTG-LBNL) 

An anthrax model was developed by the Airflow and Pollutant Transport 
Group at Lawrence Berkeley National Laboratory in 2002. The basis of 
the LBNL model is COMIS, with much of its context coming from 
MIAQ (Multi-Chamber Indoor Air Quality Modeling Package) originally 
developed as a Ph.D. thesis at Cal Tech by Nazaroff (1988). The model 
can be used to predict the transport of anthrax spores within a building, 
including what fraction settles on floors, in carpets and on walls, 
potential for resuspension, and amounts that could be caught in ducts and 
air filtration units as it leaves the building through cracks, doors, and 
windows.  

COMIS/MIAQ is very detailed and permits many variations on 
contaminant dispersion within an indoor environment. This model can be 
downloaded from the web: http://eetd.lbl.gov/ie/APT/APT.html. Figure 
10.13 shows a building floor plan and dispersion within a three-story 
facility generated by the model.  

  

 
Fig. 10.13 COMIS/MIAQ LBNL model. 
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The ability of COMIS/MIAQ to display 2 and 3-D dispersion patterns 
throughout a building is a plus, and allows one to incorporate complex 
flows and ventilation settings within an office complex or building. The 
computer code requires some time to become familiar with loading and 
displaying data.   

10.4.4 FLOVENT (Flomerics, Inc.) 

A very nice indoor air pollution model was developed by Flomerics, Inc., 
London, UK, several years ago known as FLOVENT. This model is a 
commercial CFD code based on the FVM, much like FLUENT and other 
similar FVM commercial CFD models. FLOVENT permits an easy I/O 
interface for conducting indoor ventilation and dispersion simulations, 
and uses a CAD interface for creating a floor or building layout. An 
example of the flow and dispersion within a hospital floor is shown in 
Fig. 10.14. 

FLOVENT is a very robust and easy to use program aimed at the IAQ 
and HVAC group. The model permits the user to develop a problem 
configuration using a SolidWorks protocol, and then helps the user 
establish flow and source boundary conditions in units typical of HVAC 
and IAQ nomenclature.  

 

 
Fig. 10.14 FLOVENT model output – hospital complex. 
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10.5 Comments 

Issues involving homeland security will be with us for many years. 
Terrorist activity will dictate that the US and other countries must be 
prepared for attempts of local as well as mass destruction on innocent 
people for the unforeseeable future. The recent creation of the US 
Department of Homeland Security is one means of being prepared and 
trying to stay ahead of such terrorist activities. Considerable research and 
work has begun throughout the US on ways to counter terrorism and 
assess the consequences of attacks on the populace. Models and sensing 
equipment will continue to evolve as new approaches to inflicting mass 
destruction arise throughout the world.  

The models presented in this chapter are fairly mature and provide 
reliable results when understood and mastered by the user. However, one 
must remember that these models only serve as a family of numerical 
tools that can be used effectively for certain classes of problems. Locking 
into using only one specific numerical technique or commercial code can 
become very limiting. On the other hand, finding a good, reliable 
technique or code that handles a wide range of problems can be very 
beneficial – as long as one does not try to force fit the model into 
problems for which it would be an overkill or grossly inaccurate.  

When an emergency occurs, there is no time to sit and ponder about 
the best numerical model to use, or wait on a lengthy calculation to 
conclude while everyone is dying from exposure. On the other hand, it 
can be just as dangerous to make grossly inaccurate guesses or rely on 
assumptions that could be the opposite of the best scenario or evasion 
tactic. A quick, reasonable estimate is all that is needed in the first 
moments of an emergency – follow up analysis and evaluation can 
always come later when people are safe and out of harm’s way.       
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Appendix A   Diffusion Coefficients in Gas 

(Experimental values of diffusion coefficients in gases at 1 atm (Cussler, 1997) 

Gas Pair Temperature (oK) Diffusion Coefficient (cm2/s) 
Air-CH4 273.0 0.196 
Air-C2H5OH 273.0 0.102 
Air-CO2 276.2 0.142 
 317.2 0.177 
Air-H2 273.0 0.611 
Air-D2 296.8 0.565 
Air-H2O 289.1 0.282 
 298.2 0.260 
 312.6 0.277 
 333.2 0.3050 
Air-He 276.2 0.6242 
Air-O2 273.0 0.1775 
Air-n-hexane 294.0 0.080 
Air-n-heptane 294.0 0.071 
Air-bezene 298.2 0.096 
Air-toluene 299.1 0.086 
Air-chlorobenzene 299.1 0.074 
Air-aniline 299.1 0.074 
Air-nitrobenzene 298.2 0.0855 
Air-2-propanol 299.1 0.099 
Air-butanol 299.1 0.087 
Air-2-butanol 299.1 0.089 
Air-2-pentanol 299.1 0.071 
Air-ethylacetate 299.1 0.087 
CH4-Ar 298.0 0.202 
CH4-He 298.0 0.675 
CH4-H2 298.0 0.726 
CH4-H2O 307.7 0.292 
CO-N2 295.8 0.212 
12CO-14CO 373.0 0.323 
CO-H2 295.6 0.743 
CO-D2 295.7 0.549 
CO-He 295.6 0.702 
CO-Ar 295.7 0.188 
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Gas Pair Temperature (oK) Diffusion Coefficient (cm2/s) 
CO2-H2 298.0 0.646 
CO2-N2 298.2 0.165 
CO2-O2 293.2 0.160 
CO2-He 298.0 0.612 
CO2-Ar 276.2 0.1326 
CO2-CO 296.1 0.152 
CO2-H2O 307.5 0.202 
CO2-N2O 298.0 0.117 
CO2-SO2 263.0 0.064 
12CO2-14CO2 312.8 0.125 
CO2-propane 298.0 0.0863 
CO2-ethyleneoxide 298.0 0.0914 
H2-N2 297.2 0.779 
H2-03 273.2 0.697 
H2-D2 288.2 1.24 
H2-He 298.2 1.132 
H2-Ar 287.9 0.828 
H2-Xe 341.2 0.751 
H2-SO2 285.5 0.525 
H2-H20 307.1 0.915 
H2-NH3 298.0 0.783 
H2-acetone 296.0 0.424 
H2-ethane 298.0 0.537 
H2-n-butane 287.9 0.361 
H2-n-hcxane 288.7 0.290 
H2-cyclohexane 288.6 0.319 
H2-benzene 311.3 0.404 
H2-SF4 286.2 0.396 
H2-n-heptane 303.2 0.283 
H2-n-decane 364.1 0.306 
N2-02 273.2 0.181 
 293.2 0.22 
N2-He 298.0 0.687 
N2-Ar 293.0 0.194 
N2—NH3 298.0 0.230 
N2 -H20 307.5 0.256 
N2-S02 263.0 0.104 
N2-ethylene 298.0 0.163 
N2-ethane 298.0 0.148 
N2-n-butane 298.0 0.096 
N2-isobutane 298.0 0.0905 
N2-n-hexane 288.6 0.076 
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Gas Pair Temperature (oK) Diffusion Coefficient (cm2/s) 
N2-n-octane 303.1 0.073 
N2-2,2,4-trimethy1pentane303.3 0.071 
N2-n-decane 363.6 0.084 
N2-benzene 311.3 0.102 
O2-He (He trace) 298.2 0.737 
     (02 trace) 298.2 0.718 
O2-He 298.0 0.729 
O2- H20 308.1 0.282 
O2-CCl4 296.0 0.075 
O2-benzene 311.3 0.101 
O2-cyclohexane 288.6 0.075 
O2-n~hexane 288.6 0.075 
O2-n-octane 303.1 0.071 
O2-2,2,4-trimethylpentane 303.0 0.071 
He-D2 295.1 1.250 
He-Ar 298.0 0.742 
He-H2O 298.2 0.908 
He-NH3 297.1 0.842 
He-n-hexane 417.0 0.1571 
He-benzene 298.2 0.384 
He-Ne 341.2 1.405 
He-methanol 423.2 1.032 
He-ethanol 298.2 0.494 
He-propanol 423.2 0.676 
He-hexanol 423.2 0.469 
Ar-Ne 303 0.327 
Ar-Kr 303 0.140 
Ar-Xe 329.9 0.137 
Ar-NH3 295.1 0.232 
Ar-SO2 263 0.077 
Ar-n-hexane 288.6 0.066 
Ne-Kr 273 0.223 
Ethylene-H2O 307.8 0.204 
Ethane-n-hexane 294 0.0375 
N20-propane 298 0.0860 
N20-ethyleneoxide 298 0.0914 
NH3-SF6 296.6 0.1090 
Freon-12-H2O 298.2 0.1050 
Freon-12-benzene 298.2 0.0385 
Freon-12-ethanol 298.2 0.0475 

 
Source: Data from Hirschfelder et al. (1954) and Reid et al. (1977). 
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The most popular formula for determining diffusion coefficients in 
gases is the Chapman–Enskog equation, which is normally written in the 
form 

 

1/2
3/2

1 22
12 2

12

1 1T
M M

D (cm / s) ,
Pd

⎛ ⎞
β +⎜ ⎟

⎝ ⎠=
Ω

 

where Ω is a collision integral obtained from look-up tables, M2 is the 
molecular weight of the gas that compound 1 is diffusing through, and β 
= 1.83 x 10-3, P is the pressure in atmospheres, T is the absolute 
temperature in oK, and d12 = 1/2(d1 + d2) where d1 and d2 are the 
equivalent spherical diameters of the molecules (in Angstroms). A 
common adjustment to the Chapman Enskog equation is the Wilke–Lee 
value for β, 
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Example: Determine the diffusivity of water vapor in air. Assume a 
temperature ot 25oC and a pressure of 1 atm. Using the Chapman–
Enskog equation and denoting water vapor as subscript 1 and air as 
subscript 2, we first find the values for the variables from a chemistry 
handbook (e.g., CRC Handbook of Chemistry and Physics, or look them 
up on the web), 
   T = 298oK 
   M1 = 18 g/mole 
   M2 = 29 g/mole 
   P = 1 atm 
   d1 = 2.64 Å 
   d2 = 0.8(3.8) + 0.2(3.5) = 3.74 Å 
   d12 = ½(d1 + d2) = 3.17 Å 
   ε1 / k = 809oK 
   ε2 / k = 0.8(71.4)+0.2(106.7) = 78.5oK 
   ε12 / k = (e1/k e2/k)1/2 = 252oK 
   KT/ε = 298oK/252oK = 1.18 
   Ω = 1.33 
 



Appendix A 

 

307 

Thus, 
 D12 = 0.21 cm2/s = 2 x 10-5 m2/s. 
The Wilke–Lee adjustment gives the value 
 D12 = 0.23 cm2/s = 2.3 x 10-5 m2/s. 
The experimental value obtained from Table 1 is 
 D12 = 0.26 cm2/s = 2.6 x 10-5 m2/s. 
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APPENDIX B   2-D Office Simulations: 
COMSOL and ANSWER Software 

B.1 COMSOL Model – Report Output 

 
 

 

B.1.1 Model properties 

Property Value 
Model name   
Author   
Company   
Department   
Reference   
URL   
Saved date Apr 7, 2008 3:45:57 PM 
Creation date Mar 10, 2008 2:34:11 PM 
COMSOL version COMSOL 3.4.0.248 
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Application modes and modules used in this model: 
Geom1 (2D) 
Incompressible Navier–Stokes 
Convection and Diffusion 

B.1.2 Geometry 

Number of geometries: 1 

B.1.2.1 Geom1 

 
Fig. B.1.1 Domain of 2-D office configuration  

for COMSOL MultiPhysics  software. 
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B.1.2.2 Point mode 

 
Fig. B.1.2 Grid vertices for 2-D office configuration  

for COMSOL MultiPhysics  software. 

B.1.2.3 Boundary mode 

 
Fig. B.1.3 Boundary edges of 2-D office configuration  

for COMSOL MultiPhysics  software. 
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B.1.2.4 Subdomain mode 

 
Fig. B.1.4 Grid subdomains of 2-D office configuration  

for COMSOL MultiPhysics software. 

B.1.3 Geom 1 

Space dimensions: 2-D 
Independent variables: x, y, z 

B.1.4 Mesh 

B.1.4.1 Mesh statistics 

Number of degrees of freedom 81186 
Number of mesh points 6357 
Number of elements 12229 
Triangular 12229 
Quadrilateral 0 
Number of boundary elements 509 
Number of vertex elements 34 
Minimum element quality 0.665 
Element area ratio 0.007 
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Fig. B.1.5  2-D grid  (triangles) of  office configuration  

generated by COMSOL MultiPhysics  software. 

B.1.5 Application mode: Incompressible Navier–Stokes 

Application mode type: Incompressible Navier–Stokes 
Application mode name: ns 

B.1.5.1 Application mode properties 

Property Value 
Default element type Lagrange - P2 P1 
Analysis type Stationary 
Corner smoothing Off 
Frame Frame (ref) 
Weak constraints Off 
Constraint type  deal 
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B.1.5.2 Variables 

Dependent variables: u, v, p, nxw, nyw 
Shape functions: shlag(2,'u'), shlag(2,'v'), shlag(1,'p') 
Interior boundaries active 
Locked Points: 6 
Locked Boundaries: 1 

B.1.5.3 Boundary settings 

Boundary  1 2–22, 26–27, 29 23–25, 28 
Type  Inlet Wall Wall 
Inttype  cont cont uv 
Boundary  30 31–34 
Type  Outlet Interior boundary 
Inttype  cont cont 

B.1.5.4 Subdomain settings 

Subdomain  1–2 
Integration order (gporder)  4 4 2 
Constraint order (cporder)  2 2 1 

B.1.6 Application mode: Convection and diffusion 

Application mode type: Convection and diffusion 
Application mode name: cd 
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B.1.6.1 Application mode properties 

Property Value 
Default element type Lagrange – Quadratic 
Analysis type Stationary 
Equation form Non–conservative 
Frame Frame (ref) 
Weak constraints Off 
Constraint type Ideal 

B.1.6.2 Variables 

Dependent variables: c 
Shape functions: shlag(2,'c') 
Interior boundaries active 
Locked Boundaries: 1 

B.1.6.3 Boundary settings 

Boundary  1, 10 2–9, 11–29 30 
Type  Insulation/ 

Symmetry 
Insulation/ 
Symmetry 

Convective flux

Concentration (c0) mol/m3 1 0 0 
Boundary  31–34 
Type  Concentration 
Concentration (c0) mol/m3 1 

B.1.6.4 Subdomain settings 

Subdomain  1–2 
Diffusion coefficient (D) m2/s 0.01 
x-velocity (u) m/s u 
y-velocity (v) m/s v 
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B.1.7 Solver settings 

Solve using a script: off 
Analysis type Stationary 
Auto select solver On 
Solver Stationary 
Solution form Automatic 
Symmetric auto 
Adaption Off 

B.1.7.1 Direct (PARDISO) 

Solver type: Linear system solver 
Parameter Value 
Preordering algorithm Nested dissection 
Row preordering On 
Pivoting perturbation 1.0E-8 
Relative tolerance 1.0E-6 
Factor in error estimate 400.0 
Check tolerances On 

B.1.7.2 Stationary 

Parameter Value 
Linearity Automatic 
Relative tolerance 5.0E-4 
Maximum number of iterations 25 
Manual tuning of damping parameters Off 
Highly nonlinear problem On 
Initial damping factor 1.0 
Minimum damping factor 1.0E-4 
Restriction for step size update 10.0 
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B.1.7.3 Advanced 

Parameter Value 
Constraint handling method Elimination 
Null-space function Automatic 
Assembly block size 1000 
Use Hermitian transpose of constraint matrix and   
 in symmetry detection 

Off 

Use complex functions with real input Off 
Stop if error due to undefined operation On 
Store solution on file Off 
Type of scaling None 
Manual scaling   
Row equilibration On 
Manual control of reassembly Off 
Load constant On 
Constraint constant On 
Mass constant On 
Damping (mass) constant On 
Jacobian constant On 
Constraint Jacobian constant On 
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B.1.8 Postprocessing 

 

Fig. B.1.6 Concentration isopleths in 2-D office  
simulated by COMSOL MultiPhysics  software. 
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B.2 ANSWER Model  

B.2.1 Answer input deck 

/====   PROBLEM IDENTIFICATION             ====/ 
TITLe Indoor_Air_Office_2d 
USER Dave Carrington 
/====   GEOMETRY SPECIFICATIONS            ====/ 
COORdinates X MIN -10 MAX +10 
COORdinates Y MIN -6  MAX +6 
GRID which 42 by 26 
/// define objects 
LOCAte ID=LLC    COOR (-10, -6) to ( -7, -3) 
LOCAte ID=ULC    COOR (-10, +3) to (-7, +6) 
LOCAte ID=MB1    COOR ( -4, -6) to (-1, -1) 
LOCAte ID=MB2    COOR ( -1, -6) to (+1, -4) 
LOCAte ID=MB3    COOR ( +1, -6) to (+2,  0) 
LOCAte ID=MU1    COOR ( +1, +3) to (+2, +6) 
LOCAte ID=MBG    COOR ( +4, -3) to (+7, +2) 
LOCAte ID=LRC    COOR ( +4, -6) to (10, -5) 
LOCAte ID=URC    COOR ( +4, +4) to (10, +6) 
LOCAte ID=INLET  COOR (-10, -2) to (-9, -1) 
LOCAte ID=OUTLET COOR ( +9, +2) to (10, +3) 
LOCAte ID=SOURCE COOR LIST ( -7, -2) 
/====   INITIAL & BOUNDARY CONDITIONS      ====/ 
BLOCK  ID=LLC 
BLOCK  ID=ULC 
BLOCK  ID=MB1 
BLOCK  ID=MB2 
BLOCK  ID=MB3 
BLOCK  ID=MU1 
BLOCK  ID=MBG 
BLOCK  ID=LRC 
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BLOCK  ID=URC 
INLEt  ID=INLET X- 
OUTLet at X+ for SubRegion ID=OUTLET ;1.0 
BOUNdary AT ID=INLET X- U=1. 
WALL at everywhere unless otherwise specified 
/====   FLUID PROPERTIES & CONSTANTS       ====/ 
DENSity 1.00 
VISCosity 0.01 
SCHMIDT NUMBER FOR C=1 
/====   NATURE OF FLOW                     ====/ 
TURBulent model HRe Ke 
/====   SOURCE & SINK SPECIFICATIONS       ====/ 
SOURce C ID=SOURCE CONSTANT 1. 
/====   OUTPUT CONTROL                     ====/ 
SAVE U V SPEED C 'Indoor_Air_Office_2d.sav' FORMatted  
CONVergence C 1.0E-6 MAX 5 ITERATIONS  
/====   OPERATIONAL CONTROL                ====/ 
SOLVe  STEADy-state Nmax=500  
END 
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B.2.2 Answer solutions 

 

 
Fig. B.2.1 Predicted velocity vectors and grid for 2-D office configuration  

simulated by ANSWER CFD software. 
 
 
 

 
Fig. B.2.2 Predicted concentration and grid for 2-D office configuration  

simulated by ANSWER CFD software. 
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